ML20196E893

From kanterella
Jump to navigation Jump to search
Rev 0 to 2B11-0001, Core Shroud B214R1 Structural Evaluation
ML20196E893
Person / Time
Site: Brunswick Duke Energy icon.png
Issue date: 06/16/1999
From: Gore P, Zemma L
CAROLINA POWER & LIGHT CO.
To:
Shared Package
ML20196E892 List:
References
2B11-0001, 2B11-0001-R00, 2B11-1, 2B11-1-R, NUDOCS 9906290042
Download: ML20196E893 (110)


Text

1 ENCLOSURE BRUNSWICK STEAM ELECTRIC PLANT, UNIT NO. 2 DOCKET NO. 50-324/ LICENSE NO. DPR-62 CORE SHROUD REINSPECrlON RESULTS I

Calculation 1B11-0001. Revision 0.

" Core Shroud 8214R1 Structural Evaluation" l

l i

9906290042 990623 PDR ADOCK 05000324 P PDR

SYSTEM #: 1005 CALC. TYPE: ESMISC CATEGORY CODE: B QUALITY CLASS: A CAROLINA POWER & LIGHT COMPANY 2B11-0001 (CALCULATION #)

CORE SHROUD B214R1 STRUCTURAL EVALUATION (TITLE INCLUDING STRUCTURE / SYSTEM / COMPONENT)

BRUNSWICK NUCLEAR POWER PLANT UNIT 2 APPROVAL Revision: 1 Prepared By: 4444 m Date: d!/d/99 Reviewed By: Date: 0!/6!99 Design Supervisor: Ib i

/a Date: 6 //6/19

(

OENP-303 REV.3

Crro/ina Power & Light Company CALCULATION 2B110001 REV. 1 Brunswick Nucle:r Plant - Unit 2 Page 2 Revision Summary Rev.# Date Revision Summary 0 06/01/99 Original issue of calculation.

1 06/16/99 incorporated minor clarifications in several areas l

l l

l l

OENP-303 REV, 3

l Coro/ina Power & Light Company CALCULATION 2B11-0001 REV. O Brunswick Nuclear Plant - Unit 2 Page 3 l

CAI,CULATION INDEXING TABI.E Type of Document Document Title Basis for Document Number or Tag Cross-Number Reference EER EER 94-0077 Evaluation of Unit 2 Core Shroud Indications Ilistorical and Operability Assessment, Rev 0,06/04/94 ESR ESR 96-00154 Evaluation of Unit 2 Core Shroud Indications IIistorical and Operability Assessment, Rev 0. 03/08/96 i

Calculation 1B21-1008 Evaluation of Core Shroud Seismic loads, Design Inputs l Rev 0,12/10/93 Calculation 0B21-1012 Calculation of Core Shroud Horizontal Weld Design inputs Stresses, Rev 0,09/15/97 '

BWRVIP BWRVIP-01 BWR Core Shroud Inspection & Flaw Design Evaluation Guideline, Rev 2,10/96 Guideline BWRVIP - BWRVIP-03 Reactor Pressure Vessel & Internals Design Examination Guidelines, Rev 2,10/96 Guideline BWRVIP BWRVIP-07 Guidelines for Reinspection of BWR Core Design Shrouds,2/96 Guideline BWRVIP BWRVIP-20 BWR Core Shroud Distributed Ligament Design Length Computer Program Ver. 2.1,12/96 as Guideline Modified by CP&L,04/99 Unit 2 Reactor Vessel Core Shroud Continued ESR ESR 98-00334 Evaluation Operation Procedure OPT-90.1 Vessel Internal Component Remote Inspection Examination Rev. 22 Procedure OENP-303 REV,3

k Ctrolino Power & Light Company CALCULATION 2B11-0001 REV. 1 Brunswick Nuclear Plant - Unit 2 Page 4 8 List of Effective Pages I Page Number Revision' Page Number Revision 25 0 1 1 26 0 l

2 1 27 0 3 0 28 0 4 1 29 0 5 0 6 0 7 1 8 0 9 0 10 0 11 0 i Attachment A 0 l 12 0 13 1 Attachment B O t

14 0 Attachment C 0 15 0 Attachment D 0 16 0 i

17 0 Attachment E O  !

i 18 0 Attachment F 0 19 0 Attachment G 0 20 0 21 1 Attachment H 1 22 0 23 0 24 0

_ l OENP-303 REV. 3 1

C:ro/ina Power & Light Comp:ny CALCULATION 2B11-0001 REV. O Brunswick Nuclear Plant - Unit 2 Page 5 Table of Contents Page No.

Calculation Cover Page ... .... . .. .. . . . . . . . . . . . . . . - . . . . . . . . . . . . . . . .. .. .1 Revision Summary .. .. . .. . ....... .. ... ...... . . ... .. .. . . . . . . . . . . . . . . . . . . . . . .. .2 Calculation Indexing Table... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . .. . . . .3 List of Effective Pages . .. . . . . . . . . . . . . . . .... . . . . . . . . . . . . . . ... . . . . . . . . . . . . . . . . . . . .. .4 Table of Contents .. . .. .. ...... ... .. . . .. .......... ... . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . ......5 1.0 ' Purpose ............. . .. . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 2.0 Conclusion . .... .. .. . .. . .. . .. . . . . .... .... . .. . . . . . . . . . . . .. . . . . . .. . . . . . ... 6 3.0 Background . ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 4.0 R ef o rence s ...... .. ... . . . . .. ... .. . .. . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....8 5.0 Inspection Summary.... ... .... . .. .. . ... .... . .. ... ... .. .... . . . . . .....................10 6.0 Desig n Inputs .. ...... . . . .. .. .... .. .. . ... . . .. .. . . . .... . . .. .. . . . . . . . . . . . . . . . .. ...13 7.0 Evaluation Methodology Horizontal Welds.... . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . ..15 8.0 ' Evaluation Methodology - Vertical Wolds....... . . .... ........ .. .... . . . . . . . . . . . . . ... ...16 9.0 Inspection Results ... . . .. . .. ....... . . . .... . . . . . . . . . . . . . . . .. . . . . . . . . . . .. . . . . . . . 1 9 10.0 Structural Evaluation ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....................20 11.0 Shroud Fluenoe Summary... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ......25 12.0 Reactor Water Chemistry.... . . .. .. .. .. . . . . . .. . . ........ .. . . .... ... . . ... . .. .. . .. . . . ... . 28 13.0 Summary of Shroud Horizontal Weld Reinspection intervals. . . . . ....................28 Figures l 5.1 ' Core Shroud Weld Map.. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ..12 8.1 Screening Criteria with Horizontal Welds.. . ... .. .... .... . . . . . . . . . . . . . . . . . . . . . ............17 8.2 Vertical Weld Crack Evaluation Criteria .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..18 j 11.1 Fluence Graph for Core Shroud Horizontal Welds.. .... . . . . . . . .... ... ... .. ... . . .. . . . . . ...... . . 26 j

11.2 Fluence G raph for Weld H4 . . .. . ............. ... . .. . ... ..... .. .. .. . .. .... .....................27 ,

i Tables 5.1 B214R1 Shroud inspection Summary.. ... . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 6.1 Table of Design inputs .. . .. . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...... . .. 13 6.2 In s pection U ncertainty ... . .. . . ...... . . . .. . . ... .. . ... .. . .. . . . ..... ... .. ... . .. ..... . .. . .. . .. . . . . . . . ..14

' 7.1 Desig n in p uts . .. . .. ...... ... . .. . . ...... .. ..... . . . . . . ... ... . .... . .. . . . . . . . . . . . . . . . . . . . ...15 10.1 Evaluation Summary - Shroud Welds inspected during B214R1...... . ...... . .. . . . . . . ...24 13.1 Summary of Shroud Holizontal Weld Reinspection Intervals . . . . . . . . . . . . . . . . . . .28 13.2 Summary of Weld Safety Factors at End of Evaluation.... . . .. . .. . ... 29  ;

Attachments A Core Shroud Inspection Plan, Unit 2 B214R1 Outage, Rev.1 April 1999. . . .. ... ... .11 pages B DLL Software Program Benchmark. .. .. .. . . .. . . . . . . . . . . . . . . . . . .. .. .. . ... . . 6 pages C Analysis inputs / Outputs....... ..... .. .. ........ . . .... . . . .. . . . . . . . . . . . . . ... . .. ... 35 pages D . GE Inspection Data . ...... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .14 pages E Cycle 13 Hydrogen Injection Data........... ...... . ......... . ...... . .. . . .. .. . .... .... . .... . . . .. .. 4 pa ges F inspection Summary Charts .. ... ....... . .. ............. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . . . 4 pages G H6B North Side Depth Evaluation Charts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 pages H Record of Lead Review ......... ........ . ...... ......... ...... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..1 page OENP-303 REV. 3 1

L.

Coro/ina Power & Light Company CALCULATION 2B11-0001 REV. 0 l Brunswick Nuclear Plant - Unit 2 Page 6 1.0 PURPOSE This calculation is required as part of Carolina Power and Light Company's commitment to USNRC Generic Letter 94-03 "Intergranular Stress Corrosion Cracking of Core Shrouds in Boiling Water Reactors." As such, this calculation provides the following:

. Documentation of the inspections performed on the Unit 2 Core Shroud during the B214R1 outage.

  • A basis for the continued use of the BNP2 Core Shroud for at least one additional operating cycle in the as-found condition without any operational changes or restrictions. This is accomplished by a review of the core shroud structural capacity to the criteria established by the BWRVIP (references 4.6,4.7) and approved by the Nuclear Regulatory Commission.

. A basis for the determination of future shroud inspection scope and analysis methodologies.

2.0 CONCLUSION

S

. The BNP2 core shroud can safely perform its design functions in its present and predicted condition for at least one additional fuel cycle without any operational changes or restrictions.

  • All reported cracking is typical IGSCC located in the heat affected zone of the welds.

. The results of this calculation, along with reactor water chemistry and radiolysis modeling specific to BNP, will be used to established a less conservative crack ( awth rate in the depth direction for the core shroud welds. The reinspection interval for the horizontal welds will be adjusted to account for this revised crack growth rate.

3.0 BACKGRCUND In October,1990, RICSIL 054 reported cracking near the circumferential seam weld at the core beltline area of the shroud in a GE BWR/4 located outside the United States. Based I on recommendations contained in RICSIL 054, the BNP Unit 2 shroud was inspected during the 1991 refueling outage. No cracks were identified. The Unit 1 shroud was inspected in July,1993, and a near 360 circumferential crack was confirmed on the inside diameter of the Top Guide Support Ring, at the weld to the shroud mid-section. The video tapes of the Unit 2 shroud IVVI were re-examined based on the early July Unit 1 findings. ,

Three small indications were noted. Unit 2 tapes were again examined in late September of 1993 based on lessons learned on Unit 1. One additional small indication was noted. .

Although this additional indication was bounded by assumptions in the original evaluation, it was recognized that the quality of the 1991 video tapes was insufficient to identify all of the types of cracks being confirmed on Unit 1. Engineering evaluation EER 93-0536 was 1

~

C2ro/ ins Power & Light Company CALCULATION 2B11-0001 REV. 1 Brunswick Nucl=r PI:nt - Unit 2 Page 7 issued to assess Unit 1 shroud structural integrity and justify continued operation of Unit 2 until a detailed inspection could be performed during the Spring,1994 RFO (B211R1).

The Unit 2 B211R1 shroud inspections were evaluated in engineering evaluation EER 94-0077. The evaluation concluded that structural integrity of the core shroud would be '

maintained, with full UFSAR safety margins, for at least the next 600 days of hot operation, and for welds H1, H4, and H5, for at least 1200 days of hot operation based on analysis of the inspection results. Additionally, welds H2 and H3 were permanently repaired during B211R1 by the installation of 12 brackets 30 degrees apart about the outside circumference of the shroud.

The B212R1 BNP2 shroud evaluation, ESR 96-00154, concluded that the Core Shroud could safely operate in the as-found condition for at least one fuel cycle without any operational changes or restrictions. All indications were IGSCC related.

The B213R1 inspection scope was initially submitted to the NRC on June 12,1997.

Subsequently, the B213R1 inspection plan was revised to address questions and comments received from the NRC.

After a review of the B213R1 examination data for weld H6b, it as determined that i

discrepancies existed between the data as initially recorded, and the B212R1 examination  !

data taken in 1996. CR 97-03902 was written to address this issue. A detailed review of the ]

data by CP&L and the EPRI NDE Center showed that some of the flaws reported were I inaccurate. This was attributed, in part, to a misinterpretation of the reflectors related to weld impurities and geometry. Additionally, the areas of overlap between scans were not interpreted properly. The inspection tool location on the shroud azimuth was incorrectly  ;

recorded in several instances. For a complete discussion o' the root cause findings, see the CR mentioned above. A reanalysis of the H6b weld has been performed using the resolved examination data and is included in reference [4.22].

i l

i I

L

Carolina Power & Light Company CALCULATION 2B11-0001 REV. O ;

Brunswick Nuclear Plant - Unit 2 Page 8

4.0 REFERENCES

I' 4.1 U.S. Nuclear Regulatory Commission Generic Letter, GL 94-03 "Intergranular Stress Corrosion Cracking of Core Shrouds in Boiling Water Reactors," dated July 25,1994 4.2 U.S. Nuclear Regulatory Commission Letter to Mr. R. A. Anderson of Carolina Power and Light Company dated January 3,1995 " Generic Letter 94-03, Intergranular Stress Corrosion Cracking of Core Shrouds in Boiling Water Reactors, Brunswick Steam Electric Plant, Units 1 and 2 (TAC NOS. M90084 and M90085)"

including Enclosure 1 " Safety Evaluation for Unit 1"and Enclosure 2 " Safety Evaluation for Unit 2" 4.3 Engineering Evaluation Report, EER 94-0077, " Evaluation of Unit 2 Core Shroud Indications and Operability Assessment," Revision 0 dated 06/04/94 4.4 Engineering Evaluation Report, EER 93-0536, " Evaluation of Unit 1 Core Shroud Indications and Operability Assessment of Unit 1 and 2," Revision 2 dated 03/13/94 4.5 Engineering Service Request, ESR 95-00765, " Unit 1 Core Shroud Reinspection Evaluation," Revision 1 dated 05/15/95 4.6 BWR Vessel and internal Project, BWRVIP-01, "BWR Core Shroud Inspection and I Flaw Evaluation Guidelines," Revision 2 dated October 1996  !

4.7 BWR Vessel and Internals Project, BWRVIP-20, "BWR Core Shroud Distributed Ligament Length Computer Program," Version 2.1 dated December 1996 4.8 BWRVIP Inspection Committee document " Reactor Pressure Vessel and Internals -

Examination Guidelines (BWRVIP-03),"TR-105696 dated September 1995 i

4.9 Structural Integrity Associates document RAM-94-092/ SIR-94-029, " Addendum to .

the Brunswick Unit 1 Screening Criteria," dated April 6,1994.

4.10 CP&L Brunswick Nuclear Plant - Plant Operating Manual - Volume X - Period Test -

OPT-90.1, "in-Vessel Visual Examinations," Rev 22, dated 4/16/99 i 4.11 U.S. Nuclear Regulatory Commission Letter to Mr. J.T. Beckham, Chairman l BWRVIP, dated June 16,1995 " Evaluation of BWR Core Shroud Inspection and ,

Evaluation Guidelines, GENE-523-113-0894, Revision 1, dated March 1995, and '

BWRVIP Core Shroud NDE Uncertainty & Procedure Standard," dated November 22,1994 4.12 GE Document GENE-B11-00682-1 Revision 1, " Brunswick Nuclear Plant - Unit 2 -

Shroud Examination Plan," dated 2/2/96 4.13 Supplement 2 Report to OPT-90.1 "GE BNP B213R1 Inspection Summary," dated October 1997

Cero/ino Power & Light Company CALCULATION 2811-0001 REV. O Brunswick Nuclear Plant - Unit 2 Page 9 4.14 Engineering Evaluation Report, ESR 96-00154, " Evaluation of Unit 2 Core Shroud ,

Indications and Operability Assessment," Revision o dated 03/08/96 (B212R1) 4.15 Engineering Evaluation Report, ESR 96-00160, " Evaluation of Unit 1 Core Shroud  !

indications and Operability Assessment," Revision 0 dated 10/31/96 (B111R1)  !

I 4.16 GE Nuclear Energy Document GENE-523-A028-0495, " Brunswick Units 1 and 2, I and Hatch Units 1 and 2 Shroud Safety Assessment," Rev. O dated Dec 20,1996.

4.17 CP&L Calculation 1 B21-1008, " Evaluation of Core Shroud Seismic Loads," Rev. O dated Dec 10,1993.

4.18 CP&L Calculation DB21-1012, " Calculation of Core Shroud Horizontal Weld Stresses,"Rev. O dated Sept. 15,1997.

I 4.19 CP&L Calculation 1 B21-0049, " Application of GENE-523-123-0993, " Evaluation and Screening Criteria for the Brunswick 1 Shroud Ir:1!c9tions to the Unit 1 Indications / Crack for BNP U1 Reactor Core Shrc:r, Crack Investigation," Rev. 0 )

dated Nov 17,1993.

4.20 BWR Core Shroud Evaluation Report No. SL-4942 Rev. O, " Load Definition Guideline," dated November 11,1994.

4.21 BWR Vessels and Internal Project, BWRVIP-07, " Guidelines for Reinspection of BWR Core Shrouds," dated February 1996 4.22 Engineering Evaluation, ESR 97-00034 Rev. 2, " Engineering Evaluation B213R1 Core Shroud Inspections", dated 1/22/98 4.23 Engineering Evaluation, ESR 98-00334 Rev 0, " Unit 2 Reactor Vessel Core Shroud '

Evaluation", dated 5-18-99 l

i

Carolina Power & Light Company CALCULATION 2B11-0001 REV. O Brunswick Nuclear Plant - Unit 2 Page 10 5.0 INSPECTION

SUMMARY

l A copy of the CP&L B214R1 shroud inspection plan, which was submitted to the U.S. 1 Nuclear Regulatory Commission, is included in this calculation as Attachment A. Table 5.1 provides the B214R1 shroud inspection summary below.

H1 Ultrasonic Phased Perform Phased Array of the accessible area looking Upper Array 100 % down through the top of the shroud. This technique will greatly increased coverage.

H1 Ultrasonic Phased Perform Phased Array of the accessible area from below Array 100 % the weld.

l Lower No inspection Shroud welds H2 and H3 have been permanently

'H2 & H3 performed N/A repaired by the addition of bolted clamps during B211R1, H4 Ultrasonic Phased 100 % Perform Phased Array of the accessible weld, upper and Array lower sides. '

l No inspections See ESR 97-0003414.221 for previous inspection l H5 performed results N/A l No inspection See Reference [4.141 for the previous inspection ,

performed N/A results.

l . H6a Ultrasonic Perform Phase Array of the accessible area on the lower H6B Phased Array 100 % side of the weld.

No inspections See Reference [4.141 for the previous inspection l l H7- performed N/A results.

l l No inspection l H8 l ~ performed N/A BWRVIP developing inspection tools / techniques.

Weld Hidata obtained during inspection of RPV Beltline Noinspections-H9 performed welds. Last inspected during B212R1 outage with no Shroud I No inspection N/A indications found.

Support performed N/A BWRVIP developing inspection tools / techniques.

Legs

1 Caro /ina Power & Light Company CALCULATION 2B11-0001 REV. O Brunswick Nuclear Plant - Unit 2 Page 11

.-  :  : - i .. d Inspection Plan Summary W eld Inspection  % of Weld Comment ID Method Length to be Examined this Outage l H2& H3 V T-1 The remaining Five clamps at azimuths 105,135,165, Repair VT-3 N/A 195, & 345 degrees are to be examined this outage.

Clamps l Ring Not inspected l segment welds N/A Not required by the current BWRVIP guidelines j l V1 Not inspected N/A Will be inspected according to the VIP guidelines in a l future outage.

V2 Not inspected N/A Will be inspected according to the VIP guidelines in a future outage.

l l \

EVT-1 First inspection in accordance with BWRVIP criteria. j V3 1  % Located in the beltline region of the shroud.100% of ID/OD l the accessible area is to be examined.

{

EVT-1 First inspection in accordance with BWRVIP criteria.

V4 100 % Located in the beltline region of the shroud.100% of ID/OD the accessible area is to be examined. l Q

EVT-1 First inspection in accordance with BWRVIP criteria. l V5 100 % Located in the beltline region of the shroud.100% of ID/OD l the accessible area is to be examined.  !

EVT-1 First inspection in accordance with BWRVIP criteria.

l V6 ID/OD 100 % Located in the beltline region of the shroud.100% of the accessible area is to be examined.

l V7 Not inspected N/A Will be inspected according to the VIP guidelines in a future outage. l V8 Not inspected N/A Will be inspected according to the VIP guidelines in a l future outage.

V9 Not inspected N/A Will be inspected according to the VIP guidelines in a I future outage. l Not inspected N/A Will be irnpected according to the VIP guidelines in a lV10 l

1 future outage. l V11 Not inspected N/A Will be inspected according to the Y'P guidelines in a 1 future outage.

1

Carolina Power & Light Company CALCULATION 2B11-0001 REV. O Brunswick Nuclear Plant - Unit 2 Page 12 BRUNSWICK NUCLEAR PLANT CORE SHROUD WELD MAP 0' 50' 140' 230' 320'

[ X X X X X 1 91 _

V1 h V2 h H2 l

, x ,

_1 _'_ HS h

~

V3 h V4 H4 l 1

V5 h V6 h

HS I h V7 h V8 H6A U l

E 1 1 1 1 1 ]

H6B q V9 h V10 V11 -"

H7 0

"% c a

, H9f CORESHROUD FIGURE 5.1

p Ccrolina Power & Light Company CALCULAT;ON 2B11-0001 REV. 1 Brunswick Nucle:r PI:nt - Unit 2 Page 13 6.0 DESIGN INPUTS The design inputs associated with this calculation can be found in the references of Section 4.0, and the actual inspection data received from GE in Attachment D. Table 6.1 i below is a summary of some of the key inputs.

Table 6.1 l l  !

1 1,oto 1.- nw I wi I a4 I u5 I H6A I H68 I H7 I Comments / References Geometry

  • 4FP-50553 Stt 1 Rev. A IWokt Elev.from vessel rero (in.) 388.375 317.375 219.250 183.250 179.250 127.188 4FP45357 Rev. O IShroud Mean Rados(n) 94.00 88.00 88.00 88.00 88.00 84.75 Shroud wallThickness (in.) 1.500 1.500 1.500 1.500 1.500 1.500

!9 tress LAvels: SL 4042 Rev. 0 'Lond 0eration Gudehne*

MU Primsry Membrane (pai) 262 248 224 631 607 617 stresses percakasaton MU Primary Bendna (psi) 483 1006 1814 2162 2204 2946 08211012, Rev.1 0, s4 ppm (pol) 269 257 234 642 620 637 C, wsp Pb (psi) 637 1340 2434 2905 2960 3989 Faulted Primary Membrane (psi) 885 883 861 1354 1332 1371 Faulted Primary Bendna (psi) 641 1375 2560 3110 3176 4432 Flow Stress (3Sm for 304ss) (psi) 50700 50700 50700 50700 50700 50700 sm . is o kai Safety Factors: Per UFSAR Sec. 3 9.511 Normal / Upset 2.250 2.250 2.250 2.250 2.250 2.250 BWRVIP41 Rev. 2 Emeroency 1.500 1.500 1.500 1.500 1.500 1.500 Faulted 1.125 1.125 1.125 1.125 1.125 1.125

"_"l- ' " .iiInputs:

BWRVIP41 Rev. 2 Days Per Ron Cvde 708 708 600 600 708 600 PronmRy consdered after CG and thrmrtainty Hours Per Run CW (SEE NOTE) 17000 17000 14400 14400 17000 14400 Allinscanons considered ihnined emopt H0b Evaluation Perb1(days) 2124 2832 2400 1800 708 1800 Based on 2 year em at 97% capacity facsor Flows take w.v. ;,,. Y Y Y Y Y Y incorporated in DLL Program Note: The run cycle days for welds H5, H6a, and H7 have not been adjusted for 24 month cycles (17000 hrs). The cxtra 108 days is bounded by the existing margin for these welds. The cycle time (14400 hours) will be adjusted the next time these welds are inspected.

1

l l

Coro/ina Power & Light Company CALCULATION 2B11-0001 REV. 0 l Brunswick Nuclear Plant - Unit 2 Page 14 6.1 INSPECTION UNCERTAINTY l The inspection uncertainties used in this calculation are based on the requirements of references [4.6] and [4.8]. The process instrument is calibrated based on the results of inspecting cracked laboratory samples. Table 6.2 below contains the uncertainty values that must be added to the crack lengths and depths in accordance with the BWRVIP j guidelines referenced above.

Table 6.2

__ Weld No. - _: UT : Crack Length Crack Depth Comments

. Process' 6 Uncertainty - Uncertainty See Notes H1U'~ Phased Array 0.216" Size Factor 0.121 Size Factor sector scan H1L- Phased Array 0.401" 0.102" sector scan H4-N Trimodal 0.336" 0.108" I2 f n' H4-S Phased Array 0.401" 0.102" sector scan 1

H6b-N . N Phased Array N/A 0.043" R s er scan, depths only 12 H6b-N Trimodal 0.336" 0.108"

[t only c n, lengths

, - H6b-S Phased Array 0.110" 0.043" Raster scan l

Notes:

1. The length uncertainty for the trimodal process is based on using the 45 shear wave.
2. The depth uncertainty for the trimodal process is based on using the 60 RL wave.
3. The phased array process on H6b-N includes lug sets 14,15, and 16, indications 21 through 25 only. Length sizing performed using trimodal raster scan.
4. By demonstration of methodology, no length uncertainty is required.
5. The indication from 142.86 to 144.05 degrees was detected with the creeping wave transducer, but not with the 45 or 60 degree transducer. The maximum depth was determined by calculating the lower limit of the 60 degree RL, which was 0.300 inches. This depth sizing determination bounds the maximum depth of the flaw so no depth evaluation factor is needed.

Coro/ina Power & Light Company CALCULATION 2B11-0001 REV. O Brunswick Nuclear Plant - Unit 2 Page 15 7.0 Evaluation Methodoloav - Horizontal Welds:

This calculation utilizes the Distributed Ligament Length (DLL) program primarily as a

) means to illustrate end of evaluation period safety factors. BWRVIP-07 criteria is used to i establish reinspection intervals based on maximum combined stresses and the percent of the inspected weld found cracked for all horizontal welds with the exception of the H6b.

This weld requires a plant specific analysis, which utilizes the DLL output results to determine safety factors for the end of evaluation interval. Per the BWRVIP requirements, a plant specific analysis may be performed on any weld as long as proper documentation is obtained. Two conservative methods may be used to analyze horizontal welds. The most conservative and easiest to perform considers all cracked areas as fully cracked. Only the uncracked inspected areas are considered in the analysis. All welds except H6b utilizes this methodology. The second method, a more accurate representation of the weld condition, involves consideration of the remaining wall thickness in cracked areas at the end of one run cycle. H6b is the only weld that utilizes this method. Currently, this method is limited to one run cycle due to the magnitude of the approved crack growth rate which allows only one full run cycle of growth before the cracking extends through the shroud wall thickness. Approval of a reduced crack growth rate could allow multiple fuel cycles prior to reinspection using this method.

Step 1 - Collect Information The weld crack data is taken from the verified GE inspection summary sheets (Attachment D) and input into a spreadsheet. All uninspected regions are assumed fully cracked.

Partially cracked areas may also be assumed fully cracked for conservative results or may be considered as partial ligaments to obtain more accurate results. The following spreadsheet variables were also input for each weld location evaluated:

Table 7.1 hlE!! Comment Shroud thickness (tn) 1.50" (No credit taken for any fillet welds.)

189.5"; H1 Shroud outside diameter 177.5"; H4, H5, H6a, H6b 171.0"; H7 Crack Growth Rate 5x104 in/hr Reference 4.6 Maximum of 2 x wall thickness Proximity Criteria 2t = 3.0" Reference 4.8. See Table 6.2 for specific values Total inspection Uncertainty used.

Evaluation Period Used at least 1 cycle of crack growth for all full and (1 fuel cycle conservatively assumed to be 708 days, Partial thickness ligament evaluations.

(17000 hrs))

/

Caro / ins Pbwer & Light Company CALCULATION . 2B11-0001 REV. O t Brunswick Nuclear Plant - Unit 2 Page 16

! u From this information, the crack growth, inspection uncertainty and crack proximity are considered in determining end of evaluation period crack profile.

i.

Step 2 - Determine reinspection interval or if Limit Load Analysis is Required Use the raw ins'pection data and compute the percent of total weld inspected, and the percent of inspected weld that is cracked. If the inspection uncertainty exceeds (0.4" +0.5 )

L - then add it to the percent cracked and enter table 1 of BWRVlP-07. This will determine the next inspection interval, if the data falls outside of table 1, then a plant specific analysis is required.

l l Step 3 - Perform DLL analysis Use the raw inspection data and apply the inspection uncertainty, the crack proximity, and the crack growth for the assumed reinspection interval. Input the adjusted data into the DLL computer program along with other inputs required by the program (see BWRVIP-20

[4.7] for details) and run the software. See the DLL computer run outputs contained in L Attachment C. Shroud stress values are obtained from reference [4.18].

Stop 4 - Determine if Wald is Structurally Qualified l

If the required UFSAR safety margins are met, the weld is considered structurally qualified for continued service for the assumed reinspection interval. If the required safety margins are not met, then the process (Step 3 ) is repeated with iteration on evaluation period down

! to 708 days. If a weld cannot be structurally qualified by the full or partial thickness 1- ligament length method for the specified minimum evaluation period, then a more detailed analysis must be performed.

8.0 Evaluation Methodoloav - Vertical Wolds: l The vertical weld criteria is currently being reviewed by the NRC. The methodology i described here is assumed to be appropriate for use. Figures 8.1 and 8.2 summarize the i screening strategy for vertical welds in Category C unrepaired shrouds. EOl designates the end of inspection interval.

l f

L

L Carolina Power & Light Company CALCULATION 2B11-0001 REV. 0 l

Brunswick Nuclear Plant - Unit 2 Page 17 l

Figure 8.1: Vertical Weld Screening Criteria Using Horizontal Welds Does the inspection of the horizontal weld meet the  !

inspection requirements of BWRVIP-Ol? Ident;fy the No i Yes EOI for the horizontal weld according to BWRVIP-07.

, Yes Is the as found cracking in the horizontal weld < 10% of the inspected length?

No is the average crack depth, da, for the inspected length of the horizontal weld < 30% through-wall at EOl?

Yes AND, was at least 50% of the horizontal weld inspected in

the region 20"on either side of the vertical weld at the intersection of the vertical weld and the horizontal weld, and found to be free of indications > 60% through-wall at EOI?

No inspect 100% of the accessible f g Is the horizontal weld free ofindications in the region 10" N

length of each vertical weld that
on either side of the vertical weld at the intersection of the intersects this horizontal weld.

vertical weld and the horizontal welds at EOl?

No inspection is required for a vertical weld that intersects Go to Figure 8.2 for the acceptance

, two horizontal weids that pass this screening. The EOI for standards for vertical welds.

the vertical weld is the shorter of the two EOls of the intersecting horizontal welds.

Vertical welds V3, V4, VS, and V6 were chosen to be inspected this outage and thus were assumed to fail the screening criteria. V3 and V4 are known to fail the screening. V5 and V6 depend on the condition of H4 which is being inspected this outage. However, regardless of the outcome of H4, V5 and V6 will be inspected.

l l

I l

Ccrolina Power & Light Company CALCULATION 2B11-0001 REV. O Brunswick Nuclear Plant - Unit 2 Page 18 l If the above screening criteria requires that 100 percent of the vertical weld be inspected, the inspection results should be evaluated using the process described in the chart below:

Figure 8.2: Vertical Weld Crack Evaluation Criteria J ls the vertical weld free of crack indication?  : If the inspection was full volumetric or two-YES sided, max EOI = 10. If the inspection was NO one-sided, max EOl = 6 years.

Has a full volumetric or two-sided visual NO inspection been performed for the vertical weld?

YES Assume an EOl for assessment of the vertical weld (EOI not to exceed 10 years) is the inspection length of the vertical weld >

50% of the length of the weld AND is the as YES found cracking < 10% of the inspected length of the weld? l NO is the inspection length of the vertical weld >

50% of the length of the weld AND is the YES  ;

average crack depth, da, <80% through-wall at EOI, AND is the vertical weld free of through-wall cracking?

NO Is there at least 2" of' uneracked weld metal l within 5 inches of the horizontal weld near the intersection between the horizontal and vertical YES welds at EOI, AND is there a minimum of 2 inches separating any two crack indications within the 5 inches at EOl?

NO Perform plant specific leakage (for as found through-wall cracks only) and/or structural * "' # *" "" *"E NO evaluations for the vertical weld and/or reduce : wall cracks?

EDI to a time where the acceptance standard is met- YES A

ES The vertical weld is acceptable for continued Are the evaluation criteria satisfied? ,

operation to EOI NO l Repair l

b . Caro /ina Power & Light Company CALCULATION 2B11-0001 REV. 0

' Brunswick Nuclear Plant - Unit 2 Page 19 9.0 INSPECTION RESULTS This section describes the inspection coverage and data collected for each weld. A graphical representation of these descriptions is included in Attachment F.

1 Weld H1 Upper This circumferential weld connects the core shroud flange to the upper shroud. Thirty six i (36) sets of lugs are welded to the outside diameter of the shroud flange (ring). These lug 4 sets interfered with the previous inspections of the upper side of H1 (H1U), allowing only eighteen percent (18%) of H1U to be accessible. Because of this limitation, the tooling was modified for this outage to allow inspection through the top of the flange; thereby l elim,1ating the interference with the lug sets. The p hased array process was used for 100% of the accessible area. Approximately 70.4% of the total weld was inspected and of that,2.9% was flawed.

Wold H1 Lower The lower side of H1 (H1L) is not affected by the existence of the lug sets and was inspected similar to previous inspections from the lower OD of the weld. Like the upper  !

side, the lower side of H1 was inspected over 100% of the accessible area using the UT l Phase Array process. Approximately 81.4% of the total weld was inspected and of that,  !

31.5% was flawed. l Weld H4 The phased array technique was attempted on the north side of H4. It did not perform properly so the area was scanned using the Trimodal inspection technique. The south  !

side of H4 was successfully inspected using the phased array process. Crack length and depth data were collected in all inspected areas. Approximately 78.3% of the total weld was inspected and of that,34.9% was flawed.

Wold H68 '

The phased array technique was attempted on the accessible areas of the north side (0-180 degrees) of H6b. Unfortunately, the tooling did not perform as intended and only 25.2 degrees (lug sets 15 & 16) of length and depth data were collected using this technique. l The north side was inspected again using the Trimodal inspection package. The scan was successful in obtaining crack lengths but was not successful in obtaining any depth

data due to package liftoff. Phased array data successfully collected crack length and j depth data on the accessible areas of the south side of the weld except for approximately 7.2 degrees of the we!d where package lift-off was experienced. In summary, approximately 81.0% of the total weld was inspected and of that,64.3% was flawed.

[

f Carolina Power & Light Company CALCULATION 2B11-0001 REV. O Brunswick Nuclear Plant - Unit 2 Page 20 Core Plate Bolts in addition to the inspections planned and documented in Attachment A, the core plate i

bolts were inspected using an additional transducer that was mounted on the inspection l tool. This transducer was set up to scan through the core support ring to confirm the existence of the bolts through the holes in the core support ring. This process was  ;

! completed while scanning the lower side of H6B.

1 i

Vertical Welds Vertical welds V3 through V6 were visually inspected over 100% of the accessible lengths on the OD and ID.

10.0 STRUCTURAL EVALUATILN l

Core Shroud Evaluation Conservatisms/ Assumptions e For horizontal welds, assumed all uninspected areas are fully cracked through-wall and no credit was taken in analysis for these areas. For vertical welds, assumed inaccessible areas are cracked based on the average crack depth of the inspected areas.

e Used 5x10* in/hr crack growth rate in lieu of measured or predicted BNP crack growth rates. (Past inspection results from the both units showed no measurable crack depth growth.)

e Assumed 97% capacity factor for analysis, which equates to a 17000 hour cycle length for the next cycle. (15890 hours is predicted.)

e Applied UT uncertainty for depth on all flaws where specific depth limit load analysis was run.

  • Applied UT uncertainty for length as required.
  • Applied the Section XI proxitnity criteria for adjacent cracks.

'

  • Used the criteria described in BWRVIP-07 (Feb'96) for calculation ofinspection intervals on a weld by weld basis.

Safety Factors l The analyses contained in this calculation used safety factors consistent with Section 3.9.5 "ReactorPressure Vesselinternals"of the BSEP Updated FSAR which specifies safety factors of 2.25 for normal / upset,1.5 for emergency, and 1.125 for faulted conditions.

Weld Stresses The stress levels for welds H1 through H7 have been computed per reference [4.18] (see Table 6.1 for values). The stresses incorporate reactor internal pressure differentials for GE-13 fuel under power uprate conditions, along with BNP specific shroud component weights, using the guidance of reference [4.20). Each weld has been evaluated in

Caro /ina Power & l.ight Company CALCULATION 2811-0001 REV. 1 Brunswick Nuclear Plant - Unit 2 Page 21 accordance with BWRVIP-01 [4.6], and BWRVIP-07.[4.21].

WELD DETAILS Wold H1 Weld H1 was analyzed using full thickness ligaments only. No credit was taken for partial ligaments or inaccessible areas. Three separate analyses were run. H1 upper, H1 lower, and the combination of the two, H1 combined (H1C). See Attachment C for input and output files.

Weld H4 This circumferential weld'is located near the highest fluence region on the core shroud. It is estimated to reach the currently established fluence threshold for limit load analysis methodology in January of 2001 which is just prior to refuel outage B215R1, scheduled to begin February 24,2001. As such, there are two options available for analysis of this weld.

In accordance with BWRVIP-01, it is required that a Linear Elastic Fracture Mechanics (LEFM) analysis be performed. The other option is to assume that the areas of the weld that exceed the fluence threshold are fully cracked. Then a Limit Load analysis could be performed. This approach would be conservative. This calculation performed a LEFM analysis.

Two 20" areas of this weld, azimuths 130' to 150 on the north side and 240 to 260 on the south side, have been interrogated each outage for the past three inspection intervals.

These weld areas are being scrutinized specifically for crack depth growth characte: @s.

H4 was chosen because of its elevation on the shroud, which places it in the highest fluence zone of all horizontal welds. A graph for all welds has been developed which shows the estimated end of life fluence levels based on current available data, see Figure 11.1. A detailed study of the crack growth issue is ongoing. At this time no conclusion can be made.

Wold H68 The analysis of H6B was more involved and complicated than in previous outages. Tooling and transducer package issues resulted in use of a combination of two processes and methods as described below. See Appendix F for a graphical representation of the I

- inspection results.

1 INSPECTION

SUMMARY

I GENERAL: l The cracked ligament start and stop point locations for weld H68 were processed using the core plate bolt location data as landmarks. An additional UT package was used to interrogate the core plate support ring through which the core plate bolts penetrate. The j i

p

' Crro/ina Power & Light Company CALCULATION 2B11-0001 REV. O Brunswick Nuclear Plant - Unit 2 Page 22 azimuth locations of the bolts are known with a high degree of accuracy, thus, processing the weld crack lengths using the core plate bolts as landmarks, resulted in a high

- confidence level for the cracked ligament locatens.

The cracking on the north side is quite extensive resulting in very few, relatively short full L thickness ligaments remaining. Therefore, crack lengths on the north side do not l 'significantly impact the results of the analysis.

NORTH SIDE: (Azimuth Range 0-180 degrees)

No crack length or depth data was collected on the north side of H6B using the phased array process except for the 29 degrees between azimuths 129 and 158. The trimodal

_ instrument package was also used to scan the north side of H6B between azimuths 17 and 164 degrees, and was successful at obtaining crack length data but no crack depth data.

SOUTH SIDE: (Azimuth Range 180-360 degrees)

The phased array process was usad to inspect the south side of H6B. The scan obtained crack length and depth data between azimuths 202 and 340. No crack depth data was obtained between azimuths 195 and 202. The length data for this area was obtained.

ANALYSIS

SUMMARY

NORTH SIDE:

The 29 degrees of depth data that was obtained on the north side of H6B is considered a very good sample of the entire north side (~20% of the inspected area).

A comparison was made between the 1999 and 1997 data for H6B north (see Attachment G). Thc average crack depth, for this area of the two inspections, was computed. The

' difference in the averages (0.221 inches) was used to increase the 1997 inspection depths on the north side. This method is considered conservative since the crack depth increase

.of 0.221 inches is most likely a significant function of the phased array process. Four times

as many scan lines of data are collected. This tends to increase the area under the crack depth profile curve, thereby increasing the average crack depth substantially. As can be seen on the graph in Attachment G page 1, the maximum crack depths have not changed by any measurable amount. Of course some crack growth cannot be ruled out. However, the actual crack growth rate is estimated to be less than half of the crack growth value currently in use. Conservatively assuming the 0.221" is all crack growth, and conservatively assuming the 13*
run cycle of 12,800 hours0.00926 days <br />0.222 hours <br />0.00132 weeks <br />3.044e-4 months <br />, the crack growth rate equals 1.75 X 10 4 in/hr.

SOUTH SIDE:

The south side crack data matched very well with the previous (1997) inspection data. The phased array process failed to obtain crack depth data for a small portion of this side (~7 degrees).

A similar process that was used on the north side was used to establish a crack depth modifier for the area where crack depths were not obtained. All other accessible areas of i

l Caro /ina Power & Light Company CALCULATION 2B11-0001 REV. O Brunswick Nuclear Plant - Unit 2 Page 23 this side had good crack length and depth data. The graph on page 2 of Appendix G shows i the comparison of the crack lengths between the 1997 and 1999 data. A small adjustment of the 1997 azimuth data was made to get the lengths to align so that a meaningful comparison could be made. The cracks were split into 4 areas in order to provide even more meaningful results. Area A is the area where the depth adjustment is needed, therefore it could not be used to compute an average change. The average crack depth for each of the three remaining areas was computed. Then the average of the three averages I was computed to obtain the overall average change in the depths of the south side. The  !

average change was computed to be 0.065 inches. This value was added to the 1997 data for the cracks in Area A and used with the 1999 phased array data, j

Combination of H1 Upper and Lowe~ i The upper side of H1 (ring side) and the lower side (plate side) are combined here to conservatively show the overall condition of weld H1.

Severalindications on the upper side of H1 were reported as outside the exam area.

These indications are very likely associated with the lugs that are welded to the outside of the ring. GE considered these indications in the percent of inspected weld found flawed.

The values in Table 10.1 do not consider indications 4,7,8, or 9 in the calculation of

" percent cracked". Indications 2,6, & 7 were conservatively considered as being  !

associated with the horizontal weld. l The computation for the percent of total weld inspected is based on the lengths of weld that were interrogated from both sides (31.7 -158.08 ,213.9 -228.14 ,230.3 -340.85 for 251.17 which yields 69.8% of the weld).

The computation for the percent of inspected weld found flawed is based on the combined length of cracking from the upper and lower sides in the areas where both sides of the weld were interrogated, as computed above (251.17 ). The lengths where cracking of the upper and lower side coincide were considered the same crack and counted as one length. The total length of cracking within the 69.8% inspected is 83.41 . Therefore, the percent of inspected weld found cracked is 33.2% (83.41 /251.17 )

The above computation is just one way to compute the desired percentages. Other methods may be used and the results will be slightly different, but will not change the conclusions of this calculation.

m i 1 1

1 1

Caro /ina Power & Light Company CALCULATION 2B11-0001 REV. O Brunswick Nuclear Plant - Unit 2 Page 24 l l

Table 10.1 - Evaluation Summary - Shroud Welds inspected during B214R1 Wold  % of Total .  % of Inspected EOl EOI Evaluation Minimum 10 ' Weld inspected Wold Cracked Per Per Method Computed VIP-07 DLL Safety Factor 6 yrs 8 yrs H1 70.4 % 2.2% (3 cycles) (4 cycles) DLL Limit 24.62 Upper (B217R1) (B218R1) Load Analysis (Faulted) 4 yrs 6 yrs H1 81.4 % 31.4 % (2 cycles) (3 cycles) DLL Limit 4.90 Lower (B216R1) (B217R1) Load Analysis (Faulted) l l H1 4 yrs 6 yrs Combined 69.8 % 33.2 % (2 cycles) (3 Cycles) DLL Limit 2.60 (B216R1) (B217R1) Load Analysis (Faulted) 2 yrs 8 yrs DLL Limit 10.35 H4 78.3 % 3 5.h% (1 cycle) (4 cycles) Load & 1.34' l (B215R1) (B218R1) & LEFM (Faulted)

Analysis Plant 2 yrs DLL Limit H6b 81.0 % 64.3 % Specific (1 cycle) Load 2.77 (B215R1) Analysis (Faulted) 10 yrs V3 100 % 0% B219R1 N/A VIP-07 N/A 10 yrs V4 100 % 0% B219R1 N/A VIP-07 N/A 10 yrs l VS 100 % 0% B219R1 N/A VIP-07 N/A 1

l l 10 yrs V6 100 % 0% B219R1 N/A VIP-07 N/A 5 25%

Repair 100 % No Every other N/A VIP-07 N/A Clamps Degradation Cycle l NOTES:

1. This safety factor specified is based on the LEFM analysis methodology.
2. Vertical weld criteria is preliminary at the time of this calculation.
3. Baseline inspection of repair clamps was completed this outage.

' Carolina Power & Light Company CALCULATION 2B11-0001 REV. O Brunswick Nuclear Plant - Unit 2 Page 25 l

' 11.0 SHROUD FLUENCE

SUMMARY

Based on current industry evaluation guidelines, in order to ensure structural integrity, a  !

-linear elastic fracture mechanics analysis (LEFM) should be performed when the total l 2

l . neutron fluence accumulation at any shroud circumferential weld reaches 3x10 n/cm2, 1 E>1MeV. The H4 shroud weld will reach the fluence threshold level (3x10 n/cm ,

l- E>1MeV) for LEFM analysis during the B2C14 fuel cycle. Figure 10.1 graphs the peak l neutron fluence levels expected for each shroud weld at 29.3 EFPY. These projections are based on the flux data supplied by Westinghouse specifically for Brunswick based on CP&L supplied information of Core power distributions including fuel assembly burnups and relative axial distributions of both fuel burnup and core void fractions for each of the l first eleven fuel cycles utilized at Brunswick Unit 2.

An alternate method of accounting for high fluence areas is to assume the areas of the 1 weld that have exceeded the threshold fluence are fully cracked. This method was not J used for the qualification of H4 in this calculation. l l

Figure 11.2 shows a plan view of the fluence sh' ape. The most significant peaks occur at approximately 45 ,135 ,225*, and 315 . For the H4 weld, a zone extending 15 on either side of the peak azimuth could be assumed fully cracked in order to use the limit load  !

analysis methodology. As shown in Figure 11.2, the computed primary LEFM affected j zones are 23.14 degrees wide at the end of plant life. Thus,30 degrees is conservative.  ;

H4 is projected to reach the fluence threshold in January,2001. The secondary fluence i peaks for H4 are projected to reach the LEFM threshold in March,2011.

' The limit load method (with the high fluence zones assumed fully cracked) is considered to  ;

be conservative based on the fact that no credit is taken for the areas that have exceeded the threshold and the existing evidence that the threshold itself is considerably higher L (8.0E+20n/cm ), based on testing of material properties that have experienced higher l fluence levels (see ref. 4.21). ,

l l

Caro //na Power & Light Company CALCULATION 2B11-0001 REV. O Brunswick Nuclear Plant - Unit 2 Page 26 1

i e

I 4

i Peak Shroud Fluence @ Inside Radius (29.3 EFPY)l l

Ruence Tmes 1E+18 1.000000E-18 100 200 300 400 500 600 700

)

H1 t

e a

pd.,wk.

n,,

p . +.

H2 n H3 _,~ _._ .,- _ - . .~a u e.t.U .w W '.M Lu sy o'._'.w.u ._v. M.a.w.P WIm,_.

u..w-w~..... 4.W.~A.W. .mwe.M/Ed.

_4..-.y,,,_..>,<.y

.~

._ __ __ .__.. __ __ .. __ _ . . __ .._~_e. .- _,. _

_n_ _ _ _ _ _ _ . _ _ _. ___. . _ . _ . _ . . - _____.a. _ _ . _ .

3 dhh%A#NuwwN.W(Wi.Mm,a.'.:--

$.Mw.n_a a__w u._w.- :; u.m_.an.4.h.s%MGMk.{4M.m_WdnM JM%Vuakk.W&sG3y' Nsd4 NUs.M@r l m %,, u - . . -

uam wa-

_e.w _r.,544%W nsw. ~.q-una _u_un nn s.a. wwM H4 r.= .,_ _._.a,-- _.u

_ _ _ _ ~_ ._. _ _ _.__._._ .___._.___._.__m._.~.__~_

k ' a .a . e. *a .e6 .

s e '.4.W w s AAau.. _ _ _ e i.e..>4 >

n & * .__.

'wne . _ % .+ t._ . _'* i*-. -

1- 3

.'w v, .~_..u..p

}.e.w,.m,4 sm..+- .__n.._._ '.'.r.m__

nu.r., u.ww,.w.-

s.. .k ws -- s nwa_m.: m ,

an n_m _~_.~_,,..

, w % s..m, w ..e u w

._m.,,..a_.

x e-.

_.-w.

i ewu w s

.,,m._ ._,m aa n wwm~~a.m_y p.v.m_-i.'

.. __m.+

2 .b4 m_m.i+

m..... wa

w. ...a.UM ~.L.r i_i 4 ' W a +r.n_M.ed.s % u._% ~_e 6-d eM. :.W m . &._m_

_.'.e%'

uww. ' t a

W g a .

.' ... _m.w . . m. .

N w,

._A+ .N A.. / E dv.4._.J% m._.m. e am.

6.A_iu' m

r _.a,,.+p

,_au42/r

~.'.wd

._%._i4w rAb

~~= ,, u., m.4 W..i_s. 444.-.FJ4 n _ . _ w., _ _r,m._ . _ . -_ . _ . _ . _ , ____ . _ . . . . . _ . - . __.

_.._.._..s.a.3 _ _

. _ . . ..__,_.~_.-_ut . . . _

i, '; :. u.,

~_-.u_.y e c _%~,c.;c t., s._c r_. p~p.#%_. w e___a r w w.s.

. _ .  : ._._ w.,u_- m a __' sw w . 3. 6. wta_',.u.a,

.e ,4 1,;

- w'.w v

.___,.ch n_----._.t-

  1. -u . .  %. . . ' w

__m,.~.-o_. ...w_

_m_w,...s-a

. _ _ . _ .._. _ _._ ~_ _ - -

. .. _._-__+__...-vse.

_ _. _,,-.~,...-._,.,._...w

,,._/.s..-

. _ ... - -_._. . _ . . . _._D

, _ 4@ V hwa.Ma r Ww 'us e44eWhs'.'(m**W

= _y GrWed.MAri_#

._ _.. - ._ - ._z-

_ - _.. ._4s WpA C._sfe A_hhwP'Wwiba.e n_pe.6=.e 4. .sv-s + 44'W e_rhe NM

__.%M_.MW_.-y._ v " ' , . ', . .rM-_-

_ , ' [ ' ' U M&.

YS

-. _A.W.hMMM -

QA.W.%Cl,'?'_"? *Y.CMCM O ,$f_?A n$?.O

_.. _ _'t.2.% . - X.22CO.2"NM.

- a W.4s. 'Anu.6.w s' W.- www.' 'aA.e

_ ____~

~~ . ' .w.endes)

.e'e em64 w' . s,.w'w H5 m

_._' ._. n.- .- - _ . _ - . -

M.*.'.f ,;s 4.N W %_'4.- 4.*.L ~. eaAa&alshes.d

_ l 7r H6A !

H68 H7 i

l l

1 I

Figure 11.1

O7 2

Ve E g R a e P c e

c n e d 1 n u lo 0 e e u R hs e 0 n 1 1 R / er /cn 0- o 0 1 P F Th n z 2 R 1

xu M 5

E M 20 93E F E+

r, 1 1 S F a 2 B yEM B 2 L 6 2 e r a L d m dn slo - -

N ossehse - -

i O

I T .

c e or T s Sctr h A

L v e n _

e o U z C c L n M F

A e EY C l u LP gF F eE d 3 s 4 9 i

u 1 2 3t d 2 a 2

)

a \ 1 R i 1

e n% g

% e r

d i _s '

s u g

s i i

n [' "

  • l<$ ..

g'~c '

F d

h u

o r

0 2

+

E 6

2

+

E 3

Q 9

.gs.

/

S

- .}->&:.

f y

d l

e

\ A' ,

Y 'f n2 at W h s1 e0 pin s0 s2 mU 4 o H r n, _

o - c a C

t P eJ t n nd ha gl N ol zo .

iP B xs h _

L r luer f

a h

&e yt r

r c l

aM eu e mF iE wN o

gn e o PL r

Pk c d z ai 9M~

is l

nw 1 F 0E 1 L on r u ar CB

Caro /ina Power & Lighe Company CALCULATION 2B11-0001 REV. O Brunswick Nuclear Plant - Unit 2 Page 28 12.0 REACTOR WATER CHEMISTRY The graphs contained in Attachment E show the hydrogen water chemistry (HWC) data for the Unit 2 operating cycle 13. This information is provided to document Hydrogen injection flow rate, a parameter that is known to affect the crack growth rate for IGSCC phenomena. The HWC data will be used to support establishment and use of a reduced crack growth rate based on plant specific data. Figure E1 depicts the monthly combination of ratios for the cycle. The HWC system was in service 96.7% of the time during run cycle 13. Figure E2 relates the number of hours at each ratio to the average hydrogen concentration at each ratio. The average hydrogen concentration for the entire cycle is computed to be 0.842 ppm and was obtained by multiplying the number of hours at each ratio, times the associated average hydrogen concentration for each j ratio. The results were summed and divided by the total number of hours to obtain the average. Figure E3 shows the percent of the cycle that each ratio was in service. It also relates the ratio to the hydrogen concentration at 100% power. Also shown in i Attachment E, Figure E4 is the average monthly reactor water conductivity for run cycle

13. This parameter plays a major roll in the IGSCC process. The higher the conductivity, the greater the crack growth rate. As the chart shows, the conductivity  ;

level during cycle 13 was maintained well within the limitations stated in the EPRI guidelines.

13.0

SUMMARY

OF SHROUD HORIZONTAL WELD REINSPECTION WTERVALS Table 13.1 below summarizes tne horizontal weld data for the Unit 2 Core Shroud based on the inspections performed to date.

Table 13.1 bbN 4 2

.i

.l l - WELD DATA \ WELD DESIGNATION ll H1 ll H1 l H4 ll H5 ll H8e l H6b ll K7 ll Comments Poodmn inspecind lower ID upper ODi upAow 10 uptiow OD upper ID i Irweer 10 upper ID Railo of weld mapacted to total need length (%) 81 4 70 4 78.3 59 3 79 0 81 0 75 6 as of B214R1 and pror outage _s Percent of mspected length found cracked 31 4 22 35.3 71 53 64 3 10 9 includes hspection uncertainty _

Faulted stress levens (Pm + PtRKsi) 15 1.5 2.3 34 45 45 58 Comtuned stress interval per BWRVIP-07_(?)96Hable 1 (years) 5.7 8.0 32 80 80 Spectfic 8.0 Interpolaton used as per_mrited_

Oulage last inspected (excluding pertialsllMo Nr ) B214R1 8214R1 B214R1 8213R1 B212R1 B214R1 B212R1 Qual [hcation Portodper the Calculation _(Cyclesk3 Cycles 4 Cyches 4 Cycles, 4_Cyclesf 3M s+ 1 Cple 3 Cples +

8 of CyclesgBWRVIP 07 (Mo Nr ) 2 Cycles 3 Cycles 1 Cycle 3 Cycles 3 Cycles 1 C_ycle_._3 Cycles _usmg {n/2+11 rounded _up or down Outane pnor to reachino next inspection B216R t B217R1 821SR1 B216R1 8215R1 B21SR1 821SR1 Propoemd BWRVIP-07 Critena Note: The run cycle days for' welds H5, H6a, and H7 have not been adjusted for 24 month cycles. The extra 108 days is more than accounted for in the existing margin for these welds. The cycle days will be adjusted the next time these welds are inspected.

Caro /ina Power & Light Company CALCULATION 2B11-0001 REV. O Brunswick Nuclear Plant - Unit 2 Page 29 Table 13.2 below summarizes the current safety factors as computed using the DLL computer program per BWRVIP-20 for the Unit 2 shroud horizontal welds. The number of cycles considered for crack growth is specified for each weld.

Table 13.2 Summary of Weld Safety Factors at the End of Evaluation (ref. Attachment C)

WeldID'  ;

H1 H4- H5 H6a H6B I: . H7.

UpperILower/ Limit Load (Ref 4.22) (Ref. 4.22) . Lower (Ref. 4.22)

Combined LEFM See Note . See Note- See Note

. ,, Load Case .'

(3 Cycles) ~ (4 Cycles) (4 Cycles) (3 Cycles) (1 Cycle) (3 Cycles)

Normal Upset- 60.08/21.48 18.69 16.51 17.85 5.51 10.14 15.16 2.36 Emergency 49.41/17.67 14.68 12.59 13.93 4.33 7.81 12.48 1.86 Faulted 29.50/10.43 10.18 9.91 11.11 3.39 6.23 6.64 1.32 Note: The safety factors for welds H5, H6a, and H7 have not been adjusted for 24 month cycles. The extra 108 days is bounded by the existing margin for these welds. The safety factors will be adjusted the next time these welds are inspected. See Table 13.1 for the current VIP-07 requirements.

1 l

Ciro//nm Pow:r & Light Comprny CALCULATION 2B11-0001 REV. 0 Brunswick NucI2:r Plint - Unit 2 Attachmsnt A Page 1 of 11

- Carolina Power & Light Company P.O. Box 10429 Southport, NC . 28461-0429 December 21,1998 SERIAL: BSEP 98-0225

.U. S. Nuclear Regulatory Commission

- ATTN: Document Control De's k Washington, DC 20555-0001 BRUNSWICK STEAM ELECTRIC PLANT, UNIT NO. 2 DOCKET NO. 50-324/ LICENSE NO. DPR-62

- CORE SHROUD INSPECTION PLAN FOR REFUELING OUTAGE 13 (NRC TAC NO. MA0811)

Gentlemen:

By letter dated August 28,1998 (Serial: BSEP 98-0167), Carolina Power & Light (CP&L) Company submitted the core shroud inspection plan for the Brunswick Steam Electric Plant (BSEP), Unit No. 2. These inspections are planned for the BSEP, Unit No. 2 Refueling Outage 13 (i.e., B214R1), which is scheduled to begin on April 17,1999,

- During a telephone conference on September 22,1998, the NRC requested additional imbrmation regarding: .

(1) the inspection of core shroud welds H5, H6A, H7, and the core shroud vertical welds and (2) the l calculational methodology for reinspection of weld H5. CP&L's responses to these questions were discussed I 1

with the NRC during a telephone conference on October 29,1998. Based on these responses, the NRC I

requested an' update of the inspection information for weld H5. A copy of the revised core shroud inspection

. plan is enclosed..

Please refer any questions regarding this submittal to Mr. Warren J. Dorman, Supervisor - Licensing, at i

_ (910)457-2 % 8. .

1 Sincerely, j

// Original Signed By D. M. Benyakfor//

Keith R. Jury Manager-Regulatory Affairs I Brunswick Steam Electric Plant I WRM/wrm U

Enclosure:

Core Shroud Inspection Plan, Unit 2 B214R1 Outage, April 1999, Revision 1 -

L. __

Ccrolins Pbwer & ' Light Company CALCULATION 2B11-0001 REV. O Brunswick Nuclear Plznt - Unit 2 Attachment A Page 2 of 11 -

Document Control Desk l- BSEP 98-0225 / Page 2 '

l I

cc (with enclosure):

l U. S. Nuclear Regulatory Commission, Region II ATTN: Mr. Luis A. Reyes, Regional Administrator l Atlanta Federal Center-L 61 Forsyth Street, SW, Suite 23T85 Atlanta, GA 30303 -

U. S. Nuclear Regulatory Commission l ATTN: Mr. Charles A. Patterson, NRC Senior Resident Inspector 8470 River Road Southport, NC 28461-8869 U. S. Nuclear Regulatory Commission

. ATTN: Mr. David C. Trimble, Jr. (Mail Stop OWFN 14H22)

I1555 Rockville Pike Rockville, MD 20852-2738

'Ms. Jo A. Sanford Chair - North Carolina Utilities Commission I P.O. Box 29510 Raleigh, NC 27626-0510 i l 1 l

r L

l.. -

a

Caro /ina Power & Light Company CALCULATION 2B11-0001 REV. O Brunswick Nuclear Plant - Unit 2 Attachment A Page 3 of 11 Core Shroud Inspection Plan Unit 2 B214R1 Outage April 1999 Revision 1 Prepared by:

Phil Gore John Langdon Larry Yemma December 1,1998 i Recommended by: Date: l Approved by: Date:

l Caro /ina Power & Light Company CALCULATION 2B11-0001 REV. O Brunswick Nuclear Plant - Unit 2 Attachment A Page 4 of 11 Core Shroud Inspection Plan Brunswick Steam Electric Plant, Unit No. 2 Refueling Outage 13 (B214R1), April 1999 i

SUMMARY

OF B214R1 INSPECTION PLANS l

The scope ofinspections for the Brunswick Steam Electric Plant (BSEP), Unit No. 2 Refueling Outage 13 (i.e., B214RI) core shroud includes baseline inspections as well as reinspections. Several factors were used to determine the scope: results of previous inspections performed on both BSEP units, results within the industry, and follow-up actions and commitments from previous inspections.

Guidance on shroud inspection and flaw evaluation contained in the Boiling Water Reactor Vessel and Internals Program (BWRVIP) documents BWRVIP-01, " Core Shroud Inspection and Flaw Evaluation Guideline," Revision 2, and BWRVIP-07, " Guidelines for Reinspection of BWR Core Shrouds," were also used. The NRC Safety Evaluation on BWRVIP-07 was also used in determining the reinspection frequency of the core shroud welds. A discussion of the inspection plans for each weld or component l is provided in detail herein, and includes inspection history, results, and analytical conclusions.

Weld H1 will be re-inspected in 100 percent of the accessible areas using ultrasonic examinations (i.e.,

UT). Since the shroud head bolt lugs limit access of the inspection tooling to less than 20 percent of the upper side of the weld, Carolina Power & Light (CP&L) Company is having the inspection tooling modified to permit increased coverage of this weld. It is expected that the new technique will allow l increasing the inspection coverage of this weld to over 75 percent. The inspection technique will be I qualified in accordance with BWRVIP guidelines.

Welds H2 and H3 were structurally replaced with twelve clamps during the Refueling Outage 10 (i.e.,

B211R1), so these welds no longer require inspection. Five of the clamps will be visually inspected, which will complete the baseline inspection of the twelve clamps installed.

Weld H4 will be reinspected in 100 percent of the accessible area using UT.

Weld H5 will not be inspected. Analysis of the Refueling Outage 12 (i.e., B213RI) UT results concluded that the weld has sufficient structural margin to operate until Refueling Outage 15 (i.e.,

B216R1) before reinspection is necessary.

Welds H6A and H7 will not be inspected. Analysis of the B212R1 UT results concluded that these welds have sufficient structural margin to operate until Refueling Outage 14 (i.e., B215R 1) before reinspection is necessary. i l  !

I Weld H6B will be reinspected in 100 percent of the accessible area using UT.

No inspections are planned for weld H8 orshroud support leg welds since inspection tooling and techniques have not been fully developed that will work on the BSEP type shroud.

l Since no flaws were found on weld H9 during the UT inspections performed in the B211R1 outage, no l

inspections are planned.

l l

l INSPECTION HISTORY AND PLANS FOR B214R1

o I

L C2ro//n:t Powcr & Light Company CALCULATION 2B11-0001 REV. O Brunswick Nucle:r PI:nt - Unit 2 Attachment A Page 5 of Il j For discussion purposes, coverage addresses the total amount of the welds' circumference that was inspected by the specified inspection technique (i.e.,if 78 percent of the weld was inspected, this means 78 percent of the circumference was inspected). The amount of cracking discussed is in l reference to the amount of the inspected area that was found to be cracked (i.e., of the 78 percent inspected,15 percent was cracked).

Weld H1 In the B211R1 outage,11.1 percent of the outside surface was visually (i.e., VT) inspected with no cracking found.

In the B212R1 outage, the baseline inspection was completed using UT on 100 percent of the accessible areas. This weld presents unique challenges to UT inspection since the shroud head hold down bolt lugs prevent access to most of the upper side of the weld. UT was performed on 24 uniformly distributed locations representing 23.1 percent of the weld A total of 3.6 percent i

cracking was found, with crack depths ranging from 0.22 to 0.27 inches. All of the cracking was located on the outer ring surface side of the weld. On the lower side of the weld,83.3 percent was UT l inspected with 38.5 percent cracked. The crack depths were from 0.06 to 0.53 inches. The guide rod brackets and core spray piping prevented access to the remaining areas of the weld. Analysis of the UT data showed the weld had sufficient structural margin to operate until the B214RI outage before reinspection was necessary.

Welds H2, H3, and the Structural Clamos Welds H2 and H3 were structurally replaced with twelve clamps during the B211R1 outage; therefore, no inspection of these welds is required. Four of the clamps were VT inspected during the B212R1 outage, and three were inspected in the B213R1 outage. No indications were noted in either inspection. The five remaining clamps will be VT inspected during the B214RI outage, thereby completing the baseline inspection of the twelve clamps.

Weld H4 In the B211R1 outage, the baseline inspection was completed using UT on 100 percent of the accessible areas. A total of 78 percent was inspected with 26.1 percent cracked. Jet pumps, guide rod brackets, and core spray piping prevented inspection of the remaining areas.

Although analysis showed the weld to have sufficient structural margin to operate until the B214R1 outage before reinspection would be necessary, CP&L elected to monitor selected areas of the cracking for growth. Select areas were reinspected during the B212R1 and B213R1 outages, with no measurable growth noted.

Weld H5 In the B211R1 outage,100 percent of the accessible areas of the weld were inspected. Attempts were made to perform UT on this weld, but the inspection tooling would not pass by the jet pump riser brace arms. A total of 4.6 percent of the weld was inspected using UT, with no cracking identified.

CP&L fm' ished the inspections using VT. A more recent review of the inspection tapes, indicates that the previously reponed findings were very conservative. On the inside surface,100 percent of the area was inspected versus the 92.8 percent previously reported and 7.1 percent of the inspected area was l cracked versus the 11.3 percent previously reported. On the outside surfaces,30.6 percent of the area l

l

Carolina Power & Light Company CALCULATION 2B11-0001 REV. O Brunswick Nuclear Plant - Unit 2 Attachment A Page 6 of 11 was inspected with no cracking identified versus the 6.4 percent of the inspected area that was previously identified as cracked.

In the B213R1 outage, the baseline inspection was completed using UT on 100 percent of the accessible areas. The inspection tooling had been modified for the installed clamps and the clearance issues associated with the jet pump riser brace arms. A total of 83.6 percent of the lower side of the weld was inspected with no cracking identified. On the upper, outside diameter side of the weld, the riser brace arms again prevented transducer package access to 34.9 percent of the weld. No cracking was identified in the inspected area. The guide rod brackets, core spray piping, and jet pumps also limited access to areas on both sides of the weld.

1 I

Using the UT inspection results from the B213R1 outage, it has been shown that over 50 percent of the l weld was inspected, which permits entry into BWRVIP-07, Table 1. Since 7.1 percent was found l cracked, the reinspection frequency designated in Table 1 is 6 years. Therefore, reinspection is due during the B216R1 outage. A plant-specific analysis was performed which confirms that the weld has sufficient structural margin to operate until reinspection during the B216R1 outage and substantiates the conclusions of BWRVIP-07, Table 1.

Details of the analysis and the revised VT inspection results are included in Attachment 1 of this enclosure.

Weld H6A In the B211R1 outage, over 11 percent of the outside surfaces were VT inspected with no circumferential cracking noted. Inaccessibility prevented inspections on the inside surfaces.

In the B212R1 outage, the baseline inspection was completed using UT on 100 percent of the accessible areas. A total of 79 percent of the weld was inspected with 5.3 percent cracked. The cracking was located exclusively on the ring side of the weld, with crack depths ranging from 0.08 to 0.27 inches. Analysis showed the weld has sufficient structural margin to operate until the B215R1 outage before reinspection is necessary.

Weld II6B In the B211R1 outage, over 1i percent of the outside surfaces were VT inspected with one,1.5 inch circumferential crack noted. Inaccessibility prevented inspections on the inside surfaces.

In the B212R1 outage, UT was performed on 100 percent of the accessible areas of the weld.

78.4 percent was inspected with 69.3 percent cracked. The cracking initiated exclusively from the inner plate-side heat affected zone of the weld, with crack depths ranging from 0.10 to 0.79 inches.

In the B213R1 outage, UT was used to re-inspect 100 percent of the accessible areas. Using modified tooling, CP&L increased the coverage to 84.3 percent with 73 percent found cracked. No significant growth was noted in the previously inspected areas. The crack depths ranged from 0.05 to 0.75 inches.

Jet pumps, guide rod brackets, and core spray down comers prevented inspection of additional areas.

Analysis showed the weld had sufficient structural margin to operate until the B214R1 outage before reinspection is necessary.

Caro /ina Power & Light Company CALCULATION 2B11-0001 REV. O Brunswick Nuclear Plant - Unit 2 Attachment A Page 7 of 11 Weld H7 In the B211R1 outage, over 11 percent of the outside surfaces were VT inspected with no circumferential cracks noted. Inaccessibility prevented inspections of the inside surfaces.

In the B212R1 outage, the baseline inspection was completed using UT on 100 percent of the  ;

accessible areas. A total of 75.6 percent was inspected with 10.9 percent cracked. The cracking initiated exclusively from the 304 stainless steel side of the weld on the inner surface. The crack depths were from 0.06 to 0.52 inches. Analysis showed the weld had suf6cient structural margin to operate until the B215R1 outage before reinspection is necessary.

Weld H8 No previous inspections have been performed, or are planned during the B214R1 outage, for this weld.

This weld presents significant accessibility challenges since access to the upper side of the weld is very restricted due to the jet pump diffusers, core spray piping, and guide rod brackets. CP&L estimates that less than 40 percent of the weld is accessible for UT from the annulus area due to the clearance between the jet pump diffusers and the shroud support plate (i.e., less than 2 inches) and the openings for the jet pump diffusers in the jet pump baffle plate.

Access to the weld from beneath the baffle plate is even more restrictive due to the openings in the jet pump baffle plate for the jet pump diffusers and the core shroud support legs. Total coverage is estimated to be less than 30 percent of the weld from this side of the weld. The most coverage for this weld can be obtained from the fuel side of the shroud support; however, a considerable number of fuel I cells will require vacating to gain access.

No inspection techniques or tooling have been completely developed and tested that will inspect in excess of 50 percent of this weld. While some inspection tooling is available in the industry,it will not provide complete coverage of all areas of interest on the weld, nor will it cover at least 50 percent of the weld circumference. When inspection tooling and techniques are available and tested that will provide at least the minimum required inspections, CP&L plans to inspect this weld consistent with BWRVIP guidance.

i Weld H9  :

During the B212RI outage, the baseline inspection was completed using UT on 100 percent of the accessible areas. Over 99 percent of the weld was inspected with no cracking noted. Based on the current BWRVIP-38 guidelines, reinspection is not necessary until the B217R1 outage.

Core Shroud SuDDort LEES There currently are no inspection equipment, techniques, or approved BWRVIP inspection and evaluation guidelines available for inspecting the core shroud support legs. When these become available, CP&L will inspect these areas consistent with BWRVIP guidance.

Vertical Welds V1 and V2 (located between welds H1 and H2)

These welds were visually inspected on the outside diameter surfaces in 1991 with no indications found. Since these welds are outside the beltline region as defined by the current BWRVIP-07 guidelines, no inspections are planned.

Carolina Power & Light Company CALCULATION 2B11-0001 REV. O Brunswick Nuclear Plant - Unit 2 Attachment A Page 8 of 1I Vertical Welds V3 and V4 (kwated between welds H3 and H4)

These welds were VT inspected during the B210R1 outage on the inside and outside surfaces with no indications noted. These welds will be baseline inspected using UT on 100 percent of the accessible areas during the B214R1 outage.

Vertical Welds V5 and V6 (located between welds H4 and H5)

Weld V5 was VT inspected during the B210R1 outage on the inside and outside surfaces with no indications noted. Weld V6 was VT inspected during the B210R1 outage on the outside surface only with no indications noted. These welds will be baseline inspected using UT on 100 percent of the accessible areas during the B214R1 outage.

Vertical Welds V7 and V8 (located between welds H5 and H6)

These welds were VT inspected during the B210R1 outage on the outside surface with no indications noted. Since the cracking on welds H5 and H6A is less than the current BWRVIP guidelines, no j inspections are planned during the B214R1 outage.

Vertical Welds V9. V10 and V11 (kwated between welds H6H and H7) i These welds were VT inspected during the B210R1 outage on the outside surfaces with no indications noted. Since these welds are outside the beltline region, as defined by the current BWRVIP-07 guidelines, no inspections are planned.

Rine Seement Welds (H1 rine. H2/H3 rine, and H6A/H6H rine)

Welds H1, H6A, and H6B are not repaired; therefore, no inspections are required by the current BWRVIP-07 guidelines. The clamps installed on the H2/H3 welds replace the H2/H3 ring segment welds; therefore, no inspections are necessary.

INSPECTION SCOPE EXPANSION Scope expansions will be performed dependent on inspection results on a component-by-component basis in accordance with BWRVIP guidance.

l i

I

Caroline Power & L/pht Company CALCULATION 2B11-0001 REV. O Brunswick Nuclear PI:nt - Unit 2 Attachment A Page 9 of 11 Attachment 1 To Core Shroud Inspection Plan For Brunswick Steam Electric Plant, Unit No. 2 Refueling Outage 13 (B214R1), April 19?9 Core Shroud Weld II5 Inspection and Evaluation Summary VISUAL INSPECTION - 1994:

During the B211R1 outage, visual examinations (i.e., VT) were performed on the inside (i.e., ID) and outside (i.e., OD) surfaces of the H5 core shroud weld. The VT results were documented in Engineering Evaluation Report (EER) 94-0077 and are summarized below:

  • 92.8 percent of the inside surface was inspected,62.8 inches of circumferential cracks and j three short axial cracks were identified

{

  • 30.6 percent of the outside surface was inspected,11 inches of circumferential cracks and j two short axial cracks were identified ULTRASONIC INSPECTION - 1997:

During the B213R1 outage, ultrasonic examination (UT) was performed on OD of core shroud weld H5. The UT results were documented in Engineering Service Request (ESR) 97-00034. No indications were noted using this technique. The following areas of the weld were inspected:

  • 34.9 percent of the upper side of the weld, with no indications e 83.6 percent of the lower side of the weld, with no indications It was understood at that time that the previous visual inspection findings were not reproduced in the areas where the VT and UT overlapped. Since the cracking percentage of the VT examination was  !

small compared to the inspected length, it was determined that an acceptable analysis would be obtained by using the current UT data only.

REVIEW OF THE 1994 VT INSPECTION TAPES: I In the effort to resolve the differences between the 1994 and 1997 data, a review of the VT inspection tapes from 1994 was performed. All areas were closely reviewed. This review yielded the following i conclusions:

e Verified that 100 percent versus 92.8 percent of the inside surface of weld H5 was VT inspected.

  • Each previously reported indication was reviewed. Of the 27 indications reported on the inside surface,10 were axially and 17 were circumferentially oriented. The review concluded that eight of the axially oriented indications were cracks. The remaining two indications are non-relevant; both being the edges of oxide scale on the shroud plate.

Carolina Power & Light Company CALCULATION 2B11-0001 REV. O Brun: ick Nuclear Plant - Unit 2 Attachment A Page 10 of 11

  • Of the 17 circumferential indications reported, the review concluded eight were cracks. The remaining nine indications were either non-relevant or axially oriented.

. On the outside surface, one 11 inch long circumferential crack was reported. The review of the tape revealed this to be a non-relevant indication associated with grinding marks and pitting.

The conclusion of this review of the 1994 VT inspection is that 100 percent of the inside surface was inspected with 39.5 inches (7.1 percent) of total cracking. Of that cracking,16.5 inches (3 percent) was UT inspected from the OD of the weld (lower side of the weld) and 14.0 inches (2.5 percent) was UT inspected from the OD of the weld (both the upper and lower sides). Based on this data, Carolina Power & Light Company concluded these cracks are very shallow and have experienced little to no crack growth over the period from 1994 to 1997.

ANALYSIS VERIFICATION:

To substantiate the applicability of BWRVIP-07, Table 1, .wo distributed ligament length models of the combination of the VT and UT data were generated. The first model is based on the original 1994 VT data and the 1997 UT data. The second model is based on the revised 1994 VT data and the 1997 UT data. The conservative assumptions used in these analyses are stated below:

  • A crack growth rate of 5.0E-5 inches / hour was used.
  • The evaluation duration was 3,200 days (1994 until 2003).
  • Used a size uncertainty of 2t (i.e.,3 inches) at each crack tip.

. All areas not VT inspected from both ID and OD or UT inspected from above and below the weld were considered fully cracked.

  • The area where the confirmed ID crack that was not picked up by UT was considered fully cracked.

The results of the analyses agree with Table 1 of BWRVIP-07 that the next inspection is due within six years from 1997 (i.e., by 2003). This also confirms that BWRVIP-07 is conservative since the analyses used very conservative assumptions as design inputs. l

SUMMARY

lE The coverage of weld H5, using UT technique, is conservatively computed to be 59.3 percent of the 1 weld. No cracking was observed. The method used to compute this value is as follows:

125.8 inches was inspected from both sides, and 175.2 inches was inspected from the lower side only. A two-sided inspection fully interrogates all four weld toes while a one-sided inspection fully interrogates two weld toes. Therefore, [(125.8 x 4) + (175.2 x 2)] / (360 x 4) represents the coverage of weld H5.

l Additional coverage of weld H5 was obtained which was not considered in the equation above.

I Specifically, a one-sided UT does interrogate a third weld toe with some limitation. A crack greater than 0.24 inches in depth can be seen on the upper ID using a UT from the lower OD. This additional coverage was considered in our previous submittal. Recomputing the inspection coverage to include t

7 Cero//na Power & Light Company CALCULATION 2B110001 REV. 0

( Brunswick Nuc/e:r Plant - Unit 2 Attachment A Page il of 11 the additional coverage of the third weld toe yields 71.5 percent, which was reported in a submittal l l dated November 10,1997 (Serial: BSEP 97-0489).

Visual 100 percent of the ID and 30.6 percent of the OD was inspected which equates to 65.3 percent of the weld as follows:

. [(360 x 2) + (110 x 2)] / (360 x 4)

The total length of cracking was computed to be 39.5 inches, which equates to 25.5 degrees or l 7.1 percent (i.e.,25.5/360).

CONCLUSIONS:

l The reassessment of core shroud weld H5 adequately demonstrates that this weld is structurally sound and capable of performing its function through the next inspection interval as outiined in BWRVIP-07, 1

l

.+

I C:rolins Power & Light Company CALCULATION 2B11-OOO1 REV. O Brunswick Nucle:r PI:nt - Unit 2 Attachment B Page 1 of 6 i

e -

BENCHMARK OFTHE DLL COMPUTER PROGRAM AS REVISED l

04/20/99 Prepared by: Larry Yemma 4A% hh4-- Date: 04-30-99 Verified by: Phillio Gore I Date: 04-30-99

i Ccro/ ins Power & Light Company CALCULATION 2811-0001 REV. O

~ Brunswick Nucle:r PI:nt - Unit 2 Atttchment B Page 2 of 6 The documentation included on the following pages verifies that the revised DLL computer program is giving the same results for the sample problems. The program was modified to accept nine hundred and ninety nine (2500) ligaments. Also, minor formating changes were made to allow additional decimal places to be displayed.

No computational areas of the program were revised, thus no changes in the results were expected or identified.

l l

L I

I

Crro/ ins Pow:r & Light Comp:ny CALCULATION 2B11-0001 REV. O Brunswick Nuc/ ear P/. int - Unit 2 Attachm:nt B Page 3 of 6

1. Comparison of the source codes to identify changes made.

Comparing files Dill 2 30-97.for and dil04-20 99.for C***** Dill 2-30 97 Jor l

C*** **

j C*** **

            • dil04-20-99.for C*** **

C***- 4/20/99 WBW (CPL) Changed # ofligaments **

C*** from 999 to 2500 **

C*** . Adjusted write statement to **

C*** allow 4 digit output of **

C*** region numbers. "*

C*** **

'C*** **

C*** **

i

            • Dill 2-30-97 .for .

CHARACTER *6 MESH DIMENSION THETA 1(999), THETA 2(999), THICK (999), CRACK (999)

DIMENSION CRK_ANGl(100),CRK_ANG2(100)

            • dil04-20-99.for CHARACTER *6 MESH  !

DIMENSION THETA 1(2500), THETA 2(2500), THICK (2500), CRACK (2500) '

DIMENSION CRK_ANGl(100),CRK_ANG2(100)

~

I C***** Dill 2-30 97.for I

& /,5X,'** PROGRAM "DLL" REV: ',A15,' **'

I

& /,5X,'** CP&L Version - Updateo through 12/30/97 **',

& /,5X,'** Distributed Ligament Length Analysis * * ' ,

C***** dil04-20-99.for

&. /,5X,'** PROGRAM "DLL" REV: ',A 15,' **' ,

& /,5X,'** CP&L Version - Updated through 4/20/99 **',

& /,5X,'** Distributed Ligament Length Analysis * * ',

            • Dill 2-30 97.for WRITE (*.25) I, THETA 1(I), THETA 2(I), THICK (I) 25 FORMAT (6X,13,8X,F5.1,6X,F5.1,7X,F5.3) 26 CONTINUE C***** dil04-20-99.for WRITE (*,25) 1 THETA 1(I), THETA 2(I), THICK (I) 25 FORMAT (6X,14, 8X, F6.2,6X, F6.2,7X, F5.3) 26 CONTINUE e.....

, Comparing files sample-1.OUT and sample-la.out

m C:ro/ina Power & Light Company CALCULATION 2B11-0001 REV. O Brunswick Nuc/e:r P/:nt - Unit 2 Attachment B Page 4 of 6

            • sample-1.OUT DLL DISTRIBUTED LIGAMENT LENGTH EVALUATION, REV. 2.1 (09/19/96)

DATEOFTHIS ANALYSIS: 12/30/1997 '

            • sample-la.out DLL DISTRIBUTED LIGAMENT LENGTH EVALU ATION, REV. 2.1 (09/19/96)

DATE OF THIS ANALYSIS: 04/20/1999 e.. **

            • sample-1.OUT 1 0.0 7.5 2.000 2 82.5 97.5 2.000 3 172.5 187.5 2.000 4 262.5 277.5 2.000 5 352.5 360.0 2.000
            • sample-la.out 1 0.00 7.50' 2.000 l 2 82.50 97.50 2.000 l 3 172.50 187.50 2.000 4 262.50 277.50 2.000 5 352.50 360.00 2.000 1

Comparing files sample-2.OUT and sample-2a.out

            • sample-2.OUT DLL DISTRIBUTED LIGAMENT LENGTH EVALUATION, REV. 2.1 (09/19/96)

DATEOFTHIS ANALYSIS:12/30/1997

            • sample-2a.out i DLL DISTRIBUTED LIGAMENT LENGTH EVALUATION, REV. 2.1 (09/19/96)

DATEOFTHIS ANALYSIS:04/20/1999

            • sample-2.OUT 1 0.0 360.0 0.060
            • sample-2a.out 1 0.00 360.00 0.060 Comparing files sample-3.OUT and sample-3a.out
            • sample-3.OUT 1

C;ro/ ins Power & Light Company CALCULATION 2B11-0001 REV. 0 l Brunswick Nuclear Plant - Unit 2 Attachmsnt B Page 5 of 6 1

DLL DISTRIBUTED LIGAMENT LENGTH EVALUATION, REV. 2.1 (09/19/96)

DATE OFTHIS ANALYSIS: 12/30/1997 c***** sample-3a.out DLL DISTRIBUTED LIGAMENT LENGTH EVALUATION, REV. 2.1 (09/19/96)

DATE OF THIS ANALYSIS: 04/20/1999 e ....

            • sample 3.OUT 1 0.0 , 26.4 1.500 2 26.4 32.1 0.970 3 32.1 38.9 1.5(X) 4 38.9 49.3 0.980 5 49.3 52.3 1.500 6 52.3 150.1 0.900 7 150.1 230.9 1.500 8 230.9 231.5 1.230 9 231.5 239.0 1.500 10 239.0 248.5 1.220 11 248.5 259.0 1.500 12 259.0 260.4 1.280 13 260.4 288.6 1.500 14 288.6 295.2 1.170 15 295.2 305.4 1.5(X)-

16 305.4 306.9 1.I60 17 306.9 319.8 1.500 18 319.8 329.4 1.140 19 329.4 360.0 1.500

            • sample-3a.out 1 0.00 26.40 1.500 2 26.40 32.10 0.970 l 3 32.10 38.90 1.500 4 38.90 49.30 0.980 5 49.30 52.30 1.5(X) 6' 52.30 150.10 0.9(X) 7 150.10. 230.90 1.500 8 230.90 231.50 1.230 9 231.50 - 239.00 1.500 10 239.00 248.50 1.220 11 248.50 259.00 1.500 12 259.00 260.40 1.280 13 260.40 288.60 1.500 14 288.60 295.20 1.170 15 295.20 305.40 1.500 16 305.40 30',.90 1.160 ,

17 306.90 319.80 1.500 l 18 319.80 329.40 1.140 19 329.40 360.00 1.500 j ji ,

1 i

o C:ro/ina Power & Light Company CALCULATION 2B11-0001 REV. O Brunswick Nucle:r PI:nt - Unit 2 Attachmznt B Page 6 of 6 Comparing files sample-4.OUT and sample.4a.out

$***** sample.4.OUr DLL DISTRIBUTED LIGAMENT LENGTH EVALUATION, REV. 2.1 (09/19/96)

DATEOFTHIS ANALYSIS:12/30/1997

            • san.ple.4a.out DLL DISTRIBUTED LIGAMENT LENGTH EVALUATION, REV. 2.1 (09/19/96)

DATE OF THIS ANALYSIS: 04/20/1999

            • sample.4.OUT 1 0.0 26.4 1.500 2 32.1 38.9 1.500 3 49.3 52.3 1.500 4 150.1 230.9 1.500 5' 231.5 239.0 1.500

'6 248.5 259.0 1.500 7 260.4 288.6 1.500 8 295.2 305.4 1.500 9 306.9 319.8 1.500 10 329.4 360.0 1.500

' ****** sample.4a.out 1 0.00 26.40 1.5(X) 2 32.10 38.90 1.500 3 49.30 52.30 1.5(X) 4 150.10 230.90 1.500 5 231.50 239.00 1.500 6 248.50 259.00 1.500 7 260.40 288.60 1.500 8 295.20 305.40 1.500 9 306.90 319.80 1.500 -

10 329.40 360.00 1,500

r l

L Caro /ino Power & Light Company CALCULATION 2Bf 1-0001 REV. O Brunswick Nuclear Plant - Unit 2 Attachm::nt C Page l Of 35 gg 15 0 2.356E+09 56575 76.29 ---->ACCElTA BLE 20'0 2.299E+09 $5203. 74.45 ---> ACCElTA B LE i HlU Normal Upset B214R13 Cycles 25 0 2.250E+09 54M4. 72.89 --->ACCElTABLE l

0 3 2.201 E+09 52867. 71.31 -- >ACCEliABLE 35 0 2.154E+09 51734. 69.79 -->ACCEITABLE l

l 262 40 0 2.110E+09 50674. 68.37 ->ACCElTABLE 483 45 0 2 069E+09 4 % 94. 67 06 -->ACCElTABLE 50.0 2.032E+09 48802. 65 86 ----> ACCElTA BLE 2.25 55.0 1.997E+09 47 % 7. 64 74 ->ACCEiTABLE 94.00 60 0 1964E+09 47174. 63 67 --->ACCEliABLE 65.0 1.936E+09 46486. 62.75 --->ACCEf7ABLE l 1.50 70.0 1.91]E+09 45907. 61.97 ---->ACCElTAllLE 16900. 75.0 i.892E+09 45441. 61.35 -> ACCEPTABLE 80 0 1.88tE+09 45164. 60 97 -->ACCEliABLE 5e19 85D 1.864E+09 44756. 60 43 --> ACCEPTABLE 9 90 0 1.856E+09 44562. 60 17 -->ACCElTABLE 95.0 1.853E+09 44495. 60 08 ----> ACCElTA BLE 33.50,42.12,1.5 100.0 1.859E+09 44640. 60 27 ---> ACCEPTABLE 46.54,70.16,1.5 105D 1.862E+09 44728. 60.39 -> ACCEPTABLE 110 0 1.870E+09 44921. 60.65 --->ACCEliABLE 74.51,117.41,1.5 iis o tss6E+09 45305. 61.16 ->ACCEITABLE 122.39,143.80,1.5 120 0 1.897E+09 45557. 61.50 --->ACCEITA B LE 125.0 1.916E+09 46018 62.12 -->ACCEliABLE 147.91,153.76,1.5 130.0 1.937E+09 46519, 62.79 -->ACCElTAllLE 158.05,238.12,1.5 135 0 1.965E+09 47201. 63.71 ---> ACCEliA B LE l 140.0 1.990E+09 47798. 64.51 --- >ACCEITABLE l

242.16,273.53,1.5 i45 0 2.0l BE+09 48474. 65 42 ---->ACCElTABLE l 277.69,315.11,1.5 i50.0 2.050E+09 49242. 66.45 -->ACCElTABLE J 155.0 2.086E+09 50094. 67.59 ---> ACCEITAB LE 319.15,339.05,1.5 160.0 2.i22E+09 5097i. 68.77 ---> ACCEliA B LE OUTPUT i65 0 2.i60E+09 sib 85. 70.00 ->ACCEliABLE Filename: DLL12-30-97.For 170.0 2.201 E+09 52868. 71.32 ->ACCElTABLE I DLL DISTRIBUTED LIGAMENT LENGTil EVALUATION. REY. 2.1 175.0 2.245E +09 53912. 72.72 ---->ACCElTAB LE l (09/19/96) 180.0 2.286E+09 54910. 74.06 ->ACCElTABLE DATE OF Tills ANALYSIS: 05/27/1999 185 0 2.333E+09 56020. 75.55 --> ACCElTA B LE 190 0 2.364E+09 56770. 76.55 --> ACCEliA3 LE

SUMMARY

OF INPUTS: 195.0 2.400E+09 57643. 77.73 --->ACCEITA B LE

'00 0 2.431E+09 58377. 78.71 ->ACCElTABLE

Title:

111L Normal Upset B214RI 3 Cycles 205.0 2.449E+09 58811. 79.29 -> ACCEPTABLE ,

Angle increment 210.0 2.469E+09 59288. 79.93 -> ACCEL 4AllLE

= 1.0 deg. (COARSE)

Membrane Stress Pm = 262. psi 215.0 2.482E+09 59619. 80.38 ->ACCElTABLE )

Ilending Stress. Pb = 483. psi 220 0 2.487E+09 59718. 80.51 ---> ACCEITA B LE Safety Factor. SF . 2.25 225.0 2.492E+09 59860. 80.70 --->ACCEPTAllLE Mean Radius. Rm = 94 00 inches 230.0 2.502E+09 60084. 81.00 --> ACCEPTAB LE Wall Thickness, t = 1.500 inches 235 0 2.506E+09 60183. 81.13 ->ACCEITABLE i Stress Intensity. Sm = 16900. psi 240 0 2.505E+09 60166. 81.11 ->ACCEf7ABLE Fluence = 5.0E+19 n/cma 2 245.0 2.508E+09 60238. 81.21 - >ACCEliABLE (Thus. LEFM cvaluation not applicable) 250 0 2.5l2E+09 60340. 81.34 .--- ACCEPTABLE 255 0 2.518 E+09 60470. 81.52 ---->ACCEITAllLE TilETAl TilETA2 TillCKNESS 260.0 2.523 E+09 60590. 81.68 ->ACCEliABLE l

REGION [deg] [deg] [ inches] 265.0 2.527E+09 60678. 81.80 ->ACCEliABLE 270 0 2.533E+09 60833. 82.01 ->ACCEITABLE 1 33.50 42.12 1.500 275.0 2.532E+09 60818. 81.99 ->ACCEITABLE 2 46.54 70.16 1.500 280.0 2.535E+09 60888. 82.08 -->ACCElTABLE 3 74.51 117.41 1.500 285.0 2.539E+09 60982. 82.21 ---> ACCEPTABLE 4 122.39 143 80 1.500 290.0 2.544E+09 61100 82.36 - >ACCEPTABl .E 5 147.91 153.76 1.500 295.0 2.550E+09 61241. 82.55 ---> ACCEPTABLE 6 158.05 238.12 1.500 300 0 2.557E+09 614M 82.77 -- >ACCElTABLE 305.0 2.566E+09 61637, 83 09 ->ACCEliABLE 7 242.16 273.53 1.500 8 277.69 315.11 1.500 310.0 2.567E+09 61652. 83.11 --->ACCEITABLE 9 319.15 339.05 1.500 315.0 2.568E+09 61675. 83.14 ->ACCEliABLE 320.0 2.569E+09 61697. 83 17 -- > ACCEPTABLE 325.0 2.571E+09 61738. 83 22 -- ->ACCElTABLE LIMIT LOAD RESULTS: 330.0 2.577E+09 61883. 83 42 --- > ACCEL 4ABLE 335.0 2.574E+09 61818. 83.33 --->ACCEliAllLE I NOTE:'nlE FOLLOWING LIMIT! DAD RESULTS ASSUMETHAT 340 0 2.572E+09 61763. 83.25 ->ACCEITABLE THE FLAWS TAKE COMPRESSION. 345.0 2.559E+09 61461. 82.85 -- >ACCElTABLE l

350 0 2.538E+09 60943. S2.15 --> ACCEPTA BLE l ALPilA MOMENT Pti SAFETY 355.0 2.509E+09 60267. 81.25 ---> ACCEPTABLE jdeg) lin-lbs) [ psi] FACI'OR RESULT l ACCEITABLE! MINIMUM SAFETY FACTOR = 60.08 AT 95 0 0.0 2.482E+09 5%I4. 80.37 -.->ACCElTABLE DEGREES.

I 50 2.443E+09 58662. 79.09 --> ACCEPTABLE i 10.0 2.397E+09 . 57564. 77.62 ~~>ACCEITABLE

Caro /ina Power & Light Company CALCULATION 2B11-0001 REV. O Brunswick Nucle:r Plant - Unit 2 Attachment C Page 2 Of 35 INPUT 15 0 2.356E+09 56575. 62.74 --> ACCEliA BLE 20 0 2.299E+09 55203. 61.23 ---> ACCEITA B LE HlUpper Emergency B214R13 Cycles 25.0 2.250E+09 54044. 59 95 -->ACCEfTABLE O 3. 2.201 E+09 52867. 58 65 -->ACCElTABLE 35 0 2.154E+09 51734. 57.40 --->ACCEliABLE 269 40 0 2. i iOE+09 50674. 56.23 -->ACCElTAllLE 637 45 0 20mEm 49694. 55 is ->ACCEITABLE 50 0 2.032 E+09 48802. 54.16 --> ACCEPTABLE 1.50 55 0 1.997E+09 47 % 7. 53.24 ---->ACCEITABLE 9100 60.0 1.964E+09 47174. 52.37 --->ACCElTABLE 65.0 1.936E+09 46486. 51.61 ---> ACCEL 4A B LE l 1.50 70.0 i .9ii E+09 45907. 50.97 ->ACCEliABLE

16900. 75 o 1.892E+09 45441. 50.45 ->ACCEITABLE i

80 0 1.881E+09 45164. 50.15 -->ACCElTABLE l 5e19 85 0 1.8aEm9 44756 49.70 ->ACCEITABLE j g 90.0 1.856E+09 44562. 49.48 --->ACCEliA B LE j 95 0 !.853E+09 44495. 49.41 --->ACCEliABLE 33.50,42.12,1.5 i00 0 i.859E m 44640. 49.57 ---->ACCElTAllLE i

46.54,70.16,1.5 105 0 1.862E+09 44728. 49.67 ->ACCEliABLE 110 0 1.870E+09 44921. 49.88 --->ACCEITABLE 74.51,117.41,1.5 115.0 i.886E+09 45305. 50.30 ->ACCEliABLE 122.39,143.80,1.5 120 0 1.897E+09 45557. 50.58 ->ACCEFTABLE 125.0 1.916E+09 46018. 51.09 -->ACCEITAllLE 147.91,153.76,1.5 130.0 1.937E+09 46519. 51.64 ->ACCElTABLE 158.05,238.12,1.5 i35.0 i.*5E+09 4720i. 52.39 --> ACCEPTABLE

  • 140 0 1.990E+09 47798. 53 05 --->ACCEITAllLE 242.16,273.53,1.5 i45.0 2.0isE+09 48474. 53.80 --->ACCEsTABLE 277.69,315.11,1.5 is0o 2.050E+09 49242. 54 65 ---->ACCEliA BLE 155.0 2.086E+09 50094. 55.59 ---> ACCEPTABLE 319.15,339.05,1.5 to0 0 2. i22E+09 5097i. 56.56 --->ACCEliABLE j

OtJTPUT 165.0 2.160e+09 5i885. 57.57 ->ACCElTABLE I Filename: DLLl2-30-97 For 170.0 2.201 E+09 52868. 58 65 ---> ACCEITA BLE DLL DISTRIBUTED LIGAMENT LENGTH EVALUATION REV. 2.1 175.0 2.245E+09 53912. 59 80 --->ACCEITABLE (09/19/96) 180.0 2.286E+09 54910. 60.90 -->ACCEiTABLE DATE OFTillS ANALYSIS: 05/27/1999 185.0 2.333E+09 56020. 62.13 ->ACCEliABLE i 100.0 2.364E+09 56770. 62.% --->ACCElTABLE SUMM ARY OF INPUTS: 195.0 2.400E+09 57643. 63.92 -->ACCEITABLE

===== . 200 0 2.431 E+09 58377. M.73 --->ACCElTAllLE

Title:

HlUpper Emergency B214Rl 3 Cycles 201 0 2.449E+09 58811. 65.21 - .--> ACCEITABLE Angle inerement = 1.0 deg. (COARSE) 210.0 2.469E 09 59288. 65.74 ->ACCEiTABLE Membrane Stress.Pm = 269.ps 215.0 2.482E+09 5 % 19. 66.10 .-->ACCEITABUE Ilending Stress. Pb = 631. psi 220 0 2.487E+09 59718. 66.21 --->ACCElTABLE Safety Factor. SF = 1.50 225.0 2 492E+09 59860. 66.37 --->ACCElTABLE Mean Radius Rm . 94 00 inches 230.0 2.502E+09 60084. 66.61 ---->ACCEITABLE Wall Thickness. t = 1.500 inches 235.0 2.506E+09 60183. 66.72 ->ACCEITABLE Stress intensity, Sm = 16900. psi 240.0 2.505 E+09 60166. 66.71 ->ACCEITABLE Fluence = 5.0E+19 n/cm^2 245.0 2.508 E+09 60238. 66.78 ---->ACCEITA BLE (Thus. LEFM evaluation not applicable) 250 0 2.512E+09 60340. 66.90 -->ACCEliABLE 255 0 2.518E+09 6M70. 67.04 ----> ACCEL 4ABLE THETAl TilETA: THICKNESS 260 0 2.523E+09 60590. 67.17 --->ACCElTABLE REGION jdegj jdeg) [ inches) 265.0 2.527E+09 60578. 67.27 ---->ACCEliABLE 270.0 2.533E+09 60833. 67.44 -->ACCEliABLE I 33,50 42.12 1.500 275 0 2.532E+09 60818. 67.43 --->ACCEPTA BLE 2 46.54 70.16 1.500 280.0 2.535E+09 60888. 67.50 -->ACCEliABLE 3 74.51 117.41 1.500 285 0 2.539E+09 60982. 67.61 -->ACCElTABLE 4 12239 143.80 1.500 290.0 2.544E+09 61100. 67.74 -->ACCEliAllLE 295.0 2.550E+09 61241, 67.89 - -->ACCFITABLE 5 147.91 153.76 1.500 6 158.05 238.12 1.500 300.0 2.557E+09 61404. 68 07 ---> ACCEPTABLE 7 242.16 273.53 1.500 305.0 2.566E+09 61637. 68.33 -->ACCElTABLE 8 277.69 315 11 L500 310.0 2.567E+09 61652. 68.35 - -->AKEPTAllLE 9 319.1S 339 05 1.500 315 0 2.568E+09 61675 68.37 -->ACCEITAllLE 320.0 2.569E+09 61697. 68 40 - > ACCEPTABLE 325.0 2.571E+09 61738. 68.44 ->ACCEPTAllLE LIMIT LOAD RESULTS: 330 0 2.577E+09 61883. 68.60 ---> ACCEL 4ABLE  :

l

.. . 335 0 2.574E+09 61818. 68.53 ->ACCElTAllLE l NOTE: THE FOLLOWING LIMIT LOAD RESULTS ASSUME Til AT 340 0 2.572E+09 61763. 68.47 --->ACCEPTAllLE i

" DIE FLAWS TAKE COMPRESSION. 345.0 2.559E+09 61461. 68.13 --->ACCEliA B LE l 350 0 2.538E+09 60943. 67.56 ->ACCEITA BLE i 355 0 2.509E+09 60267. 66.82 -->ACCElTABLE ALPilA MOMENT Pb' SAFETY f

[deg) [in-lbs] (psi) FACTOR RESULT ACCEITAllLE! MINIMUM SAFETY FACIDR = 49.4i AT 95.0 DEGREES.

00 2.482E+09 5%I4. 66.10 ->ACCEliAllLE 5.0 2.443E+09 58662. 65.05 ---> ACCEPTABLE 10.0 2397E+09 57564. 63.83 -->ACCEliABLE

C:rolina Power & Light Company CALCULATlON 2B11-0001 REV. O Brunswick Nuclear Plwt - Unit 2 Attachment C Page 3 Of 35 INPUT 15.0 2.334 E+09 56062. 37.32 --->ACCEITABLE 20.0 2.284E+09 54855. 36.53 --->ACCElTA B LE HlUpper Faulted B214R13 Cycles 25 0 2.239E+09 53781. 35 82 --> ACCEITA B LE O 3- 2. is6E+09 52500. 34 98 ----> ACCEITA B LE 35 0 2.130E+09 51368. 34.24 ---> ACCEPTABLE 885 40 0 2 095E+09 50307. 33.55 --->ACCEITABLE 641 45 0 2.054E+09 49327. 32.90 ---> ACCEFTA BLE 50 0 2.0DE+09 48435. 32.32 --->ACCEf7ABLE 1.125 55 0 L98]E+09 47581. 31.76 ---->ACCEITABLE 94.00 60.0 1948E+09 46789. 31.24 ---> ACCEPTABLE 65.0 1.920E+09 46100. 30.79 --->ACCElTA B LE 1.50 70 0 L895E+09 45521. 30.41 -->ACCElTABLE i 16900. 75.0 1.876E+09 45056. 30.11 --->ACCEITABLE j 80.0 1.869E+09 44891. 30 00 --> ACCElTA BLE 1 5e19 85.c i.848E+09 44389. 29 67 --> ACCEITAB LE f 9 90.0 1.840E+09 44195. 29.54 --->ACCEITABLE j 95.0 1.837E+09 44128. 29.50 -->ACCEITABLE 1 33.50,42.12,1.5 100 0 L847e+09 44363. 29.65 -->ACCEf7ABLE 46.54,70.16,1.5 iO5.0 1.846E+09 44343. 29.64 ->ACCElTABLE 110 0 1.854E+09 44535. 29.76 ->ACCEiTABLE 74.51,117.41,1.5 115.0 i.863E+09 44746 29.90 - >ACCElTABLE 122.39,143.80,1.5 120 0 1.882E+09 45191. 30.19 -->ACCEITABLE 125.0 1.905 E+09 45741. 30.55 -->ACCElTABLE 147.91,153.76,1.5 I30 0 1.921E+09 46134. 30.81 --->ACCEFTABLE 158.05,238.12,1.5 i35.0 1.94]E+09 466N. 31.12 --> ACCEPTABLE 140.0 1.973E+09 47395. 31.64 -- - >ACCElTA BLE 242.16,273.53,1.5 i45 0 2.002E+09 48071. 32 08 -->ACCEfiABLE l

277.69,315.11,1.5 '50.0 2.034E+09 48838. 32 58 ----> ACCEITA B LE 155 0 2.069E+09 49690. 33.14 -->ACCEITABLE 319.15,339.05,1.5 i60.0 2.iO6E+09 50585. 33.73 -- ->ACCEITAB LE OUTPUT 165.0 2.i44E+09 51500. 34.33 ->ACCEITABLE Filename: DLL12-30-97.For 170 0 2.185E+09 52483. 34 97 ---> ACCElTAB LE I DLL DISTRIBUTED LIGAMENT LENGTil EVALUATION. REY. 21 175 0 2.229E+09 53526. 35 66 ---->ACCEITA B LE (09/19/96) 180.0 2.274E+09 54623. 36.37 --->ACCElTABLE i DATE OF Tills ANALYSIS: 05/27/1999 185 0 2.310E+09 55489. 36.94 -->ACCElTABLE 190.0 2.354 E+09 56525. 37.62 ->ACCEITABLE SUMM ARY OF INPUTS: 195.0 2.391 E+09 57427. 38.21 --->ACCEf7ABLE

-...- - - - 200 0 2.415E 49 57988. 38.58 - >ACCEiTABLE

Title:

111 Upper Faulted B214RI 3 Cycles 205.0 2.442E+09 58638. 39 01 --->ACCEITA B LE Angle increment = 1.0 deg. (COARSE) 210.0 2.463E+09 59144. 39.34 ->ACCEITABLE Membrane Stress, Pm = 885 psi 215.0 2.472E+09 59375. 39.49 --->ACCEITABLE l Bending Stress. Pb = 641.ps 220.0 2.482E+09 59617. 39 65 --->ACCEITA B LE Safety Factor, SF = L13 225.0 2.487E+09 59723. 39.72 ->ACCEiTABLE Mean Radius. Rm = 94 00 inches 230 0 2.494E+09 59898. 39.83 ----> ACCEITA B LE Wall Thickness, t = 1.500 inches 235 0 2.498E+09 59987. 39.89 --->ACCEITABLE Stress Intensity. Sm = 16900. psi 240 0 2 500E+09 60029. 39.92 -->ACCElTABLE 245.0 2.503E+09 60101, 39.96 ->ACCEITABLE Fluence = 5.0E+ 19 n/cm*2 (Thus, LEFM cvaluation not applicable) 250 0 2.507E+09 60202. 40.03 -- >ACCEITABLE 2551) 2.512E+09 60333. 40.12 ->ACCEITABLE TilETAI THETA 2 TillCKNESS 260.0 2.519E+09 605N. 40.23 ----> ACCEPTABLE l REGION {deg.) (deg) [ inches) 265 0 2.522E+09 60560. 40 27 --- >ACCElTABLE 270.0 2.525E+09 60637. 40.32 -->ACCElTABLE 1 33.50 42.12 1.500 275.0 2.527E+09 60681. 40.34 -->ACCEfTABLE 2 46.54 7016 1.500 280 0 2.530E+09 60750. 40.39 --->ACCEITABLE 3 74.51 117.41 1.500 285.0 2.533E+09 60844. 40 45 ->ACCEf7ABLE 4 122.39 143.80 1.500 290.0 2.538E+09 60962. 40.53 -->ACCEITABLE 5 147.91 153.76 1.500 295 0 2.544E+09 61103. 40.62 -->ACCEITABLE 6 158 05 238.12 1.500 300.0 2.551E+09 61266. 40.73 ->ACCElTABLE ,

305.0 2.559E+09 61450. 40.85 -->ACCE! TABLE 7 242.16 273.53 1.500 310,0 2.563E+09 61561. 40 92 ->ACCEITABLE i 8 277.69 315.11 L500 9 319.15 339.05 1.500 315.0 2562E+09 61538. 40.91 -->ACCEITABLE 320.0 2.563E+09 61560. 40.92 ->ACCElTABLE 325.0 2.565 E+09 61601. 40 95 --- >ACCEiTABLE LIMIT LOAD RESULTS:

330.0 2.567E+09 61660. 40 99 --->ACCEITABLE

= = = = = = = = = . - . . 335.0 2.570E+09 61728. 41.03 --->ACCEITA B LE NOTE: Tile FOLLOWING LIMIT LOAD RESULTS ASSUME TilAT 340.0 2.562E+09 61537. 40 91 -> ACCEPTABLE Tile FLAWS TAKE COMPRESSION. 345.0 2.553E+09 61314. 40.76 ->ACCEf7ABLE 350.0 2.532E+09 60808. 40 43 --> ACCEiTA B LE ALPilA MOMENT Pb' SAFTTY 355.0 2.503E+09 60103. 39.97 - >ACCEITABLE

[deg) lin-lbs) [ psi) FALTOR RESULT

~

ACCEI" TABLE! MINIMUM SAFETY FACTOR = 29.50 AT 95.0 DEGREES.

TO 2 467E+09 59244 39.40 ->ACCEITABLE 50 2.434E+09 58455. 38.89 -> ACCEPTABLE 10 0 2.387E+09 57329. 38.15 --->ACCElTABLE

Ccm/ina Power & Light Company cal.CULATION 2B11-0001 REV. O Brunswick Nucle:r Plant - Unit 2 Attachment C Page 4 Of 35 }

INPUT 50 i .470E+m 35302. 47.74 -->ATEITABLE 1

20 0 1.44lE+09 34615. 46.81 --->ACCEliA B LE H1 Lower Normal Upset B214R13 Cycles 25 0 i.446E+09 34717. 46 95 ---->ACCEliA B LE O 30.0 1.413 E+09 33943. 45.91 --> ACCElTA B LE 9' ~ 35.0 1.416E+09 34017. 46 01 ----> ACCEL 4AllLE 40.0 1.397E+09 33547. 45 38 -->ACCEiTABLE 483 45.0 1.373E+09 32975. 44.61 ---->ACCElTA B LE 2.25 50 0 1.345 E+09 32305. 43.71 --->ACCEITABLE I 94.00 55.0 1.295E+09 31111. 42 11 -->ACCEliABLE 1.50 60 0 1.280E+W 30732. 41.60 ---> ACCEPTABLE 65 0 1.235E+09 24656. 40.16 - - >ACCEITABLE 16900.

70.0 1.179E+09 28318. 38.36 --->ACCEliABLE 5e19 75.0 1.152E+09 27673 37.50 --> ACCEPTABLE 1 13 80.0 1.135E+09 27249. 36 93 --->ACCEliABLE 76.87,80.14,1.5 85 0 1.100E+09 26413. 35 81 ---->ACCEliA B LE 104.19,106.24.1.5 90 0 1064E+09 25543. 34 64 ---->ACCEITAB LE 95.0 1.026E+09 24637. 33.42 -->ACCEliAllLE 110.53,113.31.1.5 100.0 9.870E+08 23703. 32.17 ---->ACCEliA BLE I19.19,126.I1,1.5 105.0 9.40$E+08 22586. 30.67 --->ACCElTABLE 150.10,160.02,1.5 110.0 9 089E+08 21827. 29.65 --->ACCEliAllLE i 198.08,202.69,1.5 115 0 8.891E+08 2!353. 29.01 --->ACCElTABLE i 120.0 8.520E+08 20461. 27.82 -->ACCEITABLE 209.55,213.07,1.5 125 0 8.338E+08 20026. 27.23 --->ACCEiTABLE 232.91,240.39,1.5 130 0 7.8%E+08 189 M 25.81 --->ACCErTABLE 249.56,251.73,1.5 135 0 7.845E+08 18841, 25 64 ->ACCEliABLE 256.51,267.46,1.5 I40.0 7.538E+08 18103 24 65 -->ACCElTABLE 145.0 7.44 t E+08 17872 24 34 ---> ACCEITAB LE 27138,279.29,1.5 150.0 7.091 E+08 17030. 23 21 --->ACCEliABLE 283.09,288.31,1.5 155.0 6.%3E+08 16723. 22 80 --> ACCEPTABLE 308.95,340.51,1.5 160.0 7.067E+08 16973. 23 13 --> ACCEITA BLE 165 0 6 900E+08 16571 22.59 - ->ACCEliAllLE OUTPUT 170.0 6.944E+08 16677. 22.74 ---> ACCEFTA B LE l Filename: DLL12-30 97.For 175.0 6.891 E+08 16550. 22.57 ---> ACCEPTABLE '

DLL DISTRIBUTED LIGAMENT LENGTH EVALUATION, REV. 2.1 180 0 6.658 E+08 15991 21.82 -->ACCEFTABLE (09/19/96) 185 0 6 554E+08 !$741. 21.48 --> ACCElTAB LE DATEOFTillS ANALYSIS:05/27/1999 190.0 6.777E+08 16276. 22.20 --->ACCElTA B LE

SUMMARY

OF INPUTS: 195.0 6.837E+08 16421, 22.39 ---->ACCEliA B LE

======

200 0 6931E+08 16645. 22.69 ---> ACCEITA B LE Title til Lower Normal Upset B214Rl 3 Cycles 205.0 7.074E+08 16989. 23 16 ->ACCEiTABLE Angle increment = 1.0 deg. (COARSE) 210.0 7.369E+08 17698. 24.11 ---> ACCEPTABLE Membmne Stress.Pm = 262 psi 215 0 7.495E+08 18001. 24.51 --> ACCEITAB LE Bending Stress Pb = 483. psi 220.0 7.768E+08 18655 2539 ---> ACCElTA B LE Safety Factor, SF = 2.25 225.0 7.953E+08 s9100. 25 99 - ->ACCEliABLE Mean Radius, Rm = 94 00 inches 230 0 8345E+08 20042. 27.25 -->ACCEITABLE Wal! Thickness. t = 1.500 inches 235.0 8.73dE+08 20986. 28.52 -->ACCEliABLE Stress intensity. Sm = 16900. psi 240 0 9.024E+08 21672. 29.44 -->ACCElTABLE Fluence = 5 OE+19 n/cm^2 245.0 9 297E+08 22328. 3032 -->ACCEliAllLE (Thus. LEFM cvaluation not applicable) 250.0 9.556E+08 22950. 31.16 --->ACCElTABLE TilETAl TiiETA2 TillCKNESS 255.0 9.804 E+08 23544 31 95 -->ACCElTABLE REGION (deg] (deg) [ inches] 260 0 9.863E+08 23688. 32.15 --->ACCElTABLE 265.0 1.021E+09 24531. 33.28 --->ACCEliABLE I 76.87 80.14 1.500 270.0 1.057E+09 25376. 34 41 -->ACCEITABLE 2 104.19 106.24 1.500 275 0 1.066E+09 25590. 34.70 --->ACCEITABLE 3 110.53 11331 1.500 280.0 1.102E+09 26466. 35 88 -->ACCEliABLE 4 119.19 126.11 1.500 285.0 1.139E+09 27350. 37.06 ---->ACCEITABLE

$ 150.10 160.02 1500 290 0 1.152E+09 27658. 37 48 --.>ACCElTABLE 6 198.08 202.69 1.500 295.0 1.190E+09 28583. 38.72 -->ACCEliABLE 7 209.55 213 07 1.500 300.0 1.230E+09 29534. 40 00 -->ACCEiTABLE 8 232.91 24039 1.500 305 0 1.263E+09 30331, 41.06 --->ACCEliABLE 9 249.56 251.73 1.500 310 0 1.294 E+09 31085. 4.08 --->ACCEliABLE 10 256.51 267.46 1.500 315.0 1323E+09 31784. 43.01 ---> ACCEliA B LE 11 27138 279.29 1.500 320 0 1.350E+09 32421. 43.87 ->ACCEiTABLE 12 283 09 28831 1.500 325.0 1374E+09 32993. 44 64 -->ACCEfiABLE 13 308.95 340.51 1.500 330 0 1395E+09 33510. 45 33 --->ACCEliABLE LIMIT U)AD RESULTS: 335 0 1398E+09 33580. 45 43 -->ACCEliAllLE

=======

340 0 1.424E+09 34196 46.25 ---> ACCEL TABLE NOTE: THE FOLLOWING LIMIT LOAD RESULTS ASSUME THAT 345.0 1.438E+09 34540. 46.71 - >ACCElTABLE THE FLAWS TAKE COMPRESSION. 350.0 1.441E+09 34619. 46.82 ---> ACCEPTABLE ALPHA MOMENT IV SAFETY 355 0 1.469E+09 35282. 47.71 - >ACCEliABLE

[deg] [in.lbst [ psi] FACTOR RESULT

~~ ~~

ACCElTABLE! MINIMUM SAFETY FACTOR = 2148 AT 185 0 0.0 1.476E+09 35448. 47.93 ->ACCEITABLE DEGREES.

5.0 1.478E+09 35506. 48.01 ->ACCEITABLE 10.0 1.476E+09 35458. 47.95 -->ACCEliAllLE

r' )

Caro /ina Power & Light Company CALCULATION 2811-0001 REV. 0 1 Btunswick Nuclear Plant - Unit 2 Attcchment C Page 5 Of 35 INPUT .i s.0 i470E+09 35302. 39.26 -->ACCElTABLE 20.0 1.441E+09 34615. 38.50 --->ACCElTAllLE l H1 Lower Emergency B214RI 3 Cycles 25 0 1.446E+09 34717, 38 62 -->ACCEfTABLE I 0 30.0 1.413E+09 33943. 37.76 -- >ACCElTABLE gg 35 0 1.416E+09 34017. 37.84 ..->ACCEliABLE 40.0 1.397E+09 33547. 37.32 -->ACCEITABLE 637 45.0 1.372E+09 32975. 36.69 -->ACCElTABLE 1.50 50.0 1.345E+09 32305. 35 95 ---> ACCEPTA B LE 94.00 55 0 1.295E+09 31111. 34 64 -->ACCElTABLE 1.50 WO L280E+09 30732, 34.22 ---> ACCEiTAB LE

{

65.0 1.235E+09 2 % 56. 33.03 --> ACCEPTABLE  !

16900.

70.0 1.179E+09 28318. 31.55 --- >ACCEliABLE f 5e19 75.0 1.152E+09 27673. 30.84 ---> ACCEliA BLE  !

13 80.0 1.135E+09 27249, 30.37 --->ACCEITA B LE j 76.87,80.14,1.5 85.0 1I DE+09 26413. 29.45 --->ACCEPTA B LE I 104.19,106.24,1.5 00 0 1.064E+09 25543. 28 49 - -> ACCEL"TA B LE 95.0 1.026E+09 24637, 27.49 ->ACCElTABLE f

l 110.53,113.31,1.5 100 0 9.870E+08 23703. 26 46 --->ACCElTABLE '

119.19,126.11,1.5 105 0 9.405 E+08 22586. 25.23 --> ACCEliA BLE 150.10,160.02,1.5 110.0 9.089E+08 21827. 24 39 ---> ACCEfiA B LE 198.08.202.69,1.5 I15.0 8.89 I E+08 21353. 23 87 --> ACCEITA B LE 120 0 8.520E+08 20461. 22 88 --->ACCETTABLE 209.55,213.07,1.5 125.0 8.338E+08 20026. 22.40 ---> ACCEliABLE 232.91.240.39,1.5 130.0 7.8%E+08 18964. 21.23 --> ACCEPTA BLE I 249.56,251.73,1.5 135.0 7.845E+08 18841. 21.09 --->ACCEITABLE 256 51,267.46,1.5 140.0 7.538E+08 18103. 20.28 .--->ACCEliAB LE 145.0 7.441 E+08 17872. 20 02 ---->ACCEliABLE 271.38,279.29,1.5 150.0 7.091 E+08 17030 19.09 --->ACCEITABLE 283.09,288.31,1.5 155 0 6 963E+08 16723. 18.75 --->ACCEliA B LE 308.95,340.51,1.5 160.0 7 067E+08 16973. 19.03 --- >ACCElTABLE 165 0 6.900E+08 16571. 18.59 ---->ACCEPTA BLE j OUTPUT i70.0 6o44E.08 i6677. i8.70 ---->ACCEITA B LE Filename: DLL12-30-97.For 175.0 6.891 E+08 16550. 18.56 --> ACCEPTABLE DLL DISTRIBUTED LIGAMENT LENGTil EVALUATION. REV. 2.1 180 0 6 658E+08 15991. 17.95 ---->ACCEPTAB LE l (09/19/96) 185 0 6.554E+08 15741. 17.67 - >ACCE! TABLE  !

DATE OF Tills ANALYSIS: 05/27/1999 190.0 6.777E+08 16276. I8.26 - --> ACCEL 4ABLE SUMM ARY OF INPUTS: 195.0 6 837E+08 16421. 18.42 -~--> ACCEPTABLE

======

200 0 6 931E+08 16645. 18.67 --->ACCEITABLE

Title:

lit Lower Emergency B214RI 3 Cycles 205.0 7.074 E+08 16989. 19.05 --->ACCEliAllLE Angle inerement = 1.0 deg. (COARSE) 210.0 7.369E+08 17608. 19 83 --->ACCElTABLE Membrane Stress.Pm = 269. psi 215.0 7.495 E+08 18001. 20.17 -->ACCEPTAllLE Bendmg Stress, Pb = 637. psi 220 0 7.768E+08 18655. 20.89 ---> A CCF'TA B LE Safety Factor, SF = 1.50 225.0 7.953E+08 19100. 21.38 ---->ACCb7ABLE j Mean Radius. Rm = 94 00 inches 230.0 8.345E+08 20042. 22.42 --->ACCElTABLE  !

Wall Thickness. t = 2.500 inches 235 0 8.738E+08 20986. 23.46 ---->ACCElTAB LE l Stress tntensity. Sm = 16900. psi 240 0 9.024E+08 21672. 24.22 -->ACCElTABLE Fluence = 5.0E+19 n/cm^2 245.0 9.297E+08 22328. 24.94 --> ACCEPTABLE (Thus. LEFM evaluation not applicable) 250.0 9.556E+08 22950. 25 63 -->ACCEITABLE TilETAl THETA 2 THICKNESS 255.0 9.804E+08 23544. 26.28 --> ACCEPTABLE REGICN [deg1 [deg.] [inchen) 260 0 9.863E+03 23688. 26 44 --> ACCElTAB LE 265 0 1.021 E+09 24531 27.37 --->ACCEITABLE I 76.87 80.14 1.500 270.0 1.057E+09 25376. 28.31 --->ACCEITA B LE 2 104.19 106.24 1.500 275.0 1.066E+09 25590. 28.54 --->ACCEITABLE 3 110,53 113.31 1.500 280.0 1.102E+09 26466 29.51 --> ACCEL 4ABLE i 4 119.19 126.11 1.500 285.0 1.139E+09 27350. 30.48 ->ACCElTABLE j 5 150.10 160 02 1.500 290.0 1.152E+09 27658. 30 82 - >ACCEITABLE 6 198.08 202.69 1.500 295.0 1.190E+09 28583. 31.85 - - >ACCEliABLE 7 209.55 213 07 1.500 300 0 1.230E+09 29534. 32.90 -~->ACCElTABLE 8 232.91 240.39 1.500 305.0 1.263 E+09 30331. 33.77 -->ACCElTABLE 9 249.56 251.73 1.500 310.0 1.294E+09 31085. 34 61 -->ACCEITABLE 10 256.51 267.46 1.500

)

315.0 1.323E+09 31784. 35.38 -- >ACCElTABLE ll 271.38 279.29 1.500 320.0 1.350E+09 32421. 36 08 ---->ACCElTAB L6 12 283.09 288.31 1.500 325 0 1.374E+09 32993. 36 71 ---->ACL EITAB LE 13 308 95 340.51 1.500 330.0 1.395 E+09 33510. 37.28 --->ACCElTA B LE LIMIT LOAD RESULTS: 335 0 1.398E+09 33580. 37.36 ---> ACCElTA BLE

=======

340.0 1.424 E+09 341 % . 38.04 -->ACCEl TABLE NOTE:' DIE FOLLOWING LIMIT LOAD RESULTS ASSUME TilAT 345 0 1.438E+09 34540. 38.42 ---> ACCElTAB LE Tile FLAWS TAKE COMPRESSION- 350 0 1.441E+09 34619. 38.51 ->ACCEliABLE ALPilA MOMENT Pb' SAFETY 355.0 1.469E +09 35282. 39.24 ->ACCElTABLE

[degl lin lbs] [psil FACTOR RESULT

~~' --*

ACCEliABLE! MINIMUM SAFETY FACTOR = 17.67 AT 185.0 00 1.476E+09 35448. 39 42 -->ACCEITABLE DEGREES.

5.0 1.478E+09 35506. 39 49 -->ACCElTABLE 10 0 1.476E+09 35458. 39.43 ->ACCEITABLE

1 1

Cuo/ ins Power & Light Company CALCULATION 2B11-0001 REV. 0 l Btunswick Nucleu Plant - Unit 2 Atttchment C Page 6 Of 35 INPUT 15.0 1.434E+09 34445. 23 15 ---->ACCEITABLE 20.0 1.423E+09 34183. 22.98 --->ACCElTABLE H1 Lower Faulted B214R13 Cycles 25 0 1381E+09 33171. 2232 ---->ACCElTA BLE 0 30.0 1386E+09 33275. 2239 ---->ACCElTA B LE j 885 35.0 137% @ 33123. 22.29 - -->ACCElTAB LE 641 40.0 1.360E+09 32654. 21.98 --->ACCEITABLE 45.0 1336E+09 32082. 21.60 -->ACCEITABLE 1.125 50.0 1308E+09 31411. 21.16 ->ACCEiTABLE 94.00 55.0 1.277E+09 30667. 20 68 --->ACCEITA B LE 1.50 60.0 1.225E+09 29412. 19.85 ->ACCERTABLE 65 0 1.199E+09 28786. 19.44 -->ACCElTABLE 16900.

70.0 1.143E+09 27442. 18.56 -->ACCEITABLE 5e19 75 0 1.125E+09 27027. 18.29 -->ACCEiTA B LE 13 80 0 1.081E+09 25961 17.59 ->ACCEfTABLE 76.87,80.14,1.5 85.0 1.064 E+09 25544. 1732 --->ACCEITA B LE 104.19,106.24,1.5 90.0 1.027E+09 24673. 16 75 ---> ACCEliA B LE 95 0 9.897E+08 23768. 16.16 ---->ACCElTA BLE 110.53,113.31,1.5 100.0 9.417E+08 22617. 15.40 -->ACCElTABLE 119.19,126.11,1.5 105.0 9.045E+08 21723. 14.82 ---> ACCEITA B LE i 150.10,160.02.1.5 110.0 8.729E+08 20964. 1432 --->ACCElTABLE 198.08,202.69,1.5 115.0 8.533E+08 20497. 14.01 -->ACCElTABLE 120.0 8.249E+08 19812. 13.56 --->ACCEI'TA B LE 209.55.213.07,1.5 125.0 7.977E+08 19157. 13 13 ---->ACCEITA BLE 232.91.240.39,1.5 130.0 7.619E+08 18297. 12.57 --->ACCElTABLE j 249.56,251.73,1.5 135.0 7.278E+08 17479. 12.03 ->ACCElTABLE '

256.51,267.46,1.5 140.0 7.249E+08 17410. 11.99 -->ACCEf7AllLE 145.0 6.863E+08 16482. l138 - ->ACCEITABLE -

271.38,279.29,1.5 150 0 6.799E+08 16328. 11.28 -->ACCEITABLE {

283.09.288.31,1.5 155 0 6.570E+08 15778. 10.92 -->ACCElTABLE 308.95,340.51.1.5 160 0 6.578E+08 15798. 10.93 ->ACCElTABLE 165.0 6 60lE+08 15?53. 10.97 ---->ACCEITAB LE OUTPUT 170.0 6.544e+08 157 6 10.88 - >ACCERTABLE Filename: DLL12 30-97. Fur 175.0 6.292E+08 15112 10.48 ---->ACCEITAllLE DLL DISTRIBLTTED LIGAMENT LENGTH EVALUATION. REV. 21 180.0 6364E+08 15284. 10 60 -->ACCEITABLE (09/19/96) 185.0 6.262E+08 15039. 10.43 -->ACCERTABLE DATE OFTHIS ANALYSIS: 05/27/1999 190.0 6.482E+08 15566. 10.78 --> ACCEITAB LE

SUMMARY

OF INPlTFS: 195.0 6.538E+08 !$703. 10.87 --->ACCEITABLE 200.0 6.529E+08 15679. 10 85 ---->ACCEITA BLE

Title:

HI Lower Faulted B21tRI 3 Cycles 205.0 6.672E+08 16023. 11.08 - --> ACCEITA B LE Angle increment = 1.0 deg. (COARSE) 210.0 6.762E+08 16239. 11.22 ---> ACCElTA B LE Membrane Stress.Pm = 885. psi 215 0 7.089E+08 17026. I1.74 -->ACCEITAllLE Bending Stress. Pb = 641. psi 220 0 7.462E+08 17922. 1232 ---->ACCEf7A BLE Safety Factor. SF = 1.13 225.0 7.649E+08 18370. 12.62 ---->ACCEPTAB LE Mean Radius, Rm = 94.00 inches 230.0 8 N7E+08 19327. 13.24 --->ACCElTABLE Wall Thickness, t = 1.500 inches 235.0 8.343E+08 20036. 13.71 ---->ACCEITA BLE Strev. intensity, Sm = 16900. psi 240.0 8.628E+08 20722. 14.16 ---> ACCElTA B L" haence = 5 OE+19 n/en'^2 245.0 8.902E+08 21378. 14.59 ->ACCElTABLF (Teus. LEFM cvnluation not applicable) 250.0 9.161 E+08 22000. 15.00 ---->ACCElTA B LE TilETAI THETA 2 THICKNESS 255 0 9.218E+08 22138. 15.09 --->ACCElTABLE RFUlON [deg1 [deg ] [ inches] 260.0 9.576E+08 22997. 15.65 --->ACCElTA B LE 265.0 9.934 E+08 23858. 16.21 ---->ACCEITA B LE I 76.87 80.14 1.500 270.0 1.002E+09 24057. 1634 -> ACCEPTABLE 2 104.19 106.24 1.500 275.0 1.039E+09 24944. 16 93 ---->ACCElTA B LE 3 110.53 11331 1.500 280.0 1.076E+09 25840. 17.51 ---->ACCElTAB LE 4 119.19 126.11 1.500 285 0 1.088E+09 26127. 17.70 ---->ACCEf7AB LE 5 150.10 160.02 'l.500 290.0 1.127E+09 27062. 18 31 -->ACCEITABLE 6 198.08 202.69 1.500 2910 1.166E+09 28009. 18.93 --->ACCEITABLE 7 209.55 213.07 1.500 300 0 1.182E+09 28389. 19.18 ---->ACCElTA B LE 8 232.91 24039 1.500 305.0 1.23lE+09 29555. 19.95 - >ACCEITABLE 9 249.56 251.73 ' l.500 310.0 1.262E+09 30309. 20.44 ---->ACCEITABLE 10 256.51 267.46 1.500 315.0 1.29]E+09 31008. 20.90 ->ACCEITABLE 11 27138 279.29 1.500 320.0 IJ18E+09 31646. 2132 -->ACCEITABLE 12 283.00 28831 1.500 325 0 1342E 09 32218. 21 69 ---->ACCEITAB LE 13 308.95 340.51 1.500 330 0 1346E+09 32322. 21.76 --->ACCEITABLE LIMIT LOAD RESULTS: 335.0 1382E+09 33182. 2232 ---->ACCElTABLE

======

340 0 1381E+09 33171. 22.32 ---->ACCEITAllLE NOTE: TiiE FOLLOWING LIMIT ! DAD RESULTS ASSUME TilAT 345.0 1.404 E+09 33723. 22.68 ---->ACCEITA BLE THE FLAWS TAKE COMPRESSION. 350.0 1.415E+09 33989. 22.85 -->ACCEITABLE ALPilA MOMENT Pb' SAFETY 355 0 1.415E+09 33994. 22 86 --- >ACCElTABLE

[deg) [in-lbs] [ psi) FALTOR RESULT

--- ~~

ACCElTABLE! MINIMUM SAFETY FALTOR = 10 43 AT 185.0 0.0 1.440E+09 34591. 23.25 -->ACCEITABLE DEGREES.

5.0 1.443E+09 34650. 23.29 -->ACCEITABLE 10 0 1.44lE+09 34601. 23.25 --- >ACCEITABLE

l Carolina Power & Light Company CALCULATION 2B11-0001 REV. O Btunswick Nuclear Plant - Unit 2 Attachment C Page 7 Of 35 MPUT 15 0 i.i47E+09 27546. 37.33 -- ->ACCElTABLE 20 0 1.136E+09 27283. 36 97 ---->ACCEliABLE

, H1 Combined Normal Upset B214R13 Cycles 25 0 U 43E+09 27453. 37.20 ---->ACCEliAllLE l 0 30 0 1. I l7E+09 26819. 36 35 -->ACCEITABLE 42 35.0 1.ll8E+09 26856 36.40 --> ACCEITA B LE i 40 0 1.107E+09 26578 36.03 -->ACCElTABLE l 483 45.0 1.082E+09 25975 35 22 --->ACCEITA B LE 2.25 50 0 1075E+09 25806. 34 99 --->ACCElTABLE 94.00 55 0 I NSE+09 25100. 34 04 ---> ACCEL 4ABLE l 1.50 60 0 1.044E+09 25070. 34.00 ---->ACCEPTA BLE 16900.

65.0 1.020E+09 24503. 33.24 --> ACCEITA B LE 70.0 9.76l E+08 23442. 31 82 ->ACCEPTAB LE 5e19 75.0 9.507 E+08 22832. 31 00 --- >ACCEliABLE 13 80.0 9.446E+08 22686. 30.80 --- >ACCElTABLE 76.87,80.14,1.5 85.0 9.181 E+08 22050. 29.95 -> ACCEPTABLE 104.19,106.24,1.5 90 0 8.90l E+08 21378. 29.05 ---->ACCEliA B LE 95.0 8.414E+08 20208. 27.48 . --> ACCEL 4ABLE 110.53,113.31,1.5 100 0 8.227E+08 19758. 26.87 ---->ACCElTABLE 122.39,126.11,1.5 105.0 7.935E+08 19058. 25.93 ---->ACCEITA BLE 150.10,153.76,1.5 110.0 7.739E+08 18586. 25.30 ---> ACCEPTABLE 198.08,202.69,1.5 115.0 7.358E+08 17670. 24.07 ---->ACCEITA B LE 120.0 7.087E+08 17021. 23.20 ---> ACCEITA BLE 232.91,238.12,1.5 125.0 6.817E+08 16373. 22.33 -->ACCElTA B LE 249.56,251.73,1.5 130.0 6.649E+08 15969. 21.79 --> ACCEL 4ABLE 256.51,267.46,1.5 135 0 6.289E+08 15103. 20 62 ->ACCEliABLE 271.38,273.53,1.5 140.0 6.144E+08 14755. 20.16 --> ACCEPTABLE 145 0 5.938E+08 14261. 19.49 --->ACCEliABLE 283MA28S.31.1.5 150.0 5 649E+08 13566. 18.56 ->ACCEITABLE 308.95 9 5.11,1.5 155.0 5.581E+08 13403 15L34 -->ACCEiTABLE 319.15,339.05,1.5 160 0 5.418E+08 13012. 17.82 - >ACCElTABLE 165 0 5.260E+08 12632. 17.31 ->ACCEITABLE OUTPUT i70 0 5.l l l E+08 12274. 16.83 --> ACCEPTABLE Filename: DLL12-30-97.For 175.0 4.896E+08 11759. 16.14 --->ACCEITABLE DLL DISTRIBUTED LIGAMENT LENGTH EVALUATION. REV. 2.1 1go o 4.802E+08 115.4 15.83 --->ACCEITABLE (09/19/96) 185.0 4.715E+08 11325 15.55 -->ACCElTABLE DATE OF THIS ANALYSIS: 05/27/1999 190.0 4.645 E+08 11155. 15.32 ->ACCElTABLE ,

SUMM ARY OF INPUTS: ;95.0 4 699E+08 11285. 15.50 ---->ACCElTABLE j 200 0 4 595E+08 11034. 15.16 ---->ACCEITABLE l

Title:

HI Combined Normal Upset B214RI 3 Cycles 205.0 4.740E+08 11384. 1563 --->ACCEITABLE I Angle increment = 1.0 deg. (CO ARSE) 210.0 4.823E+08 11582. 15.90 -->ACCEliAllLE Membrane stress. Pm = 262. psi 215.0 4.830E+08 11600. 15.92 --> ACCEPTABLE Ilending Stren. Pb = 483. psi 220 0 4.861 E+08 11673. 16.02 ---->ACCEITABLE Safety Factor, SF = 2.25 225.0 5.035E+0B 12092. 16.58 --> ACCElTAB LE Mean Radius, Rm = 94 00 inches 230.0 5 440E+08 13065. 17.89 --->ACCEITAllLE Wall Thickness. : = 1.500 inches 235.0 5.627E+08 13513. 18 49 --->ACCEliA B LE Stress intensity. Sm = 16900. psi 240.0 5 810E+08 13953. 19.08 -- >ACCEliABLE Fluence = 5.0E+19 n/cm^2 245.0 5.886E+08 14137. 19.33 --->ACCElTABLE j (Thus. LEFM evaluation not applicabic) 250 0 6.187E+08 14859. 20.30 ---->ACCEf4A BLE l THETAI THETA 2 THICKNESS 255.0 6.282E+08 15087. 20 60 -> ACCEPTABLE REGION [deg ] [deg] [ inches) 260.0 6.593E+08 15833. 2160 - > ACCEPTABLE

.65.0 6 606E+08 15864. 21.65 ---->ACCEPTA B LE I 76.87 80.14 1.500 270 0 6 943E+08 16675 22.73 --->ACCElTA B LE 1 2 104.19 10624 1.500 275 0 7.294 E+08 17516 23 86 -->ACCEliABLE j 3 110.53 113.31 1.500 280.0 7.367E+08 17693. 24.10 --> ACCEPTABLE l 4 122.39 126.11 1.500 285.0 7.754E+08 18621. 25.35 ---->ACCEliA B LE )

5 150.10 153.76 1.500 290 0 8.051 E+08 19335. 26.30 --->ACCEliA B LE j 6 198.08 202.69 1.500 295.0 8.346E+08 20044. 27.26 ->ACCElTABLE l 7 232.91 238.12 1.500 300 0 8.637E *08 20743. 28.19 --->ACCElTABLE 8 249.56 251.73 1.500

{

305.0 8.922E+08 21427. 29. l l ---->ACCEPTAB LE 1 9 256.51 267.46 I.500 310 0 9.198E+08 22090 30 00 -> ACCEPTABLE 10 271.38 273.53 1.500 315 0 9.568E+08 22979. 31.20 ->ACCEITABLE 11 283.09 288.31 1.500 320.0 9.744E+08 23402. 31.76 --->ACCElTA B LE 12 308.95 315 11 1.500 325 0 1.000E+09 24017. 32.59 -> ACCEPTABLE 13 319.15 339 05 1.500 330.0 1.024E+09 24585. 33.35 ->ACCEITABLE LIMIT LOAD RESULTS: 335 0 1.N5E+09 25101. 34 N --->ACCEliAb1 E

=================== 340 0 1.064E+09 25562. 34 66 ->ACCElTABLE i NOTE: Tile FOLLOWING LIMIT IJOAD RESULTS ASSUME THAT 345.0 1.082E+09 25979. 35.22 --->ACCEliABLE i Tile FLAWS TAKE COMPRESSION. 350 0 1.087E+09 26106. 35.39 --->ACCEliABLE ALPHA MOMENT Pb' SAFETY 355 0 1.121E+09 26914. 36.48 -->ACCEliAllLE ]

(deg] lin.lbs) 1psil PACTOR RESULT ACCElTABLE! MINIMUM SAFETY FACTOR = 15.16 AT 200.0 0.0 1.13lE+09 27167. 36.82 -->ACCEITABLE DEGREES.

5.0 1.Il9E+09 26869. 36 42 -->ACCEliAB LE 10 0 1.145E+09 27496. 37.26 ->ACCEliABLE

Cuo//no . Light Company CALCULATION 2B11-0001 REV,O

{

Btunswic x , : v %nt - Unit 2 Attachment C Page 8 Of 35 \

{

WPUT 15 1. 47E+09 27546. 30.70 --> ACCElTA B LE 20 0 1.136E+09 27283. 30 41 -->ACCElTABLE HI Combined Emergency B214R13 Cycles 25 0 1.143E+09 27453. 30 60 ---->ACCEITA B LE 0 {

30 0 Iil7E+09 26819. 29 90 ----> ACCEf7A B LE j g9

  • 35 0 1.ll8E+09 26856 29 94 --->ACCElTABLE l 40 0 1.107E+09 26578. 29 63 ---->ACCElTAB LE 637 {

45.0 1.082E+09 25975. 28.97 --->ACCEITABLE i 1.50 50 0 1.075E+09 25806. 28.78 ---->ACCElTA BLE 94.00 55 0 1.045E+09 25100. 28 00 - -->ACCEITAllLE 1.50 60 0 1.044E+09 25070. 27.97 ---->ACCEITA B LE 65 0 1.020E+09 24503. 27.34 ---->ACCEf7A B LE 16900.

70.0 9.76] E+08 23442. 26.17 --->ACCElTABLE 5e19 75 0 9.507E+08 22H32. 25.50 --> ACCEITAB LE 13 80 0 9 446E+08 22686. 25.34 ---->ACCEITAB LE 76.87,80.14,1.5 85.0 9.181 E+08 22050. 24 63 ----> ACCEiTAB LE 104.19,106.24,1.5 90 0 8.90l E+08 21378. 23.89 ->ACCEITABLE 95 0 8.414E+08 20208. 22.60 - -->ACCEITA B LE 110.53,113.31.1.5 100.0 8 227E+08 19758. 22.10 ->ACCEliABLE l 122.39,126.!!,1.5 105.0 7.935 E+08 19058. 21.33 ---> ACCEPTA B LE l 150.10,153.76,1.5 110.0 7.739E+08 18586. 20 81 --->ACCElTA B LE I 198.08,202.69,1.5 115.0 7.358E+08 17670. 19.80 ---> ACCEPTABLE 120 0 7.087E+08 17021. 19.08 -->ACCEliABLE 232.91,238.12,1.5 125.0 6.817E+08 16373. 18.37 ---> ACCEITA B LE 249.56,251.73,1.5 130 0 6 649E+08 15 % 9. 17.92 -->ACCElTABLE 256.51 Y7.46,1.5 135 0 6.289E+08 15103. 16.97 ----> ACCElTAB LE 271.38,u. 3.53,1.5 140.0 6.144E+08 14755. 16.58 --->ACCEITA B LE i 145.0 5 938E+08 14261. 16.04 --->ACCElTAB LE I

283.09,288.31,1.5 150 0 5649E+08 13566. 15.27 --->ACCEiTAllLE 308.95,315.11,1.5 155 0 5.5810 4 8 13403. 15 09 --->ACCEliAllLE 319.15,339.05,1.5 160 0 5al8E+08 13012. 14 66 ---> ACCEf7AB LE 165.0 5.260E+08 12632. 14.24 ---> ACCEliA B LE OUTPUT i70 0 5 iiiE+08 i2274. 13 84 ---> ACCEITA B LE Filename: DLL12-30 97 For 175.0 4 E96E+08 11759. 13.28 ---> ACCEliAllLE DLL DISTRIBUTED LIGAMENT LENGTH EVALUATION. REV. 21 180.0 4 802E+08 11533. 13.03 -->ACCEiTABLE (09/19/96) 185.0 4.715E+08 11325. 12.80 ---> ACCEITA B LE DATE OF T}llS AN ALYSIS. 05/27/1999 190.0 4 645E+08 11155. 12.61 --->ACCEITABLE

SUMMARY

OF INPUTS: 195 0 4 699E+08 11285. 12.75 ---->ACCEliA B LE 200 0 4 595E+08 11034. I2.48 ----> ACCEITAB LE

Title:

Hi Combined Emergency B214RI 3 Cycles 205.0 4.740E+08 11384. 12.86 --->ACCEITA B LE Angle increment = 1.0 deg (COARSE) 2l00 4 823E+08 11582. 13.08 -->ACCEITAllLE Membrane Stress. Pm = 269. psi 215.0 4 830E+08 11600. 13.10 ---> ACCEFTAB LE Bending Stress. Pb = 637. psi 220 0 4 861E+08 11673. 13.18 -->ACCEliABLE Safety Factor. SF = 1.50 225 0 5 035E+08 12092. 13 64 ---> ACCEPTABLE Mean Radius. Rm = 94 00 inches 230 0 5.440E+08 13065. 14.72 -->ACCEliAllLE WallThickness t = 1.500 inches 235.0 5 627E+08 13513. 15.21 -->ACCEf7ABLE Stress Intensity, Sm = 16900. psi 240 0 5.810E+08 13953. 15.70 ---> ACCEf7A B LE Fluence = 5.0E+19 n/cm^2 245 0 5.88e' 08 14137. 15.90 ---->ACCEITA B LE (Thus. LEFM cvaluation not applicable) 250 0 61.i7 E+08 14859. 16.70 ---> ACCEPTABLE TilETAI THETA 2 TillCKNESS 255 0 6.282E+08 15087. 16 95 ---> ACCEliA BLE REGION jdeg] (deg) [ inches] 260.0 6 593E+08 15833. 17.77 ---->ACCEITAllLE 265.0 6 606E+08 15864. 17.81 ----> ACCEPTABLE 1 76.87 80.14 1.500 270 0 6 943E+08 16675. 18.70 ----> ACCEITA B LE 2 104.19 106.24 1.500 275.0 7.294E+08 17516. 19.63 -->ACCElTABLE 3 110 53 113.31 1.500 280 0 7.367E+08 17693. 19.83 -->ACCEliABLE 4 122.39 126 11 1.500 285.0 7.754E+08 18621. 20 85 --->ACCEITA B LE 5 150.10 153.76 1.500 290 0 8 051E+08 19335. 21 64 -->ACCEITABLE 6 198.08 202.69 1.500 295.0 8 346E+08 20044. 22.42 --- ACCEfiAllLE 7 232 91 238.12 1.500 300 0 8.637E+08 20743. 23.19 -->ACCEITABLE B 249 56 251 73 1.500 305.0 8.922 E+08 21427. 23.95 --- >ACCElTAllLE 9 256.51 267 46 1.500 310 0 9.198E+08 22090. 24 68 --->ACCEliABLE 10 271.38 273.53 1.500 315.0 9.568E+08 22979. 25.66 --->ACCEITAllLE 11 283 04 288.31 1.500 320 0 9.744E+08 23402. 26.13 ----> ACCEPTA B LE 12 308 95 315.11 1.500 325.0 1000E+09 24017. 26 81 --- >ACCEITABLE 13 319.15 339 05 1.500 330 0 1.024E+09 24585. 27.43 -->ACCEITABLE LIMIT LOAD RESULTS: 335 0 1Al5E+09 25101. 28.00 ---> ACCEfTAllLE

===

340.0 1.064E+09 25562. 28.51 --->ACCElTABLE NOTE: THE FOLLOWING LIMIT LOAD RESULTS ASSUME TilAT 345.0 1.082E+09 25979. 28.97 ---->ACCEITABLE THE FLAWS TAKE COMPRESSION. 350 0 1.087E+09 26106. 29.11 --> ACCEliA B LE ALPilA MOMENT Pb' SAFETY 355 0 1.12tE+09 26914. 30.00 --->ACCEliABLE

[degl [in. lbs) {psil FACTOR RESULT ACCEITABLE! MINIMUM SAFETY FALTOR = 12 48 AT2000 l 00 1.131E+09 27167. 30.28 ->ACCElTABLE DEGREES.

50 1.119E+09 26869. 29 95 --> ACCEPTABLE 10.0 1.145E+09 27496. 30 65 -->ACCElTABLE l

n 1 l

C ro/ina Power & Light Company CALCULATION 2B11-0001 REV. O Btunswick Nuclear Plant - Unit 2 Attachment C Page 9 Of 35 INPUT 15D imsE@ 263M. 17.82 --->ACCElTABI E 20 0 1.085E+09 26060. 17.66 ---->ACCEITABLE HI Combined Faulted B214R13 Cycles 25.0 i.082E+09 25989. 17.61 ---->ACCElTABLE 0 30.0 1.076E+09 25838. 17.51 -->ACCEITABLE 885 35D I 067EM 25616. 17.37 ->ACCElTABLE 641 40 0 1.065 E+09 25588. 17.35 ->ACCENABLE 45.0 1.051E+09 25237. 17.12 -- >ACCEITABLE 1.125 50 0 1.023E+09 24580. 16 69 --->ACCEITA B LE 94,00 55 0 1.00$E+09 24130. 16.39 --->ACCElTABLE 1.50 60 0 9 b36E+08 23621. 16.06 ->ACCEITABLE 16900. 65.0 9 6NE+08 23064. 15 69 --->ACCElTAllLE 70 0 9.365 E+08 22492. 15.32 -->ACCEITABLE 5e19 75 0 9. l l l E+08 21881. 14.02 ->ACCENABLE 13 80 0 8.845 E+08 21243. 14.50 ->ACCEITABLE 76.87,80.14,1.5 85.0 8.578E+08 20601. 14 08 ->ACCEITABLE 164.19,106.24,1.5 90D 8.298E48 N 13.64 --->ACCElTABLE 95 0 8.ll6E+08 19492. 13.35 ->ACCElTABLE 110.53,113.31,1.5 100.0 7.831 E+08 18807. 12.90 --->ACCEITABLE 122.39,126.11,1.5 105 0 7.540E+08 18108. 12.45 ---> ACCElTA BLE 150.10,153.76,1.5 110.0 7.245E+08 17398. 11.98 ->ACCEITABLE 198.08,202.69,1.5 115 0 6750E+08 16212. IL20 ~ 4ACCENABLE 120.0 6.679E+08 16041. 11.09 --4ACCEITA BLE 232.91,238.12,1.5 125.0 6.409E+08 15392. 10 67 - > ACCEPTABLE 249.56,251.73,1.5 130.0 6.139E+08 14743. 10.24 --- >ACCEITABLE 256.51,267.46,1.5 135D 5.876E+08 14113 R83 ~4ACCENABLE 271.38,273.53,1.5 140.0 5.319E+08 12774. 8.95 --->ACCElTABLE 145.0 5.313E+08 12760. 8.94 --->ACCElTABLE 283.09,288.31.1.5 150.0 5.013E+08 12039. 8.47 --->ACCEITAllLE 308.95,315.11,1.5 155 0 4.943E+08 11872. 8.36 ->ACCEITABLE 319.15,339.05,1.5 160.0 4 667E+08 11208. 7.92 --4ACCElTABLE 165.0 4.617E+08 11088. 7.85 ----> ACCEf7AllLE OUTPUT i70.0 4.257E+08 iO223. 7.28 -- ->ACCElTABLE Filename: DLL12-3C 97 For 175.0 4.469E+08 10733. 7.61 ->ACCElTAllLE DLL DISTRIBUTED LIGAMENT LENGTH EVALUATION, REV. 2.1 180.0 4 375E+08 10508 7.47 ->ACCElTABLE (09/10/96) 185 0 4.076E+08 9789. 6 99 ->ACCElTABLE DATEOFTHIS ANALYSIS:05/27/1999 190.0 4.221E+08 10138. 7.22 - -> ACCEPTABLE

SUMMARY

OF INPUTS: 195.0 3.852E+08 9252. 6.64 -->ACCEITAllLE 200 0 3 854E+08 9255. 6 64 - ->ACCElTABLE

Title:

Hi Combined Faulted B214RI 3 Cycles 205.0 4.110E+08 9870. 7.05 --->ACCElTABLE Angle increment = 1.0 deg. (COARSE) 210.0 4.187Ew8 10055 7.17 --->ACCEf7AllLE Membrane Stress, Pm = 885. psi 215.0 4.184E+08 10N8. 7.16 ->ACCElTABLE Bending Stress. Pb a 641 psi 220.0 4.429E+08 10636. 7.55 -->ACCEITABLE Safety Factor, SF = 1.13 225 0 4 708E+08 11308. 7.99 ----> ACCEfTAllLE Mean Radius. Rm = 94 00 inches 230.0 4.783E+08 11487. 8.11 -> ACCEPTABLE Wall Thicimess, t = 1.500 inches 235.0 4.970E+08 11936. 8 40 -->ACCEITABLE Stress Intensity, Sm = 16900. psi 240.0 5.264E+08 12643. 8.86 ->ACCElTABLE iluence a 5 OE+19 n/cm^2 245.0 5.237E+08 12577. 8,82 -->ACCElTABLE (Rus, LEFM evaluation not applicable) 250.0 5.654E+08 13580. 9.48 ->ACCElTABLE

  • nlETAl THETA 2 THICKNESS 255.0 5.643E+08 13551. 9.46 ---->ACCEfTA BLE REGION [deg ] [deg] [ inches) 260.0 5 964E+08 14323. 9.97 --->ACCENA B LE 265.0 6.295E+08 15119. 10.49 -->ACCENABLE 1 76.87 80 14 1.500 270.0 6.332E+08 15206. 10 54 --->ACCElTABLE 2 104.19 106 24 1.500 275.0 6.695E+08 16078. 11.12 ---->ACCEITABLE 3 110.53 113 31 1.500 280 0 7.073E+08 16985. 11.71 --->ACCEITABLE 4 122.39 126 11 1.500 285.0 7.367E+08 17693. 12.17 --4ACCEITABLE 5 150.10 153.76 1.500 290.0 7.664E+08 18406. 12.64 --->ACCEf7ABLE 6 198 08 202.69 1.500 295.0 7.959E+08 19115. 13.11 -->ACCEITABLE 7 232.91 238.12 1.500 300.0 8.250E+08 198td. 13.56 ->ACCEITABLE 8 249.56 251.73 1.500 305.0 8.535E+08 20498. 14.01 ---->ACCE} TABLE 9 256.51 267.46 1.500 310.0 8.8llE+08 21162 14 45 -->ACCEITABLE 10 271.38 273.53 1.500 315.0 8 980E+08 21567. 14.71 --4ACCEITABLE 11 283.09 288.31 1300 320.0 9.349E+08 22452. 15.29 --->ACCENABLE 12 308.95 315 11 1500 325.0 9.605 E+08 23067. 15.70 ->ACCEITABLE 13 319.15 339 05 1.500 330 0 9.84 l E+08 23635. 16.07 - >ACCEITABLE LIMIT LOAD RESULTS: 335.0 1.006E+09 24651. 16.41 ->ACCElTAllLE

====s======

340.0 1.025E+09 24612. 16.71 ->ACCEITABLE NOTE: THE ICLLOWING LIMIT LOAD RESULTS ASSUME THAT 345 0 1.032E+09 24776. 16 82 ->ACCEITAllLE TIIE FLAWS TAKE COMPRESSION. 350.0 1.057E+09 25381, 17.21 --4ACCEITABLE ALPHA MOMENT Pb' SAFETY 355.0 1.060E+09 25451, 17.26 --->ACCEiTAllLE

'[degl [in-lbs) 1psil FALTOR RESULT

~-- --

ACCElTAllLE! MINIMUM SAFETY FACI'OR = 6 64 AT 195.0 1 0.0 1.070E W9 25704. 17.42 -->ACCElTABLE DEGREES. I 5.0 1.088E+09 26129. 17.70 -->ACCENABLE 10.0 1.083E 09 26001.' 17.62 --->ACCEliABLE

I l

! Cero/ ins Power & Light Company CALCULATION 2B11-0001 REV. 0 l Brunswick Nuclear Plant - Unit 2 Attachment C Page 10 Of 35 l

i INPUT 30 1. 56E @ 2893 L 23 27 - ->ACCEITABLE I 35.0 1.072E+09 29384. 23.63 --->ACCEITABLE H4 Normal / Upset B214R1 Grown 4 Cycles 40.0 1.076E+09 29484. 23.71 --->ACCEITAllLE O 45.0 1.086E+09 2<n47. 23 92 ----> ACCEPTABLE 50 0 1.094E+09 29971. 24.10 -->ACCEliABLE 248 55.0 1.100E+09 30154. 24.24 ->ACCE} TABLE 1006 60 0 1.099E+09 30114. 24.21 ---> ACCElTA B LE 65.0 1.ll8E+09 30647. 24.64 -->ACCEITABLE 2.25 70 0 i.iiOE+09 30424. 24 46 ---->ACCEliABLE 88.00 75.0 1.119E+09 30677. 24.66 --->ACCEITABLE 80.0 1.132E+09 31019. 24.93 ---->ACCEliA BLE 1.50 85 0 i.isi E+09 3:539. 25.35 --->ACCElTABLE 16900. 90.0 1.161E+09 31810. 25.56 -- >ACCEliABLE 95.0 1.169E+09 32021, 25.73 ---->ACCEliABLE 3.15e20 100 0 i . i68E+09 32006. 25.72 --->ACCElTABLE I 150 105.0 1.189E+09 32577. 26.18 --->ACCEliABLE 110.0 1.193E+09 32702. 26.28 ----> A CCENA B LE 7 i i5.0 ti95E+09 32751, 26.31 ->ACCEliABLE 15.51,22.32,1.50 120 0 1.194E+09 32723. 26.29 --->ACCEliABLE 125.0 1.190E+09 32617, 26 21 ---->ACCE! TABLE 39.17,79.27,1.50 i30.0 1.ia4E+09 32436. 26 06 --->ACCEITABLE I13.16,124.89,1.50 135 0 1.174E+09 32180. 25.86 ->ACCEITABLE ]

140 0 1.163E+09 31865. 25.61 ---> ACCEf7AB LE i 197.55,212.73,1.50 145.0 1.143E+09 31318. 25.17 -> ACCEPTABLE  !

232.95,239.25,1.50 150 0 1.130E+09 30968. 24.89 -->ACCEITABLE 155 0 1.120E+09 30689. 24 67 -->ACCEITABLE 271.35,301.81,1.50 160 0 i.ii3E+09 30495. 24.52 ->ACCElTABLE 331.71,334.29,1.50 165 0 1.101E+09 30158. 24.25 ->ACCEliABLE 170.0 1.ll2E+09 30467. 24 49 -> ACCEPTABLE OUTPUT n50 1.098E+09 30088. 24.19 ->ACCEliABLE Filename: DLL12 30-97 For 180.0 1.082E+09 29644. 23.84 ->ACCEliABLE DLL DISTRIBUTED LIGAMENT LENGTH EVALUATION, REV. 2.1 185.0 1.081E+09 29610. 23.81 --->ACCEliABLE (09/19/96) 190.0 1.078E+09 29543. 23.76 ---->ACCEliA BLE DATEOFTHIS ANALYSIS:05/26/1999 195.0 1.066E+09 29213. 23.49 ---->ACCEITABLE 200.0 1.052E+09 28819. 23.18 ->ACCEliABLE

SUMMARY

OF INPlffS: 205.0 1.020E+09 27946. 22.48 ->ACCEliABLE 210.0 1.0llE+09 27699. 22.29 ->ACCEITA BLE

Title:

H4 Normal / Upset B214R1 Grown 4 Cycles 215.0 9 917E+08 27174. 21.87 ---->ACCEliA BLE Angle increment = 1.0 deg (COARSE) 220.0 9.705 E+08 26595. 21.41 --->ACCEliABLE Membrane Stress. Pm = 248. psi 225.0 9.566E+08 26213. 21.10 -->ACCElTABLE Bending Stress. Pb = 1006. psi 2." 0 9.198E+08 25206. 20.30 --->ACCEITABLE Safety Factor. SF = 2.25 235 0 9 072E+08 24859. 20 02 --->ACCEliA BLE Mean Radius. Rm = 88.00 inches 240 0 8.954E+08 24537. 19.76 ---> ACCENA B LE .

Wall Thickness. = 1.500 inches 245.0 8.805E+08 24128. 19.44 ->ACCEITABLE Stress. Intensity, Sm = 16900 psi 250.0 8.706E+08 23857. 19.22 .--> ACCEiTA BLE Fluence = 3.lE+20 n/cm^2 255.0 8.492E+08 23271. 18.76 ->ACCEITABLE Toughness, Kic = 150 0 ksi*in^0.5 260 0 8.51 IE+08 23322. 18 80 --> ACCEf7A B LE 265.0 8.564E+08 23467. 18.91 --->ACCEITABLE THETAl THETA 2 TillCKNESS 270.0 8.504 E+08 23302. 18.78 ---> ACCETTAB LE REGION [deg ] [deg] [ inches] 275.0 8.461 E+08 23184. 18.69 -->ACCENABLE I 280 0 8.658E+08 23725. 19.12 ----> ACCEL 4A BLE I 15.51 22.32 1.500 285.0 8.498E+08 23287. 18.77 ---->ACCEPTA B LE 2 39.17 79.27 1.500 290 0 8 676E+08 23775. 19.16 ->ACCEliABLE 3 113.16 124 89 1.500 295.0 8 949E+08 24522. 19.75 ---->ACCEf7ABLE 4 197.55 212.73 1.500 300.0 8.99 t E+08 24639. 19.85 ---> ACCENA B LE 5 232.95 239.25 1.500 305.0 9.034E+08 24756. 19.94 ---->ACCEITAB LE 6 271.35 301.81 1.500 310 0 9.330E+08 25566. 20.59 ---> ACCEITABLE 7 331.71 334.29 1.500 315.0 9.368E+08 25670. 20 67 --- >ACCEliABLE 320.0 9.486E+08 25994. 20 93 --->ACCElTABLE 325.0 9.682E+08 26531. 21.36 --->ACCEliABLE UMIT LOAD RESULTS: 3.*90 9.784E+08 26811. 21.58 -- >ACCEFTABLE

=================== 335.0 9.866E+08 27035. 21.76 ----> ACCEliA BLE NO'm: THE FOLLOWING LIMIT LOAD RESULTS ASSUME THAT 340.0 9.924E+08 27195. 21.88 --- > ACCEPTABLE Tile FLAWS TAKE COMPRES$10N. 345.0 9 960E+08 27292. 21.96 --->ACCElTABLE 350 0 9.739E+08 26688. 21 48 ---->ACCEliABLE ALPHA MOMENT Pt/ SAFETY 355.0 9.797E+08 26846. 21.61 ->ACCElTABLE

[deg] [in-lbs) [ psi] FACTOR RESULT

+--- --

ACCEITABLE! MINIMUM SAFETY FALTOR = 18 69 AT 275 0 00 1.005E+09 27535. 22.16 ->ACCEliABLE DEGREES.

5.0 1.02tE+09 27990 22.52 ->ACCENABLE 10 0 1.014E+09 27780. 22.35 ----> ACCEPTABLE 15.0 1.030E+09 28220. 22.70 ->ACCENABLE LEPM RESULTS:

20 0 I N6E+09 28652. 23.05 ->ACCEliABLE =============

25.0 1.039E+09 28483. 22.91 --->ACCENABLE

C9to/ina Power & Light Company CALCULATION 2B11-0001 REV. O Btunswick Nuclear Plant - Unit 2 Attachment C Page 11 Of 35 NOTE: Tile IULLOWING LEFM EV ALUATION TREATS PART-TilROUGil WALL

SUMMARY

OF INPUTS:

l II.AWS AS THROUGH-WALL ==================

j Thus, the following flaws were assumed:

Title:

114 Emergency B214R1 Grown 4 Cycles l Angle increment = 1.0 deg. (CO ARSE)

FLAW START END LENGTil LENGTH DEITH Membrane Stress. Pm = 257. psi No. (deg) (deg) (deg.) (inch) (inch) BendM Stress. Pb = 1340. psi Safety Factor, SF = 1.50 1 334.3 15.5 41.2 63.31 1.50 Mean Radius, Rm = 88 00 inches 2 22.3 39.2 16.8 25 88 1.50 Wall Thickness, t = 1.500 inches 3 79.3 113.2 33.9 52 05 1.50 Stress intensity, Sm = 16900. psi 4 124.9 197.6 72.7 111.60 1.50 Fluence = 31E+20 n/cm^2 5 212.7 232.9 20.2 31 06 1.50 Toughness, Kic = 150 0 ksi*in^0.5 6 239 3 271.4 32.I 49.30 1.50 7 301.8 331.7 29.9 45 92 1.50 TilETAl THETA 2 TillCKNESS REGION [deg.] [deg] [ inches]

. Allowable Stress Intensity Factor, Kic/SF = 66.7 ksi* inch ^0.5 1 15.51 22.32 1.500 2 39.17 79.27 1.500 l 3 11116 124.89 1.500 l SPACING Lmas K 4 197 45 212.73 1.500 W (in.) (inch) (ksi,in) RESULT 5 232.95 239.25 1.500 6 271.35 301.81 1.500 For space between flaws 1 & 2: 73.77 63.31 36.7 --- 7 331.71 334.29 1.500 l

> ACCEPTABLE  ;

For space between flaws 2 & 3: 113.64 52.05 18.7 -  !

>ACCElTABLE LIMIT LOAD RESULTS:

For space between flaws 3 & 4: 129.61 1Il.60 63.3 --- ===================

>ACCElTABLE NOTE: THE FOLLOWING LIMIT LOAD RESULTS ASSUME THAT For space between flaws 4 & 5: 134.91 111.60 57.7 --- THE FLAWS TAKE COMPRESSION.

>ACCEFTABLE For space between naws 5 & 6: 58.98 4930 27.4 - ALPHA MOMENT Pb' SAFETY

>ACCElTAllLE [deg) [in-lbs) [ psi) FACTOR RESULT For space between flaws 6 & 7: 96 09 49.30 18 3 - - --- -----

l > ACCEPTABLE 0.0 1.005E+09 27535. 17.40 --->ACCElTABLE For space betaeen flaws 7 & I: 6727 63.31 54.7 -- 5.0 1.021 E+09 27990. 17.69 -->ACCEITAllLE l >ACCETTABLE 10 0 1.014E+09 27780. 17.56 ---->ACCEliABLE l

15.0 1.030E+09 28220. 17.83 ---->ACCEITABLE LIMITING K = 63.3 Lsi' inch ^0.5, ACCEPTABLE 20.0 1.046E+09 28652. 18.10 ->ACCElTABLE 25.0 1.039E+09 28483. 18.00 --->ACCEf7ABLE 30 0 1.056E+09 28931. 18.28 --->ACCEITABLE INPUT 35 0 i.072E+09 29384. 18.56 --- >ACCEITABLE H4 Emergency B214R1 Grown 4 Cycles 40 0 . 76E+09 29484. 18.62 --> ACCEliAB LE 45.0 1.086E+09 29747. 18.79 ---> ACCEITAB LE O 50.0 1.094E+09 29971. 18 93 ->ACCEFTABLE 257 55 0 i.iODE+09 30:54. 19.04 --->ACCEITABLE 60 0 1999E+09 30114. 19.02 ---> ACCEf7A B LE 1340 65 0 1.il8E+09 30647. i9.35 -->ACCEliABLE 1.50 70.0 1.110E+09 30424. 19.21 -->ACCEI'rABLE 75.0 1ll9E+09 30677. 19 37 ---> ACCEPTAB LE 88.00 80.0 i.132E+09 3i019. 19.58 --->ACCEf7ABLE 1.50 85.0 i.isiE+09 3:539. 19.91 -->ACCElTABLE l 90.0 1.161 E+09 31810. 20.08 ---->ACCElTAB LE i

16900. 95.0 1.169E+09 32021. 20.21 --->ACCEITABLE l

3.le20 IMO l.168E+09 32006. 20.20 --->ACCEliABLE 105.0 1.189E+09 32577. 20.56 --->ACCEliABLE 150. u 0.0 i.i93E+09 32702. 20 64 -->ACCEITABLI.

7 Il5D 1.195E+09 32751. 20 67 -->ACCETTABLE 120.0 1.194E+09 32723. 20 65 ---> ACCEPTABLE 15.51,22.32,1.50 125.0 i.i90e+09 326i7. 20.59 -->ACCEITABLE 39.17,79.27,1.50 130.0 1.184E+09 32436. 20 47 --->ACCETTABLE l 135 0 1.174E+09 32180. 20.31 ---->ACCEiTABLE 113.16,124.89,1.50 i40.0 1.i63E+09 3i865. 20.11 ->ACCEiTABLE 197.55,212.73,1.50 i45.0 1.143E+09 31318. 19.77 --> ACCEPTABLE l 150.0 1.130E+09 30968. 19.55 -->ACCElTABLE 232.95,239.25,1.50 155.0 i.i20E+09 30689. i9.38 ---->ACCEITABLE l 271.35,301.81,1.50 160 0 1.ll3E+09 30495. 19.26 --> ACCEPTABLE 165.0 1.101E+09 30158. 19.04 --> ACCEITAllLE I

l 331.71,334.29,1.50 170.0 1.ii2E+09 30467. 19.24 ->ACCEliABLE OUTPUT 175 0 i098E+09 30088. 19.00 --> ACCEPTABLE Filename: DLLl2 30-97 For 180 0 1.082E+09 29644. 18.72 -->ACCEITABLE DLL DIS 7RIBUTED LIGAMENT LENGTH EVALUATION, REV. 2.1 185.0 1.081E+09 29610. 18.70 -->ACCEITABLE l

i (09/19/96) 190.0 1.078E+09 29543. 18.66 --->ACCEITABLE j I DATEOFTHIS ANALYSIS:05/26/1999 195.0 1.066E+09 29213. 18.45 --> ACCEPTABLE

r Ccro/ ins Power & Light Company CALCULATION 2B11-0001 REV. O Btunswick Nuclezr PI:nt - Unit 2 Attachment C Page 12 Of 35 200.0 1.052E+09 28819. 18.21 ---> ACCEPTABLE For space between flaws 7 & 1: 67.27 6331 69.7 --.

205.0 1.020E+09 27946. 17 66 -> ACCEPTABLE >ACCEITABLE 210.0 IOllE+09 27699. 17.51 ---> ACCElTA BLE 215.0 9 917E+08 27174. 17.18 --->ACCEITABLE LIMITING K = 80 6 ksi* inch ^0.5. ACCElTABLE 220 0 9.705E+08 26595. 16.81 ->ACCElTABLE 225.0 9.566E+08 26213. 16.57 --->ACCEITABLE 230 0 9.198E+08 25206. 15.94 ---->ACCEliA B LE INPUT 235.0 9.072E+08 24859. 15.73 -->ACCEITABLE 114 Faulted B214R1 Grown 4 Cycles 240.0 8.954E+08 24537. 15.53 --->ACCEf7ABLE 245.0 8.805E+08 24128. 15.27 ->ACCEITABLE O 250.0 8.706E+D8 23857. 15.10 -->ACCEITABLE 883 255 0 8.492E+08 23271. 14.73 -->ACCEITABLE 260 0 8.511E+08 23322. 14 76 ---> ACCEPTABLE 1375 265.0 8.564E+08 23467. 14.86 --> ACCEPTABLE 1.125 270.0 8.504E+08 23302. 14.75 ---> ACCEPTABLE 275 0 8.46tE+08 23184. 14.68 ---->ACCEITABLE 88.00 289.0 8.658E+08 23725. 15.02 ->ACCEITABLE 1.50 285.0 8.498E+08 23287. 14.74 -> ACCEPTABLE 290.0 8.676E+08 23775. 15.05 --->ACCEPTA BLE 16900.

295 0 8.949E+08 24522. 15.52 ---->ACCEPTA BLE 3.le20 300.0 8.99lE+08 24639. 15.59 -> ACCEPTABLE 305.0 9.034E+08 24756. 15.66 ---->ACCElTABLE 150.

310.0 9.330E+08 25566. 16.17 ->ACCEiTABLE 7 315.0 9.368E+08 25670. 16.24 --->ACCEFTABLE 320.0 9.486E+08 25994. 16.44 ->ACCEFTABLE 15.51,22.32,1.50 325.0 9 682E+08 26531. 16.77 -->ACCEITABLE 39.17,79.27,1.50 (

330.0 9.784E+08 26811. 16.95 ->ACCEITABLE I 335 0 9.866E+08 27035. 17.09 -->ACCEITABLE 113.16,124.89,1.50 l

340 0 9.924E+08 27195. 17.19 ->ACCElTABLE 197.55,212.73,1.50 1 345.0 9.960E+08 27292. 17.25 -->ACCEITABLE 350.0 9.739E+08 26688. 16.87 ---->ACCEITA BLE 232.95,239.25,1.50 i i

355 0 9.797E+08 26846. 16.97 ---> ACCEPTABLE 271.35,301.81,1.50 ACCEITABLE! MINIMUM SAFETY FACrOR = 14 68 AT 275.0 331.71,334.29,1.50 DEGREES.

OUTPUT Filename: DLL12-30-97.For DLL DISTRIBUTED LIG AMENT LENG* 'H EVALUATION. REV. 2.1 LEFM RESULTS:

= = == =

(09/19/96)

DATE OF THIS ANALYSIS: 05/26/1999 NOTE: Tile FOLLOWING LEFM EVALUATION TREATS PART-TilROUGli W ALL

SUMMARY

OF INPUTS:

FLAWS ASTilROUGH WALL ==,=,,,,mm Thus, the following flaws were assumed:

Title:

H4 Faulted B214R1 Grown 4 Cycles Angle increment = 1.0 deg. (COARSE)

FLAW START END LENGTH LENGTH DEITH Membrane Stress. Pm = 883. psi No. (deg) (deg) (deg ) (inch) (inch) Bending Stress. Pb = 1375. psi Safety Factor.SF = 1.13 1 334 3 15.5 41.2 63.31 1.50 Mean Radius. Rm = 88 00 inches 2 223 39.2 16.8 25.88 1.50 Wall Thickness. t = 1.500 inches 3 79 3 113.2 33.9 52.05 l.50 Stress Intensity. Sm = 16900. psi 4 124.9 197.6 72.7 Ii1.60 1.50 Fluence = 3.1E+20 n/cm^2 5 212.7 232.9 20.2 31.06 1.50 Toughness, Kie = 150 0 hi'in^0.5 6 2393 271.4 32.1 4930 1.50 l 7 301.8 331.7 29.9 45.92 1.50 THETAI THETA 2 THICKNESS REGION [deg.) [deg.] [ inches)

)

l Allowable Stress intensity Factor, Kic/SP = 100 0 ksi* inch ^0 5 1 15.51 2232 1.500 l l

2 39.17 79.2' l.500 3 113.16 124f> l.500 SPACING Lmax K 4 197.55 212.73 1.500 W (in.) (inch) (kst.in) RESULT 5 232.95 239.25 1.500 6 27135 301.81 1.500 For space between flaws I & 2: 73.77 6331 46.7 --- 7 331.71 334 29 1.500

> ACCEPTABLE For space between flaws 2 & 3: 113.64 52.05 23.8 ---

>ACCEITABLE LIMIT LOAD RESULTS:

For space between flaws 3 & 4. 129.61 111.60 80 6 - - _ _ _ _ , _ , _

>ACCEITABLE NOTE: Tile FOLLOWING LIMIT LOAD RESUI.TS ASSUME THAT For space between flaws 4 & 5: 134.91 111.60 73.4 -- THE FLAWS TAKE COMPRESSION.

>ACCEPTAIILE For space between flaws 5 & 6: 58.98 4930 34 9 - ALPHA MOMENT Pb' SAFETY l >ACCEITABLE [deg) [in.lbs) [ psi] FACTOR RESULT For space netween flaws 6 & 7: 9609 4930 23 3 - ,_ ._.

> ACCEPTABLE 00 9 547E+08 26162. 11.98 ->ACCEITABLE

7 Ccrolina Power & Light Company CALCULATION 2B11-0001 REV. O Brunswick Nuclear Plant - Unit 2 Attachment C Page 13 Of 35 l

i. 5.0 9.726E+08 26653. 12.19 --->ACCERTABLE i 10.0 9.899E+08 27125. 12.40 -> ACCEPTABLE 15.0 9.83]E+08 26939, 12.32 -->ACCEITABLE LEFM RESULTS: i 20.0 1.000E+09 27409 12.53 ->ACCEITABLE = = = = = = =

25.0 1.017E+09 27877. 12.74 ---> ACCEPTABLE NOTE: THE FOLLOWING LEl%1 EVALUATION TREATS PART- t 30 0 1.013E+09 27750. 12.68 -->ACCElTABLE THROUGH WALL 35.0 1.031E+09 28246. 12.90 ->ACCEITABLE FLAWS ASTHROUGH-WALL 40 0 1.049E+09 28737. 13.12 ---->ACCEPTA BLE Thus, the following flaws were anumed: ,

45.0 1.058E+09 29001. 13.23 ->ACCElTABLE l 50.0 1.066E+09 29225. 13.33 -->ACCEITABLE FLAW START END LENGTH LENGTH DEITil l 55 0 1.073E+09 29407. 13.41 ---->ACCEITABLE No. (deg) (deg) (deg.) (inch) (inch) 60.0 1.078E+09 29547. 13.48 -->ACCEf7ABLE - - - - - - - - - - - - - - - - - - - - -

65.0 1.076E+09 29480. 13.45 ->ACCFyrABLE 1 334.3 15.5 41.2 63.31 1.50 70 0 1.081E+09 2 % 28. 13.51 ->ACCEPTAllLE 2 22.3 39.2 16 8 25.88 1.50 75.0 1.090E+09 29880. 13.62 ->ACCEITABLE 3 79.3 113.2 33 9 52.05 1.50 80.0 ' l.111E+09 3N34. 13.87 --> ACCEL'rABLE 4 124 9 197.6 72.7 111.60 1.50 85.0 1.123E+09 307M 14.02 --->ACCEI'IABLE 5 212.7 232.9 20.2 31.06 1.50 90.0 1.133E+09 31035. 14.14 --> ACCEPTABLE 6 239.3 271.4 32.1 49.30 1.50

, 95.0 1.140E+09 31245. 14.23 -->ACCElTABLE 7 301.8 331.7 29.9 45.92 1.50 l 100 0 1.146E+09 31407. 14.30 -->ACCEITABLE  !

I 105.0 1.144 E+09 31348. 14.27 ---> ACCEL'rA B LE l 110 0 1.148E+09 31466. 14 33 ---> ACCEL'rABLE Allowable Stress intensity Factor, Kic/SF = 133.3 ksi* inch ^0.5 (

115.0 1.150E+09 31515. 14.35 ->ACCEITABLE 120 0 1.149E+09 31487. 14.34 ->ACCEITABLE 125.0 1.145 E+09 31381. 14.29 ->ACCEITABLE SPACING Lmax K 130.0 1.139E+09 31200. 14.21 ---->ACCElTAB LE W (in.) (inch) (Lsi.in) RESULT 135 0 1.129E+09 30944. 14.10 -->ACCEI'rABLE --

140.0 1.ll7E+09 30615. 13.95 --->ACCEITABLE For space between flaws I & 2: 73.77 6331 66.0 -

145.0 1.096E+09 30030. 13.69 --->ACCEITABLE >ACCEITABLE l 150 0 1.099E+09 30105. 13.72 -->ACCEITABLE For space between flaws 2 & 3: 113 64 52.05 33.7 -  !

155.0 1.088 E+09 29826. 13.60 -->ACCEf7ABLE >ACCEITABLE l 160 0 1.081 E+09 2 % 32. 13.51 ->ACCEITABLE For space between flaws 3 & 4: 129.61 111.60 ! !4 0 --

165.0 1.077E+09 29500. 13.46 -->ACCEiTA B LE >ACCElTABLE 170 0 1.063E+09 29124. 13.29 --->ACCEITA B LE For space between flaws 4 & 5: 134 91 111.60 103u8 -

175.0 1.N8E+09 28709. 13 11 ->ACCEITABLE >ACCEI'rABLE 180.0 1.057E+09 28962. 13.22 ---> ACCEPTABLE For space between flaws 5 & 6: 58.98 49 30 49 3 -- -

185 0 1.032E+09 28272. 12.91 -> ACCEPTABLE > ACCEPTABLE 190.0 1.030E+09 28230. 12.89 ->ACCElTABLE For space between flaws 6 & 7: 96 09 49.30 33 0 ----

195.0 1.018E+09 27899. 12.75 -> ACCEL' TABLE >ACCEITABLE 200 0 1.004E+09 27506. 12.57 ->ACCEirrABLE For space between flaws 7 & I: 67.27 63.31 98.5 -

i 205.0 9 955E+08 27279. 12.47 --> ACCElTA BLE > ACCEL'rABLE 210 0 9.782E+08 26806 12.26 ---->ACCEI'rA BLE 215.0 9.590E+08 26280. 12.03 ----> ACCEPTABLE LIMITING K = 114.0 ksi* inch ^0.5, ACCEL'rABLE 220 0 9.217E+08 25257. 11.58 --->ACCEITABLE 225.0 9.091 E+08 24912. 11.42 --->ACCEITABLE 230 0 8.%6E+08 24570. 11.27 --> ACCEPTABLE 4 235 0 8.618E+08 23617. 10.85 ->ACCEITABLE 240.0 8.516E+08 23335. 10.73 -->ACCEITABLE 245B 8.218E+08 22520. 1036 -->ACCEI'rABLE 250.0 8.275E+08 22676. 10.43 - -> ACCEITABLE 255.0 8.283E+08 22697. 10.44 --->ACCEI'rABLE 260 0 8.172E+08 22393. 1031 --->ACCEliABLE 265.0 8.146E+08 22322. 10.28 - ->ACCEliABLE 270.0 8.070E+08 22114. 10.18 ->ACCEITABLE 275.0 8.238E+08 22575. 1039 --->ACCEITABLE 280.0 8.202E+08 22476 1035 ->ACCEf" FABLE 285.0 8.188E+08 22437. 10 33 --->ACCEliABLE 290 0 8.439E+08 23126 10.63 ---> ACCEL'IABLE 295 0 8.465 E+08 231 % . 10.66 -->ACCEI'IABLE

, 300.0 8.495E+08 23278. 10.70 ----> ACCEPTABLE l l 305.0 8.781 E+08 24063. I I .05 ->ACCEI'rABLE I 310.0 8.814E+08 24154. 11.09 ->ACCEITABLE l 31$.0 8.84 t E408 24227. 11.12 ->ACCEITABLE i 320.0 8 961E+08 24555. 11.27 ---> ACCEL'rABLE 325.0 9.169E+08 25125. 11.52 -->ACCidi'IABLE 330.0 9.273E+08 25410. 11.64 ->ACCEI'rABLE 335.0 9355E+0B 25634. 11.74 -> ACCEPTABLE 340.0 9.413E+08 25795. 11.81 ->ACCEf7ABLE 345.0 9.452E+08 25902. 11.86 -> ACCEL'rABLE 350.0 9.403E+08 25765, 11.80 -->ACCEiTABLE l

355.0 9.460E+08 25923. 11.87 ---> ACCEL'IABLE ACCEITABLE! MINIMUM SAFETY FACTOR = 10.18 AT 270.0 i DEGREES.

j l '.

r I

Ccro//ns Power & Light Company CALCULATION 2B11-0001 REV. O l Brunswick Nuclear Plant - Unit 2 Attachment C Pige 14 Of 35 INPUT 36 35.70 36 07 0 06i 37 36 07 36.35 0 192 i l

H6b Normal / Upset B214R1 1 Cycle 38 36 35 36.72 0.iol 0 39 3& 72 3m n24i 40 37.00 37.37 0.121 607 4: 37.37 37.64 0 i4i 1 2204 42 3m 38 02 a231 i

43 38.02 38.29 0.118 l 2.25 44 38.29 38 67 0.271 gg 45 38.67 38.94 0.261 i 46 38.94 39.31 0 492 l.50 47 39.3i 39.59 0.271 1(3900, 48 39.59 39 96 0.492 49 39.96 40.24 0 492 5e19 50 40 24 40 6 0.492 950 si 40 6i 4a89 n492 52 40 89 41.26 0.492 OUTPUT 53 4i.26 41.53 0 492 Filename: DLL12 30-97.For 54 41.53 42.18 0.492 j DLL DISTRIBUTED LIGAMENT LENGTil EVALUATION, REY. 2.1 55 4218 42.83 0 492 i (09/19/96) 56 42.83 43.48 0.492 1 DATE OF Tills ANALYSIS: 05/28/1999 57 43.48 44.13 0 181 58 44.13 44.78 0.211 SUMM ARY OFINPLTTS' $9 44 78 45.42 0.271

================= 60 45.42 45.70 0 211

Title:

ll6b Normal / Upset B214Ri l Cycle 61 45.70 46 07 0.221 Angle increment = 1.0 deg (COARSE) 62 46 07 46.35 0 271 l

Membrane Stress, Pm = 607. psi 63 46.35 46.72 0.121 Bending Stress, Pb = 2204. psi 64 46.72 47.00 0.251 Safety Factor, SF = 2.25 65 47.00 47.37 0.241 Mean Radius. Rm = 88.00 inches 66 47.37 47.64 0.241 Wall Thickness,1 = 1.500 inches 67 47.64 48.02 0.261 Stress Intensity, Sm = 16900. psi 68 48.02 48.29 0.241 Fluence = 5.0E+19 n/cm^2 . 69 48.29 48.67 0.231 (Thus, LEFM evaluation not applicable) 70 48 67 48 94 0 091 71 48.94 49.59 0 492 l THETAl THETA 2 THICKNESS 72 49.59 49.96 0.492 REGION (deg) [deg] [ inches] 73 49.96 50.24 0.231 74 $0.24 50 61 0 492 I I2.90 13.55 0.271 75 50.61 50.89 0.492 2 13.55 14 20 0.141 76 50.89 51.53 0 091 3 14.20 14 85 0.221 77 51.53 52.18 0 051 4 14.85 15.50 0.151 78 52.18 52.83 0 492 5 15.50 16.80 0.099 79 52.83 53.48 0.492 1 6 16.80 17.45 0.091 80 53 48 54.13 0.492 I 7 17.45 18.10 0.182 81 54.13 54.78 0.492 8 18.10 18.75 0.081 82 $4.78 55.42 0.492 9 18.75 20 05 0.I36 83 55.42 55.70 0 492 10 20 05 22.65 0.071 84 55.70 56.07 0.111 11 22.65 23.30 0.492 85 56.07 56.35 0.191 12 23.30 23.95 0.492 86 56.35 56.72 0.201 13 23.95 24.60 0.492 87 56.72 57.00 0.081 14 24.60 25.35 0.101 88 57.00 57.37 0.151 15 25.35 25.90 0 051 89 57.37 57.64 0.181 16 25 90 26 00 0.15I 90 57.64 58 02 0.271 17 26.00 26.55 0 231 91 58.02 58.29 0.136 18 26 55 26.65 0.251 92 58.29 58 67 0.492 19 26 65 27.20 0.171 93 58 67 58.94 0.492 20 27.20 27.30 0.062 94 58 94 59.31 0 492 21 2730 27.95 0.231 95 59.31 59.59 0 492 l 22 2735 28.50 n001  % 59.59 59.% 0.492 l 23 28.50 28 60 0.241 97 59.96 60.24 0.492 24 28.60 29.25 0.I81 98 60.24 60 61 0 492 25 29.25 29.80 0.191 99 60 61 60.89 0 492 26 29.80 29.90 0 089 100 60 89 61.53 0.492 27 29.90 30 45 0.131 101 61.53 62.18 0 492 28 30.45 30.55 0.201 102 62.18 62.83 0.101 29 30.55 31.10 0 091 103 62.83 63.48 0.021 j 30 31.10 31.20 0.155 104 63.48 64.13 0.271 1 31 31.20 32.50 0.05l 105 64.I3 64.78 0.261 32 32.50 33.15 0.062 106 - 64.78 65.42 0 492 33 33.15 33.80 ' O.053 107 65.42 65.70 0.492 34 33.80 35 10 0.136 108 65.70 66 07 0 151 35 35.10 35.70 0.155 109 66.07 66 35 0.181

Cuolins Power & Light Company CALCULATION 2B11-0001 REV. O Btunswick Nuclear Plant - Unit 2 Attachment C Page 15 of 35 110 66.35 66.72 0.I I I IB4 98.01 98 29 0.081 Ill 66 72 67.00 0 091 185 98.29 98 67 0 06I 112 67.00 67.37 0.181 186 98 67 98 94 0.121 1I3 67.37 67.64 0 071 187 98 94 99.06 0.I31 l14 67.64 68.02 0.492 188 99.% 100 24 0.13I 115 68.02 68.29 0.492 189 100.24 100.61 0.121 116 68.29 68 67 0.121 190 100 61 100.89 0.201 117 68.67 68 94 0.071 191 100.89 101.53 0.061 118 68 94 69.31 0 492 192 101.53 102.18 0.241 119 69.31 69.59 0.492 193 102.18 802.83 0 231 120 69.59 69.% 0.131 194 102.83 103.48 0 061 121 69 96 70.24 0.166 195 103.48 104.13 0.231 122 70.24 70.61 0.101 1% 104.13 104.78 0.181 123 70 61 70.89 0.156 197 104.78 105.42 0261 124 70 89 71.53 0.492 198 105.42 105.70 0 231 125 71.53 72.83 0.492 199 105.70 106.07 0.171 126 72.83 73.48 0.016 200 106.07 106.35 0.171 127 73.48 74.I3 0.276 201 106.35 106.72 0.271 128 74.13 74.78 0.091 202 106.72 107.00 0.492 129 74 78 75.42 0 Ii1 203 107.00 107.37 0 492 130 75.42 75.70 0.221 204 107.37 107.64 0.492 131 75.70 76.07 0.181 205 107.64 108 02 0.271 132 76.07 76.35 0.271 206 108.02 108.29 0.271 133 76.35 76.72 0 111 207 108.29 108.67 0.101 134 76.72 77.00 0.131 208 108.67 108.94 0.261 135 77.00 77.37 0 201 209 108.94 109.31 0.141 136 77.37 77.64 0 201 210 109.31 109 59 0146 137 77.64 78 02 0.191 211 109.59 109.% 0.191 138 78.02 78.29 0.156 212 109 96 110.24 0.241 139 78.29 78.67 0. Ill 213 110.24 110 61 0.191 140 78.67 78.94 0.091 214 110 61 110 89 0 492 141 78.94 79.31 0.271 215 110 89 111.53 0.492 142 79.31 79.59 0.146 216 111.53 112.18 0.101 143 79.59 79.96 0.271 217 112.18 112.83 0.141 144 79.96 80.24 0.191 218 112.83 113.48 0.266 145 80.24 80.61 0.191 219 113.48 114.13 0.271 146 80.61 80.89 0.171 220 114.13 114.78 0.111 147 80.89 81.53 0 492 221 114.78 115 42 0 061 148 81.53 82.18 0.261 222 115.42 115.70 0 031 149 82.18 82.83 0 492 223 115.70 116 07 0.231 l 150 82.83 83.48 0 271 224 116 07 I I6.35 0.111 )

151 83.48 84.13 0.492 225 116.35 116.72 0 131 152 84.13 84.78 0.276 226 116.72 117.00 0.211 153 84.78 85 42 0.181 227 117.00 l17.37 0.101 154 85.42 85.70 0.141 228 I J 7.37 117.64 0 071 155 85.70 86.07 0.261 229 II7.64 118.02 0.101 156' 86 07 86 35 0.161 230 118.02 I I8.29 0.231 157 86.35 86.72 0.211 231 118.29 I l 8.67 0 181 158 86.72 87.00 0.I91 232 118.67 I I 8.94 0.I66 159 87.00 87.37 0.231 233 118 94 119.31 0.I41 160 87.37 87.64 0.131 234 119 31 119.59 0.231 161 87.64 88.02 0.171 235 119.59 119.% 0.492 162- 88.02 88.29 0.131 236 119.96 120 24 0 492 163 88.29 88 66 0.261 237 120.24 120 61 0 492 164 88.66 88.94 0.146 238 120 61 120 89 0.492 165 88 94 89.31 0.211 239 120.89 121.26 0.492 166 89.31 89.59 0 071 240 121.26 121.53 0 492 167 89.59 89.% O lli 241 121.53 122.18 0 492 168 89 96 90.24 0 181 242 122.18 122.83 0 081 169 90.24 90 61 0.101 243 122.83 123.48 0.156 170 90 61 90.89 0.271 244 123 48 124.13 0.116 171 90.89 91.53 0.271 245 124.13 124.78 0.101 172 91.53 92.18 0.241 246 124.78 125.42 0.136 173 92.18 92.83 0.261 247 125.42 126.72 0.071 174 92.83 93.48 0.221 248 126.72 127.00 0 026 175 93.48 94.13 0.131 249 127.00 127.37 0 051 176 94.13 94.78 0.091 250 127.37 127.64 0 046 177 94.78 95.42 0.086 251 127.64 128 02 0.407 178 95 42 95.70 0.221 252 128.02 128.29 0.497 179 95.70 96 07 0.071 253 128.29 128.67 0.547 180 96 07 %.35 0.061 254 128.67 128.94 0.497 I8I 96.35 97.00 0.1II 255 128.94 129.31 0.377 182 97.00 97.37 0.201 256 129.31 129.59 0 487 I83 97.37 98.01 0 081 257 129.59 I30.24 0.447

l C:rolina Pow:r & Light Comp:ny CALCULATION 2B11-0001 REV. O l Btunswick Nucl:ar PI:nt - Unit 2 Att:chmant C Paga 16 of 35 258 130.24 130 61 0.557 332 160.89 161.53 0.271 259 130.61 130 89 0 557 333 161.53 162.18 0 492 260 130.89 131.53 0.557 334 162.18 162.83 0.271 261 131.53 132.18 0.467 335 162.83 163 48 0.271 262 132.18 132.83 0.487 336 163.48 164.13 0.191 263 132.83 133.48 0.517 337 164.13 164.78 0.271 264 133 48 134.13 0.332 338 164.78 165.42 0.492 265 134.13 134.78 0.452 339 165.42 166 07 0 492 266 134.78 135.42 0.547 340 166.07 167.37 0.121 267 135 42 135.70 0.487 ' 341 167.37 168.67 0 099 268 135.70 136.07 0.367 342 168.67 169.31 0.164 269 136.07 136.35 0.467 343 169.31 169.% 0.182 l 270 136.35 136.72 0.447 344 169.96 170.61 0.164 271 136.72 137.00 0.397 345 195.10 195.76 0.295 272 137.00 137.37 0 417 346 195.76 196 40 0.277 273 137.37 137.64 0.422 347 196 40 197.05 0.387 274 137.64 138.02 0.307 348 197.05 197.69 0 377 275 138.02 138 29 0.347 349 197.69 198.35 0.314 276 138.29 138.67 0.377 350 198.35 198 99 0.332 277 138.67 138.94 0.387 351 198.99 199.65 0.389 279 138.94 139.31 0.357 352 199.65 200.29 0.351 279 139.31 139.59 0.557 353 200.29 200.94 0.351 280 139.59 139.% 0.457 354 200.94 201.58 0.557 281 139 % 140.24 0.477 355 201.58 202.24 0.239 282 140.24 140.61 0.417 356 202.24 202.88 0.388 283 140.61 140.89 0.377 357 202.88 203.54 0.557 284 140.89 141.53 0 517 358 203.54 204.18 0.557 285 141.53 142.I8 0.327 359 204.I8 204.83 0.557 286 142.18 142.83 0.557 360 204.83 205 47 0.557 287 142.83 143.48 0.557 361 205.47 205.70 0.557 288 143.48 144.13 0.557 362 205.70 206.13 0 557 289 144.13 144.78 0.517 363 206.13 206.35 0.557 290 144.78 145.42 0.557 364 206.35 2 % .77 0.557 291 145.42 145.70 0.557 365 206.77 207.00 0.557

, 292 145.70 146.07 0.557 366 207.00 207.43 0.557 l 293 146 07 146.35 0 557 367 207.43 207.64 0.557 294 146 35 146.72 0 457 368 207.64 207.93 0.557 295 146.72 147.00 0.477 369 207.93 208.05 0.300

. U. 147.00 147.37 0.337 370 208.05 208.18 0.227 297 147.37 147.64 0.557 371 208.18 208.30 0.212 298 147.64 148.02 0.517 372 208.30 208 42 0.162 299 148 02 148.29 0.387 373 208.42 208.55 0.294 300 148.29 148 67 0.477 374 208.55 208 67 0.384 301 148.67 148.94 0.377 375 208 67 211.15 0 557 302 148.94 149.31 0.557 376 211.15 211.89 0 557 303 149.31 149.59 0.537 377 211.89 220.13 1.500 304 149.59 149.% 0.327 378 220.13 220.87 1.500 305 149.% 150.24 0.507 377 220.87 223.35 0.557 306 150.24 150.61 0 467 3E0 223.35 223.44 0.547 307 150.61 150.89 0.487 381 223.44 223.52 0.552 308 150.89 151.53 0.557 382 223.52 223.61 0.392 309 151.53 152.18 0.277 383 223.61 223.69 0.474 310 152.18 152.83 0.397 384 223 69 223.78 0.387 311 152.83 153 48 0 062 385 223.78 223.87 0.267 312 153 48 154 1.- 0.307 386 223.87 223.95 0.187 313 154.13 154.78 0.332 387 223.95 224.04 0.314 314 154.78 155.42 0.557 388 224.04 224.12 0.427 315 155.42 155.70 0.557 389 224.12 224.21 0 380 316 155.70 156 07 0.557 390 224.21 224.30 0.557 317 156.07 156.35 0 097 391 224.30 224.38 0 552 318 156.35 156.72 0.557 392 224.38 224.47 0.300 319 156.72 157.00 0.527 393 224.47 224.55 0.257 320 157.00 157.37 0.167 394 224.55 224 64 0.280 321 157.37 157.64 0.387 395 224 64 224.73 0.227 322 157.64 158.02 0.297 3% 224.73 224.81 0.257 323 158 02 158.29 0.357 397 224 81 224.90 0.230 l 324 158.29 158 67 0.397 398 224.90 224.98 0.317 325 158 67 158.94 0 166 399 224.98 225.07 0.237 326 158.94 159.31 0.251 400 225.07 225.16 0.352 327 159.31 159.59 0.026 401 225.16 225.24 0.474 l 328 159.59 159.% 0.031 402 225.24 225 99 0 557 329 159.% 160.24 0.201 403 225.99 226 09 0.222 l 330 160.24 160 61 0.211 404 226 09 226.18 0.257 331 160 61 160.89 0.261 405 226.18 226.28 0.162 l

l

l Carolina Power & Light Company CALCULATION 2B11-0001 REV. O

[ Brunswick Nuclear Plant - Unit 2 Attachment C Page 17 of 35

?406 226.28 226.37 0.177 480 244 95 245 05 0 337 407 22637 22547 0.252 : 481 245 05 245.16 0 392 408 226.47 226 M 0322 482 245.16 245.27 0 340 409 226.56 226 66 0404 483 245.27 245 37 0.432 410 226.66 226.75 0.417 484 24537 247.94 0.497 41I 226.75 230.87 0.557 485 247.94 248.05 0.464 412 230 87 230.99 0 472 486 248.05 248.I6 0 357 i 413 230.99 231.10 0 394 - 487 248.16 248.27 0372 414 231.10 231.22 0344 488 248.27 24838 0342 415 231.22 23133 0330 489 24838 248.50 0.557 416 231.33- 231.45 0.370 490 248.50 248.94 9.557 417 231 45 231.57 0 322 491 248.94 249.06 0.557 418 231 57 231.68 0 350 492 249 06 249.17 0.547 419 231.68 231.80 0 307 493 249.17 249.29- 0.427 420 231.80 231.91 0 330 494- 249.29 249.41 0367 421 231.91 232.03 0317 495 249.41 249.53 0320 422 232.03 232.15 0.207 4% 249.53 249.64 0 362 423 232.15 232.26 0 147 497 249.64 249.76 0.207 424 232.26 232.38 0.247 498 249.76 249.88 0.187 425 23238 232.49 0 312 499 249.88 250 00 0.227 426 232.49 232 61 0.230 500 250.00 250.11 0.387 427 232 61 232.73 0.250 501 250.11 250.23 0367 428 232.73 232.84 0.290 502 250 23 25035 0 312 429 232.84 232.% 0.177 503 25035 250.46 0.274 430 232.96 233 07 0.197 504 250.46 250.58 0 327 431 233.07 233.19 0.224 505 250.58 250.70 0.292 432 233.19 23331 0.297 506 250.70 250 82 0.277 433 23331 233 42 0.277 507 250.82 250 93 0.222 434 233.42 233.54 0.244 508 250.93 251.05 0 372 435 233.54 233 65 0.172 509 251.05 251.17 0.207 436 233.65 233.77 0 172 510 251.17 251.29 0.207 437 233.77 233.89 0.247 Sil 251.29 251.40 0.240 438 233.89 234 00 0 332 512 251.40 251.52 0.247 i 439 234.00 234.12 0304 513 251.52 251.64 0.162 J 440 234.12 234.23 0.137 514 251.64 251.76 0.217 441 234.23 23435 0.234 515 251.76 251.87 0.257 442 23435 234 47 0.210 516 251.87 251.99 0.192 443 234.47 234.58 0.217 517 251.99 252.11 0.294 444 234.58 234.70 0.274 518 252.11 252.22 0.267 445 234.70 234 81 0.257 519 252.22 25234 0.252 446 234.8l 234.93 0344 520 25234 252 46 0 357 447 234.93 235.05 0.217 521 252.46 252.58 0.202 448 235 05 235.16 0 257 522 252.58 252.69 0.270 449 235.16 235.28 0.237 523 252.69 252.81 0.437 450 235.28 '23539 0.137 524 252.81 ' 252.93 0 352 451 23539 235.51 0.217 525 252.93 253.05 0394 452 '235.51 235 63 0.207 526 253.05 253.16 0.400 453 235.63 235.74 0310 527 253.16 253.28 0.320 454 235.74 235.86 0.557 528 253.28 253.40 0.252 455 235.86 238 N 0.557 529 253.40 253.51 0.337 456 238 64 238.15 0384 530 253.51 253 63 0.252 457 238.15 238.26 0367. 531 253 63 253.75 0.267 458 238.26 239.13 0.55/ 532 253.75 253.87 0 332 ,

459 239.13 239.24 0.447 533 253.87 253.98 0.557 )

460 239.24 239 35 0.427 534 253.98 254.10 0.557 461 239 35 239.46 0347 535 254.10 254.22 0.557 462 239 46 239.56 0360 536 254.22 25434 0 317 463 239.56 239 67 0 357 537 25434 254 45 0302 464 239 67 239.78 0397 538 254.45 254.57 0.217 465 239.78 239.89 .0337 539 254.57 254.69 0 302 466 239.89 240.00 0392 540 254 69 254.81 0.332 467- ' 240.00 240.11 C.564 541 254 81 254 92 0 314 468 240.11 241 20 0 582 542 254.92 255 N 0.277 469 241.20 24131 0.487 543 255 04 255.16 0362 470 24131 241.42 0.467 544 255.16 255.27 0.247 471 241,42 241.53 0.414 545 255.27 25539 0.287 472 .241.53 241.63 0.417 546 25539 255.51 0.237 473 241.63 24431 0377 547 255.51 255 63 0.247 474 24431 244.42 0.494 548 255.63 255.74 0.232 475 244.42 244.52 0.477 549 255.74 255 86 0.257 476 244.52 244.63 0.474 '550 .255.86 258.75 0.557 477 244.63 244.74 0 254 551 258.75 258 86 0 357 478 244.74 244.84 0.192 552 258.86 258.98 0.267 479 244.84 244.95 0.250 553 258.98 259 09 0.267

r C:rolin2 Pow:r & Light Company CALCULATION 2B11-0001 REV. O l Btunswick Nuclear PI:nt - Unit 2 Att chment C Page 18 of 35 554 - 259 09 259.20 0 162 628 285 35 285 47 0.240 555 259.20 259.32 0.152 629 285.47 285.59 0.537 556 259.32 259.43 0.267 630 285.59 285.71 0.557 l 557 259 43 262 03 0.404 631 285.71 285.83 0.280 558 262 03 262.77 0.557 632 285.83 285 95 0 430 559 262.77 272.84 1.500 633 285.95 286.07 0.427 560 272.84 273.58 1.500 634 286.07 286.19 0.462 56l 273.58 276.17 0.557 635 286.19 286 31 0.347 562 276.17 276.28 0.557 636 286.31 286.42 0.324 563 276.28 276.39 0.354 637 286.42 286.54 0.294 l 564 276.39 276.50 0.452 638 286.54 287.38 0.284 1 565 276.50 276.62 0.227 639 287.38 287.50 0.280 566 276 62 276.73 0.237 640 287.50 287.61 0.347 l 567 276.73 276.84 0.352 641 287.61 287.72 0.277 568 276 84 276.95 0 374 642 287.72 287.84 0 264 569 276 95 277.06 0.357 643 287.84 287.95 0.207 570 277.06 278.57 0 297 644 287.95 288.07 0.380 571 278.57 278.69 0.457 645 288.07 288.18 0.350 572 278.69 278.81 0.357 646 288.18 288.29 0.177 573 278.81 278.93 0.304 647 288.29 288.41 0.187 l 574 278 93 279.05 0.267 648 288.41 288.52 0 294 f75 279 05 279.17 0.207 649 288.52 288.64 0.382 576 279.17 279.28 0.397 650 288.64 288.75 0.377 577 279.28 279.40 0.327 651 288.75 288.86 0.340 578 279.40 279.52 0.380 652 288.86 288.98 0.207 579 279.52 279.64 0.397 653 288.98 289.09 0.047 i 580 279.64 279.76 0.404 654 289 09 289.21 0.142 l 581 279.76 279.88 0.337 655 289.21 289.32 0.277 582 279.88 280.00 0.337 656 289.32 290.11 0.557 583 280 00 280.12 0.380 657 290.11 290.23 0.557 584 280.12 280.24 0.287 658 290.23 290.35 0.557 585 280.24 280 36 0.274 659 290 35 290.47 0,557 586 280.36 280.47 0.290 660 290 47 290.58 0.557 587 280.47 280.59 0.300 661 290 58 290.70 0.207 588 280,59 280.71 0 354 662 290.70 290.8? 0.317 589 280.71 280.83 0.232 663 290.82 290.94 0.350 l 590 280.83 280 95 0.247 664 290.94 291.06 0.340 591 280 95 281.07 0.404 665 291.06 291.18 0.272 q

592 281.07 281.19 0.390 666 291.18 291.30 0.390 i 593 281.19 281.31 0.284 667 291.30 291.41 0.300 594 281.31 281 43 0.384 668 291.41 291.53 0.292 595 281.43 281.55 0.537 669 291.53 291.65 0.367 5% 281.55 281.66 0 432 670 291.65 291.77 0.452 l 597 281.66 281.78 0.414 671 291.77 291.89 0.374 l

$98 281.78 281.90 0.460 672 291.89 292.01 0.542 l 599 281.90 282.02 0 480 673 292.01 292.12 0 432 600 282.02 282.14 0.557 674 292.12 292.24 0.357 601 282.14 282.26 0.557 675 292.24 292.36 0.327 602 282.26 282.38 0.537 676 292.36 292.48 0.297 603 282.38 282.50 0 447 677 292.48 292.60 0.307 604 282.50 282.62 0.557 678 292.60 292.72 0.287 605 282.62 282.74 0.390 679 292.72 292.84 0.177 606 282.74 282.85 0 390 680 292 84 292 95 0.287 607 282.85 282.97 0.337 681 292.95 293.07 0.320 608 282.97 283.09 0.322 682 293.07 293.19 0.344 l 609 283 09 283.21 0.334 683 293.19 ??3.31 0.390 l 610 283.21 283.33 0.252 684 293.31 293.43 0.394 l 611 283.33 283.45 0.192 685 293.43 293.55 0.277 l

612 283 45 283.57 0.197 686 293.55 293.67 0.314 613 283.57 283.69 0.367 687 293 67 293.78 0.347 614 283 69 283.81 0.297 688 293.78 293.90 0.307 l 615 283.81 283.93 0.324 689 293.90 294.02 0.342 1 616 283.93 284.N 0.284 690 294.02 294.14 0.310 617 284 04 284.16 0.344 691 294.14 294.26 0.262 618 284.16 284.28 0.354 692 294.26 294.38 0.212 1 619 284.28 284.40 0.287 693 294.38 294.49 0.287 620 284.40 284.52 0.177 694 294.49 294 61 0.347 621 284.52 284 64 0.347 695 294 6I 294.73 0.242 622 284 64 284.76 0.360 6% 294.73 294 85 0.312 623 284.76 284.88 0.297 697 294 85 294 97 0.377 4 624 284.88 285.00 0.257 698 294.97 295 09 0.397 625 285 00 285.12 0.187 699 295 09 295.21 0.157 626 285.12 285.23 0.332 .700 295.21 295.32 0.257 627 285.23 285.35 0.224 70I 295.32 295.44 0257 l

Im

Cuo//na Power & Light Company CALCULATION 2B11-0001 REV. 0 l: 'Btunswick Nuclear PI:nt - Unit 2 Attachment C Page 19 of 35 l

702 295.44 295.56 0314 776 318 34 318.45 0.252 703 295.56 295.68 0.262 777 318.45 318.56 0.327 704 295.68 295 80 0360 778 318.56 318.67 0.250 705 295.80 295.92 0.I77 779 318.67 318.78 0317 706 295.92 2 % .03 0342 780 318.78 318.89 0.417

'707 296 03 2 %.15 0357 781 318.89 318.99 0302 708 296.15 2 %.27 0.502 782 318 99 319.10 0307 709 296 27 2 % .39 . 0.330 783 319.10 319.21 0.267 710 2%39 2 %.51 0.290 784 319.21 31932 0327 711 296 51 296.63 0304 785 31932 319.43 0.297 712 2 % 63 2 % .75 0.487 786 319 43 319.53 0.297 713 2 %.75 2%86 0.477 787 319.53 319 64 0.227 714 2 %.86 2 % .98 0.502 788 319.64 319.75 0 412 715 2%.98 - 297.10 0.410 789 319.75 319.86 0.332 716 ' 297,10 ' 297.22 0.432 790 319.86 319.97 - 0.482 {

717 297.22 29734 0392 791 319.97 320.08 0.452 7l8 29734 297.46 0.542 792 320.08 320.I8 0.417 719 297.46 297.58 0347 793 320.18 320.29 0.267 720 297.58 297.69 0.542 794 320.29 320.40 0.282 721 297.69 297.81 0.527 795 320.40 320.51 0387 722 297.81 297.93 0.552 796 320.51 320.62 0.294 723 297.93. 298.05 0.517 797 320.62 320.72 0.267 724 298.05 298.17 0.502 798 320.72 320.83 0.397 725 298.17 298.29 0.552 799 320.83 321.61 0.324 726 298.29 298.40 0.462 800 321.61 321.73 0322 l 727 298.40 298.52 0.552 801 321.73 321.86 0.327  !

728 298.52 298 64 0.487 802 321.86 321.98 0.222 I 729 298 64 298.76 0.397 803 321.98 322.10 0.227 730 298.76 30136 0.487 804 322.10 322.22 0.264 731 30136 302.10 0.527 805 322.22 32235 0322 732 302.10 -310.58 1.500 806 32235 322.47 0.232 733 310.58 31132 1.500 807 322.47 322.59 0.282 734 31132 313.91 0.557 808 322.59 322.71 0307 735 313 91 314.02 0.557 809 322.71 322.84 0.312 736 314.02 314.12 0.297 810 322.84 322.% 0.320 737. 314.12 314 23 0.277 Bil 322.96 323.08 0337 738 314.23 31434 0300 812 323.08 323.20 0320 739 31434 314.45 0.270 813 323.20 32333 0 334 740 314.45 314.56 0.284 814 32333 323.45 0.267 741 . 314.56 ' 314.67 0.280 - 815 323.45 323.57 0 300 742 314.67 314.77 0.277 816 323.57 323.69 0 334 743 314.77 314.88 0.217 817 323.69 323.82 0.317 744 314.88 314.99 0.212 818 323 82 323.94 0307 745 314.99 315.10 0.237 819 323.94 324.06 0300 746 315.10 315.21- 0.227 820 324 06 324.18 0 304 747 315.21 31531 0340 821 324.18 32431 0324 748- '31531 315.42 0.290 822 32431 324.43 ' O 257 749 315.42 315.53 0.292 823 324.43 324.55 0.254 750 315.53 315 64 0.252 824 324.55 324.67 0.294 751 315 64 315.75 0 442 825 324.67 324 80 0.294 752 315.75 315.86 0.222 826 324.80 324.92 0357 753 315.86 315.% 0.287 827 324.92 325 04 0.262 754 315 96 316.07 0.277 828 325.04 325.16 0.290 755 316 07 316.18 0.284 829 325.16 325 29 0307 756 316.18 316.29 0 357 830 325.29 325.41 0.270 757 316.29 316.40 0340 831 325.41 325.53 0.297 758 316.40 316.51 0 390 832 325.53 325.65 0312

=759 316.51 316.61 0344 833 325.65 325.78 0337 760 316 61 316.72 0.294 834 325.78 325.90 0.274 761 316,72 316.83 0307 835 325.90 326.02 0.290 762~ 316.83 316.94 0.214 836 326.02 326.14 0.290 763 316.94 317.05 0.200 837 326.14 326.27 0.280 764 317.05 317.15 0.267 838 326.27 32639 0314 765 317.15 317.26 0.212 839 326 39 326.51 0317 766 317.26 31737 0.230 840 326.51 326.63 0 340 767 31737 317.48 0.237 841 326.63 326.76 0397 768 317.48 317.59 0.242 842 326 76 326.88 0324  ;

769 317.59 317,70 0.242 843 326.88 327.00 0.237 l 770 317.70 317.80 0.270 844 327.00 327.12 0.357  !

771 317.80 317.91 0332 845 327.12 327.25 0372 772 317.91 : 318.02 0 240 - 846 327.25 32737 0.290 773 318 02 ' 318.13 0.172 847 32737 327.49 0350 774 318.13 318.24 0.224 848 327.49 327.61 0314 l 775 '318.24 318 34 0.257 849 327 61 327.74 0387 1

I

C:ro/ ins Power & Light Company CALCULATION 2B11-0001 REV. O Btunswick Nucirr Plant - Unit 2 Attachmnnt C Page 20 Of 35 850 327.74 327.86 0.294 924 336 53 336.65 0.274 851 327.86 327.98 0.317 925 336.65 336.76 0.250 852 327.98 328.10 0.324 926 336.76 336.87 0 242 853 '328.10 328.23 0.320 927 336.87 336 98 0.222 854 328.23 328.35 0.334 928 336.98 337.09 0 347 855 328.35 328.47 0.307 929 337.09 337.21 0.380 856 328.47 328.59 0.320 930 337.21 337.32 0.334 857 328.59 328.72 0.314 931 337.32 337.43 0.374 858 328.72 328 84 0.324 932 337.43 337.54 0.407 859 328.84 328.% 0.352 933 337.54 337.66 0 237 860 328 % 329.08 0.347 934 337.66 337.77 0.237 861 329.08 329.21 0.397 935 337.77 337.88 0.290 862 329.21 329.33 0.340 936 337.88 337.99 0.280 863 329.33 329.45 0.427 937 337.99 338.11 0.294 864 329.45 329.57 0.350 938 338.11 338.22 0.300 865 329.57 329.70 0.367 939 338.22 338,70 0.357 866 329.70 329.82 0.287 940 338.70 338.82 0.414 867 329.82 329.94 0.412 941 338.82 338 94 0.330 868 329.94 330.06 0.347 942 338.94 339.06 0 314 869 330.06 330.19 0.287 943 339.06 339.18 0.362 870 330.19 330.31 0.347 944 339.18 339.30 0.347 871 330.31 330.43 0.367 945 339.30 339.42 0.352 872 330.43 330.55 0.357 946 339.42 339.54 0.280 873 330.55 330.68 0.357 947 339.54 339 66 0.317 874 330.68 330.80 0.390 948 339.66 339.78 0.287 875 330 80 331.14 0.557 949 339.78 339 90 0.304 876 331.14 331.25 0.557 950 339 90 341.30 0.310 877 331.25 331.36 0.447 1 878 331.36 331.48 0.434 879 331.48 331.59 0.390 LIMIT LOAD RESULTS:

880 331.59 331.70 0.320 ===================

881 331.70 331.81 0.222 NOTE: Tile FOLLOwlb"J LIMIT LOAD RESULTS ASSUME TilAT 882 331.81 331.93 0.252 Tile FLAWS TAKE COMPRESSION. i 883 331.93 332.04 0.387

{

884 332 N 332.15 0.207 ALPilA MOMENT IV SAFETY '

885 332.15 332.26 0.202 [deg) [in-lbs) [ psi) FACTOR RESULT 886 332.26 332.38 0.317 --- ---

887 332.38 332.49 0.202 0.0 1.081 E+09 29635. 10.76 -->ACCElTABLE 888 332.49 332.60 0.260 5.0 1.074E+09 29442. 10.69 ---> ACCEPTABLE 889 332.60 332.71 0.270 10.0 1.065E+09 29193. 10.60 -->ACCEfTABLE 890 332.71 332.83 0.290 15.0 1.056E+09 28949. 10.51 --->ACCEITA B LE 891 332.83 332.94 0.347 20.0 1.048E+09 28722. 10.43 -->ACCEITABLE 892 332 94 333.05 0.252 25.0 1.022E+09 28003. 10.18 --->ACCEITABLE 893 333 05 333 16 0.412 30 0 1.006E+09 27572. 10.02 --> ACCEliA BLE 894 333.16 333.27 0.267 35.0 9.934E+08 27222- 9.90 - -->ACCEliAB LE 895 333.27 333.39 0.362 40 0 9.784 E+08 26810. 9.75 ->ACCEFTABLE 896 333.39 333.50 0.250 45.0 9 612E+08 26340. 9.59 --->ACCEliABLE 897 333.50 333.61 0.264 50.0 9.351 E+08 25624. 9 33 --->ACCEITABLE 898 333.61 333.72 0.290 55 0 9.04 t E+08 24774. 9.03 ->ACCElTABLE l 899 33172 333.84 0.317 60.0 8.898E+08 24382. 8.89 -->ACCElTABLE )

900 333.84 333.95 0.274 65.0 8.590E+08 23540. 8.59 ---->ACCEITAB LE l 901 333.95 334.06 0.360 70.0 8.242E+08 22585. 8.25 -->ACCEliABLE 902 334 06 334.17 0.367 75.0 8.043E+08 22040. 8.06 ->ACCEliAllLE l 903 334.17 334.29 0.314 80.0 7.788E+08 21341. 7.81 -->ACCEITA B LE l 904 334.29 334 40 0.397 85.0 7.570E+08 20745. 7.60 --->ACCEliABLE 905 334.40 334.51 0.297 90.0 7.352E+08 20147. 7.38 --->ACCEJTABLE l 906 334.51 334.62 0.340 95.0 7.141 E+08 19567. 7.18 --->ACCEliABLE 334.62 334.74 100.0 6.837E+08 18736. 6.88 --> ACCEITA B LE 907 0.377 908 334.74 334.85 0.300 105.0 6.686E+08 18321. 6.73 -->ACCEITABLE 909 334 85 334 % 0.267 110.0 6.532E+08 17899. 6.58 ->ACCEfTABLE 910 334.96 335 07 0.204 115.0 6.478E+08 17750 6.53 -->ACCEf7ABLE j 911 335.07 335.18 0.194 120.0 6.271 E+08 17186. 6.33 -->ACCEITABLE 912 335.18 335.30 0.097 125.0 6.053E+08 16588. 6.12 ->ACCElTABLE 913 335.30 335 41 0.174 130 0 6 N8E+08 16573. 6.11 ---> ACCEITA BLE 914 335.41 335.52 0.077 135 0 5.838E+08 15998. 5.91 -->ACC81ITABLE 915 335.52 335.63 0.172 140 0 5.782E+08 15844. 5 85 - >ACCEITABLE 916 335.63 335.75 0.277 145.0 5.565 E+08 15250. 5.64 -->ACCEliABL.E 917 335.75 335.86 0 350 150 0 5.490E+08 15043. 5.57 --->ACCEITABLE 918 335.86 335.97 0.447 155.0 5.457E+08 14953. 5.54 ->ACCElTABLE 919 335:97 336.08 0.400 160.0 5 433E+08 14889. 5.51 -->ACCEliABLE 920 336.08 336.20 0.412 165.0 5.638E+08 15450. 5.71 --- >ACCEITABLE 921 336.20 336.31 0.364 170.0 5 647E+08 15473. 5.72 ->ACCEliAllLE

, 922 336.31 336 42 0.374 175.0 5.704E+08 15631. 5.78 ->ACCEliABLE l 923 336.42 336.53 0.350 180 0 5.755E+08 15771. 5.83 --->ACCEliAllLE l

C;ro/ ins Pow r & Light Company CALCULATION 2B11-0001 REV. O Btunswick Nucle:r PI:nt - Unit 2 Attachmunt C Page 2l Of 35

. 185.0 5.754E+08 15768. 5.83 ->ACCEliABLE 190 0 5.883E+08 16122. 5.95 -> ACCEPTABLE TilETAI THETA 2 THICKNESS 195.0 5.975E+08 16373. 6.04 --->ACCEITA B LE REGION [degj [deg.) [ inches]

200.0 6.100E+08 16717, 6.16 --->ACCElTAB LE -- --- -----

205.0 6.183E+0F 16943. 6.24 ->ACCEliABLE I 12.90 13.55 0 271 2l00 6.564E+08 17988. 6 62 ->ACCEITABLE 2 13.55 14.20 0.141 215.0 6.700E+08 18361. 6.75 ->ACCEITABLE 3 14.20 14 85 0.221 220.0 6.855E+08 18785. 6.90 - ->ACCElTABLE 4 14.85 15.50 0.151 225.0 7.143E+08 19575. 7.18 ->ACCEITABLE 5 15.50 16.80 0.099 230.0 7.252E+08 19872. 7.29 ->ACCElTABLE 6 16.80 17.45 0.091 235.0 7.54* E+08 20675. 7.57 -->ACCEiTABLE 7 17.45 18.10 0.182 240 0 7.629E+08 20905. 7.65 --> ACCEPTABLE 8 18.10 18.75 0.08) 245.0 7.884E+08 21604. 7.90 -->ACCEITABLE 9 18.75 20.05 0.136 250.0 8.052E+08 22065 8.07 ---->ACCElTA BLE 10 20.05 22.65 0.071 255 0 8.382E+08 22969. 8.39 - >ACCEliABLE Ii 22.65 23.30 0 492 260.0 8.516E+08 23336. 8.52 -->ACCEITABLE 12 23.30 23.95 0.492 265.0 8.654E+08 23714. 8.65 -->ACCEITABLE 13 23.95 24.60 0.492 270.0 9.044E+08 24782. 9.03 ->ACCEITABLE 14 24.60 25.35 0.101 275.0 9.123E+08 24999. 9.11 --->ACCEliABLE 15 25.35 25.90 0.051 280.0 9.314E+08 25522. 9.30 ---> ACCEPTABLE 16 25.90 26.00 0.151 285.0 9.522E+08 26092. 9.50 --->ACCEliABLE 17 26.00 26.55 0.231 290 0 9.933E+0S 27220. 9.90 ->ACCElTABLE 18 26.55 26.65 0.251 295 0 1.004E+09 27524. 10.01 --->ACCEITABLE 19 26.65 27.20 0.171 .

300.0 1.032E+09 28269. 10.27 -->ACCEITABLE 20 27.20 27.30 0.062  ;

305.0 1.042E+09 28546. 10.37 --->ACCEliABLE 21 27.30 27.95 0.231 )

310 0 1.06lE+09 29074. 10.56 ->ACCEITABLE 22 27.95 28.50 0.001 )

315.0 1.064E+09 29154. 10.59 -> ACCEPTABLE 23 28.50 28 60 0.241

]

320.0 1.08lE+09' 29632. 10.76 ->ACCElTABLE 24 28.60 29.25 0.181 j 325,0 1.092E+09 29922. 10.86 . ->ACCElTABLE 25 29.25 29.80 0.191 330 0 1.097E+09 30068. 10.91 ->ACCEITABLE 26 29.80 29.90 0.089 335.0 1.099E+09 30111. 10 93 -> ACCEPTABLE 27 29.90 30 45 0 131 340 0 1.103E+09 30211 10 96 -->ACCElTABLE 28 30.45 30.55 0.201 345.0 1.106E+09 30307. 11.00 - >ACCEiTABLE 29 30.55 31.10 0.091 350.0 1.094E+09 29991. 10.89 --->ACCElTABLE 30 31.10 31.20 0.155 355 0 . 1.091 E+09 29888. 10.85 ->ACCEITABLE 31 31.20 32.50 0.051 32 32.50 33.15 0 062 ACCEliABLE! MINIMUM SAFETY FACTOR = 5.51 AT 160.0 33 33 15 33.80 0 053 DEGREES. 34 33.80 35.10 0.136 35 35.10 35.70 0.155 36 35.70 36.07 0.061 INPUT 37 36.07 36.35 0.192 H6b Emergency B214R1 1 Cycle 0

y y 3672 40 37.00 37.37 0.12:

620 43 37 37 3* "'4' 42 37.64 38.02 0.231 2960 43 38.02 38.29 0.118 1.50 44 38 29 3847 . a27i 45 38.67 38.94 0.261 88.00 46 38.94 39.31 0.492 1.50 47 39.3 39.59 a27:

48 39 39 39.96 0 492 16900.

49- 39 96 40.24 0.492 1 Se19 50- 40.24 40 6i 0.492 si 4a6i 4a89 0 492 950 52 40.89 41.26 0.492 OUTPUT 53 4i.26 41.53 0 492 Filename: DLL12-30'97.For 54 41.53 . 42.18 0.492 DLL DISTRIBUTED LIGAMENT LENGTH EVALUATION, REV. 2.1 55 42.18 42.83 0.492 {

56 42.83 43.48 0.492 1 (09/19/96) 57 43.48 44.13 0.181 DATEOFTHIS ANALYSIS:05/28/1999 58 44.13 44.78 0.211 59 44.78 45.42 0.271 SUMM ARY OF INPUTS:

======

60 45.42 45.70 0.211 61 45.70 46 07 0.221

Title:

H6b Emergency B214RI I Cycle 62 46.07 46.35 0.271 Angle inerement = 1.0 deg. (COARSE) l 63 46.35 46.72 0.121 Membranc Stress,Pm = 620 psi 64 46.72 47.00 0.251 Bending Stress,Pb = 296a psi 65 47.00 47.37 0.241 Safety Factor, SF = 1.50 Mean Radius, Rm = 88.00 inches . 66 47.37 47.64 0.24I i WallThickness, t = 1.500 inches 67 47.64 48.02 0.261 68 48.02 48.29 0.241 Stress Intensity, Sm = 16900. psi 69 48.29 48.67 0.23I

' Fluence = 5.0E+19 n/cm*2 70 48.67 48.94 0.091 (Thus, LEFM evaluation not applicable)

Caro /ina Power & l.ight Company CALCULATION 2B11-0001 REV O Btunswick Nuclear Plant - Unit 2 Attachment C Page 22 of 35 71 48.94 - 49 59 0 492 145 80.24 80.61 0.191 72 49.59 49 96 0.492 146 80.61 80.89 0.171 73 . 49.96 50.24 0.231 147 80.89 81.53 0.492 74 50 24 50.61 0.492 148 81.53 82.18 0.261

' 75 50.6l 50.89 0.492 149 82.18 82.83 0 492 76 50.89 51.53 0.091 150 82.83 83 48 0.271 77 51.53 ' 52.18 0.051 151 83.48 84.13 0 492 78 52.18 ' 52.83 0.492 152 84.13 84.78 0.276 79 52.83 53.48 0.492 153 84.78 85.42 0.181 80 53.4d 54.13 0.492 154 85.42 85.70 ' O.141 81 54.13 54.78 0.492 155 85 70 86.07 0.261 82 54.78 55.42 0.492 156 86 07 86.35 0.161 83 55.42 55.70 0.492 - 157- 86.35 86.72 0.211 84 55.70 56.07 ' O. I 11 ' I58 86.72 87.00 0.191 85 56.07 56.35 0.191 159 87.00 87.37 0.231 86 56.35 56.72 0.201 I60 87.37 87.64 0.I31 87 56.72 37.00 ' 0.081 161 87.64 88.02 0.171 88 57.00 57.37 0.151 162 88.02 88.29 0.131 89 57.37 57.64 0.181 163- 88.29 88.66 0.261 90 57.64 58.02 0.271 164 88.66 88.94 0.146 91 58.02 58.29 0.136 165 88.94 89.31 0.211 92 58.29 58.67 0.492 166 89.31 89.59 0 071 93 58.67 3e 04 0.492 167 89.59 89.96 0.111

'4 58.94 5s ..n 0.492 168 89 96 90.24 0.181 95 59.31 59.59 0492 169 90.24 90.61 0.101

'% 59.59 59.% 0.492 170 90.61 90.89 0.271 97 59 96 60.24 0 492 171 90.89 91.53 0.271 98 60.24 60.61 0.492 172 91.53 92.I8 0.241 99 60.61 60.89 0.492 173 92.18 92.83 0.261 100 60 89 61.53 0.492 174 92.83 93.48 0.221 101 61.53 62.18 0.492 175 93.48 94.13 0.131 102 62.18 62.83 0.101 176 94.13 94.78 0.091 103 62.83 63.48 0.021 177 94.78 95.42 0.08f 104 63 48 64.13 0.271 178 95.42 95.70 0.221 105 64.13 64.78 0.261 179 95.70 96 07 0.071 106 64.78 65.42 0.492 180 96.07  %.35 0 061 107- 65.42 65.70 0.492 181 96.35 97.00 0.111 108 65.70 66 07 0.151 182 97.00 97.37 0.201 109 66 07 66.35 0.181 183 97.37 98 01 0 081 110 66.35 66.72 0.111 184 98.01 98.29 0 081 til 66.72 67.00 0.091 185 98.29 98.67 O MI

.1I2 67.00 67.37 0.1 B1 186 98.67 98.94 0.I21 113 67.37 ~ 67.64 0.07I I87 98.94 99.96 0.I31 114 67.64 68.02 0.492 188 99.% 100.24 0.131 115 68.02 68.29 0.492 189 100.24 100.61 0 121 116 68.29' 68 67 0.121 190 100.61 100 89 0.201 117 68.67 68.94 0.071 191 100.89 101.53 0.061 118 68.94 69.31 0.492 192 101.53 102.18 0.241 119 69.31 69.59 0.492 193 102.18 102.83 0.231 sR 69.59 69 96 - 0.131 194 102.83 103.48 0.061 121 69.% 70.24 0.166 - 195 103.48 104.13 0.231 122 70.24 70.61 0.101 1% IN.13 104.78 0.181 123 70.61 70.89 0.156 197 104.78 105.42 0.261 124 70.89 71.53 0 492 198 105.42 105.70 0.231 125 71.53 72.83 0.492 199 105.70 106.07 0.171 126 72.83 73.48 0 016 200 106.07 106.35 0.171 127 73.48 74.13 0.276 201 106.35 106.72 0.271 128 74 13. 74.78 0 091 202 106.72 107.00 0.492

'129 . 74.78 75.42 0.111 203 107.00 107.37 0 492 130 75.42 75.70 0.221- 204 107.37 107.64 0 492 131 75.70 76.07 0.181 205 107.64 108.02 0.271 132 76.07 76.35 0.271 206 108.02 108.29 0.271 133 ' 76.35 76.72 0.111 ' 207 108.29 108.67 0.101

-134 76.72 77.00 0.I31 208 108.67 108.94 0.261 135 77.00 77.37 0.201 209 108.94 109.31 0.I41 136 77.37 77.64 0.201 210 109.31 109.59 0.146 137 77.64 78.02 0.191 - 211 109.59 109.96 0.191 138 78.02 78.29 0.156 212 109 96 110.24 0.241 139 78.29 78.67 0.111 213 110.24 110.61 0.191 140 78.67 78.94 0 091 214 110.61 110.89 0.492 141 78.94 79.31 0.271 215 110.89 111.53 0.492 142 79.31 79.59 0.146 216 111.53 112.18 0.101 143 79.59 79.96 0.271 217 112.18 112.83 0.141 144 79.% 80.24 0.191 218 l l2.83 113.48 0.266

7 l Crro/ina Power & Light Company CALCULATION 2B11-0001 REV. 0 1 Btunswick Nuclear Plant - Unit 2 Attachment C Page 23 of 35 219 113.48 114.13 0.271 293 146.07 14635 0 557 220 114.13 114.78 0.111 294 14635 146.72 0.457 221 114.78 115.42 0.061 295 146.72 147.00 0.477 222 115.42 115.70 0.031 296 147.00 14737 0 337 223 115.70 116.07 0.231 297 14737 147.64 0.557 224 116 07 11635 0.111 298 147.64 148.02 0.517 225 11635 116.72 0.131 299 148.02 148.29 0387 226 I I6.72 I I7.00 0.211 300 .148.29 I48.67 0.477 227 117.00 11737 0.101 301 148 67 148 94 0377 228 11737 117.64 0.071 302 148.94 14931 0.557 229 117.64 118.02 0.101 303 149 31 14959 0.537 1 230 118.02 II8.29 ' O.231 304 149.59 149.% 0327 231 118.29 118.67 0.181 305 149.96 150.24 0.507 232 118.67 II8.94 0.I66 306 150.24 150.61 0.467 I 233 118.94 11931 0.141 307 150 61 150.89 0.487 j 234 11931 119.59 0.231 308 150.89 151.53 0.557 235 119.59 119.% 0.*92 309 151.53 152.18 0.277

.236 119.% 120.24 0.492 310 152.18 152.83 0.397 237 120.24 120.61 0.492 311 152.83 153.48 0.062 238 120.61 120.89 0.492 312 153.48 154.13 0307 239 120.89 121.26 0.492 313 154.13 154.78 0332 240 121.26 121.53 0.492 314 154.78 155.42 0.557 241. 121.53 122.18 0.492 315 155.42 155.70 0.557 242 122.18 122.83 0.081 316 155.70 156.07 0.557 243 122.83 123.48 0.156 317 156.07 15635 0.097 244 123.48 124.13 0.116 318 15635 156.72 0.557 245 124.13 124.78 0.101 319 156.72 157.00 0.527 246 124.78 125.42 0.136 320 157.00 15737 0.167

-247 125.42 126.72 0 071 321 15737 157.64 0 387 248 126.72 127.00 0 026 322 157.64 158.02 0.297 249 127 00 12737 0.051 323 158.02 158.29 0357 250 12737 127.64 0 046 324 158.29 . 158.67 0 397 251 127.64 128.02 0.407 325 158.67 158.94 0.166 252 128.02 128.29 0 497 326 158.94 15931 0.251 253 128.29 128.67 0.547 327 15931 159.59 0.026 254 128.67 128 94 0.497 328 159.59 159.% 0.031 255 128.94 12931 0 377 329 159 96 160.24 0.201 l

-256 12931 129.59 0.487 330 160.2J 160.61 0.211 l 257 129.59 130.24 0.447 331 160.61- 160.89 0.261 258 130.24 130.61 0.557 332 160.89 161.53 0.271 259 130 61 130.89 0.557 333 161.53 162.18 4492 a

~260. 130.89 131.53 0.557 334 162.18 162.83 0.271 I 261 131.53. 132.18 0.467 335 162.83 163.48 0.271  !

262 132.18 132.83- 0.487 336 163.48 164.13 0.191

-263 132.83 133.48 0.517 337 164.13 164.78 0.271 264 133.48 13. 13 0332 338 164.78 165.42 0.492 265 134.13 134.78 0 452 339 165.42 166.07 0.492 266 134.78 135.42 0.547 340 166.07 16737 0.121 267 135.42 135.70 0.487 341 16737 168.67 0.099 3

268 135.70 136.07 0367 342 168.67 16931 0.164 '

269 136.07 13635 0.467 343 16931 169.% 0.182 270 13635 136.72 0 447 344 169.96 170.61 0.164 271 '136.72 137.00 0397 345 195 10 195.76 0.295 272 137.00 13737 0.417 346 195.76 196 40 0.277 273 13737 137.64 0.422 347 196 40 197.05 0387 274 137.64 138.02 0307 348 197.05 197.69 0377 275 138.02 138.29 0.347 349 197.69 19835 0314 276 138.29 138 67 0377 350 19835 198.99 0 332 277 138.67 138.94 0 387 351 198.99 199.65 0389 278 138.94 13931 0357 352 199.65 200.29 0351 279 13931 139.59 0.557 353' 200.29 200.94 0351 280 139.59 139.% 0.457 354 200.94- 201.58 0.557 281 139.% 140.24. 0.477 355 201.58 202.24 0.239 282 140.24 140.61 0.417 356 202.24 202.88 0388 283 140.61 - 140.89 0377 357 202.88 203.54 0.557  !

284 140.89 141.53 0.517 358 203.54 204.18 0.557 285 141.53' 142.18 0327 359 204.18 204.83 0.557 286 142.18 142.83 0.557 360 204 83 205.47 0.557 287 142.83 143.48 0.557 361 205.47 205.70 0.557 288 143.48 144.13 0.557 362 205.70 206.13 0.557 289 144.13 144.78 0.517 363 2113 206.35 0.557 290 244.78 145.42 0.557 364 206.35 206.77 0.557 291 145.42 145.70 0.557 365 206.77 207.00 0.557 292 145.70 146.07 0.557 366 207.00 207.43 0.557

f Coolins Power & Light Company CALCULATION 2B11-0001 REV. O Btunswick Nuclear PI:nt - Unit 2 Attachment C Paga 24 of 35 36' 207.43 207.64 0.557 441 234.23 23435 0.234 368 207.64 207.93 0557 442 23435 234 47 0.210 369 207.93 208.05 0300 443 234 47 234.58 0.217 370 208.05 208.18 0 227 444 234 58 234 70 0.274 371 208.18 20830 0.212 445 234.70 234.81 0.257 l 372 20830 208.42 0 162 446 234.81 234 93 0344 373 208.42 . 208.55 0.294 447 234.93 235 05 4 0.217

(

374 208.55 208 67 0384 448 235 05 235.16 0.257 1 375 208.67 211.15 0.557 449 235.16 235.28 0.237 376 211.15 211.89 0.557 450 235.28 23539 0.137 1 377 211.89 220.13 1.500 23539 235.51 378 220.13 220.87 1.500 451 452 235.51 235.63 0.217 )

0.207 i 379 220.87 22335 0.557 453 235 63 235.74 0310 380 22335 223.44 f

0 547 454 235.74 235.86 0.557 381 223.44 223.52 0.552 455 235.86 238.04 0.557

'382 223.52 223 61 0392 456 238.04 238 15 0 384 383 223,61 223.69 0.474 457 238.15 238.26 0367 384 223.69 223.78 0387 458 238.26 239.13 0.557 385 223.78 223.87 0.267 459 239.13 239.24 0 447 386 223.87 223 95 0.187 460 239.24 23935 0.427 4 387 223 95 224 N 0314 461 239.35 239.46 0347 {

388 224.04 224 12 0.427 462 239 46 239.56 0.360 l 389 224.12 224.21 0380 463 239.56 239.67 0 357 390 224.21 22430 0.557 464 239.67 239 78 0 397 391 22430 22438 0.552 465 239.78 239 89 0 337 392 22438 224.47 0300 466 239 89 240.00 0 392 393 224.47 224.55 0.257 467 240,00 240.1I O364 394 224.55 224 64 0.280 468 240.11 241.20 0.552 395 224.64 224.73 0.227 469 241.20 24131 0.487 3% 224.73 224.81 0.257 470 24131 241.42 0 467 397 224.81 224 90 0.230 471 241.42 241.53 0.414 398 224 90 224.98 0317 472 241.53 241.63 0 417 399 224 98 225.07 0.237 473 241.63 24431 0377 400 225.07. 225.16 0 352 474 24431 244.42 0.494 401 225.16 225.24 0.474 475 244.42 244.52 0.477 402 225.24 225.99 0.557 476 244.52 244.63 0 474 403 225.99 226.09 0.222 477 244.63 244.74 0.254 404 226.09 226.18 0.257 478 244.74 244.84 0.192 405 226.18 226.28 0.162 479 244.84 244 95 0.250 406 226.28 22637 0.177 480 244.95 245.05 0337 407 22637 226.47 0.252 481 245.05 245.16 0392 408 226.47 226.56 0322 482 245.16 243.27 0 349 409 226.56 . 226 66 0 404 483 245.27 24537 0 432 410 226.66 226.75 0 417 484 24537 247.94 0.497 411 226.75 230.87 0.557 485 247.94 248.05 0 464 412 230.87 230.99 0.472 486 248.05 248.16 0357 413 230 99 231.10 0 394 487 248.16 248.27 0372 414 231.10 231.22 0344 488 248.27 24838 0342 415 231.22 23133 0.330 489 24838 248.50 0 557 416 23133 231.45 0 370 490 248.50 248.94 0.557 417 231.45 231.57 0 322 491 248.94 249.06 0.557 418 231.57 231.68 0 350 492 249.06 249.17 0.547 419 231 68 231.80 0 307 493 249.17 249.29 0.427 4.D 231.80 231.91 0 330 494 249.29 249.41 0367 l 421 231.91 232.03 0317 495 249 41 249.53 0320 422 232.03 232.15 0.207 4% 249.53 249.M 0 362 423 232 15 232.26 0.147 497 249.64 249.76 0.207 424' 232.2t, 23238 0.247 498 249.76 249.88 0.I87  !

425 23238 232.49 0 312 499 249 88 250.00 0.227 l 426 232.49 232.61 0.230 500 250 00 250.11 0 387 l 427 232.61 232.73 0.250 501 250.11 250.23 0367 428 232.73 232.84 0 290 502 250.23 250 35 0312 l 429 232 84 232.% 0.177 503 250.35 250.46 0.274 430 232.96 233 07 0.197 504 250 46 250.58 0327 431 233.07 233.19 0.224 505 250.58 250.70 0.292 432 233.19 23331 0.297 506 250 70 250.82 0.277 433 23331 233.42 0.277 507 250.82 250 93 0.222 434 233 42 233.54 0.244 508 250 93 251.05 0 372 435 233.54 - 233.65 0.172 509 251 05 251.17 0.207 436 233 65 233.77 0.172 510 251.17 251.29 0.207 437 233.77 233.89 0.247 511 251.29 251.40 0.240 438 233.89 234.00 0 332 512 251.40 251.52 0.247 439 234 00 234.12 0304 513 251.52 251.64 0.162 440 234.12 234.23 0.137 514 251.64 251.76 0.217

l Carolina Power & Light Company CALCULATION 2B11-0001 REV. 0

.Btunswick Nuclear Plant - Unit 2 Attachmsnt C Page 25 of 35 515 251.76 251.87 0.257 589 280.71 280.83 0.232 516 251.87 251.99 0.192 590 280 83 280.95 0.247 517 251.09 252.11 0.294 591 280.95 281.07 0.404 518 252.11 252.22 0.267 592 281.07 281.19 0390 519 252.22 25234 0.252 593 281.19 28131 0.284 510 25234 252.46 0 357 594 28131 281.43 0 384 521 252.46 252.58 0202 595 281.43 281.55 0.537 522 252.58 252.69 0.270 5% 281.55 281.66 0.432 523 252 69 252.81 0.437 597 281.66 281.78 0.414 524 252.31 251.93 0 352 598 281.78 281.90 0.460 525 252.93 253.05 '0394 599 281.90 282.02 0.480 526 253 05 253.16 0.400 600 282.02 282.14 0.557 527 253.16 .253.28 0320 601 282.14 282.26 0.557 528 253.28 253.40 0.252 602 282.26 28238 0.537 529 253.40 253.51 0337 603 282 38 282.50 0.447 530 253.51 253.63 0.252 604 282.50 282.62 0.557 531 253.63 253.75 0.267 605 282.62 282.74 0 390 532 253.75 253.87 0332 606 282.74 282.85 0390 533 253.87 253.98 0.557 607 282.85 282.97 0 337 534 253.98 254.10 0.557 608 282.97 283 09 0 322 535 ' 254.10 254.22 0.557 609 283 09 283.21 0 334 536 254.22 25434 0317 610 283.21 28333 0.252 537 25434 254.45 0302 611 28333 283.45 0.192 538 254.45 254.57 0.217 612 283.45 283.57 0,197

$39 254.57 254.69 0302 613 283.57 283 09 0 367 540 254.69 254.81 0332 614 283.69 283 81 0.297 541 254.81 254.92 0314 615 283.81 283.93 0 324 542 254.92 255 G8 0.277 616 283.93 284 04 0.284 543 255.04 255.16 0362 617 284.04 284.16 0344 544 255.16 255.27 - 0.247 618 284.16 284.28 0354 545 255.27 25539 0.287 - 619 284.28 284.40 0 287 546 25539 255.51 0.237 620 284.40 284 52 0.177 547 255.51 255 63 0.247 621 284.52 284.64 0347 548 255.63 255.74 0.232 622 28444 284.76 0360 549 255.74 255.86 0.257 623 284.76 284.88 0.297 550 255.86 258.75 0.55i 624 284.88 285.00 - 0.257 55] 258.75 258.86 0357 625 285.00 285.12 0.187 552 258.86 258 98 0.267 626 285.12 285.23 0332 553 258.98 259.09 0.267 627 285.23 28535 0.224 554 259.09 259.20 0.162 628 285 35 285.47 0 240 555 259.20 25932 0.152 629 285.47 285.59 0.537

. $$6 25932 259.43 0.267 630 285.59 285.71 0.557 557 259.43 262.03 0.404 631 285.71 285.83 0.280 558 262.03 262.77 0.557 632 285.83 285 95 0.430 559 262.77 272.84 1.500 633 285.95 286.07 0.427 560 272.84 273.58- 1.500 634 286.07 286.19 0 462

.- 56! 273.58 276.17 0.557 635 286 19 286 31. 0347 562 276.17 276.28 0.557 636 28631 286.42 0324 563 276.28 27639 0354 637 286.42 286.54 0.294 l 564 27639 276.50 0.452 638 286.54 28738 0.284 565 276.50 276.62 0.227 639 28738 287.50 0.280 l 566 276.62 276.73 0.237 640 287.50 287.61 0 347 l- 567 276.73 276.84 0352 641 287.61 287.72 0.277 i

568 276.84 276.95 0374 642 287.72 287.84 0.264 l 569-- 276 95 277.06 0357 643 287.84 287.95 0.207 570 277.06 278.57 0.297 644 287.95 288.07 0380 571 278.57 278.69 0 457 645 288.07 288.18 0350 572 278.69 278.81 0 357 646 288.18 288.29 0.177 573 278.81 278.93 0304 647 288.29 288.41 0.187 574 278.93 279.05 0.267 648 288.41 288.52 0.294 575 279.05 279.17 0.207 649 288.52 288.64 0 382 576 279.17 -279.28 0397 650 288 64 288.75 0377

$!7 279.28 279.40 0327 651 288.75 288 S6 0.340

! 578 279.40 279.52 0380 652 288.86 288.98 0.207 579 279.52 279.64 0397 653 288.98 289.09 0.047 580 279.64 279.76 0.404 654 289.09 289.21 0.142 581 279.76 279.88 0337 655 289.21 289 32 0.277 582 279.88 280.00 0337 656 289.32 290.11 0.557 583 280 00 280.12 0380 657 290.11 290.23 0.557 584 280.12 280.24 0.287 658 290.23 290 35 0.557 585 280.24 '28036 0.274 659 290 35 290.47 0.557 586 280.36 280.47 0.290 660 290.47 290.58 0.557 587 280.47 '289.59 0300 661 290.58 290.70 0.207 588 280.59 280.71 0354 662 290.70 290.82 0317

p Caro / ins Power & Light Company CALCULATION 2B11-0001 REV. O Btunswick Nuclear Plant - Unit 2 Attachment C Page 26 of 35

.a3 290.82 290.94 0350 737 314.12 314.23 0.277 44 290 94 291.06 0340 738 314.23 314 34 0300 665 291.06 291.18 0.272 739 314 34 314.45 0.270 666- 291.18 29130 0390 740 314.45 314.56 0.284 667 29130 291.41 0 300 741 314,56 314.67 0.280 668> 291.41 291.53 0.292 742 314.67 314.77 ' O.277 669 291.53 ' 291.65 0367 743 314.77 314 88 0.217 670 291.65 - 291.77 0.452 744 314 88 314.99 0.212 671 291.77 291.89 0374 745 314.99 315.10 0.237 672 291.89 292.01 0.542' 746 315.10 315.21 0.227 673 292.01 292.12 0.432 747 315.21 31531 0340 674 292.12 292.24 0357 748 31531 315.42 0.290 675 292.24 '29236 0327 749 315.42 315.53 0.292 676 29236 292.48 0.297 750 315.53 315.64 0.252 677 292.48 '292.60 0307 751 315.64 315.75 0.442 678 292.60 292.72 0 287 752 315.75 315.86 0.222 679 292.72 292.84 0.177 753 315.86 315.% 0.287 680 292.84 292.95 0.287 754 315.% 316.07 0.277 681 292.95 293.07 0320 755 316.07 316.18 0.284 682 293 07 293.19 0394 756 316.18 316.29 0 357 683 293.19 29331 0390 757 316.29 316.40 0 340 684 293.31 293.43 0394 758 316.40 316.51 0 390 685 293.43 293.55 0.277 759 316.51 316,61 0 344 686 293 55 293.67 0314 760 316.61 316.72 0.294 687 293.67 293.78 0.347 761 316.72 316 83 0 307 688 293.78 293.90 0.307 762 316 83 316.94 0.214 689 293.90 294.02 0342 763 316.94 317.05 0.200 690 294.02 294.14 0310 764 317.05 317.15 0.267 691 294.14 294.26 0.262 765 317.15 317.26 0.212 692 294.26 29438 0.212 766 317.26 317.37 0.230 693 29438 294/9 0.287 767 317.37 317.48 0.237 694 294.49 294.61 0347 768 317.48 317.59 0.242 695 294 61 294.73 0.242 769 317.59 317.70 0.242 6% 294.73 294.85 0312 770 317.70 - 317.80 OJ70 697 294.85 294.97 0377 771 317.80 317.91 0 332 l 698 294.97 295.09 0 397 772 317.91 318.02 0.240 ]

l 699 295.09 ' 295.21 0.157 773 318.02 318.13 0 172 j 700 295.21 29532 'O.257 774 318.13 318.24 0.224 )

701 29532 295.44 0.257 775 318.24 318 34 0.257 702 295.44 295.56 0314 776 31834 3I8.45 0.252 703 295.56 295.68 0.262 777 318.45 318.56 0 327 704 295.68 295.80 0360 778 318.56 318.67 0.250 705 295.80 ' 295 92 0.177 779 318.67 318.78 0.317 706 295.92 296 03 0342 780 318.78 318,89 0.417 707 - ?%.03 2 %.15 0357 781 318.89 318.99 0302 708 -. 2%.15 2 % .27 0.502 782 318.99 319.10 0307 709 296 27 29639 0330 783 319.10 319.21 0.267 710 2 % 39 296 51 0.290 784 319.21 319 32 0 327 7II 2 % .51 296 63 0304 785 31932 319.43 0.297 712 296 63 296 75 0.487 786 319.43 319.53 0.297 713 2 %.75 296 86 0.477 787 319.53 319.64 0.227 714 296 86 296 98 0.502 788 319.64 319.75 0.412 715 2%.98 - 297.10 0.410 789 319.75 319.86 0 332 i

716 297.10 297.22 0.432 790 319.86 319.97 0.482 l 717 297.22 29734 0 392 791 319.97 320.08 0 452 718 29734 297.46 0.542 792 320.08 320.I8 0.417 719 297.46 297.58 0 347 793 320.18 320.29 0.267 720 297.58 297.69 0.542 794 320.29 320.40 0.282 721 297.69 297.81 0.527 795 320.40 320.51 0.387 l 722' 297.81 297.93 0.552 796 320.51 320.62 0.294 l 723 297.93 .298.05 0.517 797 320.62 320.72 0.267 724 298.05 298.17 0.502 798 320.72 320.83 0397 725- 298.17 298.29 . 0.552 799 320.83 321.61 0324 I 726 298.29 298.40 0.462 800 321.61 321,73 0322 l 727 298.40 298.52 0.552 801 321.73 321.86 0.327 728 298.52 298.64 0.487 802 321.86 321.98 0.222 720 298.64 298.76' 0 397 803 321.98 322.10 0.227 730 298.76 30136 0 487 804 322.10 322.22 0.264 731 30136 302.10 0.527 805 322.22 32235 0322 732 302.10 310.58 1.500 806 32235 322.47 0.232 733 310.58 .- 31132 1.500 807 322.47 322.59 0.282 734 31132 313.91 ~ 0 557 808 322 59 322.71 0307

'735' 313.91 314.02 0.557 809 322.71 322.84 0 312

.736i 314.02 314.12 - 0.297 810 322.84 322.% 0320 1

1

i Cuolina Power & Light Company CALCULATION 2B11-0001 REV. O Btunswick Nucleu Plant - Unit 2 Attachment C Page 27 Of 35 8II 322 96 323 08 0.337 885 332.I5 332.26 0.202 812 323 08 323.20 0 320 886 332.26 33238 0.317 l 813 323.20 32333 0334 887 33238 332.49 0.202 i 814 323.33 323.45 0.267 888 332 49 332.60 0.260 l 815 323.45 323.57 0300 889 332.60 332.71 0.270

  • t6 323.57 323.69 0334 890 332.71 332 83 0.290 l 817 323 69 323.82 0317 891 332.83 332.94 0 347 l

818 323.82 323.94 0 307 892 332.94 333.05 0.252

! 819 323 94 P4 06 0300 893 333.05 333.16 0 412 820 324.06 324.18 0.304 894 333 16 333.27 0.267 i 821 324.18 324 31 0324 895 333.27 33339 0 362 822 32431 324.43 0.257 896 33339 333.50 0.250 823 324.43 324.55 0.254 897 333.50 333.61 0.264 824 324.55 324 67 0.294 898 333 61 333.72 0.290 825 324.67 324 80 0.294 899 333.72 333.84 0 317 826 324.80 324.92 0 357 900 333.84 333.95 0.274 827 324.92 325.04 0.262 901 333 95 334.06 0360 828 325.04 325 16 0.290 902 334 06 334.17 0367 829 325 16 325.29 0307 903 334 17 334.29 0314 830 325.29 325.41 0.270 904 334.29 334.40 0 397 l 831 325.41 325.53 0.297 905- 334 40 334.51 0.297 832 325.53 325.65 0 312 906 334.51 334.62 0340 833 325.65 325.78 0 337 907 334 62 334.74 0 377 l 834 325.78 325.90 0.274 908 334.74 334 85 0 300 835 325.90 326 02 0 290 909 334.85 334 96 0.267 836 326 02 326 I4 0.290 910 334 96 335 07 0.204 l

837 326.14 326 27 0.280 911 335.07 335.18 0.194 838 326 27 326 39 0.314 912 335.lf 33530 0 097 839 32639 326.51 0 317 913 33530 335.41 0.174 840 326.5I 326 63 0 340 914 335 41 335.52 0 077 841 326.63 326.76 0 397 915 335.52 335 63 0.172 842 326.76 326.88 0324 916 335.63 335.75 0.277 843 326.88 327.00 0.237 917 335.75 335.86 0350 844 327.00 327.12 0.357 918 335 86 335.97 0.447 845 327.12 327.25 9372 919 335.97 336.08 0.400 846 327.25 327.37 0.290 920 336 08 336.20 0.412 l 847 32737 327.49 0 350 921 336.20 33631 0364 848 327.49 327.61 0 314 922 336 31 336.42 0 374 849. 327.61 327.74 0 387 923 336.42 336.53 0 350 850 327.74 327.86 0.294 924 336.53 336.65 0.274 851 127.86 327.98 0 317 925 336 65 336.76 0.250 852 327.98 328.10 0.324 926 336.76 336.87 0.242 853 328.10' 328.23 0 320 927 336.87 336.98 0.222 854 328 23 32835 0334 928 336.98 337.09 0 347 855 32835 328.47 0 307 929 337.09 337.21 0380 856 328.47 328.59 0320 930 337.21 337.32 0 334 857 328.59 328.72 0 314 931 33732 337.43 0374 850, 328.72 328.84 0324 932 337.43 337.54 0.407 859 328.84 328 % 0 152 933 337.54 337.66 0.237 i 860 328 96 329.08 0 347 934 337.66 337.77 0.237 l 861 329.08 329.21 0 397 935 337.77 337.88 0.290 l 862- 329.21 32933 0 340 936 337.88 337.99 0.280 l 863 32933 329.45 0.427 937 337 99 338.11 0 294 864 329.45 329.57 0 350 938 338.11 338.22 0 300  !

B65 329.57 329.70 0367 9't9 338.22 338.70 0357  !

866 329.70 329.82 0.287 940 338.70 338 82 0.414 867 329.82 329.94 0 412 941 338.82 338 94 0 330 868 329.94 330.06 0 347 942 338.94 339.06 0314 869 330.06 330.19 0.287 943 339.06 339.18 0362 870 330.19 330 31 0 347 944 339.18 33930 0347 871 33031 330 43 0367 945 33930 339.42 0 352 872 330.43 330.$5 0357 946 339.42 339.54 0.280 873 330.55 330.68 0 357 947 339.54 339 66 0317 874 330 68 330 80 0 390 948 339.66 339.78 0.287 875 330 80 331.14 0.557 949 339.78 339.90 03N 876 331.14 331.25 0.557 950 339.90 34130 0310 877 331.25 33136 0.447 878 33136 331.48 0 434 879 331.48 331.59 0390 LIMIT LOAD RESULTS:

880 331.59 331.70 0320 - = = = = = = = = = = =

881 331.70 331 81 0.222 NOTE: THE IDLLOWING LIMIT LOAD RESULTS ASSUME TilAT 882 331.81 331.93 0.252 THE FLAWS TAKE COMPRESSION.

883 331.93 332 M 0387 884 332.04 332.15 0.207 ALPHA MOMENT PV SAFETY

r Cuolins Power & Light Company CALCULATION 2B11-0001 REV. O Btunswick Nuclear Plant - Unit 2 Attachm:nt C Page 28 Of 35

[degl (in.lbs) (psil FACTOR RESULT

- ~~

ACCEITABLE! MINIMUM SAFETY FACTOR = 4 33 AT 160.0 l

00 1.081E+09 2 % 35. 8.45 -->ACCEITABLE DEG REES.

5.0 1074E+09 29442. 8.40 ---.>ACCElTA B LE 10 0 1.065 E+09 29193. 833 -- >ACCElTABLE 15.0 . 1.056E+09 28949. 8.26 -->ACCEWABLE INPUT 20 0 1.048E+09 28722. 8.20 --->ACCElTABLE 25.0 1.022E+09 28003. 8.00 --->ACCElTABLE li6b Faulted B214R1 1 Cycle 30.0 ' l.006E+09 27572. 7.87 -> ACCEPTABLE 0 35.0 9.934 E+08 27222. 7.78 ->ACCElTABLE 1332 40.0 9.784E+08 26810 7.66 -->ACCEITABLE 45.0 9.612E+08 26340. 7.53 --->ACCEITABLE 3176 50.0 9 351E+08 25624. 733 -->ACCEITABLE 1.125 55.0 9.041 E+08 24774 7.09 ->ACCElTABLE 60 0 8.398E+08 24382. 6.98 ->ACCEiTABLE 88.00 65.0 8.590E+08 23540. 6.75 -->ACCElTABLE 1.50 70.0 8.242E+08 22585. 6.48 ->ACCEMABLE 75.0 8.043E+08 22040 633 ->ACCElTABLE 16900.

80 0 7.788E+08 21341, 6.13 --> ACCEITA B LE 5e19 85.0 7.570E+08 20745. 5.97 -->ACCEf7ABLE 90 0 7352E+08 20147. 5.80 -->ACCENABLE 950 95.0 7.14]E+08 19567. 5.64 -->ACCEITABLE OUTPUT 100.0 6.837E+08 18736. 5.41 ---> ACCEMA BLE Fuenam DLLl2-30 97.For 105.0 6.636E+08 18321, 5.29 -->ACCEITABLE DLL DISTRIBUTED LIGAMENT LENGTH EVALUATION, REV. 2.1 110.0 6.532E+0d 17899. 5.17 ---> ACCEITA BLE 115.0 6.478 E+08

@#19/%)

17750. 5.13 - ->ACCEITA B LE DATEOFTHIS ANALYSIS:05/28/1999 120.0 6.27 l E+08 17186. 4.97 --->ACCEITA B LE 125.0 6 053E+08 16588. 4.81 ->ACCEITABLE

SUMMARY

OF INPUTS:

130.0 J 48E+08 16573. 4.80 -->ACCEITABLE _ , ,, _ _ ,

135.0 5.838E+08 15998. 4 64 ->ACCEITABLE

Title:

H6b Faulted B214RI I Cycle 140 0 5.782E+08 15844. 4.60 --->ACCEITA B LE Angle increment = 1.0 deg (COARSE) 145.0 5.565E+08 15250. 4.43 -->ACCEITABLE Membrane Stress,Pm = 1332 psi 150.0 5. DOE +08 15043. 438 -->ACCEITABLE Bending Stress, Pb = 3176. Psi 155.0 5.457E+08 14953. 4 35 --->ACCEITABLE Safety Factor, SF = 1.13 160.0 5.433E+08 14889. 4 33 ->ACCEITABLE Mean Radius. Rm 88.00 inches 165.0 5.638E+08 15450. 4.49 --->ACCEf7ABLE Wall Thickness, t = 1.500 inches 170 0 5.647E+08 15473 4.50 ->ACCElTABLE Stress Intenshy, Sm = 16900. psi 175.0 5.704 E+08 15631. 4.54 ->ACCEITABLE Fluence = 5.0E+19 n/cm^2 180 0 5.755E+08 15771. 4.58 - -->ACCEf7ABLE (Thus, LEFM cvaluation na applicable) 185.0 5.754E+08 15768. 4.58 ---->ACCEITABLE 190.0 5.883E+08 16122. 4.68 --->ACCElTABLE THLTA) THETA 2 THICKNESS 195.0 5.975E+08 16373. 4.75 - - > ACCEPTABLE '

REGION [deg} [deg.] (inches]

200 0 6.100E+08 16717. 4.84 ---->ACCEITABLE ,

__ __ ___ )

205.0 6.183E+08 16943. 4 91 --->ACCEITABLE I 12.90 13 55 0.271 210.0 6 564E+08 17988. 5.20 ->ACCElTABLE 2 13.55 14.20 0.141 215.0 6.700E+08 18361 530 -->ACCEITA BLE 3 14 20 14 85 0.221 220.0 6.855E+08 18785. 5.42 ---> ACCEPTABLE 4 14.85 15.50 0.151 225.0 7.143E+08 19575. 5.64 -->ACCEITABLE 5 15.50 16.80 0.099 230 0 7.252E+08 19872. 5.72 -->ACCEITABLE 6 16 80 17.45 0.091 235 0 7.545E+08 20675. 5.95 -> ACCEPTABLE 17.45 18.10 7 0.182 240.0 7.629E+08 20905. 6.01 -->ACCENABLE 8 18.10 18.75 0 081 245.0 7.884 E+08 21604. 6.21 -->ACCEf7ABLE 9 18.75 20 05 0136 250.0 ' 8.052E+08 22065. 634 --->ACCEITABLE 10 20.05 22.65 0.071 255.0 8.132E+08 22285. 6.40 -->ACCEITABLE 11 22.65 2330 0492 260 0 8.516E+08 23336. 6 69 -> ACCEPTABLE 12 2330 23.95 0 492 265.0 8.654E+08 23714. 6.80 ->ACCElTABLE 13 23.95 24 60 0.492 270.0 9.044E+08 24782 7.10 --->ACCEITABLE 14 24.60 2535 0 101 j 275.0 9.123E+08 24999. 7.16 --> ACCEPTABLE 15 2535 25.90 0 051  !

280.0 9314E+08 25522. 730 -->ACCEITABLE 16 25.90 26.00 0.151  !

255.0 9.522E+08 26092. 7.46 -->Ar llTABLE 17 26.00 26.55 0.231 290.0 9.933E+08 27220. 7.78 --->ACCEITAB LE 26.55 26 65 18 0.251 295.0 1.004E+0) . 27524. 7.86 ->ACCEITABLE 19 26 65 27.20 0.171 300 0 1.032E+09 28269. 8.07 - ->ACCEf7ABLE 20 27.20 2730 0 062 305.0 1.042E+09 . 28546. 8.15 ->ACCElTA9LE 2730 21 27.95 0.231 310.0 1.061E+09 29074. 8.29 -->ACCEITABLE 22 27.95 28.50 0.001 315.0 1.064E+09 29154. 832 ---> ACCEPTABLE 23 28.50 28.60 0.241 320.0 1.081E+09 2 % 32. 8.45 --->ACCEiTABLE 24 28 60 29.25 0.181 325.0 1.092E+09 29922. 8.53 -->ACCEITABLE 25 29.25 29.80 0.191 330 0 1.097E+09 30068. 8.57 ->ACCEITABLE 26 29 80 29.90 0 089 335 0 1.099E+09 30111, 8.58 -->ACCEf7ABLE 27 29.90 30.45 0.131 340.0 1.103E+09 30213. 8 61 -->ACCEITABLE  !

l 28 30.45 30.55 0.201 345.0 1.106E+09 30307, 8.64 ->ACCEITABLE 29 30.55 31.10 0.091 350 0 1.094E+09 29991. 8.55 - >ACCElTABLE 30 31.10 31.20 0 155 355.0 1.091E+09 29888. 8.52 ->ACCEiTABLE 31 31.20 32.50 0 051 I

Coro//na Power & Light Company CALCULATION 2811-0001 REV. O Btunswick Nuclear Plant - Unit 2 Attachment C Page 29 of 35 32 32.50 33.15 0.062 106 64.78 65.42 0.492 33 33.15 33.80 0 053 107 65.42 65.70 0 492 34 33 80 35.10 0.136 108 65.70 66.07 0.151 35 35.10 35.70 0.155 109 66 07 66.35 0.181 36 35.70 36 07 0 06I i10 66.35 66.72 0.1 I I 37 36 07 36.35 0 192 Ii1 66.72 67.00 0.091 38 36.35 36.72 0.101 112 67.00 67.37 0. IB1 39 36.72 37.00 0.241 113 67.37 67.64 0 071 40 37.00 "37.37 0.I2I i14 67.64 68.02 0 492 41 37.37 37.64 0.141 115 68.02 68.29 0.492 42 37.64 .38.02 0.231 116 68.29 68 67 0.121 43 38.02 38.29 0.118 117 68.67 68.94 0.071 44 38 29 38.67 0.271 118 68.94 69.31 0.492 45 38.67 38.94 0.261 119 69.31 69.59 0.492 46 38.94 39.31 0.492 120 69.59 69 96 0.131 47 39.31 39.59 0.271 I21 69.96 70.24 0.I66 48 39.59 39.96 0 492 122 7J 24 70.61 0.101 49 39.% 40.24 0.492 123 70 61 70.89 0.156 50 40.24 40 61 0.492 124 70.89 71.53 0.492 51 40 61 40.89 0.492 125 71.53 72.83 . 0.492 52 40.89 41.26 0.492 126 72.83 73.48 0.016 53 41.26 41.53 0.492 127 73.48 74.13 0.276 54 41.53 42.18 0.492 128 74.13 74.78 0.091 55 42.18 42.83 0.492 129 74.78 75.42 0.111 56 42.83 43.48 0.492 130 75.42 75.70 0.221 57 43.48 44.13 0.181 111 75.70 76 07 0.181 58 44.13 - 44.78 0.211 132 76.07 76.35 0.271 59 44.78 45.42 0.271 133 76.25 76.72 0.111 60 45.42 45.70 0.211 134 76.72 77.00 0.131 61 45.70 46.07 - 0.221 135 77.00 77.37 0.201 62 ~ 46.07 46.35 0.271 136 77.37 77.64 0.201 63 46.35 46.72 0.121 137 77.64 78 02 0.191 64 46.72 47.00 0.251 138 78.02 78.29 0.156 65 47.00 47.37 0.241 139 78.29 78 67 0.111 66 47,37 47.64 0.241 140 78.67 78.94 0.091 67 47.64 48.02 0.261 141 78.94 79.31 0.271 68 48.02 48.29 0.241 142 79.31 79.59 0.146 I I

69 48.29 48.67 0.231 143 79.59 79.96 0.271 "10 48.67 48.94 0 091 144 79.96 80.24 0.191 71 48 94 49.59 0.492 145 80.24 80.61 0.191  ;

72 49.59 49.96 0.492 146 80.61 80.89 0.I71 73 49.% 50.24 0.231 147 80.89 81.53 0.492  !

74 50.24 50.61 0.492 148 81.53 , 82.18 0.261 I 75 50.61 50.89 0.492 149 82.18 82.83 0 492

- 76 50.89 51.53 0.091 150 82.83 83 48 0.271 77 51.53 52.18 0.051 151 83.48 84.13 0.492 j 78 52.18 52.83 0.492 152 84.13 84.78 0.276 79 52.83 53.48 0.492 153 84.78' 85.42 0.181 J 80 53.48 94.13 0.492 154 85.42 85.70 0.141 81 54.13 54.78 0.492 155 85.70 86.07 0.261 82 54.78 55.42 0.492 156 86.07 86.35 0.161 83 55.42 55.70 0.492 157 86.35 86.72 0.211 84 55.70 56.07 0. I Ii 158 86.72 87.00 0.I91 85 56 07 56.35 0.191 159 87.00 87.37 0.231 86 56.35 56.72 0.201 160 87.37 87.64 0.I31 87 56.72 57.00 0.081 161 87.64 88.02 0.171 l

88 57.00 57.37 . 0.151 162 88.02 88.29 0.131 89 57.37 57.64 0.181 163 88.29 88.66 0.261 90 57.64 58.02 0.271 164 88.66 - 88.94 0.146 91 58.02 58.29 0.136 165 88 94 89.31 0.2II 92 58.29 58.67 0.492 166 89.31 89.59 0 071 93 58.67 ' 58.94 0.492 167 89.59 89.% 0.111 94 58.94 59.31 0 492 168 89.% 90.24 0.I81 95 59.31 59.59 0.492 169 90.24 90.61 0.101

%- 59.59 59.% 0.492 170 90.61 90 89 0.271 l 97 59.% 60.24 0.492 171 90.89 91.53 0.271 l 98 60.24 60.61- 0.492 172 91.53 92.18 0.241 99 60.61 60.89 0.492 173 92.18 92.83 0.261 i .100 60.89 61.53 . 0.492 174 92.83 93.48 0.221 l 101 61.53 62.18 0.492 175 - 93.48 94.13 0.131 102 62.18 62.83. 0.101 176 94.13 94.78 0.091 103 62.83 63.48 0.021 177 94.78 95.42 0.086 104 63.48 64.13 0.271 178 95.42 95.70 0.221 105 64.13 64.78 0.261 179 95.70 96 07 0.071

r l

Cuo/ina Power & Light Company CALCULATION 2B11-0001 REV. O Brunswick Nuclear Plant - Unit 2 Attachm:mt C Page 30 of 35

, I80 96 07 96 35 0 061 254 128.67 128.94 0.497 l 181  % 35 97.00 0.111 255 128.94 129.31 0377 182 97.00 9737 0.201 256 129 31 129.59 0.487 183 9737 98.01 0.081 257 129.59 130.24 0.447 184 98.01 98.29 0.081 258 130.24 130 61 0.557 185 98.29 98.67 0.061 259 130.61 130.89 0.557 186 98.67 98.94 0 121 260 130.89 131.53 0 557 l 187 98.94 99.96 0.I31 261 131.53 132.18 0.467 188 99 96 100.24 0.131 262 132.18 132.83 0.487 189 100.24 100.61 0.121 263 132.83 133 48 0.517 190 100.61 100.89 0.201 264 133 48 134.13 0332 191 100.89 101.53 ' O 061 265 134.13 134.78 0.452 192 101.53 102.18 0.241 266 134.78 135.42 0.547 193 102.18 102.83 0.231 267 135.42 135.70 0.487 194 102.83 103.48 0.061 268 135.70 136.07 0367 195 103.48 104.13 - 0.231 269 136.07 13635 0.467 1% : 104.13 104.78 0.181 270 136.35 136.72 0.447 l 197 104.78 105.42 0.261 271 136.72 137.00 0 397 198 105.42 105.70 0.231 272 137.00 13737 0.417 199 105.70 106.07 0.171 273 13737 137.64 0.422 200 106.07 10635 0.I71 274 137.64 138.02 0307 l 201 10635 106.72 0.271 275 138.02 138.29 0 347 202 106.72 107.00 0.492 276 138.29 138.67 0377 203 107.00 10737 0.492 277 138.67 138.94 0387 204 10737 107.64 0.492 278 138 94 139 31 0357 205 107 64 108.02 0.271 279 13931 139.59 0.557 206 108.02 108.29 0.271 280 139.59 139.% 0 457 207 108.29 108.67 0.101 281 139.% 140.24 0.477 208 108.67 108.94 0.261 282 140.24 140.61 0.417 209 108.94 109.31 0.I41 283 140.61 140.89 0377 210 10931 109 59 0.146 284 140.89 141.53 0.517 211 109.59 109.% 0 191 285 141.53 142.18 0.327 ,

212 109 96 110.24 0.241 286 142.I8 142.83 0.557 I 213 110.24 110.61 0.191 287 142.83 143.48 0.557 l 214 110.61 110.89 0.492 288 143.48 144.13 0.557 l 215 110.89 111.53 0.492 289 144.13 144.78 0.517 216 111.53 112.18 0.101 290 144.78 145.42 0.557 217 112.18 112.83 0.141 291 145.42 145.70 0.557 l 218 112.83 II3.48 0.266 292 145.70 146 07 0.557 {

219 l 13.48 II4.13 0.271 293 146.07 14635 0.557 l 220 114.13 114.78 0.111 294 14635 146.72 0.457 221 114.78 115.42 0.061 295 146.72 147.00 0 477 222 115.42 115.70 0.031. 296 147.00 14737 0.337 223 115.70 116 07 0.231 297 14737 147.64 0.557 224 116.07 11635 0.111 298 147.64 148.02 0.517 225 116 35 116.72 0.131 299 148.02 148.29 0 387 j 226 116.72 117.00 0.211 300 148.29 148 67 0.477 1 227 117.00 11737 0.101 301 148.67 148.94 0 377 228 117.37 117.64 0 071 302 148.94 14931 0 557 229 117.64 118.02 0.101 -303 14931 149.59 0 537 230 l18.02 118.29 0.231 304 149.59 149 96 0 327 231 118.29 118.67 0.I81 305 149.96 150.24 0.507 232 118.67 118.94 0.166 306 150.24 150 61 0.467 233 118 94 11931 0.141 307 150.61 150.89 0.487 234 11931 119.59 0.231 308 150.89 151.53 0.557 235 119.59 119 96 0.492 309 151.53 152.18 0.277 236 119.96 120.24 0 492 310 15i 18 152.83 0 397 237 120.24 120.61 0.492 311 152.b3 153.48 0.062 238 120.61 120.89 0.492 312 153.48 154.13 0 307 239 120.89 121.26 0.492 313 154.13 154.78 0.332 240 121.26 121.53 0.492 314 154.78 155.42 0.557 241 121.53 122.18 0.492 315 155.42 155.70 0.557 242 122.18 122.83 0.081 316 155.70 156.07 0.557 243 122.83 123.48 0.156 317 156 07 156 35 0 097 244 123.48 124 13 0.116 318 15635 156.72 0.557 245 124.13 124.78 0.101 319 156.72 157.00 0.527 246 124.73 125.42 0.136 320 157.00 15737 0.167 247 125.42 126.72 0 071 321 15737 157.64 0387 248 126.72 127.00 0.026 322 157.64 158.02 0.297 249 127.00 12737 0.051 323 158 02 158.29 0 357 250 12737 127.64 0.046 324 158.29 158 67 0397 251 127.64 128.02 0.407 325 158.67 158.94 0.166 l 252 128.02 128.29 0.497 326 158 94 15931 0.251 l 253 128.29 128.67 0.547 327 15931 159.59 0.026

Carolina Power & Light Company CALCULATION 2B11-0001 REV. 0 l Brunswick Nuclear Plant - Unit 2 httachment C

l. Page 31 of 35 l 328 159.59 159.96 0 031 402 225.24 225.99 0.557 l 329 6 S 96 160.24 0.201 403 225.99 226.09 0.222 330 160.24 160.61 0.211 404 226.09 226.I8 0.257 331 160 6I 160.89 0.261 405 226.I8 226.28 0.162 332 160.89 161.53 0.271 406 226.28 226.37 0.177 l 333 161.53 162.18 0.492 407 226.37 226.47 0.252 334 162.18 162.83 0.271 408 226.47 226.56 0.322 335 162.83 163 48 0.271 409 226.56 226 66 0.404 336 163.48 164.13 0.191 410 226.66 226.75 0.417 327 164.13 164.78 0.271 411 226.75 230.87 0.557 338 164.78 165.42 0.492 412 230.87 230 99 0.472 339 165.42 166.07 0.492 413 230.99 231.10 0.394 340 166.07 167.37 0.121 414 231.10 231.22 0.344 341 167.37 168.67 0.099 415 231.22 231.33 0.330 342 168.67 169.31 0.164 416 231.33 231.45 0 370 343 169.31 169.% 0.182 417 231.45 231.57 0.322 344 169,96 170.61 0.164 4I8 231.57 231 68 0.350 345 195 to 195.76 0.295 419 231 68 231.80 0.307 346 .195.76 196 40 0.277 420 231.80 231.91 0 330 347 196 40 197.05 0.387 421 231.91 232.03 0.317 348 197.05 197.69 0.377 422 232.03 232.15 0.207 349 197.69 198.35 0 314 423 232.15 232.26 0.147 350 198.35 198.99 0.332 424 232.26 232.38 0 247 351 198.99 199.65 0.389 425 232.38 232.49 0.312 352 199 65 200.29 0.351 426 232.49 232 61 0.230 353 200.29 200.94 0.351 427 232.61 232.73 0.250 354 200 94 201.58 0.557 428 232.73 232.84 0.290 355 201.58 202.24 0.239 429 232.84 232.% 0.177 356 202.24 202.88 0.338 430 232 96 233 07 0.197 357 202.88 203.54 0.557 431 233.07 233.19 0.224 358 203.54 204.18 0.557 43' 233.19 233.31 0.297 359 204.18 2G4.83 0 557 4.o 233.31 233.42 0.277 360 204.83 205.47 0.557 434 233.42 233.54 0.244 361 205.47 205.70 0.557 435 233.54 233.65 0.172 362 205.70 206.13 0.557 436 233.65 233.77 0.172 i 363 206.13 206.35 0.557 437 233.77 233.89 0.247 ,

l 364 206.35 206.77 0.557 438 233.89 234.00 0.332  !

i 365 206.77 207.00 0.557 439 234.00 234.12 0 304

{

l 366 207.00 207.43 0.557 440 234.12 234.23 0.137 367 207.43 207.64 0.557 441 234.23 234.35 0.234 368 207.64 207.93 0.557 442 234.35 234.47 0.210 369 207.93 208.05 0.300 443 234 47 234 58 0.217 l 370 208,05 208.18 0.227 444 234.58 234.70 0.274 l 371 208.18 208.30 0.212 445 234.70 234.81 0.257 372 208.30 208.42 0.162 446 234 81 234 93 0.344 373 208.42 208.55 0.294 447 234.93 235.05 0.217

'374 208.55 208.67 0.384 448 235.05 235.16 0.257 375 208.67 211.15 0.557 449 235.16 235.28 0.237 376 211.15 211.89 0.557 450 235.28 235.39 0.137

, 377 211 89 220.13 1.500 451 235.39 235.51 0.217 l 378 220.13 220 87 1.500 452 235.51 235.63 0.207 379 220 87 223.35 0.557 453 235.63 235.74 0.310 380 223.35 223.44 0.547 454 235.74 235.86 0.557 l 381 223.44 223.52 0.552 455 235.86 238 N 0.557 I

382 223.52 223.61 0.392 456 238.04 238.15 0.384 383 223.61 ' 223.69 0.474 457 238.15 238.26 0.367 384 223.09 223.78 0 387 458 238.26 239.13 0.557 l

385 223.78 223.87 0.267 459 239.13 239.24 0.447 i 386 223.87 223.95 0.187 460 239.24 239.35 0.427 .

387 223.95 224 M 0.314 461 239.35 239.46 0.347 l 388 224.04 224.12 0.427 462 239.46 239.56 0.360 l 389 224.12 224.21 0.380 463 239.56 239.67 0.357 l 390 224.21 224.30 0.557 464 239.67 239.78 0.397

[' 391 224.30 224.38 0.552 465 239.78 239.89 0.337 392 224.38 224.47 0.300 466 239.89 240.00 0.392 393 224 47 224.55 0.257 467 240.00 240.11 0.364 394 224.55 224.64 0.280 468 240.11 241.20 0.552 395 224 64 224.73 0.227 469 241.20 241.31 0.487 3% 224.73 224.81 0.257 470 241.31 241.42 0 467 397 224.81 224.90 0.230 471 241.42 241.53 0.414 398 ' 224.90 224.98 0.317 472 241.53 24! 63 0.417 399 224 98 225.07 0.237 473 241.63 244.31 0.377 400 225.07 225.16 0.352 474 244.31 244.42 0.494 401 225.16 225.24 0.474 475 244.42 244.52 0.477

Carolin3 Power & Light Company CALCULATION 2B11-0001 REV. O Brunswick Nuclear Plant - Unit 2 Attachment C Page 32 of 35 476 244.52 244 63 0 474 550 255.86 258.75 0.557 477 244.63 244.74 0.254 551 258.75 258.86 0 357 478 244.74 244.84 0.192 552 258.86 258.98 0.267 479 244.84 244 95 0.250 553 258.98 259 09 0.267 480 244.95 245.05 0.337 554 259 09 259.20 0.162 481 245.05 245.16 0.392 555 259.20 259.32 0.152 482 245.16 245.27 0.340 556 259.32 259.43 0 267 483 245.27 245.37 0.432 557 259 43 262.03 0.4N 484 245.37 247.94 0 497 558 262.03 262.77 0.557 485 247.94 248.05 0.464 559 262.77 272.84 1.500 486 248.05 248.16 0.357 560 272.84 273.58 1.500 487 248.16 248.27 ' O372 561 273.58 276.17 0.557 488 248.27 248.38 0.342 562 276.17 276.28 0.557 489 248.38 248.50 0.557 563 276.28 276.39 0.354 490 248.50 248.94 0.557 564 276.39 276.50 0 452 491 248.94 249.M 0.557 565 276.50 276 62 0.227 492 249 06 249.17 0.547 566 276 62 276.73 0.237 493 249.17 249.29 0.427 567 276.73 276.84 0.352 494 249.29 249.41 0.367 568 276.84 276.95 0.374 495 249.41 249.53 0.320 569 276.95 277.06 0.357 496 249.53 249 64 0.362 570 277.06 278.57 0.297 497 249.64 249.76 0.207 571 278.57 278.69 0.457 498 249.76 249.88 0 187 572 278.69 278.81 0.357 499 249.88 250 00 0 227 573 278.81 278.93 0.304 500 250 00 250.1I 0.387 574 278.93 279.05 0.267 50l 250.11 250 23 0.367 575 279.05 279.17 0.207 502 250.23 250.35 0.312 576 279.17 279.28 0.397 503 250.35 250 46 0.274 577 279.28 279.40 0.327 504 250 46 250.58 0.327 578 279.40 279.52 0.380 505 250.58 250.70 0.292 579 279.52 279.64 0.397 506 250.70 250.82 0.277 580 279 64 279.76 0.404 507 250.82 250.93 0.222 581 279.76 279.88 0.337 508 250 93 251.05 0.372 582 279.88 280 00 0.337 509 251.05 251.17 0.207 583 280 06 280.12 0.380 510 251.17 251.29 0.207 584 280.12 280.24 0.287 511 251.29 251.40 0,240 585 280.24 280.36 0.274 512 251.40 251.52 0.247 586 280.36 280.47 C.290 513 251.52 251.64 0.162 587 280.47 280.59 0.300 514 251.64 251.76 0.217 588 280.59 280.71 0.354 .

515 251.76 251.87 0.257 589 280.71 280.83 0.232 j 516 251.87 251.99 0.192 590 280.83 280 95 0.247 517 251.99 252.11 0.294 591 280.95 281.07 0.404 518 252.11 252.22 0.267 592 2h l .07 281.19 0.390 519 252.22 252.34 0.252 593 281.19 281.31 0.284 520 252.34 252.46 0.357 594 281.31 281.43 0.384 521 252.46 252.58 0.202 595 281.43 281.55 0.537 522 252.f8 252.69 0.270 596 281.55 281.66 0.432 523 252.69 252.81 0.437 597 281.66 281.78 0.414 524 252.81 252.93 0.352 598 281.78 281.90 0 460 j

$25 252.93 253 05 0.394 599 281.90 282.02 0.480 )

526 253 05 253.16 0.400 600 282.02 282.14 0.557 l 527 253.16 253.28 0 320 601 282.14 282.26 0.557 528 253.28 253.40 0.252 602 282.26 282.38 0.537 529 253.40 253.51 0.337 603 282.38 282.50 0 447  !

530 253.51 253 63 0.252 604 282.50 282.62 0.557 531 253 63 253.75 0.267 605 282.62 282.74 0 390 532 253.75 253.87 0.332 606 282.74 282.85 0.390 533 253.87 253.98 0557 607 282.85 282.97 0 337 534 253.98 254.10 0 557 608 282.97 283.09 0.322 535 254.10 254.22 0.557 609 283.09 283.21 0.334 536 254 22 254.34 0.317 610 283.21 283.33 0.252 l I

537 254.34 254.45 0.302 611 283.33 283.45 0.192 53E 254.45 254.57 0.217 612 283.45 283.57 0.197 539 254.57 254.69 0.302 613 283.57 283.69 0.367 540 254 69 254.81 0.332 614 283 69 283.81 0.297 541 254.81 254.92 0.314 615 283.81 283.93 0.324 l 542 254.92 255.N 0.277 616 233.93 284.04 0.284 l 543 255.04 255.16 0.362 617 284.04 284.16 0.344 i I

544 255.16 255.27 0.247 618 284.16 284.28 0 354 545 255.27 255.39 0.287 619 284.28 284 40 0.287 546 255.39 255.51 0.237 620 284.40 284.52 0.177 547 255.51 255 63 0.247 621 284.52 284 64 0.347 548 255.63 255.74 0.232 622- 284.64 284.76 0.360 549 255.74 2*5.86 0.257 623 284.76 284.88 0.297 j

Ciro/ina Power & Light Company CALCULATION 2B11-0001 REV. 0

. Brunswick Nuclear Plant - Unit 2 Attachment C Page 33 of 35 624 284.88 285 0 0.257 698 294 97 295.09 0397 625 285.00 ' 285.12 0.187 697 295.09 295.21 0.157 626 285 12 285.23 0.332 700 295.21 29532 0.257 627 285.23 28535 0.224 701 29532 295.44 0.257 628 28535 285.47 0.240 702 295.44 295 56 0314 629 285 47 285 59 0.537 703 295.56 295.68 0.262 630 28539 285.71 0.557 704 295.68 295 80 G360 631 285.71 285.83 0.280 705 295.80 295.92 0.177 632 285.83 285.95 0.430 706 295.92 296.03 0342 633 285.95 286.07 0.427 707 296 03 296.15 0 357 634 286.07 286.19 0.462 708 296.15 296.27 0.502 635 286.19 286 31 0347 709 296.27 2% 39 0330 636 28631 286.42 0 324 710 2%39 296 51 0.290 637 186.42 286.54 0 294 7II 296.51 296 63 0304 638 286.54 28738 0.284 712 296 63 296.75 0.487 639 28738 287.50 - 0.280 713 2 % .75 296.86 0 477 640 287.50 287.61 0347 714 296.86 296 98 0.502 641 287.61 287.72 0.277 715 296.98 297.10 0.410 642 287.72 287.84 0.264 716 297.10 297.22 0.432 )

643 287.84 287.95 0.207 717 297.22 29734 0 392 644 287.95 288.07 0380 718 29734 297.46 0.542 645 288.07 288.18 0350 719 297.46 297.58 0347 646 288.18 288.29 0.177 720 297.58 297.69 0.542 '

647 288.29 288.41 0.187 721 297.69 297.81 0.527 648 288.41 288.52 0.294 722 297.81 297.93 0.552 649 288.52 288 64 0382 723 297.93 298.05 0.517 650 288 64 288.75 0 377 724 298.05 298,17 0.502 651 288.75 288.86 0 340 725 298.17 298.29 0.552 652 288.86 288.98 0.207 726 298.29 298.40 0.462 653 288.98 289.09 0 047 727 298.40 298.52 0.22 654 289.09 289.21 0.142 728 298.52 298.64 0.487 655 289.21 28932 0.277 729 298.64 298.76 0397 656 289 32 290.11 0.557 730 298.76 30136 0.487 657 290 11 290.23 0.557 731 30136 302.10 0.527 i 658 290.23 290.35 0.557 732 302.10 310.58 1.500 659 290 35 290.47 0.557 733 310.58 31132 1.500 660 290.47 290.58 0.557 734 31132 313.91 0.557 661 290.58 290.70 0.207 735 313.91 314.02 0.557 662' 290.70 290.82 0 317 736 314.02 314.12 0.297 663 290.82 290.94 0 350 737 314.12 314.23 0.277 664 2a0.94 291.06 0 340 738 314.23 314 34 0 300 665 291.06 - 291.18 0.272 739 31434 314.45 0.270 666 291.18 291.30 0 390 740 314.45 314.56 0.284 667 29130 291.41 0300 741 314.56 314 67 0.280 668 291.41 291.53 0.292- 742 314.67 - 314.77 0.277 669 291.53 291.65 0367 743 314.77 314.88 0 217 670 291.65 291.77 0.452 744 314.88 314.99 0.212 671 291.77 291.89 0374 745 314.99 315.10 0.237 672 ' 291.89 292.01 0.542 746 315.10 315.21 0.227 j 673 292.01 292.12 0.432 747 315.21 31531 0 340 l 674 292.12 292.24 0357 748 31531 315.42 0.290 i

-675 292.24 29236 0327 749 315.42 315.53 0.292 676 29236 292.48 0.297 750 315.53 315.64 0.252 677 292.48 292.60 0307 751 315.64 315.75 0.442 678 292.60 292.72 0.287 752 31535 315.86 0.222 679 292.72 292.84 0.177 753 315.86 315.% 0.287 680 292.84 292.95 0.287 754 315.% 316.07 0 277 681- 292.95 293.07 0 320 755 316.07 316.18 0.284 682 293.07 293.19 0394 756 316. lf 316.29 0357 683 293.19 29331 0390 757 316.29 316.40 0 340 684 29331 293.43 0.394 758 316.40 316.51 0390 685- 293.43 293.55 0.277 759 316.51 316.61 0 344 686 293.55 .293.67 0314 760 316.61 316.72 0.294 687 293.67 J.293.78 0347 761 316.72 316.83 0307 688 293.78 293,90 0307 762 316.83 316.94 0.214 689 293.90 294.02 0342 763 316.94 317.05 0.200 690 294.02 294.14 0 310 764 317.05 317.15 0.267 691 294.14 294.26 0.262 765 317.15 317.26 0.212 692 294.26 29438 0.212 766 317.26 31737 0.230 693 29438 294.49 0.287 767 31737 317.48 0.237 694 294.49 294.61 0347 768 317.48 317.59 0.242 695- 294.61 294.73 0.242 769 . 317.59 317.70 0.242 6% 294 73 294.85 0.312 770 317.70 317.80 0.270 697 294.85 294.97 0 377 771 317.80 317.91 0 332

r k,

Carolina Power & L/pht Company CALCULATION 2B11-0001 REV. O Btunswick Nucle:r Plant - Unit 2 Attachment C Page 34 of 35 772 317.91 318.02 0.240 846 327.25 327.37 0.290 773 . 318.02 318.13 0.172 847 32737 327.49 0350  ;

774 318.13 318.24 0 224 848 327.49 327.61 0314 775 318.24 318.34 0.257 849 327 61 327.74 0387 776 31834 318.45 0 252 850 327.74 327.86 0.294 777 318.45 318.56 0 327 851 327.86 327.98 0317 778 318.56 318.67 0.250 3 852 327.98 328.10 0 324 779 318 67 318.78 0317 853 328.10 328.23 0320 780 318.78 318 89 0 417 854 328.23 32835 0.334 781 318.89 318.99 0302 855 32835 328.47 0 307 782 318.99 319.10 0307 856 328.47 328.59 0320 783 319.10 319.21 0.267 857 328.59 328.72 0.314 784 319.21 31932 0 327 858 328.72 328.84 0 324 785 319.32 319.43 0.297 859 328.84 328.% 0352 786 319.43 319.53 0.297 860 328 96 329.08 0.347 787 319.53 319.64 0.227 861 329.08 329.21 0397 788 319.64 319.75 0.412 862 329.21 32933 0340 789 319.75 319.86 0.332 863 32933 329.45 0.427 790 319.86 319.97 0.482 864 329.45 329.57 0.350 791 319.97 320.08 0.452 865 329.57 329.70 0.367 792 320.08 320.I8 0.417 866 329.70 329.82 0.287

)

793 320 18 32129 0.267 867 329.82 329 94 0.412 794 320.29 320 40 0.282 868 329.94 330.06 0.347 795 320.40 320.51 0387 869 330 06 330.19 0.287  !

7% 320.51 320 62 0.294 870 330.19 330 31 0.347 797 320 62 320.72 0.267 871 33031 330.43 0367 798 320.72 320.83 0397 872 330.43 330.55 0357 799 320.83 321.61 0 324 873 330.55 330.68 0357 800 321.61 321.73 0.322 874 330 68 330.80 0.390 801 321.73 321.86 0.327 875 330.80 331.14 0.557 802 321.86 321.98 0.222 876 331.14 331.25 0 557 803 321.98 322.10 0.227 877 331.25 33136 0.447 804 ?22.10 322.22 0.264 878 331.36 331.48 0.434 805 322.22 322.35 0322 879 331.48 331.59 0390

.806 322.35 322.47 0 232 880 331.59 331.70 0320 807 322.47 322.59 0.282 881 331.70 331.81 0.222 808 322.59 322.71 0307 882 331.81 331.93 0.252 809 322.71 322.84 0312 883 331.93 332.M 0387 810 322.84 322.06 0.320 884 332.04 332.15 0.207 811 322.96 323.08 0.337 885 332.15 332.26 0.202 812 323.08 323.20 0320 886 332.26 332.38 0.317 813 323.20 32333 0334 887 33238 332 49 0.202 l 814 32333 323 45 0.267 888 332.49 332.60 0.260 1 815 323.45 323.57 0300 889 332.60 332.71 0.270 816 323.57 323.69 0334 890 332.71 332.83 0.290 1 817 323 69 323.82 0317 891 332.83 332.94 0347 818 323.82 323.94 0307 892' 332.94 333 05 0.252 819 323.94 324.06 0.300 893 333 05 333.16 0.412 820 324.06 324.18 0304 894 333 16 333.27 0.267 821 324.18 324.31 0324 895 333.27 333 39 0362 822- 32431 324.43 0.257 895 33339 333.50 0.250 823 324 43 324.55 0.254 897 333.50 333.61 0.264 824 324.55 324.67 0.294 898 333 61 333.72 0.290 825 324.67 324.80 0.294 899 333.72 333.84 0 317 826 324.80 324.92 0 357 900 333 84 333.95 0.274 827 324.92 325.04 0.262 901 333.95 334 06 0360 828 325.04 325.16 0.290 902 334 06 334.17 0 367

.829 325.16 325.29 0 307 903 334.17 334.29 0 314 830 325.29 325.41 0.270 904 334.29 334.40 0 397 831 325.41 325.53 0.297 905 334.40 334.51 0.297 832 325.53 325.65 0312 906 334.51 334 62 0340 833 325.65 325.78 0337 901 334 62 334 74 0 377 834 325.78 325.90 0.274 %8 334.74 334 85 0300 835 325.90 326.02 0.290 909 334 85 334.% 0.267 836 326.02 326.14 0 290 910 334 96 335.07 0.204 837 326.14 326.27 0.280 911 335.07 335.18 0.194 838 326.27 326 39 0314 912 335.18 33530 0.097 839 32639 326.51 0317 913 335 30 335.41 0.174 840 326.51 326.63 0.340 914 335 41 335.52 0 077 841 326.63 326.76 0397 915 335.52 335.63 0.172 842 326.76 326.88 0324 916 335 63 335.75 0.277 843 326.88 327.00 0.237 917 335.75 335.86 0 350 844 327.00 327.12 0357 918 335.86 335.97 0.447 845 327,12 327.25 0.372 919 335.97 336 08 OA00

~

Caro /ina Power & Light Company CALCULATION 2B11-0001 REV. 0 3 Btunswick Nuclear Plant - Unit 2 Attachmsnt C Page 35 Of 35 '

920 336 08 336.20 0.412 165.0 5 221E+08 14306. 3 47 ->ACCEiTABLE 921 336.20 336.31 0.364 170 0 5.196E+08 14239. 3.45 ---> ACCElTA B LE 922 336.31 336 42 0.374 175.0 5.256E+08 14403. 3.49 --->ACCEITA B LE j 923 336.42 336 53 0.350 180 0 5.283E+08 14477. 3.51 --->ACCEfiA B LE j 924 336.53 336 65 0.274 185.0 5.454E+08 14946. 3.61 --->ACCEfTABLE l 925 336,65 336.76 0.250 190 0 5.294E+08 14506. 3.51 ->ACCEITABLE 926 336.76 336.87 0.242 195.0 5.430E+08 14879. 3.60 ->ACCEITABLE 927 336 87 336.98 0 222 200.0 5.814E +08 15931. 3.83 ---->ACCElTA B LE 928 336.98 337.09 0.347 205.0 5.891 E+08 16142. 3.88 -->ACCEf4ABLE 929 337 09 337.21 0.380 210.0 5.987E+08 16406. 3.93 ---->ACCElTABLE J 930 337.21 337.32 0.334 215.0 6.245 E+08 17113. 4.09 --->ACCElTABLE 931 337.32 337.43 0.374 220.0 6.429E+08 17516. 4.20 --->ACCEITABLE ,

932 337.43 337.54 0.407 225.0 6.758E+08 18518. 4.40 ---->ACCEITA B LE 1 933 337.54 337.66 0.237 230.0 6.876E+08 18843. 4.48 --->ACCEITAB LE l 934 337.66 337.77 0 237 235.0 7.149E+08 19589. 4 64 -.>ACCEITABLE i 935 337.77 337.88 0.290 240.0 7.229E+08 19809. 4.69 -->ACCElTABLE l 936 337.88 337.99 0.280 245.0 7.483E+08 20506. 4 84 -->ACCElTABLE 937- 337.99 33d.11 0.294 250.0 7.528E+08 20630. 4 87 ---->ACCEITA BLE )

938 338.11 338.22 0.300 255.0 7.879E+08 21592. 5.09 ->ACCEITABLE i 939 338.22 338.70 0.357 260.0 8.120E+08 22251. 5.23 ----> ACCEITAB LE i 940 338.70 338.82 0 414 265.0 8.298E+08 22738. 5.34 --->ACCElTA B LE 941 338.82 338.94 0.330 270.0 8.458E+08 . 23177. 5.44 ---->ACCElTA BLE 942 338 94 339.06 0.314 275.0 8.712E+08 23874. 5.59 ->ACCElTABLE 4 943 339.06 339.18 0.362 280.0 8.925 E+08 24457. 5.72 -->ACCElTABLE f 944 339.18 339.30 0 347 285.0 9.131 E+08 25022. 5.85 --->ACCElTABLE 945 339.30 339.42 0.352 200.0 9.386E+08 25719. 6.00 ->ACCEITABLE 946 339.42 339.54 0.280 295 0 9.690E+08 26553. 6.19 -->ACCEITABLE 947 339.54 339 66 0.317 300.0 9.783E+08 26809 6.24 -->ACCElTABLE 948 339.66 339.78 0.287 305.0 1.003E+09 27491. 6.39 -> ACCEPTABLE 949 339.78 339 90 0.304 310.0 1.009E+09 27642. 6.43 ---->ACCEITA BLE 950 339.90 341.30 0.310 315.0 1.027E+09 28132. 6.54 --- >ACCEITABLE 320.0 1.044 E+09 28603. 6.64 -->ACCEITABLE i 325.0 1.054E+09 28894. 6.70 ---> ACCEPTABLE LIMIT LOAD RESUL.TS: 330.0 1.060E+09 29037. 6.74 --->ACCEITABLE

=================== 335 0 1.063 E+09 29117. 6.75 --->ACCENA B LE NOTE: Tile FOLLOWING LIMIT LOAD RESULTS ASSUME TilAT 340 0 1.065 E+09 29188. 6.77 --->ACCEITABLE TllE FLAWS TAKE COMPRESSION. 345.0 1.063E+09 29128. 6.76 --> ACCElTA B LE 350.0 1.057E+09 28960. 6.72 --> ACCElTAB LE ALPilA MOMENT Pb' SAFETY 355 0 1.048E+09 28710. 6.66 ->ACCElTABLE j

[deg) [in-Ibs] [psij FACTOR RESULT I ACCElTABLE! MINIMUM SAFETY FACTOR = 3.39 AT 155.0 8 0.0 1.041E+09 28537, 6 63 -->ACCEf7AB LE DEGREES.

5.0 1.030E+09 28222. 6.56 -->ACCEITABLE 10.0 1.022E+09 28019. 6.51 -->ACCEliABLE 15 0 1.014E+09 27780. 6 46 -->ACCEfTABLE  ;

20 0 1.006E+09 27575. 6.41 ---->ACCElTABLE I 25 0 9.781 E+08 26803. 6.24 --->ACCEITABLE 30 0 9.649E+08 26441. 6.16 -->ACCEITABLE 35.0 9.544E+03 26154. 6.10 -> ACCEPTABLE 40 0 9.203E+08 25219 5.89 -> ACCEPTABLE 45.0 9.052E+08 24805. 5.80 ---> ACCEfTA BLE 50.0 8.787E+08 24080. 5.64 ---> ACCEITABLE 55 0 8.661 E+08 23732. 5.56 -->ACCEITABLE 60.0 8.361E+08 22912. 5.38 --->ACCEITABLE 65.0 8.220E+08 22526. 5.29 --> ACCEPTABLE 70.0 7.878E+08 21587. 5.08 -->ACCEITABLE 75.0 7.612E+08 20859. 4 92 --->ACCEITA B LE 80.0 7.342E+08 20119. 4.76 ->ACCEITABLE 85.0 7.127E+08 19529. 4.63 ->ACCEITABLE 90.0 6.780E+08 18580. 4.42 -->ACCEITABLE 95.0 6.578E+08 18026. 4.29 --.> ACCEPTABLE 100.0 6.378E+08 17479. 4.17 ---->ACCEPTAB LE 105.0 6.231E+08 17074. 4 08 -~->ACCEITABLE 110 0 6.142E+08 16832. 4.03 -> ACCEPTABLE 115.0 6 066E+08 16623. 3.98 -->ACCElTABLE 120.0 5.866E+08 16075. 3.86 ->ACCEf7ABLE 125.0 5.650E+08 15482. 3.73 .--> ACCEPTABLE 1300 - 1658E+08 15505. ' 3.73 ->ACCEITABLE 135 0 5.414E+08 14835. 3.59 -->ACCEITABLE 140 3 5 330E+08 14605. 3.54 ---> ACCEPTABLE 145.0 5.262E+08 14419, 3.49 ---> ACCEPTABLE i 150 0 5.127E+08 14M9. 3.41 ->ACCFMABLE I 155.0 5.094E+08 13958. 3.39 ->ACCEf7ABLE 160 0 5.204E+08 14261. 3.46 -->ACCEfTABLE

D i cut. A nc^t 2 sit -ooo l Rev 0 AWckmed D Page /

f3

! EXAMINATION

SUMMARY

SHEET REPORT NO.:

% GENuclear En:rgy non-01 PROJECT: BRUNSWICK UNIT 2 PROCEDURE: GE-UT-531 REVA DRR: _UT-53L41___

1GW7X - @ 3142 SYSTEM: RPV SHROUD GE-UT-533 REV: VO DRR: lfTd33-01 MA N^

WELD NO.: Hi GE-ADM-1045 REV: VO DRR: MA CONFIGURATION? SHROUD FLANGE TO PLATE OPERATOR: C.BARRETT LEVEL: il GE-ADM-1046 REV: V1 DRR: ._MA

._MA R. PASZKOWSKI

"'^

OPERATOR: LEVEL: til WELD TYPE:

OPERATOR: S. CLAY / P. WEEKS LEVEL: 11UL _ W CIRCUMFERENTIAL O LONGITUDINAL 0 OTHER N/A DATA SHEET NO.(S): DA419 TO DA-024 CAL SHEET NO.(S): CA 001. CA-009 __

l l

During the examination of the above referenced weld, a total of fifty (50) indications were recorded. Forty-fcur (44) indcahons are atsociated with IGSCC Five (5) indications were detected outside of the examination volume wthin the flange ring. These indications may be longer than what is reported on the indication Parameter sheet because the technique for length sizing is based on beam intersection at the surface. The focal laws used for this examination did not interrogate the outside surface of the flange ring at this elevation. These indications are outside the scope of the procedure but are hsted on page 2 for future montoring. One indicaton, (Indication #6), appears to te located within the weld material but connected to the OD i surface. This Indication is reportable by procedure GE-UT-533 but not to BWRVIP43 Revision 1.

The examination was performed with the Focus phased array ultrasonc system. The search unit for the lower side of the weld was a dual 32 element linear array programmed to produce a 0* longitudinal,15* and 30* - 80* (in 1* Increments), refracted longitudinal waves. The probe used for the upper side of the weld was a 32 element lineer array programmed to focus the sound beams at the upper fusion line of the weld from the outside surface to the inside comer of the flange ring.

H-1 was examined from both the upper and lower sides of the weld, recording typical inside weld crown geometry, welding discontinuities and inside surface geometry For indication and limitation parameters see pages 2,3, and 4. For additenal detalis see the attached drawings and scan plan.

Previous data was reviewed prior to the examination and this summary.

$* Ed [. 1 MARY BY DATE AE UTHJTY l@ VIEW a

8 6-/NW N[4 N/A PAGE:_1_ OF: 24.

~/~ ~ d itEVIE!iWED BY' LEVEL DATE ANa ftEVIEW DATE , , , , , . . . .

l l

l l -

3 1

[ALCU U n N : 2bil-6 dbl Ru O i Alkchmed D Pase ? l

$ GE NuclearErsersy ceu.

Brunswick Unt 2 B214Rf Sivoud UTPro}ect ICWTX Apri/May 1999 Shroud Weld H1 Indication Data ( Upper Side- Flange Exam)

TotalScan Lengt Exarnined(Deg) 253.33 Thickness (In) 1.50 TotalScan Lengds Examined (En) 418.93 Circumference (In) 595.33 Inches perDegree 1.65 Percentage of WekiLengt Examined 70A

.%  ; ofExanained WaktLenge Anwed 2.9 l Percentage of Total Wekt Length Rowed 2.1 TotalRowedLenge(Deg) 1A1 TotalRowedLength lin) 12.25 l l

ksd. Start End Length Longh Range Daph Deph Side of inidadng Length Deph No. Deg. Dog. Dog. in. Depth niax.ks. Pos.Deg. Weld Surface FL/ Angle FL/ Angle 1

1 34.28 34.79 0.51 0.84 5.95 0.05 34.54 Upper ODINear [116.P 2116.2* (

2 43.92 44.74 0.82 1.36 6.01 0.10 44.11 Upper ODMeer 1/16.7* 3/15.8* I 3 45.75 46.63 0.88 1A6 6.03 0.10 46.38 Upper COMeer 1/16.7* 3/15.8'  ;

4 59.11 59.55 OA4 0.73 5.25 0.72 59.36 Upper 00Meer 1/16.7' 10111.T' I 5 60.18 40.74 0.56 0.93 5A5 0.71 60A3 Upper COMeer 1116.7* 12/12.7.

6 71.96 72.71 0.76 1.24 4A4 OAO 72.34 Upper OOMeer 1/16.7* 9113.1'  !

I 7 119.21 119.71 0.50 0.83 4?5 0.72 119A0 Upper OOMeer 1116.7* 7114.0*8 8 120.28 120.50 0.31 0.51 5.24 0.87 120A7 Upper ODMeer 1/16.7' 13/11.3*' i 9 146.60 144.11 0.61 0.84 4.07 0.92 145.86 Upper ODMeer 1/16.7* 7114.0 i 10 155.56 156.25 0.69 1.14 5.87 0.18 141.64 Upper 00Meer 1I16.7' 3115.8** l 11 239.92 240.36 0A4 0.73 5.71 0.25 240.17 Upper ODMeer 1/16.7* 3115.8*'

12 276.33 275.89 0.56 0.93 6.14 0.06 276.64 Upper OOMeer 1I16.7' 2116.2' 13 316.91 317.36 OA4 0.73- 6.02 0.20 317,22 Upper ODMeer 1116.7' 5114.9' indcadon Comments.

  • Inscetion 04 depth airing included an addtional.27* based on verticallocation (Range Deph). Outakte Exarn Area.
  • indcation 05 deph alsing included an adetional.16* based on verticallocadon (Range Depdf Outside Exam Area.
  • indcation 07 depth sising inclueledan edetional.42'benedon verticalloceelon (Range DepdQ. Outside Exam Area d

Asdoselon Of depth airing kiciudadan adefelonel.27"baeed on verticellocation (Range DepdQ. Octoide Eman Area.

  • huGu1\on 90 deph atsing becluded an edetional.62* based on verticalJacedon (Range DeperQ. Outside Exam Area.
  • kuncedon eso depth aising koceuded an enkesonal.Or bened on uwscal socedon tRange DepdQ.

' hunceelon est deph anting included an addntonal.so" based on verdcollocadon (Range Depdf Areas Not Examined (Athnuth References): 10067 TotalDegrees Not Exarnined 0.00 to 31.70 for 31.70 150.08 to 213.80 for 55.82 340.85 to 300.00 for 10.15 Explarsation ofUrnisadons:

Umstations: Core Spray Downoomus and Guide Rna AddeonelComments: None Page_f ,of t&

Revision _.L

0LcuanM: 28ll-doo1 Ru 6 kNacleom/ D Pa.5e. 3 h ~ asNucosererrorgy cm Brunenck UM 2 8214R1 StroudVTPtnoct tGWTX Nut / Mey 1999 Shroud Weld H1 Indication Data (Lower . Side)

Tessi scen Lenom Exanined(Deg) ' 293.16 - Tidckness On) 1.50 Teest scan Langer EaaminedtanJ 4s4.s0 cs,cunference OnJ 595.33 Peronnesee of wofdLange Essadned 81A saches per Degree 1.s5 Perceninge of Exendned Weld Lengde Rowed 31.3 Personnage of feest weldLenge Rowed E5 Toed RowedLenge tDeg) 91.88 TeestRowedtenom anJ 161.94 l

ind. Start End Lenge LengGr Stufdple Deph Dape Percurt dide af ird6s6ng Lenge Depe No. Dog. Dog. Dog. Gn. scens Stax.in. Pos.Deg Thruwell Wold sortece Angle Angie F) F) 1 16.61 14.32 1.71 183 No 0.55 17.10 36.7 Lower IDfNear Process' Process' ,

2 20A0 21.13 0.73 1.21 No 0.33 20A9 22.0 Lower IDINear Process' Process' l l 3 21.08 29A4 7.48 1L70 Yes GJ1 24.91 K0 Lower DINear Process' Process' l 4 31A3 SLN 1.83 2.53 No SA2 31.48 28.0 Lower IDfNear Process' Process' l 5 33J5 38M 5.12 8.47 Yes SA2 35A3 41.3 Lower IDfHeer Process' Process' l 4 30A8 48.82 9.34 15.45 No 0.70 44.00 44.7 Lawer DNear Process' Process' I 7 49.97 51M 1.10 1.82 No 0.53 50.22 35.3 Lower IDfNear Process' Process' 8 54A8 56.02 2A4 4.04 No 0.58 K68 38.7 Lower IDINear Process' Process' E7 Lower OfNear  ;

S 57.04 00.73 - 107 3A2 No 0A4 58.27 Process' Psocess' '

10 $1.19 E07 4A8 8.07 No CAS 84.24 3LO Lower IDfNear Process' Process' 11 47.00 70.22 2.32 3A4 No 0.35 69.12 23.3 Lower DNear Process' Process' 12 74A6 75A0 0.24 0A0 No 0.18 74.97 110 Lower IDfNear Process' Process' 13 - $1.92 84.24 2.32 SA4 No 0.39 8104 28.0 Lower DNear Process' Process' 14 88.51 91M 2.06 4.23 No 0.61 89.85 40.7 Lower IDINear Process' Process' is 96.19 97.78 1.80 2A3 No 0.38 97A5 25.3 Lawer DNear Process' Process' 16 00A0 102A1 2.81 4A5 No 0.57 99M E0 Lower IDfNear Process' Process'

! 17 1E02 ' 1E75 0.73 1.21 No 4.30 108.75 20.0 Lower IDfNear Process' Process' l 18 115.00 117A1 1.32 344 No 0.50 115.22 33.3 Lower DNear Process' Process' 19 127.09 131A8 3.79 6.27 No 0.57 130.33 38.0 Lower IDfNear Process' Process' ,

20 13L29 134.24 1.95 3.22 No SA8 133.02 46.3 Lower IDfNear Process' Process' l 21 1E80 144.24 7A4 12.30 No 0.53 130.85 35.3 Lower DNear Process' Process' l 22 146.55 -148.32 1.77 1 93 No SJ7 147.7T 24.7 Lower DNear Process' Process' 23 195.01 198.30 SAS SA1 No 8.29 195.93 19J Lower IDfNear Process' Process' 24 204A7 207.77 SJO EA4 No 0.53 205.33 E3 Lower D Near Process' Process' 25 214A5 216.34 GA9 0.01 No 4.34 215A9 22.7 Lower IDINear Process Process' 26 218A7 230.88 1.71 2A3 No GA2 230A6 34.7 Lawer IDINear Process' Process' 27 221.88 23SM 4J8 7.26 No 0.53 225.22 36.3 Lower DNear Process' Process' 28 230A0 231.13 0.73 ' 1.21 No 0.30 230.76 EO Lawer IDiMeer Process' Process' 20 - 342.17 343Je 1.22 2A2 No GAS 243.02 32.7 Lower EfNear Process' Process' 30 244A5 247.78 L93 4A5 No SA0 246.31 40.0 Lower D Near Process' Process' 31 283.51 - 254.73 ~ 122 2A2 No SAC 253M 28.7 Lower DNear Process' Process' 32 289.24 200A0 0.M 0A0 No 0.24 269.34 16A Lower IDfNear Process' Process' 33 781 M 201J1 SJ4 GA0 No 0.18 281.19 1L0 Lower DNear Process' Process' i

34 200A0 200A9 OJO 1.32 No SAO 200.50 40.0 Lower DNear Process Process' 35 205A8 206A8 1.10 1A2 No 0.55 206.31 E7 Lower D Nect Process' Process' 36 200A0 303.00 3.90 445 No 0.55 300A0 38.7 Lower DNear Process' Process' 37 304A1 307.17 2.56 4.23 No SA0 305.58 40A Lawer IDfNear Process' Process' Pege ,$.cfY wan.1.

I-I l

[ l Daultriod . 2B//-o001 Sev 6 ANxchwed .D kt4 GE Nuclear Energy l

cpu. 1 BmnsweckUrd2 B214R1 Stwoud UT Prcsect 1GW7X Apt / May 1999 Shroud Weld H1 Indication Data (Lower Side)

IndesGon Commetris:

Mulhple Scans means a single Saw could not be obtainri in a single scan.

(") Angle and/or Promsa used.

Indications #23 and 26 start at the beginnin0 of their respective scans. An indiceGon start point could not be resolved Areae Not Examined (Atimuth References): SS.84 TotalDegrees Not Exanmned

. 0.00 to 13.08 for 13.08 141.80 to 195.49 for 33.89 228,14 to 230.30 for 2.14 342.29 to 380.00 for 17.71 Esplanadon of Limitn60ns' l Umitations: Core Spray Downcomers and Guide Pins.

l Add 6enal comments. j

' Process refers to Procedure GE.ADM-1046 i

l l

l i

PageLofb m .1.

1

0LCULAD& ; 28ll-000l $ey 0 kOcbme h lb ye .S~

?

I e a e I E H e

.09C/.0 7 b

.01 7 ) g .09C/.0 _ N  !

.02 7 .01 7 g; g g 3 u7 .02 7 eo

.0 t ~-

' g .0C ~

a-3 lA es- l g g 8 m @@o

.09 - .0S ""- N n_

2 "

.04 - .09 _ g

- EiE .u ,

sE g 5. 5  !

~7 1 "2 = Ra .

.mi7 - -

" s E E .mi-

.0!!7 .Dili E --

.0217 1 1 ]

.02I 7 di g g .0Ci - g;g l

.0tt - .0ti -

L g

.0917 .091 - O

.0937

.0417 )

gjg .09ti

.041 -

g w 0

5

.091 - .001 - 5

.0617

.002 --

?E E i .002 -

EiE o a

g  !

.012 - Z

.012 - ,

.022 2 ma7 g g $ w 1 1 O

.0C2 .002 _ a l

.Ot2

,oga - i

  • E g U J

,092

.042 -

, .042 7 y

a o$pj 6

.062 g' 2 # g C y  !

1 O

.062 7 .00C

.00C _ .01C g;g k g d ' l E E "*7 b

< u n W

.02C -

i, .0CC _

KC7 l

.0*C - g'g y ! U

.0kC - l .0GC _

.0CC - O .0/.09C

.0/.09C Bb W El

_ =w

@ li Page 5 of.2fe_ $

buuarwa 25ll-o001 %o N + u b m e,,+ D i L e. c, v

N s REPORT NO.:

EXAMINATION

SUMMARY

SHEET GE NuclearEn:rgy non2 PROJECT: BRUNSWICK UNIT 2 PROCEDURE: GE UT-531 REVL_YL DRR: UT-531-01 1GW7X jj63#

SYSTEM: RPV SHROUD GE-UT-503 REV: V6 DRR: _

IN/A WELD NO.: H4 GE-ADM-1045 REV: VO DRR: _N/A CONFIGURATION! PLATE TO PLATE q l

! OPERATOR: C.BARRETT LEVEL: 11 GE-ADM-1046 REV: VI DRR: _N/A

._N/A

)

OPERATOR: R. PASZKOWSKI LEVEL: 111 l WELD TYPE:

j OPERATOR: S CLAY / P. WEEKS LEVEL: 11/ II E CIRCUMFERENTIAL O LONGITUDINAL 0 OTHER N/A DATA SHEET NO.(S): DA401 TO DA-010 CAL SHEET NO.(S): CA-001 CA-CXE CA410 TO CA-015 4 During the examination of the above referenced weld, twenty-five (25) indications associated with IGSCC were recorded. The examination was performed wth the FOCUS phased array ultrasonic system and the Srnart 2000 ultrasonic system. The phased array search unit was a dual 32 element linear array programmed to produce a 0*,15*, and 30* - 80* refracted longitudinal waves. The Smart 2000 system utilized a trimodal search  !

unit, which produced a 60* and 80* refracted longitudinal waw and a 45' shear wave. 1 H-4 was examined from both the upper an:l lower sides of the weld, recording typical inside and outside weld crown geometry, welding discontinuities and inside surface geometry  !

1 For indication and limitation parameters see page 2. For additional details see the attached drawings and scan plan.

{

Previous data was reviewed prior to the examinatKx) and this summary.

l 1

l ?Yl W _W $~ oATE If:9F Q-l i

m &aRv uvEt - - -

J Y - f-4 W A)/4 PAGE: 1 OF:LEQ_

M BY 12 VEL DATE ANN REVIEW DATE _,

i l

g

[muu nod : 28H-000i Rev 0 h6r/ .D ke7 O GENucleCrEnergy i-l CPSL Brunemak Uht2 B214Rt Shroud UTPntact 1GWTX Apot/May 1999 i Shroud Weld H4 Indication Data ToesiScan Longeh Exennined(Deg) 281.78 Thickness (In) 1.60 ToenlScan Length Examined (in) 436.44 Circunderence (In) 667.83 Perceneese of WeMLanoth Eneminsd . 18.3 inches Per Degree 1.65 Percenenge of Examined MM Lengde Mewed 31.4 Percenenge of TotalWeMLenge Rowed 29.3 TeeslNewedlangeh(Deg) 106As TonelMewedLengeh(In.) 143.34 Ind. Start End Lenge Lenge ntuNQ6e Deph Deph Percent Side of inWating Lenge Depe No. Dep. Dog. Dog. Sn. Scans Biox.in. Pos.Deg. Thruwest WeM Surface Angie Angie

(") (")

1 24.73. ' 31.19 4A4 10.01 No 0.31 25.33 20.7 Upper 10tNear 46* W 2 27.38 34.76 SA0 14.84 Yes (2) 0J6 33.70 37J Lower IDlNoor 46' 00*

3 81A8 82A4 0.36 0.66 No 0.18 82.04 12.0 Lower IDtNear 46* $0*

4 88J1 89.99 1A8 2.60 No 0.15 8943 10.0 lipper IDdNear 46* W 5 90A0 9230 1.91 2.94 No 0.34 91.78 22.7 Upper 10tNear 46' 40' S 92A6 95.73 2A7 4A6 No 0.29 93.10 19.3 Upper IDtNear 46* $0*

7 mas 97.12 1.07 1.86 No 0.09 MA5 5.0 Upper IDtNear 46' 40*

J 97J4 MAG 1.32 2A4 No 0.11 97.M 7.3 Upper IDJNear 46' 40' 9 99.27 100A7 1.20 1A6 No 0.25 99.76 14.7 Upper 10JNoor 46* $0*

10 104A3 110.75 8.22 SA3 Yes (2) 0.37 105.13 24.7 Upper IDtNear 46* $0*

11 127.73 139J2 - 11.59 17.96 No 0.75 129.17 80.0 Upper IDJNear 46' 80*

12 137A7 140.28 2A1 3.73 No 0.32 138.73 21.3 Lower IDJNear 46* 80*

13 140.11 143A4 3.36 5.19 No 0.86 141.07 34.7 Upper 10tNear 46* $0*

14 142A4 144A5 1.19 1A4 No 4.30 143.33 20.0 Lcwer ODINear ODCr Process' 16 215.18 220.16 4.98 7.71 No 0.59 217.98 39.0 Lower IDJNear Process' Process' it 224.22 228.78 1.86 2A2 No 0.34 225A2 22.7 Upper 10tNear Process' Process' 17 228A2 230.50 4.08 4.32 No 0.M 230.60 64.0 Lower IDtNear Process' Process' 18 241.70 248.08 4.38 8.78 No CA6 242.08 30.2 Lower IDtNear Process' Process' 19 246.54 263.M 7A4 11.62 No CA6 248.58 $6.7 Lower IDlNear Process' Process i 20 266.70 261.82 6.12 SA8 No 0A0 267.50 40.0 Lower IDtNear Process' Process' 21 267.10 288.90 1A0 2.79 No CAS 268.30 30.3 tmver IDJNear Process' Process' i

22 304.26 307A8 2A2 4.37 No 0A4 306.94 31.7 Lower IDlNear Process' Process 23 310.74 322.08 11.34 17A7. Yes(2) 0.86 316.30 68.3 Lawer IDtNear Process' Process' 24 324.22 329.28 5.04 7A1 No 8 Lower IDtNear Process' Process' 2S(*) 338.74 341.40 4.86 7.53 No Lower 10lNear Process' Process' Imscaelon Comnsenes etultiple Scans means a single flow sould not tse obtained in a single scan.

(*) End of Scan g 341.88*.End of Indication not ter'orded. No scan aNor due no limitations below.

(") Angle endfor Process used Areas Not Examined (Animuth Reserences): 18.24 TotalDegrees Not Examined 0.00 so f3.10 Fnr 12.f0 148.30 so 198.f0 & 48J0 34f.88 . so 300.00 & 18.34

_ _ .ofLiminnefons:

Lk.eNeelons: Core 8 prey Downcomers and GuMe Mne AngelonelCommente

' Process refers to Procedure GE-AD641046 8

No Depit osta Aveliable r

Peoe,$_of)$,

neaaion _o_

a

0LCusAnod 2Bil-Dool /L O 4Heehmed D Page. 8 V

v E

- m n , n 55 s I

I I I I I II I 5

.09C/.0 7 g g

.0 Uj) g; .09C/.0 _ y I

  • - = .01 _

g:~

g

.0C ~~ . .02 7

.0 =

.0C , g g 0* d

.0G _ =

g!g 03

.09 7 . .0G 7 N

.04 7 = g g d' m g g

.04 7 g a g

.00 7 .

.06 - .

.00 - @ ed o i

,,2 .06 - m 1  :

.001 7 gjg  ; H e5

. Ort ~ .

I "

.011 -

i 43I 7 = .021 ~- 51

.0C1 -

.0,,2 -  :

E-E 0CI =

.0t! _ rs , s

[

.0 GIT = .091 7 N

.0917 = g;' d .091 -

.0LI""~ 03) .041 $ @

.081 ""~  ! .081 - k M l .061

.002 7 0

[O .061i

.002 -

f O ,e f

l 5

.012 - .012 7 d23i 2

  • 37 m En h l = El@ E

.0C2 -- .002 7 _,

l .0>2-- [ d*2 7 f  ! '

w

.0G2 -

,,,,2 E E .092 , llh e; t

E a 4

.0z2 ~ 3

.042 -  : .082 "'

.0e2 - ,

,, g z ,,g,_ E':

a 1 - g s l6

.062 7 U E MC-40C 7 d E

= .01C 5;5

.01C 7 = g; .02C _ I

.02C 7 =

.0CC"-- < h w g 1

=

.0tC -

gg h

.DCC 0tC - 7 g' .0GC -

.0GC U D .0/.09C

.0/.09C -

g@

W E@

@ 11 R$

Page 3 of 00- l

F l-4euunod : .28//-0001 New 0 kA/el,med .D $ e. 9 m

(Y GE Nuclear Enugy EXAMINATION

SUMMARY

SHEET REPORT NO.:

R9943 PROJECT: BRUNSWICK UNIT 2 PROCEDURE:_GE-MI-524 . REV: Vi_ DRR:_N/A 1GW7X N/A j -_.N/A SYSTEM: RPV SHROUD GE-UT-503 REV: V6 DRR: _N/A.

_N/A WELD NO.: H6B NE GE-ADM-1045 REV: VO DRR: _N/A CONFIGURATION CORE SUPPORT RING TO PLATE A OPERATOR: C.BARRETT LEVEL: ti cE-ADM-1046 REV: V1 DRR: _N/A _

J4/A OPERATOR: R. PASZKOWSKl LEVEL: til #

WELn i PE:

C PERATOR: _s. CLAY / P. WEEKS LEVEL: II /11 5 CIRCUM. EERENTIAL C LONGITUDINAL 0 OTHER_N!A DATA SHEET NO.(S): DA411 TO DA418 CAL SHEET NO.(S): CA403 TO CA408 CA410 TO CA-012 During the examination of the above referenced weld, fifty (50) indications associated wtth IGSCC were recorded. The North side (0*-100*)

examination was performed with the Smart 2000 system utilizing a trtmodal search unn, which produces a 60* and 80* refracted longitudinal wave and a 45* shear wave. The South side (180*-360*) examination was performed with the Focus phased array ultrasonic system utilizing a dual ll2 element linear array programmed to produce a 0*,15*, and 30*-80* re'racted longitudinal waves. The phased array probe also was used to examine Lug Sets' 15 and 16 on the North side.

H4b was examined from the lower side of the weld recording typical inside and o Jtside weld crown geometry, welding discontinuities and inside surface geometry For indecatum and limitation parameters see page 2 and 3. Page 4 shows actual Start and End postbons based on the data recorded and is used for reference. For addibonal details see the attached drawings and scan plan.

Previous data was reviewed prior to the examination and this summary.

The following is an explanaton of the steps taken to position and length size these indications:

North Side (0* - 180*)- Trimodal Search unit / South Side (180* - 360*) Phased Array First, the indications were length sized and end points established based on the data. Second, the Core plate bolt holes (CPH) were located and superimposed wt;h their respective location. TNrd, the separation between the CPH was measured and found to exceed the known dimension of 5 degrees. Fourth, wtwe end points fe6 between two CPH, a new increment was calculated based on the known 5* separation and applied to the end po6nt. Fifth, where end points fe5 outside two CPH, the delta between the CPH and the end point was applied to the CPH (1).

This produced adjusted lengths and repositioned the indications. Where new increments were calculated, these were also applied to the scan lines containing the depth data.

North Side data was shifted 5* clockwise based on the known locahon of the Vertical seam (50*) and the number of CPH detected. South side data was *not" sNfted.

bh0 A n g fu2hu % s-/9-omW ( mve-y,,m Idh dm oesy9mwenev 4G Nuve- f r-/ &om99 n/A a nevmw N/A om pAGe 1 Ov:}6

0LwlArtod : E81/-000l Se/0 A & b ra l .D ke /0

$ GE NuclearErsergy l

CP&L l

Bruneset;h LN 2 B214R1 Shroud UTR%ect IGWTX Apri/May 1999 l Shroud Weld H6B Indication Data (LowerSide) l Toter scan Lench Examined (Deg) 291.50 Thicknees pn) 1.50 1 Toter Scan Longh Examined On) 451.53 Circunderence On) 557.63 l

Inches per Degree 1.55 1 Percentage of Weld Longh Examined 81.0 l Percentepe of Examined Wold Langh Rowed 44.3 TotalRawed Longh (Deg) 187A2 Pusentage of Total WoldLongh Rowed $2.1 TotalRowed Lench Qn) 290.31 l

Indication Positions A$fustedin Alignonent with Core Plate Bolt Holes 1 and. Start End Lenge Lench neuNiple Lugeot Deph Deph Percent Side of Inidadng Longh Deph No. Dog. Dog. Dog. on. Scans Ce niex.in. Pos.Deg. Thruwell Weld Surface Angle Angle l 1(*) 17.12 21.66 4A3 4A6 No 3 Noen 1 Naes 1 Note 1 Lower IDINear 4r Nees 1 2 23A1 36A1 12A0 19.52 Yes 3,4 N.es t N es t Ness i Lower IDINear 4r None t 3 40.83 42.24 1.71 2A6 No 4 Nees 1 Nees 1 Neen 1 Lower IDINear 45' Note 1 4 42.24 44M 4.13 SAO No 5 Nees t Nees 1 Note 1 Lawer WINear 48* Noen 1 8 48.34 49.45 1J1 1 03 No 5 Noen 1 Naas 1 Nees 1 Lower IDINear er Note 1 6 52.98 56.37 2.39 3.70 No 6 Nate 1 Naas 1 Neer t Lower IDINear 46' Noes 1 7 80.34 60.76 1A0 L17 No 6 Noen 1 Noes 1 Note 1 Lower IDINear 48' None 1 8 61A7 Sti$ 1.08 1A7 No 7 Naas 1 Nees t Note 1 Lower WINear 46* Nees 1 9 42.50 65.00 3A0 4.48 No 7 seems 1 Noes 1 Noes 1 Lower IDINear 4r Nees 1 10 45.80 K41 1.11 1.72 No 7 Note 1 Naas 1 Nees t Lower IDINear 45* essee 1 11 K 94 68.58 1A4 2.54 No 7 Note 1 Nees 1 Note 1 Lower IDINear 48' Nees 1 12 68.68 78.10 9.42 14.59 No 8 Nees1 Nees 1 Nate 1 Lowef IDiNear 45' Nees t 13 79.27 00.36 1.08 1M No 9 Mass 1 Naas 1 Note 1 Lower IDINear 46' Note 1 14 00A7 06.85 6.38 0.88 No 9 Nees 1 Nees t Noas 1 Lower IDINear 4r Nate 1 15 87.74 102.80 14.76 22.86 Yes 9,10,11 Noas t Nees 1 Nees 1 Lower IDINear 48' Nees 1 16 102A1 104.17 1.34 2.11 No 11 Nees 1 Noes 1 Nees 1 Lower IDINear 45* Noes 1 17 106.10 107.86 2.76 4.28 No 11 Nees 1 Nees 1 Noen t Lower IDINear 45' Noes 1 18 10L34 114.72 8.38 1L68 Yes 11,12 Nees 1 Nees t Maes t Lower IDINear 48' Note 1 19 118.93 120.00 1.15 1.78 No 12 Noes 1 Nees 1 Nees 1 Lower IDfNear 45' Noes 1 20 120.25 127.28 7.03 10.89 No 13 Neen 1 Naas t Naas 1 Lower mfNear 48' Note t l 21 127.84 139.17 11.33 17A6 No 14 043 134.78 410 Lower IDfNear 46' Wl60*Mr l , 22 140.75 147.86 7.11 11.01 No 15 0.58 148.28 38.7 Lower IDINear 45' 50*/60*M6*

23 148.30 151.14 2.64 4A0 No is OA3 150.03 42A Lower IDfNear er 50*MO*t85*

24 182.16 153A4 1A8 LSO No 16 0.54 153.08 34.0 Lower IDINear 46' 50*M0*M6' 25 163.96 188.22 4.26 6.80 No 14 OA9 187M 44.0 Lower IDINear 45' 50*/60*ME*

26 188.00 100.94 1A4 2.23 No 14 Nees 1 teste 1 . Noen 1 Lower IDINear 45' Nees 1 27 100.06 141A0 1A4 1 23 No 16 Nees i Note 1 Nees t Lower OfNear 48' Nees 1 28(*) ' 16L74 143A2 1A8 1.87 No 14 Nees 1 seees1 Nees 1 Lower mfNear 45' Nees 1 29(*) 196.10 199.84 4.74 7.34 No 21 Nees1 esses 1 seses t Lower efNear 4r100* Nees 1 ,

30 200.37 200.90 9.63 GA2 No 21 esses t essen 1 ween 1 Lower IDfNear 4 rte 0* Noen 1 l 31 201.84 20118 0.32 0.80 No 21 poses 1 esses 1 Nues 1 Lower IDfNear er/00* Nate t j 32 207.03 200M 0.74 1.18 No 22 GA8 208.30 30.0 Lower IDINear 48*/50* 50*M0*M5*

33 217.80 217.73 0.23 0.36 No 23 stees 2 esses 2 posee 2 lAwer EfNoor er Nees 2 34 218M 218.82 SA6 0.70 No 23 sesen 2 seses 2 esses 2 tmwer mfNear 48' Nees 2.

36 ' 220.00 221.36 0.56 tM No 23 Nees 2 Naes 2 Nees 2 Lower mfNear 44' Note 2 34 223.36 226A4 1A9 2.93 No 23 0A2 223 M 28.0 Lower IDfNear 48*t00* $0*/60*f85*

37 226.99 226.75 9.T6 1.18 No 23 GA5 226.18 30A Lower IDfNear 4rf60* 50*f00*Mr 38 230M 236.06 4.99 7.73 No 24 OM 234.12 31.3 Lower IDINear 4F100* E0*f80*48*

30 238.04 238.26 0.22 0.34 No 26 0.24 238.18 14.0 Lower IDINear 4F180* 50*M0*M8' 40 230.13 240.11 0.98 1A2 No 25 0.27 239.78 18.0 Lower IDINear 4r100* 50*A80*ME' 41 241.30 241A3 043 0.67 No 26 0.23 241A3 15.3 Lower EfNear er/80* E0*J00*M8*

42 244J1 246M 1A6 1A4 No 24 OA2 244.74 28.0 Lower IDfNear 48'IE0* 80*f60*M8' 1 43 247.94 248.50 0.84 OM No 26 OM 248.27 18.0 Lower IDINear 48*150' 50*/60*f88* I 44 248.94 255.04 6.92 16.72 No 26 GAS 261.52 30.0 Lower mfHeer 4r/80* 50*#80*MS*

48 208.76 208.86 0.00 1.24 No 27 SAS 200.20 30.7 Lower WINear 4r/00* E0*fS0*Mr 44 276.06 277AG 1A0 1A8 No 28 0.38 276.00 25.3 Lower IDfNear 4Fl80* 00*f00*Mr 47 278M - 208.54 7M 12.35 Yes 29,30 SAS 284A0 28.7 Lower mfNear er180* $0*J60*f88*

48 287.38 288.32 1.04 - SA1' No 30 9.56 288.98 37.3 Lower OfNear 4r/00* E0*M0'MS*

49 200.11 208A8 L77 13.68 Yes 30,31 GA6 295.00 30.0 Lower IDINear 46*l50* E0*M0*tS5*

Page 2 of 38 Revision L

[ALCuLA T7bal : $8ll-000l Sev' 0 Mub-ml 2) Are n h GE NuclearEnergy CP&L Dounswsk (N 2 82r4RI Stroud(IT!%pect 1GW1X Aprt/ May 1999 l Shroud Weld H6B Indication Data (Lower Side) 80 313.00 320.83 7.03 10.89 Yee 32,33 0.44 318.02 29.3 Lower D Near 45*/50' 50*Mo*/65*

51 321.61 330.80 9.19 14.24 Yee 33,34 0.39 321.86 26.0 Lower D Near 45'I50* 50*MO*l65*

52 331.14 338.22 7.08 10.97 No 34 0.53 335.41 35.3 Lower D Near 45*/50* W/60*/65*

530) 338.70 339.90 1.20 1.86 No 34 0.33 339.42 22.0 Lower ID/Near 45*/50* 50*/60*/65*

iruRcadon Conunerste:

1 Langes sining wee X : by he Tri.Nodel eearch unit forIruscanons et so 20. I Langte sMng wee i ;* -- -lby he Phased Arrayprobe forindcaeions 020 to 32 and 35 to 53.

- i Depeh airing was , L.---- ^ wits he Phased Arrayprobe forindcaelone 021 to 25,32, and 30 to 53.

Mulelpie scene = a Raw could not be obeelned in a single scan.

AN huncadene were poeieioned based on he lusown locadon of he 72 Core Pinte Bolt Notes spaced $*, searing Q 2.50*,

verscalseanne Q 50* A 200*, and ring sogneont wekne Q 80*,120*, 240*, and 300*.

None f a No deptoe given neue to an inconsiseentincreased delay for he Trimodel search unit kom he calibro6en.

l Nose 2 m kuGcaelone 633,34, and 35 tietecend wits he 45* but root Gee 50*. Perprocedure, reo lengh sizing perforweed.

These indceGene are *not* added to she overait Raw 6engeh.

These hedcaeFone are recorded for "neonitoring purposes only* and do not exhibit any meneurable depeh.

1() Siert of Scan @ 17.10*- Seert ofionicadon root recorded. No acan betare due to kmleenfons below.

28 () End of Sean Q 163.82*

  • End of kuncadon not recorded. No scan aner due no Nnniteelone below.

29 C) Start of Scan Q 105.10* Start ofIrunceelore not recorded. No scan before due to Nnetteeone below.

53 C) End of Scan @ 230.00* End of hedcaefon not recorded. No scan aner due to Nnelen6ons below.

l Atene Not Examined (Athnuth Iterarences): 68.50 TotalDegrees Not Examined 0.00 to 17.12 for 17.12 153.82 to 105.10 for 31.28 330.00 to 300.00 for 20.10 8' ; _:::: of LindteWone UneNeelone: Core Sprey Downcomers and Gukie Pine i nele Exaneinnelon has clochwise degree oNeete of: Leadng Center Traiting l Loomne 84e search unic: 4s* s a0* L oocr 1.is 0.58 0.00 l

l l

l l

l Page b of $ 0 Revision L_.

O u w a w l: 2Bil-0001 Sed 0 O aenuclearenerey {

(

cost.

- , m, l

, ~ uT - ,om -., ,-

' Shroud Weld H6B Indication Data (LowerSide) 1 OriginalData Measure nents ind. Start Erni Longh Longh AM6ple Luoset Side of ledgedng Longh l No. Dog. Dog. Dog. In. Scans Ce Wold Surface Angle \

1 1110 16.53 4.43 6.86 No 3 Lower DNear 45' 2 18.00 30.95 12.87 it.N Yes 3,4 Lower IDINear 45*

3 34.98 34A8 1.87 2.59 No 5 t.ower IDINear er 4 36.45 41.87 5.02 7.78 No 5 Lower IDINear 48' 5 43.70 45.01 1.31 103 No 5 Lower IDINear er 3 l

8 47.84 80.25 2.39 3.70 No 6 Lower ID(Near er 7 54J1 55.74 1.43 2.22 No 6 Lower DNear er 8 55.69 56.77 1A8 1.87 No 7 Lower IDfNear 45' 9 57.12 80.35 3.23 5.00 No 7 Lower IDINear er j 10 00.35 41.85 1.20 1.86 No 7 Lower IDfNear er j 11 41.79 43.70 1.91 2.96 No 7 Lower IDfNear er j

-12 64.02 74.06 10.04 15.55 No 8 Lower IDINoor er l 13 74.50 75.57 1A7 1.86 No 9 Lower IDfNear 45*

14 75.89 82.80 SA1 10.55 No 9 Lawer IDINoor 45*

18 83A4 97.00 13.54 20.97 Yes 9.10,11 Lower IDINear 4r 16 97.36 98.92 1.86 2.42 No 11 Lower IDINear 4r 17 90.99 103.10 3.11 4.82 No 11 Lower IDINear 4r is 103.34 11180 0.16 14.19 Yes 11,12 Lower IDINear 45*

19 114.77 116.00 1.32 2.04 No 12 Lower IDINear er 20 115.45 122.98 7.53 11.66 No 13 Lower IDINear 4r 21 125A5 138.12 1L87 19.53 No 14 Lower IDINear de 22 138.80 148.21 7.41 11.48 No 15 Lower DNear er 23 148A8 149A4 1 99 4.63 No 14 Lower IDfNear er l 24 100.71 15L39 1.48 2.60 No 14 Lower DNear er )

25 152.51 166.81 4.30 SA6 No 16 Lower IDINear er 26 157J1 188.77 1.56 L42 No 14 Lower DNear er 27 188A9 100.44 1.55 2A0 No 16 Lower IDINear 4r 28 141.76 142.83 1.07 1.84 No 14 Lower IDfNear 45' 29 195.10 200.38 5.28 8.18 No 21 Lower IDINear 48*1 80*

30 200.98 201.58 0.40 0.93 No 21 Lower IDINear er 180*

31 202AS 203A2 8.34 0.56 No 21 Lower IDINear er 150' 32 210.06 211.70 8.84 1.30 No 22 Lower IDfNear 46*1 50' 33 219.78 220.02 0.24 0.37 No 23 Lower IDfNear 45' 34 220.38 220.06 GAS 0.74 No 23 Lower DNear er 35 223.26 228A6 OA0 0.93 No 23 Lower DNear 4r 36 228,14 228.54 2A0 3.72 No 23 Lower DNear 48'l50' 37 220.80 230A6 0.96 1A9 No 23 Lower DNoor 48*l50' 38 23118 237.34 5.16 7.99 No 24 Lower DNear 48*1 80*

30 230.08 230.30 0.22 0.34 No 25 Lower DNear 4ri80*

40 340.28 341.34 1.08 1A7 No 25 Lower IDfNear 4r 150' 41 242.54 243A2 GAS 0.74 No 25 Lower DNear 48*l50*

42 345.90 347.10 1.20 1.06 No 25 Lower IDfNear 45*l80*

43 248.34 248.94 0A0 0.93 No 26 Lower DNear 48' / GO' 44 240A2 254.80 7.08 10.97 No 26 Lower IDfNear 48'1 50' 45 208A2 - 200.26 0A4 1.30 No 27 Lower D Near 48*150' 46 217.10 278.18 1A8 1A7 No 28 Lower DNoor 4r 180*

47 279.06 288.70 SA4 9.38 Yes 20,30 Lower IDfNear 45*1 50' 48 306.54 208.88. 2.04 3.16 - No 30 Lower IDfNear erl 00*

49 200A2 298.34 8.92 13.82 Yes 30,31 Lower DNear 4P180*

00 - 314.10 321.94 7.44 12.14 Yes 32,33 Lower IDfNear 45'I$0*

51 322.78 331.79 8.92 13.82 Yes 33,34 Lower IDINoor er180*

52 33108 339.62 7.88 11.71 No 34 Lower IDfNear 45*I50' 53 340.10 341.30 1.20 1.08 No 34 tower IDfNear 48*180*

Aosfcasen cesunents:

1he seert and endpeinen of heee ins 6ce6 ens are ;:2: - _' bened on he doen recorded and are used 66r twierences.

Page of $0 Revision L

Alcuanod: 2BH-cool See O A L 6,rus/ D 7a'ge. /3 E

Y Ji

- m n , n $$ s I

x x x x x xx x y l

.09C/.0 7  ; g

'03 - a:) .09C/.0 y

= glg _

.0a _- .01 7 g

- = g i un . .02 -

w &

.0 > -- .DC - o g

- = ]g g

.0cc .0* 7 gjg

.09 - ,

.Os 7 s 0S 7 5 x

.0t

, g 04 7 g!g e 9 5

.08 .

m M7 m m- .

!G '

.003 2 "

.06 7 n B

.0!!i

  • 7 E!g y ,

.02i -- "

.032 -

9 e

I ]

di

.0C1 -- w

=

Et. .0Ci - g;g r

.OC = .0ti -

2

.0 GIT =

.093 -~

.Oli -- Ui)

= gj .Osti

.09t

.041 7 N

$ g f

l

.00 ! ""- l .083 --- k  ;;;

0$O g' .061~~~  ;

"' No

.061 -""- .  ;

[g O y

.002 7 .002 7 5

.012 7 DI27 3 1

  • 023 - 0 m

"3--

.x2 - =.j!g .,,_. -

Ei$ ,

.062 .

  1. 27 w

~

.0GB -

2

. J i .093 ~"~

kh E & a

.092 - = .0t2 -

U 8 m

.042 - .- g g g

.082 --- , g g ,,,,q E!$ - g 6- g

.062 7 U h

.00C _

.00C 7 .01C - g;g Y

.0IC ~~ .02C -~

k

=

II

.03C 7 .0CC """' < h

.OtC --- g; W k g

! .0CC 7

.0tC - .

g

, .0sC - EE E

.0gC - D5O .0/.09C

.0/.09C *"""

E gg 8 EB 11

@ NN Page 5 of 38 l

DtcutArtod : 28//- ooo t Rel0 AHac), -f D  % u th

<g I REPORT NOa

\w j) EXAMINATION

SUMMARY

SHEET CE Nuclear En:rgy _ gnu _

PROJECT: BRUNSWICK UNIT 2 PROCEDURE: GE-UT-535 REVt VQ_ DRR. N/A 1GW7X MA N/A SYSTEM: RPV SHROUD N/A REVt.BIA DRR: __N/A _.

N/A

- A WELD NO.: N/A N/A REV: N/A DRR:_N/A CONFIGURATION: CORE PLATE BOLTS A OPERATOR: C. BARRETT LEVEL: 11 N/A REV: N/A DRR:_N/A

_N/A OPERATOR: R. PASZKOWSKI .. LEVEL: 111 l WELD TYPE:

OPERATOR: S. CLAY / P. WEEKS LEVEL:JI/11 0 CIRCUMFERENTIAL O LONGITUDINAL E OTHER BOLTS )

DATA SHEET NO.(S): DA425 TO DA429 CAL SHEET NO.(S): CA418 During the exarrunation of H68 shroud weid, a fixture containing a one4rch diameter,2.25 MHz imrnersion O' search unit was mounted on the arm above the H68 package to detect the Core Plate Bolt Holes in the Core Plate Support Ring. The Smart 2000 system recorded fifty-eight (58) holes and all exhibited Core Plate Bolts.

The Core Plate Bolt Holes are positioned 5* apart with the first starting at 2.5* from zero. There are a total of 72 Core Plate Bolt Holes.

The 0* search unit utilized the same offsets as the 60* in the Trimodal probe on the North side and the same offsets as the Phased Array probe on the j South side. A Raater-type scan was performed which yielded more data for evaluation than the expected Sector-type scan which would have only '

given a single scan line across the Core Plate Bolt Holes.

This was a first time examination, no previous data was reviewed prior to the examination and this summary.

3 A1 0Q g24ep2ggC:ur #zogy SUt40AARY BY UEVEL DATE UTE fTY REVIEW DATE 1LEVELEbH M N PAGE: 1 OF:_b_

OE 16'VEWED BY DATE ANN REVIEW DATE ,,,,,. ,,

l

o

< mmmmmm a ooooooo

$k S

'- o EDE mOEE om O T o , , ,

? 99-rpA a.- i I I W' l i I Mm 99-ram Z l  ! l l i I O3 i 1 l i i i dh h# I I I I I I 99-beF 0 l l i l i l Qg -

99-naJ

>g

~ -

r i i i i i i i n Qm I i i i i i i g

  • 89-ceD i i i i g i i I

i l

i i

i i i

@ i i i i i

89-von O I I l 1 l i I l i g l 89-tcO 3 l l i I I I I O i i i i I I i e 89-pes g i i i i i i a

i i i i i i E

89-guA 3

  • o i i

! l l

  • g E

""" d .a&u,wqsu11 taa P" " T 'T' I 89-luJ

! f i i i i i i 2

W NgiRlgyMf#rF 89-nuJ a l I I I I I S I 1 l l l I 89-yam Y

O I i

I i

I i

I l

I i

I i

l W 89-rpA 3 i I I I 1 l l C i i i i i I I kg

)4 89-ram x i 1 i i i i DN .

2D

  • 89-beF kh i l  !  !  !

j Q7 t

~

.i 69-naJ

%D ~

I I I I I I I

>4 1 I l i i I 1

-(h i 79-ceD 3*& i I

i t I I i

I i

I i

I i

Qn

~

79-von  !

q i I I i i i 2 *o M' 79-tcO

  • g 3 i . .

m4 i 8a 8 8 o 8 8 8 $ 8 8 9$ a ~ a u sruoH a n -

l l

i

O4 _

.f _

Vo

_ E _E@ j*Eo8u eIn t$ i _

_ R2 -

0 0 0 0 0 0 0 e 2 0 8 6 4 2 0 1 g O O 1 1 0 0 0 0a 0 P 0-1 o

  1. it 1

B .

) iR %' gl g j R a

2E A n

6 N t o l 1 b:8f 4* . I i 3 _

i 0 On t . -

a T e .

I r

Am L hc t

n .

Ua e .

Ct c ,

io t n ,

t a

L A A o g g.

R C C . 9 2

n o. 0 e

g .

o .

r .

dy . 8 2 o it a

H .,

0 n.

s, R 31 d 8 2 ec n

u l a m.

p.

0 y -

C n p. 2 o 2 t i

2 i

t 4 n E .

a 8. . 6 o U r

e 0 7 0

5 t'

it a N P E R

p =.

n MR6 B U O o. l 2 of r G I

f i. 0 F o t a.

r it o

s t a r n.

e R

u c. n o n 1 6 o it o

H s

v o.

C.

n.

0

+ gy it 1

a c R e j I

n e [ 2 o g. 0 i

t o.

a r d.

R y -

y n H

  • n2 at i o e
g.
  • io t

a t

pi n c a

r.
  • R mU o j e e
v. L 3

1 C t I

n A. 0 t n 3 h a gl C 1 iP L r W C.

2 H n

&ela B. e g

r c o eu . r dy wN o H _

Pk c 0 ai _

is l

nw _

on r

0 0

0 0

0 0

0 0

0 0

  • 0 _

aru 0 0 0 0 0

  • E 8 7 6 4 3 CB e$I _

O4

.f Vo E

R3 e

1 g 0 a 0 P 0

1 i

o o _

t i 1 a t B R% a .

2E 6 2

2 R%

8 1 _

2 N t 0 0

On _

I e _

Tm A _

L hc Ua Ct 3

1 t

e L o A A l i

t y .

C c y Ra%

6 _

C 1 1 2

f 0 -

o _

t n -

e _

c r

e n e

P g s o%

r a d3 y 3 s H E -

i o 0-E t R _

a U R G I

n F i

o _

t c

j e _

i n

n e

g o

. r _

_ d _

y _

H y

n2 at .

pni -

mU o -

C t _

t n h al .

iPg -

L r -

a

&el _

r c 55261 00 _

eu m0887630 -

wN o

p1 000000 p _

Pk c ai o i

l nw s i69861 t 30 a 3 2 2 2. 2. 1 0 on R0000000 r

aru CB

O4 f

Vo E

R4 e - 8 ~ ~

1 g 0a 0 P h e

8 0

0 E E E .

0 t m' -7

= EEE E E: .

r  :

1 fo /c o

~

7 0

1 yh 0 B t 2E ivm o -

c u s E EEE E E it N t 3

1 u6 :oo -

d8 On e

C n n0 ,

I 2 o0 "e EE EE EEE T .

Am L h c B

e

.c e=

ge T

( '

Ua alc

" NEE E E E E EE .

l -

Ct c r ey L t y vc A A C aer ei t ,

C 2 t

i

.h n Te

%*EE E EE E '

n o U

P 6 8

o. E EE' E E . -

N 7 7

B r

0 0 =E E E E E . )u o 1 3

f E - E E .<

y 0 t

i 4 v

E TEE E E

i t

c .

. E u R U

d 6 n

o -

8 0

O mE E E E E . G I

F C 9 t

r e

7 0

0 E '

EEE -

EE .l E l

a d' ~ .

W r 0 9

0 EE E E E E . .

o -

-TE E E EE EE E .

t -

~

c -

a '

e 7 R

f

[

8 0

0 a E E = m Ec .

y o n2 at pi n y

r a E nE E a E EE .

mU o m 9 ~

C t n t

m u

8 0

0 E E E s E EE .

F h a S 8 iPgl L r 8

0 0

g E E E EE .

&ea

~

r c eu l 0 5

0 4

0 3

0 2

0 1

r"1! " "

1 1 1 1 1 wN o 0 0 O 0 0 Pk c k ai

~. is l

nw on r

aru CB

7 O4

.f E

Vo R1 t n d e e e 1 g miss a m 0a igly u s

0 P l s n a s a

0- s a s 1 ed n a a e

r 1 kc o a kV 8 iL d le e 2F ht it

m. bk c n N t lluid fLo is s ra ec c

On dLh

t cy I

e Le al l

nu T

Am 4Dm I f L h Uac Ct t L

A A C y-a-

.rr A

ds e e

s s Y  %

R .P A

M M

U S

N O

I e b T lb bi C i s

s%

S S%

E e0 c1 Oh Cl C

P c a 8 n

S I n I N

I b

%A;;,

R

.hh f Ls

  • kM@1f.'..s:.;x:Yyf g

h j/,. g E L.-

g.5

t

.i1

[1i.-l

. ,7j

5'pqJ.f

~

~

P '

,;t c-l ?Q-,,r,;.

' 'y gMle P

r. a ^cM ;jj)s48, i-

- - '~  :

[hn - T3. '+.dl. u U

  • f: 7[r,.[r
c. -

~  :+

e,)%.;

3.

J ,igWl .N%

  • 5 iP '. .e

..s_

1 -. .

. tt;:: JWdV '-:rs:\{a l

mn.7 ikcM m? .

.J - '

H #; $:p

.(+

n;d [

~Y N ,~ .w

s. f' i;n ': m .

f -

,d %

j(:

y Ef U:a;(^ ' s j ? e..S(' a ,4 c-

' '.L.N -.' ,

,r n2 js;n: t

  • . ~ ,

5-l

i?

- f":N

N

<.G' _? Li . aQ_ ys g'-s- g.+ .,9Y at A  !

').W -

  1. N 2:

pin kg', e. g_.-. > ^:H. w n . . ,g mU

~

fl: i .. ~g;l "Qb o- f i  :

VyT . . . u. "My r {'

C ffgbVQpkA t t

t n h a gl iP L r a

&e l r c eu wN o

Pk c ai

/n

/s w on r u ar CB

O4

.f Vo E t r d R2 e s mi e

a s m e igly u s

1 g l a s 0 a 0 P 0-s n s a ed n

a s

a e

'r 1

k iI c m r

a d

N 1

h t it le e bk c B

llui m.

fLo d is s ra 2F ec c

dLh e t cy N t sLe UDm al n u l

On I f T e I

Am L h :J ai j; c i; .

Ua 3 1

y-I]?

Ct t

~rr

?

1.

t ^ a' ..;j L

A A .Y.

^

4a.

..dA '%

7 - . ..'I .

C s

. s-e4 1 -

, :f

.. ~.

+ .a= ._

Q Y *

,h.

u:

R P

?

A >

n h"% '

~

2;;

M s YaI} p!7! e ' '

  • ;~-

M <  ; '

s <

U  % -

/g' u-j S  % _w  :- "

x ti N  ?

! k

.s s 1 j" i O m,I,.$

I [ [y e T l e lb b

C i s

is s

E se */. e%

c 9 P c9 c c a S a n I n

N I

i R y a

E r r

A W d%e9 O s a

L h

- P y

1 a r

H r A

d 1 e3 s

y n2 a h Y at P pin n mU w o

C o- r a

t C e r

t n d a h a glP le% s i W1 ih t

L r l a

-a a t a

&el it c d o

r c e eu V N wN o

Pk c ai i nw l s on r

aru CB

O4 f

Vo E

R3 t e nM eF d e

1 g amE m 0a igL u s

0 P l d s n s

a 0- s a . s ed s a e

1 n ad r 1 k o o a d B i ht cLthe ee 2F ll im t l b kc N m is uis s ra N t fLi s dLly ec c

On e cy I

e sLa n al l nu UDa

.T A m I f L hc Ua Ct t .

' g ^? a3f)q4 L ,;6f A A

$J C h 9'7' ,a.A1.n;~4.

o.,

,1l_.%D, pQ; Wet.

l[$$jY o .

4ymcs z - '~ i

,5n.gV:n.

z de --

h G'y~ $

2

, +f

  • 1  ;,

R/

Vig+kmW.2p$,glhr

- ,N

$%.c  ; .5w, o. ':g g - ? )-p 7l^ r j.k; xg;t.nwy .- r ,

- - ucmc il,,'::'

  • 4.$

,l:,5y~dcF[

~

4-

.,9 a

3 :Qq wX. ?,T_[~

. .W; 2'.

.i

'* v, Y  :-

mh. .,' :

.h)- -_

_ll;x m:.

~K'

, ,; r ~

'{ l .

R

,M ,fM;,%1c+_>ua:;g;W,.t9 b[;geb5m a  :.

                                                                                                                                                        $ mg'.         ,~
                                                                                                                                                                                        ?.?;

A gy- 4;;:f ,;7 'f . N. I&}%"Q _ h.>- '. [s

                                                                                                         ?

E 2i '

                                                                                              ~-

M  ;. ':%{

                                                                                                                                                                            ^'              3:
                                                                                                                                                                                           . y1 v M                  ini f

d"S;tym;gi p .

                                                                         ~           Lm?*g:                                                               < r $,.
                                                                                                                                                                        ~. y iQ r

m U h s%m ?  : S [ WAj'.,n=w t a :. - n z. w

                                                                           ;-                                                                                               t'  p'
                                                                                                                                                                                                     .e l

d N i h, '

  • c ssb3"Le%

i Sazgo% -

                                                                                                                                                                                                                    ~

O  %[dMb d f y T e. g rdyy[f&4= .. .a I T " g c1 l. C r il s'  ;.

g. c a f;;

E 3 T e h n3@y'gn -- _ an .- a i n lg P c ra n: {' S N I Scan i ytyyy -

                                                                                                                                                                                   !"y h' lf m 1

R p{ppY y , 4 ~ x 1 - _ 2 B , 4 _ H , y

                                                                              ,.                                               a                                                                           ':

r r

                                                                           . ;;                                                A -

_ y y d ~ _ n2 at

                                                         -                                                                     e s

pn i .' a h mU P C o- , t

 . t n h a iPgl L r
  &ea   l r c eu wN o

Pk c _ ai w is l rt on r aru - CB

O4 i s s

     . f'   ly                                                                                                                                                                                                  _

Vo a d omh s E R4 L L a n k e c a r t defd o ef r t po t r n s e u e c ishd o 1 g D t ly ht ps c t i 0a n l u r e c e od h a _ 0 P m f d n niot 9n r o t n"9 9 0-a e ig m oes71 1 u l s s a a921 t 1 s e s a re92 n B n a d c1 0i m 2F s yn eyta k c a e a. egi h b ad k v a a T. d N i n ht r N t a On l a l e de e9r9ap seh t i b s v9 ee T e I t r is a a1 rd c a pd. s h pong Am L hc dh o e c c pot i in l d e7 es e t e s e a s v9 e9 reis Ua Um n Ud1 wm Ct t I s L t ) A A e6 S1 C ) g& u l a s L (1 5 -

                                                                                        .ht d

o%p e i3m2 d .

                                                                                                                                                                                                           )    -

T' o r n y la h s Y R ( a I ar y d o%p e m2d ir t o A r T (n M ldMA-o d% M m r e7 s N U i Oa-T"h IP Y S 4:/ N 3 ~ 3 O I T

                       %eMr.fjW?

v

                       - ~
                             *;. Mw%h          i f?    s                                                                                            3Mm' gas a

c4%4 d.e 3a  ? 7 f;

                                                                                                                                                                                                ~

C hL -

                                                                                                                                                                              ' m.          .g  3 E

s% g,pu ' n M% W:q$emg,fWv g' . P !d _ c _ S  ; F

                                                                                                                                                   %0d5..mi[j      o _ ++ '.p                                    _

J N I s j *y p ,, :p . 1 1f fp . . . j% p pIgf"D Wcy:%w;gk)h*1. i e 1 . s R i n_y .M a - (d, v 4 gta g f 3 -

                                                                       'p                                                             A3 :5,A'-         I.9-
                                                                                                                                                                                         - 4/

1 ' - , 2 +?jaf x4 _ B g#wm: ~;i  ; 3 %s. - - ' . ) s 8 A,. .c i gja e4q,..q?: y ' f;g ; m' y<-,. ;a , hQ'g .rr <m - yn"_tM 5% y ht n ; ,_v2 u - ' 6 - t  : p e H T s g[i'g-j d k "; ..m" - a: z o 4,g

                                                                    =-                        r s                               %'-    ::                                   .

n gj3 w r a& - c;, ( _ y%

c;o&pT'-0 7W % W.4
                                                                        * :.,                                  el-g-y n2                                                A9          +
                                                                             .--[$$vA4rv l
                                                                                      ~~ isd  e    #. -
. . y
                                                                                                                        ' S.                                                                            a2 r

r

                                                        - /                 .e-              vs                                                                                                       A at pin v

y;;p ;3[ ,fwP a h p1 : s. s_. s-;m,

                                                                                                                                    'a, J Mh                                                d e

mU  :

                                                                                                                                 %' yew %

s a C o- j;vY((s7p M E s. {- oj+g3.Y? YE b P h t

                                                                                                                                                                                    ,m t n                                                                                                                                                y                               a h al                                                                                                                                               b 9                            b t

i gP hd e199 o L r tps o a e a g s t

  &el                                                                                                                                           d eri n oc s at wa a

r c nnsi d eu h iemr t a 9 wN o t wewfo i r a9 d 9 ec e1 n Pk c a es t d ee isht re ai rh un _. nw d at epo ht uid hf t i f id ec i l s ow _ on s 7 u 7 s d g e r aru h 9 o t t 9 er ar CB u,9a6'5a o1 s 9 1 apve r t oa 0 a t em ae Fd0d h Tc oh t

                                                                                                                                                                                             -1

d e ts j u d O2 A 0 6 1

    .f                                                                                                                      0 Vo E

0 0 5 1 H R1 - 6 1 T P 1 E e - D 1 g 8 0a 0 P i a t

                                                                     -                                                             6 H     -

0- a - - A P 1 1 D ,j 2 ji e 1 y a m B 1 a t a a n 2G r 0 e r D 0 0 li F N Ot r ' i A l a - 5 5 I d d 1 Te Am i e o Lh s Uc a 1 a .mi Ct h r # - L t t P T - AA Y 9 7 C A i 9 9 b R 9 9 0 0 R 1 1 - ' 0 A i 0 y 5 D - - 1 E i S ff . A ' H P

                                                                                        -                                      )          _

s . e 6 - ' e 1 r g

         &                                                                                                                  0 e 0

0 d( 5 __ 1 5 H 4 T S 1 U T  % E M E I S Z i A G U L A B g d e 6 e ef h 0 H s b ot 0 p a a l e 0 D t h . l i et 0 a Ps wdislu a - 4 L d 9 he ) 1 E j 7 " h a v I 9 9 c 1 t W g 9 1 9 1 i n 2 ro e e. 2 nod - e e1 ( t is h h 24 s ed j t r 8' t r eh t gr h r oh t - y o o0 n2 f f s a r f o eno t - at pin j h t p" hi t pw vamB e atae6 - 0 e elo - 0 mU o - j d d e edivH t 0 k k b h 7 af o t 5 C t c ' cn f 9 v 3 t n g a r aw r o9 e esi o 1 r n 1 h al c' e coh e ceni t - gP nh od i L r  ; g a' g s aa et r c no jI M

 &ae r

e e r t a f eto a c r c l v" a* vd ay i d st f d iean  ;!4 ep8r e eu e ea h rr l r d wN o h T* TA h p6 u TaHc - 0 Pk c - - ~ - - - - 0 0 ai  ! i nw l s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 01 0 on r 5 4 3 1 0 9 8 7 6 5 4 3 2 1 0 aru 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 CB 7E.E_ E$g U

9 9 s v 7 9 O2 0 6b

  .f                     - ~ _                                                                                                  0.

0 H Vo E _ - 5: e 3 m R2 0n a e  ! 0. le 1 g S a " 0i 4 F 0a t a "3 "6 7 3 0 P H a t a 94 4 m 0- T D D D 22 0 o r 0 - 000 0 1 G W I inf i' 0 1 w A= = eth" 3 B N A a E DD= s p6 5 3 2G E R R R CCa a e0 0 L 9 7 A AAle t ed r 0 0 _ N ' 9 9 97

                                                                              ,1 ck                            0      _

Ot n K 9 9 99 D inci s 2 3

                                                                                                                                       =

C I Te 1 1 a Am A - er9 gc9 0 0 Lh 9 R

                                                                                 -                                         l 0

Uc a - ad r 1 1 Ct C e e r o 3 Lt v ut _ AA 9 9 aS 7 0 0 C 9

                                                          " =        "

0 ea 9 0 0 99 9 h e 9 3 1 56 Tm1 21 0 C 0

        &                                                 00         0                                                          0      _

7 A= = 0 9 9 .ER DD= 2 9 .A AAlCCa t 0 _ 1 . 0 97 e 0 _ N S 99 D 8 ) 2 S E H .

                                                             "                                                                       E E T                                                                                                                     0 E 0 R r

WP f 0 7 G E TE 2 D ED w 0 0 ( H B D T

                                    -                                              7                                       l'   0 6    U NN                                                                                                                      2 M    .

I OA ' 0 A Z S I R 92 49 7 5 0

7. .

0 0 5 2 A B 21 000 0 P 0 M O A T) L in E(?000 707 594 5 6 0 n A = = E DD= R CCa U _ 0 4 2 O A AAle ED 000 0 C G 0 t 0 A 97 j 0 H R t l a 99g . 3 2 T E V D e . h y U A9 in08

                       )

7996 64 e ~ g

                                                                                      .                     tp       -'

0 0 i. n2 O N T 9( 9 1 1 1 2 0000 a r I

                                                                                      .                     D e       rll'       0 2

at pin S P 1 e v k c 2 E A mU - D a r e 0 lb 0 o - B k

                                                                                     ,.                     Ca         .fj 0

C l C ei a t 6 992 A "7 g 1 t n h a iPgl H A7 R 9i c1 ( A459 9 )n N 222 O00 A

                                                               /

N 0 1 * ._ a r A et vo v 2 0 L r D - 0 AN 0 s-a L ] A= =

                                                                                                             ==

0 0 &el 2 E EDD ' :eD r c RCC toc A/ eu W ABCD AAA - NAN 0 0 wN o

            '              AAAA EEEE                                9 7
                                                                               . +                                              0 9

Pk c RRR 9 9 - 1 ai - nw

                                         -                                                                                      0 i

/s - AAA_ -

                                    -   m                                                                  -                    0 0

on 6 4 2 4 8 6 4 2 3 s 6 4 2 . 6 4 2 8 6 4 ~O 8 r aru , 4 4 4 3 3 3 3

                                                               ~

2 2 2 2 ,. 1 1 1 0 0 1 CB O8E gx

1 b5waLAT/o^l 2Of(-OODI Rcyl \ ATTACHMENT 2 Sheet 1 of 1 [4c4mc4/ N 04pc / Record of Lead Review Design: Calculation 2B11-0001, " Core Shroud B214R1 Structural Evaluation" Revision 1 The signature below of the Lead Reviewer records that: the review indicated below has been performed by the Lead Reviewer; appropriate reviews were performed and errors / deficiencies (for all reviews pe,dormed) have been resolved and these records are included in the design package; the review was performed in accordance with EGR-NGGC-0003. Design Verification Review Engineering Review Owner Review E Design Review 0 Altemate Calculation O oualification Testing O Speciai Engineering Review YES - N/A Other Records are attached. Phillio Gore / h dtC h Fc Mel! [n [o!9@ Lead Reviewer (printJsign) Discipline 'Ddte l Item No. Deficiency Resolution /Date No Comments. FORM EGR-NGGC-0003-2-0 EGR-NGGC-0003 Rev. 4 Page 24 of 26}}