ML20140B350

From kanterella
Jump to navigation Jump to search
Summary of 851219 Meeting W/Mark III Containment Hydrogen Control Owners Group Re Heat Sink Modeling.List of Attendees & Viewgraphs Encl
ML20140B350
Person / Time
Site: Perry, Grand Gulf, River Bend, Clinton, 05000000
Issue date: 01/17/1986
From: Kinnter L, Kinter L, Kintner L
Office of Nuclear Reactor Regulation
To:
Office of Nuclear Reactor Regulation
References
NUDOCS 8601240165
Download: ML20140B350 (37)


Text

m.. .

8( f urq[o g n

UNITED STATES NUCLEAR REGULATORY COMMISSION h , WASHINGTON, D. C. 20555 Jn 17 E Docket Nos. 50-416/417 50-461 50-458/459 50-440 LICENSEES: Mississippi Power & Light Company Illinois Power Company Gulf States Utilities Cleveland Electric Illuminating Company FACILITIES: Grand Gulf Nuclear Station, Units 1 and 2 Clinton, Unit 1 River Bend, Units 1 and 2 Perry, Unit 1

SUBJECT:

SUMMARY

OF DECEMBER 19, 1985 MEETING WITH MARK III CONTAINMENT HYDR 0 GEN CONTROL OWNERS GROUP (HC0G) REGARDING HEAT SINK MODELING The HC0G is performing tests of hydrogen combustion in a quarter scale mockup of the Mark III containment. The purpose of the December 19, 1985, meeting was to discuss revisions based on test data of the method for calculating heat transfer from hydrogen flames and air in the containment to the containment wall, drywell wall and equipment in the containment. Enclosure 1 is,a list of attendees.

Enclosure 2 is a copy of slides prepared by HC0G. As used herein, HCOG refers to the Hydrogen Control Owners Group or its consultants.

HC0G summarized the development of the heat loss (heat sink) model provided in its July 29, 1985 submittal (Enclosure 2, Sheets 2 through 9). H.IG also summarized model changes based on scoping test results from the Quarter Scale Test Facility (QSTF) and compared the revised model calculations with experiments (Sheets 10 through 26). The HC0G summary and conclusions are provided in Sheets 27 and 28.

The staff commented that several of its previous comments on the heat sink model appear to have been considered in the revised model; e.g. the geometry of flames an'd heated gas plumes, the threshold for start of diffusion flames, and water films on surfaces. The staff noted that increasing the heat transfer to the suppression pool brought the model calculations of pressure and temperature into closer agreement with the QSTF test results; however the staff questioned whether increased heat transfer to the HCU floor would also give close agreement. The latter assumption would adversely affect survivability of equipment on the HCU floor. Staff comented that the range of sensitivity studies should be extended.

The most significant item discussed in the meeting dealt with the disclosure by HC0G of the possibility that the QSTF insulation was inadequate; i.e., insulation above the pool became water soaked thereby increasing its thermal conductance.

The staff regards this as a serious problem since it appears a significant fraction of the heat loss in the QSTF occurs in the wetwell region. While there may be compensating factors, the staff concludes that HCOG should continue to investigate this matter to coafirm the actual heat transfer characteristics of the insulation and should if necessary take steps to ensure that heat transfer properties are scaled as Froude modeling required.

8601240165 e60117 PDR ADOCK 05000416 P PDR

r y

The staff said that coranents, on heat sink modeling, if any, would be sent via letter to HCOG following corrpletion of its review of the July 29, 1985 HC0G submittal. Corrrrents on information provided in the Decunber 19, 1985 meeting will be included in this letter.

Ori 1 1:a.1by L. L. Kintner, Project Manager BbR Project Directorate No. 4 Division of BWR Licensing

Enclosures:

As stated cc: See next page DISTRIBUTION JDocket File NRC PDR Local POR PD#4 Reading k'Butle r LKintner MDuncan Young, OELD EJordan BGrimes ACRS (10)

/ (

PD# /Pf1 PD#4/D k LKintner:lb WButler VV 01/(f/E6 01/l$/86

- . _ _ . _ . . . . =

Tne staff said that comments, on heat sink modeling, if any, would be sent via letter to HCOG following completion of its review of the July 29, 1985 HCOG submittal. Coments on information provided in the December 19, 1985 n'eeting will be included in this letter.

1 * -

A L. L. Kintner, Project Manager BWR Project Directorate No. 4 Division of BWR Licensing i

l

Enclosures:

As stated cc: See next page ,

f i

j i

I 0

4 i

i 4

Mr. Oliver D. Kingsley, Jr.

Mississippi Power & Light Company Grand Gulf Nuclear Staiton cc:

Robert 3. McGehee, Esquire The Honorable William J. Guste, Jr.

Wise, Carter, Child, Steen and Caraway Attorney General P.O. Box 651 Department of Justice Jackson, Mississippi 39205 State of Louisiana Baton Rouge, Louisiana 70804 Nicholas S. Reynolds, Esquire Bishop, Liberman, Cook, Purcell and Reynolds 1200 17th Street, N.W.

Washington, D. C. 20036 Mr. Ralph T. Lally Manager of Quality Assurance Office of the Governor Middle South Services, Inc. State of Mississippi ,

P.O. Box 61000 Jackson, Mississippi 39201 New Orleans, Louisiana 70161 Attorney General Mr. Larry F. Dale, Director Gartin Building Nuclear Licensing and Safety Jackson, Mississippi 39205 Mississippi Power & Light Company '

P.O. Box 23054 Mr. Jack Mcliillan, Director Jackson, Mississippi 39205 Solid Waste Mississippi State Board of Health Mr. R. W. Jackson, Project Engineer 880 Lakeland Bechtel Power Corporation Jackson, Mississippi 39206 15740 Shady Grove Road Gaithersburg, Maryland 20877-1454 Alton B. Cobb, M.D.

State Health Officer Mr. Ross C. Butcher State Board of Health Senior Resident Inspector P.O. Box 1700 U.S. Nuclear Regulatory Commission Jackson, Mississippi 39205 Route 2, Box 399 Port Gibson, Mississippi 39150 President Claiborne County Board of Supervisors Regional Administr.ator, Region II Port Gibson, Mississippi 39150 U.S. Nuclear Regulatory Commission, 101 Marietta Street, N.W., Suite 2900 Mr. Ted H. Cloninger Atlanta, Georgia 30323 Vice President, Nuclear Engineering and Support Mr. J. E. Cross Mississippi Power & Light Company Grand Gulf Nuclear Station Site Director Post Office Box 23054 Mississippi Power & Light Company Jackson, Mississippi 39205 P.O. Box 756 Port Gibson, Mississippi 39150 ,

Mr. C. R. Hutchinson GGNS General Manager Mississippi Power & Light Company Post Office Box 756 Port Gibson, Mississippi 39150

Mr. Frank A. Spangenberg Clinton Power Station Illinois Power Company Unit I cc:

Mark Jason Jean Foy, Esquire Assistant Attorney General 511 W. Nevada Public Utilities Division Urbana, Illinois 61801 Office of the Attorney General State of Illinois Center Richard B. Hubbard 100 West Randolph Street - 12th Floor Vice President Chicago, Illinois 60601 Technical Associates 1723 Hamilton Avenue - Suite K Mr. D. P. Hall San Jose, California 95125 Vice President 4

Clinton Power Station P. O. Box 678 Clinton, Illinois, 61727 Mr. D. C. Shelton Manager-Nuclear Station Engineering Opt.

Clinton Power Station P. O. Box 678 Clinton, Illinois 61727 Sheldon Zabel, Esquire Schiff, Hardin & Waite 7200 Sears Tower 233 Wacker Drive Chicago, Illinois 60606 Resident Inspector U. S. Nuclear Regulatory Commission RR 3, Box 229 A Clinton, Illinois 61727 1

Mr. R. C. Heider Project Manager Sargent & Lundy Engineers 55 East Monroe Street Chicago, Illinois 60603 l

Mr. L. Larson Project Manager General Electric Company 175 Curtner Avenue, N/C 395 San Jose, California 95125 Regional Adr.-inistrator,

. Region III 799 Roosevelt Road Glen Ellyn, Illinois 60137

Mr. William J. Cahill, Jr.

Gulf States Utilities Company River Bend Nuclear Plant cc:

Troy B. Conner, Jr. , Esq. Ms. Linda B. Watkins/Mr. Steven Irving Conner and Wetterhahn Attorney at Law 1747 Pennsylvania Avenue, NW 355 Napoleon Street Washington, D.C. 20006 Baton Rouge, Louisiana 70802 Mr. William J. Reed, Jr. Mr. David Zaloudek

Director - Nuclear Licensing Nuclear Energy Division

, Gulf States Utilities Company Louisiana Department of t P. O. Box 2951 Environmental Quality Beaumont, Texas 77704 P. O. Box 14690 Baton Rouge, Louisiana 70898 Richard M. Troy, Jr., Esq.

Assistant Attorney General in Charge Mr. J. David McNeill, III State of Louisiana Department of Justice William G. Davis, Esq. ,

234 Loyola Avenue Department of Justice New Orleans, Louisiana 70112 Attorney General's Office 7434 Perkins Road

, Resident Inspector Baton Rouge, Louisiana 70808 P. O. Box 1051 St. Francisville, Louisiana 70775 H. Anne Plettinger 3456 Villa Rose Drive i

Gretchen R. Rothschild Baton Rouge, Louisiana 70806

, Louisianians for Safe Energy, Inc.

1659 Glenmore Avenue Baton Rouge, Louisiana 70775 James W. Pierce, Jr., Esq.

P. O. Box 23571 l Baton Rouge, Louisiana 70893 Regional Administrator, Region IV 4

U.S. Nuclear Regulatory Commission Office of Executive Director for Operations 611 Ryan Plaza Drive, Suite 1000 Arlington, Texas 76011

- -p--- -n-- - , . . < - g,, . --,,--r - ,y,. e,, , - - . . - n -n, .. ----.,------------.e--.~ .-e-- . , - - - - - . -.

Nr. Murray R. Edelman Perry Nuclear Power Plant The Cleveland Electric Units 1 and 2 Illuminating Company cc:

Jay Silberg, Esq. Mr. Larry 0. Beck Shaw, Pittman, & Trowbridge The Cleveland Electric 1800 M Street, N. U. Illuminating Company Washington, D. C. 20006 P. O. Box 97 E-210 Perry, Ohio 44081 Donald H. Hauser, Esq.

The Cleveland Electric Illuminating Company P. O. Box 5000 Cleveland, Ohio 44101 Resident Inspector's Office U. S. Nuclear Regulatory Commission ,

Parmly at Center Road Perry, Ohio 44081 Regional Administrator, Region III U. S. Nuclear Regulatory Commission 799 Roosevelt Road Glen Ellyn, Illinois 60137 Donald T. Ezzone, Esq.

Assistant Prosecuting Attorney 105 Main Street Lake County Administration Center Painesville, Ohio 44077 Ms. Sue Hiatt 0CRE Interim Representative 8275 Munson Mentor, Ohio 44060 Terry J. Lodge, Esq.

618 N. Michigan Street Suite 105 Toledo, Ohio 43624 -

John G. Cardinal, Esq.

Prosecuting Attorney Ashtabula County Courthouse Jefferson, Ohio 44047 i

Enclosure 1 Attendees NRC-HCCG Meeting Dec. 19, 1985 NRC Name Affiliation L. L. Kintner NRC/ DBL /PD-4 C. G. Tinkler NRC/PDL-A/ PAPS K. I. Parczewski NRC/DPL-8/PBPE Allen Notafrancesco NRC/ DBL /BWPS D. D. Yue NRR/ DBL /BWRS Rita Sansons NRC/DSR0/ RIB R. W. Houston

  • NRC/ DBL HC0G Timothy Byam Illinois Power Co.

G. W. Smith MP&L R. W. Evans Enercon Services J. F. Hosler EPRI J. R. Langley GSU Marvin Morris GSU Emin Ortalan CEI Mike Manski MP&L i Franco Tamanini FMRC K. Nati Enercon John Richardson Enercon Services Inc.

F

  • Part Time 4

. -_- ~. = . - _ _ _ . . _ _.

Enclosure 2 1

4 t.

HEAT LOSS ANALYSIS FOR i

l MARK III CONTAINMENT GE0METRIES (POST TEST REVISION) 1 BY ERDEM URAL FRANCO IAMANINI ROBERT ZALOSH FACTORY MUTUAL RESEARCH CORP.

I HC0G/NRC MEETING, DECEMBER 19, 1985 i BETHESDA, MARYLAND 4

4 4

i I

- - _ . . _ _ . _ - . , .._-_..,.m . . _ . . - . . . _ _ _ _ ,__- _ - - _ _ . , _ _ _ ._ _. . . _ , . . , , _ . - . .- . _ , . _ . , . , _ _ _ _ _ _ _ . . . . . _ _ _

l 1

CONTENTS BACKGROUND OBJECTIVE TASK HISTORY APPROACH OVERVIEW CONTAINMENT MODEL DESCRIPTION (JULY SUBMITTAL) -

GAS TEMP S VELOCITY COMPUTATION MODES OF HEAT IRANSFER TO EACH HEAT SINK HEAT SINK MODELING MODEL IMPROVEMENTS INCORPORATED SINCE JULY SUBMITTAL CASES EVALUATED USING REVISED METHODOLOGY RESULTS ~

SUMMARY

CONCLUSION i

BACKGROUND CONVECTIVE AND RADIATIVE HEAT TRANSFER MODES DO NOT FO FROUDE MODELING REQUIREMENTS EXACTLY (I.E. SQUARE ROOT VARIATION OF FLUXES WITH SCALE).

IN REDUCED-SCALE EXPERIMENTS, HEAT TRANSFER BY ...

... CONVECTION IS GENERALLY HIGHER THAN NEEDED.

RADIATION IS HIGHER / LOWER FOR OPTICALLY THICK / THIN MEDIA.

THIS FACTOR ALONE WOULD LEAD TO GASTEMPERATURES IN A REDUCED-SCALE MODEL WHICH ARE LOWER THAN CORRESPONDING TEMPERATURES AT FULL SCALE,_IF ALL HEAT SINKS ARE ACCURATELY MODELED IN THE EXPERIMENT.

EXPECTATION THAT ABSENCE OF HEAT SINKDUE TO EQUIPMENT IN 1/4-SCALE FACILITY WOULD OFFSET HIGHER HEAT TRANSFER.

NEED TO QUANTIFY EXTENT OF COMPENSATING EFFECTS.

9 0

9 h

4 OBJECTIVE DETERMINE, BY ANALYSIS, THE RELATIONSHIP BETWEEN GAS

' TEMPERATURES PRODUCED IN THE 1/4-SCALE FACILITY AND THOSE EXPECTED IN MARK lll UNITS.

ANALYSIS NOT INTENDED TO PROVIDE ACCURATE ESTIMATE OF ABSOLUTE LOCAL TEMPERATURE LEVELS. HOWEVER, THE GLOBAL PARAMETER VALUES CALCULATED FOR THE 1/4-SCALE FACILITY SHOULD BE APPROXIMATELY EQUAL TO THOSE MEASURED IN 1/4-SCALE TESTS.

e e

0 e

1 I

1

~3-f

HEAT LOSS ANALYSIS DEVELOPMENT HISTORY MID 1984: FMRC DEVELOPED A COMPUTER CODE FOR THE CONTAINMENT LOADS WORKING GROUP (CLWG) TO PREDICT THE THERMAL ENVIRONMENT IN FULL SCALE MARK Ill CONTAINMENTS DUE TO HYDROGEN DIFFUSION FLAMES.

IHREE INDEPENDENT RESEARCH LABORATORIES (LANL, SNL, FMRC) OBTAINED COMPARABLE RESULTS.

EARLY 1985: UTILIZING METHODOLOGY DEVEL0 RED FOR CLWG, FMRC -

PERFORMED CALCULATIONS FOR 1/4-SCALE TEST FACILITY AND A FULL SCALE MARK lll PLANT FOR A SPECIFIC HYDROGEN RELEASE HISTORY TO BE TESTED.

MID 1985: 1/4-SCALE TESTS REVEALED TH'TA BACKGROUND TEMPERATURE AND PRESSURE INCREASE BY AN AMOUNT APPROXIMATELY 1/2 0F WHAT WAS CALCULATED, INDICATING INSUFFICIENT ACCOUNT OF HEAT LOSSES IN THE MATHEMATICAL MODEL.

LATE'1985: FMRC EFFORT FOR MORE REALISTIC MODELING OF HEAT LOSSES.

l 1

l

ANALYTICAL APPROACH ZONE MODELING OF DOMINANT COMPONENTS OF CONTAINMENT FLOW.

GLOBAL CONSERVATION OF MASS / ENERGY FOR SELECTED SUBSYSTEMS FLAMES, PLUMES, INNER WALL, OUTER WALL, EQUIPMENT, BACKGROUND GAS, ETC.

HEAT EXCHANGE RATES CALCULATED FROM AVAILABLE HEAT TRANSFER CORRELATIONS.

OVERALL APPROACH UNCHANGED IN REVISED METHODOLOGY.

  • 9 e

1

._g -_

O 9 ,

l Tow

/

@\

' /@@ Tiw N

y - .

O O O O N, O f O

\

-PLUME O O 0 x '

y FLAME

=- w 8 -

REVIEW 0F MODELING APPR0ACH DOCUMENTED IN JULY SUBMITTAL GAS TEMPERATURE / VELOCITY COMPUTATION FLAME / PLUME TEMPERATURES / VELOCITY BASED ON PREVIOUS MEASUREMENTS OF TEMPERATURE / VELOCITY DISTRIBUTIONS IN HYDROCARBON AXISYMMETRIC FREE PLUMES.

CONVECTIVE HEAT LOSS TO INNER WALL CALCULATED FROM FREE PLUME DATA FOR LOCAL VELOCITIES / TEMPERATURES, IN TURN USED AS INPUT TO FORCED HEAT TRANSFER CORRELATIONS.

BACKGROUND GAS TEMPERATURE CALCULATED BY MASS AND ENERGY BALANCESF O S, PRESCRIBED ADDITION AND CALCULATED LOSSES.

CONVECTIVE HEAT TRANSFER BASED ON NATURAL CONVECTION.

e 7

MODEL 0F JULY SUBMITTAL HEAT LOSS EXCHANGE PATHS FROM FLAMES FROM PLUMES FROM 8ACKGROUND gas IO OUTER WALL RADIATION NONE RADIATION CONVECTION (NATURAL)

CONDENSATION TO INNER WALL RADIATION CONVECTION RADIATION (FORCED) CONVECTION (NATURAL)

TO EQUIPMENT NONE CONVECTION RADIATION (FORCED) CONVECTION (NATURAL)

TO SUPPRESSION NONE NONE NONE POOL a

i MODEL OF JULY SUBMITTAL HEAT SINK MODELING INNER WALL / FLOORS SEMI-INFINITE SOLID (DRY SURFACE)

OUTER WALL 1/4 SCALE SEMI-INFINITE SOLID (INITIALLY DRY SURFACE)

MARK ll! UNIT SEMI-INFINITE COMPOSITE (INITIALLY DRY SURFACE)

(LINER ON CONCRETE) .

EQUIPMENT / GRATING ETC.

DISTRIBUTED UNIFORMLY IN ANNULUS ABOVE HCU FLOOR AND IN UPPER DOME THERMALLY THIN O

e c

_g_

KEY MODEL CHANGES SINCE JULY SUBMITTAL

'NEW FLAME / PLUME MODEL 2-D WALL PLUME CORRELATIONS WITH A CONSTANT WIDTH EQUAL TO SPARGER DIAMETER (OLD MODEL: FREE PLUMES WITH WIDTH A FUNCTION OF HEIGHT).

t -

CONVECTIVE FLAME HEAT FLUX TO INNER WALL 2 5 TO 3 W/CM2 IMPOSED ON A RECTANGLE DEFINED BY SPARGER DIAMETER AND THE FLAME HEIGHTS (OLD MODEL: NO DIRECT CONVECTIVE HEAT TRANSFER TO INNER WALL).

FLAME HEAT LOSS TO SUPPRESSION POOL (OLD MODEL: NO LOSS TO POOL).

l ' MIXED CONVECTION TO EQUIPMENT AVERAGE BACKGROUND GAS VELOCITIES UP TO 4 FT/S INDUCED BY THE PLUMES (OLD MODEL: QUIESCENT ENVIRONMENT).

MIXED (COMBINED) CONVECTION CORRELATIONS HAVE BEEN USED FOR BACKGR0l'HD HEAT LOSS TO EQUIPMENT (OLD MODEL: NATURAL CONVECTION HEAT TRANSFER).

n- , , , _ -. - , . - - - . - - - . - - - , _ . , - , . , - . . . - - . . , . . - - . , - - - - - , - - - -

h. MEE PL Uh1E
; . . . -
. . . . . j . ...

3, . . ._. .... {.

. .. . - . . . .s.

. ; .:1 .1

  • {

t I ' ,, .] :..

  • . .O. . ;,:l' . .. .

. :Jr  : - . -i;;n: .d :- - l 'h ~

. --Y

- a: . : :: .=: =q u-  : t --- =-

.: n: .  : . . :- =. =:: .:=1: =.

~"

2

N '- -: , .

. . ...  :.t-.T.d i..i . . . i. 5. . . :

i * *

'9

..,1'..

- \.. !;.nn

- g -. ..

i:[ ,

24: h - G.- gjn'- ; f- .7 .  ;

g /!  :..J l . J =- =\:,;.=.=1-

i
=:- : \l  ;

.  ; j

; . 1 . i

{ \ !  !  !

O

! .! -3.'..\ .: i  : .. ! l j 3:.

. ..: - . a .j q.

g q.

q

g 4 1
s  ;

---]

o  ;  ;- R.2 .

y  :

a . ' < '

o o 10 f\ fy .

t r / \-

g i/  ! \ Iscmssems, i o  !/. ~ \i W r I

i i

Een iss.kW..s.ums

. .)

k. g l

? . . . ._ _ _ . __ __ _ I. _ _ _ . . . _. _

. . .. _ y o

i  : i

.F-T '

i l 1 .

> 6' i

tu i j i. i l  ;

i i 8

i i i I i i ID.f.

i .

.  : . . .. ._ .- l - -

i/ i i ~1

\. .

l

. . _ . 4 e

1

/1 -

.i i i i N)L syAB CF 7_._ '

/ i AT $~,35 FT b '

O

\

O L 2 3 4 5 F w A 8t G E R I RR bi4 L 01.tTA N cs fro tt I tJ N E R WALL CFT]

W h

t s

WALL PLIM MODEL 9M tst.e

// - ___

, <# . s er ia e

/ \.s

~/

~

/

. )  :: / 7, I

PLUME / INNER WALL EXCHANCE AREA 4y 4- .

3 u -

7 y l L+r p+'~

'J # / FIAME/ INNER WALi /

S f EXCHANGE AREA ( g

+F e .

{g / FIAME / POOL -

EXCHANGE 9

. . . gp

.l ,( -

- -. y .

(

a 4

/

4 e

l

KEY MODEL CHANGES SINCE JULY SUBMITTAL (CONT.D)

  • EQUIPMENT CHARACTERISTIC SIZE FOR BACKGROUND LOSSES OLD VALUES: 1 FT F/S, 5-3/4 IN. 1/4 SCALE
(3 IN., 3/4 IN. RESPECTIVELY FOR PLUME LOSSES)

)

NEW VALUES: 3 IN. F/S, 3/4 IN. 1/4 SCALE ARE MORE REASONABLE (SAME VALUES FOR PLUME LOSSES)

  • BACKGROUND RADIATION IMPROVED TO ALLOW EXCHANGE AMONG GAS AND THREE SURFACES MODELED (OLD MODEL: SURFACE EMISSION AT OUTER WALL TEMPERATURE, WALL EMISSIVITY EQUAL TO THAT CALCULATED FOR BACKGROUND GAS).

' CONDENSATION / EVAPORATION CONDENSATION ON ALL THREE SURFACES IS ALLOWED.

EVAPORATION FROM ALL THREE SURFACES ALLOWED UNDER FAVORABLE CONDITIONS, I.E. HIGH SURFACE TEMPERATURE AND LOW BACKGROUND STEAM CONCENTRATI'N. O OLD MODEL: CONDENSATION ON OUTER WALL ONLY. NO EVAPORATION.

i,

O e KEY MODEL CHANGES SINCE JULY SUBMITTAL HEAT LOSS EXCHANGE PATHS FROM FLAMES FROM PLUMES FROM BACKGROUND GAS TO OUTER WALL RADIATION NONE RADIATION CONVECTION (NATURAL)

CONDENSATION / EVAPORATION TO INNER WALL RADIATION CONVECTION RADIATION CONVECTION (FORCED) CONVECTION (NATURAL)

CONDENSATION / EVAPORATION TO EQUIPMENT NONE CONVECTION RADIATION (FORCED) CONVECTION (MIXED)

CONDENSATION / EVAPORATION TO SUPPRESSION CONVECTION NONE NONE POOL NOTE:

UNDERLINED ITEMS REPRESENT CHANGES FROM JULY SUBMITTAL.

l

  • HEAT SINK MODELING ALL SURFACES ASSUMED TO HAVE SUFFICIENT WATER TO ALLOW FOR EVAPORATION REQUIR MENT. FILM THICKNESS NEGLECTED IN HEAT CONDUCTION CALCULATION. (0LD MODEL: DRY SURFACES.)

l 1

i

KEY MODEL CHANGES SINCE JULY SUBMITTAL (CONT.D)

  • 1/4 SCALE FACILITY SPECIFIC MODELING CHANGES VKyC IS ASSUMED TO BE ABOUT 4 TIMES GREATER THAN THE NOMINAL VALUE BASED ON PRELIMINARY 1/4-SCALE DATA EVALUATION (FURTHER EVALUATION IN PROGRESS).

CAMERA PURGES CAUSE AIR ADDITION TO THE TEST VOLUME AT THE RAT OF 0 013 KG/S CORRESPONDING TO 0 015 PSI / MIN

'H2 RELEASE HISTORY CHANGED TO REFLECT THE OBSERVED COMBUSTION PORTION OF TEST S-05 1 (0LD MODEL: DIFFUSION FLAMES EXIST FOR HYDROGEN INJECTION RATES > 0 4 LBS/SEC.)

i CASES CONSIDERED USING REVISED METHODOLOGY 1/4-SCALE FACILITY:

BASELINE CASE, COMPARISON WITH THE EXPERIMENT (IEST S-05 1) 1 MARK lli UNIT WITH CONCRETE CONTAINMENT:

TO EXAMINE THE EFFECT OF ACTUAL EQUIPMENT LOADINGS ON CONSERVATISM OF FROUDE SCALING EFFECT OF 0 15 Ls/SEC (F/S) TAIL APPENDED TO CASE A RELEASE.

b.

,_._._.--.._m, _ _ . _ . . _____m _. -- y - --- -

, 1.2............ ...

i L1 -

! LO -

i  : r, .

.9 lJ L  : .

4. . .

8

.s -

s:

a  : '

i c -

i .7 -

W  : 1 w

.a . .

~  : -

~, . -

.5 -

m -

h -

! @ .4 .-

M  : 9 .

e .3 -

i .

. 1 .

L  :

.2 .-

~

.1 .-

go 0

200 400 800 800 1000 1200 1400 1800 2000 2000 FlR.L SCALE TIME (SECONDS)

HYOR0 GEN RELEASE HISTORY

i 1

l MODEL VERIFICATION  ;

\

(TEST S 05 1) n

- m M N m

2-2 .. i . . . .

> O -

0 O . .x O Q. H Q. ~

O e 0 t- _ x 6--

M . "

mm .

" MO O I z / _ g

.

  • e O . -

. a r :l xx  : / -

/:

ea  :

. ww E

xx

- i-

l

!lI I

m m

a z

l  :
/ _

w 8

m 4

.ee/

. w -

l z

- // -

o p in co

... .... ... y 8 wa tsa

.. . . .., , / -

<~

u-

.e / mw

/ .

...e,,.*......

- w g ~N w

g

.. . . . . . s* 4 -

m

. . :n . m, ,,,,, ,,,,,

_ g n

z a

~

- D e u R ._

o w

x g'

O i -

m g a

- .= .s o a o_

(VISd) 380SS38d --!

- . - _ _ ~ . .. . - . .. . . _ - _ _ - _ _ _ _ _ _

=_

. 4 e

. . g g

j .

- g

. I  :

(

"5 l  !

i m EE R

~

BE2 I

!! l l(

!. / .i _ a 5

I / l W

/

,# l ym BmE

/ .

a-r# 4 N l  : r l Mm

/ .

/>

g < >i

/

As

  • D g.g ,

w

. L.3 I E I B B l l e

B 3 g n a a a a a e a e WISc0 3HASS3Bd d 3

18 A l .

MODELING OF POOL HEAT LOSSES ASSUMPTION OF:

1 EXCHANGE AREA EQUAL TO D2 (WHERE D IS SPARGER DIAMETER).

2 HEAT FLUX TO POOL (PER UNIT SURFACE) EQUAL TO HEAT FLUX FROM FLAME TO INNER WALL (APPROXIMATELY CONSTANT WITH HYDROGEN FLOW AND SCALE).

LEADS TO:

1 FRACTIONAL LOSS TO POOL AT 1/4 SCALE EQUAL TO ABOUT 9% AT PEAK RELEASE AND 54% DURING 15 LBS/SEC TAIL.

2 POOL LOSSES AT FULL-SCALE ABOUT 4 5% AND 27% RESPECTIVELY (HEAT FLUX INVARIANT WITH SCALE, EXCHANGE AREA SCALED GEOMETRICALLY).

FRACTIONAL HEAT LOSS AT PEAK RELEASE FOR 1/4 SCALE (~9%) APPEARS REASONABLE, LOSS AT LOW FLOW TAIL (~ 54% ) IS NOT.

7 i

-. - - . . - . . __m__ . . . , . - - - . _ . . . , . __ ,_ _ , . ,-_ - .-

4 MODELING OF P0OL HEAT LOSSES (CONT.D)

W PRESENT CALCULATIONS 1

ELIMINATE UNREASONABLY HIGH POOL LOSSES AT LOW FLOW BY SETTING POOL HEAT LOSS EQUAL TO CONSTANT FRACTION OF RELEASE RATE.

2 SHOW EFFECT OF 9% AND 23% HEAT LOSS AT 1/4 SCALE.

VERSION UNDER DEVELOPMENT:

MORE REALISTIC MODEL WILL ESTIMATE POOL LOSS AS 6P00L " 0"X A UNTIL LOSS FRACTION (% LOSSpoot = 6/6 TOT) EXCEEDS SELECTED THRESHOLD (~25%). FROM THAT POINT ON % LOSS IS HELD AT THRESHOLD VALUE.

3 l

l t

1 l

l l

l

_. - _ - _ - . - _ _ , _ . ._.-----I--------------------- - - - - - - ~ ~ - ~ ~

e B s -- -,

3

-I l l

. g i g .

g .. g . g s

.J O O O  :

.c-

. O O O  : l p A A A .

(( g O O O  !

- - - )

M m M

I mmm .l m O O O
.

m I J I  : .

o N M N

!I g

l -

I & &

w w w  !.t -

!l _

8 il

I N,  :.l .

m m

.  : l

.il . -

w 1I il

. J e

g lll il gy

- >=4

  • e p.

s HW CD c,o  : W C53 il m -I o

I ..

8 nm ~-

m e j'***: . .,.J L.LJ

- O

-E Il =

b gam CE

...# M

.......! . Z O

O W

/ * * .5 . &

  • p....** .

J t**;

  • D Q

I Q )

%. N <

O

. 1 . t **...........***..M

. f e t 2*.

t .

Q R "

H E R 9 a a a E' J

GD 3801VH3dW31 SVD 8001.4 03H d-e

1 800 . - . . .

i i i i .

HIGH LOSS TO POOL 700 -

~

1/4 SCALE (23% LOSS TO POOL)

.................. M N (11% LOSS TO P OOL )"

! gm i:. _ _ ___ gggg) w (23% LOSS TO POOL) .

M i

gg H

! e w @ -

M H -

N

' M .

-a;:  : -

O  :

g 300 -

i.

............... ...........g ,

a g' ........................................................................................

kM -  :

i.l 100 -

0 ' ' ' ' ' ' ' ' ' '

O 1000 2000 3000 4000 5000 8000 7000 8000 9000 10000 11000 12000 13000 14000 15000 FULL SCALE TIME (SECONDS)

WALL PLUME CALCULATIONS REV - E121085

333 O O O O O O E ' '

  • f f

fi . . . .

l

[ -

O O O [ *

> H H *""* ."

,,. M M m 1 Wmm

  • 1 -

- O O O  : }

a ,,

, \ -

n-- 1* -

mM M

. NM N

  • l I I O

i -

8

} -

.\

g

. W $

u

= \\

o  :  :

. a  : l { n A  :

o l

Rw e e

s  :

l

\ -

*\ m M

v) ,: l

!  ; I w

\ Z C ~ e-o tn

. -I

  • s P- CD
\ . Cg 5 1. \

CD m,_.

32

. =c * -

. W l

\\*

- s

.\ >

.\ .

W i\ - "

- , 8, m

  • \

z O

  • e-.

. e

'. of H

-J

\\ -

$ B.

. . a

.) -

g a

W C '?""....p .: e .

. . . . i .

C _'- . .

o E, E E R- 8 a

G) 3801VH3dN31 SYS ON0080)OY8 d

=

l SENSITIVITIES STUDIES CASE 1 INCREASE LINE PLUME LENGTH TO 1/9TH OF INNER WALL CIRCUMFERENCE, IN AN INTERMEDIATE VERSION OF THE MODEL. THE RELATIVE DIFFERENCES BETWEEN GRAND GULF AND 1/4-SCALE PRACTICALLY DID NOT CHANGE.

CASE 2 EFFECT OF KfC SEEN IN THE FOLLOWING PLOTS.

E b

a00 4

700 -

1/4 SCALE : 1(RC NTED 1/4 SCALE KRC 3 N -

a00 -

l ..

o I

i 1 g 500 t-3 <

I .

! . sh 4ao -

4 ~ .m i U.1

! u, .

a -

g 300 -  ;-

o -

a u- -

, ~3 ............................-----.-.--.-------------~~~~~~~~-------~::

u 200 -

Z i.

4' 1

100 -

O- ' ' ' ' ' ' i i i.i.i.i.,,,.

O 1000 2000 3000 4000 5000 8000 7000 8000 9000100001100012000130001m im FULL SCALE TIME (SECONDS) ll WALL PLUME CALCULATIONS REV - E121085 1

I,

2'io . .

'l

- 1/4 SCALE : KRC CALC 1 LATED 1/4 SCALE : KRC BOOK t

6 g 200 -

i ..

, < n .

g g, y_. . . . . . . . . . . . . . . . . . . . . . . . . . . --

8 w

p--

~

m p::

m. <

a .

9 a \-.* *****............

2 O

cr lE '-

O x

u -

m 3g . . . . . ...i a . i . i . i . i . i . i .

0 1000 2000 3000 4000 5000 8000 7000 0000 9000 10000 11000 12000 13000 14000 15000 F/S TIME (SEC) l WALL PLUME CALCULATIONS REV - E121085

SUMMARY

CALCULATIONS MADE FOR A MARK Ill UNIT AND 1/4-SCALE FACILITY.

BASED ON CURRENT MODEL PREDICTIONS, PEAK HCU FLOOR GAS TEMPERATURES CALCULATED FOR THE MARK Ill UNIT ARE EQUIVALENT TO OR SLIGHTLY NONCONSERVATIVE RELATIVE TO THOSE FOR THE 1/4-SCALE FACILITY, DEPENDING ON THE TREATMENT OF POOL HEAT LOSSES.

GAS TEMPERATURE LEVELS ACHIEVED DURING LONG TAIL AT 0 15 LaS/SEC ARE AFFECTED BY WALL PROPERTY ASSUMPTIONS. FURTHER EVALUATION ,

IN PROGRESS.

I i

e i

M

_ . _ . . ,_,______.m._ . - , _ . - . , _ _ . - ...,-...y,._.___ . _ _ _ _ _ _ . , . _ . - _ . _ . _ . . _ . - _ , , , , , _ - _ _ . - - . . _ _ - , _ , - . . _ , , _ , , . , , , . , _ , _ , _ . . . - _ . _ -

. _.. _,. . . - . .. .. _ _ .. - . . . - - _ _ ~

~ _ - - - ._ . _ _ - - - _ . _ - _ -

4 CONCLUSION WITHIN MODEL ACCURACY THE 1/4-SCALE FACILITY APPEARS TO PROVID A REASONABLE SIMULATION OF THERMAL ENVIRONMENT IN MARK ll!

CONTAINMENTS.

IMPROVED WALL THERMAL PROPERTY' DATA FOR ACTUAL PLANT ARE NEED TO PROVIDE QUANTITATIVE ASSESSMENT OF APPLICABILITY OF 1/4-SCALE DATA TO FULL SCALE CONDITIONS. o t