ML20045F956
ML20045F956 | |
Person / Time | |
---|---|
Site: | Summer |
Issue date: | 01/14/1993 |
From: | Esposito J WESTINGHOUSE ELECTRIC COMPANY, DIV OF CBS CORP. |
To: | |
Shared Package | |
ML19303F697 | List: |
References | |
SG-93-02-002, SG-93-2-2, WCAP-13617, NUDOCS 9307090227 | |
Download: ML20045F956 (211) | |
Text
{{#Wiki_filter:_ _ _ _ _ _ _ _ _ _ _ _ - _ . WESTINGHOUSE Ct. ASS 3 + WCAP-13617 SG-93-02-002 V. C. Summer Nuclear Station Steam Generator TSP Interim Tube Plugging Criteria Presentation Materials for NRC/SCE&GAVestinghouse Meeting on January 14,1993 4 Approved by: 'l J. .Espos eam Gene rator%, Manager Technology & Engineering Westinghouse Electric Corporation, Nuclear Services Division P.O. Box 355, Pittsburgh, PA 15230-0355 C 1993 Westinghouse Electric Corporation All Rights Reserved 9307090227 930212 5 DR ADDCK 0500
]
South Carolina Electric & Gas Company V. C. Summer Nuclear Station
/ x i
i NRC/SCE&G/ Westinghouse . Meeting
\ /
Steam Generator Tube Support Plate Interim Plugging Criteria N / January 14,1993
V. C. Summer Nuclear Station Nkikk.fhk Ib is ' f~i' O Discuss Potential Licensing of Steam Generator Tube Support Plate Interim Plugging Criteria for V C Summer Station for 1 Cycle - prior to S/G Replacement in 1994 0 Present Detail on Interim Plugging Criteria O Discuss Margins Developed when 1 Implementing a 1 volt Interim Plugging Criteria O Provide Additional Details on Pulled Tube Database & EPRI Methodology for Interim Plugging Criteria l _ _ _ _ _ - - _ _ - - - - - - - - - - - - - - - - - - - - - - ^
V. C. Summer Nuclear Station W hb Y$$ SCE&G
# Inspection Methods # Degradation History
- Degradation Projections e Plugging Criteria Options /
Repair Strategy
- Repair Limitations e Interim Plugging Criteria Benefits Westinghouse
- Proprietary Non-Proprietary SCE&G
# Schedule Discussion
I-V. C. Summer Nuclear Station
.~ rm . . . . .m..
l Bobbin Coil Examination Performed for Entire Tube Length Voltage Measurement at Tube Support Plate Locations . Method used for F* Implementation in Tube Sheet Region Rotating Pancake Coil Examination i 4 Top of Tube Sheet - Secondary Face i Tube Support Plate Locations Small Radius U-Bends ;
; Method Used for L* Implementation l
in Tube Sheet Region i
4 V. C. Summer Nuclear Station Degradation History Refuel 7 Projections Total Tubes Degraded 3000 - 2500 -- - - - 2000 - - - 1500 - - - - - - - - - - - - - - - - - - - - - - - ---- 1000 -- --- - -- - - -- - 500 -- ---- - - - - -- 0 - ' ' ' ' E l I - - -- -- RF-2 RF-3 RF-4 RF-5 RF-6 RF-7 Ref uel Outage ESIGA ' " S / G B I tSIG C C All S/G All Damage Mechanisms Combined (Cumulative) l
V. C. Summer Nuclear Station Defective Tbbe Disposition L' , 86 Slees,,g ! Plugged 1573 l l All S/G Combined I Results through Refuel 6
V C Summer Nuclear Station TSP Indications Number of Indications 2000 1500 - - -- - 1000 -- - - - - - - - - -- 500 - - - - - - - - -- -- - - - 0 RF-5 **W R F-6 I I RF-7 Projeeted
V. C. Summer Nuclear Station
.:,... . v. >[ .) , '.
O Current Plugging Limit is 15% e Request to Raise Limit to Higher Value (18% Average) is currently being Reviewed by NRC e Interim Plugging Criteria may be Necessary to Remain Below Increased Plugging Limit if Large Number of ( Degraded Tubes are Found at V C Summer Station
V. C. Summer Nuclear Station i[ OhMIR 1
%ifili!> J e
Current Number of Steam Generator Tubes Plugged i 11.2 % 1573 Tubes j i Current Effective Plugged = 11.5% e Increased Plugging Margin Submitted i for NRC Approval 18 % i 2524 Tubes e Remaining Tubes for Removal . from Service 6.8 % r 951 Tubes ' 2 1
V. C. Summer Nuclear Station 1l
~
j i
- SAFETY e Minimizes Loss of Margin in Reactor Coolant Flow
- OPERATIONS o Reduces Potential for Power Limitations 1
o Minimizes Loss in Thermal Efficiency
- Main.tenance
- Maintains Tube Plugging Margin for Other Damage Mechanisms
-I
- Reduces Man Rem Exposure (ALARA)
- Reduces Outage Time
- Reduces Repair Costs
-l
- V. C. Summer Nuclear Station
$ h YY ,
1 e Resolve Questions / Comments Now - 01/31/93
- e Submittal to NRC -
Early February e Refuel 7 Scheduled Start 03/05/93 j l l S/G Situation Known Early
- April
! End of Outage Beginning
- of May l
I V. C. Summer IPC Meeting (1/14/93) I Westinghouse Discussion Topics l Presenter Time (Min.) 3 Overview of IPC Pitterle 60 l o IPC Criteria : o Final Database & New Methodology i o Overall Summary of Results Guidelines for SLB Analyses Pitterle 20 Pulled Tube NDE Data Malinowski 45 o Pull J Tube Voltages for 3/4" Tubing o NDE Detectability: Pulled Tube / i Battelle SCC Voltage Growth Rates Prabhu 15 Pulled Tube Results o Crack Morphology Begley 45 o Burst & Leak Rate Data t o Comparison of Measured and Predicted Burst Pressures o NDE/ Morphology Comparisons and and Accept,able RPC Pitterle 30 Leak Rate Database Prabhu 30 o Adjustment Procedures for R.T. & AP o Adjusted Data o Probability of Leakage Database Leak Rate Trends Pitterle 20 o Voltage vs Crack length o Correlation Trends Burst & Leak Rate Correlations Pitterle 60 o Methods o Results Summary of Results Pitterle 15
i V. C. SUMMER INTERIM PLUGGING CRITERIA (IPC) l l TUBE REPAIR BASIS e BOBBIN COIL INDICATIONS HAVING FLAW VOLTAGES GREATER THAN 1.0 VOLT AND CONFIRMED AS A FLAW i BY RPC INSPECTION SHALL BE REPAIRED. e BOBBIN COIL INDICATIONS HAVING FLAW VOLTAGES GREATER THAN 2.2 VOLTS SHALL BE REPAIRED INDEPENDENT OF RPC CONFIRMATION OF A FLAW. e PROJECTED LEAKAGE FOR A POSTULATED SLB EVENT AT E0C CONDITIONS SHALL BE LESS THAN 1.0 GPM FOR THE MOST LIMITING S/G. BOBBIN COIL FLAW INDICATIONS INSPECTED BY RPC AND FOUND TO HAVE NO RPC INDICATION DO NOT NEED TO BE INCLUDED IN THE LEAKAGE ANALYSES. , I e TUBES IDENTIFIED AS SUBJECT TO SIGNIFICANT DEFORMATION AT A TSP ELEVATION UNDER A POSTULATED LOCA + SSE EVENT SHALL BE EXCLUDED FROM APPLICATION OF THE IPC AT THAT TSP LOCATION. i l 1AP2121:121792
V.C. SUMMER INTERIM PLUGGING CRITERIA (IPC) (CONT'D.) Inspection Requirements
- The inspection shallinclude 100% bobbin coil I
inspection of all hot leg intersections and cold leg intersections down to the lowest TSP for which the IPC is to be applied.
- All bobbin coil flaw indications to be left in service above 1.0 volt and below 2.2 volts shall be inspected by RPC for confirmation of the bobbin '
indications and, for indications, to support ODSCC as the degradation mechanism.
- Eddy current analysis shall utilize Appendix A guidelines of IPC WCAP submittal.
includes use of ASME standards cross-calibrated to reference laboratory standard and use of probe wear standard Operating Leak Rate Limit
- The normal operating leak rate requiring plant shutdown shall be limited to 0.1 gpm (150 gpd) per S/G.
~
EQUIVALENT V. C. SUMMER APC REPAIR LIMIT EQUIVALENT FULL APC LIMIT USE IN IPC e ESTABLISHES MAXIMUM BOBBIN FLAW VOLTAGE TO BE LEFT IN SERVICE EVEN IF NOT CONFIRMED BY RPC e UTILIZATION BASED ON PRIOR IPC PRECEDENT (FARLEY, Co0K UNITS) - i APC VOLTAGE REPAIR LIMIT e VOLTAGE FOR BURST AT 3 AP (-95%) REDUCED BY ALLOWANCES FOR GROWTH AND NDE UNCERTAINTY BURST AT 3 AP _ m, c. O 1AP2121:121792
MST: '4M EQUIVALENT V. C. SUMMER APC REPAIR LIMIT ALLOWANCE FOR GROWTH 0 GROWTH EVALUATED FOR 87 INDICATIONS FOUND IN 1991 0 CYCLE 6 GROWTH (1990 TO 1991) 0 AVERAGE GROWTH OF 45% FOR CYCLE 6 AVERAGE GROWTH ~17% FOR BOC >0.75 VOLT ALLOWANCE FOR NDE UNCERTAINTY 0 EC ANALYST VARIABILITY ALLOWANCE OF 10% AT 90% CUMULATIVE PROBABILITY 0 PROBE WEAR ALLOWANCE OF 9% WITH PROBE WEAR STANDARD AT 90% CUM. PROBABILITY 0 RMS AVERAGE OF 14% INCREASED TO 20% FOR EQUIVALENT APC EQUIVALENT APC REPAIR LIMIT ESTABLISHED AT 2.2 VOLTS l TA#212):121792
Percent Voltage Growth Per Cycle for V. C. Summer S/Gs D) 1990-91 Cycle Cyde8 Average Percent Projected Number of (2) ECC Vortage GrowttvCycle Growth GrowthW Indicatbns h Averace Std Dev. L.Cyc[g yntticyc!e Entire voltage range 87 W 0.66 0.29 0.37 43.9 0.30 VBOC < 0.75 voit 55 0.47 0.36 0.30 76.6 0.37 VBOC 2. 0.75 volt 32 1.00 0.16 0.44 16.0 0.17 fi3t1 1. Percent voltage growth per cycle determined as (VEOC VBOC)/ VBOC
- 100.
- 2. Number of indications in the calculation of the growth statistics.
3. This total differs from (is lower than) the 131 ind'estions from the 1991 inspection primarity because many of the TSP intersections with indications in 1991 were not tested during the 1990 inspection and a few others from the 1990 inspection were not detectable (NDD). 4 Voltage growth pro}ectbn based on prorating Cycle 6 values at 427 EFPDs to 444 EFPDs of planned operation for Cyde 8. l l l
h P t V. C. SU MMER TSP IN DICATIONS ! PROJECTED VOLTAGE vROWTH DISTRIBUTION 100 i C0- - - - - ~ - - - - ~ ~ ~ ~ ~ f
~-~~~~~-~---~--~..~..~..~........................ !
g $Q-w ................................................................................. o , CC w jg.
- n. ............... ..............................................................,.....................
0 00- - - ~ ~ - ~ 2 --~~---~~~~~~~~~~~~~~-----~~-~~-~~~~---~~-- w , 3 0 50- - - - - - - - - w - - - - - E 4Q-A
< 30- -
3 - - i i 2 3 20-o - - - - - 1 10- - ~ ~ ~ ~ ~ ~ - ~ ~ ~ ~ - ~ - ~ ~ ~ ~ i 1
....~.~.~................................ :
1 0 3 1 3 0 0.5 1 1 4 I
- 1. 5 2 2.5 !
BOBBIN AMPLITUDE GROWTH RATE, VOLTO l i l l l P i
~
{ l 1 Cumulative Frequency Distribution of Growth Rate Projecibn for Cycle 8 l l l 1 1
Equivalent APC Repair Limits to Satisfy Structural Requirernents Itam a* c. Basis Maximum Voltage Limit to Burst Pressure vs. Voltage Satisfy Tube Burst Correlation at -95*/. Structural Requirement confidence level (Fig.10-1) A!!owance for NDE From Section 5.7.2, the 14% Uncertainty uncertainty at 90% cumulative probability is conservatively increased to 20% at tube repair limit. l Allowance for Crad Table 9 2 shows average growilV Growth Between cyde of 44%. Allowance inspections increased to 45% of Tube Repair Umit. Equivalent APC Repair Vottage Umit o Acceptable Umit to Meet Structural Requirement l H212:
- 1. Voltage percentage allowances for NDE and growth rate /cyde applied to Equivalent APC Repair Voltage Umit of 2.2 volts.
Finalization of Data Base Model Boiler Data o No changes o Program Complete Pulled Tubes o 1992 Plant R-1 Pulled Tubes 5 new burst points 6 leak tests, 2 with low level leakage at SLB Bobbin voltage range 0.83 to 3.54 volts o 1991 Plant R-1 Pulled Tubes Burst tests judged unreliable by EPRI APC Committee and not included in database Only leaking indication at SLB due to tube pull forces and not included in database o Leak at 500 psi with no throughwall corrosion o 1992 Plant E-4 Pulled Tubes Cross-calibration of ASME standards finalized as 1.70 factor for 550/130 kHz field measurements 8 free span burst points 11 leak tests, 8 with SLB leakage Bobbin voltage range 0.31 to 17.8 volts
l Summary of New Methodology Regression Analysis Methods o Robust regression methods applied to eliminate non- l conservative 1 or 2 extreme outliers (> 99.8% from mean) o Assessed alternate coordinate systems (no change) o Evaluated for errors in variables (insignificant) i Burst Pressure Correlation l o No major changes o All burst pressures normalized to yield + ultimate , stress = 150 ksi SLB Leakage o Developed Probability of Leakage (P.O.L.) correlation o Two slopes used for Leak Rate Correlation (< 8 v &
> 8v slopes)
Utilized trends from TW crack length vs voltage & analyticalleak rate vs crack length to guide potential slopes o Deterministic methods as reference for leak rate calculations includes P.O.L. and leak rate correlation Monte Carlo methods only for very large number of indications (> 1000/SG)' Primary to SecondarybP Set at 2335 psi for SLB o Negligible event sequence probabilities for > 2335 psi l
OVERALL
SUMMARY
OF.RESULTS PULLED TUBE NDE DATA BOBBIN VOLTAGES FOR PULLED TUBES O PULLED TUBE VOLTAGES MEASURED AT 550/130 KHz APC NORMALIZATION EXCEPT FOR 2 (1 BURST, 2 LEAKAGE) OF 11 PLANT E-4 INTERSECTIONS CONVERTED USING FIELD DATA ALL BUT 1 PLANT B-1 TUBE INCLUDE ASME CALIBRATION STANDARDS CROSS-CALIBRATED TO REFERENCE LABORATORY STD. O PLANT E-4 ASME CROSS-CALIBRATION FINALIZED BY LABORELEC AT 1.70 . FACTOR ON VOLTAGES LARGE FACTOR FOUND TO BE DUE TO USE OF EDM HOLES IN-BELGIAN STDS. VS DRILLED HOLES IN U.S. STDS.
OVERALL
SUMMARY
OF RESULTS PULLED TUBE NDE DATA NDE DETECTABILITY
- BOBBIN COIL PROBABILITY OF DETECTION FOR INDICATIONS OF TSPS INCREASES FROM 50% AT 40%
DEPTH TO 100% AT 70% DEPTH ,f - SUPPORTED BY BOBBIN COIL FIELD NDE FOR PULLED TUBES AND BATTELLE SCC ROUND ROBIN RESULTS
- BATTELLE SCC ROUND ROBIN RESULTS REPORTED AS 50% DETECTABILITY IS CONSEQUENCE OF LARGE FRACTION OF SHALLOW INDICATIONS AND COPPER PLATING (NOT FOUND IN PULLED TUBES) 0F SOME INTERSECTIONS
- RPC DETECTABILITY ABOUT SAME AS BOBBIN
- INDICATIONS NOT DETECTED BY BOTH BOBBIN AND RPC ARE LIKELY NOT TO HAVE SUFFICIENT DEPTH AND/OR LENGTH TO CHALLENGE STRUCTURAL INTEGRITY (BURST OR LEAKAGE) BETWEEN INSPECTIONS
- WITH 100% IPC/APC BOBBIN INSPECTION OF TSP INTERSECTIONS, MINIMAL LIKELIHOOD OF UNDETECTED THROUGHWALL INDICATIONS OR INDICATIONS HAVING POTENTIAL FOR MEANINGFUL LEAKAGE BETWEEN INSPECTIONS
- THEREFORE, SLB LEAKAGE ANALYSES FOR IPC/APC INCLUDE ALL POTENTIALLY SIGNIFICANT INDICATIONS FOR LEAKAGE AT TSP INTERSECTIONS EARMERWPWQ3G3 \ - - - _ _ _ _ ~_ _ ____
Overall Summary of Results Pulled Tube Data V. C. Summer Pulled Tubes o Shallow indications (13% max. depth) show early stages of ODSCC development consistent with IPC/APC application o Indications NDD and not burst tested Plant E-4 Pulled Tubes o Largest voltage data for pulled tubes 8 of 10 indications in 6 to 17.8 voit range including one with 0.47" TW length o 8 burst tests and 8 indications with leakage o Morphology of SCC with significant cellular corrosion involvement o Support conclusion that burst and leakage correlations encompass SCC and cellular morphologies o One indication with multiple initiation sites above top of TSP ~ 0.16" ranging from 3% depth to 27% depth at top of TSP
Overall Summary of Results Pulled Tube Data -
. , s, e 4 +
I
Overall Summary of Results NDE/ Morphology Comparisons Broad Range of Morphologies found at TSP Intersections o Variations of SCC + CC, SCC + CC + minor IGA,CC o Cellular found mostly as patches in arrays of axial indications o Cellular found as short (~ 0.25"Ax) circumferential bands at TSPs in one plant and significant axial extent over 360 degrees in tubesheet region of another plant Typically high bobbin volts and burst pressures higher than burst correlation Burst pressures higher or in agreement with calculated burst pressures for single crack model using burst crack length / depth o indicates burst pressures dominated by limiting macrocrack and essentially independent of type of corrosion All burst pressures consistent with or higher than APC burst correlation
F Overall Summary of Results , NDE/ Morphology Comparisons i NDE Features o Cellular corrosion-characterized by significant
- bobbin voltages, lower range of.RPC volts and intermittent circumferential UT indications o RPC traces for SCC + CC range from axial to !
short or long volumetric indications ! Conclusions (TSP intersections with insignificant : Denting) o RPC traces with short or long volumetric j indications are acceptable for APC applications' t
.Circumferential ~ extent limited-to about
[ 125 degrees for available data o Short, circumferentially oriented-volumetric j indications limited to TSP intersections with ! insignificant denting as dented intersections have potential for circumferential cracks ' t k 5 i
t Overall Summary of Results Burst Correlation , i Data base for Burst Correlation
- 41 Model Boiler points up to 64 volts
- 14 Pulled Tubes Up to 17 volts '
All burst pressures normalized to yield + ultimate stress of 150 ksi Alternate Approaches (coordinate system, voltage offset, robust regression, errors in variables) assessed in regression analysis evaluation ' i
- No significant change to prior methods except elimination of non-conservative outliners '
~ a,c 6-s c i
l Overall Summary of Results Leak Rate Considerations Leak rate adjustment procedures developed to adjust room temperature n aasurements to operating temperatures and to adjust for modest changes in pressure . o Analytical formulation supported by more detailed crack model (CRACKFLO) analyses o Pressure differential adjustments basically an interpolation scheme fit to measurements 3/4" Tubing Database for Leakage More Extensive Than Available for 7/8" o More model boiler and pulled tubes Trend Analysis for Leak Rate Correlation ' o Trends for TW crack length vs voltage obtained from model boiler and pulled tubes ' Indicates voltage does not saturate over crack lengths of interest for APC q o Leak rate vs crack length from analytical t model (CRACKFLO) o Combined data defines trends for leak rate vs voltage correlation slope and voltage regions for potential slope I l
Overall Summary of Results Leakage Correlations Probability of Leakage (P.O.L)
- Not previously used
- 85 data points 37 with leakage
- Logit function (s-shaped) used to fit data e Results
- m' SLB Leakage Correlation c
- 37 spetimens (10 pulled tubes)
- Evaluated LR vs V and V vs LR ,
V vs LR preferred Both regression lines included in correlation to increase conservatism at low voltages - e f 1
OVERALL
SUMMARY
OF RESULTS V. C. SUMMER IPC ASSESSMENT E0C VOLTAGES *
- MAXIMUM EOC VOLTAGE ~3 VOLTS FOR IPC REPAIR LIMIT OF 1.0 VOLT
- APPROXIMATELY SAME AS PRIOR CYCLE WITH 40%
REPAIR LIMIT BURST MARGINS BURST PRESSURE RATIOS RELATIVE TO 3 AP" OF 1.35 AT B0C AND 1.19 AT E0C
- BURST RATIO OF 1.54 RELATIVE TO AP 3t, nN
. PROBABILITY OF BURST ~6x10-6 AT E0C SLB LEAK RATES
- CONSERVATIVE DETERMINISTIC ESTIMATE OF <0.00093 GPM AT E0C PER BOC 1.0 VOLT INDICATION
. ~96% PROBABILITY OF ZERO LEAKAGE PER INDICATION i . EVEN IF ASSUMED ALL TSP INTERSECTION HAVE A B0C 1.0 VOLT IND. AND ALL INTERSECTIONS EVALUATED AT 99.6% CUMULATIVE PROBABILITY, THE LEAK RATE WOULD BE LESS THAN A SINGLE TUBE RUPTURE LSupuEFIVP121183
- ._ -= . .. .
GUIDELINES FOR SLB ANALYSES GENERAL TRENDS OF SLB EVENT l 0 INITIAL PRIMARY COOLDOWN AND , DECREASE IN PRESSURE O PRIMARY PRESSURE INCREASE FROM SAFETY INJECTION (SI) 0 PRIMARY PRESSURE INCREASES UNTIL ! i OPERATOR TERMINATES SI OR PORVS OPEN (2350 PSI) l 0 PRIMARY PRESSURE >2350 PSI ONLY IF l PORVS FAIL f j V. C. SUMMER EvgNT SEQUENCE FREQUENCIES MkNA I G 2335 PSID ACROSS TUBES O 2.6 x 10 p/RY OF REACHING 2560 PSID ! O HIGHER FREQUENCY FOR 2335 PSID APPROPRIATE FOR SLB ANALYSES ; I FACTOR OF >10 LOWER FREQUENCY FOR 2560 PSID MUCH GREATER f THAN DIFFERENCES IN LEAK l RATES OR BURST PROBABILITIES BETWEEN 2335 AND 2560 PSID f I NUREG-0844 ANALYSES O PROB. OF SLB EVENT (10-3) WITH CONSEQENTI y TUBE RUPTURE (2. 5x10-2) WAS 2.5x10- ! GREATER THAN V. C. SUMMER I
- 3. 3x10-6 FOR REACHING 2335 i PSID 0 INCREMENTAL RISK OF SLB EVENT WIT,H l SINGLE TUBE RUPTURE IS A SMALL l
~
FRACTION OF ACCIDENT AND LATENT l 4 FATALITY RISKS TO WHICH PUBLIC IS l ROUTINELY EXPOSED .l u
~
i GUIDELINES FOR SLB ANALYSES SLB LEAK RATE ANALYSIS GUIDELINES l 0 A P sa = 2335 PSID 0 PROBABILITY OF LEAKING AT SMALL l FRACTION OF 10C l NOTBE<2.5x10fR100LIMITSNEED FOUND ACCEPTABLE l FOR LARGE LEAKAGE, SINGLE TUBE l RUPTURE PROB. OF 3.3x10-6 FOR 2335 PSID IS LESS THAN ACCEPTABLE RUPTURE PROB. - O CONCLUSION HIGH CONDITIONAL PROB. FOR LEAK RATE <(SMALL FRACTION OF 10CFR100) IS NOT NECESSARY , AVERAGE LEAK RATES MAINTAIN PROB. OF A SMALL LEAK RATE MUCH LESS (FACTOR OF 10) THAN 2.5x10-5 FOUND ACCEPTABLE FOR A RUPTURE V. C. SUMMER CONSERVATIVELY APPLYING +95% CONFIDENCE ON MEAN REGRESSION FIT FOR LEAK RATE PENDING CONFIDENCE LEVEL RECOMMENDATION BY EPRI INDUSTRY APC COMMITTEE
GUIDELINES FOR SLB ANALYSES l i GUIDELINES FOR IUBE BURST PROBABILITY ! ANALYSES ! O TUBE BURST PROBABILITY PROVIDED AS : SUPPLEMENTAL INFORMATION TO SUPPORT ! ADEQUACY OF TUBE REPAIR LIMITS O AP 2335 PSID ! O MAIkt,=TAIN NUREG-0844 cONDITIONgL ; RUPTURE PROBABILITY OF 2.5x10- ! LEADS TO V. C. SUMMER SLB ! WITH SUBSEQUENT RUPTURE PROB. ! CONSISTENT WITH OR BETTER i THAN NUREG-0844 ~ i i l l I 1 i I n l l
.:- s _
I SLB Event Sequence Frequencies and Resulting Pressure Differentials l
) ~ i V. C. Summer ' ;
NUAEG-0844 Smooanon1 Sequens 2 ' Seouance 3 Sequence SLB-1x10-3/RY SLB Outside Initiator Containment SLS Outside Containment SLB Outside ( Containment . ! 1.8x10 3/RY 1.8X10-3/RY 1.8x10 3/RY I Action 1 fu Operators Operators Fail Operators Fail Terminate Si lo Terminate Si to Terminate St. : 0.998 2.0x10-3 2.0x10 3 , Action 2 ' fA PM Pressurizer Pressurizer l PORV Relieves PORV Fails to i Pressure ReGove . . 0.929 Pressure (1) 7.1x10 2 l Total 1X10 3/RY 1.8x10 3/RY 3.3x104/RY 2.6x10 7/RY Someru:n Frequency Pressure Assumed <2335 psid - 2335 psid(2) 2560 psid(3) Differential 2600 psid { i Across Tubes T h Notes: . .i 1
- 1) PORV failure rate includes failure of the PORV to open, failure to restore instrument air and l unavailab8ty of the PORV due to isolation by the block vahe. -
- 2) PORY re8ef pressure of 2350 less atmospheric pressure in SG.
- 3) Pressurtzer safety voke set pressure plus 3% for vahm accumulation less atmospheric .l pressure in SG. .
l 4
RCS Pressure During Steam Line Break 2600 , i 2400 ' l 2200 ! m - i ct 2000 ,
. /
u - e ! t 31800 M : PORVS OPEN AT j Pp = 2350 PSM - i c'1600 m ! o ; a : 1400 y ; J
/ '
1200 - nueTO arrum 1 TO AP(NO) : 1000 . ! 0 500 1000 1500 2000 i TIME, ' SECONDS I } l 1 i E i
i l PULLED Tuss NDE DATA 1 AND ! RELATED NDE CONSIDERATIONS !> l 1 i l ll 4 h [ E b i h r f k
!s i
E P i [
.i l )
~
l i 3/4" TUBE PULL RESULTS i i DATA AVAILABLE FROM SIMILAR DOMESTIC , AND OVERSEAS PLANTS ARE-USED TO ! ESTABLISH THE RELATIONSHIP BETWEEN NDE' I RESULTS FOR V. C. SUMMER STEAM i GENERATORS AND THE UNDERLYING CONDITION : OF THE TSP REGION TUBING. ! THE DOMESTIC PLANT HAS PULLED AND EVALUATED EIGHT TUBES - 16 ! INTERSECTIONS - WITH TSP ODSCC. THERE ' 9 ARE THUS FAR EIGHT PULLED TUBES FROM A i BELGIAN PLANT FOR WHICH 11 l INTERSECTIONS WITH TSP ODSCC HAVE BEEN l STUDIED. !
. I i / ~
1
'l'
m m e T, t l 4 9 4 2 1 7 5 FV o 00 0 3t _ V 1 n o s h - t a tp %% %% %% u e 4 0 06 1 a l D 7 6 6 4 8 s a v E l e s lu o P C V 4 . 0 4 2 t 85 e. 4 s in o b P b 3 6 68 0 1 4 83 o 0 0. B
)
5 V ( 0 1 7. 4 52 7 7 6 02 - 1 4 72 0 8 e 0 e b u s T 4 2 5 1 d El V o t 1 4 23 4 3 4 4 e F V 00 00 20 n n l ta l u a e t e P D h t a ce 2 d ht r l p 9 9 l ie p 1 0D I 7 0
%% ht e p F e 00 a 1
D 59 98 a n. r 1 t o C e n d ,e P 1 R o ) A d 5 t io C 2 l o e p t ( 36 r n a n s 35 4 3 h o s l e l a u e lt 89 1 1 51 u f i n b P la b o 01 31 o d a v b o V w e n e T r E R hg s b o b u b f a u s o a L e 85 64 o r e b t a t l 89 24 51 h u n D o 01 t n e i V 1 1 31 E V d t M e n n e ) S r. . s. ia r r t Aed i r e t b oe eb o d u Ct e 42 4 6 8 o C Ft 1 4 43 4. 3 t mdnr y F l o 00 00 2 0 neap t o d n V o oea s n d io t it e wyc o e E s rt r s l u h oos ob n.ne uf on i o e
%% %% %% o E
v l p e 7 0 89 97 e0 mroorb r ot e e 'v 4 9 s8 o D ot ncal ba bri ne w i e
.* d l C ef 6
e da a ce ecebn b F a nmb od e mtue W t l V o s0 p7 01 50 94 01 1 2
- s. 1 21 nbor oa ei t
es esif f e r e ni n dboe t ae d l ueon gt io e
<. n on o )
4
)
4
)
4 a vt ado t w
. i i
3( 3( 5( elot e sd se v er s. sa t t a c 3 3 9 6 d o un brr e 05 1 o. 5 1 9. 1 l ieCp H r ao 1 4 0 1 4 0 04 0 FPmd e R <e n e va6g r i CC 5 5 5 . nda es oe u e P il oo ots. n g t yr a rs c odr te S 23 23 23 t o e r a o T esetosed nefv miv.e r od ns o e 1 6 1 n b bi oE ge h 7C 7C 9D t C 5. b n M n CG CG CG S EA P 0 ooS a T e 7 S R 9 S R 9 S R f BvA R D . . . . N1 2 345
)
Belgian and Westinghouse Evaluations of Plant E-4 Eddy Current Data l a Bab'an Fisid Eva'un'.en Wen *memeuna Evalua'en Reference ] i Zatee Eeue Bab an Eeu e (3) yoit,9,, j E 550'9 30 kwili) M (2) 300 kH2(2) 550430 kW2 (i) 300 LW.2(2) ESM 30 kyr 3 , (Vor:s) (Volts) (Volts) (Deptn) (Volts) (Deptn) (Volis) A26C34 3 4 95 1.17 1.33 71 % 5 03 70% 1.11 8 55 F) L i R16C31 2 5.75 1.43 1.27 65 % 5.85 69% 1.32 9 55 PI 3 9.30 2.02 2.25 70% 9.25 72% 1 95 15 7 P) i R40C47 2 0.17 0.09 NDD(5) -- 0.17 41 % 0.09 0 29 P) R45C54 2 9.57 2.29 2.25 65 % 9.53 69% 2.21 16 2(7)- l 3 0.45 0.22 0.20(4) (6) 0.83 53% 0.16 1.41 (7) 2.12 72 % 9.39 69% 2.13 16.0 F) j 4 /CS4 2 9.28 2.26 3 1.30 0.53 0.52 40%(4) 1.37 38 % 0.51 2.33 FI 4 0.18 0.41 (7) ! I 3.54 67 % 0.88 6.02F) R33C96 2 3.57 0.96 1.07 68 % fi 2.27 17.8(8) R19C35 2 I 1.54 11.7(8) 7 R26C47 2 . i 2 148 l Voltages at S80/130 kH2 mir normalized to 2.75 vehs on 20% AShE hois. 1) Voltages
- 300 kHz normained to 2.0 volts on 4 troughwal.1.25 mm (0.049") holes. [
2) Amplitudes and depth measured try automated egnal analyma. l
- 3) !
- 4) Manual correcten for smaR signal to noies rails.
- 5) Signal below automated detecton throehold.
- 6) No depth measurement for insutoort signal to noise ratio. !
- ~
- 7) Voltages in paremheses corrected for cross caltration factor of 1.70 between Seigen made ~
ASME staneant and the referonos laboratory standard. j Voltages renormalized fmm 300 kHz to 550r130 kHz using correlation of Figure 5 5. l 8) l 3 5-13 4 l i
CONVERTING BELGIAN MEASUREMENTS TO U. S. A.P.C. VALUES (550/130 KHz) SIGNAL AMPLITUDE IN BELGIUM IS NORMALIZED BY CALIBRATION WITH 4x100% (0.049") HOLES TO 2.0 VOLTS AT 300 KHz. IF THIS BASIS IS USED TO OBTAIN THE 550/130 KHZ CHANNEL AMPLITUDE FOR A.P.C. CALIBRATION (4x20% HOLES) ~10 VOLTS IS MEASURED. THE SAME MEASUREMENTS CONDUCTED IN THE U.S. YIELD ~18 VOLTS. THUS THERE IS A 5x FACTOR NEEDED TO CONVERT BELGIAN 300 KHz TO BELGIAN 550/130 KHZ, BUT THERE IS ~1.8x FACTOR NEEDED TO MATCH THE U.S. RESULT. THE DIFFERENCE - ~1.8 HAS BEEN ATTRIBUTED TO AMPLITUDE DIFFERENCES WHICH RESULT FROM USING EDM HOLES (BELGIUM) INSTEAD OF DRILLED HOLES (U.S.) AS THE REFERENCE FLAWS. '
?
t t oo o . C ,o "N o o . . o
' o ?QN N e ,
t is go 42: sew
- asN: : =
6 r s as e ! Jo e,o e ; h
$s ::= :~a = = -
s s
^
o ,no ,no
- 88: x
. nNo e ,a
- ; :. : s;: 544 .o
- t; nno
- e ; :
o ,,o ,,o . ~ ~ , R 8 w : cc: es: aa: :se = = s
} Q o ,,o ,,o ++o ano a e s , . s +
i 4 * :. ;Nnoa ; 2. 4 5 ano 444 aR w w R ; 35 o Nno NNo aa n a 2 t
;y e a
- ens Nno Nno Nno
- e Nno aa n w
= =
N 1 . a i i : 3 : , i 1 a 3 3 a i I 33i? c = si
- g 8 g >
8 8 8 3 8 g arr 1 -1 1 1 g ! 3 8 1 sI e s N N 4 W W W ,
= o 2 -
i o e - l i '
- l =. coo co. Soo Co.
l5 - 3. :2 3. R 3. 22 3. 2 .
@ W W W
[
Table 5-8 Laborelec Results for Renorrnalization of Belglan to U.S. Volts 3/4" Tubino. Volts 7/8" Tubino-Volts jtem 300 KHz 550/130 KH 240 KHz 400/100 KHz A. Manufacturino Process: a.TV 1.25 m Holes U. S. Orilled 1.99 10.58 1.88 9.26 Belgian EDM 2.00 10.56 2.00 10.17 Ratio EDM/ Drilled 1.005 0.998 1.064 1.093 Manufacturine Process: 4-20% ASME Holes U. S. Orillsd 0.63 1.56 0.71 1.90 Belgian EDM 0.94 2.75 0.94 2.75 Ratio EDM/Orilled 1.492 1.763 1.324 1.447
'8. Influence of Probe Desion: U. S. ASME Std.
20% Holes (U.S. Standard) Echoram 0.61(I) 2.76(2) 0.94(l) 2.77(2) Laborelec 0.64 2.74 0.76 2.74 Ratio APC to Belgian Normalization at 20% Depth o Echoram 4.52 2.95 o Laborelec 4.28 3.61 - 4 TW 1.25 m Holes (U.S. Standard) Echoram 2.00 18.52 2.00 11.10 Laborelec 2.01 18.77 2.00 13.11 Ratio APC to Belgian Normalization at 100% Depth o Ec'h'o r ta 9.26 5.55 o Laborelec 9.34 6.56 Notes: 1) Normalized to 2.0 volts for 4-TV 1.25 aus holes.
- 2) Normalized to 2.75 volts for 4-20% ASME drilled holes (APC Calibration).
5 15
~
BELGIAN VOLTAGE RENORMALIZATION !
\
BELGIAN FIELD EVALUATION ! o EVALUATION OF 53 INDICATIONS ! INCLUDING 1992 PULLED TUBES ! , o MEASUREMENTS'AT 300 KHZ WITH ! BELGIAN PROBE AND EQUIPMENT AND i BELGIAN NORMALIZATION- . o MEASUREMENTS AT. 550/130 KHZ WITH ! APC NORMALIZATION AS WELL AS 300 - KHZ WITH BELGIAN PROBE AND ZETEC E EQUIPMENT ! O VOLTAGE RENORMALIZATION FOR
' l BELGIAN PROBE DETERMINED BY !
CORRELATING 550/130 KHZ WITH ! ! 300 KHZ . SLOPE OF 4.93 o FIELD DATA INDEPENDENTLY i REVIEWED BY WESTINGHOUSE WITH ! EXCELLENT AGREEMENT WITH BELGIAN ! j 4 VOLTAGES CALLS PRINCIPAL ISSUE OF VOLTAGE ! RENORMALIZATION 1 o RATIO OF 550/130 KHZ TO 300 KHZ i OBTAINED WITH U.S. PROBES IS ! FACTOR OF 1.5 TO 1.75 HIGHER I THAN OBTAINED WITH BELGIAN PROBE BASED ON ASME STANDARDS I O U.S. PROBE AND LABORATORY ! TRANSFER STANDARD PROVIDED TO : e LABORELAC FOR INDEPENDENT l EVALUATION e
Evaluation of 1992 Voltage Ind. at TSPs ~ 5 16- No. Data Points 53 a EC Equiprnent - MlZ18 g 14- ' > 3 - g 12-g s
- 10-3 ( Uneat Regression )
O 8- slope 1,00 k Intercept 0.07 y 6- sid Dev, 0.004 x g 4- ( RSquared 0.999) 2-h 0, . . . . . . . 0 2 4 6 8 10 12 14 16' 550/130 KHz, APC Mix Norm, Belgian Eval Figure S 7. Compariso'nof Bobbin Voltages at 55W130 kHz Between Westinghouse and Belglan Evaluations 5 22
i I l l Evaluation of 1992 Voltage Ind. at TSPs i 16 = i P a ;
& 14- ( h No. Data Points 45- . :
EC equipment h 12-550/130- MlZ18 . m
. jy 300 - Belgian 8- = .
x , , ( L,inear Regression 3 m 3 * " Slope 4.93 ~ 6- , , !
, m, intercept -0.75 Std Dev. 0.21 ;
4- m R Squared 0.927 i
" k J
{2-
. . . . . . ................................................+..........................................................................
1 2 - - - - - ! 0 0.5 1 1.5 2 2.5 3. 300 KHz, Belgian Norm., Belgian Eval. { l Fgure 5 5. Cortelation Between Bobbin Voltages at 55W130 and 300 kHz from Plant E-4 Data i 5 20 1
Evaluation of 1992 Voltage ind. at TSPs 30 E tn c 25- ( 3 .9 No. Data Points 45 EC equipment , 550/130 - MlZ18
@ 2} 300 - Belgian 3 < > -
.5 I 3 *' 2 15- Slope = 4.2 { intercem = 0 Range 00.3 V
.." ," (
<c " a 10- at 300 KHz . , Linear Regression [ k J. a. Slope 8.39 Intercept -1.27 g j . - 5- " Std Dev. 0.36
- f' R Squared 0.927 C
N: .
)
0 0.5 1 1.5 2 2.5 3 300 KHz, Belgian Norm., Belgian Eval. , Figure 5-9. Correlatbn Between Bobbin VoPages at 550'130 and 300 kHz frorn Plant E.4 Data 5-24 P
~
ADDITIONAL NDE UNCERTAINTY EVALUATIONS EDDY CURRENT ANALYST VARIABILITY
SUMMARY
EVALUATION IN WCAP-12871, l REV. 2 i o ANALYST VARIABILITY: 10% AT 90%. : CUMULATIVE PROB. - EVALUATION FOR PLANT l j O 592 LARGEST BOBBIN INDICATIONS (0.6 TO >3 VOLTS) O 6 ANALYSTS FOR EACH INDICATION ; O ASSESSED ANALYST. VARIABILITY AS l DIFFERENCE FROM THE MEAN OF THE : 6 ANALYSTS (592*6 = 3552 POINTS) i . O AT 90% CUM. PROB., ANALYST I VARIABILITY.-IS 0.13 VOLTS OR l 9.2% OF 1.41 AVERAGE VOLTAGE l t i h I ! l i 1
I V. C. SUMMER : TSP ODSCC BOBBIN INTERPRETATION GUIDELINES l VOLTAGE CALIBRATION CONSISTENT WITH PRIOR i A.P.C. EXPERIENCE: ' 4.00 VOLTS AT 550 KHz FOR 4X20% ASME HOLES l u AND i 2.75 v0LTS IN THE 550/130 KHz i SUPPORT PLATE SUPPRESSION MIX 3 OUTPUT FOR 4x20% ASME HOLES-RECOMMEND INSPECTION FREQUENCIES HAVE BEEN . IN ROUTINE USAGE FOR PRIOR INSPECTIONS;
- I.E. 550 KHz, 400 KHz, 130 KHz, AND 35 KHz.
j
" APPENDIX A" GUIDELINES AS EVOLVED-FROM -
PRIOR A.P.C. EXPERIENCE WILL BE APPLIED. ! l' s 4 i
i i j
^
NDE DETECTABILITY i DATA AVAILABLE-FOR ASSESSING NDE DETECTABILITY FOR INDICATIONS AT TSPS ! e PULLED TUBE DATABASE FOR INDICATIONS AT TSPS 4 BATELLE SCC MINI-ROUND' ROBIN (NUREG/CR-2336) PERFORMED PRIOR TO 1987 j CONSIDERATION OF RETIRED SURRY S/G INSPECTIONS l 9 INDICATIONS PRIMARILY PITTING / WASTAGE WITH i
- FREQUENT COPPER PLATING ON TUBING WHICH ARE NOT RELEVANT TO INDICATIONS AT TSPS j l
GENERAL CONSIDERATIONS FOR NDE ASSESSMENTS ; e NDE PERFORMANCE DEPENDENT ON PROBE TYPES, DATA l ANALYSIS GUIDELINES AND ANALYST TRAINING
~
j e BOBBIN PROBES APPROPRIATE TO UNIFORM (Ht l
- UNDEFORMED TUBE SECTIONS j APC APPLICATION FOR UNDENTED TSP I INTERSECT 10NS ;
j e DATA ANALYSIS GUIDELINES SIGNIFICANTLY ENHANCED f . SINCE LATE 1980S < APC REQUIREMENTS FOR FLAW IDENTIFICATION i AND VOLTAGE AMPLITUDE MEASUREMENTS j EPRI S/G EXAMINATION' GUIDELINES l RESULTING IN INCREASED INDICATION-AND l PLUGGING SINCE ~1989 FOR INDICATIONS WHICH l HAVE EXISTED FOR MANY PRIOR YEARS .i i i i TAP 3002:18 l' r 4 k
, , - . , -. s. , ., , , ,--
~
NDE DETECTABILITY PULLED TUBE DATA FOR INDICATIONS.AT TSPS . A HOST APPROPRIATE DATABASE FOR ASSESSING APC APPLICATIONS BOBBIN COIL DETECTABILITY: FIELD EVALUATIONS-e 29 INDICATIONS >70% DEPTH: 100% DETECTABILITY e 48 INDICATIONS 40% TO 70% DEPTH: 75% DETECTABILITY e 25 INDICATIONS 20% TO 40% DEPTH: 48% DETECTABILITY e 48 INDICATIONS <20% DEPTH: 4% DETECTABILITY LABORATORY REEVALUATION OF FIELD BOBBIN DATA TO LATEST NDE GUIDELINES e INDICATES POTENTIAL DETECTABILITY APPROACHING 100% FOR INDICATION >30% DEPTH j CONSERVATIVE GUIDELINES CAN RESULT l IN OVERCALLS AND GENERALLY USED i WITH SUPPLEMENTAL RPC INSPECTION , FOR INDICATION CONFIRMATION j e CURRENT FIELD EVALUATIONS JUDGED BETWEEN PRIOR l FIELD AND LABORATORY EVALUATION RPC DETECTABILITY e SIMILAR TO BOBBIN DETECTABILITY , e 100% DETECTABILITY ABOVE 70% MAXIMUM DEPTH . e > 80% DETECTABILITY BETWEEN 35% AND 70% DEPTH 1 TAP 3002:18
i Bobbin Coil Detection Probabilities Based on rst Pulled Tube Data Il { 100 10/10 70 21/21 13/13 9/9 3/3 7 I l j 90 ( 4 80 - 11/ 4 l l l l 70 -- l ! - . . l 6 )
~
l k - 6/1 , 3 50 -- p 5/12 6/14 40 -- l C l 30 -- > l a 20 -- 0/21 2/ ) 10 -- . 0 - 1 4- - 4 o d
$ $ $ $ $ I' I $
A R i i i i i 2 { Throu@.was Penetration l E Field Evaluation O Fisid swevaiuation l l
- Batene IGSCC Round Robh Team hF l i
i i
Detection Probabilities s/s 11/13 85 3/3 10/10 100 ,
,p *l* ?h 80 - . . . - .. -
bN . 83 ' 8 60 - -- - - -- - - - - -- 40 . __ . ._ * *E="== EIf" T T "" o - y '. 'I'
$g 20 - ~
- c. 2 0
~
5 15 25 35. 45 55 65 75 85 95 Midpoint of Range of Indication Size depth) as Determined Metallogr RPC Detec5on Probabilities Based on m Puled Tube Data N,
1 F
-NDE DETECTABILITY AND SIZING PULLED TUBE RESULTS FOR INDICATIONS AT TSPS !
DETECTABILITY FOR TSP INDICATIONS FROM PULLED TUBES ! e WITHOUT LATEST GUIDELINES: DETECTABILITY 100% l FOR MAXIMUM DEPTHS >70% NO REPORTED OCCURRENCE DEPTH >70% NOT DETECTED BY BOBBIN -; e WITH LATEST GUIDELINES: DETECTABILITY , APPROACHES 100% FOR >40% MAXIMUM DEPTH LATEST GUIDELINES INCORPORATE 1991 Plant L
, PULLED TUBE EXPERIENCE -i 9 COPPER DEPOSIT LAYERS ON PULLED TUBES NOT FOUND WITHIN TSP INTERSECTION ON ANY OF >150 ;
INTERSECTIONS EXAMINED , 3 ~ MAXIMUM DEPTHS OF Plant L INDICATIONS LEFT IN SERVICE , 9 MARGINAL RPC INDICATIONS WITH BOBBIN VOLTAGES :
<1.0 9 4 INDICATIONS FROM PULLED TUBES MEET REPAIR f CRITERIA FOR LEAVING IN SERVICE l 9 2 PULLED 1 INTERSECTIONS: BOBBIN DETECTED, MARGINAL (3/1) RPC. :
AVERAGE DEPTHS OF 35% AND 40% > MAXIMUM DEPTHS OF 71% AND 55%
- BURST PRESSURES 0F 10,400 AND 10,500 PSI 9 2 PULLED INTERSECTIONS: BOBBIN DETECTED,-RPC l NDD '
AVERAGE DEPTHS OF 28%-AND 33% i - MAXIMUM DEPTHS OF 62% AND 51%
- BURST PRESSURES OF 9,500 AND 10,400. PSI j 1
TAP 3002:18 i u-
i
) I' : ;!
0 P 3 O E #" T E 6 2 D - T _ 5 _. R O 2 OS T 1
)
HE 2 N SB : l ( FO n 0H _ ORP a 2 OT N m T 6G 1 OC P + N E . I T R C .T' '" f* 5 1 L EH O T K TT I
^ 1 1
C _ DEW i A 0R F S 0. . 1 0C OK C 1~ O T 6 YA i 0 _ TR I i . LC I 5 0 B _. A W O T 0 B - - O R 8 6 1 4 2 O P _. 0 0 0 0 zOrOLFE LO $@mOe Ui L . m E ) ! i;
i i NDE DETECTABILITY BATELLE SCC MINI-ROUND ROBIN !
\
SCOPE OF BOBBIN COIL INSPECTIONS I e 16 ODSCC INDICATIONS RANGING FROM 26% TO 100% I MAXIMUM DEPTH e 6 INDICATIONS COPPER PLATED AND NOT INCLUDED IN ! COMPARISON WITH INDICATIONS AT TSPS ! CU PLATING HAS NOT BEEN FOUND AT ANY TSP INTERSECTION IN PULLED TUBE DATABASE STUDY RESULTS REPORTED AS SNOWING ~50% DETECTABILITY-e NOT REPRESENTATIVE OF NDE DETECTABILITY-AS-DOES NOT REFLECT DEPTH / LENGTH INFLUENCE ON NDE i DETECTABILITY i e EXAMPLE: DETECTABILITY 83% FOR INDICATIONS >40% -i DEPTH AND >0.25" LENGTH AND 100% FOR INDICATIONS
>80% DEPTH !
l l l l TAP 3002:18
NDE DETECTABILITY BATELLE SCC MINI-ROUND-ROBIN l . l BOBBIN COIL DETECTABILITY : e 2 INDICATIONS >80% DEPTH: 100% DETECTABILITY ! e 7 INDICATIONS 40% TO 60% DEPTH: 64% ! DETECTABILITY
)
e 1 INDICATION 31% DEPTH: 33% DETECTABILITY e AVERAGE PROBABILITY OF DETECTION (POD) , POD = 69% WITHOUT CU SPECIMENS (64% FOR TEAMS MB-MF) j POD = 63% WITH CU SPECIMENS (56% FoR TEAMS ^ MB-NF) > 1 e BOBBIN DETECTABILITY VS DEPTN VERY SIMILAR TO PULLED TUBE EXPERIENCE ; BATELLE RPC DATA NOT EXAMINED AS TOO'EARLY IN RPC ! DEVELOPMENT TO BE APPLICABLE TO CURRENT TECHNOLOGY' ! I [ f I i I TAP 3002:18 t
l i I IGSCC Round Robin - POD Results 1.0
< c.....ii.a.: > < m .. ... y 0.8 -
b M8 MC MD ME MF Inspection Team MH MI MJ IIh MK ML MM MH MO MP
- Re$ted$ EG 1
NUREG/CR-2336 SCC Mini-Round Robin Bobbin Coil Results - Team Length Depth MA* MB MC MD ME MF Inch % B99 0 0 NI -- -- -- -- -- F09 0.04 45 X X X -- -- -- FIS 0.25 3B (Cu) X -- -- -- -- -- B61-07 0.25 42 X -- -- -- -- -- F10 0.25 37 (Cu) X X X -- X X Ell-03 0.44 86 X X X X X X E07-07 0.45 5B X X X X X X E01-03 0.50 100 NI X X X X X Ell-05 0.64 50 X -- X X X X B-07 0.66 43 X X X** - -- X B61-03 0.69 47 X X X -- -- X - B55-04 0.91 59 X X X -- -- X B46-02 1.06 31 X -- -- -- -- X B63-06 1.11 59 (Cu) X -- X** -- -- -- B63-01 1.13 44 (Cu) X X X** -- -- -- B63-08 1.41 26 (Cu) X X X** -- -- -- 7 B62-08 1.43 42 (Cu) X X X** X X X e NI: NOT INSPECTED X: DETECTED -: NOT DETECTED Team MA did not perform a blind inspection of the tube bundle Reported as unidentified signal TAP 3002:18 i r
! ! ' : l I
' 0 ' 0 I 1 I
o t 1
' 9 IL" Y
I
)
TI L I 0 ( B EI 8 oN AB t
- 1 O
7 BO I
' I OR " T ,
R P I A _ PC/ R NE [ p2
/
0 2 2 0T 6 OE T OL I I 1 5 1 Nm TO E P C E C TN
- - L _
i - 0L EI B _ i y 4 [ OA DB ; T 1 3W m CO l 4 i CB j u l U S D R
- l 0 /
0 R H O O s i 0 F - 1
/
2 l 0 OT 2 T P 1
/ 1 l
0 S - 3 T - l 3
/
0
- 5
[
/
0 0 0 0 0 0 0 8 6 4 2 1 o ZF O $ p9 3 a ~
.a _n..- - u . . - , . .1 -- a.-- . . a ..a...,
j 1 N NDE DETECTABILITY FOR ODSCC AT TSPS
^
CONCLUSIONS i NDE DETECTABILITY ABOUT 100% FOR MAXIMUM DEPTHS >70% FOR BOTH BOBBIN A.ND RPC PROBES I e OBTAINED FOR PULLED TUBE DATABASE AND FOR BATELLE ROUND ROBIN ] e TYPICAL'AT LATE 1980'S GUIDELINES PODS INCREASE IN 40-70% DEPTH RANGE FOR LATEST BOBBIN ANALYSIS GUIDELINES SUCH AS USED AT SununerIN 1990 AND 1991 INSPECTIONS. . P i BASED ON AVERAGE GROWTH RATES IN DEPTH OF 5-10%-PER CYCLE, ! AS FOUND FOR ODSCC AT TSPS, INDICATIONS NOT DETECTED CHt DETECTED BY BOBBIN AND NOT BY RPC HAVE A LOW PROBABILITY OF GROWING TO A THROUGNWALL LEAKING INDICATION IN ONE CYCLE.
)
i TAP 3002:18 l t s
V. C. SUMMER NDE RESULTS OVERVIEW o OFF SITE REEVALUATION OF 1990 AND 1991 NDE DATA o 131 INDICATIONS AT TUBE SUPPORT PLATES o APPENDIX A GUIDELINES USED FOR EDDY CURRENT DATA ANALYSIS o VOLTAGE GROWTH RATES CALCULATED USING CONSISTENT DATA FROM 1990 AND 1991 o GROWTH RATE PROJECTION BASED ON CYCLE LENGTH (EFFECTIVE FULL POWER DAYS)
i i r 80 70 70- 1 V i 60- ! g 50-g , 40- i 8 i 30-M M
*~ !
10-V V 8
- l 0 Y/ /A
/ . . . .
1H 2H SH 8H 11H 12H , LOCA110N OF WOKMTONS 60 ' e b 50- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - i 4o............................ .........................................................................
.b 3o. ..........................
8 ......................................................................... 8 g0 ........................... V k 10- - - - - - - - - - - ----- -. A J Aum C. - . , 1H 2H SH OH 11H 12H -t LOCATON OF FOCATONS ' i
-t -
f Fgure 9-1. Frequency Distrbution of TSP Indications by location (1991 Inspection) I 9- 9 . t 8
i h , ,
- qD L l l
a : i
, > L :
I
? .,.. lb f
i i I I l ( ) : 10 - s j 9- g i ( 8m - -- 7- s ,, 6- - '. : S m f
- 4. - ' ,# k 2 m 3- '
.=
1m ,, , sw i 4
- e. ;
I ( w I -> l w , NoTL PREHEATUt MOORCADON NCFT SHO4m l 1 Figure 9-2. TSP Locations and Designations in the V. C. Summer StG Tube Bundle 9-10 1 i l I
30
- 100 27- ----~~~--~~~-7 /-----~~~----~~-- - --90 / / .
7 h 24- -- - - - p p -- ---- --- - --- -
-80 g vs h / / d z 2,. ......................... / 7 $ f .
7o x w l o /' / 7
' o-G / / g/
< , e. ......................... f . .
/...................................................... 3a g o 9 / / / Z 15- - - - - - - h h -
h - - - - - ~ ~ ~ - - ~ ~ ~ ~ - --so
- p--
1 w 12- - -- - . - -- -
/ h-w
$ /
--- - - - -- - --- ---- - ------ - - ---- --40 g
D 7 F
- g. / /l..
z ...................
/.. / / / ........................................... 30 $
a .
/ '/ 1 e- / 2 - - - ~ ~ - - - -- .
p - -- - - - - - - - --- ~ ~ --20 o a-0 O.2 0.4 0.6
--l/
0.8
.d.s.1.4 1
1.2
/.-
1.6
/
1.8 2 P2. ZI . 2.2 2.4
.P7). d 26 28 --10 O
1991 BOBBIN AMPUTUDE, VOLTS t 1 1 Figure 9-3. Frequency and Cumulative Percentage Distnbution of Bobbin Ampfltudes ; (TSP Indications from the 1991 Inspection) ) 9-11 l __\
r 2.5 , g g.................................................n.................................................. f--
)
O ci 1.5- ~~~~'***********************O* * * * * * * * * * * * * * * * * * * * * * * * * * * * * " " * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
- cn O
Z ( 1 . .O O .................................................................................................. , Ch O O v- 0 D D O O QS. ....g............ ..... ..k ..O ...........................g.....................................4 D D D D ' D D D D
%D D m o D D D D o to gm a o e "
g o. ................................j,...h..D....%..p....................u..o.................
- t "
D D o D 5 .as. ................................................................. ..............................
-1 . .
i O 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1990 BOBBIN AMPUTUDE, VOLTS Figure 9-5. Growth in Bobbin Amplitudes During Cycle 6 (1990-91) 9-13
2C 100 .
?
10- - - ~ ~ . . ~ . . ~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , , ,
.......~......................" ~ ~ ~--90 !
k 3y
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..-80. ...............
g 14- - - - - ~ ~ ~ ~ ~ - - ~ ~ - - ~ ~ ~ * ~ ~ ~ . 1
/ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ - ~ ~ --70 r / ;r t / / /
- 12-' - ~ ~ " " " " ~ " ~ * " ~ - ~ ~ ~ ~ ~'/ ~ '/-' /- - - - ~ ~ ~ " - ~ " " " " " " " " " " - " " " " ~ -
/ / / -60 / / '/
10- ----~~~~-~~~~-~r~/ / / / '
/ /l-/--/-</- / / /- ~ ~ ~ ~ ~ ~ ~ ~ - - ~ ~ ~ ~ ~ ~ ~ ~-50 / / / / UJ / / / / T 8- ~~~~"~-"~~~~-r"/ " ~ / U. / / / / '/ '/~ ~ * ~ ~ ~ ~ ~ ~ ~ ~ ~ " " ~ ~ ~ ~ ~ ~ ~ ~ - -40 / / / / / / / / / / / / / / ,i
- e. ............................/ /
/ ../-/.,/../................................................ / / / 30 t / / / / / / / / /
4 ............................/ /c).// / / / / '
\ / / /.,/ / .......e......................................ga ~ . ., / / / / / /
i / / / / / -
- e. ....... 7 / / / / /../ / / '
/ .............Q / / / / / /. ,/ ..... / / , . . . . . . . . . . . . . . . . . . . . . . . . .,a ? / / / / / / / / / / / / / / / /
n ~;
> > > > > /> . Q./,
e
- 0. .s i /,
Q /. . . . .. .>. 0.5 -0.3 -0.1 0.1 OL3 0.5 0.7 0,9 1.2
. .YJ. .M" 0 1.8 2.1 0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.4 1.8 GROWTH IN BOBBIN AMPUTUDE, VOLTS i
i e Figure 9-6. Histogram and Cumulatka Probability Distribution of Voltage Growth During Cycle 6 (1990-91) 9 14 , I I
< + .- .-
V. C. SU MMER TSP IN DICATIONS PROJECTED VOLTAGE GROWTH DISTRIBUTION 100 00- - -- - --- - -- -- -- --- -- ---- - s 7 QQ- .................. .................................................................................. w o C - jg.
- c. ............... .....................................................................................
o 00- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - z - - - w o a w 50- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - C as. 40- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 3 30- -- - - - - - - - - a - - - - - - - - - - - - - - - * - - - - - - -
- E D n o -Q.. ....................................................................................................
10- - - -- ...............................................................,,,,,,,,,,,,,,,,,,,,,,,,,,, ! I C . i 0 0.5 1 2
~ 1. 5 2.5 BOBBIN AMPUTUDE GROWTH RATE. VOLTG i
i t 1 Figure 9-8. Cumulativa Frequency Distrbution of Growth Rate Projection for Cycle 8 9-16
t-Table 9-2' t Percent Voltage Growth Per Cycle for V. C. Summer S/Gs (1) 1990-91 Cycle Cycle 8 Average Percent Projected Number of G) BOC Voltage GrowtrVCycle Growth GrowthW Indications Voltage Averson Std. Dev. / c vein Vett/cvero , Entire voltage range 87 (3) 0.66 0.29 0.37 43.9 0.30 f VBOC < 0.75 voit 55 0.47 0.36 0.30 76.6 0.37 ; VBOC z 0.75 voit 32 1.00 0.16 0.44 16.0 0.17 , t Notes 1. Percent voltage growth per cycle determined as (VEOC-VBOC)/ VBOC
- 100.
- 2. Number of indications in the calculation of the growth statistics.
3. This total differs from (is lower than) the 131 indications from the 1991 inspection primarily because many of the TSP intersections with indications in 1931 were not
- tested during the 1990 inspection and a few others from the 1990 inspection were not detectable (NDD).
4. Voltage growth projection based on prorating Cycle 6 values at 427 EFPDs to 444 EFPDs of planned operation for Cycle 8. r i 9- 7
[ l t
?
I y . -p - r
'f ~ , . f . / - +j ,sf A
[ V 's 7 l-s / n
- / 7 s.4s - ,p" ;
2H+s.35 2M+s.44
-4.4s 358 -e.s3 36s i
I a) R4 C67 Location 2H b) R42 C48, location 2H 4 , i i r
? / - l f' , // -
8.45 /
/ +/# [ / ,
s.s. -
/ '
4 W 37 ' j SH+4.33
-4.48 364 .53 364 i i
- c) R27C99. Location 2H d) R14 C56,locatbn SH h
Figure 9 9. Example RPC Traces from Hot Leg Support Plate Locations in S/G.A
- (1991 Inspectbn)
(' 4 9 17 i t
f e i __- i
/J2b .
- 51 /
-e.ss ,,
l 2H+s.41 ; 2H+e.3s s.45 c
-e.s4 36s e ;
i a) R810C44, Location 2H b) R10 C94, Location 2H
?
I
. Y j +
s.n , s.41 4
~* .n l w.. .n -e.55 368 -4.M 360 i i
c) R9 C103, location 2H d) R46 C71. Location SH Figure 910. Example RPC Traces from Het Leg S@ port Plate Locations in S/G-B (1991 Inspect >on) 9-18
./ !
s.s2 _- - 0.59 m .3,
-e.52 3sg -4.55 364 a) R39 C91, Locatbn 2H b) R8 C27, location 2H i
s.5s
-4.53 3ss e,se s ,
c) R37 C40, Locatbn 5H d) R21 C84, location SH i t l
-i Figure 9-11. Example RPC 1 races from Hot Leg Support Plate Locatbns in S/G-C (1991 Inspecten) 9-19
V. C. SUMMER NDE RESULTS CONCLUSIONS o ONLY A LIMITED NUMBER OF INDICATIONS AT TSP LOCATIONS o DEGRADATION IS AXIAL ODSCC o MOST TSP INDICATIONS ARE IN THE 0.5 TO 1.5 VOLT RANGE o VOLTAGE GROWTH RATE OF INDICATIONS IS LOW (90 PERCENTILE = 0.7 VOLT / CYCLE) o PROJECTED GROWTH RATE DISTRIBUTION HAS BEEN DEVELOPED FOR CYCLE 8
a l l
+
ODSCC CRACK MORPHOLOGY OF 0.75 INCH DIAMETER
- STEAM l
GENERATOR TUBING i Y PULLED TUBES MODEL BOILER SPECIMENS i l l t 1 I i i
' l , i i
4 i OD DEGRADATION SPECTRUM ! i SINGLE AXIAL CRACK
] :'
MULTIPLE AXIAL CRACKS OBSERVED AT TSP l CELLULAR CORROSION MERSECHONS :l LOCAL IGA PATCHES j , GENERAL IGA E l t'
- i ?
I
-i i
_ CELLULAR CORROSION i INTERSECTING NETWORKS OF AXIAL AND CIRCUMFERENTIAL CRACKS LEADING TO A i CELLULAR CRACK NETWORK OF VARYING DEGREES OF COMPLETENESS. -
= ;
CELLULAR CORROSION TRANSITIONS TO AXIAL f CRACKING JOB ONE PROCEEDS FROM OD TO ! ID. AXIAL CRACKING IS DEEPER AND MORE i FULLY DEVELOPED THAN CIRCUMFERENTIAL , CRACKING. i l f ir f
)
l I CRACK MORPHOLOGY AND ! STRUCTURAL CONSIDERATIONS
=
BURST STRENGTH CONTROLLED BY ! A DOMINANT AXIAL MACROCRACK. ! F GOOD FIT BURST STRENGTH MODEL PROVIDED BY PLASTIC ; COLLAPSE OF AN EQUIVALENT ; AVERAGE DEPTH PARTIAL ' THROUGH WALL CRACK. l THE ABOVE STATEMENTS REFER TO ALL MODES OF DEGRADATION OBSERVED AT TSP INTERSECTIONS. t l I (/ l
. I n I
f 6 5 i
~I L
b a , J-)b 1 L e I ( b F b s T n h I P 3 h i 1 b l f k i i
\
v I P l I
' a[
i I 1
'i P
b L
? 'L F ?
b L h e e b 6 i
+
t
.) ~
P t
?
I ' i F f r a f r O P k e p b
.. e ees '~~ -l
4 f 4 4 1
.. b.C 6 I == d . I i ,
9 h I i 4 I i l 4 E e I M ! 1 9
A . .- - , e . .
?
h* l' I i i >
,L 1
D 1 k 4 t 3 t
.O l
b f E b t f 4 9 4 .g
-+- .
5 ' bse_ 9 M GP
4 W
'N - ,
d , i 6 3 0 t i t k 1 b b 4 m ' e
O O' 4, I I
?
q l 1 i i i i i 0 i P W h 9
e44 -4 4 * ,J & F i
+
O, t
. i 4 +
b t 6 i t 9 i I C r 7 k t-t I i k r e l' I t h i i
. ha e 'n - g r 't i
i v v i t s a e s f 3 i
'l f
I e f a f 9 t
.t r ? ).
h 3 k i t f
'1 I
v 0 I W f 1 i 8 1 a I. d
^n ,-. . _ - 6
..m a ,,.ne,ow' a' +a- &
U . s l
.st .I I 3 I
. l i l
.i i
i
'l l
l 1 i n j k ' r t i r i F I b 1 6 d f i f f i f d 6 h 3 d
- b. . . - - . . - . . ._
g
l y e i f =
- 4 J h I b, k i
l h, s i i I l l l 9 9 i e l
'I a
l I a i I i i eum e
e o at 4 4 . t i a I e-E
}
I I f f r i i E f L F h 1 Y I i t i b J I I i t l 1 1 f i 6 '$ p t d' h
,,,,-w,- -,,
emme s= e i 9 'N
4 E k e P
'W J
v I
+
5
+
f I f l.
?
e I i
.k f ~%
i f e P a I P t 4 h 4 1 i L a r ,> b t 6 1 9 e a i e' 1 9
+--.k Aw-- d 3
4 Y
=
s CD s f s h t S 6 8 e r h 2 J l b L 6
?
1
.. 1r b
[ L r i N i
?
5
-1 ' I i
I 4 l l 1
] ~
O
-e m P
4-i
, ,l 8 i I
1 1 h 0 s F 1 I e 4 3 9 i l i E 3 I h e - T f J 6
}
l 4 f: r I-t ei A e i t 4 1 i l i I
A L t. I. g 5 7 5 4 s 4 b J i l 4 I
.9 )
i r r E h 5 y h ( L i b h f 9 b h t I i
)
m W
)
f
' i J
e ]
- I
t 9 t i p 1 t h
.E f
f r T U s t s D 4 6 i b I ( I f i 3 6 1 1
.l o
a _ y es 4
I 4 .
. , - f i
I '
.1 4
- i i
. , . r t
i
? ?
F i f 4 4 L l e f fr e i e b b l' 4 N 4 e i A F I L
'I
- L I.
9 c 4 h r 9 4 7 k
'?
e e j e 6 6 Li
L - --.
.. A a. t. *.,-a, - . , a. ,,n I
i t l l 1 \ .g
+
s - e
'
- I N
e%,
%e 4 % %g i
AXIAL ODSCC 2C L OP G, C ES LU ED I l ! i
- I i
l 1 l
- u ,
l
- e i
/
W i
)
V j
%f / . t f x ' O .. .~ . .in r
1 i 1 1 i TRANSVERSE SECTION V.C. SUhmiER TUBE R36C67 AT FIRST SUPPORT PLATE (AFTER 2 CYCLES OPERATING ,3 CYCLES PLUGGED) ' I [ I t s d
- _ e s
I i
)
l i i
& 0.004 INCHES -e f
i 4
... s i .1.. r 4 \ s. \
i l
- '- ,s
[ l , ./, l
,i ? /
7 / 4
/ . , l / \, J
. - \ ~ . l l
)'
- l ,.
,1 ,
1
' ' 23,..,,
/ i TRANSVERSE SECTION V.C. SUMMER TUBE R36C67 AT FIRST SUPPORT PLATE (AFTER 2 CYCLES OPERATING ,3 CYCLES PLUGGED) l i l
I i i 1 4z
%g+ o i
2 i j; , '% k. x., - i 4 w -. ,
~
z.
~ ?. * ~
3.t::<E.
- Y.- l'y, - , ~.
.. - $_ g s
h 4. h-)' ,
~.
x .~ l
* ~ ,
l V.C. SUMAER TUBE R35C70 AT FIRST SUPPORT PLATE l (AFTER 2 CYCLES OPERATING,3 CYCLES PLUGGED)
1 i i i i
, ' Q] '
It
.n > . ,1
- r. e l
l . r*. m y , s
'L' , .
4 f. g t -
,g -
- . s . ..
I i l 0.75 INCII DIAMETER MODEL BOILER SPECIMEN AFTER BURST TESTING i i s E
- - - - - - - - - - - - - - - - . - -- - - - - - - - - - - - - - - - - - + - - - - - - - - - - ~
__ .--m ,,-. - mu ,a u e ' ' ~ " ' ~ ' * "- ' ' ^ ^'-~""'"=^"^'"""'"'-=1 - -. *AA A - ' - - - ' *' < 2 -
~
t , b - l E;3.. 4..A.6.1 ~' ip -
. A ".4 R
n -v.c,. - g, a. - r-1,, g y: . us
- ,g y . . --
.J':y's ; p**-
- a ,
q: .'.' g '.[:!. . e. a e
. . _ far . . _ . } , ,. . g. . ..
p. i~
%m.P J.f ' a .%.W a l ~ 4, V... .
_.. ..i
, p+ .f9re.s.wg . y, -
r, - h,f . . "O'Q*y
- f**$ v.fQ ag ' .
. . . m.m l .
e s*& . - > - . .. . ~
! j/'. . * ' '~h k e.nw . 4w ,
- p.
- h-#$4 ,. -~ q ,
- v e.g < .. p . e d -
s.* - '
. "42* 'c- .- ,,
{WJ
- g eg .: - N,._t;.,1 ; .
~ .r; . e
- y. ..
_- y w . p :.-q:t. ,
.e * ...J y .xgg 4 ,-7** C Q;7: .#i j m ~ ,, H . ., w
- 3. *: s _
m q s. ;. - = n. tn. . h .,3p -: >. . . 8' ,.r., L f5-M , ' ' i
.. ) r pq,. - .- x a- . .:4 ?[ e p . ,-
a." ' ' ';
#, 5 ' .h. ,- . ; ,. e,f, g.- 7. l . 4 .4- .. . te .
p . . y -
, . .i l g/ju. R' g- v -
fa. {%.. . '
..-.u--- / ,, .- ,
t.'. g y y s.-e
. [?. - S . .
vl. M'.
. 4*,'-
g g 6 .- y m ,,n em de# ' - rs . - . .. p .g e.9,sy g
= a .- a=== - ? -* ; m yfe-Q. -
i-W.
- + ,f, y ..
f..:a.,e._ .. . i .
.g,.: $3 . ** *r - _
ja: .. w f R.:[ %' ? - d,. . p : . . y~.'w I
*** f
- k. .y. . . s .. .v i tr. 7 y.? .
ai ts --fs
,,# e- . . -. .. g.
( : r.t y..- *. .%4-
,. g .
[ . g-.
. c .. .
- ahr- e -
*e
- y.
g'; -
. - 8 ; ;
1
^ '
g- ml: y
.pk.:. ,-. sN. .x yF .J}
k p; y# .-: - 0.1
'W . pC. *. ~
n
* (.- . - u',t - .c -
T
- r. .
*y - Q. .a. .r ; ., w- y n,. . . . e-j . - a w,. j, .. . ,- -w , 1 lk g.c.
e fe".*..,,+.*. . . ...c
.. l W: . ... ur,.ypw W. . . . . t. , p + ep.. e ging.. ?'. '
n
.+
f* l H - [a .
! EMM d a dil & dyf ' .-IM %dii
---_-4__ . _ - _ - - - - . _ _ - _ _ _ ,.____m_ . - _______ -% M M 4 4h -Ah A A .A M h6 M Mh h h hpha-ha M.M . MA M _Lh& W mm m m u-- "---**""*N-'mma=**6-""-4"---- "--
r
.t I =
I tj l i i . [ I l l . i
+ 'W / - v , . . , , , r.. '% l
\ i
/ .
i j . .- . . .
.. .g.fd ?t.'/.$ -
6 l . I' ' .9 *
.h h
j .
- 4 k
l
- j e
i _ i ( t 4 I I . . i i 4 N t 4
. ~ - . - . _ . - .. ._ .-. - - .. _ _ .
1 .
;u fT".9
()y$;.4 . _ .
$737"5,7. :. P S T W E N ' ? ? 'S..TU y ,'
F r. ,1 :;6.3 j r. 3 b[y[I -
, o$ ;, .;l . .
p,* f +
) ..*er ,
J:. _
+, -
sy . p* 1
;y . ,. ..7 - =
a.b. y
.. r, ,,,. $. . : . ., . <y- c- _ .* w _
y
. f-,
y a ..:. ~
; . . .J .
( w .. .g , - , . .- t - e (( g:v . y.
. , , . :f ..g* . .7..- ,,, t .g,, .P
- =~
e.,1. -. -4. s. v .
. .. , . ., q . y.cj ' ' eN n
yi _ ' -
.'-C..S.1g.-{lQ. .
h s- R
~ ~ ~ ****
$1 pg - . q y :% = , - q c. * -
- 5. ., sit ... ---
. [ w 'i
- ~. . .. . . . . .,,
- t. .3 p q
I * ^
, * ." . A ]
h.. . , - .*../. .*y~.~ 4 - A
.. ., ~ "
ji ci . t !v
." v Q ,l* . . ,'.Cg **** ***
1 _ ._. - g t - - y e, ;- ' ;,,' .
~ :* . . . ;.; - #.{ ,
s g? 9 _ :u -( t-w - (
. ' ' , ' . ,'~- ~4 f
4, r) "S. " 4 . [, - % ._*f *( g d d
^ ~
g [;f ; , A - . x.D ~ {. t ** ~ 4, ",;,,'
,gl,e -
k
- t. c. .
v- $, ,
.W ***'
e=e q y h h q.. .
~ ?* .? . " .
A ,y f ff g..'. .
.v v.
n- [ i: .-
.g., * ' T .t. 4 '~"
j y. .( ; e*.. ; J 4 g.- g* . , , . , f p ._.
* .s 3 1
3 e> ' 1
?- ., f' .
3 .' . .
.3- 1 iff { .
N';u M} a , 4 pis, '
.*ik, %,,. s g,. Mys. .; e ,.
- 9 w c, ...- .
.a - .6 .: ,. 3. g i.
p&dhi.iO.. . id .Y n k ;. $ % b .fs & # : ; l l & % lL L C i U L. b . ". 4 t
, )
r L
,, , . ,1 ., I ~ '*r, 'q f$k$kh'h[,f,,[.',' . .f ' f ffQ,NQ', y&,y,f , -~ . . . . . ., .,4 ~,f 4 'f,[a :, .- Jy.s f.- ~:.,, . . . , . !:@ j #(,';.
dAs.,ct.,'. . h kl,. g[ $ 7N
~ ,- J .s... . .
gi A.'. A., ', ., :. ' y'
. ~%, \
1 F . A e .,1... i. 1 eg. . 0.75 INCII DIAMETER MODEL BOILER SPECIMEN AFTER BURST TESTING i d h d 2 > 1
.t . ; '
(?,n i 0.75 INCII DIAMETER MODEL BOILER SPECIMEN AFTER BURST TESTING g m .. ___ ___.________--wv-- - . - - - - - - - - ,w---w, w w - va- ~--uws e-m-~=- - --- ---------,-w ye as-w.- , - , , . -- -., -. , _-y._-c,
l
- i I
f 0.75 INCII DIAMETER MODEL BOILER SPECIMEN AFTER BURST TESTING
- i
, 1 1 I l l l I i i I L I. i l l i i i 1 l l l l l l . t- *' - Ig l n. : , . . . - l , *, . w l i
**a ." r I .e-42 , .
i
. s'- '. - .
- tr.
l l
'. 4' k$'
o S .. , l I 'Ig.P, * - V I l
.. i *!*tk A* . i
- 1. % , ' [
l ? - l r - I a i l l - l %* -. j '
, '/^'
f.* 1 cm ._. _ .
.:< A.
FIGURE 18. Secondary stress corrosion craps on a .c m :! a D De!:ne SnCkin; evtCence Of Crack :Calesce', e 5: .; :, .* c r i sudace of the pipe I
.n..,-.- , , ,,, -- , -.,,--,,_e-~, , -
-r - > ,, e.-} . i i.o - ,r$ . .tj I ~ 't , i .
- e. . .
i s - 0.75 INCII DIAMETER MODEL BOILER SPECIMEN AFTER BURST TESTING
i
?
I
- m,. ..
3 ,' .. , , . 3.(( :j ' j.
, y .,,- . .. ,fr -} ,
w - . . *, s.... e .a , . i.;.
.. .. ;- : :+t y .-l, . ..g:;d ':. t. .L ),, y n *- ~ ;e- ..
t
. 4 ,' , .,. , g . ;,s.:..p i, ... ,'. :14' , , . , , .,, ,e. . sl 8 ,a 'c . .r .
- i. $ g,, r
'! E .r v.. , y% . /* . ,, . %. *;' g s .- .. .
3, -
, g}{ . .'<' s i< - .* , . , , .e, 4 , ,, \- _
g... .,,
, ~ ...i' '\
Sn' r j' " () ., a oc .t.'r
- g- .,
4' _
' rk;' . . s, ha hy J..J, ~
h -
.n .. - +
s,. ,..
.s es 0.75 INCII DIAMETER MODEL BOILER SPECIMEN AFTER BURST TESTING
.i
i l i I i i [ o t i 0.75 INCII DIAMETER MODEL BOILER SPECIMEN AFTER BURST TESTING
- g. .
I, . I
,, t ,, s . . . ,..u...- :. .
o - -
..,a - - ; ' . j. g ..4 . . ..,,...r.. . . .
i r- E ',' . F '
- c.
- -{$' .'fkt::? N J*
AN' ' ' ' '
'[ .A Y ~;.' .m - e ,1 ,, y .1 : .
o
- f* ,s
,- n M1 , , , . . ,r 0.75 INCII DIAMETER MODEL BOILER SPECIMEN AFTER BURST TESTING
{..._____ .. e I
_ _ _ _ __ ______.~_--. _ . . _ _ - . _ - . . . . _ - - _ _ _ _ - . - - . . - - . . _ _ _ _ _ - . . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ . _ _ . _ - _ _ _ 1, . l . 3 i . s .
-s
}
'_ ar 4 . , .
1
, ;. .. , . i.se ,.,.,1 ' ' .i ., . ..g, . ;. - -, . ., ' .,y . ,
ip4,. r. j$,. 4,,.. .94ppx. i ,; . n. .+ .c, , 4 e
- .t . , . . . .. ., . ,y . . .,a i A. ,h . ,*
nja*..,@ f.j.%. Q y,,,-l., Isq..,,' k ?p:- l, @l
. .,.r., , .. > .. .4 ., ,3;., yf- r. : ' - 7.I +
{ kp., '
# ~ ';. p %r -
j i . h '
.n .r.
f. 0.75 INCII DIAMETER MODEL BOILER SPECIMEN AFTER BURST TESTING ~
~
1 J i I I i i i , r-i ; - ) g.; .- 0.75 INCII DIAMETER MODEL BOILER ' SPECIMEN AFTER BURST TESTING g ' m
- w--------w-um ,w,m-mg-. ------- - - -
gg ga gggg- - -
--w-_m%mp-m-mme.--vem.-------maw.-y- amisi,,-ww._-------im-------------- - -
t I s ~g
$ i b
i t 7 i - '
.g .
e sum S , ah a
+ ' . ; . .. .e us,fQ(,; , . .
I 9 3g*k 8 g. f
- aS "',
p A *' e , W
= , , . ,e - t. . . r , te* %; i. g -OfR> * - . k, ,
O."
; 4y s ,p ;
5{ - i s r per a l.
a . i i 4 4 1 i i 4 l i - l ) - 2 i ] I I I n.: . -, t., .
- ,.p ..
.,.. y j
- . y . .
_ v.;. e..
, Y #, - . O kW p.
1 - .
. c L3 r *I*
M .-. { \ s 7. ; { .,g - - l
. e - it l -'i n- k . ; .. ~' ~ ~ - -
I : r.~ I i l 1
.. g 1
l
. ~ , .
\ l 1 i ." ' .:~~ k '
~
l 1 cm .W.c .. .se-
~
l FIGURE 18. Secondary stress corrosion cracks in a 10.nt of a l pipeline Showing ev Cence Of Crack CoalES CEC E I 5.* **0 Du!Cf
- surface of the pipe.
i l l 1 . ? 9 i- . . . -. . . . . _ . . _ - _ _ _ . - - , _ . , . . _ _ _ _ _ . _ _ . _ _ _ _ . . , _ _ . - _ __
SCIENCE FIGUF1E 17. Matchong surfaces of stress corrossort cracks in a joint of a high pressure gas pipeline showing, from the profiles. the coalescence of separately nucloated cracks. t b
- m. e
. l . 6 i
1 - l l 3,- 3. . 4 , . . . . *. , - l ,? Q. '* %.. . a. ~*
. . 1.e- .m.,r A' ' . 'Q * .4 - ',-p '.
C. Ej ' . s;,.' :rg, 'h* -
.:. f Q s ... -
w ~; . * ,';:.-hM4 . *a *
.;. .;~ . * - , ' . . . . . y~ .. p -p g. y -- , ' , ..:.~:. .s. - r -9:. ' '.. 2
- w. ;ys. .-
r,
, 3.. aa. . . i .' A r, s,'.
o- %. a - ..
= . , , ..# m s t .^~.N- 7at ,,. -:, ' :..f .
WVMYi'. e '; Qy - w..~~ n:t , 4
~ * ,,.--- - e. - .a ck . t- - - w.r -
g,. _.T - . a.&,'1.3 W p4' -
= .+i *%F 100p ? +-__... .
FIGURE 14. Showing the tendency Ibr cracks to nucleate more readily beyond the ends of a ralst%frlarge crack, ts:her than in the areas extending from the middle of the crack. s.,
TIMC nr aid" 0 1 2 3 Fracturec] 390 N/mm2 ,,,, 1 3 - i ' E E :
,, .............a =
- n : .
9 Fractured # 2 - 4 b60 N/mm2,[ x /*500 N/mm ,.2* Fractured u . l y Fractur,ed 440 N/mm 2 0
/
4BS o:' 2 z - - . l N/m m 21.* .
. M:
2 / x t
< j. . ..~.'
2 I / .-. /
/ ./ . / s* '/ - l .i , . - .
i& 0r 0 1 2 3 4 5 ; NUMBER OF CYCLES x16 3 FIGURE 10. Maximum crack lengths as a function of test time for portsnea surfaces of flat spec: mens subjected to the vanous maxumum stresses appended to the hnes. The fluctuating stress was 10' of me maximum stress ana the treauency 4 8 10 ' Hz. ?..
. i l
l 1 l a i
) ^2 WCLEATION SITES / cm2 336 44 0 504 4 555 585 610 '
Crack growen / cycle . 0.026 N4 822 1 1 NumDer of cracks / cm / cycle . gg,4 g44c3 , . l
- 3. . * ,
4 e j . E %
, /
- i e l '
+ - * . % 2. I ;. f <
2 *
/
x u J -
/./ < / / / ,'
6 -o' y *~ .. e- k "3 l I x 1
._ . w_ /- .d _ . / , ,_ , 4m- Cract growm womout condescence ?
0 O 2 4 6 8 10 12 - NUMBER OF CYCLES ald8 r F)GURE 1L showng Ine meramum crack dengtn agasrist the riumber of cycles Wseverstsamusanors runs. at amowy me same crace growra aract consay reres snecatec. 7he broker, Ens macares Ine engm or a sege cra::a tosowing me gw ecueron snown but womour my crack comescence. The craca growan arne cernstry rares recare to Kne massmum st l ess of 390 Neww ,50 :': :.r 2:.*:;: 3 msk De competed wsn tne escenmentar resuas snown e rgure 10 for tw stess, \* l l
- a SUMMER.XLS Chart 1 # ; 1 MEASURED VERSUS CALCULATED BURST PRESSURES - b, c, e.
l r 4 amummmu . Page1
A sm - l 5 1 m h h s h i e
.L I = -. a r t
I h p h 8 i s 1
)
t t i b f T I k
+
3 t
+
l l 1 i l d I J m m
Test vs. Calculated Burst Pressures 3/4" & 7/8" Alloy 600 Field Tubes
. t., c., e e
M POR_8URS.SPS . . , _ _. . . . . . . . - . , . . . - . - . _ , . . . .. . , , - - t ,. .-, ,
F J l 8
- 7Mk .:- /- J ,
Pm 41
= / - exp -asZ ;
f g/G d;>
,_ _ , g- - - - - ,
I e 0 1
'j h
s Enum $
.I i /
t i i e f 4 t. 6 r 1 0 0 6 i 1 1 3 b
)
t h t f o R r N 8 e 3 5 h 9 M p i
' 1
1
-l a
1 1 I d i b, Q, '~ }
\
i l l l 1 A W _l i l i 1 gue s 5 I [ s f I \ i l l l 4 1 1 I am. 1 3-38
S
'. t . l b
L i F _ e I 4 o I i t a
't .
7 O b
}
I b v l' h 1 I 4 ( N * .
;f 9
m- w 4 c-.<- .6 > b & 2+in M , w d Y h
- h 2
s v l r q i i i
.4 I
1 l. i
.. g 1
k 4
? )
2 O h h e h F' N P e 6
+
W 9 4 s e i h 6 1 4 <sse 2 I l l l l
2 - i.A.
'l 1 -p
- J L
I . k
?
i b r i k 1 I h
=
I I t I 1 a i b t i 6
$ i i
o 8 4 8 5 t I
?
1 4 a 1 l 1 1 1 I J d amm 1
l l
~ ~
NDE AND CRACK MORPHOLOGY COMP'RISONS A -! OBJECTIVES CHARACTERIZE VARIOUS TYPES OF CELLULAR CORROSION (CC) FOUND IN PULLED TUBE EXAMINATIONS IDENTIFY TYPICAL NDE BOBBIN COIL, RPC AND ! UT RESPONSES TO AXIAL SCC + CC DEMONSTRATE THAT AXIAL SCC + CC INDICATIONS FALL WITHIN THE BURST AND LEAKAGE CORRELATIONS FOR IPC/APC IDENTIFY TYPES OF RPC RESPONSES FOR VOLUMETRIC INDICATIONS THAT CAN BE CONSIDERED ACCEPTABLE FOR IPC/APC APPLICATIONS I i \'\
e---A +- u - eE 1
- t l
b
' 6 p / ,
e I f h 1 i i b e
)
t 6 I h r { l
$ k 5
h. i t h L f 1 f t h I o 4 f e WP , eeWF I 1
4 4 p 4 O T h N, L i k t t 4 F f f 5 k
-e-
- - - g I
e $~ 6 k k e 1 k p f f
" i f.
r I e Y t V i P P r
?
I t 4 i
+
t E t I r h I k t h
?
e A I i F f e
+.
P m t a
'?h h
t JF t i b 7 i 7 % i
m t e f e a I k 8 r f f I t i 4
?
f k t f l 9 a
.b I
t F 9 5 ll Y b f 1 P t b I e
-I s -i -I l
i i 1 tup i
p,A 3 .-4_ . = , X - 5 134 - Mg . - _. 3
. 4 I
t I - p maae 1 k a f t e t l e
-! t i
f _= h I e 9 h
.b ) .)
s
$ Y Y
s F
$ 5 r
s f 2 i
? )
s f S h 6 n L i e f , r l l -
.r I .
I 6
,f t
v o a me l t t J 1
- A I
a - t l i 9 I l> 5 i t 1
= I h .-
g 1 r a L
-t 4
4 t t I f 4 M mi$-
2 n,- 1 a P
. I 4 ?
f h I
. - J-t k
b,e. ,! > E l r p r
.i l
I d 5 h i I i
+
4 4 r a
+
r I
,L 1
J b h 4
-f - t t
s-I
,f '.t f
f. f, i
.L 4
b
?
s
?
T. l-1 i i-4
a4 +
- I b
1
? h
- e gJ t t
4 M
- I i
em e 4
--__ -- -,,,--n_ _,---~,-,-, - --- - - _ , - - - - - - - - - - - - - - - . I i
1
~
b< L E l e w _ _ _ - - - ~
.r - ~ . , _
e N
- i f
I I l 1 - 4 e i l i
-(
l l any I 3 l 1 i 1 i I i I
. 1
, b, e_. l
- i
- e e
i i i I l J t i n l l 8 1 1 i i i 1 l i l l U
A
. 1 h
r f I
. i h
a
- e. ,
1 i n i 4 t b e 5 4 i 6 P
? ?
5
.b 5
P 4 6 a
.h f
3 e h 6 ,
,h i
ti e s I l l l I t t n
? . g 7
f h, . 8 F 7 i s k b
+
F T E 4 4 i e J l I J I 1 M J
- -- J . l O
f h I. E i i i l< N
- b r
t i a u 4
+
t b b l t
+
E f Y
?
I r f i 6 F M e a F 6 l 1 7 6 P t
I bb f t 9 1 1 l ess '
A+ u-,- - + 1 h - - ws a 4 ?A w- n A -- h 5 r
. .g. ?
e 4
- 1 t
g k I i 1 b i L i 4 E I I 7 t I k L i*
-Y h
I h 1 5 h r i b
'4 ? ~
5 r t 5 O t
'f B
f f
-B I
a f. o i e
?
e J r I
- i I
a
. t P
b P % I
% i .
i 1 t i k r
? +
t k h
)
b f,
.I k
9 l t 4 E s
)
4 1 1
'i b
i i
=
b.- -.. J r,-e. # .% 4 a I e
') ?
b J i h a' b, E. .' .l I b 5 L
~I i
e 4 e i f r i h r
- .h I
L l i s I' s 4 4 P
+
3 7 h s y f r
+
s 9 t f I& i
? .6 1
1
'I -! 5 m
1 I 6 1 1 d .) 4
.I . i b
i s f
)
e t 1 e I E I
'l i
o f 4
?
f t f l l l i ese
4S _k... e _w., ,,aa a. . - w .u.. ,am..r 4 at 4, J &
?
i 9 W W d
. 6 ,
I
-r ,
h f 3 [ v i t. r i a k t b e I
' I e .- )
t a b 4
.I 1 ? ? .l .P +
P h I 9
,h i
M ) l. I F - I. - -
, . ,a _ ..._.. . __ .,
. = ._ . -. _ - - . . .. --
l ! NDE AND CRACK HORPHOLOGY COMPARISONS CONCLUSIONS i NDE RESPONSE ' O SCC + CC PATCHES SIGNIFICANT BOBBIN VOLTS : RPC AXIAL, VOLUMETRIC OR VOLUMETRIC / CIRC. : UI AXIAL + INTERMITTENT CIRC. < 0 BOBBIN AND VARIOUS RPC RESPONSES CONSISTENT WITH APC DATABASE ! BURST PRESSURES WITHIN OR ABOVE APC CORRELATIONS BURST PRESSURES CONSISTENT WI1M SINGLE CRACK MODEL INDICATING BURST PRESSURES DOMINATED BY LARGEST i MACROCRACK WITH NEGLIGIBLE INFLUENCE OF OTHER CRACK : MORPHOLOGY ACCEPTABLE RPC RESPONSE FOR APC APPLICATIONS O RPC RESPONSES WITH AXIAL AND VOLUMETRIC : RESPONSES CONSISTENT WITH APC DATABASE FOR i TSP INTERSECTIONS WITH INSIGNIFICANT DENTING LIMIT CIRCUMFERENTIAL INVOLVEMENT TO
~125 DEGREES DUE TO LIMITED DATA !
CIRC. VOLUMETRIC WITn <0.25" AXIAL LENGTM NOT ACCEPTABLE AT TOP TSP : (POTENTIAL FOR VIBRATION) ! O CIRCUMFERENTIAL INVOLVEMENT ACCEPTABLE AS i CIRCUMFERENTIAL CRACKS NOT FOUND AT NON-DENTED TSPS . i i e
Burst Pressure vs. Bobbin Amplitude 7/8" x 0.050'.' Alloy 600 Tubes, Model Boiler & Field Data b- c, e_
+
b' e t 1 i
.- _ y, 'PSVLTS SPS . . _ - , _ . - , , . . . _ . . _ . _ _ . . _ - , . _ . . - - . . . _ _ . - _ , _ . _ . . _ _ _ . . _ . . , . . , _ . . . . - _ . _ _ . _ , , . . , . - , _ , . . . - _ . = . _ _ , . . . . . . , , . _ . - . . - . . . _ . . . _ . - - . - . . _ . . , . . ~ . . . . _ , , --_._
I
. j r ?
LEAK RATE ADJUSTMENT . OBJECTIVES l o ADJUST BELGIAN ROOM TEMPERATURE TEST DATA TO , OPERATING TEMPERATURE , o ADJUST WESTINGHOUSE MEASUREMENTS AT HIGH PRIMARY PRESSURE TO EXPECTED PRESSURE DURING SLB EVENT o ADJUST LEAK RATES AT MEASURED PRESSURE DIFFERENTIALS TO REFERENCE PRESSURE DIFFERENTIALS 1
-I I
. 'i h
i t 1 i LEAK RATE ADJUSTMENT ; PROCEDURE N i F k t e l. II WWWMAG
.i e I
I
.f g
P I e k t
- a E4 j
s
]
1
*l i
r i I i s f I e I LEAK RATE ADJUSTMENT PROCEDURE i O M apamumi - w g s b i
'\ .s P
t 1 l t i d i
-l
-m a m $ 4- >kp-. L 4- n 4*
i, b k i f f, b h
,' J s
t ? k P i I LEAK RATE ADJUSTMENT ) P PROCEDURE i f J h 1 1 1 i e r 6 i
'I 2
F 7
?
i n r I 9 i l 4 I l l
, e ?
8 I LEAK RATE ADJUSTMENT . I PROCEDURE ; M' i
) .I )
r e f I f a r 3 9
?
I r i I
-r 't .r Gud ~ m
i n e i Table C-8 Adjusted Leak Rate from Measured Value at 70*F to Normal Operating Pressurs Differential of 1300 pel and Temperature of 616*F ! l I i i I l l i C-17 ,
?
8
?
5 Table C-9 Adjusted Laak Rates from Measured Values at 70*F to ; SLB Pressure Differential of 2650 pel and Temperature of $16*F . ! _ , o., b C. ~ 2 1
'4 5
i
'i f .(.
e
.,y f
i h M' I 1 l
'l i
1 i c 1a
i s Table C-10 Adjusted Laak Rate from Measured Value at70*F to SLB Pressure Differential of 2335 pal and Temperature of 616'F hI j muuma emme i F F 1 C 19
e Table C-11 Results of Leak Rate Tests at 616*F and Normal Operating and Steam Uns Break Pressure Differentlala _ b, C, t i l t s t
- l C-20
i Table C-12 Results of Leak Rata Tests and Their Adjustments at 618'F and Normal Operating and Steam Line Break Pressure D!fferentials CL, b, t am. l l C 21
i t LEAK RATE ADJUSTMENT RESULTS o BELGIAN LEAK RATES AT ROOM TEMPERATURE ADJUSTED' TO LEAKAGE AT OPERATING TEMPERATURE o BELGIAN SLB LEAK RATES FURTHER ADJUSTED TO. , REFERENCE PRIMARY PRESSURES (2350 AND 2665 PSI)- o WESTINGHOUSE TEST RESULTS (AT OPERATING TEMPERATURE AND 3000 PSI PRIMARY AND 350 PSI SECONDARY PRESSURES) ADJUSTED TO REFERENCE - PRIMARY PRESSURES (2350 AND 2665 PSI) AND 15 PSI SECONDARY PRESSURE cr, c. ~
i l l . 1 PROBABILITY OF LEAKAGE ! DATABASE i o MODEL BOILER SPECIMENS , 41 WITH LEAK RATE MEASUREMENTS ' (UP TO 65 VOLTS) o PULLED TUBE INTERSECTIONS !
. 1' 25 WITH DIRECT MEASUREMENTS j (UP TO 17.7 VOLTS _',
19 WITH LEAK RATE ASSESSMENT FROM i CRACK MORPHOLOGY (UP TO 2.3 VOLTS) ! f e i f a i j
. i.
l Expected Trend For SLB Leak Rate Correlation l Combining TW Crack Length Vs Voltage With Calculated leak l Rate Vs TW Crack Length Reveals The Expected Correlation l Of Leak Rate Vs Voltage
= TW Crack Length Vs Voltage Relation Over A :- -l Wide Range Of Voltage Is Established With EDM ;
Slot Data ! i i
= The Same Form Of The Relation (EDM) Is Used j To Correlate TW SCC Length With Voltage { = A Simplified Relation Of Leak Rate Vs Crack ,
Length Is Developed From CRACKFLO Cale's i
= These Relations Are Combined To Give A !
Formulation That Describes The Expected Trend Of SLB Leak Rate Vs Bobbin Voltage WP
. i I
i EDM Slot Length Vs Bobbin Voltage
= TW Slot Length Vs Bobbin Voltage Data From 3/4" And 7/8" Tube Samples = Range Of Voltage From 1.1 To 105 Volts = Range Of Slot Length From 0.031 To 1 Inch , = Provides A Formulation Of The Form !=a+b*vi +c'In(v) . . . . . . . . . . (1)
With Small Error
= Even Less Error Is Achieved For Less Than 45 -
Volts With The Form
!= a + b Sx . . . . . . . . . . . . . . . . (2) l l
4 ---2. S L% -.a--s b
. I 4' i 0
9 s A r d . 0 i, b 6 B l h i r b
?
h E
+
9 1
+
1 0 l
i O
.c . I d- l l \,
4
\
I l l i-I
. .i- . i i-TW Crack Length Vs Bobbin Voltage j = 18 Model Boiler And 5 Pulled Tube Samples j Provide The TW Crack Data Base For l 3/4" Tubing 4 MB Points Not Included Due To Strong f
Influence Of Multiple Cracks On Voltage- ! (
= Both Fornu (1) And (2) Were Used In Regression Analysis Of The Data To Determine The Values Of :
The Coefficients And The Error ' j; Both Formulations Give Similar Results Up {' To About 15 Volts ; i VoltageIs > Than 0 For A TWCrack The Curves Rise Quickly And 'Ihen Plateau ! At About 15 Volts, The Form (1) Equation Rises Sharply, As Does The EDM Slot Formulation l l l 1
i t
- u h - g u
U O C,b s , L t E L D 7 i s 1
?
o i b t 9 L i I m W I l r -
I 1
. I i i
i I e A d- > e S 1 9 i i i! I t i l
me - -
- m 4a J 4 i
- l t
I i k -O P d .l' I- . , h C i a t I, If f i o ( i I i 4 e o f 7 I s v
)
{ b
,e- -- 1 6
f 6
)
I , 9 5 t i 6 a t
i
- 9 ; .I l
I i i l Calculated Leak Rate Vs TW Crack Length i
= CRACKFLO Is Used To Predict Leak Rate As A !
Function Of Axial TW Crack Length -) I
= The CRACKFLO Solution Vs Crack Length Is Fit i With Two Independent Curves To Provide A Simplifying Format To Obtain Leak Rate Vs I Voltage
- i' The Fits Are On Log-Log Coordinates ~
A First Order Fit Is Used Up To Log (0.25") 1 And An Exponential Fit Beyond ! 1 A Comparison Of CRACKFLO To Measurements Of Leak Rate Thru OD SCC . Shows That CRACKFLO Tends To Overpredict Leak Rate ~ l i
- i I 'I i
f 1 i
? ?
k a de : f n , I i t
?
1 3
)
i b t, I 8 s -{ t t i h
)
e b b e I
) ?
6
+
t
.e s )
l l i i I r k i l L F f k
a- 43s uJ&4 h
+ 4 P
Y ~k
#4 ;
T l-d l 1 7 . i e b i i i i k I e i l I 4 5 t k i l l.
- i f
i 4 Comparison Of CRflCKFLO To DDSCC Leokage u c Telng Data -- g b 4 N Y L l l l
I l 1 1 o > i ;
-t J
i i Comparison Of CRACKFLO To-0DSCC Leakage j
. 7/8' Ti.bing Dato ;
h,g t 9 i s e I
~t t
y a autmas a 4 s - w .
. i j
i l i l i 1 l SLB Leak Rate Vs Bobbin Voltage -
= Combining The Form (1) And Form (2) Equations :
Of Crack Length Vs Voltage With De ; CRACKFLO Solutions Yields The Expected Form Of The SLB Leak Rate Vs Bobbin Voltage Curves i 1
=
Both Trend Curves Reflect The Fast Rise Of The i Crack Length Vs Voltage And The Plateau nat . Occurs Up To About 20 Volts .
= In The Low Voltage Range (-1 volt), A Large Variation Is Evident Between The Two Curves l = The Expectation Of A Voltage Threshold Is .j Confirmed, However -
L i i P t
. I 'l i
s Trend Analysis For Predicting SLB Leak Rote Ys Bobbin Voltage 3/4X0.043' Tub!ng __ , a, b _ 9 l !
sm. - m saun em l l l Burst Pressure & Bobbin Amplitude - i 1 l Correlation Expected l Neither is Causative of the Other Both Related to Crack Morphology Either Suitable as Predictor of the Other Formal Analysis Justified Correlation Demonstrated by Analysis Database & Standanlization 3/4" Diameter by 0.043" Thick SG Tubing 55 Specimens Burst & NDE Test Results f 41 Model Boiler 14 Pulled Tube Burst Pressure Function of oyg,g + o mhte Reference Value oYield + Cultimate = 150 ksi Scale Factor for Temperature and Material ) Variations l l CGE_NRC.oVH 2 January 12,1993
. 1 - I ;
I l l 3/44nch Diameter Pulled Tube Leak Rate and Burst Pressure Measurements
- b, C i
l I m 6 15
I i l Burst Pressure vs. Babbin Amplitude , Linear vs Non-Linear & Model Orrier j Examples: P = bo + bi log (V) P = bo + bi log (V) +b2[ log (V)]2 P = bo + bi log (V +Vo) First Two Types Require Assignment of NDD Vdtages Initially Assumed 0.1 V for NDD's Expert Opinion . Index of Determination of 79.7% No Significant Improvement for Other Values Conservative Relative to Increasing "rso l No Imprmement in Fit Using 2"d Order Expression Third Requires Semi-Non-Linear Regression Maximum Index of Determination of 79% Vo= 0.24 Volt Linear Model with Assigned Vdtage of 0.1 is l Acceptable for the Analysis ; l l l ~ , _ _ .
, 1. ... .,, ,.
i ni n a m *, w , ! I'
.\
i Coordinate Axes Smles Selection Based on Goodness of Mt i Index of Determination, r#, for Various Selections of Coordinate Scales ;
~
Pressure I Voltage Linear Logarithmic , ; Linear 28.7% 31.0% ! Logarithmic 79.7% 71.2% ; Linear Vdtage Inferix to Te=arithmic Vdtage Scale j, Would Not Expect Voltage Fluctuations to be - 1' Uniform over the Range of Voltages . l Linear Pressure Superice to Logarithmic Pressure Scale .I Higher Index of Determination i Easier Computation Mnal Verification of Model Based on Analysis of Residuals 1
]
CGE_NRC.oVH 4 January 10,1998
w % m se*, .- Identification af Potential Outliers Least Squares Regression is Not Very Robust Significantly Influenced by Outlying Data Outlying Data May become Hidden After the Fact Robust Regression Least Median of Squares Approaches Least Squares as N-+m Used for Detection Potential Outliers , Scale Estimate Similar to Standard Deviation Examination ofIdentified Data VeriEcation of Outlier
- Omit from Data Base Non-VeriEcation of Outlier
- Retain in Data Base One Data Point at 99.9% Level of Deviation Tentatively Verified to be Questionable Omitted From the Data Base Confirmation from Analysis of the Residuals l
l l l 5 January 10,1993 ;
- COE_NRC.oVH l
l
I l l 1 1 l a=* - m aam w , Considemtion ofErmis in the Variables ; Biases the Slope of the Regression Fit Always Underestimates True Slope ; E(b ) = 3 1+ 0 "'" 2 oreeae Significant Amplitude Error Not Expected , Significant Test Pressure Error Not Expected l Order of Magnitude Analysis Using Partitioning No Significant Indication of Measurement Error in Either Variable - Order of 5% l Approximately Zero Effect on SAP Structural Limit Approximately 1 Volt Influence on SLB AP Structural Limit Current Predictions Based on Using Sindlar Equipment So the Same errors Would be Expected in the Future 5 Justi6ed to Omit from the Recession Analyses CGE_NRC.OVH 6 January 10,1993 ! r___ -_
Burst Pressure vs. Bobbig Amplitude - 3/4" Tubes, Comparison of 1" & 2 Order Regression - h e., e. l
'i 4
a b 1
-- ~ . , -e-4.,wg*=n,w-mg-: p. g e+q e v v+, i.ee,. sew g p-y., ,,- ow-- n ya ,--w--me--,-.ge-e=gw---a,,- cow,, = ,aus-4. rw + 9 Sgiy- - , s.g= s v-..ys-e...-w-ww r e y q wy--e-,,.g.+.n,-w yue.e- g g etee=' e w ei - - we e-+w w &*w -w - mw www-6 e em,w> vww
l
. i I
i n m v noemi w :
- i. !
l l l Burst Pressure Correlation Linear,1" Order Model __ a,c l f Lower 95% Confidence & Prediction Bands Determined t 95% LTL Limits Applied to Lower 95% Predidion Band Structural Limit Inverse Fit of Volts to 95% LTL / 95% Prediction l Band- _ a, c ,
,, ~ '
a,, c CGE_NRC.oVH 7 January 10,1993
Burst Pressure vs. Bobbin Volts, Finni LS 3/4" Tubes, Model Boiler & Field Data s, c, e. t 9 4 m 34Ps_COE.th -
~ - _ .= _ - ~.._.__.. .._- -,.. .-- .- .-.. -,. .. . . . . . ....--,._,,.....---,......~-....m. , - - - , . . .~-.,.-..~..--..;-.-.....----,-,..,...~.-.- ,_--m-- . . . ~ - ,
1
. d i
w .m w ,j i Analysis ofResiduals l u 1 Scatter Plot of Residuals vs. Predided Burst Pmssure Uncorrelated i Should Appear Random Over Range Pressures ) Cumulative Puability vs. Residual Pressure Value j Normal Probability Plot Should Appear Linear ,i Outliers l Appear to Right Above 50% Probability l Appear to Left Below 50% Probability i Evaluation of"r Value I v = 58 (Degrees of Freedom) r = 0.89 -
)
Significant at Level > 99% Supportive Since Significant "r" Threshold - Decreases Rapidly with Increasing v ! Condusions Residuals Appear to be Normally Distributed Mean Value of the Residuals = 0 1 Model Can be Omnidend to be Valid 1 n .! l CGE_NRC.oVH g January 10,1993
I i
? .I i ,
r
.I r
Y Y P b i I b ( 4 L f P < I f I t k
?
i k c P I h I- en*
% m 7 < w a sus %
l Need for Pmbability of Leah Analysis Likelihood of No Leakage @ Various Voltages Data Base Indicates Dichotomous Behavior Morphology Considerations Similar Signals Through-Wall & Non-Through-Wall Database 85 Total Specimens 41 Leak Measured Model Boiler Specimens 25 Leak Measured Pulled Tube Sections 19 Destructively Examined Pulled Tube Sections Distribution of Leaking Specimens , Visual Examination Confirms Dichotomous Data Apparent from Later Plot CGE_NRC.oVH 9 Ja.nuary 10,1993
Probability cf Leck vs. Bobbin Amplitude _ 3/4" Tubes, Model Boiler & Field Data '
- o. , c.
1 i 4 6 h g>
-_--_._._..-__-___ma_ . m-_-__. .a__, , , , , ,.,,..._,r--- .v., , - -, v.i- .- , ,r,-, . , , - . .+4-,--- -- ,. , .-----w,,,,,w-,.-y-_ .,-,, ,,v+ .. - , v.,-w ..y,. , , ,m ymv., . -y, . . . ,
"6 m a w esm % l Logistic ModeI j "S' Shaped Probability Curve Similar to Cumulative Normal Range from Zero @ -m to One @ +m Definition oflogit Function ! p 1 logit(P) = In g 1-P, Model Expression 1
p= - 1 + e [* * * #3 Use oflog(V) Based on the Range of Amplitudes Model to be Fitted r p, in = ao + a11 og(V) s 1 -P, Non-Linear Marimum Likalihood Analysis CoefECients Maximize Probability of Data Set ; Same Solution as Least Squares for Normal Data l MLE => Maximizes Likelihood l LS => Minimizes Residual Error l CGE_NRC.oVH 10 January 10,1993
Prob bility ef Leck vs. Bobbin Amplitude o, c 3/4" Tubes, Model Boiler & Field Data bh t w
=
d l in
i m amra w esm % i Logistic Mode 1(Continued) Ccrnrnercial Sdtware CSS: Nonlinear Estimation (StatSoft) , Code Verified Against SAS Solution for 7/8" Data Additional Comparison to Manual Iterative LS Cmfidence Lirnits logit(Pi )
- Zyao(logit(P))
i o is a Function of the Probability . Limits Calculated for Each Voltage Level J CGE_NRC.OVH 11 Jamuary 10,1993
- t l'
CL, C
- 1 t
V f i t r s L i i i b L . CGE_NRC.OVH 12
^
January 10,1993
Probability of Leak vs. Bobbin Amplitude %C 3/4" Tubes, Model Boiler & Field Data '
)
i 9 . Fee:
~
Probability of Leak vs. Bobbin Amplitude "' 3/4" Tubes, Model Boiler & Field Data 4 A File: _ . _ _ _ . _ _______.._______m__ ____m_ m __. .____ .. m _m.,__ _ _ _ _- . . . _ _ . _ - - , . - - _ . . . . . . . . - , . , , - . _ . , , , , , . _ _ . . . . _ _ . . . . _ , . , _ , - - , , . . . _ _ . _ ,
9 l l l uauw sw % ,amo w l l Leah Rate & Bobbin Amolitude Ccrrelation Expected Neither is Causative of the Other , Both Related to Crack Morphology Either Suitable as Predictor of the Other Formal Analysis Justified 5 Correlation Denmstrated by Analysis Database & Standanlization 3/4" Diameter by 0.043" Thick SG Tubing 37 Specimen Leak Rate & NDE Test Results 27 Model Boiler Specimens 10 Pulled Tube Sections Leak Rate Function of Several Variables Data Standardized to (2) SLB Pressures @ 616 F : i l CGE_NRC.OVH 13 January 10,1993
a not,e sta en== w am we , Coordinate Axes Scales Selecticn Based on Goodness d Fit Index of determination, r#, for Various Selections of Coordinate Scales l Voltage Leak Rate Linear Logarithmic Linear 21.9% 47.1% Logarithmic 15.7 % 57.6% l Linear Vdtage Inferior to Logarithmic Vdtage Scale Would Not Expect Voltage Fluctuations to be Uniform over the Range of Voltages , Logarithmic Leak Rate Superior to Linear Scale Higher Index of Determination Final Verificaticn of Model Based on Analysis of i Residuals Regression Direction Not Clear frorn the Data: Decisicn ,
~
to Use Both Lines CGE_NRC.OVH 14 January 10,1993
-tu. a_. . _ _ E I 2335 psi SLB Leak Rate vs. Bobbin Amplitude 3/4" Tubes, Model Boiler & Field Data b.c. t b
i 4 1 0 t t i L e M Ne 5 h
- m. e e I
__. _ . _ _ __ ..____._,______.-_____________m,_ _ _ . . _ _ _ . .. 4_.,.,....---,._,-..__J. ...-*,....,..._.m.. . _..... . . ,. s .,W . - . . - - . . . _ _ . ._;.,,,._._,m;. _ . . _ . . .. . . . ~ .. . . _ _ . . . _ . , . . . . . . - , . m....
vaamesmen s w a . Identification ofPotential Outiiers ' Least Squares Regression is Not Very Robust Significantly Influenced by Outlying Data Outlying Data May become Hidden After the Fact . Robust Regression Least Median of Squares Same as For Burst Pressure Ernmination ofIdentified Data - Four Evaluations Performed Each Direction of Regression Each SLB Pressure Level Verification of Outlier
- Omit from Data Base :
Non-VeriScation of Outlier
- Retain in Data Base Two Data Points Identified in All Four Analyses Very Low Probabilities of Occurrence
~10'8 for Voltage as Regressor ~ 10'4 for Leak Rate as Regressor Very Low Leak Rate => Excluded Confirmation from Analysis of the Residuals car acnvn a t-- - - -
i I k m.t. e sta Pr=swe vs Bdh Ampthude i
-I v ,
C
?
l i Considemtion ofEners in the Variables l Biases the Slope of the Regression Line i Discussed for Burst Pressure Correlation : Wald-Bartlett Fits Performed for Both Directions - a No Significant Difference from LS Lines l Non-Significant Issue l Regression will Overestimate Leak Rate for Volts : as Regressor i Regression will Overestimate Leak Rate for Leak ! Rate as Regressor ; Justified to Omit from Further Consideration ! l I CGE_NRC.OVH 16 January 10,1993 ,
. i I
wn.*esmen =v. main w ! j' r i Leah Rate Corr 1 elation Linear,1" Order Models Mean Equations 1 L = 10'*# *CU2 V = 10" "2 *(4
- f where i Parameters for Mean Leak Rate' versus l i
Bobbin Amplitude ! Parameter 3/4" Tubes @ 2.335 ksi ! Lower Curve Upper Curve i 1
~ '
O. , C. !
.l 1
l CGE_NRC.OVH 17 January 10.1993-
2335 psi SLB Leak Rate vs. Bobbin Amplitude , 3/4" Tubes, Model Boiler & Field Data ' C, t s i b i =mesm ma e e
- . .- _ -- ,__<s. . - . , .,- -. , . . -,,m.---,,v,~, -,+n.,- , , , , ,,--e,-,. ,-- ..- , nt,-,-1.v.,-,..,,.-. . . , , , . . . . . - ..- -..-~- .. -. . . . . . . .- r , ..
2335 psi SLB Leak Rate vs. Bobbin Amplitude
- 3/4" Tubes, Model Boiler & Field Data -- s, e, e. . t 1
4 - l f ,- t f-W. ,
.d...----.--,.. ...---.U...,.-.-.-.--...~. - ~ . - , - - - - . + . m-r,-----', .4,-.-m..o-e-. . ~ -..,-,c-c..-.e4...~..-r-. -+v.-,.,r----'.-~.-- ..- . 4 - -.--,- . . . .. -.-..a - .~ w.- . . - - - , ,.->r
u a ar e sta em ,m o a m n w Equation forms cover bcth cf the rnean lines The first applies below the crossover point The second above the crossover point 99% Upper Prediction Equaticn b 1og(v)+b [ 2log (V)j2 L = 10 o.b 3 where , Parameters for 99% Prediction Curves for Leak Rate vs. Bobbin Voltage Parameter 3/4" Tubes @ 2.335 ksi Lower Curve Upper Curve a., c. i 1 CGE_NRC.oVH 18 January 10,1993
, 2335 psi SLB Leak Rate vs. Bobbin Amplitude l _ 3/4" Tubes, Model Boiler & Field Data - _, g g-I ! i F t-1 4 A e esa
-__ m-_ maw- -__ _m-___ -_2sw- mmuw 1r My- rnye'-% y-wwwven s + ww-y e- e av4 www - ewwyes e um-f k ' e er4w a we -ew-r-- ',,-,ww1 %ve-- -w uw-= n ?-er--y ar- r 4- p-- r-#h='we w wer ww Ft m -rww' r- w==r
2650 psi SLB Leak Rate vs. Bobbin Amplitude 3/4" Tubes, Model Boiler & Field Data __ h c., e l l
=.cc. - ,
I w a.* a sm % , aan w% . Analvsis ofResiduals Critical Value cf r2 , For N=oS; r2=30% Significant @ 99.9% Level r 2=58% Significant @ >99.9% Level Normal Probability Picts Cumulative Probability vs Residual Leak Rate Approximately Straight Lines for Both Pressures Outliers to Left in Lower Half of the Plot Potential Additional Outlier Identified by Robust Regression for Some, Not All, of the Evaluations . ! Condusicns R.esiduals Appear Normally Distributed Mean Value of Residuals is ~ 0 Model is Considered to be Valid ; P CGE_NRC.oVH 19 January 10.1993
p-- - - - , - , - , - - _ - , - - - - - - - - - - - - - - - - - - - - - , - , , - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - , - - - - - - - - - - - - - - - - , ----- - - . .. - - -, i en m j s
]
i l 9 s h use
8 Y. C'. SUMMER IPC EVALUATION PROJECTED EOC YOLTAGES MAXIMUM EOC VOLTAGES RANGING FROM 1.85 TO 3.05 Fon 90% To 99% CUMULATIVE PROBABILITY o MONTE CARLO ESTIMATE OF 2.97 VOLTS (ASSUMES 200 IND.) o BASED ON BOC VOLTAGE OF IPC REPAIR LIMIT OF 1.0 VOLT SOURCES OF MAXIMUM EOC VOLTAGES o COMPARISONS BASED ON 131 BOBBIN PIS IN 1991 o IPC IMPLEMENTATION - MAXIMUM PROJECTED OF 2.86 YOLTS FOR 131 IND. o LARGEST VOLTAGE FOLLOWING 40% DEPTH REPAIR LIMIT MAX. VOLTAGE OF 2.80 CONFIRMED BY APC o BOBBIN PI, RPC NDD LARGEST 5 VOLTAGES RANGE 1.68 To 2.64 VOLTS SOME FRACTION TYPICALLY BECOME RPC CONFIRMED AT NEXT INSPECTION o NEW INDICATIONS (BOBBIN NDD AT PRIOR INSPECTION) MAX. FROM GROWTH STUDY (3 IND.) 0F 1.39 VOLTS - 39 IND. Nor INSPECTED IN 1990 So VALUE COULD BE LARGER 0 CONCLUSION max. EOC VOLTAGE Nor SIGNIFICANTLY DIFFERENT WITH OR WITHOUT IPC
l e i i Maximum EOC Voltage Sensitivity Assessnwnt beterminittk Attatementt . 90% Cum Prob. 95% Cum. Prob. 99% Cum Prob. Monte Cado a,C l tutta: 4 1. Maxknum EOC volts based on integrating the tall of the EOC distribution to one indication for an assumed 200 indications. The EOC maximum vot: age would increase to 3.08 for an assumed 500 indications. i h I l l i I
1 l l l l t Summary of Largest Bobbin Voltage Indications from 1991 Inspection
$ Bobbin Coll Inha '91 Loc. '91 Vetts '90 Vetts '91 APC Bobbin Pls Confirmed by RPC C R18C103 2H 2.80 B 0.78 1.77 R42C47 8H 2.49 8 N.I. 0.47 R27C100 2H 1.75 C N.I. 0.49 R37C40 SH 1.73 N.I.
B R10C97 2H 1.60 1.72 1.47 0.55 Bobbin Pts Not Confirmed by RPC B R36C50 , SH 2.64 B R42C44 12H N.I. @ 2.01 0.46 B R32C88 BH 1.81 N.I. B R41068 POD ' 8H 1.74 C R47C36 5H N.I. @ 1.68 0.76 POD ' New Bobbin Pis, NDD in Prior Outage B R33C43 8H 1.39 B POD FOO R40C54 2H B 1.09 @ R49C41 BH POD 1.03 POD FOD
?
6
t i V. C. SUMMER IPC EVALUATION PROJECTED E0C VOLTS
SUMMARY
OF PLANT L INSPECTION (HID-CYCLE) FOLLOWING IPC IMPLEMENTATION o IND. LEFT BY SERVICE BY IPC 1.36 VOLTS PROJECTED To EOC o NEW INDICATIONS (BOBBIN & RPC NDD PRIOR INSP.) 2.12 VOLTS PROJECTED TO EOC o BOBBIN PIS, RPC NDD AT PRIOR INSP. 2.51 YOLTS PROJECTED To EOC o CONCLUSION , MAXIMUM EOC VOLTAGE INDICATIONS Do NoT RESULT , FROM IPC REPAIR LIMIT OF 1.0 VOLT l IPC REPAIR LIMIT COULD BE INCREASED FOR ESSENTIALLY SAME RIsx AS 40% DEPTH REPAIR j LIMIT j i
, t !
k e P i Plant L Mid Cycle inspection Results Following IPC Implementation 1992 Bobbin 1991 Volts Projected EOC Ra+ 1992 Vefts* Re.evnfunted 1992 RPC EOC Vetts" 1991 RPC Indications with Bobbin Volts <1.0: , 1 0.93 0.12 N. I. * " 1.36 ' 2 1.01 0.64 N.I. 1.22 , i 10 0.65 0.66 N.I. 0.65 1991 Bobbin Pts (RPC NDD): Independent of IPC 1 2.02 1.11 Confirmed 2.51 2 2.44 2.44 f00 2.44 7 1.82 1.76 Confirmed 1.85 New Indications (1991 Bobbin & RPC NDD): Independent of IPC ' 1 1.71 0.87 N.l."' 2.17 2 1.56 1.11 Confirmed 1.80 i 9 1.23 1.10 Confirmed 1.30 i l Notes: ' 1992 inspection measured bobbin voltages . Voltages projected to EOC based on piant specific growth to 1992 l' inspection scaled to EOC EFPDs.
- *
- N.I. - not inspected
V. C. SUMMER IPC EVALUATION BURST MARGIN ASSESSMENT t BURST MARGIN RATIO
. RATIO OF BURST PRESSURE AT BOC OR EOC VOLTS TO 3.AP gg OR AP SLB . USED TO ASSESS IPC MARGINS BURST MARGINS FOR 3*AP yg . RATIO OF 1.35 AT B0C AND 1.19 AT E0C - E0C RATIO ~ 1.0 FOR FULL APC - COMPARES TO ~ 1.141 AND 1.29 FOR 7/8" IUBING - EQUAL MARGINS AT B0C FOR 3/4" AND 7/8" l TUBING BURST MARGINS FOR AP sts , . EOC RATIO OF 1.54 AT +99% CUMULATIVE PROBABILITY MONTE CARLO BURST PROBABILITY 6 x 10-6 FOR B0C = 1.0 VOLT INDICATION . EVEN AT BOC = 2.0 VOLT, PROBABILITY = 7.2 x 10-5 !
CONCLUSION '
. SUFFICIENT MARGINS AGAINST BURST FOR V. C.
I SUMMER IPC E. Sum 4ERWPC2023
,e s- M n-4< L-- JLb- A A ' - .AJ -a,- 44--- 4J n a - 2 A , I ?
s y
+
D e I" s r a.c , t I' e k b D E I
.I h
i ,e 1 I t 9 6
- t a
h i I t h t. h 0 h 9 l 6
. . r ) -l J
t 1 i b 3 i s 6
4 .u. u%. 4 a 12 .a -M h 6
. t e
f 5
?
v 6 , t r - t i r
+
i f f f I e i I L 1
)
l 1 t I
'i i
i l I n b 1
)
i i 1 l s 1
.1 1
1 I.e W . f l l. l
i , l l l i
~
V. C. SUMMER IPC EVALUATION ' SLB LEAK RATE ASSESSMENT REFERENCE METHOD 0 LEAKAGE PER BOC 1.0 VOLT INDICATION O DETERMINISTIC ESTIMATE AT + 95% CONFIDENCE COMPARE TO CUMULATIVE PROBABILITY FROM HONTE CARLO AT SAME LEAK RATE REFERENCE SLB LEAK RATE O LEAK RATE ~ 0.00093 GPM PER BOC 1.0 VOLT INDICATION O 1075 1.0 VOLT INDICATIONS PER GPM 0 COMPARISON WITH MONTE CARLO EQUIVALENT TO ~ 99% CUMULATIVE PROBABILITY M. C. YIELDS ~ 96% PROB. OF ZERO LEAKAGE
- PER INDICATION CALCULATION FOR DISTRIBUTION OF VOLTAGES 0 68 INDICATIONS < 2 VOLTS IN S/G B FROM 1991 INSPECTION O REFERENCE METHOD: 0.078 GPM 0 M. C. EOC VOLTAGES 95% CONF. LEAK RATES: 0.02 GFM 0 INDICATES REFERENCE METHOD VERY CONSERVATIVE CONCLUSION O IPC FOR V. C. SUMMER CAN BE EXPECTED TO MEET 1.0 GPM SLB ALLOWABLE LEAKAGE LIMIT
. l i
I l ( Deterministic EOC SLB Rates and Equivalent Monte Carlo Probability Heference SW Leak Rate (comi Der In&stbn(1) Bounding Single indicatbn SLB Leak Rate (gpm) 95% Pro *tbn Int. 99% PredWbn int _. BOC volts 1.0 1.0 1.0 2.5
~
EOC vorts ~ per Table 12-9 ' Probability of Leakage (P.O.L) l SLB Leak Rate (gpm) Weg' htedSLB Laak 0.00093 0.0031 Rate (gpm) 0.044 0.20 (P.O.L x Leak Rate) I Equivalent Monte Carb -99%
-99.6%
Cumulattve Probabiltty -99.98 % -99.95 % for Weighted Leak Rate (3) Notes: (1) Obtained evaluating probabl!!!y of leakage and teak rate at +95% confdence level. (2) Obtained evaluating leak rate at specified bound on predictbn interval (3) Obtained evaluating Monte Carlo cumulative probabinty distribution for a given BOC indication at the weighted leak rate from the deterministic analysis.
]I l
) 1
-----ii-- - ,
d f- 1
+
l l l
\
t ! b I ! l k i
)
s 1 V. C. SUMMER IPC EVALUATION SLB LEAK RATE ASSESSMENT UPPER BOUND SLB LEAK RATES
- DETERMINISTIC AT +95% PREDICTION INTERVAL FOR BOC = 1.0 volt
- DETERMINISTIC AT +99% PREDICTION INTERVAL FOR B0C = 1.0 AND 2.5 VOLT RESULTS FOR UPPER BOUND LEAK RATE AND MAX INDICATION
- BOC = 1.0 V, + 95% PRED. INT.: 0.0031 GPM CORRESPONDS TO ~99.6% cum. PROB.
- BOC = 1.0 V, + 99% PRED. INT.: 0.044 GPM CORRESPONDS To ~99.98% cum. PROB.
- BOC = 2.5 V, + 99% PRED. INT.: 0.02 GPM CORRESPONDS To ~99.95% cum. PROB.
LOWER BOUND No. IND. FOR ~ EQUIVALENCE To SINGLE TUBE RUPTURE
- LEAKAGE FOR SINGLE TUBE RUPTURE (GuILLO TINE BREAK) > 350 GPM
- BOC = 1.0 V
- 8,000 To 113,000 INDICATIONS ALL TSP INTERSECTIONS COULD HAVE 1.0 V INDICATION AND NOT EXCEED LEAK RATE FOR TUBE RUPTURE AT VERY CONSERVATIVE UPPER BOUND LEAK RATE (99.6% cum. PROB.)
- B0C = 2.5 V
> 1750 INDICATIONS PER S/G Fon CONSERVATIVE EQUIVALENCE TO A TUBE RUPTURE CONCLUSION
- CUMULATIVE SLB LEAK RATE APPROACHING LEVELS ASSOCIATED WITH A TUBE RUPTURE IS UNLIKELY l tsuuum ensa
.}}