ML20197E466

From kanterella
Jump to navigation Jump to search
Natl Environ Studies Project:De Minimus Concentrations of Radionuclides in Solid Wastes
ML20197E466
Person / Time
Site: Three Mile Island Constellation icon.png
Issue date: 04/30/1978
From: Frendberg R, Morton H, Rodger W, Stanton S
NUCLEAR SAFETY ASSOCIATES
To:
Shared Package
ML20197E472 List:
References
FRN-50FR51992, FRN-56FR23360, RULE-PR-19, RULE-PR-20, RULE-PR-30, RULE-PR-31, RULE-PR-32, RULE-PR-34, RULE-PR-40, RULE-PR-50, RULE-PR-61, RULE-PR-70, TASK-TF, TASK-TMR AA38-2-1079, AIF-NESP-016, AIF-NESP-16, NUDOCS 8001230450
Download: ML20197E466 (93)


Text

{{#Wiki_filter:, _ cP. . . . Enclosure 6 n AIF/NESP-016 National Environmental Studies Project "de =4n4=us" CONCENTRATIONS OF f

q.

RADIONUCLIDES IN SOLID WASTES i Prepared for the Atomic Industrial Forum by

                                                                               ~

Walton A. Rodger i S. Shelton Stanton Richard L. Frendberg , Henry W. Morton t Nuclear Safety Associates 5101 River Road Bethesda, MD 20016 l April 1978 goot23o 450 YA

e l 0% NOTICE This report was prepared as an account of work sponsored by the Atomic Industrial Forum. Neither the Atomic Industrial Forum, nor any of its employees, makes any warranty, expressed or implied, or assumes legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents E that its use would not infringe privately-owned rights. J

 ~

The opinions, conclusions, and recommendations set forth in this report are those of the authors and do not necessarily represent the views of the Atomic Industrial Forum, Inc., its members, or its consultants. I l

                's pyright 1970 by
  • l nt.emic Industrial Forum, Inc.

7101 Wisconsin Avenue, Washington, D.C. 20014 All rights reserved. I l l

o PREFACE , 1 In a general sense, the term "de minimus" refers to concentrations or quantities of potential pollutants that are present in so minute amounts in a gaseous, liquid or solid waste as to be relatively harmless to man and his environment. In other words, a waste or effluent that meets criteria defining "de minimus" levels should be acceptable for disposal or release without any special precautions or monitoring programs. ~ While wastes and effluents from power reactor operations are generally thought g of in terms of their radioactivity content, the concept is equally applicable to such environmental concerns as free residual chlorine, atmospheric and aquatic rejection of waste heat, and the impingement and entrainment of aquatic organisms in cooling water systems. The concept of "de minimus" concentrations of radionuclides in slightly contaminated solid waste was first brought to our attention about two years ago by several of NESP's sponsors and the Nuclear Regulatory Comunission. When funding became available in mid-1977, Nuclear Safety Associates was awarded a contract to investigate existing standards for radioactive Imaterialsandothercons q purpose of identifying criteria that define "de minimus" levels. Once the criteria were defined, the thrust of the study was to develop and apply a generic methodology that could be used for determining whether or not certain slightly contaminated solid wastes were suitable for a "de minimus" radioactivity-level classification. It is important to note that it was not intended for this investigation to include an evaluation of the overall acceptability or appropriateness of various existing radiation standards or guidelines, such as 40 CFR Part 190 and Appendix I to 10 CFR Part 50, but rather, to use current lii

, regulations as a basis for defining reasonable "de minimus" levels. Hence, i

it should not be inferred by the reader that the results of the study -

tacitly endorse the regulations considered. Also, the criteria are presented l as a suggested approach to defining "de minimus" levels and do not necessarily represent a consensus position of the nuclear power industry, __ For this initial NESP investigation of the "de minimus" concept, PWR i spent secondary-side powdered resin was selected as a specific and timely subject that could be used to demonstrate the development and application of a generic methodology. The study was limited to spent powdered resin because of budgetary constraints and the fact that the spent resin exampla would suitably serve the purpose of illustrating the basic concept. It was found that the methodology is applicable to other solid wastes, e.g.,

 *}                                         slightly-contaminated soils, dredge spoils and the like. However, because the pathways for dose to man evaluated in this work were selected on the l

basis of solid waste, the methodology is not complete in terms of its application to wastes other than solids. In the particular case of the - t

                                            " trash" category of solid wastes, the methodology is probably incomplete l                                       because of the possibility of incineration and the fact that the methodology l                                       does not include this kind of airborne pathway to man. Nonetheless, this should not be interpreted as a major shortcoming in the methodology, because 23                                         once the user understands its application to solid waste, he can readily include analyses of additional pathways that are relevant to the particular

! waste being examined. The limiting radionuclide concentrations for solids presented in this work are thought to be generic and independent of site-specific variables. iv

   - , . . - . - - , - - , . , _ , - _ , _ . _ _ . . , .         - - - . , - , . . . _ ___c___-_-

4, , 4 For this study, pathways and assumptions were selected in order that variations in individual site characteristics would not appreciably alter the findings. For example, the assumptions made for the " sanitary landfill-leaching into watercourse" pathway analysis, which would usually be consi-dered quite site dependent, were sufficiently conservative that even the limiting radionuclide concentrations stipulated for this pathway can be considered independent of site-specific features. It is also important to recognize that the primary criterion identified in this study for determining "de minimus" levels, which is 1 ares / year to an individual, was selected on a very conservative basis, and that higher levels of contami-nation are very likely to be appropriate for some applications of the concept, particularly those involving more controlled waste disposal

  ;                                         conditions.
 "i
 .i

,g; . Philip Garrett 60 Project Manager _ National Environnantal Studies Project I O V'

TABLE OF C0!f1ENTS Page No. 1.0 INIRODUCTION 1

2.0 CONCLUSION

S 4 3.0 RADIATION PROTECTION CRITERIA 5 3.1 Introduction 5 3.2 Natural Background Radiation Exposures .6

                              ' Sources of Natural Radiation                        6 Environmental Variations                             7 Implication of Natural Background Exposure          10 y                     3.3 dnregulated, Man-Made Radiation Exposures                12 3.4 Existing Regulations                                     12 I

10 CIR Part 20 13 10 CFR Part 30 14 10 CPR Part 50. Appendix I 14 10 CFR Part 71 16 40 CFR Part 190 16 Proposed Federal Guidance on Transuranium 17 Elements in the Environment 3.5 Selection of Dose Limits Appropriate for "de minimus" 18 Disposal Concentrations 4.0 METHODOIDGY dip 1 DYED 22 - 4.1 Disposal Scenarios 22

 .)

4.2 Environmental Pathways 23 4.3 Calculational Technique 25 4.4 Results of Jsiculations 28 Individual 'sthway Evaluation 28 Summary of Most Limiting Cases 28 5.0 COST-BENEFIT CONSIDERATIONS 46 6.0 APPLICATION OF THE GENERIC METHOD 48 6.1 Application to Secondary Resins 48 6.2 Practicability of Measurement 51 REFERENCES 55 APPENDICES 57 vi

LIST OF FIGURES Firures Pane 3-1 Personal Dese Rates of Ionizing Radiation from Naturally Occurring on Unre gulated Sources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 4-1 Summary Diagram of Method of Determining "de minimus" Radionuclide Concentration Limit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 6-1 Susanary Diagram of Method of Calculating Whether Waste Is "de minimus".............................................. 49 LIST OF IABLES Tables

            .                          3-1           Summary of Representative Dose Equivalent Rates in the USA
lt from All Naturally Occurring Radiation' Sources............... 21 4-1 Quantities Assigned to Variables in the Evaluation of Postulated Leaching of Radionuclides from a Sanitary Landfill to a Watercourse............................................. 31 4-2 Example of Computed Concentration Limits for One Disposal Mode-Pathway-Receptor Case................................... 32 4-3 Most Restrictive Concentration Limits and Disposal-Pathway-Receptor Combinations Selected from all Computed Cases....... 34 4-4 Most Restrictive Concentration Limits and Disposal-Pathway-
   .u                                               Receptor Combinations Selected from All Computed Cases
  ,,                                               Arranged by Increasing "de minimus" Concentration Limit...... 37

!*' 4-5 Most Restrictive Activity Concentration Limits for Solid Waste Disposal in a Sanitary Landfi11........................ 40 , 4-6 Most Restrictive Activity Concentration Limits for Solid Waste Disposal in a Sanitary Landfill Arranged by Increasing "de minimus" Concentration Limit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

  ,                                   6-1          Comparison of Computed Activity Concentrations in Spent Resin with "de minimus" Concentration Limits Appropriate for Land Disposal of Homogeneous Bulk Solid Waste.....................                                 52 6-2          Comparison of Computed Activity concentrations in Spent Resin with "de minimus" Concentration Limits Appropriate for Land Disposal of Homogeneous Bulk Solid Wasta. . . . . . . . . . . . . . . . . . . . . 53 i

6-3 Comparison of Computed Activity. Concentrations in Spent Resin with "de minimus" Concentration Limits Appropriate for Land Disposal of Homogeneous Bulk Solid Waste..................... 54 vii

s

1.0 INTRODUCTION

In 1977, the National Environmental Studies Project of the Atomic Industrial Forum established a task -force to develop the scope of a study aimed at determining levels of radioactivity which could be considered "de minimus", i.e., levels which could be considered "non-radioactive" and such that materials at or below these levels could be released or discarded without restriction. As a result of the work of this task force Nuclear Safety Associates was commissioned by the Atomic Industrial Forum to carry out such a study, to develop specific recommendations for quantitative "de minimus" levels using spent powdered ion-exchange resins from PWR secondary systems as an example, and to supply the technical and s scientific bases for determining and justifying the levels selected. In the development of the "de minimus" values reported herein, the i following basic steps were used: e Basic radiation protection criteria were identified. Clearly there is a direct relationship between the quantity or concen-tration of radioisotopes which may be released by any means and the degree of protection which is to be provided to members of the public. Therefore, it is first necessary to establish what the desired degree of protection is. The selection of this criterion is discussed in Section 3 of this report. e Pathways by which released activity could reach man were identified and described. The major modes by which man may be exposed to ambient radioactivity are: ingestion, inhalation, and direct irradiation. There are also a number of transport mechanisms by which radioactive material may move in the 1 i

environment and thus reach man. Some of these are: suspension of solid particles into air, surface runoff with water, transport by groundwater, and physical transport into situations wherein food products may be raised in proximity to the radioactivity. A matrix of exposure pathways was set up to ' describe all practica-

                                 ~

ble ways by which exposure of man might occur. A discussion of the pathways investigated is given in Section 4.2. e For-each pathway and for each isotope the limiting concentration kl which allows the selected radiation protection criterion to be met was cal'eulatsd. For ,each radionuclide the limiting pathway was determined and the radionuclide limit was set, individually, based upon the most restrictive mode found for that nuclide. A discussion of this calculational technique and of the computer code developed to carry it out Ds given in Section 4.3. The extensive calculational results are summarized in Section 4.4. ' s Consideration was given to whether application of the principle . as low as is reasonably achievable (ALARA) would result in limits lower than those resulting from the calculations identified above. I It was concluded that ALARA did not result in lower ILsits than N l those calculated herein. e The "de minimus" limits discussed in Section 4 are then applied to a specific case--the disposal of PWR secondary resins. In a specific case, it it possible to compare activity levels to the "de minimus" levels calculated herein and to determine the key radionuclides which dominate that specific case. This is ! discussed in Section 7.1. Finally, the practicality of the l l specific application is addressed by considering whether the i 2 L

normally available analytical capability is able to determine these key isotopes at the required low levels. This is considered in Section 7.2. The result of this study is the determination within defined con-ditions of concentrations of essentially all isotopes of interest to the nuclear industry which can be considered "de s:inimus." The appli-cation of the general method to a specific case is illustrated. It'is believed that the method is applicable to a wide variety of materials and situations.

 *t 3

2.0 CONCLUSION

S The~ major conclusions from this investigation are:

1) A suggested appropriate level of protection to be used in establishing "de minimus" concentrations of materials containing trace amounts of radionuclides is a maximum total body dose of 1 arem/ year, or a maximum dose to any organ of 3 arem/ year, to any individual. This level is suggested by the application of 9 the 10 CFR Part 20 provision which permits ignoring isotopic contributions which individually contribute less than 10% to the total dose and which collectively contribute less than 25% to the design guide levels of 10 CFR Part 50, Appendix 1.
2) For wastes such as PWR secondary resins disposed in soils, it has been shown that four isotopes, Cs-137, Cs-134 Co-60, and Co-58 clearly dominate the dose calculations. Two of these, Co-60 and Cs-137, could be used as " keys" to establish compliance ,
, g             with the suggested limits.
3) The concentration levels required to meet the suggested "de minimus" concentrations are in the range of one pCi/ gram. For the " key" isotopes, Co-60 and Cs-137, these concentrations are readily measureable with equipment normally available at nuclear reactor sites.

l 4

     .. ,                                                                                   l 3.0            RADIATION PROTECTION CRITERIA 3.1 Introduction Appropriate radiation protection criteria are prerequisite to the determination of "de minimus" radionuclide concentrations in any radio-active material. A direct relationship will exist between the concen-trations of radioisotopes which may be disposed of without specific controls, i.e.,     be considered "de minimus= and the degree of protection provided to members of the public.

Existing radiation protection standards are not applicable to routine unrestricted disposal of slightly contaminated nuclear materials. They a do, however, serve as references from which to derive "de minimus" criteria compatible with regulatory standards. The potential for individual and population exposure via any single source should be considered in relation to exposures from other sources. - particularly from naturally existing ones. The relative benefits of pro- , viding protection against radiation from a specific source may also be judged in perspective with variations in personal exposures from back-ground sources. Therefore, the radiation protection criteria appropriate for deter-mining the concentrations of radioactivity in slightly-contaminated materials which may be disposed of in an unrestricted manner must be compatible with current or revised standards for protection against radiation. They should also retain perspective in relation to the risk of health effects from natural environmental exposures and variations therein. 5

3.2 Natural Background Radiation Exposures The significance of any added exposure potential associated with introduction of radioactivity into the environment should be considered in relation to natural environmental levels'of radiation and variations therein. A review of natural sources of radiation exposure and their variability can provide guidance and perspective for selecting the boundary of "de minimus" dose rates from release of radioactive material into the environment. C)

     '  Sources of Natural Radiation Naturally occurring radiation in the environment originates from cosmic rays, radionuclides produced by cosmic rays, and from primordial radionuclides in the earth. In the United States, the air dose rates due to cosmic rays vary from about 27 to 95 mrad /yr and the population weighted mean air dose rate has been estimated to be about 29 mrad /yr l

i (NC75). Outdoor exposure rates due to terrestrial radioactivity vary , l from about 12 to 90 mrad /yr in the US and the population weighted mean is about 44 stad/yr (NC75). C) People are also exposed to natural radiation by internally deposited radionuclides that have been inhaled or ingested as well as to external irradiation. Typical dose equivalent rates to a representative US resident from naturally occurring sources are provided in Table 3-1.* The estimated dose rate from cosmic rays includes a ten percent reduction to account for structural shielding. Irradiation by primordial terrestrial radioactivity includes a 20-percent reduction for shielding *by housing and

  • Adapted from Ref. NC 75.

6

                                                                                                          )

i a 20 percent reduction for self-shielding by the body. The dose to the lung from inhaled radioactivity is tabulated separately; doses to other tissues from inhaled radioactivity are included with other primordial radionuclides in the body. Estimated doses to the gastrointestinal tract do not include any contribution from radioactivity in the contents of the tract. Environmental Variations , Individuals and population subgroups within the United States expe-rience dose equivalent rates which vary widely from the average. Large segments of the population experience appreciably different natural exposures. External terrestrial dose equivalent rates experienced by people indoors range from about 15 arem per year on the Atlantic and

   ,       Gulf Coast plain to 30 arem per year in mid-continent and to about 55 1

arem per year along the Colorado Plateau (Oa72). Cosmic ray dose equivalent rates experienced by the population range from 26 arem in Florida to about 50 arem per year in Denver, Colorado (NC75). Thus natural external radiation doses to large groups in the United States population vary from about 41 to 105 ares per year by geographic location alone. Most of the variation in dose due to radionuclides in the body 1 results from variations in Ra-226 in drinking water and in the lung from Rn-222 progeny. A typical United States resident receives about 16 arem per year bone dose and about 0.2 arem per year to soft tissue from ingested radium (UN72). Even if the radium concentration in community water l 1 supplies does not exceed the current regulatory limit of 5 pCi/1 (EPA 76), 7

dose rates experienced by users could be as much as 1 arem per year to soft body tissue and about 150 arem per year to bone from drinking water alone. An average dose.to the lung of about 100 arem per year from radon progeny inhaled in dwellings has been attributed to construction mate-rials, type of construction, ventilation, and radioactivity in land beneath (NC75). Variations among these influential factors cause lung dose equivalents to vary by a few hundred millirem per year among g limited population groups in the United States. i Throughout history, mankind has been exposed to roughly these levels lg 'f of naturally occurring radiation. In some other parts of the world exposures have been even higher. For instance, along the southeastern i coast of India, where thorium-bearing monazite sand is abundant, external I exposures tc residents from natural radioactivity in the sedy soil In some towns along the ranges up to about 2000 millirads per year. coast of Brazil, external exposures from monazite sand in the soil average 550 millirads per year within a range from 90 to 21,00 millirads annually (UN72). Even at these rates, effects on man's health or l development have not been detected. l Variations Accordina to Livina Habits. Differences in personal i . living habits also affect exposure to naturally occurring radiation and radioactive material. Within a given locality the construction materials and style of buildings influence indoor radiation exposure rates. Camma exposure rates in masonry (Oa72) and in slab-on-grade dwellings (Fla77) have been observed to be about the same as in natural outdoor areas surrounding the dwellings. But in wood frame dwellings, gamma exposure rates ranging from 70 to 80 percent of outdoor

                                       . 8

levels and averaging closer to 70 percent have been observed (Oa72). Yeates (Ye72) measured gamma radiation intensity reductions of about 25% on the first floor and about 50% on the second floor of wood frame houses. Overall, the difference in direct radiation exposure to persons living and working in woodiframe buildings rather than in concrete or masonry buildings can be about 10 millirem per year. Lung exposure to radon and its progeny may be affected significantly by living habits. For instance, concentrations of Pb-210 and Po-210, both long-lived progeny of Rn-222, have been found to be about 2 or 3 times higher in the lungs and ribs of cigarette smokers than in non-smokers (Ra64, UN72). This amounts to 6 to 9 millirem per year additional I dose to the lungs of a smoker, a 5 to 7 percent increase in total lung dose by comparison with a typical non-smoker. If natural gas is used in a residence, lung doses will typically increase by about two percent,

                .i.e.,          about two milliram per year, as a result (Ba73). Perhaps the greatest influence on naturally occurring lung exposures is ventilation -
,                practices in dwellings which alone can influence radon and radon progeny i

concentrations in a house by a factor of as much as ten (Wi77). Acother activity which affects exposure to naturally occurring radiation is air travel. At the jet cruising altitude, about 33,000 to t 39,000 feet, the dose equivalent rate due to cosmic rays is about 0.3 to 0.5 arem per hour. Based on this, the United States population averaged dose equivalent from commercial air travel is about one millirem annually. However, if a person travels more frequently, e.g., two trips per month of four hours dur.stion each, his annual dose equiva1ent will ! be increased by about 30 to 50 millires. 9

Where one vacations may also influence his annual radiation exposure. Spending a week skiing in Colorado will deliver about 1.5 millirem more than a week at an Atlantic beach, for instance. These examples illustrate the effects personal living habits can have upon exposure to naturally occurring radiation and radioactive material. The range and variation in human exposure to natural radiation as consequence of living habits and locations are illustrated in Figure 3-1. Implication of Natural Background Exposure Knowledge of population exposure rates from naturally occurring radiation and radioactive materials provides a rational basis for selecting appropriate standards for unrestr.icted disposal of slightly radioactive material. It should be remembered that the doses from natural radioactivity l and, to a large extent, from medical administration, affect the entire, United States population. Conversely, the number of people arposed to In fact, a "de minimus" concentrations of radioactivity will be small. limit on the potential dose to maximally exposed persons should be an i adequate criterion for determining appropriate "de minimus" radionuclide concentrations. At such a low individual dose rate, a cost-benefit interpretation based on an estiaste of population integrated dose equivalent would be of questionable value in providing guidance (IC73, NC75a). The range and variation in exposures to natural sources of radiation experienced by the population of the United States suggests "de minimus" dose rate of a few millirem per year to individual members of the 10

10000. -

                                                        $ I.

r .

? 7 -

T 3 ? 2? E$ 51 F 5- _m 1000 - . Kerala, India coast [ -2 H natural sources y Guapari, Brazil, coast E naturalsources; avg.440% l

                                                               ~
                                               ,       I l       U..w - Leadville, Colorado, natural sources I          4- Denver, Colorado, natural sources diagnostic radiology (bone marrow) 100[

I medical + dental (abdomen) J 7-*--"- US Population mean, natural sources

                                                       ; *- Orlando, Florida, natural sources C

k Frequent' air travel f 10- - Cigarette Smoking (lungs)

                                                       ~

o G 2 . one week skiing in Colorado vs. one week at an Atlantic beach - 1  : US population mean, air travel 18 7 i: 9 s r "sh Units: millirem / year Figure 3-1. Personal Dose Rates of Ionizing Radiation from Naturally Occurring or Unregulated Sources 11

population are appropriate. For example, three millirem total body l dose per year is well within the variation among residents of a given i area and is only a few percent of the variation among large groups of people in different parts of the United States. l 3.3 Unregulated, Man-made Radiation Exposures The largest fraction of the man-made radiation expositre to resi-dents of the United States is now administered in the practice of ' tr medicine and dentistry. Public exposure from this source exceeds that from other man-made sources by ten to one hundred times. Medical i diagnostic radiology accounts for at least 90 percent of the man-made radiation exposure. Estimates based on the 1970 X-Ray Exposure Study were that the per capita mean active bone marrow dose to adults in 1970 The was 103 millirem from all diagnostic radiology procedures (Sh76).

  .'-       mean abdominal dose per capita in the US population in 1970 from medical and dental radiation was estimated to be 72 millirem (Gi72). Medically-administered radiation doses vary widely among individuals, of course.

These estimates of localized doses are roughly equal to the average total body dose a US resident receives annually from natural radiation sources. l Jg 3.4 Existing Regulations As a first step in establishing radiation protection criteria associated with "de minimus" releases, the existing regulations were reviewed. Some aspects of these regulations could be interpreted as establishing "de minimus" concentrations of radioactive materials for disposal. These relevant Federal regulations which influence the 1 i choice of radiation protection criteria for establishing "de minimus" l l concentrations were examined. 12

r. ,

federal Regulations, Title 10, Part 20 . The maximum exposure in unrestricted areas permitted by 10 CFR Part 20 is 500 mrem per year to the whole body of any individual (10 CFR Part 20.105). For a population group, the exposure from radioactive materials in effluents may not exceed that which would occur if the group were continuously exposed to air or water concentrations containing one-third of the unrestricted Maximum Permissible Concentration (MPC) (10 CFR Part 20.106). These limitations are subject to the further constraint I that the exposure must be as low as is reasonably achievable (10 CFR Part 20.01). Part 20 also restricts the method of waste disposal (10 CFR Part I 20.301-305). Disposal into a sanitary sewage system is not allowed unless:

1) the waste is readily soluble or dispersible in water.
2) the daily discharge is less than the larger of:

a) the quantity which if diluted by the average daily quantity of sewage would result in an average concentration equal to. the unrestricted MPC in water, or b) ten times the quantity of such material specified in Appendix C of 10 CPR Part 20

3) the monthly average discharge concentration is below the unrestricted MPC in water, and
4) the gross discharge is less than 1 curie per year.

Burial of waste in soil is restricted by 10 CFR Part 20.304 to 12 burials per year or less at a minimum depth of 4 feet with successive burials separated by distances of at least 6 feet. The total quantity l buried at any one location and time may not exceed, at the time of l 13

burial, 1000 times the $sount specified in Appendix C-of 10 CFR Part 20. The Appendix C values for several of the key isotopes are: Cs-134 1 microcurie Sr-90 0.1 microcurie Cs-137 10 microcuries Ra-226 0.01 microcurie Co-60 1 microcurie l Thus the inventory at any disposal location may be 1 millicurie of Co-60 or Cs-134 or 10 mil 11 curies of Cs-137. Since for mixtures, the sum of the ratios of the quantity present to the inventory allowed must g

   *!       be less than or equal to one, the actual amounts of these isotopes allowed would be lower. For mixtures of beta emitters of unknown l

composition, the total inventory limit would b'e about 100 nanocuries, i There are no specific guidelines in 10 CFR Part 20 pertaining to disposal at sea or to incineration. They are handled on a case by case basis as provided for in Parts 20.302 and 20.305. Federal Rerulationc. Title 10. Part 30 A person may receive, possess, use, transfer, own, or acquire materials containing byproduct radioactive material and be exempt frem the requirements for a license providing the activity concentrations of j '

          -  byproduct material do not exceed those listed in 10 CFR Part 30.70 Schedule A (see 10 CFR Part 30.14). However, the introduction of by-product material in exempt concentrations into materials and transfer of ownership or possession of it does require a license in accord with 10 CFR Part 32.11. Some limitations are stated in Part 32.11(c).

Federal Regulations. Title 10. Part 50 Appendix I Appendix I to 10 CFR Part 50 provides numerical guides for reactor design objectives and limiting conditions of operation. The applicant 14

must provide reasonable assurance that the following design objectives will be met for each reactor. Total annual radioactive releases in liquid and gaseous effluents above background from a single light-water-cooled nuclear reactor must not cause the estimate of annual dose or dose commitment to any person in an unrestricted area to exceed:

1) 3 arem to the total body or 10 arem to any organ as a result of activity in liquid effluent,
2) 5 area to the total body or 15 arem to the skin due to activity in gaseous effluent, and
3) 15 arem to any organ from radioactive iodine and radioactive material in particulate form released to the atmosphere.

i In addition to meeting these design objectives, the radweste system must include all items of reasonably demonstrated technology, that when added to the system sequentially and in order of diminishing cost-benefit s return, can for a favorable cost-benefit ratio effect reductions in dose to the population reasonably expected to be within 50 miles of the - reactor. The interim value of $1000 per total body man-rem and per man-thyroid-rem is currently accepted in the cost-benefit analysis. Operating reactor guidelines are set at one-half of the design

'f]          objective annual exposure based on actual releases in affluents during any calendar quarter. They represent design objectives for releases to the environment which are controlled and acnitored prior to release and are the object of environmental monitoring after release.

These requirements apply to liquid and gaseous effluents of a single light water reactor, but they are not directly applicable to solid wastes. However, they do provide guidance in determining "de minimus" levels for solids. 15

1 l Since "de minimus" wastes would not be subject to environmental surveil-lance af ter disposal, lower activity concentration limits in "de minimus" wastes than in reactor effluents may be justified, even though, in view of variations in natural radiation background levels, Appendix 1 design guides may be too low in the first place. Federal Regulations, Title 10, Part 71 i Because it is likely that "de minimus" waste will have to be trans-

   -   ported, it is important to recognize the requirements of 10 CFR Part 71 for special packaging. Compliance may be guaranteed is the activity concentration is less than 2 nanocuries per gram or if each package contains less than 50 mil 11 curies, the exempt quantity for mixed fission r

l products. Assuming 50 millicuries are packaged in a 55-gallon drum at a f density of 1.5 gram per cubic centimeter, the activity concentration could !- be as high as 160 nanocuries per gram. As will be shown later, this ! limitation is higher than that calculated herein as "de minimus." . Federal Regulations, Title 40, Part 190 The maximum annual exposure allowed by 40 CIR Part 190 to a member of the public as the result of planned discharges of radioactive material t to the general environment from uranium fuel cycle operations is 25 arem f to the whole body, 75 area to the thyroid, and 25 area to any.other organ. l These limitations exclude operations at waste disposal sites, but do not specifically exclude waste itself. However, the much lower limits of 40 CFR Part 190 make it clear that any attempt to use the exposure limits of 10 CFR Part 20 as a criterion for "de minimus" waste disposal will be unacceptable. 16

         .. ..                                                                               1 Proposed Federal Guidance on Transuranium Elements in the Environment The Environmental Protection Agency has proposed Federal radiation protection guidance on limits of dose to persons exposed to transuranics in the environment as a result of existing or possible future unplanned      I contamination (EPA 77). The text of the proposed guidance follows:
1. The annual alpha radiation dose rate to members of the critical segment of the exposed population as the result of exposure to transuranium elements in the general environment l should not exceed either:

k a. I millirad per year to the pulmonary lung, or and

b. 3 millirad per year to the bone.
2. For newly contaminated areas, control measures should be taken to minimize both residual levels and radiation exposures of the general public. The control measures are expected to result in levels well below those specified in paragraph one.

Compliance with the guidance recommendations should be achieved within a reasonable period of time.

 ,                   3. The recomumendations are to be used only for guidance on possible remedial actions for the protection of the public health in instances of presently existing contamination or of possible future unplanned releases of transuranium elements.

They are not to be used by Federal agencies as limits for 1 planned releases of transuranium elements into the general environment. One " millirad per year to the pulmonary lung" is meant to be the equi-librium dose rate resulting from chronic inhalation. The corresponding dose equivalent rate for alpha emitting transuranics is 20 millirem per year. 17

9 0 3.5 Selection of Dose Limits Appropriate for "de minimus" Disposal Concentrations Concentrations of radionuclides which may be considered "de minimus" are directly related to dose limits which are appropriate for unrestricted i disposal. That is, selection of such limits should be guided by criteria I which reflect an acceptable level of health protection. A rational conservative criterion for selecting "de minimus" dose limits is to select the level below which the dose rate to maximally l EP l exposed individuals is insignificant in comparison to the dose rate ! typically experienced by a member of the population from naturally

  *"-{

l I l occurring radiation and radioactivity. Considering the natural dose

                                                                                 +

rate distribution in the USA, a few millirem per year more or less - 3

  'cx   for instance, is not significant in comparison with the dose rate dis-i     tribution from natural sources.
  ..-          A practical criterion is that the dose limits selected must be l      . compatible with existing radiation protection standards and regulatio'ns j

or must suggest appropriate revision of the regulations. To this end, practicality dictates the "de minimus" dose rate limit be no more than 10 CFR Part 50, Appendix I design objectives and possibly less. That h is, to be consistent with existing regulations, the "de minimus" dose limit should not exceed 3 (liquid) to 5 (airborne) millirem total body dose equivalent per year to individual members of the public. Practical guidance for selecting "de minimus" dose levels can be deduced from 10 CFR Part 20, Appendix B. According to Appendix B, footnote 5, a radionuclide in a mixture may be ignored it if is present 18

in less than 0.1 of its maximum permissible concentration and if the sum of the fractional MPC of all radionuclides considered as not present in the mixture does not exceed 0.25. A "de minimus" dose rate limit is then suggested by the combination of the Appendix I design objectives and the 0.25 factor of disregard given in 10 CFR Part 20, Appendix B. Together. 0.25 of 3 to 5 arem per year total body dose is roughly one arem per year. Consistent with 10 CFR Part 20, the corresponding individual organ

       ,               dose limit would be 3 area per year.       One millirem per year to the total N                     body or 3 to individual organs is hardly significant in relation to doses received from natural background sources.

J To further illustrate its insignificance, assuming the linear non-threshold dose-effect relation and the dose-to-risk estimates presented in the BEIR Report (BEIR72) hold at such a low dose rate, the additional risk associated with continuing doses of one arem per year is estimated to be about one additional chance of adverse health effect in ten million person-years of exposure. It should be acknowledged that this extremely ~ l low estimate of hypothetical risk is probably an unrealistic overestimate of actual risk and may not be useful for other than illustration (see NC75a, pp. 3-4). Nevertheless, it is insignificant in relation to many

 .+.

demonstrated risks a typical resident experiences in the course of daily j living in the US. By comparison, the US mortility rate in 1973 attri-l buted to motor vehicles was 265 per million person-years and that attri-buted to falls was 80 per million person-years. Therefore, one millirem'per year total body dose equivalent and 3 millirem per year single organ dose equivalent in excess of the natural radiation background are suggested as dose equivalent rates at and below l i i i 19

which the dose rate to persons maximally exposed to radioactivity in solid waste should be acceptable as "de minimus." This radiation protection criterion was selected for use in connection with this study. I If higher values than one millirem total body and 3 milliram to an organ are selected as de minimus" dose limits, then the concentrations pre-sented herein would be scaled upward directly. i ei

 .i 9

e b s W l - 1 9

                                            , 20

E ..

                                                               % T'                               .

Table 3-1 Summary of Representative Dose Equivalent Rates in the USA from All Naturally Occurring Radiation Sources" Source Dose Equivalent Rates (ares /yr) Gonads Lungs GI Bone Tract Surfaces Marrow Cosmic Radiation 28 28 28 28 28 Cosmogenic Radionuclides 0.7 0.7 0.8 0.7 0.7 External Primordial Radionuclides 26 26 26 26 26 Primoridal Radionuclides in the Body 24 21 58 22 21 Inhaled Radionuclides

  • 106 w 79 182 113 77 76 Adapted from NCRP Report No. 45. Table 44. -

b Indoor dose equivalent rates. Doses to organs other than lung included in "Primoridal Radionuclides in the Body."

4.0 METHOD 01DGY DiPLOYED In this study, solid wastes with very low activity concentrations are postulated to be placed in the environment with and without controls ordinarily imposed by regulations applicable to disposal of non-radio-active solid wastes. For voluminous solid material, land disposal is anticipated. One objective of this study was to develop,a methodology to quantify the relation between the "de minimus" radiation protection

 ;       criteria selected and the corresponding limiting concentration of each

'8Pd radionuclide in solid waste which allows the radiation protection 9 criteria to be satisfied. The relation would be determined by environ-mental pathway analyses. 4.1 Disposal Scenarios During the study, several disposal scenarios were considered with the objective of selecting those which are likely to have the most potential for maximum personal exposure to radioactive material in . the environment from the discarded solid waste. Examination of potential [ environmental pathways and survey calculations suggested that land disposal [ t with residents on the disposal site probably leads to the maximum hypo- ,b thetical personal exposure. It should be noted that neither disposal at sea nor a disposal scenario that primarily produces airborne dispersion, e.g., incineration, was considered. Only the two scenarios which appear to have the most potential for maximum individual exposure were examined in detail. In one, identified as the " sanitary landfill" scenario, dis-

                                                                        ~

card into a sanitary landfill with ordinary operating procedures in effect was postulated. Construction of a dwelling on the sanitary landfill was assumed to occur five years after operation of the sanitary landfill has l 22 j .__ _ _ ._.

e e ended. In the other scenario, termed " fill wanted" disposal, unregulated use of the solid waste as landfill in a residential setting was postulated. In the latter case, a dwelling was assumed to exist on the landfill immediately after placement of the waste. 4.2 Environmental Pathways An array of possible environmental pathways is associated with each disposal method. In this study, one requirement was to conceive feasible p disposal scenarios with which the most important pathways are associated hf' and to evaluate all of the associated pathways in a way which determines the critical pathway for each radionuclide in discarded waste. The application of the methodology developed in this study was confined to land disposal of a homogeneous, bulk solid waste, namely spent, powdered ion exchange resins from PWR secondary systems. Man's most direct radiation exposure from discarded solid waste could be by irradiation during or after its placement in a landfill. I Ingestion of a small amount of waste or inhalation of material suspended in the air can also be direct pathways. g Other exposure pathways involve environmental transport mechanisms. Digging in a landfill may redistribute some of the material and cause some suspension in the air. If food crops are grown on a landfill that has not been covered adequately, plant uptake of radionuclides from the fill material may establish a link to man via vegetation and/or meat. Leaching followed by surface or ground water migration or erosion and transport by wind or water all create additional pathways to man where contact by external irradiation, ingestion, or inhalation are possible. 23

f The evaluation of many environmental pathways is not h'eavily dependent upon site specific data. The evaluation of pathways involving hydrologic transport, namely groundwater migration or a surface stream is dependent on values of site releted variables, however. To avoid site dependency, surface water and ground water migration were not modeled. Instead, a conservative choice of one percent of radioactivity in vaste discarded was assumed to leach directly into a watercourse, per year. For dilution a stream flow of 10 liters per second was assumed. ! GWP The effect of any other stream flow on estimated doses would be in b-inverse proportion to the nominal stream flow assumed. d l Potential dose equivalent rates associated with the sanitary land-

               -   fill and the fill wanted disposal scenarios were evaluated with environ-I                   mental pathway models suggested in Regulatory Guide 1.109. Revision 0 (RG 1.109) except as mentioned for hydrologic pathways. Specific assumptions and values of variables assigned in the pathways evaluation are stated in Appendix B for each pathway examined in the " sanitary land-fill" and " fill wanted" disposal schemes. Otherwise, values suggested in Regulatory Guide 1.109 for individuals were assigned. An example of l

d- specific assumptions, taken from Case I-A for the evaluation of postu-C.1 () ~ 1sted leaching of radionuclides from solids in-a sanitary landfill to a l ) watercourse is shown in Table 4-1. Detailed assumptions used in all the 1 other cases and the computed results of the pathway analyses are included in Appendix 5. Bulk solid waste containing traces of radioactivity offers the most potential for individual exposure when used as landfill around a residence. Generally, the most direct exposure pathways were found to offer the 1 l greatest potential for exposure of persons nearby. 24

9 Ordinarily, radioactive material released as effluents is not assumed to perturb natural background exposure rates. However, bulk solids which, in isolation, contain "de minimus" concentrations of radioactivity, may actually reduce natura1 background exposure rates at the disposal location by shielding, displacing, or diluting the i naturally radioactive environmental media (soil, etc.). Since the criterion selected for determining a "de minimus" concentration limit, i.e., natural background exposure rate plus an increment of one millirem /yr

       ;          total body or 3 millirem /yr to any single organ, is so restrictive          ,
     ~

perturbation of the natural background exposure rate at the disposal location may be a significant factor. For each millirem /yr reduction in natural background exposure rate caused by the presence of solid wastes,- the contribution of the subject waste to the total exposure rate (from background plus waste) could conceptually be allowed to increase by one millirea/ year without causing an environmental impact i in excess of that corresponding to the criterion. Notwithstanding the likelihood that disposal of "de minimus" wastes may well result in a diminution of natural background radiation, no credit for this fact hh was taken in these calculations. 4.3 Calculational Technique The general approach used to determine the "de minimus" concen-l trations was to first cateulate the limiting radionuclide concentrations for each pathway separately. Then for every nuclide and pathway consid-ered, a search of all pathways was conducted to find the pathway which resulted in the most restrictive disposal limitation for each radio-nuclide. These values represent the solution to the problem of deter-mining "de minimus" concentrations. 25

A computer program was written to execute the above general pro-cedure. Each pathway was represented by a subroutine which calculated the limiting concentrations for that pathway for the values assigned the variables. The limiting concentration was determined for each nuclide as if it were the only nuclide contributing to the dose rate with the exception that the dose rate associated with daughter products were charged against the parent nuclide. This was accomplished by assuming the initial concentration of each radionuclide in the waste was 1 pCi/g. Then for each F pathway, the dose equivalent rate associated with each radionuclide and l l its accumulated decay products'at the time of exposure was computed.

l. Each computed dose equivalent rate and the associated activity concentration initially in the waste were scaled up or down to match the appropriate "de minimus"' dose rate limit. In order to conservatively estimate doses, radioactive decay products were assumed to be transported with their parent in every pathway until taken into plants or animals. At that point, the stable element transfer data or bioaccumulation data in r Regulatory Guide 1.109 were used where appropriate. Detailed equations l

used to evaluate each exposure pathway are given in Appendix A. After the limiting concentrations for each pathway were calculated, the program selected the critical pathway of each nuclide. Finally, a table was generated, e.g., Table 4-3, which shows the limiting concentration for each critical pathway and the "de minimus" concentration limit with i

  -      the associated most limiting pathway.

Figure 4-1 is a summary diagram of the method of deterpining the l critical pathway and deriving the "de minimus" concentration limit of each radionuclide from among any postulated set of disposal scenarios and i l environmental pathways. i 26

         .s .

DO FOR EACH radionuclide Assign 1 pCi/g initial concentration of each radionuclide in waste l V disposal scenario Compute dose equivalent commitment for pathway 1 pCi nuclide/g waste (and its progeny

 )l               organ & total body      at time of exposure radionuclide e

F F disposal scenario Compute "de minimus" concentration limit pathway "de minimus" dose limit 1pci nuclide l [gan&ttalbody dose equiv of 1pci/g waste

  • g waste V

disposal scenario Find pathway in which most restrictive pathway nuclide concentration exists, ie, find organ & total body the critical pathway radionuclide i bk U disposal scenario List for each nuclide: pathway e pathways with maximum dose potential organ & total body e critical pathway radionuclide e "de minimus" concentration limit Figure 4-1 Summary Diagram of Method of Determining "de minimus" Radionuclide Concentration

  • Limit 27

4.4 Results of Calculations Individual Pathway Evaluation Each disposal scenario-pathway-receptor (total body or organ) combination was computed independently to determine the "de minimus" concentration limit of each radionuclide in that case. Table 4-2 is an example of the results of calculations for one case, leaching from a sanitary landfill into a watercourse with a transit time of one year. Quantities assigned to environmental variables in the computer code are listed at the end of Table 4-2 and in Table 4-1.

'E.

T A total of 143 separate disposal scenario-pathway-organ combinations were evaluated in four series of cases. They are identified by: M Series Disposal Scenario Receptor of Dose I Sanitary Landfill Whcle Body II Fill Wanted Whole Body III Sanitary Landfill Critical Organ..

IV Fill Wanted Critical Organ I
Computational results of 15 of these separate cases appear in Appendix B.
  • In each of the tables, the limiting concentration of each radionuclide is expressed in units of microcurie per gram. Entries appearing as 7

1E07 pCi/gm represent concentrations greater than 1 x 10 pCi/gm of I~ waste. This value, equal.to 10 Ci/gs, was chosen arbitrarily as an upper cutoff value. Eummary of Most Limiting Cases Af ter the limiting activity concentration of each radionuclide in each disposal scenario-pathway-receptor combination was calculated, the program selected the critical pathway of each radionuclide associated with any of the combinations evaluated. Finally, a table was generated, l 28

e.g., Table 4-3, which shows the limiting concentration, i.e., the , activity concentration of a radionuclide which may produce the "de , minimus" dose limit, in each of the most important pathways associated with any of the disposal scenarios evaluated. The table also lists the "de minimus" concentration limit of each radionuclide along wich-its critical pathway. The tabulated values of the~"de minimus" concentration limits, in Table 4-3 for instance, represent a general solution to the N problem of determining "de minimus" concentrations based upon the most restrictive disposal scenarios and environmental pathways conceived.

    ;                  The results shown in Table 4-3 are repeated in Table 4-4 but with the nuclides arranged in order of increasing "de minimus" concentration limit.

The lowest "de minimus" concentration limits is that of Ra-226, and its critical pathway is through a child eating some of the discarded resin. However, it is not a significant or limiting constituent of .

                                      ~

reactor wastes. The next most nearly limiting radionuclides, all of

  • which have "de minimus" ccacentration limits below the pCi/ gram level are:

h Nuclide Limitina Pathway Co-60 Fill Wanted-Ground Exposure Sr-90 Fill Wanted-Food Grown Ag-110m Fill Wanted-Ground Exposure _ I-129 Fill Wanted-Food Grown The "de minimus" concentration limits of every other radionuclide in reactor. wastes is greater than 1 pCi/ gram. The use of the " fill wanted" scenario (Series II and IV).results in limits somewhat lower than would occur if it were assumed that the "de minimus" waste were disposed of in a sanitary landfill. If the 29

pathways to nan are limited to those associated with disposal to a to a sanitary landfill *.he activity concentration limits are shown l in Table 4-5. The same values are shown in Table 4-6 except there the i nuclides appear in order of increasing "de minimus" concentration j i limits. V f I i . I b 30

                                         .E'                                      .k            .

Table 4-1 ,' Quantities Assigned to Variables in the Evaluation of Postulated Leachina of Radionuclides from a Sanitary Landfill to a Watercourse . Variable Quantity Basis Maximum dose commitment 1 ares /yr to adults. "de minimus" dose rate limit Water ingestion rate 440 liters /yr 1.2 liters / day Fish ingestion rate 21 kg/yr Reg. Guide 1.109, max. exposed adult Shellfish ingestion rate 5 kg/yr Reg. Guide 1.109, max. exposed adult Surface Watercourse flow 3 x 10 cc/yr Assigned by authors Fresh Water Bioaccumulation factors Reg. Guide 1.109 Transport time, waste to consumption 1 year Assigned by authors Fraction of tritium teached from waste 1.0 in a year Assume tritium is soluble

 ,, Fraction of other isotopes leached from            0.01 per yr             Assigned by authors
 >=    waste Disposal rate                                        150 m3 /yr            Approximate production rate of spent powdered ion exchange resin / reactor Duration of burial                                   10 years              Reasonable life of a sanitary landfill operation                             '

Waste density 1.0 g/cm Assigned density of bulk solid waste e

TABLE 4-2 EXAMPLE OF COMPUTED CONCENTRATION LIMITS FOR ONE DISPOSAL MODE-PATHWAY-RECEPTOR CASE CASE I-A -- SANITARY LANDFILL - LEACH INTO WATERCOURSE - TRANSIT TIME = 1 YEAR ISCTOPE HALF-LIFE LIMITING OAUGHTER PERCENT SURIAL CONCEN. (UCI/G43 H----3 1.23E*01 YRS 4 5E*80 t C---14 5 73E+83 YRS 2 5E-C1 NA--24 1.50E+01 HRS 1.DE+07 P---32 1 43E+C1 OYS 1 0E+0F CR--51 2.74E*01 DYS 1 0E+C7 MN--54 3 12E+t2 OYS 9 1E-81 MN--56 2 586+03 HRS 1 3E*J7 lg FE--55 2 40E+GO YRS 6 0E-01

 -            FE--59           4.5CE+G1 OYS        4.3E+03 5-           CD--58           T.1UE+L1 CVS        6.0E+03 CD--60           5.24E+c0 YRS        3.5E+La j              NI--59           S.C1E*04 YRS        4.3E+GO NI--63           9 21E*31 YRS        1.6E+00 NI--65           2.56E+00 HRS        1 0E+0F CU--64           1 29E+G1 HRS        1 0E+07 7N--65          2 43E+:2 DYS        9.2E-01 IN--69          5 5JE+ci PIN        1 3E+J7 BR--83           2 40E+C0 HRS        1.4E*27 BR--84          3.20E+01 PIN        1 0E+07 BR--75          3.00E*00 MIN        1.0E+CT R8--86           1 875+31 OYS        4.bE*26 RS--88          1 80E* 1 PIN        1.JE*G7 RR--890          1.50E+0i MIN        1.0E*07              SR--89      100.

SR--89 5.C6E+[1 CYS 1 1E*G4 - SR--90 2 88E*J1 YRS T.9E-L3 l 39--910 9.70E+00 HRS 1.sE*07 Y---91 1CO. SR--92 2.70E+ce HRS 1 4E+s7 Y - -- 90 2 672+t3 DYS 1 0E*CT Y--91MO 5.C9E+C1 MIN 1.0E*07 Y---91 100. _} Y---91 5 9dE*01 CYS 2.8E+06

       i     Y---92          3.53E+CG HRS        1.4E*w7 Y---930         1.L2E*01 HRS        1.0E+0F              NS-93H      108.

ZR--930 1 50E+G6 YRS 2.6E*01 NS-93M 1st. ZR--950 6.50E*C1 OYS 2.1E+04 48--95 100. ZR--4T+0 1 78E+01 NRS 1 0E+8T N8--97 97. N9-93F 3.70E+00 YRS 4.1 E +C 1 M8--95 3.50E+01 OYS 2.3E*I6 NS--97 1 20E+00 HMS 1.0E+07 M0==990 2 79E+S8 DYS 1.tE+87 TC--99 100. TC-99HP 6.c6E*GO HRS 1.8 E *S T TC--99 100. TC --99 2 10E*05 YRS 5.1E*C2 RU-103 4 00E+01 OYS 4.1E*06 RU-it50 4 43E+GO HRS 1.tE*07 RM-195 100. RU-186 1.c4E*00 YRS 3.TE*02 . RM-105 1.50E+80 DYS 1 0E*0T AG110 M 2 60E+02 DYS 1 3E*83 TE125M 5 84E+31 OYS 4. 8E + 0 3 TE127M+0 1.SSE*82 OYS 1.6E*82 TE-127 3. TE-127 9 3OE*00 HR$ 1 8E*BT TE129M 3 48E*81 OYS 3.5E+04

                                               ,  32

TABLE 4-2 (c6ntd) EXAMPLE OF COMPUTED CONCENTRATION LIMITS FOR ONE DISPOSAL MODE-PATHWAY-RECEPTOR CASE CASE I-A -- SANITARY LANDFILL - LEACH INTO WATERCOURSE - TRANSIT TIME = 1 YEAR ISOTOPE HALF-LIFE LIMITING DA UGHTER PERCENT 8041AL CONCEN. (UCI/GMl TE-1290 1 12i+GO HRS 1 4E+07 I--129 100. TE131MC 1 20E+04 OYS 1 0E+0F I--131 lbG. TE-1310 2 5dE*01 MIN 1 0E+07 I--131 100.

  • TE-132 3 25E+G0 DYS 1 4E+07 I--129 1 6aE+w7 YRS 2.8E+tb I--130 1 24E+01 HRS 1.CE+07 I--131 8.c5E+C0 OYS 1 3E*07
f' l I--132 2.3eE+60 HRS 1 0E+07 I--133 2. ice +41 HRS 1.uE*07 g

'y, I--134 5 30E+01 MIN 1 0E*01 I--1350 6.70E*00 NRS 1 0E+0F C S-13 5 100. '6 CS-134 2 13s+vu YRS 1.SE-02 CS-135 2 00E+06 YRS 5 8E-02 CS-136 1.30E*01 DYS 1 0E*07 CS-137 3.0 0E +G1 YRS 7.5E-03 CS-138 3 22E+t1 MIN 1..E+0F

                        #A-14C         1 28E+31 OYS          1.3E+07 8A-141C        1 80i+01 MIN          1 3E*07         CE-141        100.

8A-142 1 10i+.1 PIN 1.JE*d7 LA-14C 1 6TE +00 CVS 1 0E+07 LA-1410 3.94E+30 HRS 1 0E*07 C6-141 100. LA-142 1 4dE+L3 HRS 1.GE*JT CE-141 3 25E*01 OYS 1 9E+07 CE-1430 1 3FE*00 CVS 1 0 E +0 7 PR-143 100. CE-144 2 85E*32 OYS 3.JE*a3 . PR-143 1.37E+C1 CVS 1 0E+07 PR-144 1.73E+C1 MIN 1.dE*07 NO-1470 1 1Ai+G1 CVS 3. 7E +0 5 *M-147 1<0. PM-147 2 6si+0w VRS 4.4E+G3 W--187 2 4dE+31 HRS 1.0E*07 RA-223 1 14E+C1 OYS 1.dE+07 RA-226- 1 6ai+C3 YRS 3 3E-C5

$b AC-227+D       2 16E*C1 YRS         7.2E-03         8.A-223          80.
,~                      TM-227D        1 82E*La CVS         4 1E*05         RA-223         itC.

PA-231*0 3 25E*G4 YRS 2 6E-02 RA-223 59. U--235 7 1JE+0s YRS 5.3E-31 NP-2390 2 35E+00 OYS 4 0E+G6 PU-239 100. PU-239 2 44E+04 YRS 1.3E*s0 BAFED ONS LEACHING OF WASTE INTO WATERCOURSE A MAXIMUM 003E COMMITMENT OF 1 00 MREM /YR TO ADULTS CONSUMPTION RATE 3r WATER = 4,0.0 LITERS /YiAC CONSUMPTION 8 ATE OF FISH = 21.d KG/YEAE CONSUMPTION RATE OF SHELLFISH = 5.C (G/ YEAR DILUTION' FLOW RATE = 3.GE+14 CC/YEAo FRESH WATER

  • TRAASPORT TIFE FROM WASTE TO CONSUM* TION = 1 0E+20 YEARS FRACTION OF 78ITIUM LEACHED FROM WASTE = 10i+C0 PER YE AR FRACTION OF OTHER ISOT3 PES LEACHED FROM WASTE 1.EE-02 PER YEAR 8URIAL RATE = 1 5E+02 CUBIC METERS *ER YEAR OURATION OF SURI AL = 10 0 YEARS WASTE DENSITY = 1 0 GM/CC 33
:V *Q TABLE 4-3 MOST RESTRICTIVE CONCENTRATION LIMITS AND DISPOSAL-PATHWAY-RECEPTOR COMBINATIONS SELECTED FROM ALL COMPUTED CASES CONCENTRATION LIMITS (UCI/GM)

DE MININUS NUCL10E _ LDit? LI11T!1G LINITING LINITING LINITING LINITING LIMITING LINITING

TASLE CONCEN -TABLE C3NCEN TAPLE CONCEN T A BLE CONCE N TABLE CONCE N TARLE C ONCE N TASLE CONCEN TASLE CONCEN I

N---*3 61 3.E-t5 62 4.E-95 43 6.E-t5 29 7.E-85 30 9.E-65 129 1.E*E4 131 2.E-04 138 1.E-84 l 132 4.E-b6 133 4.E-06 112 5.F*b6 113 5.E-d6 114 6.i-86 C=--16 129 4.E = J6 110 4.E-06 131 4.E-86 , MA--26 41 3.E-S6 62 4.E-06 46 s.E-06 47 1.E-05 F6 4.E-C5 FF 6.E-85 43 2.E-84 48 5.E*84 l 0---32 F6 5.E-C5 7F 5. E-0 5 46 5.E-05 4F 5.E-65 F8 5.E-b5 48 6.E-65 41 2.E-64 62 2. E-3 4 Co*-51 F6 1.E=r4 FF 1. E-C 4 78 1. E -4 4 46 2.E-t4 4F 2.E-84 68 2.E-04 41 2.E-64 42 2.E-64 N3--F6 F4 2. E *g 6' TF 2.E-56 78 2.E-t6 79 3.f-56 84 5.E-66 66 9.E-06 47 9.E-06 40 9.E-06 4%-=56 41 *6 42 6. E-8 5 46 1. E -0 4 76 5.E-8 4 47 1.E*g3 FF 5.E-G3 125 4.E-81 124 4.E*d2 FFa*55 129 6.E*I 5.E- 3 124 5. E-C 3 125 5.E-t3 126 5.E-03 12F 5.E-8 3 138 5.E-63 128 6.E-G3 61 F.E*63 85--59 76 7.E-16 FF 3. E *g 6 78 3.E-86 79 5.E-u6 46 6.E*C6' 4F F.E-06 48 F.E-u6 41 9.E-06 [ 4F T.E*g6 41 CD--59 F6 3.E* 6 7F 3.E*C6 78 3.E-t6 F4 4.Eag6 46 F .E-0 6 48 T.E-06 9.E-06 C0--5 0 76 s.E-97 7F g.E-87 78 8.Eas7 F9 8.E-IT 30 9.E-bT 52 9.E-6F 41 3.E 66 53 2.E-66 N1**?9 129 4.E-'= 138 4.E-84 131 4.i =4 132 4.E-04 133 4.E 64 112 6.E-84 113 6.E-ub 114 6.E-44 4!--63 129 3.E-25 13e 3.E-95 131 3.E-c5 112 5.E-05 113 5.E-85 132 6.E-85 114 1.E 64 61 3.E-34 NI--E5 124 9.E 2 125 9.E-81 56 2. E *t h 57 2.E*st 134 3.E*b3 135 4.E*84 66 6.t*04 96 1.E*g5 CU--6. 41- 6.E 85 42 6.E-05 46 2.E-94 47 2.E-94 F6 9.E-04 7F 1.E*e3 43 4.E-03 48 2.E-82 Zu--f 5 F6 4.E-E6 FF 4. E-g E 78 4.E-r6 79 4.E-06 61 6.t-36 129 9 E-06 36 1.s-g5 62 1.E-d5

                                     ?N**f9       41                           F.F
  • th 46 6.E-03 76 3.E*02 42 5.E*ni 4F 5.E*6v 124 4.E*be FF 2.E*kt 56 4.E*B1 W 9 F.--8 3 41 4.F-tb 46 2.E*g3 42 6. i-C 3 76 1.E-32 47 3 5-82 FF 1.E-L1 124 3.E*00 SE 1.E*06 6 og--pb 41 5.E-L6 46 6. E *g 4 7E 2.E*u3 42 4.E-b1 56 1.E*wk 124 3.E*Es *T 3.E*e1 FF 2.E*w2 38*-85 41 8.E .5 46 2. E-0 2 42 2. E -E 2 76 s.E*g2 4F Z.E-81 FF 1.E*GO 56 2.E*01 52 4.E*g1 99-*86 76 2.f-15 FF 2.E-85 7A 2. E -4 5 46 3.E-s5 4F 3.E-&5 48 3.E-L5 41 F.E-05 42 F.E-85 6.E*63 56 2.E*05 124 3.E*68 66 4.E*C3 134 6.E*w3 42 F.E*g3 Co--en 41 1.F-L5 66 1.E-03 76 i 09--89 41 4.E-g6 66 8.E-04 76 4.E-C3 FF 8.E-02 FS 3.E-02 79 1.E-81 4F 2.E-01 48 2.E-81 58*-89 F6 2.E- . 5 FF 2.E-85 78 2.E-G5 F9 3.E-35 46 4.E-05 4F 4.E-OS 4s 4.E-J5 =9 F.E-35 53*-99 129 9.E .7 1?3 3.E-C7 131 9 5-f 7 61 1.E-36 62 1.E-96 63 1.E-86 112 2.E 6 113 2.i-L6 sc--o1 41 1.F-05 62 1.E-85 46 6.E-C5 47 F.E*E5 F6 2.E-0 4 FF 3.E-84 F8 3.E-03 43 4.E-8 3 SE--92 41 9.E-46 42 4. E-3 5 66 a.E-L 5 47 4. E-8 4 F6 4.E *J 4 FF 2.E-b3 125 2.s-e2 124 4.E-93 v---9C 46 3.E-e5 =F 4.E-85 48 9.E-05 41 1.E-b4 42 1.E-G4 F6 1.E-04 7F 1.E wh 43 3.E=d4 T--91M 41 1.F .5 46 8.E*[4 F6 4. E *g 3 42 2.k-82 TF 3.i-J2 F8 3.E-02 F9 5.E-02 4F 4.E*g2 Y---91 F6 2.E*C5 FF 2. E-5 5 78 2.E-C5 79 3.Eag5 46 5.i-05 4F 5.E-85 48 5.E-05 49 8.E-85 Y---82 el 2.E*05 42 1.E-84 46 2.E-t4 F6 9.E-C4 47 1.E-83 FF 5.E-b3 125 6.E w2 124 1.E*02 Y---93 41 1. E- ;5 42 6.E-85 46 9.E-f 5 47 1.E-E4 F6 4.i-34 FF F.E-b4 125 3.E-L3 124 2.E-63 Z8--#3 54 2. F * .5 55 2.E-85 53 2.E-C5 52 3.E-05 92 4.E-95 93 4.E=g5 S1 4.E-e5 51 2.E-54 70-=95 F6 2.E-36 7F 2.Eag6 78 2.E-t6 79 2.E-06 49 8.E-06 se s.E-66 4F 9.E-06 46 9.E-0 6 70--97 42 *S.E-06 66 1. E -6 5 47 2.E-r5 41 5.E*b5 F6 F . E -3 5 FF 1.E-84 43 2.E-C4 48 5.E-04 N9*91u F6 3. E - 05 7F 3. E-8 5 78- 3.E-85 F9 4.E-s5 80 4.E 65 52 5.E-55 46 1.E-04 47 1.E-E4 C8--05 F6 4.E**6 FF 5.E-06 78 5.E-06 46 9.E-96 4F 9.E-E6 F9 9.E-56 he 1.E-05 41 1.E*05 No--or 41 1.E-05 46 4.E-t4 42 2.E-03 76 2.t v3 br F.E-02 7F 4.E-b1 125 5.E*b2 124 3.E*st MO--99 46 3.E ~5 *F 4.E-85 42 5.E-45 41 6.E-35 48 9.E-d5 43 9.E=g5 FF 1.E-u6 F6 1.E=G6 TC-gag 41 9.E-t5 62 2. E - 8 4 66 8. E -i b 4T 2.E-63 76 4.e-03 FF 1.E-62 125 1.E*00 124 4.E-01 2.E-05 130 2.E=OS 131 2. E-( 5 132 2.i-85 133 2.E-05 112 3.E*65 113 3.E-45 114 3.E-G5 -

TC--*9 129 90-103 F6 6.8 *6 FF 6. E-0 6 F8 6.E-E6 F9 1.E-05 46 1.E*b5 67 1.E-85 44 1.E-05 41 2.Eag5 42 4.E-85 46 1. E -L 4 67 3.k-04 F6 5.E-04 FF 2.E-63 =3 3.E-03 48 5.E-03 eu-1f5 41 1.E-05 4F 9.i=0 6 RU-1! 6 F6 2.E = w6 FF 2.E=g6 78 2.E-06 F9 3.E-06 88 5.E*w6 129 6.E*b6 46 9.E-06 . 62 1.E-04 46 1.E-84 47 1.E-84 43 5.E-D4 F6 5.E-64 F7 6.E-04 48 6.E-04 RH-1C S 41 9.E-L5

l  ; M' - W" _1 l . TABLE 4-3 (contd) .' CONCENTRATION LIMITS (UCI/GM) . DE MINDIUS NUOLInt LDHT LIMIT!1G LIMITING LIMITING LIMITING LIMITI NG LIMITING LIMITING T43Lf OCkCEN TAPLi C3h:E4 TanLE CONCEN T4sLE CONCEN TA8LE CONCEN TA1LE CJNCEN TABLE CONCEN TA8Le CohCtN 4G11r" F6 4.t*6F FF 9.E-OF F8 a .E-C P 79 B.E-OF GS 2.t*66 46 3.E-86 =F 3. E e.6 48 3.E-66 T*12*r 129 5.E*.5 13C 4. E-6 4 61 5.E *G 4 76 F.E*c4 TF F.E-04 78 4.E*0* F9 1.E-03 46 2.E-63 781??" 129 5.E-16 135 2. E-t 5 FE 4.E-35 7F 4.E-55 78 4.i-C5 19 5.E=85 61 8.E-b5 4F 1.E-64 TE-12F e6 1. E *3 6 1 1.E-03 47 2.E -r 3 42 2.E=J3 F6 5.E=.3 124 4.E-G3 125 2.E-02 FF 9.E-EJ

         'E129"               F6    1.E-25       FF       1.E-85        78    1 5 =L 5     .*6    2.E v5   4F    2.i-uS     79    2.E 65    129     %.E-.5      to     3.E-65 TE-124              41     6. E- ;5     46       2. E-B 3      76    9.E-53        42    2.E*82   4F    ,.E*01   124     1.E*CG      7F   2.E*.0      56      F.E*84 751'1"              41     9.E-t6       62       9. E-8 6      46    1.E-C 5       4F    2.E* 5   43    5.E-05     76    5.E=85      FF    6.E-05 75-131                                                                                                                                                48      F. i-L 5 41     2.i      5   46       2.E-t3        76    6.E*=3        4F    9.E*J3   42    1.E=u2     48    1.k-E2      FF    1.E-u2      43     1.E-62 TE-1'2              46     4. E - 26    4F       4.E-t6       62     4.E-26        43    F.E-36   to    5.E-s6     76    1.E-65      78   2.E*05 I--129            129      5. r a .;7 1Je FF      1.E-65
5. E -L F 131 5.i-LF 132 5.E-6 7 133 5.E-GF 112 9.E =F 313 9.E-br 114 9.E-dr T--1': 41 4.i-G6 42 6. E-8 6 46 2. E =i 5 47 3.E-Sb 76 9.E-45 FF 1.i'06 124 5.t-Et 43 5.E ub 1--121 46 . i .5 4F 2.E*L5 41 2.i-f 5 42 2.E=;5 48 3.i=O5 F6 3.E-65 124 3.E-05 FF 3.E*05 I--132 41 4. E = .6 *2 5. E-8 5 46 9.E s 5 F6 4.E 44 4F 1.s =6 3 124 2.E-83 125 3.E-02 FF 6.E-03 T--13! 41 2.E s5 42 2.E-t5 46 3.E-;5 *7 5.E-C5 12* 1.i-65 125 1.E-G4 76 2.E-L4 FF 2.t-G 4 I--126 '41 5. E '. 6 46 3.E*04 7E 1. E *. 3 124 4.E-G3 42 5.E=c 3 67 3.E-61 56 5.E-61 FF 1.E*uk

< T-*139 61 F.E-06 42 1. E-G 5 46 3.E-C5 47 F.i-65 F6 2.E=v, FF m.E*L4 125 2.E .3 .24 1. i-t 3 CT-124 F6 1. E * . 6 FF 1.E*B6 78 1.c*C6 79 1.E*m6 4G 1.i=J6 52 3.E-G6 *6 4.E-06 *T 4.E*06 w C5-135 52 2. E - 16 53 2. E -8

  • 54 2.E-as 55 2.E*64 61 J.E-G4 un 46 4.E * '6 6F 62 3.E-64 64 3.c .4 63 3.E-04 es.136 4. E*E b F6 4.E -( 6 77 4.E-J6 48 5.c 66 41 5.E 66 F8 5.E-C6 42 5.E*u6 C'-13F 52 E.F-;6 93 2. E
  • C 6 FE 2. E-L 6 FF 2.E-k6 F4 2.2*.6 F9 2.E 66 91 3.t 66 8L 2.E-C6 C5-13* *1 5.E*C6 66 4.i-84 TF 2.E-93 42 4.E-01 56 9.E-01 12* 1.E*G6 4F 3.E**1 FF 2.E*82 98-166 F5 4.E* 6 FF 3. E-9 6 78 4. E *C 6 48 4.E-66 4F i.i-G6 ~6 42 94-161 66 5.E-46 *3 6.E-66 2.E-GS 61 2.r./5 1. E -0 3 42 4.E=;3 F6 F.E-9 3 4F 2.E-02 FF 5.E-02 78 1.E-01 48 J.E-Et ta-162 41 2.E *5 46 9. i-t 6 62 3.E 23 76 4.E-0 3 *F F.i 62 FF 4.E-L1 125 2.E*C2 124 F.t*LO LA-14C *1 5.E*;6 62 6. k *I 6 46 F.E*46 67 8.E-06 43 2.E-05 F6 J.E-05 77 3.E-45 48 3.E-85 LA-161 of F. E -' S *6 3.E-64 62 =. E ; * *F 1.E-b3 76 1.5-63 FF 4.i-63 1Z4 1.E*b2 F8 1.i-G2 La-162 41 5.r <6 66 2.E*86 62 4.E-C4 F6 F.E-C4 4F 1.E-82 FF 6.E 62 125 3.E*01 124 4.t 61 CE-161 F4 5 5 .5 FF 5.E-65 F8 5.E .5 46 9.E-J5 4F 9.i=05 *8 1.E-L4 F9 1.E-G4 41 2.E-kb CF-163 66 3.i-t5 41 3.E-C5 6F 3.E-35 42 3.Eas5 76 ..E-G5 FF 6.E-G5 FS 5.E-G5 48 5.i-65 CE-164 F6 4.E-!6 FF 4.E-06 F8 m.E-0 6 79 4.E-56 88 'i.i-C6 46 1.E-C5 47 1.E-L5 48 1.E-65 sc-163 76 5.E**6 46 5.E-06 7F 5.E-C 6 4F~ 5.E *u 6 79 6.E=w6 49 6.E=.6 41 1.E-65 42 1.E-GS sc-166 41 5. i .5 46 3. E-C 3 F6 2.E 62 124 5.E*83 56 3.i+04 -2 F.E*G4 1 59 3.s*06 96 1.E*86 96-167 =6 6.E*;5 *F t. E-8 5 76 m.E *0 5 FF 4.E-85 44 5.E*C5 78 5.E 65 41 6.E-J5 *E 6.E-E5 8"-167 76  ? . E-( 4 FF 3. E -0 4 78 3.E-*.4 79 3.E-36 Se 3.E-C* 52 6.E 6* 46 1.E-63 4F 1.E-63 u--1PF *1 2.F-C5 42 2. E-0 5 4F w.E-05 47 5.E-05 F6 2.5 ub 63 2.E-6* FF 2.E .4 49 5.E-44 qa-FI' 12 3.t= 5 125  ?. E-F 5 12E 4.5-05 56 SF 5.E*B5 58 5.E-J5 6.E-L5 12F 3.E-04 59 5. Ease 2a-226 26 2.E= JF 26 2.E-tr 56 2.E-tr SF 2.E-OF 58 2.i=0F 59 2.E-OF 66 2.E-PF ZF ' 2. E -O F ar-227 f29 1.E-t5 136 1.i-05 131 1. E-t 5 112 2.E 65 128 2.E*.5 1;8 2.E=B5 113 3.E=d5 149 3.E-05 TM-22F 127 4.E .9 126 1.E*04 5e 1. E -t.
  • 125 2.c-64 58 3.i-64 164 J.t-tb 129 1.E-62 SF 2.E-8J OA-231 132 b.E-J6 1 13 4.E*E6 131 6.E=*6 13e F.E u6 129 T.E-06 114 8.E-66 115 8.E 66 113 1.E-OS U**235 121 5.E*'5 11C 9.E-05 131 5.E 65 132 5.E-05 133 5.i-b5 112 1.E-36 113 1.i-s4 114 1.E*O4 No-229 124 6.t-.3 125 F. E-t 3 126 2.E-L 2 12F 2.E*b2 att 2.E*02 1.5 2.E*42 16 2.E*62 10F 2.E*E2 P U- ? .19 13 4 5 . f * "5 1' 5 5.E-CS it 6 5. E -* 5 167 5.E 65 lu8 a . c-;
  • 1.9 1.i-04 125 1.E=ub 126 1.E*e4
                                          ~

TABLE 4-3 (contd) CONCENTRATION LIMITS (UCI/GM) TA9LE 25 - CA!E I-E ** SANITARY LANOFILL = CHILD EATS DIRT 04 WASTE SITE AFTER S YEARS TA9LE 26 - CASE I-E -- SANITAdf LANOFILL

  • CHILO EATS DIRT ON WASTE SITi AFTER 1C YEARS TA9LE 27
  • C ASE I*E -- S ANIT ARY LANDFILL - CHILD E ATS DIRT ON WASTE SITE AFTER 163 YEARS TABLE 29 - CASE I-F =* SANITARY LANCFILL - F033 GROWN ON WASTE SIfi AFTER 5 YE ARI TABLE 3C - CASE I-F == S ANITARY LANDFILL = F030 GROWN 3N WASTE SITE AFTER is YE ARS TA9LE 41
  • CASE I*! ** SANITARY LANDFILL
  • EXP35UAE TO 55 G ALLON ORUMS AFTER N0 CECAY TABLE *2 - CASE !*! ** SANIT44Y LANCFILL
  • EX83SUAE T3 55 GALLON ORUNS AFTEE 9 4L1 YEARS TA9LE *I - CASE I-I -- S ANIT ARY LANCFILL = EX83SURE TO 55 GALLON ORUMi AFTEP d.Ji YEARS YA9LE =6 - CASE I-J -- SANITadY LANCFILL = GPOUNO SuaFAcc EXPOSU E TO WORKERS AFTik 0 DECAY TA9LE 67
  • CASE I-J -- S ANITARY LANOFILL - CE.3DND SURFACE EXPOSU E TO WORKERS AFTE4 .001 YR TA9LE *8 - C ASE I-J *= SANITARY LANCFILL
  • GROJNO SUEFACi EXPOSURE TO WORKiKS AFTEE w.31 v4 TAMLE *9
  • CASE I-J -- SANITARY LAh0 FILL - GR3JNO SURFACE EXP05UCE To WORKcRS AFTER 6 1 YRS YA9Li 51
  • CASE I-J *= SANITA4Y LANCFILL
  • GRJUNO SUEFACE EXPOSU.E TO WORKiES AFTcE 10 YRS
 $P l    TA*LE    52 - CASE I-K ** SANITARY LAN0 FILL
  • G43UN3 SURFACE EXF05URE TO RESIDENTS AFTER 5 YRS g TA9LE 52 - CAsi 2*K -- SANIYARY LANCFILL = GROUNO SueFACE EXPOSUti 70 RESICcNTS AFTER 10 YA Ta9LE 56 - CASE !*K ** SANITARY LANOFILL
  • GR3043 SU# FACI EXP05U5 To RiS10tNTS AFTER 1GO Y TASLE 55 - CASE I*K == SANITARY LANCFILL - GROUNO SURFACc iXPOSU .E 70 RESIDENTS AFTER 1EJ Y TABLE SL - CAEE II-E -- FILL WANTED OISPOSAL = CHILO EATS W A5TE AFTER NO DcCAY TA1LE SF - CASi II=E -- FILL WANTEG OISPOSAL - CHILC EATS WAST [ AFicR ..Wut YEAA5 DECAY TA9LE SP - CASE II-E -- FILL WANTED O!SPOSAL - CHILC EATS WASTE AFTER s.01 YEAPS DECAY TABLE 59 - CASE !!-E *- FILL WANTED OISPCSAL - CHILJ E ATS WASTE AFTER t.1 YE AR5 DEC AY TA9LE 6[ - CASE II-E -- FIL6 WANTED OISPOSAL
  • CHILO EATS WASTE 1 YEAR DECAY TA9LE 61
  • CASE II-F -- FILL WANTED DISPOSAL
  • FOOD GROWN IN WASTE AFTER L.5 YE AK3 DiCAY TA9LE 62 - CASE II F a. FILL WANTED DISPLSAL = F000 GR3WN IN WASTE AFTER 1 YE AR DECAY TA9LE 63 - CASE II-F -- FILL WANTsD DISPCSAL - F003 GROWN IN WASYE AFTER 16 YEA *5 DECAY
         *19LE 66 - CA!i II-F -- FILL WANTED DISPOSAL
  • F000 GROWN IN WASTE AFTER 13C YE ARS DECAY
       . TA9LE 66 - CASE II-G -- FI6L        WANTED O!!PCSAL - EROSION IhT3 WATc COURSi AFTER NO DECAY
  ' i    TA'L5 Ff'- CASE II*K -- FILL WANTEC - GROUND *JRFACE CAP 01uAE TC RELI0iNTS AFTER NO DECAY l

TA4LE 77 - CASE II=K ** FILL WANTED - GECUNC surface EXPOSURE TC RE SIDENTS AFTs4 d.;C1 YRS l LA3LE 18 - CASE II-w -- FILL WANTED = GROUND SURFAC! EXPO 5URE To RESIDiHTS AFTiE 3 61 YEARS 749Li 70 - CASE !!-K -- FILL WANTEU

  • GROUhD SURFACI EXPOSUEE 70 RESIDiNTS AFTE4 v.1 YdARS TA9LE SC - CASE II-K ** ' FILL WANTED = GROUNO SURFAC' EXPOSURE TO RESIDENTS AFTER 1 YE AR TAPLE 91 - CA$i II-K -- FILL WANTEG = GRCUhD surface EXPOSURE TO RESIDENTS AFTER 18 YEARS i

TAmLE 4E - CA$i II-K ** FILL WANTiO - GdOUND SU#F ACE iXP05URE TG EESIOcNTS AFTER 13C YE ARS . TA3LE 93 - CASE II-K *- FILL WANTED = GRCUND SURFACE EMP05UPE TO RESIDENTS AFTER 1000 YEARS TA9tE 46 - C AS E III-C ** S ANITA%Y LAN3 FILL - INHAL A* ION SPILLED WA3TE AFTER N3 DECAY TA9LE 13b - CASE 111-0 == SANITART LANOFILL - INHALATION DURING SITS EXCAVATION AFTER 5 YRS i T A9LE A a! = CASE III-D ** SANITARY LAN3 FILL

  • INH ALATION OURING SITE EXCAVATION AFTER 10 YRS l T A4LE 106 - CASE !!!-0 -- SANIT ARY LAN3 FILL
  • INNA6 ATION OURING $1TE fACAVATION AFTER 160 YA l TASLE 137 - CASE III-c == S ANITARY LANOFILL
  • IMHAL ATION CunZNG SITE EXC AVATION AFTE8 1060 Y l

g TABLE 138 - CASE III-E ** SANITARY LAN3 FILL = CNILO sATS DIRT ON W ASTE SITE AFTE 4 5 YE AAS l e T A9LE 139 - CASE III-E ** S ANITARY LAN3 FILL - CNILD E ATS DIRT ON WASTE SITE AFTER iu YEARS T ABLE 112

  • CASE III-F -- SANITARY LAN3 FILL
  • FOOD GA0WM LN WASTk SITE AFTER 5 -YE ARS
  . .-   Y A9LE 113 - C ASE I!!-F -- SANITARY LANOFILL = FOOD GROWN 04 WASTE SITE AFTER 13 YE ARs T A8LE 11L - CASE III-r == SANITARY LAN3 FILL - F003 GF0WN ON WASTE SITE AFTER 100 YEARS TA9LE 115 - CASE III-F -- S ANIT ARY LANOFILL .- F003 G40WN ON WASTE SITE. AFTER 1* tJ YE Aes
   -~~

TA9LE 126 - CASE IV-E ** FILL WANTED O!SPOSAL - CHILO EATS WASTS AFTER NO DECAY T ASLE 125 - CASE IV-E == FILL WANTED OISPOSAL - CHILO EATS WASTE AFTER 3 4C1 YE AR$ CECAY l T A9LE 12f.

  • CASE IV-E -- FILL WANTE0 DISPOSAL - CHILD E ATS WASTE AFTER 0.C1 YE APS DECAY TA9LE 127 - CASE IV-E == FILL WANTED DISPGSAL - CHIL0 E ATS WASTc AFTER 8 1 YEARS DiCAY TA8LE 128 - CASE IV-E -- FILL WANTED DISPOSAL = CHILO E ATS WASTE AFTER 1 YE AR GE ACY TA9LE 129
  • CA5s IV-F -- FILL WANTED DISPCSAL = F000 GROWN IN WASTE AFTER 0 5 Yi ARS DECAY
T A9LE 13G - CASE IV-F ** FILL WANTED DISPOSAL - FOOD GROWN IN WASTE AFTER 1 YE AR DEC AY

! T A9LE 131 - CASE IV-F -- FILL WANTED DISPOSAL

  • FOOD GROWN IN WASTE AFTER 10 YE ARS. DECAY l TA9LE 132
  • CASE IV-F =* FILL WANTED DISPCSAL - F000 GR0wN IN WASTE AFTER 1Cu YE ARS OcCAY l T ABLE 132 - CASE IV-F == FILL WANTED DISPCSAL
  • FOOD GROWN IN WASTE AFTIR 1CGO YEARS DECAY T ABLE 134 - CASE IV-G -- FILL WANTED DISPOSAL
  • EROSION INTO WATE* COURSE AFTER No DECAY l 719Li 135 - CASE IV-G ** FILL WANTE0 DISPOSAL
  • EROSION INTO WATEmCOURSE AFTER 0.cai YEARS l TA9LE 134 = CASE IV-N ** FILL WANTED DISPCSAL - INHALATION OF WASTE ERQOED AFTER No OECAY l

l 36

TABIJC 4-4 I POST RESTRICTIVE CONCENTRATION LIMITS AND DISPOSAL-PATHWAY-RECEPTOR COMBINATIONS SELECTED FROM ALL COMPUTED CASES ARRANGED BY INCREASING "DE MINIMUS" CONCENTRATION LIMIT CONCENTRATION LIMITS (UCI/GM) NUCLIOE _ tmir LIMITI1G LIMITING LIMITING LIMITING 4tNITING LIMITING LIMITING Ta9LE CONCEH 749Li C3NCEN TABLE CONCEN TA 9LE C0hCEN TABLE CONCEN TAB 4E CONCEN FA8Li CONCEN TA8LE CONCEN RA-226 29 2.E-47 26 2.E*87 56 2.E-8 F SF 2.E-87 58 2.E-6F 59 2.E-IT 66 2.E-8F 2F 2.E*ST I--129 129 5.F-0T 138 5.E-87 131 5.E-e F 132 5.E*8F 133 5.E-87 112 9.E*8F 113 9.E-0F 114 9. E -8 F SR--96 129 8.E-rF 138 4. E -8 7 131 9.E*LF 61 1.E-86 62 1.E-L6 63 1.E-86 112 2.E-46 113 2.E-s6 AG11er F6 8.E-GT FF 8.E-OF 78 8.E=0F F9 8.E-sF 80 2.Eas 6 46 3.E-E6 47 3.E-06 48 3. E*& 6 C0==6C F6 6.E*fF FF 8.E-IF 78 4.E=0F 79 8.E*ST 88 9.E-OF $2 9.6-OF 81 3.E-d6 53 2.E-86 CS-134 76 1.f-c6 77 1.E-06 7A 1.E-06 79 1.E-86 se 1.E*J6 52 3.E-86 46 4.E-G6 4T 4. E-5 6 CS*13F 52 2.E-96 53 2.E-C6 FE 2. E -b 6 FF 2.E-u6 F8 2.E-46 19 2.E*g6 81 3.E-06 80 2.E=e6 re--95 F6 2.E-t6 FF Z.E-56 FR 2.E-C 6 F9 2.E*u6 49 8.E*b6 48 8.E-86 47 9.E*e6 46 9.E-06 MN.-54 F6 E.5*66 7T 2. E*0 6 FA 2.E-06 79 3.E-86 80 5.E-06 46 9.E=O6 4T 9.E-06 48 9.E-86 RU-1C6 76 2.E-L6 FF 2.E*86 7e 2.E-0 6 F9 3.E-W6 80 5.E-G6 129 4.E-06 46 9.E-66 47 9.E-b6 CD--58 F6 3.E- 6 ?F 3.E-t6 78 3.E-t6 T9 4.E*v6 46 T.E =F F.E-E6 48 F.E-06 41 9.E*06 FF=~59 76 3.F-36 7F 3.E-96 74 3.E-t6 T9 5.E-L 6 46 6.i-46 4F F.E*B6 46 F.E-c6 41 9.E-86 N4**24 41 1.t-06 42 4.E*06 46 A .E -0 6 4T 1.E-05 F6 4.E-G5 FT 6.E-85 43 2.E-04 48 5. E-0 4 98-140 F6 3.E-36 TF 3.E-06 74 4.E-E 6 44 4.E=86 4F 5.E-G 6 46 5.E-36 43 6.E-C6 42 2. E-6 5 FN-*f5 F6 4.E-t 6 FF 4.i-66 78 4. E -s 6 79 4.E=d6 61 6.i-C6 129 9.E-06 46 1.E-05 62 1.E-05 W CE-144 F6 4.Eag6 78 4.E-t 6 79 4.E-66 1.E*85

                                         "                       4.E-t6                           7F                                                     SL    9.E*d6    46              4F    1.E-05  48    1.E-05 C-**14     129    4.E v6                   1 30         4.E-06       131    k.E-06       132     4.E-s6  133    4.E-J6   112    5.E-E4   113    5.E-66 114    6.t-06 TE-132      46    4.E-<6                           *F   4.E*C6        42    4. E -9 6      43    F.E*66   44    4.E-t6    76    1.E-85    FO   2.E=.5   FF    1.E-85 I--132      41    4.E=.6                           42   5.E*E5        46    8.E-65         T6    4.E*Co   4F    1.E-G3   124    2.E*G3   125    3.i-s2  TF   6.E*e3 CS*1FE      46    4.f**6                           47   4.E*G6        76    4.E .6         FF   4.E-86    48    5.E-C6    41    5.E-E6    78    5.E*16  42-   5.E-06 I--130      41    4. E .6                          42   6.E-06        46    2.E-C5         47    3.E-85   76    5.E*85    FF    1.E-tb   124    5.E-04  43    5.E-64 PA-231     132    4.E*56                   133          4.E-C6      131     6.E*.6       1 30    F.E-L6  129    T.E-46   114    8.E-L6   115    8.E-u6 113    1sE*05 44*-95      F6    4.E=C6                           FF   5.E*06        F8    5.E-06         46   9.E-06    4F    9.E-8 6   ?9    9.E-66    *e    1.E-L5  41   1. E-C 5 49-*89      41    5.E 6                            4E    3.E-E4       76    4.E*03         7T    4.E*g2   T8    5.E-82    F9    1.E-01    *F    2.E-01  48    2.E-61 CS-138      41    5.E= 6                           46   4. E-0 4      F6    2.E=b3         42   4.E-81    56    9.E-91   124    1.E*LJ    4T    3.E*01  TT   2.E*u2      ,

ee-143 76 5.E-06 46 5.E-06 77 5.i-46 47 5.i-J 6 ft 6.E-E6 *e 6.E e6 41 1.E-J5 142 1.E-C5 / 9t*-84 41 5.E-C6 46 4. E-0 4 76 2.E-03 42 4.E*01 56 1.i'3L 124 3.E*d. 47 3.E*01 FF 2.E*E2 1--134 41 5.E-t6 46 3. E-0 4 7E 1. E **J 3 124 4.E-C3 42 5.i-63 47 3.E-61 56 5.E-01 TT 1.E600 La-140 41 5.E-J6 42 6.E-86 46 T .i-C 6 47 8.i-36 .3 2.E-GS 76 3.E-05 77- 3.E-05 4e 3.E-35 La*142 41 5.E-t6 46 2.E-04 42 4. E -C 4 76 T.E*84 47 1.E-82 FF E.E-02 125 3.E*st 124 4.E-41 TE12FN 129 5. E - f 6 13e 2.E-b5 76 4. E *= 5 FF 4.E-35 FS 4.E=w5 79 5.E-a5 61 8.E-95 4T 1.i-34 RU+1C3 F6 6.E-E6 FF 6.E-06 78 6.E-06 T9 1.E-85 46 1.E-85 4F 1.E-65 =8 1.E-85 41 2.E-05 MN***6 41 6.E*t6 42 6. E-8 5 46 1.E-04 76 5.E-64 4T 1.E*43 FF 5.E-C3 1d5 4.E-41 124 4.E-82 T--135 41 % 5.E=: 6 42 1.E-95 46 3.E-65 47 7.E*s5 76 2.E-04 7T 4.E-b4 125 2.E-83 124 1.E-63 FR--97 42 8.E*.6 46 1. E*8 5 4F 2.E i5 41 5.E*e5 F6 T.i-05 FF 1.E*44 =3 2.E-84 48 5.E-04 SP*-92 41 5.E=O6 42 4.E*g5 46 8.E-05 47 4.E-14 T6 4.E-04 FF 2.E-s3 125 2.E-02 124 4.E*g3 I E 131 p 41 8.E-16 42 9.E-t6 4E 1. E -t 5 4T 2.E*d5 43 5.E-J5 76 5. E *B S FF 6.E-05 48 F.E-05 AC-22F 129 1.E-s5 130 1. E *g 5 131 1.E-C5 112 2.i-65 128 2.k w5 1: 8 2.n-85 113 3.E-d5 tu9 3.E-b5 E**-84 41 1.E*85 46 1. E-8 3 76 6.i-43 56 2.E*08 124 3.E*60 66 *.E*g3 134 6.E*33 42 T.E*83 TE1294 F6 1.E-05 7F 1. E-0 5 FA 1.E-G5 46 2.E-85 4F 2.E-C5 79 2.E-85 129 4.E-05 48 3.E-85 Na--9F 41 1.E-t5 46 4.E*B4 42 2.5-r3 , F6 2.E-63 47 T .E =e 2 TT 4.i-81 125 5.E*J2 124' 3.E*0s RU-it 5 41 1.E-65 42 4. E*g 5 46 1.E-?4 47 3.E-64 76 5.i-04 FF 2.E-33 43 3.n =3 44 5.i-83 1R=-41 41 1.E-L5 42 1.E-55 46 4.E*05 47 F.E-05 F6 2.E-s4 FF 3.E-64 FS 3.E-03 43 4.E-83 Y--91" 41 1.E-05 46 8.E-64 76 4.E -C 3 42 2.E-32 FF 3.E-8 2 Fs 3.E-82 F9 5.E-02 47 8.E*52 I-*133 41 2.E*05 42 2. E-8 5 46 3. E *15 47 5.E-45 124 8.E=d5 125 1.E-04 T6 2.E-b4 TT 2.E-84

[' T * . (', 8 TABIE 4-4 (contd) CONCENFRATION LIMITS (UCI/GM) et MINDIUS seUCLIOE Lat1T LIMIT!NG LIMITING LINITING LINITING LIMITING LINITING LIMIf!NG TARLE CONCEN fa9Li C3NCEN TABLE CONCEN T A BLE CONCEN TABLt C ONCE N TABLE CO NCE N TA8Li CONCEN T4 ELE CONCE N S7--89 F4 2.E-05 FF 2. E-8 5

  • 78 2. E *8 5 79 3.E-85 46 4.E-05 47 4.E=85 44 4.E-05 49 F.E-45 14-142 41 2.**55 46 9.E*I4 42 3.E E3 76 4.E-33 47 F . E-9 2 FF 4.E-C1 125 2.E*c2 124 7.E*SG TC--99 129 2.E-e5 136 2.E-L5 131 2.E*ES 132 2.E-85 133 2.E-85 112 3.E-65 113 3.E-35 114 3.E-b5 i--131 46 2.E .5 4F 2.E-85 41 2.E-t5 42 2.E-C5 48 3.E-85 F6 3.E-65 124 J.E-35 FF 3.E-85 CA-141 41 2.E-05 46 1.E-03 42 4.E-63 76 F.E-G3 4F 2.E-82 FF 5.E-D2 Fe 1.E-01 44 3.E-91 49--86 F6 2. E - s* 5 FF 2. E-8 5 FA 2.E *C 5 46 3.E-;5 4F 3.E-C5 48 3.E-85 41 F.E*45 42 F.E-95
  • Y---91 F6 2.E-05 FF 2. E -O S 78 2.E-85 79 3.E-GS 46 5.E-05 47 5.E-85 48 5.E-45 49 8.E-e5 c--187 41 2.E- 5 42 2.E-85 46 4.E-C5 47 5.E*05 76 2.E-64 *3 2.E-64 FF 2.E-og 48 5.E-04 .
                     's--93     54     2.E-05            f5               2.E-55       53              2.E-E 5            52    3.E*d5      82    4.i-95        43    4.E-85  81    4.E-05  51    2.E-04 T8-1?1     41     2.f-t5            46               2.E-83       76              6.E a3             4F    9.E-43      42    1.E-42        48    1.E-82  FF    1.E 62  43    1.E-82 v---92     41     2.E=;5            42               1.E-r%       46               2.E-c4            F6    9.E-84      4F    1.E*43        FF    5.E-L3 115    6.E-42 124    1.E-62 CE-143     46     7 . E .' 5        41               3. t4 5      47              3.E-SS             42    3.E-05      F6    ..E-05        FF    4.E-E5  78    5.E-05  48    5.E-85 NT*=63    129     3.E-;5'          13C               ~3.E ,      131               3.E-C5           112    5.E-45     113    5.i-L5       132    6.E-s5 114    1.E-44  61    3. E-0 4
                     #A-223    124     3. E -'.5        125               3.E C       t26              4.E-t5             SE    5.E-L5      57    5.E m5        50    6.E-L5 12F    3.E-64  59    5.E-64 40--##     46     3.E-!5            47               4. E13       %2              5.EM S             41    6.E-55      48    S.i-2)        43    9.E-45  FF    1.E-44  F6    1.E-04 H--**3     61     3.!*t5            F2               be l . "     ()              6.E* 5             29    F.E-65      3J    9.E 65       129    1.E*84 131    2.E-04 130    1.E-84 Y---oc     46     1.E *5            47               4. f .* ~    $4              9.E-*5             41    1.E m4      42    1.E-E4        76    1.E-gg  FF    1.d 64  g3    3.E-C4 w Y---93       41     3.f- 5            42               6.E-t5       44               8. i ='. 5        *F    1.E-04      F6    4.E*J4        FF    F.E-Og 125    3.E-43 124    2.E-83 m NS-93H       FA     3.2-J5            FF               3. E-0 5     78              3 5-E 5            F9    4.E-L 5     84    4.i-J5        52    5.E-65  46    1.E-d4  47    1.E*04 ND-147     46     4.E-C5            AF               4.E-85       76              4. E -0 5          FF    4.t-04      48    5.E*05        Fe    5.E-65  41    6.E-b5  42    6.E-uS CU--E4     41     4.E :5            42               6. E -8 5    4E              2.E-t 4            =7    2.E-64      76    8.i-G4        FF    1.E-t3  43    4.t-03  48    2. E *6 2 e---32      F6    5.E-r5            FF               5. E =i s    46              5.i-L5             47    5.E-45      78    5.E-85        48    6.E-85  41    2.E-64  42    2.E-64 CF-141     F6     5.6 .5            FF               5.E-b5       FP              5.5-45             46    9.E-65      47    9.E-G5        48    1.E-go  F9    1.E-64  41    2.E-0 4 TF125-    129     5. E          .5 130               4.E-G4       61              4.E-t,             F6    F.E-04      FF    F.E-3.        78    9.E-04  79    1.E-43  46    2. c-6 3' U--235    124     4.?           .5 L3C               5.E-t5      131              5.E s 5           132    5.E v5     133    5.E 65       112    1.i-54 113    1.E-04 114    1.i-84 PU-229    1* 4    5. E *. 9        1"5               5.E-05      106              5.E-L 5           AdF    5.E*s5     109    1.E-04       169    1.t-L4 125    1.E-04 124    1.E-tb PP-144     41     5.E- 5            46               3. E-5 3     76              2. E-L 2          124    5.E*03      56    3.i'L4        *2    F.E*Le 139    3.E*46  96    1.E*86 TE-129     41     F.E-s5            46               2. E-8 3     76              4. E -i 3          42    2.E-02      47    , . E -L i   124    1.E*L6  FF    2.E*st  56    F.E*GC LA-141     41     F.8-C5            =6               3.E-04       42              4.E 6 4            4F    1.E-C3      76    1.i-e3        FF    4.E-C3 124    1.E*42  78    1.i-92 FH-227    12F     9.E .5           126               1.E-94       59              1.i-54            125    2.E-04      58    3.E= 4       124    3.E-C* 129    1.E-42  57    2.E-63 9c--P5     =1     4.i- 5            46               2. E-B 2     42              2.i-62             F6    8.E-E2      4F    2.i=01        FF    1.E*0b  56    2.E*01  52    4.E*01 Tc-gow     41     9.F-15            42               2 8-84       46               8.E-C4            47    2.E*D3      F6    4.Eac3        FF    1.E-u2 125    1.f*2B 124    4. E-s 1 4H-1f 5    41     9.i*e5            42               1. E-0 4     46              1.E-r4             47    1.E .4      43    5.i-us        F6    5.E-54  FF    6.i-34  48    6.t-64 C4--51     F6     1. E
  • b4 FF 1.E-54 74 1.E-84 4E 2.E-t4 4F 2. E t' 4 4s 2.E-64 *1 2.E 44 42 2. i-C 4 CS-125 52 2.E-(4 53 2.E*O4 54 2.E-e4 55 2.s-04 61 3.E-0 4 62 .3.E-54 64 3.E-d4 63 3.E-C4 pm-14F 16 3.F-;4 FF 3. E-8 4 F9 3.E -E 4 F9 3.E-J 4 8. 3.E-G4 52 6.E-34 46 1.E-93 47 1.E-33 MT--59 129 4.E*'4 1?C 4.E-64 131 4.E-t 4 132 4.E-64 133 4.E-04 112 6.E-44 113 6.E-44 114 6.E-04 48--83 41 4.E=G4 46 2.E-53 42 6.i-f 3 76 1.E-22 4F 3.i-L2 FF 1.E-La 124 3.E*06 56 1.E*33 FF--ee 41 F.E-04 46 6. E -G 3 F6 3.E-02 42 5.E-41 br 5.E*04 144 8.E*CG FF 2.E*01 56 4.E*01 TE-12F 46 4 . E - t.4 1 1.E-f3 47 2.E-03 42 2.E-G3 T6 5.E-G3 124 8.E*e3 125 2.t-L2 FF 9.E-hJ ,

rE--55 129 5.E .3 124 5. E-6 3 125 5.E-C3 126 . 5.E-5 3 12F 5.E-33 13C 5.E-b3 12n 6.E-03 61 F.E-t3 N#*234 124 6.E* 3 125 F.E-93 12E 2.E-f2 12F 2.E*J2 Aw4 2.E *e 2 165 2.E*C2 tw6 2.E*e2 ter 2.E*02 NI--65 124 9.E-i2 125 9.E-01 56 2.E*JO 57 2.E*01 134 3.E*03 135 4.E*C4 66 E.E*ob 96 1.E*E5 ,

l . 1 - TABI.E 4-4 (contd) CONCENTRATION LIMITS (UCI/GM) TABLE TABLE 25 - C ASE I-E -* SANITARY LANDFILL - CMILO E ATS DIRT ON WASTE SITE AFTER 5 YE ARS TasLE 26 - CASE I-E -- SANITARY LANOFILL = CHILO E ATS DIRT ON WASTE SITE AFTER 18 YEARS TABLE 27 = CASE I-E -* SANITARY LANDFILL

  • CHILO E ATS DIRT ON WASTE SITE AFTER its YEARS TASLE 29 - CASE I-F -- SANITARY LANOFILL - F000 GROWN ON WASTE SITE AFTER 5 YE ARS TasLE 38 - CASE I-F -- S ANITARY LANDFILL = F000 GROWN ON WASTE SITE AFTER 10 YE ARS TABLE 41 - CASE I-I -- SANITARY LANOFILL - EXPOSURE TO 55 GALLON ORUNS AFTER NO OECAY T ABL E 42 =- CASE 43 CASE I-I -- SANITARY. LANOFILL
  • EXPOSURE TO 55 G ALLON ORUNS AFTER 5 481 YE ARS TABLE I*I* -- SANITA RY LANOFILL - EXP3SURE 70 55 GALLON 04UNS AFTER 8.01 YE ARS TABLE 46 - CASE I*J == SANITARY LANOFILL = GR3UNO SURFACE EXPOSURE TO WSRKERS AFTER 6 OEC4 TABLE 47 - CASE I-J == S ANITARY L ANOFILL = GROUND SURF ACE EXPOSURE 70 hoREERS AFTER .841 Y TABLE 4s -- CCASE 49 A S EI*J I-J **
                                                    ==SANITARY S ANI TA RYLANOFILL
  • GR3U40 SURFACE EXPOSURE TO WORKERS AFTER e.41 Y
1 T&tLE L AN0 FILL
  • GROUNO SURFACE EXPOSUAE TO WORKERS AFTER 5 1 YRS

~ =P TABLE 51 - CASE I-J == SANITARf LANOFILL = GROUNO SURFACE EXPOSURE TO WORKERS AFTER 18 Y TA9LE 52 - CASE I=K == SANITARY L ANCFILL = GROUNO SURFACE EXPOSURE TO RESIDENTS AFTER j TABLE 53 - CASE !=K == SANITARY LANOFILL = GROUND SURFACE EXPOSURE TO RESIDENTS AFTER 54 TasLE 55 *- CASE CASE I-K I-K --

                                                     -- S  ANITARY LANOFILL - GR3DNO SURFACE EXPOSumE TO RESIDENTS AFTER 186 SANITARY     LAN0 FILL = GROUNO SURFACE EXPOSURE TO RESIDENTS AFTER 1ES Y TABLE TA9LE 36 - CASE II-E *= FILL WANTED DISPOSAL - CHILD EATS WASTE AFTER NO DECAY TA9LE       ST - CASE II-E -- FILL WANTED DISPOSAL - CHILO EATS WASTE AFTER a.861 tE ARS DECAY TABLE       58 - CASE II-E ** FILL WANTED OISPOSAL - CHILO E ATS WASTE 'AFTER 0 01 YE ARS DECAY TA9tE       59  - CASE II-E ** FILL MANTio DISPOSAL - CHILO EATS WASTE AFTER 0 1 YE ARS DECAY

< 61 - CASE II-E -- FILL WANTED DISPOSAL = CHILO E ATS W ASTE i YE AR OECAY g TASLE 61 - CASE II-F == FILL WANTED DISPCSAL - F000 GROWN IN WASTE AFTER 8.5 YEARS DECAY TA9LE j TA9L8 62 - C ASE II*F ** FILL MANTE0 DISPOSAL - FOOD GR3WN IN W ASTE AFTER 1 YE AR DECAY i ~1 TASLE 63 - CASE IIaF -- FILL WANTED OISPOSAL - F000 GROWN IN WASTE AFTER 10 YE A#5 DECAY

   . *8                          64 - CASE II*F ** FILL WANTED DISPOSAL - F000 GROWN IN WASTE AFTER tts TEARS DEC&Y T&9LE 66 - CASE II-G -- FILL MANTED O!sPOSAL - EROSION INTO WATE* COURSE AFTER NO DECAY TA9LE 76 - CASE II*K ** FILL WANTED - GROUND SURFACE EXPOSUAE TO RESIDENTS AFTER 40 DECAY TARLE
   , ,j, TABLE       TF - CASE II-K ** FILL WANTs0 - GRCUNO SURFACE EXPOSURE 70 RESIDENTS AFTER a.801 YRS TA9LE       78 - CASE II-K -- FILL WANTED = GROUNO SURFACE EXPOSURE 70 RESIDENTS AFTER 4 01 YEARS TamLE       79 - rase II-K -- FILL WANTED = GROUNO SURFACE EXPOSURE TO RESIDENTS AFTER 4 1 YEARS 40 - CASE II*K == FILL WANTED - GRCUNO SURFACE EXPOSURE TO RESIDENTS AFTER 1 YEAR T A 9L,E   ~ 81 - CASE II-K -- FILL WANTED ~ - GROUN3 SURFACE EXPOSURE TO RESIDENTS AFTER 18 YEARS 42 - CASE II*K *= FILI , WANTED = GRCUND , SURF ACE, EXPOSURE Yo RESIDENTS AFTER 194 YEARS ITA9LE TABLE 83 = CASc II-K ** FILL WANTt0
  • GROUNO SURFACi EXPOSURE TO RESIDENTS AFTER 1988 YASLE TA9LESOE TA9LE 96 - CASE III-C == SANITARY LAN3 FILL = INNAL ATION SPILLED WASTE AFTER NO OECAY T A9LE 194 - CASE III-0 -- S ANITARY LANOF{$L = INNAL ATION GURING $1TE EXCAVATION AFTER 5 YR$

195 -- CASE CASE III*O III-0 ==

                                                        -- SANITARY SANITARY LANOFILL                  = INHALATION OURING SITE EXCAVATION AFTER 18 Y LAN3 FILL
  • INHALATION OURING SITE EXCAVATION AFTER 144 YR TASLE 107 - CASE III*O == SANITARY LANOFILL = INNALATION OURING SITE EXCAVATION AFTER 168
       .             TatLE 1J8 = CASE III*E == SANITARY LAN3 FILL - :NILO EATS 014T ON WASTE SITE AFTER S YEARS TA9LE 199 = CASE III-E == SANITARY LANOFILL - CHILO EATS OIRT ON WASTE SITE AFTER 18 YEARS T A9LE 112 - CA$f III-F *- SANITARY LAN3 FILL - F000 GPOWN 04 WASTE SITE AFTER 5 YE ARS T&9tE 113 - CASE III*F ** SANITARY LAN0 FILL = F000 GROWN ON WASTE SITE AFTER 18 YEARS

_. T49tE 114 - CASE III-F =- SANITARY LA40 FILL - F000 GROWN ON WASTE SITE AFTER 180 YE ARS TA9LE 115 - CASE III-F -- SANITARY LAN0 FILL - FOOD GROWN 04 WASTE SITE AFTER 1993 YE ARS TABLE 124 - CASE IV-E -- FILL WANTED OISPCSAL - CHILD E ATS WASTi AFTER NO DECAY T49LE 125 - CASE IV-E == FILL WANTED OISPOSAL - CHILD EATS WASTE AFTER J.461 YE ARS DEC AY YA9LE 126 - CASE IV-E -- FILL WANTED OISPOSAL - CNILO EATS NASTE AFTER 3 41 YE ARS DECAY TA9LE 127 - CASE IV-E -- FILL WANTE0'0ISPCSAL - CHILO EATS WASTE AFTER e.1 YEARS DE*AY TA9LE 128 - CASE IV-E -- FILL WANTE0 OISPCSAL

  • CHILO EATS WASTi AFTER 1 YEAR DEACY T ABLE 129 - CASE IV-F -- FILL WANTED OISPOSAL
  • F000 GROWN IN WASTE AFTER 8 5 YEARS DECAY T A9LE 130 - CASE IV-F ** FILL WANTED OISPOSAL - F300 GROWN IN WASTE AFTER 1 YEAR OEC AY TA5LE 131 - CASE IV-F == FILS WANTED OISPOSAL - FOOD GROWN IN WASTE AFTER 16 YE ARS SEC&Y TABLE 112 - CASE IV-F ** FILL WANTED DISPOSAL = FOOO . GROWN IN WASTE AFTER 189 YEARS DECAY TA9LE 133 = CASE IV-F -- FILL WANTE0 DISPOSAL
  • F000 GROWN IN WASTE AFTER 1888 YEARS DEC&Y TARLE 134 - CASE IV-G -- FILL MANTEO DISPOSAL = EROSION INTO WATERCOURSE AFTER No OECAY T ABLE 135
  • CASE IV-G -- FILL WANTED OISPOSAL - EROSION INTO WATERCOURSE AFTER g.381 YEARS TABLE 139 - CASE IV-N == FILL MANTE0 DISPOSAL - INHALATION OF WASTE ER00E0 AFTER WO DECAY 39 l _

TABIE 4-5 MDST RESTRICTIVE ACTIVITY CONCENTRATION LIMITS FOR SOLID WASTE DISPOSAL IN A SANITARY LANDFILL CONCEN1' RATION LIMITS (UCI/GM) EUCLIDE LDet? LIMIT 196 LIMITING LIMITING LIMITING LIMITING LIMITING LIMIFING N----3 T40LE 29 C0bCEN F.E*ts 30 TA8LE112C3NCEN

9. E-3 5 2.E*14 TABLE C09CEN F A 8Li CONCEN TABLE C ONCiN TA8LE 113 3.E-G 4 J1 1.E-82 C---14 112 5.E-t6 113 5.E-86 114 6.E-06 115 6.E-86 114 4.E*IZ 25 3.E-Et 26 4.E-61 NA--26 41 3.E='6 42 29 9.E-86 J8 9.E*06 4.E*P6 46 8.E-06 47 1.E-L5 43 31 9.E-66 32 1. F -15 p---32 46 5.E-95 4F 5.E-OS 48 6.E-85 2.E-34 4e 5.E-04 5 3.t*G4 13 3.E*g4 CS--?1 46 2.E s4 4F 41 2.E-04 42 2.E*64 43 2.E*84 49 2.E-te 48 2.E-b4 41 2.E-34 42 2.E-04 3.E-84 44 1.E-63 94--56 46 9.E-46 4r 9.E-06 43 2.E*54 49 5.E-04 NN--56 41 48 9.E-J6 49 1.E-85 41 1.E*65 42 1.E*85 44 5. E-0 4' 6.F~i6 42 6.E*F5 46 1.E-14 47 43 1.E-05 44 FE--55 109 2.E-J2 25 1.E-83 si  %.E*E2 A9 4.E*63 96 1.i-t5
3. E*0 2 112 1.E-62 29 5.E-42 139 8.E-32 6.E*04 5 2.i+04 FE--?9 66 6.E*L6 4F F.E-86 48 26 1.E-61 113 1.i-91 JL F.E -L 6 41 9.E-86 42 9.E-66 2. E -81 CD-*5 9 46 F.E-06 47 F.E-86 4s F. E-t 6 41 9.E-66 43 1.E-85 49 1.E*ws 44 2.E 65 CO--F4 52 9.E- F 53 2. E w 6 42 9.i-86 43 1.E-b5 49 1.Eas5 46 3.E-G6 AF 3.E-46 49 3.E=w6 44 1.E-b5 MI--to 112 6.E-4 113 6.E-04 49 3.E-56 54 4.E*46 M1--E?

116 6.E-t4 115 6.E*C4 29 1.E-63 41 5.E-86 11 2 5.E 65 113 5.E-05 114 1.EM 4 29 5.E-04 3G 1. E -3 3 J1 1.E*G3 32 1.E-83 NI**FS 96 1.E*25 89 1. E

  • g
  • 30 5.E-G4 31 1.E-63 104 1. Eau 3 CU--64 97 1.E*L6 89 1.E*O6 5 2.i'C6 169 1. E-G 3 41 6.E*J5 42 6. E-8 5 66 2.E-04 47 1 1.E*d? 2 1.E*tt 3 1.E*SF FH--E$ 46 1.F-t5 4F 1.E-C5 2.L*84 43 4.E-83 48 2 . E-6 2 96 3.E*C4 h IM--t 9 41 F.E*ih 4s 1.E-05 49 1.E*85 41 2. E-0 5 42 2.E-B5 89 4.E*g4 66 6.E-t3 42 5. E =* 1 =7 5.E*Oc 43 2.E-OS 44 2.E-05 V--*3 41 6. E - 34 46 2.E-83 42 6.i-;3 SS 3.i+LS 96 1.E*B6 5 2.E*u6 1.E*er 98--46 47 3.E-62 5 5.E*45 es 1

41 5.E-06 46 4.E-84 62 4.i-C1 47 3.E*B1

                                                                                                                                                                                               ..E*t6                 96     5.i's6        13     2.E*t6 99--95                      61               1.E-05                                                                                                   5    4.E*t5          88     1.E*B6                 96 46    2.E-82             62     2.i-C 2      4F               2.E-b1         52                                                          4.E*L6        13     1.E*I6 E8--86                      46               3.E-f5                    4F    3. E-8 5           48     3.E*G5        41
                                                                                                                                                                        ..i+L1          53     6.E*B1                 48     2.E*w2        49     2.E*02 Q*e-P4                      41               1. f = . 5                46    1.i+83 7.E*05         42     F.E-65          *3     8.E-05                 49     1.E-d4        44 38--a4 42     F.i+C 3        5              1.E*BS         48     2.E*05                 F.E*D5 3.E-64 61                5.F-C6                    66    9. E-0 4           47     2.E-C1       48               2.E-01
                                                                                                                                                                                        *F                            96     3.E*C6        1J     2.E*B6' 50--A9                     46                ..E=95                                                                                                 49     3.E-01          42     1.EetG                 43     1.E*be 4F    4.E-05             48     4. !-8 5     49               F.E*G5         41     2.E-C4 44     2.E*Ou Sc=-9!             112                       2.E-96                113       2.E*L6             29     2.E-C6                                                             42      2.E-d4                 43     2.E-64        44     4.d=t 4 -

34 3.E *w 6 52 3.E-36 53 SR=*e1 41 1. t- .5 42 1. E -[ 5 46 4.E*85 47 4.E-L6 118 1.E*ws 19 1.E-E5 Sc--o2 61 9.!-C6 42 6. E*I 5 46 F.E*t5 43 4.E-03 68 5.E-E3 =9 1.i-02 T--*oc 66 8.E-45 4F 4.E *8 4 43 2.E*b2 -8 2.E*s3 44 F.E-02 - 3.E-t5 47 6.E-t5 48 9.Eac5 99 2.i+04 8e 9.E*e3 Y--91w 41 1.E-GS 41 1.E=L4 42 1.E-J4 43 3.E-54 49 46 8.E*t4 42 2.E-E2 wF s.E-82 4.E*01 44 1.E*00 Y---ei 46 5.E 45 *F 5.E-85 44 48 9.2 62 49 1.E-61 *3 5.E wi 44 8.E-61 Y--*02 41 5.E*t5 49 4.E-85 41 3.5-J6 42 3.E-s4 43 3.E-64 2.E-55 62 1.E-54 46 2. i-G 4 47 1.E-63 ,3 F.E*b2 44 ,5.i-84 v---93 g1 3.E-t5 42 6.E-05 46 8.E-t 5 68 5.E*E3 96 2.E*64 89 19--93 56 2.F=(5 4F 1.E-84 43 1. E-3 2 48 3.E-L2 89 2.E*d3

4. E *G 4 55 2. E-9 5 53 2.E-L5 SE 3.E-45 04 1.i+03 FR--05 49 SgE-66 51 2.E-44 Sb 8.E-E4 115 6e s.E-06 47 9.E-06 e6 9.E-86 44 3.E .3 114 3.E-03 Fe--OF 42 9. F- 96 46 1.E-85 47 2.E-05 1.E-05 41 1.E-45 42 1.E-35 43 1. E-5 5 N9-%FM 52 5.E*?S 61 5.E-h5 43 2.E-04 48 5.E-8s 9F J.E*43 46 1. E *C 4 4F 1. E =u t 44 1.E-44 96 2.E*03 NC--95 46 9.E-G6 53 1.E-04 *9 1.E-04 50 2.E-84 4F 9.E-C6 4e 1. E -4 5 41 1.E-65 42 1.E-d5 51 9.E*B4 N2=*97 41 1.E*D4 46 4.E-84 42 47 w3 1.E-85 49 2.E-05 44 2.E-85 Mo--99 46 3.E-69 2.c*03 7.E-82 et 2.E*th e6 5.E*ES 99 3.E*J6 47 6.E-05 42 5.E-0 5 41 6.Eas5 58 8.E-b5 1 1.c'0F TC-99M 41 9.E- . 5 42 2. E-0 4 46 8.E-e4 4F 2.E-83 63 9.E-55 49 3.E-c1 44 3 6-61
  • TC--99 112 3. E '.5 43 2.i+04 48 2.E*st 113 8.E*d3 113 3. E-6 5 114 3.E-4 5 115 3.k-e5 52 112 8.E*C3 tu-123 46 1.E-15 67 1.E-SS 48 1.E-85 '41 8.i-45 53 8.E-05 54 9.E-05 55 a.c-8 5 EU-tr5 41 1.E-C5 2.E-85 42 2.E-95 43 2.E-05 49 62 4.E-55 46 1.E-c4 47 3.E-34 43 3.E*c3 2.E-85 44 3.E-E5 .

Ru-14 6 46 9.E=?6 47 9.E-E6 48 9.E-t6 49 1.E-65 48 5.E-63 49 2.E*tt 44 1.E*64 RH*1( 5 0.E*J5 58 2.E=8 5 42 2.E-s5 43 41 42 1.E-t4 46 1.i-( 4 4F 1.E-84 43 2.E w5 44 2.E-65 5.E*04 48 6.E-04 49 3.E*J3 44 2.E *0 3 .

9F _ - M '_ ., W

  • s.

TABLE 4-5 (contd) .' CONCENTRATION LIMITS (UCI/GN) DE MINDeus NUCL!nE LIMIT LI* TIT 14G LINITING LIMITING LIMITING LIMITING LI4! TING LIMITING T49LE CONCEN TA9LE C3NCEN T A BLE C09CEN TA8tE CONCEN TA8LE C ONCE N TAnLE CONCEN FA9LE CONCEN TABLE CouCE 4G11CM 46 3.E-C6 6F 3.E-56 48 3.E-96 49 3.E-L6 41 4.E-06 *2 TE1254 46 2.E-L 3 4F 2.E-93 4.E-b6 43 4.E-J6 44 4.E s6 48 2.E-33 49 3.E*t3 41 2.E*02 42 2.E-82 43 2.E-82 TE12FM 4F 1.E- 4 48 1.E-L4 46 1.E**4 49 2.E wg 43 1.E*03 44 4.E-42 TE-127 46 1.E-03 44 1.E-83 58 1.E-G3 42 2.E-tJ 9.E-34 61 47 2.E-83 42 2.E-83 48 6.E wi 43 F.E*b1 89 3.E*us 48 TE1201 46 2.E wS *F 2.E-85 48 2.Eet3 TE-129 3.E-r5 - 42 5.E*e5 49 5.i J 5 43 ' 5.E-85 44 1.E v4 41 2.E-b4 41 6.E-J5 46 2.E-E3 42 2.E-C2 47 4.E-91 112 1.E*e5 113 1.E*e5 T r' 131" 41 4.E t6 42 9. E-L E 46 1. E -8 5 115 1.i+LS 114 1.E*v5 47 2.E-OS 43 5.i-GS 68 F.E-85 49 2.E-L3 78-131 41 2.E-GS 6E 2.F-83 47 9.E-23 42 1.E-32 48 44 3.E-83 TE-132 46 4 5-t6 67 4. E-9 6

1. E *8 2 43 1.E-82 49 2.E-01 46 2.E 42 m.6% 6 43 F.k-i6 48 8.E*b6 41 m.E-35 49 9.E-c3 44 I--129 112 9.E ~F 113 9.E-0F 114 9.E-tF 115 9.E *G F - 144 5.E-16 8.E-s3 I-- 1 ?. 41 4.E- 6 42 6.E-86 46 4F 1.9 5.k-86 116 5.E-36 til 5.E 6 1--121 2.E-25 3.f-85 43 5.E-44 et 2.i-83 9F 1.E*03 96 7.E*62 46 2.E-b5 4F 2.E-85 41 2.5-55 42 2.5-d5 to 3.E*u5 3 3.E-85 49 4.E-94 I--132 41  %.5 66 62 5. E-E 5 46 8.E-t5 47 44 5.E-84 I--133 41 1.E -C 3 96 3.ke63 94 1. E
  • E w 9F 4.E*d4 89 2.E*05 2.E-J5 42 2. E-8 5 46 3.E*t5 47 5.E-65 43 3.k-84 48 5.E*e4 I--176 41 5.5-36 46 3. E-0 4 62 5.E-C3
                                                                                                                                                                                                                                                          =9      2.E-31                                              44     5.E-01 47     3.E-b1       96    5.E *g 3        48     2.E*B4                           13      F.E*05                                                ?    3.E*06 I--1?5                                            41      6.E-46         42       1. E-8 5     46     3.E-05       4F    F.E .5       43
a. CT-134 52 1.E*"6 66 4. E-C 6 9.i-03 48 4.E-82 97 3.E*e3 96 1.E*03 67 4. E -t 6 48 4.E-36 49 m.E-86 41 5.E*O6 42 5.E-06 50 E'

C5-135 52  ?.E 44 53 2. E-S t . 54 2.E-64 5.E-06 55 2.E-04 29 4.5-r4 3. *.E-44 31 4.E 64 32 4.E-04 CS-126 46 4.E-06 47 4.E-56 44 5.E-C6 41 5.E-86 42 5.E-G6 52 43 4.E-C6 49 1.E-05 44 3.E-65 C5-137 2.F-;6 53 2.E-56 46 9.d-C 6 4F 9.E-0 6 44 1.E-L6 49 9.E-86 SL 9.E-46 51 PM-138 41 5.E-46 46 4.E-:4 42 4. E -E i 4F 1.E-GS 9a*140 49 4.E-:4 4F 3.k*L1 5 9.i+04 48 1.E*05 96 2.E*c6 13 1.E*86

5. E *s 6 46 5. f -t 6 43 6.E v6 42 2.2 .5 49 2.E-OS v4 3.E-05 41 3.E-85 qa-161 *1 2.E-35 66 1. E-8 3 42 4.E-93 47 2.E-G2 48 3.E=ht 43 9a-142 o'1 2.E L5 46 9.E-C4
                                                                                                                                                                                                                        ..E-d1                            99     5.E-C1                                               44     9. d ,-a,1 42    3.E-t3       4F    F.E *L 2     96    1.E*86                 1.E*6F L A-14i                                              41      5 5-r6         62      6. E -L 6     46    F.E-:6       47    4.E-G6       43 1                                       2    1.E*wF                                                 3    1.E*tF La-161                                                                                                                                         2. E-b 5         he    3.E-65                            *9     2.E*e1                                               44     2.E*01 41      F.E-s5         46       3.E-94       42    4. E -; 4    47    1.E-03       48    2.s-L 2         63     3.E-02 LA*1k2                                                 41      5.E*d6         46      2.E*S4 49     4.E-02                                               *4     7.E-02 42    4.E-On       4F    1.i-s2       96    2.E*85           98    2.E*D5                              1    1.E*0F                                                 2    1.E *t r CE-141                                                 46      4.E-55         4F      9. E *I 5     68    1.E-tw       41                 42 CE-143                                                        2.E-?5 2.i-24             2.i 6=          43     2.E-D4                            49     2.5-64                                               44     3.E-04 46                     41      3.E*C5        47    3.E e5       42    3.E-85       48    5.E-05          43     9.E-OS                           49      3.E==4                                               44 CE-144                                                 46       1.E .5         47      1. Eat 5                                                                                                                                                                              F.t-e4 48    1. E -t 5    49    1.E*05       54    J.E-05         42      5.E-05                           43      5.E-e5                                               46    5.E-05 sr.161                                                46      5.E*L6          *F      5.E-86        bs    6. E *6 6    41    1.E-65       42                   *3      2.E-uS 55-14%                                                 41     5.E*C5         66       3.Eal3       42     F.E*Ce 1.E-L5                                                   49     3.E-05                                               64     8.E *B 5 96    1.E*C6       4F    5.ieb6             1   1.E*Er                             2     1.E
  • t F 3 1.E*sF Nr*16F 46 e.F*C5 4F 4.E*05 48 5. E-0 5 41 6.E*85 42 6.E-55 43 F.E-65 9"*167 52 6.E*ib 46 1.E*E3 47
                                                                                                                                                                                                                                                         *9      4.E-44                                               44    6.E-C4
1. Eat 3 ha 1.E*03 49 1.E-L3 50 1.E-E3 53 2.E w3 u-*147 41 2.E-G5 42 2.E*05 46 4.E *0 5 47 5.E*G5 51 1.E-02 43 2.E-O= ,e 5.E-&4 89 1.E*G3 88 '8.E*02 RA*221 96 6*. E
  • r 4 9F 6.E*60 9e F.E*50 se 4.E *C i 49 5.E*31 RA*226 25 26 99 5.E*61 90 6.E*01 5 F.E*st 2.8-tF 2.E-GF 27 ~ 2.E *L F 2e 4.E*6 F 1d8 5.E=JF 16 9 5.E-CF 29 5.E-LF aca22 7 112 2.f*t5 144 2.E-t5 113 3.E*05 1L9 3C 5.E*dF 3.E-45 25 5.E-0 5 26 6.E-85 104 8.E-05 29 4.E-85 TH-227 96 4.E*00 #F 4.F*50 9a' 4.E*GS 99 8.E*0L 91 1.E*32 PA*271 114 eb A.E*02 8 2.E*E2 89 3.E*02 4.E-t6 115 8.E-E6 113 1.E -t 5 11t 1.E-45 til 1.E-b5 112 1.E-05 .106 2.E-e5 10F 2.E*05 u-*235 112 1.E*d4 113 1.E-L4 114 1.E*64 115 1.E*e4 2. E-6
  • NP*234 10 0 1. 9 2.E-E= 110 2.E u4 111 2.E*E4 13 % 2.E*t2 1C5 2.E*02 156 2.E*C2 19F 2.E*02 1GS 4.E*G2 1;9 4.E*E2 111 4.E*o2 110 4.E*B2
                                               #U-239                                                 10 4     5.E*f5        1LS       5. E-0 5    106     5.E -C 5   187                108 5.E-05              1.E-c=     19          1.E-04                          111      1.E-b4                                             11b     1.E*84

S' ' l i TABIJE 4-5 (contd) q ! cot 0CENTRATIODI LIMITS (UCI/GPI) 1 T49tE j TA9LE i TA9tE TASLE E - CASE I-A ** SANITARY LANCFILL

  • LEA 3M 18 TRSINTO W ATERCDU j

j TA9LE TA9LE 5 - CASE I R ** S ANITARY L AN6 FILL - SPILLAGE INTO WATERCOU A

  • CASE I-E *- SANETARY L ANOFILL = SPILLAGE INTO WATERCOUPSE
  • q.1 VEARS SECAT j

i T49L E TA9LE 13 25 - -CASE CASE I*EI*C ** SANETARY

                                     ** SANITAAf   LAN0 FILLLANOFILL
  • CNILO EATS - INNALATIOh OIRT ON MASTE0F SPILLE0 NASTE AFTER NO OECAT SITE AFTER 5 TEARS TAdLE 26 - CASE 1*E ** SANIT447 lab 0 FILL
  • CNELO E ATS 0141 CN WA5TE SITE AFTER 10 YEARS

{ T49LE 2F - CASE I*E ** SANE TARf L ANOFILL = CNILO EATS DIRT ON W43fi SITE AFTER ALS VEARS 4 TA3LE TA9LE 28* *CASE 29 CASE I-F **I*E ** SANITARY SANITARY LANOFILL.* LANCFILL F003 grown*ON CNILO WASTi E ATS SITE AFTEFSIET CN WASTE SITE AFTER Aede YE AR 5 YEARS SC

  • C ASE I-F ** SAMITARY TA9LE 11
  • CASE I-F ** SAMITARY LANCFILL LANOFILL - F033 GROWN ON WASTE SITE AFTER 10 YEAk$

I TA9LE

  • F003 GROWN JN WASTE Stic TA9LE 12
  • CASE I-F ** SANITARY LA40 FILL
  • F000 GROWN OM WASTElege. SITi TEARS AFTEkAFTER 168 YEARS ,

3 ' TA9LE TA9Li 41 42 **CASE CASE I-I I-I ** SANITARY

                                   ** SANITA              LAN0 Rf LANDFILL       FILL
  • EXP35URE
                                                               = EN#05URE        T3         TG 55 G ALLON 04UNS AFTiR NO DECAY                        '

55 GALLON 04UNS AFTEf 4.061 YEARS TA9LE 43- *CASE 44 CASE !*! ** SANITA4Y LAhCFILL = IMP 3SUAE TO 55 GALLGN CRUNS AFTik 3.u1 YEARS T A 9L E TA9LE 4E - CASE I-J ** SANITA47!*! ** SANITA4f LANOFILL - EN#3SURE TO 55 GALLON 04U95 AFTER 6.1 TA9LE 47

  • CASE I-J ** SANITARY LANOFILL
  • GROUNO SuqFACE EMPOSUEE .441 VR TO N0skERS ArTEALA TA9LE 8 TAaLE TAALE 49
  • CASE st
  • CASE I*J ** SANItadt LANoFILL
  • GROUNO SURFAci I-J == SA1ITARY 4 1 Y4s EMPOSust 7 LANCFILL
  • GkOUNO SUEFACE EXFDSUEE To woF.KERS AFTER 1 VE AR TA9LE 51 - CASE I*J  !**== SAgITA<v LANOFILL
  • GROUNO SURFACs EMPOSucE TO WOEttRS AFTik to YRS 52 - CASE +

TA9LE ** SANITA47 LANCFILL

  • GR3UNO SURFACE IMP 05UC E TO RESIDENTS AFTER 5 YR$

TABLE TA9LE TA9LE 54* CASE 55 - CASE I-4 ** SANITAdv L ANOFILL

  • GROUNO SuoFACE ENPd
                               !*K ** SAMI'ARY LANCFILL
  • GROUNO SUEFAC6 E MPOSU*E TO RESIPENTS AFTER 1E3 y ,,

TARLE en

  • CASE III*9 ** SANITA4Y LAN3 FILL
  • SPILL AGE INTO WAT&RCOUwSi - NO DECAY 749LE 9e DL -* CASc CASE III** ** SANTTARY LA43 FILL
  • SSILL AGE INTO WATERCOURSE TEARS*DECAf L.sC1 TA9LE III*B ** S ANITARY LANSFILL
  • SPILLAGE INTO WATERCOURSE
  • 6 81 TiaRS OECAY tA9LE 91 *CASE 9E CASE III** ** SANITA47 LAN3LAN3 FILL
  • FILL
  • SPILLAGE INTO WATERCOURSE
  • t.1 rE ARS DECAf TA9LE 4F =- CASE III*C ** SANITARY INNALATION SPILLED WASTE AFTER NO DECAV TA9LE III-C ** SANIT arf LAN0 FILL
  • INNAL ATION SPILLEO WASTE AFTER G.661 TE ARS TA*LE 19 - CASE III-C ** SANITART LANSFILL
  • 14NALATION SPILLE0 WASTE AFTER e.61 TE ARS T A9LE 104
  • CASE III*O ** SANITART LAN3 FILL = INNAL ATION SURING 5 VRS
                                                                                                                                   $11E ENCAVAT!og TA9LE        1 5 - CASE III-0 ** SANITART LANOFILL - INNALATION DURING SITi EXCAVATIO 1 AFTER 18 V TABLE 106
  • CA!E III-C ** S ANITARY LENOFILL
  • INNALATION DURING SITE ENCAWATION AFTER AdL ve TpmLE 1.F
  • CASE III*O ** SANITARY LAN3 FILL
  • INNAL ATION OU43NG SITE ENCAWATION AFTER 1988 f TA9LE age
  • CASE IIT*E ** SANITARY LANOFILL
  • CMILS E ATS DIRT 04 WASTE SITE AFTER 5 YEARS TA9LEtai1C9 TA9LE - CASE* CASE III*E +-III*E ** SANITARY SANITARY LANOFILLLAN0* CMILOFILL EATS* CMILO DIRT ONCATS WASTEDIRT ON WASTE SITE AFTE4 SITE age YEARS AFTER 10 YEARS TA9LE 111
  • CASE III*E -- SANITARf TA9LE 112
  • CASE III*F ** SANITARY LAN3 FILL
  • FOOO G40mN ON WASTE SITE AFTkE .

TA9tE 113

  • CASE III-F ** SANITARf LANSFILL
  • F000 GROWN ON WASTE SITE AFTER 13 VE ARS TA9tf 114 - CASE III*F ** SANITARV LANOFILL
  • F300 G40WN OM WASTE $1TE AFTER igi YEAe5 TA9LE 115
  • CASE III*F ** SANIT ARY LANOFILL
  • F000 G80WN ON WASTE SITE AFTER SCOS YE ARS *
                  ~     ~             ~
                                                          .dG                                                    ,

TABLE 4-6 , MOST RESTRICTIVE ACTIVITY CONCENTRATION LIMITS FOR SOLID WASTE DISPOSAL IN A SANITARY LANDFILL ARRANGED BY INCREASING "DE MINIMUS" CONCEPfrRATION LIMIT DE MINDIUS wuCLIt'E - LIMir LIMITI9G LIMITING LIMITING LIMITIhG LIMITING TA9tt 00NCEN TARL' LINITING LIMITING C3NCEN TaeLE CONCEN TA8tE CONCEN TABLE CONCEN TA9Li CONCEN TA8Li CONCEN TABLE CONCEN cA-226 25 2.E-CF 26 2.E-07 ZF 2.E-87 28 4.E=gF 1es 5.E*GF 1s9 5.E-47 29 I--129 112 9.E ~F 113 9.E-OF 114 9.E-LP 5.E wr 34 5.E-GF 115 9.E *0 F 199 5.E-06 149 5.E-G6 11C 5.E-86 111 5.E*g6

CS--6L 52 9.F-GF 53 2.E-34 46 3.E-t6 4T 3.E-06 49 3.E-u6 49 3.E-86 SL 4.E-66 41 C?-13F 52 2.E .6 5.E-86

! 53 2.E-L6 46 9.E*L6 4F 9.E-36 48 9.E-G6 49 9.E-66 56 9.E-L6 51 1.E-45 54--9J 112 2.E-t6 113 2. E-0 6 29 2.E-t 6 31 3.E-u6 52 3.E .6 53 4.E-66 168 1.E-65 109 1.E-05 AG11rg 46 3.E-L6 47 3. E-0 6 48 3.i-06 49 3.Z-86 41 4.E-v6 42 4.E-L6 %3 4.E-46 44 4. E -4 6' NA--24 41 3.E "6 42 4.E-06 46 4.i-r 6 47 1.E 5 43 2.E-04 48 5.E-84 5 3.E*64 13 3.E*v4

CS-174 52 3.E--6 46 4. E-E 6 47 4. E-f 6 48 4.E-C 6 49 4.e*46 41 42 TE-132 46 4.5-C4 4.E-66 5.E e6 5.E-J6 56 5.E-06 4F 4.5 s 6 42 43 T.E*b6 48 4.E v 6 41 4.E-05 49 9.E-83 44 4.E-63 I--132 41 4.E-46 42 5.E-85 46 8. E -6 5 47 1.E-63 96 3.E*g3 98 1. E
  • E , 9T CS-136 4.E*04 89 2.E*g5

, 46' 4.E-46 47 4.E-E6 4R 5.E *6 41 5.E-06 42 5.e-u6 43 6.E-G6 49 3.E-e5 44 3.E-65 l 1A-14L 48 4.E 6 47 5.E-:6 46 5.E*B6 *3 6.E-06 42 2.E-95 49 2.E-65 *4 3.E-85 41 6 42 3.E*C 5 I--13? *1 4.E 6. E -4 6 4E 2. ! *. 5 47 3.E*J5 43 5.i-Go 48 2.E-C3 9T 1.E*03 96 T.E*82 48--P9 41 5.E-C6 46 S.E-54 4T 2.E-01 48 2.E-91 49 3.E-s1 42 1.Eete 43 1.E*45 44 2.E*Es CS-13* 41  ?.!-46 66 4.E-64 42 4.E-C1 4T 3.E*31 5 9.E*at as 96

    #F-143          46     5.E-%

1.E*05 2.E*d6 13 1.E*e6 3 4T 5.E-t6 49 6.E-L6 *1 1.E-s5 42 1.E%5 43 2.E-G5 49 J.E=e5 44 8.E-65 w 9R--84 41 5.E 6 46 4. E -14 42 4. E -c i *T 3.E*01 5 4.E*C5 90 1.E*I6 96 4.E*u6 13 1.E*46 I--134 41 5.E .6 46 3.E-r4 42 5. E-G J 47 3.E-01 96 5.c eL 3 se 2.E*.* 13 T.i*d5 5 3.E*B6 LA-the ,1 9.E-66 =2 6.E-bf 46 F . E -0 6 4T 8.E-06 43 2.e-;5 48 3.E-55 49 2.E*01 44 2.E*g1 LA-1=? 41 5.i=96 46 2.E-84 42 4.E-C4 47 1.E-E2 96 2.i6 5 as 2.E*d5 1 1.E*9F 2 1.E*6F C---14 112 5.t* 6 113 5.E-66 114 6.E-56 115 6.E-L6 29 3.E-06 30 9.E h6 31 9. E

  • 06 31 1.E-85 13--56 41 6.5-C6 42 6. E-8 5 46 1.E-b, 47 1.E-B3 88 4.E *v 2 99 4.E*E3 96 6.E*44 5 2.E*g4 .

I--135 41 6. E *J 6 42 1.E-t5 4E 3. 5-' S 47 F.E-L5 .3 8.E-L3 48 4.E-E2 9F 3.E*03 96 1.E*e3 FE--59 46 6. E - 06 47 7. E-9 6 48 T. E -8 6 *1 9.E s6 42 9.E*=6 63 1.E-05 1.E 45 49 44 2. f-8 5 CD--5 9 46 F.8-G6 AF 7.E-GE 48 F.E-66 41 9.E-C6 42 9.E*wE 43 1.E-OS 49 1.E-05 44 1.E-85 70--or 42 8.F-C6 46 1.E-OS 47 2.5-C5 41 5.E-35 41 2.c-0. As 5.E-34 97 3.E*03 96 2.E*G3 S****2 41 4. F '6 42 4. E-0 5 46 8. E -r 5 *7 4.E 64 43 2.E*42 48 2.E*E3 89 2.E*04 as 9.E*e3 FE--95 49 4.F-56 48 9.E-L6 47 0.E .6 46 9.E-86 44 1.E-35 41 1.E-6 5 42 1.E-85 43 1.E-C5 TE1314 41 9.E-C6 42 9.E-36 4E 1.E-05 47 2.E-s5 43 5.f=85 En F.E-C5 *9 2.E-03 44 3.E-33

    *A-231       114       4.E-86       115    d. E-t 6    113    1. E -G 5  11L     1.E-55    til    1.E-t5   112     1.E-05      126     2.E-85    1WT     2.E-65 MN-*S4          46     9.E 66 47    9.E-86       48    9.E -t 6    49     1.E-05     41    1.E-45    42     1.E-95        43    1.Ead5      44    1.E-85 Gu-ite          46    9.E r6         4F    q.E-G6       48    9.E-56       49    1.E-65     5r    2.e 45    sc     2.E-05        43    2.E-45      44    2. f-8 5 ga--oS          46     9.E*c6        4F                       1.E-05
9. E -8 6 44 41 1.E-0 5 42 1.E-05 43 1.E-85 49 2.i=05 44 2.i=O5 l 98--P9 *1 1.E-G5 46 1.E-C3 42 F.E*03 5 1.E*35 88 2.E*G5 4T 7.E*b5 96 3.E*06 13 2.E+L6 l FL--65 4,6 1.F-35 47 1.E-ts 4s 1.E*55 49 1.E-65 41 2.E-95 62 2.E-45 43 2.E-L5 44 2.E-05 l N9=-#F 41 1.5-25 46 4.L-04 42 2. E -( 3 4F T.E-02 SS 2.E*O= 96 5.E*B5 49 3.E*c6 1 1.E*BF l

8U-1t 3 46 1.E-C5 *T 1.E-05 4R 1.E-C5 41 2.E v5 42 2.E-t 5 43 2.E-&5 49 2.E-05 44 3.E-65 j 90-115 41 1.f-35 42 4.E*L5 46 1.E-64 47 3.E-C* 43 3.E .3 he 5.E-E3 49 2.E*44 44 1.E*g4 t SK--91 41 1.E-t5 42 1.E-05 46 4.E-C5 47 T.E-b5 43 4.E=u3 48 5.E-bJ 49 1.E J2 44 F.E*G2 Y--91P 41 1.E .5 46 8.E-04 42 2.E-C2 4F 8.E-02 49 9.E-02 49 1.E-61 43 5.E-01 44 e.E-01 CE-144 46 1.F= 5 47 1. E-8 5 48 1.i-05 49 1.E-85 5e J.E-b5 42 5.E-85 43 5.E-45 44 5.t*ES I--133 41 2.E-05 42 2. E -6 5 46 3.E 65 8T t 5.E-45 43 3.E-u4 48 5.E-04 49 2.E-31 44 5.E-81 RA-142 41 2. E - 05 46 9.E-C4 42 3.E 33 47 F.E-02 96 1.E*u6 1 1.E*EF 2 1.E*dF 3 1.E*0F I--131 46 2.5- 05 47 2.E-05 41 2.E-E5 42 2.E-85 48 3.E-05 43 3.E-95 49 4.E-04 44 5.E-Am 9a-141 41 2.E-05 46 1.E-83 42 4.E-C3 47 2.E=e2 48 3.E-01 43 *.E-81 49 5.E-41 44 9.E=g1

TABIE 4-6 (contd) CONCENTRATION LIMITS (UCI/GM) Da Minneus ! tuCLIDE _ Lnq17 LIMITI9G ! LIMITING LIMITING L IMITING LIMITING LIMITING LINITIM l U**187 ta--o3 TABLE 41 54 2.E

  • 05 ::0NCEN 2.E*t5 42 2. Eat 5 Ta9tE46 C3
4. E-0 5 NCEN 4F 5.E-95 TAeLE 43 CONCEN 2.E*44 TA 9LE CONCEN TABL aC+227 112 55 2.E*t5 53 2.E-05 52 3.E-05 45 5.E-84 09 1.E*d3 se 2.E*s5 1En 2.E-85 113 3.E-C5 51 2.E-04 50 8.E-64 115 4.E*g2 TE*131 41 2.E-15 46 139 3.E-3 5 25 5.E*L5 26 3.E-03 114 3.E*e3 Y-+-92 *1
2. Eat 3 47 9.E*t 3 42 1.E*C2 48 6.E-85 1ch 4.E-45 29 4.E-85
2. E - 85 42 1.E*04 46 2.E *r 4 1. E-L 2 43 1.E-62 TE12eg 46 47 1.Eac3 43 49 2.E-21 44 2.E-SS 4F 2.E-85 48 F.E*22 48 5.E*E3 96 2.E-si 09--86 46 3.E-05 47 3.E*t5 42 5.E*05 49 5.E*85 43 2.E*44 89 4.E*04 TC--o9 3. E-9 5 4e 3. E =8 5 41 F.E-05 5.E-95 44 1.E*at 2.E-04 112 3.E-L5 113 3.E-L 5 114 3.E*C5 42 F.E*k5 43 8.E-95 49 41 CE-143 44 115 3.Eag5 52 8.E*d5 1.E*0 4 44 3.E-t4 KO--o9 46 1.E-t5 41 3.E*I5 47 3.E-t5 42 3.E*k5 53 8.E-L5 54 a.E-65 55 8.E*C5 3.E-C5 47 4.E*85 42 48 5.i*.5 43 9.E-85 v---90 46 3.E*D5 47 5.E *0 5 41 6.E*65 48 8.E*C5 49 3.E-04 44 F.E-84 4.E*85 48 9.E*C5 41 1.E-34 43 9.E-95 49 9.E*01 44 v---93 41 3.E- .5 42 6. E-t $ 46 42 1.k-b4 %3 3.E*;4 49 3.E-81 Mn-14F 46 8. E-0 5 47 1.E-94 43 4.E-C1 44 1.E*sh 4.f*65 47 4.E-C5 44 5.E='5 1.E-62 48 3.E*S2 89 2.E*b3 CU--54 41 4.E*.5 42 41 6.E-J5 42 6.E
  • 5 as 1.E*g3 54--84 6. E-C 5 46 2.E-C4 47 2.E us 43 43 F.E*t5 49 4.E-64 4* 6.E*e4 46 4.E*C5 47 4. E-S S 48 4.E*C5 4.E-83 48 2.E-E2 96 3.E*64 P---32 46 5.E**5 47 5.E-55 48 49 F.E-d5 41 2.E-14 42 2.E-84 s9 4.E*g4 NI--63 112 5.E. 5 113 6.E-95 41 2.E-d4 42 2.E-J4 43 2.E-04 44 4.E*84

'" 00-22e 5.E-85 114 1.i= 4 29 43 2.E-8. 49 J.E-04 13= 5. E

  • J5 lb5 .5.E-85 106 5.k-34 3B 5.E-04 31 1.E-33 10s 44 1.EasJ

!! Y---et 46 5. E-f!5 47 5.E-35 10F 5.E-05 13e 1.E-G4 1.E-63 109 1.t*03 pp-144 5. E-8 5 48 5.i-05 49 8.E-L5 1C9 1.E-54 111 1.E-04 11C 41 5.E-45 46 3. E = 8 3 42 7.E*C4 41 3.E-04 *2 3.E-84 43

1. E *s t N3a93M 5? 5.F- 5 46 9E 1.E*C6 4F 5.E*06 3.E-L4 44 5.E-64 TE-129 1. E =* 4 47 1.E-34 4e 1.E-64 1 1.E*uF 2 1.E*4F 41 6.E-05 46 2.E-83 42 53 1.e=04 49 1.E-54 3 1.ioDF H----! 21 F.E-C5 30 2.5-02 47 4.E-d1 112 1.E *0 5 113 50 2.E-04 51 9.E-e4
9. E-8 5 112 2.E-t4 113 1.Ett5 115 LA*141 41 F.F-b5 46 3.E-84 3.E-84 J1 1.i 2 114 4.Eas2 1.E*u5 114 1.E*g5 i

98*-85 42 4.E-04 47 1.E-8 3 48 25 3.E-t1 26 4.E-si 41 4.E .5 46 2.E-C2 2.i 42 43 3.E-82 TC-9a* 42 2.E-02 4F 2.E-31 w9 4.E-02 44

               *1      9.F a5         42     2. E-t h      46         4. E -0 4      47 52     e.E*01         53     6.E*ti       48     2.E*02 F.E*G2 CiH-10 5    41      9.E*65         42     1.E-54        4F 2.E-03       43     2.E*00         44     2.E*61     113 49      2.E*02 CE-141      46      9. E- 25       4F
1. E -G 4 4F 1.E-04 43 5.E-C4 8.E*43 112 8.t*43
9. E -9 5 49 1.E*C4 48 6.E-C4 *9 3.E+83

' U-*!35 112 1.E-s4 113 1.E-84 114 41 2.E 44 42 2.i-C4 43 2.E-84 44 2.E*t3 T812Fw 1.E -6 4 115 1.E-04 49 2.E v4 44 3.t-E 4 4F 1.E-L4 44 1.E-84 45 1.E-b4 its 2.E-94 109 2.E-s4 ilt 2.E-44 CS-135 52 2. E - r4 53 2.E-C4 49 2.i-64 43 1.t*83 44 1.E*8 3 111 2.E-54 CD--51 46 2.E-C4 47 54 2.E-th 55 2.E-54 29 4.E*b4 56 1.E-03 42 2.E-63 9e--93 2. E-9 4 48 2.E-L4 41 2.E-G4 38 4.E-04 31 4.E-04 32 4.E=84 41 4.E-L4 46 2.E*03 42 6.E-G3 42 2.E 44 43 2.E*b4 49 5.t*C4 44 PM-14F 52 E.E-C4 46 1.E*33 47 3.E-82 5 5.E*G5 et 1.E*G6 5.E-64 47 1.E-83 48 1.E-33 96 5.E*G6 13 2.E*06 NI*=59 112 6.E*J4 113 49 1.E-83 58 1.E-83 ZN--E9 41 F.E=ge

6. E
  • 0 4 114 6.E 64 115 6.E-04 29 1.E-63 53 2.i v3 51 1.s-92 46 6. E*4 3 42 5.E-41 4F 14 1.E-83 31 1.E*t3 32 1.E-d3
  'E-12F      46      9.E-04         41    1. E-9 3       47 5.E*de       84     3.E*65         96     1.E*B6 TE12f"      46      2.E-03         4F 2.E-03           42     2.E-0 3      to     6.E-G1         43 5    2.E*06         1     1.E *0 F 2.E-03        40        2. E-C 3         49     3.E-03       41 F.E-01       89     3.E*g3       as     2.E*63 rE--55    139       2.F-c2        25     3. E-9 2     112        3.E-C2           29 2.E-C2         42     2.E-32      43      2.E-42       44 TH-22F      96      4.E*f)        9F                                                     5.E-82     189      9.i-32        26                                              4.E-02 9A-223      96 4.E*l4        94        4.E*c3           99     8.E*ma                                    1.E-si     113      1.E-81      31      2.E-61 6.F*00         9F     6.E*g8        98        F.E*Es           as 91     1.E*82        48      1.E*02         8    2.E*02 N#=2?4    15 4      2.E*02                                                               4.E*g1      49      5.E*S1        99                                      89      3.f*02 145     2. E
  • B 2 1E6 2.E *G 2 107 5.E*Il 99 6.E*01 NI--65 96 1.E*35 88 2.E*02 tes 4.E*.2 16 9 4.E*S2 111 5 F.E*st -
1. E
  • B S 97 1.E*E6 ,89 1.E*06 5 2.E *O 6 4.E*02 116 4.E*42 i 1 1.E*0F 2 1.E*cf 3 1.E*wF .

O

L. #~~j , TABLE 4-6 (contd) , [ CONCElffRATION LIMITS (UCI/GM) TABLE TABLE 1

  • CASE I-A ** SANITA47 LANDFILL = LE4CN INTO NATERCOURSE - Tk4NSIT TINE = 1 'YE AR TARLE 2 - CASE I-A ** SANITARY LANOFILL = LE ACH INTO W ATERCOURSE - TRANSIT TIME a 13 YRS i YA9Li  !
  • CASE I*A == $4NITARf LAN0 FILL
  • LEACH INTO NATERCOU*SE
  • TRANSIT TIN 2 a idt YR$

l TABLE 5 - CASE I-8 == SANITARY L AN0 FILL

  • SPILLAGE INTO WATERCOUPSE - NO DECAY 4 a - CASE I*B ** SANITARY LANOFILL
  • SPILLAGE INTO WATERCOURSE - b.1 TE4RS DECAY

! TA9tE 13

  • CASE I-C -- SANITARY LA NOFILL
  • INN 4L4 TION OF SPILLE 0 NASTE AFTER NO DECAY l

T49LE 25 - CASE I-E *= SAN!YARY LAkOFILL - CHILD EATS DIRT ON WASTE SITE AFTER 5 YEARS i T49LE 26

  • CASE I-E ** S ANITARY LANCFILL
  • CHILO E ATS DIRT ON WASTE SITE AFTE410 YE ARS

! TABLE 27

  • CASE I-E ** SANITARY LANOFILL = CNILO EATS DIRT ON WASTt SITE AFTER 100 YEARS i TasLE 2e
  • CASE I*E ** SANITA4f LANOFILL - CHILO E ATS DIRT ON WASTE SITE AFTER iLJB YEARS TARLE 29
  • CASE I-F ** S A4tTARY L ANCFILL - F'000 GROWN ON NASTE SITE AFTER S YE ARS TA3LE St
  • CASE !*F == SANITARf LANOFILL - F003 GROWN ON WASTt SITE AFTER AW TEARS YA9LE 31
  • CASE I*F -- SANITARY LANOFILL - F030 GROWN ON NASTE SITE AFTER 16J YEARS TARLE 12 - CASE I-r -- Sag!TA4Y LANOFILL
  • F033 GROWN ON WASTi SITE AFTER asta. YEARS TA4LE 61 - CASE I-I -- SANIT44f LANCFILL - eXP3SURE TO 55 GALLON 04UNS AFTER NO DiCAY TABLE 42 - CASE I=I -- SANITARY LA b0 FILL - EXP3SURE TO 55 G ALLON 04UNS AFTER v.001 YE ARS TABLE m3
  • CASE !=1 ** SANITA4f LANCFILL
  • EXP3SURE TO 55 GALLON 04UNS AFTEk 6 01 YE ARS TASLI kv = CASE I-I *= SANITARY LANOFILL
  • EXPJSURE TO 55 GALLON OtuMS AFTEk 3 1 YEAES TA3LE TABLE
                         .E
  • CASE I-J ** SANITARf LAN0 FILL = GR3DNO SURFACE EXF05USE TO WOAKEES AFTER L OEC4Y
                         .7 - CASE I+J ** SANITAdf LAh0 FILL
  • GR3OND SUEFACE EXPOSuiE TO WORKERS AFTER .301 Y4
; 6             TA9LE 4R - CASE 1*J -- Sag!TA4Y LANOFILL = GR3UND SURFACE E XPOSUFE TO WORKERS AFTER b.81 YR

< ut TA9tE 49 - CASE I-J *- SANITANY L&NOFILL

  • GROUND Sts4 Face EXFOSU-E TO WORKERS AFTE8 bei YES T49LE 5! - CASE I-J ** SANITA47 L ANCFILL
  • GRJUND SURFACI dXPOSUAE TO WORKERS AFTiR 1 YEAR TA9LE 51 - CASE I-J ** 14NITARY LANCFILL = GROUND SU4 FACE EXPOSU-E TO WOFKEES AFTia la YPS TA9LE 32
  • PASE I-F -- SANITA4Y LANOFILL
  • GP3DNO SUgFAct EXPOSUSE TO RESIDENTS AFTEE 5 YRS TA9tt 53 - CASE I-K ** EANITARY LANOFILL - GROUNO SURFACE EXPOSUAE TO 5.ESIDENTS AFTER ab YR TA9LE 96
  • C A SE I-K ** S A41TA RY LANOFILL - GROUNO SURFACE EXPOSU.E TO RESIDENTS AFTER tod Y i

TABLE 55

  • CASE I-K ** SANITARY LANCFILL
  • GROUND SURFACE EXPOSU E TO RESIDENTS AFTER 1E3 Y -

YARLE 98

  • CASE III-P == S ANIT4RY LANDFILL = SPILLAGE INTO WATERCOUSSE - NO DECAY TA1LE i

TA*LE 99

  • CASE III-4 == SANITARY L AN3 FILL * $8ILLAGE INTO W Afi ACOUASE - :.ht1 YtARS DECAY j

K

  • CASE IIIan == S4NITA RY LANOFILL - $81LLAGE INTO WATERCOUpSE - 0 51 YEARS DECAY TA9tE 91
  • C ASE !!!-n -- SANITARY LAM 0 FILL = SPILLAGE INTO WATEPCOUESE
  • C.1 Yi ASS DECAY

{ TA9LE 96

  • CASE III-C -- SANITARY LAN3 FILL * .'NH4LATION SPILLED WASTE AFTER NO OECAY i TA9LF TA1LE 47 - CASE III-C ** SANIT44Y LANOFILL - INNALATION SPILLt0 WASTE AFTER t.Gdi YEARS TABLE AS - CASE III-C *= SANITARY LANOFILL - INNALATION SPILLED WASTE AFTtR 0.L1 YEAe5 10
  • CASE III-C == SANIT4RY LAN3 FILL - INNALATION SPILLE0 WASTE AFTER ~4 1 ViARS DiCAY 1 TABLE 1ek
  • CAsi 111-0 -- SANITARY LAN3 FILL = INN 4LATION DURING SITE EXCAVATION AFTER 5 YRS i TARLE 105
  • CASE III*0 == $4h!TARY LANOFILL
  • INNALATION OURIhG $1TE EXCAV4 TION 4FTER 14 YRS T49LE 106 - CASE III-C == S APIT ART L AN0 FILL
  • INN AL A TIO4 OURIkG SITE EXC AY ATION AFTER 100 Y4 IA9LE 1(7 - CASE !!I-O *= SANIT4RT LAN0 FILL = INNALATION DUSIhG $1Tt EXCAY4 TION AFTLE 10.0 Y l
T A9LE 1
n
  • CASE III*E ** S ANITA4Y LANOFILL - CNILO CATS DIRT UN WA3Ts SITE AFTE4 5 YEARS TAmLE 139 - CASE III-E -* S4 NIT 4RY LAN3 FILL
  • CNILO E ATS DIR T ON 4ASTE SITE AFTER 1; YEARS i TA9LE tit
  • CASE III*E ** SANITARY L ANOFILL
  • CHILD i ATS DIRT ON W43Ts 5ITE AFTER ALC YE ARS TA9LE 111 - C4fE III-E ** SANITARY LANGFILL
  • CNILO EATS JIRT ON WASit SITE AFTER 1het YEARS TA9LE 1.2 - CASG III-F -- 34NITARY LAN3 FILL = F000 G=0WN 04 WASTE SITE AFTEP. 5 YE ARS TAgLF 113 - CASE III*F == SANITARY LAN0 FILL - F000 GROWN ON WASTE SITE AFTER 18 YEARS TAgLE 11k
  • CASE TII F ** SANITARY LAN3 FILL = F000 GEOWN ON W4STE SITE 4FTEk 14e YEARS Y A9LE 115
  • CASE III*F == SANITARY L ANDFILL - FOOD GROWN ON NASTE SITE AFTER abd*J YEARS l

4

5.0 COST-BENEFIT CONSIDERATIONS Conceptually, cost-benefit analysis can be applied to disposal of solid wastes with a "de minimus" radioactivity concentration by weighting-costs and benefits of alternate means of disposal. In lieu of any other guidance, the interim value of $1,000 per total body man-rem from Appendix I is used herein. In practice, the limited distribution of discarded bulk solid wastes and the critical pathways for exposure of a. man limit the number of people potentially exposed to those who live

 ~

on the disposal site or who eat food grown thereon. Therefore, large population doses will not result from disposal of material with "de minimus" concentrations of radioactivity. Assuming the cost of unrestricted disposal of "de minimus" solid waste is zero, the cost of shallow-land burial of low-level radioactive 3 waste is $6/ft , and the population dose associated with shallow-land burial is zero, then a practical cost-benefit criterion for unrestricted . disposal of solid waste is that any waste having an associated population 4 dose potential of less than 6 man-millirem per cubic foot of waste p- discarded in an unrestricted manner is "de minimus." As an illustration that the individual dose rate criterion is more limiting than the cost-benefit criterion, consider the example of the - 3 disposal of 150 m of spent, powdered resin, approximately the volume generated annually at a large light-water reactor power station. If unrestricted disposal causes more than 6 man-area /ft3 , or about 30 man-rem for disposal of the total volume of the waste, then the alternate, shallow-land burial, would be indicated by ALARA considerations. Since the "de minimus" health protection criterion limits the individual dose < l Ac  !

rate to 1 area total body dose per year, about 600 persons, each receiving 1 mram/ year for 50 years would be required to reach the 10mit associated with the cost benefit criterion, 30 man-rem, for disposal of the 150 m 3' of waste. Since all of the limiting pathways require that the exposed individual reside directly on the disposal sites or eat food grown there-on, it is hardly reasonable to expect the population exposure to reach the limit of the cost-benefit criterion.- Hence, the "de minimus" limit $PS based on individual dose will result in a lower limit than one based on ALARA considerations. With such a low individual total body dose rate of one millirem per year or less, any cost-benefit interpretation based on an estimate of population integrated dose equivalent is probably unrealistic. The NCRP and ICRP cautions in regard to the inappropriateness of quantita-tive risk-benefit balancing at such a low dose rate is thus persuasive against the use of such an analysis for decisionmaking in connection . with "da minimus" waste disposal (NC75a, IC73). t t 47

6.0 APPLICATION OF ' DIE GENERIC METHOD The aim of this study has been to develop a method for determining "de minimus" concentrations in homogeneous, bulk solid wastes so that they may be disposed of in the manner of ordinary domestic solid wastes without.any special requirements because of the low radioactivity content. The methodology developed has been applied to land disposal of spent, I powdered resin from PWR secondary systems as an examp1'e. phj Neither initial dispersion by air or water, l ' i.e., incineration or sea g dumping, were considered;-however, the methodology developed can be applied to other materials by considering the nature of the source, feasible disposal scenarios, and environmental pathways to man. 6.1 Application to Secondary Resins As an azample of the application of the method, the expected concentration of each radionuclide adsorbed on spent, powdered resin , from PWR secondary systems has been computed using the PWR GALE code (NRC76) to calculate primary coolant concentrations and the SECONDARY a code (by Nuclear Safety Associates) to calculate activity concentrations i. of the spent resins. The "de minimus" concentrations calculated in Section 4 apply, of course, to this type of waste. By comparing the axpected concentrations to the "de minimus" concentration limits, it is possible to rank the isotopes in order of significance. The sum of the ratios of expected to "de minimus" concentrations of all radionuclides in the waste must not exceed unity if the waste itself is to be "de minimus." This method is also sumnarized in Figure 6-1. l 48

9 9 DO FDR EACH radionuclide Calculate the expected radionuclide concentration in waste Bri u I radionuclide Calculate the ratio: expected nuclide concentration in waste PP djg minimus concentration Itait H I U radionuclide List the ratios and associated nuclides l in order of decreasing value of ratio C Sun the ratios and compare with unity. g] A solid waste is djg minimus if: [] expected concentration de minimus concentration limit ' g all nuclides Figure 6-1 Summary Diagram of Method of Calculating. Whether Waste Is "de minimus"

  • 49

The ratios of computed concentrations in spent, powderediresins from a FWR secondary system to "de minimus" concentration limits after 3, 6, and 12 months' decay are shown respectively in Tables 6-1, 6-2, 6-3. It can be seen that after 3 months decay (Table 6-1), only Cs-134 Cs-137, Co-60 and Co-58 exceed the "de minimus" concentration limits; i and after 1 year's decay only Cs-134, Cs-137 and Co-60 are expected to be in excess of the "de minimus" values. Furthermore, they are more than

   '      one or two orders of magnitude more limiting than any other isotope.

If the concentration of other radionuclides can be related to the con-centration of a few indicator n.uclides, then verification of the activity concentration of the indicator nuclides should be adequate to verify that the waste is "de minimus." Based on the calculated mixture of i radionuclides on spent powdered resin, Cs-137 (with 0.662 Mev gamma ray) and Co-60 (with 1.17 and 1.33 Mev gamma rays) can be used as indicators to measure whether this type of waste is "de minimus." With respect to any particular reactor, specific measurements may be needed to ascertain that Co-60 and Cs-137 are critical radionuclides in spent resin. Although Tables 6-1, '6-2, and 6-3 indicate that the calculated g concentrations of cesium and cobalt do not satisfy the "de minimus" criterion for radiation protection, it should be recognized that the calculation of these radionuclides was based on conservative assumptions. In the PWR GALE code (NRC76), it was assumed that the reactor operated with 0.12% failed fuel and that the water leakage rate from the primary to the secondary loop in the reference reactor was 100 pounds / day. In order to achieve the "erpected" concentrations, both of these conditions must occur simultaneously. Most of the time one or both of these param-50

i eters will be very much lower than the assumed values. Consequently, most of the time the secondary resins will have concentrations much below the " expected" values calculated herein and this type of waste can be expected to meet the "de minimus" concentration much of the time. 6.2 Practicability of Haasurement It can be seen from Tables 4-3 and 4-4, particularly the latter, that levels at which nuclides must be measured to demonstrate compliance

  $b l
  ?      ,

with "de minimus" concentrations are in the range of 10-6 Ci/ gram. In

        !                         the case of a specific waste type, such as resins, where it can be demonstrated that only a few radionuclides are important, the number of radionuclides which need be analyzed for can be shown to be small.

Furthermore, in the case of spent, powdered resins from PWR secondary

  ~

systems where the critical radionuclides, Co-60 and Cs-137, amit distinct, energetic gamma rays, the analytical requirement is clear. In this example case, the limit of measurement of the critical nuclides by

  • gamma ray spectrometry is in the order of 0.1 to 1 pCi/g. Both of these
      ;                          nuclides can be measured at the activity concentration necessary to demonstrate compliance with the "de minimus" concentration limits cateulated in this study.

l l l l l si

9 Table 6-1 Comparison of Computed Activity Concentrations in Spent Resin with "de minimus" Concentration Limits Appropriate for Land Disposal of Homogeneous Bulk Solid Waste Activity on Resin Decayed for 3 Monthr. Before Disposal IN ORDES OF DECNEASING FATIO OF E N8ECTED TO LINITING VALUES ISOTOPE TA9LE LIMITING CCN3EN. EXPECTED MAfto 0F CONCEN. Exp To LIN IUCI/GNI (UCI/GMB CONCEN. CS-134 F6 9 9E*CF Z.6E*0s CS-13F 12 262 5495 1 5E-06 2.3E*04 156.3462 CO**60 F6 8 1E*er 2 4:*35 C0=*58 F6 29.6624 2 6E-06 2.4E*OS 9 1129 NN*=54 i

       }

F6 2 4E=u6 2.3E*g6 FE**59 .95F5 F6 2.eE*t6 5.FE*OF .2352 SR**96 129 T.5E-CF 1.3E*:F 1736 TE12FN 129 5.3E-06 F.FE*OF CE-144 F6 144T 3 6E-06 2 3E=OF 3645 29-*95 F6 2 1E*06 F.6F=0S TE129N .536C ' F6 1 1E*05 3 9t-8F 3351 RU*1t6 F6 2 4E*06 8.GE*.8 N9**95 F6

                                                                                           .0335 4 4E*06           1 4E*OF      .3318 CS*136         46       3.FE*06           6.4E-OS SR**R9         76                                      .6182 1 6E*C5          2.66-0F       .9165 I+*231         46       1 8E*85          2 1E*OF       .6118 TE-129         41       6 3E*G5          3.9E*e7 PR*144         41
                                                                                           .0061 5 2E*S5          2 3E*OF       .8345 Ya**9f         46      3.4E*05           1.34*0F FE**SS                                                .t:38 129       4 5E-83           1.FE*15 Ya**91         F6
                                                                                          .C136 1.9E*g5          F.2E*g4 RU-103                                                .3338 F6      5.6t*B6           1 9E-08      .9334 CR*-51          F6      1 3E*L4           2.8E*CF TE*127          46
                                                                                          .3328 9.1E*04           F.6E*JF   4.3E-C4 TC**99        61       4.3E*08           4.32-11   6. 8 Eas t TE125N        129       4.FE*05           2 9E*Je CE*141          F6 6 2E*t h 4.5E*E5           1.FE*PB   3.tE*tt 94-148         F6       3 1E-C6           1.JE*:9   3.4E*f4
 'I                                LA-14F 40**A6 41       5.CE-06           1 2E*I9   2.4E*04 F6       1 9E=C5           2.8E*J9   1.5E*04 TA9LE l

TA9(E 41 ** CAIE !*! ** S ANIT4pv LAN3 FILL

  • ExPOSUtt 70 55 GALLON C*UNS AFTER NO DECAY TAMLE 42 ** C43E !*I ** SANITARY LAN3 FILL
  • EXPOSURE TO 55 GALLON L4UMS AFTER u.031 YE T ait t 66 ** CAIE !*J ** SANITAsy LANOFILL
  • GROUNO SURFACE EXP05Utf TO W0t<ERS AFTE9 0 DECAY TA9LE 52 ** C AIE I-R ** S ANIT A1Y LANCFILL
  • GROUNO SURFACE EXP05U*E TO RESIDENTS A TA9LE 61 Ff. **
                     ** Catt CASE  !!*F!!*K
                                     ** FILL MANTED O!!P35AL - F000 G40wN IN WASTE AFTER J.5 YEAts DECAY TA9tt 144                       ** FILL W ANTED - GROUNO SU# RACE EXPO 3URE TO 8.E:10ENTS AFTES NO DECiv TA9LE 124 ** CAIE !!!*O ** S ANET AFT L ANOFILL = INHALATION 'JURING SITE EXCAVATION AF1ER 5
                     ** Calf IW-E ** FILL WANTED O!SPOSAL
  • CNILO EAT 3 NASTE AFTER NO DECAY Ta9LE 12F ** CASE IW*E ** FILL WANTED DISPOSAL
  • CNILO EATS WA3TE AFTED 01 YE ARS DE T ABLE 129 ** C ASE IWaF ** FILL WAhTED O!s*3! AL
  • F030 GROWN In WASTE AFTER . 5 VEAt3 l

i 1 .,

s. .

Table 6-2 Comparison of Computed Activity Concentrations in Spent Resin with "de minimus" Concentration Limits Appropriate for Land Disposal of Hemoneneous Bulk Solid Waste Activity on Resin Decayed for 6 Months Before Disposal IN ORDEF OF DECREASING EATIO OF EN*ECTED To LIMIT!wG VALUES 150f0*E TaiLE LIMITI NG EXPECTE3 RAf!O 0F C CN3 E N. CONCEN. EMP TO LIN (UCIFGNI (UCI/GNI CONCEN. C5-134 F6 9.9E-07 2 4E 84 241.F684 C5-13F 52 1 5E-06 2 3E-04 155.4462 C0==60 F6 8 1E*0F 2 35-85 28 6981

'k                                                               Co--58       F6  2. 6E
  • 06 9.FE-06 3.F392 F- NN--54 76 2 4E-06 1 9E-06 .F818 I lL SP--9C 129 T.5E=gr 1 3E=0F .1726 I

TE12FN 129 5 3E*06 4 2E-CF .8F92 CE-144 F6 3.6E-86 1 9E=8F .G51F F E ==5 9 F6 2 8E-06 1 4E-OF .8503 RU-1C6 76 2 4E-06 6.AE=88 .8282 2R--95 F6 2 1E*86 2.9E-f 8 .0136 W9-*15 76 4.4E-86 5 8E*05 .0132 TE129N F6 -1 1E*g5 6.tE-OS .8355 5#--89 76 1 6E-85 F.5E-05 .514F Ya==9f 46 3.4E-t5 1 3E-0F .0138 PR-144 41 5 2E*IS 1.9E*DF .OC36 FE*-55 121 4 5E=g3 1 6E-85 .8335 T--*91 F6 1 9E*05 2 4E-Os .C313 TE-129 41 6 3E-C5 6.aE-:8 9 6E-t4 40-153 76 5.6E-06 4.CE-L9 F.1E-64 TC--99 61 6 3E-It 4.3E-11 6 8E-04 - TE-12F 46 9 1E-84 4 2E*IF 4 6E-04 CR**S1 76 1.wE-C4 2.9E-08 2 9Eatt TE125N 129 4.7E-05 9 85-09 2 1E=E4 C5-136 46 3.FE-06 5 2E-10 1 4E-04 CE-141 F6 4 5E 85 2 4E 89 5 4E-85 PB--86 F6 1 9E-95 9 5E-11 5.'E-86 I*-131 46 1 9E*85 8 2E-11 4 5t*( 6 RA-140 76 3 1E-06 F.4E-12 2 4E*t6 k LA-14L '41 5.vE*06 8 6t=12 1.FE-t6 TA9LE 41 == C AIE !=1 -- S ANIT ARY LAN3 FILL

  • EXP05Utf TO 55 GALLON ORUNS AFTED NO DECAT TA#LE 42 ** CAIE I-I -- S ANITARY LANDFILL - EXP05Utf TO 55 GALLON ORUNS AFTER O.G81 Teats TABLE 46 == CAIE !*J -- S ANIT Atv LAN3 FILL = GRCUNO SUtFACE esp 05Utt 70 WOREEPS AFTER 8 OECAY TA9LE 52 ** CASE I-t *- SANITARY LANOFILL = GkOUNO SURFACE EXPOSURE TO RE310ENf 3 AFTER 5 VR5 TA9LE 61 == CAIE II*F -* FILL WANTE0 O!5P35 AL - F030 G40WN IN W ASTE AFTER 8.5 YE AR$ PEC AY TAGLE F6 == C438 !!=t ** FILL WANTED - CROUNO SURFACE EFPOSURE 70 REFIDENTS AFTER No DE CAY TamLE 134 == CASE III-0 -- S ANIT APY LANOFILL - INNAL ATION OUFING SITE EzCAVATION AFTER 5 TPS TamLE 124 **

CAIE IV-E == FILL WANTED OISP35 AL - CNILO E ATS WA5TE AF'IR No DEC AY T ABLE 12F -- CAIE IV*E ** FILL W ANTED O!5835 AL - C4!LO E ATS WASTE AFT *# F.1 YE ARS DECAf T AS.E 129 ** CAIE IV-r == FILL WANTE 3 OISPOS AL - FOOD GROWN IN W ASTE AFTER 0.5 VE ARS CECAY l 53

9 Table 6-3 Comparison of Computed Activity Concentrations in Spent Resin with "de minimus" Concentration Limits Appropriate for Land Disposal of Homoteneous Bulk Solid Waste Activity on Resin Decayed for One Year Before Disposal IN ORDEF OF DECREA519G RATIO 0F Et*ECTEn TO LINITING VALUES ISOTOPE T A 9L E- LIMITING EXPECTE0 RATIO OF CCN*EN. CONCEN. EXP 70 L IN EUCI/GND IUCI/GNI CONCEN. C5-134 76 9.9E*0F 2 08-04 ' lgy- CS-13F 52 Its.91C8 1 5E-06 2 35-04 153.6618 CO--60 76 8 1E*CF 2 2:*05 C0--58 76 26 8626 2.6E*C5 1 6E-06 .6296 MM**54 F6 2 4E-C6 1 3E-06 SR--9C 129 .5212 T.5E-6F 1 3E-GF 1F05 CE*144 F6 3 6E-06 1 2E-OF TE12FP 129 .C331 5 3E*06 1 3E-O F .823F RU-106 F6 2 4E-86 4 8E-Os Ya-*9t 46

                                                                                                                  .3199 3 4Ea45        1 3E-OF                .8338 FE--55                     129       6 5E-03        1 4E*05 FE*-59                                                                     .8C31 F6     2 8E-06         0 5E-39                .9430 4

PR-144 41 5 2E*05 1 2E-GF N3-*15 F6

                                                                                                                  .6323 4.4E*C6         8.FE-09                .0020 2R-*95                        F6     2 1E*C6         4 1E*09                .C 19
         =

TC-*99 61 6 3E*08 4 3F-11 6.aE-04 54**09 76 1 6E*C5 6 2E* J9 3 9E-th Y=**91 76 1 9E*05 2 9E*O9 1 5E th TE-127 46 9 1E*C4 . 1 2E*0F 1.ht*04 YE129P 76 1 1E*05 1 5E*59 PU-103 76 1.3E*L4 5 6E*C6 1.FE*13 3. *. E

  • C 5 1E125M 129 4.FE*g5 1 1E-09 TE*129 2 6E*C 5 41 6 3E 05 1 5E*4 9 2 3E-t 5 CR**51 76 1 8E-04 3 1E-1J CE*141 31E 8 6
  • F6 4.5E-05 4 9E*11 1 1E*6 6 I--129 129 5.ZE =0 F 1 1E-13 2 1E**.7 PU-239 114 4 9E-95 4 2E-12 a.6E*t e

,li C5-135 52 1.FE-C4 3.FE-12 2 2E*C 8 C5-136 46 3.FE-06 1.1E-14 4.=E-09 P 8--0 6 76 1 9E-05 1 1E-13 5.aE*C9 T&9LE Ta9tE 41 -- CAIE I-I ~~ SANfrARY LAN3 FILL - EXP05Jtt TO T5 GALLON ORUNS AFTER NO DECAY Ta8LE 42 -- CASE I-I -- SaNIT ARY LaMarILL - ExP05Utf TO 55 GALLON OF.UM5 AFTER G.081 YE ARS Ta9LE 46 -- CAIE I-J ** S ANIT ARY L AN3 FILL - GROUN3 SURFACE EXPOSURE TO WORKERS AFTER J OEC4 Ta9LE 92 -- C ASE I-K ** S ANIT44Y L4NOFILL - GROUN3 SU4 Face EXPOSURE TO RESIDENTS AFYER 5 Y#

            , TA0LE  61 -- Call II-F ** FILL WANTIO O!5P35 AL - F030 GROWN IN wa5TE aFTER *.5 Yk ARS DEC AY F6 ** C43E !!-R -- FILL MANTIO - GROUNO SUEF4CE EXP03URE TO FELIGENTS AFTER WO DEC&Y T A9LE 134 -- CAIF !!!*O -- S AN!T ARY L4N0 FILL - IMM4L AT!0N OURING SITE ErCAW4710N AFTER 5 Y85' Ta9LE 12b -- C43E IV-E -- FILL W ANTED O!5P35 AL - CNILO E ATS WA5f t AFTCP No nECAY T ABLE 12F -- CASE Iwat -- FILL MANTE0 015P354L - CN!LO EATS W45f E arf r4 f .1 YEaRT DEC AY Ta9LE 129 ** CAIE IV*F ** FILL W ANTIO O!5P35 AL
  • F030 GP1wN IN WASTE AFTE*. C.5 YtaR5 DECAY i

I hb

l REFERENCES Ba 73 Barton, C.J. et.al, Contribution of Radon in Natural Gas to the Natural Radioactivity Dose in Homes, ORNL-EH-4154, Oak Ridge National Laboratory (1973). BEIR 72 Advisory Committee on the Biological Effects of Ionizing Radiations. The Effects on Populations of Exposure to Low Levels of Ionizing Radiation, NSA-NRC (November, 1972). EPA 76 Code of Federal Regulations. Title 40, Part 141, " Interim Primary Drinking Water Regulations," (July 9,1976). EPA 77 Environmental Protection Agency, Federal Renister, 42 g no. 230, pp. 60956-60959 (November 30, 1977). Fla 77 Study of Radon Daughter Concentrations in Structures in Polk and Hillsborough Counties. State of Florida, Dept. H1th & Rehab. Sve., Rad. Elth Sve. (draft Nov. 1977). Gi 72 Gitlin, J.N., " Preliminary Dose Estimates from the USPHS 1970 X-ray Exposure Study." paper presented at 49th Annual Meeting of the American College of Radiology (April 6,1972). IC 73 International Commission on Radiological Protection. Implications of Commission Recommendations that Doses by kept as Low as Readily Achievable, ICRP Publication 22, p. 6 (1973). NC 75 National Council on Radiation Protection and Measurements. Natural Background Radiation in the United States, NCRP Report No. 45 (November 1975). NC 75a National Council on Radiation Protection and Measurements, Review of the Current State of Radiation Protection Philosophy, NCRP Report No. 43 (January,1975). NRC 76 Nuclear Regulatory Commission palculation of Releases of Radioactive Material in Gaseous and Liould Effluent from Presurized II Water Reactors PWR-GAIZ Code NUREG-0017, NRC Off. Stds, Development (April 1976). Os 72 Oakley, D.T., Natural Radiation Exposure in the United States, PhD dissertation, also printed by USEPA as ORP/SID 72-1 (June, 1972). Ra 64 Radford, E.P. Jr, & Hunt, V.R., " Polonium-210: A Volatile Radio-element in Cigarettes," Science, 143, 247 (1964). Sh 76 Shieten, B., et al., The Mean Active Bone Harrow Dose from Dose from Disanostic Radiology, FDA-77-8013, Bu. Rad. Hith. (April 1976). Un 72 United Nations Scientific Committee on the Effects of Atomic Radiation, Ionizina Radiation: Levels and Effects, 1. United Nations (1972). 55

Wi 77 Windham, S.T., et.al, The Effects of Home Ventilation Systems on Indoor Redon-Radon DauRhter Levels, USEPA Office of Radiation Programs (1977). RG 1.109 Regulatory Guide 1.109, " Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Eval-unting Compliance with 10 CFR Part 50, Appendix I," US Nuclear Regu-1 story Commission (March, 1976). l l Ya 72 } l Yeates, D.B. et.al., " Natural Radiation in the Urban Environ- ' ment," Nuclear Safety, 13, 4, 275-286 (July-Aug., 1972).

 >1 i

ii). , 1 e e i h 56

APPENDIX A EQUATIONS USED TO DETERMINE UIE DOSE RATE FROM EACH NUCLIDE FOR EACH PATHWAY Symbol Definitions k

                        }}        indicates that the done rate is summed over the contributions n=1           from the nuclide and its daughters

' IP A b is the vegetation consumption rate of the meat animal (kg/ day) A, is the vegetation consumption rate of the milk cow (kg/ day) B'" is the bioaccumulation factor for fish for the n-th nuclide (pCi/kg)/(pCi/ liter) B

                       ""        is the bioaccumulation factor for shellfish for the n-th nuclide (pCi/kg)/(pCi/ liter).

C" " is the activity concentration of the n-th nuclide in the chain at the time of esposure t (pCi/gn) D is the dose rate resulting from a nuclide and its associated - daughter products (ares /yr) DF *"~ j inj I" * "I*** age group (area /pci ingested)

                                                                     "    ** ""* #               #     """ ' * "" *
  • S~

DF

                          "$    is the inhalation dose factor for the n-th nuclide and the i be.     -

J-th age group (ares /pci inhaled) l l DF 3" is the dose factor for a 55 gallon drum containing a solution ! of water and nuclide n (arem/hr)/(pCi/gs) l DF is the dose factor for a semi-infinite medium of density 4" 1 g/cc containing a uniformly distributed source of nuclide n (area /hr)/(pCi/gn) E is the quantity of soil eaten by child (g/yr) F is the fraction of waste which is spilled l l 57

G is the erosion rate (g/m /yr) H is the erosion area (m ) I

                                      ""*               is the inventory of nuclide n after a year of disposing waste at the site followed by t years of decay in transit to the watercourse-(pci)

K is the concentration of waste in the air (g/ cubic meter) ! L is the leach rate from the waste inventory (per year)

  >                                Q,f     as        1000
  • Svn * (U ,+ U,* A,
  • San + Ub*Ab*Sb)

I E yr

E kg
  • 1 * [h \yr
                                                                                                            + hyr* h
  • days ,1, , h , days day kg yr day 1 is the equivalent tntake of vegetation in gas /yr through the food pathway (frut.ts and vegetables, milk, and ' seat)

( == ( U, + Uf*Bf + U,

  • B )
  • 1000 cc/ liter n (L yr \yr . yr h*L . h
  • kgL
  • 1/

kg yr si the equivalent intake of water through the watercourse pathways . (includes drinking water, fish and shellfish) R is the waste density (gn/cc) S g is the stable element transfer factor for meat (days /kg) h S, is the stable element transfer factor for milk (days /litar) S

                                  ""            is the stable element transfer factor for vegetation (pC1/gm vegetation)/(pCi/gm soil)                                                                                                           .

T is the duration of burial (years) b T, is the duration of exposure (hrs /yr) U

  • is the breathing rate of the individual under consideration (cubic meters /yr) 58

U b is the consumption rate of meat for the individual under consideration (kg/yr) Ug is the consumption rate of fish for the individual under consideration (kg/yr) U

                            "              is the conrumpeit,c. rate of milk for the individual under consideracion (liters /yr)

U

  • is the. consumption rate of shellfish for individual under consideration (kg/yr)

U is the consumption rate of fruits and vegetables for the

  'y                                      individual under consideration (kg/yr)

U

                           "              is the consumption rate of water for the individual under consideration (liters /yr)
                     . V                is the waste disposal rate (cc/yr)

W in the flow rate in the watercourse (cc/yr) Exposure Pathways i Pathway A - Leach into Watercourse k i U"h b* Inj nat n g n=1 area = L , g , gram , pCi , L yr E yr pCi yr

yr l

Pathway B - Spillare into Watercourse k D=F*V*R * (

  • DFinj nt n=i area = 1 , g , m , s , arem , P_i C yr yr ec yr pCi gm 2

yr 59 _ - . - . --.

                    -e Pathways C - Inhalation of Spilled waste                                                                     '

and D - Inhalation of Weste Durina Excavation i k D = K

  • U,
  • T

{ DF2O

  • C,t n=i
                   -        area yr      =a q , [hr, hr yr
                                                       , arem , pCi pCi    y Pathway E - Child Eats Dirt on Waste Site k
  1. l *C I D = E * { DFg nt
   ..                                    n=1 l

area = g , ares , pCi yr yr pCi p soil Pathway F - Food Grown on Waste Site k D= +. { Q , f* DF g,)

  • Cat i n=i ,

i=. i p wm = g ,wa ,Wi yr yr pCi p . ( . Pathway G - Erosion of Weste into Watercourse k D=G*H f { (

  • DF ,)
  • Cnt g

a=1

                                   ' am1_       ,2 area =(a -yr/]

l

                                                    , sg , ares , DCi yr           33            yr    pCi    p yr Pathway H - Inhalation of Eroded Weste same as pathways C and D cn

1 .

  • Pathway I - Direct Irradiation from 55 Gallon Drums k

D=T g { DF3n

  • nt n=1 Erg = hrs , area /hr , 6.1,1 yr yr pCi/gm ga
i. -

Pathways J and K - Direct Irradiation from Ground Surface D=T, DF4 ,

  • C,t I n=i area = hyra , ores /hr , DCi yr yr pCi/gm am Note: For this pathway C nt c utinues t decay during the exposure time.

f 9 l L 4 i O 61

APPENDIX B Fl CCMPUIED RESULTS OF DISPOSAL SCENARIO-PADIWAY EVALUATIONS Tables representing 15 of the most restrictive exposure pathways identified in Tables 4-4 and 4-6 are included in this appendix. The complete set of 143 tables are on file.at the Atomic Industrial Forum. . l 62

TABLE 25 CASE I-E -- SANITARY LANDFILL - CHILD EATS DIRT ON WASTE SITE AFTER 5 YEARS ISGTOFE HALF ufFE LIMITING DAUGHTic Dio. CENT ButIAL CONCiN. (UCI/GH H----3 1 23E+ 1 YRS 3 3E-01 C---14 5.73E+:3 YRS 2.25 w2 NA--24 1 . 5 Je +0 1 HC.S 1.G,5+07 F---3E 1 432+~1 CVS 1. J i

  • u 7 .

Cc--El 2 795+~1 . DYS 1.uE+07

                     *N--56                        3.12i+;2 CVS                3.35+4a MN--56                        2.55E+Ju HRS                1.Ji+07 FE--55                        2.kuE+sJ YRS                2 46-C2 FE==59                        4 5.i+i.1 CYS               1.Ji+07
$rl CO--56 7.isi+.1 CYS 4.95+;5
 . :                 CC--6L                        5 29E*;J Y1S                6 28-03 I

NI--59 8. 1E+C* YRS 3 15-02 NI--F3 9 21d+C1 YRS 1 25-02 NI--65 2.E65 + 'J M45 1.Ji+07 CU--64 1 29E+Ci NRS 1.ji+07 ZN--65 2 435+L2 CYS 1 3E+.. 7N-=69 5 50E+C1 t.IN 1.JE+07

 .                   44--62                        2.4'5+.a
                                                         .          H95        1.Ji+G7 4G--74                        !.20i+C1 FIN                1.JE*LT y,

9c.--85 3.LJi+*a. FIN 1.ai+;7 RB--66 1.R7f+41 CVS 1 0i+07

   *^
                     *B--96                        1 6si+C1 FIN                1.JE+G7
 .                   R9--P9C                       1 50i+01 ItIN               1.dE+u7            S4--89       18. C .

SF--89 5.065+41 CVS 1.di+07 S F. -- o C 2.665+01 YRS 1.Ji-05 "R--910 9.75f+we HRS 1.J i ts 7 Y---91 l'. s . 55--92 2.70E+CC HRS 1.dE+07 Y---9' 2.67E*CJ CYS 1 95+07 Y--91PG 5.L45+01 FIN 1.3E+07 Y---91 ALG.

      !              Y---91                        5 9"E+;1 CVS                1.Ji+07
b1 v---az 3.5 n +e . MRS 1.si+or Y---9?C 1.C2i+31 HRS 1 3E+07 NS-93M 52.

ZF--93+D 1 50E+06 VRS 2 2E+01 NO-93M 52. 72--9560 s.54E+t1 CYS 1 0E+07 NB--95 38. 7R--97 1.7.5+.1 FRS 1.si+GT NS-93M 3.7.E+., YRS 6 2i+si Ha..gg 3 5;g,;1 DYS 1 0i+C7 N8--97 1.2.5+'.C H45 1.Ji+07 do--99P 2 795+00 CVS 1 0E+07 TC--99 1.4. TC-99FC 6.tGi+ 0 HRS 1 35+07 TC--99 160 . TC--9a 2 1:1+65 YRS 1 3f+sG t PU-it3 4.COE+31 CVS 1 0E+c7 - l F U-1C S 4.43E*49 HRS 1.Ji+G7 RU-106 1 00i+C0 YRS 1 1&+iL RH-li 5 1 54f +va CVS 1.JE+c7 AG110H 2.6di+.2 DYS 7.*E*ui TE125M 5.943+41 OYS 1.3f+C7 TE127*+0 1.t5f+42 OYS 9.3E*a3 TE-127 10. TE-127 9.3dE*oJ HRS 1.;E*wT TE129MC 3.40!*L1 DYS 2 3E+05 I--129 1CG. 63

TABLE 25 1 CASE I-E -- SANITART IANDFIII - CHILD EATS DIRT ON IthSTE SITE AFTER 5 YEARS ISCTOFE HALF-LIFi LIMITING DA UGHT ER PERCENT BusIAL CONOEN. (UCI/GM) TE-129P 1 12E+Ca HRS TE13190 1..E*U7 I--129' 1CG. I 1 2sd*La CVS 1 3E+07 TE-1310 2 50E+01 MIN I--131 16L. i TE-132+0 1.J E+0 7 I--131 1C O .. 3 253+au DYS 1 0E+07 I--132 I--129 4 kPt I. 13. 1 6Gi+tf YRS 1 3E-03 1 2*E+t1 HRS 1 4E+37 I--131 -

                                                       $.05E+60 CVS          1 3d+gT I--132               2 30E*vu HAS I--133                                     1. .E +s 7 2 13E+G1 H4S          1.JE+07 I--134              5 3;E*:A MIN           1 0E+GT I--135C             6.71E*so HRS CS-136                                     1.JE+07           CS-135            100.

2 1JE+00 Y9S 3 2E-03 CS-135 2...E+ 6 V8.S CE-13E 6 3E 63 1 3JE*C1 Cvs 1.JE+07 i CS-137 3.rJE*;1 Y45 !' CS-138 1 2E-03 3 22E+41 MIN 1 0E+b7 BA-ikt 1.PSE*01 DYS PA-141C 1.GE+07 1 4;E*C1~ MIN 1.wE+07 i 9A-162 Cc-141 it b . 1 1GE+61 MIN 1.QE+07 LA-14t 1.ETE+s. OYS . LA-1410 1..E+uf 3.90E*C4 HAS 1 0E+07 CE-141 LA-142 1 4ui+se H7S 1CG. CE-141 1.QE+07 3.25E+:1 OYS 1.JE+a7 CE-1430 1 37E+CJ CVS 1 3E*;7 L CE-164 8P-143 ALL. !' 2.8 5E +.' 2 OYS 3.Fi+*. 1 PR-143 1.3?i+T1 CYS bb PR-144 1.si+J7 ' 1 73E*01 NIN 1.Gi+07 N3-167C 1 11E+G1 CVS PM-147 5.6i +C 3 PM-147 iCO. 2 6sE+6; YRS 6 6E+ut W--187 2 4si+D1 HRS RA-223 1 0E *0 T 1 14E+ul CVS 1.Si+07 hA-226 1.FJE+s3 Yo,S AC-227+0 2.3E-0T 2 16E+.1 YRS 5.4E .5 4A-223 TH-2270 1 92E+91 CVS 9G. PA-231*0 1 0E*07 4A-223 lid. 3 25E+04 YRS 1 66 94 4A-223 U--235 T.13E+cs VRS 1.JE-03 NP-2390 2 35E+Cv OYS P0-239 5 8E+u3 #U-239

  • 100.

2.44E*64 YRS 1 5E-03

         -  n4 SED ON: A MAXIMUM 00SE CCM11THENT D' 1.u0 MREM /YR TO CHILDRdN WHO EAT
                                                          .1C KG OF DIRT IN A GIVEN YEAR DECAY TIME FRON EURIAL TO INGESTION = 5 6E*s. YEARS FFACTION OF SOIL WHICH IS WASTE =                      .23 64

TME2 29  ; CASE I-F -- SANITARY IANDFILL -

                                    ' FOOD GROWN ON WASTE SITE AFTER S YEARS ISOTOPE                  HALF-LIFE                     LINITINC                           OAUGHTEA  PERCENT BURIAL CONCEN.

(UCI/GM) H----3 1 23E+;1 YAS 6.65-05 C---14 5.73E+w3 YRS 9.1E 46 NA--2k 1 63E+G1 HRS 1.)E*GT P---32 1 436*;1 OYS 1.JE+C7 CP--51 2. 7 9 E + 61 GYS 1 0E+07 "N--54 3.12E+.2 CYS 1 55 .1 "N--56 2.SSE+C0 HRS 1.: E*07 rE--55 2.40E+t3 YRS 4 65-C2 FE--59 a.50i+C1 CVS 1 0E+J7 30 CO--Se 7.1.E*'1 CYS 2. . i +. 5 CC--6C 5.2*E+0] YRS 2.9E-03 NI--59 8.r13+c, ye,s  ;,32-9 3

k. NI--63 9.21E+31 YRS 4 9E-J4 Y NI--EE 2.56E+.. H.S 1.JE+07 CU--Eh 1 29E*01 H95 1.)E+CT IN--05 2 6 3E +*,2 CYS 8 55 4 7N--69 5.5JE+La MIN 1 0E+s7 Sr.--$3 2.43E+CJ HRS 1 3E+G7 ao--Sc 3.2jg+;; ety 1,;g+gy
   ',            ao--85               3 . s E * ~ t. MIN 1.) 6 +0 7
 ,              F8--P6                1 47E+C1 CYS                        1 0E*07 c4--A9                1.8;E*J1 HIN                        1.JE+b7
09--890 1 5 ;E *01 MIN 1.JE+47 Sc--69 .Ct.

SR--89 5.C6E+C1 CYS 1.JE+C7

                                    -2.*9E+*1 YES S F. --9 0                                                2.2c-G6 54--910               9.?vi+CJ PRS                        1. . i + C 7                        Y---91    104.

S r. -- o 2 2 7JE+00 HRS 1.JE+C7 Y---oe 2 67E+0J DYS 1.JE+C7 1 Y--91Pn 5.LsE*31 NIN 1 4 5 +0 7 Y---9A 16 6 . Y---91 5 9JE+C1 CVS 1.dE+37 Y---92 3.535*sJ HRS 1.CE+37 Y---930 1 62E+01 HRS 1.JE*J7 N3-93H 99. ZP.--93*D 1 50!+s6 YP.S 2 5E+0C N9-93M 99. 74--95+3 6.53E+C1' OYS 1.;E*07 N9--95 95. 72--97 1 7.E *J1 HRS 1.Li+C7 hs-93M 3 . 7 '. E + a ." YRS 3.95+0G Na--95 3.53E+si CVS 1.JE+G7 40--97 1 20E+.s HRS , 1.JE+07 MO--990 2 79E*G9 OYS 2.9E+04 TC--99 ILC. TC-99PO 6 0]d+40 HRS 3 2E+05 TC--99 100. TC--99 2 1;E+'S YRS 1 15-03 RU-1C3 4.CGi+C1 CYS 1..E*07-

  • EU-iC5 4.43d*06 HRS 1 0E+07 RU-1CE 1.CaE+00 YRS 5.JE-L2 -

RH -1. 5 1 5 E* L OYS 1.aE*C7 AG11tM 2 6LE*;2 CYS 1 1E-L1 TE125F 5.SJE+C1 OYS 3 1E*C5 TE127H+0 1.05E+C2 OYS 7.*E+6L Tc-127 3. TE-127 9.30E+Go HRS 1.JE+L7 TE129HO 3 6GE+61 CYS 3.sE+04 I--129 100. 65

TME2 29 ' CASE I-F -- SANITARY LANDFILL - FOOD GROWN ON MASTE SITE AFTER 5 YEARS ISGT085 HALF-LIFE LIMITING D A UG HT E F. eERCENT BURIAL i CONCEN. (UCI/GM) TE-1299 1 12i+Cs HRS 1.JE+37 TE131FC ' I--129 100. 1 2Ji+CC OYS 1.J E +C 7 I--131 100. TE-1310 2 5.i+L 1 MIN 1 0E+C7 TE-132 3.25f+,4 CYS I--131 15..

    ~

1.CE*07 I--129 1.6;6+'7 YRS 2 2i-L4 I--13r 1 24f+61 F85 1.J!+07 I--131 S. 5 5 % .' CVS 1 45+s7 I--132 2 33E+C; His 1 3E*J7 i T--133 2 1. i+.1 FRS 1 3&+u7 i I--124 5.33f+i1 PIN 1.JE+07 l I--135C 6.7.5+., HSS 9 7E+iS' C!-135 ! CS-136 ILO. l 2.isi+f. YES 1 35-C4 CS-135 2.t ;E+;6 YRS 3 7E-4 4 CS-13e 1 3.i+.1 CVS 1.)E*s7 CS-137 3 6Ji+ 1 YiS 4 65-C5 CS-12A 3 22i+61 t:IN 1. E+w7 4A-14L 1 24E+di OYS 1.sE+J7 aA-1610 1 9.'i+.1 MIN 1.JE+37 CE-141 1 A -l h 2 1LC. 1 1.!*:1 hIN 1 3f+w7 LA-16 1 67E+00 rvs 1 0E+C7 LA-1410 3.9',5+..- b4S 1..i+.7 CE-141 LA-162 1.3. 1 4si+.G FRS 1.JE+.7 CE-141 3 25f+.1 CVS 1.JE+47 - CE-143P 1 37E +t w CVS 1.Ji+a7 #G-143 Ch-164 LL O . 2.?Si+02 CYS d.1h*01 98-143 1 373+64 CVS 1. ;i +C 7

   '            PR-144                          1 7 35 +.1 MIN             1.JE+J7 ND=1470                         1 115+;1 CY3              2.96+43       *M-1*7 FM-147                                                                                 1CC.

b 2 6.E*,J YiS 3 55+01 W--in7 2.4s2% 1 HRS 1. 5+;7 . A' 'A-223 1 1*6*C1 CVS 1.CE+07 f.A-22f 1 60i+J3 Y95 5.Ji-C7 AC-227+0 2 166+C1 YRS 8.45-05 RA-223 TH-2~70 Ew. 1 32i+J1 OYS 1.SE+L7 RA-423 ilQ. I

               #A-231+D                         3 25E+34 YRS              1.JE-C6      R8-223 U--235                                                                                     13.

7 1Gi+CS YRS 5 2E-G4 NP-2390 2.35E+LJ CYS 5. E+C4 PU-239 90-239 1LL. 2 44E+C4 YRS 1.+E-02 1 ACE 3 Ota CCh50M37 ION OF 2000 GROWN ON WASTE CITE . A MAXIMUM 3CS: COMMITME NT GF 1.LQ MR2M/YR TO ADULTS DECAY TIME FC.JM BUAIAL TG INGESTION = 5.uE+03 YEARS GCA$l'MATION CF 15s. KG CF FRUITS AND VEGETAatgs p g YEAR C.0FSUMcTTON OF 310. LITEAS Or MILK PER YEAR I CONSUMOTION CF 11. KG CF MEAT DER YEAe CCASUMoTION RATE OF C3W = 56. (G/ DAY CONSUMp? ION CATE OF CATTLE = 50. KG/0AY Fr ACTION OF SOIL WHICH IS WASTE = .10 66

           , \. ..

TABLE 41 CASE I-I -- SANITARY IANDFILL - EXPOSURE TO 55 GALLON DRUMS AFIER NO DECAY , ) ISOTOFF HALF-LIFE LIMITING D A UG HT E A. PERCENT 9URIAL CONCEN. (UCI/GM) l H----2 1.2 35 +c i YCS 1 32+C7 C---14 5.7 3f +;3 YRS 6.2E e2 NA--24 1 50i+C1 HRS 2 9E-06 P---32 1 43f+J1 OYS 1.6i-04 CR--51 2.75E+.1 CVS 2 2E-G4 1N--54 3 12E*c2 DYS 1 2E .5 WN--E6 2.Sii+CC HRS 5.45-06 FE--55 2.4Ci+.s YRS 1 3 E +C7 FE--59 *. Sci +ci CYS 9.JE-06 p>l CO--Se 7 1?i+.*1 CVS 9.*E-16 C O --F C 5.2*E*GJ Y45 4.5E-06 g4 NI--59 6.Lii+G, YRS 1..E*D7 9 21E+01 Y:S 1.JE+07 NI-*E3 NI--65 2. 5 65 + L s' HRS 1.JE+07 CU--64 1.295+01 HRS 3 6E-05 ZN--E5 2.43E*L2 CYS 1. "t w5 7N--69 5.53E+]1 PIN 7. E-04 na..g3 2.402+00 HRS 4.45-04 e r. . 6 6 3.2us+31 HIN 4 9E-06

 ,,                 Ei--85         3.. ;E*L3 HIN            8.3E-G5 o'                 RB--46        1.*7E+G1 CYS              7.;i-05
    ,               c. 2 -- 8 8   1.8sE*C1 HIN              1.te-05 c9--89         1 54f+01 EIN              4.of-06 S9--89        5.s66+J1 CVS              2 35 a*                                 .

SP.--94 2.85E+;1 YRS 2.5= .3 Sc--91 4.795+C0 HRS 1 3E-05 SR--92 2 7.5+i.u HRS 7.92-06 Y---9t 2 675+C0 CVS 1. E-04 Y--91M 5./ .i *i 1 NIN 1.'3E-J5 Y---91 5.9JE*C1 CYS 3 3E-0* Y---92 3 535+fu HRS 2.35-C5 Y---93 1.C2E+01 HRS 3.4E-05 ZR--93 1.50i+.6 YRS 3 2f+01 7F--95 6 53f+01 CVS 1 2E-J5 28.--97 1.7di+~1 H9S 4 7E-05 NB-93M 3.70i+CU YRS 5 7E-01 NB--95 3.5vi+C1 CYS 1.2E-05 NB--97 1.29E+Ju HRS 1 2E-35 MO--99 2.795+;J OYS 5.6E-05 TC-99M 6. 3E+6J HRS 8. 7 E 'J 5 TC--99 2.1Ji+C5 YRS 1 3E-02

  • l RU-1C3 4.(gi+;1 OYS 1 56-C5
                   = U-it 5       4.43f+LO HRS             1 2E-05 RU-166         1. tee +33 Y95           4.45+J3 GH-1CS         1 54E+LO OYS             6.75-J5 AG11L P        2.63E+32 DYS             3.7E-C6 TE125M         5 90E+01 CYS             2.3E-02 i                   TE127H         1.t.5E+02 OYS            1.PE-01 1

TE-127 9.30E+LL HRS 1 1E-C3 TE129P 3 40i+C1 DYS 1 9E-64 7

l . . TABLE 41 CASE I-I -- SANITARY LANDFILL - EXPOSURE TO 55 GALLON DRUMS AFTER NO DECAY ISOTCFF HALF-LIFE LIMITING DAUGHTiF PERCENT BuilAL CONCEN. (UCI/GM) TE-129 1 12E*LO HRS 6 3E-05 TE131M 1 2GE*00 CVS 8 1E-06 TE-131 2.5JE+C1 MIN 2.2E-J5 T E -132 3.25E+CQ OYS 3 9E-05 I--129 1 60c+47 YRS 2.25-02 I--130 1.24E+31 HRS 3 9E-G6 gr- I--131 S.CSE+LO OvS 2 1E-05 i I--132 2.3J E+L G HRS 3.TE-L6 I--123 2.1JE+51 HRS 1 5E-05 h'5 I--134 5.3.E+01 NIN 4 95-06 I--135 6.70E*6L HRS 5 9E 96 CS-134 2 10E+00 YRS 5 26-06 CS-135 2.LGE+C6 YRS 3 65-02 CS-136 1 336*01 CVS 4.bE-06 CS-137 3.tPE+t1 YRS 2 2E s3 CS-136 3.2256 1 MIN 4 7E u6 4A-140 1.2AE+01 OYS 3 2E-05 3 A at41 1.8vi+31 hIN 1 8 E-0 5 8 A _:.2 1.1cE+.1 MIN 1 4E-05 LA-14. 1 675+.4 CVS 5.JE a6 LA-141 J.90E*LO HRS 7.4E-05 LA-142 1.4GE+CL HRS 5 2E-06 CE-141 3.25E+01 CVS 1 6E-34 CE-143 1.37E+J4 DYS 2 9E-05 CE-144 2.55E+G2 OYS 6.r,E-G* ' CR-143 1.37E*S1 OYS 1.25-05 Pp-144 1.73E+21 HIN 5 2E-05 NO-147 1 11E+'1 . CVS 5.75 .5 PM-147 2.EJE+00 YRS 2 9E-02 W--le7 2. 4." E + 31 HRS 1.9E-J5 FA-223 1 14E+G1 LYS 1 0E+07 RA-226 -1 6;E+C3 YRS 2 0E-U3 AC-227 2 162+01 YRS 7.SE-u3 TH-227 1 82E+01 DYS 1.aE+t7 PA-231 3.25E+C4 YRS 1 0E+07 U--235 7.1 J E +S 8 YRS 1.Jt+C7 NP-239 2.35E+C0 OYS 1 0E+07 PU-239 2.44E+c4 VRS 6 8E-il . BASER. ON: EXTERNAL EXFOSURE TO 55 GALLON ORUM OF WASTE A MAXI 1UM OCSE COMMIT 1ENT OF 1 0C NREN/YR EXpCSURE TIME = 1.bi+32 HOURS / YEAR DECAY TIME PRIOR TO EXPOSURE = c. YEARS WASTE CENSITY = 1.C GM/CC 58

        ..                                                                              i TABUS 42 l

CASE I-I - SANITARY IJhfDFILL - E::POSURE TO 55 GALLON DRUMS AFTER 0.001 YEARS ISOT0FE HALF-LIFE LIMITING OAUGHTEA PERCENT BUS.IAL I CONCEN. (UC I/ GM) H----2 1 23E+C1 YRS 1 0i+07 C---14 5.7356':3 YRS 8.22 .12 NA--24 1 53E+31 HRS 4 32-06 P---32 1 63E+.1 CVS 1 7E-L4 CE--51 2 785+C1 CYS 2 25=L 4 MN--54 3.12i+~2 0YS 1 2E-05 MN--56 2 565+Lc HRS 6 35-05 FE--55 2.4Gi+C0 YES 1 3f+07 FE--59 4 50i+i1 CYS 9 1E-06 y ' C0==Se 7 1wi+.1 CYS 9.46=.6 CO--6C 5.24E+LO YRS *.56-06 [ NI--59 6.Lii+C* YRS 1..E*37 i NI--63 9.21E+01 YRS 1 0E+07 h NI--E5 2.565+- HD.S 1 0E+L7 p CU--Ek 1 2 9E +G1 HRS 6.JE-05 7N--65 2 43f+J2 DYS 1. 7E -0 5 7N--69 5 50E+01 PIN 5.3E-J1 RL--83 2 4JE+;C H3.5 5.55-03 1 ,- - P. 4 3.20E+01 HIN 4 3E-J1 3c,--850 3.C d!+ J HIN 2 15-02 KR-65M 160. 60--86 1 875+.1 DYS 7 25 c5 c9--88 1 80i+C1 FIN 6.9E*03 89--890 1.5Ji+ul MIN 1 15+00 SR--69 100. SR--59 5.usi+:1 DYS 2.3E .;4 SS--9C+D 2 665+01 YRS 7.7E-04 Y---9u 69. SF--91+0 9.7.E+.5 HRS 1 45-45 Y--91N 39. SE--42+0 2 70!+;J HRS 4.2e-05 Y---92 44. Y---9L 2.675600 CVS 1.if-L4 Y--91P+0 5.C0E+C1 PIN 1 4E-02 Y---91 3. 11 Y--~91 5.4si+L1 UYS 3.JE-G4 Y---92 3 53E*LD HRS 1.3E-G4 Y---93 1.C 22 +61 HRS 6 1E-0 5 7R==03 1 5;.3+.6 YES 3 2E+C1 7#--95 6 5)i+al CVS 1 2 2-G 5 7P--97+C 1 7a5+61 HRS 7.5E-J6 NB--97 45. h0-92P 3.7.5+;G YRS 5.7E-01 No--95 3.96s+31 OYS 1 2E-C5 N9--97 1 2;E ** Q HRS 1 8E-0 3 M0--99+G 2.795+L3 CVS 4.6E-05 TC-99M 28. TC-9er 6.'s0E+LO HRS 2.wE-J4 TC--9c 2 10f+35 YRS 1 3E-02 e.U-it 2 4./.E + 01 CYS 1 6E-05 - RU-1'5+0 4.4 3s+6L HRS 4 45-35 RH-105 *. FU-1060 1.C3E+64 YRS 2 2E-05 RH-156 100. RH-105 1.51E+.. DYS 1.aE s4 , AG11CM 2 60i+s2 DYS 3.75-06 TE125M 5.MCE*41 DYS 2 3E-02 TE127P+0 1.CSE+C2 OYS 2 2E-u3 TE-127 99. TE-127 9 3 E+CJ HRS 2 0c-03 TE129r+0 3.kJE*01 CVS 4 8E-05 T5-129 75. 69

TABLE 42 CASE I-I - SANITARY LANDFILL - EXPOSURE TO 55 GALLON DRDMS AFTER 0.001 YEARS r ISOTCFE HALF-LIFE LIMITING DAUGHisF PE4 CENT l BURIAL i CONOEN. (UCI/GM) Ti-129 1 12E+LG HRS 1 5E-J2 TE131M+3 1.2uf*C0 CVS 9 25-66 TE-1310 2.5,E+,1 HIN TE-131 7.

1. s E-;. 2 I--131 1CC.

TE-122+0 3 25s+CG OYS 3 95-06 I--132 I--129 91. I--12

1. AG E+ 0 7 YRS 2 2E-02 1 2*i+;1 HRS yj I--131 I--132 9.C SE+sa CVS 6 32-06 2 25-35 2 305*Ch H4S 5 25-i5 I--133 2 14E+31 HRS 2 1E-0 5 I--134 5.3uf+C1 MIN 4.7E-03 I--135+9 6.7Ji+us HRS 1 2E-05 XE-135 1.

CS-134 2 10E+L0 YRS 5 25-06 CS-135 2..;i+.6 YES 3 6E-02 CS-126 1 3;E*C1 rYS 4.7E-06 CS-137+G 3 0GE+01 YOS 1 35-J5 9A137M 99. CS-13E 3 22E* 1 MIN 3 9E '; aA-14L+0 1 2dE+51 GYS 1 7E-C5 LA-14L 9A-1410 *8. 1 80E+C1 FIN. 4 2E-33 LA-141 99.

               #A-1420                     1 12E+C1 NIN            2.75-J3         LA-1*2 LA-14f                                                                            10L.

1 675 +;7 CYS 5.SE e6 LA-141 3.9'E+..

                                                .       HRS        3.5E    s4 LA-1*2                     1.4):+ua HRS             4.JE-04 C6-141                     3 25E+61 DYS             1 65-06 CE-143+0                   1.375+'.6 CVS            3.*E-05        PR-143 CE-144*0                                                                              5.

2.55E*C2 OYS 4.9E-05 DR-146 93. DR-143 1.375+ul OYS 1 2i-05 PR-144 1.73E+G1 MIN 7.?E*L4 HD-147 1 11E+L1 DYS 5.42 uS PM-147 2.6aE+63 YRS 2 9E-b 2 W--187 2.4JE+21 PRS 2.4E-uS AA-223 1.14E+C1 CVS 1.JE*s7 FA-22E 1.63E+C3 YRS 2.GE-G3 AC-227 2.165+L1 YRS 7 8E 6 3 TH-227+0 1 92E+vA CYS 1..E*L7 RA-223 2. I DA-2310 3 255634 Ye.S .*!+02 AC-227 100. U--235 7.iJi+C8 YRS 1.JE+e7 NP-2390 2.35E+0G CVS 1 0 E +C 7 PU-239 0U-239 1G0. 2.4*E+04 YRS 6.9E-01 . I 9ASEC CNt EXTECNAL EXPOSURE TO 55 GAL 4UN DRUM CF WASTE A MAXIMUM DCSE CCMMITNENT or 1 0G M4EN/Ys EXPOSURE TIPE = 1 4E+32 HOU4S/YsAR CECAY TIME PRIOR 70 EXPOSURE = 1 0 E-0 3 YE AkS WASTE CENSITY = 1.G GM/CC 70 1

TMBIZ 46 . CASE I-J -- SANITARY IANDFILL - GROUND SURFACE EXPOSURE TO WORKERS AFTER O DECAY ISCTOPE H AL F-LIFE LIMITING DAUGHTER FERCENT ButIAL CONCEN. (UCI/GM) H----3 1 235*01 YRS 1 3E*J7 C---14 5.73E+s3 YRS 1 8 E-0 3 NA--24 1 50E+di HRS 6 1E-06 P==-32 1.43E+.1 OYS 4.96-05 CA--51 2 78E+C1 OYS 1.SE-04 MN--56 J.12E+L2 DYS 6 7E-06 MN==56 2.585+CG HRS 1.JE-J4 FE--55 2 4,E+ls YRS 1.JE+37 FE--59 *.54E+C1 DYS 6.4E-36 . g> CO--58 7. ire +31 DYS 7 25-06 , CO--60 5 2*E+JO YRS 3 2E-06 lp. NI--59 S.011+C4 VRS 1 0E+07 NI--63 9 21E+C1 YRS 1.JE+07 NI--65 2.562+0. HRS 1.Di+s7 CU--64 1 29E*C1 hpS . 1 1E 4 7N--E5 2.63E+62 CVS 1 2E-05 7N--E9 5 5dE+;1 MIN 6.1E 63 35.--83+0 2 4CE+.; HoS 2.*E u3 KR-63M 2. BR--Sk 3 20E+01 PIN 3.7E-04 ap 65+D 3.00E+CG MIM 1 7E-G2 K k.-S S N 34. 48--86 1 672+G1 CVS 2 6E-GS C9--86 1 4eE+La FIN 1 15-03 A*--89 1 53E +31 PIN 5 1E-04 SR--89 5.CoE+t1 CVS 4.aE-65 . 59--9C+0 2 54E+01 YRS 6.2E-05 Y---9G 77. S8 --91+0 9.7JE+36 HRS 3.7E-25 Y--91N 32. SR--92+0 2 70E+00 HRS 5 1E-05 Y---92 36. lI Y---90 2.67E*00 DYS 3.*E-05 Y--91M 5.rcE+;t MIN 7.qE-04 5 0E-05 Y---91 5 90E+G1 CYS Y---92 3 53E+=s' HRS 1 7E-04

 ==           Y---93       1 02E+01 H8S            6.JE-05.

ZR--93 1.53E+;6 YRS 3 25-b2 7R--95+0 6 50E+01 OYS 6.7E-06 NB--95 4.

                                                                                                    )

7R--97*0 1.70E+01 HRS 1.*E-05 NS--97 45. I NB-93P 3.7JE+GO YRS 1 3E-04 NP--95 3 5.E+si CYS 9.35-06 N9--97 1 2JE*LG HRS 4.4E-04 MO--99+0 2.795+La CVS 3.3E-05 TC-994 25. TC-99F 6..sE+ec HRS 6 2d=54 TC--09 2.idE+C5 YRS 5 7E-G4

  • ou-it 3 4.FJE*L1. CVS 1 2E-C5 l RU-105+0 4.43E+LO HRS 1 1E-04 8.H-ib 5 11. l; CU-1C6C 1.J.E+;0 YRS S.1E-06 iH-1G 6 1L6.

R H-li S 1 5LE+CJ CYS 1 25-64 A G11L M 2 6JE+.2 CYS 2 7E-06 l TE125F 5.80E+C1 OYS 1 9E-03 i TE127ND 1.sSE*02 OYS 1 4E-04 TE-127 100. l TE-127 9.3CE*24 HRS 9 1E-J4 l TE129M+0 3 40E+C1 CVS 2 3E-05 TE-129 62. 71

TMuz 46 ' CASE .I-J - SANITARY LANDFILL - GROUND SURFACE EXPOSURE TO WORXERS AFTER 0 DECAY ISOTCPE HALF-LIFE LIMITING ' D A UGHT ER DERCENT BURIAL CONCEN. (UCI/GH l TE-129 1 12E+;4 HRS 1 7E-J3 TE131P+0 1 20E+00 OYS 1 3E-05 TE-131 8. TE-131+0 2 56E+01 MIN 1 6E-03 I--131 TE-132+D 18. 3.25E+e. CYS 3.7E-66 I--132 92. I--129 1 6JE+07 YRS 1 1E-03 I--13C 1 24E+vi HRS 1 65-05 I--131 S.CSE+LO OVS 1 9E v5 I--132 2 30E+GO HRS 7 9E-05

$d             I--133+0          2.10E*01 NRS           3.-E-05         XE-133 I--134                                                                     2.

p :: 5.3JE+G1 P.IN 2 6E-04 I--135+D 6.7uE+GC HRS 3 2E-G5 XE-135 CS-134 15. 2 10E+LO YRS 3.SE-06 CS-135 2.0 JE+G 6 YRS ' 1 2E-G3 CS-136 1.3.E+.1 DYS 3 7E 66 CS-137+0 3 0dE+01 Yes 9 1E-06 UA137M CS-138 95. 3 22E+La NIN 3 7E-G4 BA-146+0 1 2SE+61 CVS 51E66 LA-1*O 77. BA-1ki+0 1.PdE+G1 MIN 1 4E-03 LA-141 32. BA-142+D 1 10E+01 HIN 8 7E-04 LA-142 LA-14C 79. 1 672+00 DYS 6 7E-06 LA-141+D 3 90E+rc NRS -3 2E-04 CE-141 2. LA-142 1 40E+wJ HRS 1 5E 94 CE-141 3.25E+si DYS 6 8E-G5 - CE-143+0 1.375+90 OYS 2 8E-05 PR-1*3 CE-144+0 3*. 2.85E+72 CVS - 1 3E-05 Pk-144 96. PR-143 1.37E*01 CYS 4 8E-06 PR-144 1.73E+0i MIN 3.3E-G3 ND-147 1 11E+?1 DYS 3.7E-05 PM-147 2.60E*G0 V8S 9.9E-04 b W--187 2.4dE+ci NRS 4 3E-G5 RA-223 1 14E+L1 DYS 1 0E+07 RA-226 1 6cE+S3 YRS 1 6E .3 AC-227 2 16E+01 YRS 5 1E-04 T M -22 7 + 0 1 82E+01 CVS 1 0E*G7 RA-223 11.

              #A-231           3.25E+C4 YRS            1.0E+C7 U--235           7.10E+GS YRS            1 0E+07 HP-2390          2.35E+00 DYS            2. 6E +G 6      PU-239         1C0.

PU-239 2 44E+0* VRS 3 3E-01 EASED ch EXTERNAL EXPOSURE TO BURIED WASTE . A MAXIMUM DOSE COMMITMENT OF 1 0c MREM /YR E XPOSURE TIME = 1 0E+02 HOURS DECAY TIME FROM BURIAL TO Exposure = 0. YEARS WASTE DENSITY

  • 1 0 GM/C0 FRACTION OF SOIL WHICH IS WASTE = 1.UE+DG 72

v 3

         ,      .                                                                  .      l TABLE 47 CASE I-J - SANITARY IANDFILL -

GEUND SURFACE EXPOSURE TO WORKERS AFTER .001 YR l ISGTOFE HALF-LIFE LIMITING DAUGHTER PERCENT BURIAL ' CONCEN. (UCI/GM) H----3 1 23E+01 YRS 1 0E+07 C---14 5 73E+03 YRS 1 8:-03 NA--24 1 50E+01 HRS 1 2E-05 P---32 1 43E+01 DYS 5.JE-05 CR--51 2.7SE+01 OYS 1.8E-04 MN--54 3.12E+02 CVS 8 8E-C6 MN--56 2.SSE+CQ HRS 1 1E-33 FE--55 2.40E+00 YRS 1.JE+07 FF--59 4.5cE+01 OYS 6.55-06 g CO--58 CO--6L 7 1SE+.1 LYS 5.24E*0u YRS 7 2E-06 3.2E-06

      !~           NI--59       8.C1E*04 YRS          1.CE+07 NI--63       9 21E +C1 YRS         1 0E+07 NI--65      2.56E+iu HRS           1 0E+07 CU--6*       1.296+C1 HRS          2.*E-c4 7N--65      2.43E+02 DYS           1.2E-05 7N--69      5.53E+41 HIN           4.65+JG RR--83+0    2.60E+00 HRS           2 9E-02    KR-83M            6.
 .                 9R--86       3.20E+01 HIN          3.2E*01 BR--85C      3 0 GE *L'O HIN       1 9E-C1    KR-SSM         100.

P. B -- 8 6 1 67E*91 OYS 2.oE-J5 PR--88 1 8CE+01 HIN 7.0E+35 RB--890 1 5DE+01 HIN 2 3E-01 SF--89 100. SR--89 5.e6E+i1 CYS 4.JE-g5 SR--90+D 2.SSE+C1 YRS 3.SE-05 Y-- 79.

                                                                                       ~

SP--91+D 9 7ui+CJ HRS 6 7E-05 Y--91M 34. SR--92+D 2.70E+3G HRS 3.7E-04 Y---92 69. Y---9u 2 67E+Gd DYS 3.$E-05 Y--91M*D 5.COE+01 HIN 8 1E-02 Y---91 93. Y---91 5.90E+31 DYS 5.0E-35 Y---92 3.53E+LO HRS 9.5E-04 Y---93 1 02E+01 HRS 1 4 E-0 4 TR--93+0 1 5sf+56 YRS 3 1E-02 N8-93M 4. ZR--95+0 6.5GE*01 DYS 6 6E-06 NB--95 5. 7R--97+0 1.7sE*01 HRS' 2.1E-05 NB--97 47. N9-93K 3 70E+c0 YRS 1 3E-04 N8--95 3 50E+31 DYS 9 1E-06 NB--97 1 2JE+L4 HRS 7.JE-k2 MO--99+D 2 79E*GO DYS 3.5E-05 TC-99M 26. TC-99M 6 00E+00 HRS 2 3E-03 TC--99 2 1JE+:S YRS 5.7E-L4 9U-10 3 4.COE*01 DYS 1 2E-35 - RU-it5+D 4.43E+vo HRS 3 3E-04 RH-105 32. RU-1060 1 00E+00 YRS 8.9E-06 RH-1G 6 100. I RH-105 1 5JE+00 DYS 1.4E-04 AG110H 2 60E+02 DYS 2.75 96 TE125H 5 80E+01 OYS 1 9E-03 TE127HO 1.'. 5E +.2 DYS 1.'E-04 TE-127 100. TE-127 9.30E*06 HRS 1.7E-03 TE129H+0 3.40E+01 CYS 2 3E-05 TE-129 8 3., 73 l

\ r I . . i TMuz 47 CASE I-J - SANITARY LANDFIII - GROUND SURFACE EXPOSURE '20 WORKERS AFTER .001 YR

            'IS CT CPE          HALF-LIFE        LIMITING       DAUGHTER   PERCENT BURIAL CONCEN.

( UC I/ GM) T E -129 1 12E+Gb HRS 3.8E-01 TE131N+0 1 20i+0L CVS 1 6E-05 I--131 9. TE-131C 2.5GE*01 PIM 8.SE-G3 I--131 I TE-132+D 100 . 3 25E+u0 OYS 3.SE-C6 I--132 92. I--129 1.6JE+;7 YRS 1 1E-33

   '        I--130           1 24E+si HRS         2.65-05 I--131           S.CSE+00 OYS         1 9E-05

' gpj I--132 2.30E+C0 HRS 1 1E-03 I--13360 2.10E+61 HRS 4 5E-05 XE-133 2. 3 I--134 5.3LE+C1 HIN 2 5E-01 g I--135+0 6.70E+00 HRS- 6.'E-05 XE-135 26. CS-134 2.10E+00 YRS 3.SE-06 CS-135 2 0GE*36 YRS 1 2E-C3 i CS-136 1.3CE*C1 OYS 3 85-06 CS-137+0 3.;.E+L1 YRS 9 1E-36 3A137M 95. CS-138 3 22E*G1 MIN 3 1E+01 eA-14C+0 1.28E+;1 CYS 4 7E-3 6 LA-14L SC. 8A-1410 1 665+01 MIN 1 7E-02' LA-141 93. 9A-1420 1.1wE*01 MIN 7.*E-02 LA-142 100. 1 L A -141- 1.67E*06 CVS 7.SE-36 LA-141+0 3.90E+GD HRS 1.4E-G3 CE-141 8. LA-142 1 43E+sG HRS 1 1E-02 - CE-141 3 25E+C1 DYS 8 9E-05 lI CE-143+0 1 37E+LO CYS 3..E-05 8R-1*3 41. CE-144+0 2 855+D2 OYS 1.3E-g5 PR-144 96. AR-143 1.3?!+C1 OYS 4.oE-06 PR-146 1 73E &G1 MIN 4.6E+06 NO-147 1 11E *' l DYS 3.8E-35 PM-147 2.60E+00 YRS 9 9E-04 W--167 2 40E+01 HRS 5 1E-05 RA-223 1 14E*01 DYS 1.JE+07 9A-226 1 6dE +t 3 YRS 1.6E-L3 AC-227 2 16E+01 YRS 5.1E-04 TH-227+0 1 92E+C1 DYS 1 0E+07 RA-223 12. DA-231P 3.25E+r4 YRS 1 65+01 AC-227 100. U--235 7.1JE+is YRS 1.aE*c7 NP-2390 2 35E+00 DYS 2.3E+06 PU-239 100. PU-239 2 44E+04 YRS 3 0E-01 BASED ON: EXYERNAL EXPOSURE TC BURIED WASTE A MAXIMUM DOSE COMMITMENT OF 1.uG NREH/YP EXPOSUFE TIME = 1 0E+02 HOURS DECAY TIME FRON BURIAL TO EXPOSURE = 1.CE-03 YEAPS WASTE DENSITY = 1 0 GM/C3 FoACTION OF SOIL WHICH IS WASTE = 1.CE+60 i

74
    ,I. ..

TAEU 48 - CASE I-J -- SANITARY LANDFIII - GROUND SURFACE EXPOSURE TO idORKERS AFTER O.01 YR ISOTCFE HALF-LIFE LIMITING OAUGHTEE PERCENT' BURIAL CONCEN. (UCI/GM) H----3 1 23E+ 1 YRS 1 0E*07 C---14 5.73E+G3 YRS 1.SE-03 NA--24 1 5 i+.1 HRS 4.6E-J4 8---32 1 4 5E +01 DYS 5.SE-G5 CR--51 2.78E*D1 OYS 2.dE-04 HN--54 3 12E+02 DYS 8.8E-06 MN--56 2 58E*;d HRS 1 7E+w6 l FE--55 2.4]E+GO YRS 1.JE+07 FE--59 4 5dE+C1 DYS 6.SE-06 Sk CO--56 7 1JE+01 CVS 7.4E-06 Co--Et

                         ~

5 2*E+C's YRS 3.2E-06 NI--59 9 01E+0* YRS 1.JE+07 NI--63 ' 9 21E*01 YRS 1 3h*C7 NI--65 2 56E+C0 HRS 1.0E+C7 CU--64 1.29E+.1 HRS 1.7E-02 ZN--65 2.L3E+C2 DYS 1.3E-05 ZN--69 5.54E+01 NIN 1.dE+G7 99.--83+0 2.40E+LJ HRS 1.dE+07 MR-83M 10. RR--84 3 2CE+G1 MIN 1.3E*07 BR --8 5 0 3. f. J E + 4 0 MIN 2.1E+G2 KC--85 100. RB--86 1 675+J1 CVS 2 92-a5 Ea--88 1 80E+41 NIN 1. E+07 RB--890 1. 50 E + C 1 MIN 2 1E-01 SR--89 ico. SR--89 5.i.6E+01 DYS 4 2i-J5 . SR--90+C 2.88E*31 YRS 2.4E-05 Y---9C 87.. 50--91+0 9.7eE+w. HRS 5.wi-J3 Y---91 71. SF--920 2.73E *C0 HRS 1 6s+03 Y---92 100. l Y---9b 2.675+ts'0VS 8 9E-G5 - l Y--91MC 5.00E+01 MIN 9 0E-02 Y---91 155. ll Y---91 5.9CE+0i CVS 5.2E-C5 Y---92 3.53E*C0 PRS 5.U E+0 3 v---93 1.C2E+C1 HRS 3 1E-02 Z8.--92+D 1 5f.!+.6 YRS 2.?E-02 NB-93M 30. 7P--95+0 6.Suf*C1 DYS 8.4E-06 NS--95 10. 7R--97+0 1.7.E+.1 HRS 5.,E-$4 N9--97 47. hB-93M 3.70i+00 YRS 1 3E-04 N9--95 3 5di+61 CVS 9 7E-06 NR--97 1 2;E+0w HRS 1.sE+C7 MO--49+0 2 79E+40 DYS 7.SE-05 TC-99H 4

                                                                                 ' 7.

TC-99H 6.e-GE+w3 HRS P,0E+01 T C -- 9 9 2 1JE+15 YRS 5 7E 64 RU-103 4.tgE+31 DYS 1.35-05

  • RU-1L50 4.43E+40 HRS *.5E-03 RH-10 5 100.

RU-il60 1.nJE+su YRS 9.JE-06 RH-106 ILC. RM-1C5 1 5CE+00 DYS 6.*E-04 AG11CP 2 6:1E +0 2 DYS 2.7E-06 TE125F 5 90E+La OYS 2.JE-J3 TE127MO 1.05E*02 DYS 1 3E-04 TE-127 1GC. TE-127 9.30E+cJ HRS 6 2E-01 TE129e+0 3 40E+01 CYS 2 5E-05 TE-129 83.

                                                   -75

r TNBIZ 48 CASE I-J - SANITARY LANDFILL - GROUND SURFACE EXPOSURE TO WORKERS AFTER O.01 YR ISOTOFE HALF-LIFE LIMITING DAUGHTER pfRCENT BURIAL CONCEN. (UCI/GM) TE-129C 1 12E+0J HRS 1.JE+07 I--129 at s . TE131M+0 1 20E*C0 DYS 6 6E-05 TE-131C I--131 42.

 --                                                 2 5tE+si MIN             1 2E-02        I--131        it. a .

l l TE-132+0 3 25E+00 CYS 7 7E-06 I--132 I--129 92. 1 60E+07 YRS 1 16-b3

       .                           I--130           1 2*E*01 HRS            2 1E-03 l                                   I--131           8.LSE+CU OYS            2 5E-05 jr                                  I--132          2.33Etg0 HRS             1 0 E+0 7.

y I--133+0 2 10E+01 PRS

                                   !--134 4 6E-34        XE-133           22.

5.30E+0i HIN 1 0E*07 I--13560 6.75E+00 HRS 4 1E-0 2 XE-135 CS-134 87. 2 10E+00 YRS 3 9E-06 CS-135 2.s=E+J6 YRS 1 2E-03 CS-136 1.30E+01 OYS 4 52-06 CS-137+D 3.e'gE+.'1 YRS 9 16-06 3A137H CS-138 95. 3.22E*wl NIN 1.si+07

                                  #A-14C+0         1.?SE+51 OYS             3.5E-06        LA-14C "A-1417                                                                  66.

1 8.E+01 MIN 2.5E-01 CE-141 iLJ. CA-1420 1 1JE+01 MIN 1 0E*07 LA-142 LA-14C 160. h 1.67E+.s CYS 3.JE-05 L A -leir: 3.q aE + c. s HRS 1 9E-62 CE-141 LA-142 100. 1.40E*JO HRS 1.uf+07 CE-141 3.2SE*01 OYS 9 6E-05 CE-143+0 1.37E*6d OYS I 4.7E s5 *R-143 82. CE-144+0 2.n5E+32 DYS 1 3E-GS *R-144 PR-143 96. 1.37E+01 CYS 5.SE-06 PR-144 1.73d*C1 MIN 1.GE+07 ND-147. 1 11E+01~0YS 4 6E-05 PM-167 2.6eE*0w YRS 9 9E-04 W--167 2.4GE+41 HRS 5 36- - 4

                                 *A-223          1.1*E*01 OYS              1.0E+07 RA-226            1.6u!*0J YRS              1.6E-03 AC-227            2 16E+31 YPS              5 1E-04 TH-227+0           1.82E+J1 DYS             1.Ji+07         RA-223          24.

PA-2310 3 25E+64 YRS 1 6E+sL AC-227 U--235 100. 7 10E+d8 VRS 1 0E+07 NP-2390 2.35E+OO DYS 1 4E+06 PU-239 100. PU-239 2.44E+0* YRS 3.cE-01 aAS60 ON: EXTERNAL EXPOSURE TO 9URIED WASTE A MAXIMUN 00SE. COMMITMENT OF 1.G0 MREM /YR EXPOSURE TIME = 1.CE+02 HOURS DECAY TIME FROM EURIAL TO EXPOSURE = 1.JE-i2 YEARS WASTE DENSITY = 1.L GM/CC FRACTIOh 0F SOIL WHICH IS WASTE = 1 0E+00 76

e TABLE 52 CASE I-K -- SANITARY LANDFILL - GROUND SURFACE EXPOSURE TO RESIDENTS AFTER 5 YRS ISOTCFE HALF-LIFE LIMITING DAUGHTEP FERCENT BURIAL CONCiN. (UCI/GH H----3 1.23E+C1 YRS 1.QE*07 C---14 5.73E*J3 YRS 2.6E s4 NA--24 1 50E+31 h45 1.GE+07 P---32 1 43E+21 CVS 1.Gi+G7

  ~~

CF--51 2.7SE*G1 OYS 1 3E+07 HN--5L 3 12i+32 CVS 9 75-J5 "N--56 2.5Si+C3 HRS 1.JE+07 ri--55 2 4.5+C; YRS 1 0E+07 Ff--59 4.5sf+0A DYS 6.6E*06 hi C0--58 7.13E+01 OYS 1 7E+02 i CO--fC 5 2*i+LC YRS 9.3E-07 g! NI--59 9 61s+J. YRS 1 3E+07 Fi NI--63 9 215+31 YD.S 1.Ji+ST

      -s NI--65         2 565+.3 PRS                   1. E +. 7 CU--64         1 295+C1 HRS                   1..i+07 7N--65         2.432+32 CVS                   4.7s-04 ZN--E9         5.Eti+C1 HIN                   1.C i +C T EF--83         2.4*E+C3 98S                   1..s+L7 pR--84 3 4.f+t1 PIN                  1.Ji+.7 nc--957        3...i+LJ PIN                   4 2i+01      <c--85     atC.

09--86 1 975+;1 DYS 1..i+C7 E9--ee 1 8si+ca PIN 1..i+t7 T.P-- 8 9 0 1 50i+01 NIN 1.ui+07 SP-a89 iLC. SE--89 5. 65+;1 CVS 1 6E+s6 , SR--9C+D 2.M95+.1 YRS 3.1E .6 Y---90 90. SR--910 9.7Ji+Gs HR$ 7.*E*06 Y---91 1C. SS--92 2 70E+00 HRS 1.JE+07 Y - -- 9. 2.675+64 CYS 1 3E*07 Y--91MD 5..;E*51 MIN 1.GE+27 Y---91 1. t . ! Y---91 5 90E+01 OY3 5 1E+04 lb Y---92 '3.535+.s NRS 1.!+07

     !         Y---93P         1 02E+C1 HRS                   4 1E+uk      NR-93M      99.

2E--93+0 1.5r:E*E6 YRS 3 2E-05 N9-93H 09. 74--95+D 6.5Jd+G1 OYS 3 6E+02 NS--95 69. 7*--97 1.7 )i +:* 1 HRS 1.Cf+J7 N9-93M 3.7Ji+CJ YRS 5.3E-t5 NS--95 3.5JE+G1 DYS 1.iE+07 NS--97 1.?ss+(C HRS 1 3E+07 90--990 2 79E+00 CYS 2 2s+s3 TC--99 ha. ! TC-99F0 6.tJE+03 FRS 2 5E+04 TC--99 ILO. TC--99 2.10E+65 YRS 8 1E-95 i RU-103 *.tod+01 DYS 1 0E+07

  • l RU-105 4.43E+00 H*S 1 0E+C7 EU-1CEO 1.ssE*LJ YRS 5 3E-s 5 4 H-10 6 itG.

F H-1C S 1.50E+0 u OYS 1.JE+07 AG114P 2.635+02 OYS 7.2E-05 TE12*H 5.80E+G1 OYS 2 9E+06 TE127MD 1.LSE+C2 OYS 6.?E+20 TE-127 1C0. TE-127 9.3JE+ta HRS 1.jE+L7 TE12970 3.40E+01 OYS 2.6E+04 I--129 1LG. 77

TABLE S2 CASE I-K -- SANITARY LANDFILL - GROUND SURFACE EXPOSURE TO RESIDENTS AFTER S YRS ISCTOFE PALF-LIFE LIMITING DAUGHTER cERCENT BURIAL CONCEN. (UCI/GM) TE-129D 1 12d +!u HRS 1.GE+G7 I--129 1sc. 7E1?iF0 1 2SE*60 CYS 1.aE+C7 XE131M iiG. TE-131C 2 53E+C1 NIN 1 4E*J7 XE131M ICC. TE-132+0 3 25!*SO DYS 1.wE+07 I--132 92. I--129 1 50E+07 YRS 1 5E-04 I--135 1 24f+C1 HRS 1 3E+07 I--1313 4 05E+30 OYS 1.QE+37 El I--132 2 30E+.J HRS 1.JE+07 XE131M ILC.

 -1             I--133C        2 15E*.1 HRE           1.;E*a7        XE-133 I--136        5 30E+;1 MIN 1LO.

1.;E+07 l I--1350 6.70E+00 HRS 4.5E+05 CS-135 16 ; . CS-134 2 1]E+wd Y RP. 3 2E-06 CS-135 2.r JE +36 YRS 1 76-64 l CS-136 1 30E+- 1 CYS 1.eE+G7 CS-137+0 3.'aE+C1 YRS 1.5c-46 9A137N 95. CS-12e 3 2dE*01 HIN 1 0E+47 SA-14 +0 1 282+J1 CVS 1.JE+c7 LA-14C 86. 9A-1410 1 9si+C1 MIN 1.3E+G7 CE-141 1LC. BA-142 1 196+J1 MIN 1.sE*27 LA-14C 1 57E+GJ CYS 1 0E +J 7 LA-1410 3.90E*DJ HRS 1.0E+C7 CE-141 iLG. LA-162 149E M w NRS 1.aE+v7

  • i CE-141 3 25E+01 OYS 1 0E+07 i i CE-142D 1 375+C J OYS 1.;E+C7 #R-143 1CD.

CE-144+3 2.852+J2 OYS 2.26-04 PA-144 96. DF-143 1 37E*.1 DYS 1. . E *. 7

  .!           PR-144        1 73E+01 MIN            1.JE+d7 NO-147C       1 11E+L1 CVS            5.CE-62        *M-147 b             PM-167        2.6. E+ N YRS          5.9E s4 100.
 .-            h--167        2.40E+01 HRS           1.0E*J7 RA-223        1 14E+01 GYS           1 0 E+J 7 FA-226        1.6)E+0 3 YES          2 3E-64 AC-227        2.16E+1 YP.S           8.7E-C5 TM-227+D      1.92E+C1 DYS           1.SE+07         RA-223           73.

PA-2310 3 2 5 5 + '. 4 YRS 4.6E-C4 AC-2 7 it'.. U--235 7.1;E+C4 YRS 1 0E+07 NP-2390 2.35E*b0 DYS 1 6E *0 5 8U-239 AL C . 90-239 2.44E+0* YRS 4.2E-02 9ASED Ot.1 EXTExNAL EXPOSURE TO BURIE0 WA?TE A MAXIMUN 00SE CONNITHENT OF 1. E MREN/YE l EXPOSUPE TIME = 7.CE+C3 HOURS DECAY TIME FROM BURI AL TO EXPOSURE = 5 0E+20 YEARS WASTE DENSITY = 1 0 GM/C FRACTIGh 0F SCIL WHICH IS WASTE = 1 0E-01 78

TMBIz 76 . CASE II-K -- FILL WMITED - GROUND SURFACE EXPOSURE TO RESIDENTS AFTER NO DECAY ISOTOPE HALF-LIFE LIMITING DA UGH T E c. EtCENT BURIAL CONOEN. (UCI/GM) H---=3 1 23E+C1 YRS 1.JE+C7 C---14 5.73d+GJ YRS 4 55-04 NA--24 1 5CE*;1 HRS 4.35-05 0---3E 1 43f+ci DYS 4 5 E-u S CR--51 2.7SE+.1 CVS 1.Ji .4 MN--5b 3 12E+c2 OYS 2.=E-36 "N--E6 2 585+Ld HRS 5.0E-G4 rE--55 2.4JE+0C Y7S 1.JE+37 FE--59 *.5;E +: 1 DYS -2.iE 96 $r C0--56 7 165+01 CVS 2.6E-06 CO--6C 5 2*E*;c Y4S 8..E-J7 NI--?9 S.01E+G4 YRS 1.JE+G7 NI--63 9 215+.. YES 1 0E+07 NI--65 2.?6E*s0 HRS 1.;E+C7 CU--6* 1 295+31 H:S 7.5E-04 7N--65 2.43E+02 DYS 3. 55-0 6 ZN--69 5.5sE+)1 PIN 3 1E-02 ao.--83+3 2 40 E +5 G HRS 1 26-J2 <F-839 2. 9R--8* 3.23E+31 MIN 1 32-33 3'--55+0 J.C JE +.0 MIN S.46-02 M P.-5 5 9 34.

                    ?M--86        1 67E+;; CYS           1 95-C5 30--P6        1 63E+s1 NIN            5.6E-s3 1.5)E+J1 MIN k9--69+G                             J.?E*L3     SP--59             5.

SA--89 5.065+L1 OYS 1 6E-55 . 57--90+0 2 9sE+C1 YES 4.9E-06 Y---90 89. SC--o1+0 9.75E+CG HMS 1.7E-04 Y -- 91 M 34. Sc.--92+3 2.73E+sd HRS 4.iE-Cw Y=-=92 36. Y---90 2.67E*JC DYS 1 1E-C= I Y--91F+D 5 00E+s1 MIN 3.6E-03 Y---91 11. Y---c; 5.9]E+2; CVS 1 4E-05 k Y---92 3 53E+50 HRS 8.5E-0. Y=--93 1.C2E+;1 HRS 4..E-44 1R--03+0 1.EGE+L6 YRS 1.*E-03 NB-931 83. 7R--95+1 6.5JE+51 GYS 2.1E-06 NB--95 36, -~ 75--97+0 1.70E+si NRS 7 1E-C5 NB--97 45. NO-93* 3.7sEh J YES 3 4E-05 NB--95 3 5JE+31 OYS 4 44-06 N9--97 1.23E+L0 HRS 2 2E-63 MO--99+0 2 79E+s0 OYS 1 3E-04 TC-99M 26. YC-94M 6.LaE*C0 HRS 4 1E-63 TC--99 2 10E+C5 YRS 1 4E-04 FU-li 3 4 00E+L1 DYS 5.65-56

  • PU-1C5+0 4 63E+CJ HRS 5.4E-34 < H-10 5 13.

8U-1060 1 0gE+GG VRS 2.4E-06 RM-10 6 1. L . PH-1LS 1.SeE*J 3 C YS 5.JE-J4 A G11( M 2 6uE*;2 CYS 7 5E-07 TE125M 5 80E+C1 CYS 7.45-64 TE127F0 1.r5d+02 DYS 4.3E-05 TE-127 100. TE-127 9 3ti+LJ HRS 4 5E-03 TE129P+0 3 43E+si CVS 1 1E-05 TE-129 92. 79

e TABLE 76 CASE II-K -- FILL WANTED - GROUND SURFACE EXPOSURE TO RESIDENTS AFTER NO DECAY IS CT C FF HALF-LIFE LIMITING OAUGHTER S E RL E t< T BU9IAL CONCEN. (UCI/GM) TE-129 1.12i+,u HRS 8 3E-03 T6131F+D 1.ZJE+.G CVS 4 7E-05 I--131 25. YE-131+0 2.E.E*G1 r.IN 5 5s-C3 I- *31 42. TE-132+C 3.25s+CJ CYS 11595 I--132 92. I--12c 1.FJ E *; 7 YRS 2 75-04 I--13C 1.24E+C1 HRS 6.,E-J5 $b I--131 6.'5E*3b CVS

                               .                   2 65-05 I--132           2.30f+0D NRS            3 3E-G4 I--13?+0         2.isi+;1 HRS            1. E-0*        XE-133              F.

l l I--134 5.3;E+L1 MIN A.3E-03

    !     I--135*0         6.70E+0u HPS            2 6E-04        XE-135            15.

l CS-134 2.165+Cu Y C.S 9 9E-37

   '      CS-i?E           2.;]E+v6 YRS            3..E-J4 CS-136           1 30E+C1 DYS            3 3E-L6 CS-13760         3.5 ,E +( 1 YRS         2. ?d-0 6      1A137M            95.

CS-138 3 22f+61 FIN 135 u3 e* 1A-14C+3 1.2si+01 OYS 3 1E-06 LA-140 66. t- RA-161+0 1.*sE+al MIN 6 5d-33 6A-141 J0. 9A-142+0 1 1GE+31 HIN 4.*E-03 LA-142 79. LA-lus 1 67:+s; OYS 2.7E-35 LA-161+0 3.coE+CG H?S 1 4s-J3 CE-1*1 15. LA-144 1.4sd*04 H D.S 7 35-J4 - CE-141 3.2 5f +C1 rYS 4.5E-05 CE-193+0 1.375+La DYS 3. 7E-c 5 *R-143 6J. CE-144+0 2.65E+42 OYS 3.6c 66 #F-144 46. D0-163 1.375+C1 OYS *.75-C6 Ps.-144 1.73E+C1 HIN 1.6E-02 . NO-147 1.11E+01 OYS 4.ZE-G5 k_' PM-167 2.60E+Cs YRS 2.56-04 L W--187 2.40E+51 HRS 1. oi = 0 4 RA-223 1.1*E+01 CYS 1.JE*b7 l CA-226 1.6CE+C3 YRS 4.JE-C* AC-227 2 160*D1 YRS 1.3E J4 TH-227+0 1.82E+61 CVS 1 0E +; 7 RA-22J 48. PA-231r 3.25S+04 YRS 3.55-C2 AC-227 100. U--235 7.1Ji+C8 YRS 1.;i+37 NP-23 9C- 2.355+;; OYS 2.9E+C5 PU-239 160. PU-239 2.kki+3+ YRS 7.+E-02 CASED CMt iXTERNAL EXPOSURE TC BURIED WASTE A PAXIMUM DOSE COMMITPENT OF 1 0C MREM /YR EX80SudE TIME = 2.4E+03 HOURS DECAY TIMi FROM BURIAL TO EXPOSURE = 0 YEARS WASTE OENSITY = 1.L GM/CC FRACTIch OF SOIL WHICH IS WASYE = 2 3E-01 80

TMuz 96 , CASE III-C - SANITARY IANDFIII - IkHAIATION SPIILED MASTE AFTER NO DECAY ISCTOPE HALF-LIFE LIMITING DA UGHT E F. PERCENT BURIAL CON 3EN. (UCI/GP) H----3 1 23E+C1 YRS 1 1E+J6 C---14 5.73E+03 YRS 6.65+04 NA--24 1 5GE*01 HRS 8.9E+04 P=--32 1 43E+01.DYS 9 1E+02 CF--51 2 78E+C1 CVS 8.3h*C4 MN--54 3 12i+.2 CVS 6.65+v2 Mh--56 2.56E+64 HRS 5.9E+04 FE--55 2.4ui +L L YRS 1 5f+L3 FE--59 4 5CE+si CVS 4 3E+01

 $                 CD--56    7.1.E+C1 CVS           1 3E*L3 I            CO--6C    5.2,5+44 YRS           2 0i+02 g                 NI--59    8.C15+s4 YRS           1 85+D*

NI--63 9 21E+C1 YRS 2 85+03 i riI--65 2.565+.u HP.S 9. 'E + 0

  • CU--Ek 1.29E*01 HRS 2.5E+0*

7N--65 2 43E+L2 DYS 1 45+J3 7N--69 5.50E+C1 HIN 1 3E+06 BA--63 2.kCE*0J HRS 5.JE+46 AR--ak 3.2LE+C1 MIM 3.SE+06 f{. - E5--85 3.L0i+iu NIN 1.JE*07 RB--86 1 97E+C1 CVS 6 9E+J3 RB--en 1.SCE*L1 MIN 3 1E+06 48--89 1 5.E+s HI4 4. 7E+0 6 SP--89 5.t 65+si OYS 8 6E+'2 . SR--9 2.445+.1 YRS 1 2E +wl ' SR--91 9.7aE*LO HRS 5.Si+03 So--02 2 75E+CG HRS 2.Si+04 Y---9C 2 67E +i . GYS 2.4E+03 '!Lj Y--91F 5.s ,56 1 MIN 6 2E+.5 Y---91 5.9aE+01 CYS 7.0E+02 gj Y---92 3 535+70 HRS 1 66+C4 l_ Y---93 1.C2E+C1 HRS 2.SE+03 0 1 7E--93 1 515+56 YRS 2 9E*03 7R--95 6.5 3E+C1 DYS 6.95+C2 c, ZR--97 1.7 E+C1 s HRS 2.3E+u3 NS-93* 3 70f*GO. YRS 4.3E+.3 NB--95 3.50E*01 DYS 2.4E+03 NB*=97 1 20E+;0 HRS 5.wi+25 MO--99 2.792+;J DYS 4 85+03 TC-99M 6.t.5+be HRS 2.9E+"5 TC--99 2 10E+C5 YES 1 1E+03 CU-10 3 4.C 3E *u l OYS 2.*i+03

  • RU-it5 4.435+00 HRS 2 5E+0, RU-it6 1.CJE+CJ YRS 1.3E*.2 RH-105 1 50E*00 DYS 1 4E+0*

AGlitP 2.63E*C2 DYS 2.6E+02 TE125H 5.80E+41 CYS 3.8E+03 TE127N 1.C5E+J2 DYS 1 3E+0 3 TE-127 9 30E+00 HRS 2.1E+04 TE129H 3.46E+01 DYS 1.LE+03 81

TABLE 96 ' CASE III-C -- SANITARY IANDFILL - IMHAIATION SPILLED WASTE AFTER NO DECAY ISOTOPE HA4F-LIFE LI MITING DAUGHTER PEiCENT BURIAL CONOEN. (UCI/GM) TE-129 1 12E+C; HRS 6.2E+05 TE131M 1 2]E*CG CVS 2.2E+03 75-131 2 5CE+;1 PIN 8 65+L5 TE-132 3.25E+CJ OYS 2.4E+ 3 I--129 1.b0d+37 YES 2.7E+31 I--13i 1 24E+;1 HRS 6.92+C2 I--131 8..5E+.s DYS 1.a!+J2 yg I--132 2.3=E+6; HRS 2.7E+u3

   '                I--133       2 1 ') E + J 1 HPS        4 1E+02 I--134       5.3 i+ 1 NIN              5 2E *G 3 h'                   I--135       6.7.E+60 HKS              1.JE+C3 CF-1?4        2 1. E + . 9 Y o.S        1 4E+23 CS-13"        2.u GE*3 6 YRS           1.JE*G*

C S -136. 1.?.E*01 CVS CS-137

8. E+33 3 00E+si YRS 1 9E+03 CS-139 3 225*.1 NIN 1.'E+06 4A-ikL 1 2SE+C1 CYS 9.45+02 9 A -161 1 8CE+C1 NIN 6 52+ 5 9A-142 1 1LE+;1 PIN 1.GE+06 L A -14r 1 6TE+ b CYS 2 6:+03 LA-161 3 96E*iG HRS 2 1E+0*

LA-142 1.. ;6 +. . PRS 1.;E+a5

 ~                 CE-141       3.25E+?1 CYS              3.3E+J3                              '

CE-143 1 375+30 CVS 5 3E+03 CE-144 2.e5E+02 OYS 1. Si +C 2 PR-143 1.37E+.1 CVS 4 3E+s3 OP.-144 1.7 3E +.. MIN

  • 10-147 .2E+46 1 11E+01 DYS 5.4E+33

( PM-147 2.6si+.u YRS ( 1.SE+v3 W--187 2.4LE+L1 FRS 7.7E+C3 RA-223 1 145*.. DYS 5.9E+.c 2A-226 1 6GE*L3 YRS 1 2E+C3 AC-ZE7 2.164+L1 YRS 6.5E .2 P TM-227 1 52E+31 CYS ,4 0E+0L PA-221 3 25E*.* YRS 3.aE-02 U--235 7.iaE+38 YRS 3 1 E +.3 NF-239 2.35E+00 DYS 1. E+J4 PU-239 2.4*E+C* VRS w.9E-02 ) OASEO CNt INHALAYIOh 0F WASTE SPILLE0 OU'ING C~ SPOS AL + A PAXIMUM 90SE CONNITHENT OF 3.0L NKE9/YR TO ACULTS WAS.TE CONCENT:ATION IN AIF = ErPOSURE VIME = 1 0E*23 HOUnS/ 2YEAR 0E-02 MICR3 GRAMS PER CUSIC MET =F BREATHING RATE

  • 1.0 OUBIC METERS PER HOUR CiCAY TIME FRC1 SPILLAGE TO EXP3SURE = C. Y:ARS F1 ACTION OF MATERI AL INHALEC WHICH I3 WASTE = 1 03s 82

1 l TABUE 104 i CASE III-D -- SANITARY LANDFILL - INHALATION DURING SITE EXCAVATION AFTER 5 YRS ISOTCPE HALF-LIFE LIMITING DAUGHTER rERCENT BURIAL CONCEN. (UCI/GMI H--*-3 1 23E+01 YRS 1.5E+C3 C---14 5. 7 3 f +'. 3 Y4S 6.65+s1 NA--24 1.c3E+C1 HRS 1.35+07 P---32 1 435+J1 CVS 1 3E+u7 CP--51 2.75E+C1 CVS 1.uE+07 "N--56 2 12i+.2 DYS 4.45+31 MN--56 2.5si+.0 HRS 1.JE+C7 FE--53 2.4Ji+3 YRS 6.+i*st cE--59 4.5GE+01 CYS 1 05+0'7 g) CO--58 7.1si+;1 CYS 1 05+C7 CO --E L 5 2,2+a. YRS 2.96-01 NI--59 8. 15+.* YP.S 1.9E+C1 NI--63 9.E1d+ 'l YRS 2. 91

  • h h!--65 2.565+CJ H45 1 5E+G7 CU--66 1 293+C1 H 3,5 1. 5+C7 7N--f5 2 43d+i2 CYS 2.5E+42 ZN--60 5 56: +?1 MIN 1.si+s7 9R--63 2.42E+.) H:S 1.JE+07 9 P. --8 A 3.ici+C1 NIN 1.;i+G7 94--85 -3.;35+iG MIN 1 0E+b7
18--46 1 875+01 CYS 1.Ji+07 RP--6a 1.asi+01 *IN 1 3 5 +3 7 7.9--89C 1 50 i +: 1 MIN 1.;E+07 Sh--99 1CC.

SE--P9 5.: o!+.1 CYS 1.35+C7 SC--9C 2.SSE*C1 YES 1 4E-02 - SR--910 9.765+ 9 FiS 1..i+.7 Y---91 1CG. 55,--QE 2.7 i+,4 H:S 1.Gi+07 Y---90 2.675+;G CVS 1.J +37 Y--91MC 5.,si+s; HIN 1.Ji+.7 Y---91 1CC. 5: Y---91 5 9.5+: 1 EYS 1. 3 + 7 p' Y---92 3.53E+C3 H S 1.JE+C7 Y---93C 1.;2i+31 NRS 1.DE+s7 ZR--93 7*. 7c--93+0 1.545*;6 V:.S 2.18+.C NS-93M 26. 7P--95+0 6.5Li+C1 CYS 1. E+GT NB--95 38. 23.--97 1 75s+L1 H45 1.Ji+37 NO-91P 3.?)i+0'. YRS 1 2E+01 NG--95 3.55-+;1 OVS 1.*Ji+J7 NB--97 1 2;i+.4 PRS 1.Ji+.7 90--900 2 792+6J CYS 1 0E+47 TC--99 liG. TC-99MC 6 . i . 5 + , . H C.S '1.si+;7 TC--99 104. TC--99 2.isi+G5 YRS 1 1E+Ga RU-103 4.C0i+21 OYS 1 0i+L 7 . 3U-1l 5 4 43s+LJ HRS 1.Ji+07 RU-106 1 00i+50 YRS 4 15+wt RH-1LS 1 50E+Cs DYS 1.JE+07 AG11tP ' 2 6d5+42 OYS 3.45 +al TE125M 5 8Ji+*1 DYS 1.JE+c7 TE127H+0 1.:5E+.2 OYS 2.Ji+s5 Tc-127 6. TE-127 9.3sE*LJ HAS 1.GE+C7 TE129PO 3.4Ji+L1 CYS 4.6E*J6 I--129 160. 83

TABLE 104 ', ' CASE III-D - SANITARY LANDFILL - INHAIATION DURING SITE EXCAVATION AFTER 5 YRS ISOTCFE HALF-LIFE LIMITING DAUGHTER PERCENT BURIAL CONDEN. (UCI/GM) TE-129C 1 12E+LD HRS 1.JE*07 I--129 TE131PP 1LO. 1 20E+00 CVS 1.GE+07 I--131 TE-1310 2.50E+01 MIN 1 0E+07 it c . T2-132+D I--131 10G. 3 25f+0u CYS 1 0E+07 I--132 47. I--129 1 60E+G7 YRS 2 7E-02 I--130 '1 2*E+01 HRS 1 3E+07 I--131 8.tSE+DO OYS 1.JE+G7 gg I--132 2.3wd+L3 HRS 1.JE+t7 I--133 2.10E+01 HRS 1 3E+07 fl I--134 I--1350 CS-134 5.3CE+01 MIN 6.70E+GO HRS 1 0E+07 1 3E+07 CS-135 1CO.

 *[                        2 1CE*s0 Y9S           7.*E+0C C S-135        2.LGE+J6 YRS           1..E*01 CS-136        1 33E+01 CVS            1.0E+07 CS-137        3.1si+.1 YR$            2 2i+00 CS-136        3 22E+ 1 PIN            1.3E+GT EA-14C+0      1 26E+01 DYS            1.JE+C7        LA-14L SA-1410                                                             29.

1.SJE+01 MIN 1.JE+GT CE-141 100. 9A-142 1 1JE+fi MIN 1.yi+C7 LA-140 1 675+L; GYS 1.JE+37 LA-1410 3.9 3 E +'. G HRS 1..E+L7 CE-1*1

          -LA-142                                                            100.

1 4 E+tc HRS 1.JE+07 CE-141 3 25E+va CVS 1.JE+b7 1

                                                                                        ~

CE-1430 1.3 75+00 OYS 1.JE+07 PR-143 icG. q CE-146 2.85E+02 DYS 1 3E+01 DR-143 1 37E+L1 CYS 1.JE+'.7 i PP-144 1.73E+0i FIN 1 3E+07 ND-147D 1 11E+G1 DYS 5.7E+02 PM-147 PM-147 100. lg , 2 66E+Cs YRS 6.SE+bd W--187 2.40E+01 HRS 1 0E*07 l RA-223 1 1*E*31 DYS 1.JE+07 FA-226 1 695 +L 3 YRS 1.2E-03 AC-227+0 2.16E+wl YRS 7.5E-i5 TM-227 2. TH-227+0 1 62E+L1 DYS 1.GE+J7 RA-223 64. DA-231+0 3.25E+04 YRS 2 85-s5 AC-227 6. U--235 7 10E+0S YRS 3 16-03 NP-2390 2 35E+C3 DYS 1.9E+G2 PU-239 PU-239 10C. 2.44E+04 YRS 4.9E-05 3ASED Oht INHALATION OF AIRBORNE WASTE BY INTRUDER

  • A MAXIMUM DOSE COMMITMENT OF 3 0J MREN/YR TO A00LTS WASTE CONCENTRATION IN AIR = 1 0 MG PEA CUBIC METhR l

EXPOSURE TIME = 1.CE+G2 HOURS BREATHING RATE = 1 0 CUBIC METERS PER HOUR DECAY TIME FROM BURIAL TO EXPOSURE = 5.0E+CG YEARS FRACTION OF MATERIAL INHALE 0 WHICH IS WASTE = .200 84

TABLE 112 CA3E III-F -- SANITARY LANDFILL - FOOD GROWN ON MASTE SITE AFTER 5 YEARS ISOTCFE HALF-LIFE LIMITING DAUGHTEh FERCENT BURIAL

  • CONCEN.

(UCI/GM) He==-3 1 235+01 YRS 2.JE 4 C---14 5.73E+.3 YRS 5.4E-L6 NA--24 1 5.i+.1 HRS 1.Ji+.7 o---32 1.43E+C1 CVS 1.J E +0 7

   ,,                C E. -- 51  2 78E+C1 CVS            1.iE+D7
                     *N--54      3.12E+02 CVS            2.iE-L2 "N--E6      2.5 6 5 +0. N'4S        1.ui+J7 i

FE--55 2.LJE+00 YRS 3 12-02

                     *E--99      *.50E+31 DYS            1.aE*L7
 !Ii                 CC--Se      7.10E+C1 CVS            6.75+04 44                  CO--6t      5.L*E*ss YR5            8. 9c-C
  • NI--59 a.t1E*;* YoS 6.3E-J4 NI--63 9 21E*01 Y'S 4.'E*05 NI--65 2.So!+so HRS 1 0E+G7 CU--64 1.E9f*01 HRS 1.JE+07 7N--65 2.43E+02 CYS 1 2E*D3 7N--69 5 5JE+C1 MIN 1.si+L7 np--83 2.40E+4J HRS 1.Li+07 Ar--nk 3.2456.1 MIN 1.Ji+07 a s -- e r, 3..!]E+ 0 FIN 1 3E*C7
9--66
                      .         1 875+.1 OYS            1.;E+.7 C.B--53     1.?JE*Li MIN            1.oE+s7 iB--990    1 50!*31 PIN            1 0E+37         SA--99     100.

SR--89 5.f6E+.1 CVS 2.5E+)6 . SR--9C 2 6SE*L1 YRS 1 65 .6 Sk.--91C 9.7;:*Cu HRS 1.JE+07 I' Y---91 1CO. 59--92 2 7;f+r.o FRS 1.,5+;7 Y---90 2.67E+C0 DYS 1 4E+27 Y--91MD 5..*i+;i MIN 1.QE+07 Y---91 100. h Y---91 5.94d+21 LYS 2.JE+36 M Y---92 3 535+6. bRS 1 4E*e7

p Y---930 1 0 2E +C1 HRS 5.4E+36 N9-93M 99.

28--93+G 1.5)f* 6 YRS 42 s3 N9-93M 99. . 2R--95+0 6.5Ji+01 OYS 5.3E+C4 NB--95 99. 7R--97 1.7jE+61 HRS 6 . .' E + y 7 N9-93M 3 c 7 E *. , YRS 6 26 .3 NA--95 3.5;E+31 CVS 1..i+07 N9--97 1 23E+sQ HRS 1.JE*D7 M0--990 2 795+03 DYS 7 2E+02 TC--99 1.J. TC-99MG 6 3CE+C0 HRS 6.Ji+;J TC--99 160. TC--99 2.132 +; 5 YRS 2.Si-uS RU-103 v..si+:.1 CVS 1 3E*67

  • SU-iE S w.43E+iG HRS 1.JE+07 RU-1CE 1 8. 0 E +3 u YRS 2.96-0*

i RH-ir 5 1 53E+C0 CVS 1 0E+07 AG11tM 2.6Ji+;2 CYS 4.6E .4 l TE125M 5.902+si CVS 3 3E+C* TE127N+C 10 5f +02 CVS 5 36-01 TE-127 24. TE-127 9.3ci+ia HRS 1.JE*g7 YE129MC 3.40E*01 CVS 1.Si+02 I--129 100. 85

TMuz 112 CASE III-F -- SANITARY LANDFILL - FOOD GROWN ON WASTE SITE AFTER 5 YEARS ISOTCFE HALF-LIFE LIMITING DAUGHTEh DERCENT 9URIAL CON 3EN. (UCI/GM) TE-1290 1 12E+6u H9S 1 1E+35 I--129 160. TE131MD 1.2JE+LJ OYS 1.JE+07 I--131 1 16v.  ! TE-131D 2 5;E+01 eIN 1.JE+07 I--131 1(0. TE-132+D 3.25E+LJ CYS 1.J E +C 7 I--132 2. I--129 I 1.03E+C7 YRS 8.5E-07 T--130 1.I*f+;1 bis 1.JE+C7 I--131 4.C5E+LG CYS 1 3E+07 )

                   !--122         2 3)E+.e HRS            1.JE*07                                    '
 $Nd               I--13J         2.1GE*01 HRS            1.JE+37 I--13%         5.30i+w'i MIN           1.s i+C 7 I--135D        6.73E+00 HRS            1 2E+b6       CS-135       1CO.

CS-124 2.la2+;J YCS 3 1E-34 CS-13E 2.(gi+.6 YP.S w.5E-04 CS-136 1 3.E*.. CVS 1.J-*.7 CS-137 3.i ui +C 1 YRS 9 15-55 CS-126 3 22E*si PIN 1.JE+C7 l 3A-14r +0 1 2sE+,1 CVS 1.sE+J7 L A-1*s 55. 9A-1L1C 1.SJE+C1 PIN 1 3E+J7 Cc-1*1 iCu. 3A-142 1 1 )E +;1 MIN 1.aE+y7 LA-14 1 676+.L CVS 1. 5 + 7 LA-1410 3 90E+0u HRS 1..E*L7 CE-141 166. LA-142 1 6 Ji +; s HRS 1.JE+G7 CE-141 3 25E+<1 CYS 1.4E+07 . C E -1430 1 27E+ 0 CYS 1 3E+07 Ds-143 1CL. CE-144 2 65E+.2 CYS 3 85-52 PR-143 1 775+'1 CYS 1 4f+.7 Pu-144 1.73E601 hIN 1 3E+s7 IJ0-16 7r 1 11c+ . 1 DVS 2 86+CG PM-147 1C . DP-147 2 6.i+.s YRS 3.36 52

-h,               W--157         2.4sE*01 HRS            1.GE+C7 DA-2E3          1 1*E*61 CVS            1..E*J7 (A-EE6          1 6uf+03 Ya5            1 16-06 AC-Ei7+3        2 165 + t 1 YRS         2 15-15       iA-223        27.

TH-227+D 1 82E+al CfS 1.JE+07 RA-223 78. PA-231+D 3 25f+

  • YRS 1.3E .5 AC-227 6.

U--235 7.iuf*L4 Y45 9 5E-05 I ' NP-229C 2.35s+00 CVS 4 3E+03 PU-239 1s t . FU-239 s2 4*E+2* VRS 1 1E-C3 1ASE3 Chi COF.SUMDTION OF FOOD GROWh ON WASTE SITE A HAXIMU" 0056 COMMITMcNT CF 3.00 MREH/YR TO AD'ULTS GECAY TI*2 **04 BURIAL TO INGESTION = 5.JE+LJ YEARS CCNSUMPTION OF 15w. KG CF FGUITS AND ViGETABLES PEF YEAR I CCHSUHPTI3N OF 215. LITERS OF MILK PcR YEAR CCNSUMATION OF 11. KG CF MEAT PER YEAF CCNSUMPTION FATE OF COW = 50. KG/ DAY CCtSUMPTION PATE or CATTLE = 53. KG/ DAY FFACTI0t. OF SOIL WHICH IS WASTE = .1J 46

e .. . TABLE 114 . CASE III-F -- SANITARY LANDFILL - FOOD GROWN ON MASTE SITE AFTER 100 YEARS ISCTOFE HALF-LIFE LIMITING DAUGHTER *ERCENT SU.IAL CONEN.

                 .                                  (UCI/Gil H----3     1 23E+;1 YDS           4.3E-32 C---14     5.73E+.3 YRS           5.55-46 NA--24     1 506+01 HR$             .Ji +4 7 P---32     1 435+0. CVS           1..E*07
   ~

CE.--51 2 78E*31 DYS 1.JE+27 M4--54 3 125+.2 CYS 1 3E+07 MN--56 2.595+;s FIRS 1 2d*,7

     ~

FE--95 2.4ui+C; YRS 1..E+07 FE--E9 4.5456s1 CYS 1. , E +G 7

 $$                 CC--Se     7 16E+L1 CVS           1 3E+07
 .                  CO--6s     5 2*E*ab Y4S           2 9i+42 NI--E9     4.C15+:4 YRS           6.3E-0*

NI--63 9 215+t1 Y?S 1.J5 64 - NI--EE 2.56E+.. bRS 1.uE+C7 CU--6* 1 295+C1 bRS 1.0c+C7 ZN--69 2.43E+C2 CYS 1.CE*G7 7N--69 5.56E+61 FIN 1.JE*,7 9E.--83 2.4GE+C0 HRS 1 0E+;7 MR--S- J.2.i+ . 1 PIN 1 0E+07 15--85 3.b;E+LO MIN 1.J i +0 7

                    #S--PE    1 875+.1 PYS           1..i*.7 RR--98     1 9/56.4 NIN           1. . E +. 7 Eo.--890  1 505601 FIN           1..'5607         SP==99      ILG.

, SE--89 5."66+ta CYS 1..i+s7 l SR--98 2.895+.1 YRS 1 6h .5 ' l . 53--910 9 7JE+L; HRS 1 0E*07 Y---91 iLO. SF--92 2.7.5+LJ bos ..JE+07 Y---o- 2.F7i+.s CYS 1.J:+ 7

 >                 Y--91PD    5 5,E+01 MIN           1 3E+47         Y--=91       1LC.

} Y---91 5 9.E+ 1 CYS 1 3E+07 lp Y---92 3.53E+s, N J.S 1.wi+ . 7 Y---930 1 02i+L1 H S 3.3E*J6 NS-93M 99. 7R==93+G 1 50E+66 YoS 2.5E-33 40-934 99. 7F--95+0 6 5JE+;1 OYS 1 0E*07 49--95 99. ZR--97 1 7vi+C1 SES 1.JE+07 N9-93t 3.7.i+ a YP.S 3.3f+.5 N9==95 3 5GE+;1 CYi 1.JE+G7 NO--97 1 20E+e2 HRS 1.Ji+07 MO--99C 2.79E+GG CYS 7.2E+02 TC--99 at 0. TC-99hn 6.ssi+LG H45 8.JE+C3 TC--99 1; 0 . TC--99 2.16E+;5 Y;S 2 6E .5 RU-1 3 4.r ;ib 1 CVS 1. J i + '. 7 -

                   'U-1LS     4.43E+G3 HRS           1.JE+07 FU-10E     1.rCE+60 Yds           1.]E+.7 RH-1CS    1 50E+sa DYS            1 02607 AGlite    2 6CE*32 OYS           1.JE+07 TE125P    5. ACE *01 OYS         1..E*G7 l                   TE127F+0  1. 5E+~2 CYS           1.ui+w7          TE-127        24.

TE-127 9 30E+C0 HRS 1.GE+07 i TE129MD 3.Lui+31 OYS 1 5E*d2 I--129 1;C. 87

r TMBIZ 114  ; CASE III-F -- SANITARY IANDFILL - FOOD GROWN ON E STE SITE AFTER 100 YEARS ISOTOFE HALF-LIFE LIMITING DAUGHTER PERCENT

                                                         ?URIAL CC'CEN.

(UCI/GM) TE-1290 1 12E&O3 HRS 1 1 E *'0 5 I--129 100. TE131F 1 20E+CJ OYS 1 0E+07 TE-131 2.EJE*La NIN 1.J i +L 7 TE-132 3 25E+40 DYS 1 3E+07 I--129 1 60E+C7 YRS 8.5E-47 I--13C 1 24E+ul HRS 1 0E+07 I--131 3.7 5E +: w CYS 1 3E+C7 , , I--132 2 3CE+CC HRS 1.uE+37 I--133 2 1;E+C1 HRS 1..E+L7 lgp I--134 5 30E+G1 MIN 1.sE+.7 I--1350 6.7Ji+CG HRS Q 1 2E+C6 CS-135 iLC. CS-134 E.1Ji+C2 YRS 1.wi+27 CS-135 2.tJi+L6 YRS 4 5E-04 CS-136 1 3dE*51 DYS 1.JE+07 CS-137 3.CGi+G1 YRS 8 25-04 CS-138 3 22E+G1 PIN 1.hE+07 l 9A-14' 1 26E+;. CYS 1. 5+.7 9A*141 1 9JE+01 FIN 1 0E+GT BA-142 1 1bE+01 FIN 1 4 5 +G 7

    ,            LA-1LG         1 675+G0 CVS           1 0E+07 LA-141         3.9:E+.. HRS            1.JE+07 LA-142         1 405+0; HRS           1.0E+07 CE-141         3.255+Li OYS           1.gi+;7 CE-143         1.17E+GC CVS           1. ; E +; 7                             -

CE-144 2.855+J2 OYS 1.dE+07 PF-143 1.375*01 OYS 1.Gi +C 7 87-144 1.73d+ 1 MIN 1.fE+07 NO-ik70 1 115+01 CYS 1.,5+t? P M-14 7 1CG. PM-167 2 63E+LO YRS 1. 5*07 W--187 2.Lui+61 HRS 1.Ji+07 RA-223 1 1*E+31 CVS 1. li+s 7 FA-226 - 1 60E*C3 YRS 1 15-C6 l AC-227+0 2.166+01 YRS 4.Si-G* RA-22d 27. TH-227 1.92E+D1 GYS 1 3E+J7 P4-231+0 3 25E+C4 YRS 8.46-06 AC-227 23. U--235 7.1ai+ws YRS 9 55 .5 NP-2390 2.355*.e CVS 4 35 *w3 8U-239 10G. PU-229 2 44E+34 YRS 1 1E-03 RASH 3 ONS CCF5UMPTION OF FOOD G40Wh ON WASTi SITE A MAXIMUM DOSE COMMITNENT OF 3.06 MaiP/YR TO A9ULTS DECAY TIME FF01 AURIAL TC INGESTION = 1 2E+C2 YEARS COASUNPTION CF 150. (G CF FR'JITS ANC VEGET ABLiS PER YiAR CCiJSDHDTION OF 310. LITERS OF MILK PER YEAR CCt;SUNPTION CF 11. (G CF MEAT PE R YEAR CONSUMPTION RATE OF C3W = 59. (G/ DAY C0hSUMPTION RATE OF CATTLE = 53. KG/ DAY FFACTION OF SOIL WHICH IS WASTE = .1J 88

                                                                         - - _ s -,--
          ,- - . e e*

TABLE 129 CASE IV-F -- FILL WANTED DISPOSAL - POOD GROWN IN MASTE AFTER O.5 YEARS DECAY . IS CT OFE HALF-LIFE LIMITING DAUGHTEF FERCENT SURIAL CONCEN. (UCI/GH H----3 1 2 3E +C1 YRS 1 0E-L4 C---14 5.735+J3 YRS 3.75-66 NA--24 1 5vi'J1 HRS 1.JE+97 P---32 1 43E+C1 CVS 1.35-33 CR--51 2.75E*si DYS 5. i+C1 MN--54 3 12E+ 2 CYS 3.6E-04 MN--56 2.592+.s H;.S 1.Ji+;7 FE--SE 2.60E+00 Yas -4.55-c3 FE--E9 4.5;2+01 CVS 6.;E-02 Ipm Co--58 7 13E+G1 DYS 3.SE-03 CO--6L 5 2*E+Lu YRS 2. :f-C 4 h NI--59 9.C1E+D* YRS 3.9E-04 NI--E3 9.2ic+i1 YRS 3.;i-05 NI--65 2.5bi+Ch HRS 1 0E*07 CU--Eh 1 295+C1 HRS 1.GE+07 7N--65 2 43f+C2 OYS 5. 7E -3 6 Zh--64 5.5 i+*1- MIN 1.si+67 9R--83 2.4JE+0G HRS 1.CE*07 PR--Pk 3 2454C1 HIN 1.si+C7 9R--65 3 0JE+C0 PIM 1 3E+07 P.9--86 1 875+C1 OYS 12i LE RB--88 1 8;E+.1 NIN a. 5+,7 d4--990 1.53E+C1 F.IN 1 1E+30 S0.--59 1L C . SR--89 5. 65* 1 OYS 2 2E-u4 , SR--90 2.853+61 YRS 7 5E-;7 - 57--910 9.70E **JO Ha.S 6 1E-01 Y---91 1Cu. I' SE--92 Y---9i Y--916.0 Y---91 2.7t E +r 2 bRS 2 67E*,a CYS 5.CGE+01 MIN 5 9s!+"1 CYS 1 3E+07 1.Ji+J7 7.2E+JG 4.2E-03 Y---91 100. Y---92 3 53f+C3 HRS 1.eE+a7 Y---030 1 52i+C1 HRS 1 3E+G7 NB-93M 93. ZR--93*O 1 5JE+;6 YRS 1.*E-G2 NS-93N 93. 7R--95+0 6.53E+C1 CVS 9.3E-34 NB--95 99. Z5.--97+0 1 70E+G1 HRS 1 3E+07 Ne--97 5. NR-93H 3.70E+GO YRS 1 4E-03 NS--95 3.53E*01 CYS 8.7E-03 NR--97 1 20E+50 HRS 1.0E+07 MO--990 2 795+L. PYS 4.85+G2 7C--99 100. TC-99PD 6.roi* . 0 His 5.4E+C3 TC--99 100. TC--99 2 132+;5 YRS 1.SE wS 80-103 4.C0f*01 DYS 8. 95-04 . RU-1L50 4.43E+6J HRS 1.JE*07 RH-1J5 10 C . RU-106 1.CJE+CJ YRS 6.4E-,6 RH-1C5 1.5JE+GO OYS 1 32*C7 AG11CP 2.6JE*C2 OYS 4 96-06 7E125M 5.8sE+21 OYS 4.7E-05 TE127H+0 1.15E+L2 CYS 5.3E-06 TE-127 2*. TE-127 9.30E+a0 HRS 1 0E*07 TE129M 3 43E+01 CVS 4.iE-45 89

                                                                                       .     \

TME2 129  ; CASE IV-F - FILL WANTED DISPOSAL - FOOD GROWN IN MASTE AFTER 0.5 YEARS DECAY ISCTOFE HALF-LIFE LIMITING OAUGHTcA SERCENT BURIAL CONCEN. (UCI/GM) TE-1290 1 12E+LO HRS 6 6E*04 I--129 16i . TE131MC 1 2JE+LO OYS 7.4E+01 I--131 166. TE-1310 2.50E+C1 MIN 6.GE+03 I--131 1L3. TE-132+0 3.25E+0. CYS 1..E+37 I--132 1. I--129 1 6dE+D7 YRS 5.2E-37 I--13L 1 24E+s; b4S 1. . E *0 7 I--131 8.c5E+63 CYS 1 3E+Ji , I--132 2.3wi+.J HRS 1. E*.7 g>: I--133 2 1.E*01 HRS 1.JE*07

'                  T--134         5.3C5601 MIN          1.CE+97 I--1350 ff                CS-134 CS-135 6.70E+DJ HRS 2.15 E + 0 0 YRS 8 2E+05 4 9E-05 CS-135      10G.

2.CLE+.6 YRS 3 1E-04 CS-136 1 3CE+C1 OYS 4.GE+05 CS-137 3.twi+01 YRS 5 7t-05 CS-13e 3.22E+.1 MIN 1.JE*07 i 1A-ikt+0 1 26E*01 OYS 4 1E+0; LA-14G 55. BA-1410 1.P.5+01. PIN 2 3E+C2 C E-141 160. 44-142 1 1 E+t1 MIN 1 3E+L7 LA-140 1.67E+0 0 CVS 1.JE+07 LA-luir 3 93E*;5 HRS 1 6E+01 CE-1 1 160. LA-142 1 40i+0h Hv.S 1.JE+;7 CE-141 3.25E+J1 OYS 7.$5-02 CE-143c 1 37E*CG DYS 8 3E+C1 PR-1*J 100. CE-144 2.85E+C2 CVS 3.-E-G* DF.-143 1.37E+01 GYS 1 3E+01 DR-164 1 73E+.1 HIN 1.vi+07 NO-1470 1 11E*C1 CVS 4 2E-G1 PM-147 iL3. N' DM-167 2 60E+C0 YRS 5.JE-03 l[gy W--167 2.4LE*L1 HRS 1..E+37 FA-223 1 14E*31 CYS 2.TE*s0 RA-226 1 60E*33 YRS 6 3E-J7 AC-227*0 2 16E+C1 YRS 9 6E-06 RA-223 23. l T H -22 7 + 0 1 82E*01 OYS 1 2E-02 RA-223 73. PA-231 3 25E+04 Yo.S 7.42-06 U--235 7 1Li+.4 YRS 4 9E-uS NP-239C 2.35Etcs DYS 2.vE+03 PU-239 100. , PU-239 2.4*E+G4 YRS 5.3E-04 1 4&SE3 DNS CONSUMoTION OF F000 GROWN ON WASTi SITE A MAXIMUN 00SE COMMIT 1ENT OF 3 0L M4EM/YR TO ADULTS ( DECAY TIME F801 9URIAL TO INGESTION = 5.0E-01 YEARS CONSUMPTION OF 150. KG OF FRUITS AND VEGET ABL65 PER YE AR CONSUNDTION OF 155. LITERS OF MILK PER YEAR CONSUMPTION OF 11. KG CF MEAT PER YEAR CONSUMDTION RATE OF C3W = SG. (G/0AY CONSUMPYION HATE OF CATTLE = 53. KG/ DAY FRACTION OF SOIL WHICH IS WASTE = .20 l 90 l

a 4 . < p TABLE 132 CASE IV-F -- FILL lENTED DISPOSAL - FOOD GROWN IN 1ESTE AFTER 100 YEARS DECAY ISOT0FE HALF-LIFE LIMITI NG DAUGHTER DERCENT BURIAL CONCEN. (UCI/GM) H----3 1 23E+;1 YRS 2.SE-L2 C---16 5 73E+G3 YES 3.7E-06 NA--24 1.5dE*J1 HRS 1.JE*G7 P---32 1 43E+01 DYS 1.JE*07 CE--51 2.76E+61 OYS 1.wE+a7 HN--54 3.12E+02 rYS 1 3E+07 MN--56 2.595+0D H9S 1.aE+37 FE=-55 2.LGE+ u YRS 1.J E +G 7 FE--F9 4.5JE+01 CVS 1..E+U7

 $h                CC--56      7 1.E+,1 CVS             1 3E+G7 Co--6C      5 24E+00 YRS             1 3E+C2
      .            t.I--59     8 01E+J4 YRS             3 95-04
      ,            t.I --6 3   9 215+31 YES             6 3E-05 NI--65      2.56E*L9 HRS             1.'E+a7 CU--64      1.296+C1 HSS             1.sE*07 ZN--65      2.43E+;2 DYS             1..E+07 7N--69      5.53E+C1 MIN             1 3E+07 BF--P3      2 4Ji+0C PRS             1.JE*07 3D--8*      3 20f*C1 FIN            1. E+L7 9F--85      3 00E+30 HIN             1.J E+0 7 48--56     1 475+C1 CYS              1 3E+07 CB--88     1 895+01 PIN             1.*E*07 EB--896    1 51E+.1 F.I N           1.'E+s7      SR--59        li. 0 .

SS--99 5.L6E+S1 CYS 1.JE+C7 l SA--9t 2.88E+L1 YRS 8.2 5 -J 6 - SR--910 9 7aE *: . HC.S A.Ji+c7 Y---91 160. SR--92 2 7JE+vJ HRS 1.vi+37 ~ i Y---9f 2 675+69 CVS 1 0E+07 Y--91PD 5.rLE+61 NIN 1.si+s7 Y---91 100. Y---91 5.9.E+J1 CYS 1.JE+47 Y---92 3.53E+G0 HRS 1.JE+G7 Y---030 1.f2E+01 HRS 1 7E+06 dB-93H 99. ZR--93+0 1 5u!*;6 YRS 1 35-C3 NS-93M 99. ZP--95+0 6.595+0i CVS 1.SE+07 NB--45 99. ZR --97 1.7 JE+C1 HRS 1 3E667 i N9-93P 3 7sE*su YRS 1 76+a5 Ne--95 3 5di+01 CYS 1 3E+07 NO--97 1 20i+gC HRS 1.JE+47 M0--990 2 79E+00 CVS 4 4E+02 TC--99 100. TC-99PO 6.03E+60 HRS 5.'5*03

                                                           +       7C--99        190.

TC--99 2 1.i+; 5 YRS- 1.Si w5 EU-103 4.CJE*01 DYS 1 0E*07 . 80-1C 5 4.4 3E *Cu HRS 1.:5+37 RU-1C6 1 04E+LJ YRS 1.JE+.7 ! 4H-105 1 565+c0 DYS 1.sE+07 AG110H 2 6]E+02 OYS 1.3E+07 TE125H 5.80i+01 TYS 1 0E+07 TE127M+0 1.CSE+L2 cVS 1. E+37 TE-127 24. TE-127 e.30E*s6 HRS 1.J E +'J 7 ' TE129HC 3.44E+0i LYS 9.0E+01 I--129 100. 91

                                                                                                                       '     s
                                                                                                                               /.

TMBIZ 132 . CASE IV-F - FILL MANTED DISPOSAL - . FOOD GROWN IN MASTE AFTER 100 YEARS DECAY IS CTCPE HALF-LIFE LIMITING OAUGHTEP FERCENT BURIAL CONOEN. (UCI/GH TE-124C 1 12E+tv HRS 6 6E+.4 I--129 100. TE131M 1.20E+GO CYS 1.JE+L7 TE-131 2 5 E+.1 MIN 1..E+CT TE-132 3 25E+03 CYS 1.JE+07 I--129 1 6di+37 YRS 5 2E-G7 I--13G 1 2*E+vi HRS 1 3E+07 I--131 6.iSE+3s CYS 1 0E+07 T--122 2 30E+GO H o.S 1.3E*D7 Id I--133 2 10E+J1 FRS 1 3i+.7 I--134 5 3JE+C1 MIN 1.dE*07 I--1350 6.74E+C0 boS 6 2E+05 CS-135 100. CS-134 2 10E+C0 YRS 1 0E+07

      ,              CS-135         2.COE+.b YRS          3 15-0*

CS-136 1.3JE+;1 PYS 1..E+07 CS-137 3.0aE+L1 YAS 5.6E-04 CS-138 3 22E+C1 NIN 1.,E+w7

                     'A-140         1 2si+01 OYS          1.CE+07 BA-141         1 8eE+si HIN          1.3E+07 9A-142         1 10E+G1 PIN          1 0E+C7 LA-14C         1.F7E+*G CVS          1.JE+07 LA-141         3.oJE+ru HRS          1 0E+c7 LA-142        1 44E+G0 HP.S          1.GE+G7 CE-141         3.25E+f1 CVS          1.;E+c7 CE-143        1.375+Le OYS           1.J E *0 7                                                       -

l CE-144 2.85E+32 OYS 1 3E+C7 PF-143 1 37E+G1 CVS 1.GE+0T I PR-144 1.73E+i1 HIN 1 0E+C7 NO-1470 1 11E*: 1 DYS ,j 1 3E*G7 PM-147 1G0. PM-147 2 60E+04 YRS 1.JE+07 li W--167 2 40E+01 PP.S 1 3E+07

A-223 1 14E+31 OYS 1.JE+4T EA-226 1 60i+03 Ye,S 7.2E-07 AC-227+D 2 16E+;1 YP.S 2.4E-L4 RA-223 23.

TH-2E7 1 82E+C1 CYS 1.SE*07 DA-231+3 3 25E+04 YRS 4 3E-06 AC-227 24 U--23' 7 10E*G8 YRS 4 9E-05 NP-2390 2 35E+05 DYS 2 0h+03 PU-239 1CC. PU-239 2 44E+04 YRS 5 3E-04

3A SE3 ON CONSUMPTION OF F000 GROWA ON W4STE SITE A MAXIMUM DOSE COMMITMENT OF 3 00 MREM /YR TO AQULTS DECAY TIME FRO 1 RURIAL TC INGESTION = 1 0E+22 Y2A*.S CONSUMPTION OF 150. KG OF FRUITS ANO VEGETAPLES PER YEAR CONSUMD' ION OF 155. LITERS OF MILK PER YE AR CONSUMOTION OF 11. KG OF MEAT PER YEAR CONSUMPTION F. ATE OF COW = 50. KG/ DAY CONSUMPTION RATE OF CATTLE = 50. KG/ DAY FRACTIOh 0F SOIL WHICH IS WASTE = .20 92

_ _ _ _ _ _ _ _ _ _ -}}