NL-11-0387, WCAP-17343-NP, Rev 0, Analysis of Capsule Z from the Southern Nuclear Operating Company Vogtle Unit 2 Reactor Vessel Radiation Surveillance Program, Enclosure 2 to NL-11-0387

From kanterella
Jump to navigation Jump to search
WCAP-17343-NP, Rev 0, Analysis of Capsule Z from the Southern Nuclear Operating Company Vogtle Unit 2 Reactor Vessel Radiation Surveillance Program, Enclosure 2 to NL-11-0387
ML110800302
Person / Time
Site: Vogtle  Southern Nuclear icon.png
Issue date: 03/31/2011
From: Hunter M A, Rosier B A
Westinghouse
To:
Office of Nuclear Reactor Regulation
References
NL-11-0387 WCAP-17343-NP, Rev 0
Download: ML110800302 (297)


Text

Vogtle Electric Generating Plant Unit 2 Reactor Vessel Surveillance Capsule W Results Enclosure 2 WCAP-1 7343-NP, Rev. 0, Analysis of Capsule Z from the Southern Nuclear Operating Company Vogtle Unit 2 Reactor Vessel Radiation Surveillance Program Westinghouse Non-Proprietary Class 3 WCAP-17343-NP March Revision 0 Analysis of Capsule Z from the Southern Nuclear Operating Company Vogtle Unit 2 Reactor Vessel Radiation Surveillance Program Westinghouse 2011 WESTINGHOUSE NON-PROPRIETARY CLASS 3 WCAP-17343-NP Revision 0 Analysis of Capsule Z from the Southern Nuclear Operating Company Vogtle Unit 2 Reactor Vessel Radiation Surveillance Program B. A. Rosier*M. A. Hunter*March 2011 Reviewers:

A. E. Leicht*Aging Management and License Renewal Services F. A. Alpan*Radiation Engineering and Analysis Approved:

A. E. Lloyd*, Acting Manager Aging Management and License Renewal Services*Electronically Approved Records Are Authenticated in the Electronic Document Management System.Westinghouse Electric Company LLC 1000 Westinghouse Drive Cranberry Township, PA 16066© 2011 Westinghouse Electric Company LLC All Rights Reserved Westinghouse Non-Proprietary Class 3 RECORD OF REVISION iii Revision 0: Original Issue WCAP-17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 v TABLE OF CONTENTS L IST O F T A B L E S ......................................................................................................................................

vii L IST O F F IG U R E S .....................................................................................................................................

ix EX EC U T IV E SU M M A R Y ..........................................................................................................................

xi 1 SU M M A R Y O F R E SU LT S ..........................................................................................................

1-1 2 IN T R O D U C T IO N ........................................................................................................................

2-1 3 B A C K G R O U N D ..........................................................................................................................

3-1 4 D ESCRIPTION O F PROG RA M ..................................................................................................

4-1 5 TESTING OF SPECIMENS FROM CAPSULE Z ..................................................................

5-1 5.1 O V E R V IE W ....................................................................................................................

5-1 5.2 CHARPY V-NOTCH IMPACT TEST RESULTS ...........................................................

5-3 5.3 TEN SILE TEST RE SU LTS .............................................................................................

5-5 5.4 1/2T COMPACT TENSION SPECIMEN TESTS ...........................................................

5-5 6 RADIATION ANALYSIS AND NEUTRON DOSIMETRY

.......................................................

6-1 6.1 IN T R O D U C T IO N ...........................................................................................................

6-1 6.2 DISCRETE ORDINATES ANALYSIS ...........................................................................

6-2 6.3 N EU TR O N D O SIM ETRY ..............................................................................................

6-5 6.4 CALCULATIONAL UNCERTAINTIES

........................................................................

6-5 7 SURVEILLANCE CAPSULE REMOVAL SCHEDULE .......................................................

7-1 8 RE FE RE N C E S .............................................................................................................................

8-1 APPENDIX A VALIDATION OF THE RADIATION TRANSPORT MODELS BASED ON NEUTRON DOSIMETRY MEASUREMENTS

.............................................................................

A-i APPENDIX B LOAD-TIME RECORDS FOR CHARPY SPECIMEN TESTS ................................

B-I APPENDIX C CHARPY V-NOTCH PLOTS FOR EACH CAPSULE USING SYMMETRIC HYPERBOLIC TANGENT CURVE-FITTING METHOD ......................................

C-1 APPENDIX D VOGTLE UNIT 2 SURVEILLANCE PROGRAM CREDIBILITY EVALUATION

.... D-i APPENDIX E VOGTLE UNIT 2 UPPER-SHELF ENERGY EVALUATION

..................................

E-1 WCAP-17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 vii LIST OF TABLES Table 4-1 Chemical Composition (wt%) of Vogtle Unit 2 Reactor Vessel Lower Shell Plate B8628-1.........................................................................................................................................

4 -3 Table 4-2 Chemical Composition (wt%) of the Vogtle Unit 2 Reactor Vessel Beltline Region Weld M aterials ..........................................................................................................................

4 -4 Table 4-3 Heat Treatment History of the Vogtle Unit 2 Reactor Vessel Surveillance Materials(a)...4-5 Table 5-1 Charpy V-notch Data for the Vogtle Unit 2 Lower Shell Plate B8628-1 Irradiated to a Fluence of 4.16 x 1019 n/cm 2 (E > 1.0 MeV) (Longitudinal Orientation)

........................

5-6 Table 5-2 Charpy V-notch Data for the Vogtle Unit 2 Lower Shell Plate B8628-1 Irradiated to a Fluence of 4.16 x 1019 n/cm 2 (E > 1.0 MeV) (Transverse Orientation)

...........................

5-7.Table 5-3 Charpy V-notch Data for the Vogtle Unit 2 Surveillance Weld Metal Irradiated to a Fluence of 4.16 x 1019 n/cm 2 (E > 1.0 M eV) ...................................................................

5-8 Table 5-4 Charpy V-notch Data for the Vogtle Unit 2 Heat-Affected Zone (HAZ) Material Irradiated to a Fluence of 4.16 x 1019 n/cm 2 (E > 1.0 M eV) ............................................................

5-9 Table 5-5 Instrumented Charpy Impact Test Results for the Vogtle Unit 2 Lower Shell Plate B8628-1 Irradiated to a Fluence of 4.16 x 1019 n/cm 2 (E > 1.0 MeV)(Longitudinal O rientation)

.............................................................................................

5-10 Table 5-6 Instrumented Charpy Impact Test Results for the Vogtle Unit 2 Lower Shell Plate B8628-1 Irradiated to a Fluence of 4.16 x 10i 9 n/cm 2 (E > 1.0 MeV)(Transverse O rientation)

...........................................................................................

5-11 Table 5-7 Instrumented Charpy Impact Test Results for the Vogtle Unit 2 Surveillance Weld Metal Irradiated to a Fluence of 4.16 x 1019 n/cm 2 (E > 1.0 MeV) ..........................................

5-12 Table 5-8 Instrumented Charpy Impact Test Results for the Vogtle Unit 2 Heat-Affected Zone (HAZ) Material Irradiated to a Fluence of 4.16 x 10'9 n/cm 2 (E > 1.0 MeV) ................

5-13 Table 5-9 Effect of Irradiation to 4.16 x 1019 n/cm 2 (E > 1.0 MeV) on the Charpy V-Notch Toughness Properties of the Vogtle Unit 2 Reactor Vessel Surveillance Capsule Z M aterials ........................................................................................................................

5-14 Table 5-10 Comparison of the Vogtle Unit 2 Surveillance Material 30 ft-lb Transition Temperature Shifts and Upper-Shelf Energy Decreases with Regulatory Guide 1.99, Revision 2, P red ictio n s .....................................................................................................................

5-15 Table 5-11 Tensile Properties of the Vogtle Unit 2 Capsule Z Reactor Vessel Surveillance Materials Irradiated to 4.16 x 1019 n/cm 2 (E > 1.0 M eV) ...............................................................

5-16 Table 6-1 Calculated Neutron Exposure Rates and Integrated Exposures at the Surveillance C apsule C enter(a) ...........................................................................................

..... 6-7 Table 6-2 Calculated Azimuthal Variation of Maximum Exposure Rates and Integrated Exposures at the Reactor Vessel Clad/Base M etal Interface

...........................................................

6-11 WCAP- 17343-NP March 2011 Revision 0 viii Westinghouse Non-Proprietary Class 3 Table 6-3 Relative Radial Distribution of Neutron Fluence (E > 1.0 MeV) Within the R eactor V essel W all(a) .....................................................................................................

6-15 Table 6-4 Relative Radial Distribution of iron Atom Displacements (dpa) Within the R eactor V essel W all(a) .....................................................................................................

6-16 Table 6-5 Calculated Fast Neutron Exposure of Surveillance Capsules Withdrawn from V o gtle U nit 2 ..................................................................................................................

6-16 Table 6-6 Calculated Surveillance Capsule Lead Factors ..............................................................

6-17 Table 7-1 Surveillance Capsule W ithdrawal Summary ....................................................................

7-1 Table A-I Nuclear Parameters Used in the Evaluation of Neutron Sensors .............................

A-10 Table A-2 Monthly Thermal Generation During the First Fourteen Fuel Cycles of the Vogtle Unit 2 Reactor (Reactor Power of 3411 MWt from Startup Through the End of Cycle 3; 3565 MWt for Cycles 4 through 13; and, 3626 MWt for Cycle 14) ..................................

A-11 Table A-3 Calculated Cj Factors at the Surveillance Capsule Center Core Midplane Elevation...A-14 Table A-4a Measured Sensor Activities and Reaction Rates Surveillance Capsule U ................

A-15 Table A-4b Measured Sensor Activities and Reaction Rates Surveillance Capsule Y ....................

A-16 Table A-4c Measured Sensor Activities and Reaction Rates Surveillance Capsule X ....................

A-17 Table A-4d Measured Sensor Activities and Reaction Rates Surveillance Capsule W ...................

A-18 Table A-4e Measured Sensor Activities and Reaction Rates Surveillance Capsule Z .....................

A- 19 Table A-5 Comparison of Measured, Calculated, and Best-Estimate Reaction Rates at the Surveillance C apsule C enter .........................................................................................

A -20 Table A-6 Comparison of Calculated and Best-Estimate Exposure Rates at the Surveillance C apsule C enter ........................................................................................

A -23 Table A-7 Comparison of Measured/Calculated (M/C) Sensor Reaction Rate Ratios Including all Fast N eutron Threshold Reactions

................................................................................

A -24 Table A-8 Comparison of Best-Estimate/Calculated (BE/C) Exposure Rate Ratios .....................

A-24 Table C-I Upper-Shelf Energy Values (ft-lb) Fixed in CVGRAPH ...........................................

C-i Table D- 1 Calculation of Interim Chemistry Factors for the Credibility Evaluation using Vogtle U nit 2 Surveillance C apsule D ata ...................................................................................

D -4 Table D-2 Vogtle Unit 2 Surveillance Capsule Data Scatter about the Best-Fit Line .................

D-5 Table E-i Predicted Positions 1.2 and 2.2 Upper-Shelf Energy Values at 36 EFPY .......................

E-3 Table E-2 Predicted Positions 1.2 and 2.2 Upper-Shelf Energy Values at 57 EFPY .......................

E-4 WCAP-17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 ix LIST OF FIGURES Figure 4-1 Arrangement of Surveillance Capsules in the Vogtle Unit 2 Reactor Vessel ...................

4-6 Figure 4-2 Capsule Z Diagram Showing the Location of Specimens, Thermal Monitors, and D osim eters ................................................................................................................

4 -7 Figure 5-1 Charpy V-Notch Impact Energy vs. Temperature for Vogtle Unit 2 Reactor Vessel Lower Shell Plate B8628-1 (Longitudinal Orientation)

............................................................

5-17 Figure 5-2 Charpy V-Notch Lateral Expansion vs. Temperature for Vogtle Unit 2 Reactor Vessel Lower Shell Plate B8628-1 (Longitudinal Orientation)

................................................

5-18 Figure 5-3 Charpy V-Notch Percent Shear vs. Temperature for Vogtle Unit 2 Reactor Vessel Lower Shell Plate B8628-1 (Longitudinal Orientation)

............................................................

5-19 Figure 5-4 Charpy V-Notch Impact Energy vs. Temperature for Vogtle Unit 2 Reactor Vessel Lower Shell Plate B8628-1 (Transverse Orientation)

...............................................................

5-20 Figure 5-5 Charpy V-Notch Lateral Expansion vs. Temperature for Vogtle Unit 2 Reactor Vessel Lower Shell Plate B8628-1 (Transverse Orientation)

....................................................

5-21 Figure 5-6 Charpy V-Notch Percent Shear vs. Temperature for Vogtle Unit 2 Reactor Vessel Lower Shell Plate B8628-1 (Transverse Orientation)

...............................................................

5-22 Figure 5-7 Charpy V-Notch Impact Energy vs. Temperature for the Vogtle Unit 2 Reactor Vessel Surveillance Program W eld M etal .................................................................................

5-23 Figure 5-8 Charpy V-Notch Lateral Expansion vs. Temperature for the Vogtle Unit 2 Reactor Vessel Surveillance Program W eld M etal .................................................................................

5-24 Figure 5-9 Charpy V-Notch Percent Shear vs. Temperature for the Vogtle Unit 2 Reactor Vessel Surveillance Program W eld M etal .................................................................................

5-25 Figure 5-10 Charpy V-Notch Impact Energy vs. Temperature for the Vogtle Unit 2 Reactor Vessel H eat-A ffected Zone M aterial .........................................................................................

5-26 Figure 5-11 Charpy V-Notch Lateral Expansion vs. Temperature for the Vogtle Unit 2 Reactor Vessel H eat-A ffected Zone M aterial .........................................................................................

5-27 Figure 5-12 Charpy V-Notch Percent Shear vs. Temperature for the Vogtle Unit 2 Reactor Vessel H eat-A ffected Zone M aterial .........................................................................................

5-28 Figure 5-13 Charpy Impact Specimen Fracture Surfaces for Vogtle Unit 2 Reactor Vessel Lower Shell Plate B8628-1 (Longitudinal Orientation)

.....................................................................

5-29 Figure 5-14 Charpy Impact Specimen Fracture Surfaces for Vogtle Unit 2 Reactor Vessel Lower Shell Plate B8628-1 (Transverse O rientation)

........................................................................

5-30 Figure 5-15 Charpy Impact Specimen Fracture Surfaces for the Vogtle Unit 2 Reactor Vessel Surveillance Program W eld M etal ..............................................................................

5-31 Figure 5-16 Charpy Impact Specimen Fracture Surfaces for the Vogtle Unit 2 Reactor Vessel H eat-A ffected Zone M aterial .........................................................................................

5-32 WCAP- 17343-NP March 2011 Revision 0 X Westinghouse Non-Proprietary Class 3 Figure 5-17 Tensile Properties for Vogtle Unit 2 Reactor Vessel Lower Shell Plate B8628-1 (Longitudinal O rientation)

.............................................................................................

5-33 Figure 5-18 Tensile Properties for Vogtle Unit 2 Reactor Vessel Lower Shell Plate B8628-1 (Transverse O rientation)

................................................................................................

5-34 Figure 5-19 Tensile Properties for the Vogtle Unit 2 Reactor Vessel Surveillance Program Weld Metal.......................................................................................................................................

5 -3 5 Figure 5-20 Fractured Tensile Specimens from Vogtle Unit 2 Reactor Vessel Lower Shell Plate B 8628-1 (Longitudinal O rientation)

..............................................................................

5-36 Figure 5-21 Fractured Tensile Specimens from Vogtle Unit 2 Reactor Vessel Lower Shell Plate B 8628-1 (Transverse O rientation)

.................................................................................

5-37 Figure 5-22 Fractured Tensile Specimens from the Vogtle Unit 2 Reactor Vessel Surveillance Program W eld M etal ......................................................................................................

5-38 Figure 5-23 Engineering Stress-Strain Curves for Vogtle Unit 2 Lower Shell Plate B8628-1 Tensile Specimens BL 16 and BL 17 (Longitudinal Orientation)

................................................

5-39 Figure 5-24 Engineering Stress-Strain Curve for Vogtle Unit 2 Lower Shell Plate B8628-1 Tensile Specimen BL 18 (Longitudinal Orientation)

..................................................................

5-40 Figure 5-25 Engineering Stress-Strain Curve for Vogtle Unit 2 Lower Shell Plate B8628-1 Tensile Specimen BT 16 (Transverse Orientation)

.....................................................................

5-40 Figure 5-26 Engineering Stress-Strain Curves for Vogtle Unit 2 Lower Shell Plate B8628-1 Tensile Specimens BT 17 and BT 18 (Transverse Orientation)

...................................................

5-41 Figure 5-27 Engineering Stress-Strain Curves for Vogtle Unit 2 Surveillance Program Weld Metal Tensile Specim ens BW 16 and BW 17 ............................................................................

5-42 Figure 5-28 Engineering Stress-Strain Curve for Vogtle Unit 2 Surveillance Program Weld Metal Tensile Specim en B W 18 ................................................................................................

5-43 Figure 6-1 Vogtle Unit 2 r,0 Reactor Geometry with a 12.5' Neutron Pad Span at the Core Midplane.......................................................................................................................................

6 -18 Figure 6-2 Vogtle Unit 2 r,0 Reactor Geometry with a 20.00 Neutron Pad Span at the Core Midplane.......................................................................................................................................

6 -19 Figure 6-3 Vogtle Unit 2 r,0 Reactor Geometry with a 22.50 Neutron Pad Span at the Core Midplane.......................................................................................................................................

6 -2 0 Figure 6-4 Vogtle Unit 2 r,z Reactor Geometry with Neutron Pad ..................................................

6-21 Figure E- 1 Regulatory Guide 1.99, Revision 2 Predicted Decrease in Upper-Shelf Energy as a Function of Copper and Fluence .....................................................................................

E-2 WCAP-17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 xi EXECUTIVE

SUMMARY

The purpose of this report is to document the testing results of surveillance Capsule Z from Vogtle Unit 2.Capsule Z was removed at 18.48 effective full power years (EFPY) and post-irradiation mechanical tests of the Charpy V-notch and tensile specimens were performed, along with a fluence evaluation.

Capsule Z received a fluence of 4.16 x 1019 n/cm 2 (E > 1.0 MeV) after irradiation to 18.48 EFPY. The peak clad/base metal interface vessel fluence after 18.48 EFPY of plant operation was 1.00 x 1019 n/cm 2 (E >1.0 MeV).This evaluation led to the following conclusions:

1) The measured percent decreases in upper-shelf energy for all the surveillance materials contained in Vogtle Unit 2 Capsule Z are less than the Regulatory Guide 1.99, Revision 2 [Ref. 1] predictions.
2) The Vogtle Unit 2 surveillance plate data is judged to be not credible; however, the weld data is judged to be credible.

This credibility evaluation can be found in Appendix D. 3) All beltline materials exhibit a more than adequate upper-shelf energy level for continued safe plant operation and are predicted to maintain an upper-shelf energy greater than 50 ft-lb through end-of-license (36 EFPY) and end-of-license renewal (57 EFPY) as required by 10 CFR 50, Appendix G [Ref. 2]. The upper-shelf energy evaluation is presented in Appendix E.Lastly, a brief summary of the Charpy V-notch testing can be found in Section 1. All Charpy V-notch data was plotted using a symmetric hyperbolic tangent curve-fitting program.WCAP-17343-NP March 20 1 Revision 0 Westinghouse Non-Proprietary Class 3 1-1 1

SUMMARY

OF RESULTS The analysis of the reactor vessel materials contained in surveillance Capsule Z, the fifth capsule removed and tested from the Vogtle Unit 2 reactor pressure vessel, led to the following conclusions: " Charpy V-notch test data were plotted using a symmetric hyperbolic tangent curve-fitting program.Appendix C presents the CVGRAPH, Version 5.3, Charpy V-notch plots for Capsule Z and previous capsules, along with the program input data.* Capsule Z received an average fast neutron fluence (E > 1.0 MeV) of 4.16 x 1019 n/cm 2 after 18.48 EFPY of plant operation.

  • Irradiation of the reactor vessel Lower Shell Plate B8628-1 Charpy specimens, oriented with the longitudinal axis of the specimen parallel to the major working direction (longitudinal orientation), resulted in an irradiated 30 ft-lb transition temperature of 67.8'F and an irradiated 50 ft-lb transition temperature of 106.8 0 F. This results in a 30 ft-lb transition temperature increase of 59.0°F and a 50 ft-lb transition temperature increase of 61.4°F for the longitudinally oriented specimens.
  • Irradiation of the reactor vessel Lower Shell Plate B8628-1 Charpy specimens, oriented with the longitudinal axis of the specimen perpendicular to the major working direction (transverse orientation), resulted in an irradiated 30 ft-lb transition temperature of 103.9°F and an irradiated 50 ft-lb transition temperature of 140. I°F. This results in a 30 ft-lb transition temperature increase of 75.3°F and a 50 ft-lb transition temperature increase of 70.0'F for the transversely oriented specimens.
  • Irradiation of the Surveillance Program Weld Metal (Heat # 87005) Charpy specimens resulted in an irradiated 30 ft-lb transition temperature of 2. I°F and an irradiated 50 ft-lb transition temperature of 48.3°F. This results in a 30 ft-lb transition temperature increase of 21.3°F and a 50 ft-lb transition temperature increase of 37.2'F." Irradiation of the Heat-Affected Zone (HAZ) Material Charpy specimens resulted in an irradiated 30 ft-lb transition temperature of -75.1 F and an irradiated 50 ft-lb transition temperature of-41.2°F.

This results in a 30 ft-lb transition temperature increase of 8.6°F and a 50 ft-lb transition temperature increase of 11.2'F." The average upper-shelf energy of Lower Shell Plate B8628-1 (longitudinal orientation) did not change after irradiation.

This results in an irradiated average upper-shelf energy of 89.0 ft-lb for the longitudinally oriented specimens.

  • The average upper-shelf energy of Lower Shell Plate B8628-1 (transverse orientation) resulted in an average energy decrease of 2.0 ft-lb after irradiation.

This results in an irradiated average upper-shelf energy of 68.0 ft-lb for the transversely oriented specimens." The average upper-shelf energy of the Surveillance Program Weld Metal Charpy specimens resulted in an average energy decrease of 2.0 ft-lb after irradiation.

This results in an irradiated average upper-shelf energy of 90.0 ft-lb for the weld metal specimens.

WCAP- 17343-NP March 2011 Revision 0 1-2 Westinghouse Non-Proprietary Class 3* The average upper-shelf energy of the HAZ Material Charpy specimens resulted in an average energy increase of 6.0 ft-lb after irradiation.

This results in an irradiated average upper-shelf energy of 112.0 ft-lb for the HAZ Material.* Comparisons of the measured 30 ft-lb shift in transition temperature values and upper-shelf energy decreases to those predicted by Regulatory Guide 1.99, Revision 2 [Ref. 1] for the Vogtle Unit 2 reactor vessel surveillance materials are presented in Table 5-10.* Based on the credibility evaluation presented in Appendix D, the Vogtle Unit 2 surveillance plate data is not credible but the surveillance weld data is credible." Based on the upper-shelf energy evaluation in Appendix E, all beltline materials exhibit a more than adequate upper-shelf energy level for continued safe plant operation and are predicted to maintain an upper-shelf energy greater than 50 ft-lb through end-of-license (36 EFPY) and end-of-license renewal (57 EFPY) as required by 10 CFR 50, Appendix G [Ref. 2]." The calculated 36 EFPY (end-of-license) and 57 EFPY (end-of-license renewal) neutron fluence (E > 1.0 MeV) at the core mid-plane for the Vogtle Unit 2 reactor vessel using the Regulatory Guide 1.99, Revision 2 attenuation formula (i.e., Equation #3 in the guide) are as follows: Calculated (36 EFPY): Calculated (57 EFPY): Vessel inner radius* = 2.00 x 1019 n/cm 2 (Taken from Table 6-2)Vessel 1/4 thickness

= 1.192 x 1019 n/cm 2 Vessel inner radius* = 3.19 x 1019 n/cm 2 (Interpolated from Table 6-2)Vessel 1/4 thickness

= 1.901 x 1019 n/cm 2* Clad/base metal interface.

WCAP- 17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 2-1 2 INTRODUCTION This report presents the results of the examination of Capsule Z, the fifth capsule removed and tested in the continuing surveillance program, which monitors the effects of neutron irradiation on the Southern Nuclear Operating Company Vogtle Unit 2 reactor pressure vessel materials under actual operating conditions.

The surveillance program for the Vogtle Unit 2 reactor pressure vessel materials was designed and recommended by the Westinghouse Electric Corporation.

A description of the surveillance program and the pre-irradiation mechanical properties of the reactor vessel materials are presented in WCAP-1 1381[Ref. 3], "Georgia Power Company Alvin W. Vogtle Unit No. 2 Reactor Vessel Radiation Surveillance Program." The surveillance program was planned to cover the 40-year design life of the reactor pressure vessel and was based on ASTM E185-82 [Ref. 4], "Standard Practice for Conducting Surveillance Tests for Light-Water Cooled Nuclear Power Reactor Vessels." Capsule Z was removed from the reactor after 18.48 EFPY of exposure and shipped to the Westinghouse Research and Technology Unit (RTU) Hot Cell Facility, where the post-irradiation mechanical testing of the Charpy V-notch impact and tensile surveillance specimens was performed.

This report summarizes the testing of the post-irradiation data obtained from surveillance Capsule Z removed from the Vogtle Unit 2 reactor vessel and discusses the analysis of the data.WCAP-17343-NP March 2011 Revision 0

Westinghouse Non-Proprietary Class 3 3-1 3 BACKGROUND The ability of the large steel pressure vessel containing the reactor core and its primary coolant to resist fracture constitutes an important factor in. ensuring safety in the nuclear industry.

The beltline region of the reactor pressure vessel is the most critical region of the vessel because it is subjected to significant fast neutron bombardment.

The overall effects of fast neutron irradiation on the mechanical properties of low-alloy, ferritic pressure vessel steels such as SA533 Grade B Class 1 (base material of the Vogtle Unit 2 reactor pressure vessel beltline) are well documented in the literature.

Generally, low-alloy ferritic materials show an increase in hardness and tensile properties and a decrease in ductility and toughness during high-energy irradiation.

A method for ensuring the integrity of reactor pressure vessels has been presented in "Fracture Toughness Criteria for Protection Against Failure," Appendix G to Section XI of the ASME Boiler and Pressure Vessel Code [Ref. 5]. The method uses fracture mechanics concepts and is based on the reference nil-ductility transition temperature (RTNDT).RTNDT is defined as the greater of either the drop-weight nil-ductility transition temperature (NDTT per ASTM E208 [Ref. 6]) or the temperature 60'F less than the 50 ft-lb (and 35-mil lateral expansion) temperature as determined from Charpy specimens oriented perpendicular (transverse) to the major working direction of the plate. The RTNDT of a given material is used to index that material to a reference stress intensity factor curve (K 1 c curve) which appears in Appendix G to Section XI of the ASME Code[Ref. 5]. The KI, curve is a lower bound of static fracture toughness results obtained from several heats of pressure vessel steel. When a given material is indexed to the K 1 c curve, allowable stress intensity factors can be obtained for this material as a function of temperature.

Allowable operating limits can then be determined using these allowable stress intensity factors.RTNDT and, in turn, the operating limits of nuclear power plants can be adjusted to account for the effects of radiation on the reactor vessel material properties.

The changes in mechanical properties of a given reactor pressure vessel steel, due to irradiation, can be monitored by a reactor vessel surveillance program, such as the Vogtle Unit 2 reactor vessel radiation surveillance program, in which a surveillance capsule is periodically removed from the operating nuclear reactor and the encapsulated specimens are tested. The increase in the average Charpy V-notch 30 ft-lb temperature (ARTNDT) due to irradiation is added to the initial RTNDT, along with a margin (M) to cover uncertainties, to adjust the RTNDT (ART) for radiation embrittlement.

This ART (initial RTNDT + M + ARTNDT) is used to index the material to the Kic curve and, in turn, to set operating limits for the nuclear power plant that take into account the effects of irradiation on the reactor vessel materials.

WCAP-17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 4-1 4 DESCRIPTION OF PROGRAM Six surveillance capsules for monitoring the effects of neutron exposure on the Vogtle Unit 2 reactor pressure vessel core region (beltline) materials were inserted in the reactor vessel prior to initial plant startup. The six capsules were positioned in the reactor vessel between the neutron pads and the vessel wall as shown in Figure 4-1. The vertical center of the capsules is opposite the vertical center of the core.The capsules contain specimens made from the following:

  • Lower Shell Plate B8628-1 (longitudinal orientation)
  • Lower Shell Plate B8628-1 (transverse orientation)
  • Weld metal fabricated with 3/16-inch Mil B-4 weld filler wire, Heat Number 87005 Linde Type 124 flux, Lot Number 1061, which is identical to that used in the actual fabrication of the intermediate to lower shell circumferential weld seam* Weld heat-affected zone (HAZ) material of Lower Shell Plate B8628-1 Test material obtained from the lower shell plate (after thermal heat treatment and forming of the plate)was taken at least one plate thickness from the quenched edges of the plate. All test specimens were machined from the '/4 and 3/4 thickness locations of the plate after performing a simulated post-weld stress-relieving treatment on the test material.

Test specimens were also removed from weld and heat-affected zone metal of a stress-relieved weldment joining Lower Shell Plate B8628-1 and adjacent Lower Shell Plate B8825-1. All heat-affected zone specimens were obtained from the weld heat-affected zone of Lower Shell Plate B8628-1.Charpy V-notch impact specimens from Lower Shell Plate B8628-1 were machined in the longitudinal orientation (longitudinal axis of the specimen parallel to the major rolling direction) and also in the transverse orientation (longitudinal axis of the specimen perpendicular to the major rolling direction).

The core-region weld Charpy impact specimens were machined from the weldment such that the long dimension of each Charpy specimen was perpendicular (normal) to the weld direction.

The notch of the weld metal Charpy specimens was machined such that the direction of crack propagation in the specimen was in the welding direction.

Tensile specimens from Lower Shell Plate B8628-1 were machined in both the longitudinal and transverse orientations.

Tensile specimens from the weld metal were oriented perpendicular to the welding direction.

Compact Test (CT) specimens from Lower Shell Plate B8628-1 were machined in the longitudinal and transverse orientations.

CT specimens from the weld metal were machined with the notch oriented in the direction of welding. All specimens were fatigue pre-cracked according to ASTM E399 [Ref. 7].All six capsules contained dosimeter wires of pure iron, copper, nickel, and aluminum-0.

15 weight percent cobalt (cadmium-shielded and unshielded).

In addition, cadmium-shielded dosimeters of Neptunium (2 3 7 Np) and Uranium (2 3 8 U) were placed in the capsules to measure the integrated flux at specific neutron energy levels.WCAP- 17343-NP March 2011 Revision 0 4-2 Westinghouse Non-Proprietary Class 3 The capsules contained thermal monitors made from two low-melting-point eutectic alloys, which were sealed in Pyrex tubes. These thermal monitors were used to define the maximum temperature attained by the test specimens during irradiation.

The composition of the two eutectic alloys and their melting points are as follows: 2.5% Ag, 97.5% Pb 1.5% Ag, 1.0% Sn, 97.5% Pb Melting Point: 579'F (304'C)Melting Point: 590'F (310 0 C)The chemical composition of the unirradiated surveillance materials is presented in Tables 4-1 and 4-2.Also contained in Tables 4-1 and 4-2 is the chemical composition of the surveillance materials that were irradiated in Capsule Y. The unirradiated data in Tables 4-1 and 4-2 was obtained from the original surveillance program report, WCAP-1 1381 [Ref. 3], Appendix A. The irradiated data in Tables 4-1 and 4-2 was obtained from the latest surveillance capsule report, WCAP-16382-NP

[Ref. 8], and was originally documented in the Capsule Y report, WCAP-14532

[Ref. 9].The heat treatment of the unirradiated surveillance materials is presented in Table 4-3. The data in Table 4-3 was obtained from the unirradiated surveillance program report, WCAP-1 1381 [Ref. 3], Appendix A.Capsule Z was removed after 18.48 EFPY of plant operation.

This capsule contained Charpy V-notch, tensile, 1/2T-CT fracture mechanics specimens, dosimeters, and thermal monitors.The arrangement of the various mechanical specimens, dosimeters and thermal monitors contained in Capsule Z is shown in Figure 4-2.WCAP-17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 4-3 Table 4-1 Chemical Composition (wt%) of Vogtle Unit 2 Reactor Vessel Lower Shell Plate B8628-1 Combstio Westinghouse Capsule YAnalysis (b)_Eli__t_..

EngineeringAnalyss__

_ .. Analysis (a) (BL62 l C 0.24 0.23 0.233 Mn 1.34 1.30 1.168 P 0.007 0.007 0.008 S 0.016 0.014 0.009 Si 0.25 0.23 0.185 Ni 0.59 0.59 0.549 Mo 0.59 0.50 0.51 Cr 0.02 0.07 0.064 Cu 0.05 0.05 0.049 Al 0.029 0.034 0.032 Co 0.004 0.008 0.008 Pb Not detected <0.07 ---W <0.01 <0.05 ---Ti <0.01 0.005 <0.002 Zr <0.001 <0.03 <0.01 V 0.004 <0.005 <0.004 Sn 0.017 0.007 <0.01 As 0.007 0.008 <0.02 Cb <0.01 <0.05 ---N 2 0.008 0.007 ---B <0.001 0.008 0.009 Notes: (a) The unirradiated data was obtained from Table 4-1 of WCAP-16382-NP

[Ref. 8] and was originally documented in WCAP-11381

[Ref. 3], Appendix A.(b) The Capsule Y data was obtained from Table 4-1 of WCAP-16382-NP

[Ref. 8] and was originally documented in Table 4-4 of WCAP-14532

[Ref. 9].WCAP-17343-NP March 2011 Revision 0 4-4 Westinghouse Non-Proprietary Class 3 Table 4-2 Chemical Composition (wt%) of the Vogtle Unit 2 Reactor Vessel Beltline Region Weld Materials Intermediate&

Circ. Weld(") Ore. Weld(ad Element Lowe ShelI (Cngusioe' (Westinghouse Analysis~e)

Analysis~, , <Afalysis~e)

Ln.Wls Analysis)<

'Analysis) (B-1 (BW-63') (BW-72)C 0.15 0.075 0.099 0.084 0.089 0.097 Mn 1.34 1.27 1.25 1.046 0.983 1.110 P 0.007 0.007 0.008 0.010 0.008 0.011 S 0.011 0.010 0.013 0.006 0.006 0.008 Si 0.13 0.50 0.43 0.448 0.447 0.429 Ni 0.13 0.12 0.17 0.127 0.118 0.137 Mo 0.55 0.52 0.47 0.47 0.44 0.48 Cr ---0.07 0.061 0.056 0.052 0.056 Cu 0.07 0.06 0.040 0.039 0.037 0.040 Al --- --- 0.015 <0.02 <0.02 <0.02 Co --- --- 0.002 0.008 0.008 0.009 Pb --- --- <0.01 ......W --- --- <0.01 ......Ti ---- <0.001 <0.002 <0.002 <0.002 Zr --- --- <0.01 <0.01 <0.01 <0.01 V 0.005 0.004 <0.004 <0.004 <0.004 <0.004 Sn --- --- <0.001 <0.01 <0.01 <0.01 As --- --- 0.003 <0.02 <0.02 <0.02 Cb --- --- <0.002 .........N 2 --- --- 0.002 ---. ...B ---- 0.009 0.009 0.008 0.008 Notes: (a) The unirradiated data was obtained from Table 4-2 of WCAP-16382-NP

[Ref. 8] and originally documented in (b)(c)(d)(e)WCAP- 11381 [Ref. 3], Appendix A.Weld Wire Heat # 87005, Linde 0091 Flux, Lot # 0145.Weld Wire Heat # 87005, Linde 124 Flux, Lot # 1061.Westinghouse Analysis of surveillance program test plate "D", representative of the intermediate to lower shell circumferential weld.The Capsule Y data was obtained from Table 4-2 of WCAP-16382-NP

[Ref. 8] and was originally documented in Table 4-4 of WCAP-14532

[Ref. 9]. Note that the NIST Standards are not reprinted herein.WCAP-17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 4-5 Table 4-3 Heat Treatment History of the Vogtle Unit 2 Reactor Vessel Surveillance Materials(a)

  • Material

<Y Temperature (IF) ~ Time (hours) Cooling Austenitized

@ 1600 + 25 4 Water-Quenched (87 1C)Intermediate Shell Plates R4-1, Tempered @ 1225 +/- 25 4 Air-Cooled R4-2, and R4-3 (663°C)Stress Relieved @ 1150 +/- 50 16.5(" Furnace-Cooled (62 1C)Austenitized

@ 1600 +/- 25 4 Water-Quenched (871°C)Lower Shell Plates B8825-1, Tempered @ 1225 +/- 25 4 Air-Cooled R8-1, and B8628-1 (663-C)Stress Relieved @ 1150 +/- 50 12.0") Furnace-Cooled (62 1C)Intermediate Shell Longitudinal Stress Relieved @ 1150 +/- 50 16.5") Furnace-Cooled Weld Seams (62 1°C)Lower Shell Longitudinal Weld Stress Relieved @ 1150 + 50 12.01b) Furnace-Cooled Seams (62 1C)Intermediate to Lower Shell Local Stress Relieved @ 5.0 Furnace-Cooled Circumferential Weld Seam 1150 + 50 (621 C)Surveillance Pr m st ?4a *Surveillance Program Weldment Test Plate "D" Post Weld Stress Relieved @ 6.0(c) Furnace-Cooled (Representative of Closing 1150 +/- 50 (621 'C)Circ. Weld Seam)Notes: (a) This Table was reprinted from Table 4-3 of WCAP-16382-NP

[Ref. 8] and originally documented in WCAP-11381

[Ref. 31, Appendix A.(b) Stress relief includes the intermediate to lower shell closing circumferential seam post-weld heat treatment.(c) The stress relief heat treatment received by the surveillance weldment test plate has been simulated.

WCAP- 17343-NP March 2011 Revision 0 4-6 Westinghouse Non-Proprietary Class 3 4-6 Westinghouse Non-Proprietary Class 3 0.CORE BARREL NEUTRON PAD-CAPSULE U \ /,- V (61o)(301,50) Z 2700-(241 ) Y-90, W (121.50 REACTOR VESSEL 1800 PLAN VIEW ELEVATION VIEW Figure 4-1 Arrangement of Surveillance Capsules in the Vogtle Unit 2 Reactor Vessel WCAP- 17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 4-7 Westinghouse Non-Proprietary Class 3 4-7 LEGEND: BL BT BW-LOWER SHELL PLATE B8628-1 (LONGITUDINAL)

-LOWER SHELL PLATE B8628-1 (TRANSVERSE)

-WELD METAL (HEAT # 87005)BH -HEAT-AFFECTED ZONE MATERIAL Large Spacer Tensiles Compacts Compacts TOP OF VESSEL Np 2 3 7 CENTER CENTER Charpys BT87TER 87 BT6 BL86 CENTER -Ats Tensiles BT18 BT21 BTL17 BT16 4 BOTTOM OF VESSEL Figure 4-2 Capsule Z Diagram Showing the Location of Specimens, Thermal Monitors, and Dosimeters WCAP- 17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 5-1 5 TESTING OF SPECIMENS FROM CAPSULE Z 5.1 OVERVIEW The post-irradiation mechanical testing of the Charpy V-notch impact specimens and tensile specimens was performed at the Hot Cell Facility at the Westinghouse Research and Technology Unit (RTU).Testing was performed in accordance with 10 CFR 50, Appendices G and H [Ref. 2] and ASTM Specification E185-82 [Ref. 4].The capsule was opened upon receipt at the hot cell laboratory.

The specimens and spacer blocks were carefully removed, inspected for identification number, and checked against the master list in WCAP-11381

[Ref. 3]. All items were in their proper locations.

Examination of the thermal monitors indicated that none of the melting point monitors had melted. Based on this examination, the maximum temperature to which the specimens were exposed was less than 579°F (304-C).The Charpy impact tests were performed per ASTM Specification E23-07a [Ref. 10] on a Tinius-Olsen Model 74, 358J machine. The tup (striker) of the Charpy machine is instrumented with an Instron Impulse instrumentation system, feeding information into a computer.

Note that the instrumented Charpy data is for information only. The Instron Impulse system has not been calibrated to ASTM Standard E2298-09 [Ref. 11 ], so the instrumented energy, load, time, and stress data are considered for information only. With this system, load-time and energy-time signals can be recorded in addition to the standard measurement of Charpy energy. The load signal data acquisition rate was 819 kHz with data acquired for 10 ms. For some of the tests, a low-pass filter was used to condition the load signal. From the load-time curve, the load of general yielding (Fgy), the time to general yielding, the maximum load (Fm), and the time to maximum load can be determined.

Under some test conditions, a sharp drop in load indicative of fast fracture was observed.

The load at which fast fracture was initiated is identified as the brittle fracture load (Fbf). The termination of the fast load drop is identified as the arrest load (Fa). Fgy, Fm, Fbf, and Fa were determined per the guidance in ASTM Standard E2298-09.

Note that some of the signals were filtered for the instrumented Charpy testing. Although this is not recommended in ASTM Standard E2298-09, the instrumented Charpy data is reported for information only; thus, there is no significant effect on the results contained in this report.The energy at maximum load (Win) was determined by integrating the energy-time record and the load-time record. The energy at maximum load is approximately equivalent to the energy required to initiate a crack in the specimen.

Therefore, the propagation energy for the crack (Wp) is the difference between the total energy to fracture (W,) and the energy at maximum load (Win).WCAP- 17343-NP March 2011 Revision 0 5-2 Westinghouse Non-Proprietary Class 3 The yield stress (ay) was calculated from the three-point bend formula having the following expression

[Ref. 12]: L SF B(WLa)2 C (Eqn. 5-1)where L = distance between the specimen supports in the impact testing machine; B = the width of the specimen measured parallel to the notch; W = height of the specimen, measured perpendicularly to the notch; a = notch depth. The constant C is dependent on the notch flank angle (tp), notch root radius (p)and the type of loading (i.e., pure bending or three-point bending).

In three-point bending, for a Charpy specimen in which 9 = 450 and p = 0.010 in., Equation 5-1 is valid with C = 1.21.Therefore, (for L = 4W), L 3.305 F,W S B(W-a)2 1.21 B(W-a)2 (Eqn. 5-2)For the Charpy specimen, B = 0.394 in., W = 0.394 in., and a = 0.079 in. Equation 5-2 then reduces to: crY = 33.3 FV (Eqn. 5-3)where Oy is in units of psi and Fgy is in units of lb. The flow stress was calculated from the average of the yield and maximum loads, also using the three-point bend formula.Normalized energies for Wt, Win, and Wp were calculated per the cross-sectional area (A) under the notch of the Charpy specimens:

A = B(W -a) = 0.1241 sq. in. (Eqn. 5-4)Percent shear was determined from post-fracture photographs using the ratio-of-areas methods in compliance with ASTM E23-07a [Ref. 10] and A370-09 [Ref. 13]. The lateral expansion was measured using a dial gage rig similar to that shown in the same specifications.

Tensile tests were performed on a 20,000-pound Instron model 4400 screw-driven tensile machine (Model 1115). Testing met ASTM Specifications E8-09 [Ref. 14] and E21-09 [Ref. 15] except for some minor deviations that do not have any significant effect on the results provided in this report.Elevated test temperatures were obtained with a three-zone electric resistance split-tube furnace with a 9-inch hot zone. Specimens were soaked at temperature

(+/-5°F) for a minimum of 20 minutes before testing. All tests were conducted in air. The specimens were round 0.25-inch diameter with a 1.25-inch reduced section. Load was applied through a clevis and pin connection.

WCAP-17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 5-3 The yield load, ultimate load, fracture load, uniform elongation, and elongation at fracture were determined directly from the load-extension curve. The yield strength, ultimate tensile strength and fracture strength were calculated using the original cross-sectional area. The final diameter was determined from post-fracture photographs.

The fracture area used to calculate the fracture stress (true stress at fracture) and percent reduction in area were computed using the final diameter measurement.

5.2 CHARPY V-NOTCH IMPACT TEST RESULTS The results of the Charpy V-notch impact tests performed on the various materials contained in Capsule Z, which received a fluence of 4.16 x 10'9 n/cm 2 (E > 1.0 MeV) in 18.48 EFPY of operation, are presented in Tables 5-1 through 5-8 and are compared with the unirradiated and previously withdrawn capsule results as shown in Figures 5-1 through 5-12. The unirradiated and previously withdrawn capsule results were taken from WCAP-11381

[Ref. 3], WCAP-13007

[Ref. 16], WCAP-14532

[Ref. 9], WCAP-15159

[Ref. 17], and WCAP-16382-NP

[Ref. 8].The transition temperature increases and changes in upper-shelf energies for the Capsule Z materials are summarized in Table 5-9 and led to the following results:* Irradiation of the reactor vessel Lower Shell Plate B8628-1 Charpy specimens, oriented with the longitudinal axis of the specimen parallel to the major working direction (longitudinal orientation), resulted in an irradiated 30 ft-lb transition temperature of 67.8°F and an irradiated 50 ft-lb transition temperature of 106.8°F. This results in a 30 ft-lb transition temperature increase of 59.0°F and a 50 ft-lb transition temperature increase of 61.4°F for the longitudinally oriented specimens." Irradiation of the reactor vessel Lower Shell Plate B8628-1 Charpy specimens, oriented with the longitudinal axis of the specimen perpendicular to the major working direction (transverse orientation), resulted in an irradiated 30 ft-lb transition temperature of 103.9°F and an irradiated 50 ft-lb transition temperature of 140. I°F. This results in a 30 ft-lb transition temperature increase of 75.3°F and a 50 ft-lb transition temperature increase of 70.0°F for the transversely oriented specimens.

  • Irradiation of the Surveillance Program Weld Metal (Heat # 87005) Charpy specimens resulted in an irradiated 30 ft-lb transition temperature of 2.1 lF and an irradiated 50 ft-lb transition temperature of 48.3°F. This results in a 30 ft-lb transition temperature increase of 21.3°F and a 50 ft-lb transition temperature increase of 37.2°F.* Irradiation of the Heat-Affected Zone (HAZ) Material Charpy specimens resulted in an irradiated 30 ft-lb transition temperature of -75.1 °F and an irradiated 50 ft-lb transition temperature of -41.2°F.This results in a 30 ft-lb transition temperature increase of 8.6°F and a 50 ft-lb transition temperature increase of 11.2°F.* The average upper-shelf energy of the Lower Shell Plate B8628-1 (longitudinal orientation) did not change after irradiation to 4.16 x 1019 n/cm 2 (E > 1.0 MeV). This results in an irradiated average upper-shelf energy of 89.0 ft-lb for the longitudinally oriented specimens.

WCAP-17343-NP March 2011 Revision 0 5-4 Westinghouse Non-Proprietary Class 3* The average upper-shelf energy of the Lower Shell Plate B8628-1 (transverse orientation) resulted in an average energy decrease of 2.0 ft-lb after irradiation to 4.16 x 101 9 n/cm 2 (E > 1.0 MeV). This results in an irradiated average upper-shelf energy of 68.0 ft-lb for the transversely oriented specimens.

  • The average upper-shelf energy of the weld metal Charpy specimens resulted in an average energy decrease of 2.0 ft-lb after irradiation to 4.16 x 10'9 n/cm 2 (E > 1.0 MeV). This results in an irradiated average upper-shelf energy of 90.0 ft-lb for the weld metal specimens.
  • The average upper-shelf energy of the HAZ Material Charpy specimens resulted in an average energy increase of 6.0 ft-lb after irradiation to 4.16 x 1019 n/cm 2 (E > 1.0 MeV). This results in an irradiated average upper-shelf energy of 112.0 ft-lb for the HAZ Material." Comparisons of the measured 30 ft-lb shift in transition temperature values and upper-shelf energy decreases to those predicted by Regulatory Guide 1.99, Revision 2 [Ref. 1] for the Vogtle Unit 2 reactor vessel surveillance materials are presented in Table 5-10.The fracture appearance of each irradiated Charpy specimen from the various materials is shown in Figures 5-13 through 5-16. The fractures show an increasingly ductile or tougher appearance with increasing test temperature.

Load-time records for the individual instrumented Charpy specimens are contained in Appendix B.All beltline materials exhibit a more than adequate upper-shelf energy level for continued safe plant operation and are predicted to maintain an upper-shelf energy greater than 50 ft-lb through end-of-license (36 EFPY) and end-of-license renewal (57 EFPY) as required by 10 CFR 50, Appendix G [Ref. 2]. This evaluation can be found in Appendix E.WCAP-17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 5-5 5.3 TENSILE TEST RESULTS The results of the tensile tests performed on the various materials contained in Capsule Z irradiated to 4.16 x 10'9 n/cm 2 (E > 1.0 MeV) are presented in Table 5-11 and are compared with unirradiated results as shown in Figures 5-17 through 5-19.The results of the tensile tests performed on the Lower Shell Plate B8628-1 (longitudinal orientation) indicated that irradiation to 4.16 x 101 9 n/cm 2 (E > 1.0 MeV) caused increases in the 0.2 percent offset yield strength and the ultimate tensile strength when compared to unirradiated data [Ref. 3]. See Figure 5-17 and Table 5-11.The results of the tensile tests performed on the Lower Shell Plate B8628-1 (transverse orientation) indicated that irradiation to 4.16 x l0o9 n/cm 2 (E > 1.0 MeV) caused increases in the 0.2 percent offset yield strength and the ultimate tensile strength when compared to unirradiated data [Ref. 3]. See Figure 5-18 and Table 5-11.The results of the tensile tests performed on the surveillance weld metal indicated that irradiation to 4.16 x 10"9 n/cm 2 (E > 1.0 MeV) caused increases in the 0.2 percent offset yield strength and the ultimate tensile strength when compared to unirradiated data [Ref. 3]. See Figure 5-19 and Table 5-11.The fractured tensile specimens for the Lower Shell Plate B8628-1 material are shown in Figures 5-20 and 5-21, while the fractured tensile specimens for the surveillance weld metal are shown in Figure 5-22.The engineering stress-strain curves for the tensile tests are shown in Figures 5-23 through 5-28.5.4 1/2T COMPACT TENSION SPECIMEN TESTS Per the surveillance capsule testing contract, the 1/2T Compact Tension Specimens were not tested and are being stored at the Westinghouse Research and Technology Unit.WCAP- 17343-NP March 2011 Revision 0 5-6 Westinghouse Non-Proprietary Class 3 Table 5-1 Charpy V-notch Data for the Vogtle Unit 2 Lower Shell Plate B8628-1 Irradiated to a Fluence of 4.16 x 10'9 n/cm 2 (E > 1.0 MeV) (Longitudinal Orientation)

S IAmItriple Temperature Impact Energy -Late'ral E~xpansion Shear N b OF C .ft-lbs' : Joules mils mi %m BL76 46 9 12 6 0.15 5 BL88 35 2 26 35 22 0.56 15 BL86 50 10 26 35 24 0.61 15 BL89 60 16 24 33 23 0.58 25 BL84 75 24 32 43 24 0.61 25 BL78 85 29 33 45 29 0.74 35 BL83 90 32 41 56 31 0.79 30 BL77 100 38 44 60 36 0.91 40 BL82 105 41 41 56 35 0.89 50 BL79 110 43 61 83 44 1.12 55 BL81 120 49 56 76 45 1.14 60 BL90 150 66 72 98 58 1.47 90 BL87 200 93 82 111 66 1.68 100 BL85 225 107 91 123 74 1.88 100 BL80 250 121 94 127 68 1.73 100 WCAP- 17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 5-7 Table 5-2 Charpy V-notch Data for the Vogtle Unit 2 Lower Shell Plate B8628-1 Irradiated to a Fluence of 4.16 x 10'9 n/cm 2 (E > 1.0 MeV) (Transverse Orientation)

'SapleTemperature

~ > Impact EnergyK' Lateral Expansion Shear~'Number?>5 OF ~ W C ft-lbs~ Joules mils mm 0/o<BT89 59 4 5 4 0.10 5 BT85 75 24 17 23 21 0.53 25 BT87 90 32 26 35 27 0.69 35 BT80 100 38 29 39 30 0.76 30 BT88 110 43 33 45 32 0.81 40 BT83 115 46 33 45 34 0.86 40 BT90 125 52 44 60 38 0.97 50 BT81 135 57 42 57 42 1.07 70 BT78 140 60 48 65 47 1.19 65 BT77 145 63 44 60 45 1.14 65 BT76 150 66 66 89 55 1.40 90 BT84 175 79 64 87 60 1.52 100 BT82 210 99 76 103 59 1.50 100 BT86 250 121 62 84 56 1.42 100 BT79 275 135 69 94 56 1.42 100 WCAP-17343-NP March 2011 Revision 0 5-8 Westinghouse Non-Proprietary Class 3 Table 5-3 Charpy V-notch Data for the Vogtle Unit 2 Surveillance Weld Metal Irradiated to a Fluence of 4.16 x 10'9 n/cm 2 (E > 1.0 MeV)Sp mpact Energy Lateral Expansion Shear> K Number< <OF '> C ft-Ibs~ ~Joules' mils *mm%BW90 46 7 9 5 0.13 10 BW79 0 -18 11 15 12 0.30 15 BW81 0 -18 37 50 28 0.71 20 BW76 5 -15 40 54 36 0.91 35 BW82 5 -15 23 31 20 0.51 20 BW86 10 -12 35 47 32 0.81 30 BW85 20 -7 54 73 47 1.19 50 BW84 25 -4 41 56 37 0.94 45 BW87 50 10 46 62 40 1.02 60 BW78 60 16 51 69 40 1.02 55 BW77 75 24 67 91 45 1.14 80 BW80 130 54 70 95 55 1.40 90 BW88 225 107 90 122 67 1.70 100 BW89 250 121 91 123 67 1.70 1,00 BW83 275 135 88 119 69 1.75 100 WCAP-17343-NP March 2011 Revision 0 Westinghouse Non-Proprieta Class 3 5-9 Table 5-4 Charpy V-notch Data for the Vogtle Unit 2 Heat-Affected Zone (HAZ) Material Irradiated to a Fluence of 4.16 x 10I9 n/cm 2 (E > 1.0 MeV), Sample <Temperature I mpct Energy Lateral Expansion Shear Number OF .. ft-lbs :' Joules mils Him %BH85 -150 -101 9 12 4 0.10 10 BH84 -110 -79 20 27 11 0.28 15 BH76 68 33 45 18 0.46 20 BH88 62 23 31 15 0.38 20 BH77 59 29 39 19 0.48 25 BH82 51 38 52 21 0.53 30 BH78 46 52 71 34 0.86 40 BH79 37 58 79 34 0.86 50 BH89 32 38 52 30 0.76 50 BH90 0 -18 79 107 49 1.24 90 BH83 25 -4 90 122 51 1.30 85 BH81 60 16 115 156 70 1.78 100 BH86 110 43 114 155 71 1.80 100 BH80 150 66 106 144 66 1.68 100 BH87 175 79 111 151 72 1.83 100 WCAP-17343-NP March 2011 Revision 0 5-10 Westinghouse Non-Proprietary Class 3 5-10 Westinghouse Non-Proprietary Class 3 Table 5-5 Instrumented Charpy Impact Test Results for the Vogtle Unit 2 Lower Shell Plate B8628-1 Irradiated to a Fluence of 4.16 x 101 9 n/cm 2 (E > 1.0 MeV) (Longitudinal Orientation)

Normalized'Energies

':General KK , : Teste C' Enrgyi (ft-lb/in 2). ~~ Yield Timne to Max. Time to Fract. Arrest Yield' Flow'No emp. W, Load: ~ JLoad, / ý Load, Load,~ Stress~ Stress BL76 -50 9.0 73 41 31 3520 0.18 3720 0.18 3720 n/a 117 121 BL88 35 22.1 178 170 8 3000 0.05 3760 0.41 3760 n/a 100 113 BL86 50 26.2 211 127 85 2800 0.14 3760 0.36 3760 80 93 109 BL89 60 23.7 191 114 77 3000 0.05 3700 0.29 3700 80 100 112 BL84 75 30.9 249 170 79 3210 0.06 3700 0.41 3700 320 107 115 BL78 85 31.4 253 141 112 2890 0.05 3700 0.40 3700 750 96 110 BL83 90 38.4 309 197 112 3040 0.05 3640 0.47 3470 1010 101 111 BL77 100 40.7 328 197 131 2910 0.05 3640 0.50 3460 1070 97 109 BL82 105 38.8 313 198 114 2650 0.05 3770 0.48 3770 1030 88 107 BL79 110 56.1 452 257 195 2710 0.05 3920 0.60 3740 1490 90 110 BL81 120 51.5 415 194 221 2890 0.05 3600 0.48 3260 1100 96 108 BL90 150 68.0 548 191 357 2800 0.06 3570 0.48 2630 2160 93 106 BL87 200 74.3 599 201 398 2780 0.14 3690 0.53 n/a n/a 93 108 BL85 225 83.2 670 245 425 3000 0.05 3690 0.60 n/a n/a 100 110 BL80 250 86.1 694 244 450 2750 0.05 3650 0.60 n/a n/a 92 107 WCAP- 17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 5-11 Table 5-6 Instrumented Charpy Impact Test Results for the Vogtle Unit 2 Lower Shell Plate B8628-1 Irradiated to a Fluence of 4.16 x 1019 n/cm 2 (E > 1.0 MeV) (Transverse Orientation)

Test, N or mnalized E neij i es ~ CGeneral S p... (ft-lb/in)

Y .Nield Time to= .Max. Tinme to Fract. Arrest Yield Flow:, T Energy,. .......Sapl Pro.Eeg, od L La, F od Load, Stress> Stress N. F W, Total At Fn, Pro p.' ,F~', (msec), F,,i (b)' (insec)~ Fbf(lb). Fý (Ib) (Qsi) (ksi)(tb) W,/A Wn/ ,A (b BT89 -75 4.3 35 18 17 2170 0.13 2190 0.13 2190 n/a 72 73 BT85 75 16.9 136 39 97 3140 0.15 3410 0.18 3410 660 105 109 BT87 90 24.4 197 110 86 2600 0.05 3670 0.29 3580 700 87 104 BT80 100 28.6 230 113 118 2780 0.05 3640 0.29 3600 820 93 107 BT88 110 31.0 250 139 110 2590 0.05 3630 0.35 3530 610 86 104 BT83 115 30.6 247 110 137 2500 0.05 3550 0.29 3400 1070 83 101 BT90 125 41.5 334 198 136 2580 0.05 3790 0.47 3450 1700 86 106 BT81 135 38.9 313 110 204 2860 0.05 3540 0.29 3320 2010 95 107 BT78 140 46.1 371 193 178 2570 0.05 3620 0.48 3450 2370 86 103 BT77 145 41.7 336 135 201 2650 0.05 3510 0.36 3360 1250 88 103 BT76 150 62.1 500 248 252 2570 0.05 3650 0.6 n/a n/a 86 104 BT84 175 59.6 480 192 288 2330 0.05 3620 0.47 n/a n/a 78 99 BT82 210 71.3 574 212 363 3130 0.05 3820 0.5 n/a n/a 104 116 BT86 250 55.8 450 172 277 2680 0.14 3620 0.47 n/a n/a 89 105 BT79 275 64.4 519 189 330 2500 0.05 3630 0.47 n/a n/a 83 102 WCAP- 17343-NP March 2011 Revision 0 5-12 5-12 Westinghouse Non-Pronrietar Class 3 Table 5-7 Instrumented Charpy Impact Test Results for the Vogtle Unit 2 Surveillance Weld Metal Irradiated to a Fluence of 4.16 x 1019 n/cm 2 (E > 1.0 MeV)Charpy Normalized Energies.

Gera Sampl Eiilb/rg iel Time to Max. Time to \Ffact. Arrest Yield Flo Sample ............

Load, F Load,, F Load, Load, Stress Stress No. W :Stress (0F f-Ib) AF Prp F, (nisec) F (11b) (rsec) ~Fhf(lb) F 2ý (lb)A (ksi)' (ksi)NWVAýWi/A

>WIA (lb) 2' 'BW90 -50 6.7 54 27 27 2840 0.14 2870 0.15 2870 n/a 95 95 BW79 0 12.1 97 27 70 2760 0.05 3840 0.09 3510 n/a 92 110 BW81 0 35.9 289 229 60 2800 0.05 4050 0.5 3810 n/a 93 114 BW76 5 38.8 313 226 87 2790 0.05 3930 0.5 3750 n/a 93 112 BW82 5 24.3 196 151 45 2360 0.05 3880 0.35 3620 n/a 79 104 BW86 10 33.8 272 220 52 2920 0.05 3830 0.5 3620 n/a 97 112 BW85 20 50.8 409 265 144 2620 0.05 3850 0.6 3340 720 87 108 BW84 25 37.7 304 212 92 3160 0.15 4010 0.52 3910 280 105 119 BW87 50 44.3 357 259 97 3030 0.05 3780 0.6 3670 1070 101 113 BW78 60 48.6 392 275 117 2790 0.05 3920 0.62 3590 800 93 112 BW77 75 62.8 506 225 281 3550 0.05 3950 0.5 3380 1830 118 125 BW80 130 64.6 521 255 265 2510 0.05 3760 0.6 2870 2030 84 104 BW88 225 83.1 670 257 413 2920 0.06 3780 0.62 n/a n/a 97 112 BW89 250 82.2 662 272 390 2740 0.15 3750 0.68 n/a n/a 91 108 BW83 275 81.8 659 247 413 3170 0.05 3670 0.6 n/a n/a 106 114 WCAP-17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 5-13 Table 5-8 Instrumented Charpy Impact Test Results for the Vogtle Unit 2 Heat-Affected Zone (HAZ) Material Irradiated to a Fluence of 4.16 x 101 9 n/cm 2 (E > 1.0 MeV)C ry Normalized Energies General Sample .Energy, (ft-lb/in)

Yield Time to Max. Time to Fract. Arrest Yield :Flo: W.N o .. ..... T e m p .. ........ ....... ........ ...... .... :: : : ::::: : :::: : : iL o a d F ill L o a d , i~ L o a d , S t r e s s ! I: !S t r e s :ii (OF (f-Kb To tal At F,, Prop. FI! (ins}c. F,, (lb) K(isee), Fbf(lbY) F, (Ib k (ksi)BH85 -150 9.1 73 31 42 2600 0.05 4700 0.09 4350 n/a 87 122 BH84 -110 19.2 155 30 125 3240 0.05 4540 0.09 4340 n/a 108 130 BH76 -90 33.5 270 27 243 2360 0.04 4430 0.09 4260 n/a 79 113 BH88 -80 23.9 193 28 164 2830 0.05 4260 0.09 4040 n/a 94 118 BH77 -75 27.1 218 71 147 3610 0.15 4350 0.22 4310 250 120 133 BH82 -60 36.7 296 27 269 2730 0.05 4210 0.09 4050 510 91 116 BH78 -50 48.1 388 238 149 2800 0.05 4270 0.5 4050 1200 93 118 BH79 -35 54.9 442 298 144 2260 0.05 4330 0.62 3870 1790 75 110 BH89 -25 35.8 288 27 261 2980 0.05 4100 0.09 3930 1170 99 118 BH90 0 74.6 601 292 309 2500 0.05 4200 0.62 3400 2550 83 112 BH83 25 84.6 682 289 392 2450 0.05 4280 0.61 3470 2540 82 112 BH81 60 107.1 863 281 582 2970 0.05 4190 0.61 n/a n/a 99 119 BH86 110 105.5 850 276 574 2500 0.05 4040 0.62 n/a n/a 83 109 BH80 150 97.8 788 292 496 3000 0.15 4040 0.68 n/a n/a 100 117 BH87 175 100.8 812 255 558 2550 0.05 3910 0.6 n/a n/a 85 108 WCAP- 17343-NP March 2011 Revision 0 5-14 Westinjzhouse Non-Proprietary Class 3 Table 5-9 Effect of Irradiation to 4.16 x 10'9 n/cm 2 (E > 1.0 MeV) on the Charpy V-Notch Toughness Properties of the Vogtle Unit 2 Reactor Vessel Surveillance Capsule Z Materials Average 30"ft-lb Transition Average35miu Lateral Expansion

-Average 50 ft6lbTransition Average Energy Absorption at...M aterial ... .......,: .: ... Tem p < ,eraturei.,,::,( ,.. ....a).... ....... .!,S ea .k. ft.I}, ,..............a)':

'<, Matril--mpraur-(a--F)Temperature(' (OF) Ternperature~a) (OF) ' ~ Full Shear (, ft-lb)Uird.e " .: ...,.

77 AT ---- Unirradiated Irradiated 7-: AT- Unirradiated Irradiated AT I Lower Shell Plate B8628-1 8.8 67.8 59.0 36.4 94.4 58.0 45.4 106.8 61.4 89.0 89.0 0.0 (LT)Lower Shell Plate B8628-1 28.6 103.9 75.3 44.0 111.7 67.7 70.1 140.1 70.0 70.0 68.0 -2.0 (TL)Surveillance Program Weld Metal -19.2 2.1 21.3 -1.0 30.2 31.2 11.1 48.3 37.2 92.0 90.0 -2.0 (Heat # 87005)HAZ Material -83.7 -75.1 8.6 -46.9 -30.5 16.4 -52.4 -41.2 11.2 106.0 112.0 6.0 Note: (a) Average value is determined by CVGraph (see Appendix C).WCAP-17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 5-15 Table 5-10 Comparison of the Vogtle Unit 2 Surveillance Material 30 ft-lb Transition Temperature Shifts and Upper-Shelf Energy Decreases with Regulatory Guide 1.99, Revision 2, Predictions Capsule .' '30ft-lbTransition.

U Decrease MaeilCpue Fluence ~ 'Temperature Shift " Dces M e(xra 101 a m, Predicted-Measured Predictd Measured E >1.0MelV)

> (OF) (______ F)/~a (b______U 0.356 22.2 2.0 15 ---Y 1.12 32.0 5.8 19.5 ---Lower Shell Plate B8628-1 X 1.78 3 5.9 2.4 22 3 (Lniuia)X 1.78 35.9 29.4 22 3 (Longitudinal)

W 2.98 40.0 39.0 25 6 Z 4.16 42.3 59.0 26.5 0 U 0.356 22.2 0.0(c) 15 ---Y 1.12 32.0 1.9 19.5 ---___Lower Shell Plate B8628-1 X 1.78 35.9 29 22.7 (Tases)X 1.78 35.9 29.8 22 7 (Transverse)

W 2.98 40.0 45.5 25 1 Z 4.16 42.3 75.3 26.5 3 U 0.356 26.0 0.0(0) 15 1 --Y 1.12 37.6 18.7 19.5 7 Surveillance Program Weld X 1.78 42.2 19.9 22 5 Metal W 2.98 46.9 31.4 25 5 Z 4.16 49.7 21.3 26.5 2 U 0.356 --- 0.0(c) ---- --Y 1.12 --- 0.0(c) ---Heat-Affected Zone X 1.78 --- 0.0(c) 7 Material W 2.98 -- -3.2 6 Z 4.16 ---8.6 ---Notes: (a) Based on Regulatory Guide 1.99, Revision 2, methodology using the mean weight percent values of copper and nickel of the surveillance material.(b) Calculated by CVGraph Version 5.3 using measured Charpy data (See Appendix C).(c) Measured ARTNOT value was determined to be negative, but physically a reduction should not occur; therefore, a conservative value of zero is used.WCAP- 17343-NP March 2011 Revision 0 5-16 Westinahouse Non-Proorietar Class 3 Table 5-11 Tensile Properties of the Vogtle Unit 2 Capsule Z Reactor Vessel Surveillance Materials Irradiated to 4.16 x 10'9 n/cm 2 (E > 1.0 MeV)BL 16 75 77.8 97.8 3.28 185 66.7 11 24 64 Lower Shell Plate B8628-1 BL17 150 74.6 93.7 3.03 171 61.6 11 24 64 (Longitudinal)

BL18 550 68.4 92.7 3.30 164 67.2 11 21 59 BT16 75 77.0 96.8 3.33 146 67.7 11 22 54 Lower Shell Plate B8628-1 BT17 150 74.4 92.7 3.15 157 64.2 10 21 59 (Transverse)

BT18 550 68.9 92.7 3.83 135 77.9 11 18 42 BW16 25 78.4 93.3 3.15 205 64.2 12 25 69 Weld Metal BW17 175 72.8 86.0 2.88 187 58.6 10 22 69 (Heat # 87005)BW18 550 69.7 88.0 3.15 157 64.2 10 21 59 WCAP- 17343-NP March2011 WCAP- 17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 5-17 Westinghouse Non-Proprietary Class 3 5-17 Lower Shell Plate B18628-1 (LT)CVGRAPH 5.3 Hyperbolic Tangent Curve Printed oni 11/02/2010 01: 10 PM Data Sel(s) Plotted Curve 2 3 4 5 6 Phlat Vo,-,lk 2 Vo-fle 2 Voilfle 2 VO'IL e V oL'lle 2 Vo,"fle2 Capsule UNIRR tj Y x W z iNlaterial SA533B I SA533B I SA5313B SA533B I SA53' B I SA-533B I Ori.LT LT LT LT LT LT Heat #C3500-2 C)3500-2 C3500-2 (;35(3)(0)-2 C3500-2 C3500-2 300 250 S200 0 U.150 tu z 100 50 0-300.0 0 1-200.0 -100.0 0.0 100.0 200.0 300.0 400 Temperature in Deg F 2 03 5 4 V 5 1.0 500.0 600.0 0 6 Curve 3 4 5 6 Fluence LSE USE d-USE 2.2 89.0 .0 2.2 99.0 10.0 2.2 100.0 11.0 2.2 86.0 -3.0 2.2 84.0 -5.0 2.2 89.0 .0 Results Tr @P30 8. 8 10, 8 14.6 38. 2 47. 8 67. 8 d-T @30.0 2.0 5. 8 29. 4 39.0 59. 0 T @50 45. 4 54.9 50. 5 75.6 89.0 106. 8 d- T @5 ).0 9.5 5. 1 30. 2 43. 6 61.4 Figure 5-1 Charpy V-Notch Impact Energy vs. Temperature for Vogtle Unit 2 Reactor Vessel Lower Shell Plate B8628-1 (Longitudinal Orientation)

WCAP- 17343-NP March 2011 Revision 0 5-18 Westinghouse Non-Proprietary Class 3 5-18 Westinghouse Non-Proprietary Class 3 CVGRAPH 5.3 Curve 2 3 4 5 6 Plant Vo'~tk. 2 Voiztle -Vo~t It VO L'tk I 1 Lower Shell Plate B8628-1 (LT)Hyperbolic Tangent Curve Printed on 11/02/2010 01:26 PM Data Set(s) Plotted Capsule Material Ori. Heat #UNIRR SA533BI LT C3500-2 U SA533BI LT C(3500-2 Y SA533B I LT C3500-2 X SA533B1 LT C3500-21 W SA533B1 LT C1500-2 Z SA533B] LT C359-2)200 150 A E 5.100 50 0 --300.0 0.0 300.0 600.0 Temperature in Deg F 03 44 v 5 a 6 0 1 M 2 Curve I 3 4 5 6 Fluence LSE.0 A0.0.0.0.0 USE 75. 9 70. 6 68.9 64. 6 69. 4 78. I (I-USE.0-5.3-7. 1-I I, 4-6.6 2.1 Results T @35 36. 4 45. 8 46.8 90. 0 74.7 94. 4 d-T @35.0 9.4 10.4 53. 6 38.3 58. 0 Figure 5-2 Charpy V-Notch Lateral Expansion vs. Temperature for Vogtle Unit 2 Reactor Vessel Lower Shell Plate B8628-1 (Longitudinal Orientation)

WCAP- 17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 5-19 Westinghouse Non-Proprietary Class 3 5-19 Lower Shell Plate B862841 (LT)CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 11/02/2010 01:30 PM Data Set(s) Plotted Curve 1 2 3 4 5 6 Plant Vo-'l e Vo~tl 2 Vot'del Vo Ic e C;apsuile tJNIRR U Y x W z Material SA533BI SA533B I SA533B I SA53313 I.SA533B I SA533B]Ori.LT LT LT LT LT LT Heat #C 3500) 2 C35~00-2 C3500-2~C3500-27 C3500-2 ('3500()2 125 100 4).0.75 50 25 0-300.0 0 1-200.0 -100.0 0.0 100.0 200.0 300.0 Temperature in Deg F 2 0 3 a 4 400.0 500.0 600.0 v 5 0 6 Results Curve 1 2 3 4 5 6 Fluence LSE USE 0 100. 0 (0 100.0.0 100.0.0 100. 0.0 100.0 0 100. 0 d-USE.0.0.0.0.0.0 T @50 d-T @541 65.0 62. 2 77. 8 69. 3 86. 5 105.4.0-2 8 12.8 4.3 21.5 40.4 Figure 5-3 Charpy V-Notch Percent Shear vs. Temperature for Vogtle Unit 2 Reactor Vessel Lower Shell Plate B8628-1 (Longitudinal Orientation)

WCAP- 17343-NP March 2011 WCAP-17343-NP March 2011 Revision 0 5-20 Westinghouse Non-Proprietary Class 3 5-20 Westinghouse Non-Proprietary Class 3 Curve 2 3 4 5 6 CVGRAPH 5.3 Plant Voottec Vogue 2)Vkoý'tle2 Vood'l2 V 6--, I e Vo-otle2 Lower Shell Plate B8628-1 (TL)Hyperbolic Tangent Curve Printed on 11/02/2010 01:46 PM Data Set(s) Plotted Capsule Material Ori. Heat #UNIRR SA533Bl TL C3500-2 U SA533B 1 TL C3500-2 Y SA533B13 TL C3500-2 X SA533B1 TL C3500-2 w SA533B 1 TL C-350)0-2 Z SA533B1 TL C3500-2 300 250" 200 0 0 U-EJ 150o z 100 50O 0-300.0 -200 0 1 Fhlence LSE 2.2 2.2 2. 2 2.2 2.2 2. 2.0 -100.0 0.0 100.0 200.0 300.0 400 Temperature in Deg F ( 2 ,3 A 4 v5.0 500.0 600.0 Curve 3 4 5 6 UISE 70.0 79. 0 73.0 65.0 69.0 68.0 d-USE ,0 9. 0 3. 0-5.0-1, 0-2.0 Results T @3 }28.6 21. 5 30. 5 58. 4 74. 1 103.9 d-T @30.0-7. 1 1.9 29. 8 45. 5 75. 3 T @50}70. f 82.6 87. 0 113. 5 133.2 140. 1 d-T @50.0 12. 5 16.9 43.4 63. 1 70.0 Figure 5-4 Charpy V-Notch Impact Energy vs. Temperature for Vogtle Unit 2 Reactor Vessel Lower Shell Plate B8628-1 (Transverse Orientation)

WCAP-17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 5-21 Westinghouse Non-Proprietary Class 3 5-21 Lower Shell Plate B8628-1 (TL)CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 11/02/2010 01:47 PM Data Set(s) Plotted-3 4 52 Plant Votnle 2 Voctle 2 Voatle 2 Voatle 2 Voatle 2 Voa tic 2 Capsule UNIRR U Y X W z NNiaterial SA533B I SA533B3 I SA533B I SA533B I SA533B I SA533B I Ori.TL TIL TL TL TL TL Heat #C3500-2 C3500-2)C3500I-2 C3500(I-2 C3500(I-2 C350)0-2 200 150 E C 0 100 50 0 4--300.0 0.0 300.0 Temperature in Deg F 0 3 4 600.0 0 1 a 2 v 5 0 6 Curve l 2 3 4 5 6 FhIence LSE.0.0.0.0.0.0 USE 65, 3 57. 1 63. 8 52. 4 55. 8 59. 3 (I-LUSE.0-8.2-1.5-12,9-9,5-6. 1 T @35 44.0 53. 1 62.9 94. 3 97, 1 111.7 d-T @35.0 9. 1 18.9 50. 3 53. 1 67.7 Figure 5-5 Charpy V-Notch Lateral Expansion vs. Temperature for Vogtle Unit 2 Reactor Vessel Lower Shell Plate B8628-1 (Transverse Orientation)

WCAP- 17343-NP March 2011 Revision 0 5-22 Westinghouse Non-Proprietary Class 3 Lower Shell Plate B8628-1 (TL)CVGRAPH5.3 Hyperbolic Tangeot Curve Printed on 11/I102010 01:47 PM Data Set(s) Plotted Curve 2 3 4 5 6 Plant V o vle 2 Vootle2 Vo-ftle2 Vo,'tlc V t Ik c Capsule UNIRR U Y x W z Material SA533BI SA533BI SA533BI SA533B I SA533B I SA533B I Ori.TL TL TL TL TL TL Heat #C35~00-2 C3500) 2 C3500) 2 C3506-1 C3500-21 C3500-2 125 100 I..Cu a)a)U 1~a)0.75 50 25 0-300.0 0 1-200.0 -100.0 0.0 100.0 200.0 300.0 40(Temperature in Deg F 3 2 04 v3).0 500.0 600.0@ 6 Curve 1 2 3 4 5 6 Fluenceý LSE 0.0.0.0 0.0 USE 100. 0 100.0 100.0 100.0 100.0 100.0 d-USE 0.0.0.0.0.0 Results T @5 )66. 5 65. 5 83. 0 66. 2 100. 4 118. 1 d-T @501.0-1.0 16. 5-. 3 33.9 51.6 Figure 5-6 Charpy V-Notch Percent Shear vs. Temperature for Vogtle Unit 2 Reactor Vessel Lower Shell Plate B8628-1 (Transverse Orientation)

WCAP- 17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 5-23 Westinghouse Non-Proprietary Class 3 5-23 Curve 3 4 5 6 CVGRAPH 5.3 Plant Voetle 2 Vo(;tle 2 Vo'tle 2 Vo-tle I Vo"tle 5 VoZtke 2 Surveillance Program Weld Material Hyperbolic Tangent Curve Printed on 1 1/0,2/12010 01:50 PM DaIta Set(s) Plotted Capsule Material Ori. Heat #UNIRR NA 87005 U NA 87005 Y NA 870(05 X NA 87005 W NA 87005 Z NA 87005 300-250-IA-0 200 0 LL-0" o z 100 50O 0-300.0 -200.0 1 Fluence LSE, 2.2 2. 2 2.2 2. 2 0 -100.0 0.0 100.0 200.0 300.0 400.0 Temperature in Deg F t3 2 *53 4 V 5 C:urve 4 5 6 USE 92.0 98. 0 86. 0 87.0 87.0 90. 0 d-UISE.0 6. 0-6.0-5.0-5.0-2.0 Results T @,30-19.2-36. 5-.5.7 12.2 2. 1 (1-T @30.0 17.3 18. 7 19.9 31.4 21.3 T @50.0 32.0 34. 7 59.0 48. 3 500.0 600.0 0 6 d-T @50.0 20. 9 23,6 47.9 37.2 Figure 5-7 Charpy V-Notch Impact Energy vs. Temperature for the Vogtle Unit 2 Reactor Vessel Surveillance Program Weld Metal WCAP-17343-NP March 2011 Revision 0 5-24 Westinghouse Non-Proprietary Class 3 5-4Wstnhue o-roreayls Figure 5-8 Charpy V-Notch Lateral Expansion vs. Temperature for the Vogtle Unit 2 Reactor Vessel Surveillance Program Weld Metal WCAP-17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 5-25 Westinghouse Non-Proprietary Class 3 5-25 Surveillance Program WVeld Material Curve 3 4 5 6 CVGRAPH 5.3 Plant VOA, C Vo<,Ile2 V ~le 2 V ogute 2 Vo~ite I V o'ýrt I'e Hyperbolic Tangent Curve Printed on 11/02/2010 02:13 PM Data Set(s) Plotted Capsule UNIRR U Y x W z NIaterial Ori.NA NA NA NA NA NA Heat #87005 87005 87005 87005 870}05 87005 125 100 I-Cu 0I C', 0 U 1~0 0.75 50 25 0 10-V 0-300.0 0 1-200.0 -100.0 0.0 100.0 200.0 300.0 Temperature in Deg F 03 A 4 400.0 500.0 600.0 7 5 06 Curve 1 2 3 4 5 6 Fluence LSE USE.0 100.0.0 100.0 0 100.0 0 100.0 (d-USE.0.0.0.0.0.0 Results T @50 28. 1-4. 1 27. 3 29. 7 74. 5 38. I (1-T @P5(0.0-32. 2-. 8 1.6 46, 4 10.0.0 0 100.0 100.0 Figure 5-9 Charpy V-Notch Percent Shear vs. Temperature for the Vogtle Unit 2 Reactor Vessel Surveillance Program Weld Metal WCAP-17343-NP March 2011 Revision 0 5-26 Westinghouse Non-Proprietary Class 3 5-26 Westinghouse Non-Proprietary Class 3 Heat Affected Zone CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 11/02/2010 02:22 PM Data Set(s) Plotted Curve 2 3 4 5 6 300-250-S200 0 0 150 w z 100-50O 0-300.0 0 1 Platnt Vooitte 2\'o,tIl 2 Voietle2 V o_,'t I e Vo-Qfl 2c V001fl 2c Capsule UNIRR UJ Y x W z Material SA533BI SA533BI SA533B I SA533B I SA533B I SA533B I Ori.NA NA NA NA NA NA Heat #C35()-21 C3500-2 C3500-2 C3500-21 C31500-2 C3500-21-200.0 -100.0 0.0 100.0 200.0 300.0 Temperature in Deg F 02 , 3 t, 4 400.0 500.0 600.0 v 5* 6 Results Curve 1 3 4 5 6 Fluence LSE USE 2.2 106.0 2.2 122.0 2.2 114.0 2.2 99.0 (d-U9'SE T @3 d-Tr @301 T0@50.0 -83.7 .0 -52.4 16.0 -108.0 -24.3 -80.2 8.0 -93.8 -10. 1 -63.9-7.0 -86.2 -2.5 -53.2-6,0 -80.5 3.2 -57.0 6.0 -75. 1 8.6 -41.2 d-T @('5.0-27. 8-11,5-. 8-4,6 11.2 2, 2 2.2 110. 0 112,0 Figure 5-10 Charpy V-Notch Impact Energy vs. Temperature for the Vogtle Unit 2 Reactor Vessel Heat-Affected Zone Material WCAP- 17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 5-27 Westinghouse Non-Proprietary Class 3 5-27 Curve 3 4 65 6:VC;RAPHS

)3 Plant Vo~nle2 Vo,'tle ~Vo. IlL -Vogfrtle'Vo.'tle'Vogel 2 Heat Affected Zone Hyperbolic Tangent Curve Printed on 11/02/2010 01:23 PM Data Set(s) Plotted Capsule Material Ori. Heat #UNIRR SA533B1 NA C3500-2 U SA533B I NA C3500-2 Y SA533B I NA C35(I0-2 X SA533B1 NA C3500-2 W SA533B 1 NA C3500-2 Z SA533B1 NA C3500-2 200 150 E C.2 100 50 0 i--300.0 0.0 300.0 600.0 Temperature in Deg F D2 03 A 4 v 5 0 6 0 1 Curve 1 2 3 4 5 6 Fluence LSE.0.0.0.0.0.0 USE 72. 4 65.9 70. 6 69. 4 68.0 72. 4 d-USE.0-6.5-1.9-3.0-4.4.0 Restults T* @35-46.9-67.7-53. 4-35. 4-46, 5-30.5 (I-T @35 ,0-20. 8-6. 5't.5.4 16.4 Figure 5-11 Charpy V-Notch Lateral Expansion vs. Temperature for the Vogtle Unit 2 Reactor Vessel Heat-Affected Zone Material WCAP-17343-NP March 2011 Revision 0 5-28 Westinghouse Non-Proprietary Class 3 5-28 Westinghouse Non-Proprietary Class 3 Heat Affected Zone CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 11/02/2010 02:24 PM Data Set(s) Plotted Curve 2 3 4 5 6 Plant Vootle 2 Vo_,'Ile 21 Capsule UNIRR U Y x W z Material SA533B 1 SA533B I SA533 IB I SAS33ýB SA533 B I SA533B I Or.NA NA NA NA NA NA Heat #C3500-2 050910-2 C' 560-2 b3500-2 (i'3500-2 C3500-2 125 100 I-w C,, C 0.75 50 25 04--300.0 0 1-200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature in Deg F 02 03 v4 V5

  • 6 Curve 1 2 3 4 5 6 Fluence LSE USE.0 100.0.0 I00.0.0 100.0 0 100.0.0 100.0.0 100.0 (1-1SE.0 0.0.0 0 Results T @50-34.6-74.4-49. 3-40. 2-42.8-37. 5 (d-T @501.0-39.8-14. 7-5. 6-8.2-2.9 Figure 5-12 Charpy V-Notch Percent Shear vs. Temperature for the Vogtle Unit 2 Reactor Vessel Heat-Affected Zone Material WCAP- 17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 5-29 BL76, -50°F BL88, 35°F BL86, 50°F BL89, 60 0 F BL84, 75-F BL78, 85°F BL83, 90°F BL77, 100°F BL82, 105°F BL79, 101F BL81, 120°F Figure 5-13 BL90, 150°F BL87, 200°F BL85, 225°F BL80, 250°F Charpy Impact Specimen Fracture Surfaces for Vogtle Unit 2 Reactor Vessel Lower Shell Plate B8628-1 (Longitudinal Orientation)

WCAP-17343-NP March 2011 Revision 0 5-30 Westinghouse Non-Proprietary Class 3 5-30 Westinghouse Non-Proprietary Class 3 BT89, -75°F BT85, 75°F BT87, 90°F BT80, 100-F BT88, ll0°F BT83, 115I BT90, 125°F BT81, 135°F BT78, 140°F BT77, 145 0 F BT76, 150°F BT84, 175°F BT82, 210°F BT86, 250°F BT79, 275 0 F Figure 5-14 Charpy Impact Specimen Fracture Surfaces for Vogtle Unit 2 Reactor Vessel Lower Shell Plate B8628-1 (Transverse Orientation)

WCAP-17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 5-31 BW90, -50°F BW79, 0-F BW81, 0F BW76, 5TF BW82, 5 0 F BW86, 10°F BW85, 20OF BW84, 25°F BW87, 50-F BW78, 60°F BW80, 130°F BW88, 225TF BW77, 75°F Figure 5-15 BW89, 250°F BW83, 275°F Charpy Impact Specimen Fracture Surfaces for the Vogtle Unit 2 Reactor Vessel Surveillance Program Weld Metal WCAP- 17343-NP March 2011 Revision 0 5-32 Westinghouse Non-Proprietary Class 3 BH85, -150°F BH84, -110°F BH76, -90°F BH88, -80°F BH77, -75°F BH82, -60OF BH78, -50°F BH79, -35 0 F BH89, -25°F BH90, 0°F BH83, 25°F BH81, 60°F BH86, 110-F BH80, 150°F BH87, 175°F Figure 5-16 Charpy Impact Specimen Fracture Surfaces for the Vogtle Unit 2 Reactor Vessel Heat-Affected Zone Material WCAP-17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 5-33 120.0 100.0 80.0 Ultimate Tensile Strength 0.2% Yield Strength a a=iml nI 40.0 20.0 0.0 0 100 200 300 Temperature

(*F)400 500 600 Legend: A and

  • and m are unirradiated A and o and o are irradiated to 4.16 x 10" 9 n/cm 2 (E > 1.0 MeV)70.0 -o--.--.__

Area Reduction 60.0 50.0 40.030.0 20.0 10.0 0.0--Total Elongation

.----. ---..... ..__L _ _Uniform Elongation 0 100 200 300 Temperature

(°F)400 500 600 Figure 5-17 Tensile Properties for Vogtle Unit 2 Reactor Vessel Lower Shell Plate B8628-1 (Longitudinal Orientation)

WCAP-17343-NP March 2011 Revision 0 5-34 Westinghouse Non-Proprietary Class 3 120.0 100.0 80.0 60.0 a 40.0 20.0 0.0 Ultimate Tensile Strength -.---a 0 100 200 300 400 500 600 Temperature

(*F)Legend: A and e and .are unirradiated A and o and o are irradiated to 4.16 x 1019 n/cm 2 (E > 1.0 MeV)70.0 60.0 50.0 40.0 30.0 I a----_ ~Total Elongation 20.0 -Uniform Elongation U 0, 0.0 0 100 200 300 Temperature

(*F)400 500 600 Figure 5-18 Tensile Properties for Vogtle Unit 2 Reactor Vessel Lower Shell Plate B8628-1 (Transverse Orientation)

WCAP- 17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 5-35 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 Ultimate Tensile Strength 0.2% Yield Strength a a a a 20.0t 10.0-n 0 100 200 300 Temperature

(*F)400 500 600 Legend: A and e and u are unirradiated A and o and c are irradiated to 4.16 x 10" 9 n/cm 2 (E > 1.0 MeV)80.0 70.0 60.0 50.0 40.0 U Area Reduction UfTotal Elongation

_________________Uniform Elongation 10.0 0.0 0 100 200 300 Temperature

(*F)400 500 600 Figure 5-19 Tensile Properties for the Vogtle Unit 2 Reactor Vessel Surveillance Program Weld Metal WCAP-17343-NP March 2011 Revision 0 5-36 Westinghouse Non-Proprietary Class 3 5-36 Westinghouse Non-Proprietary Class 3 Specimen BLI6 -Tested at 75 0 F Specimen BLI7 -Tested at 150°F Specimen BL18 -Tested at 550OF Figure 5-20 Fractured Tensile Specimens from Vogtle Unit 2 Reactor Vessel Lower Shell Plate B8628-1 (Longitudinal Orientation)

WCAP- 17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 5-37 Westinghouse Non-Proprietary Class 3 5-37 Specimen BT16 -Tested at 75'F Specimen BT17 -Tested at 150'F Specimen BTI8 -Tested at 550OF Figure 5-21 Fractured Tensile Specimens from Vogtle Unit 2 Reactor Vessel Lower Shell Plate B8628-1 (Transverse Orientation)

WCAP- 17343-NP March 2011 Revision 0 5-38 Westinghouse Non-Proprietary Class 3 Specimen BW16 -Tested at 25'F Specimen BW 17 -Tested at 175 0 F Specimen BW18 -Tested at 550'F Figure 5-22 Fractured Tensile Specimens from the Vogtle Unit 2 Reactor Vessel Surveillance Program Weld Metal WCAP-17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 5-39 100 go so To SO 00 40 30 20 10 0 0 0.06 0.1 0.15 STRAIN, IWIN 0.2 0.25 0.3 100 90 so 70 50 40 3D 20 10 0.05 0.1 0.15 0.2 STRAIN, IN/IN 0.25 0.3 Figure 5-23 Engineering Stress-Strain Curves for Vogtle Unit 2 Lower Shell Plate B8628-1 Tensile Specimens BL16 and BL17 (Longitudinal Orientation)

WCAP-17343-NP March 2011 Revision 0 5-40 Westinghouse Non-Proprietary Class 3 100 00 90 T0 80-30 20 10 0 0 0.00 0.1 0.18 STRAIN. LINF 0.2 0.25 Figure 5-24 Engineering Stress-Strain Curve for Vogtle Unit 2 Lower Shell Plate B8628-1 Tensile Specimen BL18 (Longitudinal Orientation) 100 s0 70 80~60 W40 30 20 10 0 0 0.05 0.1 0M15 0.2 0.20 STRAIN, LNIN 0.3 Figure 5-25 Engineering Stress-Strain Curve for Vogtle Unit 2 Lower Shell Plate B8628-1 Tensile Specimen BT16 (Transverse Orientation)

WCAP- 17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 5-41 100 go Wo 70 60 30 10 10 1100 go so so 450 30 0.06 0.1 0.15 0.2 0.25 STRAIN. IWflN 0.3 10 0 0 0.06 0.1.10I STRAIN. WIN1N 0.2 0.25 Figure 5-26 Engineering Stress-Strain Curves for Vogtle Unit 2 Lower Shell Plate B8628-1 Tensile Specimens BT17 and BT18 (Transverse Orientation)

WCAP- 17343-NP March 2011 Revision 0 5-42 Westinghouse Non-Proprietary Class 3 100 go so To so 30 I:I 100 90*500 0.05 01 0.t5 STRA WN 0.2 0.25 0.$F__ý30 10 0 0 0.05 0.1 0.15 STRAIN. WN 0.2 0.25 Figure 5-27 Engineering Stress-Strain Curves for Vogtle Unit 2 Surveillance Program Weld Metal Tensile Specimens BW16 and BW17 WCAP-17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 5-43 100 90 80.7"0 T0 wo40 t31 30 20 10 0 0 0.05 0.1 0.15 STRAIN. IN/IN 0.2 0.25 0.3 Figure 5-28 Engineering Stress-Strain Curve for Vogtle Unit 2 Surveillance Program Weld Metal Tensile Specimen BW18 WCAP-17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 6-1 6 RADIATION ANALYSIS AND NEUTRON DOSIMETRY

6.1 INTRODUCTION

This section describes a discrete ordinates S. transport analysis performed for the Vogtle Unit 2 reactor to determine the neutron radiation environment within the reactor pressure vessel and surveillance capsules.In this analysis, fast neutron exposure parameters in terms of fast neutron fluence (E > 1.0 MeV) and iron atom displacements (dpa) were established on a plant- and fuel-cycle-specific basis. An evaluation of the most recent dosimetry sensor set from Capsule Z, withdrawn at the end of the fourteenth plant operating cycle, is provided.

In addition, to provide an up-to-date data base applicable to the Vogtle Unit 2 reactor, the sensor sets from the previously withdrawn capsules (U, Y, X, and W) are presented in Appendix A of this report. Comparisons of the results from these dosimetry evaluations with the analytical predictions served to validate the plant-specific neutron transport calculations.

These validated calculations subsequently formed the basis for providing projections of the neutron exposure of the reactor pressure vessel for operating periods extending to 60 EFPY.The use of fast neutron fluence (E > 1.0 MeV) to correlate measured material property changes to the neutron exposure of the material has traditionally been accepted for the development of damage trend curves as well as for the implementation of trend curve data to assess the condition of the vessel. In recent years, however, it has been suggested that an exposure model that accounts for differences in neutron energy spectra between surveillance capsule locations and positions within the vessel wall could lead to an improvement in the uncertainties associated with damage trend curves and improved accuracy in the evaluation of damage gradients through the reactor vessel wall.Because of this potential shift away from a threshold fluence toward an energy-dependent damage function for data correlation, ASTM Standard Practice E853-01, "Analysis and Interpretation of Light-Water Reactor Surveillance Results," [Ref. 18] recommends reporting displacements per iron atom (dpa)along with fluence (E > 1.0 MeV) to provide a database for future reference.

The energy-dependent dpa function to be used for this evaluation is specified in ASTM Standard Practice E693-01, "Standard Practice for Characterizing Neutron Exposures in Iron and Low Alloy Steels in Terms of Displacements per Atom" [Ref. 19]. The application of the dpa parameter to the assessment of embrittlement gradients through the thickness of the reactor vessel wall has already been promulgated in Revision 2 to Regulatory Guide 1.99, "Radiation Embrittlement of Reactor Vessel Materials" [Ref. 1].All of the calculations and dosimetry evaluations described in this section and in Appendix A were based on the latest available nuclear cross-section data derived from ENDF/B-VI and made use of the latest available calculational tools. Furthermore, the neutron transport and dosimetry evaluation methodologies follow the guidance of Regulatory Guide 1.190, "Calculational and Dosimetry Methods for Determining Pressure Vessel Neutron Fluence" [Ref. 20]. Additionally, the methods used to develop the calculated pressure vessel fluence are consistent with the NRC-approved methodology described in WCAP-14040-A, Revision 4, "Methodology Used to Develop Cold Overpressure Mitigating System Setpoints and RCS Heatup and Cooldown Limit Curves," May 2004 [Ref. 21].WCAP-17343-NP March 2011 Revision 0 6-2 Westinghouse Non-Proprietary Class 3 6.2 DISCRETE ORDINATES ANALYSIS The arrangement of the surveillance capsules in the Vogtle Unit 2 reactor vessel is shown in Figure 4-1.Six irradiation capsules attached to the neutron pad are included in the reactor design that constitutes the reactor vessel surveillance program. The capsules are located at azimuthal angles of 58.50, 61.00, 121.5', 238.5', 241.00, and 301.50 as shown in Figure 4-1. These full-core positions correspond to the following octant symmetric locations represented in Figures 6-2 and 6-3: 290 from the core cardinal axes (for the 61.0' and 241.0' dual surveillance capsule holder locations found in octants with a 22.50 neutron pad segment) and 31.5' from the core cardinal axes (for the 121.5' and 301.50 single surveillance capsule holder locations found in octants with a 20.00 neutron pad segment, and for the 58.5' and the 238.5' dual surveillance capsule holder locations found in octants with a 22.50 neutron pad segment).

The stainless steel specimen containers are 1.182-inch by 1-inch and are approximately 56 inches in height. The containers are positioned axially such that the test specimens are centered on the core midplane, thus spanning the central 5 feet of the 12-foot-high reactor core.From a neutronic standpoint, the surveillance capsules and associated support structures are significant.

The presence of these materials has a marked effect on both the spatial distribution of neutron flux and the neutron energy spectrum in the water annulus between the neutron pads and the reactor vessel. In order to determine the neutron environment at the test specimen location, the capsules themselves must be included in the analytical model.In performing the fast neutron exposure evaluations for the Vogtle Unit 2 reactor vessel and surveillance capsules, a series of fuel-cycle-specific forward transport calculations were carried out using the following three-dimensional flux synthesis technique: (p(r,0, z) = (p(r,0)

  • p((r, z) (Eqn. 6-1)(p(r)where 4(r,O,z) is the synthesized three-dimensional neutron flux distribution, ý(r,0) is the transport solution in r,0 geometry, 4(rz) is the two-dimensional solution for a cylindrical reactor model using the actual axial core power distribution, and 4(r) is the one-dimensional solution for a cylindrical reactor model using the same source per unit height as that used in the r,0 two-dimensional calculation.

This synthesis procedure was carried out for each operating cycle at Vogtle Unit 2.For the Vogtle Unit 2 transport calculations, the r,0 models depicted in Figures 6-1 through 6-3 were utilized since, with the exception of the neutron pads, the reactor is octant symmetric.

These r,0 models include the core, the reactor internals, the neutron pads -including explicit representations of an octant not containing surveillance capsules and octants with surveillance capsules at 29.00 and 31.50, the pressure vessel cladding and vessel wall, the insulation external to the pressure vessel, and the primary biological shield wall. These models formed the basis for the calculated results and enabled making comparisons to the surveillance capsule dosimetry evaluations.

In developing these analytical models, nominal design dimensions were employed for the various structural components.

Likewise, water temperatures, and hence, coolant densities in the reactor core and downcomer regions of the reactor were taken to be representative of full-power operating conditions.

The coolant densities were treated on a fuel-cycle-specific basis. The reactor core itself was treated as a homogeneous mixture of fuel, cladding, WCAP-17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 6-3 water, and miscellaneous core structures such as fuel assembly grids, guide tubes, et cetera. The geometric mesh description of the r,0 reactor models consisted of 183 radial by 99 azimuthal intervals.

Mesh sizes were chosen to assure that proper convergence of the inner iterations was achieved on a pointwise basis. The pointwise inner iteration flux convergence criterion utilized in the r,0 calculations was set at a value of 0.001.The rz model used for the Vogtle Unit 2 calculations is shown in Figure 6-4 and extends radially from the centerline of the reactor core out to a location interior to the primary biological shield and over an axial span from an elevation below the lower core plate to above the upper core plate. As in the case of the r,0 models, nominal design dimensions and full-power coolant densities were employed in the calculations.

In this case, the homogenous core region was treated as an equivalent cylinder with a volume equal to that of the active core zone. The stainless steel former plates located between the core baffle and core barrel regions were also explicitly included in the model. The rz geometric mesh description of these reactor models consisted of 153 radial by 188 axial intervals.

As in the case of the r,0 calculations, mesh sizes were chosen to assure that proper convergence of the inner iterations was achieved on a pointwise basis.The pointwise inner iteration flux convergence criterion utilized in the rz calculations was also set at a value of 0.001.The one-dimensional radial model used in the synthesis procedure consisted of the same 153 radial mesh intervals included in the rz model. Thus, radial synthesis factors could be determined on a meshwise basis throughout the entire geometry.The core power distributions used in the plant-specific transport analysis were provided by the Nuclear Fuels Division of Westinghouse for each of the first fifteen fuel cycles at Vogtle Unit 2. Specifically, the data utilized included cycle-dependent fuel assembly initial enrichments, burnups, and axial power distributions.

This information was used to develop spatial- and energy-dependent core source distributions averaged over each individual fuel cycle. Therefore, the results from the neutron transport calculations provided data in terms of fuel cycle averaged neutron flux, which when multiplied by the appropriate fuel cycle length, generated the incremental fast neutron exposure for each fuel cycle. In constructing these core source distributions, the energy distribution of the source was based on an appropriate fission split for uranium and plutonium isotopes based on the initial enrichment and burnup history of individual fuel assemblies.

From these assembly-dependent fission splits, composite values of energy release per fission, neutron yield per fission, and fission spectrum were determined.

All of the transport calculations supporting this analysis were carried out using the DORT discrete ordinates code Version 3.2 [Ref. 22] and the BUGLE-96 cross-section library [Ref. 23]. The BUGLE-96 library provides a 67-group coupled neutron-gamma ray cross-section data set produced specifically for light-water reactor (LWR) applications.

In these analyses, anisotropic scattering was treated with a P 5 legendre expansion and angular discretization was modeled with an S 1 6 order of angular quadrature.

Energy- and space-dependent core power distributions, as well as system operating temperatures, were treated on a fuel-cycle-specific basis.Selected results from the neutron transport analyses are provided in Tables 6-1 through 6-6. In Table 6-1, the calculated exposure rates and integrated exposures, expressed in terms of both neutron fluence (E > 1.0 MeV) and dpa, are given at the radial and azimuthal center of the octant symmetric surveillance capsule positions, i.e., for the 29.00 dual capsule, 31.5' dual capsule, and 31.50 single capsule. These WCAP-17343-NP March 2011 Revision 0 6-4 Westinghouse Non-Proprietary Class 3 results, representative of the axial midplane of the active core, establish the calculated exposure of the surveillance capsules withdrawn to date as well as projected into the future. Similar information is provided in Table 6-2 for the reactor vessel inner radius at four azimuthal locations.

The vessel data given in Table 6-2 were taken at the clad/base metal interface, and thus, represent maximum calculated exposure levels on the vessel.From the data provided in Table 6-2 it is noted that the peak clad/base metal interface vessel fluence (E > 1.0 MeV) at the end of the fourteenth fuel cycle (i.e., after 18.48 EFPY of plant operation) was 1.00 x 1019 n/cm 2 at the 450 azimuthal location.

This peak clad/base metal interface vessel fluence of 1.00 x 10'9 n/cm 2 was also reported in the Vogtle Unit 2 Cycle 14 ex-vessel neutron dosimetry analysis report [Ref. 24].Both calculated fluence (E > 1.0 MeV) and dpa data are provided in Tables 6-1 and 6-2. These data tabulations include both plant- and fuel-cycle-specific calculated neutron exposures at the end of the fourteenth fuel cycle as well as future projections to 19.94, 24, 28, 32, 36, 40, 44, 48, 54, and 60 EFPY.The calculations account for uprates from 3411 MWt to 3565 MWt that occurred at the onset of Cycle 4 and from 3565 MWt to 3626 MWt that occurred at the onset of Cycle 14. The projections were based on the assumption that the core power distributions and associated plant operating characteristics from Cycle 15 were representative of future plant operation.

The future projections are also based on the current reactor power level of 3626 MWt.Radial gradient information applicable to fast (E > 1.0 MeV) neutron fluence and dpa are given in Tables 6-3 and 6-4, respectively.

The data, based on the cumulative integrated exposures from Cycles 1 through 14, are presented on a relative basis for each exposure parameter at several azimuthal locations.

Exposure distributions through the vessel wall may be obtained by multiplying the calculated exposure at the vessel inner radius by the gradient data listed in Tables 6-3 and 6-4.The calculated fast neutron exposures for the five surveillance capsules withdrawn from the Vogtle Unit 2 reactor are provided in Table 6-5. These assigned neutron exposure levels are based on the plant- and fuel-cycle-specific neutron transport calculations performed for the Vogtle Unit 2 reactor.From the data provided in Table 6-5, Capsule Z received a fluence (E > 1.0 MeV) of 4.16 x 1019 n/cm 2 after exposure through the end of the fourteenth fuel cycle (i.e., after 18.48 EFPY of plant operation).

Updated lead factors for the Vogtle Unit 2 surveillance capsules are provided in Table 6-6. The capsule lead factor is defined as the ratio of the calculated fluence (E > 1.0 MeV) at the geometric center of the surveillance capsule to the corresponding maximum calculated fluence at the pressure vessel clad/base metal interface.

In Table 6-6, the lead factors for capsules that have been withdrawn from the reactor (U, Y, X, W, and Z) were based on the calculated fluence values for the irradiation period corresponding to the time of withdrawal for the individual capsules.

The lead factor for Capsule V, which was withdrawn at the end of Cycle 14 and stored in the spent fuel pool, corresponds to the calculated fluence values at the end of Cycle 14, the last completed fuel cycle for Vogtle Unit 2.WCAP- 17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 6-5 6.3 NEUTRON DOSIMETRY The validity of the calculated neutron exposures previously reported in Section 6.2 is demonstrated by a direct comparison against the measured sensor reaction rates and via a least squares evaluation performed for each of the capsule dosimetry sets. However, since the neutron dosimetry measurement data merely serve to validate the calculated results, only the direct comparison of measured-to-calculated results for the most recent surveillance capsule removed from service is provided in this section of the report. For completeness, the assessment of all measured dosimetry removed to date, based on both direct and least squares evaluation comparisons, is documented in Appendix A.The direct comparison of measured versus calculated fast neutron threshold reaction rates for the sensors from Capsule Z, that was withdrawn from Vogtle Unit 2 at the end of the fourteenth fuel cycle, is summarized below.j~v ~Reaction Raites (rps/atom)

Reaction(.)

> Measure~d Calculated NI/C Ratio 6 3 Cu(n,a)6°Co 4.OOE-17 3.96E- 17 1.01 1 4 Fe(n,p)1 4 Mn 4.26E-15 4.30E-15 0.99 5 SNi(n,p)5 t Co 5.75E-15 6.01E-15 0.96 2 3 8 U(n,f)1 3 7 Cs (Cd) 1.81E-14 2.28E-14 0.80 2 3 7 Np(n,f)1 3 7 Cs (Cd) 1.99E-13 2.21E-13 0.90 Average: 0.93% Standard Deviation:

9.1 Note: (a) The "(Cd)" designation next to a reaction indicates that the sensor was cadmium-covered.

The measured-to-calculated (M/C) reaction rate ratios for the Capsule Z threshold reactions range from 0.80 to 1.01, and the average M/C ratio is 0.93 +/- 9.1% (1o). This direct comparison falls well within the+/- 20% criterion specified in Regulatory Guide 1.190; furthermore, it is consistent with the full set of comparisons given in Appendix A for all measured dosimetry removed to date from the Vogtle Unit 2 reactor. These comparisons validate the current analytical results described in Section 6.2; therefore, the calculations are deemed applicable for Vogtle Unit 2.6.4 CALCULATIONAL UNCERTAINTIES The uncertainty associated with the calculated neutron exposure of the Vogtle Unit 2 surveillance capsule and reactor pressure vessel is based on the recommended approach provided in Regulatory Guide 1.190.In particular, the qualification of the methodology was carried out in the following four stages: 1. Comparison of calculations with benchmark measurements from the Pool Critical Assembly (PCA) simulator at the Oak Ridge National Laboratory (ORNL).2. Comparisons of calculations with surveillance capsule and reactor cavity measurements from the H. B. Robinson power reactor benchmark experiment.

WCAP-17343-NP March 2011 Revision 0 6-6 Westinghouse Non-Proprietary Class 3 3. An analytical sensitivity study addressing the uncertainty components resulting from important input parameters applicable to the plant-specific transport calculations used in the neutron exposure assessments.

4. Comparisons of the plant-specific calculations with all available dosimetry results from the Vogtle Unit 2 surveillance program.The first phase of the methods qualification (PCA comparisons) addressed the adequacy of basic transport calculation and dosimetry evaluation techniques andassociated cross-sections.

This phase, however, did not test the accuracy of commercial core neutron source calculations nor did it address uncertainties in operational or geometric variables that impact power reactor calculations.

The second phase of the qualification (H. B. Robinson comparisons) addressed uncertainties in these additional areas that are primarily methods related and would tend to apply generically to all fast neutron exposure evaluations.

The third phase of the qualification (analytical sensitivity study) identified the potential uncertainties introduced into the overall evaluation due to calculational methods approximations as well as to a lack of knowledge relative to various plant-specific input parameters.

The overall calculational uncertainty applicable to the Vogtle Unit 2 analysis was established from results of these three phases of the methods qualification.

The fourth phase of the uncertainty assessment (comparisons with Vogtle Unit 2 measurements) was used solely to demonstrate the validity of the transport calculations and to confirm the uncertainty estimates associated with the analytical results. The comparison was used only as a check and was not used in any way to modify the calculated surveillance capsule and pressure vessel neutron exposures previously described in Section 6.2. As such, the validation of the Vogtle Unit 2 analytical model based on the measured plant dosimetry is completely described in Appendix A.The following summarizes the uncertainties developed from the first three phases of the methodology qualification.

Additional information pertinent to these evaluations is provided in Reference 21.Descrition.Uncertainty DsrpinCapswule Nl essel R~PCA Comparisons 3% 3%H. B. Robinson Comparisons 3% 3%Analytical Sensitivity Studies 10% 11%Additional Uncertainty for Factors not Explicitly Evaluated 5% 5%Net Calculational Uncertainty 12% 13%The net calculational uncertainty was determined by combining the individual components in quadrature.

Therefore, the resultant uncertainty was treated as random and no systematic bias was applied to the analytical results.The plant-specific measurement comparisons described in Appendix A support these uncertainty assessments for Vogtle Unit 2.WCAP- 17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 6-7 Table 6-1 Calculated Neutron Exposure Rates and Integrated Exposures at the Surveillance Capsule Center(a)Cumulative Cumulative Neutron Flux (E > 1.0 MeV)lI/cm 2s]1 Length Time >Time '<Cycle [EFPS] [EFPS] IEFPYJ Dual 29.0' Dual 31.5' Sinl315 1 3.78E+07 3.78E+07 1.20 8.78E+10 9.43E+10 9.34E+10 2 3.86E+07 7.64E+07 2.42 7.30E+10 7.97E+10 7.89E+10 3 4.13E+07 1.18E+08 3.73 6.32E+10 6.82E+10 6.75E+10 4 3.96E+07 1.57E+08 4.98 6.08E+10 6.63E+10 6.57E+10 5 4.47E+07 2.02E+08 6.40 5.63E+10 6.17E+10 6.11E+10 6 4.35E+07 2.45E+08 7.78 6.27E+10 6.79E+10 6.73E+10 7 4.38E+07 2.89E+08 9.17 6.52E+10 7.08E+10 7.01E+10 8 4.43E+07 3.34E+08 10.57 6.53E+10 7.24E+10 7.17E+10 9 4.46E+07 3.78E+08 11.98 6.52E+10 6.95E+10 6.88E+10 10 4.I1E+07 4.19E+08 13.29 6.41E+10 7IOE+10 7.04E+10 11 3.99E+07 4.59E+08 14.55 6.60E+10 7.06E+10 6.99E+10 12 3.97E+07 4.99E+08 15.81 6.65E+10 7.41E+10 7.35E+10 13 4.23E+07 5.41E+08 17.15 6.39E+10 7.15E+10 7.09E+10 14 4.20E+07 5.83E+08 18.48 6.66E+10 7.25E+10 7.18E+10 Future 4.60E+07 6.29E+08 19.94 6.86E+10 7.52E+10 7.45E+10 Future 1.28E+08 7.57E+08 24.00 6.86E+10 7.52E+10 7.45E+10 Future 1.26E+08 8.84E+08 28.00 6.86E+10 7.52E+10 7.45E+10 Future 1.26E+08 1.01E+09 32.00 6.86E+10 7.52E+10 7.45E+10 Future 1.26E+08 1.14E+09 36.00 6.86E+10 7.52E+10 7.45E+10 Future 1.26E+08 1.26E+09 40.00 6.86E+10 7.52E+10 7.45E+10 Future 1.26E+08 1.39E+09 44.00 6.86E+10 7.52E+10 7.45E+10 Future 1.26E+08 1.51E+09 48.00 6.86E+10 7.52E+10 7.45E+10 Future 1.89E+08 1.70E+09 54.00 6.86E+10 7.52E+10 7.45E+10 Future 1.89E+08 1.89E+09 60.00 6.86E+10 7.52E+10 7.45E+10 Note: (a) Neutron exposure values reported for the surveillance capsules are centered at the core midplane.WCAP-17343-NP March 2011 Revision 0 6-8 Westinghouse Non-Proprietary Class 3 Table 6-1 (Continued)

Calculated Neutron Exposure Rates and Integrated Exposures at the Surveillance Capsule Center(a)Cumulative

<Cumulative ,Neutroni Fluence (E > 1.0 MeV) In/cm..iV~ Cycle Irradiation Irradiation.<<

< Length ...Time ....Time .. .. .. .Cycle [EFPS1 .EFPS. .EFPY] Dual 29.0' .Dual 31.5' Single 31.5'1 3.78E+07 3.78E+07 1.20 3.32E+18 3.56E+18 3.53E+18 2 3.86E+07 7.64E+07 2.42 6.14E+18 6.64E+18 6.58E+18 3 4.13E+07 1.18E+08 3.73 8.75E+18 9.45E+18 9.36E+18 4 3.96E+07 1.57E+08 4.98 1.12E+19 1.21E+19 1.20E+19 5 4.47E+07 2.02E+08 6.40 1.37E+19 1.48E+19 1.47E+19 6 4.35E+07 2.45E+08 7.78 1.64E+19 1.78E+19 1.76E+19 7 4.38E+07 2.89E+08 9.17 1.93E+19 2.09E+19 2.07E+19 8 4.43E+07 3.34E+08 10.57 2.22E+19 2.41E+19 2.39E+19 9 4.46E+07 3.78E+08 11.98 2.51E+19 2.72E+19 2.69E+19 10 4.11E+07 4.19E+08 13.29 2.77E+19 3.01E+19 2.98E+19 11 3.99E+07 4.59E+08 14.55 3.03E+19 3.29E+19 3.26E+19 12 3.97E+07 4.99E+08 15.81 3.30E+19 3.59E+19 3.56E+19 13 4.23E+07 5.41E+08 17.15 3.57E+19 3.89E+19 3.85E+19 14 4.20E+07 5.83E+08 18.48 3.85E+19 4.20E+19 4.16E+19 Future 4.60E+07 6.29E+08 19.94 4.16E+19 4.54E+19 4.50E+19 Future 1.28E+08 7.57E+08 24.00 5.04E+19 5.50E+19 5.45E+19 Future 1.26E+08 8.84E+08 28.00 5.91E+19 6.45E+19 6.39E+19 Future 1.26E+08 1.01E+09 32.00 6.77E+19 7.40E+19 7.33E+19 Future 1.26E+08 1.14E+09 36.00 7.64E+19 8.35E+19 8.28E+19 Future 1.26E+08 1.26E+09 40.00 8.51E+19 9.30E+19 9.22E+19 Future 1.26E+08 1.39E+09 44.00 9.37E+19 1.03E+20 1.02E+20 Future 1.26E+08 1.51E+09 48.00 1.02E+20 1.12E+20 1.11E+20 Future 1.89E+08 1.70E+09 54.00 1.15E+20 1.26E+20 1.25E+20 Future 1.89E+08 1.89E+09 60.00 1.28E+20 1.41E+20 1.39E+20 Note: (a) Neutron exposure values reported for the surveillance capsules are centered at the core midplane.WCAP- 17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 6-9 Table 6-1 (Continued)

Calculated Neutron Exposure Rates and Integrated Exposures at the Surveillance Capsule Centerta)Cumulative Cumulative Iron Atom Displacement Rate [dpa/sI Cycle Irradiation Irradlia~tiont.

~Length .TimeU ~Time Cycle' [EFPS] [ 'EFPSIj [EFPYI Dual 29.00 ~Dta 131.5' Single 31.5'1 3.78E+07 3.78E+07 1.20 1.72E-10 1.84E-10 1.82E-10 2 3.86E+07 7.64E+07 2.42 1.42E-10 1.54E-10 1.53E-10 3 4.13E+07 1.18E+08 3.73 1.22E-10 1.32E-10 1.31E-10 4 3.96E+07 1.57E+08 4.98 1.18E-10 1.28E-10 1.27E-10 5 4.47E+07 2.02E+08 6.40 1.09E-10 1.19E-10 1.18E-10 6 4.35E+07 2.45E+08 7.78 1.22E-10 1.32E-10 1.30E-10 7 4.38E+07 2.89E+08 9.17 1.26E-10 1.37E-10 1.36E-10 8 4.43E+07 3.34E+08 10.57 1.27E-10 1.41E-10 1.39E-10 9 4.46E+07 3.78E+08 11.98 1.27E-10 1.35E-10 1.33E-10 10 4.11E+07 4.19E+08 13.29 1.24E-10 1.38E-10 1.37E-10 11 3.99E+07 4.59E+08 14.55 1.28E-10 1.37E-10 1.35E-10 12 3.97E+07 4.99E+08 15.81 1.29E-10 1.44E-10 1.42E-10 13 4.23E+07 5.41E+08 17.15 1.24E-10 1.39E-10 1.37E-10 14 4.20E+07 5.83E+08 18.48 1.29E-10 1.40E-10 1.39E-10 Future 4.60E+07 6.29E+08 19.94 1.33E-10 1.46E-10 1.44E-10 Future 1.28E+08 7.57E+08 24.00 1.33E-10 1.46E-10 1.44E-10 Future 1.26E+08 8.84E+08 28.00 1.33E-10 1.46E-10 1.44E-10 Future 1.26E+08 1.01E+09 32.00 1.33E-10 1.46E-10 1.44E- 10 Future 1.26E+08 1.14E+09 36.00 1.33E-10 1.46E-10 1.44E-10 Future 1.26E+08 1.26E+09 40.00 1.33E-10 1.46E-10 1.44E-10 Future 1.26E+08 1.39E+09 44.00 1.33E-10 1.46E-10 1.44E- 10 Future 1.26E+08 1.51E+09 48.00 1.33E-10 1.46E-10 1.44E-10 Future 1.89E+08 1.70E+09 54.00 1.33E-10 1.46E-10 1.44E-10 Future 1.89E+08 1.89E+09 60.00 1.33E-10 1.46E-10 1.44E-10 Note: (a) Neutron exposure values reported for the surveillance capsules are centered at the core midplane.WCAP- 17343-NP March 2011 Revision 0 6-10 Westinghouse Non-Proprietary Class 3 Table 6-1 (Continued)

Calculated Neutron Exposure Rates and Integrated Exposures at the Surveillance Capsule Centerta)Cumulative , Cumulative Iron Atom Displacements

[dpal Cycle Irradiation.

Length ~ Time, '~Timne__ _ ,[EFPS, 'IEFPSI IEFPY Dual 29.0', Dual Single 31.50 I 3.78E+07 3.78E+07 1.20 6.49E-03 6.97E-03 6.89E-03 2 3.86E+07 7.64E+07 2.42 1.20E-02 1.29E-02 1.28E-02 3 4.13E+07 1.18E+08 3.73 1.70E-02 1.84E-02 1.82E-02 4 3.96E+07 1.57E+08 4.98 2.17E-02 2.35E-02 2,32E-02 5 4.47E+07 2.02E+08 6.40 2.66E-02 2.88E-02 2.85E-02 6 4.35E+07 2.45E+08 7.78 3.18E-02 3.45E-02 3.42E-02 7 4.38E+07 2.89E+08 9.17 3.74E-02 4.05E-02 4.01E-02 8 4.43E+07 3.34E+08 10.57 4.30E-02 4.67E-02 4.63E-02 9 4.46E+07 3.78E+08 11.98 4.86E-02 5.27E-02 5.22E-02 10 4.11E+07 4.19E+08 13.29 5.37E-02 5.84E-02 5.78E-02 11 3.99E+07 4.59E+08 14.55 5.88E-02 6.39E-02 6.32E-02 12 3.97E+07 4.99E+08 15.81 6.40E-02 6.96E-02 6.89E-02 13 4.23E+07 5.41EE+08 17.15 6.92E-02 7.55E-02 7.47E-02 14 4.20E+07 5.83E+08 18.48 7.46E-02 8.13E-02 8.05E-02 Future 4.60E+07 6.29E+08 19.94 8.08E-02 8.80E-02 8.72E-02 Future 1.28E+08 7.57E+08 24.00 9.78E-02 1.07E-01 1.06E-01 Future 1.26E+08 8.84E+08 28.00 1.15E-01 1.25E-01 1.24E-01 Future 1.26E+08 1.01E+09 32.00 1.31E-01 1.44E-01 1.42E-01 Future 1.26E+08 1.14E+09 36.00 1.48E-01 1.62E-01 1.60E-01 Future 1.26E+08 1.26E+09 40.00 1.65E-01 1.80E-01 1.79E-01 Future 1.26E+08 1.39E+09 44.00 1.82E-01 1.99E-01 1.97E-01 Future 1.26E+08 1.51E+09 48.00 1.99E-01 2.17E-01 2.15E-01 Future 1.89E+08 1.70E+09 54.00 2.24E-01 2.45E-01 2.42E-01 Future 1.89E+08 1.89E+09 60.00 2.49E-01 2.72E-01 2.70E-01 Note: (a) Neutron exposure values reported for the surveillance capsules are centered at the core midplane.WCAP- 17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 6-11 Table 6-2 Calculated Azimuthal Variation of Maximum Exposure Rates and Integrated Exposures at the Reactor Vessel Clad/Base Metal Interface'~ ;~ 'jCumulative Cumiulative

> Neutron Flux (E >1.0 MeV) In/cm 2-sI l> ~~Cycle Irradiation Irradiation KLength Timie<. Time Cycle <:EFPSI IEFPS] IEFPYji 00i2 1 50 > 30045 1 3.78E+07 3.78E+07 1.20 1.31E+10 1.94E+10 2.23E+10 2.30E+10 2 3.86E+07 7.64E+07 2.42 1.12E+10 1.53E+10 1.85E+10 1.78E+10 3 4.13E+07 1.18E+08 3.73 8.95E+09 1.36E+10 1.60E+10 1.60E+10 4 3.96E+07 1.57E+08 4.98 8.39E+09 1.24E+10 1.55E+10 1.58E+10 5 4.47E+07 2.02E+08 6.40 8.45E+09 1.23E+10 1.45E+10 1.47E+10 6 4.35E+07 2.45E+08 7.78 9.69E+09 1.39E+10 1.60E+10 1.62E+10 7 4.38E+07 2.89E+08 9.17 9.50E+09 1.42E+10 1.68E+10 1.70E+10 8 4.43E+07 3.34E+08 10.57 8.85E+09 1.35E+10 1.66E+10 1.84E+10 9 4.46E+07 3.78E+08 11.98 9.23E+09 1.40E+10 1.64E+10 1.62E+10 10 4.11E+07 4.19E+08 13.29 9.23E+09 1.34E+10 1.64E+10 1.78E+10 11 3.99E+07 4.59E+08 14.55 9.87E+09 1.47E+10 1.67E+10 1.65E+10 12 3.97E+07 4.99E+08 15.81 9.04E+09 1.27E+10 1.69E+10 1.78E+10 13 4.23E+07 5.41E+08 17.15 9.45E+09 1.35E+10 1.63E+10 1.81E+10 14 4.20E+07 5.83E+08 18.48 9.50E+09 1.36E+10 1.68E+10 1.72E+10 Future 4.60E+07 6.29E+08 19.94 9.25E+09 1.43E+10 1.73E+10 1.80E+10 Future 1.28E+08 7.57E+08 24.00 9.25E+09 1.43E+10 1.73E+10 1.80E+10 Future 1.26E+08 8.84E+08 28.00 9.25E+09 1.43E+10 1.73E+10 1.80E+10 Future 1.26E+08 1.01E+09 32.00 9.25E+09 1.43E+10 1.73E+10 1.80E+10 Future 1.26E+08 1.14E+09 36.00 9.25E+09 1.43E+10 1.73E+10 1.80E+10 Future 1.26E+08 1.26E+09 40.00 9.25E+09 1.43E+10 1.73E+10 1.80E+10 Future 1.26E+08 1.39E+09 44.00 9.25E+09 1.43E+10 1.73E+10 1.80E+10 Future 1.26E+08 1.51E+09 48.00 9.25E+09 1.43E+10 1.73E+10 1.80E+10 Future 1.89E+08 1.70E+09 54.00 9.25E+09 1.43E+10 1.73E+10 1.80E+10 Future 1.89E+08 1.89E+09 60.00 9.25E+09 1.43E+10 1.73E+10 1.80E+10 WCAP-17343-NP March 2011 Revision 0 6-12 Westinghouse Non-Proprietary Class 3 Table 6-2 (Continued)

Calculated Azimuthal Variation of Maximum Exposure Rates and Integrated Exposures at the Reactor Vessel Clad/Base Metal Interface Cumulative Cumulive Neutron 'Fluence (E> 1.0 Me) [ntcm]1 2 l Cycle Irradiation Irradiation Length~. > Time, <Timne ~[Cycle [EFPSI [EFPS]< IEFPYI 00 ,.150 300 450 1 3.78E+07 3.78E+07 1.20 4.93E+17 7.31E+17 8.42E+17 8.69E+17 2 3.86E+07 7.64E+07 2.42 9.26E+17 1.32E+18 1.56E+18 1.56E+18 3 4.13E+07 1.18E+08 3.73 1.29E+18 1.87E+18 2.20E+18 2.20E+18 4 3.96E+07 1.57E+08 4.98 1.62E+18 2.36E+18 2.81E+18 2.83E+18 5 4.47E+07 2.02E+08 6.40 1.99E+18 2.91 E+ 18 3.46E+18 3.48E+18 6 4.35E+07 2.45E+08 7.78 2.42E+18 3.52E+18 4.15E+18 4.19E+18 7 4.38E+07 2.89E+08 9.17 2.83E+18 4.14E+18 4.88E+18 4.93E+18 8 4.43E+07 3.34E+08 10.57 3.22E+18 4.74E+18 5.62E+18 5.74E+18 9 4.46E+07 3.78E+08 11.98 3.63E+18 5.36E+18 6.35E+18 6.46E+18 10 4.11E+07 4.19E+08 13.29 4.01E+18 5.91E+18 7.02E+18 7.20E+18 11 3.99E+07 4.59E+08 14.55 4.40E+18 6.49E+18 7.68E+18 7.85E+18 12 3.97E+07 4.99E+08 15.81 4.76E+18 6.99E+18 8.35E+18 8.55E+18 13 4.23E+07 5.41E+08 17.15 5.16E+18 7.56E+18 9.03E+18 9.31E+18 14 4.20E+07 5.83E+08 18.48 5.55E+18 8.12E+18 9.72E+18 1.00E+19 Future 4.60E+07 6.29E+08 19.94 5.97E+18 8.77E+18 1.05E+19 1.08E+19 Future 1.28E+08 7.57E+08 24.00 7.15E+18 1.06E+19 1.27E+19 1.32E+19 Future 1.26E+08 8.84E+08 28.00 8.32E+18 1.24E+19 1.49E+19 1.54E+19 Future 1.26E+08 1.01E+09 32.00 9.49E+18 1.42E+19 1.71E+19 1.77E+19 Future 1.26E+08 1.14E+09 36.00 1.07E+19 1.60E+19 1.93E+19 2.OOE+19 Future 1.26E+08 1.26E+09 40.00 1.18E+19 1.78E+19 2.15E+19 2.22E+19 Future 1.26E+08 1.39E+09 44.00 1.30E+19 1.97E+19 2.37E+19 2.45E+19 Future 1.26E+08 1.51E+09 48.00 1.42E+19 2.15E+19 2.58E+19 2.68E+19 Future 1.89E+08 1.70E+09 54.00 1.59E+19 2.42E+19 2.91E+19 3.02E+19 Future 1.89E+08 1.89E+09 60.00 1.77E+19 2.69E+19 3.24E+19 3.36E+19 WCAP- 17343-NP March 2011 Revision 0 Westinghouse Non-Proprietarv Class 3 6-13 Table 6-2 (Continued)

Calculated Azimuthal Variation of Maximum Exposure Rates and Integrated Exposures at the Reactor Vessel Clad/Base Metal Interface.C ....". Cumulative Cuimulative Iron Atom Displacement Rate Idpa/s] -Cyl rr~adiation Irradiation.

Lengthl':

' Time' Time ...... .. ... .. .~Cycle~ JEFPS] [EFPSjI [EFPY] 00O 150 30450 1 3.78E+07 3.78E+07 1.20 2.03E-1 1 2.97E- 11 3.43E-1 1 3.64E- 11 2 3.86E+07 7.64E+07 2.42 1.74E-11 2.36E- 11 2.85E-11 2.82E- 11 3 4.13E+07 1.18E+08 3.73 1.39E-11 2.09E-11 2.47E-11 2.52E-11 4 3.96E+07 1.57E+08 4.98 1.31E-I1 1.91E-11 2.39E-11 2.50E-11 5 4.47E+07 2.02E+08 6.40 1.31E-1I 1.90E-11 2.23E-11 2.32E- 11 6 4.35E+07 2.45E+08 7.78 1.51E-11 2.13E-11 2.47E-I1 2.56E-11 7 4.38E+07 2.89E+08 9.17 1.48E-11 2.19E-11 2.59E-I1 2.69E-11 8 4.43E+07 3.34E+08 10.57 1.38E-11 2.08E-I1 2.56E-11 2.91E-I 1 9 4.46E+07 3.78E+08 11.98 1.44E-11 2.16E-I1 2.52E-11 2.55E-11 10 4.11E+07 4.19E+08 13.29 1.44E-I 1 2.06E-11 2.53E-11 2.81E-11 11 3.99E+07 4.59E+08 14.55 1.54E-11 2.26E-11 2.57E-11 2.60E- 11 12 3.97E+07 4.99E+08 15.81 1.41E-11 1.96E-11 2.61E-11 2.82E-11 13 4.23E+07 5.41E+08 17.15 1.47E-11 2.08E-11 2.52E-11 2.85E-11 14 4.20E+07 5.83E+08 18.48 1.48E-1 1 2.1OE- 11 2.59E- I1 2.71E-1 1 Future 4.60E+07 6.29E+08 19.94 1.44E-11 2.21E-1 1 2.67E-11 2.85E-11 Future 1.28E+08 7.57E+08 24.00 1.44E-11 2.21E-11 2.67E-11 2.85E-11 Future 1.26E+08 8.84E+08 28.00 1.44E-11 2.21E-11 2.67E-11 2.85E-11 Future 1.26E+08 1.01E+09 32.00 1.44E-11 2.21E- 11 2.67E-11 2.85E-11 Future 1.26E+08 1.14E+09 36.00 1.44E-11 2.21E-11 2.67E- 11 2.85E-11 Future 1.26E+08 1.26E+09 40.00 1.44E-11 2.21E-11 2.67E-11 2.85E-11 Future 1.26E+08 1.39E+09 44.00 1.44E- 11 2.21E-11 2.67E-11 2.85E-11 Future 1.26E+08 1.51E+09 48.00 1.44E-11 2.21E-11 2.67E-11 2.85E-11 Future 1.89E+08 1.70E+09 54.00 1.44E-11 2.21E-I1 2.67E-11 2.85E-11 Future 1.89E+08 1.89E+09 60.00 1.44E-11 2.21E-I I 2.67E-11 2.85E-11 WCAP- 17343-NP March 2011 Revision 0 6-14 Westinghouse Non-Proprietary Class 3 Table 6-2 (Continued)

Calculated Azimuthal Variation of Maximum Exposure Rates and Integrated Exposures at the Reactor Vessel Clad/Base Metal Interface.. ., Cumulative Cumulative; IronAtom DispllcenoAts[doI Cycle. IIrdiation Irradiation

..,..0, Length4<>$Time Time',Cycle [EFPS] J.FPSJ -*I : ,F: 00:K' 150, 300 45 0 1 3.78E+07 3.78E+07 1.20 7.65E-04 1.12E-03 1.30E-03 1.37E-03 2 3.86E+07 7.64E+07 2.42 1.44E-03 2.04E-03 2.40E-03 2.46E-03 3 4.13E+07 1.18E+08 3.73 2.OOE-03 2.88E-03 3.39E-03 3.48E-03 4 3.96E+07 1.57E+08 4.98 2.51E-03 3.64E-03 4.34E-03 4.47E-03 5 4.47E+07 2.02E+08 6.40 3.10E-03 4.48E-03 5.33E-03 5.50E-03 6 4.35E+07 2.45E+08 7.78 3.75E-03 5.41E-03 6.40E-03 6.61E-03 7 4.38E+07 2.89E+08 9.17 4.40E-03 6.37E-03 7.53E-03 7.79E-03 8 4.43E+07 3.34E+08 10.57 5.01E-03 7.29E-03 8.67E-03 9.07E-03 9 4.46E+07 3.78E+08 11.98 5.65E-03 8.25E-03 9.79E-03 1.02E-02 10 4.11 E+07 4.19E+08 13.29 6.24E-03 9.1OE-03 1.08E-02 1.14E-02 11 3.99E+07 4.59E+08 14.55 6.85E-03 9.99E-03 1.19E-02 1.24E-02 12 3.97E+07 4.99E+08 15.81 7.40E-03 1.08E-02 1.29E-02 1.35E-02 13 4.23E+07 5.41E+08 17.15 8.02E-03 1.16E-02 1.39E-02 1.47E-02 14 4.20E+07 5.83E+08 18.48 8.62E-03 1.25E-02 1.50E-02 1.58E-02 Future 4.60E+07 6.29E+08 19.94 9.28E-03 1.35E-02 1.62E-02 1.71E-02 Future 1.28E+08 7.57E+08 24.00 1.11E-02 1.63E-02 1.97E-02 2.08E-02 Future 1.26E+08 8.84E+08 28.00 1.29E-02 1.91E-02 2.30E-02 2.44E-02 Future 1.26E+08 1.01E+09 32.00 1.48E-02 2.19E-02 2.64E-02 2.79E-02 Future 1.26E+08 1.14E+09 36.00 1.66E-02 2.47E-02 2.98E-02 3.15E-02 Future 1.26E+08 1.26E+09 40.00 1.84E-02 2.75E-02 3.31E-02 3.5 1 E-02 Future 1.26E+08 1.39E+09 44.00 2.02E-02 3.02E-02 3.65E-02 3.87E-02 Future 1.26E+08 1.5 1E+09 48.00 2.20E-02 3.30E-02 3.99E-02 4.23E-02 Future 1.89E+08 1.70E+09 54.00 2.48E-02 3.72E-02 4.49E-02 4.77E-02 Future 1.89E+08 1.89E+09 60.00 2.75E-02 4.14E-02 5.OOE-02 5.31E-02 WCAP-17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 6-15 Table 6-3 Relative Radial Distribution of Neutron Fluence (E > 1.0 MeV) Within the Reactor Vessel Wall(a)Radius Relative RadialDistribution of rNeutron Fluence Within the Vessel (cm) 1~'v 00YU ~ 150 p300 45 220.11 1.000 1.000 1.000 1.000 225.59 0.571 0.566 0.561 0.558 231.06 0.282 0.277 0.272 0.269 236.54 0.134 0.130 0.127 0.125 242.01 0.064 0.059 0.057 0.056 Base Metal Inner Radius = 220.11 cm Base Metal 1/4T = 225.59 cm Base Metal 1/2T = 231.06 cm Base Metal 3/4T = 236.54 cm Base Metal Outer Radius = 242.01 cm Note: (a) Relative radial distribution data are based on the maximum cumulative integrated exposures from Cycles I through 14.WCAP-17343-NP March 2011 Revision 0 6-16 Westinghouse Non-Proprietary Class 3 Table 6-4 Relative Radial Distribution of Iron Atom Displacements (dpa) Within the Reactor Vessel Wall(')Radius ,Relative RadialDistribution of dpa Within the vessel 1/2, 4111) 001030 5 220.11 1.000 1.000 1.000 1.000 225.59 0.642 0.637 0.635 0.644 231.06 0.389 0.381 0.381 0.392 236.54 0.236 0.226 0.227 0.234 242.01 0.141 0.127 0.127 0.130 Base Metal Inner Radius = 220.11 cm Base Metal 1/4T = 225.59 cm Base Metal 1/2T = 231.06 cm Base Metal 3/4T = 236.54 cm Base Metal Outer Radius = 242.01 cm Note: (a) Relative radial distribution data are based on the maximum cumulative integrated exposures from Cycles I through 14.Table 6-5 Calculated Fast Neutron Exposure of Surveillance Capsules Withdrawn from Vogtle Unit 2 I rdaio in Fluence (E > 1.0 MeV) Iron Displacemnents SCaspsule>

7 EFPYJ [>nci >~~dpal U 1.20 3.56E+18 6.97E-03 Y 4.98 1.12E+19 2.17E-02 X 7.78 1.78E+19 3.45E-02 W 13.29 2.98E+19 5.78E-02 Z 18.48 4.16E+19 8.05E-02 WCAP-17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 6-17 Table 6-6 Calculated Surveillance Capsule Lead Factors CapsulID And Location Status. Lead Factor. .U (58.50) Withdrawn EOC 1 4.10 Y (241.00) Withdrawn EOC 4 3.95 X (238.5') Withdrawn EOC 6 4.25 W (121.5 0) Withdrawn EOC 10 4.14 Z (301.5-) Withdrawn EOC 14 4.15 V (61.00) Withdrawn EOC 14 and Stored in Spent Fuel Pool 3.84 WCAP- 17343-NP March 2011 WCAP-17343-NP March 2011 Revision 0 6-18 Westinghouse Non-Proprietary Class 3 A. W. Vogtle Unit 2 Reactor R,T Model Meshes: 183R, 998 Core Bypass Region Downcomer hrsioiaton Stainless; Steel Air Concrete Carbonr Sinai C-0o CD-0-C -c[c-o2-o-C'4-°0.0 25.0 50.0 75.0 100.0 125.0 150.0 175.0 200.0 225.0 250.0 275.0 300.0 325.0 OR[CMI Figure 6-1 Vogtle Unit 2 r,0 Reactor Geometry with a 12.5' Neutron Pad Span at the Core Midplane WCAP- 17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 6-19 A. W. Vogtle Unit 2 Reacior R,T Model Meshes: 183R, 998 ore Air Bypass Raeion Downcmar COMT0l1 Carbon Sled Insulalon Stairios S~eel C)-5') -5') -Sn-C!o-Ln-'0. 0 25.0 50 5.0 100.0 125.0 150.0 175.0 200.0 225.0 250.0[cm]Figure 6-2 Vogtle Unit 2 rO Reactor Geometry with a 20.0' Neutron Pad Span at the Core Midplane WCAP- 17343-NP March 2011 Revision 0 6-20 Westinghouse Non-Proprietary Class 3 A. W. Vogfle Unit 2 Reactor R,T Model Meshes: 183R, 998 Care B gss eiin Dowi Isublcon Stainless igel uam_Air cConrete Carbm Sigel 04 CD 0-C-C3 C) 0-Ln-InI 0.0 25.0 50.0 75.0 100.0 125.0 150.0 175.0 200.0 225.0 250.0 275.0 300.0 325.0 'z R[cm]Figure 6-3 Vogtle Unit 2 rO Reactor Geometry with a 22.5' Neutron Pad Span at the Core Midplane WCAP-17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 A. W. Vogtle Unit 2 Reactor R,Z Model Meshes: 153X,188Y C-" C14 CO-0 .3 2 4[0 0.0 56.7 113.3 U70.0 226.7 282.e 340.0 X Figure 6-4 Vogtle Unit 2 r~z Reactor Geometry with Neutron Pad 6-21 WCAP-17343-NP March 2011 Revision 0

Westinghouse Non-Proprietary Class 3 7-1 7 SURVEILLANCE CAPSULE REMOVAL SCHEDULE The following table summarizes the removal of the six surveillance capsules from the Vogtle Unit 2 reactor vessel, meeting the requirements of ASTM E 185-82 [Ref. 4].Table 7-1 Surveillance Capsule Withdrawal Summary Capsule. ~Capstile Location LedFco() Withdrawal EFPYf1/4 _________________

U 58.50 4.10 1.20 0.356 x 10 1 9 Y 2410 3.95 4.98 1.12 x 10'9 X 238.50 4.25 7.78 1.78 x 10'9 W 121.50 4.14 13.29 2.98 x 10'9 Z 301.50 4.15 18.48 4.16 x 10 V(d) 610 3.84 18.48()- --Notes: (a) Updated in Capsule Z dosimetry analysis; see Table 6-6.(b) EFPY from plant startup.(c) Updated in Capsule Z dosimetry analysis; see Table 6-5.(d) Standby Capsule V was removed and placed in the spent fuel pool. No testing or analysis has been performed on this capsule. Reinsertion of this capsule may be considered in the future, especially if Vogtle Unit 2 plans to pursue a 40-year license renewal (80 years). However, since the current regulations may change between now and then, it is recommended that the schedule for reinsertion and subsequent withdrawal of an 80-year license capsule be revisited at a later time.WCAP-17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 8-1 8 REFERENCES

1. Regulatory Guide 1.99, Revision 2, Radiation Embrittlement of Reactor Vessel Materials, U.S. Nuclear Regulatory Commission, May 1988.2. 10 CFR 50, Appendix Q Fracture Toughness Requirements, and Appendix H, Reactor Vessel Material Surveillance Program Requirements, Federal Register, Volume 60, No. 243, December 19, 1995.3. WCAP-11381, Revision 0, Georgia Power Company Alvin W Vogtle Unit No. 2 Reactor Vessel Radiation Surveillance Program, L. R. Singer, April 1986.4. ASTM E185-82, Standard Practice for Conducting Surveillance Tests for Light-Water Cooled Nuclear Power Reactor Vessels, E706 (IF), ASTM, 1982.5. Section X1 of the ASME Boiler and Pressure Vessel Code, Appendix G, Fracture Toughness Criteria for Protection Against Failure.6. ASTM E208, Standard Test Method for Conducting Drop- Weight Test to Determine Nil-Ductility Transition Temperature of Ferritic Steels, in ASTM Standards, Section 3, American Society for Testing and Materials, Philadelphia, PA.7. ASTM E399, Test Method for Plane-Strain Fracture Toughness of Metallic Materials, American Society for Testing Materials.
8. WCAP-16382-NP, Revision 0, Analysis of Capsule Wfrom the Southern Nuclear Operating Company, Vogtle Unit 2 Reactor Vessel Radiation Surveillance Program, T. J. Laubham and R. J. Hagler, January 2005.9. WCAP-14532, Revision 0, Analysis of Capsule Yfrom the Georgia Power Company Vogtle Electric Generating Plant (VEGP) Unit 2 Reactor Vessel Radiation Surveillance Program, P. A. Grendys et al., February 1996.10. ASTM E23-07a, Standard Test Method for Notched Bar Impact Testing of Metallic Materials, ASTM, 2007.11. ASTM E2298-09, Standard Test Method for Instrumented Impact Testing of Metallic Materials, ASTM, 2009.12. General Yielding of Charpy V-Notch and Precracked Charpy Specimens, Journal of Engineering Materials and Technology, Vol. 100, April 1978, pp. 183-188.13. ASTM A370-09, Standard Test Methods and Definitions for Mechanical Testing of Steel Products, ASTM, 2009.14. ASTM E8-09, Standard Test Methods for Tension Testing of Metallic Materials, ASTM, 2009.WCAP-17343-NP March 2011 Revision 0 8-2 Westinhouse Non-Proprietary Class 3 15. ASTM E21-09, Standard Test Methods for Elevated Temperature Tension Tests of Metallic Materials, ASTM, 2009.16. WCAP-13007, Revision 0, Analysis of Capsule U from the Georgia Power Company Vogtle Electric Generating Plant Unit 2 Reactor Vessel Radiation Surveillance Program, E. Terek et al., August 1991.17. WCAP-15159, Revision 0, Analysis of Capsule X from Southern Nuclear Vogtle Electric Generating Plant Unit 2 Reactor Vessel Radiation Surveillance Program, T. J. Laubham et al., March 1999.18. ASTM E853-01, Standard Practice for Analysis and Interpretation of Light-Water Reactor Surveillance Results, E706 (IA), ASTM, 2001 19. ASTM E693-01, Standard Practice for Characterizing Neutron Exposures in Iron and Low Alloy Steels in Terms of Displacements Per A tom (DPA), E706 (ID), ASTM, 2001.20. Regulatory Guide 1.190, Calculational and Dosimetry Methods for Determining Pressure Vessel Neutron Fluence, U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, March 2001.21. WCAP-14040-A, Revision 4, Methodology Used to Develop Cold Overpressure Mitigating System Setpoints and RCS Heatup and Cooldown Limit Curves, May 2004.22. RSICC Computer Code Collection CCC-650, DOORS 3.2: One, Two- and Three Dimensional Discrete Ordinates Neutron/Photon Transport Code System, April 1998.23. RSICC Data Library Collection DLC-185, BUGLE-96, Coupled 47 Neutron, 20 Gamma-Ray Group Cross Section Library Derived from ENDF/B- VI for LWR Shielding and Pressure Vessel Dosimetry Applications, March 1996.24. WCAP-17350-NP, Revision 0, Ex- Vessel Neutron Dosimetry Program for A. W Vogtle Unit 2 Cycle 14, M. A. Hunter, December 2010.WCAP-17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 A-I APPENDIX A VALIDATION OF THE RADIATION TRANSPORT MODELS BASED ON NEUTRON DOSIMETRY MEASUREMENTS A.1 NEUTRON DOSIMETRY Comparisons of measured dosimetry results to both the calculated and least squares adjusted values for all surveillance capsules withdrawn from service to date at Vogtle Unit 2 are described herein. The sensor sets from these capsules have been analyzed in accordance with the current dosimetry evaluation methodology described in Regulatory Guide 1.190, "Calculational and Dosimetry Methods for Determining Pressure Vessel Neutron Fluence" [Ref. A-1]. One of the main purposes for presenting this material is to demonstrate that the overall measurements agree with the calculated and least squares adjusted values to within +/- 20% as specified by Regulatory Guide 1.190, thus serving to validate the calculated neutron exposures previously reported in Section 6.2 of this report.A.1.1 Sensor Reaction Rate Determinations In this section, the results of the evaluations of the five neutron sensor sets analyzed to date as part of the Vogtle Unit 2 Reactor Vessel Materials Surveillance Program are presented.

The capsule designation, location within the reactor, and time of withdrawal of each of these dosimetry sets were as follows: Capsule ID AzimuthalLocation, Tinmei :Irradiation Time U 31.5' Dual End of Cycle 1 1.20 Y 29.00 Dual End of Cycle 4 4.98 X 31.50 Dual End of Cycle 6 7.78 W 31.50 Single End of Cycle 10 13.29 Z 31.50 Single End of Cycle 14 18.48 The azimuthal locations included in the above tabulation represent the first octant equivalent azimuthal angle of the geometric center of the respective surveillance capsules.The passive neutron sensors included in the evaluations of surveillance Capsules U, Y, X, W, and Z are summarized as follows: WCAP-17343-NP March 2011 Revision 0 A-2 Westinghouse Non-Proprietary Class 3 A-2 Westinghouse Non-Proprietary Class 3 Since all of the dosimetry monitors were located at the radial center of the material test specimen array, radial gradient corrections were not required for these reaction rates. Pertinent physical and nuclear characteristics of the passive neutron sensors are listed in Table A-1.The use of passive monitors such as those listed above does not yield a direct measure of the energy-dependent neutron flux at the point of interest.

Rather, the activation or fission process is a measure of the integrated effect that the time- and energy-dependent neutron flux has on the target material over the course of the irradiation period. An accurate assessment of the average neutron flux level incident on the various monitors may be derived from the activation measurements only if the irradiation parameters are well known. In particular, the following variables are of interest: 0 the measured specific activity of each monitor,* the physical characteristics of each monitor,* the operating history of the reactor,* the energy response of each monitor, and 0 the neutron energy spectrum at the monitor location.Results from the radiometric counting of the neutron sensors from Capsules U, Y, X, and W are documented in References A-2 through A-5, respectively.

The radiometric counting of the sensors from Capsule Z was carried out by Pace Analytical Services, Inc. In all cases, the radiometric counting followed established ASTM procedures.

Following sample preparation and weighing, the specific activity of each sensor was determined by means of a high-resolution gamma spectrometer.

For the copper, iron, nickel, and cobalt-aluminum sensors, these analyses were performed by direct counting of each of the individual samples. In the case of the uranium and neptunium fission sensors, the analyses were carried out by direct counting preceded by dissolution and chemical separation of cesium from the sensor material.The irradiation history of the reactor over the irradiation periods experienced by Capsules U, Y, X, W, and Z was based on the monthly power generation of Vogtle Unit 2 from initial reactor criticality through the end of the dosimetry evaluation period. For the sensor sets utilized in the surveillance capsules, the half-lives of the product isotopes are long enough that a monthly histogram describing reactor operation has proven to be an adequate representation for use in radioactive decay corrections for the reactions of interest in the exposure evaluations.

The irradiation history applicable to Capsules U, Y, X, W, and Z is given in Table A-2.WCAP-17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 A-3 Having the measured specific activities, the physical characteristics of the sensors, and the operating history of the reactor, reaction rates referenced to full-power operation were determined from the following equation: A No F Y Z P1 Cj [V -e'l/] [e-d"']P,.ef where: R = Reaction rate averaged over the irradiation period and referenced to operation at a core power level of Pref (rps/nucleus).

A = Measured specific activity (dps/g).No = Number of target element atoms per gram of sensor.F = Atom fraction of the target isotope in the target element.Y = Number of product atoms produced per reaction.Pi = Average core power level during irradiation period j (MW).Pref = Maximum or reference power level of the reactor (MW).CJ = Calculated ratio of 4(E > 1.0 MeV) during irradiation period j to the time weighted average 4(E > 1.0 MeV) over the entire irradiation period.= Decay constant of the product isotope (1/sec).= Length of irradiation period j (sec).td = Decay time following irradiation periodj (sec).and the summation is carried out over the total number of monthly intervals comprising the irradiation period.In the equation describing the reaction rate calculation, the ratio [Pj]/[Pref]

accounts for month-by-month variation of reactor core power level within any given fuel cycle as well as over multiple fuel cycles. The ratio Cj, which was calculated for each fuel cycle using the transport methodology discussed in Section 6.2, accounts for the change in sensor reaction rates caused by variations in flux level induced by changes in core spatial power distributions from fuel cycle to fuel cycle. For a single-cycle irradiation, Cj is normally taken to be 1.0. However, for multiple-cycle irradiations, particularly those employing low-leakage fuel management, the additional Cj term should be employed.

The impact of changing flux levels for constant power operation can be quite significant for sensor sets that have been irradiated for many WCAP- 17343-NP March 2011 Revision 0 A-4 Westinghouse Non-Proprietary Class 3 cycles in a reactor that has transitioned from non-low-leakage to low-leakage fuel management or for sensor sets contained in surveillance capsules that have been moved from one capsule location to another.The fuel-cycle-specific neutron flux values along with the computed values for Cj are listed in Table A-3.These flux values represent the cycle-dependent results at the radial and azimuthal center of the respective capsules at the axial elevation of the active fuel midplane.Prior to using the measured reaction rates in the least squares evaluations of the dosimetry sensor sets, additional corrections were made to the 2 3 8 U measurements to account for the presence of 2 3 5 U impurities in the sensors as well as to adjust for the build-in of plutonium isotopes over the course of the irradiation.

Corrections were also made to the 2 3 8 U and 2 3 7 Np sensor reaction rates to account for gamma-ray-induced fission reactions that occurred over the course of the capsule irradiations.

The correction factors applied to the Vogtle Unit 2 fission sensor reaction rates are summarized as follows: KJCorrecionr Capsule U CapsuleXY Capsule Xj ICapsule W Capsule Z 235U Impurity/Pu Build-in in 2 3 8 U 0.870 0.841 0.817 0.777 0.737 2 3 8 U(y,f) 0.966 0.967 0.966 0.969 0.969 Net 2 3 8 U Correction 0.841 0.813 0.789 0.753 0.714 2 3 7 Np(y,f) 0.990 0.990 0.990 0.991 0.991 These factors were applied in a multiplicative fashion to the decay corrected uranium and neptunium fission sensor reaction rates.Results of the sensor reaction rate determinations for Capsules U, Y, X, W, and Z are given in Table A-4.In Table A-4, the measured specific activities, decay corrected saturated specific activities, and computed reaction rates for each sensor indexed to the radial center of the capsule are listed. The fission sensor reaction rates are listed both with and without the applied corrections for 2 3 8 U impurities, plutonium build-in, and gamma-ray-induced fission effects.A.1.2 Least Squares Evaluation of Sensor Sets Least squares adjustment methods provide the capability of combining the measurement data with the corresponding neutron transport calculations resulting in a Best-Estimate neutron energy spectrum with associated uncertainties.

Best Estimates for key exposure parameters such as ý(E > 1.0 MeV) or dpa/s along with their uncertainties are then easily obtained from the adjusted spectrum.

In general, the least squares methods, as applied to surveillance capsule dosimetry evaluations, act to reconcile the measured sensor reaction rate data, dosimetry reaction cross sections, and the calculated neutron energy spectrum within their respective uncertainties.

For example, Rj_++/-6R., =-g +8g. )((Pg _+86 )g relates a set of measured reaction rates, Ri, to a single neutron spectrum, k' through the multigroup dosimeter reaction cross section, mig, each with an uncertainty

6. The primary objective of the least squares evaluation is to produce unbiased estimates of the neutron exposure parameters at the location of the measurement.

WCAP- 17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 A-5 For the least squares evaluation of the Vogtle Unit 2 surveillance capsule dosimetry, the FERRET code [Ref. A-6] was employed to combine the results of the plant-specific neutron transport calculations and sensor set reaction rate measurements to determine best-estimate values of exposure parameters (4(E > 1.0 MeV) and dpa) along with associated uncertainties for the five in-vessel capsules analyzed to date.The application of the least squares methodology requires the following input: 1. The calculated neutron energy spectrum and associated uncertainties at the measurement location.2. The measured reaction rates and associated uncertainty for each sensor contained in the multiple foil set.3. The energy-dependent dosimetry reaction cross sections and associated uncertainties for each sensor contained in the multiple foil sensor set.For the Vogtle Unit 2 application, the calculated neutron spectrum was obtained from the results of plant-specific neutron transport calculations described in Section 6.2 of this report. The sensor reaction rates were derived from the measured specific activities using the procedures described in Section A. 1.1. The dosimetry reaction cross sections and uncertainties were obtained from the SNLRML dosimetry cross-section library [Ref. A-7]. The SNLRML library is an evaluated dosimetry reaction cross-section compilation recommended for use in LWR evaluations by ASTM Standard E1018, "Application of ASTM Evaluated Cross-Section Data File, Matrix E706 (1IB)" [Ref. A-8].The uncertainties associated with the measured reaction rates, dosimetry cross sections, and calculated neutron spectrum were input to the least squares procedure in the form of variances and covariances.

The assignment of the input uncertainties followed the guidance provided in ASTM Standard E944,"Application of Neutron Spectrum Adjustment Methods in Reactor Surveillance" [Ref. A-9].The following provides a summary -of the uncertainties associated with the least squares evaluation of the Vogtle Unit 2 surveillance capsule sensor sets.WCAP-17343-NP March 2011 Revision 0 A-6 Westinghouse Non-Proprietary Class 3 A-6 Westinghouse Non-Proprietary Class 3 Reaction Rate Uncertainties The overall uncertainty associated with the measured reaction rates includes components due to the basic measurement process, irradiation history corrections, and corrections for competing reactions.

A high level of accuracy in the reaction rate determinations is assured by utilizing laboratory procedures that conform to the ASTM National Consensus Standards for reaction rate determinations for each sensor type.After combining all of these uncertainty components, the sensor reaction rates derived from the counting and data evaluation procedures were assigned the following net uncertainties for input to the least squares evaluation:

a>Reaction'~

Uncertainty 6 3 Cu(n,a)6 0 Co 5%5"Fe(n,p)5 4 Mn 5%5 8 Ni(n,p)5 8 Co 5%2 3 8 U(n,f) 1 3 7 Cs 10%2 3 7 Np(n,f) 1 3 7 Cs 10%5 9 Co(n,7)6 0 Co 5%These uncertainties are given at the la level.Dosimetry Cross-Section Uncertainties The reaction rate cross sections used in the least squares evaluations were taken from the SNLRML library. This data library provides reaction cross sections and associated uncertainties, including covariances, for 66 dosimetry sensors in common use. Both cross sections and uncertainties are provided in a fine multigroup structure for use in least squares adjustment applications.

These cross sections were compiled from the most recent cross-section evaluations, and they have been tested with respect to their accuracy and consistency for least squares evaluations.

Further, the library has been empirically tested for use in fission spectra determination as well as in the fluence and energy characterization of 14 MeV neutron sources.For sensors included in the Vogtle Unit 2 surveillance program, the following uncertainties in the fission spectrum averaged cross sections are provided in the SNLRML documentation package.WCAP- 17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 A-7 Westinghouse Non-Proprietary Class 3 A-7 Reactionua Unlcertainty 6 3 Cu(n,u)6°Co 4.08-4.16%

5 4 Fe(n,p)1 4 Mn 3.05-3.11%

" 8 Ni(n,p)5 8 Co 4.49-4.56%

2 3 8 U(n,f)'3 7 Cs 0.54-0.64%

2 3 7 Np(n,f)'3 7 Cs 10.32-10.97%

5 9 Co(nY)6 0 Co 0.79-3.59%

These tabulated ranges provide an indication of the dosimetry cross-section the sensor sets used in LWR irradiations.

uncertainties associated with Calculated Neutron Snectrum The neutron spectra input to the least squares adjustment procedure were obtained directly from the results of plant-specific transport calculations for each surveillance capsule irradiation period and location.

The spectrum for each capsule was input in an absolute sense (rather than as simply a relative spectral shape). Therefore, within the constraints of the assigned uncertainties, the calculated data were treated equally with the measurements.

While the uncertainties associated with the reaction rates were obtained from the measurement procedures and counting benchmarks and the dosimetry cross-section uncertainties were supplied directly with the SNLRML library, the uncertainty matrix for the calculated spectrum was constructed from the following relationship:-R 2 +Rg *RgP where Rn specifies an overall fractional normalization uncertainty and the fractional uncertainties Rg and Rg, specify additional random groupwise uncertainties that are correlated with a correlation matrix given by: P [gIf-Olg,, + +/-Oe-H where H = (g -g')2 27,2 WCAP-17343-NP March 2011 Revision 0 A-8 Westinghouse Non-Proprietary Class 3 The first term in the correlation matrix equation specifies purely random uncertainties, while the second term describes the short-range correlations over a group range y (0 specifies the strength of the latter term). The value of 8 is 1.0 when g = g', and is 0.0 otherwise.

The set of parameters defining the input covariance matrix for the Vogtle Unit 2 calculated spectra was as follows: Flux Normalization Uncertainty (Rn) 15%Flux Group Uncertainties (Rg, Rg,)(E > 0.0055 MeV) 15%(0.68 eV < E < 0.0055 MeV) 25%(E < 0.68 eV) 50%Short Range Correlation (0)(E > 0.0055 MeV) 0.9 (0.68 eV < E < 0.0055 MeV) 0.5 (E < 0.68 eV) 0.5 Flux Group Correlation Range (y)(E > 0.0055 MeV) 6 (0.68 eV < E < 0.0055 MeV) 3 (E < 0.68 eV) 2 A.1.3 Comparisons of Measurements and Calculations Results of the least squares evaluations of the dosimetry from the Vogtle Unit 2 surveillance capsules withdrawn to date are provided in Tables A-5 and A-6. In Table A-5, measured, calculated, and best-estimate values for sensor reaction rates are given for each capsule. Also provided in this tabulation are ratios of the measured reaction rates to both the calculated and least squares adjusted reaction rates.These ratios of M!C and M/BE illustrate the consistency of the fit of the calculated neutron energy spectra to the measured reaction rates both before and after adjustment.

In Table A-6, comparison of the calculated and best-estimate values of neutron flux (E > 1.0 MeV) and iron atom displacement rate are tabulated along with the BE/C ratios observed for each of the capsules.The data comparisons provided in Tables A-5 and A-6 show that the adjustments to the calculated spectra are relatively small and well within the assigned uncertainties for the calculated spectra, measured sensor reaction rates, and dosimetry reaction cross sections.

Further, these results indicate that the use of the least squares evaluation results in a reduction in the uncertainties associated with the exposure of the surveillance capsules.

From Section 6.4 of this report, it may be noted that the uncertainty associated with the unadjusted calculation of neutron fluence (E > 1.0 MeV) and iron atom displacements at the surveillance capsule locations is specified as 12% at the 1 level. From Table A-6, it is noted that the corresponding uncertainties associated with the least squares adjusted exposure parameters have been reduced to 6% for neutron flux (E > 1.0 MeV) and 7-8% for iron atom displacement rate. Again, the uncertainties from the least squares evaluation are at the l level.WCAP- 17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 A-9 Further comparisons of the measurement results (from Tables A-5 and A-6) with calculations are given in Tables A-7 and A-8. These comparisons are given on two levels. In Table A-7, calculations of individual threshold sensor reaction rates are compared directly with the corresponding measurements.

These threshold reaction rate comparisons provide a good evaluation of the accuracy of the fast neutron portion of the calculated energy spectra. In Table A-8, calculations of fast neutron exposure rates in terms ofý(E > 1.0 MeV) and dpa/s are compared with the best-estimate results obtained from the least squares evaluation of the capsule dosimetry results. These two levels of comparison yield consistent and similar results with all measurement-to-calculation comparisons falling well within the 20% limits specified as the acceptance criteria in Regulatory Guide 1.190.In the case of the direct comparison of measured and calculated sensor reaction rates, the M/C comparisons for fast neutron reactions range from 0.80 to 1.27 for the 25 samples included in the data set.The overall average M/C ratio for the entire set of Vogtle Unit 2 data is 1.07 with an associated standard deviation of 11.6%.In the comparisons of best-estimate and calculated fast neutron exposure parameters, the corresponding BE/C comparisons for the capsule data sets range from 0.92 to 1.20 for neutron flux (E > 1.0 MeV) and from 0.92 to 1.18 for iron atom displacement rate. The overall average BE/C ratios for neutron flux (E > 1.0 MeV) and iron atom displacement rate are 1.06 with a standard deviation of 10.2% and 1.05 with a standard deviation of 9.7%, respectively.

Based on these comparisons, it is concluded that the calculated fast neutron exposures provided in Section 6.2 of this report are validated for use in the assessment of the condition of the materials comprising the beltline region of the Vogtle Unit 2 reactor pressure vessel.WCAP- 17343-NP March 2011 Revision 0 A-10 Westinghouse Non-Proprietary Class 3 Table A-I Nuclear Parameters Used in the Evaluation of Neutron Sensors Reaction ofR TargetAtoM 90% Rsn P Fission Yield-Monitor'NMaterial.

Interest ' F .ra ction "1,Ran ge' (MeY) (a) Half-life

%Copper 6 3 Cu (n,ca) 0.6917 4.9-11.9 5.272 y Iron 5 4 Fe (n,p) 0.0585 2.1 -8.5 312.1 d Nickel 5 8Ni (n,p) 0.6808 1.5 -8.3 70.82 d Uranium-238 2 3 8U (n,f) 1.0000 1.3 -6.9 30.07 y 6.02 Neptunium-237 2 3 7 Np (n,f) 1.0000 0.3 -3.8 30.07 y 6.17 Cobalt-Aluminum 5 9 Co (n,y) 0.0015 non-threshold 5.272 y Note: (a) The 90% response range is defined such that, in the neutron spectrum characteristic of the Vogtle Unit 2 surveillance capsules, approximately 90% of the sensor response is due to neutrons in the energy range specified with approximately 5% of the total response due to neutrons with energies below the lower limit and 5% of the total response due to neutrons with energies above the upper limit.WCAP-17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 A-1 I Table A-2 Monthly Thermal Generation During the First Fourteen Fuel Cycles of the Vogtle Unit 2 Reactor (Reactor Power of 3411 MWt from Startup Through the End of Cycle 3; 3565 MWt for Cycles 4 through 13; and, 3626 MWt for Cycle 14)Thermal <K Thermnal Thermal ~ Thiermal Month- Generation 7 Month- Generation Month- Generation, MoI'nthli-Generation

\Year ~(MWt-hr)

Year (MlWt-hr)~

Year (MIWt-hr)

Year (MlWt-hr)Mar-89 0 May-91 2276659 Jul-93 2629330 Sep-95 2565249 Apr-89 475504 Jun-91 2452835 Aug-93 2559359 Oct-95 2654328 May-89 617966 Jul-91 2534141 Sep-93 547977 Nov-95 2565212 Jun-89 2450888 Aug-91 2505776 Oct-93 903906 Dec-95 2624729 Jul-89 2452023 Sep-91 2359978 Nov-93 2564027 Jan-96 2650834 Aug-89 2526703 Oct-91 2508529 Dec-93 2588183 Feb-96 2479725 Sep-89 2439109 Nov-91 2433457 Jan-94 2429440 Mar-96 2650787 Oct-89 2034639 Dec-91 2535003 Feb-94 2393295 Apr-96 2565415 Nov-89 2350213 Jan-92 2534130 Mar-94 2639006 May-96 2650735 Dec-89 2335572 Feb-92 2299840 Apr-94 2533075 Jun-96 2565158 Jan-90 2503482 Mar-92 605707 May-94 2523585 Jul-96 2452545 Feb-90 2289775 Apr-92 0 Jun-94 1262082 Aug-96 2552746 Mar-90 2340854 May-92 1578601 Jul-94 1926053 Sep-96 489969 Apr-90 2396650 Jun-92 2447254 Aug-94 2341001 Oct-96 1241612 May-90 2424191 Jul-92 2532424 Sep-94 2564313 Nov-96 2564798 Jun-90 2181332 Aug-92 2534744 Oct-94 2653771 Dec-96 2650604 Jul-90 1854770 Sep-92 2452670 Nov-94 2564454 Jan-97 2650701 Aug-90 1534544 Oct-92 2539098 Dec-94 2649055 Feb-97 2393844 Sep-90 585194 Nov-92 2451426 Jan-95 2649874 Mar-97 2650728 Oct-90 0 Dec-92 2052686 Feb-95 2063517 Apr-97 2561147 Nov-90 1185372 Jan-93 2536193 Mar-95 10688 May-97 2630761 Dec-90 2395968 Feb-93 2291024 Apr-95 2438900 Jun-97 2564816 Jan-91 2023180 Mar-93 2536217 May-95 2650425 Jul-97 2650622 Feb-91 1953887 Apr-93 2450906 Jun-95 2565303 Aug-97 2650268 Mar-91 1827085 May-93 2577663 Jul-95 2456584 Sep-97 2564794 Apr-91 2149993 Jun-93 2406365 Aug-95 2650678 Oct-97 2654064 WCAP-17343-NP March 2011 Revision 0 A-12 Westinghouse Non-Proprietary Class 3 Table A-2 (Continued)

Monthly Thermal Generation During the First Fourteen Fuel Cycles of the Vogtle Unit 2 Reactor (Reactor Power of 3411 MWt from Startup Through the End of Cycle 3; 3565 MWt for Cycles 4 through 13; and, 3626 MWt for Cycle 14)Thermal K 4Therma[ Thermal~ ~ < Thermal~MIonth- Generationi Month-~ Gene-ation Month- Generation Montb- Generation

~Year, (MWt-hr)>

Ye~ar~ (Nlt-r Year (MIWt-hr)~

Year (MWt-hr)Nov-97 2565321 Jan-00 2637192 Mar-02 2649969 May-04 1153034 Dec-97 2650576 Feb-00 2480228 Apr-02 2560911 Jun-04 2566084 Jan-98 2650913 Mar-00 2632679 May-02 2649576 Jul-04 2641609 Feb-98 2296803 Apr-00 2562046 Jun-02 2564442 Aug-04 2434483 Mar-98 491140 May-00 2651123 Jul-02 2649773 Sep-04 2560437 Apr-98 779588 Jun-00 2565774 Aug-02 2649969 Oct-04 2649641 May-98 2068679 Jul-00 2650927 Sep-02 2537763 Nov-04 2260026 Jun-98 2017178 Aug-00 2650534 Oct-02 386049 Dec-04 2641839 Jul-98 2630863 Sep-00 2565185 Nov-02 621071 Jan-05 2645016 Aug-98 2456507 Oct-00 2654654 Dec-02 1421414 Feb-05 2388895 Sep-98 2412869 Nov-00 2565381 Jan-03 2651478 Mar-05 2646305 Oct-98 2607668 Dec-00 2650338 Feb-03 2395041 Apr-05 2558066 Nov-98 2565406 Jan-01 2651123 Mar-03 2204085 May-05 1956212 Dec-98 2650912 Feb-01 2394487 Apr-03 2562629 Jun-05 1718861 Jan-99 2650519 Mar-01 2626793 May-03 2651185 Jul-05 2648418 Feb-99 2332866 Apr-01 541918 Jun-03 2565770 Aug-05 2648111 Mar-99 2503094 May-01 2212525 Jul-03 2651185 Sep-05 1442373 Apr-99 2561474 Jun-01 2566207 Aug-03 1785259 Oct-05 1310425 May-99 2650716 Jul-01 2651538 Sep-03 2246890 Nov-05 2565872 Jun-99 2501128 Aug-01 2651538 Oct-03 2654326 Dec-05 1790126 Jul-99 2650519 Sep-01 2536586 Nov-03 2565378 Jan-06 2649827 Aug-99 2648554 Oct-01 2654480 Dec-03 2650853 Feb-06 1248502 Sep-99 2508597 Nov-01 2564834 Jan-04 2629328 Mar-06 1678436 Oct-99 149981 Dec-01 2649576 Feb-04 2379233 Apr-06 2446888 Nov-99 2051716 Jan-02 2648988 Mar-04 2650596 May-06 2646007 Dec-99 2300308 Feb-02 2392406 Apr-04 1435551 Jun-06 2561341 WCAP-17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 A-13 Table A-2 (Continued)

Monthly Thermal Generation During the First Fourteen Fuel Cycles of the Vogtle Unit 2 Reactor (Reactor Power of 3411 MWt from Startup Through the End of Cycle 3; 3565 MWt for Cycles 4 through 13; and, 3626 MWt for Cycle 14)Thermal., ,. Thermal' 1,,

  • Thermal Month- Generation Month- Generation:

Month-Month-" Genieration, ,Year. (N]Wt-hr)<

Year (MIWt-hr)

Year~ (MIWt-br)

Years (MWt-hr)Jul-06 2646193 Jun-07 2543183 May-08 2602255 Aug-09 2694576 Aug-06 2243308 Jul-07 2624127 Jun-08 2517162 Sep-09 2550413 Sep-06 2455470 Aug-07 2620562 Jul-08 2600192 Oct-09 2694302 Oct-06 2644504 Sep-07 2532574 Aug-08 2602058 Nov-09 2549130 Nov-06 2557807 Oct-07 2614817 Sep-08 1050430 Dec-09 2441245 Dec-06 2643879 Nov-07 2496559 Oct-08 654939 Jan-10 2694240 Jan-07 2644076 Dec-07 2611400 Nov-08 2002080 Feb-10 2433005 Feb-07 2357699 Jan-08 2613056 Dec-08 2694367 Mar-10 519881 Mar-07 237033 Feb-08 2440492 Jan-09 2694412 Apr-07 43611 Mar-08 2603709 Feb-09 2433837 May-07 2283495 Apr-08 2519880 Mar-09 2637147 WCAP- 17343-NP March 2011 Revision 0 A-14 Westinghouse Non-Proprietary Class 3 Table A-3 Calculated Ci Factors at the Surveillance Capsule Center Core Midplane Elevation Cycle '$(E > 1.0 M CV) [njC2_ r I Length >Fuel ,CychK IEFPS] Capsule U, #CapsuleY V apsule X >Capsule W: CapsuleZ~1 3.78E+07 9.43E+10 8.78E+10 9.43E+10 9.34E+10 9.34E+10 2 3.86E+07 7.30E+10 7.97E+10 7.89E+10 7.89E+10 3 4.13E+07 6.32E+10 6.82E+10 6.75E+10 6.75E+10 4 3.96E+07 6.08E+10 6.63E+10 6.57E+10 6.57E+10 5 4.47E+07 6.17E+ 10 6.11E+10 6.11E+10 6 4.35E+07 6.79E+10 6.73E+10 6.73E+10 7 4.38E+07 7.01E+10 7.01E+10 8 4.43E+07 7.17E+10 7.17E+10 9 4.46E+07 6.88E+10 6.88E+10 10 4.11E+07 7,04E+10 7.04E+10 11 3.99E+07 6.99E+10 12 3.97E+07 7.35E+ 10 13 4.23E+07 7.09E+10 14 4.20E+07 7.18E+10 Average 9.43E+10 7.09E+10 7.25E+10 7.11E+10 7.13E+10~Length' -- ---Fuel Cycle ILPI Capsule U~ Capsule Y Capsule X asl W. Casue 1 3.781E+07 1.000 1.238 1.302 1.313 1.311 2 3.86E+07 1.029 1.099 1.109 1.107 3 4.13E+07 0.891 0.941 0.949 0.947 4 3.96E+07 0.857 0.915 0.923 0.922 5 4.47E+07 0.851 0.859 0.858 6 4.35E+07 0.938 0.946 0.944 7 4.38E+07 0.986 0.984 8 4.43E+07 1.008 1.007 9 4.46E+07 0.967 0.966 10 4.11E+07 0.990 0.988 11 3.99E+07 0.981 12 3.97E+07 1.031 13 4.23E+07 0.994 14 4.20E+07 1.007 Average 1.000 1.000 1.000 1.000 1.000 WCAP-17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 A-15 Table A-4a Measured Sensor Activities and Reaction Rates Surveillance Capsule U Measure city Saturated Activ'ity AdutdRaio Reaction(C)~

~ LocationK

~ ' (dpslg) (dpAdjusRted" Resaction, 6 3 Cu (n, t) 6 1Co Top 5.5 1E+04 3.96E+05 6.04E-17 Middle 4.96E+04 3.56E+05 5.44E-17 Bottom 4.86E+04 3.49E+05 5.33E-17 Average 5.60E-17" 4 Fe (np) 5 4 Mn Top 1.88E+06 3.98E+06 6.31E-15 Middle 1.65E+06 3.49E+06 5.54E- 15 Bottom 1.67E+06 3.53E+06 5.60E-15 Average 5.82E-15 5 t Ni (np) 5 8Co Top 1.86E+07 5.8 1E+07 8.32E-15 Middle 1.70E+07 5.31 E+07 7.60E- 15 Bottom 1.65E+07 5.16E+07 7.38E-15 Average 7.77E-15 2 3 8U (n,f) 1 3 7 Cs (Cd) Middle 1.83E+05 6.78E+06 4.45E-14 Including 2 3 1U, 2 3 9 Pu, and (y, fission) corrections:

3.74E-14(b) 2 3 7 Np (n,f) 1 3 7 Cs (Cd) Middle [ 1.56E+06 5.78E+07 3.69E-13 Including (y, fission) corrections:

3.65E-13(c) 5 9 Co (n,y) 6 0 Co Top 1.13E+07 8.12E+07 5.30E-12 Middle 1.26E+07 9.05E+07 5.91E-12 Bottom 1.15E+07 8.26E+07 5.39E-12 Average 5.53E-12 5 9 Co (n,y) 6 0Co (Cd) Top 5.99E+06 4.30E+07 2.81E-12 Middle 6.21E+06 4.46E+07 2.91E-12 Bottom 6.19E+06 4.45E+07 2.90E-12 Average 2.87E-12 Note (a)(b)es:-Measured specific activities are indexed to a counting date of December 12, 1990.The average 2 3 8U (n,f) reaction rate of 3.74E-14 includes a correction factor of 0.870 to account for plutonium build-in and an additional factor of 0.966 to account for photo-fission effects in the sensor.The average 2 3 7 Np (n,f) reaction rate of 3.65E-13 includes a correction factor of 0.990 to account for photo-fission effects in the sensor.Reaction rates referenced to the Cycle I Rated Reactor Power of 3411 MWt.The "(Cd)" designation next to a reaction indicates that the sensor was cadmium-covered.(c)(d)(e)WCAP-17343-NP March 2011 Revision 0 A-16 Westinghouse Non-Proprietary Class 3 Table A-4b Measured Sensor Activities and Reaction Rates Surveillance Capsule Y Mesue Atviy Saturated.Activity Adjusted Reaction Reaction(,)

Location ~ ((dps/g) Rate (rps/atom)(d) 6 3 Cu (n,ct) 6 0 Co Top 1.33E+05 3.14E+05 4.78E-17 Middle 1.21 E+05 2.85E+05 4.35E- 17 Bottom 1.21 E+05 2.85E+05 4.35E-17 Average 4.50E-17 5 4 Fe (n,p) 5 4 Mn Top 1.54E+06 2.72E+06 4.32E-15 Middle 1.41 E+06 2.49E+06 3.95E-15 Bottom 1.42E+06 2.51 E+06 3.98E-15 Average 4.09E-15 5 t Ni (n,p) 5"Co Top 7.80E+06 4.26E+07 6.09E-15 Middle 7.18E+06 3.92E+07 5.61E-15 Bottom 7.03E+06 3.84E+07 5.49E-15 Average 5.73E-15 2 3 8 U (n,f) 1 3 7 Cs (Cd) Middle 4.7 1E+05 4.45E+06 2.92E-14 Including 2 3 5 U, 2 3 9 Pu, and (y, fission) corrections:

2.38E-14'b) 237Np (n,f) 1 3 7 Cs (Cd) Middle I 3.78E+06 3.57E+07 2.28E-13 Including (y, fission) corrections:

2.25E-13'e) 5 9 Co (n,y) 6°Co Top 2.39E+07 5.64E+07 3.68E-12 Middle 2.37E+07 5.59E+07 3.65E-12 Bottom 2.38E+07 5.61 E+07 3.66E- 12 Average 3.66E-12 5 9 Co (nY) 6 0 Co (Cd) Top 1.22E+07 2.88E+07 1.88E-12 Middle 1.25E+07 2.95E+07 1.92E-12 Bottom 1.27E+07 2.99E+07 1.95E-12 Average 1.92E-12 Notes: (a) Measured specific activities are indexed to a counting date of August 1, 1995.(b) The average 2 3 8U (n,f) reaction rate of 2.38E-14 includes a correction factor of 0.841 to account for plutonium build-in and an additional factor of 0.967 to account for photo-fission effects in the sensor.(c) The average 2 3 7 Np (n,f) reaction rate of 2.25E-13 includes a correction factor of 0.990 to account for photo-fission effects in the sensor.(d) Reaction rates referenced to the Cycles 1-4 Average Rated Reactor Power of 3450 MWt.(e) The "(Cd)" designation next to a reaction indicates that the sensor was cadmium-covered.

WCAP-17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 A-17 Table A-4c Measured Sensor Activities and Reaction Rates Surveillance Capsule X Meaisired Activity~

Saturated

'Activity<

Adjusted, Reaction Reaction(e)

Loc'atio n .(dps/g) I (dps/g) kat 01 (rps/ato m)j 6 3 CU (nct) 6'Co Top 1.96E+05 3.59E+05 5.47E-17 Middle 1.78E+05 3.26E+05 4.97E-17 Bottom 1.74E+05 3.18E+05 4.86E- 17 Average 5.10E-17 5 4 Fe (n,p) 5 4 Mn Top 1.78E+06 3.41 E+06 5.40E-15 Middle 1.62E+06 3.IOE+06 4.92E-15 Bottom 1.59E+06 3.05E+06 4.83E-15 Average 5.05E-15 5SNi (n,p) 18Co Top 4.96E+06 5.50E+07 7.87E-15 Middle 4.41 E+06 4.89E+07 7.00E-15 Bottom 4.44E+06 4.92E+07 7.04E-15 Average 7.30E-15 2 3 8 U (n,f) 1 3 7 Cs (Cd) Middle 9.OOE+05 5.66E+06 3.72E-14 Including 2 3 5 U, 2 3 9 Pu, and (y, fission) corrections:

2.94E-14(b) 2 3 7 Np (n,f) 1 3 7 Cs (Cd) Middle 6.84E+06 I 4.30E+07 2.74E-13 Including (y, fission) corrections:

2.72E-13(c')

5 9 Co (n,y) 6 0 Co Middle 3.70E+07 6.77E+07 4.42E-12 Bottom 3.66E+07 6.70E+07 4.37E-12 Average 4.39E-12" 9 Co (nY) 61Co (Cd) Middle 1.93E+07 3.53E+07 2.30E-12 Bottom 1.97E+07 3.60E+07 2.35E-12 Average 2.33E-12 Notes: (a) Measured specific activities are indexed to a counting date of November 1, 1998.(b) The average 2 3 8 U (n,f) reaction rate of 2.93E-14 includes a correction factor of 0.817 to account for plutonium build-in and an additional factor of 0.966 to account for photo-fission effects in the sensor.(c) The average 2 3 7 Np (n,f) reaction rate of 2.72E- 13 includes a correction factor of 0.990 to account for photo-fission effects in the sensor.(d) Reaction rates referenced to the Cycles 1-6 Average Rated Reactor Power of 3491 MWt.(e) The "(Cd)" designation next to a reaction indicates that the sensor was cadmium-covered.

WCAP- 17343-NP March 2011 Revision 0 A-18 Westinghouse Non-Proprietary Class 3 Table A-4d Measured Sensor Activities and Reaction Rates Surveillance Capsule W.MeasuredActivity"a, 'Saturated Activity Adjusted Reaction'Reactiowne

(dI dps)g) Rate(d) (rpsgatom)...

6 3 Cu (nci) 6 0 Co Top 2.16E+05 2.98E+05 4.54E-17 Middle 1.94E+05 2.67E+05 4.08E-17 Bottom 1.90E+05 2.62E+05 4.OOE-17 Average 4.21E-17 1 4 Fe (np) 5 4 Mn Top 1.83E+06 2.80E+06 4.43E-15 Middle 1.67E+06 2.55E+06 4.05E-15 Bottom 1.64E+06 2.51E+06 3.97E-15 Average 4.15E-15 5"Ni (np) 5 1Co Top 1.OOE+07 4.54E+07 6.50E-15 Middle 9.22E+06 4.18E+07 5.99E- 15 Bottom 8.99E+06 4.08E+07 5.84E- 15 Average 6.11E-15 2 3 8U (n,f) 1 3 7 Cs (Cd) Middle 1.40E+06 5.47E+06 3.59E-14 Including 2 3 5 U, 2 3 9 Pu, and (y, fission) corrections:

2.70E-14(b) 2 3 7 Np (n,f) 1 3 7 Cs (Cd) Middle I 9.54E+06 I 3.72E+07 2.38E-13 Including (y, fission) corrections:

2.35E-13(c) 5 9 Co (n,y) 6 0 Co Top 4.OOE+07 5.5 IE+07 3.60E-12 Middle 4.00E+07 5.51 E+07 3.60E- 12 Bottom 4.02E+07 5.54E+07 3.60E-12 Average 3.60E-12 5 9 Co (ny) 6 0 Co (Cd) Top 2.28E+07 3.14E+07 2.05E-12 Middle 2.35 E+07 3.24E+07 2.11 E- 12 Bottom 2.29E+07 3.16E+07 2.06E- 12 Average 2.08E-12 Notes: (a) Measured specific activities are indexed to a counting date of September 16, 2004.(b) The average 2 3 8U (n,f) reaction rate of 2.70E-14 includes a correction factor of 0.777 to account for plutonium build-in and an additional factor of 0.969 to account for photo-fission effects in the sensor.(c) The average 2 3 7 Np (n,f) reaction rate of 2.35E-13 includes a correction factor of 0.991 to account for photo-fission effects in the sensor.(d) Reaction rates referenced to the Cycles 1-10 Average Rated Reactor Power of 3522 MWt.(e) The "(Cd)" designation next to a reaction indicates that the sensor was cadmium-covered.

WCAP- 17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 A-19 Table A-4e Measured Sensor Activities and Reaction Rates Surveillance Capsule Z SMeasured Activity(a)., ~Saturated Activity Adjusted Reaction~,w Reactionýc)

Location < (dps/g/o) (dps/g) .Rate ()M(rps/atom).

6 3 Cu (nC) 6 0 CO Top 2.22E+05 2.85E+05 4.34E-17 Middle 1.95E+05 2.50E+05 3.81E-17 Bottom 1.96E+05 2.51E+05 3.83E-17 Average 4.OOE-17 5 4 Fe (n,p) 5 4 Mn Top 1.74E+06 2.88E+06 4.56E-15 Middle 1.57E+06 2.60E+06 4.11 E-15 Bottom 1.57E+06 2.60E+06 4.1 IE-15 Average 4.26E-15 5 SNi (n,p) 5 SCo Top 5.73E+06 4.26E+07 6.10E-15 Middle 5.23E+06 3.89E+07 5.57E-15 Bottom 5.25E+06 3.90E+07 5.59E-15 Average 5.75E-15 2 38U (n,t) 1 3 7 Cs (Cd) Middle 1.29E+06 3.86E+06 2.54E-14 Including 1 3 5 U, 2 3 9 Pu, and (-I, fission) corrections:

1.81E-14(b) 2 3 7 Np (n,f) 1 3 7 Cs (Cd) Middle 1.05E+07 [ 3.14E+07 2.01E-13 Including (y, fission) corrections:

1.99E-13(c) 5 9 Co (n,y) 6 0 Co Top 4.31E+07 5.53E+07 3.61E-12 Middle 4.31E+07 5.53E+07 3.61E-12 Bottom 4.32E+07 5.54E+07 3.61 E- 12 Average 3.61E-12 5 9 Co (ny) 6 0 Co (Cd) Top 2.40E+07 3.08E+07 2.01E-12 Middle 2.65E+07 3.40E+07 2.22E-12 Bottom 2.61E+07 3.35E+07 2.18E-12 Average 2.14E-12 Notes: (a) Measured specific activities are indexed to a counting date of September 28, 2010.(b) The average 2 38U (n,f) reaction rate of 1.8 1E-14 includes a correction factor of 0.737 to account for plutonium build-in and an additional factor of 0.969 to account for photo-fission effects in the sensor.(c) The average 2 3 7 Np (n,f) reaction rate of 1.99E-1 3 includes a correction factor of 0.991 to account for photo-fission effects in the sensor.(d) Reaction rates referenced to the Cycles 1-14 Average Rated Reactor Power of 3538 MWt.(e) The "(Cd)" designation next to a reaction indicates that the sensor was cadmium-covered.

WCAP-17343-NP March 2011 Revision 0 A-20 Westinghouse Non-Proprieta Class 3 Table A-5 Comparison of Measured, Calculated, and Best-Estimate Reaction Rates at the Surveillance Capsule Center--- ~~Reaction Rate trps/atomlr.n

]'Ratna) Measured Calculated Best-Estimate (b) M/C M/B 6 3 Cu(n, a)6 0 Co 5.60E- 17 4.90E- 17 5.42E- 17 1.14 1.03 5 4 Fe(n,p)5 4 Mn 5.82E-15 5.54E-15 5.93E-15 1.05 0.98 5 5 Ni(n,p)5"Co 7.77E-15 7.78E-15 8.21E-15 1.00 0.94 2 3 8U(n,f)1 3 7 Cs (Cd) 3.74E-14 3.00E-14 3.29E-14 1.25 1.14 2 3 7 Np(n,f)1 3 7 Cs (Cd) 3.65E-13 2.95E-13 3.47E-13 1.24 1.05 5 9 Co(n,y)6 0 Co 5.53E-12 4.23E-12 5.431E-12 1.31 1.02 5 9 Co(n,y)6°Co (Cd) 2.87E-12 2.94E-12 2.92E-12 0.98 0.98 Notes: (a) The "(Cd)" designation next to a reaction indicates that the sensor was cadmium-covered.(b) See Section A. 1.2 for details describing the Best-Estimate (BE) reaction rates.-~Capsule Y--~ i~" Reactionl Rate [rps/atomli Reactn () Measured ' ,Calculated.

Best-Estimate(')

M/C M/BE 6 3 Cu(n,a)6°Co 4.50E-17 3.92E-17 4.28E-17 1.15 1.05 5 4 Fe(n,p)5 4 Mn 4.09E- 15 4.28E-15 4.25E-15 0.96 0.96 5 5 Ni(n,p)5"Co 5.73E-15 5.98E-15 5.91E-15 0.96 0.97 2 3 8U(n,f)1 3 7 Cs (Cd) 2.38E-14 2.27E-14 2.23E-14 1.05 1.06 2 3 7 Np(n,f)1 3 7 Cs (Cd) 2.25E-13 2.20E-13 2.21E-13 1.02 1.02 5 9 Co(n,y)6 0 Co 3.66E-12 3.06E-12 3.59E-12 1.19 1.02 5 9 Co(nY)6 0 Co (Cd) 1.92E-12 2.15E-12 1.95E-12 0.89 0.98 Notes: (a) The "(Cd)" designation next to a reaction indicates that the sensor was cadmium-covered.(b) See Section A. 1.2 for details describing the Best-Estimate (BE) reaction rates.WCAP-17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 A-21 Table A-5 (Continued)

Comparison of Measured, Calculated, and Best-Estimate Reaction Rates at the Surveillance Capsule Center a> a ~~Capsule Xa> 2 ?Reactiotun Rate Irps/atomin Reaction :: :Measured

<>Calculated Best-Est'inate t h): V'/C M/BE 6 3 Cu(na)6 0 Co 5.10E-17 4.02E-17 4.97E-17 1.27 1.03 5 4 Fe(n,p)1 4 Mn 5.05E-15 4.38E-15 5.21 E- 15 1.15 0.97 5 t Ni(n,p)5 t Co 7.30E-15 6.13E-15 7.33E-15 1.19 1.00 2 3 8U(n,f)1 3 7 Cs (Cd) 2.94E-14 2.33E-14 2.77E-14 1.26 1.06 2 3 7 Np(n,f)1 3 7 Cs (Cd) 2.72E-13 2.25E-13 2.68E-13 1.21 1.01 59Co(n,y)6°Co 4.39E-12 3.17E-12 4.31E-12 1.39 1.02 5 9 Co(n,,)6 0 Co (Cd) 2.33E-12 2.20E-12 2.36E-12 1.06 0.99 Notes: (a) The "(Cd)" designation next to a reaction indicates that the sensor was cadmium-covered.(b) See Section A. 1.2 for details describing the Best-Estimate (BE) reaction rates.a'" " a :. 'a> f >i ' Capsule : a ( > a> a Reatin RteIrs/atomV<<

Reactionii.

> ... Measured Calculated ,est-Estitmate+h)

>, M/C , 1/2 M/BE 6 3 Cu(n a)6 0Co 4.21E-17 3.94E- 17 4.12E-17 1.07 1.02 5"Fe(n p)5 4 Mn 4.15E-15 4.29E-15 4.35E-15 0.97 0.95 5 8 Ni(np)"UCo 6.11 E-15 6.OOE-15 6.17E-15 1.02 0.99 2 3 8U(n,f)1 3 7 Cs (Cd) 2.70E-14 2.27E-14 2.38E-14 1.19 1.14 2 3 7 Np(n,f)1 3 7 Cs (Cd) 2.35E-13 2.21E-13 2.36E-13 1.06 1.00 5 9 Co(n,7)6 0 Co 3.60E-12 2.83E-12 3.54E-12 1.27 1.02 5 9 Co(n,y)6 0 Co (Cd) 2.07E-12 2.OOE-12 2.1OE-12 1.04 0.99 Notes: (a) The "(Cd)" designation next to a reaction indicates that the sensor was cadmium-covered.(b) See Section A. 1.2 for details describing the Best-Estimate (BE) reaction rates.WCAP-17343-NP March 2011 Revision 0 A-22 Westinghouse Non-Proprietary Class 3 Table A-5 (Continued)

Comparison of Measured, Calculated, and Best-Estimate Reaction Rates at the Surveillance Capsule Center Reaction Rate lrps/atomV i Ratoa) Measured Calculated

~;>Best-EstImateb)

M/C MN/B3E 6 3 Cu(n,ct)6 0 Co 4.OOE-17 3.96E-17 3.98E-17 1.01 1.00 5 4 Fe(n,p)5 4 Mn 4.26E-15 4.30E-15 4.16E- 15 0.99 1.02 5 SNi(n,p)5"Co 5.75E-15 6.01E-15 5.75E-15 0.96 1.00 2 3 8 U(n,f'1 3 7 Cs (Cd) 1.81E-14 2.28E-14 2.11E-14 0.80 0.86 2 3 7 Np(n,f)1 3 7 Cs (Cd) 1.99E-13 2.21E-13 2.01E-13 0.90 0.99 5 9 Co(n,y)6°Co 3.61E-12 2.83E-12 3.54E- 12 1.28 1.02 5 9 Co(n,7)6°Co (Cd) 2.14E-12 2.OOE-12 2.16E-12 1.07 0.99 Notes: (a) The "(Cd)" designation next to a reaction indicates that the sensor was cadmium-covered.(b) See Section A.1.2 for details describing the Best-Estimate (BE) reaction rates.WCAP- 17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 A-23 Table A-6 Comparison of Calculated and Best-Estimate Exposure Rates at the Surveillance Capsule Center Capsule ID Calculated Best-EstimateA Uncertainty (1a)' BE/.U 9.43E+10 1.06E+ 11 6% 1.12 Y 7.09E+10 6.99E+10 6% 0.99 X 7.25E+10 8.67E+10 6% 1.20 W 7.1IE+10 7.57E+10 6% 1.06 Z 7.13E+10 6.57E+10 6% 0.92 Note: Calculated results are based on the synthesized transport calculations taken at the core midplane following the completion of each respective capsule's irradiation period and are the average neutron exposure over the irradiation period for each capsule.See Section A. 1.2 for details describing the Best-Estimate (BE) exposure rates.Iron Atom Displacement Raite [dpii/s1l

________Capsule ID -Calculated Best-Estimate' Unetity(c)BEIC U 1.84E-10 2.07E-10 8% 1.12 Y 1.38E-10 1.37E-10 8% 0.99 X 1.41E-10 1.65E-10 8% 1.18 W 1.38E-10 1.46E-10 8% 1.06 Z 1.38E-10 1.27E-10 8% 0.92 Note: Calculated results are based on the synthesized transport calculations taken at the core midplane following the completion of each respective capsule's irradiation period and are the average neutron exposure over the irradiation period for each capsule.See Section A. 1.2 for details describing the Best-Estimate (BE) exposure rates.WCAP-17343-NP March 2011 Revision 0 A-24 Westinghouse Non-Proprietary Class 3 Table A-7 Comparison of Measured/Calculated (M/C) Sensor Reaction Rate Ratios Including all Fast Neutron Threshold Reactions V <> /~~NM/CRatio~Y

~

-Capsule U Capsule Capsule X Capsule W Capsule Z, 6 3 Cu(n, a)6°Co 1.14 1.15 1.27 1.07 1.01 5 4 Fe(n,p)5 4 Mn 1.05 0.96 1.15 0.97 0.99 5 8Ni(n,p)SCo 1.00 0.96 1.19 1.02 0.96 2 3 8U(n,f)1 3 7 Cs (Cd) 1.25 1.05 1.26 1.19 0.80 2 3 7 Np(n,f) 1 3 7 Cs (Cd) 1.24 1.02 1.21 1.06 0.90 Average 1.14 1.03 1.22 1.06 0.93% Standard Deviation 9.8 7.6 4.1 7.7 9.1 Notes: (a) The overall average M/C ratio for the set of 25 sensor measurements is 1.07 with an associated standard deviation of 11.6%.(b) The "(Cd)" designation next to a reaction indicates that the sensor was cadmium-covered.

Table A-8 Comparison of Best-Estimate/Calculated (BE/C) Exposure Rate Ratios-'~K( << BE/C Ratio~ ~ 4'SCapsule ID ý4'4 > 1.01 MeV) dpa/s U 1.12 1.12 Y 0.99 0.99 X 1.20 1.18 W 1.06 1.06 Z 0.92 0.92 Average 1.06 1.05% Standard Deviation 10.2 9.7 WCAP- 17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 A-25 A.2 REFERENCES A-i Regulatory Guide 1.190, Calculational and Dosimetry Methods for Determining Pressure Vessel Neutron Fluence, U. S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, March 2001.A-2 WCAP-13007, Revision 0, Analysis of Capsule U from the Georgia Power Company Vogtle Electric Generating Plant Unit 2 Reactor Vessel Radiation Surveillance Program, E. Terek et al., August 1991.A-3 WCAP-14532, Revision 0, Analysis of Capsule Yfrom the Georgia Power Company Vogtle Electric Generating Plant (VEGP) Unit 2 Reactor Vessel Radiation Surveillance Program, P. A. Grendys et al., February 1996.A-4 WCAP-15159, Revision 0, Analysis of Capsule X From the Southern Nuclear Vogtle Electric Generating Plant Unit 2 Reactor Vessel Radiation Surveillance Program, T. J. Laubham et al., March 1999.A-5 WCAP-16382-NP, Revision 0, Analysis of Capsule W From the Southern Nuclear Operating Company, Vogtle Unit 2 Reactor Vessel Radiation Surveillance Program, T. J. Laubham and R. J. Hagler, January 2005.A-6 A. Schmittroth, FERRET Data Analysis Core, HEDL-TME 79-40, Hanford Engineering Development Laboratory, Richland, WA, September 1979.A-7 RSICC Data Library Collection DLC-178, SNLRML Recommended Dosimetry Cross-Section Compendium, July 1994.A-8 ASTM Standard El018, Application of ASTM Evaluated Cross-Section Data File, Matrix E706 (JIB).A-9 ASTM Standard E944, Application of Neutron Spectrum Adjustment Methods in Reactor Surveillance.

WCAP-1 7343-NP March 2011 WCAP-17343-NP March 2011 Revision 0

Westinghouse Non-Proprietary Class 3 B-1 APPENDIX B LOAD-TIME RECORDS FOR CHARPY SPECIMEN TESTS* Specimen prefix "BL" denotes Lower Shell Plate B8628-1, Longitudinal Orientation

  • Specimen prefix "BT" denotes Lower Shell Plate B8628-1, Transverse Orientation" Specimen prefix "BW" denotes Surveillance Program Weld Metal* Specimen prefix "BH" denotes Heat-Affected Zone Material Note that the instrumented Charpy data is for information only. The instrumented tup was not calibrated per ASTM E2298-09.WCAP-17343-NP March 2011 Revision 0 B-2 Westinghouse Non-Proprietary Class 3 B- esigoueNn-rpieayCls-BL76, -50°F BL88, 35-F BL86, 50-F WCAP- 17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 B-3 Westinghouse Non-Proprietary Class 3 B-3 BL89, 60-F BL84, 75-F BL78, 85-F WCAP-17343-NP March 2011 Revision 0 B-4 Westinghouse Non-Proprietary Class 3 B-4 Westinghouse Non-Proprietary Class 3 BL83, 90-F BL77, 100-F BL82, 105 0 F WCAP-17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 B-5 Wetngos NnPopitryCas

-BL79, 110-F BL81, 120-F BL90, 150°F WCAP-17343-NP March 2011 Revision 0 B-6 Westinghouse Non-Proprietary Class 3 B-6 Westinghouse Non-Proprietary Class 3 BL87, 200-F 3 I£T ........= ..BL85, 225-F BL80, 250-F WCAP-17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 B-7 Westinghouse Non-Proprietary Class 3 B-7 BT89, -75°F BT85, 75-F A BT87, 90-F WCAP-17343-NP March 2011 Revision 0 B-8 Westinghouse Non-Proprietary Class 3 BT80, 100°F...............BT88, 110-F BT83, 115°F WCAP- 17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 B-9 Westinghouse Non-Proprietary Class 3 B-9 BT9O, 125-F BT81, 135-F BT78, 140-F WCAP- 17343-NP March 2011 Revision 0 B-10 Westinghouse Non-Proprietary Class 3 B- 10 Westinghouse Non-Proprietary Class 3 BT77, 145 0 F BT76, 150 0 F I BT84, 175-F WCAP-17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 B-11 BT82, 210°F BT86, 250-F BT79, 275-F WCAP- 17343-NP March 2011 Revision 0 B- 12 Westinghouse Non-Proprietary Class 3 BW90, -50°Fý3ý n... ... ... C BW79, 0-F BW81, 0 0 F WCAP-17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 B-13 Westinghouse Non-Proprietary Class 3 B- 13 BW76, 5 0 F BW82, 5 0 F.:.NALAAAN ýfkýNA A .AA BW86, 10-F WCAP-17343-NP March 2011 Revision 0 B-14 Westinghouse Non-Proprietary Class 3 B- 14 Westinghouse Non-Proprietary Class 3 v .-I ~ --..................BW85, 20-F BW84, 25 0 F BW87, 50 0 F WCAP- 17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 B-15 Westinghouse Non-Proprietary Class 3 B- 15 BW78, 60 0 F BW77, 75 0 F BW80, 130 0 F WCAP-17343-NP March 2011 Revision 0 B-16 Westinghouse Non-Proprietary Class 3 B- 16 Westinghouse Non-Proprietary Class 3 BW88, 225 0 F BW89, 250-F BW83, 275 0 F WCAP- 17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 B-17 Westinghouse Non-Proprietary Class 3 B- 17 fJ ~ ~ NA. m N., A.~ N4 A A. N ~ A. A BH85, -150 0 F n AI AMtý iM NA AA A!t~ N~M J AnA,ýiSA-4.A BH84, -110-F IS t, M PM- -"C -A.W% : M BH76, -90 0 F WCAP-17343-NP March 2011 Revision 0 B-18 Westinghouse Non-Proprietary Class 3 B- 18 Westinghouse Non-Proprietary Class 3 BH88, -80°F BH77, F BH82, -60°F WCAP-17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 13-19 BH78, -50 0 F BH79, F i BH89, F WCAP-17343-NP March 2011 Revision 0 B-20 Westinghouse Non-Proprietary Class 3 B-20 Westinghouse Non-Proprietary Class 3 BH90, 0°F BH83, 25-F BH81, 60-F WCAP-17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 B-21 I BH86, 110-F BH80, 150 0 F BH87, 175 0 F WCAP-17343-NP March 2011 Revision 0

Westinghouse Non-Proprietary Class 3 C-1 APPENDIX C CHARPY V-NOTCH PLOTS FOR EACH CAPSULE USING SYMMETRIC HYPERBOLIC TANGENT CURVE-FITTING METHOD Contained in Table C-1 are the upper-shelf energy (USE) values that are used as input for the generation of the Charpy V-notch plots using CVGRAPH, Version 5.3. The definition for USE is given in ASTM E 185-82 [Ref. C-I], Section 4.18, and reads as follows: "upper shelf energy level -the average energy value for all Charpy specimens (normally three)whose test temperature is above the upper end of the transition region. For specimens tested in sets of three at each test temperature, the set having the highest average may be regarded as defining the upper shelf energy." If there are specimens tested in sets of three at each temperature, Westinghouse typically reports the set having the highest average energy as the USE (usually unirradiated material).

If the specimens were not tested in sets of three at each temperature, Westinghouse reports the average of all Charpy data (? 95%shear) as the USE, excluding any values that are deemed outliers using engineering judgment.

Hence, the Capsule Z USE values reported in Table C-I were determined by applying this methodology to the Charpy data tabulated in Tables 5-1 through 5-4 of this report. USE values documented in Table C-I for the unirradiated material, as well as Capsules U, Y, X, and W, were imported directly from Reference C-2.The USE values reported in Table C-I were used in generation of the Charpy V-notch curves.The lower-shelf energy values were fixed at 2.2 ft-lb for all cases. The lower-shelf Lateral Expansion values were fixed at 0.0 mils in order to be consistent with the previous capsule analysis [Ref. C-2].Table C-1 Upper-Shelf Energy Values (ft-lb) Fixed in CVGRAPH>Capsule Unirradiated U y X' W ~z Lower Shell Plate B8628-1 89 99 100 86 84 89 Longitudinal Orientation Lower Shell Plate B8628-1 70 79 73 65 69 68 Transverse Orientation Surveillance Program Weld Metal 92 98 86 87 87 90 (Heat # 87005)HAZ Material 106 122 114 99 100 112 CVGRAPH Version 5.3 plots of all surveillance data are provided in this appendix, on the pages following the reference list.WCAP-17343-NP March 2011 Revision 0 C-2 Westinghouse Non-Proprietary Class 3 C.1 REFERENCES C-1 ASTM E185-82, Standard Practice for Conducting Surveillance Tests for Light-Water Cooled Nuclear Power Reactor Vessels, E706(IF), ASTM, 1982.C-2 WCAP-16382-NP, Revision 0, Analysis of Capsule Wfrom the Southern Nuclear Operating Company, Vogtle Unit 2 Reactor Vessel Radiation Surveillance Program, T. J. Laubham and R. J. Hagler, January 2005.WCAP-17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 C-3 Wetngos NnPopitryCas_

-This page is intentionally blank.WCAP- 17343-NP March 2011 Revision 0 C-4 Westinghouse Non-Proprietary Class 3 C.2 CVGRAPH VERSION 5.3 INDIVIDUAL PLOTS 300 250 q 200 r 0 150 0 z 100 50 Unirradiated Lower Shell Plate B8628-1 (Longitudinal)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 10/2/2N0t0 04:17 PM Page I Coefficienlts of Curve I A = 45.6 B = 43.4 C = 76.43 T0 = 37.56 D = 0.00E+00 Equation is A + B

  • Ilanh(C1"-To)/(C+DT))j Upper Shelf Energy=S9.0(Fixed)

Lower Shelf Energy=2.2(Fixed)

Temip@30 ft-lh,=X.8 Deg F Temp@50 ft-lbs=45.4 Deg F Planw: Vogtle 2 Malerial:

SA533B I Heat: C3500-2 Orientation:

LT Capsule: U NIRR Fluence: ni/cm^2 8 0-300.0-200.0 -100.0 0.0 100.0 200.0 300.0 Temperature in Deg F 400.0 500.0 600.0 Charpy V-Notch Data Temperature

-80. 00-80. 00-30. 00-30. 00-30. 00 00 00 00 30. 00 Input CVN 4. 00 7. 00 12. 00 20. 00 26, 00 24. 00 27. 00 34. 00 30. 00 Computed CVN 6. 03 6. 03 14. 86 14 86 14. 86 25. 84 25. 84 25. 84 41. 32 Differential

-2. 03.97-2.86 5. 14 11.14-1. 84 1. 16 8. 16-ii. 32 WCAP- 17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 C-5 Unirradiated Lower Shell Plate B8628-1 (Longitudinal)

Page 2 Phml: Vogtle 2 Malerial:

SA533BI Heat: C3500-2 Orientation:

LT Capsule: UNIRR Fluence: n/cm^2 Charpy V-Notch Data Temperature

30. 00 30. 00 60. 00 60. 00 60. 00 s0. 00 80. 00 80. 00 1 20. 00 120. 00 120. 00 160. 00 160. 00 240. 00 240. 00 240. 00 300. 00 300. 00 Input CVN 32.00 5 1 .00 47. 00 54. 00 58. 00 68, 00 7 1. 00 70. 00 81 .00 87. 00 88. 00 87. 00 92. 00 90. 00 90. 00 96. 00 88. 00 90. 00 Correlation Coefficient

= .982 Computed CVN 41.32 41. 32 57. 99 57. 99 57. 99 67. 49 67. 49 67. 49 80. 00 80. 00 80. 00 85.61 85.61 88. 57 88. 57 88. 57 88.91 88.91 Differential

-9.32 9. 68-10.99-3. 99.01.51 3. 5 1 2.51 1. 00 7.00 8. 00 I.39 6. 39 1. 43 1 .43 7. 43-.91 1.09 WCAP-17343-NP March 2011 Revision 0 C-6 Westinghouse Non-Proprietary Class 3 C-6 Westinghouse Non-Proprietary Class 3 Unirradiated Lower Shell Plate B8628-1 (Longitudinal)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 10/27/2010 12:36 PM Page I Coefficients ot Curve I A = 37.97 B = 37.97 C = 82.49 TO = 42.82 D = O.OOE+00 Equation is A + B

  • ITanh((T-To)/(C+DT))]

Upper Shelf L.E,=75.9 Lower Shelf L.E.=.0(Fixed)

Temp.@LE.

35 mils=36.4 Deg F Plaht: Volue 2 Malerial:

SA533BI Heat: C3500-2 Orienlation:

LT Capsule: UNIRR Fluence: n/ci^2 200 150 E C._o a100 50 04--300.0 0.0 300.0 Temperature in Deg F Charpy V-Notch Data 600.0 Temperature

-80. 00-80. 0(0-30. 00-30. 00-30. 00 0 0)* (0* 00 30. 00 Input L.E.I. 0)3. 00 10. 00 14. 0)1 8. O0 21. 0)21. 0(25. 00 24. 0)Computed L.P.3. 68 3. 68 II. 10 1 1. 10 II. 10 19. 86 19.86 19.86 32, 12 Differential

-2. 68-.68-.10 2. 90 6. 90 1 14 1 14 5 14-8. 12 WCAP-17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 C-7 Unirradiated Lower Shell Plate B8628-1 (Longitudinal)

Page 2 Plant: Voglle 2 Material:

SA533B I Heal: C3500-2 Orientation:

LT Capsule: UNIRR Flience: nIcmA2 Charpy V-Notch Data Temperature

30. 00 30. 00 60. 00 60. 00 60. 00 80. 0(0 80. 0 )80. 00 1 20. 00 120. 00 120. 00 160. 00 160. 00 240. 00 240. 00 240. 00 300. 00 300. 00 Input LE.26. 00 40. 00 36. 00 43. 00 45. 00 56. 00 54. 00 55. 00 7 1. 00 70. 00 7 I , 00 70, 00 76. 00 77. 00 74. 00 69. 00 74. 00 74. 00 Computed L.E.Diflerential
32. 12 32. 12 45. 77 45. 77 45. 77 54. 0)1 54.01 54.01 65. 81 65.81 65.81 71. 75 71.75 75.31 75.31 75.31 75. 79 75, 79-6.7.9.2.5.4.4.1.-I .-I .12 88 77 77 77 99 1) I 99 19 19 19 75 25 69 31 31 79 79 Correlation Coefficient

= ,985 WCAP-17343-NP March 2011 Revision 0 C-8 Westinghouse Non-Proprietary Class 3 C-s Westinghouse Non-Proprietary Class 3 Unirradiated Lower Shell Plate B8628-1 (Longitudinal)

CVGRAPH 5.3 Hyperbolic Tangcn Curvc Printed on 10/26/2010 04:18 PM Page I Coefficient s ot Curve I A = 50. B = 50. C = 38.73 TO = 64.93 D = O.OOE+J0 EquUtion is A + B

  • ITranh(kT-T(o)/(C+DT1))

Templerature at 50% Shear = 65.0 Plant: Vogtle 2 Malerial:

SA533BI Heat: C35010I-2 Orientation:

LT Capsule: UNIRR Fluence: nt/c m^2 I-C', CL 125 100 --a 75 50 0 25-0-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 Temperature in Deg F 400.0 500.0 600.0 Charpy V-Notch Data Temperature so8. 0 0 80. 00-30. 00-3(0.00-301. 00 0 00 0 00 00 30. 00 Input Percent Shear* 00* 00 5. 00 5. 00 5. 00 10. 01)I (). 01 10. (0 20. 00 Computed Percent Shear* 06 06.74.74*74 3, 38 3. 38 3.38 14. 14 Differential 06 06 4. 26 4. 26 4. 26 6. 62 6. 62 6. 62 5. 86 WCAP-17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 C-9 Unirradiated Lower Shell Plate B8628-1 (Longitudinal)

Page 2 Plant: Vogtlc 2 NMttfcial:

SA533B I Heal: C3500-2 Oricntiation:

LT Capsule: UNIRR Fluence: nIcnt^2 Charpy V-Notch Data Temperature

30. 00 30. 0(0 60. 00 60. (0O 60. 0 0 80. 00 80. 00 80. (0 120. 00 120. (10 120. 00 160. 00 16(. 00 240. O0 240. 00 240. 00 300. 00 300. 00 Input Percent Shear 20. O0 t5. 0(0 30. 00 35. 00 45. 00 75. 00 75. 00 65. 00 (010. 0(0 10 0. 0(0 100. 0(0 100. 0(0 1(0 0. 0(0 10 .0(0 100. 0(0 100. 00 00. 00 100. 0)0 Computed Percent Shear 14. 14 14. 14 43. 67 43. 67 43. 67 68. 53 68. 53 68. 53 94. 50 94. 50 94. 50 99. 27 99. 27 99. 99 99. 99 99. 99 I00. 0(0 100. 0(0 Differential
5. 86 86 13. 67-8. 67 1 .33 6. 47 6. 47-3. 53 5. 50 5. 50 5 50 73 73 0(1 0(1 0 1 010 0(0 Correlation Coefticient

= ,994 WCAP-17343-NP March 2011 Revision 0 C-IO Westinghouse Non-Proprietary Class 3 300 250* 200-r 0 0 150 ,LI z> 100 50 Capsule U Lower Shell Plate B8628-1 (Longitudinal)

CVGRAPH 5.3 Hype'holic Tangent Curve Printed on I 0/26/2010 04:20 PM Page I Coefficientc of Curve I A = 50.6 B = 48.4 C = 99.74 TO = 56.04 D = 0.OOE+00 Equation is A + B *ITanhUT-To)(C+DTb)I Upper Shelf Energy=99.01 Fixed) Lower Shelf Energy=2,2(Fixed)

Temp@30 f-lbs= 10.8 Deg F Temp@50 ft-lbs=54.9 Deg F Plant: Vogtle 2 Malerial:

SA533B I Heat: C3500-2 Orientation:

LT Capsule: U Fluence: n/cm^2 0 10 0 0-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 Temperature in Deg F 600.0 Charpy V-Notch Data Temperature

-75. 00-45. 00-15. 00 100 I 5. 00 25. 00 4(1. 00 50. 0 0 65. 00 Input CVN 5. 00 141 00 12.00 36.00 36. 00 49. 00 48. 00 3 1 .00 5 1 .00 Compuled CVN 8. 72 13. 48 20. 98 25. 95 31 .74 36. 01 42. 88 47. 67 54. 94 Differential

.3.72.52 8. 98 10. 05 4. 26 12. 99 5. 12-16.67-3. 94 WCAP-17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 C-11 Capsule U Lower Shell Plate B8628-1 (Longitudinal)

Page 2 Pant: Vogtle 2 Material:

SA533BI Heat: C3500-2 Oricntation:

LT Capsule: U Fluence: nICmA2 Charpy V-Notch Data Temperature 80.100.125.150.200.250.0 0 0 0 0 0 0 0 0 0 0 0 Input CVN 54. 00 74. 00 73. 00 I 02. 00 97. 00 99. 00 Computed CVN 62 01 70, 65 79. 58 86, 23 93. 89 97 06 Differential

-8. 0 1 3. 35-6. 58 15.77 3. 11 1. 94 Correlation Coefficient

= .961 WCAP-17343-NP March 2011 Revision 0 C-12 Westinghouse Non-Proprietary Class 3 Capsule U Lower Shell Plate B8628-1 (Longitudinal)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 10/27/2010 03:27 PM Page I Coefficients ol Cttrve I A = 35.31 B = 35.31 C =- 108.65 TO = 46.71 D = 0.OOE+0O Equation is A + B

  • ffTanh((T-To)/(C+DTI))

Upper Shelf L.E.=70.6 Lower Shelf LE.=,O(Fixed)

Temp.@LE.

35 mils=45.8 Deg F Plant: Vogtle 2 Naterial:

SA533B I Heat: C3500-2 Orientation:

LT Capsule: U Fluence: n/cm^2 200 150 E 2L 100 50 0 o 0 00 0 n-300.0 0.0 300.0 Temperature in Deg F Charpy V-Notch Data 600.0 Temperature

-75. 00-45. 00 15. 00 00 15. 00 25. 00 40. 00 50. 00 65. 00 Input L.E.5. 00 I 0. 00 9. 00 27. 00 27. 00 34. 0)40. 00 32. 00 36. 00 Computed L.E.6.79 I1 , 02 17. 16 21 .00-5. 28 28. 34 33.13 36. 37 41. 19 Di feirential

-1.79-1. 02-8.16 6. 00 1.72 5. 66 6. 87-4. 37-5. 19 WCAP-17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 C-13 Westinghouse Non-Proprietary Class 3 C-i 3 Capsule U Lower Shell Plate B8628-1 (Longitudinal)

Page 2 Plant: Vogtle 2 Maleiial:

SA533B I Hear: C3500-2 Orienltaion:

LT Capsule: U Fluence: n/cm^2 Charpy V-Notch Data Temperature

80. 00 10 00. 00 125. 00 I 50. 00 200. 00 250. 00 Input L.E.44. O0 49. 00 50. 00 74. 00 68. 00 65, 00 Computed LE.45. 80 51. 36 57. 10 61 .44 66. 65 68. 98 Differential

-1. 80-2. 36-7. 10 12.56 1. 35-3 98 Correlation Coefficient

= 962 WCAP-17343-NP March 2011 Revision 0 C-14 Westinghouse Non-Proprietary Class 3 Capsule U Lower Shell Plate B8628-1 (Longitudinal)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 10/26/2010 04:25 PM Page I Coefficients of Curve I A = 50. B = 50. C = 92.4 TO = 62.1 D = O.OOE+OO Equation is A + B Tanh( T-To)/(C+DT))]

T1'emperaturei at 50% Shear = 62.2 Plant: Vogtte 2 Material:

SA533B I Heat: C3500-2 Orientation:

LT Capsule: U Ftlence: n/cin"2 Cu 0 C,, C 01 U 0 0.125 100 75 50 25 0 1-.---b ý---300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature in Deg F Charpy V-Notch Data Temperature

-75, 00-45. 00-15.00.0 0 I 5. 00 25. 00 40. 010 50. 00 65. 00 Input Percent Shear 5. 00 I10. 0 0 10.00 25. 00 25, (0 40. 00 40. 00 40. (0 50. 01.Computed Percent Shear 4. 89 8, 96 15.86 20. 68 26.51 30. 94 38. 26 43. 49 51 .57 Differential 1.-5.4.-3.9.1.-3.It 114 04 86 32 51 06 74 49 57 WCAP-17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 C-15 Capsule U Lower Shell Plate B8628-1 (Longitudinal)

Page 2 Plant: Voglle 2 Material:

SA533B1 Heal: C3500-2 Orientation:

LT Capsule: U Flitence:

nlcm^2 Charpy V-Notch Data Temperature 80.I 00.125.I 5(0.200.250.00 0 0 00 0 0 0 0 00 Input Percent Shear 55. 00 70. O00 70. 00 I00. 00 I 00. O0 100. 00 Computed Percent Shear 59. 56 69. 43 79. 60 87. 02 95. 19 98. 32 Differential

-4. 56 57-9 60 12. 98 4.81 1 .68 Correlation Coefficient

= .985 WCAP-17343-NP March 2011 Revision 0 C-16 Westinghouse Non-Proprietary Class 3 300 250 A 200-r 0 0 U.150 w z> 100 50 Capsule Y Lower Shell Plate B8628-1 (Longitudinal)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 10/26/2010 04:26 PM PRie I C(oefficients of Curve I A = 51.1 B = 48.9 C = 81.88 TO = 52.33 D = O.OOE+0O Equation is A + B *Tanh((T-To)/(C+DT Upper Shelf fEnergy= I(XI.0(Fixed)

Lower Shelf Energy=2.2 Fixed)Temp(p@30 ft-Ihs=14.6 DeL F Temp@50 ft-lhs=50.5 Deg F Plant: Vogtle 2 Material:

SA533B I Heat: C3500-2 Orientation:

LT Capsule: Y Fluence: n/nCtA2 0 0 0 0-300.0-200.0 -100.0 0.0 100.0 200.0 300.0 400.0 Temperature in Deg F 500.0 600.0 Charpy V-Notch Data Temperature

.75. 00-50. 00-25. 00-10. 00 ( 00 10. ( ()25. 00 50. 00 65. 00 Input CVN 7. 00 15. 00 12.00 17. 00 25. ()()21. 00 45. 00 45, 00 57. 00 Computed CVN 6. 37 9,62 15. 05 19.72 23.51 27. 85 35. 36 49.71 58.61 Differential

.63 5.38-3. 05-2. 72 1. 49-6. 85 9. 64-4. 7 1-.61 WCAP-17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 C-17 Capsule Y Lower Shell Plate B8628-1 (Longitudinal)

Page 2 Plant: Vogllc 2 Mateial: SA533BI Heat: C3500-2 Orientation:

LT Capsule: Y Fluence: n/cem2 Charpy V-Notch Data Temperature

72. 00 100. 0 0 150O. 00 200. O0t 250. 0t0 300. 00 Input CVN 70. 00 70. 00 96. 00 94. 00 106. 00 105. tO0 Computed CVN 62. 63 76. 74 91. 76 97. 42 99. 22 99. 77 Differential
7. 37-6.74 4. 24-3.42 6. 78 5. 23 Correlation Coefficient

= .989 WCAP-17343-NP March 2011 Revision 0 C-18 Westinghouse Non-Proprietary Class 3 Capsule Y Lower Shell Plate B8628-1 (Longitudinal)

CVGRAPH 5.3 Hyperbolic Tangnt Curve Printed on 10/27/2010 01:41 PM Page I Coefficients of Curve I A = 34.43 B = 34.43 C = 77.76 TO = 45.5 D = 0.00)E+00 Equalion is A + B I ITanh((T-To)/(C+DT))I Upper Shell L.E.=68.9 Lower Shelf L.E.=.OlFixed)

Temp. @L.E. 35 nils=46.8 Deg F Plant: Vogte 2 Material:

SA533B I Heat: C3500-2 Orientation:

LT Cafsule: Y Ftucnce: n/oni^2 200 150 E C 0 Uti W 100 50 0+--300.0 0.0 300.0 Temperature in Deg F Charpy V-Notch Data 600.0 Temperature

-75.-50..25.-10.10.25.50.65.0 0 0 0 00 0 0 O0 0 0 0 0 0 0 0 0 Input LE.4. 00 I I 0)6. 0)1 2. 0(18, 00 16. 00 30f. 0 34, 10 42. 0)Computed L.F.2. 97 5. 44 9. 66 13. 32 16. 30 19. 72 25. 55 36. 42 42. 88 Di)flrential 1, 1) 3 5 56-3.66-1 .32 1 70-3.72 4. 45-2. 42-.88 WCAP-17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 C-19 Capsule Y Lower Shell Plate B8628-1 (Longitudinal)

Page 2 Plhmt: Vogtle 2 Malcrial:

SA533B I Heat: C3500-2 Orientation:

LT Capsule: Y Fluence: acmA^2 Charpy V-Notch Data Temperature 72.I 00.150.200.250.300.010 t 0 00 00 0 0 0 0 Input L.E.47. 00 56. 00 65. 00 66. 00 73. 0)65. 00 Computed LE.45. 72 55. 25 64. 47 67. 58 68. 50 68. 75 Diflerential 1 28 75 53-1 58 4. 50-3. 75 Correlation Coefficient

= .992 WCAP- 17343-NP March 2011 WCAP- 17343-NP March 2011 Revision 0 C-20 Westinghouse Non-Proprietary Class 3 Capsule Y Lower Shell Plate B8628-1 (Longitudinal)

CVGRA PH 5.3 Hyperbolic Tangent Curve Printed on 10/26/2010 04:27 PM Page I Coefficieints of Ctirve I A = 50. B = 50. C = 67.76 TO = 77.75 D = O.OOE+00 Equation is A + B 9ITanh((T-To)/(C+DT) at 50% Shear = 77.8 Plat: Vogtle 2 Material:

SA533B I Heat: C3500-2 Orientation:

LT Capsule: Y Fluence: n/ein^2 125 100'-CoJ 75 50 25-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 Temperature in Deg F 500.0 600.0 Charpy V-Notch Data Temperature

-75. 01)-50. 00-25. 00 1 10. 0 0.00 10. 00 25. 00 50. 00 65. 00 Input Percent Shear.00 5. 0(0 10.00 10. 00 10. 00 10. 00 20. 01 30. 00 40. 00 Computed Percent Shear 1.09 2. 25 4. 60 6.98 9. 15 11. 92 17.41 30. 59 40. 70 Differential

-1 09 2 75 5. 40 3 02 85-1 92 2. 59 59 70 WCAP- 17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 C-21 Capsule Y Lower Shell Plate B8628-1 (Longitudinal)

Page- 2 Plami: Vogdel 2 MNilerial:

SA513B I Heal: C.1500-2 (Jrieritation:

LT (aPSUle: Y FItience:

nj/CmjA2 Charpy V-Notch Data Temperature

72. 00 100. 00 150. 00 200. 00 250. 00 300. 00 Input Percent Shear 45. 00 60, 00 100. 00 tOo. 00 100 00 I 00. 00 Computed Percent Shear 45. 76 65. 85 89. 40 97. 36 99. 38 99. 86 Differential

-.76-5. 85 10. 60 2. 64 62 14 Correlation Coefficient

= .996 WCAP-17343-NP March 2011 Revision 0 C-22 Westinghouse Non-Proprietary Class 3 Capsule X Lower Shell Plate B8628-1 (Longitudinal)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 10/26/2010 04:28 PM Page I Coefficiens of Curve I A = 44.1 1B = 41.9 C = 75.94 TO = 64.75 D = 0.0OE+OO Equation is A + B ltianhT-To)/('C+

DI-DT)I Upper Shelt Energy=86.0( Fixed) Lower Shelf Eneigy=2.2(Fixecd Temp@3(0 ft-lbs=38.2 Dee F Tenip@5110 ft-lbs=75.6 Deg F Plant: Vogile 2 Material:

SA533B I Heat: C351XI-2 Orientation:

LT Capsule: X FluCnee: lcnIA^2 300 250 T 200 0 0 150 z> 100 50 0 0 ___0 n-0-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature in Deg F Charpy V-Notch Data Temperature

-80. 0 0-)40. 00 ( 0 I5. 00 25. 00 25. 00 35. 00 50. 00 50. 0(0 Input CVN 6. 00 SI .00 18. 00 22. 00 I5. 0(0 20. 00 41. 00 30. 00 39. 00 Computed CVN 4. 0(1 7. 19 15. 09 20. 00 23. 97 23. 97 28. 48 36. 06 36. 06 Differential I 99 3. 81 2. 91 2. 00-8. 97-3. 97 12. 52-6. 06 2. 94 WCAP-17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 C-23 Westinghouse Non-Proprietary Class 3 C-23 Capsule X Lower Shell Plate B8628-1 (Longitudinal)

Page 2 Plant: Vogtle 2 Material:

SA533B I Heat: C35(H)-2 Orientation:

LT Capsule: X Flucnce: n/cmA2 Charpy V-Notch Data Temperature 75, 010 10 0. 01)125. 00 I50. 010 200. 00 250. 0(Input CVN 47. 0(59. 01 73. 00 88, 00 76. 00 95. 00 Computed CVN 49. 72 62. 26 71. 77 77. 97 83. 69 85. 37 Differential

-2. 72-3. 26 1.23 10. 03-7. 69 9. 63 Correlation Coefficient

= .975 WCAP- 17343-NP March 2011 Revision 0 C-24 Westinghouse Non-Proprietary Class 3 C-24 Westinghouse Non-Proprietary Class 3 200 150 E.2 100 50 Capsule X Lower Shell Plate B8628-1 (Longitudinal)

CVGRAPH 5.3 Hyperbolic Tangmt Curve Primed on 10/27/2010 03:28 PM Page I Coefficieits of Curve I A = 32.28 B = 32.28 C = 94.48 TO = 82. D = 0.00E+0O Equation is A + B

  • jTanh(UT-To)/(C+DTI))

Upper Shelf L.E.=64.6 Lower Shelf L.E.=.)(Fixed)

Temp.@L.E.

35 mils=90.0 Deg F Plant: Vogtle 2 Material:

SA533B I Heat: C3500-2 Orientation:

LT Capsule: X Fluence: n/cm^2 0 0-300.0 0.0 300.0 600.0 Temperature in Deg F Charpy V-Notch Data Temperature

-80. 010-40, 00.00 15. 00 25. 00 25. 00 35. 00 50. 00 50. 00 Input L.E.2. 00 2. 00 II. 00 14. 00 6. 00 10. 00 24. 00 26. 00 25. 00 Computed LE.2.03 4. 54 9. 67 12.58 14.87 14.87 17.42 21.74 21.74 Di ftlrential

-.03-2.54 1. 33 1. 42-8. 87-4.87 6. 58 4. 26 3. 26 WCAP-17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 C-25 Capsule X Lower Shell Plate B8628-1 (Longitudinal)

Plant: Vogtle 2 Orientation:

LT Pa2e 2 Material:

SA533B I Heat: C3500-2 Capsule: X Fiuence: n/cm^2 Charpy V-Notch Data Temperature

75. 00 100. 00 125. 00 150. o0 200. 00 250. 00 Input L.F.28. 00 38.00 45. 00 54. 00 54. 00 67. 00 Computed L.E.29. 89 38. 35 46. 03 52. 18 59. 64 62. 76 Differential

-1. 89 35 1I 03 1. 82-5. 64 4. 24 Correlation Coefficient

= .979 WCAP-17343-NP March 2011 Revision 0 C-26 Westinghouse Non-Proprietary Class 3 Capsule X Lower Shell Plate B8628-1 (Longitudinal)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 10/26/2010 04:29 PM Paoe I Cocfficient s of Curve I A = 50. B = 50. C = 62.44 TO = 69.29 D = 0.OOE+00 Equation is A + B

  • ITanht(T-To)/(C+DT)I)

Temperatnm, at 50% Shear = 69.3 Plant: Vogte 2 Material:

SA533BI Heat: C3500-2 Orientation:

LT Capsule: X Flutence:

n/cm^2 125 100 cn a/, U1 75 50 25 0 1-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 Temperature in Deg F 600.0 Charpy V-Notch Data Temperature

-80. 00-40. 00.0 0 15. 00 25. 00 25. 00 35. 00 50. 00 50. 00 Input Percent Shear 2. 00 5. 00 1 0. o00 1 5, 00 I0. 0(0 I0. 01)35. 00 41). {)0 Computed Percent Shear 83 2. 93 9. 80 4. 95 19 49 19. 49 25. 01 35. 03 35. 03

1. 17 2. 07* 20* 05-4. 49 ,51 4. 99-.0 3 4. 97 WCAP- 17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 C-27 Westinghouse Non-Proprietary Class 3 C-27 Capsule X Lower Shell Plate B8628-1 (Longitudinal)

Page 2 Plant: Vogle 2 Material:

SA533B I Heal: C3500-2 Orientation:

LT Capsule: X Fluence: nicmA2 Charpy V-Notch Data Temperature 75.100.125.15(0.200.250.(I 0 0 0 0 0 0 0 0 0 00[nput Percent Shear 45, 00 75. 00 85. 0 0 100. 00 I0 0. 00 100. 00 Computed Percent Shear 54. 56 72.78 85. 62 92. 99 98. 50 99, 69 Differential

-9. 56 2. 22-.62 7, 0 1 1 50.31 Correlation Coefficient

= .994 WCAP-17343-NP March 2011 Revision 0 C-28 Westinghouse Non-Proprietary Class 3 C-28 Westinghouse Non-Proprietary Class 3 Capsule W Lower Shell Plate B8628-1 (Longitudinal)

CVGRAPH 5.3 Hyperbolic Tamngetl Curve Printed on 10/26/2010 04:30 PM Page I CoelUficien is of Ct-ve I A = 43.1 B = 40.9 C = 81.94 TO = 74.98 D = 0.OOE+OO Equation is A + B

  • jTanh((T-To)/(C+DT)uf Upper Shelf Etiergy=84.0(Fixcd)

Lower Shelf Energy=2.2(Fixed)

Temrp@30 ft-lbs=47.8 Deg F Teup@50 ft-Ibs=89.()

Deg F PlatI: Vogtle 2 Material:

SA533BI Heat: C35(Xt-2 Orientation:

LT Capsule: W Fluence: n/ct11cm2 300 250 200 0 U-L 150 LU z> 100 50 0 --00 0-300.0-200.0 -100.0 0.0 100.0 200.0 300.0 Temperature in Deg F 400.0 500.0 600.0 Charpy V-Notch Data Temperature

-50. 00-25, 00 25. 00 50, 00 50. 001 50. 00 75. 010 100. 00 Input CVN 7. 0(I1. 1 0 21 .00 15. 00 27. 0(0 42. 00 22, 00 42. (10 52. 00 Computed CVN 5. 9(1 8. 76 13.5 1 20. 85 26. 63 31 .00 31. 00 43. 11 55. 22 l)ifferential 1 10 2. 2 4 7. 49-5. 85 37 I I 0 01(-9. (1-3 22 WCAP- 17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 C-29 Capsule W Lower Shell Plate B8628-1 (Longitudinal)

Page 2 Plamt: Vogtlc 2 Maletial:

SA533B I Heat: C3500-2 Orientation:

LT Capsule: W Fluence: n/cmA2 Charpy V-Notch Data Temperature 125. 00 1 50. 0t0 175. 00 200. O00 225. 00 Input CVN 61 .00 77. 00 85. 00 81. 00 85. 00 Correlation Coefficient

= .981 Computed CVN 65. 37 72. 70 77. 45 80.31 81. 95 Differential

--4.37 4. 3(0 7. 55.69 3. 05 WCAP- 17343-NP March 2011 Revision 0 C-30 Westinghouse Non-Proprietary Class 3 C-30 Westinghouse Non-Proprietary Class 3 Capsule W Lower Shell Plate B8628-1 (Longitudinal)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 10/27/2010 01:42 PM Page 1 Coefficients of Curve I A = 34.69 B = 34.69 C= 91.2 T0l = 73.83 D = O.OOE+O0 Equatlion is A + B : T'fanh -T-To)/(C+DT))]

Upper Shelf L.E.=69.4 Lowei Shelf L.E.=.l(I Fixed Temp.@L.E.

35 mnils=74.7 DeLg F Plan: Vogdle 2 Material:

SA533BI Heat: C35W0-2 Orientation:

LT Capsule: W Fluence: n/km^2 200 150 C._o Ioo 0 50 0 4--300.0 0.0 300.0 Temperature in Deg F Charpy V-Notch Data 600.0 Teniperature

-50. 00-25. 00.00 25. 00 40. 0)(0 5(0. (00 50. 00 75. 00! 00. 00 Input L.E.6. 00 8. 0 (1 15. 00 It .00 24. 00 39. 00 I 7. O0 30. 0l0 45. 01 Computed L.E.4.31 7.13 11 .47 17. 71 22. 38 25. 83 25. 83 35. 14 44. 38 Differential 1.69 87 3.53-6.71 1.62 13. 17-8.83-5. 14.62 WCAP-17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 C-31 Capsule W Lower Shell Plate B8628-1 (Longitudinal)

Page 2 Plant: Vogllc 2 Material:

SA533B I Heat: C3500-2 Orientation:

LT Capsule: W Fluencc: n/cm^2 Charpy V-Notch Data Temperature 125. 00 I 50. 00 175. 00 200. 00 225. 00 Input LE.52. 00 61. 00 65. 00 65. 00 64. 00 Computed LE.52. 34 58. 40 62. 58 65. 28 66.95 Difkbrential

-.34 2. 60 2.42-.28-2. 95 Correlation Coefficient

= .973 WCAP-17343-NP March 2011 Revision 0 C-32 Westinghouse Non-Proprietary Class 3 C-32 Westinghouse Non-Proprietary Class 3 Capsule W Lower Shell Plate B8628-1 (Longitudinal)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed oil 10/26/2010 04:31 PM Page I Coefficients of Curve I A = 5). B = -50. C = 63.08 TO = 86.41 D = O.O0E+O0 EquLtion is A + B -IIITanh((,T-To)/(C+DTI))

ientlerattm-V at 50% Shear = 86.5 Plant: Vogtle 2 Material:

SA533B I Heat: C350)0-2 Orientation:

LT CapsulIC:

W Fluennce:

I/nct^2 125 100 I.-75 50 25 0 1--- ----i--.1---300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 Temperature in Deg F 400.0 500.0 600.0 Charpy V-Notch Data Temperature

-50.-25.25.40.50.50.75.1 00.0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 Input Percent Shear 2. 00 5. 00 t0. 00 15. 0)20. )0 25. 0)20. 0)40. 00 60. 0)Computed Percent Shear I .31 2. 84 6. 07 12. 49 18 .67 23. 97 23. 97 41 .06 60. 61 Differential

.69 2. 16 3. 93 2,51 t 33 1 03-3. 97-l 06 61 WCAP- 17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 C-33 Capsule W Lower Shell Plate B8628-1 (Longitudinal)

Page 2 Plant: Vogllc 2 Material:

SA533B I Heal: C3500-2 Orientation:

LT Capsule: W Flucenec:

n/c m^2 Charpy V-Notch Data Temperature 125. 0)I 5 0. 0 0 175. 00 200. 00 225. 00 Input Percent Shear 75. 00 90. 00 100. 00 100. 00 1 o .0 0 Computed Percent Shear 77. 27 88. 25 94. 32 97. 34 98. 78 Differential

2. 27 1. 75 5. 68 2. 66 1. 22 Correlation Coefficient

= .998 WCAP- 17343-NP March 2011 Revision 0 C-34 Westinghouse Non-Proprietary Class 3 300 250 r 200'-I" 0 0 150 C ILl z> 100 50 Capsule Z Lower Shell Plate B8628-1 (Longitudinal)

CVGRAPH 5.3 Hyperbolic Tangent Curvc Printed on 10/25/2010 01:19 PM Page I C(officients of Curve I A = 45.6 B = 43.4 C = 81.71 TO = 98.46 D = O.OOE+0O Equation is A + B Tauh((T-To)/(C+DTU)

Upper Shelf' Energy=89.0Fixed)

Lower Shelf Energy= 2.2(Fixed)

Temp@30 fi-lbs=67.8 Det. F Tenip@50 ft-lbs= 106.8 Deg F Plant: Vogtle 2 Material:

SA533BI Heat: C3500-2 Orienlalion:

LT CIpsulIC:

Z Fluence: n/c11^2 00 0 0o 0>0-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 Temperature in Deg F Charpy V-Notch Data 400.0 500.0 600.0 Tenmperature

-50. 00 35. 00 50. 00 60. 00 75. 0(0 85. 00 90. 00 10 0. 0 0 105. 00 Input CVN 9. 00 26. 00 26. 00 24. 00 32. 00 3 3. 00 4 I. 010 44. 00 41. 00 Computed CVN 4.43 17. 36 22.51 26. 56 33. 47 38, 52 41. 12 46. 42 49. 07 Differential

4. 57 8. 64 3. 49-2 56-1. 47-5. 52 1,2-2. 42-8 07 WCAP-17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 C-35 Capsule Z Lower Shell Plate B8628-1 (Longitudinal)

Page 2 Plant: Volle .Maleial: SA533B I Heat: C3500-21 Orienilation:

LT Capsule: Z Fluence: nIcI^A2 Charpy V-Notch Data Temperature I 11. 00 120. 00 150. 00 200. 00 225. 00 250. 00 Input CVN 61. 00 56. 01)72. 00 82. 00 91 .00 94. 00 Computed CVN 51 .69 56. 78 69. 84 82. 33 85. 25 86. 92 Differential 9.31-.78 2. 16-.33 5. 75 7. 08 Correlation Coefficient

= .981 WCAP- 17343-NP March 2011 Revision 0 C-36 Westinghouse Non-Proprietary Class 3 Capsule Z Lower Shell Plate B8628-1 (Longitudinal)

CVGRAPH 5.3 Hyperbolic Tangent Cwrve Printed on 10/27/2010 03:29 PNM Coefficienits or Curve I A = 39.04 B = 39.04 C = 110.35 TO = 1015.85 D = 0.00E+)0 EquLtion is A + B I Tanh(T -ToJ/(C+DT))l ULpper Shell L.E.=78. I Lower Shelf L.E.=.0(Fixed)

Temp. @L.E. 35 mils=94.4 Deg F Plant: Vogtle 2 Material:

SA533BI Heat: C3500-2 Orientation:

LT Capsule: Z Fluence: n/c11n2 200 150 E C.2 a 100 50 0 +/- i i-300.0 0.0 300.0 Temperature in Deg F 600.0 Charpy V-Notch Data Temperature

-5 0. 00 35. 00 50. 00 60. 00 75. 00 85. 00 90. 0 0 I00. 0 0 105. O0 Input L.E.6. 00 22, 00 24. 00 23. 00 24. 00 29. 00 3 1. 00 36. 00 35. 00 Computed L.E.4. 37 16. 93 20. 81 23, 70 28.41 31. 75 33. 47 36. 98 38. 74 Differential I.63 5. 07 3. 19-.70-4.41-2 75-2. 47-.98-3. 74 WCAP-17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 C-37 Capsule Z Lower Shell Plate B8628-1 (.Longitudinal)

Page 2 Plant: VogIe 2 Mateiial:

SA533BI Heat: C3500-2 Orientation:

LT Capsule: Z Fluence: n/en1' 2 Charpy V-Notch Data Temperature I 10. 00 120. 00 150. 00 200. 00 225. 00 250. 00 Input L.E.44.45.58K 66, 74.68.00 00 00 00 0 0 00 Computed L.E.40. 51 44. 02 53. 88 66. 09 70. 01 72. 75 Differential

3. 49.98 4. 12 09 3. 99-4. 75 Correlation Coefficient

= .986 WCAP- 17343-NP March 2011 Revision 0 C-38 Westinghouse Non-Proprietary Class 3 Capsule Z Lower Shell Plate B8628-1 (Longitudinal)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 1/25/2()10 01:21 PM Page I Coef1ficient s of C(u rIe I A = 50. B = 50. C = 58.97 TO = 105.33 D = 0.OOE+00 EquaCtion is A + B

  • jTanh((Tr-To)/(C+DTF)l]

Temperature at 50% Shear = 105.4 Plant: Vogtle 2 Material:

SA533B3I Heat: CS500-2 Orientation:

LT Capsule: Z Fluence: n/cm^2 125 100 CO 75 50 25 0 --F --300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 Temperature in Deg F 400.0 500.0 600.0 Charpy V-Notch Data Temperature

-50. 00 35. 00 50. ( 0()60. 00 75. 00 85. (0t 90. ( ()100. 00 105. 00 Input Percent Shear 5. 00 15.00 15.00 25. 00 25. 00 35. 00 30. 00 40. 00 50, 00 Computed Percent Shear.51 S. 43 13.28 17.69 26. 33 33.41 37. 29 45. 49 49. 72 Differential

4. 49 6. 57 1.72 7.31-I.33 1.59-7.29-5. 49 28 WCAP-17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 C-39 Capsule Z Lower Shell Plate B8628-1 (Longitudinal)

PagC 2 Plant: Vogule 2 Mactrial:

SA533BI Heat: C3500-2 Orienlation:

LT Capsule: Z Fltience:

n/ctA^2 Charpy V-Notch Data Temperature It0.00 120, 00 150. 00 200, 00 225, 00 250. 00 Input Percent Shear 5 5. 00 60. 00 90. 00 100. 00 100. 0 0 10 0. 0(0 Computed Percent Shear 53. 95 62. 19 81. 98 96. 12 98. 30 99. 27 Differential 1.05-2. 19 8.02 3.88 1 70 73 Correlation Coefficient

= .991 WCAP-17343-NP March 2011 Revision 0.

C-40 Westinghouse Non-Proprietary Class 3 300 250 200-r 0 U.150 z 100 50 Unirradiated Lower Shell Plate B8628-1 (Transverse)

CVGRAPH 5.3 Hyperbolic Tangenlt Curve Printed on 10/21/2010 04:30 PM Page I Coefficients of Curve I A = 36.1 B = 33.9 C = 67.14 TO = 40.81 D = ).OOE+00 Equation is A + B *Tanh((T-T&)/(C+DT)lj Upper Shelf Energy=70.0(Fixed)

Lower Shelf Energy=2.2(Fixed)

Temp@30 f-lhbs=28.6 Deg F Temp@5f) ft-lbs=70.

I Deg F Plant: Vogtle 2 Material:

SA533B I Heat: C3500-2 Orientation:

TL Capsule: UNNIRR Fluence: n/cnm2-8-8 0 0-300.0-200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature in Deg F Charpy V-Notch Data Temperature

-80. 00-80. 00-30. 00-30. 00* 00* 00 00 30. 0(30. 00 Input CVN 5. 00 5 .10 16 00 18 00 19. 00 22. 00 24. 00 21. 00 27. 00 Computed CVN 4. 01 4. 01 9. 54 9. 54 17 71 17. 71 17. 71 30. 69 30. 69 Differential 99 99 6. 46 8, 46 1 29 4. 29 6. 29 9 69-3. 69 WCAP- 17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 C-41 Unirradiated Lower Shell Plate B8628-1 (Transverse)

Page 2 Plant: Voglle 2 Material:

SA533B I Heat: C350:))-2 Orientation:

TL Capsule: UNIRR Fluence: n/cm^2 Charpy V-Notch Data Temperature 30.60.60.60.I00, I00.t 00t 120.120.1 20.1 60.160.160.240.240.300.300.3 50.350.400.4 0t0 .450.450.00 00 00 0t 00 00 0 0 0 0 0 0 O0 00 00 00 O00 00 00 O00 O00 00 00 00 00 Input CVN 33. 00 38. 00 38. 00 4 I 0. 0 56. 00 64. 00 73. 00 66. 00 74, 00 79. 00 67. 00 68. 00 68. 00 63. 00 69. 00 66. 00 70. O0 62, ft 65. 00 72. f00 75. 00 7 1 .0f0 76. 00 Computed CVN 30. 69 45. 54 45. 54 45, 54 60. 08 60. 08 60. t8 64. 5 64. 15 64. 5 68. 11 68, I1 68, I1 69. 82 69. 82 69. 97 69. 97 69. 99 69. 99 70. 00 70. 00 70. 00 70. 00 Differential 2.31-7.54-7.54-4. 54-4. 08 3.92 12.92 1.85 9. 85 14.85-I. I1-, 11-.11-6. 82-.82-3. 97.03-7.99-4. 99 2. 00 5. 00 I .00 6. 00 Correlation Coefficient

=.968 WCAP- 17343-NP March 2011 Revision 0 C-42 Westinghouse Non-Proprietary Class 3 tUnirradiated Lower Shell Plate B8628-1 (Transverse)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 01/03/2011 05:20 PM Page 1 Coefficients of Curve I A = 32.67 B = 32.67 C = 72.88 TO = 38.79 I) = O.OOE+O0 Equation is A + B * [Tanh((T-To)/IC+DT))1 Upper Shelf L.E.=65.3 Lower Shelf L.E.=.O(Fixed)

Temp.@LE.

35 mils44.0 Deg F Plant: Vogtle 2 Material:

SA533B I Heat: C3500-2 Orientation:

Ti, Capsule: UNIRR Fluence: n/cm^2 200 150 E C 1100 I.g R-50 0 --300.0 0.0 300.0 Temperature in Deg F Charpy V-Notch l)ata 600.0 Temperature

-80, 00-80. 00-30. 00-30, 00 00 00 00 30. 00 30. 00 Input L.E.2.00 3. 00 14. 00 14.00 18. 01)20. 00 21). 00 2 1 .00 26. 00 Computed L.E, 2. 42 2. 42 8. 59 8. 59 16. 76 16. 76 16. 76 28. 75 28. 75 42 ,58 5.41 5.41 1I 24 3. 24 3. 24-7. 75-2.75 WCAP-17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 C-43 UInirradiated Lower Shell Plate B8628-1 (Transverse)

Page 2 Plant: Vogtle 2 Material:

SA533BI Heat: C3500-2 Orientation:

TL Capsule: UNIRR Fluence: ntcm^2 Charpy V-Notch Data Temperature

30. 00 60. 00 60. 00 60. 00 100. 00 100. 00 00. 00 120. 00 1-20. 00 120. 00 160. 00 I60. 00 160. 00 240. 00 240, 00 300. 00 300, 00 350. 00 350. 00 400. 00 400. 00 450. 00 450. 00 Input LE.31. 00 35. 00 38. 00 38. 00 52..00 56. 00 64. 00 60. 00 68. 00 71 .00 58. 00 64. 00 64. 00 60. 00 67. 00 68. 00 70. 00 59. 00 62. 00 65. 00 60, 00 63. 00 66. 00 Correlation Coefficient Computed L.E.28. 75 41. 92 41 92 41 92 55. 08 55. 08 55 08 58. 99 58. 99 58. 99 63. 08 63. 08 63. 08 65. 08 65. 08 65. 29 65. 29 65. 33 65 .33 65. 34 65. 34 65. 34 65. 34 Differential 2.25-6.92-3.92-3.92-3. 08 92 8. 92 I .0 I 9.01 1 2 01-5. 08 92 92 5. 08 1 92 2.71 4. 71-6. 33-3. 33-.34-5. 34-2. 34.66.977 WCAP-17343-NP March 2011 Revision 0 C -44 Westinghouse Non-Proprietary Class 3 C-4Wstnhue o-roreay ls 125 100 75 50 Unirradiated Lower Shell Plate B8628-1 (Transverse)

CVGRAPH 5.3 Hyperbolic Tangeni Curve Printed on 10/21/2010 04:34 PM Pagc I Coefficie nis of Curve I A = 50. B = 50. C = 35.5 TO = 66.46 D = 0.00E+OO Equation is A + B TTanh(CT-Toi/hC+DT))t TenrperatuIr at 50% Shear = 66.5 Plant: Vogtle 2 Material:

SA533B I Heat: C3500-2 Orientation:

TL Capsule: UNIRR Fluence: n/cmA2 0 C,)25 0-300.0-200.0 -100.0 0.0 100.0 200.0 300.0 Temperature in Deg F 400.0 500.0 600.0 Charpy V-Notch Data Temperalure

-80. 00-80. 00-30. 00-30. 00 00 00 00 30. 00 30. 00 Input Percent Shear 00 00 5 00 5 00 10 00 10. 00 10 00 25. 00 10. 00 Computed Percent Shear 03 03 43 43 2.31 2.31 2. 31 11 36 1 .36 Differential

-.03-.03 4. 57 4. 57 7. 69 7. 69 7. 69 13. 64-I. 36 WCAP-17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 C-45 Westinghouse Non-Proprietary Class 3 C-45 Unirradiated Lower Shell Plate B8628-1 (Transverse)

Page 2 Plant: VotIle 2 Materal: SA533BI Hcal: C3500-2 Orienl1ltion:

TL Capsule: UNIRR Flucncc: nicmA2 Charpy V-Notch Data Temperature

30. 00 60. 00 60. 00 60. 0)1 0 0. 00 00. 00 00. 0 0 120. 00 1 20. 00 120. 00 160. 00 160. 00 160. 00 240. 00 240, 00 300. 00 30(o. 010 350. 00 350. 00 400. 001 400. 00 450. 00 4501. (0 Input Percent Shear 10. 00 35. 00 40. 00 35. 00 80. 00 95. 00 95. 00 95. 00 100. 00 I oo. 01 100. 00 100. 00 I 010. 00 10 0. 00 1 0 0. 00 100. 00 100. 00 100. 00 100. (10 100. 0(10 0 .00 t 0(O. 00 100. 0)Computed Percent Shear I I .36 40. 99 4(0. 99 40. 99 86. 87 86, 87 86. 87 95. 33 95. 33 95. 33 99. 49 99, 49 99. 49 99. 99 99. 99 10 0. O0 (10,. 0 100. 0(0 100. 010 100. 01 10 0. 00 110). 000 t(00. 00 Differential

-1. 36-5. 99-.99-5. 99-6. 87 8. 13 8. 13-.33 4. 67 4. 67.51 51 51 0 I 0 1 (0 010 00 00 0(0 0 0 0 0 0(0 Correlation Coefficient

= .995 WCAP- 17343-NP March 2011 WCAP-17343-NP March 2011 Revision 0 C-46 Westinghouse Non-Proprietary Class 3 300 250 200 0 L 150 w z> 100 5U 50 Capsule U Lower Shell Plate B8628-1 (Transverse)

CVGRAPH 5.3 Hypcrbolic Tangent Curve Printed on 10/21/2010 04:39 PM Page I CoetTicienis of Curve I A = 40.6 B = 38.4 C = 114.68 TO = 53.93 D = 0.00E+00 Equation is A + B *Tanh((T-TO)/(C+DT I)Upper Shelf Energy=79,0(Fixed)

Lower Shelf Energy=2.2(Fixed)

Temp@30 fi-lbs=21.5 Dog F Temp@950 ft-lbs=82.6 Deg F Plant: Vogtle 2 Malerial:

SA533B I Heat: C3500-2 Orientation:

l1L Capsule: U Fluence: n/c^1 1 A2 0 0 0-300.0-200.0 -100.0 0.0 100.0 200.0 300.0 Temperature in Deg F 400.0 500.0 600.0 Charpy V-Notch Data Temperature

-75. 00-50. 00-25. 00 ( 0 0 25. 0(35. 00 50. 0(0 65. 0(80. (0 Input CVN 6. 00 12.00 17. 00 23. (0 36. 0(0 38. )0 40, 00 45. 00 43. 00 Computed CVN 9. 53 12.98 17. 68 23. 77 3 1. 11 34. 32 39. 29 44. 30 49. 18 Differential

-3 53-.98 68-.77 4. 89 3. 68.71.70-6. 18 WCAP-17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 C-47 Westinghouse Non-Proprietary Class 3 C-47 Capsule U Lower Shell Plate B8628-1 (Transverse)

Page 2 Plant: Vogiue 2 Material:

SA533B I Heat: C3500-2 Orientation:

TL Capsule: U Flucncc: ni/cin2 Charpy V-Notch Data Temperature I 00. (0 120. 00 150. 00 200. 00 275. 00 375. 00 Input CVN 50, 00 66. 00 65, 00 74. 0 0 82. 00 81. 00 Computed CVN 55. 25 60. 56 66. 89 73. 43 77. 41 78. 72 Differential

-5. 25 5 44-I 89 57 4 59 2. 28 Correlation Coefficient

= .990 WCAP- 17343-NP March 2011 WCAP- 17343-NP March 2011 Revision 0 C-48 Westinghouse Non-Proprietary Class 3 C_8Wstnhue o-roreayls 200 150 C._2 100 U10 7-soo 50 Capsule U Lower Shell Plate B8628-1 (Transverse)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 01/03/2011 05:22 PM Page I Coefficieints of Curve I A = 28.55 B = 28.55 C = 97.06 TO = 30.7 D = 0.OOE+00 Equation is A + B lTanhf(T-To)AC+DTr))

Upper Shelf L.E.=57. I Lower Shelf L ,E.=.O(FixedW Tenip.@L.E.

35 mils=53.1 Deg F Plant: Vogtle 2 Material:

SA533BI Heal: C3500-2 Orientation:

TL Capsule: U Fluence: n/cm^2 0 0-300.0 0.0 300.0 Temperature in Deg F Charpy V-Notch Data 600.0 Temperature

-75.-500-25.25.35.50.65, 80.001 00 00 00 00 00 01 0 0 0 00 Input L.E.4. 0(0 10. 00 12. 00 22. 00 30. (0 29. 00 34. 00 38. 00 38. 00 Computed L.E.5.81 9, 10 13.76 19.81 26. 88 29.81 34. 15 38. 24 41.92 Differential

-1.81.90-1.76 2,19 3. 12-,81-.1 5-. 24-3. 92 WCAP-17343-NP March 2011 Revision 0 Westinghouse Non-Proprietarv Class 3 C-49 Westinghouse Non-Proprietary Class 3 C-49 Capsule U Lower Shell Plate B8628-1 (Transverse)

Page 2 Plant: Vogde 2 Material:

SA533B I Heat: C3500-2 Orientation:

TL Capsule: U Fluence: Icn^A2 Charpy V-Notch Data Teinperattlwe 100. 00 120. 00 150. 00 200. 00 275. 00 375. 00 Input L.E.42. 00 55, 00 52. 00 61. 00 55. 00 54. 0(0 Computed L.E.46. 05 49. 27 52. 60 55.41 56. 73 57. 05 Differential

-4.05 5. 73-.60 5. 59-I.73-3. 05 Correlation Coefficient

= .985 WCAP- 17343-NP March 2011 Revision 0 C-50 Westinghouse Non-Proprietary Class 3 Capsule U Lower Shell Plate B8628-1 (Transverse)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 10/21/2010 04:43 PM Page I CoCIficients Of Curve I A = 51. B = 50. C = 82.49 TO = 65.43 D = 0.00E+00 Equation is A + B *ITanh((T-To)/(C+DiTdl Telmperature at 50% Shear = 65.5 Plant: Vogtle 2 Matcrial:

SA533B I Heat: C3500-2 Orientation:

TI, Capsule: U Fluence: /cnni^2 125 100 75 50'U C,, 0.25 0 1 =ý 1-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature in Deg F Charpy V-Notch Data Temperature

-75. 00-50. 00-25. 00.00 25. 00 35. 00 50. 00 65. 00 80. 010 Input Percent Shear 5. 00 10. 00 10, 00 15. 00 30. 00 35. 00 40. 00 45. 00 60. 00 Computed Percent Shear 3.21 5. 74 10.04 16. 99 27. 28 32.35 40.75 49. 74 58. 74 Differential 1,79 4. 26-.04-1. 99 2. 72 2. 65-.75-4.74 1.26 WCAP- 17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 C-51 Westinghouse Non-Proprietary Class 3 C-5 1 Capsule U Lower Shell Plate B8628-1 (Transverse)

Page 2 Plant: Vogtýle 2 Matelial:

SA533B I Hcat: C3500-2 Orientation:

TL Capsule: U Fhtence: IVcmA2 Charpy V-Notch Data Temperature 100. 0(0 120. 00 150. 00 200. 0t0 275. O0 375. 00 Input Percent Shear 65. 00 80. 00 95. 00 10 0. 00 100. 0 0 100. 00 Computed Percent Shear 69. 81 78.97 88. 60 96. 3t 99. 38 99. 95 Differential

-4. 81 1 .03 6. 40 3.69.62* 05 Correlation Coefficient

= .996 WCAP- 17343-NP March 2011 Revision 0 C-52 Westinghouse Non-Proprietary Class 3 300 250 J 200 r 0 0 150 uJ z> 100 50 Capsule Y Lower Shell Plate B8628-1 (Transverse)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 10/21/2010 04:45 PM Page I Coefficients ol Curve I A = 37.6 B = 35.4 C( = 96.69 TO = 5137 D = O.OOE+O(Equation is A + B :rTanh tT-To / C+DT,))Upper Shell Energy=73.0(Fixed)

Lower Shelf Energy=2.2(Fixed)

Temp@,30 ft-lbs-=30.5 Deg F Temnp@50 ft-lbs=87.0 Deg F Plant: Vogtle 2 Material:

SA533B I Heat: C3500-2 Orientation:

TL CapsiuIC:

Y FhLenee: n/enm^2 0, 0-300.0-200.0 -100.0 0.0 100.0 200.0 300.0 Temperature in Deg F 400.0 500.0 600.0 Charpy V-Notch Data Temnperature

-75. 00-50. 00-25. 00.00 10.00 25. 00 40. 00 50. 00 65. 00 Input CVN I I , 00 9. 00 22. 00 24. 00 19.00 25. 00 27. 00 40. 00 43. 00 Computed CVN 7.01 9. 92 14. 26 20. 33 23. 26 28. 11 33. 39 37. 03 42. 49 Differential

3. 99-.92 7. 74 3. 67-4.26-3. 11-6.39 2. 97.51 WCAP-17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 C-53 Capsule Y Lower Shell Plate B8628-1 (Transverse)

PaRge 2 Plant: Vogde 2 Matrial: SA533BI Heat: C3500-2 Orientation:

TL Capsule: Y Flucnce: n/cm^2 Charpy V-Notch Data Temperature

72. 00 100. 0 0 150. 00 200. O0 250. 00 300. 00 Input CVN 45. 00 52. 00 70. (0 74. 00 73. 00 76. 00 Computed CVN 44. 97 53. 98 64. 82 69. 86 71,85 72. 59 Differential

.03-I198 5. 18 4. 14 1. 15 3.41 Correlation Coefficient

= .987 WCAP-17343-NP March 2011 Revision 0 C-54 Westinghouse Non-Proprietary Class 3 Capsule Y Lower Shell Plate B8628-1 (Transverse)

CVGRAPH 5.3 Hyperbolic Taingent Curve Printed on 01/03/2011 05:23 PM Page 1 Coefficients of' Curve I A = 31.92 B = 31.92 C = 104.1 TO = 52.77 D = O.OIIE+O0 Equation is A + B [Tanh(T-lo)l(C+DT))l Upp.er She IiL.E.=638 Lower Shelf LE.=.O(Fixed)

Termp (.@LE. 35 mils-=629 Deg F Plant: Vogtle2 'Material:

SA533B1I Heat: C3500-2 Orientation:

TL Capsule: Y Fluence: ni/ci^2 200 150 E C.o Ut 100 50 i +0 A-300.0 0.0 300.0 600.0 Temperature in Deg F Charpy V-Notch Data Temperature

-75. 00-50. 00-25. 00 0 0 10. 00 25. 00 40. 00 50. 00 65. 00 Input L.E.6. 00 5, 0 0 15.00 18. 00 19.00 20. 00 27. 00 33. 00 38. 00 Computed L.E.5. 05 7.78 11.70 16.99 19. 49 23. 60 28. 02 3 1 .07 35. 65 Differential

-2.3.3.I.2.95 78 30 0 1 49 6(1 02 93 35 WCAP-17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 C-55 Capsule Y Lower Shell Plate B8628-1 (Transverse)

Page 2 Plant: Vogtle 2 Material:

SA533B I Heal: ('3500-2 C)rienialion:

TL Capsule: Y Fluence: n/cmA2 Charpy V-Notch Data Tellperatute 72, 00 100. 0(0 0 150. 00 200. 00 250. 00 300. 00 Input L.E.36. 00 46. 00 56. 00 59. 00 60. 00 66. 00 Computed LE.37. 75 45. 48 55. 30 60. 27 62. 42 63. 29 Differential

-1.75.52.70-1 .27-2. 42 2.71 Correlation Coefficient

= .994 WCAP- 17343-NP March 2011 Revision 0 C-56 Westinghouse Non-Proprietary Class 3 Capsule Y Lower Shell Plate B8628-1 (Transverse)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 10/21/2010 04:49 PM Page I Coelfficieins of Ctirve I A = 50I. B = 50. C = 74.35 TO = 83. D = (.O0E+O0 Equation is A + B T7Ianh(iF-Tout C+DT))l'e Inlprature at 501% Shear = 83.0 Plant: Vogtle 2 Material:

SA533B I Heat: C3500-2 Orientation:

TL CapsleIC:

Y Fluence: nkn/02 125 100 I...Cu 0 (n a)1.)I...C)0.75 50 25-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 Temperature in Deg F 500.0 600.0 Charpy V-Notch Data Temperature

-75. 00-50. 00-25. 00.00 10. 00 25. 00 40. 00 50. 00 65. 00 Input Percent Shear 5, 00 5. 00 10. 00 15.00 15. 00 20. 00 20. 00 30( 00 35. 00 Computed Percent Shear 1.41 2. 72 5. 19 9. 69 12.31 17.36 23. 93 29. 16 38. 13 Differential 3.59 2.28 4.81 5.31 2. 69 2. 64 3. 93 ,84 3. 13 WCAP- 17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 C-57 Capsule Y Lower Shell Plate B8628-1 (Transverse)

Page 2 Phmtt: Vogle 2 Macil A3BI Hcal: C3500-2 ()riciitation:

TL Capsule: Y Flimnce: n/cm12 Charpy V-Notch Data Temperature

72. 00 1 0O .0 0 150. 00 200. 00 250. 00 300, 00 Input Percent Shear 45. 00 50. 00 100. 00 100. 00 I 00. 0 0 I 00. 0 0 Computed Percent Shear 42. 66 61.24 85. 84 95. 88 98. 89 99. 7 1 Differential
2. 34 II 24 14. 16 4. 12 1.I 11 29 Correlation Coefficient

= .990 WCAP-17343-NP March 2011 Revision 0 C-58 Westinghouse Non-Proprietary Class 3 C-58 Westinghouse Non-Proprietary Class 3 Capsule X Lower Shell Plate B8628-1 (Transverse)

CVGRAPH 5.3 Hyperbolic Tangent Curve Prinled on 10/21/2010 05:06 PM Page I Coefficienis of Curve I A = 33.6 B = 31.4 C = 79.36 TO = 67.47 D = O.0OE+0O Equation is A + B : [Tanh(JT-To)/(C+Dl-)]

Upper Shelf Euergy=65.0(Fixed)

Lower Shelf Energy=2.21Fixedt Temp@3t3 ft-Ibs=58.4 Deg F Tenmpt@50 fl-lhs=113.5 Deg F Plant: Vogtle 2 Material:

SA5313B I Heat: C3500-2 Orientation:

TL Capsule: X Fluence: ii/cm^2 300 250 200 0 0 M 150 z> 100 50-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 Temperature in Deg F 500.0 600.0 Chai'py V-Notch Data Temperature

-90.-50)15.25.35.50.65.75.00 00 00 00 00 00 00 010 0 0 Input CVN 4. 00 15. 00 13.00 13.00 23. 00 14.00 26. 00 28. 00 38. 00 Computed CVN 3.36 5. 29 11 .90 15.42 18.24 21. 43 26. 80 32. 62 36. 57 Differential

.64 9.71 1. 10-2. 42 4. 76-7.43-.so-4. 62 1.43 WCAP- 17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 C-59 Capsule X Lower Shell Plate B8628-1 (Transverse)

Page 2 Plant: Vogtle 2 Material:

SA533B I Heat: C35tt)-2 Orientation:

TL Capsule: X Fluence: nIcm 2 Charpy V-Notch Data Temperature

85. 00 100. 00 150. 00 20(0. 00 250. 00 275. 00 Input CVN 42. 00 53. 0t0 53. 00 64. 00 64. 00 67. 00 Computed CVN 40. 43 45. 80 58. 03 62. 85 64. 38 64. 67 Differential I. 57 7. 20-5. 03 1. 5 38 2,33 Correlation Coefficient

= ,978 WCAP-17343-NP March 2011 Revision 0 C-60 Westinghouse Non-Proprietary Class 3 200 150 E.2 a100 ulo 0 50 Capsule X Lower Shell Plate B8628-.1 (Transverse)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 01/03/2011 05:24 PM Coefficients of CUrCe I A = 26.2 B = 26.2 C = 74.38 TO = 68.23 D = O.O0E+00 Equation is A + B 1 ['ranht(T-To)/(C+DT))i Upper Shelf L.E.=52.4 Lower Shelf L.E.=.O(Fixed)

Temp.@l..E.

35 mils=94.3 DeL F Plant: Vogtle 2 Material:

SA533B1I Heal: C3500-2 Orieuttation:

TIL Capsule: X Fluence: n/nm^2 0-300.0 0.0 300.0 Temperature in Deg F Charpy V-Notch Data 600.0 Temperature

-90.-50.15, 25.35.50.65.75.0 0 00 00 0 0! 0 00 00 00 00 Input LE.00 7. 00 7. 0 0 8. 00 17, 00 10.00 19.00 26. 00 30. 00 Computed L.E..73 2. 09 7.21 1(O. Il 12.48 15. 22 19. 90 25. 06 28. 58 Differential 4.2.4.5.1.73 91 21 1 1 52 22 90 94 42 WCAP-17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 C-61 Westinghouse Non-Proprietary Class 3 C-6 I Capsule X Lower Shell Plate B8628-1 (Transverse)

PRaw: Vo-tel )(irienitatio:

TIL Page 2 Material:

SA533BI Heat: (73500-2 Capsule: X Fluemce: n/cm^2 Charpy V-Notch Data Temperature

85. 00 100. 00 150. 00 200. 00 250. 00 275. 00 Input L.E.32, 00 38. 00 44. 00 54. 00 53. 00 50. 00 Computed LE.32. 01 36. 76 47. 16 50. 92 52. 01 52. 20 Differential

-.01 1. 24-3. 16 3. 08.99-2. 20 Con-elation Coefficient

= .989 WCAP-17343-NP March 2011 Revision 0 C-62 Westinghouse Non-Proprietary Class 3 C-2Wstnhue o-roreay ls Capsule X Lower Shell Plate B8628-1 (Transverse)

CVGRA PH- 5.3 Hyperbolic Tangent Curve Prinled on 10/21/2010 05:07 PM Page 1 Coefficients of Curve I A = 50. B = 51). C = 53.99 TO = 66.11 D = 0.00E+00 Equation is A + B , JTanh(T-.To)/(C+DT))

I Tetnijtrate at 501," Shear = 66.2 Plant: Vogtle 2 Material:

SA533B I Heat: C3500-2 Orientation:

IL CapsuIle:

X Fluence: n/nm^2 125 100 U)CL 0.75 50 25 0 --R1~-I-----

-300.0 -200.0 -100.0 0.0 100.0 200.0 3(Temperature in Deg F)0.0 400.0 500.0 600.0 Charpy V-Notch Data Temperature

-90. 00-50. 00 00 15.00 25. 00 35. 00 50. 00 65. 00 75. 00 Input Percent Shear 2, 0 0 5, 00 10. 00 10. 00 20. 0 0 15. 0 0 40. 00 45. 00 65. 00 Computed Percent Shear.3 1 1. 34 7. 95 13.09 17.90 24. 01 35. 5 5 48. 98 58. 16 Differential I , 69 3, 66 2. 05-3. 09 2. I 0-9 0 1 4. 49-3 98 6. 84 WCAP-17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 C-63 Capsule X Lower Shell Plate B8628-1 (Transverse)

Page, 2 Plant: Votcwd2 Matetial:

SA533B I Hlcal: C350U-2 Orientation:

TL (UtpstiLe:

X Fhtieiiee:

n/cmA2 Charpy V-Notch Data Temperature

85. 00 1 00. 00 150. 00 200. 00 250. 00 275. 00 Input Percent Shear 70. 00 75, 0(0 85. 00 1 00. 00 1 0. 0 0 100. 00 Computed Percent Shear 66. 82 77. 83 95. 72 99. 31)99. 89 99. 96 Differential
3. 18-2. 83-1I0. 72 70 0I (104 Correlation Coefficient

= .992 WCAP- 17343-NP March 2011 Revision 0 C-64 Westinghouse Non-Proprietary Class 3 C-64 Westinghouse Non-Proprietary Class 3 Capsule W Lower Shell Plate B8628-1 (Transverse)

CVGRAPH 5.3 Hyperbolic Tangetl Cur'v Printed on 11/30/2010) 11:41 AM Page I Coefficienlis of Curve I A = 35.6 B = 33.4 ( = 93.76 TO = 89.91 D = 0.O)E+0IO E(uLion iN A + B ' [anh C T-Toj/(C+DT})]

Upper Shelf Elerey=69.OFixedi Lower Shelf Eneroy=2.2(Fixed)

Temp@30 f1-lbs=74.1 Doeg F Tenip@5(0 fI-lbs=133,2 Deg F PIanr: VoIle 2 Material:

SA533B1I Heat: C35W)I-2 Orienation:

TL Capsule: W Fhtence: n/cmA2 300 250" 200-r 0 150 w z> 100 U 50 0-301 Temperature

-75., 00-25, 00 1 00 25. 00 50. 00 75, (0 75. 00 100. 00 125. 00 I -I i- .~ i- 4 -i i I 0.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature in Deg F Charpy V-Notch Data Inpuw CVN 5. 00 8. 0 0 10. 010 2 1. (0 26. O0 29. 00 24. 0)40. 00 42. O0 Computed CVN 4. 12 7 .50 10. 76 15. 58 22. 18 30. 33 30. 33 39. 18 47. 55 Differential 88 50.76 5. 42 3. 82-I.33-6.33 ,82-5.55 WCAP-17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 C-65 Capsule W Lower Shell Plate B8628-1 (Transverse)

Page 2 Plant: Vogtle 2 Matetial:

SA533BI Heat: C35(00-2 Orientation:

TL Capsule: W Fitence: n/cmA2 Charpy V-Notch Data Temperature 150. 00 200. 00 225. 00 250. 00 275. 00 275. 00 Input CVN 60. (0t0 61 .00 72. 00 74. 00 61. 00 70. 00 Computed CVN 54. 49 63. 18 65. 46 66. 87 67.74 67. 74 Differential 5.51-2. 18 6. 54 7. 13-6.74 2, 26 Correlation Coefficient

= .983 WCAP- 17343-NP March 2011 Revision 0 C-66 Westinghouse Non-Proprietary Class 3 Capsule W Lower Shell Plate B8628-1 (Transverse)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 11/02/2010 12:35 PM Page I Coelficients ol Curve I A = 27.92 B = 27.92 C = 95.34 TIP = 72.36 D = 0.)0E+00 EquaLtion is A + B

  • iTanh((T-To)/(C+DT))I Upper Shelf L.E.=55.8 Lower Shell L.E.=.0(Fixed)

Temp.@L.E.

35 mils=97.I Deg F Plant: Voetle 2 Material:

SA533BI Heat: C3500-2 Orientation:

TL Capsule: W FluCnCe: n/kniA2 200 150 E°0.7 a 100 50 0 0 ol f%-300.0 0.0 300.0 600.0 Temperature in Deg F Charpy V-Notch Data Temperature

-75, 00-25. 00.00 25. 00 50. 00 75. 00 75. 00 10 0. o(0 125. 00 Input L.E.4. 00 5. 00 to, 00 18. 00 23. 00 28. 00 23. 00 37. (0 42. 00 Computed L.E.2. 43 6.41 10. 04 15. 09 21. 49 28. 69 28. 69 35. 80 41.94 Differential 1.57 1.41-04 2.91 1.51-,69 5. 69 1. 20 0)6 WCAP- 17343-NP March 2011 WCAP- 17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 C-67 Capsule W Lower Shell Plate B8628-1 (Transverse)

Page 2 Plant: Vog-le 2 Material:

SA533BI Heat: C350H)-2 Orientation:

TL Capstile:

W Fhtence: n/cm^2 Charpy V-Notch Data Temperature 150. 00 200. 00 225. 00 250. 00 275. 00 275. 00 Input L.E.52, 00 45. 00 56. 00 61 .00 53. 00 52. 00 Computed L.E.46. 68 52. 25 53. 66 54. 53 55. 06 55. 06 Differential 5.32-7.25 2. 34 6. 47-2. 06-3. 06 Correlation Ctoeficient

= ,982 WCAP- 17343-NP March 2011 Revision 0 C-68 Westinghouse Non-Proprietary Class 3 Capsule W Lower Shell Plate B8628-1 (Transverse)

CVGRAPH 5.3 Hyperbolic Tangenl Curve Printed on 10/21/2010 05:13 PM Page I Coefficieits of Curve I A = 50. B = 50. C = 64.89 TO = 100.3 D = 0.OOE+00 Equation is A + B T ranhi(T-Tro)/(C+DT))1 Tenmperature at 50'Ye Shear = 100.4 Plant: Vogtle 2 Malcrial:

SA533BI Heat: C3500-2 Orientation:

TL Capsule: W Fluence: n/cru^2 L.Q 125 100 -_-_-0 75-50-25-0 00-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 Temperature in Deg F 400.0 500.0 600.0 Charpy V-Notch Data Temperature

-75 00-2 5. 00 00 25. 00 50. 00 75. 00 75. 00 100. 00 125. 00 Input Percent Shear 2. 00 5. 00 10. 00 15. 00 20. 00 30. O0 25. 00 50. 00 65. 00 Computed Percent Shear.45 2 .06 4 35 8. 94 17. 50 31 43 31 43 49. 77 68. 16 Differential I 55 2. 94 5 65 6. 06 2. 50 1 43 6. 43.23 3. 16 WCAP-17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 C-69 Westinghouse Non-Proprietary Class 3 C-69 Capsule W Lower Shell Plate B8628-1 (Transverse)

Page '2 Plant: Vogtle 2 Material:

SA533B I Heat: C3500-2 Orienlzition:

TL Capsule: W Fluence: n/cmA2 Charpy V-Notch Data Temperature 150. 00 200W C0 225. 00 250. 00 275. 00 275, 00 Input Percent Shear 90. 00 95. 00 100. 00 100. 00 100. 00 1 00. 0 0 Computed Percent Shear Differential 82 .95.97.99.99, 99.22 58 90 0)2 54 54 7.2.78 58 10 98 46 46 Correlation Coefficient

= .996 WCAP- 17343-NP March 2011 Revision 0 C-70 Westinghouse Non-Proprietary Class 3 300 250 200 0 0 LL 150 C w z> 100 50 Capsule Z Lower Shell Plate B8628-1 (Transverse)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 10/25/201(0 01:23 PM Page I COel7icien1s of Curve I A = 35.1 B = 32.9 C = 56.19 TO = I 12.66 D = 0.00E+00 Equation is A + B [Tanh(T-'o)/C+Df))I Upper Shelf Energy=68.0(Fixed)

Lowcr Shelf Encrgy=2.2(Fixed)

Temp(@30 ft-lbs=103.9 Deg F T _mp@50 ft-lbs= 140.1 De.z F Plint: Vogtle 2 Material:

SA533B I Heal: C3500-2 Orientation:

TL Capsule: Z Fluence: n/cnlm2 0 0 0-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 Temperature in Deg F 400.0 500.0 600.0 Charpy V-Notch Data Temperature

-75. 00 75. 00 90. 00 1 00. 00 tI0I. O00 I1I5. 01)125. 00 13 5. 00 I 40. 00 Input CVN 4. 00 17. 00 26. 00 29. 00 33. 00 33. 00 44. 00 42. O0 48. (0 Computed CVN 2. 28 15. 85 22. 51 27. 8 1 33. 54 36. 47 42. 21 47. 53 49. 95 Di fferential 1.72 1 15 3.49 1.19-.54-3. 47 1. 79-5.53-I. 95 WCAP-17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 C-71 Westinghouse Non-Proprietary Class 3 C-7 1 Capsule Z Lower Shell Plate B8628-1 (Transverse)

PagC 2 Plant: Vogtle 2 Material:

SA533B I Heat: C3500-2 Orientation:

TL Capsule: Z Fluence: nlctn2 Charpy V-Notch Data Temperature 145. 00 150. 00 175. 00 2 10. 00 250, 00 275. 00 Input CVN 44. 00 66. 00 64. 00 76. 00 62. 00 69. 00 Computed CVN 52. 19 54. 23 61. 55 66, 00 67. 5 1 67. 80 Differential

-8.19 11 .77 2. 45 101. 00-5.51 I .20 Correlation Coefficient

= .966 WCAP-17343-NP March 2011 Revision 0 C-72 Westinghouse Non-Proprietary Class 3 Capsule Z Lower Shell Plate B8628-1 (Transverse)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 11/30/2010 10:32 AM Page I Coefficients of Curve I A = 29.64 B = 29.64 C = 63.95 TO = 99.96 D = 0.00E+O0 Equation is A + B "ITanh((T-To)/(C+DTy)I Upper Shelf L.E.=59.3 Lower Shelf l.E.=.O(Fixed)

Temp. 4 L.E. 35 mils=R I .7 Deg F Plan: Vot le 2 Matcrial:

SA533BI Heat: C3500-2 Orientation:

TI. Capsule: Z FRlueCce:

1/11a^"2 200 150 U)0 E.1 t-, C.lo i 0 0 0 50 13-300.0 0.0 300.0 Temperature in Deg F Charpy V-Notch Data 600.0 Temperature

-75.00 75. 00 90. 00 1 00. 010 I 10. 00 115. 00 1 25, 00 135. 00 140. 00 Input L.E.4. 00 2 I. 00 27. 00 3 R0). 00 32. 00 34. 00 38. 00 42. 00 47. 00 Computed L.E..25 18. 62 25. 06 29. 65 34. 25 36. 48 40, 68 44. 42 46. 09 Differential 3.75 2.38 1 94 35-2. 25-2. 48-2. 68-2. 42.91 WCAP-17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 C-73 Westinghouse Non-Proprietary Class 3 C-73 Capsule Z Lower Shell Plate B8628-1 (Transverse)

Page 2 Plant: Vog-e 2 Material:

SA533BI Heat: C3500-2 Orienation:

TL Capsule: Z Filuencc:

Il/CuA^2 Charpy V-Notch Data Temperatu re 145. 00 150, 00 175. 0 0 210. 00 250. 00 275. 00 Input L.E.45. 00 55. 00 60. 00 59. 00 56. 00 56. 00 Computed LE.47. 63 49. 02 54. 10 57. 43 58. 73 59. 02 Differential

-2. 63 5. 98 5, 90 1 ,57-2. 73-3. 02 Correlation Coefficient

= .981 WCAP-17343-NP March 2011 Revision 0 C-74 Westinghouse Non-Proprietary Class 3 C-74 Westinghouse Non-Proprietary Class 3 Capsule Z Lower Shell Plate B8628-1 (Transverse)

CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 10/25/2010 01:24 PM Page I Coefficicnts of Curve I A = 50. B = 50. C = 52.8 TO = 118.1 D = 0.00E+00 Equation is A + B 4ý jTanh((T-To)/(C+DT))j Temperature at 50'Y. Shear = I I8. I Plant: Vogtle 2 Material:

SA533B I Heat: C350(-2 Orientation:

TL Capsule: Z Fluence: n/cm^2 125 100 U)4)IL a)J 0E 75 50 25 0 -*-- 1-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature in Deg F Charpy V-Notch Data Temperature

-75. 00 75. 00 90. 00 100. 00 1 10. 00 SI15. 00 125. 00 135.00 140 L00 Input Percent Shear 5. 00 25. 00 35. 00 30. 0(0 40. 00 40. 00 50. 00 70. 00 65. 00 Computed Percent Shear 1 07 16. 35 25. 65 33. 50 42. 39 47. 07 56. 50 65. 48 69. 63 Differential

4. 93 8. 65 9.35-3. 50-2.39-7, 07-6, 50 4.52-4. 63 WCAP-17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 C-75 Capsule Z Lower Shell Plate B8628-1 (Transverse)

Patzc 2 Plant: Vo-tIe2 MateriAl:SA533 B Heat: 035W-2 Orientat ion: TL CapsuleI:

Z FIL UICe: ni/ct 1 A 2 Charpy V-Notch Data Temperature 1[45. 00 150. 00 175. 00 210. 00 250. 00 275. 00 Input Percent Shear 65. 00 90, 00 I 0(0. 00 100. 0)0 1(00. 0 0 100. 00 Computed Percent Shear 73. 48 77. 00 89. 62 97.01 99. 33 99. 74 Differential

-8.48 13. 00 10. 38 2. 99 67 26 Correlation Coefficient

= .976 WCAP- 17343-NP March 2011 Revision 0 C-76 Westinghouse Non-Proprietary Class 3 Unirradiated (Weld)CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 10/25/2010 02:29 PM Page I Coellicients of Curve I A = 47.1 B = 44.9 C = 65.02 TO = 6.8 D = 0.00E+00 Equation is A + B "1 ITanh(AT-To)/(C+DT))I Upper ShIelf Energy=92.0fFixed)

Lower Shelf Eiiergy=2.2(Fixed Temp@30 ft-lbs=-19.2 Deg F Temp@;50 ft-lbs= I, 1 Deg F PIhmt: Vootle 2 Muterial:

Hear: 87005 Orientation:

NA Capsule: UNIRR Fluence: n/cm't2 300 250 200 0 IL 150 C LUI z)> 100 50 0 & -i i-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 Temperature in Deg F 400.0 500.0 600.0 Charpy V-Notch Data Temperature

-100.00-100. 00-1 00. 00-60. (0-60. o)0-60. 00-31). 00-30. 00-30. 00 Input CVN 5. 00 7. 00 7. 00 I 1. O0 I 1 ) 00 27. 00 8. 00 9. 00 20. 00 Computed CVN 5.44 5.44 5 44 12.40 12. 40 12. 40 24. 09 24. 09 24. 09 Differential I, t.-l , 14.-16.-15.44 56 56 40 40 60 09 09 09 WCAP-17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 C-77 Unirradiated (Weld)Page 2 Plant: Vogtle 2 Material:

Heat: 87005 Orientation:

NA Capsu le: UNIRR Fluence: n/cnm"2 Charpy V-Notch Data Temperature

-20. 00-20. 00-20. 00 00 00 00 30, 00 30. 00 30. 00 80. 00 80. 00 80. 00 120, 00 120. 00 120. 00 160. 00 160. 00 160. 00 240. 00 240, 00 300. 00 300. 00 InpIut CVN 15. 00 38. 00 49, 00 35. 00 44. 00 57. 00 54. t0 65. 00 75. 00 75. 00 79. 00 84. 00 86. 0(88. 00 89. 00 90. 00 90, 0)0 94. O0 92. 00 92. 00 92. 00 92. 00 Computed CVN 29. 57 29. 57 29. 57 42. 42 42. 42 42. 42 62. 47 62. 47 62. 47 83. 45 83. 45 83. 45 89. 32 89. 32 89. 32 91 20 9 1. 20(91.20 91.93 91. 93 91 99 91. 99 l)ifferential

-14. 57 8. 43 19. 43-7. 42 1 .58 14. 58-8. 47 2. 53 12 53-8 45-4 45 55-3. 32-I 32-132-I 20-I 20 2. 80 07 (07 0 1 01 Correlation Coefficient

= .971 WCAP-17343-NP March 2011 Revision 0 C-78 Westinghouse Non-Proprietary Class 3 C-78 Westinghouse Non-Proprietary Class 3 Unirradiated (Weld)CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 10127/210 03:39 PM Page I Cocfticie its of Curve I A = 40.21 B = 40.21 C = 68.68 TO = 7.85 D = 0.OOE+00 Equation is A + B

  • ITanh(t(T-To)AC+DTb)

Upper Shelf L.E.=80.4 Lower Shelf L.E.=.0)(Fixed)

Temp. @L.E. 35 mils=- 1.0 Deg F Plant: Vogtle 2 Material:

Heat: 87005 Orienuition:

NA Capsule: UNIRR Fluence: n/cnA^2 200 150 E.2 100 50 0o--300.0 0.0 300.0 Temperature in Deg F Charpy V-Notch Data 600.0 Temperature

-1 00.00-100. 00-0 0. 00-60. 00-60. 00-60. 00-30. 00-30. 00-.31 O0t0 Input LE.I .0(0 3. 00 3, 00 9. 00 7. 00 22. 00 9. 0 0 10. (OO 16. 00 Computed LE.3 .33 3. 33 3.33 9. 79 9. 79 9. 79 20. 05 20. 05 20, 05 Differential

-2. 33 33 33 79-2. 79 12. 21 I .05 10. 05-4. 05 WCAP-17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 C-79 Unirradiated (Weld)Page 2 Plant: Vogtlc 2 Material:

Heat: 87005 Orientation:

NA Capsule: UNIRR Fluence: n/cmV2 Charpy V-Notch Data Temperature

-20. 00-20. 00-20. 00* 00.00 00 30. 00 30. 00 30. 00 80. 00 80. 00 so. 00 20. 00 20. 00 120. 00 160. 00 160. 00 160. 00 240. 00 240. 00 300. 00 300. 00 Input LE.11. 00 34. 00 39. 00 30. 00 38.00 45. 00 46. 00 57. 00 62. 00 64. 00 68. 00 72. 00 74. 00 75. 00 78. 00 81. 00 78.00 82. 00 81. 00 83. 00 82. 00 83. 00 Computed L.P.24. 74 24. 74 24. 74 35. 63 35. 63 35. 63 52. 74 52. 74 52. 74 71. 65 71. 65 71.65 77. 46 77. 46 77. 46 79. 47 79. 47 79. 47 80. 32 80. 32 80, 40 80. 40 Differential 13.74 9. 26 14.26-5. 63 2. 37 9. 37-6.74 4. 26 9. 26-7.65-3. 65.35 3,46-2, 46.54 1.53-1 .47 2.53.68 2. 68 1.60 2. 60 Correlation Coefficient

= ,977 WCAP- 17343-NP March 2011 Revision 0 C-80 Westinghouse Non-Proprietary Class 3 Unirradiated (Weld)CVGRA PH 5.3 Hyperbolic Tangent Curve Prinlted on 10/27/2011 Page I Coefficienls of Curve I A = 50. B = 50. C = 61.01 TO = 28.04 D = 0.00E+00 Equation is A + B

  • iTanh(T-To)/(C+DT))l Temp.ratuie, at 5V)% Shear = 28.1 Plant: V\otle 2 Material:

Heat: 87005 Orientation:

NA Capsule: UNIRR Fluence: n/cli) 08:23 AM 1^2 125 100 4)2 0)(.75 50 25 0-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 Temperature in Deg F 500.0 600.0 Charpy V-Notch Data Temperature

-100. 00-0 00. (00-10 0. 00-60. 00-60. (0)-60, 00-30. 00-30. 00-30. 00 Input Percent Shear 00 00 0 0 5. 00 5. 0 0 1). 10 1I .00 15. 01 I1 .O)0 Computed Percent Shear 1.48 1. 48 1.48 5.28 5. 28 5. 228 12.98 12.998 12. 98 Differential

-1.48-1 .48-1 48-,28-.28 4. 72-2. 98 2. 02-2. 98 WCAP-17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 C-81 Unirradiated (Weld)Page 2 Plakt: Vogtle 2 NMate tial: Heal: 87005 Orientation:

NA Capsule: UNIRR Fluence: nicm^2 Charpy V-Notch Data Temperature

-20. 01-20. 00-20, 00 00 00 0 0 30. 00 30, 00 30. 00 80. 00 80. 00 80. 00 120. 00 120, 00 120. 00 160. 00 160. 00 160, 00 240. 00 240. 00 300. 00 300. 00 Input Percent Shear 15. 0(0 20. 00 25. 00 25, 00 20, 00 35. 00 35. 00 55. 00 65. 00 80. 00 85. 00 90. 00 95. 00 95. 00 95. 00 100. 00 10 000 I0 0 0 0 I0 0 0 ()10 0. 0(0 I 0 .00 10 0. 00f)Computed Percent Shear 17, 15 17. 15 17. 15 28. 51 28 51 28. 51 51. 60 51. 60 5 1 .60 84. 60 84. 60 84. 60 95. 32 95. 32 95. 32 98. 70 98. 70 987 70 99. 90 99. 90 99. 99 99, 99 Differential

-2. 15 2.85 7.85 3.5 1-8.51 6. 49 16.60 3. 40 13. 40-4.60 40 5. 40 32 32 32 1 30 1 30 1 30 10 1 0 0 1 0 I Correlation Coefficient

= .992 WCAP- 17343-NP March 2011 Revision 0 C-82 Westinghouse Non-Proprietary Class 3 300 250 200 0 0 150 LU.z 100 50 Capsule U (Weld)CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 10/25/2010 02:35 PM Page1 Coefficients of Curve I A = 50.1 B = 47.9 C = 82.01 TO = .14 D = 0.00E+00 Equation is A + B j'ln Tanh(jT-To)AC+DT))I Upper Shelf Energy=98.0(Fixed)

Lower Shelf Enwrgy=2.2(Fixed)

Teiltp@31) ft-lbs=-36.5 Deg F Temlp@5.)

ft-lbs=.J Deg F Plant: Vooile 2 t Material:

Heat: 87005 Orietation:

NA Capsule: U Fluience:

n/cm^2 0 00 0 0 o0 0 0-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature in Deg F Charpy V-Notch Data Temperature

-75.5 10.25.20.1 I0.I1O.25.40.0(0 0 0(0 0 0 0 0 0 0 O00 0 0)0 Input CV N 7. 00 14. 0 0 20. 00 58. 0)0 54. 00 55. 00 63. 00 57. 00 64, 00 Computed CVN 15.42 23. 99 35. 36 38. 57 44.21 50. 02 55. 83 64. 19 7 1.7 1 Differential

-8. 42-9. 99-15. 86 19, 43 9, 79 4, 98 7. 17-7. 19-7. 71 WCAP-17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 C-83 Westinghouse Non-Proprietary Class 3 C-83 Capsule U (Weld)Page 2 Plant: Vogtle 2 NIaterial:

Heal: 87005 Orientation:

NA Capsule: U Fhience: n/ktin2 Charpy V-Notch Data Temperature

60. 00 80. 00 100. 00 150. 00 200. 00 275. 00 Input CVN 82. 00 84. 00 83. 00 96. 00 95. 00 104.00 Computed CVN 79. 94 86. 04 90. 29 95. 58 97. 27 97. 88 Differential
2. 06-2 04-7 29 42-2. 27 6. 12 Correlation Coefficient

= .952 WCAP-17343-NP March 2011 Revision 0 C-84 Westinghouse Non-Proprietary Class 3 Capsule U (Weld)CVGRAPH 5.3 Hyperbolic Tamgent Curve Printed on 10/27/2010 03:43 PM Page I Coefficients of Curve I A = 36.28 B = 36.28 C = 82.97 TO = 2.59 D = O.OOE+OO Equation is A + B3* Tanh((T-To)/(C+DThI]

Upper Shelf LE.=72.6 L.ower Shelf LE.=.O(Fixed)

Temp.@L.E.

35 mils=-.3 Deg F Plant: Vogtle 2 Material:

Heat: 87005 Orientation:

NA Capsule: U1 Fluence: n/clnA 2 200 150 E C 0 a100 50 0 0 0 0 n-300.0 0.0 300.0 600.0 Temperature in Deg F Charpy V-Notch Data Temperature

-75,-50.-25,-20.-10.I to.10).25.40.00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 Input L.E.3. 0 0 9. 00 19. 0 0 38. 00 38. 00 39. 00 40. 00 39. 00 48. 00 Computed L.E.9. 69 15.994 24. 64 26. 64 30.81 35. 14 39. 5 1 ,45. 84 51.61 Diftfrential

-6 69-6. 94-5 64 I. 36 7 19 3. 86 49-6. 84-3. 61 WCAP- 17343-NP March 2011 WCAP- 17343-N P March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 C-85 Capsule U (Weld)Page 2 Plant: Vogrle 2 Material:

Heal: 87005 Orientation:

NA Capsule: U Fhuence: n/cm^A 2 Charpy V-Notch Data Temperature

60. 00 80. 00 100. 00 150, 00 200. 00 275. 00 Input L.E.62. 00 61. 00 61. 00 73. 00 7 1. 00 76. 00 Computed LE.58. 01 62. 83 66. 22 70. 53 7 1 .93 72. 45 Differential
3. 99-1 83 2. 47-.93 3. 55 Correlation Coefficient

= .969 WCAP-17343-NP March 2011 Revision 0 C-86 Westinghouse Non-Proprietary Class 3 C-86 Westinghouse Non-Proprietary Class 3 Capsule U (Weld)CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 10/25/2010 02:36 PM Page 1 Coefticients ol Curve I A = 50. B = i0. C = 59.67 TO = .4.16 D = 0.00E+00 Equation is A + B ITanh(.(T-To)AIC+DT)oI Tcniylerature at 510% Shear= -4.1 Plant: Vogile 2 Material:

Heat: 870t05 Orientation:

NA Capstule:

U Fluence: n/c t^A2 125 100 (U 0, U, C 0)U I-0)a-75 50 25 0 1-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature in Deg F Charpy V-Notch l)ata Temperature

-75 00-50. 00-25. 010-20. 00-10. 00 (00 10. 00 25 00 40. 00 Input Percent Shear 5. 0 0 10, 0(0 15. 00 55. 00 55. 00 55. 0(65. 00 60. (0 85. 00 Computed Percent Shear 8. 52 17. 71 33. 21 37. 03 45. 12 53. 48 61. 65 72. 66 81. 46 Differential

-3 52-7 71 18. 21 17 97 9. 88 1 52 3 35 1 2. 66 3. 54 WCAP-17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 C-87 Westinghouse Non-Proprietary Class 3 C-87 Capsule U (Weld)Page 2 Plant: Voglle 2 Matetial:

Heal: 870(05 Orientation:

NA C apsule: U Fluence: if/cmin2 Charpy V-Notch Data Temperature

60. 00 80. 00 100. 00 150. 00 200. 00 275. 00 Input Percent Shear 90. 00 90. 00 90. 00 100). 00 100.0 100. 00 Computed Percent Shear 89. 57 94. 38 97. 04 99. 43 99. 89 99. 99 Di ftferential 43-4. 38-7. 04 57 01 Correlation Coefficient

= .965 WCAP- 17343-NP March 2011 WCAP-17343-NP March 2011 Revision 0 C-88 Westinghouse Non-Proprietary Class 3 C-88 Westinghouse Non-Proprietary Class 3 Capsule Y (Weld)300 250 A 200 0 IL w 5 U.I z> 100 50 CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 10/25/2010 02:50 PM Paue I Coefficients ol'Curve I A = 44.1 B = 41.9 C = 66.1)7 TO = 22.56 D = 0.00E+00 Equation is A + B

  • ITanh((T-To)/(C+DT))I Upper Shelf Energy=86,0(Fixed Lower Shelf Enervgy=-2, Fixed)Temp@30 ft-lbs=-.5 Deg F Temp@51) fA-lbs-32.1)

Dee F Plant: Votlde 2 Materiah:

Heat: 87005 Orientation:

NA Capsule: Y Fluence: n/cm^2 00 0-300.0-200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature in Deg F Charpy V-Notch Data Temperature

-75. 00-50. 00-25. 00-10. 00.00 10. 00 15.00 25. 00 50. 00 Input CVN 7. 00 10o. 0(0 12. 00 33. (0 34. 00 16.00 41. 00 60. 00 61. 00 Computed CVN 6. 36 10. 59 18.26 24. 98 30. 32 36. 23 39. 33 45. 65 60. 57 Differential

.64 59-6. 26 8. 02 3.68-20. 23 1.67 14.35 43 WCAP-17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 C-89 Capsule Y (Weld)Page 2 Plant: Vogtle 2 Mlaterial:

Heat: 87005 Orientation; NA Capsule: Y Filence: n/cm^2 Charpy V-Notch Data Temperature

72. 00 100. 00 150. 00 200. 00 250. 00 300. 00 InpuLt CVN 68. 00 78.00 76, 00 85. 00 83. 00 89. 00 Computed CVN 70. 67 78. 67 84. 27 85.61 85.91 85. 98 Differential

-2.67-,67-8. 27-.61-2.91 3. 02 Correlation Coefficient

= .967 WCAP-17343-NP March 2011 Revision 0 C-90 Westinghouse Non-Proprietary Class 3 Capsule Y (Weld)CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 10/27/2010 03:46 PM Page I Coefficienils orCurve I A = 35.51 B = 35.51 C = 67.92 TO = 17.15 D = O.O0E+OO Equation is A + B

  • ITauhý(T-To)(C+DT))]

Upper Shell L.E.=7 1.0 Lower Shelf L.E.=.O(Fixed)

Tetnp.04L.E.

35 mils=16.2 Deg F Plant: Voetle 2 Material:

Heat: 87005 Orientation:

NA Capsule: Y Fluenece:

n/cm^2 200 150 E.2 2a 100 50-300.0 0.0 300.0 600.0 Temperature in Deg F Chairpy V-Notch I)ata Temperature

-75.-50.25.-10.I 0.15.25.50.0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 Input LE..6. 00 8. 01)10. 00 28. 00 2 .00 1 7. 00 33. 00 58. 0)5 1. )00 Computed L.R.4. 42 S. 64 15 93 22. 03 26. 73 31. 79 34. 39 39. 60 51- 46 Differential 1.58.64-5. 93 5. 97 1 27 14.79-1.39 1S. 40-.46 WCAP- 17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 C-91 Westinghouse Non-Proprietary Class 3 C-9 1 Capsule Y (Weld.)Pa-ec 2 Plant: Vo_4t Ic 2 NI aleiial: Heat: 8700)5 Orientalion:

NA Capsule: Y Flueiice:

niicm^2 Charpy V-Notch Data Temperature

72. 00 100, O0 150. 00 200. 00 250. 00 300. 00 Input L.E.52. 00 66. 00 67. 00 68. 00 72. 00 77. 00 Computed LE.59. 24 65. 33 69. 63 70. 70 70. 95 71.01 Differential

-7.24.67 2. 63-2.70 I .05 5. 99 Correlation Coefficient

= .958 WCAP-17343-NP March 2011 Revision 0 C-92 Westinghouse Non-Proprietary Class 3 C-92 Westinghouse Non-Proprietary Class 3 Capsule Y (Weld)CVGRAPH 5.3 Hyperbolic Tangent Curve Printed oin 10/25/20 10 02:51 PM Page I CoCfficicnts of Curve I A = 50. B = 50. C = 69.74 TO = 27.24 D = ).OOE+00 Equation is A + B JTamh((T-To)/(C+DT))I Tenmperii-e at 5c% Shear = 27,3 Phint: Vogtle 2 Material:

Heao: 87005 Orientation:

NA Capsule: Y FtLIe nce: /cmi^2 125 100 L-'U'0.75 50 25 0 )-h- -- i-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature in Deg F Charpy V-Notch I)ata Temperature

-75.-50.-25.-t0.I 0.I5.25.50.00 0 0 00 0 0 0 0 00 00 0 0 00 Input Percent Shear 5.00 t0. 0 0 10. 00 20. 00 45. 00 35. 00 40. 00 50. 00 70. 00 Computed Percent Shear 5. 06 9. 84 18. 27 25. 58 3 1 .40)37, 88 41. 31 48. 39 65. 76 Differential

-0. 06 16-8. 27 5,58 13. 60-2.88-1.3)1.6 1 4, 24 WCAP- 17343-NP March 2011 WCAP-17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 C-93 Capsule Y (Weld)Page 2 Plant: Vot.t le 2 NIaterial:

Heat: 87005 Orientation:

NA Capsule: Y Flueuce: n/cn"A 2 Charpy V-Notch Data Temperature

72. 00 100. 00 150. 40 200. 0t0 250. 00 300. 00 Input Percent Shear 75. 00 85. 00 95, 00 100. 00 10o. o0 100. 00 Computed Percent Shear 78. 31 88. 96 97. 13 99. 30 99. 83 99. 96 Differential

-3.31-3. 96-2. 13.70.17 04 Correlation Coefficient

= .990 WCAP-17343-NP March 2011 Revision 0 C-94 Westinghouse Non-Proprietary Class 3 Capsule X (Weld)300 250 200 0 150 IL.z> 100 50 CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 10/25/2010 02:52 PNI Pgoe I Co, fficients of Curve I A = 44.6 B = 42.4 C = 69.77 TO = 25.72 D = O.OOE+00 EquaLion is A + B 1ITanh((i-To)/i C+DT))]Upper Shelf Energy=87.0 Fixed) Lower Shelf Energy=2.2(Fixed)

Temp@30 ft-lbs=.7 Deg F Temp@5)0 ft-lbs=34.7 Deg F Plant: Vogtle 2 Material:

Heat: 8700 5 Orientation:

NA Capsule: X FliC nenc: nlC1112 0 0*0--.--~ 300.0-200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature in Deg F Charpy V-Notch Data Temperature

-90. 0 0-50. 00-25 00-15. 00.00.00 10. 00 15.00 30. 00 Input CVN 4. 00 8. 0 0 23. 00 18. O0 25. 00 46. 00 42. 00 45. 00 17. 0(0 Computed CVN 5. 17 10. 89 18. 26 22. 33 29. 64 29. 64 35. 21 38. 14 47. 20 Differential

-1.17-2. 89 4. 74-4.33-4. 64 16.36 6.79 6. 86-30, 20 WCAP-17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 C-95 Capsule X (Weld)Plant: \"o'ztle 2 Orientation:

NA Pawe 2 Nilaterial:

Heal: 870105 (CaýPStLC:

X Flucnca:

n/cm^2 Charpy V-Notch Data Temperature

50. 00 75. 00 100. 0(0 150. 00 200. 00 250. 00 Input CVN 57. 00 82. 00 85. 00 82. 00 85. 00 94. 00 Computed CVN 58. 79 70. 40 77. 99 84. 66 86. 43 86. 86 Differential

-1 79 I1I 60 7 01-2. 66-I. 43 7. 14 Correlation Coefficient

= .942 WCAP-17343-NP March 2011 Revision 0 C-96 Westinghouse Non-Proprietary Class 3 C-96 Westinghouse Non-Proprietary Class 3 Capsule X (Weld)CVGRAPH 5.3 Hyperbolic Tangent Curve Prited 10/27/2010 03:40 PM Page 1 Coefficients of Curve I A = 35.61 B = 35.61 C = 63.83 TO = 29.18 D = O.OOE+OO Equation is A + B

  • Tanh((T-To)/(C+DT))j U pper Shelf L. E.=71.2 Lower Shelf L.E.=.0 Fixed)Temp.@L.E.

35 mils=28. I Deg F Plant: Vogtle 2 Material:

Heat: 87005 Orientation:

NA Capsule: X Fluence: In/cmA 2 200 150 E.o_50-300.0 0.0 300.0 600.0 Temperature in Deg F Charpy V-Notch Data.Temperature

-90. 0(-50. 00-25.1 00-15 00 0 0 0 0 1 I0. 000 1 5. 0 (30 0(0 Input LE.2. 00 2. 0 0 14. 00 II .0 0 18. 0(0 33. 00 3 I .00 32. 00 14. 00 Computed L.F.I. 66 5. 50 II. 02 14. 27 20. 38 21. 38 25. 22 27 .83 36. 07 Differential

.34-3, 501 2. 98-3. 27-2.38 12.62 5.78 4. 17 22. 07 WCAP- 17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 C-97 Capsule X (Weld)Pattze 2 Platit: Vwo Ile 2 N1aleiial:

Heal: 87005 Otientation:

NA Gipsule: X Flueiice:

ii/cnA2 Charpy V-Notch Data Temperature

50. 00 75. 00 100. 010 150. 00 200. 00 250. 00 Input LE.45. 00 67. 00 70. 00 67. 00 66. 00 72. 00 Computed LE.46. 83 57. 53 64. 24 69. 64 70. 89 71. 15 Differential I .83 9. 47 5. 76 2. 64 4. 89 85 Correlation Coefficient

=.953 WCAP-17343-NP March 2011 Revision 0 C-98 Westinghouse Non-Proprietary Class 3 C-8Wstnhue o-roreay ls Capsule X (Weld)CVGRAPH 5.3 Hyperbolic Tangent Curve Primted on 10125/2010 02:54 PM Page I Coefficients ol Curve I A = 50. B = 50. C = 63.06 TO = 29.69 D = O.OOE+OO Equation is A + B

  • iTanh((T-To)/tC+DT))I Tente1iamtUr at 50% Shear = 29,7 Plan(: Vogte 2 Material:

Heat: 87005 Orientation:

NA Capsule: X FlueCIlCe:

ntCli^2 125 100 Co 0.75 50 25 0 -i--- = __-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature in Deg F Charpy V-Notch Data Temperature

-90.-50.-25.-10.I 0.15.30.00 00 00 00 00 00 00 t 0 00 Input Percent Shear 10. 00 1 0. 00 15.00 15. 00 25. 00 35. 00 30. O0 50. 00 40. 00 Computed Percent Shear 2. 20 7. 40 15. 00 19.51 28. 06 28. 06 34. 88 38.56 50. 25 Differential

7. 80 2. 60 00-4.51-3. 06 6. 94-4. 88 11 .44 10. 25 WCAP-17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 C-99 Westinghouse Non-Proprietary Class 3 C-99 Capsule X (Weld)Plant: Votile 2 Orientation:

NA Page 2 Matetial:

Heat: 87(X05 Capsule: X Fluence: n/cm'2 Charpy V-Notch Data Temperature

50. 00 75. 00 t00. 00 150. 00 200. 00 250. 00 Input Percent Shear 65. 00 80. 00 100. O0 95. 00 100. 00 1oo. O0 Computed Percent Shear 65. 57 80. 80 90. 29 97. 85 99. 55 99. 91 Differential

-.57-.80 9.71 2. 85 45 09 Correlation Coefficient

= .986 WCAP-17343-NP March 2011 Revision 0 C-I00 Westinghouse Non-Proprietary Class 3 Capsule W (Weld)300 250 ch-200 0 LL 150 z 100 50 CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 10/25/2010 03:06 PM Page I C0C'ltbicicnts of Curvc I A = 44.6 B = 42.4 C = 96.14 TO = 46.66 D = 0.OOE+00 Equation is A + B ITanh((T-To)/(C+DT))l Upper Shelt Energy=87.0(Fixedj Lower Shelf Energy=2.2(Fixed)

Temnp@30 fl-lbs= 12.2 Deg F Telnp@50 't-lbs=59.)

Deg F Plant: Vogtle 2 Malerial:

Heat: 87005 Orientation:

NA Capsule: W Fluence: 1/cnA2 0 o 00 0 00 0 0_ ----0-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature in Deg F Charpy V-Notch Data Temperature

-50. 00 25. 00 0 00 0 00 25. 00 50. 00 75. (t0 75. 00 100. 00 Input CVN 5, 0)14. 00 36. 00 3 1. 01 22, 00 38. 00 7 1. 00 64. 00 64. 00 Computed CVN 12. 21 17. 79 25. 50 25. 50 35.21 46. 1)7 56. 75 56. 75 65. 98 Differential

-7.21-3. 79 10. 50 5 .50-13.21-8. 07 14. 25 7.25-I. 98 WCAP-17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 C-O10 Westinghouse Non-Proprietary Class 3 C-lo1 Capsule W (Weld)Page 2 Plant: Voi, tic 2 Material:

Heat: 87(X05 Orientation:

NA Capsule: W Fluence: nIcIA^2 Charpy V-Notch I)ata Temperature 140. 00 175. 00 200. 00 225. 00 250. 00 250. 00 Input CVN 7 1. 00 73. 00 77. 00 88. 00 79. 00 93. 00 Computed CVN 76. 36 81. 5t 83. 65 84. 97 85. 78 85. 78 Differential

-5. 36-8.51t-6. 65 3. 03-6. 78 7. 22 Correlation Coefficient

=.956 WCAP- 17343-NP March 2011 Revision 0 C-102 Westinghouse Non-Proprietary Class 3 Capsule W (Weld)CVGRAPH 5.3 Hyperbolic Tangentl Curve Printed on 10/27/2010 03:42 PM Page I Coefficients of Curve I A = 34.98 B = 34.98 C = 103.68 TO = 44.94 D = (.OOE+00 Equation is A + B * [Tanht(T-To)/,C+DT)f]

U pper Shelf L E.=70.0 Lower Shelf L.E.=.O(Fixed Temp.@L.E.

35 mils=45.0

[)eg F Plant: Vogdle 2 NMaterial:

Heat: 87005 Orientation:

NA Capsule: W Fluence: n/c1n^2 200 150 E C._2 50 0 --300.0 0.0 300.0 Temperature in Deg F Charpy V-Notch Data 600.0 Temperature

-50. 00-25. 00)0 0 0(1 25. O0 50. 00 75. 00 75. 00 1()0. 0)0 Input L.E.5. 0(0 I I. (0 28. 0(1 25. 00 22. 00 34. O0 47. 00 49. (0 52. O0 Computed L.E.9. 66 14.41 210. 70 20. 7(1 28. 34 36. 69 44. 85 44. 85 51. 99 Differential

-4.-3.7.4.-6.-2.2.4.66 41 3(0 30 34 69 15 15 0 1 WCAP-17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 C-103 Westinghouse Non-Proprietary Class 3 C-i 03 Capsule W (Weld)Page 2 Plant: Vogile 2 Nalerial:

Heal: 87005 Orientation:

NA Capsule: W Fluence: n/cm^2 Charpy V-Notch Data Temperature 140. 00 175. 00 200. 00 225. 0n 250. 00 250. 00 Input LE.57. 00 63. 00 61 .00 74. 00 67. 00 72. 00 Computed LE.60. 32 64. 70 66. 62 67. 86 68. 65 68. 65 Differential

-3 32-1 70-5. 62 6. 14-I. 65 3. 35 Correlation Coefficient

= .980 WCAP-17343-NP March 2011 Revision 0 C-104 Westinghouse Non-Proprietary Class 3 Capsule W (Weld)CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 10/25/2010 03:09 PM Page 1 Coefficients of Curve I A = 50. B = 50. C = 85.44 TO = 74.41 D = O.OOE+OO Equation is A + B "ITanh((T-To)/C+DT))h Tempelrature at 50% Shear = 74.5 Plant: V oglle 2 Malerial:

Heat 87(1115 Orientation:

NA CapsiIle:

W Fluence: n/c^iA2 125 100 I.-75 50 25 0 1-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature in Deg F Charpy V-Notch I)ata Temperature

-50. 00-2 5. 00* 00* 00 25. 00 50. 00 75.00 75.00 100. 00 Input Percent Shear 5, 00 5. 00 15. 00 2:.0 0 25. 00 30. 00 55. 00 51). 00 65. 00 Computed Percent Shear 5. 16 8. 89 14.91 14,91 23. 93 36. 09 50, 35 50. 35 64. 54 Differential

-.16-3. 89.1)9 5. 1)9 I. (17 6.09 4. 65-.35 46 WCAP-17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 C-105 Capsule W (Weld)Page 2 Plant: Vogtle 2 NMateial:

Heal: 87005 Orientation:

NA Capsulie:

W Fluence: nito^2 Charpy V-Notch Data Temperature 140. 00 175.00 200. 00 225. 00 250. 00 250. 00 Input Percent Shear 80, 00 90. 00 95. 00 100. 00 100. 00 100. 00 Computed Percent Shear 82. 28 91. 33 94. 98 97. 14 98. 39 98. 39 Differential

-2. 28-1 33 02 2. 86 1 61 1 61 Correlation Coefficient

= .997 WCAP-17343-NP March 2011 Revision 0 C- 106 Westinghouse Non-Proprietary Class 3 Capsule Z (Weld)CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 10/25/2010 01:28 PM Page I Coefficients of Curve I A = 46.1 B = 43.9 C = 97.5 TO = 39.58 D = 0.{O0E+O0 Equation is A + B "ITanh((T-To)/(C+DT0)I Upper Shell Energy=90l, OFixed) Lower Shelf Energy=2.2(Fixed)

Temp0@31 ft-lbs=2.

I Deg F Temp@50) ft-lbs=48.3 Deg F Plant: Vogtle 2 Material:

Heat: 87005 Orientation:

NA Capsutle:

Z F luence: n/cl^2 300 250" 200 0 0 150 U14 z> 100 U 50 0 i-, --300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 Temperature in Deg F 400.0 500.0 600.0 Charpy V-Notch Data Temperature

-50. 00 0 00* 0(5. 00 5. 0 0 10. 00 20. 00 25. 00 50. 00 Input CVN 7. 00 II. (0 37. 00 40. 00 23. 00 35. 00 54. 00 41. 00 46. 00 Computed CVN 14.26 29. 20 29. 20 31. 15 31. 15 33. 17 37, 40 39. 58 50. 77 Dif ejential-7.26-18.20 7. 80 8. 85-8.15 1,83 16. 60 1.42-4, 77 WCAP-17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 C-107 Westinghouse Non-Proprietary Class 3 C-I 07 Capsule Z (Weld)Page 2 Plamt: Vogt lc 2 Matetial:

Heat: 87005 Orientation:

NA Capsule: Z Fluence: n/cm^A 2 Charpy V-Notch Data Temperature

60. 00 7 5 .00 130. 00 225. 00 250. 00 275. 00 Input CVN 5 1 .00 67. 00 70. 00 90. 00 91 .00 88. 00 Computed CVN 55. 16 61 .38 78. 12 88. 09 88. 84 89. 30 Differential

-4. 16 5. 62-8.1 2 1.91 2. 16-1 .30 Correlation Coefficient

= .949 WCAP-17343-NP March 2011 Revision 0 C-108 Westinghouse Non-Proprietary Class 3 Capsule Z (Weld)CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 10/27/2010 03:45 PM Page I Cocfticienis ot'Curve I A = 33.65 B = 33.65 C = 104.29 TO = 26. D = O.OOE+O0 Equation is A + B * [Tanh((T-To)/IC+DT))I Upper Shelf L.E.=67.3 LowerJ Shelf l.E=..)(Fixed) 35 nils=30.2 Dep F Plant: Vootle 2 Material:

Heat: 87005 Orientation:

NA Capsule: Z Fluence: nit/eA 2 200 150 E.2 100 50 0 n I-300.0 0.0 300.0 Temperature in Deg F Charpy V-Notch i)ata 600.0 Temperature

-50.5.5.10.20.25.50.00 00 00 00 00 00 00 00 00 Input L.E.5. 00 12. 00 28. 00 36. 00 20. 00 32. 00 47. 00 37. 00 410. 00 Computed L.E.12. 71 25. 43 25. 43 26. 97 26. 97 28. 53 31.72 33. 3 3 41. 26 Diffe~rential

-7. 71 13 .43 2. 57 9. 03-6. 97 3. 47 15. 28 3 67-1 26 WCAP- 17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 C-109 Capsule Z (Weld)Page 2 Plant: Vog tlc 2 M aterial: Heat: 87005 Orienlation:

NA Capsule: Z Fluence: n/ciA2 Charpy V-Notch Data Temperature 60.75.130.225.250.275.00 00 00 00 00 00 Input L.E.40. 00 45. 00 55. 00 67.00 67. 00 69. 00 Computed L.F.44. 25 48. 39 59. 24 65. 85 66. 39 66. 73 Differential

-4. 25-3. 39-4. 24 1. 15 61 2. 27 Correlation Coefficient

= .932 WCAP-17343-NP March 2011 Revision 0 C-110 Westinghouse Non-Proprietary Class 3 C-lb Westinghouse Non-Proprietary Class 3 Capsule Z (Weld)CVGRAPH 5.3 Hyperbolic Tamgeni Curve Printed on 10/25/2010 01:31 PM Page 1 Coefl'icients ol Curve I A = 50. B = 50. C = 68.88 T) = 38. D = 0.0OE+00 Equation is A + B:1 ITahU((T-To)/(C+DT))l TenilvratulIC at 50% Shear = 38. 1 Plant: Vogtle 2 Material:

Heat: 87(1005 Orientation:

NA Capsule: Z Fluence: t/cm"2 125 100 C,, U)I-0, 75 50 25 0 I-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature in Deg F Charpy V-Notch Data Temperature

-50. 00 01 0 0 0 5. 00 5. 00 to. 00 20. 00 25. 00 50. 00 Input Percent Shear I 0. 00 1 5. 00 20. 00 35. 0)20. 00 30. 00 50. 00 45. 00 60. 00 Computed Percent Shear 7.21 24..91 24.91 27. 72 27. 72 30. 72 37. 22 40. 67 58. 62 Differential 2.79-9.91-4.91 7.28-7.72-.72 12.78 4..33 1,38 WCAP-17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 C-Ill Capsule Z (.Weld)Page 2 Plarit: Votile 2 kbteiiail:

Heat: $7005 Or~iemiatimi:

NA Capsule: Z FhtICttCO:

IttIItlA?Charpy V-Notch Data Temperature

60. 00 75. 00 130. 00 225. 00 250. 00 275. 00 Input Percent Shear 55. 00 80, 00 90. 00 100. 00 100. 0 0 100. 00 Computed Percent Shear 65. 45 74. 54 93. 53 99. 56 99. 79 99. 90 Differential
10. 45 5.46-3. 53 44.21.10 Correlation Coetficient

= .981 WCAP-17343-NP March 2011 Revision 0 C-112 Westinghouse Non-Proprietary Class 3 C-1 esigoueNn-rpieayCls_

Unirradiated (Heat Affected Zone)CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 10/25/2010 03: 15 PM Page I Coefficients of Curve I A = 54.1 B = 51.9 C = 73.88 TO = -46.61 D = 0.OOE+00 Equation is A + B -InThmi((T-To)/(C+DTO)I Upper Shell Energy= 106.( Fixed) Lower Shelf Energy=2.2(Fixed)

Temtp@311 ft-lb-83.7 Deq F Temp@50 fi-Ibs=-52.4 Deg F Plant: Vogtle 2 NMaerial:,SA533BI Heat: C3500-2 Orienmalion:

NA Capsule: UNIRR Fluence: /ctni^2 300 250 200 0 150 z> 100 U 50 0 i ----300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature in Deg F Charpy V-Notch Data Temperature

-180. 00-18 (10 00-I 21. 00-2 1). 0)-120. O0-100.00-100. 00-00( 00-80, 00 Input CVN 7. 00 9 )00 1 3. 00 16. (10 1 9. 0(0 14. 00 30. 00 35. (0 28. 00 Computed CVN 4.93 4. 93 14.72 14.72 14. 72 22. 00 22. (10 22. 00 32. 12 Differential

2. 07 4. (17-1 .72 1,28 4. 28-8. 00 8. 00 13, 00-4. 12 WCAP- 17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 C-113 Westinghouse Non-Proprietary Class 3 C-113 Unirradiated (Heat Affected Zone)Page 2 Plant: Vogrlle 2 Material:

SA533B I Heat: C'350X0-2 Orientatlion:

NA Capsule: UNIRR Fluence: nicm"2 Charpy V-Notch Data Temperature

80. 00-80. 00-60. 00-60. 00 60. 00-30. 00-30. 00-30. 00 00 00 00 30. 00 30. 00 30. 00 80. 00 80. 00 80. 00 120. 00 120 00 120. 00 160. 00 160. 00 160. 00 210. 00 210. 00 Input CVN 43. 00 52, 00 26. 00 34. 00 40. 00 52. 00 60. 00 67. 00 80. 00 85. 00 97. 00 96. 00 99. 00 109. 00 96. 00 102. 00 114. 00 100. 00 102. 00 122 00 96. 00 1 10.00 119 00 96. 00 124. 00 Computed CVN 32. 12 32. 12 44. 80 44. 80 44. 80 65. 58 65. 58 65. 58 83. 10 83. 10 83. 10 94.41 94. 41 94.41 102. 74 102. 74 102. 74 104. 87 104. 87 104. 87 105. 62 105. 62 105 62 105. 90 105. 90 Differential
10. 88 19.88-S. 80-10.80-4 80-13.58-5.58 I .42-3. 10 I .90 13.90 1.59 4.59 14. 59-6. 74-.74 11. 26-4. 87-2. 87 17. 13-9,62 4. 38 13.38-9. 90 18. 10 Correlation Coefficient

=.968 WCAP-17343-NP March 2011 Revision 0 C-114 Westinghouse Non-Proprietary Class 3 Unirradiated (Heat Affected Zone)CVGRAPH 5.3 Hyperbolic Tjangent Curve [hinted on 12/14/20101.)

10:41 AM Pa~ge I Coefficients olfCirve I A = 36.21 B = 36.21 C = 74.44 TO = -44.47 D = 0.04)E+00 Equation is A + B

  • ITanh((T-To)/(C+DT))]

Upper Shelf LE.=72.4 I..ower Shelf LE.=.0(Fixed)

Tcmp.@L.E.

35 mils=-46.9 Deg F Plant: Vogte 2 Malerial:

SA533BI Heat: C35,00-2 Orientation:

NA Capsule: U NIRR Fluence: n1/c1m112 200 150 E.2 100 50 0 4--300.0 0.0 300.0 Temperature in Deg F Charpy V-Notch Data 600.0 Temperature Ss80. 00 ISO. 00 120. 00 120. 00 120. 00 100. 00 100. 00 100. 00-80. 00 Input L.E.4 00 3. 00 5. 0 0 9. 00 I I O)0 5. 010 18 00 221 00 18. 00 Computed L.E.1 85 1 85 8. 41 8.41 8.41 13. 30 13. 31)13. 30 20. 13 Differential

2. 15 1. 15 3. 41 59 2. 59 8. 30 4.70 8. 70 2. 13 WCAP-17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 C-115 Unirradiated (Heat Affected Zone)PaeC 2 Plant: Vogle 2 Material:

SA533BI Heat: C3500-2 Oricentatioln:

NA Capsulc: LINIRR Flucncce:

t/cm 1 2 Charpy V-Notch Data Temperature

80. 00 80. 00 60, 00 160. 00 60. 00 30. 00 30. 00 30. 00 00 00 00 30. 00 30. 00 30, 00 80. 00 80. 00 80. 00 1 20. 00 1 20. 00 120. 00 160. 00 160. 00 160. 00 2 10. 00 210.00 Input L.E.25. 00 32. 00 19. 0(0 2 1. 00 29. 00 37. 00 43. 00 44. O0 52. 00O 50. 00 66. 00 68. 00 66. (0 73. 00 72. 0((65 1, 00 72. ((00 64. 00 64. 00 78. 00 73. 00 7 1. 00 72. 00 72. 00 73. 00 Computed LE.20, 13 2(0. 13 28. 77 28. 77 28. 77 43. 17 43. 17 43, 17 55. 60 55. 60 55. 60 63. 80 63. 80 63. 80 69. 96 69. 96 69. 96 71.57 71.57 71. 57 72. 13 72. 13 72. 13 72. 35 72. 35 Differential
4. 87 1 .87-9.77-7.77.23-6. 17-.17-83 3. 60-5. 60 10. 40 4. 20 2. 20 9. 20 2,ý 04-4. 96 2. 04-7.57-7 57 6.43 87-113-.13 35 65 Correlation Coefficient

=.978 WCAP-17343-NP March 2011 Revision 0 C-116 Westinghouse Non-Proprietary Class 3 Unirradiated (Heat Affected Zone)CVGRAPH 5.3 Hyperbolic Tangent Curve Printed oti 10/25/2010 03:16 PNM Paoe I Cocfficic ns of Curve I A = 50. B = 50. C = 53.04 TO = -34.64 D = 0A.0E+00 Equation is A + B T tnf(1 n T-To)/(C+DT))I TeniperaturC at 501% Shear = -34.6 PIant: Vogtle2 Malerial:

SA533BI Heat: C3500-2 (Orientation:

NA Capsule: UNIRR Fluencc: n/cnm2 125 100 CL 75 50 25 0 -------- --i- --l -i-- I-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature in Deg F Charpy V-Notch Data Termperature 1 80. 00 S8so. 00 120. 00 120. 00 120, 00 I 00. 0(0-I 00o. 01)-10 0,00-100, 010-80. 0(0 Input Percent Shear* 00.00 5.00 5, (0 5. 0 0 5. 010 5. )00 110. 00 I0. o00 Computed Percent Shear.41.41 3 85 3 85 3. 85 7. 84 7. 84 7. 84 15.3 1 Differential

-.41-.41 1I15 1I5 1.15-2.84-2 84 2. 16-5.31 WCAP- 17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 C-117 Westinghouse Non-Proprietary Class 3 C-117 Unirradiated (Heat Affected Zone)Page 2 Planti: Vogtle 2 Material:

SA533B I Heat: C3500-2 Orientation:

NA Capsule: LINIRR Fluence: n/cm^2 Charpy V-Notch Data Temperature

80. O0 80. 00 60. 00 60. 00 60. 00 30, 00 30, 00 30. 00*00 0 00* 00 30. 00 30. 00 30. 00 80. 00 80. 00 80. 00 120. 00 120. 00 120. 00 160, 00 160. 00 160. 00 210. 00 2 1 0 00 Input Percent Shear 20. 00 25. 00 20. 00 25. 00 35. 00 60. 00 45. 00 60. 00 70. 00 61). 00 90. 00 100. 00 100. 00 100. 00 100. 00 100. 00 100. 00 100. 00 100. 00 100. 00 100. 00 00. 00 100. O0 100. 00 100. 00 Correlation Coefficient

.990 Computed Percent Shear 15.31 15. 31 27. 77 27. 77 27. 77 54. 36 54. 36 54. 36 78. 69 78. 69 78. 69 91 .96 91 .96 91 .96 98. 69 98. 69 98. 69 99. 7 1 99.71 99.71 99. 94 99. 94 99. 94 99. 99 99, 99 Dilferential

4. 69 9. 69-7.77-2. 77 7. 23 5. 64-9. 36 5. 64-8.69 18.69 11.31 8. 04 S. 04 8. 04 1 .31 1.31 1 31 29 29 29 06 1)6 06 01 01 WCAP- 17343-NP March 2011 Revision 0 C-118 Westinghouse Non-Proprietary Class 3 C-118 Westinghouse Non-Proprietary Class 3 Capsule U (Heat Affected Zone)CVGRAPH 5.3 Hy'perbolic Tangent Curve Printed on 10/25/2010 013:17 PM Page I Coeflficienlts of Curve I A = 62.1 B = 59.9 C = 70.83 TO = -65.7 D = O.OOE+0U Equation is A + B jTanh(T-To)/(C+DT)jI Upper Shelf Ettergy= 122.0Fixed)

Lower Shelf Eneriy=2.2(Fixeil)

Tenip@3()

fl-lhs=-108.0 Deg F Teiup@50 ft-lbs=-80.2 Deg F Pl'at: Vogtle 2 Material:

SA533BI Heat: C3500-2 Orientation:

NA Capsule: U Fluellce:

n/cm^2 300 250 200 0 0 U-" 150 w z> 100 50 0 -- -'r--- i -..i-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature in Deg F Charpy V-Notch Data Temperature

-150.00-125, 00-110. 00-00. 00-80. 00-75. 00-50. 01)-40. 00-25. 00 Input CVN 17. 00 22. 00 32. 00 51. 00 40. (0 39. 00 52. 00 99. 00 1 12. 01)Computed CVN 12,35 2 1. 1 1 28. 86 35. 17 50. 17 54. 28 75. 17 82. 93 93. 18 Differential

4. 65 189 3. 14 15.83-10. 17-15.28-23. 17 16. 07 18. 82 WCAP-17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 C-119 Capsule U (Heat Affected Zone)Page 2 Plant: Vog:le 2 Material:

SA533B I Heat: C3500-2 Oricntation:

NA Capsule: U Fluence: ni/n^A2 Charpy V-Notch Data Temperature

25. 00.00 25. 00 75. 00 1 0.00 150. 00 Input CVN 112. 00 83. 00 108.00 125.00 128. 00 126.00 Computed CVN 93. 18 105. 80 113. 41 119 79 121 17 121 73 Differential
18. 82-22.80-5. 41 5.21 6. 83 4. 27 Correlation Coefficient

= .941 WCAP-17343-NP March 2011 Revision 0 C-120 Westinghouse Non-Proprietary Class 3 Capsule U (Heat Affected Zone)CVGRAPH 5.3 Hyperbolic Tangenl Curve Printed on 11/02/2010 02:52 PM Page I Coe fficients of Curve I A = 32.95 B = 32.95 C = 57.44 TO= -71.33 D = 0.OOE+00 Equation is A + B

  • lTanh((T-To)/(C+DT))

I Upper Shelf L.E.=65.9 Lower Shelf L.E.=.t0(Fixed)

Temp.@L.E 35 miLs=-67.7 Deg F Plant: VoItle 2 NMawtrial:

SA533B I Heat: C3500-2 Orientation:

NA Capsule: U Fluence: r/lcmA2 200 150 E.2 5.100 50 0 4--300.0 0.0 300.0 Temperature in Deg F 600.0 Charpy V-Notch Data Temperature

-I50.00-125, (0 SIO1. 00-I00. 0(-80. 0 0-75. 00-50. 0(-40O. 0 0-,00 Input L.E.7. 00 I I. 00 17. 00 25. 00 19. 0 0 23. O0 35. 0(0 67. (0 60. 00 Computed L.E.4. 0)0 8.81 13.61 17. 75 28. 02 30. 85 44. 65 49. 33 54. 95 Differential 3.2.3.7.-9.-7.-9, 17.5.0 0 19 39 25 02 85 65 67 05 WCAP- 17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 C-121 Capsule U (Heat Affected Zone)Pl ant: Voit.lt1 2 Orientation:

NA Pa-e 2 Material:

SA533B I Hea: ('3500-2 Capstile:

U Flitence:

ii/cmtA2 Charpy V-Notch Data Temperature

-25. 00.00 25. 00 75. 00 1 I0. 00 150. 00 Input LE.60. 00 49. 00 62. 00 70. 00 69. 00 60. 00 Computed L.E.54. 95 60. 83 63. 68 65. 50 65. 78 65. 87 Differential

5. 05-1 83-I 68 4. 50 3. 22-5. 87 Correlation Coefficient

= .941 WCAP- 17343-NP March 2011 WCAP-17343-NP March 2011 Revision 0 C- 122 Westinghouse Non-Proprietary Class 3 C-122 Westinghouse Non-Proprietary Class 3 Capsule U (Heat Affected Zone)CVGRAPH 5.3 Hyperbolic Tangent Curve Pinted on 01027/20(10 08:56 AM Paoe I Coe fficienits of, Curve I A = 50. B = 50. C = 62.09 TO = -74.49 D = 0.OOE+00 Equation is A + B JTanh(T-To)/(C+DT))1 50%. Shear = -74.4 Plant: Votgtle 2 Material:

SA533 B I Heal: C3S5tX-2 Orientation:

NA Capsule: U Fluence: ndcm^2 125 100 C-U(0.75 50 25 0 4 6-- -b -i 1-- ---300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 Temperature in Deg F 500.0 600.0 Charpy V-Notch Data Temperature

-150.00-125. 00-110. 0o0-100. 00-80. 0(0-75. 00-50. 00-40. 00-25. 00 Input Percent Shear 10I 0 0 15. 00 45. 00 40, 00 40. 00 50. 00 90. 00 95. 00 Computed Percent Shear 8. 08 16.43 24. 17 30. 54 45. 58 49. 59 68. 76 75. 23 83. 12 Differential 1.92-1. 43.83 14,46-5.58-9.59-18.76 14. 77 11, 88 WCAP- 17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 C-123 Westinghouse Non-Proprietary Class 3 C-i 23 Capsule U (Heat Affected Zone)Page 2 Plant: Vogile 2 Material:

SA533B I Heat: C3500-2 Orientation:

NA Capsule: U Fluence: n/cnrA2 Charpy V-Notch Data Temperature

-25. 00.00 25. 00 75. 00 I 0. 00 150,00 Input Percent Shear 90. 00 80. 00 100. 00 100. 00 100. 00 100. 00 Computed Percent Shear 83. 12 91. 68 96. 10 99. 20 99, 74 99. 93 Differential

6. 88-It. 68 3.90.80 26 07 Correlation Coefficient

= .961 WCAP-17343-NP March 2011 Revision 0 C- 124 Westinghouse Non-Proprietary Class 3 C-124 Westinghouse Non-Proprietary Class 3 Capsule Y (Heat Affected Zone)CVGRAPH 5.3 Hyperbolic Tantgent Curve Printed on 10/27/2010 08:58 AM Page 1 Coe fficienits of Curve I A = 58.1 B = 55.9 C = 73.59 TO = -53.18 D = O.OOE+00 Equation isA + B: Tanh( (T-To)/(C+DTb)]

Upper Shelf Energy,'=

I 14.0(Fixed)

Lower Sheff Temip@30 fi-Ibs=-93.8 Deg F Temp@50 ft-lbs=-63.9 Dee F Plant: Vogtle 2 Malerial:SA5133BI Heat: C3500-2 Orientation:

NA Capsule: Y Flulence:

II/CnuA^2 300 250" 200 0 LL LM10> 100 5-150 0 -- -" 1 1 ---300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 Temperature in Deg F 600.0 Charpy V-Notch Data Temperature

-150. 00-t25. o0o-10o 0. 0 0-85. 00 75. 00-60. 1 0-50. 00-25. 00 S0(0 Input CVN 20. 00 16. (0 29. 00 26. 00 37. 00 54. O0 68. 00 79. 00 93. 0(0 Computed CVN 9.71 16. 10 26. 67 35. 33 42. 00 52. 94 60. 52 78. 52 92. 68 Differential

10. 29-.1 10 2. 33-9. 33-5. 00 1 06 7 48 48 32 WCAP-17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 C-125 Capsule Y (Heat Affected Zone)Page 2 Plant: Vogtle 2 Material:

SA533B I Heat: C3500-2 Orientation:

NA Capsile: Y FlueCce: n/c^1 1 2 Charpy V-Notch Data Temperature 25.72.t00, 125.175.200.00 00 00 o o 00 00 Input CVN 100. 00 108. 00 117.00 106. 00 IIS. 00 135.00 Computed CVN 102.07 1t0. 40 112.29 113. 13 113. 77 113.89 Differential

-2. 07-2 40 4.71-7. 13 4. 23 21. I1 Correlation Coefficient

= .983 WCAP- 17343-NP March 2011 WCAP-17343-NP March 2011 Revision 0 C-126 Westinghouse Non-Proprietary Class 3 C-2 esigoueNn-rpieayCls 200 150.2 a1,00 l0 50 Capsule Y (Heat Affected Zone)CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 11/30/2010 I 1:2 AM Page I Coefficients of Curve I A = 35,29 B = 35.29 C = 78.8 TO = -52.82 D = O.OOE+00 Equation is A + B* jTanh((T-To)/(C+DT))j Upper Shelf L.E.=70.6 Lower Shelf LE.=.0(Fixed)

Teimp.@L.E.

35 mils=-53.4 Deg F Plant: Voetle 2 Material:

SA533BI Heat: C3500-2 Orientalion:

NA CapsIue: Y Fluence: nkcn^2ýO 0z 0-300.0 0.0 300.0 600.0 Temperature in Deg F Charpy V-Notch Data Temperature

-150.00-125. 00-1 00. () 0-85. 0(1-75. 00-60. 00-50. 00-25. 00 1)0 (Input L.F.7. 00 12. 00 21. 00 13. 00 22. 010 38. 00 37. 00 47. 00 53. 00 Computed LE.5. 52 9. 74 16.37 21. 63 25.61 32. 08 36. 55 47. 25 55. 94 Diffe~rential 1.448 2. 26 4. 63 8. 63 3. 61 5. 92 45 25 2. 94 WCAP-17343-NP March 20 1 Revision 0 Westinghouse Non-Proprietary Class 3 C- 127 Westinghouse Non-Proprietary Class 3 C-127 Capsule Y (Heat Affected Zone)PNalm: Voitle 2 Orientation:

NA Patze 2 Mlaterial:

SA513B I Heat: C35(X)-2 Capsule: Y Fhteiice:

11CIIIA 2 Charpy V-Notch Data Temperature

25. 00 72. 00 100. 00 125, 00 175. 00 200. 00 Input LE.67. 00 64. O0 7 1. (0 70. 00 67. 00 73. 00 Computed L.P.61 .98 67. 73 69. 15 69. 81 70. 36 70. 46 Differential
5. 02-3. 73 1 85 19-3. 36 2. 54 Correlation Coefficient

= .987 WCAP- 17343-NP March 2011 WCAP-17343-NP March 2011 Revision 0 C-128 Westinghouse Non-Proprietary Class 3 Capsule Y (Heat Affected Zone)CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 1(/25/2010 03:34 PM Page I Coc fficicuts o1 Curve I A = 50. B = 50. C = 34.94 TO = -49.36 D = 0.OOE+00 Equation is A + B J.ikTanh((T-To)/lC+DT)

]Temperature at 50>, Shear- -49.3 Plant: Vogtle e2 MaeriaI: SA533BI Heat: C3500-2 Orientation:

NA Capsule: Y Fluence: n1Ct^A2 125 100 CL 75 50 25 0 4-i---- 1-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature in Deg F Charpy V-Notch Data Temperature

-150.00-12i 00-100. 00-85. 00-75. 00-60.00-50o 00-25. 00 0 0 Input Percent Shear 5. 00 10,00 10. 00 I0. 00 20. 00 30. 00 50. 00 85. 01)90. 00 Computed Percent Shear.3t 1.30 11.51 18.73 35, 23 49. 08 80. 13 94. 40 Differential

4. 69 8.70 4. 78-1.51 1.27-5. 23 92 4. 87-4. 40 WCAP-17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 C-129 Capsule Y (Heat Affected Zone)Page 2 Plant: Votle 2 Material:

SA533B I Heat: C3500-2 Orientation:

NA Capsule: Y Fluence: n/cmA 2 Charpy V-Notch Data Temperature

25. 00 72. 00 100. 00 125. 00 175. 00 200. 00 Input Percent Shear 100. 00 100. 00 100. 00 100. 00 100. 00 100. 00 Computed Percent Shear 98. 60 99. 90 99. 98 tOO. 00 100. 00 0oo. 00 Differential 1 40 t0 02 00 00 010 Correlation Coefficient

= .997 WCAP-17343-NP March 2011 Revision 0 C-130 Westinghouse Non-Proprietary Class 3 c- 0Wetnhus o-roreay ls Capsule X (Heat Affected Zone)CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 10/25/2010 03:36 PM Page I Coefficielnts of Curve I A = 50.6 B = 48.4 C = 74.79 TO = -52.28 D = O.OOE+0O Equalion is A + B "3'i janh((T-To/(C+DT))Ij Upper Shelf Energy=99.A Fixed) Lower Shelf Enervy=2.(Fixed)

Tenyp@30 ft-tbs=-86.2 Deg F Temp@5l) ft-lbs=-53.2 Deg F I'lant: V oct Ic2 Material:

SA5331BI Heat: C35010-2 Orientation:

NA Capsule: X Flueic e: l/'ClnA2 300 250-200 0 150 z> 100 50-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature in Deg F Charpy V-Notch Data Temperature

-180.00-140. 00-100. 00-75.00-50. 00-25. 00-25. 01)-15. 00.00 Input CVN 3. 00 12. 00 24. 00 52. 00 33 00 7?2 0 0 63. 00 65. 00 84. 00 Computed CVN 5. 28 10. 66 23. 32 36. 33 52. 08 67. 5 I 67 5 I 72. 91 79. 82 Differential

-2 28 I 34 68 15 67-19. 08 4. 49-4. 51-7. 91 4. 18 WCAP-17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 C-131 Capsule X (Heat Affected Zone)Page 2 Plawn: Vogile 2 Material:

SA533B I Heat: C3500-2 Orientation:

NA Capsule: X Fl te nc: n/cm^2 Charpy V-Notch Data Temperature 10.40.75.125.150.175.00 00 00 00 00 00 Input CVN 101. 00 81. 00 107.00 98. 00 112.00 80. 00 Computed CVN 83. 6 1 91. 44 95. 89 98. 16 98. 57 98. 78 Differential

17. 39-10. 44 11 II-.16 13. 43-18 78 Correlation Coefficient

=.945 WCAP- 17343-NP March 2011 WCAP-17343-NP March 2011 Revision 0 C-132 Westinghouse Non-Proprietary Class 3 C-132 Westinghouse Non-Proprietary Class 3 Capsule X (Heat Affected Zone)CVGRAPH 5.3 Hyperbolic Tangent Curve Primned on 11/02/2010 03:05 PM Page I Coefficients of Curve I A = 34.72 B = 34.72 C = 81.9 TO = -36.15 D = 0.OOE+00 Equation is A + B

  • ITanh((T-To)/AC+DT)1l Upper Shelf L.E.=69,4 Lower Shelf l...E.=.O(Fixed)

Temp.@L.E.

35 mils=-35.4 Deg F Plant: Voetle 2 Material:

SA533 B Heat: C3500-2 Orientation:

NA Capsule: X Fluence: n/cm^2 200 150 E C.o 2. 100 50 50 04--300.0 0.0 300.0 Temperature in Deg F Charpy V-Notch Data 600.0 Temnperature

-180.00-140. 00-0 0. 0 0-75. 00-50, 0(0-25. ( 00-25. 00-15. 00.0 0 Input L.E..00 2. 00 14. 0(0 29. 00 20. 00 44. 00 33. 00 42. 00 53. 00 Computed L.F 2.01 5. 09 12. 07 19.38 28. 90 39. 42 39. 42 43. 49 49, 12 Differential

-2.01-3. 09 1. 93 9. 62-8. 90 4.58-6. 42-1. 49 3. 88 WCAP-17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 C-133 Westinghouse Non-Proprietary Class 3 C-133 Capsule X (Heat Affected Zone)Phint: Vogike 2 Orieithat ion: N Pa-c 2 Moteijal:

SA533B3 I Heat: C35(0-2 Copsule: X Flunciic:

ii/onlA2 Charpy V-Notch Data Temperature

10. 00 40. 00 75 00 1 25 00 15). 00 175. 00 Input L.E.5 5. 00 54. 00 73. 0(0 68. 00 72. 00 62. 00 Computed L.E.52i 45 60. 08 65. 12 68. 11 68.71 69. 04 Differential 2.55-6. 08 7. 88-.1 1 3. 29-7. 04 Correlation Coefficient

=.973 WCAP- 17343-NP March 2011 Revision 0 C-134 Westinghouse Non-Proprietary Class 3 Capsule X (Heat Affected Zone)CVCRAPH 5.3 Hyperbolic Tangent Curve Printed on 10/25/2010 03:37 PM Page 1 Coefficients of Curve I A = 5t. B = 50. C = 74.29 TO = -40.29 D = 0.00E+O0 Equation is A + B *ITanh((T-To)/(C+DT))]

Temnperatre at 50% Shear= -40.2 Plant: Vo\tle 2 Material:

SA533BI Heat: C35(0-2 Orientation:

NA Capsule: X Fluence: n/cn"2 125 100 IL a)0.75 50 25-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 Temperature in Deg F 400.0 500.0 600.0 Charpy V-Notch Data Temperature

-180.-140,-100.-75.-50.-25.-25.-I, 00 00 00 00 00 0)0 00 0 0 00 Input Percent Shear 2. 00 5. 00 10. 00 45, 00 35. 00 55. 00 55. 00 65. 00 85. 00 Computed Percent Shear 2. 27 6. 39 16. 70 28. 20 43. 51)60. 15 60. 15 66. 39 74. 74 Differential 27-1 39-6. 70 16. 80-8. 50 5 .15-5 .15-.39 tO. 26 WCAP- 17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 C-135 Westinghouse Non-Proprietary Class 3 C-135 Capsule X (Heat Affected Zone)PlaIznt: \"o~toe 2 Orientation:

NA Pae 2 Material:

SA533B I Heat: C3500-2 Capsule: X Fluence: n/cmnA 2 Charpy V-Notch Data Temperature

10. 00 40. 00 75. 00 125. 00 150. 00 175. 00 Input Percent Shear 90. 00 75. 00 S00. 00 100. 00 100. 00 t00. 00 Computed Percent Shear Differential 79.89.95, 98.99.99.48 68 71 85 41 70 10.14.4.1.68 29 15 59 30 Correlation Coefficient

= .974 WCAP- 17343-NP March 2011 Revision 0 C-136 Westinghouse Non-Proprietary Class 3 Capsule W (Heat Affected Zone)300 250 200"-I" 0 0 150 w z> 100 s0 CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 10125/2010 03:40 PNM Page I Coc fficic n[s of Curve I A = 51.1 B = 48.9 C = 53.34 TO = -55.88 D = 0.OOE+00 Equation is A + B I ITanh((T-To)/(C+DT))j Upper Shelf Energy=l It O.)Fixed)

Lower Shelf Eneroy=2.2(Fixed)"renp@30 ft-lbs=-80.5 Deg F Temp@ 50 ft-lb =-57.0I Deg F Plant: Vogtle 2 Material:

SA533B I Heat: C350(1-2 Orientation:

NA Capsule: W Fluence: n/Cm2A-0 0 0 0 0 0 0-300.0-200.0 -100.0 0.0 100.0 200.0 300.0 emperature in Deg F 400.0 500.0 600.0 Charpy V-Notch Data Temperature

-175.00-125. 00-90. 00-75.00-75, 00-50, 00-50. 010-25. 00 ( 00 Input CVN 3. (0 17. 00 31. 00 43. 00 17. 00 57. 010 5 7. 01)67. 00 10 1 .010 Computed CVN 3. 3 1 9 .1I 23, 49 34. 28 34. 28 56, 46 56. 46 76. 62 89. 28 Differential

-.31 7. 99 7.51 8. 72-17. 28 54 54-9. 62 11.72 WCAP- 17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 C-137 Capsule W (Heat Affected Zone)Plant: Vogdie 2 Orien tationi: NA Page 2 Material:

SA533B I Heat: C3500-2 Capsule: W Fluence: n/Cea^2 Charpy V-Notch Data Temperatu re 1 00 25. 00 50. 00 75. 00 125. 00 150. 00 Input CVN 92. 00 98. 00 99. 00 105. 00 107. 00 93. 00 Computed CVN 89. 28 95. 50 98. 19 99. 28 99. 89 99. 96 Differential 2.72 2.50.81 5. 72 7.11-6. 96 Correlation Coefficient

= .977 WCAP-17343-NP March 2011 Revision 0 C-138 Westinghouse Non-Proprietary Class 3 C- 8Wetnhus o-roreay ls Capsule W (Heat Affected Zone)CVGRAPH 5.3 Hyperbolic Tangenl Curve Printed on 1 1/02/2010 03:12 PM Page I Coefficients ou Curve I A = 34.01 B = 34.01 C = 62.8 TO = -48.33 D = O.OOE+0O Equation is A + B JT Tanhý(T-To)h!C+DT))]

Upper Shelf L.E.=68.0 Lower Shelf L.E.=.0( Fixed)Temp.@L.E.

35 mil=-46.5 Deg F Plant: Vog1le 2 MatCrial:

SA5S33B I Heat: C35(X)-2 Orientation:

NA Capsule: W Fluence: I/c11^2 200 150 E r-._o 3.100 50-300.0 0.0 300.0 600.0 Temperature in Deg F Charpy V-Notch Data Temperature 175. 00 125. 00-90. 00 75, 00 75. 00 50. 00 50. 00 25. 00*00 Input L.E.2 00 8. 00 19. 0 25 00 I 2. 00 32. 00 34. 00 36. 00 7 I. 00 Computed L.E.I .1 8 5. 45 14. 26 20. 38 20. 38 33. 11 3 3 .1 1 46. 09 56. 00 Diftfrential 82 2. 55 4. 74 4. 62-8. 38-1III 89 10. 09 S5. 00 WCAP- 17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 C-139 Westinghouse Non-Proprietary Class 3 C-I 39 Capsule W (Heat Affected Zone)Page 2 Plant: Volle 2 Material:

SA533B I Heal: C3500-2 Orientation:

NA Capsule: W Fluence: n/c1n^2 Charpy V-Notch Data Temperature 00 25. 00 50. 00 75. 00 125. 00 150. 00 Input L.E.59. 00 58. 00 60. 00 65. 00 68. 00 70. 00 Computed LE.56. 00 62. 02 65. 18 66. 71 67. 75 67. 90 Differential 3.-4.-2.2.00 02 18 71 25 to Correlation Coefficient

= .969 WCAP-17343-NP March 2011 Revision 0 C- 140 Westinghouse Non-Proprietary Class 3 Capsule W (Heat Affected Zone)CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 10/25/52010 03:46 PM Page 1 Coefficients of Curve I A = 50. B = 50. C = 59.52 TO = -42.89 D = 0.0OE+00 Equation is A + B ITanhO, T-To)!(C+DT)II Temperature at 5V. Shear = -42.8 Plant: Vogtlc 2 Material:

SA533B I Heat: C3500X-2 Orientation:

NA Capzule: W Fluence: IcniA2 125 100 U a'J 0)CL 75 50 25 0 !-i-------]--

i-- --4-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 Temperature in Deg F 600.0 Charpy V-Notch Data Temperature 1 75. 00 125, 00-90. 00 75. 00 75. 00 50. 00 50. 00 25, 00.0 0 Input Percent Shear 2. 00 5. 00 15. 00 20. 00 1I5, 0(0 55. 00 60. 0(50. 0(0 90. 0 0 Computed Percent Shear I. 17 5. 96 17. 04 25. 37 25. 37 44. 015 44. 1)5 64. 59 8(M 86 Differential 83-.96-2. 04-5. 37-10.37 10. 95 15. 95-14.59 9. 14 WCAP-17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 C- 141 Westinghouse Non-Proprietary Class 3 C-i 41 Capsule W (Heat Affected Zone)Paec 2 Plant: Vogtle 2 Miaterial:

SA533B I Hcat: C3500-2 Orientation:

NA Capsule: W Fluence: n/cm^2 Charpy V-Notch Data Temperature 2.50.75.125.150.00 00 00 00 00 0(0 Input Percent Shear 70. 00 100. 00 85. 00 95. 00 100. 00 100. 00 Computed Percent Shear 80. 86 90. 73 95. 78 98. 13 99. 65 99. 85 Differential 10,86 9.27 10.78-3. 13 35.15 Correlation Coefficient

=.971 WCAP-17343-NP March 2011 WCAP-17343-NP March 2011 Revision 0 C- 142 Westinghouse Non-Proprietary Class 3 C-142 Westinghouse Non-Proprietary Class 3 Capsule Z (Heat Affected Zone)CVGRAPH 5.3 Hyperbolic Tangetil Curvec Prhimed oii II1 /02/2010) 04:00 PM, PNoe I ( ofctiucnls.ot ( trve I A = 57.1 BI =54.9C 82.44 TO = 30.56 D = .OOE+00 Equation.

is A + B I' T nht(T-To)/(C+/-DTI)I Upper Shelf Eiwtgvx I 120(FIed)

Louwer Shelf Ener,-v=9 ')2FiNed)Tetnp@30 ft-lbs- 75.I Deg' F Tctnp@50 f-b-l.2Deg F Plunt: V~otd 2 NI net ial SA5 ~33B I Heat: C3 500-2 Orientation:

NAX C. p'ntle Z Fluence: 1n/CItA2)300 250$ 200 0 0 U-io Lm150-w z> 100 50 0-30 Temperature 0.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 Temperature in Deg F Charpy V-Notch Data-150.-1101.-90,-80.-75.-60.-50.-35.-25.0 0 0 0 0 0 0(0 0 0 0 0 0 0 0 0 0 0 Input CVN 9. (00 20. 00 33. 00 23. 00 29. 00 38. 00 52. 00 58. 00 38. 00 Computed CVN 7 94 16. 15 23. 20 27. 63 30) 08 38. 29 44. 39 54. 15 6(1 80 Differential

1. 06 3. 85 9. 80-4. 63-1)08 29 7. 61 3. 85-22. 80 WCAP- 17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 C-143 Capsule Z (Heat Affected Zone)PaNe 2 Plant: VotOle 2 Material:

SA533B I Heat: C3500-2 Orientation:

NA Capsulc: Z Flueiicc:

n/cm^2 Charpy V-Notch Data Temperature

.0 0 25. 00 60. 00 110. 00 150. 00 175. 00 Input CVN 79. 00 90. n0 115. 00 114. 00 106. 00 11I. 00 Computed CVN 76. 57 89. 36 101 .02 108. 49 110.64 111 .26 Differential

2. 43.64 13.98 5.51-4.64-.26 Correlation Coefficient

= .976 WCAP-17343-NP March 2011 Revision 0 C- 144 Westinghouse Non-Proprietary Class 3 Capsule Z (Heat Affected Zone)CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 1/02r2010 04:03 PM Page 1 Cocfficientis of, Curve I A = 36.22 B = 36.22 C = 91.05 TO = -27.52 D = 0.OOE+00 Equation is A + B %z [Tanh((T-To)/(C+DT))I Upper Shell L.E.=72.4 Lower Shelf L.E.=.O(Fixed)

Temp.@L.E.

35 mils=-30.5 Deg. F Plant: Voetle 2 Material:

SA533B I Heat: C3500-2 Orientation:

NA Capsule: Z Fluence: itr/Co^2 200 150 E C.o 0 E. 100 In 7Eo 50 O -, i i-300.0 0.0 300.0 Temperature in Deg F 600.0 Charpy V-Notch Data Temperature

-50, I 10.9(, 8( , 75.60.-50.35.25.00 0(1 0 )00 00 0 0 00 01)0I 0 Input L.E.4. 00 I I. 10)0 1 8. (I 0 15. 00l)1 9. 0 0 2 1. 00 34. 00 34. 00 30. (I00 Computed L.E.4. 60 10. 17 14 65 17. 38 18. 87 23. 82 27. 45 33. 25 37 .22 Dit'ferential 60 83 3. 35-2. 38 1 3-2 82 6. 55 75-7 22 WCAP- 17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 C-145 Westinghouse Non-Proprietary Class 3 C-145 Capsule Z (Heat Affected Zone)Plant: Vo:.lle 2 O.riewatait~n:

NA Pagie 2 Material:

SA533BI Heat: C350-2 Capsule: Z Fluence: n/cm^2 Charpy V-Notch Data Temperature 1 00 25. 00 60. 00 1 10. 00 150. 00 175. 00 Input L.E.49. 00 5 1* 00 70. 00 71. 00 66. 00 72. 00 Computed LE.46. 84 55. 06 63. 19 69. 07 7 1. 00 71 .60 Differential

2. 16-4. 06 6. 81 1 93-5. 00 40 Correlation Coefficient

=.986 WCAP-17343-NP March 2011 Revision 0 C- 146 Westinghouse Non-Proprietary Class 3 C-146 Westinghouse Non-Proprietary Class 3 Capsule Z (Heat Affected Zone)CVGRAPH 5.3 Hyperbolic Tangent Curve Printed on 10/25/2010 01:45 PM Page I Coefficients of Curve I A = 50. B = 51. C = 64.25 TO = -37.56 D = O.OOE+O0 Equation is A + B ý-' ITanh((T-To)/(C+DT))]

Temperature at 50% Shear = -37.5 Plant: Votle 2 Malcrial:

SA533BI Heat: C35(&-2 Orientation:

NA Capsule: Z Fluence: n/c1n^2 125 100 0.75 50 25 0 ' ..=-- 6 i'-300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 Temperature in Deg F 500.0 600.0 Charpy V-Notch Data Temperature t50, 00 I 10. 00 90. 00 80, 00 75. 00-60. 00-50, 00 35. 00 25. 00 Input Percent Shear 10. 00 15. 00 20. 00 20, 00 25. 00 30. 00 40. 00 50. (00 50. 010 Computed Percent Shear 2.93 9. 49 16, 35 21t 06 23. 77 33, 21 40. 44 5 1. 99 59. 65 Differential 7I 07 5.5 1 3 65 1 06 1 23-3 21 44 1.99 9. 65 WCAP-17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 C-147 Westinghouse Non-Proprietary Class 3 C-I 47 Capsule Z (Heat Affected Zone)Page 2 PIhm: VogttIe 2 Material:

SA533B I Heal: C3500-2 Orienlation:

NA Capsule: Z FlIuencC:

nlccm^2 Charpy V-Notch Data Temperature 25.60.110.150.175.00 00 00 00 00 00 Input Percent Shear 90. 00 85. 00 100. 00 1010. 00 100.00 I00. 00 Computed Percent Shear 76. 30 87.51 95. 42 99. 00 99.71 99. 87 Differential

13. 70-2.51 4.58 1. 00 29 13 Correlation Coefficient

= .989 WCAP-17343-NP March 2011 Revision 0

Westinghouse Non-Proprietary Class 3 D-1 APPENDIX D VOGTLE UNIT 2 SURVEILLANCE PROGRAM CREDIBILITY EVALUATION D.1 INTRODUCTION Regulatory Guide 1.99, Revision 2 [Ref. D- 1] describes general procedures acceptable to the NRC staff for calculating the effects of neutron radiation embrittlement of the low-alloy steels currently used for light-water-cooled reactor vessels. Positions 2.1 and 2.2 of Regulatory Guide 1.99, Revision 2, describe the method for calculating the adjusted reference temperature and Charpy upper-shelf energy of reactor vessel beltline materials using surveillance capsule data. The methods of Positions 2.1 and 2.2 can only be applied when two or more credible surveillance data sets become available from the reactor in question.To date there have been five surveillance capsules removed from the Vogtle Unit 2 reactor vessel and tested. To use these surveillance data sets, they must be shown to be credible.

In accordance with Regulatory Guide 1.99, Revision 2, the credibility of the surveillance data will be judged based on five criteria.The purpose of this evaluation is to apply the credibility requirements of Regulatory Guide 1.99, Revision 2, to the Vogtle Unit 2 reactor vessel surveillance data and determine if that surveillance data is credible.D.2 EVALUATION Criterion 1: Materials in the capsules should be those judged most likely to be controlling with regard to radiation embrittlement.

The beltline region of the reactor vessel is defined in Appendix G to 10 CFR Part 50, "Fracture Toughness Requirements" [Ref. D-2], as follows: "the region of the reactor vessel (shell material including welds, heat affected zones, and plates orforgings) that directly surrounds the effective height of the active core and adjacent regions of the reactor vessel that are predicted to experience sufficient neutron radiation damage to be considered in the selection of the most limiting material with regard to radiation damage." WCAP- 17343-NP March 2011 Revision 0 D-2 Westinghouse Non-Proprietary Class 3 The Vogtle Unit 2 reactor vessel consists of the following beltline region materials: " Intermediate Shell Plates R4-1, R4-2, and R4-3" Lower Shell Plates B8825-1, R8-1, and B8628-1* Intermediate Shell Longitudinal Weld Seams 101-124 A, B, and C (fabricated with weld wire Heat # 87005, Linde 0091 flux, Lot # 0145)" Lower Shell Longitudinal Weld Seams 10 1-142 A, B, and C (fabricated with weld wire Heat # 87005, Linde 0091 flux, Lot # 0145)* Intermediate to Lower Shell Circumferential Weld Seam 101-171 (fabricated with weld wire Heat # 87005, Linde 124 flux, Lot # 1061)The Vogtle Unit 2 surveillance program utilizes longitudinal and transverse test specimens from Lower Shell Plate B8628-1. The surveillance weld metal was fabricated with weld wire Heat # 87005, Linde 124 flux, Lot # 1061.At the time when the surveillance program material was selected, it was believed that copper and phosphorus were the elements most important to embrittlement of reactor vessel steels. Lower Shell Plate B8628-1 had the highest initial RTNDT and one of the lowest initial USE values of all plate materials in the beltline region. In addition, Lower Shell Plate B8628-1 had approximately the same copper and phosphorus content of the other beltline plate materials.

Based on the highest initial RTNDT and one of the lowest initial USE values of all plate materials in the beltline region, Lower Shell Plate B8628-1 was chosen for the surveillance program.The circumferential weld has the same heat number as all the beltline longitudinal welds, but a different flux. The circumferential weld had the lower initial RTNDT of the two flux types. However, both welds had low initial RTNDT values and approximately the same copper and phosphorus content. the initial USE of the circumferential weld was approximately 60 ft-lbs lower than the initial USE of the beltline longitudinal weld seams. Thus, the circumferential weld was selected based on the lower USE value.Based on the above discussion and the methodology in use at the time the program was developed, the Vogtle Unit 2 surveillance material meets the intent of Criterion 1.Criterion 2: Scatter in the plots of Charpy energy versus temperature for the irradiated and unirradiated conditions should be small enough to permit the determination of the 30 ft-lb temperature and USE unambiguously.

Based on engineering judgment, the scatter in the data presented in these plots is small enough to permit the determination of the 30 ft-lb temperature and the USE of the Vogtle Unit 2 surveillance materials unambiguously.

Hence, the Vogtle Unit 2 surveillance program meets this criterion.

WCAP- 17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 D-3 Westinghouse Non-Proprietary Class 3 D-3 Criterion 3: When there are two or more sets of surveillance data from one reactor, the scatter of ARTNDT values about a best-fit line drawn as described in Regulatory Position 2.1 should normally be less than 28°F for welds and 17'F for base metal. Even if the fluence range is large (two or more orders of magnitude), the scatter should not exceed twice those values. Even if the data fail this criterion for use in shift calculations, they may be credible for determining decrease in USE if the upper shelf can be clearly determined, following the definition given in ASTM E185-82 [Ref. D-3].The functional form of the least squares method as described in Regulatory Position 2.1 will be utilized to determine a best-fit line for this data and to determine if the scatter of these ARTNDT values about this line is less than 28°F for welds and less than 17'F for the plate.The Vogtle Unit 2 Lower Shell Plate B8628-1 and surveillance weld material will be evaluated for credibility.

The weld is made from weld wire Heat # 87005; Vogtle Unit 2 does not have a sister plant that shares the same weld wire heat and thus does not utilize data from other surveillance programs.Therefore, the method of Regulatory Guide 1.99, Revision 2 will be followed for determining credibility of the weld as well as the plate material.WCAP- 17343-NP March 2011 Revision 0 D-4 Westinghouse Non-Proprietary Class 3 Credibility Assessment:

Since all surveillance data is from one vessel (Vogtle Unit 2), the measured ARTNDT and fluence factor (FF) should be used to calculate the chemistry factors to determine if the Vogtle Unit 2 surveillance material test results are credible.The chemistry factors for the Vogtle Unit 2 surveillance plate and weld material contained in the surveillance program were calculated in accordance with Regulatory Guide 1.99, Revision 2, Position 2.1 and are presented in Table D-1. The scatter of ARTNDT values about the functional form of a best-fit line drawn as described in Regulatory Position 2.1 is presented in Table D-2.Table D-1 Calculation of Interim Chemistry Factors for the Credibility Evaluation using Vogtle Unit 2 Surveillance Capsule Data MaeilCpue Capsule f F, ARTNDT FFI*ARTNDT F (x 11 9 n/cm FF (I U 0.356 0.715 2.0 1.43 0.511 Y 1.12 1.032 5.8 5.98 1.064 Lower Shell Plate B8628-1 (Longitudinal)

X 1.78 1.158 29.4 34.06 1.342 W 2.98 1.289 39.0 50.28 1.662 Z 4.16 1.365 59.0 80.51 1.862 U 0.356 0.715 0.01a) 0.00 0.511 Y 1.12 1.032 1.9 1.96 1.064 Lower Shell Plate B8628-1 (Transverse)

X 1.78 1.158 29.8 34.52 1.342 W 2.98 1.289 45.5 58.65 1.662 Z 4.16 1.365 75.3 102.76 1.862 SUM: 370.15 12.883 CFB8 6 2 8-1 =Y(FF

  • ARTNOT) + Y( FF 2) (370.15)+

(12.883) =28.7 0 F U 0.356 0.715 0.0(0) 0.00 0.511 Y 1.12 1.032 18.7 19.29 1.064 Surveillance Weld Material X 1.78 1.158 19.9 23.05 1.342 W 2.98 1.289 31.4 40.48 1.662 Z 4.16 1.365 21.3 29.07 1.862 SUM: 111.89 6.441 CF su. Weld = (FF

  • ARTNDr) + Y( FF 2) = (I11.89)-+

(6.441) = 17.4°F Note: (a) Measured ARTNDT values were determined to be negative, but physically a reduction should not occur. Therefore, a conservative value of zero was used.WCAP- 17343-NP March 2011 WCAP- 17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 D-5 Table D-2 Vogtle Unit 2 Surveillance Capsule Data Scatter about the Best-Fit Line CFpue Measured-

Predicted-Scatter <1'7 0 F SMaterial Capsule. (SIOlope t~fit) (Xll Dc2 FF ARTNDT, 1 A RTNDIT -ART NnI I' (Base Metal)~/ (t c (9F) (OF) (OF) <'
28?F (Weld): U 28.7 0.356 0.715 2.0 20.5 18.5 no Y 28.7 1.12 1.032 5.8 29.6 23.8 no Lower Shell Plate B8628-1 X 28.7 1.78 1.158 29.4 33.3 3.9 yes (Longitudinal)

W 28.7 2.98 1.289 39.0 37.0 2.0 yes Z 28.7 4.16 1.365 59.0 39.2 19.8 no U 28.7 0.356 0.715 0.0 20.5 20.5 no Y 28.7 1.12 1.032 1.9 29.6 27.7 no Lower Shell Plate B8628-1 X 28.7 1.78 1.158 29.8 33.3 3.5 yes (Transverse)

W 28.7 2.98 1.289 45.5 37.0 8.5 yes Z 28.7 4.16 1.365 75.3 39.2 36.1 no U 17.4 0.356 0.715 0.0 12.4 12.4 yes Y 17.4 1.12 1.032 18.7 17.9 0.8 yes Surveillance Weld Material X 17.4 1.78 1.158 19.9 20.1 0.2 yes W 17.4 2.98 1.289 31.4 22.4 9.0 yes Z 17.4 4.16 1.365 21.3 23.7 2.4 yes From a statistical point of view, +/- 1y would be expected to encompass 68% of the data. Table D-2 indicates that six of the ten surveillance data points fall outside the +/- 1(y of 17F scatter band for surveillance base metals; therefore, the plate data is deemed "not credible" per the third criterion.

Table D-2 indicates that zero of the five surveillance data points falls outside the +/- lcr of 28°F scatter band for surveillance weld materials; therefore, the surveillance weld data is deemed "credible" per the third criterion.

Note that although Lower Shell Plate B8628-1 did not meet Criterion 3, both materials (Lower Shell Plate B8628-1 and the surveillance weld material) may still be used in determining the upper-shelf energy decrease in accordance with Regulatory Guide 1.99, Revision 2, Position 2.2.WCAP-17343-NP March 2011 Revision 0 D-6 Westinghouse Non-Proprietary Class 3 D-6 Westinghouse Non-Proprietary Class 3 Criterion 4: The irradiation temperature of the Charpy specimens in the capsule should match the vessel wall temperature at the cladding/base metal interface within +/- 25°F.The capsule specimens are located in the reactor between the neutron pad and the vessel wall and are positioned opposite the center of the core. The test capsules are in baskets attached to the neutron pads.The location of the specimens with respect to the reactor vessel beltline provides assurance that the reactor vessel wall and the specimens experience equivalent operating conditions such that the temperatures will not differ by more than 25°F. Hence, this criterion is met.Criterion 5: The surveillance data for the correlation monitor material in the capsule should fall within the scatter band of the database for that material.The Vogtle Unit 2 surveillance program does not contain correlation monitor material.

Therefore, this criterion is not applicable to the Vogtle Unit 2 surveillance program.D.3 CONCLUSION Based on the preceding responses to all five criteria of Regulatory Guide 1.99, Revision 2, Section B, the Vogtle Unit 2 surveillance data is deemed credible for the weld specimens and non-credible for the plate specimens.

D.4 REFERENCES D-1 Regulatory Guide 1.99, Revision 2, Radiation Embrittlement of Reactor Vessel Materials, U.S. Nuclear Regulatory Commission, May 1998.D-2 10 CFR 50, Appendix G Fracture Toughness Requirements, Federal Register, Volume 60, No. 243, December 19, 1995.D-3 ASTM E185-82, Standard Practice for Conducting Surveillance Tests for Light-Water Cooled Nuclear Power Reactor Vessels, E706(IF), ASTM, 1982.WCAP-17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 E-1 APPENDIX E VOGTLE UNIT 2 UPPER-SHELF ENERGY EVALUATION Per Regulatory Guide 1.99, Revision 2 [Ref. E-l], the Charpy upper-shelf energy (USE) is assumed to decrease as a function of fluence and copper content as indicated in Figure 2 of the Guide (Figure E-I of this appendix) when surveillance data is not used. Linear interpolation is permitted.

In addition, if surveillance data is to be used, the decrease in upper-shelf energy may be obtained by plotting the reduced plant surveillance data on Figure 2 of the Guide (Figure E-I of this appendix) and fitting the data with a line drawn parallel to the existing lines as the upper bound of all the data. This line should be used in preference to the existing graph.The 36 EFPY (end-of-license) and 57 EFPY (end-of-license renewal) upper-shelf energy of the vessel materials can be predicted using the corresponding 1/4T fluence projection, the copper content of the beltline materials and/or the results of the capsules tested to date using Figure 2 in Regulatory Guide 1.99, Revision 2. The maximum vessel clad/base metal interface fluence value was used to determine the corresponding l/4T fluence value at 36 and 57 EFPY. Note that the maximum fluence value associated with 57 EFPY was calculated based on the linear interpolation of the maximum fluence values at 54 EFPY and 60 EFPY.The Vogtle Unit 2 reactor vessel beltline region minimum thickness is 8.625 inches. Calculation of the 1/4T vessel surface fluence values at 36 and 57 EFPY for the beltline materials is shown as follows: Maximum Vessel Fluence @ 36 EFPY 2.00 x 1019 n/cm 2 (E > 1.0 MeV)1/4T Fluence @ 36 EFPY = (2.00 x 1019 n/cm 2)

  • e(-0"24. (8.625/4))

= 1.192 x 1019 n/cm 2 (E > 1.0 MeV)Maximum Vessel Fluence @ 57 EFPY = 3.19 x 1019 n/cm 2 (E > 1.0 MeV)1/4T Fluence @ 57 EFPY = (3.19 x 10'9 n/cm 2)

  • e(°.24 * (8.625 / 4))1 1.901 X 1019 n/cm 2 (E > 1.0 MeV)The following pages present the Vogtle Unit 2 upper-shelf energy evaluation.

Figure E-1, as indicated above, is used in making predictions in accordance with Regulatory Guide 1.99, Revision 2. Table E-1 provides the predicted upper-shelf energy values for 36 EFPY (end-of-license).

Table E-2 provides the predicted upper-shelf energy values for 57 EFPY (end-of-license renewal).WCAP- 17343-NP March 2011 Revision 0 E-2 Westinghouse Non-Proprietary Class 3 E-2 Westinghouse Non-Proprietary Class 3* Surveillance Material:

Lower Shell Plate B8628-1 A Surveillance Material:

Circumferential Weld 101-171 100.0 0.10.0 1.0 1.OOE+17 Figure E-1 1.OOE+18 1.OOE+19 Neutron Fluence, n/cm 2 (E > 1 MeV)I.OOE+20 Regulatory Guide 1.99, Revision 2 Predicted Decrease in Upper-Shelf Energy as a Function of Copper and Fluence WCAP-17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 E-3 Table E-1 Predicted Positions 1.2 and 2.2 Upper-Shelf Energy Values at 36 EFPY Material Position 1.2 Intermediate Shell Plate R4-1 0.07 1.192 95 20 76 Intermediate Shell Plate R4-2 0.06 1.192 104 20 83 Intermediate Shell Plate R4-3 0.05 1.192 84 20 67 Lower Shell Plate B8825-1 0.06 1.192 83 20 66 Lower Shell Plate R8-1 0.07 1.192 87 20 70 Lower Shell Plate B8628-1 0.05 1.192 85 20 68 Intermediate Shell Longitudinal Weld Seams 101-124 A, B, C 0.05 1.192'a) 152 20 122 (Heat # 87005)Lower Shell Longitudinal Weld Seams 101-142 A, B, C 0.05 1.192(a) 152 20 122 (Heat # 87005)Intermediate to Lower Shell Circumferential Weld 0.05 1.192 90 20 72 Seam 101-171 (Heat # 87005)Position 2.2(b)Lower Shell Plate B8628-1 0.05 1.192 85 6.4 80 Intermediate

& Lower Shell 0.05 1.192(a) 152 7.2 141l Longitudinal Welds (Heat # 87005)Intermediate to Lower Shell 0.05 1.192 90 7.2 84 Circumferential Weld (Heat # 87005)Notes: (a) The fluence values listed for the intermediate and lower shell longitudinal welds conservatively pertain to the maximum vessel fluence value, though the welds vary in location.(b) Calculated using surveillance capsule measured percent decrease in USE from Table 5-10 and Regulatory Guide 1.99, Revision 2, Position 2.2; see Figure E-I.WCAP-17343-NP March 2011 Revision 0 E-4 Westinghouse Non-Proprietary Class 3 Table E-2 Predicted Positions 1.2 and 2.2 Upper-Shelf Energy Values at 57 EFPY 114TEOLR Uj ~~d Projected I Weight Fluence , USE Poe ,td Material ~ USE EOLR (ft-lb)? USE (ft-lb)Position 1.2 Intermediate Shell Plate R4-1 0.07 1.901 95 22 74 Intermediate Shell Plate R4-2 0.06 1.901 104 22 81 Intermediate Shell Plate R4-3 0.05 1.901 84 22 66 Lower Shell Plate B8825-3 0.06 1.901 83 22 65 Lower Shell Plate R8-1 0.07 1.901 87 22 68 Lower Shell Plate B8628-1 0.05 1.901 85 22 66 Intermediate Shell Longitudinal Weld Seams 101-124 A, B, C 0.05 1.9011a) 152 22 119 (Heat # 87005)Lower Shell Longitudinal Weld Seams 101-142 A, B, C 0.05 1.901(a) 152 22 119 (Heat # 87005)Intermediate to Lower Shell Circumferential Weld 0.05 1.901 90 22 70 Seam 101-171 (Heat # 87005)Position 2.2(b)Lower Shell Plate B8628-1 0.05 1.901 85 7 79 Intermediate

& Lower Shell 0.05 1.901(a) 152 8.2 140 Longitudinal Welds (Heat # 87005)Intermediate to Lower Shell 0.05 1.901 90 8.2 83 Circumferential Weld (Heat # 87005)_____

Notes: (a) The fluence values listed for the intermediate and lower shell longitudinal welds conservatively pertain to the maximum vessel fluence value, though the welds vary in location.(b) Calculated using surveillance capsule measured percent decrease in USE from Table 5-10 and Regulatory Guide 1.99, Revision 2, Position 2.2; see Figure E-I.WCAP-17343-NP March 2011 Revision 0 Westinghouse Non-Proprietary Class 3 E-5 USE Conclusion All of the beltline materials in the Vogtle Unit 2 reactor vessel are projected to remain above the USE screening criterion value of 50 ft-lb (per 10 CFR 50, Appendix G) at 36 and 57 EFPY.E.1 REFERENCES E-1 Regulatory Guide 1.99, Revision2, Radiation Embrittlement of Reactor Vessel Materials, U.S. Nuclear Regulatory Commission, May 1998.WCAP-17343-NP March 2011 Revision 0