ML20106E932

From kanterella
Jump to navigation Jump to search
1 to Updated Final Safety Analysis Report, Chapter 11, Tables
ML20106E932
Person / Time
Site: Catawba  Duke Energy icon.png
Issue date: 04/02/2020
From:
Duke Energy Carolinas
To:
Office of Nuclear Reactor Regulation
Shared Package
ML20106E897 List:
References
RA-19-0423
Download: ML20106E932 (53)


Text

Catawba Nuclear Station UFSAR Appendix 11A. Tables Appendix 11A. Tables

Catawba Nuclear Station UFSAR Table 11-1 (Page 1 of 1)

(22 OCT 2001)

Table 11-1. Parameters Used in Calculating Maximum Reactor Coolant Activities

1.

Core thermal power, Mwt 3,565

2.

Failed fuel fraction

.01

3.

Reactor coolant volume, ft3 11,293

4.

Purification flow rate (normal), gpm 75

5.

Effective cation demineralizer flow, gpm 7.5

6.

Fission product escape rate coefficients: (sec-1)

a. Noble gases 6.5 x 10-8
b. Br, Rb, I, and Cs 1.3 x 10-8
c. Mo 2.0 x 10-9
d. Te 1.0 x 10-9
e. Sr and Ba 1.0 x 10-11
f. All others 1.6 x 10-12
7.

Mixed bed demineralizer decontamination factors:

a. Noble gases, Cs-134, 136, 137, Y-90, 91, and Mo-99 1
b. All other isotopes 10
8.

Cation bed demineralizer decontamination factors:

a. Cs-134, Cs-137, Y-90, and Y-91 10
b. All others 1
9.

Volume Control Tank stripping fractions:

Kr-85 2.3 x 10-5 Kr-85m 2.7 x 10-1 Kr-87 6.0 x 10-1 Kr-88 4.3 x 10-1 Xe-131m 1.0 x 10-2 Xe-133 1.6 x 10-2 Xe-133m 3.7 x 10-2 Xe-135 1.8 x 10-1 Xe-135m 8.0 x 10-1 Xe-138 1.0

10.

Initial Boron Concentration

a. Bo (initial cycle), ppm 905
b. Bo (equilibrium cycle), ppm 1100

Catawba Nuclear Station UFSAR Table 11-2 (Page 1 of 1)

(22 OCT 2001)

Table 11-2. Design Basis Reactor Coolant Radioactivity Concentrations Isotope Activity

µ gm Ci Isotope Activity

µ gm Ci H-3 2.5 Cs-136 5.5 Br-84 4.5 x 10-2 Cs-137 1.5 Rb-88 3.9 Cs-138 1.0 Rb-89 1.1 x 10-1 Ba-140 4.3 x 10-3 Sr-89 3.3 x 10-3 La-140 1.5 x 10-3 Sr-90 1.8 x 10-4 Ce-144 4.5 x 10-4 Sr-91 2.0 x 10-3 Pr-144 4.5 x 10-4 Sr-92 7.8 x 10-4 Kr-85 1.0 x 101 Y-90 2.2 x 10-4 Kr-85m 2.2 Y-91 6.1 x 10-3 Kr-87 1.3 Y-92 7.5 x 10-4 Kr-88 3.9 Zr-95 6.9 x 10-4 Xe-131m 1.9 Nb-95 7.0 x 10-4 Xe-133 3.0 x 102 Mo-99 5.7 Xe-133m 3.6 I-131 2.5 Xe-135 7.6 I-132

.9 Xe-135m

.9 I-133 4.2 Xe-138

.7 I-134

.5 Cr-51 4.2 x 10-3 I-135 2.2 Mn-54 3.4 x 10-4 Te-132

.26 Mn-56 1.6 x 10-2 Te-134 3.1 x 10-2 Co-58 1.1 x 10-2 Cs-134 2.2 Co-60 1.2 x 10-3

Catawba Nuclear Station UFSAR Table 11-3 (Page 1 of 1)

(22 OCT 2001)

Table 11-3. Parameters Used in Calculating Normal Primary and Secondary Coolant Activities

1.

Core thermal power, Mwt 3,565

2.

Failed fuel fraction

.0012

3.

Reactor coolant volume, ft3 11,293

4.

Purification flow rate (normal), gpm 75

5.

Effective cation demineralizer flow, gpm 7.5

6.

Shim bleed rate (yearly average), gpm

.7

7.

Volume control tank stripping fractions:1 Kr-83m 0.0 Kr-85m

.32 Kr-85

.23 Kr-87

.60 Kr-88

.43 Kr-89 0.0 Xe-131m

.25 Xe-133m

.26 Xe-133

.25 Xe-135m

.80 Xe-135

.30 Xe-137 0.0 Xe-138 1.0

8.

Primary to secondary leak rate, lbs/day 100

9.

Steam flow rate, lbs/hr 1.588 x 107

10.

Water mass in each steam generator

- Liquid 98,000

- Steam 8,500

11.

Steam generator blowdown flow rate, gpm 280

12.

Flow rate thru condensate demineralizer, lbs/hr 1.096 x 107 Note:

1. Assumes 40% stripping efficiency

Catawba Nuclear Station UFSAR Table 11-4 (Page 1 of 3)

(15 NOV 2007)

Table 11-4. Primary and Secondary Activity During Normal Operation HISTORICAL INFORMATION IN ITALICS BELOW NOT REQUIRED TO BE REVISED Primary Coolant

µ gm Ci Secondary Coolant

µ gm Ci Isotope Water Water Steam H-3 1.0 1.0 E-3 1.0 E-3 Br-83 6.18E-3 7.69E-8 7.69E-11 Br-84 3.47E-3 2.04E-8 2.04E-11 Br-85 4.05E-4 3.06E-10 3.06E-13 Rb-86 8.90E-5 4.88E-9 4.88E-12 Rb-88 2.69E-1 1.14E-6 1.14E-9 Sr-89 3.62E-4 1.28E-8 1.28E-11 Sr-90 1.03E-5 2.55E-10 2.55E-13 Y-90 1.29E-6 5.42E-11 5.42E-14 Sr-91 7.69E-4 1.68E-8 1.68E-11 Y-91 6.62E-5 1.92E-9 1.92E-12 Y-91m 4.77E-4 1.31E-8 1.31E-11 Y-93 4.01E-5 8.30E-10 8.30E-13 Zr-95 6.21E-5 2.56E-9 2.56E-12 Nb-95 5.18E-5 2.56E-9 2.56E-12 Mo-99 8.99E-2 2.70E-6 2.70E-9 Tc-99m 5.86E-2 2.75E-6 2.75E-9 Ru-103 4.66E-5 1.28E-9 1.28E-12 Rh-103m 5.94E-5 2.58E-9 2.58E-12 Ru-106 1.03E-5 2.55E-10 2.55E-13 Te-125m 3.00E-5 6.39E-10 6.39E-13 Te-127m 2.90E-4 6.38E-9 6.38E-12 Te-127 1.01E-3 2.53E-8 2.53E-11 Te-129m 1.45E-3 3.84E-8 3.84E-11 Te-129 2.10E-3 7.53E-8 7.53E-11 I-130 2.47E-3 4.12E-8 4.12E-10 Te-131m 2.76E-3 7.18E-8 7.18E-11 Te-131 1.47E-3 2.83E-8 2.83E-11

Catawba Nuclear Station UFSAR Table 11-4 (Page 2 of 3)

(15 NOV 2007)

Primary Coolant

µ gm Ci Secondary Coolant

µ gm Ci Isotope Water Water Steam I-131 2.87E-1 5.26E-6 5.26E-8 Te-132 2.88E-2 6.71E-7 6.71E-10 I-132 1.29E-1 2.13E-6 2.13E-8 I-133 4.33E-1 7.58E-6 7.58E-8 I-134 6.23E-2 4.88E-7 4.88E-9 Cs-134 2.59E-2 1.43E-6 1.43E-9 I-135 2.32E-1 3.66E-6 3.66E-8 Cs-136 1.37E-2 7.46E-7 7.46E-10 Cs-137 1.87E-2 1.03E-6 1.03E-9 Ba-137m 2.16E-2 1.38E-6 1.38E-9 Ba-140 2.29E-4 6.46E-9 6.46E-12 La-140 1.63E-4 4.90E-9 4.90E-12 Ce-141 7.26E-5 2.56E-9 2.56E-12 Ce-143 4.40E-5 1.42E-9 1.42E-12 Pr-143 5.21E-5 1.29E-9 1.29E-12 Ce-144 3.41E-5 1.28E-9 1.28E-12 Pr-144 4.43E-5 1.45E-10 1.45E-13 Cr-51 1.97E-3 5.77E-8 5.77E-11 Mn-54 3.20E-4 1.28E-8 1.28E-11 Fe-55 1.65E-3 5.10E-8 5.10E-11 Fe-59 1.04E-3 3.84E-8 3.84E-11 Co-58 1.66E-2 5.11E-7 5.11E-10 Co-60 2.07E-3 5.74E-8 5.74E-11 Np-239 1.29E-3 4.10E-8 4.10E-11 Kr-83m 2.84E-2 7.41E-9 Kr-85m 1.26E-1 3.37E-8 Kr-85 8.91E-3 2.36E-9 Kr-87 7.41E-2 1.87E-8 Kr-88 2.35E-1 6.11E-8 Kr-89 6.76E-3 1.79E-9

Catawba Nuclear Station UFSAR Table 11-4 (Page 3 of 3)

(15 NOV 2007)

Primary Coolant

µ gm Ci Secondary Coolant

µ gm Ci Isotope Water Water Steam Xe-131m 1.99E-2 5.30E-9 Xe-133m 1.12E-1 2.99E-8 Xe-133 5.53 1.45E-6 Xe-135m 1.71E-2 4.48E-9 Xe-135 3.53E-1 9.23E-8 Xe-137 1.22E-2 3.19E-9 Xe-138 5.74E-2 1.48E-8

Catawba Nuclear Station UFSAR Table 11-5 (Page 1 of 1)

(27 MAR 2003)

Table 11-5. Tritium Source Terms

[HISTORICAL INFORMATION NOT REQUIRED TO BE REVISED]

Tritium Source Expected Release to Coolant, Ci/yr Initial Cycle Equilibrium Cycle Ternary fission 1050 1050 Burnable poison rods 152 0

Control rods 70 70 Soluble boron 222 309 Soluble lithium 107 107 Deuterium 3

3 Total 1604 1539

Catawba Nuclear Station UFSAR Table 11-6 (Page 1 of 2)

(22 OCT 2001)

Table 11-6. Maximum Expected Daily Flows to Liquid Radwaste System Subsystem Max. Daily Flow (GPD)

(2 Units)

% NC Activity REACTOR COOLANT DRAIN TANK (per unit)

RCP Seal Leakoffs 3/unit @ 3.03gph each, 1/unit @ 0.5GPM (failed) 1876 Valve Leakoffs 45 valves/unit @ 1GPD each 90 Total 1966 100.

WASTE DRAIN TANK Equipment Flushes (3 x component volume) 1800 3.3 Through Line Leakage 100 1.0 Total 1900 3.2 WASTE EVAPORATOR FEED TANK Reactor Coolant Leakage in Containment 640 100.

Cold Lab Drains & Hot Lab Rinses 200

.2 Sample Sink Drains 80 100.

Equipment Drains 600

.1 Valve Leakoffs (100 valves @ 1GPD) 100

10.

Through Line Leakage 100

1.

Total 1720 42.9 LAUNDRY AND HOT SHOWER TANK SUBSYSTEM Showers and Laundry Machines 1350 Lab Dishwasher 120 Lavatory Sinks 100 Total 1570 Note 1 FLOOR DRAIN TANK (includes FDT Sumps A & B) 50% of Aux. Bldg. Floor Drains 1000

10.

Ice Condenser Defrost 50

0.

Through Line Leakage 100

1.

Groundwater Inleakage 10

0.

Decon Sinks - Aux. Bldg. & Reactor Bldg.

200

1.

Total 1360 7.6 MIXING AND SETTLING TANK

Catawba Nuclear Station UFSAR Table 11-6 (Page 2 of 2)

(22 OCT 2001)

Subsystem Max. Daily Flow (GPD)

(2 Units)

% NC Activity Ultrasonic Cleaner and Turbulator Drains 100 Total 100 100.

CONTAINMENT VENT. UNIT CONDENSATE DRAIN TANK Unit 1 - Summer Operation w/Purge 16800 Unit 2 - Normal Operation 9600 Total 26400

.0 NON-RADIATION AREA FDT SUMPS C & D All Aux. Bldg. Ventilation Unit Condensate (summer max. operation) 26450 50% Aux. Bldg. Floor Drains 1000 Total 27450

.0 STEAM GENERATOR DRAIN TANK Annual Flow (gallons)

Drain Steam Generator Contents 25000 See Table 11-4 Flush Steam Generator 75000 Total 100000 Note:

1. From Table 2-20 of Nureg-0017

Catawba Nuclear Station UFSAR Table 11-7 (Page 1 of 1)

(22 OCT 2001)

Table 11-7. Makeup Demineralized Water Chemistry. (Requirements for WL Evaporator Distillate Suitable for Recycle) pH 6.0 - 8.0 Conductivity, mmho 0.5 max, 0.1 avg Phosphate (PO4 ), ppm 10.0 max Chloride, ppm 0.15 max Fluoride, ppm 0.15 max Iron, ppm 0.01 max Copper, ppm 0.01 max Silica, ppm 0.02 max, 0.01 avg Oxygen, ppm 0.1 max Carbon Dioxide, ppm 2.0 max Total Solids, ppm 0.5 max

Catawba Nuclear Station UFSAR Table 11-8 (Page 1 of 16)

(24 APR 2006)

Table 11-8. Liquid Radwaste System Component Design Parameters Reactor Coolant Drain Tank Subsystem Parameters Reactor Coolant Drain Tank Heat Exchanger Number per unit 1

Type Horizontal Shell & U-Tube Heat transfer rate at normal conditions, BTU/hr 2.23 x 106 Estimated UA, BTU/hr - F 7.0 x 104 Shell Side Data:

Design pressure, psig 150 Design temperature, °F 250 Pressure loss at operating conditions, psid 15 Nozzle size, inches 4

Material of construction Carbon Steel Fluid circulated Component cooling water Fouling factor, hr-ft2 - F/BTU

.0005 Flow, 1bm/hr 1.12 x 105 (225 gpm)

Inlet temperature, °F 105 Outlet temperature, °F 125 Tube Side Data:

Design pressure, psig 150 Design temperature, °F 250 Pressure loss at operating conditions, psid 10 Nozzle size, inches 3

Material of construction Stainless Steel Fluid circulated Borated reactor coolant Fouling factor, hr-ft2 - F/BTU

.0003 Flow, 1bm/hr 4.46 x 104 Inlet temperature, °F 180 Outlet temperature, °F 130 Reactor Coolant Drain Tank Number per unit 1

Internal volume, gal.

350 Design pressure, internal, psig 100

Catawba Nuclear Station UFSAR Table 11-8 (Page 2 of 16)

(24 APR 2006)

Design pressure, external, psig 15 Operating pressure range, psig 2-5 Cover gas Hydrogen or Nitrogen Normal operating temperature, °F 170 or less Material of construction Stainless Steel Design temperature, °F 250 Reactor Coolant Drain Tank Pumps Number per unit 2

Type Canned centrifugal Design pressure, psig 150 Design temperature, °F 200 Material of construction Stainless steel Design flow, gpm 100 Developed head @ design flow, ft 300 Incore Instrumentation Room Sump Pumps Number 1 (per unit)

Type Vertical sump pump Design pressure, psig 150 Design temperature, °F 180 Material of construction Stainless steel Design flow, gpm 50 Head @ design flow, ft 63 Containment Floor and Equipment Sump Pumps Number 4 (per unit)

Type Vertical sump pump Design pressure, psig 150 Design temperature, °F 180 Material of construction Stainless steel Design flow, gpm 50 Head @ design flow, ft 37 Waste Drain Tank Subsystem Parameters Waste Drain Tank

Catawba Nuclear Station UFSAR Table 11-8 (Page 3 of 16)

(24 APR 2006)

Number 1 (for both units)

Internal volume, gal.

5,000 Design pressure; internal, psig 15 Design temperature, °F 200 Material of construction Stainless steel Type Vertical with diaphragm Waste Drain Tank Pump Number 2 (for both units)

Type Canned centrifugal Design pressure, psig 150 Design temperature, °F 200 Material of construction Stainless steel Design flow, gpm Condition 1: 35 Condition 2: 100 Developed head, ft Condition 1: 250 Condition 2: 200 Waste Evaporator Feed Tank Number 1 (for both units)

Internal volume, gal.

5,000 Design pressure; internal, psig 15 Design temperature, °F 200 Material of construction Stainless steel Type Horizontal Waste Evaporator Feed Pump Number 2 (for both units)

Type Canned centrifugal Design pressure, psig 150 Design temperature, °F 200 Material of construction Stainless steel Design flow, gpm Condition 1: 35 Condition 2: 100 Developed head, ft Condition 1: 250 Condition 2: 200

Catawba Nuclear Station UFSAR Table 11-8 (Page 4 of 16)

(24 APR 2006)

Waste Evaporator Feed Filter Number 2 (for both units)

Type Disposable Cartridge Design pressure, psig 150 Design temperature, °F 200 Design flow, gpm 35 Pressure loss at design flow, psid Fouled -20 Pressure loss at design flow, psid Unfouled -5 Retention, percent @ 25 micron practical size 98 (100% retention at 49 micron)

Material of construction Stainless steel Waste Evaporator Package Number 1 (for both units)

Capacity 15 gpm Bottoms concentration 10 - 2500 ppm B (as dilute boric acid)

Bottoms concentration 7000 - 21,000 ppm B Waste Evaporator Condensate Demineralizer Number 1 (for both units)

Type Flushable Resin Type ROHM & HAAS amberlite 1RN-150 or equivalent (H+, OH-form)

Design pressure; internal, psig 150 Design temperature, °F 200 Resin volume, ft3 30 Design flow - through, gpm 35 Material of construction Stainless steel Waste Evaporator Reagent Tank Number 1 (for both units)

Internal volume, gal.

5 Design pressure; internal, psig 150 Design pressure, external Atmospheric Design temperature, °F 200 Material of construction Stainless steel Type Vertical Waste Evaporator Condensate Filter

Catawba Nuclear Station UFSAR Table 11-8 (Page 5 of 16)

(24 APR 2006)

Number 1 (for both units)

Type Disposable Cartridge Design pressure, psig 150 Design temperature, °F 200 Design flow, gpm 35 Pressure loss at design flow, psid Fouled - 20 Unfouled - 5 Retention, percent @ 25 micron particle size 98 (100% retention at 49 micron)

Material of construction Stainless steel Recycle Monitor Tanks Number 2 (for both units)

Internal volume, gal.

5000 Design pressure; internal, psig 15 Design temperature, °F 200 Material of construction Stainless steel Type Vertical Recycle Monitor Tank Pump Number 2 (for both units)

Type Canned centrifugal Design pressure, psig 150 Design temperature, °F 200 Material of construction Stainless steel Design flow, gpm Condition 1: 35 Condition 2: 100 Developed head, ft Condition 1: 250 Condition 2: 200 Waste Evaporator Condensate Return Unit Number for both units 1

Receiver volume, gal.

100 Design pressure, psig 200 Design temperature, °F 350 Number of pumps 2

Design flow, gpm 25

Catawba Nuclear Station UFSAR Table 11-8 (Page 6 of 16)

(24 APR 2006)

Design head, ft 65 Waste Evaporator Feed Tank Sump Pump Number 2 (for both units)

Type Vertical sump pump Design pressure, psig 150 Design temperature, °F 180 Material of construction Stainless steel Design flow, gpm 50 Head at design flow, ft 84 Laundry and Hot Shower Tank Subsystem Parameters Laundry and Hot Shower Tank Number 1 (for both units)

Internal volume, gal.

10,000 Design pressure; internal, psig 15 Design temperature, °F 200 Material of construction Stainless steel Type Horizontal Laundry and Hot Shower Tank Pre-strainer Number 1 (for both units)

Type Duplex basket Design pressure, psig 50 Design temperature, °F 200 Maximum flow, gpm 400 Pressure loss at maximum flow (65% plugged),

psig 5

Strainer mesh number 20 Material of construction Stainless steel Laundry and Hot Shower Tank Strainer Number 1 (for both units)

Type Singlex basket Design pressure, psig 150 Design temperature, °F 200 Design flow, gpm 35

Catawba Nuclear Station UFSAR Table 11-8 (Page 7 of 16)

(24 APR 2006)

Pressure loss at design flow (65% plugged), psig 5

Strainer mesh number 40 Material of construction Stainless steel Laundry and Hot Shower Tank Pump Number 1 (for both units)

Type Centrifugal with mechanical seals Design pressure, psig 150 Design temperature, °F 200 Material of construction Stainless steel Design flow, gpm Condition 1: 35 Condition 2: 100 Developed head, ft Condition 1: 250 Condition 2: 200 Laundry and Hot Shower Tank Primary Filters A and B Number 2 (for both units)

Type Disposable Cartridge Design pressure, psig 150 Design temperature, °F 200 Design flow, gpm 35 Pressure loss at design flow, psid Fouled - 20 Unfouled - 5 Retention, percent @ 25 microns particle size 98 (100% retention at 49 microns)

Material of construction Stainless steel Laundry and Hot Shower Tank Secondary Filter Number 1 (for both units)

Type Disposable Cartridge Design pressure, psig 150 Design temperature, °F 200 Design flow, gpm 35 Pressure loss at design flow, psid Fouled - 20 Unfouled - 5 Retention, percent @ 3 microns particle size 98 (100% retention at 23 microns)

Material of construction Stainless steel

Catawba Nuclear Station UFSAR Table 11-8 (Page 8 of 16)

(24 APR 2006)

Laundry and Hot Shower Tank Carbon Filter Number 1 (for both units)

Type Flushable Design pressure; internal, psig 150 Design temperature, °F 200 Activated carbon volume, ft3 50 Design flow-through, gpm 35 Material of construction Stainless steel Bed depth, ft 4

Waste Monitor Tank Demineralizer Number 1 (for both units)

Type Flushable Resin type Duolite S-37 Design pressure; internal, psig 150 Design temperature, °F 200 Resin volume, ft3 30 Design flow-through, gpm 35 Material of construction Stainless steel Waste Monitor Tank Filter Number 1 (for both units)

Type Disposable Cartridge Design pressure, psig 150 Design temperature, °F 200 Design flow, gpm 35 Pressure loss at design flow, psid Fouled - 20 Unfouled - 5 Retention, percent @ 25 micron particle size 98 (100° retention at 49 micron)

Material of construction Stainless steel Waste Monitor Tanks Number 2 (for both units)

Internal volume, gal.

5000 Design pressure; internal, psig 15

Catawba Nuclear Station UFSAR Table 11-8 (Page 9 of 16)

(24 APR 2006)

Design temperature, °F 200 Material of construction Stainless steel Type Horizontal Waste Monitor Tank Pumps Number per unit 2 (for both units)

Type Canned centrifugal Design pressure, psig 150 Design temperature, °F 200 Material of construction Stainless steel Design flow, gpm Condition 1: 35 Condition 2: 100 Developed head, ft Condition 1: 250 Condition 2: 200 Floor Drain Tank Subsystem Parameters Floor Drain Tank Number 1 (for both units)

Internal volume, gal.

10,000 Design pressure; internal, psig 15 Design temperature, °F 200 Material of construction Stainless steel Type Horizontal Floor Drain Tank Pre-strainer A Number 1 (for both units)

Type Duplex Design pressure, psig 50 Design temperature, °F 200 Maximum flow, gpm 400 Pressure loss at maximum flow (65% plugged),

psig 5

Strainer mesh number 20 Material of construction Stainless steel Floor Drain Tank Pre-strainer B Number 1 (for both units)

Catawba Nuclear Station UFSAR Table 11-8 (Page 10 of 16)

(24 APR 2006)

Type Duplex Design pressure, psig 50 Design temperature, °F 200 Maximum flow, gpm 50 Pressure loss at maximum flow (65% plugged),

psig 1.5 Strainer mesh number 20 Material of construction Stainless steel Floor Drain Tank Strainer Number 1 (for both units)

Type Singlex basket Design pressure, psig 150 Design temperature, °F 200 Design flow, gpm 35 Pressure loss at design flow (65% plugged), psig 5

Strainer mesh number 40 Material of construction Stainless steel Floor Drain Tank Pump Number 1 (for both units)

Type Centrifugal Design pressure, psig 150 Design temperature, °F 200 Material of construction Stainless steel Design flow, gpm Condition 1: 35 Condition 2: 100 Developed head, ft Condition 1: 250 Condition 2: 200 Floor Drain Tank Filter Number 1 (for both units)

Type Disposable Cartridge Design pressure, psig 150 Design temperature, °F 200 Design flow, gpm 35

Catawba Nuclear Station UFSAR Table 11-8 (Page 11 of 16)

(24 APR 2006)

Pressure loss at design flow, psid Fouled - 20 Unfouled - 5 Retention, percent @ 25 micron particle size 98 (100% retention at 49 micron)

Material of construction Stainless steel Floor Drain Tank Sump Pumps 1A1, 1A2, 1B1, 1B2 Number 4 (for both units)

Type Vertical sump pump Design pressure, psig 150 Design temperature, °F 200 Material of construction Stainless steel Design flow, gpm 50 Head at design flow, ft 42 Floor Drain Tank Sump Pumps 2C1, 2C2, 1D1, 1D2 Number 4 (for both units)

Type Vertical sump pump Design pressure, psig 150 Design temperature, °F 200 Material of construction Stainless steel Design flow, gpm 50 Head at design flow, ft 91 Auxiliary Feedwater Pump Pit Sump Pump Number per unit 4

Type Vertical Sump Pump Design pressure, psig 150 Design temperature, °F 200 Material of construction Stainless steel Design flow, gpm 50 Head at design flow, ft 90 Upper Head Injection Room Sump Pump Number 1 per unit Type Vertical sump pump Design pressure, psig 50 Design temperature, °F 125

Catawba Nuclear Station UFSAR Table 11-8 (Page 12 of 16)

(24 APR 2006)

Material of construction Stainless steel Design flow, gpm 25 Head at design flow, ft 18 Containment Spray and Residual Heat Removal Pump Room Sump Pump Number per unit 2

Type Vertical sump pump Design pressure, psig 150 Design temperature, °F 180 Material of construction Stainless steel Design flow, gpm 100 Head at design flow, ft 100 Sump Pump Bearing Lube Injection Strainers (for Auxiliary Fdw. Pump Pit Sump Pumps and NS & ND Pump Room Sump Pumps)

Number per unit 6

Type Centrifugal Separator Design pressure, psig 100 Design temperature, °F 200 Available pressure drop - normal psig 40 Maximum psig 52 Minimum psig 20 Flow range, gpm 0.5 to 1.5 at clean water outlet Required particle retention size, in

.003 Material of construction Stainless steel Mixing and Settling Tank Subsystem Parameters Mixing and Settling Tank Number 1 (for both units)

Type Vertical cylindrical with conical bottom Capacity, gal.

800 Design pressure; internal, psig 15 Design temperature, °F 200 Normal operating temperature, °F 65 Material of construction Stainless steel Accessories (list) - See Below Electric motor mixer

Catawba Nuclear Station UFSAR Table 11-8 (Page 13 of 16)

(24 APR 2006)

Steam panel coils Mixing and Settling Tank Pump Number per unit 1 (for both units)

Type Canned centrifugal Design pressure, psig 150 Design temperature, °F 200 Material of construction Stainless steel Design flow, gpm Condition 1: 35 Condition 2: 100 Developed head, ft Condition 1: 250 Condition 2: 200 Mixing and Settling Tank Sludge Pump Number 1 (for both units)

Type Canned centrifugal with external flushing Design pressure, psig 150 Design temperature, °F 200 Material of construction Stainless steel Design flow, gpm Condition 1: 35 Condition 2: 100 Developed head, ft Condition 1: 250 Condition 2: 200 Required flushing/cooling water, gpm 3 +/- 1 Mixing and Settling Tank Reagent Tank Number 1 (for both units)

Internal volume, gal.

20 Design pressure; internal, psig 150 Design pressure, external Atmospheric Design temperature, °F 200 Material of construction Stainless steel Mixing and Settling Tank Metering Pump Number 1 (for both units)

Type Positive displacement with metered capacity Design pressure, psig 150

Catawba Nuclear Station UFSAR Table 11-8 (Page 14 of 16)

(24 APR 2006)

Design temperature, °F 200 Material of construction Stainless steel Design flow, gph 3 to 30 Mixing and Settling Tank Condensate Strainer Number 1 (for both units)

Type Y-strainer Design flow, gpm 10 Design pressure, psig 150 Design temperature, °F 200 Pressure loss at design flow Strainer mesh number 40 Stainless steel Material of construction Stainless Steel Mixing and Settling Tank Steam Panel Coil Number 1 (for both units)

Type Embossed steam panel coil Material of construction Stainless steel Heat duty required, BTU per hour 365,200 Initial temperature of tank contents, °F 70 Final temperature of tank contents, °F 180 Tank diameter, ft.

5 Steam pressure, saturated, psig 50 Method of attachment to tank Heat transfer cement adhesive and straps Mixing and Settling Tank Mixer Number 1 (for both units)

Type Electric motor mixer with paddle Flange size for mixer attachment, in.

6 Design pressure inside tank, psig 15 Design temperature, °F 200 Material of construction All wetted parts to be stainless steel Ventilation Unit Condensate Drain Tank Subsystem Parameters Ventilation Unit Condensate Drain Tank Number 1 (for each unit)

Internal volume, each, gal.

5000

Catawba Nuclear Station UFSAR Table 11-8 (Page 15 of 16)

(24 APR 2006)

Design pressure, internal Atmospheric Design temperature, °F 125 Material of construction Stainless steel Ventilation Unit Condensate Drain Tank Pumps Number 2 (for each unit)

Type Centrifugal - Vertical inline Design pressure, psig 150 Design temperature, °F 125 Material of construction Stainless steel Design flow, gpm 50 Developed head, ft 135 Steam Generator Drain Tank Subsystem Parameters Steam Generator Drain Tank Number 2 (for both units)

Internal volume, each, gal.

50,000 Design pressure, internal Atmospheric - 2" H20 Design temperature, °F 200 Material of construction Stainless steel Type Stainless steel lined concrete building with stainless lined roof Accessories Filtered air inlet on roof Steam Generator Drain Pump Number 1 per unit Type Centrifugal - Vertical inline Design pressure, psig 150 Design temperature, °F 200 Material of construction Stainless steel Design flow, gpm 200 Developed head, ft 75 Steam Generator Drain Tank Pumps Number 2 shared Type Centrifugal with mechanical seals Design pressure, psig 150

Catawba Nuclear Station UFSAR Table 11-8 (Page 16 of 16)

(24 APR 2006)

Design temperature, °F 200 Material of construction Stainless steel Design flow, gpm 50 Developed head, ft 230

Catawba Nuclear Station UFSAR Table 11-9 (Page 1 of 2)

(22 OCT 2001)

Table 11-9. Normal Expected Daily Flows to Liquid Radwaste System (2 Units)

Subsystem Normal Daily Flow (GPD)

(2 Units)

% NC Activity REACTOR COOLANT DRAIN TANK RCP Seal Leakoffs 4/unit @ 3.03gph 582 Valve Leakoffs 45 valves/unit @ 1GPD each 90 Total 672 100.

WASTE DRAIN TANK Equipment Flushes (3 x component volume) 1800 3.3 Through Line Leakage 100 1.0 Total 1900 3.2 WASTE EVAPORATOR FEED TANK Reactor Coolant Leakage in Containment 40 100.

Cold Lab Drains & Hot Lab Rinses 200

.2 Sample Sink Drains 80 100.

Equipment Drains 600

1.

Valve Leakoffs (100 valves @ 1GPD) 100

10.

Through Line Leakage 100

1.

Total 1120 12.3 LAUNDRY AND HOT SHOWER TANK SUBSYSTEM Showers and Laundry Machines 1350 Lab Dishwasher 120 Lavatory Sinks 100 Total 1570

.0 FLOOR DRAIN TANK (includes FDT Sumps A & B) 50% of Aux. Bldg. Floor Drains 400

10.

50% of Aux. Bldg. Floor Drains 600

0.

Ice Condenser Defrost 50

0.

Through Line Leakage 100

1.

Groundwater Inleakage 10

0.

Decon Sinks - Aux. Bldg. & Reactor Bldg.

200

1.

Total 1360 3.2 MIXING AND SETTLING TANK

Catawba Nuclear Station UFSAR Table 11-9 (Page 2 of 2)

(22 OCT 2001)

Subsystem Normal Daily Flow (GPD)

(2 Units)

% NC Activity Ultrasonic Cleaner and Turbulator Drains 100 Total 100 100.

CONTAINMENT VENT. UNIT CONDENSATE DRAIN TANK Unit 1 - Summer Operation w/Purge 16800 Unit 2 - Normal Operation 9600 Total 26400

.0 NON-RADIATION AREA FDT SUMPS C & D All Aux. Bldg. Ventilation Unit Condensate (summer max. operation) 26450 50% Aux. Bldg. Floor Drains 1000 Total 27450

.0 STEAM GENERATOR DRAIN TANK Annual Flow (gallons)

Drain Steam Generator Contents 25000 See Table 11-4 Flush Steam Generator 75000 Total 100000

Catawba Nuclear Station UFSAR Table 11-10 (Page 1 of 2)

(17 APR 2012)

Table 11-10. Tanks Outside Containment Which Contain Potentially Radioactive Liquids Tank System Figure Location (Building -

Elevation, ft)

Level Indication High Level Alarm Overflow Volume Control NV 9-90 AB-560 Yes Yes Input diverts to Recycle Holdup Tank on High Level Boric Acid NV 9-100 AB-560 Yes Yes Overflows to Waste Evaporator Feed Tank Boron Recycle Holdup Tanks A & B NB 9-101 AB-543 Yes Yes Overflows to Waste Evaporator Feed Tank Sump A Reactor Makeup Water Storage NB 9-104 YD Yes Yes Overflows to Containment Spray and Residual Heat Removal Pump Room Sump Laundry and Hot Shower WL 11-3 AB-543 Yes Yes Overflows via vent to Floor Drain Sump B Waste Monitor Tanks A & B WL 11-3, 11-4 AB-543 Yes Yes Overflows via vent to Floor Drain Sump B Floor Drain WL 11-4 AB-543 Yes Yes Overflows to Waste Evaporator Feed Tank Sump B Mixing & Settling WL 11-4 AB-543 Yes Yes Overflows to Waste Evaporator Feed Tank Sump B Waste Drain WL 11-5 AB-543 Yes Yes Overflows to Waste Evaporator Feed Tank Sump B Waste Evaporator Feed WL 11-5 AB-543 Yes Yes Overflows to Floor Drain Sump A

Recycle Monitor Tanks A & B WL 11-7 AB-543 Yes Yes Overflows to Waste Evaporator Feed Tank Sump B Ventilation Unit Condensate Drain WL 11-12 AB-543 Yes Yes Overflows via vent to Floor Drain Sump D

Catawba Nuclear Station UFSAR Table 11-10 (Page 2 of 2)

(17 APR 2012)

Tank System Figure Location (Building -

Elevation, ft)

Level Indication High Level Alarm Overflow BFTs 2A & 2B NV 9-268 UH2-550 Yes Yes Overflows to opposite BFT Steam Generator Drain Tanks A & B WL 11-17 YD Yes Yes Overflows via vent header to Waste Evaporator Feed Tank Spent Resin Storage Tanks A & B WS 11-30 AB-543 Yes Yes Overflows vent relief valve to Floor Drain Sump B Chemical Drain WS 11-32 AB-537 Yes Yes Overflows to Waste Evaporator Feed Tank Sump B Radwaste Batching WS 11-33 AB-577 Yes Yes Overflows to Mixing and Settling Tank (WL System)

Evaporator Concentrates Holdup WS 11-33 AB-577 Yes Yes Overflows to Waste Evaporator Feed Tank (WL System)

Evaporator Concentrates Batch WS 11-35 AB-577 Yes Yes Overflows to Waste Evaporator Feed Tank (WL System)

Refueling Water Storage FW 9-62 YD Yes Yes Overflows to Waste Evaporator Feed Tank Steam Generator Blowdown BB 10-29 YD Yes Yes Influent control valves fail closed on high level precluding overflow Auxiliary Monitor Tanks A, B, C WL 11-38 MTB-594 Yes Yes Overflows to Monitor Tank Building Sump

Catawba Nuclear Station UFSAR Table 11-11 (Page 1 of 2)

(15 NOV 2007)

Table 11-11. Catawba Nuclear Station Estimated Radioactive Releases in Liquid Effluents (curies/year/unit)

HISTORICAL INFORMATION IN ITALICS BELOW NOT REQUIRED TO BE REVISED Isotope Boron Recycle System Liquid Radwaste System Turbine Building Drains Steam Generator Drain Tank 1 Laundry Waste Total 2 Cr-51 1.5E-5 8.9E-7 5.7E-7 1.1E-5 0.0 4.0E-4 Mn-54 3.1E-6 1.5E-7 1.3E-7 2.4E-6 5.0E-8 8.1E-5 Fe-55 1.6E-5 7.7E-7 5.1E-7 9.6E-6 0.0 4.2E-4 Fe-59 8.9E-6 4.7E-7 3.8E-7 7.3E-6 0.0 2.3E-4 Co-58 1.5E-4 7.6E-6 5.1E-6 9.7E-5 2.0E-7 3.9E-3 Co-60 2.1E-5 9.6E-7 5.7E-7 1.1E-5 4.3E-7 5.2E-4 Zr-95 5.6E-7 2.8E-8 2.5E-8 4.8E-7 0.0 1.5E-5 Nb-95 5.3E-7 2.4E-8 2.6E-8 4.8E-7 0.0 1.4E-5 Np-239 1.7E-6 4.1E-6 3.8E-7 7.8E-6 0.0 6.4E-5 Br-83 4.4E-11 7.3E-7 1.4E-6 1.5E-5 0.0 6.3E-5 Rb-86 1.6E-6 3.9E-8 4.8E-8 9.2E-7 0.0 4.0E-5 Sr-89 3.2E-5 1.7E-7 1.3E-7 2.4E-6 0.0 8.2E-5 Y -91 6.4E-7 3.2E-8 1.9E-8 3.6E-7 0.0 1.6E-5 Mo-99 1.4E-4 3.0E-5 2.5E-5 5.1E-4 0.0 5.1E-3 Tc-99m 1.4E-4 2.8E-5 2.5E-5 5.2E-4 0.0 4.9E-3 I-134 1.7E-16 7.0E-7 4.3E-7 9.2E-5 0.0 1.2E-4 Te-127m 2.7E-6 1.3E-7 6.3E-8 1.2E-6 0.0 6.8E-5 Te-127 2.7E-6 1.9E-7 1.8E-7 4.8E-6 0.0 7.6E-5 Te-129m 1.2E-5 6.6E-7 3.8E-7 7.3E-6 0.0 3.0E-4 Te-129 7.6E-5 4.3E-7 2.6E-7 1.4E-5 0.0 2.0E-4

Catawba Nuclear Station UFSAR Table 11-11 (Page 2 of 2)

(15 NOV 2007)

Isotope Boron Recycle System Liquid Radwaste System Turbine Building Drains Steam Generator Drain Tank 1 Laundry Waste Total 2 I -130 5.5E-8 2.9E-6 2.9E-6 7.8E-6 0.0 1.4E-4 Te-131m 1.4E-6 6.5E-7 6.2E-7 1.4E-5 0.0 7.5E-5 Te-131 2.6E-7 1.2E-7 1.1E-7 5.4E-6 0.0 1.7E-5 I -131 3.4E-4 1.2E-3 5.1E-4 1.0E-3 3.1E-9 4.8E-2 Te-132 5.5E-5 1.0E-5 6.3E-6 1.3E-4 0.0 1.8E-3 I -132 5.7E-5 5.8E-5 4.0E-5 4.0E-4 0.0 4.0E-3 I -133 3.1E-5 8.0E-3 6.2E-4 1.4E-3 0.0 3.5E-2 Cs-134 7.4E-4 1.2E-5 1.4E-5 2.7E-4 6.5E-7 1.8E-2 I -135 7.5E-7 1.3E-4 2.0E-4 6.9E-4 0.0 8.3E-3 Cs-136 2.1E-4 5.9E-6 7.3E-6 1.4E-4 0.0 5.2E-3 Cs-137 5.4E-4 8.7E-6 1.0E-5 2.0E-4 1.2E-6 1.3E-2 Ba-137m 5.0E-4 8.1E-6 9.6E-6 2.6E-4 0.0 1.2E-2 Ba-140 1.4E-6 9.9E-8 6.3E-8 1.2E-6 0.0 3.6E-5 La-140 1.6E-6 8.6E-8 5.0E-8 9.3E-7 0.0 4.0E-5 Ce-141 5.8E-7 3.3E-8 2.5E-8 4.8E-7 0.0 1.5E-5 Others 2.6E-6 2.6E-7 2.75E-7 2.3E-4 0.0 2.3E-4 Total 3.01E-3 2.3E-3 1.5E-3 6.1E-3 3.1E-6 1.6E-1 Notes:

1. One Steam Generator Drain Tank Volume (50,000 gallons at secondary coolant concentration) is assumed to be released per year with no processing.
2. Total is adjusted to include 0.15 curies attributable to operational occurrences that result in unplanned releases.
3. Tritium Release is 710 curies/yr/unit

Catawba Nuclear Station UFSAR Table 11-12 (Page 1 of 1)

(15 NOV 2007)

Table 11-12. Estimated Doses from Radioactive Liquid Effluents Released from the Station HISTORICAL INFORMATION IN ITALICS BELOW NOT REQUIRED TO BE REVISED Design Objectives Dose Annex to Appendix I Appendix I Maximum total body dose from all pathways of exposure (mrem) 2.6 (adult) 5 6

Maximum organ dose from all pathways of exposure (mrem) 3.4 (adult-liver) 5 20 Total curies 0.3 10 Population Dose (man-rem) 4.3

Catawba Nuclear Station UFSAR Table 11-13 (Page 1 of 2)

(22 OCT 2001)

Table 11-13. Waste Gas System Component Data Waste Gas Compressors Quantity (per plant) 2 Design temperature, °F 180 Design pressure, psig 150 Operating suction pressure, psig 0.5 Design flow (N2 at 140°F and 110 psi discharge), scfm 40 Material SS Operating temperature, °F 70-130 Operating pressure, psig 25-100 Catalytic Hydrogen Recombiner Quantity (per plant) 2 Design temperature, °F Note 1 Design pressure, psig 150 Design flow, scfm 50 Catalyst bed design life, yrs 1

Material SS Operating Conditions, Inlet Temperature, °F 70-140 Pressure, psig 25-100 Operating Conditions, Outlet Temperature, °F 70-140 Pressure, psig 20 Waste Gas Decay Tanks (Normal Power Service Tanks)

Quantity 6

Type Vertical cylindrical Design temperature, °F 180 Design pressure, psig 150 Volume, ft3 600 Material CS Shutdown/Startup Tanks Quantity 2

Catawba Nuclear Station UFSAR Table 11-13 (Page 2 of 2)

(22 OCT 2001)

Type Vertical cylindrical Design temperature, °F 180 Design pressure, psig 150 Volume, ft3 600 Material CS Note:

1. Varies by component, but exceeds component operating temperature by 100°F.

Catawba Nuclear Station UFSAR Table 11-14 (Page 1 of 2) 15 NOV 2007)

Table 11-14. Estimated Annual Airborne Effluent Releases. (curies/yr/unit)

HISTORICAL INFORMATION IN ITALICS BELOW NOT REQUIRED TO BE REVISED Isotope Waste Gas Decay Tanks Reactor Building Purge Auxiliary Building Ventilation Turbine Building Steam Leaks Air Ejector Total Kr-83m 0.0 0.0 0.0 0.0 0.0 0.0 Kr-85m 0.0 1.8 2.7 0.0 1.7 6.2 Kr-85 2.7E+2 5.0 0.0 0.0 0.0 2.8E+2 Kr-87 0.0 0.0 1.6 0.0 0.0 1.6 Kr-88 0.0 2.2 5.0 0.0 3.1 1.0E+1 Kr-89 0.0 0.0 0.0 0.0 0.0 0.0 Xe-131m 3.3 7.1 0.0 0.0 0.0 1.0E+1 Xe-133m 0.0 1.6E+1 2.4 0.0 1.5 1.9E+1 Xe-133 1.3 1.4E+3 1.2E+2 0.0 7.3E+1 1.5E+3 Xe-135m 0.0 0.0 0.0 0.0 0.0 0.0 Xe-135 0.0 1.0E+1 7.5 0.0 4.7 2.3E+1 Xe-137 0.0 0.0 0.0 0.0 0.0 0.0 Xe-138 0.0 0.0 1.2 0.0 0.0 1.2 I-131 0.0 7.3E-3 4.5E-3 0.0 2.8E-3 1.5E-2 I-133 0.0 2.3E-3 6.8E-3 0.0 4.3E-3 1.4E-2 Mn-54 4.5E-3 1.8E-4 1.8E-4 4.9E-3 Fe-59 1.5E-3 6.3E-5 6.0E-5 1.6E-3 Co-58 1.5E-3 6.3E-4 6.0E-4 1.6E-2 Co-60 7.0E-3 2.8E-4 2.7E-4 7.6E-3

Catawba Nuclear Station UFSAR Table 11-14 (Page 2 of 2) 15 NOV 2007)

Isotope Waste Gas Decay Tanks Reactor Building Purge Auxiliary Building Ventilation Turbine Building Steam Leaks Air Ejector Total Sr-89 3.3E-4 1.4E-5 1.3E-5 3.6E-4 Sr-90 6.0E-5 2.5E-6 2.4E-6 6.5E-5 Cs-134 4.5E-3 1.8E-4 1.8E-4 4.9E-3 Cs-137 7.5E-3 3.2E-4 3.0E-4 8.1E-3 C-14

>8.0 Ar-41

>2.5E+1 H-3

>7.1E+2 Note:

1. 0.0 Appearing in the table indicates release is less than 1.0 Ci/yr for noble gas, and 0.0001 Ci/yr for iodine.

Catawba Nuclear Station UFSAR Table 11-15 (Page 1 of 1)

(15 NOV 2007)

Table 11-15. Estimated Doses from Gaseous Effluent Releases from the Station HISTORICAL INFORMATION IN ITALICS BELOW NOT REQUIRED TO BE REVISED Dose from Estimated Releases Dose Objectives Annex to Appendix I Appendix I Maximum Beta air dose (mrad/yr) 5.2E-2 20 40 Maximum Gamma air dose (mrad/yr) 2.2E-2 10 20 Maximum Skin dose (mrem/yr) to an individual 4.0E-2 15 30 Maximum Whole Body dose (mrem/yr) to an individual 1.4E-2 5

10 Maximum Organ dose (mrem/yr) to an individual 4.3E-1 (infant thyroid) 15 30 Dose to Population within 50 miles (man-rem) 4.0

Catawba Nuclear Station UFSAR Table 11-16 (Page 1 of 2)

(21 OCT 2010)

Table 11-16. Estimated Maximum Specific Activities Input to Nuclear Solid Waste Disposal System

[HISTORICAL INFORMATION NOT REQUIRED TO BE REVISED]

Evaporator Concentrates Arriving at Storage Tank (µ Ci/cc)

Spent Resins Arriving at Storage Tank (µ Ci/cc)

Br84

<1.0 x 10-10 3.7 x 10-1 Rb88

<1.0 x 10-10 1.1 x 101 Rb89

<1.0 x 10-10 2.9 x 10-1 Sr89 1.3 x 10-2 6.8 x. 101 Sr90 7.5 x 10-4 1.8 x 101 Sr91 9.9 x 10-4 3.3 x 10-1 Sr92 1.5 x 10-6 3.6 x 10-2 Y90 8.7 x 10-4 2.4 x 10-1 Y91 2.5 x 10-2 1.4 x 102 Y92 3.2 x 10-5 4.5 x 10-2 Zr95 2.8 x 10-3 1.8 x 101 Nb95 2.8 x 10-3 1.0 x 101 Mo99 1.7 x 10-1 6.5 x 103 I131 9.4 x 100 7.5 x 103 I132 8.6 x 10-1 3.2 x 101 I133 6.5 x 100 1.3 x 103 I134 1.6 x 10-10 6.9 x 100 I135 4.1 x 10-1 2.3 x 101 Te132 8.3 x 10-1 3.4 x 102 Te134

<1.0 x 10-10 3.7 x 10-1 Cs134 9.2 x 100 1.1 x 105 Cs136 2.1 x 10+1 1.7 x 104 Cs137 6.3 x 100 9.2 x 104 Cs138

<1.0 x 10-10 5.6 x 100 Ba140 1.6 x 10-2 2.2 x 101 La140 1.0 x 10-2 1.0 x 100 Ce144 1.8 x 10-3 3.1 x 101 Pr144 1.8 x 10-3 2.2 x 10-3 Cr51 1.7 x 10-2 4.7 x 101 Mn54 1.4 x 10-3 2.4 x 101

Catawba Nuclear Station UFSAR Table 11-16 (Page 2 of 2)

(21 OCT 2010)

Evaporator Concentrates Arriving at Storage Tank (µ Ci/cc)

Spent Resins Arriving at Storage Tank (µ Ci/cc)

Mn56 2.1 x 10-5 7.1 x 10-1 Co58 4.5 x 10-2 3.1 x 102 Co60 5.0 x 10-3 1.1 x 102 Fe59 1.6 x 10-3 7.3 x 100

Catawba Nuclear Station UFSAR Table 11-17 (Page 1 of 4)

(15 NOV 2007)

Table 11-17. Solid Radwaste System Component Data

1.

Spent Resin Storage Tanks Quantity 2

Tank Volume, Gal.

5000 Resin Storage Volume, Gal.

3800 Design Pressure, PSIG 100 Design Temperature, °F 200 Material Stainless Steel

2.

Chemical Drain Tank Quantity 1

Tank Volume, Gal.

600 Holdup Volume, Gal.

600 Design Pressure, PSIG Atmospheric Design Temperature, °F 200 Material Stainless Steel

3.

Evaporator Concentrates Holdup Tank Quantity 1

Tank Volume, Gal.

3000 Holdup Volume, Gal.

3000 Design Pressure, PSIG Atmospheric Design Temperature, °F 200 Material Stainless Steel

4.

Evaporator Concentrates Batch Tank Quantity 1

Tank Volume, Gal.

2000 Storage Volume, Gal.

2000 Design Pressure, PSIG Atmospheric Design Temperature, °F 200 Material Stainless Steel

5.

Radwaste Batching Tank Quantity 1

Tank Volume, Gal.

880 Batch Volume, Gal.

730

Catawba Nuclear Station UFSAR Table 11-17 (Page 2 of 4)

(15 NOV 2007)

Design Pressure, PSIG Atmospheric Design Temperature, °F 150 Material Stainless Steel

6.

Binder Storage Tank Quantity 1

Tank Volume, Gal.

6000 Useable Volume, Gal.

6000 Design Pressure, PSID 0.1 (internal), 0.2 (external)

Design Temperature, °F 120 Material Carbon Steel, internally coated with Wisconsin Plastite 3066

7.

Disposable Containers (Liners for Low Activity Waste)

Quantity As Required Container size Various as allowed by the applicable disposal site criteria Container Volume, Ft3/Gal.

Various - Typical 120.3/899.9 to 205.8/1539.5 Useable Volume, Ft3/Gal.

Various - Typical 91/680.7 to 178/1331.5 Weight Full, LBS.

Various as allowed by liner and based on waste density

8.

Spent Resin Sluice Pump Quantity 1

Type Canned Horizontal Centrifugal Design Pressure, PSIG 150 Design Temperature, °F 200 Design Flow, GPM 140 Total Head at Design Flow, Ft 250 Material Stainless Steel

9.

Chemical Drain Tank Pump Quantity 1

Type Canned Horizontal Centrifugal Design Pressure, PSIG 150 Design Temperature, °F 200 Design Flow, GPM 35/100

Catawba Nuclear Station UFSAR Table 11-17 (Page 3 of 4)

(15 NOV 2007)

Total Head at Design Flow, FT 250/200 Material Stainless Steel

10.

Radwaste Transfer Pump Quantity 1

Type Progressing Cavity Positive Displacement Capacity, GPM Variable 2 to 16 Total Head, FT 250 Material Stainless Steel rotor, Buna-N stator

11.

Binder Pump Quantity 1

Type Progressing Cavity Positive Displacement Design Pressure, PSIG 210 Design Temperature, °F 120 Design Flow, GPM 50 gpm Total Head at Design Flow, FT 160 Material Stainless Steel rotor, Viton stator

12.

Liner Vault Sump Pump Quantity 1

Type Air-driven, vertical sump pump Design Pressure, PSIG 50 Design Temperature, °F 200 Design Flow, GPH 50 gpm Total Head at Design Flow, FT 50 Material Stainless Steel

13.

Dewatering Pump Quantity 1

Type Single Stage Turbine Pump Design Pressure, PSIG 150 Design Temperature, °F 200 Design Flow, GPM 18 Total Head at Design Flow, FT 300 Material Stainless Steel

Catawba Nuclear Station UFSAR Table 11-17 (Page 4 of 4)

(15 NOV 2007)

14.

Spent Resin Sluice Filter Quantity 1

Type Disposable Cartridge Design Pressure, PSIG 150 Design Temperature, °F 200 Design Flow, GPM 150 Pressure Loss at Design Flow, PSID Fouled - 20 Unfouled - 5 Retention, percent, @ 25 micron particle size Material 98 Stainless Steel

15.

Resin Batching Tank Mixer Quantity 1

Type Top Entering, Vertically Mounted Motor, HP 5

Material Stainless Steel

Catawba Nuclear Station UFSAR Table 11-18 (Page 1 of 1)

(22 OCT 2001)

Table 11-18. Deleted Per 1997 Update

Catawba Nuclear Station UFSAR Table 11-19 (Page 1 of 2)

(09 OCT 2016)

Table 11-19. Liquid Process Radiation Monitoring Equipment Monitor Identification Detector Type Sensitivity(1)

Max. Detectable Concentration Range Counts/Mi n

Typical Setpoint Design Service Turbine Building sump monitor (EMF31)

NaI Scintillator 3X10-8 µCi/ml I-31 2X10-8 µCi/ml Co-60 3X10-8 µCi/ml Cs-137 2X10-2 µCi/ml I-131 1X10-2 µCi/ml Co-60 2X10-2 µCi/ml Cs-137 101 - 107 (Refer to Section 11.5.1.2.1.1)

Normal operation gross gamma Deleted Per 2006 Update Nuclear service water monitor (EMF45)

NaI Scintillator GM Tube 3X10-8 µCi/ml I-131 2X10-8 µCi/ml Co-60 3X10-8 µCi/ml Cs-137 1X103 µCi/ml I-131 8X101 µCi/ml Co-60 2X102 µCi/ml Cs-137 101 - 107 101 - 106(2)

Refer to Section 11.5.1.2.1.4 Normal and Post LOCA gross gamma Component cooling water monitor (EMF46)

NaI Scintillator 3X10-8 µCi/ml I-131 2X10-8 µCi/ml Co-60 3X10-8 µCi/ml Cs-137 2X10-2 µCi/ml I-131 1X10-2 µCi/ml Co-60 2X10-2 µCi/ml Cs-137 101 - 107 Refer to Section 11.5.1.2.1.5 Normal operation gross gamma Boron recycle evaporator condensate monitor (EMF47)

NaI Scintillator 3X10-8 µCi/ml I-131 2X10-8 µCi/ml Co-60 3X10-8 µCi/ml Cs-137 2X10-2 µCi/ml I-131 1X10-2 µCi/ml Co-60 2X10-2 µCi/ml Cs-137 101 - 107 Refer to Section 11.5.1.2.1.6 Normal operation gross gamma Waste liquid discharge monitor (EMF49)

NaI Scintillator GM Tube 5X10-7 µCi/ml I-131 3X10-7 µCi/ml Co-60 6X10-7 µCi/ml Cs-137 1X103 µCi/ml I-131 8X101 µCi/ml Co-60 2X102 µCi/ml Cs-137 101 - 107 101 - 106(2)

(Refer to Section 11.5.1.2.1.8)

Normal Operation Gross Gamma Clean area floor drains discharge monitor (EMF52)

NaI Scintillator 3X10-8 µCi/ml I-131 2X10-8 µCi/ml Co-60 3X10-8 µCi/ml Cs-137 2X10-2 µCi/ml I-131 1X10-2 µCi/ml Co-60 2X10-2 µCi/ml Cs-137 101 - 107 (Refer to Section 11.5.1.2.1.9)

Normal operation gross gamma

Catawba Nuclear Station UFSAR Table 11-19 (Page 2 of 2)

(09 OCT 2016)

Monitor Identification Detector Type Sensitivity(1)

Max. Detectable Concentration Range Counts/Mi n

Typical Setpoint Design Service Waste monitor tank building liquid discharge monitor (EMF57)

NaI Scintillator 3X10-7 µCi/ml I-131 2X10-7 µCi/ml Co-60 3X10-7 µCi/ml Cs-137 1X10-1 µCi/ml I-131 6X10-2 µCi/ml Co-60 1X10-1 µCi/ml Cs-137 101 - 107 (Refer to Section 11.5.1.2.1.10

)

Normal operation gross gamma Auxiliary Building Cooling Water Monitor (EMF89)

NaI Scintillator 5X10-8 µCi/ml Co-60 8X10-8 µCi/ml Cs-137 4X10-2 µCi/ml Co-60 7X10-2 µCi/ml Cs-137 101 - 107 (Refer to Section 11.5.1.2.1.11

)

Normal operation gross gamma Notes:

1. The sensitivity is for the single radionuclide listed; in the event mixtures of radionuclides are present, the sensitivity will vary.

Sensitivity will also vary with background radiation and contamination buildup

2. High range (shielded)

Catawba Nuclear Station UFSAR Table 11-20 (Page 1 of 2)

(15 NOV 2007)

Table 11-20. Airborne Process Radiation Monitoring Equipment Monitor Identification Detector Type Sensitivity(1)

Max. Detectable Concentration Range Counts/Min Typical Setpoint Design Service Unit vent particulate monitor (EMF35)

Plastic Beta Scintillator 9X10-11 µCi/ml Sr-90(2) 2X10-10 µCi/ml Co-60 4X10-10 µCi/ml Cs-137 8X10-2 µCi/ml Co-60(2) 7X10-1 µCi/ml Cs-137 101 - 107 101 - 106(4)

Refer to Section 11.5.1.2.2.1 Normal operation beta-gamma Unit vent gas monitor (EMF36)

Plastic Beta Scintillator -

GM Tube 1X10-7 µCi/ml Kr-85 3X10-7 µCi/ml Xe-133 4X103 µCi/ml Kr-85 2X102 µCi/ml Xe-133 101 - 107 101 - 106(4)

Refer to Section 11.5.1.2.2.1 Normal operation beta-gamma Deleted Per 2007 Update Unit vent high high range monitor (EMF54)

Ion Chamber 3X100 µCi/ml Xe-133(5) 5X107 µCi/ml Xe-133 100 - 108 Refer to Section 11.5.1.2.2.1 Post LOCA gross gamma Containment air particulate monitor (EMF38)

Plastic Beta Scintillator 2X10-10 µCi/ml Sr-90(2) 2X10-10 µCi/ml Co-60 7X10-10 µCi/ml Cs-137 8X10-2 µCi/ml Co-60(2) 7X10-1 µCi/ml Cs-137 101 - 107 Refer to Section 11.5.1.2.2.2 Normal operation beta-gamma Containment gas monitor (EMF39)

Plastic Beta Scintillator -

GM Tube 1X10-7 µCi/ml Kr-85 3X10-7 µCi/ml Xe-133 4X103 µCi/ml Kr-85 2X102 µCi/ml Xe-133 101 - 107 101 - 106(4)

Refer to Section 11.5.1.2.2.2 Normal operation beta-gamma Deleted Per 2007 Update Auxiliary Building ventilation monitor (EMF41)

Plastic Beta Scintillator 1X10-7 µCi/ml Kr-85 3X10-7 µCi/ml Xe-133 1X10-1 µCi/ml Kr-85 3X10-1 µCi/ml Xe-133 101 - 107 Refer to Section 11.5.1.2.2.3 Normal operation beta Fuel Building ventilation monitor (EMF42)

Plastic Beta Scintillator 1X10-7 µCi/ml Kr-85 3X10-7 µCi/ml Xe-133 1X10-1 µCi/ml Kr-85 3X10-1 µCi/ml Xe-133 101 - 107 Refer to Section 11.5.1.2.2.4 Normal operation beta Control Room Air intake monitor (EMF43)

Plastic Beta Scintillator 1X10-7 µCi/ml Kr-85 3X10-7 µCi/ml Xe-133 1X10-1 µCi/ml Kr-85 3X10-1 µCi/ml Xe-133 101 - 107 10-4 µCi/ml Normal operation beta

Catawba Nuclear Station UFSAR Table 11-20 (Page 2 of 2)

(15 NOV 2007)

Monitor Identification Detector Type Sensitivity(1)

Max. Detectable Concentration Range Counts/Min Typical Setpoint Design Service Waste gas discharge monitor (EMF50)

Plastic Beta Scintillator -

GM Tube 1X10-7 µCi/ml Kr-85 3X10-7 µCi/ml Xe-133 4X103 µCi/ml Kr-85 2X102 µCi/ml Xe-133 101 - 107 101 - 106 (Refer to Section 11.5.1.2.2.6)

Normal operation beta-gamma condenser air ejector exhaust monitor (EMF33)

Plastic Beta Scintillator 1X10-7 µCi/ml Kr-85 3X10-7 µCi/ml Xe-133 1X10-1 µCi/ml Kr-85 3X10-1 µCi/ml Xe-133 101 - 107 (Refer to Section 11.5.1.2.2.7)

Normal operation beta Containment high range monitor (EMF53)

Ion Chamber 2X102 µCi/ml Xe-133 (5) 5X107 µCi/ml Xe-133 100 - 108 R/hr 102 R/hr Post LOCA gross gamma Technical Support Center air intake monitor (EMF55)

Plastic Beta Scintillator 2X10-7 µCi/ml Kr-85 2X10-7 µCi/ml Xe-133 1X10-1 µCi/ml Kr-85 2X10-1 µCi/ml Xe-133 101 - 107 10-4 µCi/ml Normal operation beta Waste monitor tank building ventilation monitor (EMF58)

Plastic Beta Scintillator 5X10-7 µCi/ml Xe-133 2X10-7 µCi/ml KR-85 5X102 µCi/ml Xe-133 2X102 µCi/ml Kr-85 101 - 107 (Refer to Section 11.5.1.2.2.10)

Normal operation beta Annulus monitor (EMF60)

Plastic Beta Scintillator 5X10-7 µCi/ml Xe-133 2X10-7 µCi/ml KR-85 5X102 µCi/ml Xe-133 2X102 µCi/ml Kr-85 101 - 107 (Refer to Section 11.5.1.2.2.11)

Normal operation beta Notes:

1. The sensitivity is for the single radionuclide listed; in the event mixtures of radionuclides are present, the sensitivity will vary. Sensitivity will also vary with background radiation and contamination buildup.
2. Based on 15 minute buildup on filter.
3. Based on 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> buildup on charcoal cartridge.
4. High range (shielded)
5. Sensitivity value corresponds to typical setpoint listed.

Catawba Nuclear Station UFSAR Table 11-21 (Page 1 of 2)

(22 OCT 2001)

Table 11-21. System Component Design Parameters TANKS Auxiliary Monitor Tanks Quantity 3

Total Volume, GAL.

20,000 Design Pressure, internal, PSIG

-0.1 Design Pressure, external, PSID 0.1 Design Temperature, F 150 Material Stainless Steel Geometry Right Cylinder 15'dia. 16' high Powdex Storage Tank Quantity 1

Total Volume, GAL.

30,000 Design Pressure, internal, PSIG

-0.1 Design Pressure, external, PSID 0.1 Design Temperature, F 150 Material Stainless Steel Geometry Right Cylinder Conical Bottom 18' dia 19' high PUMPS Monitor Tank Pumps Quantity 3

Design Flow, GPM 200 Total Head, FT 250 Design Pressure, PSIG 150 Design Temperature, F 150 Material Stainless Steel Type Horizontal Centrifugal Powdex Dewatering Pump Quantity 1

Design Flow, GPM 60 Total Head, FT 70 Design Pressure, PSIG 150 Design Temperature, F 150

Catawba Nuclear Station UFSAR Table 11-21 (Page 2 of 2)

(22 OCT 2001)

Material Stainless Steel Type Horizontal Centrifugal Powdex Transfer Pump Quantity 1

Design Flow, GPM 75 Total Head, FT 160 Design Pressure, PSIG 150 Design Temperature, F 150 Material Stainless Steel Type Positive Displacement Monitor Tank Building Sump Pump Quantity 2

Design Flow, GPM 50 Total Head, FT 50 Design Pressure, PSIG 150 Design Temperature, F 150 Material Stainless Steel Type Vertical Centrifugal Truck Bay Sump Pump Quantity 1

Design Flow, GPM 20 Total Head, FT 25 Design Pressure, PSIG 15 Design Temperature, F 100 Material Cast Iron Type Submersible

Catawba Nuclear Station UFSAR Table 11-22 (Page 1 of 1)

(22 OCT 2001)

Table 11-22. Adjacent-to-Line Radiation Monitoring System Detector Number Identification Location Sensitivity Range 1EMF48 Reactor Coolant EL 543 EE, 54 120 hr

/

mR min

/

counts 10-1-104 mR/hr 1EMF71 Steam Generator 1A Leakage EL 594, TB1 1M, 34 Undetermined 100-105 GPD 1EMF72 Steam Generator 1B Leakage EL 594, TB1 1E, 34 Undetermined 100-105 GPD 1EMF73 Steam Generator 1C Leakage EL 594, TB1 1E, 34 Undetermined 100-105 GPD 1EMF74 Steam Generator 1D Leakage EL 594, TB1 1M, 34 Undetermined 100-105 GPD 2EMF48 Reactor Coolant EL 543 EE, 61 120 hr

/

mR min

/

counts 10-1-104 mR/hr 2EMF71 Steam Generator 2A Leakage EL 594, TB2 2M, 34 Undetermined 100-105 GPD 2EMF72 Steam Generator 2B Leakage EL 594, TB2 2E, 34 Undetermined 100-105 GPD 2EMF73 Steam Generator 2C Leakage EL 594, TB2 2E, 34 Undetermined 100-105 GPD 2EMF74 Steam Generator 2D Leakage EL 594, TB2 2M, 34 Undetermined 100-105 GPD