ML19309C557: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
 
(Created page by program invented by StriderTol)
Line 19: Line 19:
{{#Wiki_filter:_                  _-    -            -
{{#Wiki_filter:_                  _-    -            -
p            WESTON GEOPHYSICAL RESEARCH, INC.
p            WESTON GEOPHYSICAL RESEARCH, INC.
      .'
       -*/'
       -*/'
          %
{
{
i-POST OFFICE BOX 364 WESTON. MASSACHUSETTS 02193 AREA CODE elf 894 4030 January 19, 1967 l
i-POST OFFICE BOX 364 WESTON. MASSACHUSETTS 02193 AREA CODE elf 894 4030 January 19, 1967 l
Line 34: Line 32:
WESTON GEOPHYSICAL RESEARCH, INC.
WESTON GEOPHYSICAL RESEARCH, INC.
A
A
                                                                *
                                                                       /&
                                                                       /&
Richard J. Hott RJH:mf Enc.
Richard J. Hott RJH:mf Enc.
                                                                                      <
O                                                          8004080 0002 227 1
O                                                          8004080 0002 227 1
                                                                                           ;
                                                                                           ;
                                                                              -
  .


    .
l l
l l
O                                                              ,
O                                                              ,
SEISMICITY AND RESPONSE SPECTRA ANALYSIS PROPOSED NUCLEAR POWER PLANT THREEMILE ISLAND, SUSQUEHANNA RIVER, PENNSYLVANIA l
SEISMICITY AND RESPONSE SPECTRA ANALYSIS PROPOSED NUCLEAR POWER PLANT THREEMILE ISLAND, SUSQUEHANNA RIVER, PENNSYLVANIA l
l l
l l
                                                                  ,
for GILBERT ASSOCIATES, INC.
for GILBERT ASSOCIATES, INC.
                  .
O PART I    SEISMICITY ANALYSIS Weston Geophysical Research, Inc.
O PART I    SEISMICITY ANALYSIS Weston Geophysical Research, Inc.
PART II RESPONSE SPECTRA Professor Robert V. Whitman Consulting Soil Engineer
PART II RESPONSE SPECTRA Professor Robert V. Whitman Consulting Soil Engineer
Line 58: Line 49:
;
;
0002 228
0002 228
!
\                                                                l l
                                                                  !
\                                                                l
                                      .-. .
l


  .
O                                TABLE OF CONTENTS PART I SEISMICIlY ANALYSIS General Geology and Tectonics                            2 Seismicity of the Proposed Plant Site                    4 Earthquakes Greater Than Fifty Miles from the Site        4 Earthquakes Within Fifty Miles of the Proposed Site      4 Earthquake Intensity Attenuation                          6 Earthquake-Tectonic Relationships                        7 Conclusions                                              9 Figures Figure 1 Tectonic Map of Northeastern United States  10 O                    Figure 2 Com,ilation of Ear 1houakes Pennsylvania Area                                        11 Figure 3 Compilation of Earthquakes Southeastern Pennsylvania Area                            12 Figure 4 Mcdified Mercalli Intensity Scale, Rossi-Forel Intensity Scale, and Relation of Intensity with Ground Acceleration          13 References                                              14 Bibliography                                            15 Appendix I                                              17 O                                                                              l 1
O                                TABLE OF CONTENTS PART I SEISMICIlY ANALYSIS General Geology and Tectonics                            2 Seismicity of the Proposed Plant Site                    4 Earthquakes Greater Than Fifty Miles from the Site        4 Earthquakes Within Fifty Miles of the Proposed Site      4 Earthquake Intensity Attenuation                          6 Earthquake-Tectonic Relationships                        7 Conclusions                                              9 Figures Figure 1 Tectonic Map of Northeastern United States  10 O                    Figure 2 Com,ilation of Ear 1houakes Pennsylvania Area                                        11 Figure 3 Compilation of Earthquakes Southeastern Pennsylvania Area                            12 Figure 4 Mcdified Mercalli Intensity Scale, Rossi-Forel Intensity Scale, and Relation of Intensity with Ground Acceleration          13 References                                              14 Bibliography                                            15 Appendix I                                              17 O                                                                              l 1
                                                                     ~
                                                                     ~
     ,en. , ..m..                                                      0002 229 l
     ,en. , ..m..                                                      0002 229 l LV
                                                                                ,
LV


_ _ _ _ _ _ _ - _ .
O TABLE OF CONTENTS (Continued)
O TABLE OF CONTENTS (Continued)
PART II RESPONSE SPECTRA Objective                                          20 Response Spectra for Nearby Earthquake            20 Effect of Distant Earthquakes                      22 Application of Response Spectra to Design          22 Acknowledgement                                    23 References                                        23 Figures Figure 1 Response Spectra for Design            24 Figure 2 Response Spectra for Design            25 O
PART II RESPONSE SPECTRA Objective                                          20 Response Spectra for Nearby Earthquake            20 Effect of Distant Earthquakes                      22 Application of Response Spectra to Design          22 Acknowledgement                                    23 References                                        23 Figures Figure 1 Response Spectra for Design            24 Figure 2 Response Spectra for Design            25 O
O h , ~. 4.. . a ,
O h , ~. 4.. . a ,
0002 230
0002 230 i
'
v                            )
i v                            )


O
O 1
                                                    !
PART I SEISMICITY ANALYSIS O
1 PART I SEISMICITY ANALYSIS O
'
O S'' ''
O S'' ''
         ..:1. .
         ..:1. .
Line 88: Line 68:
l
l


      .
O The proposed nuclear power plant site of Metropolitan Edison Company is on Threemile Island, in the town of York Haven, Pennsylvania.
O The proposed nuclear power plant site of Metropolitan Edison Company is on Threemile Island, in the town of York Haven, Pennsylvania.
Threemite Island is located in the Susquehanna River approximately three miles south of Middletown, Pennsylvania at latitude 400 09 ' North, lor.gitude 760 4 4 ' We s t .
Threemite Island is located in the Susquehanna River approximately three miles south of Middletown, Pennsylvania at latitude 400 09 ' North, lor.gitude 760 4 4 ' We s t .
GENERAL GEOLOGY AND TECTONICS Physiographically, the site is located in the Triassic Lowland of Pennsylvania, one of a series of long narrow basins of Triassic deposits which extend from the Carolinas to New England. The basins are generally classed as lowlands because the formations have been more easily eroded than the surrounding crystalline and older sedimentary rocks . These basins g i are characterized by resistant ridges of trap rock (diabase) which stand prominently above the lowlands . The Triassic Lowland is known as the
GENERAL GEOLOGY AND TECTONICS Physiographically, the site is located in the Triassic Lowland of Pennsylvania, one of a series of long narrow basins of Triassic deposits which extend from the Carolinas to New England. The basins are generally classed as lowlands because the formations have been more easily eroded than the surrounding crystalline and older sedimentary rocks . These basins g i are characterized by resistant ridges of trap rock (diabase) which stand prominently above the lowlands . The Triassic Lowland is known as the Gettysburg Basin in the vicinity of the site.
                                                                            ,
Gettysburg Basin in the vicinity of the site.
North and west of the Triassic Lowland are the folded and thrust faulted Paleozoic rocks which corrprise the Appalachian Mountains. South-east of the Triassic Lowland is the Piedmont, composed of granites, gneisse and schists of Pre-Cambrian and Early Paleozoic Age. A tectonic map of the area is shown in Figure 1.
North and west of the Triassic Lowland are the folded and thrust faulted Paleozoic rocks which corrprise the Appalachian Mountains. South-east of the Triassic Lowland is the Piedmont, composed of granites, gneisse and schists of Pre-Cambrian and Early Paleozoic Age. A tectonic map of the area is shown in Figure 1.
The Appalachian Mountain System was formed by a great compressici force from the southeast at the close of the Paleozoic Era. The Triassic Lov O
The Appalachian Mountain System was formed by a great compressici force from the southeast at the close of the Paleozoic Era. The Triassic Lov O
Line 101: Line 78:
l
l


O
O lands were formed by the Palisades Orogeney during late Triassic Time (190 million years ago), no orogenic periods have occurred since that time . The area underwent a minor submergence during Cretaceous Time (70 to 135 million years ago) and some uplift during Tertiary Time (1 to 70 million years ago).
                                                                                      -
lands were formed by the Palisades Orogeney during late Triassic Time (190 million years ago), no orogenic periods have occurred since that time . The area underwent a minor submergence during Cretaceous Time (70 to 135 million years ago) and some uplift during Tertiary Time (1 to
                                      .
70 million years ago).
The Triassic basins are characteristically bordered on one side by a major normal fault. The border faulting was a fairly continuous process during which time sediments act;umulated in the resulting fault basin. Deepening of the basin by faul'.ing tilted the previously deposited sediments in the direction of the fau1.c. As the faulting and sedimentation process became established, basic magmas entered the basin primarily O      along the border faults and spread out into the sediments as dikes and J
The Triassic basins are characteristically bordered on one side by a major normal fault. The border faulting was a fairly continuous process during which time sediments act;umulated in the resulting fault basin. Deepening of the basin by faul'.ing tilted the previously deposited sediments in the direction of the fau1.c. As the faulting and sedimentation process became established, basic magmas entered the basin primarily O      along the border faults and spread out into the sediments as dikes and J
sills and on top of the sediments as lava flows. Continued faulting provided new avenues for the magma and complicated the basin structure (Eardley , 1951) .
sills and on top of the sediments as lava flows. Continued faulting provided new avenues for the magma and complicated the basin structure (Eardley , 1951) .
The Triassic sediments of the Gettysburg Formation in the vicinity of the site consist of red sbales and sandstones with diabase intrusives.
The Triassic sediments of the Gettysburg Formation in the vicinity of the site consist of red sbales and sandstones with diabase intrusives.
As is common in all Triassic basins the sediments dip toward the major border fault which in this case is located about five or six miles north of the site . The dip at the site is approximately 40 to 45 degrees.
As is common in all Triassic basins the sediments dip toward the major border fault which in this case is located about five or six miles north of the site . The dip at the site is approximately 40 to 45 degrees.
O.                                                                      0002 233
O.                                                                      0002 233 r  .o vo I
: .
                                                                              .
r  .o vo I
                                                                                        ,
i                                                                                        l
i                                                                                        l


Line 129: Line 98:
l          Pennsylvania are shown in Figure 3. Of the three earthquakes shown
l          Pennsylvania are shown in Figure 3. Of the three earthquakes shown
   .s .s
   .s .s
  .
        <
             ,..s.
             ,..s.
           . ..                                                                            G l                                                                                0002 234 l
           . ..                                                                            G l                                                                                0002 234 l
_ _ _ _ _
      .
f within a fifty mile radius of the site which had an epicentral intensity of V or greater, only the March 8,1889 earthquake was felt at the site.
f within a fifty mile radius of the site which had an epicentral intensity of V or greater, only the March 8,1889 earthquake was felt at the site.
All three of these earthquakes are described below.
All three of these earthquakes are described below.
Pennsylvania Earthouake of March 8.1889
Pennsylvania Earthouake of March 8.1889 The earthquake of March 8,1889, was felt over a 4,000 square              l mile area of southeastern Pennsylvania including such cities as York, Harrisburg, Lancaster, Reading, and Philadelphia (Kershner,1889).
                .
The earthquake of March 8,1889, was felt over a 4,000 square              l mile area of southeastern Pennsylvania including such cities as York, Harrisburg, Lancaster, Reading, and Philadelphia (Kershner,1889).
The area of perceptibility was elongated in an east-west direction includ-l ing most of the Triassic Lowland of Pennsylvania. The United States Coast and Geodetic Survey has assigned an epicentral intensity o~ V to this earthquake.
The area of perceptibility was elongated in an east-west direction includ-l ing most of the Triassic Lowland of Pennsylvania. The United States Coast and Geodetic Survey has assigned an epicentral intensity o~ V to this earthquake.
O
O Earthouake in the Sinkinc Sorine Pennsvivania Area The earthquake of January 7,1954, was felt over an eighty square mile area from an epicenter near Sinking Spring, Pennsylvania. Based on reports of minor damage fron the western section of Sinking Spring, this earthquake has been assigned an epicentral intensity of VI by the United States Coast and Geodetic Survey. The earthquake intensity was attenu-ated to IV within a distance of five miles from the epicenter. Nearly twenty aftershocks were felt in Sinking Spring between January 7th and 17th. An aftershock on Jan'uary 23, 1954, was felt over a ten square mile area.
                                                                                                  ,
                                                                                                  '
Earthouake in the Sinkinc Sorine Pennsvivania Area The earthquake of January 7,1954, was felt over an eighty square mile area from an epicenter near Sinking Spring, Pennsylvania. Based on reports of minor damage fron the western section of Sinking Spring, this earthquake has been assigned an epicentral intensity of VI by the United States Coast and Geodetic Survey. The earthquake intensity was attenu-ated to IV within a distance of five miles from the epicenter. Nearly twenty aftershocks were felt in Sinking Spring between January 7th and 17th. An aftershock on Jan'uary 23, 1954, was felt over a ten square mile area.
O                                                                        0002 2 %
O                                                                        0002 2 %
    ,
v.. l.
v.. l.
                  .
                     >Gl:,
                     >Gl:,
    .
O The last earthquake to occur in Sinking Spring area occurred on January 19, 1955, and was felt over an area of approximately one hundred square miles, a slightly larger area than the quake of January 7,1954.
O The last earthquake to occur in Sinking Spring area occurred on January 19, 1955, and was felt over an area of approximately one hundred square miles, a slightly larger area than the quake of January 7,1954.
The United States Coast and Geodetic Survey has assigned an intensity of IV to this earthquake since the earthquake was felt butno damage reported .
The United States Coast and Geodetic Survey has assigned an intensity of IV to this earthquake since the earthquake was felt butno damage reported .
Cornwall, Pennsvivania Earthouake of May 12, 1964 This earthquake was reportedly felt only in the immediate vicinity of Cornwall. The United States Coast and Geodetic Survey has assigned an epicentral intensity of VI to this earthquake, based on a report that "a wall cracked and plaster fell". A severe jarring was felt by workers
Cornwall, Pennsvivania Earthouake of May 12, 1964 This earthquake was reportedly felt only in the immediate vicinity of Cornwall. The United States Coast and Geodetic Survey has assigned an epicentral intensity of VI to this earthquake, based on a report that "a wall cracked and plaster fell". A severe jarring was felt by workers in an iron mine 1,200 feet deep.
                                                                                    ,
in an iron mine 1,200 feet deep.
The instrumentally determined magnitude of this earthquake was calculated at 4.5 (Richter Scale) by the United States Coast and Geodetic Survey . According to the relationship between Earthquake Magnitude and Acceleration published by the United States Atomic Energy Commission in Nuclear Reactors and Earthcuakes TID 7024 (our Figure 4), the resultant acceleration from this earthquake would be in the order cf .02g.
The instrumentally determined magnitude of this earthquake was calculated at 4.5 (Richter Scale) by the United States Coast and Geodetic Survey . According to the relationship between Earthquake Magnitude and Acceleration published by the United States Atomic Energy Commission in Nuclear Reactors and Earthcuakes TID 7024 (our Figure 4), the resultant acceleration from this earthquake would be in the order cf .02g.
EARTHOUAKE INTENSITY ATTENUATION Nearly all of the above listed earthquakes have been felt over very limited areas, which are generally elliptical in shape and arc aligned 2*
EARTHOUAKE INTENSITY ATTENUATION Nearly all of the above listed earthquakes have been felt over very limited areas, which are generally elliptical in shape and arc aligned 2*
bI  \i...ij
bI  \i...ij 0002 2 %
,
,
0002 2 %
f                                        l l
f                                        l l
!


_ - . _ -
  ,
O with the general structural trend of the area. The areas in which the earthquakes were felt are generally less than 600 square miles and extend to a maximum distance from the epicenter of sixteen to eighteen miles along the structural trend; perpendicular to the structural trend, the maximum extent of perceptibility is ten to twelve miles . The high attenuation of these earthquakes indicates that their foci must have been close to the earth's surface.
O with the general structural trend of the area. The areas in which the earthquakes were felt are generally less than 600 square miles and extend to a maximum distance from the epicenter of sixteen to eighteen miles along the structural trend; perpendicular to the structural trend, the maximum extent of perceptibility is ten to twelve miles . The high attenuation of these earthquakes indicates that their foci must have been close to the earth's surface.
Isoseismal lines are difitcult to construct for earthquakes in this area because of a very limited number of observations within the small zone of perceptibility. An intensity attenuation curve is difficult to construct because only one or two data points exist for the curve due O      to the high intensity attenuation in a short distance.
Isoseismal lines are difitcult to construct for earthquakes in this area because of a very limited number of observations within the small zone of perceptibility. An intensity attenuation curve is difficult to construct because only one or two data points exist for the curve due O      to the high intensity attenuation in a short distance.
Line 174: Line 122:
0002 237
0002 237
: e. ~,jqj,
: e. ~,jqj,
       ,e
       ,e O
 
Recent earthquakes which are on er proximate to the border fault are listed below:
__
O Recent earthquakes which are on er proximate to the border fault are listed below:
Sinking Spring, Pennsylvania , January 7,1954, intensity VI (described above);
Sinking Spring, Pennsylvania , January 7,1954, intensity VI (described above);
Lebanon, New Jersey, March 23, 1957, intensity VI, (Figure magnitude 4.8 not described because it was not felt at the site.
Lebanon, New Jersey, March 23, 1957, intensity VI, (Figure magnitude 4.8 not described because it was not felt at the site.
Cornwall, Pennsylvania, May 12, 1964, intensity VI, (described above).
Cornwall, Pennsylvania, May 12, 1964, intensity VI, (described above).
An estimation of the maximum expected intensity of an earthquake i                  at the site is based on the assumption that the location of earthquake
An estimation of the maximum expected intensity of an earthquake i                  at the site is based on the assumption that the location of earthquake activity which could affect the site will be along the border fault of the j                  Triassic Lowland five to six miles north of the site. The highest intensi  9 l
!
'
activity which could affect the site will be along the border fault of the j                  Triassic Lowland five to six miles north of the site. The highest intensi  9 l
j                  to occur on this fault has been Modified Mercalli VI. If an earthquake o epicentral intensity VI were to occur on the border fault five or six miles north of the site, the intensity observed at the site would be V based on the rapid attenuation of similar earthquakes in the area and along the l                  border fault. However, if a future earthquake along tN border fault has a focal depth greater than past quakes, a conservat.ve assumption woulc be that the resulting intensity at the site might approach the apicentral intensity and not be rapidly attenuated.
j                  to occur on this fault has been Modified Mercalli VI. If an earthquake o epicentral intensity VI were to occur on the border fault five or six miles north of the site, the intensity observed at the site would be V based on the rapid attenuation of similar earthquakes in the area and along the l                  border fault. However, if a future earthquake along tN border fault has a focal depth greater than past quakes, a conservat.ve assumption woulc be that the resulting intensity at the site might approach the apicentral intensity and not be rapidly attenuated.
c T' '\ s '
c T' '\ s '
                *
             .'. ilij O
             .'. ilij O
0002 238
0002 238 O
 
_ _ _ _ _
                                                    .
O
                                                                                       ~
                                                                                       ~
CONCLUSIONS A conservative estimate of the maximum earthquake intensity to be expected at the proposed site is low intensity VI. Using relationshit published in Nuclear Reactors and Earthcuakes TID 7024, United States Atomic Energy Commission (Figure 4 of this report), this intensity corre-sponds to a ground acceleration of .04g.
CONCLUSIONS A conservative estimate of the maximum earthquake intensity to be expected at the proposed site is low intensity VI. Using relationshit published in Nuclear Reactors and Earthcuakes TID 7024, United States Atomic Energy Commission (Figure 4 of this report), this intensity corre-sponds to a ground acceleration of .04g.
Line 200: Line 138:
_g_
_g_


                                                                                                          .
                                                                                              .,        -
                                                                                                                                ,
n          I                    .
n          I                    .
:
                                                                                              -
it li I                                                                      s s                                    I
it li I                                                                      s s                                    I
                                                                      .
                                                                                   ,          =
                                                                                   ,          =
c i
c i
            -
                                                 .c : ;.7
                                                 .c : ;.7
* _: :            :
* _: :            :
                                                                                              -
                                                                                                                                .
z c
z c
                                                                                                                                      .
                                                         . e 2 -.-i ,:                                    3 i
                                                         . e 2 -.-i ,:                                    3 i
                      .
                       .                                                                                                        =
                       .                                                                                                        =
    ,"                                                  .,          .,                      .
                                                                                                             ;
                                                                                                             ;
i                  ::  .                                                  .
i                  ::  .                                                  .
                                                                                                                                                                                      .:
              .
                                                        -
                                                                  .-
_
                                                                                  .          .            .                  ,
                                                                                                                                .
e,,                                                ..
e,,                                                ..
c g            >
c g            >
                                                                  .
i  e                                                .:
i  e                                                .:
                                                                                                                                                                                       =.
                                                                                                                                                                                       =.
       .s y :-                        1                                                                  =
       .s y :-                        1                                                                  =
g c
g c
                                                                                                                                                                                      *
               .- g-t                  ;                                              1                                            -
               .- g-t                  ;                                              1                                            -
iE8                                                            .
iE8                                                            .
    !!:      -
     .....r.                                        .-
     .....r.                                        .-
k                          k
k                          k
Line 246: Line 162:
                                                                         ~
                                                                         ~
       .                                                                                        \
       .                                                                                        \
:                                                                          .
    .
      -
t.s, :....,.
t.s, :....,.
            ***
                .
                           .. .. .. : . M.. s:
                           .. .. .. : . M.. s:
                                  .
                                        . .: .
                                                              .
g<:. 5 i
g<:. 5 i
I
I
    ' ' '
                          -
                                    ,    ,.!,*
                                              '
                                                          .
                                                                        *
                                                                                             . e!          .
                                                                                             . e!          .
e
e
                                                                                                                                -
:                                                            -)''. $
:                                                            -)''. $
   %w%%(                                      f    "      ,.:        .      ;
   %w%%(                                      f    "      ,.:        .      ;
: 8.  ... .\. # 1, R f. 5M h $* [
: 8.  ... .\. # 1, R f. 5M h $* [
                                 ,.,={w:;; M [''g Lk        -                                                    E                  **g 7
                                 ,.,={w:;; M [''g Lk        -                                                    E                  **g 7
                            - - . .
                                      -
                                                  .
                                                         . g.>;. ...  ,
                                                         . g.>;. ...  ,
                                                                           .  ~f ;. Q g                                b
                                                                           .  ~f ;. Q g                                b
      ..
                                            -
                                                                                         ,s.
                                                                                         ,s.
4
4
Line 284: Line 180:
-,'..[    ,
-,'..[    ,
                         ~                      .
                         ~                      .
                                                                                .
                                                                                        , ' . , , ,
                                                                                              -
4, _
4, _
g
g
                                     ~ !*                                                                                                h
                                     ~ !*                                                                                                h l' ' " d'se.N., - % 5 D                                                              3
      .. .
      .::.:..%                      >
l' ' " d'se.N., - % 5 D                                                              3
     - :;.
     - :;.
                    . . .-
                     ~'
                     ~'
: :
                                   '                    i        .
                                   '                    i        .
s 3                      ;
s 3                      ;
                                                                                                                  -
t                I
t                I
                                                                                                                                             ;
                                                                                                                                             ;
Line 305: Line 192:
-{ :[{ ..'. .' )' 7                                  1          1
-{ :[{ ..'. .' )' 7                                  1          1
                                                                                 ' . N.w
                                                                                 ' . N.w
                                                                                    '
                                                                                       -                                    e j'
                                                                                       -                                    e j'
                                                                                            %''
                                                                                                                                                                        .
                                                      ,
i[                                                              [[            [!
i[                                                              [[            [!
                                                                               .r''
                                                                               .r''
                                                                                                                     'D _ t d'
                                                                                                                     'D _ t d'
                                                                                                                                                                 ,        c          :.
                                                                                                                                                                 ,        c          :.
                                                                                                                                                                                    "
                                                   /
                                                   /
                                                                                             !Q                s        ]      Drg,--PjdDA 1
                                                                                             !Q                s        ]      Drg,--PjdDA 1
I!
I!
3        s                          i
3        s                          i
            '
[                                            \\                                                                  '
[                                            \\                                                                  '
                                                                                                                                                                                              -
%)
%)
                ',-
c
c
(            a k'
(            a k'
Line 329: Line 208:
                                                                         <            .;                        '  M k!%kk[    ;
                                                                         <            .;                        '  M k!%kk[    ;
d' t      (        Y>
d' t      (        Y>
                                                                      ,
                                                                                         %g Q                                                  ,
                                                                                         %g Q                                                  ,
* g fl
g fl
                                                                   ~
                                                                   ~
                                                                     ~'
                                                                     ~'
Line 338: Line 216:
                                                                                                                                   ~%.
                                                                                                                                   ~%.
     !\Eh                                                '1(                  '          @k'                        k          p;.                                                  .,
     !\Eh                                                '1(                  '          @k'                        k          p;.                                                  .,
:
                                                                                                                                                   & YWf!i!$.!jl[~
                                                                                                                                                   & YWf!i!$.!jl[~
i,                            a
i,                            a s            A-                                  is
        '                                                                                                                          -
s            A-                                  is
                      .-
                                   ;s                    4, . L                                        44x                  .-
                                   ;s                    4, . L                                        44x                  .-
s i
s i
                                                                                          .
e ni . +, s. -        , ,
e ni . +, s. -        , ,
                                                                                                                                              '
                                                                                                                                                              .
                                                                                                                                                              .
                                                                                                                                                                  - . .          , .
i                                                        :                \s      ,
i                                                        :                \s      ,
j g                  ;o            s.      -
j g                  ;o            s.      -
s                      s a'.          y I;              't - ,,                                              ,                  ,,. . 'i. i                )      '\
s                      s a'.          y I;              't - ,,                                              ,                  ,,. . 'i. i                )      '\
                                                                                                                                                                ..-
                                                                                                                                                                    '
                                                                                                                                                                            ,
xi                                                                                      . ; 3. S,
xi                                                                                      . ; 3. S,
                               ;
                               ;
                              -                .
                                                      ..
c            . . .
c            . . .
                                                                                                                ,
                                                                                                                         ;          s                  .s.
                                                                                                                         ;          s                  .s.
                                                                                                                                                                                ,.
:.;;;
:.;;;
                                                                                     .l x. . . . . . ,.i ;                                            x n v,
                                                                                     .l x. . . . . . ,.i ;                                            x n v, l                  3,,, i
                                                                                                                        ,
                                                                                                                                                    ,
l                  3,,, i
                                                                                                                                                                                 ..y
                                                                                                                                                                                 ..y
                                                                                                                                                                                 . .                i
                                                                                                                                                                                 . .                i
Line 376: Line 235:
a:n
a:n
                                                     )y                                                    .T
                                                     )y                                                    .T
                                                                                                                                                  ,
(
(
                                                                                    ,
                                                                                                                          .
                                                                                                                                                  >
                                                                                                                                                   ,. _ s s                      .-(
                                                                                                                                                   ,. _ s s                      .-(
s
s l
                                                                                                                                                                                ..
QJ 0002 240              -
                                                                                                              ,                          -                            ,
                                                                                                                                                                              .    ::
                                                          .
l QJ 0002 240              -
l l
l l
l
l


                                                                 ,                                                            .        e                    i
                                                                 ,                                                            .        e                    i
                                                                 =                              E e ,i
                                                                 =                              E e ,i E
* E
                                                                                                 '                      N"            6.
                                                                                                 '                      N"            6.
                                                                                                  '
E                                                      $$            6
E                                                      $$            6
                                                                 .                                                                      =
                                                                 .                                                                      =
                                                          ,
i                              s                      E:            E E                                                      O$r<
* i                              s                      E:            E
                                                                                                                         .z            e 5g                                    a                      ot            e n                                                            != i                                          a Es            s                              W Eii
                                                          - .
E                                                      O$r<
                                                                                                                         .z            e 5g                                    a                      ot            e n                                                            != i                                          a
: :                                  .
Es            s                              W Eii
                                                       -==                                                              is            E E E
                                                       -==                                                              is            E E E
                                                                                                 ..                      ee5            a
                                                                                                 ..                      ee5            a
                                                                                                                                       ~
                                                                                                                                       ~
m        5
m        5
                                                            ..
                                                      .      .
                          -                          :      .
      ,
                        !!.    !
                                   .                  r.i. !i  .
                                   .                  r.i. !i  .
                                                                                                                                          ,
                                                                                                                                            ,
t i
t i
                         ,i
                         ,i i
                        ,
sy, y
                        ..
i sy,
                                                    ,
y
                                                             ,t.                  ,
                                                             ,t.                  ,
                                                                                                     ;
                                                                                                     ;
                                                                                                    ,
                                                                                                    ,
                                                                                                                                    .
                                                                                                                                   %~
                                                                                                                                   %~
~- s, i
~- s, i
i
i
                                  !,
                                           ;
                                           ;
                                              -
                                                 /        , y:
                                                 /        , y:
_.
                                                                                -
                                                                                                    -
                                                                                                                  ,.
                                                                                                                             ~:                            1 x
                                                                                                                             ~:                            1 x
                                  ,
                 .m              .,.-                      6 ..                                                          t,
                 .m              .,.-                      6 ..                                                          t,
: t. . ,. ,                                          ,    - -          ;:.:                                                      ,
: t. . ,. ,                                          ,    - -          ;:.:                                                      ,
* 7
* 7
                           , 1. *i                                <g
                           , 1. *i                                <g
                                                                          .
: i.        g    !.        ,#a l s*4,                    .
: i.        g    !.        ,#a l s*4,                    .
                                                                                                                                                       /
                                                                                                                                                       /
                                                                    .,                              ,
                                                                                                           / [.-
                                                                                                           / [.-
                            .
i    l5 j                                    i                8              I                    e f
                                                                                    .
                       ,. ,e i
* i    l5 j                                    i                8              I                    e f
                       ,. ,e
                      -
                            ,
                                ,  ,
                                                                    ,
i
                                                                              ,
                                                                               . w/a  w                            .
                                                                               . w/a  w                            .
                                                                                                                                            .
                                                                 ..            s.                                    o i                                    g              s I
                                                                 ..            s.                                    o i                                    g              s
g j=!.T                          I N ,._._3D                    ._.___.              i - !- --,
                                                                                                                                            ,
s          i i
I g j=!.T                          I N ,._._3D                    ._.___.              i - !- --,
s          i
                                              .
i
i
                                                                      .
                                                                                     .s i        sxG N                                          i l
i
l i                  i /'\i i' '
                                                                                     .s i        sxG N                                          i
                                                                                                                                              ..
l l
                    *
                                  ,,
                                                    -
i                  i /'\i i' '
                                                                                 /[
                                                                                 /[
i            .
i            .
                                                                                                   "I (b(b
                                                                                                   "I (b(b
                                                                                                                  . ''' '
                                                                                                                     ,ep              ,A m              ,
                                                                                                                     ,ep              ,A m              ,
a W
a W
                  '
f                          g y!                                            \,.
f                          g y!                                            \,.
* k                            '
* k                            '
                                                                                                                                                  *
                       .                          ,                      s          :
                       .                          ,                      s          :
i.
i.
Line 493: Line 293:
                                         ~  '
                                         ~  '
l                              .            l                                              ,
l                              .            l                                              ,
              -
                                                                         !'            ;
                                                                         !'            ;
                                                                                                       !/    O l(;r                      :
                                                                                                       !/    O l(;r                      :
Line 502: Line 301:
I                  f            l.
I                  f            l.
e l              .
e l              .
                                                                                                      '
g          .-
g          .-
x                        ;                              -
x                        ;                              -
                                                                                        -
                                                                                                      !
                                                                                                               =
                                                                                                               =
                                                                                                               -          i
                                                                                                               -          i
                                                                                                                          -
                                                                                                                                       ./. ,'    -
                                                                                                                                       ./. ,'    -
                                                                                                                                                          ,
l                                            _j /                                        .            [                  ,;
l                                            _j /                                        .            [                  ,;
1
1 i  ..          t,.s.      .t._ -                -
                                                        .    ,
i  ..          t,.s.      .t._ -                -
                                                                                                                                                                          ,
i                                          z              ,
i                                          z              ,
                                                                                                                                ,
                                                                                                                                        -
I j                                          E              i            I
I j                                          E              i            I
                                                                                             ."'.R 8                              7                                      '
                                                                                             ."'.R 8                              7                                      '
                                                                                             + j*                            /
                                                                                             + j*                            /
El
El i                                                          !            l l
                                                                                                                                        ":
i                                                          !            l
                                                                                                                                                          >
                                                                                                      -
l
                                      .
                                            .,                          !
l 1,/              l1.
l 1,/              l1.
                                                                                                      .,
a
a
                                                                                                                     /
                                                                                                                     /
                                                                                                                      ,
I        s i 't-: 5/ /
                                                                                                                        '                      '
I        s
                                      !,                                                                        '
                                                                                                                              -
i 't-: 5/ /
             !                                                                                                                                  ;' t.
             !                                                                                                                                  ;' t.
I;        a                                                                                                  !
I;        a                                                                                                  !
                                                                                                                                                           ;
                                                                                                                                                           ;
c,                                                . sc..
c,                                                . sc..
                                                                                    .
                                                                                     ,        a
                                                                                     ,        a
                                                                                                            ..
                                                                                                                     ~. ,.                    .
                                                                                                                     ~. ,.                    .
                                                                                                                                                          ,              ,
1 5                  *
1 5                  *
                                                                                                                                     %                                    i 3,
                                                                                                                                     %                                    i 3,
             ;                                                                        ,
             ;                                                                        ,
                                                                                                    .
s.g
s.g
            ,
                                                                                    ,
                                                                                    ,
[.                                                -
[.                                                -
                              .
: i.                                                    1 ie:        .,
: i.                                                    1
x i
:
s                                            .
ie:        .,
                                                                                                                .
                                                                                                                >
x
          .
                                    ,
i s                                            .
r                          .
r                          .
                                                                                                      % .
                                                                                                                                                          *
          ,                                                                                                                                    :
O '<i l                        ;                                i i              '
O '<i l                        ;                                i i              '
j  N'N                                  l                0002 241
j  N'N                                  l                0002 241
                                                                            %                                                          %


      .
MODIFIED-MERCALLI INTENSITY SCALE, RoSSI-
MODIFIED-MERCALLI INTENSITY SCALE, RoSSI-
   /
   /
O    roREt INTENSIrY SCatE AND aEtaTION Or ExaTaoUnxE
O    roREt INTENSIrY SCatE AND aEtaTION Or ExaTaoUnxE INTENSITY WITH GROUND ACCELERATION *
* INTENSITY WITH GROUND ACCELERATION *
                                ,
                                                     ., A60DtFIED=40DFCALU IntTENstTY JCALE234 isotD Afle AEumeAff l
                                                     ., A60DtFIED=40DFCALU IntTENstTY JCALE234 isotD Afle AEumeAff l
g
g
Line 589: Line 344:
                                                       ! Detected on6e by eenantire enafrussents.
                                                       ! Detected on6e by eenantire enafrussents.
Qsec 0
Qsec 0
g i The diocn Ne eut by er                  g Fen by a few persons et gerenced 06tener wederWY                reet, especially es oper          -2
g i The diocn Ne eut by er                  g Fen by a few persons et gerenced 06tener wederWY                reet, especially es oper          -2 W$
* W$
floorst deHCote sunOennd eksects neoy swung.                          -
floorst deHCote sunOennd eksects neoy swung.                          -
R Fee by a tow poogne or roen                                                    3 secoreled by sonorot seis.            E fem nortceeDry indoors. but 6                                        not ohneyerecognised on 4 qtasieg stending outos rock snghety,      *$
R Fee by a tow poogne or roen                                                    3 secoreled by sonorot seis.            E fem nortceeDry indoors. but 6                                        not ohneyerecognised on 4 qtasieg stending outos rock snghety,      *$
R fee & severet peoon at                    ,,greggae gg, paeog,, prygg,        4
R fee & severet peoon at                    ,,greggae gg, paeog,, prygg,        4 reeft Wrong esmaen har the                                                  7 daretion or directasa to be          X Fe# 8u8sers er meir, eussacre      .e          -
                                                                                                        -
reeft Wrong esmaen har the                                                  7
                                                                                                        <
daretion or directasa to be          X Fe# 8u8sers er meir, eussacre      .e          -
                 '80r*Ci***                              br e neers atnight eenae emeneng  ,9O 1xp' N As# sy severet peope in                    etunes, =meown, abe's asuma6ed, neefdom W      ten e/                  noser cars roc
                 '80r*Ci***                              br e neers atnight eenae emeneng  ,9O 1xp' N As# sy severet peope in                    etunes, =meown, abe's asuma6ed, neefdom W      ten e/                  noser cars roc
* noWeesody, u.r                                  r rea av ,,,oet o      ,s, ,s e 7 fee poverorty er everyone                areemove ofdisnes, %e., .po                  -
* noWeesody, u.r                                  r rea av ,,,oet o      ,s, ,s e 7 fee poverorty er everyone                areemove ofdisnes, %e., .po                  -
detureences of turnwiere,                adesesy dfstur6ence of Jtif suspiseg e/ some be#4                    eejects.                          ,
detureences of turnwiere,                adesesy dfstur6ence of Jtif suspiseg e/ some be#4                    eejects.                          ,
                                                                                                        .
U # #"*"I                    . gn        -
U # #"*"I                    . gn        -
                                                           "'d''' ounmog wing O        E essees,r**ome Generet ewesenenkat or      sevnging taese enendellera, stortted geogre rwe aufdoors, Piaster and churineys, denope "SQ m snied.                            *M
                                                           "'d''' ounmog wing O        E essees,r**ome Generet ewesenenkat or      sevnging taese enendellera, stortted geogre rwe aufdoors, Piaster and churineys, denope "SQ m snied.                            *M E C'erf'irow or movesse ce          se    W 6eryeody runs aunsoorv            [          I
                                                                                                        ,
E C'erf'irow or movesse ce          se    W 6eryeody runs aunsoorv            [          I
                         ,,gn gr,of tulht.ngs, g            earnoge to buildings Murled, de.
                         ,,gn gr,of tulht.ngs, g            earnoge to buildings Murled, de.
8""I'89 8' #d88F Of COnSfruC.
8""I'89 8' #d88F Of COnSfruC.
Line 611: Line 358:
cofnuieper send arid armdavecoq Z %dQ**"''"** ''                            aH ors or autos dist46ed.
cofnuieper send arid armdavecoq Z %dQ**"''"** ''                            aH ors or autos dist46ed.
2Sehengs splensd off foemde.
2Sehengs splensd off foemde.
                                                                                             .g
                                                                                             .g tions crocked threen out e/      "00        -
                                                                                                    -
tions crocked threen out e/      "00        -
pesney greared crocaeiginder-      300
pesney greared crocaeiginder-      300
* as,' Aassaws,
* as,' Aassaws,
                                                                                "
                 ,s.aan,, : ma                        x m.t- e                e.,,.e      .
                 ,s.aan,, : ma                        x m.t- e                e.,,.e      .
                                                                                                        -
88ruerires de8*WyW4 Ground      "
88ruerires de8*WyW4 Ground      "
sy" o ahe( sees tesq'aemandges.      "C00 2 Aaer smee We,uman me.eng, anidges deetraye4 #esuresin .scoO -
sy" o ahe( sees tesq'aemandges.      "C00 2 Aaer smee We,uman me.eng, anidges deetraye4 #esuresin .scoO -
grosmut pipesareassi, Amnesstsee;,ses 6ent                        -
grosmut pipesareassi, Amnesstsee;,ses 6ent                        -
                                                                                            ,,
20eseeve votes,=ses seen an grearest marrocsfinneof sdybt      <do00 ,
20eseeve votes,=ses seen an grearest marrocsfinneof sdybt      <do00 ,
i sed Jover deer =4 eWesse            sooo k
i sed Jover deer =4 eWesse            sooo k
Line 628: Line 370:
* Nuclear Reactors and Earthquakes TID 7024, United O          States Atomic Energy Commission, Division of Tech-nical Information, August 1963, Figure 1.7, p .13'.                                        0002 242 l
* Nuclear Reactors and Earthquakes TID 7024, United O          States Atomic Energy Commission, Division of Tech-nical Information, August 1963, Figure 1.7, p .13'.                                        0002 242 l
Figure 4
Figure 4
-


f APPENDIX C The response of the reactor building dose was analyzed for a 200,000 lb aircraft as described hereafter and using the same analytical techniques as described in Appendix 3.        The analysis was based on the following conditions:
f APPENDIX C The response of the reactor building dose was analyzed for a 200,000 lb aircraft as described hereafter and using the same analytical techniques as described in Appendix 3.        The analysis was based on the following conditions:
Line 645: Line 386:
V = velocity in ft/see of uncrushed portion of aircraft at any time or distance during the impact Instrumented data frem a full-scale C-119 aircraft i= pact into a vertical vall indicated that the results given by the above momentum exchange principle for a 3-720 aircraft were of the right order of =agnitude; however, the actual reac load (P3) to the vall by the C-119C aircraft was not recorded. The rate of change of the aircraft velocity was determined, however, by high speed film analysis and compared with the rate of velocity change with the 3-720 airersft as shown in Appendix C, Figure 5. This ecmparison shows that both aircraft decelerate at approximately the same rate; however, the 3-720 requires more f  m ) than twice as =uch crush distance because of its higher initial i= pact velocity l            o' ,! , .
V = velocity in ft/see of uncrushed portion of aircraft at any time or distance during the impact Instrumented data frem a full-scale C-119 aircraft i= pact into a vertical vall indicated that the results given by the above momentum exchange principle for a 3-720 aircraft were of the right order of =agnitude; however, the actual reac load (P3) to the vall by the C-119C aircraft was not recorded. The rate of change of the aircraft velocity was determined, however, by high speed film analysis and compared with the rate of velocity change with the 3-720 airersft as shown in Appendix C, Figure 5. This ecmparison shows that both aircraft decelerate at approximately the same rate; however, the 3-720 requires more f  m ) than twice as =uch crush distance because of its higher initial i= pact velocity l            o' ,! , .
e.
e.
!
                                                                            '
,
                                                       = -1                    0002 243 e s-
                                                       = -1                    0002 243 e s-


  .
The reaction load as a function of ti=e is presented in Appendix C, Figure O
The reaction load as a function of ti=e is presented in Appendix C, Figure O
1 for the B-720. Tote that the peak reaction occurs as the ving and fuselage are crushed between the front and rear spars. This is caused by the fact that the "pV2 " is largest at this location (",p" is very high here as shown by the = ass distribution in Appendix C, Figure h). Also note that the fuselage deceleration is highest when the reaction load is rather lov.        This phenc=ena is caused by the reduced = ass of the uncrushed portion of the aircraft being decelerated by the relatively constant buckling load (F3 ) acting on the uncrushed pcrtion. The buckling load (F3 ) of the fuselage is shown in Appendix C, Figure 6. The average dia=eter of the fuselage for the 3-720 aircraft is 13.3 ft. As can be seen frc= the load-time curve the peak load occurs after the vings have i=pacted against the dc=e.      Considering that the vings constitute a large proportien of the total = ass , it is considered justifiable to consider a portion of the vings that is in contact with the do=e at the peak load cs additional i= pact area. Considering this additional area and the load distribution afforded by the concrete to the middle surface of the dc=e, the eff ective diameter of the i= pact area is 19 ft.
1 for the B-720. Tote that the peak reaction occurs as the ving and fuselage are crushed between the front and rear spars. This is caused by the fact that the "pV2 " is largest at this location (",p" is very high here as shown by the = ass distribution in Appendix C, Figure h). Also note that the fuselage deceleration is highest when the reaction load is rather lov.        This phenc=ena is caused by the reduced = ass of the uncrushed portion of the aircraft being decelerated by the relatively constant buckling load (F3 ) acting on the uncrushed pcrtion. The buckling load (F3 ) of the fuselage is shown in Appendix C, Figure 6. The average dia=eter of the fuselage for the 3-720 aircraft is 13.3 ft. As can be seen frc= the load-time curve the peak load occurs after the vings have i=pacted against the dc=e.      Considering that the vings constitute a large proportien of the total = ass , it is considered justifiable to consider a portion of the vings that is in contact with the do=e at the peak load cs additional i= pact area. Considering this additional area and the load distribution afforded by the concrete to the middle surface of the dc=e, the eff ective diameter of the i= pact area is 19 ft.
Line 656: Line 393:
The displace =ent of the apex of the dc=e as a function of time is shevn in Appendix C, Figure 2. For cc=parison the displace =ent of points at a radius of 111.6 and 26h inches are also shown. Stresses due to the aircraft i=pinge-
The displace =ent of the apex of the dc=e as a function of time is shevn in Appendix C, Figure 2. For cc=parison the displace =ent of points at a radius of 111.6 and 26h inches are also shown. Stresses due to the aircraft i=pinge-
     =ent and prestress at the apex and at a radius of 86 inches are shown in Appendix C, Figure 3.
     =ent and prestress at the apex and at a radius of 86 inches are shown in Appendix C, Figure 3.
                                                                                          .
The =aximu= co=bined cc=pressive stress is approxi=ately 8000 psi. This includes stresses due to aircraft related loads and the prestress loads.
The =aximu= co=bined cc=pressive stress is approxi=ately 8000 psi. This includes stresses due to aircraft related loads and the prestress loads.
However, this stress occurs for a very short period of time and over a s=all portion of the impact area. It has long been recognized that the strain rate has a significant influence on the ultimate strength of concrete.
However, this stress occurs for a very short period of time and over a s=all portion of the impact area. It has long been recognized that the strain rate has a significant influence on the ultimate strength of concrete.
In the range corresponding to the strain rate of the aircraft impact loading an increase as large as 60 percent has been noted in literature.1,2,3 It has also been recognized that biaxial stress conditions , as produced in the reactor building due to crestress, increases the ultimate strength of concrete frc= 25 to 50 percent.h,3,6 Considering that the mini =u= cylinder strength of the concrete for the reactor building is based upon a 28 day curing ti=e, an increase of 20 percent in strength can be justifiedi considering that the concrete vill have cured more than two years when the plant is in operation.
In the range corresponding to the strain rate of the aircraft impact loading an increase as large as 60 percent has been noted in literature.1,2,3 It has also been recognized that biaxial stress conditions , as produced in the reactor building due to crestress, increases the ultimate strength of concrete frc= 25 to 50 percent.h,3,6 Considering that the mini =u= cylinder strength of the concrete for the reactor building is based upon a 28 day curing ti=e, an increase of 20 percent in strength can be justifiedi considering that the concrete vill have cured more than two years when the plant is in operation.
The calculated =axi=u= co=pressive concrete stress of approximately 8000 psi is 33 percent greater than the anticipated concrete ec=pressive strength at the time of initial operation as =easured by standard uniarially leaded concrete cylinders. Considering the high strain rate and biazial stress condition the increased cc=pressive stress capability of the concrete above that =easured by cylinder strength can be expected to be significantly in excess of that required.
The calculated =axi=u= co=pressive concrete stress of approximately 8000 psi is 33 percent greater than the anticipated concrete ec=pressive strength at the time of initial operation as =easured by standard uniarially leaded concrete cylinders. Considering the high strain rate and biazial stress condition the increased cc=pressive stress capability of the concrete above that =easured by cylinder strength can be expected to be significantly in excess of that required.
O 00412 244
O 00412 244 l      t83    ~,,    ,
                                                                          -
      ..,    ,                                                          . ::
l      t83    ~,,    ,
1C-2
1C-2
              .


  '
The max'. rum concrete tensile stresses =ay be sufficient to develop flexural cracks in the concrete. However, in no case vill the stress of the steel liner exceed the yield point even should flexural cracks occur. The maximum average shear stress at a distance 12.5 ft from the apex (i.e. at a distance 3 0 ft outboard of the periphery of the loaded area) is approximately 500 psi. This shear stress is below that permitted by ACI 318-63, Chapter 26.
The max'. rum concrete tensile stresses =ay be sufficient to develop flexural cracks in the concrete. However, in no case vill the stress of the steel liner exceed the yield point even should flexural cracks occur. The maximum average shear stress at a distance 12.5 ft from the apex (i.e. at a distance 3 0 ft outboard of the periphery of the loaded area) is approximately 500 psi. This shear stress is below that permitted by ACI 318-63, Chapter 26.
Therefore the conclusion can be safely drawn that the dome vill not collapse due to the established loadin6 condition.
Therefore the conclusion can be safely drawn that the dome vill not collapse due to the established loadin6 condition.
O
O l
.
t t
l t
i 1
t i
O      ,..
1 O      ,..
(. I i,
(. I
1 0002 245    l
                  .
i, 1
                '
0002 245    l
:                                                                        vs--
:                                                                        vs--
IC-3 l
IC-3 l


  .
LIST OF LWINCES
LIST OF LWINCES
                                    .
: 1. C. E. Norris 'et al'.          " Structural Design for Dyna =ic Loads,"
: 1. C. E. Norris 'et al'.          " Structural Design for Dyna =ic Loads,"
McGraw Hill, 1959
McGraw Hill, 1959
Line 696: Line 421:
: 6. G. W. D. Vile:        " Strength of Concrete Under Short-Time Static Biaxial Stress." Procedings of International Conference en Structural Cenerete, London, 1965.
: 6. G. W. D. Vile:        " Strength of Concrete Under Short-Time Static Biaxial Stress." Procedings of International Conference en Structural Cenerete, London, 1965.
: 7. Frit: Leonhardt:        " Prestressed Concrete Design and Construction"          g Wilhelm Ernst & Sohn, 196h, pp. 59                              w ,'
: 7. Frit: Leonhardt:        " Prestressed Concrete Design and Construction"          g Wilhelm Ernst & Sohn, 196h, pp. 59                              w ,'
,
0402 246 0
0402 246 0
v      .
v      .
Line 703: Line 427:


is. op Q is      -
is. op Q is      -
                                                                                            -
O      j-g gg 4 n -- -- --
O      j-
                                                                                                       ,g 0                          1                                '
          <
              ,,
g
                    -
                    .
gg 4 n -- -- --
                                                                                                       ,g
                                                                                                          ---,_
0                          1                                '
f    ,                                  3K%                                        .
f    ,                                  3K%                                        .
a
a N .            .
                  ,
                    .
                            .    .    .
N .            .
__ - --
                                                                              . . .
                                                                                              .
                                                                                                     .      .      .      .      . - M.      . - .
                                                                                                     .      .      .      .      . - M.      . - .
a o.7                                          o. 2.                                  o.3      TIM E (5 1.0AD TIME CURVE FOR 720 AIRCRAFT AT 2 APPENDIX C O.1                                      o,1                                          0,3    Yoms ($EC.)
a o.7                                          o. 2.                                  o.3      TIM E (5 1.0AD TIME CURVE FOR 720 AIRCRAFT AT 2 APPENDIX C O.1                                      o,1                                          0,3    Yoms ($EC.)
i      i    e    i      i      i    e            i    i        e            i        i    e      a      a    i    e        i
i      i    e    i      i      i    e            i    i        e            i        i    e      a      a    i    e        i 0
            -
e                        N              w z - o.s                                                          m Y                                                                                NPs264*
            -
0 e                        N              w z - o.s                                                          m Y                                                                                NPs264*
g    - o4                                %                      _
g    - o4                                %                      _
                                                                                                                                                                    '
w 2 -06 W                P a OssTANCE 54        DM A P C*'                      ba ett 6" 6 -o8 a.
w 2 -06 W                P a OssTANCE 54        DM A P C*'                      ba ett 6" 6 -o8 a.
un reo."h
un reo."h O        .
      ' '''
O        .
            -
TIME VARIATION OF SHELL VERTICAL DISPLAC APPENDIX C                                                                  f 0.1                                        0.1                                      o.s    row s css i    I      6    e      i      I            6  4        l            1        i      i      6    i    4      I      i
TIME VARIATION OF SHELL VERTICAL DISPLAC APPENDIX C                                                                  f 0.1                                        0.1                                      o.s    row s css i    I      6    e      i      I            6  4        l            1        i      i      6    i    4      I      i
                       ~                                                                  /j                    THC EN?tA E TEN 53L4 STM ESS ye%                            RESULTANT CAN 86 CARRltD
                       ~                                                                  /j                    THC EN?tA E TEN 53L4 STM ESS ye%                            RESULTANT CAN 86 CARRltD
           %                                                                                        i sY TM f. LINEM WITNouT IX.
           %                                                                                        i sY TM f. LINEM WITNouT IX.
kO                                                                  /
kO                                                                  /
                                                                                    '            '
CREDI        TW4  ETA 1*sc Yigs.
CREDI        TW4  ETA 1*sc Yigs.
2                  BOTTOM SURF ^ct
2                  BOTTOM SURF ^ct
                                                                             ", P ' 88 , , )_ _ ' s \ svns, Nils                s R
                                                                             ", P ' 88 , , )_ _ ' s \ svns, Nils                s R
_    _
                                          , , - - -
s                    -
s                    -
a
a
Line 753: Line 452:
f'                g..".'.'.--O~.~.~..~'',                                                              %Qs                            ,,$ Y~
f'                g..".'.'.--O~.~.~..~'',                                                              %Qs                            ,,$ Y~
g,          .
g,          .
                                                                                                                            -
_
                                                                                                                                    ,_
                                                                                                                                     - ~ mp 2
                                                                                                                                     - ~ mp 2
2 u    3      _
2 u    3      _
Line 765: Line 461:
k . e.-
k . e.-
r e oes rA cs as.        m aa n.
r e oes rA cs as.        m aa n.
::
4 s        _
4 s        _
           ;                                                                      > . o. -
           ;                                                                      > . o. -
Line 772: Line 467:
     ,.f i.
     ,.f i.
e,48 '.~ me e n,ce mem,
e,48 '.~ me e n,ce mem,
                        ,
                                                                                           \                                                    0002 247 i
                                                                                           \                                                    0002 247 i
                                                                                                                                                     ..r-        ;'
                                                                                                                                                     ..r-        ;'
                                                                                                    '
(
(
9
9
Line 781: Line 474:
TIME VAR! ATIONS OF SHELL SURFACE 5' l                                                                                              APPENDIX C                                                    F
TIME VAR! ATIONS OF SHELL SURFACE 5' l                                                                                              APPENDIX C                                                    F


        .
O l      6 i
O l      6 i
s
s I
            .
4                                          )        1 Q- - n ss oust ovc ro LOSS OF QUTCR PORTION l
I 4                                          )        1
            -
Q- - n ss oust ovc ro LOSS OF QUTCR PORTION l
                                                               ;        Or um 3                                                    '
                                                               ;        Or um 3                                                    '
            -
I h
I h
i 1
i 1
2
2 f
                                                                .
e i
                                                                '
f e
            -
i
         ,                                  ./                    t          s
         ,                                  ./                    t          s
                           ,                                            ~~    s
                           ,                                            ~~    s
            -
                   /                                                                  Nfm l
                   /                                                                  Nfm
of      10 20 30 to So 60 10 80 90 too 11 0 11 0
,
l of      10
                    ,
20
                              ,
30
                                    ,
to
                                        ,
So
                                                ,
60
                                                      ,
10
                                                                  ,
80
                                                                          .
90
                                                                                ,
too
                                                                                        ,
11 0
                                                                                                ,
11 0
                                                                                                         ,  \
                                                                                                         ,  \
13 0 DISTANCE ~ FEET u:
13 0 DISTANCE ~ FEET u:
:        *o k                              L.        @8                      /j )
:        *o k                              L.        @8                      /j )
O        200          400      600        800              1000      (200          1400          16 6 as.
O        200          400      600        800              1000      (200          1400          16 6 as.
  ,,,        .
                       .                                                                                            h tier uiii'oistRisurios                                                                  0002 248 XC                FIGURE 4
                       .                                                                                            h
  ''            -
tier uiii'oistRisurios                                                                  0002 248 XC                FIGURE 4


IMPACT    YELOCITY    ~    FEET PER SECOND
IMPACT    YELOCITY    ~    FEET PER SECOND
'' O        o                  b
'' O        o                  b a        'e
                                            -
a        'e
                                                                   ~
                                                                   ~
a
a
                                                                                 ~
                                                                                 ~
a
a 8
                                                                                              "
O in Ik e                                                              >
8 O
in Ik e                                                              >
l"
l"
                                                                       /      -
                                                                       /      -
a
a
:
                                                                   . /
                                                                   . /
                                                    -
                                   , m==""
                                   , m==""
A Q              >
A Q              >
Line 866: Line 517:
C=h  .
C=h  .
l e
l e
    !
    ',
    .
_
:a                                    ~
:a                                    ~
g r      -
g r      -
Line 875: Line 522:
3 i
3 i
h              0002 249 t\    }
h              0002 249 t\    }
        '                  '
                         ;4 > -
                         ;4 > -
                              ,
VELOCITY AND DECELERATION FOR 720 Al AT 200 KNOTS IMPACT SPEED APPENDlX C                        F 1
VELOCITY AND DECELERATION FOR 720 Al AT 200 KNOTS IMPACT SPEED APPENDlX C                        F 1


I  l
I  l O
          .
_
-
                                                                      ,
O
                                                                      ,
N        .
N        .
                                                                      '
sX g
sX
g y
    .
                                                                      '
g g
                                                                      '
y
                                                                      '
g y
g y
                                                                      '
I o
I o
g
g 0
                                                                      '
5 0
0 5
4 0
                                                                      '
3 0
-
2 j                0 1
0 4
                                                                      ,
0 3
                                                                      ,
0 2
                                                                      .
j                0 1
                                                                      .
                                                 . _ ' .      .  .e O
                                                 . _ ' .      .  .e O
c.
c.
                                                        .
                                                . .
i
i
                   '.- . ~. 0      5          0          5          0 2      1          1 0
                   '.- . ~. 0      5          0          5          0 2      1          1 0
i 4EQA  % QMo      O%EM y )e
i 4EQA  % QMo      O%EM y )e
        '
         '  3o C*"me    N.RxCzOn cEZO r?O                                  son MDL 9xO                        I
         '  3o C*"me    N.RxCzOn cEZO r?O                                  son MDL 9xO                        I
                                       *bE=*
                                       *bE=*
Line 929: Line 550:
     =atically closing dampers to isolate selected areas. Reactor building ventil-ation is normally closed and is isolated with valves.
     =atically closing dampers to isolate selected areas. Reactor building ventil-ation is normally closed and is isolated with valves.
Ventilation dampers may also be closed =anually by the plant personnel. The dampers and their controls will prevent ingress of smoke as well as prevent the rapid depletion of oxygen due to a fire located outside the structure.
Ventilation dampers may also be closed =anually by the plant personnel. The dampers and their controls will prevent ingress of smoke as well as prevent the rapid depletion of oxygen due to a fire located outside the structure.
The ventilation systems planned for areas having normal operator attendance vill also be designed for complete recirculation. In addition, personnel vill be provided with, and instructed in, the use of self-contained breathing apparatus. All areas located above designated protected areas as shown on Figure B-1 of Section 3 vill be designed so that any liquids vill drain away from the area rather than either entering the protected area or being collteted p in confined areas. Piping, conduit, etc. passing through the confines of the
The ventilation systems planned for areas having normal operator attendance vill also be designed for complete recirculation. In addition, personnel vill be provided with, and instructed in, the use of self-contained breathing apparatus. All areas located above designated protected areas as shown on Figure B-1 of Section 3 vill be designed so that any liquids vill drain away from the area rather than either entering the protected area or being collteted p in confined areas. Piping, conduit, etc. passing through the confines of the designated protected areas vill be treated appropriately with seals, curbs, etc to prevent the passage of spilled fuel into the protected areas.
  '
designated protected areas vill be treated appropriately with seals, curbs, etc to prevent the passage of spilled fuel into the protected areas.
The use of multiple air intakes for the control tower complex and auxiliary building in lieu of a single intake was investigated. It is our firm conviction that the use of a single intake with provisions for recirculation during the postulated airtake incident presents the safest arrangement.
The use of multiple air intakes for the control tower complex and auxiliary building in lieu of a single intake was investigated. It is our firm conviction that the use of a single intake with provisions for recirculation during the postulated airtake incident presents the safest arrangement.
Supervisory personnel vill determine when it is safe to transfer from the recirculation = ode to the normal operating mode, following an incident. The transfer operation vill be initiated only after having surveyed the extent and nature of the effects of the incident upon plant equipment and/or structure To remove the threat of fire to personnel and equipment in vital structures during and following the hypothetical aircraft incident it is proposed to:
Supervisory personnel vill determine when it is safe to transfer from the recirculation = ode to the normal operating mode, following an incident. The transfer operation vill be initiated only after having surveyed the extent and nature of the effects of the incident upon plant equipment and/or structure To remove the threat of fire to personnel and equipment in vital structures during and following the hypothetical aircraft incident it is proposed to:
Air Intake Tunnel: Bring air into the vital structures through a tunnel with a remote intake located approximately 125 feet from the plant. Air      j velocities in the tunnel vill be approxi=ately 1000 feet per minute.          l The arrange =ent of the tunnel is shown on Appendix D Figure 1.              l
Air Intake Tunnel: Bring air into the vital structures through a tunnel with a remote intake located approximately 125 feet from the plant. Air      j velocities in the tunnel vill be approxi=ately 1000 feet per minute.          l The arrange =ent of the tunnel is shown on Appendix D Figure 1.              l The intake opening vill be constructed as shown in more detail in Appendix D Figure 2.
                                                                                    ,
The intake opening vill be constructed as shown in more detail in Appendix D Figure 2.
O                                                                      0002 251 sto a    ..*!.i f                          ;_1 l
O                                                                      0002 251 sto a    ..*!.i f                          ;_1 l


  .
The floor of the tunnel vill be sloped so that water frc= the spray systes O
The floor of the tunnel vill be sloped so that water frc= the spray systes O
vill collect in a su=p beneath the intake.
vill collect in a su=p beneath the intake.
Line 956: Line 572:
D-2                  0002 252 1
D-2                  0002 252 1


_
O the top level of the protected areas. The depth of concrete afforded by the top level of protected areas is of sufficient depth to prevent the i
O the top level of the protected areas. The depth of concrete afforded by the top level of protected areas is of sufficient depth to prevent the i
complete removal of the pipe frem the concrete with the impact of the hypothetical loadings. The piping presently contemplated as passing through the top level of protection in the auxiliary building is in the si:e range of 3/h in. to 2 in.
complete removal of the pipe frem the concrete with the impact of the hypothetical loadings. The piping presently contemplated as passing through the top level of protection in the auxiliary building is in the si:e range of 3/h in. to 2 in.
Line 963: Line 578:
the event of aircraft fuel entering vent pipes from the main steam safety valves, it is considered that the integrity of the line between the safety valve and the top level of the protected area vill remain intact. Any combustion vill take place at the top of the vent pipe.
the event of aircraft fuel entering vent pipes from the main steam safety valves, it is considered that the integrity of the line between the safety valve and the top level of the protected area vill remain intact. Any combustion vill take place at the top of the vent pipe.
Additional discussion of fire detection and protection as well as a discussien of appropriate examples of existing installations is covered by Combuscion and Explosives Research Inc. data included as Attachment 1 to this Appendix. The recommendations outlined by Attachment 1 vill be Lsplemented in the design of the plant.
Additional discussion of fire detection and protection as well as a discussien of appropriate examples of existing installations is covered by Combuscion and Explosives Research Inc. data included as Attachment 1 to this Appendix. The recommendations outlined by Attachment 1 vill be Lsplemented in the design of the plant.
                                                          .
O O
O O
  .
                                                                            .
                                                                   ^
                                                                   ^
o-2                        0002 253
o-2                        0002 253


                                                                                                                                                                            . _ _____
I I                                                            e!                            $5 fh                                                                                          E' j:
I I                                                            e!                            $5 fh                                                                                          E' j:
Il%
Il%
Line 978: Line 589:
g .y  Is                      s:
g .y  Is                      s:
6 I
6 I
df
df O
                                                                                    '
1 p)-                            !
O 1 p)-                            !
5                                2                                  te s                                                              -
5                                2                                  te s                                                              -
I[            ty                                .                                  et
I[            ty                                .                                  et
      ,      >
                                                       's
                                                       's
                                                        -
                                                                         /4%
                                                                         /4%
v g.
v g.
g e  jl
g e  jl i
                                                                                                                                          .
i
                                                                                                                                                *
     /                                                g                                      .. ,
     /                                                g                                      .. ,
5'                                                                              '
5'                                                                              '
4
4
                   'fQ  ~,gg
                   'fQ  ~,gg
                                                                    ,'
                                                                                      -- .
                                                                                           ~l.ky ' ,
                                                                                           ~l.ky ' ,
                                                                                                    .:              ,.
                                                                                                                                                 ~
                                                                                                                                                 ~
g ,c{                                    \        *
g ,c{                                    \        *
Line 1,006: Line 608:
                           , gg                                        r            m                                  f a                                \                                    .            t.
                           , gg                                        r            m                                  f a                                \                                    .            t.
I        }
I        }
                          -
                                         ,        w                        \
                                         ,        w                        \
                                                                                          ,
t U-                        ,
t U-                        ,
                                                                                                            '
h.:              .i                \ ..c . ---    ..                        -
h.:              .i                \ ..c . ---    ..                        -
                                                                                                              ,
                                                                                                                                .
                                                                                                                                  .
                   >                      ,1
                   >                      ,1
                                                            * * * *
                                                                                         //                  - U-
                                                                                         //                  - U-
                                                                                                                              ,
                             ' %                          _ kt                                %,      \-              's                          6 i ''                                        [ ~ \, ghg s1 lI                                                            ,
                -
                             ' %                          _ kt                                %,      \-              's                          6 i ''                                        [ ~ \, ghg
                                                                                                                            '
s1
                          '
lI                                                            ,
i
i
: n.                  .                ;:
: n.                  .                ;:
:
                                                                                                                                                       -1 s
                                                                                                                                                       -1 s
                                        ,                                                    ,
                                                                                                                 .                                    p x
                                                                                                                 .                                    p x
                                       'o                                                    ,r s        %.                  ..            lp
                                       'o                                                    ,r s        %.                  ..            lp p
            ,
              -
p
                      -
ql j,
ql j,
                                                                                         '                                                c.
                                                                                         '                                                c.
:g                                                                  ,i /,'d....:gh_                                              pig        p;
:g                                                                  ,i /,'d....:gh_                                              pig        p;
          ,
                                                                                                                - - - '
         ~
         ~
(_ i                        .                            u
(_ i                        .                            u 37 m                      .
                                                                                                                                              '
37 m                      .
: i.        #
: i.        #
                                                                                           ;                                        qb
                                                                                           ;                                        qb 7 '                        (/
                                                                                                                                            .
                                                                                                                                                              '
7 '                        (/
                                                '
A    \
A    \
S//                                                ,5*                  h Wg\/
S//                                                ,5*                  h Wg\/
Line 1,056: Line 631:
                                           /                \ .% g                .                                                                      '
                                           /                \ .% g                .                                                                      '
s- . , , ,  3', /
s- . , , ,  3', /
                              .
                                                              .
                                                                '
Sg        [ -                                                          N      ,,$      '>
Sg        [ -                                                          N      ,,$      '>
        '
                                 '$,_ 3 k Udjf [                                                                                              ( M ''                          G pe
                                 '$,_ 3 k Udjf [                                                                                              ( M ''                          G pe
                                ..
                                                       /                                :4
                                                       /                                :4
                                                                                       ;                                                      .!
                                                                                       ;                                                      .!
                                                       ~
                                                       ~
                                                                                                                                              '
ja                /
ja                /
f'i
f'i
                                                                                                                                                                                      .
                                                                                                                                     'S e
                                                                                                                                     'S e
0002 254
0002 254 l
                                                                                                                                                                              *'
                                                                                                                                                                      -
l


                                                                                                                                                                                             ;:
                                                                                                                                                                                             ;:
Line 1,082: Line 647:
                                                                                                                                         '.-l f
                                                                                                                                         '.-l f
f.ii*li l(fat
f.ii*li l(fat
  -
       'r f.ilt t
       'r f.ilt t
I
I e"
                        ,
:
e"
                               $l.},,,
                               $l.},,,
i
i
                                                                                                                               \-
                                                                                                                               \-
l'
l'
                                                                                                                                          -
                                                                                                                                                -
                                                                                                                                                                                             !e
                                                                                                                                                                                             !e
                                                                                                                                                                                               ;;
                                                                                                                                                                                               ;;
f,5 i
f,5 i
                                                                                                                             / (~                  '\
                                                                                                                             / (~                  '\
  '          '
   ,                                            l                                                                                                                                            E 5
   ,                                            l                                                                                                                                            E 5
* t                                                              f a                                                                  g
* t                                                              f a                                                                  g
: f.                                              \,              '
: f.                                              \,              '
                                                                                                                                                                                              !,
                                                                                                                 /
                                                                                                                 /
O
O qj                      -
                                                                        -
      ,
qj                      -
                                                                         !                lk3x.' f'.                                      .';              '\,        l yj.
                                                                         !                lk3x.' f'.                                      .';              '\,        l yj.
                                                                                                              .
n        :                                                              -
n        :                                                              -
                                                                                                                                                                                               ;,
                                                                                                                                                                                               ;,
Line 1,118: Line 671:
t s
t s
: r.                    c.            ._~
: r.                    c.            ._~
                                                                                    '
                                                                                                                                                                             \            #
                                                                                                                                                                             \            #
                                             ~~            -                                            WR.                              ,x      --.        \                          u
                                             ~~            -                                            WR.                              ,x      --.        \                          u L(
                                                                                                                                                                                                  -
L(
                                                                                                                                                                '
c                  ,
c                  ,
s      /                        \          y a        l        '    -                                                      3. .
s      /                        \          y a        l        '    -                                                      3. .
_
_.
                                                                                                                                                -                '
                                                                                                                                                                                '
                                                                                                                                                                                         .2
                                                                                                                                                                                         .2
                                             ;
                                             ;
                                                                                                  -
                                                                         ;              1 t,            88;        '--                                                                                    )E
                                                                         ;              1 t,            88;        '--                                                                                    )E
             ,                                                                                                                  ,Q                                                      g he E
             ,                                                                                                                  ,Q                                                      g he E
a .-.    .
a .-.    .
                     ~                      - - - - ~
                     ~                      - - - - ~
                                                                  ,
g g            8]l,        .<%                        :m: N r f1 o'
g g            8]l,        .<%                        :m: N r
tale t
                                                                                                                                  .
_
                                                                                                                                                                                  .    .
                                                                                                                                                !
                                                                                          *                                                                  ,
f1 o'
* tale t
:                                :!; ,. -                                  4, 4=-- .                                    s si                                  u                                  ,                    .u o                                      -                              .s          ,
:                                :!; ,. -                                  4, 4=-- .                                    s si                                  u                                  ,                    .u o                                      -                              .s          ,
                                                                                                                                           "/ j                                E
                                                                                                                                           "/ j                                E
Line 1,152: Line 689:
                 !.!r',.,
                 !.!r',.,
2,.                      ik m      n i
2,.                      ik m      n i
                                                                          -                      ...
                                         ; { , jr jJ P-                                                              2-r                        -
                                         ; { , jr jJ P-                                                              2-r                        -
(                                                                        g y; r.f                                                                                    h
(                                                                        g y; r.f                                                                                    h
Line 1,160: Line 696:
             !d        y                                                      y g.
             !d        y                                                      y g.
y<p;;
y<p;;
                                    ,
i                        ,
i                        ,
g,                                          e                                                        ,t.-              o 6
g,                                          e                                                        ,t.-              o 6
           !}sdg>                              b I            If                                                  el I .
           !}sdg>                              b I            If                                                  el I .
                                                                                                                                                                 ~
                                                                                                                                                                 ~
                                                                                                                                                                        !
h2
h2
          '        "
                                                                                           !            1,8                            p;,;7%s /                                      w s f, L,/**
                                                                                           !            1,8                            p;,;7%s /                                      w s f,
    --
      .
L,/**
g
g
                           !u                                                              l            Wy                                                              G
                           !u                                                              l            Wy                                                              G
Line 1,177: Line 707:
                                                                                       /A
                                                                                       /A
                                                                                               -              _ m,
                                                                                               -              _ m,
                                                                                                                                             +,d,
                                                                                                                                             +,d, 6
                                                                                                                                            ''
N
6 N
                                                                                                                                                                                       . 3, a
                                                                                                                                                                                       . 3, a
d                ;\                                      " ,4Jf' f                s                "a 3 ,illi,                      \s                                                                                                la
d                ;\                                      " ,4Jf' f                s                "a 3 ,illi,                      \s                                                                                                la n            ,                    1.h,i
    .
n            ,                    1.h,i
                                                                                       \
                                                                                       \
                                                                                                -
s1s N# ! r d -
s1s N# ! r d -
4 ql,        D    ;      's                                                                                                                                                      If q!';
4 ql,        D    ;      's                                                                                                                                                      If q!';
e t h !,!            n
e t h !,!            n
                               !l
                               !l
                              -
{lgj -
{lgj -
yl!.
yl!.
                                                                    '
i ;
i ;
I i
I i E
                                                                          .
e F
E e
F
                                                                                         .\'
                                                                                         .\'
                                                                                        ,
                                                                                         }t'k m NYN#            ~
                                                                                         }t'k m NYN#            ~
                                                                                                                                                                                   ) SEn b.
                                                                                                                                                                                   ) SEn b.
s
s l
                                                                                                                                                                                                    .
fyo 7                                                                                                          \
l fyo 7                                                                                                          \
1:
1:
w .d, =                        ("
w .d, =                        ("
                                                        ,
                                                                                <                                                                                                      '
fg.
fg.
J            I,Isit                [ l k,                                          ~ .V ' --
J            I,Isit                [ l k,                                          ~ .V ' --
Line 1,215: Line 733:
i-U,r
i-U,r
                                             -2/ ' '
                                             -2/ ' '
:
N~'
N~'
:h ; lgl
:h ; lgl k,w                    {\ k,
                                                                                        '
k,w                    {\ k,
                                                       <                                                                                      }
                                                       <                                                                                      }
5                                                                  u,
5                                                                  u, 1
                                                                                                                                              ,
1
                                                                                                                                            ..
e 4
e 4
                                                                                                                                                         .                    0002 255            9'
                                                                                                                                                         .                    0002 255            9' A
                                                                                                                                                                                                .
A
                                                                                    -
                                                                                            '                    - - _ _ _ _ _ _ _


_ . . . _ _ _ _ . . _ _ _ _ _ _ _ _ _ _ _ _ . . _ _ _ _ _ _                              _ . _ _ _ . . _ _ . _ _ _ _ _ _ _ _ . _ _ . . _ _ _ . _ _ .                                      .
_ _ .
                            ,
.
!
!                                                                                                                                                                            Supplement No. 5 j                                                                                                                                                                            Docket No. 50-289 i                                                                                                                                                                            March 26, 1968 f
!                                                                                                                                                                            Supplement No. 5 j                                                                                                                                                                            Docket No. 50-289 i                                                                                                                                                                            March 26, 1968 f
:
.
i i
i i
i.
i.
Line 1,246: Line 747:
}
}
4 i
4 i
.
4                                        .
4                                        .
!
:                                                                                                                                                                                                                                                                    ,
!                                                                                                                                                                                                                                                                    ?
!                                                                                                                                                                                                                                                                    ?
i
i
Line 1,257: Line 755:
I f
I f
i.
i.
j                                                                                                                                          Letter From i                                                                                                                                        e
j                                                                                                                                          Letter From i                                                                                                                                        e i
'
Bela Karlovitz, i
i Bela Karlovitz,
Combustion And Explosives Research, Inc.                                                                                                                                        ,
.
i Combustion And Explosives Research, Inc.                                                                                                                                        ,
(                                                                                                                                                                                                                                                                    t
(                                                                                                                                                                                                                                                                    t
!
!O l
!O
>
l
                                                                                                                                                                                                                                                                    !
3 5
3 5
k 1
k 1
i                                                                                                                                                                                                                                                                    i i                                                                                                                                                                                                                                                                    4 d
i                                                                                                                                                                                                                                                                    i i                                                                                                                                                                                                                                                                    4 d
i
i ij o                                                                                                                                                                                                                                                                    s l
                                                                                                                                                                                                                                                                    '
ij o                                                                                                                                                                                                                                                                    s
'
l
;
;
$
i i
i i
:
l
l
;
;
l 1
l 1
!
I i
I i
(
(
,
,
O                                                                                                                                                                                                                                                    '
O                                                                                                                                                                                                                                                    '
* I
I
,                                                                                                                                                                                                                0002 256 i                                                                                                                                                                                                                                                                    l i
,                                                                                                                                                                                                                0002 256 i                                                                                                                                                                                                                                                                    l i
'
     . _ . . . , . - _ _ _ . , _ _ . . _ . _ _ _ _ , . . , _ . ,                                    _                        _ . _ _ . _ . , _ . . _ , _ . _ _ . - . . . - , _ . _ _ . . _ _ . ~ . . . _ _ . _ . . _ . . . . _ . . _ _ _ _ _ . . _ _ . .
     . _ . . . , . - _ _ _ . , _ _ . . _ . _ _ _ _ , . . , _ . ,                                    _                        _ . _ _ . _ . , _ . . _ , _ . _ _ . - . . . - , _ . _ _ . . _ _ . ~ . . . _ _ . _ . . _ . . . . _ . . _ _ _ _ _ . . _ _ . .


                                                                                                        . _ _ _ _ _
O COMBUSTION AND EXPLOSIVES RESEARCH, INC.
O
  <
COMBUSTION AND EXPLOSIVES RESEARCH, INC.
OLIVER B UILDINo
OLIVER B UILDINo
* PITTs B U Ro H 22, PE N N sYLVA N I A tRD LEWIS Telephen. 391 363 KARLov!TZ c ble Addeess CC T R.BRINKLEY. fr.
* PITTs B U Ro H 22, PE N N sYLVA N I A tRD LEWIS Telephen. 391 363 KARLov!TZ c ble Addeess CC T R.BRINKLEY. fr.
Line 1,313: Line 792:
0002 257
0002 257


  .
O
O
                                           -    2    -
                                           -    2    -
Line 1,323: Line 801:
Sincerely yours, CCtGUSTION AND E'GI4SIVES RESEARCH, INC.
Sincerely yours, CCtGUSTION AND E'GI4SIVES RESEARCH, INC.
t 0        W B41a Karlevit:
t 0        W B41a Karlevit:
                                        ,
                                               )
                                               )
                                                                    -
                                                                         /
                                                                         /
                                      '
i
i
                                               /
                                               /
                                                ..
D. <. s. -, . , {.7--
D. <. s. -, . , {.7--
                                                                         , '-% ~
                                                                         , '-% ~
Line 1,337: Line 811:
   \/
   \/


_                          _ .
    -.      __    _
Dockst No. 50-Supplement No.
Dockst No. 50-Supplement No.
March 28, 1968 APPENDIX E PROBABILITY OF AIRPLANE STRIKES E-1     
March 28, 1968 APPENDIX E PROBABILITY OF AIRPLANE STRIKES E-1     
Line 1,345: Line 817:


This appendix supplements Section A of Amendment 8.          Sections E-2 and E-3 below deal with the following topics:
This appendix supplements Section A of Amendment 8.          Sections E-2 and E-3 below deal with the following topics:
                                              .
         ,Spe; ion          Title E-2              Aircraft Characteristics E-3              Probability of Strike by Large Aircraft -- Discussion of Assumptions              I (a)    Selection of Aircraft Accident Statistics                                ,
         ,Spe; ion          Title E-2              Aircraft Characteristics E-3              Probability of Strike by Large Aircraft -- Discussion of Assumptions              I (a)    Selection of Aircraft Accident Statistics                                ,
(b)    Assumed Flight Path Angle Before Impact (c)    Assumed Speed of Impact (d)    Traffic Density Sections E-4, 5 & 6 deal with aircraft strike probabilities which are summarized in items 2, 3 and 4 of Table E-1A.
(b)    Assumed Flight Path Angle Before Impact (c)    Assumed Speed of Impact (d)    Traffic Density Sections E-4, 5 & 6 deal with aircraft strike probabilities which are summarized in items 2, 3 and 4 of Table E-1A.
Item 1 of this table, giving probabilities for a large aircraft strike, is from Section A, Amendment 8.        The probabilities shown in the table are related to traf fic movements (at Olmsted and Harrisburg/ York State Airports) which are about four times the I
Item 1 of this table, giving probabilities for a large aircraft strike, is from Section A, Amendment 8.        The probabilities shown in the table are related to traf fic movements (at Olmsted and Harrisburg/ York State Airports) which are about four times the I
current rate for air carriers and five times the current rate for O                                E-1-1
current rate for air carriers and five times the current rate for O                                E-1-1 0002 259 so.
                                      '
0002 259 so.


_.
l O                                                                  l light aircraft. Such movement rates are not expected until after 1980, as discussed in Section E-3.
l O                                                                  l light aircraft. Such movement rates are not expected until after 1980, as discussed in Section E-3.
                                                                        !
l l
l l
                                                                        .
1
1
  '
                                                                         \
                                                                         \
O
O O
,
E-1-2          ,
-
O E-1-2          ,
!                                                              0002 260 l
!                                                              0002 260 l
i
i


                                                                                                  --
(}                                        TABLE E-1A APPRJXIMATE PROBABILITIES FOR AIRCRAFT CRASH EFFECTS              .
(}                                        TABLE E-1A APPRJXIMATE PROBABILITIES FOR AIRCRAFT CRASH EFFECTS              .
.
ON THE THREE MILE ISLAND PLANT Approximate          Approximate Mean Strike          Recurrence Probability /Yr.(1)  Inte rval/ Yrs .
ON THE THREE MILE ISLAND PLANT Approximate          Approximate Mean Strike          Recurrence Probability /Yr.(1)  Inte rval/ Yrs .
: 1. Large Aircraf t on Plant            1  x 10-6            y  x yg 6 (see Section A, Supple-ment 5, p. A-5)
: 1. Large Aircraf t on Plant            1  x 10-6            y  x yg 6 (see Section A, Supple-ment 5, p. A-5)
Line 1,382: Line 843:
(1) In making these approximations of strike probability, the effect of overflights has been ignored.        In a region of medium air traffic overfli ht density this probability may be in the range of 10 g/yr. for light aircraft and 10-8/
(1) In making these approximations of strike probability, the effect of overflights has been ignored.        In a region of medium air traffic overfli ht density this probability may be in the range of 10 g/yr. for light aircraft and 10-8/
()              for large aircraft if the same type of assumptions are employed as in devising the probabilities in this table.
()              for large aircraft if the same type of assumptions are employed as in devising the probabilities in this table.
(Cont'd
(Cont'd 0002 261
                                                        *  -
0002 261
                                                                                    -
_ _ - _ _.          __. __            _ ._


      --    _.                  . _.
O TABLE E-1A (Cont'd.)
O TABLE E-1A (Cont'd.)
i (2) Critical structures are those protected against strikes of large aircraft and against crash fires. They are discussed in Section B of Amendment 8 and in the other appendices of this report.
i (2) Critical structures are those protected against strikes of large aircraft and against crash fires. They are discussed in Section B of Amendment 8 and in the other appendices of this report.
i (3) Critical ventilation openings are protected against the ef f ec-
i (3) Critical ventilation openings are protected against the ef f ec-of fuel or fire. The probability represents the chance that fuel or fire will occur in the immediate vicinity of the        !
'
of fuel or fire. The probability represents the chance that fuel or fire will occur in the immediate vicinity of the        !
openings.
openings.
I O
I O
                                                          .
O                                    E-1 -4 0002 262
O                                    E-1 -4 0002 262


      ._                _. _-        .. .      --        -    -  -
O
O
  .,      E-2  AIRCRAFF CHARACTERISTICS Tables E-2A and E-2B give pertinent characteristics of typical          j air carrier and general aviation aircraft which are discussed in the following sections of Appendix E.
  .,      E-2  AIRCRAFF CHARACTERISTICS Tables E-2A and E-2B give pertinent characteristics of typical          j air carrier and general aviation aircraft which are discussed in the following sections of Appendix E.
i O                                                                            i
i O                                                                            i
                                                                          .
                                              .
't i
't i
                                                                                .
e k
e k
O E-2-1 0002 263
O E-2-1 0002 263
                    ._              -.              .                    .. .


S          .
S          .
Line 1,423: Line 871:
6 1
6 1
5 8
5 8
                                                                                        -
                                                                                        -
                                                                                              -
                                                                                               -            0 0
                                                                                               -            0 0
                                                                                                                      -
                                                                                                                       - 0 S        a                                2            1    1    1  1                          5    9        8 S      M                                                                                        2    4        2 A
                                                                                                                       - 0 S        a                                2            1    1    1  1                          5    9        8 S      M                                                                                        2    4        2 A
P
P t
                        .
l ws                                                                                                    5 l          p                      0          0    5    0  0      -    -          0 0 a    .a                          0          0    1    0  1      -    -          0    0        5 t xl                              1          1    1    1  1                          1    1        1 Saf D            M
t l ws                                                                                                    5 l          p                      0          0    5    0  0      -    -          0 0 a    .a                          0          0    1    0  1      -    -          0    0        5 t xl                              1          1    1    1  1                          1    1        1 Saf D            M
(
(
E E        e P        s S      i u                  -  1  4    0            0    2    7  7    8      6              0 5      7 0 r                  -  6  2    0            0    9    5  2    6      7              0    1  7 0
E E        e P        s S      i u                  -  1  4    0            0    2    7  7    8      6              0 5      7 0 r                  -  6  2    0            0    9    5  2    6      7              0    1  7 0
   '              C                      5  3    6            6    5    5  6    3      4              6 6      5 8
   '              C                      5  3    6            6    5    5  6    3      4              6 6      5 8
   '                                                                                                                      1
   '                                                                                                                      1 L      s l      E      n
  '
L      s l      E      n
   'r      U      o                  0    6  3    5            0 0        0  4    0      0                  0  0 A
   'r      U      o                  0    6  3    5            0 0        0  4    0      0                  0  0 A
t F      l                  0    8  6    5            7  8      8  3    8      0                  2  0 i
t F      l                  0    8  6    5            7  8      8  3    8      0                  2  0 i
Line 1,445: Line 886:
7 2
7 2
0 2
0 2
8
8 6
                                                      ,
4 6
6 4
7      8,  3,    6,    2 9
6 7      8,  3,    6,    2 9
3,  0,        _
3,  0,        _
l G                    -            3                      4  7    9                        0  9 l                                '
l G                    -            3                      4  7    9                        0  9 l                                '
2                      1  1                              5  4 A                                                                                                                            _
2                      1  1                              5  4 A                                                                                                                            _
_
t t                                                                                                                            _
t t                                                                                                                            _
E l
E l
Line 1,462: Line 901:
A                                                          .
A                                                          .
                 )                                        U l
                 )                                        U l
    ,
hl                          "        "                                      "                      "
hl                          "        "                                      "                      "
n OIA C
n OIA C
P Y
P Y
S nr tl N e. e Of v ga                    6"
S nr tl N e. e Of v ga                    6" 1
                                    '
8 5
1 8
1 3
5 1
3
                                          '
9 2"
9 2"
7' 7
7' 7
1 1 i
1 1 i 2 n 6 o 0'
                                                    '
2 n 6 o 0'
0 5 2"
0 5 2"
                                                                    '
3 9
3 9
6
6 1
                                                                            "
5'  7 9
                                                                            '
                                                                                "
1 5'  7
                                                                                    "
9
                                                                                    '
1 0
1 0
                                                                                            '
6 8"
6 8"
                                                                                                        '
9 4
9
                                                                                                                "
4
                                                                                                                '
1 1
1 1
1 5' 6 4 0
1 5' 6 4 0 T                                                                        3    4    9    1            7      3 I        O                        1        1 i        1    1    1    1          1            1      2  2 3 S      (                                        t F
_
_
_
_
T                                                                        3    4    9    1            7      3 I        O                        1        1 i        1    1    1    1          1            1      2  2 3 S      (                                        t F
O N~                                                a                "                                      "
O N~                                                a                "                                      "
E~                          "              "      r              0    0"  "      "            "        )
E~                          "              "      r              0    0"  "      "            "        )
M                            4    5"  2"    9 ep                  1    1  7      8            4      8"  8 S    I'g n                            '                    '    '              *      '
M                            4    5"  2"    9 ep                  1    1  7      8            4      8"  8 S    I'g n                            '                    '    '              *      '
                                                                                                                    '
C    Dii a                        5'  3  5'    5'    o    3    8    0'  0'  2      9          . 5'    5'  2 0 I          f p                    0    9  9    4          9 0        3  3    3      9        S    5        2 8 T          VS                    1              1      n                                                    9  2 1    1    1  1                  1      1        1 b                                                      i                                          .
C    Dii a                        5'  3  5'    5'    o    3    8    0'  0'  2      9          . 5'    5'  2 0 I          f p                    0    9  9    4          9 0        3  3    3      9        S    5        2 8 T          VS                    1              1      n                                                    9  2 1    1    1  1                  1      1        1 b                                                      i                                          .
i U
i U
Line 1,512: Line 927:
E          in                    0    0  0    0 u        0    0    0    0  0      0        n          0  5 r          Tu i      .
E          in                    0    0  0    0 u        0    0    0    0  0      0        n          0  5 r          Tu i      .
0,  4,  0,    0, b        0,  0,    0,  0,  0,    3,                      8,
0,  4,  0,    0, b        0,  0,    0,  0,  0,    3,                      8,
                                                                                                                          -
   'L        Udb                                                                                    i 7
   'L        Udb                                                                                    i 7
0, 3t  TxnI                        2    3  0    7 d        7    8    5    0  0      1        n          4  5 i
0, 3t  TxnI                        2    3  0    7 d        7    8    5    0  0      1        n          4  5 i
Line 1,527: Line 941:
r 0
r 0
5, 0
5, 0
0,  5,
0,  5, xkI m            5  8    8    2    1 d        7 9        4  7    5      8        o  6      0  4 aa                3  5              3 e                                                            6 MT          l_
                                                                                                                          -
                                                                                                                          -
xkI m            5  8    8    2    1 d        7 9        4  7    5      8        o  6      0  4 aa                3  5              3 e                                                            6 MT          l_
O    1 9    4 3 s 0
O    1 9    4 3 s 0
1 6
1 6
Line 1,541: Line 952:
: a.                          Ct                          '      '
: a.                          Ct                          '      '
                                                                                                 ) n 1
                                                                                                 ) n 1
          .
                                                         -o                    0                nn                )    )
                                                         -o                    0                nn                )    )
1 e                              N    0    0        0                oa                C T s
1 e                              N    0    0        0                oa                C T s
Line 1,547: Line 957:
1 u        8    0                  -  2    2    0  1    E          rp                7 S 1                            5    3    J                                            aO                    0 (
1 u        8    0                  -  2    2    0  1    E          rp                7 S 1                            5    3    J                                            aO                    0 (
n _.
n _.
_
s                                r      s              1    7 1      .        7        r    7    7    0  7  0      t5r          0      7  (    0 E                  i_    2    v  9    7  0        e    3    2    2  0  3        c8e        1      4        7 P                  w_  1    n      - 2          h    7    7    7  7  1        e1h          -    7  A 2 Y                            o O                          o_                                                                          C
s                                r      s              1    7 1      .        7        r    7    7    0  7  0      t5r          0      7  (    0 E                  i_    2    v  9    7  0        e    3    2    2  0  3        c8e        1      4        7 P                  w_  1    n      - 2          h    7    7    7  7  1        e1h          -    7  A 2 Y                            o O                          o_                                                                          C
                                   -            -  -      t      -    -    -  -        l (t                    S k                                          -                        -          -
                                   -            -  -      t      -    -    -  -        l (t                    S k                                          -                        -          -
Line 1,554: Line 963:


O                                          O                                                          O TABLE E-2B TYPICAL GENEllAL AVI ATION AIItCilAPT CilAItACTEllISTICS (Includes Largest & Smallest of Each Type)
O                                          O                                                          O TABLE E-2B TYPICAL GENEllAL AVI ATION AIItCilAPT CilAItACTEllISTICS (Includes Largest & Smallest of Each Type)
Type                            Piper                    Beechcraft                    Cessna
Type                            Piper                    Beechcraft                    Cessna Model                      Cherokee    Navajo        Bonanza            99          150                421 (PA 28-180)                  (V-35)                  __
                                                                                    ,
Model                      Cherokee    Navajo        Bonanza            99          150                421 (PA 28-180)                  (V-35)                  __
Weight, lbs.                2400        6200          3400          10,200        1600                  6800 Engines - number            1          2              1            2            1                    2 Fuel - gallons (max. )
Weight, lbs.                2400        6200          3400          10,200        1600                  6800 Engines - number            1          2              1            2            1                    2 Fuel - gallons (max. )
50          190            80            374          38                    202
50          190            80            374          38                    202
Line 1,565: Line 972:
C O                                                                                                                  ,
C O                                                                                                                  ,
O N
O N
N
N LD
&
LD
_ -___-_-


O E-3  PROBABILITY OF STRIKE BY LARGE AIRCRAFT - DISCUSSION OF ASSUMPTIONS The following discussion explains some of the important assumptic which underly the estimates of the probability of a large airplan strike on Three Mile Island. The derivation of these assumptions is given in Supplement 5 (Amendment 8), Section A.
O E-3  PROBABILITY OF STRIKE BY LARGE AIRCRAFT - DISCUSSION OF ASSUMPTIONS The following discussion explains some of the important assumptic which underly the estimates of the probability of a large airplan strike on Three Mile Island. The derivation of these assumptions is given in Supplement 5 (Amendment 8), Section A.
Line 1,577: Line 981:
l l
l l


_ __
    ,
l O
l O
have some direction and attitude control before impact and are o the type in which there is a good chance large structures could have been avoided.
have some direction and attitude control before impact and are o the type in which there is a good chance large structures could have been avoided.
Fatal landing accidents inside the area 1 1/2 mile from the runw centerline extended were excluded (Fig. A-2).          Of the 15 acciden' in this area, all but perhaps two had enough directional control to stay on or close to course.          One of these might have been appropriate for inclusion in the statistical base.          However, one which was included might have been lef t cut.        It hit a hill in controlled level flight at about 620' above the field elevation.
Fatal landing accidents inside the area 1 1/2 mile from the runw centerline extended were excluded (Fig. A-2).          Of the 15 acciden' in this area, all but perhaps two had enough directional control to stay on or close to course.          One of these might have been appropriate for inclusion in the statistical base.          However, one which was included might have been lef t cut.        It hit a hill in controlled level flight at about 620' above the field elevation.
Thus, the selection of two accidents as a data base was believed
Thus, the selection of two accidents as a data base was believed to be justified.
  -
to be justified.
Fatal takeoff accidents within a radius of one mile were excludet Of the five in this category, three were caused by immediate and severe loss of pcwer or near ground turbulence so that they are not of the type which would affect a target 2-1/2 miles from the runway. Two others were caused by control system malfunction anc might have been included. But two were included which might have been excluded (one hit a hill in controlled level flight at about 850' above the field and another probably had enough directional
Fatal takeoff accidents within a radius of one mile were excludet Of the five in this category, three were caused by immediate and severe loss of pcwer or near ground turbulence so that they are not of the type which would affect a target 2-1/2 miles from the runway. Two others were caused by control system malfunction anc might have been included. But two were included which might have been excluded (one hit a hill in controlled level flight at about 850' above the field and another probably had enough directional
                                                                             ~
                                                                             ~
control to avoid a large structure).
control to avoid a large structure).
'
E-3-2 0(102 267
E-3-2 0(102 267


Line 1,598: Line 997:
: (2)
: (2)
E-3-3 0002 268
E-3-3 0002 268
  .  .                                                .      .  .


O at Olmsted. The two others were under enough directional contro so that, had they operated at Olmsted, they prob.bly could have avoided the plant. Further, local terrain and flight patterns a Olmsted (including IFR missed approach procedures) are such that aircraft would tend to stay north of the airport away f rom the plant. The one exception is for an aircraft taking off to the east which, loses power in its right engines (and yaws to the rig.
O at Olmsted. The two others were under enough directional contro so that, had they operated at Olmsted, they prob.bly could have avoided the plant. Further, local terrain and flight patterns a Olmsted (including IFR missed approach procedures) are such that aircraft would tend to stay north of the airport away f rom the plant. The one exception is for an aircraft taking off to the east which, loses power in its right engines (and yaws to the rig.
for this reason) or which has minimum power and turns down the river to ditch on low ground or in the river.      In the first case there is a good chance there would be enough control to avoid the plant even if a crash ensued.      In the second case, if the aircra:
for this reason) or which has minimum power and turns down the river to ditch on low ground or in the river.      In the first case there is a good chance there would be enough control to avoid the plant even if a crash ensued.      In the second case, if the aircra:
had enough power to turn and reach the vicinity of the plant, it would have had enough to clear the low hills straight ahead and land on a level area. But if the decision to turn was made, anc there was enough power to control and execute it, there is a gooc chance the aircraf t would have enough control to avoid the plant.
had enough power to turn and reach the vicinity of the plant, it would have had enough to clear the low hills straight ahead and land on a level area. But if the decision to turn was made, anc there was enough power to control and execute it, there is a gooc chance the aircraf t would have enough control to avoid the plant.
The estimates of strike probability are based on statistics for the probability of a fatal accident per landing or takeoff for ti ten year period 1956 thru 1965, inclusive.      Accident statistics for the future will probably be different.      However, fatal acci-dent probability per landing and takeoff is expected to decrease in the future because of expected improvements in aircraft and        I
The estimates of strike probability are based on statistics for the probability of a fatal accident per landing or takeoff for ti ten year period 1956 thru 1965, inclusive.      Accident statistics for the future will probably be different.      However, fatal acci-dent probability per landing and takeoff is expected to decrease in the future because of expected improvements in aircraft and        I I
                                                                          !
engine reliability, new aircraft testing, navigation equipment ar I
I engine reliability, new aircraft testing, navigation equipment ar I
methods, pilot training and fire control after impact. Examinati O                                E-3-4 0002 269 l
methods, pilot training and fire control after impact. Examinati O                                E-3-4 0002 269 l


Line 1,615: Line 1,012:
elevation in controlled level flight, and thus was not taken as being 2 typical indication of vertical flight path angle for a crash on the plant. The other impacted at 10        Vertical path angles  were  investigated  for  all E-3-5 0002 270
elevation in controlled level flight, and thus was not taken as being 2 typical indication of vertical flight path angle for a crash on the plant. The other impacted at 10        Vertical path angles  were  investigated  for  all E-3-5 0002 270


                                                                            --
    ,
O of the other arrival accidents, shown 6n Fig. A-2,which appeared be out of control and of the type which could have struck a tar 2-1/2 miles away if the malfunction involved had happened earli Only two other' accidents of this type were identified. One is the two mile radius of Fig. A-2 about 1/2 mile to the left of t runway centerline extended. Its vertical path angle was about The other was just right of the runway and about 1-1/2 miles ou-It struck at a shallow angle (<5 ) and may have been due to sud.
O of the other arrival accidents, shown 6n Fig. A-2,which appeared be out of control and of the type which could have struck a tar 2-1/2 miles away if the malfunction involved had happened earli Only two other' accidents of this type were identified. One is the two mile radius of Fig. A-2 about 1/2 mile to the left of t runway centerline extended. Its vertical path angle was about The other was just right of the runway and about 1-1/2 miles ou-It struck at a shallow angle (<5 ) and may have been due to sud.
disability of the pilot. If the aircraft had been further out .
disability of the pilot. If the aircraft had been further out .
Line 1,625: Line 1,020:
the one at four mile radius hit a hill at about 850 feet above -
the one at four mile radius hit a hill at about 850 feet above -
airport and is not useful as a check of vertical path angle.        O:
airport and is not useful as a check of vertical path angle.        O:
!
the three where the aircraft were out of control- .us had a ver-path angle of 78 , one of 71 , and the other is unknown.      The f:
the three where the aircraft were out of control- .us had a ver-
,
path angle of 78 , one of 71 , and the other is unknown.      The f:
one had an angle of 7 . Thus, the selection of 45    angle for cc puting vertical target area is believed to be reasonablo.
one had an angle of 7 . Thus, the selection of 45    angle for cc puting vertical target area is believed to be reasonablo.
(                                                                            l E-3-6                                      ;
(                                                                            l E-3-6                                      ;
Line 1,637: Line 1,029:
craft types, impact speeds (as well as weights and impact angl I
craft types, impact speeds (as well as weights and impact angl I
were involved:                                                    ;
were involved:                                                    ;
                                                                        ,
Lockheed L-1049; 82,000 lb; 10 ; 95 knots (Byrd Field,    Va., 11 l
Lockheed L-1049; 82,000 lb; 10 ; 95 knots (Byrd Field,    Va., 11 l
()  DC-7-C        ; 115,000 lb;  7 ; 178 knots (Miami, Fla., 3/25/5 i
()  DC-7-C        ; 115,000 lb;  7 ; 178 knots (Miami, Fla., 3/25/5 i
Line 1,646: Line 1,037:
impacted almost vertically about 2-1/2 miles from the end of t!    1
impacted almost vertically about 2-1/2 miles from the end of t!    1
[    runway at a bearing of about 130      left of the runway centerlini i
[    runway at a bearing of about 130      left of the runway centerlini i
O                                  E-3-7
O                                  E-3-7 0002 272 l
    '
0002 272 l
l
l


_
O Of those crashes which might affect the plant      (i.e., which are
O Of those crashes which might affect the plant      (i.e., which are
,  within two to three miles of the end of a runway), it represent s the type of crash by a large jet which would have the highest impact speed.
,  within two to three miles of the end of a runway), it represent s the type of crash by a large jet which would have the highest impact speed.
Line 1,657: Line 1,045:
Boeing 707-1238 crash (i.e., greater than 200 knots) is believed to be small.
Boeing 707-1238 crash (i.e., greater than 200 knots) is believed to be small.
The information set forth above and the fact that the speed limi-in the geographical area of interest (i.e., that on Fig. A-2) is 180 knots indicates that the assumption of a 200 knot impact spei is reasonable.
The information set forth above and the fact that the speed limi-in the geographical area of interest (i.e., that on Fig. A-2) is 180 knots indicates that the assumption of a 200 knot impact spei is reasonable.
O                                E-3-8
O                                E-3-8 0002 273
                                                            .
0002 273
                                                                .


_
O Traffic Density In estimating the probability of an air carrier aircraft strike it was assumed that air carrier movements at Olmsted were four times the current annual rate (i.e.,    80,000 movements per year a bout one every seven minutes). This is about one-third of the current rate at Washington National Airport.
O Traffic Density In estimating the probability of an air carrier aircraft strike it was assumed that air carrier movements at Olmsted were four times the current annual rate (i.e.,    80,000 movements per year a bout one every seven minutes). This is about one-third of the current rate at Washington National Airport.
                                                      .
During the past ten years (1958 to 1967), total air carrier move ments in the U.S. increased by a factor of about 20%.      If the national increase in the next ten years is like that in the pas-ten and Olmsted increases at twice that national rate, it would have about 28,000 movements per year by 1977, but would not reat 80,000 during the plant lifetime    if  movements continued to O increase by the same increment each year.      However, the Olmsted Airport management is seeking a still faster rate of growth and may have a target for doubling the movements in five to ten yea 2 If this very fast increase were achieved and sustained, 80,000 movements per year could be realized by sometime between 1980 at 2000    Since the midpoint of assumed plant life will be about li the assumption of 80,000 air carrier movements a year on which t base statistical analysis is believed to be reasonable.
During the past ten years (1958 to 1967), total air carrier move ments in the U.S. increased by a factor of about 20%.      If the national increase in the next ten years is like that in the pas-ten and Olmsted increases at twice that national rate, it would have about 28,000 movements per year by 1977, but would not reat 80,000 during the plant lifetime    if  movements continued to O increase by the same increment each year.      However, the Olmsted Airport management is seeking a still faster rate of growth and may have a target for doubling the movements in five to ten yea 2 If this very fast increase were achieved and sustained, 80,000 movements per year could be realized by sometime between 1980 at 2000    Since the midpoint of assumed plant life will be about li the assumption of 80,000 air carrier movements a year on which t base statistical analysis is believed to be reasonable.
l O                                E-3-S 0002 274
l O                                E-3-S 0002 274
                                                        -  -


O E-4    PROBABILITY OF A STRIKE BY A VERY LARGE AIRCRAFT
O E-4    PROBABILITY OF A STRIKE BY A VERY LARGE AIRCRAFT
Line 1,674: Line 1,056:
( that while the maximum takeof f weights of the B-720 and the B-707-120B are more than 200,000 lbs., the maximum allowable landing weight is less. A lso , if aircraft are departing for a nearby destination takeoff weights may be substantially less than the maximum because a full fuel load would not usually be carried.
( that while the maximum takeof f weights of the B-720 and the B-707-120B are more than 200,000 lbs., the maximum allowable landing weight is less. A lso , if aircraft are departing for a nearby destination takeoff weights may be substantially less than the maximum because a full fuel load would not usually be carried.
It is assumed that very large aircraf t comprise 3% of the total assumed air carrier movements at Olmsted or .03 x 80,000 = 2400 movements / year.
It is assumed that very large aircraf t comprise 3% of the total assumed air carrier movements at Olmsted or .03 x 80,000 = 2400 movements / year.
O E-4-1
O E-4-1 0002 275
                                                      '
0002 275


  ,            -              __      _      -
O For purposes of approximation, a strike angle of      60  on critic building surfaces was chosen as a basis for investigation.        Str angles less than this (associated with any given weight, speed deceleration pattern at impact) would impose loads less than those derived from assuming a 90    ir, pact such as has been done in checking structures for the effect of large aircra strikes.
O For purposes of approximation, a strike angle of      60  on critic building surfaces was chosen as a basis for investigation.        Str angles less than this (associated with any given weight, speed deceleration pattern at impact) would impose loads less than those derived from assuming a 90    ir, pact such as has been done in checking structures for the effect of large aircra strikes.
Flight path angle (relative to the horizontal) was assumed to b randomly distributed from 0 to 20      for landing accidents and 0 90  for takeoff accidents. The probability of a strike from selected directional quadrants was assumed to be 40% from a qua.
Flight path angle (relative to the horizontal) was assumed to b randomly distributed from 0 to 20      for landing accidents and 0 90  for takeoff accidents. The probability of a strike from selected directional quadrants was assumed to be 40% from a qua.
Line 1,685: Line 1,064:
The strike probability for large aircraf t was taken to be 0.88 10-6/yr. as in Amendment 8,    page A-5, which was based on an ass:
The strike probability for large aircraf t was taken to be 0.88 10-6/yr. as in Amendment 8,    page A-5, which was based on an ass:
virtual target area of 630,000 ft.2 for landing ar.d 185,000 ft.
virtual target area of 630,000 ft.2 for landing ar.d 185,000 ft.
                                                                        '
for takeoff accidents. About 60% of the strike probability was due to landing and 40"e due to takeof f accidents.
for takeoff accidents. About 60% of the strike probability was due to landing and 40"e due to takeof f accidents.
O E-4-2 0002 276
O E-4-2 0002 276


    .
. O Given the information and assumptions described above, the probaLility of an aircraf t larger than 200,000 lbs. striking the plant on a critical structure at an angle of greater than 60 relp.tive to the structure surface can be estimated as follows.
. O Given the information and assumptions described above, the probaLility of an aircraf t larger than 200,000 lbs. striking the plant on a critical structure at an angle of greater than 60 relp.tive to the structure surface can be estimated as follows.
For takeoff accidents, the probability of a very large airplane strike from a given quadrant is:
For takeoff accidents, the probability of a very large airplane strike from a given quadrant is:
Line 1,702: Line 1,079:
i l
i l


                          . - _ _ .
O the probability is:
O the probability is:
fAP g P      =
fAP g P      =
Line 1,709: Line 1,085:
                                                                         /
                                                                         /
The resu1t indicates that the sum of probabilities from all quadrants is about 5 x 10-9/yr.
The resu1t indicates that the sum of probabilities from all quadrants is about 5 x 10-9/yr.
O
O E-4-4 0002 278
                                                                              .
E-4-4 0002 278


                            . _ -                          _ - _ -          --
    ,
r()  E-5    PROBABILITY OF SMALL AIRCRAFT STRIKE The amount of general aviation movements in the Harrisburg area has been estimated by reviewing a report (FAA Air Traffic Activi Fiscal Year 1967) and from information received directly from airport records. In 1967, there were a total of 70,600 landings plus takeoffs, or 35,300 landings and 33,300 takeoffs at Harris-burg area airports.        Of these, about 90% is assumed to have occurred at Harrisburg/ York and 10% at Olmsted.              Typical type of aircraft involved are Beechcraft, piper and Cessna.              Charac-teristics of the largest and smallest of each aircraft of these l
r()  E-5    PROBABILITY OF SMALL AIRCRAFT STRIKE The amount of general aviation movements in the Harrisburg area has been estimated by reviewing a report (FAA Air Traffic Activi Fiscal Year 1967) and from information received directly from airport records. In 1967, there were a total of 70,600 landings plus takeoffs, or 35,300 landings and 33,300 takeoffs at Harris-burg area airports.        Of these, about 90% is assumed to have occurred at Harrisburg/ York and 10% at Olmsted.              Typical type of aircraft involved are Beechcraft, piper and Cessna.              Charac-teristics of the largest and smallest of each aircraft of these l
types are given in Table E-2-B.
types are given in Table E-2-B.
                                                                                   ]
                                                                                   ]
:
O    Accident data for general aviation operations were obtained fror the National Transportation Safety Board and are given in Table E-5A. In 1965 and 1966, there were a total of 37,756,000 hours flown under the category of general aviation.              In order to relate these data to numbers of landit.gs and takeof fs, it is necessary to make a judgment of the average flight duration.
O    Accident data for general aviation operations were obtained fror the National Transportation Safety Board and are given in Table E-5A. In 1965 and 1966, there were a total of 37,756,000 hours flown under the category of general aviation.              In order to relate these data to numbers of landit.gs and takeof fs, it is necessary to make a judgment of the average flight duration.
This is assumed to be one hour.        Thus, the assumed total number of landings plus takeoffs is 75.5 x 10 6 for the years 1965 and 1966.
This is assumed to be one hour.        Thus, the assumed total number of landings plus takeoffs is 75.5 x 10 6 for the years 1965 and 1966.
Of the general aviation accidents, only the fatal accidents are considered because in nonfatal accidents the pilot is assumed O
Of the general aviation accidents, only the fatal accidents are considered because in nonfatal accidents the pilot is assumed O
E-5-1 0002 279
E-5-1 0002 279
                                                        -


____ _ _                      _                    _  .__ _
O to have enough control to be able to avoid the plant.              Some fatal accidents may also be of this type.
O to have enough control to be able to avoid the plant.              Some fatal accidents may also be of this type.
The ranges of interest are two to three miles for Olmsted traf and seven to eight miles for Harrisburg/ York traffic.            From a smooth curve fitted to the data in Table E-5A, the respective numbers of accidents are 55 and 20 over the two year period fo these two ranges.
The ranges of interest are two to three miles for Olmsted traf and seven to eight miles for Harrisburg/ York traffic.            From a smooth curve fitted to the data in Table E-5A, the respective numbers of accidents are 55 and 20 over the two year period fo these two ranges.
Line 1,737: Line 1,106:
0.52  x 10-2/ year The average virtual target area assumed for the plant for land and takeoff accidents is approximately .015 square miles.              Thi is .95 x 10-3 times the area within two and three mile circles O                                  E-5-2 0002 280
0.52  x 10-2/ year The average virtual target area assumed for the plant for land and takeoff accidents is approximately .015 square miles.              Thi is .95 x 10-3 times the area within two and three mile circles O                                  E-5-2 0002 280


_ _ _ _ ____              - _ _ _ _ _ _ _ _ _ _ _      __________________
  -
O Thus, assuming random geographical distribution of the crashes within the two to three mile radius, the probability that a fa crash resulting from Olmsted operations would strike the Three Mile Island plant in any one year is:
O Thus, assuming random geographical distribution of the crashes within the two to three mile radius, the probability that a fa crash resulting from Olmsted operations would strike the Three Mile Island plant in any one year is:
P    ~  *    *      *  *    *                *    *
P    ~  *    *      *  *    *                *    *
Line 1,752: Line 1,119:
                   =
                   =
1.65 x 10-2 x 0. 32 x 10-3              =    0.53 x 10-5/ year i
1.65 x 10-2 x 0. 32 x 10-3              =    0.53 x 10-5/ year i
,
O i                                E-5-3 0002 281
O i                                E-5-3 0002 281


              ._        .                ._      _  _ _ _ _ _ _ _              . -_
   <O The combi-ad probability of the Three Mile Island plant being
   <O The combi-ad probability of the Three Mile Island plant being
                                                                                     ;
                                                                                     ;
Line 1,769: Line 1,134:
P s
P s
                 =    5  x  10-5 O
                 =    5  x  10-5 O
O
O 0002 282 E-5-4
'
0002 282 E-5-4
                                                                        . _ , _


_,_    _        -_
                                                                . _
l O
l O
TABLE E-5 A l
TABLE E-5 A l
GENERAL AVIATION TOTAL FATAL ACCIDENTS IN CONTINENTAL U.S.
GENERAL AVIATION TOTAL FATAL ACCIDENTS IN CONTINENTAL U.S.
1956-1966 Inclusive
1956-1966 Inclusive Distance from Airport                      Fatal Accidents      l (Miles)                                                  I 0-1                                      315 1-2                                        83          ,
                .
Distance from Airport                      Fatal Accidents      l (Miles)                                                  I
                                                                        !
                                                                        !
0-1                                      315 1-2                                        83          ,
l 2-3                                        45          l 3-4                                        47 4-5                                        19 Beyond  5                                        549 O    Distance unknown or not reported                    48 1106 Fire after impact                                  300 0
l 2-3                                        45          l 3-4                                        47 4-5                                        19 Beyond  5                                        549 O    Distance unknown or not reported                    48 1106 Fire after impact                                  300 0
:
                                                    .
                                    --
0002 283
0002 283


_ _ _ _ . - _ _    _ _ _    _                        _ _ - .                _ - _ _ _            _  _ _ -      _ _ _
/
/
()
()
E46  PROBABILITY OF FIRE FROM AN AIRCRAFT STRIKE                                          i 1
E46  PROBABILITY OF FIRE FROM AN AIRCRAFT STRIKE                                          i 1
                                                                                                                          ,
                                                                                                                          !
Small Fires                                                                                j As indicated in Table E-5A for general aviation aircraft, about 27% of fatal crashes have pontaccident fires.                      If this ratio is        l assumed valid for crashes on the plant, then the probability of crash fires would be about:
Small Fires                                                                                j As indicated in Table E-5A for general aviation aircraft, about 27% of fatal crashes have pontaccident fires.                      If this ratio is        l assumed valid for crashes on the plant, then the probability of crash fires would be about:
p =
p =
5 x 10-5 x .27          =  1.4 x 10-5/ year                                    ,
5 x 10-5 x .27          =  1.4 x 10-5/ year                                    ,
                                                                                                                          !
This assumes that the general aviation movement rate is five times the present rate.          Examination of Table E-2B indicates these crashes will probably involve less than 400 gallons of fuel and average less than 100 gallons.
This assumes that the general aviation movement rate is five times the present rate.          Examination of Table E-2B indicates these crashes will probably involve less than 400 gallons of fuel and average less than 100 gallons.
Medium Fires Medium fires are taken to be those wherein more than 400 but less than 3,000 gallons of fuel are involved. At the present time, about 97% of movements at Olmsted involve airplanes with a maximu fuel capacity of 3,000 gallons, or less.                      If', however, it is as-sumed that at  the time air carrier movements reach 80,000 per yea 70% of the airplanes involved carry less than 3,000 gallons when landing or taking off, then the probability of a medium fire is p                  -6
Medium Fires Medium fires are taken to be those wherein more than 400 but less than 3,000 gallons of fuel are involved. At the present time, about 97% of movements at Olmsted involve airplanes with a maximu fuel capacity of 3,000 gallons, or less.                      If', however, it is as-sumed that at  the time air carrier movements reach 80,000 per yea 70% of the airplanes involved carry less than 3,000 gallons when landing or taking off, then the probability of a medium fire is p                  -6 1 x 10          x . 7 = 7 x 10- /yr assuming all air carrier crashes on the plant result in fires.
                                                -
1 x 10          x . 7 = 7 x 10- /yr assuming all air carrier crashes on the plant result in fires.
E                                  .
E                                  .
0002 284
0002 284


___
<
O Large Fires Similarly, the probability of large fires (where more than 3,000 gallons of fuel are involved) can be estimated assuming 30% of air carrier operations have more than 3,000 gallons aboard when landing or departing.      Thus:
O Large Fires Similarly, the probability of large fires (where more than 3,000 gallons of fuel are involved) can be estimated assuming 30% of air carrier operations have more than 3,000 gallons aboard when landing or departing.      Thus:
                                 ~              -
                                 ~              -
P=    1 x 10  x .3 - 3 x 10 Improvements in aircraft design, fire prevention systems, and fuel technology, especially f or large aircraf t , are expected to reduce the probability of postcrash fires in the future.      By O
P=    1 x 10  x .3 - 3 x 10 Improvements in aircraft design, fire prevention systems, and fuel technology, especially f or large aircraf t , are expected to reduce the probability of postcrash fires in the future.      By O
the time air traffic movement rates reach those assumed in makin the probability estimates above, significant improvements should be realized. Thus, from this viewpoint, the probability of post crash fires, especially for large aircraft, should be less than assumed.
the time air traffic movement rates reach those assumed in makin the probability estimates above, significant improvements should be realized. Thus, from this viewpoint, the probability of post crash fires, especially for large aircraft, should be less than assumed.
O E-6-2
O E-6-2 OK)02 285
                            &
OK)02 285


7
7
Line 1,825: Line 1,167:
for a small plane crash in Section E-5 above was 0.015      mi  or about 4x 10 5 ft ,and the probability of a crash (at five times present traffic density) was 5 x 10-5/ year.      The probability of 1
for a small plane crash in Section E-5 above was 0.015      mi  or about 4x 10 5 ft ,and the probability of a crash (at five times present traffic density) was 5 x 10-5/ year.      The probability of 1
a strike on the ventilation openings can be estimated by multi-plying this probability by the      ratio of " virtual target" areas ,
a strike on the ventilation openings can be estimated by multi-plying this probability by the      ratio of " virtual target" areas ,
                                                                              !
or:
or:
1 2                                    l 9 x 10 p  =  5 x 10-5 x          -
1 2                                    l 9 x 10 p  =  5 x 10-5 x          -
                                          #
                                             %  10~ / year                    l 4 x 10 This neglects the effect of protection afforded to the openings by structures which could intercept an approaching aircraft.
                                             %  10~ / year                    l 4 x 10 This neglects the effect of protection afforded to the openings by structures which could intercept an approaching aircraft.
1 i
1 i
Line 1,836: Line 1,176:
l
l


__ _ _ _ _ _ _ _ _ _ _  - _ _ _ _ _ _ _
  'i Consequently, the probability has been taken as being one half that est'. mated above or 5 x 10-8  ,
  'i Consequently, the probability has been taken as being one half that est'. mated above or 5 x 10-8  ,
To estimate the probability contribution from large aircraft (air carrier planes) the average amount of fuel carried has bee assumed to be 5000 gallons assuming that only a very few, if an very large planes (1. e. , B474 's) will use Olmsted.
To estimate the probability contribution from large aircraft (air carrier planes) the average amount of fuel carried has bee assumed to be 5000 gallons assuming that only a very few, if an very large planes (1. e. , B474 's) will use Olmsted.
The area affected by spread of fuel from the crash of an aircra carrying 5000 gallons is assumed to be about 25 x 1000 ft or 25,000 ft  .
The area affected by spread of fuel from the crash of an aircra carrying 5000 gallons is assumed to be about 25 x 1000 ft or 25,000 ft  .
From Amendment 8, page A-5, the probability for arriving and departing accidents is given as .88 x 10-6          If these are multi O
From Amendment 8, page A-5, the probability for arriving and departing accidents is given as .88 x 10-6          If these are multi O
                                                      .
plied by the ratio of the " virtual target" area estimated above to the average virtual target area assumed in deriving the large plane strike probability, the result is an approximate estimate of the probability of fuel or fire from a large aircraft crash affecting critical ventilation openings.        Thus:
plied by the ratio of the " virtual target" area estimated above to the average virtual target area assumed in deriving the large plane strike probability, the result is an approximate estimate of the probability of fuel or fire from a large aircraft crash affecting critical ventilation openings.        Thus:
p        .88 x 10-0    .5 x 10 4
p        .88 x 10-0    .5 x 10 4
Line 1,849: Line 1,187:
O i
O i
E-6-4                                        .
E-6-4                                        .
!


-
O The combined probability for large and small aircraf t crashes affecting the ventilation opening is:
O The combined probability for large and small aircraf t crashes affecting the ventilation opening is:
P =  8 x 10-8
P =  8 x 10-8 O
                                                                  .
O
                                                                                  ,
l O                                              E-6-5 0002 288 1
l O                                              E-6-5 0002 288 1
i
i
_ _ _ _ _ _ _ _ _ _ _ _


_ - . . =                  . - -            - - _ -      .-. _ .-.
_ - . . =                  . - -            - - _ -      .-. _ .-.
,
I rO                                                      at~taracts l
I
:
rO                                                      at~taracts l
                                                                                                              !
                                                                                        -
!                                                                                                            l
!                                                                                                            l
  ,                          Eardley, A . J. , Structural Geoloav of North America, New Ycrk: Harper &
  ,                          Eardley, A . J. , Structural Geoloav of North America, New Ycrk: Harper &
Brothers , 1951 Kershner, Jefferson K., "An Earthquake in Pennsylvania," Science, Vol. X
Brothers , 1951 Kershner, Jefferson K., "An Earthquake in Pennsylvania," Science, Vol. X
:                          No. 322, April 5,1889.
:                          No. 322, April 5,1889.
!
!
i i
i i
!
l 1,                                                                                                            1
l 1,                                                                                                            1
                                                                                                              '
  ;              O 1,
  ;              O
i i
:
I h
  ,
O 0002 289
1, i
:
i
:
I
',
h O
0002 289
_ _ _ _ _ _                    _            . - - _ - . .            -
_. _ _. .-      . - -


/
/
Line 1,898: Line 1,212:
Brothers , 19 51.
Brothers , 19 51.
Eppley, R. S. , " Stronger Earthquakes of the United States (Exclusive of California and Western Nevada)," Earthcuake Historv of the United States    I Washington: Government Printing Office,1965.
Eppley, R. S. , " Stronger Earthquakes of the United States (Exclusive of California and Western Nevada)," Earthcuake Historv of the United States    I Washington: Government Printing Office,1965.
                                                                                  !
Fuller, M . L . , "The New Madrid Earthquake , " United States Geolocical    ;
Fuller, M . L . , "The New Madrid Earthquake , " United States Geolocical    ;
Survey Bulletin 494, Washington: Government Printing Office,1912.
Survey Bulletin 494, Washington: Government Printing Office,1912.
I Isacks, B. , and Oliver, J. , " Seismic Waves with Frequencies from 1 to
I Isacks, B. , and Oliver, J. , " Seismic Waves with Frequencies from 1 to 100 Cycles per Second Recorded in a Deep Mine in Northern New Jersey,"
                                                                                  '
100 Cycles per Second Recorded in a Deep Mine in Northern New Jersey,"
Bulletin of the Seismolecical Society of America, Vol. 54, No. 6A,1964, pd p . 1941-1980.                                                              )
Bulletin of the Seismolecical Society of America, Vol. 54, No. 6A,1964, pd p . 1941-1980.                                                              )
Kershner, Jefferson K. , "An Earthquake in Pennsylvania ," Science, Vol. XI:
Kershner, Jefferson K. , "An Earthquake in Pennsylvania ," Science, Vol. XI:
Line 1,913: Line 1,224:
Reid, H. F.,    Unpublished records including card index and newspaper clipping on file at United States Coast and Geodetic Survey, Washington, D.C .
Reid, H. F.,    Unpublished records including card index and newspaper clipping on file at United States Coast and Geodetic Survey, Washington, D.C .
i,      <
i,      <
                  ,
O 0002 290 O
      ''
Richter, Charles, Elementary Seismoloev, San Francisco: W. H. Freeman Company, 1958.
O
                '                                                                '
0002 290
 
  -.
O Richter, Charles, Elementary Seismoloev, San Francisco: W. H. Freeman Company, 1958.
Rockwood, C . G . , Jr. , " Notes on American Earthquakes , " American Tournal of Science Third Series, Vol. 29, 1885.
Rockwood, C . G . , Jr. , " Notes on American Earthquakes , " American Tournal of Science Third Series, Vol. 29, 1885.
Smith, W. E. T. , " Earthquakes of Eastern Canada and Adjacent Areas ,
Smith, W. E. T. , " Earthquakes of Eastern Canada and Adjacent Areas ,
Line 1,935: Line 1,240:
United States Department of Commerce, Coast and Geodetic Survey, United States Earthauakes, Washington: Government Printing Office, 1928-1964.
United States Department of Commerce, Coast and Geodetic Survey, United States Earthauakes, Washington: Government Printing Office, 1928-1964.
I United States Department of Commerce, Coast and Geodetic Survey, Detaile Information Furnished Concerning Cornwall, Pennsylvania Earthquake of May 12,19C4, to Weston Geophysical Research, Inc.
I United States Department of Commerce, Coast and Geodetic Survey, Detaile Information Furnished Concerning Cornwall, Pennsylvania Earthquake of May 12,19C4, to Weston Geophysical Research, Inc.
l
l e.
    ,
e.
            ,
              .,...
0002 291            g
0002 291            g
    -.
;
;
VO
VO APPENDIX I O
:
APPENDIX I O
.
O 0002 292
O 0002 292
                  ..
                      -      .


O                          DISt^Nr z^arnouaxtS rO ^FrtCr rat Slrr Felt Area  Distance  Apt Date            Location            Epicentral  (Square    From Site  In Intensity    Miles)    (Miles)    z Nov . 18, 1755  42.9 N, 70.60W            VIII      300,000    370 East of Cape Ann, Massachusetts Dec . 16, 1811  3 6.6'N, 89.6 W          XII      2,000,000    72 0 New Madrid, Missouri Aug . 10, 1884  4 0. 6'N , 74. 0 W      VII          70,000    145 New York City Aug . 31,1886  32.9'N, 80 W            X        2,000,000    540 Charleston, South Carolina May 31,1897    37.3 N, 80.7 W          VIII      280,000    290 Giles County,
O                          DISt^Nr z^arnouaxtS rO ^FrtCr rat Slrr Felt Area  Distance  Apt Date            Location            Epicentral  (Square    From Site  In Intensity    Miles)    (Miles)    z Nov . 18, 1755  42.9 N, 70.60W            VIII      300,000    370 East of Cape Ann, Massachusetts Dec . 16, 1811  3 6.6'N, 89.6 W          XII      2,000,000    72 0 New Madrid, Missouri Aug . 10, 1884  4 0. 6'N , 74. 0 W      VII          70,000    145 New York City Aug . 31,1886  32.9'N, 80 W            X        2,000,000    540 Charleston, South Carolina May 31,1897    37.3 N, 80.7 W          VIII      280,000    290 Giles County,
Line 1,956: Line 1,250:
Canada Sept. 5,1944    44.9 N, 74.9* W          VIII        175,000    340 Cornwall, Ontario    (Mag. 5.9)    in United Massena, New                        States York 0002 293 m
Canada Sept. 5,1944    44.9 N, 74.9* W          VIII        175,000    340 Cornwall, Ontario    (Mag. 5.9)    in United Massena, New                        States York 0002 293 m
V
V
_ __
'
   , o l
   , o l
l PART II RES?ONSE SPECTRA I
l PART II RES?ONSE SPECTRA I
                                                                      !
O i
O i
1
1 I
,
O g r. ., .                                            0002 294
I O
g r. ., .                                            0002 294
                  .. .. ,
                      .  ._ _ - _ .              - _ _ _ _    -.


  .
O OBTECTIVE Part I of this report, Seismicity Analysis, has established the strongest possible earthquake which might affect the site would be low intensity VI (Modified Mercalli) occurring along the Triassic border fault some six miles distant to the site. On the basis of Figure 1.7 in the Atomic Energy Commission publication Nuclear Reactors and Earthouakes TID 7024, this intensity corresponds to an acceleration of 0.04g. Larger earthquakes at greater distances frcm the site would produce an intensity no larger than III or IV (Modified Mercalli) .
O OBTECTIVE Part I of this report, Seismicity Analysis, has established the strongest possible earthquake which might affect the site would be low intensity VI (Modified Mercalli) occurring along the Triassic border fault some six miles distant to the site. On the basis of Figure 1.7 in the Atomic Energy Commission publication Nuclear Reactors and Earthouakes TID 7024, this intensity corresponds to an acceleration of 0.04g. Larger earthquakes at greater distances frcm the site would produce an intensity no larger than III or IV (Modified Mercalli) .
The objective of this part of the report is to establish the response g
The objective of this part of the report is to establish the response g
Line 1,977: Line 1,262:
l Five good, strong-motion records were obtained within fifteen, miles of the epicenter. For the present study the most important record was that        g w
l Five good, strong-motion records were obtained within fifteen, miles of the epicenter. For the present study the most important record was that        g w
b'*
b'*
: .
4Ut'''
4Ut'''
                                               -2 0-95 000
                                               -2 0-95 000
                                                                              -


i
i o                                                                                  !
                                                                                  !
o                                                                                  !
obtained in Golden Gate Park, approximately seven miles from the epicenter, where a strong-motion seismograph rested on rock. The intensity of damage at the vicinity of this station was estimated as a high VI. The strong portion of the ground motion was of only five seconds duration .
obtained in Golden Gate Park, approximately seven miles from the epicenter, where a strong-motion seismograph rested on rock. The intensity of damage at the vicinity of this station was estimated as a high VI. The strong portion of the ground motion was of only five seconds duration .
According to Figure 1.7 in the Atomic Energy Commission publica-tion Nuclear Reactors and Earthquakes TID 7024, the nominal acceleratior.
According to Figure 1.7 in the Atomic Energy Commission publica-tion Nuclear Reactors and Earthquakes TID 7024, the nominal acceleratior.
corresponding to a high VI intensity should be 0.06g.
corresponding to a high VI intensity should be 0.06g.
Although it is realized that this is higher than the acceleration established in the first part of this report for a low intensity VI earthquake O  it is felt thet e short duretion neer-by eerthaueke could produce en ec-celeration of 0.06g. Average smoothed response spectra derived from the ground motions in Golden Gate Park during the March 1957 earthquake have been normalized to 0.06g, and are given in Figure 1. The peak in these response spectra between periods of 0.1 and 0.2 seconds reflects the high frequency content of the ground motions observed close to a small earthquake. Because the earthquake was of such short duration, damping is relatively unimportant.
Although it is realized that this is higher than the acceleration established in the first part of this report for a low intensity VI earthquake O  it is felt thet e short duretion neer-by eerthaueke could produce en ec-celeration of 0.06g. Average smoothed response spectra derived from the ground motions in Golden Gate Park during the March 1957 earthquake have been normalized to 0.06g, and are given in Figure 1. The peak in these response spectra between periods of 0.1 and 0.2 seconds reflects the high frequency content of the ground motions observed close to a small earthquake. Because the earthquake was of such short duration, damping is relatively unimportant.
EFFECT OF DISTANT EARTHOUAKES The response spectra applicable to ground motions resulting from distant earthquakes were investigated usmg the scaling procedures developed by Esteva and Rosenblueth (1964). It was found that the
EFFECT OF DISTANT EARTHOUAKES The response spectra applicable to ground motions resulting from distant earthquakes were investigated usmg the scaling procedures developed by Esteva and Rosenblueth (1964). It was found that the c.
  ,-.,
                                                      ..
c.
Nn? ?16 s
Nn? ?16 s
                       ! h ,' ; a
                       ! h ,' ; a
Line 1,998: Line 1,276:
O response spectra for these more distant earthquakes was less critical than those in Figure 1 for periods less than 0.8 seconds.
O response spectra for these more distant earthquakes was less critical than those in Figure 1 for periods less than 0.8 seconds.
APPLICATION OF RESPONSE SPECTPA TO DESIGN The response spectra in Figure 1 are intended to represent the consequences of the strongest probable earthquake at the site. Accord-ingly, Type I structures or equipment whose failure might cause a nuclear incident should be designed according to the following rule or its equivalent stresses computed using the spectra, when superimposed upon the stresses resulting from normal operation, must be less than the normally specified working stresses without an allowance for strength increase due to short-term loading . Vertical accelerations should be taken as two-thirds of those indicated by the response spectra of Figure 1.
APPLICATION OF RESPONSE SPECTPA TO DESIGN The response spectra in Figure 1 are intended to represent the consequences of the strongest probable earthquake at the site. Accord-ingly, Type I structures or equipment whose failure might cause a nuclear incident should be designed according to the following rule or its equivalent stresses computed using the spectra, when superimposed upon the stresses resulting from normal operation, must be less than the normally specified working stresses without an allowance for strength increase due to short-term loading . Vertical accelerations should be taken as two-thirds of those indicated by the response spectra of Figure 1.
In addition, the design must be checked for an earthquake having a response spectra with ordinates twice those in Figure 1. This larger earthquake represents an earthquake much larger than justified by the historical record of the site but which might conceivably occur during the life of the structure. Under this more severe loading condition there should be no failure that could cause injury or prevent safe shutdown
In addition, the design must be checked for an earthquake having a response spectra with ordinates twice those in Figure 1. This larger earthquake represents an earthquake much larger than justified by the historical record of the site but which might conceivably occur during the life of the structure. Under this more severe loading condition there should be no failure that could cause injury or prevent safe shutdown i
:
I    during or after the earthquake.
i I    during or after the earthquake.
l Type II structures, whose failure could cause no nuclear incident, should be designed in accordance with the provisions of the 1957 Uniform u s  ...
l Type II structures, whose failure could cause no nuclear incident, should be designed in accordance with the provisions of the 1957 Uniform u s  ...
                                           -2 2 -
                                           -2 2 -
0002 297
0002 297


                                                                                  !
O Building Code with the value of the coefficient C applicable to Zone 1.
.
O
  .
Building Code with the value of the coefficient C applicable to Zone 1.
An alternate form of the response spectra is presented in Figure 2.
An alternate form of the response spectra is presented in Figure 2.
ACKNOWLEDGEMENT Dr. C. A. Cornell of Massachusetts Institute of Technology has participated with the Consultant in this study.
ACKNOWLEDGEMENT Dr. C. A. Cornell of Massachusetts Institute of Technology has participated with the Consultant in this study.
REFERENCES Oakeshott, G. B. ,1959: " San Francisco Earthquake of March 1957 Special Report 57, California Division of Mines.
REFERENCES Oakeshott, G. B. ,1959: " San Francisco Earthquake of March 1957 Special Report 57, California Division of Mines.
Esteva and Rosenblueth,1964: "Espectros de Temblores a
Esteva and Rosenblueth,1964: "Espectros de Temblores a Distancias Moderadas y Grandes," Boletin de la Sociedad Mexicana de Ingenieria Sismica," Vol. II, No.1. The method will appear in Chapter 7 of Earthquake Engineering by Newmar and Rosenblueth, to be published by Prentice-Hall.
                                                            '
Distancias Moderadas y Grandes," Boletin de la Sociedad Mexicana de Ingenieria Sismica," Vol. II, No.1. The method will appear in Chapter 7 of Earthquake Engineering by Newmar and Rosenblueth, to be published by Prentice-Hall.
Hudson, D. E. and G. W. Housner,1958: "An Analysis of the Strong Motion Accelerometer Data from the San Francisco Earthquake of March 22, 1957," Bull. of the Seismological Society of America , Vol. 48, pp. 2 53-268.
Hudson, D. E. and G. W. Housner,1958: "An Analysis of the Strong Motion Accelerometer Data from the San Francisco Earthquake of March 22, 1957," Bull. of the Seismological Society of America , Vol. 48, pp. 2 53-268.
O 0002 298
O 0002 298
                                         -2 3 -
                                         -2 3 -


      .
O O.5 y O%            Damping values
  '
O O.5
                      -
                      -
y O%            Damping values
                      -
                      -
                                          -
( % critical) 0.4        )              / O.5 %
( % critical) 0.4        )              / O.5 %
7
7
_
         ;            -
         ;            -
f                    1%
f                    1%
                      -
oi z
oi
        -
__
z
          -
0.3                  1 9            -
0.3                  1 9            -
D            -
D            -
l 1      5 J
l 1      5 J
                      -
                                                                             \
                                                                             \
(A      -5%                            j U
(A      -5%                            j U
Oo<      0.2
Oo<      0.2 s
_
                          ,
s
                                .
T 1
T 1
7%
7%
                    -
l d                                    - 10 %
l d                                    - 10 %
O
O 5              -
                                                                            !
                    -
5              -
                                                                             ;
                                                                             ;
8
8
: o.      O.I        [          \      \ h20    %
: o.      O.I        [          \      \ h20    %
:
N NhDD
N NhDD
                    -
                                                                           ;
                                                                           ;
O O          O.2                O. 4            0.6 uND AMPED PERIOD, SEC.
O O          O.2                O. 4            0.6 uND AMPED PERIOD, SEC.
RESPONSE SPECTRA FOR DESIGN O                                          riGuRE i
RESPONSE SPECTRA FOR DESIGN O                                          riGuRE i 0002 299 l
            .
0002 299 l
l
l


x                    .r
x                    .r
        '
         '    NN xxxx                                                      r .s O      '  'w XMw'#k'' $e
         '    NN xxxx                                                      r .s O      '  'w XMw'#k'' $e
                '    '
                                                 <' Xv .r /          / /
                                                 <' Xv .r /          / /
                                                                       / -
                                                                       / -
NNkN,4N'NNYA$v^x/
NNkN,4N'NNYA$v^x/
        .
                                                                  '
        ,
               'N                  h \V'X Af/
               'N                  h \V'X Af/
        .
NjffSWV/        '
NjffSWV/        '
f    'l      '\ l  \      X o hV '
f    'l      '\ l  \      X o hV '
                                                                                '
d                      /'              N              l
d                      /'              N              l
             ,/
             ,/
vwwmae
vwwmae
    .,                              .
                                                 ./      h          11.
                                                 ./      h          11.
s      '/
s      '/
            '
                 /78/#/W/$<N
                 /78/#/W/$<N
                                                      '
     !                                                                    R$#
     !                                                                    R$#
O    o,3      /                    /      /      /                      \
O    o,3      /                    /      /      /                      \
i      ' ///Af///                        // fx            'N 'N N
i      ' ///Af///                        // fx            'N 'N N
                                                                              '
                                  '                                        '
             ' bl/Y////                                    \          ~'N '
             ' bl/Y////                                    \          ~'N '
y7                                                    x 0,
y7                                                    x 0,
x xj/
x xj/
                                            '
                   /-
                   /-
                     /
                     /

Revision as of 11:49, 1 February 2020

App 2B,Part 1,to TMI-1 PSAR, Seismicity & Response Spectra Analysis,Proposed Nuclear Power Plant,Tmi,Susquehanna River, Pa. Prepared for Gilbert Associates,Inc
ML19309C557
Person / Time
Site: Three Mile Island Constellation icon.png
Issue date: 01/19/1967
From: Linehan D, Whitman R
MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE, METROPOLITAN EDISON CO., WESTON GEOPHYSICAL CORP.
To:
Shared Package
ML19309C556 List:
References
NUDOCS 8004080771
Download: ML19309C557 (74)


Text

{{#Wiki_filter:_ _- - - p WESTON GEOPHYSICAL RESEARCH, INC.

     -*/'

{ i-POST OFFICE BOX 364 WESTON. MASSACHUSETTS 02193 AREA CODE elf 894 4030 January 19, 1967 l l Gilbert Associates , Inc. 525 Lancaster Avenue Reading, Pennsylvania Gentlemen: We herewith submit our report entitled Seismicity and Response j Spectra Analysis , Proposed Nuclear Power Plant, Threemile Island, ' Susquehanna River, Pennsylvania . The preparation and submission of this report took place under your Purchase Order Number 154720 dated December 29, 1966.

  • The seismicity analysis was carried out under the direct super-O vision of aeverene ceniel tinehen, S.r. , oirector of weston Oeservet<

The Response Spectra, Part II of this report,was prepared by Professor Robert V. Whitman, Department of Civil Engineering, Mass-achusetts Institute of Technology. Sincerely yours , WESTON GEOPHYSICAL RESEARCH, INC. A

                                                                     /&

Richard J. Hott RJH:mf Enc. O 8004080 0002 227 1

                                                                                         ;

l l O , SEISMICITY AND RESPONSE SPECTRA ANALYSIS PROPOSED NUCLEAR POWER PLANT THREEMILE ISLAND, SUSQUEHANNA RIVER, PENNSYLVANIA l l l for GILBERT ASSOCIATES, INC. O PART I SEISMICITY ANALYSIS Weston Geophysical Research, Inc. PART II RESPONSE SPECTRA Professor Robert V. Whitman Consulting Soil Engineer

O

0002 228 \ l l

O TABLE OF CONTENTS PART I SEISMICIlY ANALYSIS General Geology and Tectonics 2 Seismicity of the Proposed Plant Site 4 Earthquakes Greater Than Fifty Miles from the Site 4 Earthquakes Within Fifty Miles of the Proposed Site 4 Earthquake Intensity Attenuation 6 Earthquake-Tectonic Relationships 7 Conclusions 9 Figures Figure 1 Tectonic Map of Northeastern United States 10 O Figure 2 Com,ilation of Ear 1houakes Pennsylvania Area 11 Figure 3 Compilation of Earthquakes Southeastern Pennsylvania Area 12 Figure 4 Mcdified Mercalli Intensity Scale, Rossi-Forel Intensity Scale, and Relation of Intensity with Ground Acceleration 13 References 14 Bibliography 15 Appendix I 17 O l 1

                                                                    ~
   ,en. , ..m..                                                       0002 229 l LV

O TABLE OF CONTENTS (Continued) PART II RESPONSE SPECTRA Objective 20 Response Spectra for Nearby Earthquake 20 Effect of Distant Earthquakes 22 Application of Response Spectra to Design 22 Acknowledgement 23 References 23 Figures Figure 1 Response Spectra for Design 24 Figure 2 Response Spectra for Design 25 O O h , ~. 4.. . a , 0002 230 i v )

O 1 PART I SEISMICITY ANALYSIS O O S

        ..:1. .

0002 231 l l

O The proposed nuclear power plant site of Metropolitan Edison Company is on Threemile Island, in the town of York Haven, Pennsylvania. Threemite Island is located in the Susquehanna River approximately three miles south of Middletown, Pennsylvania at latitude 400 09 ' North, lor.gitude 760 4 4 ' We s t . GENERAL GEOLOGY AND TECTONICS Physiographically, the site is located in the Triassic Lowland of Pennsylvania, one of a series of long narrow basins of Triassic deposits which extend from the Carolinas to New England. The basins are generally classed as lowlands because the formations have been more easily eroded than the surrounding crystalline and older sedimentary rocks . These basins g i are characterized by resistant ridges of trap rock (diabase) which stand prominently above the lowlands . The Triassic Lowland is known as the Gettysburg Basin in the vicinity of the site. North and west of the Triassic Lowland are the folded and thrust faulted Paleozoic rocks which corrprise the Appalachian Mountains. South-east of the Triassic Lowland is the Piedmont, composed of granites, gneisse and schists of Pre-Cambrian and Early Paleozoic Age. A tectonic map of the area is shown in Figure 1. The Appalachian Mountain System was formed by a great compressici force from the southeast at the close of the Paleozoic Era. The Triassic Lov O

 ,. s. , 4
            ..a,
0002 232 l

l

O lands were formed by the Palisades Orogeney during late Triassic Time (190 million years ago), no orogenic periods have occurred since that time . The area underwent a minor submergence during Cretaceous Time (70 to 135 million years ago) and some uplift during Tertiary Time (1 to 70 million years ago). The Triassic basins are characteristically bordered on one side by a major normal fault. The border faulting was a fairly continuous process during which time sediments act;umulated in the resulting fault basin. Deepening of the basin by faul'.ing tilted the previously deposited sediments in the direction of the fau1.c. As the faulting and sedimentation process became established, basic magmas entered the basin primarily O along the border faults and spread out into the sediments as dikes and J sills and on top of the sediments as lava flows. Continued faulting provided new avenues for the magma and complicated the basin structure (Eardley , 1951) . The Triassic sediments of the Gettysburg Formation in the vicinity of the site consist of red sbales and sandstones with diabase intrusives. As is common in all Triassic basins the sediments dip toward the major border fault which in this case is located about five or six miles north of the site . The dip at the site is approximately 40 to 45 degrees. O. 0002 233 r .o vo I i l

0 0 SE!SMICITY OF THE PROPOSED PIANT SITE Based on two hundred years of historical data and forty years of instrumental data, the Pennsylvania area is relatively inactive seismically The area is characterized by infrequent earthquakes of low intensity. Those earthquakes in the greater Pennsylvania area (see Figure 2), which have or might have affected the site have been studied; their intensi at the site has been determined based on intensity attenuation of the earth-quake with distance. The earthquakes which have affected the proposed site are cate-gorized by those which have occurred outside a fifty mile radius of the site and those which have occurred within a fifty mile radius of the site. EARTHOUAKES GREATER THAN FIFTY MILES FROM THE SITE O Those earthquakes greater than fifty miles from the site, which have affected the site, are listed in Appendix I. The distance of the earthquake epicenters tam the site and the approximate intensities at the site are included in thit Appendix. It is sufficient for oi r purposes here to state that the highest resulting intensity at the si e from any of these distant earthquakes is between III and IV. EARTHOUAKES WITHIN FIFTY MILES OF THE PROPOSED SITE i The location of earthquakes which have occurred in southeastern l l Pennsylvania are shown in Figure 3. Of the three earthquakes shown

 .s .s
            ,..s.
         . ..                                                                            G l                                                                                0002 234 l

f within a fifty mile radius of the site which had an epicentral intensity of V or greater, only the March 8,1889 earthquake was felt at the site. All three of these earthquakes are described below. Pennsylvania Earthouake of March 8.1889 The earthquake of March 8,1889, was felt over a 4,000 square l mile area of southeastern Pennsylvania including such cities as York, Harrisburg, Lancaster, Reading, and Philadelphia (Kershner,1889). The area of perceptibility was elongated in an east-west direction includ-l ing most of the Triassic Lowland of Pennsylvania. The United States Coast and Geodetic Survey has assigned an epicentral intensity o~ V to this earthquake. O Earthouake in the Sinkinc Sorine Pennsvivania Area The earthquake of January 7,1954, was felt over an eighty square mile area from an epicenter near Sinking Spring, Pennsylvania. Based on reports of minor damage fron the western section of Sinking Spring, this earthquake has been assigned an epicentral intensity of VI by the United States Coast and Geodetic Survey. The earthquake intensity was attenu-ated to IV within a distance of five miles from the epicenter. Nearly twenty aftershocks were felt in Sinking Spring between January 7th and 17th. An aftershock on Jan'uary 23, 1954, was felt over a ten square mile area. O 0002 2 % v.. l.

                   >Gl:,

O The last earthquake to occur in Sinking Spring area occurred on January 19, 1955, and was felt over an area of approximately one hundred square miles, a slightly larger area than the quake of January 7,1954. The United States Coast and Geodetic Survey has assigned an intensity of IV to this earthquake since the earthquake was felt butno damage reported . Cornwall, Pennsvivania Earthouake of May 12, 1964 This earthquake was reportedly felt only in the immediate vicinity of Cornwall. The United States Coast and Geodetic Survey has assigned an epicentral intensity of VI to this earthquake, based on a report that "a wall cracked and plaster fell". A severe jarring was felt by workers in an iron mine 1,200 feet deep. The instrumentally determined magnitude of this earthquake was calculated at 4.5 (Richter Scale) by the United States Coast and Geodetic Survey . According to the relationship between Earthquake Magnitude and Acceleration published by the United States Atomic Energy Commission in Nuclear Reactors and Earthcuakes TID 7024 (our Figure 4), the resultant acceleration from this earthquake would be in the order cf .02g. EARTHOUAKE INTENSITY ATTENUATION Nearly all of the above listed earthquakes have been felt over very limited areas, which are generally elliptical in shape and arc aligned 2* bI \i...ij 0002 2 % f l l

O with the general structural trend of the area. The areas in which the earthquakes were felt are generally less than 600 square miles and extend to a maximum distance from the epicenter of sixteen to eighteen miles along the structural trend; perpendicular to the structural trend, the maximum extent of perceptibility is ten to twelve miles . The high attenuation of these earthquakes indicates that their foci must have been close to the earth's surface. Isoseismal lines are difitcult to construct for earthquakes in this area because of a very limited number of observations within the small zone of perceptibility. An intensity attenuation curve is difficult to construct because only one or two data points exist for the curve due O to the high intensity attenuation in a short distance. EARTHOUAKE-TECTONIC RELATIONSHIPS The position of earthquake epicenters and the shallow focal depths at which they occur indicates some correlation of the earthquake activity of southeastern Pennsylvania with the geolog.c structure in that area. Most of the earthquakes located in tha southeastern Pennsylvania and western New Jersey area (north of latitude 400) shown in Figure 3, have had their epicenters near the borders of the Triassic Lowland. Many of the epicenters appear to be located in the immediate vicinity of the Triassic border fault. 0002 237

e. ~,jqj,
     ,e O

Recent earthquakes which are on er proximate to the border fault are listed below: Sinking Spring, Pennsylvania , January 7,1954, intensity VI (described above); Lebanon, New Jersey, March 23, 1957, intensity VI, (Figure magnitude 4.8 not described because it was not felt at the site. Cornwall, Pennsylvania, May 12, 1964, intensity VI, (described above). An estimation of the maximum expected intensity of an earthquake i at the site is based on the assumption that the location of earthquake activity which could affect the site will be along the border fault of the j Triassic Lowland five to six miles north of the site. The highest intensi 9 l j to occur on this fault has been Modified Mercalli VI. If an earthquake o epicentral intensity VI were to occur on the border fault five or six miles north of the site, the intensity observed at the site would be V based on the rapid attenuation of similar earthquakes in the area and along the l border fault. However, if a future earthquake along tN border fault has a focal depth greater than past quakes, a conservat.ve assumption woulc be that the resulting intensity at the site might approach the apicentral intensity and not be rapidly attenuated. c T' '\ s '

            .'. ilij O

0002 238 O

                                                                                     ~

CONCLUSIONS A conservative estimate of the maximum earthquake intensity to be expected at the proposed site is low intensity VI. Using relationshit published in Nuclear Reactors and Earthcuakes TID 7024, United States Atomic Energy Commission (Figure 4 of this report), this intensity corre-sponds to a ground acceleration of .04g. Since it appears that the most likely earthquake threat to the site is from a nearby local event, it can be anticipated that it will be of short duration and will be characterized by relatively nigh frequency motion . O O 0002 239 _g_

n I . it li I s s I

                                                                                  ,          =

c i

                                                .c : ;.7
  • _: :  :

z c

                                                        . e 2 -.-i ,:                                    3 i
                     .                                                                                                         =
                                                                                                           ;

i  :: . . e,, .. c g > i e .:

                                                                                                                                                                                     =.
     .s y :-                         1                                                                   =

g c

              .- g-t                   ;                                              1                                            -

iE8 .

    .....r.                                         .-

k k

                                                                   . .g I.'li:iti!!:!'3..h
                                                                        ~
      .                                                                                         \

t.s, :....,.

                          .. .. .. : . M.. s:

g<:. 5 i I

                                                                                           . e!          .

e

-). $
 %w%%(                                       f     "       ,.:        .      ;
8. ... .\. # 1, R f. 5M h $* [
                                ,.,={w:;; M [g Lk        -                                                     E                   **g 7
                                                        . g.>;. ...   ,
                                                                          .  ~f ;. Q g                                 b
                                                                                        ,s.

4

                                                                                                    ,                                       %g
^ k ;;: ~ :: M:.%g !

-,'..[ ,

                       ~                       .

4, _ g

                                   ~ !*                                                                                                h l' ' " d'se.N., - % 5 D                                                               3
   - :;.
                    ~'
                                 '                    i         .

s 3  ; t I

                                                                                                                                            ;

h -{ :[{ ..'. .' )' 7 1 1

                                                                                ' . N.w
                                                                                      -                                    e j'

i[ [[ [!

                                                                             .r
                                                                                                                    'D _ t d'
                                                                                                                                                               ,        c           :.
                                                  /
                                                                                           !Q                s         ]      Drg,--PjdDA 1

I! 3 s i [ \\ ' %) c ( a k' s, k 7,

                                                                        <             .;                         '  M k!%kk[     ;

d' t ( Y>

                                                                                        %g Q                                                  ,

g fl

                                                                  ~
                                                                    ~'
                                                                   ~%                                      l
                                                                                                                        -%:.:QM[l                                          JI             :-
                                                                                                                                  ~%.
    !\Eh                                                 '1(                   '           @k'                         k           p;.                                                   .,
                                                                                                                                                 & YWf!i!$.!jl[~

i, a s A- is

                                 ;s                     4, . L                                        44x                  .-

s i e ni . +, s. - , , i  : \s , j g ;o s. - s s a'. y I; 't - ,, , ,,. . 'i. i ) '\ xi . ; 3. S,

                              ;

c . . .

                                                                                                                        ;          s                   .s.
.;;;
                                                                                   .l x. . . . . . ,.i ;                                             x n v, l                   3,,, i
                                                                                                                                                                               ..y
                                                                                                                                                                                . .                i
                                                   ., i                                           .. .              ..

a:n

                                                    )y                                                     .T

(

                                                                                                                                                  ,. _ s s                      .-(

s l QJ 0002 240 - l l l

                                                               ,                                                             .        e                     i
                                                               =                               E e ,i E
                                                                                               '                       N"             6.

E $$ 6

                                                               .                                                                      =

i s E: E E O$r<

                                                                                                                        .z            e 5g                                    a                       ot             e n                                                             != i                                          a Es             s                              W Eii
                                                      -==                                                              is             E E E
                                                                                               ..                      ee5            a
                                                                                                                                      ~

m 5

                                 .                  r.i. !i  .

t i

                        ,i i

sy, y

                                                           ,t.                  ,
                                                                                                   ;
                                                                                                                                  %~

~- s, i i

                                          ;
                                                /         , y:
                                                                                                                            ~:                            1 x
               .m              .,.-                       6 ..                                                           t,
t. . ,. , , - -  ;:.: ,
  • 7
                          , 1. *i                                 <g
i. g  !. ,#a l s*4, .
                                                                                                                                                     /
                                                                                                          / [.-

i l5 j i 8 I e f

                     ,. ,e i
                                                                              . w/a   w                            .
                                                                ..             s.                                     o i                                     g               s I

g j=!.T I N ,._._3D ._.___. i - !- --, s i i i

                                                                                   .s i         sxG N                                           i l

l i i /'\i i' '

                                                                                /[

i .

                                                                                                 "I (b(b
                                                                                                                    ,ep               ,A m               ,

a W f g y! \,.

  • k '
                     .                           ,                       s          :

i. i ( '

                                        ~   '

l . l ,

                                                                       !'            ;
                                                                                                      !/     O l(;r                       :
                                                             ='                       i                      :a           -
                                                                                                                                         . s
                                                                                                                                               ;

l E . I f l. e l . g .- x  ; -

                                                                                                              =
                                                                                                              -           i
                                                                                                                                     ./. ,'    -

l _j / . [ ,; 1 i .. t,.s. .t._ - - i z , I j E i I

                                                                                            ."'.R 8                               7                                      '
                                                                                            + j*                            /

El i  ! l l l 1,/ l1. a

                                                                                                                   /

I s i 't-: 5/ /

            !                                                                                                                                  ;' t.

I; a  !

                                                                                                                                                         ;

c, . sc..

                                                                                    ,         a
                                                                                                                    ~. ,.                     .

1 5 *

                                                                                                                                   %                                     i 3,
           ;                                                                        ,

s.g [. -

i. 1 ie: .,

x i s . r . O '<i l  ; i i ' j N'N l 0002 241

MODIFIED-MERCALLI INTENSITY SCALE, RoSSI-

 /

O roREt INTENSIrY SCatE AND aEtaTION Or ExaTaoUnxE INTENSITY WITH GROUND ACCELERATION *

                                                   ., A60DtFIED=40DFCALU IntTENstTY JCALE234 isotD Afle AEumeAff l

g

  • Z *8 4

COLJ CcL. 2 Cet J

                                                      ! Detected on6e by eenantire enafrussents.

Qsec 0 g i The diocn Ne eut by er g Fen by a few persons et gerenced 06tener wederWY reet, especially es oper -2 W$ floorst deHCote sunOennd eksects neoy swung. - R Fee by a tow poogne or roen 3 secoreled by sonorot seis. E fem nortceeDry indoors. but 6 not ohneyerecognised on 4 qtasieg stending outos rock snghety, *$ R fee & severet peoon at ,,greggae gg, paeog,, prygg, 4 reeft Wrong esmaen har the 7 daretion or directasa to be X Fe# 8u8sers er meir, eussacre .e -

                '80r*Ci***                               br e neers atnight eenae emeneng  ,9O 1xp' N As# sy severet peope in                    etunes, =meown, abe's asuma6ed, neefdom W       ten e/                   noser cars roc
  • noWeesody, u.r r rea av ,,,oet o ,s, ,s e 7 fee poverorty er everyone areemove ofdisnes, %e., .po -

detureences of turnwiere, adesesy dfstur6ence of Jtif suspiseg e/ some be#4 eejects. , U # #"*"I . gn -

                                                         "'d ounmog wing O        E essees,r**ome Generet ewesenenkat or       sevnging taese enendellera, stortted geogre rwe aufdoors, Piaster and churineys, denope "SQ m snied.                            *M E C'erf'irow or movesse ce          se    W 6eryeody runs aunsoorv             [           I
                       ,,gn gr,of tulht.ngs, g            earnoge to buildings Murled, de.

8""I'89 8' #d88F Of COnSfruC. 4 W /es av mennsys; crocas a mesa M 0F N#' #***8- i QY n'**80*00. EPenet wede thrtners out er hosnes# Astlo/ motAs,nianumurWs, 200 - cofnuieper send arid armdavecoq Z %dQ**""** aH ors or autos dist46ed. 2Sehengs splensd off foemde.

                                                                                           .g tions crocked threen out e/       "00         -

pesney greared crocaeiginder- 300

  • as,' Aassaws,
                ,s.aan,, : ma                         x m.t- e                 e.,,.e      .

88ruerires de8*WyW4 Ground " sy" o ahe( sees tesq'aemandges. "C00 2 Aaer smee We,uman me.eng, anidges deetraye4 #esuresin .scoO - grosmut pipesareassi, Amnesstsee;,ses 6ent - 20eseeve votes,=ses seen an grearest marrocsfinneof sdybt <do00 , i sed Jover deer =4 eWesse sooo k ffuwife e inteok -WOO "

  • Nuclear Reactors and Earthquakes TID 7024, United O States Atomic Energy Commission, Division of Tech-nical Information, August 1963, Figure 1.7, p .13'. 0002 242 l

Figure 4

f APPENDIX C The response of the reactor building dose was analyzed for a 200,000 lb aircraft as described hereafter and using the same analytical techniques as described in Appendix 3. The analysis was based on the following conditions:

1. 200,000 lb aircraft
2. 200 knots i=pset velocity
3. A load-time curve as shown on Appendix C, Figure 1
h. 19 ft diameter impact area The load-time curve for the 200,000 lb aircraft is derived frem the geometry, structural characteristics, and = ass distribution of the B-720 type aircraft.

The load transferred to the dome at time "t" is a function of the change of

       =omentum.

The reaction load can be derived as follows: Linear I= pulse = Linear Momentum and:-Rat =ytLV-a3-Rat = pL(aV)+ pX(V) O a = >'zavT + (at/ xt cv) at) In the limit: R = yLa + pV and 31L = M = = ass of uncrushed aircraft thus ytLa = Ma = P3 (the unbalanced force on the uncrushed portion of aircraft) 2 therefore: R=P3 + pV where: R = Total reaction load on rigid surface in pounds P3 = Load in pounds required to crush or defor fuselage longitudinally y = = ass of aircraft per unit length (slugs /ft) V = velocity in ft/see of uncrushed portion of aircraft at any time or distance during the impact Instrumented data frem a full-scale C-119 aircraft i= pact into a vertical vall indicated that the results given by the above momentum exchange principle for a 3-720 aircraft were of the right order of =agnitude; however, the actual reac load (P3) to the vall by the C-119C aircraft was not recorded. The rate of change of the aircraft velocity was determined, however, by high speed film analysis and compared with the rate of velocity change with the 3-720 airersft as shown in Appendix C, Figure 5. This ecmparison shows that both aircraft decelerate at approximately the same rate; however, the 3-720 requires more f m ) than twice as =uch crush distance because of its higher initial i= pact velocity l o' ,! , . e.

                                                      = -1                    0002 243 e s-

The reaction load as a function of ti=e is presented in Appendix C, Figure O 1 for the B-720. Tote that the peak reaction occurs as the ving and fuselage are crushed between the front and rear spars. This is caused by the fact that the "pV2 " is largest at this location (",p" is very high here as shown by the = ass distribution in Appendix C, Figure h). Also note that the fuselage deceleration is highest when the reaction load is rather lov. This phenc=ena is caused by the reduced = ass of the uncrushed portion of the aircraft being decelerated by the relatively constant buckling load (F3 ) acting on the uncrushed pcrtion. The buckling load (F3 ) of the fuselage is shown in Appendix C, Figure 6. The average dia=eter of the fuselage for the 3-720 aircraft is 13.3 ft. As can be seen frc= the load-time curve the peak load occurs after the vings have i=pacted against the dc=e. Considering that the vings constitute a large proportien of the total = ass , it is considered justifiable to consider a portion of the vings that is in contact with the do=e at the peak load cs additional i= pact area. Considering this additional area and the load distribution afforded by the concrete to the middle surface of the dc=e, the eff ective diameter of the i= pact area is 19 ft. The analysis indicates that a =aximu= cc=pressive stress of 6h00 psi and displacement of 1.h6 inches occurs at the center of the L= pact area. The displace =ent of the apex of the dc=e as a function of time is shevn in Appendix C, Figure 2. For cc=parison the displace =ent of points at a radius of 111.6 and 26h inches are also shown. Stresses due to the aircraft i=pinge-

   =ent and prestress at the apex and at a radius of 86 inches are shown in Appendix C, Figure 3.

The =aximu= co=bined cc=pressive stress is approxi=ately 8000 psi. This includes stresses due to aircraft related loads and the prestress loads. However, this stress occurs for a very short period of time and over a s=all portion of the impact area. It has long been recognized that the strain rate has a significant influence on the ultimate strength of concrete. In the range corresponding to the strain rate of the aircraft impact loading an increase as large as 60 percent has been noted in literature.1,2,3 It has also been recognized that biaxial stress conditions , as produced in the reactor building due to crestress, increases the ultimate strength of concrete frc= 25 to 50 percent.h,3,6 Considering that the mini =u= cylinder strength of the concrete for the reactor building is based upon a 28 day curing ti=e, an increase of 20 percent in strength can be justifiedi considering that the concrete vill have cured more than two years when the plant is in operation. The calculated =axi=u= co=pressive concrete stress of approximately 8000 psi is 33 percent greater than the anticipated concrete ec=pressive strength at the time of initial operation as =easured by standard uniarially leaded concrete cylinders. Considering the high strain rate and biazial stress condition the increased cc=pressive stress capability of the concrete above that =easured by cylinder strength can be expected to be significantly in excess of that required. O 00412 244 l t83 ~,, , 1C-2

The max'. rum concrete tensile stresses =ay be sufficient to develop flexural cracks in the concrete. However, in no case vill the stress of the steel liner exceed the yield point even should flexural cracks occur. The maximum average shear stress at a distance 12.5 ft from the apex (i.e. at a distance 3 0 ft outboard of the periphery of the loaded area) is approximately 500 psi. This shear stress is below that permitted by ACI 318-63, Chapter 26. Therefore the conclusion can be safely drawn that the dome vill not collapse due to the established loadin6 condition. O l t t i 1 O ,.. (. I i, 1 0002 245 l

vs--

IC-3 l

LIST OF LWINCES

1. C. E. Norris 'et al'. " Structural Design for Dyna =ic Loads,"

McGraw Hill, 1959

2. J. N. Cernica and M. J. Charignen: "Ulti= ate Static and I= pulse Loading of Reinforced Concrete Bea=s." ACI Journal, V 50, No. 9, 1963, pp. 1219-1228
3. Walter Cowell: " Dynamic Properties of Plain Portland Cement Concrete."

Naval Civil Engin. Lab., Port Huene=a, Calif. Report NCEL hh7, 1966.

h. H. Weigler and G. Becker: " Der Bauingenieur," Berlin, Vol. 36, No. 10, 1961, pp. 390-396.

5 J. Peter: "Zur Bevehrung von Scheiben und Schalen fiir Hauptspannungan Schiefwinklig zur Bevehrungstrichtung, Doctoral Thesis, Technische Hochschule Stuttgart, 1964

6. G. W. D. Vile: " Strength of Concrete Under Short-Time Static Biaxial Stress." Procedings of International Conference en Structural Cenerete, London, 1965.
7. Frit: Leonhardt: " Prestressed Concrete Design and Construction" g Wilhelm Ernst & Sohn, 196h, pp. 59 w ,'

0402 246 0 v . k , 4. J .$ 1C-4

is. op Q is - O j-g gg 4 n -- -- --

                                                                                                      ,g 0                           1                                 '

f , 3K% . a N . .

                                                                                                    .       .      .       .       . - M.      . - .

a o.7 o. 2. o.3 TIM E (5 1.0AD TIME CURVE FOR 720 AIRCRAFT AT 2 APPENDIX C O.1 o,1 0,3 Yoms ($EC.) i i e i i i e i i e i i e a a i e i 0 e N w z - o.s m Y NPs264* g - o4  % _ w 2 -06 W P a OssTANCE 54 DM A P C*' ba ett 6" 6 -o8 a. un reo."h O . TIME VARIATION OF SHELL VERTICAL DISPLAC APPENDIX C f 0.1 0.1 o.s row s css i I 6 e i I 6 4 l 1 i i 6 i 4 I i

                      ~                                                                   /j                    THC EN?tA E TEN 53L4 STM ESS ye%                            RESULTANT CAN 86 CARRltD
          %                                                                                         i sY TM f. LINEM WITNouT IX.

kO / CREDI TW4 ETA 1*sc Yigs. 2 BOTTOM SURF ^ct

                                                                            ", P ' 88 , , )_ _ ' s \ svns, Nils                 s R

s - a

                                                                                                                ~

f

                      ~

f' g..".'.'.--O~.~.~..~, %Qs ,,$ Y~ g, .

                                                                                                                                   - ~ mp 2

2 u 3 _

                                           ~

G E E

         -=

4 - k . e.- r e oes rA cs as. m aa n. 4 s _

         ;                                                                      > . o. -

ks TCP,$Ugggcz

                          $7RE33ESINDICATED ARE                                                                                            ,
   ,.f i.

e,48 '.~ me e n,ce mem,

                                                                                          \                                                    0002 247 i
                                                                                                                                                    ..r-        ;'

( 9

TIME VAR! ATIONS OF SHELL SURFACE 5' l APPENDIX C F

O l 6 i s I 4 ) 1 Q- - n ss oust ovc ro LOSS OF QUTCR PORTION l

                                                             ;         Or um 3                                                     '

I h i 1 2 f e i

       ,                                  ./                     t           s
                          ,                                            ~~    s
                  /                                                                  Nfm l

of 10 20 30 to So 60 10 80 90 too 11 0 11 0

                                                                                                        ,   \

13 0 DISTANCE ~ FEET u:

*o k L. @8 /j )

O 200 400 600 800 1000 (200 1400 16 6 as.

                      .                                                                                             h tier uiii'oistRisurios                                                                   0002 248 XC                 FIGURE 4

IMPACT YELOCITY ~ FEET PER SECOND O o b a 'e

                                                                 ~

a

                                                                               ~

a 8 O in Ik e > l"

                                                                     /      -

a

                                                                 . /
                                 , m==""

A Q >

     ;  ~

f 2 f i I /

       %          I                     d   /          #

u p -

                /
             /

o  : i REMOTE FUSELAGE ACCELERATION ~ G , 3  % 8  % $ C=h . l e

a ~

g r - g s O 3 i h 0002 249 t\ }

                       ;4 > -

VELOCITY AND DECELERATION FOR 720 Al AT 200 KNOTS IMPACT SPEED APPENDlX C F 1

I l O N . sX g g y g y I o g 0 5 0 4 0 3 0 2 j 0 1

                                               . _ ' .      .   .e O

c. i

                 '.- . ~. 0       5          0           5           0 2       1          1 0

i 4EQA  % QMo O%EM y )e

        '   3o C*"me    N.RxCzOn cEZO r?O                                  son MDL 9xO                         I
                                     *bE=*

T l :l l! ' . ',I

/ APPENDIX D FIRE DETECTICN AND SUFFRESSION FOLLOWING A HYp0THETICAL AIRCRAFT INCIDENT In order that the plant can be =aintained in a safe condition following a hypothetical aircraft incident, the criteria as described below has been established. Ventilation openings will be located to take advantage , wherever possible , of the natural shielding from aircraft strikes afforded by other plant structures. Ventilation inlet openings for critical areas except the reactor building vill be provided with passa6es, curbs, fire dampers, and sensing devices for auto-

   =atically closing dampers to isolate selected areas. Reactor building ventil-ation is normally closed and is isolated with valves.

Ventilation dampers may also be closed =anually by the plant personnel. The dampers and their controls will prevent ingress of smoke as well as prevent the rapid depletion of oxygen due to a fire located outside the structure. The ventilation systems planned for areas having normal operator attendance vill also be designed for complete recirculation. In addition, personnel vill be provided with, and instructed in, the use of self-contained breathing apparatus. All areas located above designated protected areas as shown on Figure B-1 of Section 3 vill be designed so that any liquids vill drain away from the area rather than either entering the protected area or being collteted p in confined areas. Piping, conduit, etc. passing through the confines of the designated protected areas vill be treated appropriately with seals, curbs, etc to prevent the passage of spilled fuel into the protected areas. The use of multiple air intakes for the control tower complex and auxiliary building in lieu of a single intake was investigated. It is our firm conviction that the use of a single intake with provisions for recirculation during the postulated airtake incident presents the safest arrangement. Supervisory personnel vill determine when it is safe to transfer from the recirculation = ode to the normal operating mode, following an incident. The transfer operation vill be initiated only after having surveyed the extent and nature of the effects of the incident upon plant equipment and/or structure To remove the threat of fire to personnel and equipment in vital structures during and following the hypothetical aircraft incident it is proposed to: Air Intake Tunnel: Bring air into the vital structures through a tunnel with a remote intake located approximately 125 feet from the plant. Air j velocities in the tunnel vill be approxi=ately 1000 feet per minute. l The arrange =ent of the tunnel is shown on Appendix D Figure 1. l The intake opening vill be constructed as shown in more detail in Appendix D Figure 2. O 0002 251 sto a ..*!.i f ;_1 l

The floor of the tunnel vill be sloped so that water frc= the spray systes O vill collect in a su=p beneath the intake. Protection of F.xhaust Cuenings: The exhaust opening from ventilation systems, such as the control tower ec= plex, vill be provided with a protective shield designed to vithstand the i= pact of the aircraft. The air velocities through these areas vill be approxi=ately 1500 feet per minute. The arrange =ent of the dampers and shield in this area is shown on Appendix D Figure 1. Vanor Detectors: In the event that liquid fuel and/or vapors are not ignited and do enter the intake they vill be detected by ccabustible vapor detectors capable of detecting approximately 20 percent of the lower explosive limit within 200 milliseconds. This equipment vould be similar to that supplied by Johnson-Williams Inc. which utilizes a Wheatstone bridge with one exposed platinum vire. This device is presently used in refineries, mines , and on boats. Hydrocarbon vapors originating from an aircraf accident but in concentrati below the lov explosion limit are easily detectable by smell. In this even many hours in excess of one watch period are available to take action befor breathing of fu=es has a toxic effect on the body. Fire Detectors: In the event that burning fuel enters the intake it will be detected by any or all of the following:

a. Ionization type detectors (capable of detecting products of '

combustion and/or smoke in =illiseconds - similar to vapor detector listed above).

b. Infra-red flame detectors and ultra-violet flame detectors (capable of detecting by direct sight any visible fisme with the speed of light).
c. Rate-of-rise heat detectors (capable of detecting sudden rate of te=perature increase - 15 per sinute) .

Reaction Time: Activation of any of the detectors (listed under " Vapor Detectors" and " Fire Detectors") vill cause the ventilating fans to stop, fire da=pers to close and deluge water spray systems to operate. The length of the tunnel is such that a mini =us ti=e of approximately 7 seconds is available for detection of fuel or fire ingress and actuation of fire dampers. This is several times longer than actual requirements. The actuation of the deluge systes will also be arranged to be in service in the time available. Final locatiens of detectors vill be studied to assure that; stratification of vapors, gases or flames vill not constitute a safety hazard. Pining: Piping passing through the top protected level of the auxiliary building vill be protected with a curb approximately 6 in. high. Any

   , ,, piping which is not nor= ally valved off (filled with water), such as i t gravpy drains to a collection area, vill be equipped with a loop                   l seal approximately six feet deep to prevent the passage of aircraft fuel          I in the event of a ruptured line between the area of shut-off valves and l

l 1 D-2 0002 252 1

O the top level of the protected areas. The depth of concrete afforded by the top level of protected areas is of sufficient depth to prevent the i complete removal of the pipe frem the concrete with the impact of the hypothetical loadings. The piping presently contemplated as passing through the top level of protection in the auxiliary building is in the si:e range of 3/h in. to 2 in. Piping passing throu6h the top protected level of the emergency feed pump area vill be protected with a curb approximately 6 in. high. The depth of concrete afforded by the top level of protected areas is of sufficient depth to prevent the complete removal of the pipe from the concrete with the impact of the hypothetical loadings. In i the event of aircraft fuel entering vent pipes from the main steam safety valves, it is considered that the integrity of the line between the safety valve and the top level of the protected area vill remain intact. Any combustion vill take place at the top of the vent pipe. Additional discussion of fire detection and protection as well as a discussien of appropriate examples of existing installations is covered by Combuscion and Explosives Research Inc. data included as Attachment 1 to this Appendix. The recommendations outlined by Attachment 1 vill be Lsplemented in the design of the plant. O O

                                                                 ^

o-2 0002 253

I I e! $5 fh E' j: Il% r, t g *

  • g -
             .                                                              re     1 I

g .y Is s: 6 I df O 1 p)-  ! 5 2 te s - I[ ty . et

                                                     's
                                                                        /4%

v g. g e jl i

   /                                                 g                                      .. ,

5' ' 4

                 'fQ   ~,gg
                                                                                          ~l.ky ' ,
                                                                                                                                                ~

g ,c{ \ *

                                                                                   \                             '
                                                                                                                                                ~
                         , gg                                        r            m                                   f a                                \                                    .            t.

I }

                                        ,        w                         \

t U- , h.: .i \ ..c . --- .. -

                 >                       ,1
                                                                                        //                   - U-
                            ' %                           _ kt                                 %,       \-              's                           6 i                                          [ ~ \, ghg s1 lI                                                             ,

i

n. .  ;:
                                                                                                                                                     -1 s
                                                                                                               .                                     p x
                                      'o                                                    ,r s         %.                   ..             lp p

ql j,

                                                                                       '                                                 c.
g ,i /,'d....:gh_ pig p;
       ~

(_ i . u 37 m .

i. #
                                                                                          ;                                        qb 7 '                        (/

A \ S// ,5* h Wg\/ s / ,

                                         /                \ .% g                 .                                                                      '

s- . , , , 3', / Sg [ - N ,,$ '>

                                '$,_ 3 k Udjf [                                                                                               ( M                           G pe
                                                     /                                :4
                                                                                      ;                                                      .!
                                                     ~

ja / f'i

                                                                                                                                    'S e

0002 254 l

                                                                                                                                                                                            ;:

i  ! [ 55

                       .-     in                                                                                                                                                            az
                                                                                                                                       '.-l f

f.ii*li l(fat

     'r f.ilt t

I e"

                              $l.},,,

i

                                                                                                                              \-

l'

                                                                                                                                                                                            !e
                                                                                                                                                                                             ;;

f,5 i

                                                                                                                           / (~                   '\
  ,                                            l                                                                                                                                             E 5
  • t f a g
f. \, '
                                                                                                               /

O qj -

                                                                        !                lk3x.' f'.                                       .';              '\,        l yj.

n  : -

                                                                                                                                                                                             ;,
                 -         4
                                                      - .-              :           ;                                                    ,                                    ,
                                                                                    *            '                                           ~

k / s, > t s

r. c. ._~
                                                                                                                                                                            \             #
                                           ~~             -                                            WR.                               ,x       --.         \                           u L(

c , s / \ y a l ' - 3. .

                                                                                                                                                                                        .2
                                           ;
                                                                        ;              1 t,            88;        '--                                                                                    )E
            ,                                                                                                                   ,Q                                                      g he E

a .-. .

                   ~                       - - - - ~

g g 8]l, .<% :m: N r f1 o' tale t

:!; ,. - 4, 4=-- . s si u , .u o - .s ,
                                                                                                                                         "/ j                                E
                                       ,$f, u.pI.E'bl}                                      d,ll! "
                                                                    '                                                                                                                     E
               !.!r',.,

2,. ik m n i

                                       ; { , jr jJ P-                                                              2-r                         -

( g y; r.f h - ~cii ev--- be :T.P 4.E A,' I) Cy; , r 1 s R . l"i.{- jf j,

           !d        y                                                       y g.

y<p;; i , g, e ,t.- o 6

         !}sdg>                               b I            If                                                   el I .
                                                                                                                                                                ~

h2

                                                                                          !            1,8                            p;,;7%s /                                      w s f, L,/**

g

                          !u                                                              l            Wy                                                              G
                                                                                                                                                                                   .\ pI      q, mu j+                    t                                                         n.
                                                                                      /A
                                                                                              -              _ m,
                                                                                                                                            +,d, 6

N

                                                                                                                                                                                     . 3, a

d  ;\ " ,4Jf' f s "a 3 ,illi, \s la n , 1.h,i

                                                                                      \

s1s N# ! r d - 4 ql, D  ; 's If q!'; e t h !,! n

                             !l

{lgj - yl!. i ; I i E e F

                                                                                        .\'
                                                                                        }t'k m NYN#            ~
                                                                                                                                                                                  ) SEn b.

s l fyo 7 \ 1: w .d, = (" fg. J I,Isit [ l k, ~ .V ' --

     ,1 -

i-U,r

                                           -2/ ' '

N~'

h ; lgl k,w {\ k,
                                                      <                                                                                       }

5 u, 1 e 4

                                                                                                                                                       .                    0002 255            9' A

! Supplement No. 5 j Docket No. 50-289 i March 26, 1968 f i i i. ) I i , } 4 i 4 . !  ? i

! APPENDIX D ATTAC190 CIT ? I f i. j Letter From i e i Bela Karlovitz, i Combustion And Explosives Research, Inc. , ( t !O l 3 5 k 1 i i i 4 d i ij o s l

i i l

l 1 I i ( O ' I , 0002 256 i l i

   . _ . . . , . - _ _ _ . , _ _ . . _ . _ _ _ _ , . . , _ . ,                                    _                        _ . _ _ . _ . , _ . . _ , _ . _ _ . - . . . - , _ . _ _ . . _ _ . ~ . . . _ _ . _ . . _ . . . . _ . . _ _ _ _ _ . . _ _ . .

O COMBUSTION AND EXPLOSIVES RESEARCH, INC. OLIVER B UILDINo

  • PITTs B U Ro H 22, PE N N sYLVA N I A tRD LEWIS Telephen. 391 363 KARLov!TZ c ble Addeess CC T R.BRINKLEY. fr.

narch 22, 19' Mr. Carroll H. Bitting Gilbert Associates, Inc. 525 Iancaster Avenue Reading, Pennsylvania 19603

Dear Mr. Bitting:

At the meetings on March 19 and 20, 1968 at which explosion hazards of the 3-m11e Island Nuclear Station were discussed, you requested that we send you a letter report centsining an analysis and our recommendations for the protection of the air intake duct serving the control building. The Yentilation air is carried to the control building by an under-ground concrete tunnel 18' vide x 10' high and 100' long frem an air intake tower which extends vertically about 15' above ground. Air enters the tower en a side vall through a louvered section at a rate of 172,000 CFM. Air is drawn through the tunnel by bicuers located at the control building. The building can be isolated frem the duct by a remotely operated d-sper. In case of an airplane crash a fuel spray of either gasoline or jet fuel may be generated, part of which may enter the sir tunnel through the intake tower. In case of s'tch a crash the air intake system vill be disen-g3ged and ventilation of the control building vill be switched to recircula-tien. Nevertheless, an explosion in the intake tunnel =ust be avoided becausa the fire da=per may be damaged and a pressure wave, even of =cdest a=plitude, could affect operations at a critical ti=e. In a duct of these di=ensicns filled with an explosive mixture and ignited at the intake end, a flame would propagate initially at a low speed, a few feet per second, and then accelerate to very high prepagation rates approaching sound velocity. The acceleration is caused by turbulence gen-ersted by the flame itself. The slev initial prcpagation rate allevs a time interval during which protective measures can be initiated. A si=ple protective system that is applied frequently in practice and has been found completely reliable is the introduction of water sprays into such ducts. As a practical rule one pound of water introduced as a fine spray per pound of air vill render any fuel-air mixture ncnflammable. This syste= is used extensively for the protection of jet engine test t facilities, cell and exhaust duct, whsre a flameout vculd instantaneously fill *he duct with an explcsive mixture. 0002 257

O

                                         -    2    -

In the present case, the air velocity in the duct is 16'/sec. Consequently, it would require about 1 second to fill the vercical section of the tcuer at the intake with a mixture containing fuel. If water sprays are introduced into the duct within 1 second of a crash the duct vi?' be fully protected against an explosion. Deperience has shown that the water sprays are also effective in washing devn the fuel frem the air stream. The short vertical section of the intake presents a special prob-les since the fuel spray originating from a crash may produc 4 a flammable mixture in this section a.1=ost instantaneously. In a large system such as this the flame vould require several hundred milliseconds to develop frem, ignition to a rapidly accelerating growth. Since it is impractical to bring water sprays into full operation in such short time ve prepcse that the first 20 to 25 feet of the vertical entrance duct be provided with a fast acting flame extinguisher like the Fenval system. This system senses a flame and actuates within a few milliseconds c. small explosive charge which disperses Freon 13B1 as a vapor into the protected volume in approximately 100 to 200 milliseconds. Freon 1331 is a very effective extinguishing a6ent for hydrocarbon flames. Its action is essentially to terminate chain reac-tions that are responsible for flame continuation. Ccnsequently, it is much more effective than a simple diluent like water or carbon dicxide and it is required in much smaller quantity. To protect approximately 4,000 CF of intake volu=e, four standard 30-11ter units are required. Freon 13B1 is non-toxic and in any case little, if any, of it would enter the control build-h ing. We understand that a variety of quick-acting detecters will be employed to sense the presence of flame in the duct. These detectors sre expected to respond within 200 milliseconds. It vould be advisable to e= ploy detectors outside which would mechanically respond to a crash frem which fuel spray could be projected into the intake louvers. Please let us kncv if there are any further questions. Sincerely yours, CCtGUSTION AND E'GI4SIVES RESEARCH, INC. t 0 W B41a Karlevit:

                                              )
                                                                        /

i

                                              /

D. <. s. -, . , {.7--

                                                                       , '-% ~

Bernard lavis C.C. - Mr. Jchn J. Head 0002 258

         ',it  .
 \/

Dockst No. 50-Supplement No. March 28, 1968 APPENDIX E PROBABILITY OF AIRPLANE STRIKES E-1

SUMMARY

This appendix supplements Section A of Amendment 8. Sections E-2 and E-3 below deal with the following topics:

        ,Spe; ion           Title E-2              Aircraft Characteristics E-3              Probability of Strike by Large Aircraft -- Discussion of Assumptions              I (a)     Selection of Aircraft Accident Statistics                                ,

(b) Assumed Flight Path Angle Before Impact (c) Assumed Speed of Impact (d) Traffic Density Sections E-4, 5 & 6 deal with aircraft strike probabilities which are summarized in items 2, 3 and 4 of Table E-1A. Item 1 of this table, giving probabilities for a large aircraft strike, is from Section A, Amendment 8. The probabilities shown in the table are related to traf fic movements (at Olmsted and Harrisburg/ York State Airports) which are about four times the I current rate for air carriers and five times the current rate for O E-1-1 0002 259 so.

l O l light aircraft. Such movement rates are not expected until after 1980, as discussed in Section E-3. l l 1

                                                                       \

O O E-1-2 , ! 0002 260 l i

(} TABLE E-1A APPRJXIMATE PROBABILITIES FOR AIRCRAFT CRASH EFFECTS . ON THE THREE MILE ISLAND PLANT Approximate Approximate Mean Strike Recurrence Probability /Yr.(1) Inte rval/ Yrs .

1. Large Aircraf t on Plant 1 x 10-6 y x yg 6 (see Section A, Supple-ment 5, p. A-5)
2. Large Aircraft (s200,000 lb) at High Angle ( 60 ) on surfagg)ofCriticalStruc-tures 5 x 10-9 2 x 10 8

(see Section E-4)

3. 5 x 10-5 4 Small Aircraft on Plant 2 x 10 (see Section E-5)
4. Fire from an Aircraft Strike on the Plant G (see Section E-6)
           ~#

Small fires 4 (<400 gal. of fuel) 1.4 x 10-5 7 x 10 Medium fires (400-3,000 gal. of fuel) 7 x 10 7 1. 4 x 10 6 Large fires (23,000 gal, of fuel) 3 x 10-7 3 x 10 6 Fuel or fire af fecting critical openings gynt11ation 8 x 10-8 1.2 x 10 7 (1) In making these approximations of strike probability, the effect of overflights has been ignored. In a region of medium air traffic overfli ht density this probability may be in the range of 10 g/yr. for light aircraft and 10-8/ () for large aircraft if the same type of assumptions are employed as in devising the probabilities in this table. (Cont'd 0002 261

O TABLE E-1A (Cont'd.) i (2) Critical structures are those protected against strikes of large aircraft and against crash fires. They are discussed in Section B of Amendment 8 and in the other appendices of this report. i (3) Critical ventilation openings are protected against the ef f ec-of fuel or fire. The probability represents the chance that fuel or fire will occur in the immediate vicinity of the  ! openings. I O O E-1 -4 0002 262

O

.,      E-2  AIRCRAFF CHARACTERISTICS Tables E-2A and E-2B give pertinent characteristics of typical           j air carrier and general aviation aircraft which are discussed in the following sections of Appendix E.

i O i 't i e k O E-2-1 0002 263

S . R o O E G N E N x

                    .               0 5

0 9 8 4 2 0 3 1 9 8 6 1 5 8

                                                                                             -            0 0
                                                                                                                      - 0 S        a                                2            1    1     1   1                          5     9        8 S       M                                                                                        2     4        2 A

P t l ws 5 l p 0 0 5 0 0 - - 0 0 a .a 0 0 1 0 1 - - 0 0 5 t xl 1 1 1 1 1 1 1 1 Saf D M ( E E e P s S i u - 1 4 0 0 2 7 7 8 6 0 5 7 0 r - 6 2 0 0 9 5 2 6 7 0 1 7 0

 '               C                       5   3     6            6    5     5   6    3      4              6 6      5 8
 '                                                                                                                       1 L       s l       E       n
 'r      U       o                  0    6   3     5            0 0        0   4     0      0                  0   0 A

t F l 0 8 6 5 7 8 8 3 8 0 2 0 i C t l a 8 2 7 2 0 2 8 6 4 6 7 8, 3, 6, 2 9 3, 0, _ l G - 3 4 7 9 0 9 l ' 2 1 1 5 4 A _ t t _ E l t S r _ t i E e _ l N b A I a t 2 2 2 4 2 3 4 4 4 4 1 4 4 4 C G u N N . R E S I A .

               )                                         U l

hl " " " " n OIA C P Y S nr tl N e. e Of v ga 6" 1 8 5 1 3 9 2" 7' 7 1 1 i 2 n 6 o 0' 0 5 2" 3 9 6 1 5' 7 9 1 0 6 8" 9 4 1 1 1 5' 6 4 0 T 3 4 9 1 7 3 I O 1 1 i 1 1 1 1 1 1 2 2 3 S ( t F O N~ a " " E~ " " r 0 0" " " " ) M 4 5" 2" 9 ep 1 1 7 8 4 8" 8 S I'g n ' ' ' * ' C Dii a 5' 3 5' 5' o 3 8 0' 0' 2 9 . 5' 5' 2 0 I f p 0 9 9 4 9 0 3 3 3 9 S 5 2 8 T VS 1 1 n 9 2 1 1 1 1 1 1 1 b i . i U t l ~m g 0 0 0 0 t 0 0 0 0 0 0 0 0 - E in 0 0 0 0 u 0 0 0 0 0 0 n 0 5 r Tu i . 0, 4, 0, 0, b 0, 0, 0, 0, 0, 3, 8,

 'L         Udb                                                                                    i 7

0, 3t TxnI 2 3 0 7 d 7 8 5 0 0 1 n 4 5 i aa 5 9 4 4 e 9 4 7 9 3 9 o 6 3 T 1 1 ML 2 t 1 1 1 1 i 5 6 t i s t C G m a l r I t O e mf d 0 0 0 0 0 0 U 0 0 0 0 p 0 0 0 e 0 0 0 Euo.t

      #iebs m-                4, 4

1

                                      ,  0, 0

0, 0 t 0, a 0 0 0, 0, 0 0, 0 0, 0 0, 0 0, o r 0 5, 0 0, 5, xkI m 5 8 8 2 1 d 7 9 4 7 5 8 o 6 0 4 aa 3 5 3 e 6 MT l_ O 1 9 4 3 s 0 1 6 1 3 2 5 2 5 1 2 1 f 8 3 8 6 7 u d L_ - 2 e

a. Ct ' '
                                                                                               ) n 1
                                                        -o                    0                 nn                )     )

1 e N 0 0 0 oa C T s 1 1 0 2 0 0 2 i l - S 0 1 u 8 0 - 2 2 0 1 E rp 7 S 1 5 3 J aO 0 ( n _. s r s 1 7 1 . 7 r 7 7 0 7 0 t5r 0 7 ( 0 E i_ 2 v 9 7 0 e 3 2 2 0 3 c8e 1 4 7 P w_ 1 n - 2 h 7 7 7 7 1 e1h - 7 A 2 Y o O o_ C

                                 -            -  -       t       -    -     -   -         l (t                    S k                                           -                         -          -

T N __ C C I F U O B B B B C E O D B C H naY o t A OOOv NCbt

O O O TABLE E-2B TYPICAL GENEllAL AVI ATION AIItCilAPT CilAItACTEllISTICS (Includes Largest & Smallest of Each Type) Type Piper Beechcraft Cessna Model Cherokee Navajo Bonanza 99 150 421 (PA 28-180) (V-35) __ Weight, lbs. 2400 6200 3400 10,200 1600 6800 Engines - number 1 2 1 2 1 2 Fuel - gallons (max. ) 50 190 80 374 38 202

          - type                 gas         jet            gas          jet            gas                   jet

{ b Speed - cruise 152 224 210 250 123 238 Flaps down stall speed 57 77 63 - 48 87 (1) From Jane 's , All the World's Aircraft, 1967-1968. C O , O N N LD

O E-3 PROBABILITY OF STRIKE BY LARGE AIRCRAFT - DISCUSSION OF ASSUMPTIONS The following discussion explains some of the important assumptic which underly the estimates of the probability of a large airplan strike on Three Mile Island. The derivation of these assumptions is given in Supplement 5 (Amendment 8), Section A. Selection of Aircraft Accident Statistics As indicated in Section A of Supplement 5, air carrier accidents which involved one or more fatalities for the ten year period 1956-65 were chosen as the basis for estimating the probability of the types of crashes which could have the most serious effect on the plant. They represent the most serious accidents because large aircraft are used and because the occurrence of fatalities is usually due to high deceleration rates and/or large fires soor l l alter impact. These accident data represent large aircraft in l general (both statistically and physically) because the air carriors comprise more than 90% of large aircraft movements at Olmsted and because the accident statistics for other large air-craf t are not dissimilar. Nonf atal accidents were not included because examination of the records indicates that those occurring away from the airport usua 1 E-3-1 0002 256 l l l

l O have some direction and attitude control before impact and are o the type in which there is a good chance large structures could have been avoided. Fatal landing accidents inside the area 1 1/2 mile from the runw centerline extended were excluded (Fig. A-2). Of the 15 acciden' in this area, all but perhaps two had enough directional control to stay on or close to course. One of these might have been appropriate for inclusion in the statistical base. However, one which was included might have been lef t cut. It hit a hill in controlled level flight at about 620' above the field elevation. Thus, the selection of two accidents as a data base was believed to be justified. Fatal takeoff accidents within a radius of one mile were excludet Of the five in this category, three were caused by immediate and severe loss of pcwer or near ground turbulence so that they are not of the type which would affect a target 2-1/2 miles from the runway. Two others were caused by control system malfunction anc might have been included. But two were included which might have been excluded (one hit a hill in controlled level flight at about 850' above the field and another probably had enough directional

                                                                            ~

control to avoid a large structure). E-3-2 0(102 267

O Fatal accidents outsido a five mile radius were excluded on the grounds that accidents further out were of a type which would nc affect the plant. If they had been considered out to six or ter miles, estimated strike probabilities would have been lower. f Random geographic distribution within a four mile radius was 1 assumed for the fatal accidents selected as a data base. Four  ; miles was assumed because all the selected accidents occurred within or almost w'ithin this radius. Random distribution was assumed because the actual distribution with respect to a runway in use appeared to be random for the selected landing accidents (Fig. A-2). Distribution of selected takeof f accidents may show some statistical bias for a higher frequency within i 30 of the O runway centerline. But the plant is outside this area and the assumption of random distribution seemed a reasonable approximat The geographic pattern of fatal accidents taken from the entire U.S. was superimposed on the Olmsted Airport (Fig. A-2). Examin tion of the seven individual accidents selected as a statistical base indicates this procedure is reasonable and may be conservat Two of the seven accidents involved crashes on hills in controll level flight at elevations which would be 250 to 480 feet above the tallest plant structure and would not have hit the plant. Three others were out of control over relatively flat terrain an probably would have had similar impact positions had they happen

(2)

E-3-3 0002 268

O at Olmsted. The two others were under enough directional contro so that, had they operated at Olmsted, they prob.bly could have avoided the plant. Further, local terrain and flight patterns a Olmsted (including IFR missed approach procedures) are such that aircraft would tend to stay north of the airport away f rom the plant. The one exception is for an aircraft taking off to the east which, loses power in its right engines (and yaws to the rig. for this reason) or which has minimum power and turns down the river to ditch on low ground or in the river. In the first case there is a good chance there would be enough control to avoid the plant even if a crash ensued. In the second case, if the aircra: had enough power to turn and reach the vicinity of the plant, it would have had enough to clear the low hills straight ahead and land on a level area. But if the decision to turn was made, anc there was enough power to control and execute it, there is a gooc chance the aircraf t would have enough control to avoid the plant. The estimates of strike probability are based on statistics for the probability of a fatal accident per landing or takeoff for ti ten year period 1956 thru 1965, inclusive. Accident statistics for the future will probably be different. However, fatal acci-dent probability per landing and takeoff is expected to decrease in the future because of expected improvements in aircraft and I I engine reliability, new aircraft testing, navigation equipment ar I methods, pilot training and fire control after impact. Examinati O E-3-4 0002 269 l

O of past records indicates this would be consistent with the trer in the past ten years. Further, Olmsted has a long runway (800( which should contribute to the safety of landing and takeof f operations (it is about 1500' longer than the main runway at Washington National Airport and has a 1000' overrun on each end' For the reason discussed above, it is probable that the fatal accident probability chosen for the statistical analysis is reasonable and may be' conservative. Assumed Flight Path Angle Before Impact Assumptions were made concerning vertical flight path angle just O prior to i=v ct i= oreer to aerive " virtu 1 91==* t r e* re=" as discussed in item 1, page A-4, Supplement 5 (Amendment 8). T angles assumed were, respectively, 10 from the horizontal for arriving accidents and 45 U for departing accidents. i Of the two arriving accidents which were assumed to be statistic significant (the two dots on Fig. A-2, Supplement 5, further tha z 1/2 mile from the runway centerline extended),the one nearest the relative plant location hit a hill about 620 above field i elevation in controlled level flight, and thus was not taken as being 2 typical indication of vertical flight path angle for a crash on the plant. The other impacted at 10 Vertical path angles were investigated for all E-3-5 0002 270

O of the other arrival accidents, shown 6n Fig. A-2,which appeared be out of control and of the type which could have struck a tar 2-1/2 miles away if the malfunction involved had happened earli Only two other' accidents of this type were identified. One is the two mile radius of Fig. A-2 about 1/2 mile to the left of t runway centerline extended. Its vertical path angle was about The other was just right of the runway and about 1-1/2 miles ou-It struck at a shallow angle (<5 ) and may have been due to sud. disability of the pilot. If the aircraft had been further out . higher when this happened, it probably would have struck at ah angle if it remained out of control. Since the two arriving accidents typical of those types which ci strike the plant had vertical path angles of 10 and 8 , respec-tively, the choice of an average of 10 in computing target are for arrival accidents is believed to be reasonable. Of the five departing accidents which were assumed to be statis. tically significant (those outside a one mile radius on Fig. A-: the one at four mile radius hit a hill at about 850 feet above - airport and is not useful as a check of vertical path angle. O: the three where the aircraft were out of control- .us had a ver-path angle of 78 , one of 71 , and the other is unknown. The f: one had an angle of 7 . Thus, the selection of 45 angle for cc puting vertical target area is believed to be reasonablo. ( l E-3-6  ; 0002 271 i i l m ,..- -

O Assumed Speed of Impact In estimating the effect of impact on the plant, it has been assumed that the impact speed is up to 200 knots. Of the seve crashes used in Section A (Fig. A-2) to estimate crash probabi ties, two hit hills in controlled level flight at about 620 an 850 feet above field elevation, as indicated above. The speed impact is not known, but it may have exceeded 200 knots. Thes two accidents are of the type which would not have affected th plant. In the other five selected accidents, the following ai ' craft types, impact speeds (as well as weights and impact angl I were involved:  ; Lockheed L-1049; 82,000 lb; 10 ; 95 knots (Byrd Field, Va., 11 l () DC-7-C  ; 115,000 lb; 7 ; 178 knots (Miami, Fla., 3/25/5 i DC-3  ; 24,000 lb;  ?; 91 knots (Santa Maria, Calif. 10/26 Electra  ; 98,000 lb; 71 ; 110 knots (Boston, Mass., 10/4 B-707 123B  ; 247,000 lb; 78 ; 200 knots (JFK, 3/1/62) For all other crashes on Fig. A-2 (Supplement 5) impact speeds where known are less than 200 knots. The B-707 crash was probably due to rudder malfunction just af-takeoff at full power. The aircraft fell from about 1600 feet 1 impacted almost vertically about 2-1/2 miles from the end of t! 1 [ runway at a bearing of about 130 left of the runway centerlini i O E-3-7 0002 272 l l

O Of those crashes which might affect the plant (i.e., which are , within two to three miles of the end of a runway), it represent s the type of crash by a large jet which would have the highest impact speed. A small fraction ( 3%) of current air carrier operations a't Olms include B-707-331B aircraf t which when fully loaded can be somew heavier than the fully loaded B-707-123B involved in the crash described above. In the future, a similar small fraction of larger aircraft such as the DC-10 or B-747 might operate at Olms (see Table E-2A). Although these aircraf t are larger, their ope ating speeds in the region of interest (during final approach, landing, takeoff, and initial climb) are similar to present larg jets like the B-707 Their rates of climb, descent and weight t drag ratios at low speeds are also similar. Therefore, in the geographic region of interest (within two to three miles of the airport) the chances for an impact speed greater than that in th. Boeing 707-1238 crash (i.e., greater than 200 knots) is believed to be small. The information set forth above and the fact that the speed limi-in the geographical area of interest (i.e., that on Fig. A-2) is 180 knots indicates that the assumption of a 200 knot impact spei is reasonable. O E-3-8 0002 273

O Traffic Density In estimating the probability of an air carrier aircraft strike it was assumed that air carrier movements at Olmsted were four times the current annual rate (i.e., 80,000 movements per year a bout one every seven minutes). This is about one-third of the current rate at Washington National Airport. During the past ten years (1958 to 1967), total air carrier move ments in the U.S. increased by a factor of about 20%. If the national increase in the next ten years is like that in the pas-ten and Olmsted increases at twice that national rate, it would have about 28,000 movements per year by 1977, but would not reat 80,000 during the plant lifetime if movements continued to O increase by the same increment each year. However, the Olmsted Airport management is seeking a still faster rate of growth and may have a target for doubling the movements in five to ten yea 2 If this very fast increase were achieved and sustained, 80,000 movements per year could be realized by sometime between 1980 at 2000 Since the midpoint of assumed plant life will be about li the assumption of 80,000 air carrier movements a year on which t base statistical analysis is believed to be reasonable. l O E-3-S 0002 274

O E-4 PROBABILITY OF A STRIKE BY A VERY LARGE AIRCRAFT ( 200,000 LB.) AT A HIGH ANGLE (>60 ) ON A CRITICAL STRUCTURE The critical structures referred to in the title of this sectio are those which are protected from direct strikes of large air-craft as described in previous parts of this Amendment and in Part B of Amendment 8. Very large aircraft are taken as those having gross weights in excess of 200,000 lbs. during landing or takeoff operations at Olmsted. Maximum takeof f and landing weights f or typical aircr involved are shown in Table E-2A. It should be noted on Table ( that while the maximum takeof f weights of the B-720 and the B-707-120B are more than 200,000 lbs., the maximum allowable landing weight is less. A lso , if aircraft are departing for a nearby destination takeoff weights may be substantially less than the maximum because a full fuel load would not usually be carried. It is assumed that very large aircraf t comprise 3% of the total assumed air carrier movements at Olmsted or .03 x 80,000 = 2400 movements / year. O E-4-1 0002 275

O For purposes of approximation, a strike angle of 60 on critic building surfaces was chosen as a basis for investigation. Str angles less than this (associated with any given weight, speed deceleration pattern at impact) would impose loads less than those derived from assuming a 90 ir, pact such as has been done in checking structures for the effect of large aircra strikes. Flight path angle (relative to the horizontal) was assumed to b randomly distributed from 0 to 20 for landing accidents and 0 90 for takeoff accidents. The probability of a strike from selected directional quadrants was assumed to be 40% from a qua. rant from 300 thru north to 30 ; 40% from a quadrant from 30 120 ; 104 from 120 to 210 ; and 10% from 210 thru 300 . These percentages were selected by considering the plant locati with respect to the airport and surrounding terrain. The horiz angle of approach in any quadrant was assumed to be random. The strike probability for large aircraf t was taken to be 0.88 10-6/yr. as in Amendment 8, page A-5, which was based on an ass: virtual target area of 630,000 ft.2 for landing ar.d 185,000 ft. for takeoff accidents. About 60% of the strike probability was due to landing and 40"e due to takeof f accidents. O E-4-2 0002 276

. O Given the information and assumptions described above, the probaLility of an aircraf t larger than 200,000 lbs. striking the plant on a critical structure at an angle of greater than 60 relp.tive to the structure surface can be estimated as follows. For takeoff accidents, the probability of a very large airplane strike from a given quadrant is: P T

                  =
0. 88 x 10-6 x .03 x .4 x Q L' 1x 10-8 9 and for landing accidents it is:

Pg = 0.88 x 10-6 x .03 x .6xQ L 1. 6 x 10-0 where Q represents the fraction of total strikes arriving from a given directional quadrant. For takeoff and landing accidents, the probability of such a str hitting a critical building at >60 for landing accidents is: f*A P P = T D 1.85 x 10 Where f = the fraction of strikes which would impact at greater than 60 and A is the " virtual target area" of critical surfaces which could be hit at 60 Similarly, for landing accidents O E-4-3 0002 277 ~ l 1 i l

O the probability is: fAP g P = CL 0 6.3 x 10 Using this method, values of Pg and P CL were estimated for str: on critical vertical surf aces from each quadrant and on critica horizontal surf aces f rom all quadrants.

                                                                        /

The resu1t indicates that the sum of probabilities from all quadrants is about 5 x 10-9/yr. O E-4-4 0002 278

r() E-5 PROBABILITY OF SMALL AIRCRAFT STRIKE The amount of general aviation movements in the Harrisburg area has been estimated by reviewing a report (FAA Air Traffic Activi Fiscal Year 1967) and from information received directly from airport records. In 1967, there were a total of 70,600 landings plus takeoffs, or 35,300 landings and 33,300 takeoffs at Harris-burg area airports. Of these, about 90% is assumed to have occurred at Harrisburg/ York and 10% at Olmsted. Typical type of aircraft involved are Beechcraft, piper and Cessna. Charac-teristics of the largest and smallest of each aircraft of these l types are given in Table E-2-B.

                                                                                  ]

O Accident data for general aviation operations were obtained fror the National Transportation Safety Board and are given in Table E-5A. In 1965 and 1966, there were a total of 37,756,000 hours flown under the category of general aviation. In order to relate these data to numbers of landit.gs and takeof fs, it is necessary to make a judgment of the average flight duration. This is assumed to be one hour. Thus, the assumed total number of landings plus takeoffs is 75.5 x 10 6 for the years 1965 and 1966. Of the general aviation accidents, only the fatal accidents are considered because in nonfatal accidents the pilot is assumed O E-5-1 0002 279

O to have enough control to be able to avoid the plant. Some fatal accidents may also be of this type. The ranges of interest are two to three miles for Olmsted traf and seven to eight miles for Harrisburg/ York traffic. From a smooth curve fitted to the data in Table E-5A, the respective numbers of accidents are 55 and 20 over the two year period fo these two ranges. For Olmsted operations, the probability of there being a fatal crash within two to three milea is as follows for any landing takeoff operation: p " 55 ~ 0 6 0.73 x 10 / operation (75.5 x 10 ) The projected number of landing plus takeoff operations at ) Olmsted is 0.1 (70600) - 7060 per year. Thus, the probability of there being a fatal airplane crash within two to three mile

is

0.73 x 10-6 x 7060 - 0.52 x 10-2/ year The average virtual target area assumed for the plant for land and takeoff accidents is approximately .015 square miles. Thi is .95 x 10-3 times the area within two and three mile circles O E-5-2 0002 280

O Thus, assuming random geographical distribution of the crashes within the two to three mile radius, the probability that a fa crash resulting from Olmsted operations would strike the Three Mile Island plant in any one year is: P ~ * * * * * * *

  • I'*#

O Similar ly , the probability of a strike by a f atal crash result from Harrisburg/ York operations is developed as follows: P ~ = 0.26 x 10 / operation H/Y 6 (75. 5 x 10 ) The projected number of landings plus takeof fs at Harrisburg/ O vor* i= o 9 (7osoo) - e3.soo per re r- Tau =. the prod bititv there being a fatal crash between seven and eight .niles of the airport is: 0.26 x 10-6 x 63,500 = 1.65 x 10-2/ year l The area between seven and eight mile circles is 47.1 square miles so that the Three Mile Island plant occupies only 0.32 x 10~3 times this area. Thus, the probability that a fatal cra resulting f rom Harrisburg/ York operations would strike the Thr Mile Island plant in any one year is: P H/Y

                  =

1.65 x 10-2 x 0. 32 x 10-3 = 0.53 x 10-5/ year i O i E-5-3 0002 281

 <O The combi-ad probability of the Three Mile Island plant being
                                                                                    ;

hit by a f atal crash in any one year is then: l P = P

  • I
  • O lY'**

O H/Y The probabilities estimated above are based on the approximate number of general aviation operations in 1967. If general aviation operations in the Harrisburg area increase by a factc of 5 on the average for the period of interest and if the acci I dent rates remain the same as assumed, the probability would j

                                                                                    \

increase by a similar factor and would be about:

                ^

P s

                =    5   x   10-5 O

O 0002 282 E-5-4

l O TABLE E-5 A l GENERAL AVIATION TOTAL FATAL ACCIDENTS IN CONTINENTAL U.S. 1956-1966 Inclusive Distance from Airport Fatal Accidents l (Miles) I 0-1 315 1-2 83 , l 2-3 45 l 3-4 47 4-5 19 Beyond 5 549 O Distance unknown or not reported 48 1106 Fire after impact 300 0 0002 283

/ () E46 PROBABILITY OF FIRE FROM AN AIRCRAFT STRIKE i 1 Small Fires j As indicated in Table E-5A for general aviation aircraft, about 27% of fatal crashes have pontaccident fires. If this ratio is l assumed valid for crashes on the plant, then the probability of crash fires would be about: p = 5 x 10-5 x .27 = 1.4 x 10-5/ year , This assumes that the general aviation movement rate is five times the present rate. Examination of Table E-2B indicates these crashes will probably involve less than 400 gallons of fuel and average less than 100 gallons. Medium Fires Medium fires are taken to be those wherein more than 400 but less than 3,000 gallons of fuel are involved. At the present time, about 97% of movements at Olmsted involve airplanes with a maximu fuel capacity of 3,000 gallons, or less. If', however, it is as-sumed that at the time air carrier movements reach 80,000 per yea 70% of the airplanes involved carry less than 3,000 gallons when landing or taking off, then the probability of a medium fire is p -6 1 x 10 x . 7 = 7 x 10- /yr assuming all air carrier crashes on the plant result in fires. E . 0002 284

O Large Fires Similarly, the probability of large fires (where more than 3,000 gallons of fuel are involved) can be estimated assuming 30% of air carrier operations have more than 3,000 gallons aboard when landing or departing. Thus:

                                ~               -

P= 1 x 10 x .3 - 3 x 10 Improvements in aircraft design, fire prevention systems, and fuel technology, especially f or large aircraf t , are expected to reduce the probability of postcrash fires in the future. By O the time air traffic movement rates reach those assumed in makin the probability estimates above, significant improvements should be realized. Thus, from this viewpoint, the probability of post crash fires, especially for large aircraft, should be less than assumed. O E-6-2 OK)02 285

7 (} Fuel or Fires Affecting Critical Ventilation Openings The probability of fire or fuel from a small airplane cra'sh af fecting the ver.tilation intake or outlet for the control room and other protected areas can be approximated by assuming that the " virtual target" is the area of the opening plus the area around it which could be hit and cause the opening to be sub-jected to fire or to liquid fuel or vapors at flamable concen-trations. The openings will, probably be less than 400 ft . For a small plane crash carrying an average of about 100 gallons of fuel, it is assumed the fuel affected area could be about 10 x 50 ft. or 500 ft. . This is believed to be a larger area than would be affected on the average. The " virtual target" area assumed in deriving the probability { for a small plane crash in Section E-5 above was 0.015 mi or about 4x 10 5 ft ,and the probability of a crash (at five times present traffic density) was 5 x 10-5/ year. The probability of 1 a strike on the ventilation openings can be estimated by multi-plying this probability by the ratio of " virtual target" areas , or: 1 2 l 9 x 10 p = 5 x 10-5 x -

                                            %  10~ / year                     l 4 x 10 This neglects the effect of protection afforded to the openings by structures which could intercept an approaching aircraft.

1 i (1) E-6-3 i l 0002 286 l l

'i Consequently, the probability has been taken as being one half that est'. mated above or 5 x 10-8   ,

To estimate the probability contribution from large aircraft (air carrier planes) the average amount of fuel carried has bee assumed to be 5000 gallons assuming that only a very few, if an very large planes (1. e. , B474 's) will use Olmsted. The area affected by spread of fuel from the crash of an aircra carrying 5000 gallons is assumed to be about 25 x 1000 ft or 25,000 ft . From Amendment 8, page A-5, the probability for arriving and departing accidents is given as .88 x 10-6 If these are multi O plied by the ratio of the " virtual target" area estimated above to the average virtual target area assumed in deriving the large plane strike probability, the result is an approximate estimate of the probability of fuel or fire from a large aircraft crash affecting critical ventilation openings. Thus: p .88 x 10-0 .5 x 10 4

               =

x 0 - 5.5 x 10-3 4 x 10 This also neglects the effect of protection afforded the venti-lation openings by structures which could intercept the approaci ! aircraft. Consequently, the probability is taken to be about or half that estimated above or -3 x 10-8 , O i E-6-4 .

O The combined probability for large and small aircraf t crashes affecting the ventilation opening is: P = 8 x 10-8 O l O E-6-5 0002 288 1 i

_ - . . = . - - - - _ - .-. _ .-. I rO at~taracts l ! l

,                          Eardley, A . J. , Structural Geoloav of North America, New Ycrk: Harper &

Brothers , 1951 Kershner, Jefferson K., "An Earthquake in Pennsylvania," Science, Vol. X

No. 322, April 5,1889.

i i l 1, 1

;              O 1,

i i I h O 0002 289

/ BIBLIOGRAPHY Brooks , J . E. , S.J. , "Part II-Earthquckes of Northeastern United States and Eastern Canada," Bulletin of Geochysics Collece Tean-de-Brebeuf, No . 7, 19 6 0, p . 12 -4 0. Dutton, Capt. Clarence E. , "The Charleston Earthquake of August 31, 1886," United States Geolocical Survev, Ninth Annual Recort, 1887-8G, p . 2 09-52 8. Eardley, A. J., Structural Geoloav of North America, New York: Harper & Brothers , 19 51. Eppley, R. S. , " Stronger Earthquakes of the United States (Exclusive of California and Western Nevada)," Earthcuake Historv of the United States I Washington: Government Printing Office,1965. Fuller, M . L . , "The New Madrid Earthquake , " United States Geolocical  ; Survey Bulletin 494, Washington: Government Printing Office,1912. I Isacks, B. , and Oliver, J. , " Seismic Waves with Frequencies from 1 to 100 Cycles per Second Recorded in a Deep Mine in Northern New Jersey," Bulletin of the Seismolecical Society of America, Vol. 54, No. 6A,1964, pd p . 1941-1980. ) Kershner, Jefferson K. , "An Earthquake in Pennsylvania ," Science, Vol. XI: No. 322, April 5,1889. { Landsberg, H., "The Clover Creek Earthquake of July 15, 1938," Bulletin of the Seismotocical Society of America, Vol. 2 8, No . 4, 1938. Linehan, Rev. D. , S .J. , and Leet, L.D. , " Earthquakes of Northeastern United States and Eastern Canada, 1938, 1939, 1940," Bulletin of the Seismolecical Society of America, Vol. 32, No.1,1942. MacCarthy, Gerald R. , "A Descriptive List of Virginia Earthquakes Through 1960," Tournal of the Elisha Mitchell Scientific Society, Vol. 8, No. 2, December 1964. Reid, H. F., Unpublished records including card index and newspaper clipping on file at United States Coast and Geodetic Survey, Washington, D.C . i, < O 0002 290 O Richter, Charles, Elementary Seismoloev, San Francisco: W. H. Freeman Company, 1958. Rockwood, C . G . , Jr. , " Notes on American Earthquakes , " American Tournal of Science Third Series, Vol. 29, 1885. Smith, W. E. T. , " Earthquakes of Eastern Canada and Adjacent Areas , 1534-1927," Canada: Decartmer.t of Mines and Techrical Survevs , Dominion Observatories , Vol. XXVI, No. 5,1962. Smith, W. E. T. , " Earthquakes of Eastern Canada and Adjacent Areas, 1928-1959," Canada: Decartment of Mines and Technical Survevs. Dominion Observatories . Vol. XXXII, No. 3,1966. Stone, R. W. , " Earthquake, September 5,1944, Felt in Pennsylvania , " Commonwealth of Pennsvivania . Decartment of Internal Affairs, Vol.12, No . 11. ' Stose, A . J. , and Stose, G . W. , " Geology of the Hanover-York District, Pennsylvania," United States Geolocical Survey Professional Pacer 204, 1944. g W i United States Atomic Energy Commission, Division of Technical Information. Nuclear Reactors and Earthcuakes TID 7024, Washington: August 1963. United States Department of Commerce , Coast and Geodetic Survey, Quartertv Seismolecical Recorts , 1925-1927. United States Department of Commerce, Coast and Geodetic Survey, United States Earthauakes, Washington: Government Printing Office, 1928-1964. I United States Department of Commerce, Coast and Geodetic Survey, Detaile Information Furnished Concerning Cornwall, Pennsylvania Earthquake of May 12,19C4, to Weston Geophysical Research, Inc. l e. 0002 291 g

VO APPENDIX I O O 0002 292

O DISt^Nr z^arnouaxtS rO ^FrtCr rat Slrr Felt Area Distance Apt Date Location Epicentral (Square From Site In Intensity Miles) (Miles) z Nov . 18, 1755 42.9 N, 70.60W VIII 300,000 370 East of Cape Ann, Massachusetts Dec . 16, 1811 3 6.6'N, 89.6 W XII 2,000,000 72 0 New Madrid, Missouri Aug . 10, 1884 4 0. 6'N , 74. 0 W VII 70,000 145 New York City Aug . 31,1886 32.9'N, 80 W X 2,000,000 540 Charleston, South Carolina May 31,1897 37.3 N, 80.7 W VIII 280,000 290 Giles County, \ Virginia Fe b . 10, 1914 4 5 . 0'N , 7 6 . 9 W VII 200,000 335 West of Lanark, Ontario, Canada Nov. 1, 193 5 46.8'N, 79.1 W VII 500,000 470 Timiskaming , (Mag. 6.25) Canada Sept. 5,1944 44.9 N, 74.9* W VIII 175,000 340 Cornwall, Ontario (Mag. 5.9) in United Massena, New States York 0002 293 m V

 , o l

l PART II RES?ONSE SPECTRA I O i 1 I O g r. ., . 0002 294

O OBTECTIVE Part I of this report, Seismicity Analysis, has established the strongest possible earthquake which might affect the site would be low intensity VI (Modified Mercalli) occurring along the Triassic border fault some six miles distant to the site. On the basis of Figure 1.7 in the Atomic Energy Commission publication Nuclear Reactors and Earthouakes TID 7024, this intensity corresponds to an acceleration of 0.04g. Larger earthquakes at greater distances frcm the site would produce an intensity no larger than III or IV (Modified Mercalli) . The objective of this part of the report is to establish the response g spectra corresponding to a possible earthquake of low intensity VI (Modified Mercalli) . RESPONSE SPECTRA FOR NEARBY EARTHOUAKE The earthquake which occurred in March 1957 near San Francisco was very similar although stronger than the maximum probable earthquake at the present site. This earthquake resulted from a slip at the San Andreas fault where this fault passes into the ocean just south of San Francisco. Its magnitude on the Richter scale was 5.3. The depth to the focus of the earth quake has been estimated at five miles. The epicentral intensity was VII. l Five good, strong-motion records were obtained within fifteen, miles of the epicenter. For the present study the most important record was that g w b'* 4Ut

                                             -2 0-95 000

i o  ! obtained in Golden Gate Park, approximately seven miles from the epicenter, where a strong-motion seismograph rested on rock. The intensity of damage at the vicinity of this station was estimated as a high VI. The strong portion of the ground motion was of only five seconds duration . According to Figure 1.7 in the Atomic Energy Commission publica-tion Nuclear Reactors and Earthquakes TID 7024, the nominal acceleratior. corresponding to a high VI intensity should be 0.06g. Although it is realized that this is higher than the acceleration established in the first part of this report for a low intensity VI earthquake O it is felt thet e short duretion neer-by eerthaueke could produce en ec-celeration of 0.06g. Average smoothed response spectra derived from the ground motions in Golden Gate Park during the March 1957 earthquake have been normalized to 0.06g, and are given in Figure 1. The peak in these response spectra between periods of 0.1 and 0.2 seconds reflects the high frequency content of the ground motions observed close to a small earthquake. Because the earthquake was of such short duration, damping is relatively unimportant. EFFECT OF DISTANT EARTHOUAKES The response spectra applicable to ground motions resulting from distant earthquakes were investigated usmg the scaling procedures developed by Esteva and Rosenblueth (1964). It was found that the c. Nn? ?16 s

                      ! h ,' ; a

O response spectra for these more distant earthquakes was less critical than those in Figure 1 for periods less than 0.8 seconds. APPLICATION OF RESPONSE SPECTPA TO DESIGN The response spectra in Figure 1 are intended to represent the consequences of the strongest probable earthquake at the site. Accord-ingly, Type I structures or equipment whose failure might cause a nuclear incident should be designed according to the following rule or its equivalent stresses computed using the spectra, when superimposed upon the stresses resulting from normal operation, must be less than the normally specified working stresses without an allowance for strength increase due to short-term loading . Vertical accelerations should be taken as two-thirds of those indicated by the response spectra of Figure 1. In addition, the design must be checked for an earthquake having a response spectra with ordinates twice those in Figure 1. This larger earthquake represents an earthquake much larger than justified by the historical record of the site but which might conceivably occur during the life of the structure. Under this more severe loading condition there should be no failure that could cause injury or prevent safe shutdown i I during or after the earthquake. l Type II structures, whose failure could cause no nuclear incident, should be designed in accordance with the provisions of the 1957 Uniform u s ...

                                          -2 2 -

0002 297

O Building Code with the value of the coefficient C applicable to Zone 1. An alternate form of the response spectra is presented in Figure 2. ACKNOWLEDGEMENT Dr. C. A. Cornell of Massachusetts Institute of Technology has participated with the Consultant in this study. REFERENCES Oakeshott, G. B. ,1959: " San Francisco Earthquake of March 1957 Special Report 57, California Division of Mines. Esteva and Rosenblueth,1964: "Espectros de Temblores a Distancias Moderadas y Grandes," Boletin de la Sociedad Mexicana de Ingenieria Sismica," Vol. II, No.1. The method will appear in Chapter 7 of Earthquake Engineering by Newmar and Rosenblueth, to be published by Prentice-Hall. Hudson, D. E. and G. W. Housner,1958: "An Analysis of the Strong Motion Accelerometer Data from the San Francisco Earthquake of March 22, 1957," Bull. of the Seismological Society of America , Vol. 48, pp. 2 53-268. O 0002 298

                                        -2 3 -

O O.5 y O% Damping values ( % critical) 0.4 ) / O.5 % 7

       ;             -

f 1% oi z 0.3 1 9 - D - l 1 5 J

                                                                           \

(A -5% j U Oo< 0.2 s T 1 7% l d - 10 % O 5 -

                                                                           ;

8

o. O.I [ \ \ h20  %

N NhDD

                                                                         ;

O O O.2 O. 4 0.6 uND AMPED PERIOD, SEC. RESPONSE SPECTRA FOR DESIGN O riGuRE i 0002 299 l l

x .r

        '    NN xxxx                                                      r .s O      '  'w XMw'#k $e
                                               <' Xv .r /          / /
                                                                     / -

NNkN,4N'NNYA$v^x/

              'N                  h \V'X Af/

NjffSWV/ ' f 'l '\ l \ X o hV ' d /' N l

            ,/

vwwmae

                                               ./       h          11.

s '/

               /78/#/W/$<N
   !                                                                     R$#

O o,3 / / / / \ i ' ///Af/// // fx 'N 'N N

           ' bl/Y////                                     \          ~'N '

y7 x 0, x xj/

                  /-
                   /
            //   0.06  0.00    0.10     0.15     0.2    0.,    0.4 i

0.5 UNDAMPED PERIOD, SEC. O RESPONSE SPECTRA FOR DESIGN FIGURE 2 - l}}