ML20133F374
| ML20133F374 | |
| Person / Time | |
|---|---|
| Site: | Brunswick |
| Issue date: | 09/18/1996 |
| From: | Gustin H, Stevens G CAROLINA POWER & LIGHT CO. |
| To: | |
| Shared Package | |
| ML20133F357 | List: |
| References | |
| CPL-42Q-302, CPL-42Q-302-R01, CPL-42Q-302-R1, NUDOCS 9701140161 | |
| Download: ML20133F374 (36) | |
Text
'
ATTACHMENT 2 Sheet 1 of 1 Record of Lead Review I
Design Structural Intearity Calculation Packnoe CPL-420-302 Revision 1
The signature below of the Lead Reviewer records that:
the review indicated below has been performed by the Lead Reviewer; appropriate reviews were performed and errors / deficiencies (for all reviews performed) have been resolved and these records are included in the design package; the review was performed in accordance with EGR-NGGC-0003.
O Design Verification Review O Engineering Review S Owner Review O
Design Review O
Altemate Calculation O
Qualification Testing O
Special Engineering Review 0YES O N/A Other Records are attached.
Pkh, Gea PM,o a
uccL.
sie.u Lead Reviewer (print / sign)
Discipline Date item No.
Deficiency Resolution /Date in determining the minimum temperature Based on CP&L's review, the GE practice of utilizing 1.
for flange boltup, SlA utilized the GE initial RTuo, + 60*F for determining the minimum recommendation of initial RTuor + 60'F.
boltup temperature is not a code or regulatory This resulted in a minimum boltup requirement for hydrostatic or normal operation core temperature of 76*F for the Unit 1 not critical pressure-temperature curves; therefore, reactor vessel.10 CFR 50 Appendix G the current Technical Specification boltup specifies that for hydrostatic and leak temperature limit of 70*F will be incorporated into tests (core not critical) and normal the Unit One 14 and 16 EFPY pressure test curves, operation with core not critical, the minimum temperature requirements for the flange region is the highest reference temperature of the materialin the closure flange region that is highly stressed by the bolt r'ak id.
FOR[A EGR-NGGC-0003 2-0 l
l 9701140161 970107 PDR ADOCK 05000324 P
'..t n
)
STRUCRJRAL CALCULATION FILE No: CPL-42Q-302 INTEGRITY Associates, Inc.
PACKAGE PROJECT No: CPL-42Q PROJECT NAME:
Justification ofIncreased RPV Temperature for Hydrostatic and Leak Testing / Revised Hydrostatic Pressure Test P-T Curves CLIENT:
Carolina Power & Light Company CALCULATION TITLE:
Brunswick Units 1 and 2 Hydro Test P-T Curve Development PROBLEM STATEMENT OR OBJECTIVE OF THE CALCULATION:
The purpose of this calculation is to develop pressure-temperature (P-T) curves for the beltline, bottom head and N16A/B nozzles for the Brunswick 1 and 2 RPVs for 14 and 16 effective full power years (EFPY) of operation. This effort is being performed consistent with the prior evaluation done for Brunswick 1 P-T curves in 1995 (SI Project No. CPL-36Q).
l i
Project Mgr.
Preparer (s)&
Document Affected Revision Description Approval Checker (s)
Revision Pages Signature &
Signatures &
Date Date 0
1-29, I disk OriginalIssue A. F. Deardorff Gary L. Stevens AFD 7/8/96 GLS 7/8/96 Hal L. Gustin HLG 7/8/96 1
1,3,10,12-13, Incorporate CP&L Comments.
A.F Deardorff
/' Gary L. Stevens 15-17,19-21, I
g 23-25,27 29,
)
I disk k%
Hal L. Gustin ds Page i of 2M
(,.
1.0 INTRODUCTION
t The purpose of this calculation is to develop pressure-temperature (P-T) curves for the beltime, 1
bottom head and N16A/B nozzles for the Brunswick Units 1 and 2 (BSEP-1 and BSEP-2) reactor.
l pressure vessels (RPVs) for 14 and 16 effective full power years (EFPY) of operation. This effort l
is being performed consistent with the prior evaluation done for Brunswick 1 P-T curves in 1995 (SI Project No. CPL-36Q).
l 2.0 METHODOLOGY P-T curves will be generated for each of the following three (3) regious:
Region Reason Beltline Potentially limiting due to irradiation effects.
I 2" Instrument Nozzle Potentially limiting due to irradiation effects and high stresses.
Bottom Head Potentially limiting because of discontinuity stresses.
l The approach used is defined in the previous work for CP&L [1]. This is summarized below:
a.
Assume a temperature, T.
b.
Calculate the critical stress intensity factor, Km, using the relationship from [2 or 3]:
Km = 1.223e!""*"**"H + 26.78 j
where:
T temperature assumed in step (a), 'F
=
RTNDT adjusted reference temperature,'F
=
stress intensity factor, ksi(inch Km
=
c.
Calculate the allowable stress intensity factor, K, using the appropriate safety factor i
of 1.5 for the pressure test [2], K = Km/1.5.
i d.
Compute the pressure, P, using an appropriate relationship between K and P developed i
using the methods of[4]. Appendix A methodology was shown to be equivalent to Appendix G methodology in the previous work [5].
e.
Repeat steps (a) through (d) for other temperatures to generate the P-T curve.
l The relationship for the pressure, P, to the stress intensity factor, K, is as follows [1]:
i Beltline-For the beltline region, the stress intensity factor relationship was previously determined to be:
Revision 0
Preparer /Date M
7[s/f6 fh 7fTkb Checker /Date File No.: CPL-42Q-302 Page No. 2 of 29 i
9 1-l l
j 1113.7 K t i
p=
f T
l K'
2 FR 1.0936 t + 0.212 S
i ro where:
P reactor pressure (psig)
=
vessel thickness (inches) t
=
F stress increase factor = 1.0 for the beltline region
=
R vessel radius (inches)
=
K stress intensity factor (ksi/ inch)
=
i cr,
vessel material yield strength (ksi)
=
y Bottom Head:
The same equation used for the beltline is also used for the bottom head, except that F = 1.5.
N16A/B Nonles:
For the N16A/B nozzles, the stress intensity factor relationship was previously determined to be:
)
P = 21.53Ki Where:
P reactor pressure (psig)
=
stress intensity factor (ksi/ inch)
K
=
i The minimum dimensions for the Brunswick RPV material for both units were utilized, as obtained from Reference 14.
Material property data is obtained from [6 and 7]. A summary of that ' formation for each of the m
affected RPV regions is provided in Tables 1 through 3 for BSEP-1, and Tables 4 through 6 for BSEP-2. The ART value used for the BSEP-1 top head flange was modified from 60*F to 10 F based on more recent material data provided by CP&L [8], as noted in Table 1. A yield strength value of 44.15 ksi was conservatively used for developing the P-T curves (rather than the 50 ksi value previously used in [1]). This value was obtained for SA-533 Gr. B, C1. I material at 550 F from Reference 13 (consistent with [1]). Use of a lower yield strength is bounding, but leads to relatively small conservatisms in the BWR operating regime.
l Revision 0
1 1
Preparer /Date GLS 7/8/96 M f/#/5 hkn[%
Checker /Date HLG 7/8/96 File No.: CPL-42Q-302 Page No. 3 of 28
Ta.ble f-rr Brunswick Unit 1 RPVMaterial Summary (Source-SlR-954f A Rev. O, "Brunsn4A Sasern EAscHc Puerd (Jnit f Reacfor Pressure Vessed AfoferdelEvmiusson ensf Esenofon of Romance,Teeqperstaos ihr Use er Flow Em* Teedes F-f and T-2, $21&S Flange Region noser noeurse i
E Top Head Flange 706 2L-1260 ADA175 10 0.13 0.76 MA MA NA 0.0 27.0 10.0 27.0 16.0 0.0 14.0 10.0 14.0 16.0 00 16.0 10.0 16 0 16 0 She8 Flange 600 BV-3085 AFB 176 16 0.09 0.88 NA NA NA 0.0 27.0 16.0 0.0 14.0 16.0 0.0 16.0 16 0 Weld BC MA Unknown Unknown
-56 Unknown Unknown MA MA MA 17.5 27.0
-21.0 17.5 14.0
-21.0 17.5 16 0
-21.0 Weld CD MA S3986 3816
-56 0.05 0.96 NA NA WA 17.5 27.0
-21.0 17.5 14.0
-21.0 17.5 16 0
-21.0 Upper Shen 501 C4515 1
10 NR 0.53 NA NA NA 0.0 27.0 10.0 0.0,
14.0 10.0 00 16 0 10 0 Top Head 701 C4629 5
10 NR 0.49 NA NA NA 0.0 27.0 10.0 0.0 14.0 10.0 00 16 0 10 0 NOTE: The ediusted reference largerature values for 14 and 16 EFPY era use same as 27D EFPY 9ar mese lacetone since siere are no signiscent treesson esects.
Prepared by: N 7[t/f6 Checked by: 8/M 7/F/96 has Go*F n'n Ec], Sowevef, fhe, CNT4 has FIIe fJo. C#L-cQ-So2. Rev-O of 29 sqb extl Paga_
y het4:
/Ocq.fc3 f83e 6ase). On NTE6
'I G~1., R.T et t SYhtAN'O A M L N # 'l Hbfn'c]t MS N
fowNntly ti,$cA s'n Cl,3, RT,, = cMN fest ley, IO'F i
=
ss'nce.
CR., * 'IS {+-Jbs
?
RTNDTJLS.Utfienge itsee
hNta 5 5
Brunswkk Unit 1 RPVMaterialSummarv (Source-SJR-SMf1 Rev 0, linesusc4 Speem Dedre Plant that f ReedorMessine Messor Maserfst Evabetos omf Estnoene of Redsrence Terrqperatures tir Use to Fase E%* TaMee 7-f eruf T-2,.3714.S BeRIine Region nnet Reevns t
Lower Shea 201 C4535 2
34 0.12 0.56 83 28.4 14.2 0.0 27.0 90 8 27.0 105.1 19.9 9.9 0.0 14.0 73 8 14.0 86.3 21.5 10 7 00 16 0 78 9 16 0 89 7 Lower int. Shot 351 B8496 1
10 0.19 0.58 8
140.0 54.2 17.0 0.0 27.0 98.2 38 5 17.0 00 14 0 82.5 41.4 17.0 00 16 0 85 4 N16A/B Nozzles 302 Q2Q1VW 247P-4A,48 48 0.16 0 84 123.0 26.5 14.3 0.0 27.0 105.1 19.2 96 00 14.0 86.3 20 8 10 4 00 16 0 89 7 Evizo ital Weld N/A 1P4218 3929
-56 0.06 0.87 82.0 28.1 Total 66.0 27.0 38.1 (FG) 12.8 Total 66.0 14 0 22.8 13 9 Total 66 0 16 0 23 9 Vertcal Weld N/A S3986 3876
-56 0.05 0.96 68.0 21.7 Total 66.0 27.0 31.7 (F1 and F2) 10 6 Total 66.0 14.0 20.6 11.5 Total 66.0 16 0 21.5 N1SA/S Nozzle Wolds N/A 650x006 J807A27A 10 0.03 0.96 41.0 9.5 4.8 0.0 27.0 29 0 Y3OT
$ F [ ]S 6.4 3.2 00 14.0 22.8 dD 69 35 00 16 0 23 9 n
e y $i Hi o aa Fksence esemenes in accoreance weh Saft e5015. Rev 0. Tatdes 41 tvough 44 (Suoms is soeumed to be Insa4y rotated to EFPY)
Of 1-M WaRJldl;hnesa (!ncheal Fluence et ID Attenuation,1/4T Fluence 01/4T Fluence Factor, FF e
Location fur 114 7 EFPY (nkm')
e* '*'
(n/cm')
fease m Lower Shen 5.560 1.390 27.0 9.40E+17 0.716 6.73E+17 0.342 O
14 0 4.87E+17 0.716 3.49E+17 0.240 16.0 5 57E+17 0.716 3 99E+17 0.259 Lower int. Shot 5.560 1.390 27.0 1.20E+18 0.716 8 60E+17 0.387 O
14 0 6.22E+17 0.716 4.46E+17 0.275 to 0 7.11E+17 0.716 5 09E+17 0 296 3-N16A/B Nozzles 5.560 1.390 27.0 4 60E+17 0.716 3.30E+17 0.232 k
14.0 2.39E+17 0.716 1.71E+17 0.156 E $
16 0 2.73E+17 0.716 1.95E+17 0.170 0
Horizontal Weld 5.560 1.390 27.0 9.40E+17 0.716 6.73E+17 0342 14.0 2.39E+17 0.716 1.71E+17 0.156 16 0 2.73E+17 0.716 1.95E+17 0 170 Vertcal Weld 5.560 1.390 27.0 8.20E+17 0.718 5.87E+17 0.319 14.0 2.39E+17 0.716 1.71E+17 0.156
- -[
16 0 2.73E+17 0716 1.95E+17 0.170 N16A/B Nozzle Weids 5.560 1.390 27.0 4.60E+17 0.716 3.30E+17 0.232 14 0 2.39E+17 0.716 1.71E+17 0.156 I
16 0 2.73E+17 0.716 1.95E+17 0.170 RTNDT XLS. U14et T13796
Ta.bk. 3 Brunswick Unit 1 RPV Material Summarv (Souto SM-95-Of & Rev. CL 1hnswick Saoem EAscesc Plant f)he f ReedtrPressere Vessel AfotsstelEtetusfun and Essmefan of Redstence Tenperahnes er Use h Flow E%* TedWes F-f emf F-2,3'219S Bottorn Head Region FinalResults:
i Bottom Head 101 C4654 3
10 NR 0.55 MA NA NA 0.0 27.0 10.0 27.0 10.0 0.0 14.0 10.0 14.0 10.0 0.0 16.0 10 0 16.0 10.0 Bottom Head Welds MA Unknown Unknown
-58 Unknown Unknown MA MA MA 17.5 27.0
-21.0 (H1-H6, HJ, J142) 17.5 14.0
-21.0 17.5 16 0
-21.0 NOTE: t he ediusted reference temperehse values scr 14 and 16 EFPY ere me some es 27.0 EFPY kw this locatan since mere are no signNicent irretSecon e9eds.
M 7/f/96 Prepared by: _M 7Nf6 Checked by:
File No. C#L 'OG-30A Rev: O Page
{
of._f9_
RTNDT.XLS. U1.BotHead 7tMie
Table. 4 Brunswick Unit 2 RPV Material Summarv (Sowce: SW95134 Rev. t.
- Brunswick Steam ElecMc Plant LMt 2 ReactorPresswo VesselMeantief Evenuenon ernt Es0menon of Renurence Teaveratures W Use h Fbw Ew' Tabees 0-1 and 0-2,4%961 Flange Region FinalResults:
T
- J' }.
'Q$
{$.
' $y
..D[tEl.. ~
l1,-
Top Head Flange 700 1L-3335 AYT-173 10 0.11 0.80 MA MA MA 0.0 29.3 10.0 29.3 101 0.0 14.0 10.0 14.0 10.0 00 16.0 10.0 16 0 10.0 Sher Flange 600 BV-3105 AHD-177 10 0.08 0.80 MA MA MA 0.0 29.3 10.0 0.0 14.0 10.0 00 16.0 10 0 WeMBC MA S3986 3876
-56 0.05 0.96 MA NA NA 17.5 29.3
-21.0 17.5 14.0
-21.0 17.5 16.0
-21.0 l
-56 0.05 0.96 MA NA MA 17.5 29.3
-21.0 WeMCD MA S3986 3876 17.5 14.0
-21.0 l
l 17.5 16.0
-21.0 Upper Sheu 501 C4526 2
10 NR 0.60 MA MA MA 00 29.3 10.0 0.0 14.0 10.0 00 16 0 10 0 Top Head 701 C4629 5
10 NR OA9 MA NA MA 0.0 29.3 10.0 0.0 14.0 10.0 00 16 0 10 0 NOTE: The adjusted reference ternperskre values for 14 and to EFPY are me same as 29.3 EFPY for mese locanons etnce there are no sigr@ cant Wadiatori eWeds.
N.
7/F/ff, Prepared by: /M TNf6 Cimcked by:
File No. UL-UQ-302-Rev: _ _ O Page 7
og _ 29 RTNDT.XLS.U2 Flange 7498
%bb 5 I.'
Bamswick Linit 2 RPVMaledalSummarv (seente: $M-95 fM Asv. f,1Rrisnsedet insere Ehcesc Phnt une 2 ReacterMassese Wasst MafedetMm ered Estnesse erModtsence Tesquereesse ser Use h Row Evehesast* TeWes &f anal F2,4494 Beltline s*'&
FanalReeules
- 4e,aw
- .w 1-e l
Lower Shog 201 C4500 2
10 0.15 0.54 106.7 37.6 17.0 00 29.3 61.6 29.3 100.1 25.4 12.7
- 0. 0 14 0 60.7 14.0 78 6 27.4 13.7 00 16 0 64 7 16 0 82 0 Lower int. Shet 301 C4489 1
10 0.12 0.60 63.0 33.5 16.6 00 29 3 77.0 22.9 11.4 00 14 0 55.7 24 6 12 3 00 16 0 59 2 N16NB Nozzles 302 Q201VW 247P-3A,38 40 0.16 0.62 123.2 30.1 15.0 00 29.3 100.1 19.3 96 00 14.0 76 6 21 0 10 5 00 16 0 82 0 Horizontal Weld N/A 3P4000 3932
-56 0.02 0 90 27.0 9.6 Total 66.0 29.3 19 6 (FG) 4.2 Total 66.0 14.0 14.2 46 Total 66 0 16 0 14 6 vertscat Weld N/A S3966 3676
-56 0.05 0.96 66 0 22.7 Total 66.0 29 3 32.7 (F1 and F2) 10 6 Total 66 0 14 0 20.6 11 6 Total 68 0 16 0 21 6 N16A/B Nozzle Welds N/A 601221 E916A27A
-50 0 03 0 86 41.0 10 0 5.0 0.0 29 3
-30 0 6.4 3.2 00 14.0
-37 2 70 35 06 16 0
-36 0 T M O
'O rmance o.amenos ei accorsence wei sta.05130. Rev 1 TeMes 41 twough 4-4 (bence is esanned to be Insany mested to EFP4
- ]
G O
Wall Thickness (inchest Fluence at ID Attenuation,1/4T Fluence @ 1/4T Fluence Fedor FF g#n 'N 0*k Location Fun 1/4T EFPY (n/cm')
e* 3**
(n/crn')
18 3'* "'"
Lower Shet 5 468 1.367 29.3 1.00E+16 0.720 7.20E+17 0.354 OC n g 14.0 4.76E+17 0.720 3.44E+17 0.236
% 3 16 0 5.46E+17 0.720 3 93E+17 0 257 g
LowerInt Shes 5.466 1.367 29.3 1.30E+16 0.720 9.37E+17 0 404 4b 14.0 0.21E+17 0.720 4.47E+17 0.276 o
16.0 7.10E+17 0.720 5.11E+17 0296 N16A/B Nozzles 5 466 1.367 29.3 5.00E+17 0.720 3.60E+17 0.244 o
p, TJ 14.0 2.39E+17 0.720 1.72E+17 0.157 16 0 2.73E+17 0.720 1.97E+17 0.170 o
,J Horizontal Weld 5.466 1.367 29.3 1.00E+16 0.720 7.20E+17 0.354 "D
m y
- j $ g 14 0 2.39E+17 0.720 1.72E+17 0.157 16 0 2.73E+17 0.720 1.97E+17 0.170
.4>=[
h C
Vertscal Weld 5 466 1.357 29.3 6.90E+17 0.720 6.41E+17 0.334 14 0 2.39E+17 0.720 1.72E+17 0.157 16 0 2.73E+17 0.720 1.97E+17 0.170 N16A/B Nozzle Welds 5.466 1.367 29.3 5.00E+17 0.720 3.60E+17 0.244
(
14.0 2.39E+17 0.720 1.72E+17 0.157 16 0 2.73E+17 0.720 1.97E+17 0.170 I
l RTH0T XLS. U24et 7/3MI6
Table G.
Brunswick Unit 2 RPV historial Summary rsane sm-essao. au s. wms=ca seem oncee nonc uwa nnocerP=same vesew aannw evensson saa essmenos arawwence rempnennes an use a nos evennem rames se w sa cose Bottom HeadRegion nner nesurre:
Bottom Head 102 C4890 1A 40 NR 0.56 NA NA MA 0.0 29.3 40.0 29.3 40.0 0.0 14.0 40.0 14.0 40.0 00 16 0 40 0 16.0 40 0 Bottom Head Welds MA Unimown Unknown
-17.3 Unknown Unknown NA NA MA 4.6 29.3
-8.1 (H1-HS, J1 J2) 46 14.0
-8.1 46 16 0
-8.1 The acqusted re erence temperature values tor 14 and 16 EFPY era em same es 29.3 EFPY lor Ne lace 6an since Owe are no signNicent irredleson eGects.
NOTE:
s Prepared by: M 7/g/9(,
Checked by: M 77896 File No. CA-420-302.
Rev:_ O j Page 9
_of_
.29 RTNDTJLS.U2 OcqHood 7006
3.0 RESULTS A slightly modified version of the spreadsheet used in the previous analysis was again used for the current evaluation. A verification case was made to verify proper execution, and is shown in Table 7 (compares to Table 1 of[1]). P-T curves generated using this spreadsheet and the equations and methodology previously discussed are shown on the following several pages j
(numerical output and graphical results). Based on material considerations (i.e., irradiation shift, initial RTu, etc.), the N16A/B nozzles are limiting from a P-T curve point-of-view compared to the beltline. However, the beltline curves were calculated to demonstrate this fact, but were not included in the final P-T curves for simplicity. The P-T curves were formatted based on CP&L i
requirements [9]. Thermal stresses are assumed to be negligible during the pressure test j
condition and were therefore not considered.
1 The following additional requirements define the lower portion of the P-T curve [10]:
I j
If P > 0.20*(pre-service hydro test pressure), the temperature must be greater than RTm f the limiting flange material + 90*F for hydro test (i.e., core not critical)
{
o j
conditions. The pre-service hydro test pressure was 1563 psig [11].
If P < 0.20*(pre-service hydro test pressure), the temperature must be greater than j
RTm f the limiting flange material + 60*F. This has been a standard o
recommendation of the NSSS vendor (GE) [12], and is consistent with core j
critical requirements as specified in Paragraph IV.A.3 of[10].
The following P-T curves were generated and are attached:
1 Worksheet Description i
P-T14-1.XLS P-T Curves for BSEP-1 for 14 EFPY j
10s/19/96 veion)
(Tables 8 - 10 and Figure 1) i P-T14-2.XLS P-T Curves for BSEP-2 for 14 EFPY i
[0s/22/96 veioni (Tables 11 - 13 and Figure 2) i P-T16-1.XLS P-T Curves for BSEP-1 for 16 EFPY
[08/19/96 vmion]
(Tables 14 - 16 and Figure 3) 1 l
P-T16-2.XLS P-T Curves for BSEP-2 for 16 EFPY
[08/19/96 vmion]
(Tables 17 - 19 and Figure 4) a i
Revision 0
1 i
Preparer /Date GLS 7/8/96 M t[i.t[g h Pft2h5 Checker /Date HLG 7/8/96 File No.: CPL-42Q-302 Page No. _.LQ_ of __2d w
y.
.----w-.
l Tabk 7 Pressure-Temperature Curve Calculation (Ven'fication Case fmm [1])
laputt; Plant = Brunswic
~
Component =i Vessel thickness, t =
inches (minimum)
Vessel Radius, R =
inches (maximum)
RTer = -
'F ---
> from [1], pg.10 Stress Multiplier, F = j Minimum Specified Yield Strength, op=
ksi(for SA-302 or SA-533 plate @ 550*F)
Temperature instrument Error =
'F Pressure Instrument Error =
psig Hydro Test Pressure =-
psig Flange RTer =.
'F (modified from [1] to be RTer + 60*F)
Calculated Adjusted Adjusted Temperature Pressure Temperature Pressure for T
K.
K P
(*F)
(ksl* inch") (ksl* inch")
(psig)
(*F)
(psig) 70 37.24 24.82 559 70 0
70 37.24 24.82 559 70 298 100 42.94 28.62 644 100 298 100 42.94 28.62 644 100 629 100 42.94 28.62 644 100 629 105 44.15 29.43 662 105 647 110 45.!4 30.30 681
,110 666 115 46.86 31.24 702 115 687 120 48.37 32.25 725 120 710 125 50.00 33.33 749 125 734 130 51.74 34.49 774 130 759-135 53.62 35.75 802 135 787 140 55.64 37.09 831 140 816 145 57.81 38.54 863 145 848 150 60.14 40.09 897 150 882 155 62.65 41.76 934 155 919 160 65.34 43.56 973 160 958 165 68.24 45.50 1015 165 1000 170 71.36 47.57 1060 170 1045 175 74.71 49.81 1108 175 1093 180 78.32 52.21 1160 180 1145 185 82.19 54.80 1215 185 1200 190 86.36 57.57 1274 190 1259 195 90.84 60.56 1336 195 1321 l
200 95.66 63.77 1404 200 1389 l
l b
b
(
' Prepared by:
i Checked by:
1 yne No* (1L-MM1 Rev. O I
P-T14-1.XLS, Verification d
of 29 7/8/96 Page i
I
i i
j Ta.b 1c, 8 Pressure-Temperature Curve Calculation j
(forHydro Test Condition,14 EFPY)
Inputs:
Plant = lirunswiclii$4j Component = @t- -
_ J MJLO M W4 W 93 Vessel thickness, t = 1
~i_U inches (maximum)
-1 inches (minimum)
Vessel Radius, R = -
RTer =;
'F 16 EFPY i
Stress Multiplier, F =
Minimum Specified Yield Strength, o, = -
ksi(for SA-302 or SA-533 plate @ 550*F)
Temperature Instrument Error =-
'F Pressure instrument Error =
psig Hydro Test Pressure =
psig Flange RTer = M.M *F Calculated Adjusted Adjusted Temperature Pressure Temperature Pressure for T
K.
K, P
(*F)
(ksl* inch") (ksl* inch")
(psig)
(*F)
(psig) 76 37.64 25.09 563 76 0
76 37.64 25.09 563 76 313 106 43.56 29.04 651 106 313 106 43.56 29.04 651 106 636 106 43.56 29.04 651 106 636 111 44.82 29.88 669 111 654 116 46.17 30.78 689 116 674 121 47.63 31.76 710 121 695 126 49.20 32.80 733 126 718 131 50.89 33.92 758 131 743 136 52.70 35.13 784 136 769 141 54.65 36.43 813 141 798 146 56.74 37.83 843 146 828 151 59.00 39.33 876 151 861 156 61.42 40.95 911 156 896 161 64.02 42.68 948 161 933 166 66.83 44.55 988 166 973 171 69.84 46.56 1031 171 1016 176 73.07 48.72 1077 176 1062 181 76.55 51.04 1126 181 1111 186 80.30 53.53 1178 186 1163 191 84.32 56.21 1234 191 1219 196 88.65 59.10 1294 196 1279 201 93.30 62.20 1357 201 1342 206 98.30 65.53 1425 206 1410 l
l Prepared by: O SIITNC l
Checked by: $
Ylbll4(o l
Ren I l
P-T14-1.XLS, Beltline 8/19/96 Page 12.
og 19
Tablo 9 Pressure-Temperature Curve Calculation (forHydro Test Condition,14 EFPY)
~
Inputs:
Plant = Brulis-Rm" Component = E
.. @M3MMQ Vessel thickness, t =.
53 inches (minimum)
Vessel Radius, R = jf 03 inches (maximum)
RTm = ? ' W
- F------>
14 EFPY Stress Multiplier, F = i I
if Minimum Specified Yield Strength, op=,
ksi(for SA-302 or SA-533 plate @ 550*F)
Temperature Instrument Error =:
"F Pressure Instrument Error =
psig Hydro Test Pressure =
f psig Flange RTm =...
- 'F Calculated Adjusted Adjusted Temperature Pressure Temperature Pressure for T
K.
K.
(*F)
(ksi* Inch r2) (ksl* inch")
(psig)
(*F)
(psig) t 76 59.18 39.46 580 76 0
76 59.18 39.46 580 76 313 106 76.84 51.23 746 106 313 106 76.84 51.23 746 106 731 106 76.84 51.23 746 106 731 111 80.61 53.74 781 111 766 116 84.66 56.44 818 116 803 121 89.01 59.34 858 121 843 126 93.69 62.46 900 126 885 131 98.72 65.81 945 131 930 136 104.13 69.42 992 136 977-141 109.94 73.30 1043 141 1028 146 116.20 77.46 1097 146 1082 151 122.92 81.95 1153 151 1138 156 130.15 86.77 1213 156 1198 161 137.92 91.95 1276 161 1261 166 146.28 97.52 1342 166 1327 171 155.26 103.51 1411 171 1396 176 164.93 109.95 1483 176 1468 181 175.31 116.88 1559 181 1544 186 186.48 124.32 1636 186 1621 191 198.49 132.33 1717 191 1702 196 211.40 140.93 1799 196 1784 201 225.28 150.19 1883 201 1868 206 240.21 160.14 1969 206 1954 l
l l
Prepared by: N S//9/9f.
I Checked by: NO 9/dT6 i
P-T14-1.XLS, Bottom Head File No. ("#L 8120-302. Rev: I 8/19/96 Page 13 cf 29
(
Tablc 10 Pressure-Temperature Curve Calculation (forHydro Test Condition,14 EFPY)
Inputs:
Plant = _Bruw"M Component = "
rte =
'F -
14 EFPY Temperature Instrument Error =
'F Pressure instrument Error =
psig Code Hydro Test Pressure =
psig Flange rte =
'F Calculated Adjusted Adjusted Temperature Pressure ~ Temperature Pressure for T
Km K
('F)
(ksi* inch") (ksi' inch")
(psi)
(*F)
(psi) 76 37.50 25.00 538 76 0
76 37.50 25.00 538 76 313 106 43.34 28.89 622 106 313 106 43.34 28.89 622 106 607 106 43.34 28.89 622 106 607 4
111 44.58 29.72 640 111 625 116 45.92 30.62 659 116 644 121 47.36 31.58 680 121 665 126 48.91 32.61 702 126 687 131 50.57 33.72 726 131 711 136 52.36 34.91 752 136 737 141 54.29 36.19 779 141 764 146 56.36 37.57 809 146 794 151 58.58 39.05 841 151 826 156 60.97 40.65 875 156 860-161 63.54 42.36 912 161 897 166 66.31 44.20 952 166 937 171 69.28 46.19 994 171 979 176 72.47 48.32 1040 176 1025 181 75.91 50.61 1090 181 1075 186 79.60 53.07 1143 186 1128 191 83.58 55.72 1200 191 1185 196 87.85 58.56 1261 196 1246 201 92.44 61.63 1327 201 1312 206 97.37 64.92 1398 206 1383 l.Trcpaml by: N 7/s/%
Ch :had oy:
$ 7 lll9b File No. UL-h30A Rev: O Page 34 of
-A P-T14-1.XLS, N16 Nozzle 6/25/96
Prop red by: M s h9 lW, Checked by: NL WEll%
Fiquee l File No, C.PL-42c-302. Rev: 1 Page 15 of 29 1600 f
Am.
1400 l
A i
I I 1200 a
O 5
z i
n.
$ 1000 d
E A
- HYDROSTATIC TEST 8
(BASED ON N16 NOZZLE 800 WITH RTm = 86.3'F) ti g
Am - HYDROSTATIC TEST E
i (BASED ON BOTTOM I
HEAD REGION WITH i
l 600 f
RTm = 10*F) '
=
E VESSEL DISCONTINUITY LIMITS my 00 BOTTOM HEAD
""~*
l DISCONTINUITY LIMITS CURVES A AND Am AREVALID 200 FOR 14 EFPY OF OPERATION.
l BOLTUP 16 EFPY BELTLINE CURVE IS 76*F LESS LIMITING THAN DISCONTINUITY CURVE A.
O l
0 100 200 300 400 500 600 MINIMUM REACTOR VESSEL METAL TEMPERATURE (*F)
Figure x.x.x-x (page 1 of 1)
BSEP-1 Temperature / Pressure Limits for Hydrostatic Pressure Test (14 EFPY) t P-T14-1.XLS, P-T Curve 8/19/96
Tab)e 1l Pressure-Temperature Curve Calculation (forHydro Test Condition,14 EFPY)
Inputs:
Plant = Brunswicki Component = Bel5 Wh&McMM nll4sPHM Vessel thickness, t =
l inches (minimum)
Vessel Radius, R = 4 fs!
inches (maximum)
RTwor=
' F -- --- >
29.3 EFPY Stress Multiplier, F = 4 Minimum Specified Yield Strength, o, = 1 ksi(for SA-302 or SA-533 plate @ 550*F)
Temperature Instrument Error = ~
"F Pressure Instrument Error =-
psig Hydro Test Pressure = -
156 psig Flange RTuor =
'F Calculated Adjusted Adjusted Temperature Pressure Temperature Pressure for T
Km K
(*F)
(ksl* inch'") (ksi* inch'")
(psig)
(*F)
(psig) 70 37.27 24.85 558 70 0
70 37.27 24.85 558 70 313 100 42.98 28.66 642 100 313 100 42.98 28.66 642 100 627 100 42.98 28.66 642 100 627 105 44.20 29.47 660 105 645 110 45.51 30.34 679 110 664 115 46.92 31.28 700 115 685 120 48.43 32.29 722 120 707 125 50.06 33.38 746 125 731 130 51.81 34.54 771 130 756-135 53.70 35.80 799 135 784 140 55.72 37.15 828 140 813 145 57.90 38.60 860 145 845 150 60.24 40.16 893 150 878 155 62.75 41.83 930 155 915 160 65.46 43.64 968 160 953 165 68.36 45.58 1010 165 995 170 71.49 47.66 1054 170 1039 175 74.85 49.90 1102 175 1087 180 78.47 52.31 1152 180 1137 185 82.35 54.90 1207 185 1192 190 86.53 57.69 1264 190 1249 195 91.03 60.68 1326 195 1311 200 95.86 63.90 1392 200 1377 N
IIITITL Prepared by:
Checked by:
b M Nb k
File No* C/t.-CQ-30L Rev:
I 1
P-T14-2.XLS, Beltline 4
8/19/96 Page N
of 19 j
Table.17-Pressure-Temperature Curve Calculation (forHydro Test Condition,14 EFPY)
Inputs:
Plant = Brunswicle25 Component =5$IttisN SRMMMMJh7 Vessel thickness, t = ;
5%:
inches (minimum)
Vessel Radius, R =
. inches (maximum)
Stress Multiplier, F = $nB1M(D440'.0B (*F 14 EFPY RTer=
Minimum Specified Yield Strength, op=
~)
w a $1' ksi (for SA-302 or SA-533 plate @ 550*F)
Temperature Instrument Error = p[k;T G. i f '
'F Pressure Instrument Error = "
WD. ~ '
psig Hydro Test Pressure = [W f]j psig Flange RTer = s
- F Calculated Adjusted Adjusted Temperature Pressure Temperature Pressure for T
Km K,
P for P T Curve P-T Curve
(*F)
(ksl* inch") (ksl* inch")
(psig)
(*F)
(psig) 70 46.01 30.67 456 70 0
70 46.01 30.67 456 70 313 100 56.48 37.66 557 100 313 100 56.48 37.66 557 100 542 100 56.48 37.66 557 100 542 l
105 58.72 39.15 578 105 563 110 61.12 40.75 601 110 586 115 63.70 42.47 626 115 611 120 66.48 44.32 652 120 637 125 69.46 46.31 681 125 666 130 72.67 48.45 711 130 696' 135 76.12 50.75 743 135 728 140 79.83 53.22 778 140 763 145 83.82 55.88 814 145 799 150 88.11 58.74 854 150 839 155 92.72 61.82 895 155 880 160 97.68 65.12 940 160 925 165 103.01 68.68 987 165 972 170 108.75 72.50 1037 170 1022 175 114.91 76.61 1091 175 1076 180 121.54 81.02 1147 180 1132 185 128.66 85.77 1206 185 1191 190 136.32 90.88 1269 190 1254 195 144.56 96.37 1335 195 1320 200 153.41 102.28 1404 200 1389 0
1IIl9I9f-Prepared $ NN N
Checked by:
File No. cfL-420-30"L Rev: I P-T14-2.XLS, Bottom Head Page I1 of O
!l
Tibk IS Pressure-Temperature Curve Calculation (forHydro Test Condition,14 EFPY)
Inputs:
Plant = BrunswiclG25 Component =
C' e
l RTc =-
- F 14 EFPY l
Temperature Instrument Error =
- F Pressure Instrument Error =
psig Code Hydro Test Pressure =
psig Flange RTm =
- F Calculated Adjusted Adjusted Temperature Pressure Temperature Pressure for T
K.
K P
(*F)
(ksi* inch") (ksl* Inch")
(psi)
(*F)
(psi) 70 37.77 25.18 542 70 0
70 37,77 25.18 542 70 313 100 43.75 29.17 628 100 313 100 43.75 29.17 628 100 613 100 43.75 29.17 628 100 613 105 45.03 30.02 646 105 631 110 46.40 30.93 666 110 651 115 47.88 31.92 687 115 672 120 49.46 32.98 710 120 695 125 51.17 34.11 734 125 719 130 53.00 35.33 761 130 746 135 54.97 36.65 789 135 774 140 57.09 38.06 819 140 804 145 59.37 39.58 852 145 837 150 61.82 41.22 887 150 872-155 64.46 42.97 925 155 910 160 67.29 44.86 966 160 951 165 70.34 46.89 1010 165 995 170 73.61 49.08 1057 170 1042 175 77.14 51.42 1107 175 1092 180 80.92 53.95 1161 180 1146 185 84.99 56.66 1220 185 1205 190 89.37 59.58 1283 190 1268 195 94.08 62.72 1350 195 1335 200 99.14 66.09 1423 200 1408 Frepc73d by: M 7/7/E l
l 1 caeckad 3y: Wh 5/'r/f6 l
File No. OL-@-301. Rev: 0 Page IT of 2'i 1
j P-T14-2.XLS, N16 Nozzle 6/25/96
Prepared by: O 7/h/9f.
Checked by:.g/)
F/t2/P(,
,, (
i File No. UL-M-ML Rev: I Page 19 of 29 1600 l
Anh 1400 l
.A l
lii 1200 l'
o 5
l I
a.
O 1000 id A
- HYDROSTATIC TEST (BASED ON N16 NOZZLE l
WITH RTa = 78.6*F) 8M
/
Aw, - HYDROSTATIC TEST l
6 8
(BASED ON BOTTOM j
HEAD REGION WITH RTm = 40*F) 6 600 E
a J
VESSEL DISCONTINUITY E
LIMITS S
l E
BOTTOM HEAD 400 E
,,,,,,, DISCONTINUITY LIMITS CURVES A AND An AREVALID FOR 14 EFPY OF OPERATION.
29.3 EFPY BELTLINE CURVE IS BOLTUP LESS LIMITING THAN 70*F DISCONTINUITY CURVE A FOR O.
~
PRESSURES LESS THAN 1,000 PSIG.
I j
0 100 200 300 400 500 600 l
MINIMUM REACTOR VESSEL METAL TEMPERATURE ('F) l l
Figure x.x.x-x (page 1 of 1)
BSEP-2 Temperature / Pressure Limits for Hydrostatic Pressure Test (14 EFPY) l l
l P-T14-2.XLS, P-T Curve 8/22/96
l Table. N Pressure-Temperature Curv_e Calculation (forHydro Test Condition,16 EFPY) l Inputs:
Plant = Bfunswic_k;fd l
Component = "*-
Ml? M M fnfe % 9 U Fr5 l
Vessel thickness, t =
inches (minimum)
Vessel Radius, R =
inches (maximum) i RTa =:
'F 16 EFPY i
Stress Multiplier, F = :
Minimum Specified Yield Strength, o =;
ksi(for SA-302 or SA-533 plate @ 550*F) y Temperature Instrument Error =
'F Pressure Instrument Error =
psig i
Hydro Test Pressure =
psig Flange RTm =
'F Calculated Adjusted Adjusted Temperature Pressure Temperature Pressure for T
Kn K,
P for P-T Curve P.T Curve i
('F)
(ksl* Inch") (ksi' inch")
(psig)
(*F)
(psig) 76 37.64 25.09 563 76 0
76 37.64 25.09 563 76 313 106 43.56 29.04 651 106 313 106 43.56 29.04 651 106 636 106 43.56 29.04 651 106 636 111 44.82 29.88 669 111 654 116 46.17 30.78 689 116 674 121 47.63 31.76 710 121 695 126 49.20 32.80 733 126 718 131 50.89 33.92 758 131 743 136 52.70 35.13 784 136 769' 141 54.65 36.43 813 141 798 1 16 56.74 37.83 843 146 828 151 59.00 39.33 876 151 861 156 61.42 40.95 911 156 896 161 64.02 42.68 948 161 933 166 66.83 44.55 988 166 973 171 69.84 46.56 1031 171 1016 176 73.07 48.72 1077 176 1062 181 76.55 51.04 1126 181 1111 186 80.30 53.53 1178 186 1163 191 84.32 56.21 1234 191 1219 196 88.65 59.10 1294 196 1279 l
201 93.30 62.20 1357 201 1342 206 98.30 65.53 1425 206 1410 M
8 /M/9I.
Prepared by:
l Checked by:
nib
?lIl /9 h File No. CPL ifM-3ol. Rev: I l
- pace 2.0 of __2.g j
8/19/96 P-T16-1.XLS, Beltline 1
Ta bic 15 Pressure-Temperature Curve Calculation (forHydro Test Condition,16 EFPY)
Inputs:
Plant = V~
C Component = ?...
eaIl a27f 2 l$9Q Vessel thickness, t = ;$$. inches (minimum) 4dHC$h, inches (maximum)
Vessel Radius, R =
RTa = ; p 1Fs
- .. 'F =
16 EFPY Stress Multiplier, F = M<E.f.
Temperature Instrument "crror = pfi4 Minimum Specified Yield Strength, on=
ksi(for SA-302 or SA-533 plate @ 550Y) f c b/.,
3 'F Pressure Instrum'.snt Error = j.(ft E '..-g psig Hydro Test Pressure =. J.15 '. # psig Flange rte = 'f~ QT 4 'F Calceted Adjusted Adjusted Temperature Pressure Temperature Pressure for T
K.
K P
(*F)
(ksi* inch") (ksl* inch*)
(psig)
(*F)
(psig) 76 59.18 39.46 580 76 0
76 59.18 39.46 580 76 313 106 76.84 51.23 746 106 313 106 76.84 51.23 746 106 731 106 76.84 51.23 746 106 731 111 80.61 53.74 781 111 766 116 84.66 56.44 818 116 803 121 89.01 59.34 858 121 843 126 93.69 62.46 900 126 885 131 98.72 65.81 945 131 930 136 104.13 69.42 992 136 977' 141 109.94 73.30 1043 141 1028 146 116.20 77.46 1097 146 1082 151 122.92 81.95 1153 151 1138 156 130.15 86.77 1213 156 1198 161 137.92 91.95 1276 161 1261 166 146.28 97.52 1342 166 1327 171 155.26 103.51 1411 171 1396 176 164.93 109.95 1483 176 1468 181 175.31 116.88 1559 181 1544 186 186.48 124.32 1636 186 1621 191 198.49 132.33 1717 191 1702 196 211.40 140.93 1799 196 1784 201 225.28 150.19 1883 201 1868 206 240.21 160,14 1969 206 1954 U
8 I/9/96 Prepared by: Mb NiD Checked by:
File No. Cll-D-M Rev: I P-T16-1.XLS, Bottom Head 8/19/96
. P3ge__
_{.
M of M
i
~Tdic lb Pressure-Temperature Curve Calculation (forHydro Test Condition,16 EFPY)
/nputa:
Plant = [Bruc;J ---
i Component = M-
-~ ~ - ----- "
~
RTm =
- F =
16 EFPY Temperature instrument Error =
- F Pressure Iristrument Error =
psig Code Hydro Test Pressure =
psig Flange RTm ='
'F 2
Calculated Adjusted Adjusted Temperature Pressure Tom'perature Pressure for T
K.
K.
('F)
(ksl* inch'") (ksi* inch'")
(psi)
(*F)
(psi) 76 36.98 24.66 531 76 0
76 36.98 24.66 531 76 313 106 42.54 28.36 611 106 313 106 42.54 28.36 611 106 596 106 42.54 28.36 611 106 596 111 43.73 29.15 628 111 613 116 45.00 30.00 646 116 631 121 46.37 30.92 666 121 651 126 47.85 31.90 687 126 672 131 49.43 32.95 709 131 694 136 51.13 34.09 734 136 719 141 52.96 35.31 760 141 745 146 54.93 36.62 788 146 773 151 57.05 38.03 819 151 804 156 59.33 39.55 852 156 837-161 61.77 41.18 887 161 872 166 64.40 42.94 924 166 909 171 67.23 44.82 965 171 950 176 70.28 46.85 1009 176 994 181 73.55 49.03 1056 181 1041 186 77.06 51.37 1106 186 1091 191 80.84 53.90 1160 191 1145 196 84.91 56.61 1219 196 1204 201 89.28 59.52 1281 201 1266 206 93.98 62.65 1349 206 1334 fA,pme ::y: M v/r/n J Chr.ied by: W 7[I7?h f
i File No. rjL-M-%2 Rev: O Page M
of N
P-T16-1.XLS, N16 Nozzle 6/25/96
Prepared by-M gg Checkedby: 8/d P/4/4g 1
bgurc 3 j File No, (>L-no.302. g _ l 3
3.)98 - N
_ of _ M 1600 l
i l
I l
l Am 1400 A
1200
[
l
\\
5 z
n.
l
[
d A
- HYDROSTATIC TEST (BASED ON N16 NOZZLE 800 WITH RTuor = 89.7'F) 1 G
l g
Am - HYDROSTATICTEST E
(BASED ON BOTTOM E
HEAD REGION WITH l
600 RTuor = 10*F)
".T E
VESSEL DISCONTINUITY LIMITS a,
W 400
[
,, BOTTOM HEAD DISCONTINUITY LIMITS CURVES A AND An ARE VALID 200 FOR 16 EFPY OF OPERATION.
BOLTUP 16 EFPY BELTLINE CURVE IS 76*F LESS LIMITING THAN DISCONTINUITY CURVE A.
0 0
100 200 300 400 500 600 MINIMUM REACTOR VESSEL METAL TEMPERATURE ('F)
Figure x.x.x-x (page 1 of 1)
I BSEP 1 Temperature / Pressure Limits for Hydrostatic Pressure Test (16 EFPY)
P-T16-1.XLS, P-T Curve 8/19/96
'Tibl e 17 Pressure-Temperature Curve Calculation (forHydro Test Condition,16 EFPY)
Inputs:
Plant = BrunswicTis
~
Component =
QEi'OQ26fy3 Vessel thickness, t =-
inches (minimum)
Vessel Radius, R =
inches (maximum)
RTwor = -
- F =
29.3 EFPY Stress Multiplier, F ='
Minimum Specified Yield Strength, o, =
ksi(for SA-302 or SA-533 plate @ 550*F)
Temperature Instrument Error =-
- F Pressure Instrument Error =
psig Hydro Test Pressure = '
psig Flange RTuor =
- F Calculated Adjusted Adjusted Temperature Pressure Temperature Pressure for T
K.
K.
(*F)
(ksi* inch") (ksi* inch")
(psig)
(*F)
(psig) 70 37.27 24.85 558 70 0
70 37.27 24.85 558 70 313 100 42.98 28.66 642 100 313 100 42.98 28.66 642 100 627 100 42.98 28.66 642 100 627 105 44.2P 29.47 660 105 645 110 45.51 30.34 679 110 664 115 46.92 31.28 700 115 685 120 48.43 32.29 722 120 707 125 50.06 33.38 746 125 731 130 51.81 34.54 771 130 756~
135 53.70 35.80 799 135 784 140 55.72 37.15 828 140 813 145 57.90 38.60 860 145 845 150 60.24 40.16 893 150 878 155 62.75 41.83 930 155 915 160 65.46 43.64 968 160 953 165 68.36 45.58 1010 165 995 170 71.49 47.66 1054 170 1039 175 74.85 49.90 1102 175 1087 180 78.47 52.31 1152 180 1137 185 82.35 54.90 1207 185 1192 190 86.53 57.69 1264 190 1249 195 91.03 60.68 1326 195 1311 200 95.86 63.90 1392 200 1377 Prepared by: M SIsl9(,
, Checked by: MU F/211%
P-T16-2.XLS, Beltline ileNo. N-M-R Rev: I 8/19/96 l P293
'2N of 28 i
- -n
_y
Tabic 19 Pressure-Temperature Curve Calculation (forHydro Test Condition,16 EFPY)
Inputs:
Component = i,fdttoMntPlant= Brun,swicK2) HMMQ))$]
Vessel thickness, t =
inches (minimum)
Vessel Radius, R = -
inches (maximum)
RTer=j
'F - ---- >
16 EFPY Stress Multiplier, F =,
Minimum Specified Yield Strength, o, = j ksi (for SA-302 or SA-533 plate @ 550*F)
Temperature Instrument Error = j
'F Pressure Instrument Error =,
psig Hydro Test Pressure =;
psig Flange RTer =.__ _
'F Calculated Adjusted Adjusted Temperature Pressure Temperature Pressure for T
Kn K,
(*F)
(ksi* inch") (ksi* inch")
(psig)
(*F)
(psig) 70 46.01 30.67 456 70 0
70 46.01 30.67 456 70 313 100 56.48 37.66 557 100 313 100 56.48 37.66 557 100 542 100 56.48 37.66 557 100 542 105 58.72 39.15 578 105 563 110 61.12 40.75 601 110 586 1
115 63.70 42.47 626 115 611 120 66.48 44.32 652 120 637 125 69.46 46.31 681 125 666 130 72.67 48.45 711 130 696-135 76.12 50.75 743 135 728 140 79.83 53.22 778 140 763 145 83.82 55.88 814 145 799 150 88.11 58.74 854 150 839 155 92.72 61.82 895 155 880 160 97.68 65.12 940 160 925 165 103.01 68.68 987 165 972 170 108.75 72.50 1037 170 1022 175 114.91 76.61 1091 175 1076 180 121.54 81.02 1147 180 1132 185 128.66 85.77 1206 185 1191 190 136.32 90.88 1269 190 1254 195 144.56 96.37 1335 195 1320 200 153.41 102.28 1404 200 1389 M
g//fl9t, f
Prepared by:
MI2
&/d/%
Checked by:
File No. Cft-420-3o2. Rev: I
}
P-T16-2.XLS, Bottom Head 25 cf M
8/19/96
[_Page
.J
Ta ble l9 l
Pressure-Temperature Curve Calculation (forHydro Test Condition,16 EFPY)
Inputs:
Plant = BrunswicFrd Component =
~ -- N16KiB^
RTa = -
'F =
16 EFPY Temperature instrument Error =
'F Pressure Instrument Error =
psig Code Hydro Test Pressure =
psig Flange RTm =
'F Calculated Adjusted Adjusted Temperature Pressure Tempersture Pressure for T
Km K.
(*F)
(ksi* inch") (ksi* inch")
(psi)
(*F)
(psi) 70 37.24 24.82 534 70 0
70 37.24 24.82 534 70 313 100 42.94 28.62 616 100 313 100 42.94 28.62 616 100 601 100 42.94 28.62 616 100 601 105 44.15 29.43 634 105 619 110 45.46 30.30 652 110 637 l
115 46.86 31.24 673 115 658 l
120 48.37 32.25 694 120 679 125 50.00 33.33 718 125 703 130 51.74 34.49 743 130 728 135 53.62 35.75 770 135 755 140 55.64 37.09 799 140 784 145 57.81 38.54 830 145 815 150 60,14 40.09 863 150 848 155 62.65 41.76 899 155 884 160 65.34 43.56 938 160 923 165 68.24 45.50 980 165 965 170 71.36 47.57 1024 170 1009 175 74.71 49.81 1072 175 1057 180 78.32 52.21 1124 180 1109 185 82.19 54.80 1180 185 1165 190 86.36 57.57 1240 190 1225 195 90.84 60.56 1304 195 1289 200 95.66 63.77 1373 200 1358
$-db Y 7!#!#l-IS b b
l;
' d i:'
I ;9,yo, (PL-OO-30"L Rev:
O p
Page 2L of M
P-T16-2.XLS, N16 Nozzle 6/25/96
Prop red by: Id g/19/9(,
ll Checked by:
MId Thi/16 l
l f ig 4
Fue No. CM -W-302 Rw: 1 i
Page-1~7
_ of 19 i
I 1600 f
I i
l i
i i
l l
l 1400 t
Ami i
i A
i i
i
^
l l
lii l
I iii 1200 a
O 5
?
I I
a.
i
$ 1000 I
i l
A
- HYDROSTATIC TEST y
(BASED ON N16 NOZZLE 800 "T*
I
$g Am - HYDROSTATIC TEST (BASED ON BOTTOM E
HEAD REGION WITH b
600 E
RTuor = 40*F) a y
VESSEL DISCONTINUITY g
LIMITS my 400 BOTTOM HEAD
" " ~
- DISCONTINUITY LIMITS CURVES A AND An ARE VALID 200 FOR 16 EFPY OF OPERATION.
BOLTUP 29.3 EFPY BELTLINE CURVE IS 70*F LESS LIMITING THAN l
DISCONTINUITY CURVE A.
0 O
100 200 300 400 500 600 MINIMUM REACTOR VESSEL METAL TEMPERATURE (*F)
Figure x.x.x-x (page 1 of 1)
BSEP-2 Temperature / Pressure Limits for Hydrostatic Pressure Test (16 EFPY)
P-T16-2.XLS, P-T Curve 8/19/96
4.0 REFERENCES
[1]
SI Report No. SIR-95-035, Rev. 0, (Letter GLS-95-006), " Evaluation of Pressure Test P-T Curve," April 5,1995, SI File No. CPL-36Q-401.
[2]
ASME B&PV Code,Section XI, Nonmandatory Appendix G, " Fracture Toughness Criteria for Protection Against Failure," 1992 Edition, No Addenda.
[3]
WRC Bulletin 175,"PVRC Recommendations on Toughness Requirements for Ferritic Materials," PVRC Ad Hoc Group on Toughness Requirements, Welding Research Council, August 1972.
[4]
ASME B&PV Code,Section XI, Nonmandatory Appendix A, " Analysis of Flaws," 1992 Edition,No Addenda.
[5' SI Calculation No. CPL-36Q-303, Rev. O, " Comparison of ASME Code Appendix A vs.
Appendix G Methodology," 4-5-95.
[6]
SI Report No. SIR-95-015, Rev. O, " Brunswick Steam Electric Plant Unit 1 Reactor Pressure Vessel Material Evaluat:~ and Estimation of Reference Temperatures for Use in Flaw Evaluation," February 1995, SI File No. CPL-35Q-401.
[7]
SI Report No. SIR-95-130, Rev.1, " Brunswick Steam Electric Plant Unit 2 Reactor Pressure Vessel Material Evaluation and Estimation of Reference Temperatures for Use in Flaw Evaluation," April 1996, File CPL-35Q-407.
[8]
Padish Co. Metallurgical Department Material Analysis Report, Part Number 68-2471/73M2., 6-18-69,2 pages, SI File No. CPL-42Q-214.
[9]
FAX from Phil Gore (CP&L) to Gary Stevens (SI), "RPV Hydrestatic Test Curves," 2 pages total, May 17,1996, SI File No. CPL-42Q-103.
[10]
U.S. Code of Federal Regulations, Part 10, Chapter 50, Appendix G, " Fracture Toughness Requirements," 1-1-95 Edition,Section IV.A.2, page 754.
Il1]
Chicago Bridge & Iron Company Stress Repcrt,"Section S1, Stress Analysis, Main Closure Flanges,218" BWR Vessel," page SI-40, SI File No. CPL-35Q-225.
Revision 0
1 Preparer /Date GLS 7/8/96 M fjlM
% F/zt[4 Checker /Date HLG 7/8/96 File No.: CPL-42Q-302 Page No. 2.%
of 2S
i.-
l
[12]
GE Nuclear Energy Report No. SASR-88-10, "LaSalle County Station Units 1 and 2 Fracture Toughness Analysis per 10CFR50 Appendix G," March 1988, page 5-3, SI File No. CECO-36Q-259.
[13]
ASME B&PV Code,Section III, hppendices,1989 Edition, No Addenda.
[14]
E-mail from Gary Stevens (SI) to Phil Gore (CP&L), " Brunswick Dimensions," 7/31/96, as confirmed by E-mail from Phil Gore (CP&L) to Gary Stevens (SI),"re: Brunswick D?mensions," 8/01/96, SI File No. CPL-42Q-223.
l i
l Revision 0
1 Preparer /Date GLS 7/8/96 M S/11lfG h N(/f(,
Checker /Date HLG 7/8/96 File No.: CPL-42Q-302 Page No.1-9 of 2S
l l
l ENCLOSURE 2 BRUNSWICK STEAM ELECTRIC PLANT, UNIT 1 AND 2 NRC DOCKETS 50-325 AND 50-324 OPERATING LICENSES DPR-71 AND DPR-62 REQUEST FOR LICENSE AMENDMENT l
PRESSURE-TEMPERATURE LIMITS CURVES 10 CFR 50.92 EVALUATION l
l The Commission has provided standards in 10 CFR 50.92 for determining whether a significant l
hazards consideration exists. A proposed amendment to an operating license for a facility involves no significant hazards consideration if operation of the facility in accordance with the proposed amendment would not: (1) involve a significant increase in the probability or consequences of an accident previously evaluated, (2) create the possibility of a new or different kind of accident from any accident previously evaluated, or (3) involve a significant reduction in a margin of safety. Carolina Power & Light Company has reviewed this proposed license amendment request and believes that its adoption would not involve a significant hazards consideration. The basis for this determination follows.
l This Technical Specification Change Request makes the following changes:
1.
Exchanges the pressure-temperature limits curves currently located in the Unit 1 and Unit 2 Technical Specifications. In Licensee Event Report 1-94-05, CP&L reported that the Unit 1 and Unit 2 pressure-temperature limits curves had been inadvertently transposed. This l
request is an administrative change to relocate the pressure-temperature limits curves to Technical Specifications of the unit to which they correctly correspond.
2.
Deletes the current 8,10 and 12 effective full power year (EFPY) hydrostatic test pressure-temperature limits curves and incorporates new 14 and 16 effective full power year (EFPY) hydrostatic test pressure-temperature limits curves for the Brunswick Unit 1 and 2 reactors.
The current reactor vessel pressure-temperature limits curves contained in the technical specifications for hydrostatic pressure tests are suitable for up to 12 effective full power years (EFPY) of reactor operation. It is anticipated that both units will surpass this threshold during 1997. Based on this, new pressure-temperature limits curves for 14 and 16 EFPY were developed. Commensurate changes to the references in Technical Specification 3/4.4.6.1 and Bases 3/4.6 are also proposed to reflect the deletion of current Technical Specification Figure 3.4.6.1-3c.
3.
Reformat the pressure-temperature limits curves in Technical Specification Figures 3.4.6.1-1,3.4.6.1-2,3.4.6.1-3a, and 3.4.6.1-3b. The changes associated with reformatting the Figures are administrative in nature.
l I
E2-1
1 I
Items 1,2, and 3 do not involve a significant increase in the probability or consequences of an accident previously evaluated because of the following reasons:
1.
Item 1 will exchange the Unit 1 and Unit 2 pressure-temperature limits curves. This change is considered administrative in nature. The pressure-temperature limits curves were developed based on design and materials information for the reactor vessel; however, due to an administrative error during the development of the curves, the materials information for the Unit 1 and Unit 2 reactor vessels was inadvertently reversed. Proposed change 1 is being made to exchange the reactor coolant system pressure-temperature limits curves.
Therefore, since this proposed change does not involve a change to the pressure-temperature limits curves nor a change to the configuration of the facility, the probability of an accident previously evaluated is not increased.
Item 2 deletes the current Technical Specification hydrostatic test pressure-temperature limits curves and replaces them with updated curves. The current hydrostatic test pressure-temperature limits curves, which are valid through 12 EFPY are expected to expire during 1997; therefore, new hydrostatic test pressure-temperature limits curves were developed through 16 EFPY. These new hydrostatic test pressure-temperature limits curves will ensure that the integrity of the Brunswick Units 1 and 2 reactor pressure vessels is maintained during hydrostatic and leak tests up to 16 effective full power years of operation.
The calculations used to generate the new pressure-temperature limits curves were performed using Appendix G to Section XI of the ASME Boiler and Pressure Vessel Code, Welding Research Council Bulletin 175, Appendix A to Section XI of the ASME Boiler and Pressure Vessel Code, and incorporates the requirements of 10 CFR 50, Appendix G, Section IV.A.2. For pressure-temperature limit curve development, the methods described in Appendix G to Section XI of the ASME Boiler and Pressure Vessel Code are equivalent to the methods described in Appendix G to Section lli of the ASME Boiler and Pressure Vessel Code. The proposed pressure-temperature limits curves, for hydrostatic and leak tests, take into consideration the effects of neutron irradiation on reactor vessel materials and provide the necessary margin, as specified by Appendix G of 10 CFR 50, to assure the structural integrity of the reactor coolant pressure boundary. Based on the above, it is concluded that this change will not increase the probability of an accident previously evaluated.
Item 3 reformats each of the Technical Specification Figures containing the pressure-temperature limits curves. The changes associated with the reformatting of proposed Technical Specification Figures 3.4.6.1-1, 3.4.6.1-2, 3.4.6.1-3a, and 3.4.6.1-3b reflect presentation preferences and do not result in technical changes (either actual or interpretational) to the requirements of the pressure-temperature limits curves. Therefore, the changes associated with reformatting the Technical Specification Figures containing the pressure-temperature limits curves are considered to be administrative in nature. Based on the above, it is concluded that this change will not increase the probability of an accident previously evaluated.
The proposed license amendments do not alter Limiting Safety System Settings nor Safety Limits. The proposed license amendments do not revise the technical bases from which the pressure-temperature limits curves were derived, and do not affect stresses and fatigue for transients and design basis events for which the reactor vessels were designed. The operation of plant equipment is not significantly impacted by the proposed license amendments. The proposed pressure-temperature limits curves provide the necessary margin to the assure the structuralintegrity of the reactor coolant pressure boundary is maintained. This margin is designed to preclude the probability of a reactor coolant pressure boundary failure. In addition, since the proposed pressure-temperature limits curves are based on current regulatory requirements and fluence data, the consequences of E2-2
a reactor coolant pressure boundary failure are not impacted by the proposed license amendments. Therefore, the proposed license amendments do not involve a significant increase in the probability or consequences of an accident previously evaluated.
2.
The proposed license amendments will not create the possibility of a new or different kind of accident from any accident previously evaluated. The proposed license amendments will ensure that acceptable pressure-temperature limits are imposed on the reactor pressure vessels during all phases of plant operation, thereby ensuring the structuralintegrity of the reactor pressure vessels. The pressure-temperature limits curves are designed to provide fracture protection for the reactor coolant pressure boundary and do not create any new accident modes. Accident modes for the reactor coolant pressure boundary, due to nonductile failure, are well understood by the industry. The proposed pressure-temperature limits curves and the Technical Specifications continue to provide controls to preclude such a failure. In addition, the proposed license amendments do not result in physical changes to the facility, nor do the proposed license amendments alter safety-related equipment, or safety functions. Therefore, the proposed license amendments do not create a new or different kind of accident from any previously evaluated.
3.
The proposed license amendments do not involve a significant reduction in a margin of safety. The pressure-temperature limits curves are designed to provide a specific margin of safety. This margin is required to be at least as great as that specified in Appendix G to Section Ill of the ASME Boiler and Pressure Vessel Code and Aprandix G to 10 CFR 50.
The proposed pressure-temperature limits curves were developed based on design and materials information for the reactor vessels, current regulatory requirements and fluence data. The proposed pressure-temperature limit curves are based on analyses that ensure that the fracture toughness margins of 10 CFR Part 50, Appendix G are not exceeded.
Therefore, the proposed license amendments do not involve a significant reduction in the margin of safety.
1 l
E2-3
l ENCLOSURE 3 BRUNSWICK STEAM ELECTRIC PLANT, UNIT 1 AND 2 NRC DOCKETS 50-325 AND 50-324 OPERATING LICENSES DPR-71 AND DPR-62 i
REQUEST FOR LICENSE AMENDMENTS PRESSURE-TEMPERATURE LIMITS CURVES ENVIRONMENTAL CONSIDERATIONS l
10 CFR 51.22(c)(9) provides criterion for and identification of licensing and regulatory actions eligible for categorical exclusion from performing an environmental assessment. A proposed amendment to an operating license for a facility requires no environmental assessment if operation of the facility in accordance with the proposed amendment would not: (1) involve a significant hazards consideration, (2) result in a significant change in the types or significant
-increase in the amounts of any effluents that may be released offsite, or (3) result in an increase in individual or cumulative occupatienal radiation exposure. Carolina Power & Light Company l
has reviewed this request and believes that the proposed amendment meets the eligibility criteria L
for categorical exclusion set forth in 10 CFR 51.22(c)(9). Pursuant to 10 CFR 51.22(c), no i
environmental impact statement of environmental assessment needs to be prepared in connection with the issuance of the amendment. The basis for this determination follows.
1.
The proposed license amendments do not involve a significant hazards consideration, as shown in Enclosure 2.
2.
The proposed license amendments do not result in a significant change in the types or a j
significant increase in the amounts of any effluent that may be released offsite. The -
proposed license amendments do not introduce any new equipment nor do they require any existing equipment or systems to perform a different type of function than they are presently designed to perform. The reactor coolant system pressure-temperature limits curves do not have any effect on the type or amount of effluents released during operation. Therefore, CP&L has concluded that there will not be a significant increase in the types or amounts of any effluent that may be released offsite and, as such, the proposed license amendments do not involve irreversible environmental consequences beyond those already associated with normal operation.
3.
The proposed license amendments do not alter safety-related equipment or plant operations in such a way as to impact individual or cumulative occupational radiation expot.Lre. As such, the proposed license amendments will not alter the operational activities of plant personnel and thus will not result in an increase in individual or cumulative occupational radiation exposure.
l l
E3-1
i s
i ENCLOSURE 4 BRUNSWICK STEAM ELECTRIC PLANT, UNIT 1 AND 2 NRC DOCKETS 50-325 AND 50-324 OPERATING LICENSES DPR-71 AND DPR-62 i
REQUEST FOR LICENSE AMENDMENTS PRESSURE-TEMPERATURE LIMITS CURVES PAGE CHANGE INSTRUCTIONS 1
UNIT 1
]
i Removed page Inserted page 3/4 4-13 3/4 4-13 1
3/4 4-14 3/4 4-14 4
{
3/4 4-15 3/4 4-15 3/4 4-16 3/4 4-16 i
j 3/4 4-17 3/4 4-17 4
i 3/4 4-18 3/4 4-18 I
'3/4 4-19 3/4 4-19 i
B 3/4 4-4 B 3/4 4-4 l
PAGE CHANGE INSTRUCTIONS 1
UNIT 2 i
Removed page Inserted page l
3/4 4-13 3/4 4-13 3/4 4-14 3/4 4-14 3/4 4-15 3/4 4-15 f
3/4 4-16 3/4 4-16 3/4 4-17 3/4 4-17 1
}
3/4 4-18 3/4 4-18 1
3/4 4-19 3/4 4-19 8 3/4 4-4 8 3/4 4-4 7
E4-1
i i.
ENCLOSURE 5 i
BRUNSWICK STEAM ELECTRIC PLANT, UNIT 1 AND 2 NRC DOCKETS 50-325 AND 50-324 OPERATING LICENSES DPR-71 AND DPR-62 REQUEST FOR LICENSE AMENDMENTS PRESSURE-TEMPERATURE LIMITS CURVES 1
1 TYPED TECHNICAL SPECIFICATION AND BASES PAGES - UNIT 1 i
O 9
-..