ML18046A853: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(Created page by program invented by StriderTol)
Line 43: Line 43:
List of Frequencies for CRLMs Rows Maximum loads of the Palisades CRIMs (Worst Q::imbina tions) .* .* ii PAGE NO. 17 18 19 20 21 22 PAGE NO. 23 23 24 25
List of Frequencies for CRLMs Rows Maximum loads of the Palisades CRIMs (Worst Q::imbina tions) .* .* ii PAGE NO. 17 18 19 20 21 22 PAGE NO. 23 23 24 25
* 26 TR-ESE-437   
* 26 TR-ESE-437   
* * *" 1. 0 IlITRODUCI'ION The structural integrity of the Palisades CRI:Ms must be maintained during seismic disturbances of intensities as specified in Reference  
* * *" 1. 0 IlITRODUCI'ION The structural integrity of the Palisades CRI:Ms must be maintained during seismic disturbances of intensities as specified in Reference
: 1. The purpose of this work was to detennine the worst seismic response condition for the Palisades CRI21 with existing seismic supports and to demonstrate the ability of the CRn'1'. to meet the given sei&mic loads and to satisfy the scramability condition.
: 1. The purpose of this work was to detennine the worst seismic response condition for the Palisades CRI21 with existing seismic supports and to demonstrate the ability of the CRn'1'. to meet the given sei&mic loads and to satisfy the scramability condition.
The DBE event was considered.
The DBE event was considered.
For this purpose a one-dimensional finite element model of the Palisades CRLM, as docunented in Reference 2, was available.
For this purpose a one-dimensional finite element model of the Palisades CRLM, as docunented in Reference 2, was available.
This model entails dynamic characteristics of the free standing CRrM structure and, with some modifications, was used in this analysis.
This model entails dynamic characteristics of the free standing CRrM structure and, with some modifications, was used in this analysis.
The analysis technique for the .Palisades CRIMs, which are tied together by seismic supports, was performed in accordance with the tru:M Seismic Review Plan given in Reference  
The analysis technique for the .Palisades CRIMs, which are tied together by seismic supports, was performed in accordance with the tru:M Seismic Review Plan given in Reference
: 3. 2.0  
: 3. 2.0  


Line 58: Line 58:


===3.0 REDUCED===
===3.0 REDUCED===
AND DETAILED MODEL OF 'IHE FREE STANDING PALISADES RACK & PINION DRIVE In order to keep the problem size within acceptable limits (computer time) a* simplified CRIM representation was developed from the standard, more detailed Palisades model documented in Reference  
AND DETAILED MODEL OF 'IHE FREE STANDING PALISADES RACK & PINION DRIVE In order to keep the problem size within acceptable limits (computer time) a* simplified CRIM representation was developed from the standard, more detailed Palisades model documented in Reference
: 2. The SAP4 canputer code (Reference  
: 2. The SAP4 canputer code (Reference
: 6) was used for this task.and thirty-nine nodal points, which are canbined by thirty-three beam elements, were . used for the reduced model. The assembly of the mathematical model is presented in Figure 1. The simplified CRDM model demonstrated good correlation with the standard *
: 6) was used for this task.and thirty-nine nodal points, which are canbined by thirty-three beam elements, were . used for the reduced model. The assembly of the mathematical model is presented in Figure 1. The simplified CRDM model demonstrated good correlation with the standard *
* A canparison of the first three modal frequencies and bending moments (fran a response spectrum analysis) is given in Tables 1 and 2.
* A canparison of the first three modal frequencies and bending moments (fran a response spectrum analysis) is given in Tables 1 and 2.
* The deflection shapes for these modes are presented in Figure 2 through Figure 4 * .* 2 TR-F.sE-437 A canparison of the above infonnation confirms the acceptability of the reduced model. The detailed CRDM model basically is the standard Palisades mcxiel described in Reference  
* The deflection shapes for these modes are presented in Figure 2 through Figure 4 * .* 2 TR-F.sE-437 A canparison of the above infonnation confirms the acceptability of the reduced model. The detailed CRDM model basically is the standard Palisades mcxiel described in Reference
: 2. However, the piston tube and rcxi in this model were represented as separate structures (in the original model they were Such a representation was chosen in order to determine the possibility of the rod to ''hang-up" (due to large deflections), and to make an assessment of the CRDMs ability . . .. . .. ... to scram during the postulated seismic intensities.  
: 2. However, the piston tube and rcxi in this model were represented as separate structures (in the original model they were Such a representation was chosen in order to determine the possibility of the rod to ''hang-up" (due to large deflections), and to make an assessment of the CRDMs ability . . .. . .. ... to scram during the postulated seismic intensities.  
'Ille detailed model has one hundred-thirty nodes which are connected by one nineteen beam elements.
'Ille detailed model has one hundred-thirty nodes which are connected by one nineteen beam elements.
The assembly of the detailed model with nodal coordinates is shown in Figure 5. 4.0 CRll-1 ROWS ANALYSIS AND DISCUSSION The reactor vessel head of the Palisades plant has seven different CRll-1 rows. There are two types of rows. The first type of row bines seven CRI:Ms , and the second . type of row combines five CRn".s * .. . . . The location of nozzles on top of the reactor is given in  
The assembly of the detailed model with nodal coordinates is shown in Figure 5. 4.0 CRll-1 ROWS ANALYSIS AND DISCUSSION The reactor vessel head of the Palisades plant has seven different CRll-1 rows. There are two types of rows. The first type of row bines seven CRI:Ms , and the second . type of row combines five CRn".s * .. . . . The location of nozzles on top of the reactor is given in
: 6. Becaus.e of the symmetry, only four CRDM rows had to be These rows are indicated in Figure 6, along with nozzle length mation. All four rows were anlayzed by using finite element models which tained the simplified model at each CRDM location.
: 6. Becaus.e of the symmetry, only four CRDM rows had to be These rows are indicated in Figure 6, along with nozzle length mation. All four rows were anlayzed by using finite element models which tained the simplified model at each CRDM location.
The CRDMs were tied together by seismic supports at an elevatiori of 44.25" above the reference point (Reference 4). 'Ille seismic supports were modeled by three beam elements each. Since the supports were designed to transmit r:ooment loads and to allow horizontal displacements between adjacent CR.ll-ls, proper end release code teclmiques were Used to roodel these boundary conditions..
The CRDMs were tied together by seismic supports at an elevatiori of 44.25" above the reference point (Reference 4). 'Ille seismic supports were modeled by three beam elements each. Since the supports were designed to transmit r:ooment loads and to allow horizontal displacements between adjacent CR.ll-ls, proper end release code teclmiques were Used to roodel these boundary conditions..
Line 98: Line 98:
= 2.4Sm, faulted allowable per paragraph 4.1.4.2.4 of project Spec. No. 00000-PE-110, Rev. 4, where Sm= .95 Sm to allow for** a five percent factor of safety. Therefore, (s. :x:.) 11'\A')C..  
= 2.4Sm, faulted allowable per paragraph 4.1.4.2.4 of project Spec. No. 00000-PE-110, Rev. 4, where Sm= .95 Sm to allow for** a five percent factor of safety. Therefore, (s. :x:.) 11'\A')C..  
= 4\. o4-(14) The maximum bending moment was calculated in the* Row #4 for the CRLM' wi. th the longest nozzle, and is (15) Then, ' (16) .. 7 ' TR-ESE-437
= 4\. o4-(14) The maximum bending moment was calculated in the* Row #4 for the CRLM' wi. th the longest nozzle, and is (15) Then, ' (16) .. 7 ' TR-ESE-437
* The maxinrum allowable bending moment at the nozzle can be obtained as the: following:  
* The maxinrum allowable bending moment at the nozzle can be obtained as the: following:
(17) A ccmparison of the maximum computed bending moment at the nozzle to the allowable value is shown below. 6.0 S'I'RESSES IN 'IlIE BOLTS The goal of this analysis was to detennine stresses in the bolts of the flange which connects nozzle and mechanism upper housing. Design requirements:
(17) A ccmparison of the maximum computed bending moment at the nozzle to the allowable value is shown below. 6.0 S'I'RESSES IN 'IlIE BOLTS The goal of this analysis was to detennine stresses in the bolts of the flange which connects nozzle and mechanism upper housing. Design requirements:
Design Pressure (Pr): Design Temperature:
Design Pressure (Pr): Design Temperature:
Line 104: Line 104:
Allowable Sm Bolts Number of Bolts (n) Bolt locations  
Allowable Sm Bolts Number of Bolts (n) Bolt locations  
.* .* 2.5 ksi (real 2.485 ksi) 650°F ., SA-193-B7 27.0 ksi l"" x 8 8 _t,: ,,0 IN J.,_ : 5."15 \N 1. ?> = !. so '""' 4 ::. \ . 0'2..5 "'" (18) 8 TR-F..SE-437 1be 'NOrst combination of internal forces, which occurred at the flange elevation; (for the DBE event bending moment and axial force equal 1.73 13.96 = 24.15 in kips, 1.73
.* .* 2.5 ksi (real 2.485 ksi) 650°F ., SA-193-B7 27.0 ksi l"" x 8 8 _t,: ,,0 IN J.,_ : 5."15 \N 1. ?> = !. so '""' 4 ::. \ . 0'2..5 "'" (18) 8 TR-F..SE-437 1be 'NOrst combination of internal forces, which occurred at the flange elevation; (for the DBE event bending moment and axial force equal 1.73 13.96 = 24.15 in kips, 1.73
* 10.04 = 17.37 kips) was obtained in the Row f.4 for the cru:M with the longest nozzle. It is assumed that the flange is not defonned under given loads dition. 1ben,  
* 10.04 = 17.37 kips) was obtained in the Row f.4 for the cru:M with the longest nozzle. It is assumed that the flange is not defonned under given loads dition. 1ben,
:s.q75* j_, 1.0'" M.b ::. Fa... ..e., ;-2.Fb..2..l. 2Fc. 2.l=d 14 "fii_ : Pb : Pc.. : Pei :. : .Q.2. : }_ : .14 JI. Pb :. Pa_ 1. :.
:s.q75* j_, 1.0'" M.b ::. Fa... ..e., ;-2.Fb..2..l. 2Fc. 2.l=d 14 "fii_ : Pb : Pc.. : Pei :. : .Q.2. : }_ : .14 JI. Pb :. Pa_ 1. :.
* 2'5"4 Po.-Pc. ::. Po... .. S Pa.... . \4lo PQ.... .* 9 _i.3 ?:l.S" (19) (20) (21) (22) (23) 'J.'R-F..SF.-437   
* 2'5"4 Po.-Pc. ::. Po... .. S Pa.... . \4lo PQ.... .* 9 _i.3 ?:l.S" (19) (20) (21) (22) (23) 'J.'R-F..SF.-437   
Line 110: Line 110:
* 1w\b =Po-(L, + \.,obL:z..  
* 1w\b =Po-(L, + \.,obL:z..  
+ JL 3 + .2.q2 .R.4) = :Z..\.oo4c,;, Po-(24)
+ JL 3 + .2.q2 .R.4) = :Z..\.oo4c,;, Po-(24)
* Mb Po.... =  
* Mb Po.... =
:. '*\SO "-'?c::. Pb ::. . C?f,\
:. '*\SO "-'?c::. Pb ::. . C?f,\
t'c.. ::. .5'14-Pd =-* \to!> *k.&ps S.tresses in the bolts can be calculated as follows: G1-:. ?o... "' A nA. (25) (26) (27) (28) (29) .
t'c.. ::. .5'14-Pd =-* \to!> *k.&ps S.tresses in the bolts can be calculated as follows: G1-:. ?o... "' A nA. (25) (26) (27) (28) (29) .
* A ::. / ,..l"\ -
* A ::. / ,..l"\ -
--0 j<:t..-.A ( \ _ .-=t14 I Q..c:::::t.-'r  
--0 j<:t..-.A ( \ _ .-=t14 I Q..c:::::t.-'r
: 2. 4 \,U... . . a:7't 2> -.11:u;FI 1 IN m -is number of threads per inch OD = l" n = 8 number of bolts VF -vertical .force which combines pressure and axial forces. Pressure forces at the flange bolts ,' Pr = 2.5 ksi Area= 7.863 in 2 F = PA = 19.6588 (30) Manual of Stl'!el Construction, Seventh F.dition, Anerican Institute of Steel Construction, pp. 5-20 * .
: 2. 4 \,U... . . a:7't 2> -.11:u;FI 1 IN m -is number of threads per inch OD = l" n = 8 number of bolts VF -vertical .force which combines pressure and axial forces. Pressure forces at the flange bolts ,' Pr = 2.5 ksi Area= 7.863 in 2 F = PA = 19.6588 (30) Manual of Stl'!el Construction, Seventh F.dition, Anerican Institute of Steel Construction, pp. 5-20 * .
* 10 TR-F..SE-437
* 10 TR-F..SE-437
* Then vertical force equals: VF.= 19.659 + 17.37 = 37.029 kips Maxinrum stresses in the bolts equals: G b = \.1so + -::.  
* Then vertical force equals: VF.= 19.659 + 17.37 = 37.029 kips Maxinrum stresses in the bolts equals: G b = \.1so + -::.
(31) and are less than the allowable stresses 8.378 <::: 27.0 7.0 STRESSES IN mE*SEISMIC SUPPORTS Stresses in the ties (Reference  
(31) and are less than the allowable stresses 8.378 <::: 27.0 7.0 STRESSES IN mE*SEISMIC SUPPORTS Stresses in the ties (Reference
: 7) are obtained in this section of the report and compared to the allowables.
: 7) are obtained in this section of the report and compared to the allowables.
Design requiranents:
Design requiranents:
Line 131: Line 131:
* Stresses in the A and B sections were calculated as follows:
* Stresses in the A and B sections were calculated as follows:
* M.,c.
* M.,c.
* Ga. ::. \/Jo... J :. w \:> ) (34) _ ( _ c!4) _ 3.14-(4.15!1) ( _ ?J.495 4)::. 4.c:FJ (3 S) \,NA -\ D4 . \ 4.'15.i. t52..\2..  
* Ga. ::. \/Jo... J :. w \:> ) (34) _ ( _ c!4) _ 3.14-(4.15!1) ( _ ?J.495 4)::. 4.c:FJ (3 S) \,NA -\ D4 . \ 4.'15.i. t52..\2..
:. '&deg;&deg;D-::. 4.cPJ \52. -1'2.. =
:. '&deg;&deg;D-::. 4.cPJ \52. -1'2.. =
k$:t:. 4.142.. .* 12 (36) (37) (38) TR-ESE-437  
k$:t:. 4.142.. .* 12 (36) (37) (38) TR-ESE-437  
Line 159: Line 159:
*
*
* 5. Prel:iminar,r Stress Report, Analysis of the _Palisades Control Rod Drive Mechanism Pressure Housing, #80345228.
* 5. Prel:iminar,r Stress Report, Analysis of the _Palisades Control Rod Drive Mechanism Pressure Housing, #80345228.
* 6. K. J. Bathe, E. L. Wilson, and F. T. Peterson, "SAPIV, A Structural Analysis Program for Static and Dynamic Response of Linear Systems," Earthquake Engineering Research Center, Report No. 73-11, Revised April, 1974, University of California, Berkeley, California.  
* 6. K. J. Bathe, E. L. Wilson, and F. T. Peterson, "SAPIV, A Structural Analysis Program for Static and Dynamic Response of Linear Systems," Earthquake Engineering Research Center, Report No. 73-11, Revised April, 1974, University of California, Berkeley, California.
: 7. C-E Drawing CRil1 Shock Assembly, #2966-E-2869.  
: 7. C-E Drawing CRil1 Shock Assembly, #2966-E-2869.  
*' ,* 16 TR-ESE-437   
*' ,* 16 TR-ESE-437   
Line 174: Line 174:
... '"'!"*-! . --' . I .. ' . ' . : :% ; . ; . i : : i:; ' ; I! ! ! ! ! ! . . ":: : i. i I : :: : : : i::: . .. . : .. ------.. ... Ii I . :*: :*,_,;II);
... '"'!"*-! . --' . I .. ' . ' . : :% ; . ; . i : : i:; ' ; I! ! ! ! ! ! . . ":: : i. i I : :: : : : i::: . .. . : .. ------.. ... Ii I . :*: :*,_,;II);
I", .. , .... ' ( I. 11.. . ' .. j. "** .... "** ...... -..
I", .. , .... ' ( I. 11.. . ' .. j. "** .... "** ...... -..
* Y? ::: *-I:; If\ 1 *.*:. :,: *;.*_: '* '.. ). '. :, ',* ... 11** -* f-j;. :l : )''  
* Y? ::: *-I:; If\ 1 *.*:. :,: *;.*_: '* '.. ). '. :, ',* ... 11** -* f-j;. :l : )''
:* -* . ! *-;jj': 1-j-t -;-::: ":":''.":  
:* -* . ! *-;jj': 1-j-t -;-::: ":":''.":  
-----t:-+--N I . : : : : : '. :\ : : i: ' : ! ii : .. 1. I!:: : : : : : .. : ! : : : ! : ! : : : : ;
-----t:-+--N I . : : : : : '. :\ : : i: ' : ! ii : .. 1. I!:: : : : : : .. : ! : : : ! : ! : : : : ;
i:. : : . : : : .
i:. : : . : : : .
g _ 11&deg; "' .. I : : : : ; : ! : i l : : : ! i ! i ! j u j I : : '. : i l i ! : l!.l j !'.:l i : . I .. .. . .. : : : : i ! ; : . .. .. !f:/q :i:: ':1: ::::  
g _ 11&deg; "' .. I : : : : ; : ! : i l : : : ! i ! i ! j u j I : : '. : i l i ! : l!.l j !'.:l i : . I .. .. . .. : : : : i ! ; : . .. .. !f:/q :i:: ':1: ::::
:TIU\  
:TIU\
:-::.*  
:-::.*  
>---.....  
>---.....  
Line 196: Line 196:
' : I;! ' I! I I ' : . ! I I 11 . . I I : :..,,1 : l i ; j. I "i 1.1 11 ; I.: Ii I.
' : I;! ' I! I I ' : . ! I I 11 . . I I : :..,,1 : l i ; j. I "i 1.1 11 ; I.: Ii I.
__ .., __  
__ .., __  
....  
....
::; .::
::; .::
j: iilj ii'\::!! Ii:: ii,. i !Iii ijl 11 lli! tttilli !.U llli l!i*! !t:: .......  
j: iilj ii'\::!! Ii:: ii,. i !Iii ijl 11 lli! tttilli !.U llli l!i*! !t:: .......  
Line 202: Line 202:
;1*;* rt* --1-T +: * .'-" 1 , :r1;1*1*-;T1; f:Tr :::* ;::: .. .. . . . . . : . . . . . . : . :  
;1*;* rt* --1-T +: * .'-" 1 , :r1;1*1*-;T1; f:Tr :::* ;::: .. .. . . . . . : . . . . . . : . :  
' i I I 1 I 1 ! I i ! I i : ! : "2 UI ! : : * ; ' ! : : I
' i I I 1 I 1 ! I i ! I i : ! : "2 UI ! : : * ; ' ! : : I
* I : I I ' I : I i I i I : : i : I.! I i : : : : : : : :  
* I : I I ' I : I i I i I : : i : I.! I i : : : : : : : :
:: : :: 1--t--it--11--
:: : :: 1--t--it--11--
__ -t-.--i. --t . .. .... ,. , .* I 1* mrt,-0 io---*: ,:-rt,, . ' . ''4' II *  
__ -t-.--i. --t . .. .... ,. , .* I 1* mrt,-0 io---*: ,:-rt,, . ' . ''4' II *  
Line 250: Line 250:
,.:__ __ !'"""_,_ __ : ,--* .  
,.:__ __ !'"""_,_ __ : ,--* .  
.. * .. -t-,.  
.. * .. -t-,.  
--= r--*-+-+-r:-::::r-:=:.: --. i :  
--= r--*-+-+-r:-::::r-:=:.: --. i :
::--r-:-;  
::--r-:-;  
-: : . . =t:::--f---'o-*I-2 FIRST MJDE DISPIACEMENTS FOR_'IlIB REDUCED CRI:M MODEL : :: :r: ::-:*:* :r , .. : .! . .*. j I* 18 'IR-F.SE-437   
-: : . . =t:::--f---'o-*I-2 FIRST MJDE DISPIACEMENTS FOR_'IlIB REDUCED CRI:M MODEL : :: :r: ::-:*:* :r , .. : .! . .*. j I* 18 'IR-F.SE-437   
Line 267: Line 267:
.. : ___  
.. : ___  
---
---
=:::::+  
=:::::+
:. . *****r--*  
:. . *****r--*  
.... ..... -*-* .. :8 ..........  
.... ..... -*-* .. :8 ..........  
Line 273: Line 273:
* I *
* I *
* o , ** * : * * * , , , L * : * , ; * , , * * , * , , , * , , , , * , , , , , * , , * * , , , * , , * , , , , , * * * , -rT;*: r*:::.-:*  
* o , ** * : * * * , , , L * : * , ; * , , * * , * , , , * , , , , * , , , , , * , , * * , , , * , , * , , , , , * * * , -rT;*: r*:::.-:*  
--* : : : : : :...: .  
--* : : : : : :...: .
: : : :* :.: :.:-: :-: : : : : : : ::; .:: : : : : : : : : : : . : : : : . .  
: : : :* :.: :.:-: :-: : : : : : : ::; .:: : : : : : : : : : : . : : : : . .  
.. *--*:::::: .::....-;.--*1 1:::: ***-=-r: * ;r,:. =:.:: :r::  
.. *--*:::::: .::....-;.--*1 1:::: ***-=-r: * ;r,:. =:.:: :r::
:!;:t::::  
:!;:t::::  
;_,_:: :.:*  
;_,_:: :.:*
::::1:::::  
::::1:::::
::::J::::  
::::J::::
::::1::::.*::t.:  
::::1::::.*::t.:  
=::-, __ ,;7.::;:*c:.!*:  
=::-, __ ,;7.::;:*c:.!*:
:::::;::,;  
:::::;::,;
::.H::'.:  
::.H::'.:
:::: ::;.;.*:::.):;::,,::::,.:::  
:::: ::;.;.*:::.):;::,,::::,.:::
::*:l::.:.;..::*l**:o  
::*:l::.:.;..::*l**:o  
**I.**_:*
**I.**_:*
Line 292: Line 292:
FIGURE 4
FIGURE 4
* nIIRD MJDE DISPLACEMENTS FOR mE REDUCED CRI:M MODEL .. 20 'IR-E'.SE-437   
* nIIRD MJDE DISPLACEMENTS FOR mE REDUCED CRI:M MODEL .. 20 'IR-E'.SE-437   
* * * ------*.. -:-:-. . : . ' .  
* * * ------*.. -:-:-. . : . ' .
:-l4B ,_.....; . i r.1 H l?:o .i ......... . : : fc5 t ! ! St. .. *; * *: *
:-l4B ,_.....; . i r.1 H l?:o .i ......... . : : fc5 t ! ! St. .. *; * *: *
* I *. -.. **I  
* I *. -.. **I
::::::. * :-:-:  
::::::. * :-:-:  
'.::::: .. : ---* *: * , : : : [ <  
'.::::: .. : ---* *: * , : : : [ <  
.:*  
.:*  
=0r:::
=0r:::
01::::  
01::::
:::J:.::,::::1=::*  
:::J:.::,::::1=::*  
,,,:: ::):*.* :,: !:** **::r-::::  
,,,:: ::):*.* :,: !:** **::r-::::  

Revision as of 22:59, 25 April 2019

Control Rod Drive Mechanism Dynamic Analysis Rept.
ML18046A853
Person / Time
Site: Palisades Entergy icon.png
Issue date: 07/06/1981
From: BARISHPOLSKY, DAVISON J, HASLINGER K H
ABB COMBUSTION ENGINEERING NUCLEAR FUEL (FORMERLY
To:
Shared Package
ML18046A852 List:
References
TASK-03-06, TASK-3-6, TASK-RR TR-ESE-437, NUDOCS 8108110528
Download: ML18046A853 (30)


Text

  • COMBUSTION*ENGINEERING J)EVELOPMF.NT DEPARTMENT 11 TEST* REPORT PALISADES CRrM

-ANALYSIS REPORT APPROVED BY: La or ory Manager -' OOCUMENT NO. : TR.;..ESE-437

' 8108110528 810803 ", i PDR ADOCK 05000255 I -', p PDR .1 .. DATE OF ISSUE:. __

__ I 1 1.ATORY DOCKET Fili . --

.* DIS'IRIBlITION TR-FSE-437 B. M. Barishpolsky J. Davison K. H. Haslinger (2) ff JI V

  • C. W. Rackliffe (Q.A. File) C. W. Ruoss B. J. Selig .*
  • TABLE OF COmENTS SECTION TITLE PAGE NO.

1.0 INTRODUCTION

1 2.0

SUMMARY

1 3.0 REDUCED AND DETAILED MODEL OF 1HE FREE STANDn 1 G 2 PALISADES RACK & PINION DRIVE 4.0 CRIM R<JolS -ANALYSIS AND DISCUSSION 3 5.0 NOZZLE STRESSES 5 6.0 -S'l'RESSES IN THE FUNGE BOLTS 8 7.0 STRESSES THE SEISMIC SUPPORTS 11 8.0 mE ABILI'IY OF 1HE PALISADES CRIM TO SCRAM 13

  • 9.0 CX>NCLUSION 15 *

10.0 REFERENCES

15 -* .. i TR-ESE-437

  • FIGURE NO. 1 2 3 4 5 6 TABLE NO. 1 2 3 4 5 LIST OF FIGURES TITLE Reduced Finite Element CROM Model First Mode Displacements for the Reduced CRDr1 Model Second Mode Displacements for the Reduced CRtM Model lhird Mode Displacements for the Reduced CRDM Model Detailed Finite Element CRDM Model location of the Nozzles for Palisades Plant UST OF TABLES List of

-Palisades CRDM Bending Moment at Nozzle-Palisades CRDM Maxim.mi Internal Forces -Critical Areas of au:Ms (Worst Combination)

List of Frequencies for CRLMs Rows Maximum loads of the Palisades CRIMs (Worst Q::imbina tions) .* .* ii PAGE NO. 17 18 19 20 21 22 PAGE NO. 23 23 24 25

  • 26 TR-ESE-437
  • * *" 1. 0 IlITRODUCI'ION The structural integrity of the Palisades CRI:Ms must be maintained during seismic disturbances of intensities as specified in Reference
1. The purpose of this work was to detennine the worst seismic response condition for the Palisades CRI21 with existing seismic supports and to demonstrate the ability of the CRn'1'. to meet the given sei&mic loads and to satisfy the scramability condition.

The DBE event was considered.

For this purpose a one-dimensional finite element model of the Palisades CRLM, as docunented in Reference 2, was available.

This model entails dynamic characteristics of the free standing CRrM structure and, with some modifications, was used in this analysis.

The analysis technique for the .Palisades CRIMs, which are tied together by seismic supports, was performed in accordance with the tru:M Seismic Review Plan given in Reference

3. 2.0

SUMMARY

A representative, two-dimensional finite element model of the Palisades CRLM rows was developed and analyzed for horizdntal seismic loading. F.ach CRrM in a row was modeled by use of a simplified representation.

Preliminary analyses of the CR1:M rows allowed determination of the CRLM row with the worst response to seismic loadings.

This rCM was analyzed in more detail by using a coupled finite elenEnt row tation where two CRI:Ms were modeled in detail, and the effects of the other CRDMs were simulated by simplified models. The work perfoimed and documented in this report demonstrates the CRIMs ability to meet all seismic requirenEnts mentioned above. The results are st..mnarized below * .* 1 'IR-ESE-437

  • 'Ille nozzle and flange connection are considered the most critical areas of the CRDMs. 1be maximum axial forces and m::iments of 18.17 kips and 37.07 in kips in the nozzle are less than allowable ones. 1be maximum stresses, of 8.4 ksi, in the flange bolts are also. less than allowable ones. 1be maxiim.Jm stress irt the critical area of the seismic support was canputed as 37.1 KSI and is less than an allowable stress of 47 .16 KSI. Scramabili ty of the CRDMs during the seismic event was demonstrated.

3.0 REDUCED

AND DETAILED MODEL OF 'IHE FREE STANDING PALISADES RACK & PINION DRIVE In order to keep the problem size within acceptable limits (computer time) a* simplified CRIM representation was developed from the standard, more detailed Palisades model documented in Reference

2. The SAP4 canputer code (Reference
6) was used for this task.and thirty-nine nodal points, which are canbined by thirty-three beam elements, were . used for the reduced model. The assembly of the mathematical model is presented in Figure 1. The simplified CRDM model demonstrated good correlation with the standard *
  • A canparison of the first three modal frequencies and bending moments (fran a response spectrum analysis) is given in Tables 1 and 2.
  • The deflection shapes for these modes are presented in Figure 2 through Figure 4 * .* 2 TR-F.sE-437 A canparison of the above infonnation confirms the acceptability of the reduced model. The detailed CRDM model basically is the standard Palisades mcxiel described in Reference
2. However, the piston tube and rcxi in this model were represented as separate structures (in the original model they were Such a representation was chosen in order to determine the possibility of the rod to hang-up" (due to large deflections), and to make an assessment of the CRDMs ability . . .. . .. ... to scram during the postulated seismic intensities.

'Ille detailed model has one hundred-thirty nodes which are connected by one nineteen beam elements.

The assembly of the detailed model with nodal coordinates is shown in Figure 5. 4.0 CRll-1 ROWS ANALYSIS AND DISCUSSION The reactor vessel head of the Palisades plant has seven different CRll-1 rows. There are two types of rows. The first type of row bines seven CRI:Ms , and the second . type of row combines five CRn".s * .. . . . The location of nozzles on top of the reactor is given in

6. Becaus.e of the symmetry, only four CRDM rows had to be These rows are indicated in Figure 6, along with nozzle length mation. All four rows were anlayzed by using finite element models which tained the simplified model at each CRDM location.

The CRDMs were tied together by seismic supports at an elevatiori of 44.25" above the reference point (Reference 4). 'Ille seismic supports were modeled by three beam elements each. Since the supports were designed to transmit r:ooment loads and to allow horizontal displacements between adjacent CR.ll-ls, proper end release code teclmiques were Used to roodel these boundary conditions..

The CRI:M, itself, is a stiff s true ture

  • The critical areas are the nozzle, .* 3 'm-FSE-437 . -..--:**:-**

--*--.,.. r ... -.* -.

the jtmction o:f and nozzles, and the seismic Therefore, the stressed state of these areas was detennined to demonstrate the

  • CRLMs ability to meet seismic loads. In order to verify the CRr.M scramabili ty, the defonned state of the mechanism had to . be determined.

The piston tube displacements were considered for this purpose. A Response Spectrtim analysis with an assuned spectrum level of 1 g (1 to 33 Hertz) was performed for each row of CRDM's. The worst ation of the maxinrum internal forces in the critical areas of the aulfs are presented for each row in Table 3. A review of the results given here, show that the worst combination -of internal loads at the nozzle support (bending moment of 23.72 in kips and axial force of 1. 66 kips per unit g) was developed in the CRDM

  • with the longest nozzle length <Row #4). Maximum loads at the flange elevation (bending moment of 10.59 in kips and axial force of 10.66 kips per unit g) also o.ccurred in that CRIM. Similarly, review of the piston tube displacements demonstrated that .the maximum displacement of .315" per lg occurred in the same CRDM. Therefore, cru:M Row 14 was identified as the critical row, and was analyzed in more de.tail by using a .more complex finite .element model. For this, the two symnetrically located CRIMs with the longest nozzle lengths were represented by the detailed finite element model. A Response Spectrum analysis of this row was then perfonned for a uniform spectrum loading of lg. The first fifteen modal frequencies are sented in Table.4. For canparison,.the frequencies for each of .the -four analyzed CRIM rows are also given here. The calculated maximum bending moments axial and shear forces at the au:M nozzles, at the flange elevation, and in the ties are given in Table 5. ,* 4 TR-ESE-437
  • Maximum values of this data were used to determine stresses in the CRil1 nozzle, in* the flange bolts at the junction of CR!l1s and nozzles, and in the seismic supports.

5.0 NOZZLE

STRESSES Nozzle stresses are detennined in this section and compared to allowables.

Design requirements:

Design Pressure:

Design Temperature:

Material:

Allowable Sm: Weight (WI'): Vertical Force for the DBE Case Calculated as

  • 21 Axial Force 2.5 ksi (real 2.23 ksi) 650°F SA-182 18.0 ksi 1.906 kips. *40 kips VF = 18.57 kips 1.73 x 10.5 = 18.17 kips
  • No. 70P-008, Rev. 2; No-loss-of-Fune tion seismic loads are defined as 1. 73g horizontal and . 2lg vertical accelerations.

Cross section of nozzle R \ ::. I. Yo4 IN Re. :. 1.55"1 '"" t =

5 1R-ESE-437 Faulted Condition 4.5(\.\2.5)

.* 6

\.qo

= !. so '""' 4 ::. \ . 0'2..5 "'" (18) 8 TR-F..SE-437 1be 'NOrst combination of internal forces, which occurred at the flange elevation; (for the DBE event bending moment and axial force equal 1.73 13.96 = 24.15 in kips, 1.73

  • 10.04 = 17.37 kips) was obtained in the Row f.4 for the cru:M with the longest nozzle. It is assumed that the flange is not defonned under given loads dition. 1ben,
s.q75* j_, 1.0'" M.b ::. Fa... ..e., ;-2.Fb..2..l. 2Fc. 2.l=d 14 "fii_ : Pb : Pc.. : Pei :. : .Q.2. : }_ : .14 JI. Pb :. Pa_ 1. :.
  • 2'5"4 Po.-Pc. ::. Po... .. S Pa.... . \4lo PQ.... .* 9 _i.3 ?:l.S" (19) (20) (21) (22) (23) 'J.'R-F..SF.-437
  • *
  • 1w\b =Po-(L, + \.,obL:z..

+ JL 3 + .2.q2 .R.4) = :Z..\.oo4c,;, Po-(24)

  • Mb Po.... =
. '*\SO "-'?c::. Pb ::. . C?f,\

t'c.. ::. .5'14-Pd =-* \to!> *k.&ps S.tresses in the bolts can be calculated as follows: G1-:. ?o... "' A nA. (25) (26) (27) (28) (29) .

  • A ::. / ,..l"\ -

--0 j<:t..-.A ( \ _ .-=t14 I Q..c:::::t.-'r

2. 4 \,U... . . a:7't 2> -.11:u;FI 1 IN m -is number of threads per inch OD = l" n = 8 number of bolts VF -vertical .force which combines pressure and axial forces. Pressure forces at the flange bolts ,' Pr = 2.5 ksi Area= 7.863 in 2 F = PA = 19.6588 (30) Manual of Stl'!el Construction, Seventh F.dition, Anerican Institute of Steel Construction, pp. 5-20 * .
  • Then vertical force equals: VF.= 19.659 + 17.37 = 37.029 kips Maxinrum stresses in the bolts equals: G b = \.1so + -::.

(31) and are less than the allowable stresses 8.378 <::: 27.0 7.0 STRESSES IN mE*SEISMIC SUPPORTS Stresses in the ties (Reference

7) are obtained in this section of the report and compared to the allowables.

Design requiranents: Design Temperature: Material: Allowable Sm 250°F AISA-4130

  • 20.55 ksi The critical areas of the seismic support structure are indicated as sections A and B, below. & I
  • IL? . 1; ..; ** s. a " .4..d' I .g'fS' I .g7;* I I ,,. * .,..,.. I .* -11 The nodal point positions in the ma thema ti cal mode 1 of the are also shown here. A linear bending manent tribution is assumed along each beam TR-F.SF.-437
  • * * *Then the maximum bending mcment in the critical section (A or B) was detenni.ned through nodal bending moITEnt values as follows:
  • Llt. \<:..) K (32) where, Ljk'Lxk = lengths between j ,k and x,k points. K = 1.73 seismic loads coefficient for the DBE event. Tht::n, M = ((QS.\f, -r q3.I\ -

"' 4.12. * :, co4s) \.1:, = \Sz.. \'2-. (33)

  • Stresses in the A and B sections were calculated as follows:
  • M.,c.
  • Ga. ::. \/Jo... J :. w \:> ) (34) _ ( _ c!4) _ 3.14-(4.15!1) ( _ ?J.495 4)::. 4.c:FJ (3 S) \,NA -\ D4 . \ 4.'15.i. t52..\2..
. '°°D-::. 4.cPJ \52. -1'2.. =

k$:t:. 4.142.. .* 12 (36) (37) (38) TR-ESE-437

  • a 2 and crb stresses are less than allowable stresses which, for DBE _ event, were detennined as 2.4Sffi = 2.4
  • 20.55 = 49.33 ksi. 31.1'7 <<..

8.0 THE ABILI'IY OF THE PALISADES CRDM TO SCRAM (39) (40) In order to address the question whether or not under . loaaing, main-cain t:neir acili:ty to scram, deflection of the piston tube in comparison with the deflection of the rod was considered. Since the maximum deflections of the piston tube were determined in the CRDM with the longest nozzle (Row #4), these CF.I:Ms were roodelled in detail. A maximum displacement of .244" per lg for the piston tube was calculated for critical mode #1 (RSS displacement per 1 g equals .247") and .298" per lg for critical mode #1 for the rod (RSS ment per lg equals .307"). These displacements occurred at an elevation of 133" above the reference point. The defonnation-based scramability criterion can be described as follows. (The force-based is not taken into account because of its . negligible value): **where UL =maximum rod deflection at the elevation "L". r **Tf =-piston -tube deflection at the elevation L". p . . Rp = 1. 255" pis ton tube radius . Rr = .813" rod radius . .* 13 (41) TR-F.SE-437

  • *
  • Schematically, the above given criterion can be presented as follows: ' '\ \ ' defonned positions of the piston tube and the rod. I initial positions of the piston tube and the rod. Here, 11 G 11 is a gap between the piston tube housing and the rod surface . For the DBE event, Ur and Up are: Note: Both rod and ut Y"'

")(, = .4'91" (42) piston tube deflect UL in same direction. -\.,3 ")I,. 0 244 11 A ,, (43) p =

  • 2.2.. For the defonned state, a minimum 11 G 11 was positive and equalled .367",

indicates the CRLM scramability . . The same result was obtained by using the inequality given above, ** AL-rll II II II r._ I \.zss + .422 -.2,\3 : 4"

  • and thus the ability of the OUM to scram . .* (44) 14 'IR-ESE-437
  • 9.0 roNCLUSION All representative rows of Palisades CRDMs were analyzed for horizontal seismic loads of 1.73 g's. The maxi.mum forces at the CRDM jmiction point to the reactor vessel head are within the allowables, stipulated in Reference 'the stresses in the flange bolts which connects the CRDMs and nozzles are within allowables.

Tne seismically supported Palisades CRDMs can accept seismic forces as required. OUM deflections are small. Therefore, the CRLMs are capable of scramning during OBE and DBE events of the referenced intensities.

10.0 REFERENCES

1. Engineering Specification for a Control Rod Drive Mechanism, fication No. 70P-008, Revision 2, April, 1968. 2. Calculation No. "Oneha-Palisades Rack & Pinion Drive Free Standing SAP4 Computer Model." 3. K. H. Haslinger to J. Davison; Palisades CRLMs Seismic Review," P-FSE-003, March 19, 1981. 4. C-E Drawing CRI:.M J:nstallation Drawing, 2966-E-3011.
  • ' .* 15 'IR-FSE-437
  • 5. Prel:iminar,r Stress Report, Analysis of the _Palisades Control Rod Drive Mechanism Pressure Housing, #80345228.
  • 6. K. J. Bathe, E. L. Wilson, and F. T. Peterson, "SAPIV, A Structural Analysis Program for Static and Dynamic Response of Linear Systems," Earthquake Engineering Research Center, Report No. 73-11, Revised April, 1974, University of California, Berkeley, California.
7. C-E Drawing CRil1 Shock Assembly, #2966-E-2869.
  • ' ,* 16 TR-ESE-437

. : J . , . .. ! . . I 1 * : : : i : l: :

  • 1 ; : : ! I . , J : ' ! i i ! i ' f * ' i: : ' I:
  • . . * . * *
  • ff I ,_:___ _:_ ___ ----i ..... , ***-,---:
  • *: w l-'

2:* '!l:Ji r-:-i: :-

  • rt:-: .. .. * .. T. *.**_,_;*

.. :.'."'_: .. :.**:::-:*-

.. _: .. :-:-.. _*.::_ **_*-.** __ :-___ .. i " . ! ! . ' . : . :

. u. . I .
; i *! i; ' I : : I; 'i: : : : : : : : ; !j; .. . . .. .. .. .. . .. . . . . . .. .. .. ..... ---,'* .... *-... *-:-:-:*t-:--:: Al c( '1' *'-**' *-"""f-1-*-**I*--*

... '"'!"*-! . --' . I .. ' . ' . : :% ; . ; . i : : i:; ' ; I! ! ! ! ! ! . . ":: : i. i I : :: : : : i::: . .. . : .. ------.. ... Ii I . :*: :*,_,;II);

I", .. , .... ' ( I. 11.. . ' .. j. "** .... "** ...... -..

  • Y? ::: *-I:; If\ 1 *.*:. :,: *;.*_: '* '.. ). '. :, ',* ... 11** -* f-j;. :l : )
  • -* . ! *-;jj': 1-j-t -;-::: ":":.":

t:-+--N I . : : : : : '. :\ : : i: ' : ! ii : .. 1. I!:: : : : : : .. : ! : : : ! : ! : : : : ;

i:. : : . : : : .

g _ 11° "' .. I : : : : ; : ! : i l : : : ! i ! i ! j u j I : : '. : i l i ! : l!.l j !'.:l i : . I .. .. . .. : : : : i ! ; : . .. .. !f:/q :i:: ':1: ::::

TIU\
-::.*

>---.....

  • * *;: :;j* 1:i '.ii' Ii' ***Ji .. *. *;:1'1 jllj ;::*1 ji'1* !.I,, ; *'. j; ' ... ,

.:::r--;:: . . . . . I . . I I ; I I I . . I I I I I *. *, *. . '. ,', ;, *** I ', *.* i, ** ** ** ** ': **. -__ * "'* *

  • ** .. _ . . . . . *. -**.
  • _ ..
  • __ .1* .: *1* *,* :.* :,*.: .:. _;:**'.-'.
  • .*** r' .1,_:_; , : i ! * .* = .. 1 .:
  • i 111: i LI. ii. I.. ,___ -----* ****-**. -.. 1 f i: t 1-:j: j1ti Tl j*'.*
  • tt** -;; :rt-'. 1-+l+l .-* 1*I..-.!

.,..._,--!--

-:--:--::-

..... -. _-.--:.* :_-:.* *.

  • .:: . 0 "' r-..... , " I' I* Ul .. ';'I I 1' l ! .. ,. : I: !i i I; i '*I: \!?; i -: : : 11 ! .-: ;: H en rl --: . ; : : ! ! ! ! : . :

' : I;! ' I! I I ' : . ! I I 11 . . I I : :..,,1 : l i ; j. I "i 1.1 11 ; I.: Ii I.

__ .., __

....

.
:

j: iilj ii'\::!! Ii:: ii,. i !Iii ijl 11 lli! tttilli !.U llli l!i*! !t:: .......

... _ .... -------:.1 1 ffi: 1tr 1.*

1*;* rt* --1-T +
* .'-" 1 , :r1;1*1*-;T1; f:Tr :::* ;::: .. .. . . . . . : . . . . . . : . :

' i I I 1 I 1 ! I i ! I i : ! : "2 UI ! : : * ; ' ! : : I

  • I : I I ' I : I i I i I : : i : I.! I i : : : : : : : :
: :: 1--t--it--11--

__ -t-.--i. --t . .. .... ,. , .* I 1* mrt,-0 io---*: ,:-rt,, . ' . 4' II *

... : .. I'" .... ::-: :*.* **: *:*: :: *'.:: 1:,: *!1!. ! ! 1.

  • 'II I 1 I ;r: !*1: 1 1*1: n: :;:: L!;: :::: ---........ --* ...... _,,,_,IT *'U t' , .1 *. .i1 t 1 , ., 'f!tf!',, i--'*"* ,,,, ** ,.. .... *--1---t---+---+-.-.

-


:--:---:---;-tT ' rr. I i Ir 1 . 'i"'I :*1. 1...,.n 11 *1 j* tt-r< I '111 'I: I -;t:;-T;7:

'771. -... -.t----t---.*. .. . .. . . ... : .. ' 1 I I ' 11

  • I I . I I ' 11 I : I . I I" ' . I I 1*. I ' ' .. I * ; '; . * * ' . . * * . . . --** --*:**:: ... *.: *::.

i*: I 1: 1rl. II I I I i I:!; p: i: 11.*

1il.: ::::

      • ------t---t---i--r--1

.. *-.:-. .-:-:: :::1 ,*111 j .. i1t*l 1'1'1 11*11 j ' I I ,.,. ::1; 1: 1,*11 ilii :11; i:.: : .... '.:: :::: :.:..:.:.

'. . . ... :: *:1: !!,: 11 :1 n'* lj !. 1. ;;.: . i: 1;111:: *.;! 1::: .. :


. ---... ---* t+1 . C . ** T' i+r 1-j -*t rm 1-1 m-**L>--f.i-4-L

"""---'-

  • --* *-. . : 8: ! ; : : ! i: i I; : ! : 11 : ! I. i : '!: I i l ti' ' I: I : i; ! : : 11 : 11 i i::: . i:: i: .. : : : : : : :-: :.

*-:---tt: l ,* t. >tH * : . '. '. I'.: .. :*:: i::: .. : . : : : .

I. ' ,1. 1 ,., llr :Id 11* ***r I.I. l*jj II J It. 11 ,,.: .. 1 *j** -11 * **** *t* *R* .... *-*----" . .. ' : .. ' : 11 ' : I . I : I I . * . .. 11 I ' 1' ' I I . . I . 11 * . : . I ' .. . .. .. I . -. . .. . .. . -.. .. **-* *

  • t .11 .* *** *I* .lll I*** ,,; 11 I I I
  • I I I'*' 0111 ***** *-* ***-------->---
  • ---*-* *-:*-'-1 ;. : 1n 1 r,tf . ...,.., * *1 rt ?i 11 ti t-:-1 1-*:+-: *ri y.;-:-..... * . . ; . * .. t . I I . I .. I ! ' . ' I ' I 11 . . ' , . ; 11 ' . !
  • I I " . I I
  • I " . JI j * " * ..
  • j ** -.. *--.. I. . : ':. . ; : ; ; I 1 : : : . I. ; : : . ! ! ! . ; i I! I:: ; ! I : : . j; ; : : : \ 11.: . **---*----......... i-:-------:-:* *, : : i . " I :, :. i. '1 I i, :. I, :, ** : ; ! : ' : 11 ; ' '1 ! ; '1 '1 : i : ! : ! i I * : : i ! : i . : i ,. : i; : : ... : . . . . . ....... ,.. I I I*. 'I. l t
  • I"" 1'1** I* .. , .. , .... ,..... .. ..... , ; I I. * * *
  • i.. 1 1 1: . . . . . , . : ,
  • 1 I. ,
  • 1 u* . * , w. . .. t : , * * * * . * * * *
  • _____

.. :

_:*:***:

r*1:1; :!. '1ifff.rn 1n: :;:, *::: __ :. : ....

  • * . ., . *. f ',' .

llL-* Lil.: 11 * ' ! . I ' , . I* ' " .! r ... ' .1.. -

r:--* --*---:--* --*-:*r, ':T"7 : I,. I I' I' I I". I Ii I I I I 1t I' f .. I' I 'I. I' I' * . I I ..... . :. . ... ; +

ilii I

,1, 1111 H WniiJl :,, .. ,,£ *

  • * * **---*****
                • '

f : ;, .. ,;!, oil1 9-:-.,: ... I ' *

  • 1:*;1 i **I T -*-r * *

-

f ..........

,_. t--*----* -i .=t==.--=-

_-

,.:__ __ !'"""_,_ __ : ,--* .

.. * .. -t-,.

--= r--*-+-+-r:-::::r-:=:.: --. i :

--r-:-;

-: : . . =t:::--f---'o-*I-2 FIRST MJDE DISPIACEMENTS FOR_'IlIB REDUCED CRI:M MODEL : :: :r: ::-:*:* :r , .. : .! . .*. j I* 18 'IR-F.SE-437

  • I*. I ' : : : ' " ' i 1
  • ___ __. __

--::I::: :*:T::: ::: .. ,. .. ::::1::** . ,. I. -----1 -;:..-' ' I ' ... : . : : : '.: i : l:: : ' ' I. :::: .-1:. . . 1 * : . : I . . i : .. . .. .. . , . I, ,. : : : : .. , . : 1'.: : .. : . -.-:r.' . . 11** .... !:::T:: -* .... ,. ,... ..,. *J* i I* I I . . ----; ---l * --1---:--

  • I i.. : ' ' . ... , j* **I* . . r: .. i'

.* _..._ r---* t-*-*--**-+/-*---L ... _ -i---*;. , . r. -=-:: r'"=: f--* -*

  • r ' ' 1-*. -.... _ .... I ....

f : i . --:1* ... --** !',;, . -* . l t FIGURE 3

  • SECXlND MODE DISPLACEMENTS FOR nm REDUCED CRIM t-ODEL 19 TR-ESE-437
  • .,. j i

_._:: __ .:L_::;...._--:r----'-\-*-

.1. -+---,... .. \.. . -.-1---r _ _.. -* -; .. : r -J--__ j_ __

.. : ___

---

=:::::+

. . *****r--*

.... ..... -*-* .. :8 ..........

      • -.... f ........ , ........ , ..*... *1*** t. ' * * * * : * *
  • I *
  • o , ** * : * * * , , , L * : * , ; * , , * * , * , , , * , , , , * , , , , , * , , * * , , , * , , * , , , , , * * * , -rT;*: r*:::.-:*

--* : : : : : :...: .

: : :* :.: :.:-: :-: : : : : : : ::; .:: : : : : : : : : : : . : : : : . .

.. *--*:::::: .::....-;.--*1 1:::: ***-=-r: * ;r,:. =:.:: :r::

!;:t::::
_,_
: :.:*
1:::::
J::::
1::::.*::t.:

=::-, __ ,;7.::;:*c:.!*:

,;
.H::'.:
::;.;.*:::.):;::,,::::,.:::
  • l::.:.;..::*l**:o
    • I.**_:*

i .. ****** r -***** ::.:: :?;-i. :-::+-::::


*---*

r:-:::::-:-:-:.

FIGURE 4

  • nIIRD MJDE DISPLACEMENTS FOR mE REDUCED CRI:M MODEL .. 20 'IR-E'.SE-437
  • * * ------*.. -:-:-. . : . ' .
-l4B ,_.....; . i r.1 H l?:o .i ......... . : : fc5 t ! ! St. .. *; * *: *
  • I *. -.. **I
. * :-:-:

'.::::: .. : ---* *: * , : : : [ <

.:*

=0r:::

01::::

J:.::,::::1=::*

,,,:: ::):*.* :,: !:** **::r-::::

<:(:*: :::-1::: .

  • 1 *: . : I: . : : r:: . : : . : .

'.::: 1=:: *I:::: : : : : I:::: ; : ***I;;;: ; : . : 1 :*;:: ;*;; t:::: : : : i I:::: I. **.**** .... ,.... 1 ...................... , *.. -*** **** r***t*

... , .... ..

  • I ***. *-*
  • I* .... ,, ... , .. , *... I **. 1 ***** , **I **** , ******** 1 *** :

1 ***

  • -.. .. .. * .* ; .. I * " ; * .. : * .. " " " * ": t * .. ... .. *H' 'q. * . , . . ". . -" . ' " ' H ! ***. t' t ** !** .... *-** .. ,. **:* I*:* :*** .*.. *:** '*'*

.. ,

i!** ** ,.

        • **** '* ! :*: : =-=: 1* : ::: = 1*: : : ; i ;.; t : 1 * ; ; : 1 i 1 ' : 1 : ; : : 1 ; * ; : 1 i: : i 1 , , ; ; 1 * ; : t t : 1 : :
  • 1 l t ; 1 =: 1 : L:: 1 : ; 1 t ; i : 1 * : i : t !.!..; 1 * * *
  • t; ., :

....... ,. f!:'

1 ,.:

,:, .. i;, 1 1 **

t*.; *ir* *rti ii'.'

.1.,

1.1 ... r ., .*

        • **** **1*

II\ 1**: **t: ::!1 It;\ Iii r*r*

t'*'"r tt t rt:r *t1r It!! rr+! FIGURE 5 DETAILED FINITE ELEMENT CRIM MODEL .* 21 TR-E.SE-437

  • * . MEO\. NOZ.Z.U::

WO. NO. L..E..S C:a'"t" ' \ 2.1

  • ' ' '!> . o'!> + ... . +i, +-... -bt ?>

+40 -tl +., *2 +.a -Ja4 . I l\. l..>!>15 .* ti +i" -I? -q +a tifl 2-2.$.51 ,5 lq.

ed-l +n +.. -tr +Q +ii --\9 . 27Cf (p '4 .12;,?;.& 2. -iii +.s Tro -b. +s +20 +JW. 2-I?>. 4o!>> -lia. +.4 * +io +z. +zs -Q4 "tFJ 4 -b 8 -137 22. 2..4.11!>

14 I \0 \2i,C>3 I '** 4 !A.33 .3o

' . b* 2."1 2-Ui.lo1 FIGURE 6 LOCATION OF THE NOZZLES FOR THE PALISADES PI.ANT 'T'n. T.'t"',... , "'"""

.. I *

  • KJDE NO. 1 2 3 RSS
  • TABLE 1 UST OF.FREQUENCIES

-PALISADES CRIMs MODE NO. 1 2 3 FREE"STANDING MODELS DETAILED MODEL 1.122 7.667 13.84 TABLE 2 REDUCED MODEL 7.674 13.73 BENDING MOMENT AT NOZZLE -PALISADES CRDMs FREE STANDING MODELS LOAD

  • DETAILED MODEL REDUCED MODEL lg 256.7 262.0 lg .on .010 lg 2.446 1.000 lg 256.8 262.1 *' .* % ERROR 2% 'IR-ESE-437
  • TABLE 3 MAXIMUM INTERNAL FORCES -CRITICAL ARFAS OF CRilwfS (Worst Combinations)

NOZZLE FI.ANGE TIE ' ROO NO. MECH. 00. AXIAL SHEAR Mb AXIAL SHF..AR Mb SHF.AR Mb 1 27 9.601 1.104 J.8.44 9.600 1.099 3.512 9.575 144.2 2 31 9.730 1.131 19.51 9.729 1.125 5.009 9.703 148.3 3 39 10.23 1.222 23.51 10.23 1.212 10.01 10.20 161.6 ... 4 38 10.66 1.247 23.72 10.66 1.231 10.59 10.63 159.6 24 TR-ESE-437

  • TABLE 4 *UST OF FRF.QlTENCIES FOR CRDMS ROWS .. MJDE NO. REDUCED MODELS DETAILED MODEL RGl l ROW 2 ROW 3 ROW 4 ROW 4 1 5.980 5.876 5.548 5.491 5.627 2 5.981 5.877 5.550 5.538 5.672 3. 7.341 7.279 7.085 6.795 6.791 4 7.403 7 .341 7 .105 7 .134 7.135 .5 7.554 7.529 7.391 7.566 7.564 6 7.606 7 .600 7.571 7.696 7 .696 7 7.624 7 .622 7.613 7.696 8 7.703 7.701 7.696 7.745 7.744
  • 9 7.703 7.701 7.696 7.802 7.803 10 7.866 7.835 7.781 8.456 8.450 11 7.920 7.872 7.787 14.04 11.37 12 8.287 8.175 7.921 14.04 11.37 . 13 8.903 8. 794 8.456 14.08 13.98 14 9.496 9.412 9 .153 . 14. 10 14.01 15 14.07 14.06 14.04 14.14 14.11 .. 25 TR-ESE-437

... * * * '!:ABLE 5 I.DADS FOR 11IE PALISADES CRDM'S (IDRST COMBINATIONS)

ROW 4 -DETAILED MODEL/MECH.

NOS. 45 & 38 AXIAL SHEAR Mb LOCATION (kips) (kips) (in/kips)

NOZZLE 10.01 1.03 21.43 FLANGE 10.01 1.03 13.96 SEISMIC 10.01 93.11 SUPPORTS .* .. 26 TR-FSE-437