ML20062D660
| ML20062D660 | |
| Person / Time | |
|---|---|
| Site: | Summer |
| Issue date: | 07/30/1982 |
| From: | GILBERT/COMMONWEALTH, INC. (FORMERLY GILBERT ASSOCIAT |
| To: | |
| Shared Package | |
| ML20062D656 | List: |
| References | |
| RTR-NUREG-0737, RTR-NUREG-737, TASK-2.D.1, TASK-TM NUDOCS 8208060186 | |
| Download: ML20062D660 (31) | |
Text
- - - -
,o Letter From O. W. Dixon, Jr., SCE&G, To H. R..Denton, Dated July 30, 1982 ATTACHMENT 4 PRESSURIZER RELIEF SYSTEM PIPING AND SUPPORT EVALUATION REPORT FOR VIRGIL C. SUMMER NUCLEAR STATION SOUTH CAROLINA ELECTRIC & GAS CO.
IN RESPONSE TO NUREG 0737 ITEM II.D.l.
PREPARED BY:
GILBERT ASSOCIATES, INC.
JULY 30, 1982 5
i 8208060186 820730 GM ICc"ca*""
'~
PDR ADOCK 05000395 A
TABLE OF CONTENTS PAGE I.
DESCRIPTION OF SAFETY AND RELIEF VALVE INSTALLATION 1
II.
DESCRIPTIONS AND RESULTS OF PIPING / SUPPORT EVALUATIONS 2
II.A.
INLET AND DISCHARGE PIPING ADEQUACY 2
II.A.1.
ANALYSIS PROCEDURE 2
II.A.2 CONDITIONS ANALYZED 3
II.A.3 BACK PRESSURE 5
II.A.4 LOAD COMBINATIONS AND ACCEPTANCE CRITERIA 5
II.A.5 EQUIPMENT AND DOWNSTREAM PIPING EVALUATIONS 6
II.A.6 EQUIPMENT AND UPSTREAM PIPING EVALUATIONS 6
III. REFERENCES 8
FIGURE I-l (PRESSURIZER RELIEF SYSTEM FLOW DIAGRAM) 9 FIGURE I-2 (SAFETY RELIEF VALVE PIPING SYSTEM) 0 FIGURE I-3 (POWER OPERATED RELIEF VALVE PIPING SYSTEM)
Il 1
FIGURE II.A.2-1. (SAFETY RELIEF VALVE LOOP SEAL TEMPERATURE 12 DISTRIBUTION)
APPENDIX A:
RELAP5/ MOD 1
- 13 APPENDIX B:
PIPING SYSTEM ANAL SIS PROCEDURE 22 APPENDIX C:
LOAD COMBINATIONS AND ACCEPTANCE CRITERIA FOR 25 PRESSURIZER SAFETY AND RELIEF VALVE PIPING AND SUPPORTS G be-t /Commonwea:tn
I.
Description of Safety and Relief Valve Installation Virgil C. Summer Nuclear Station, Unit #1 utilizes a Westinghouse three-loop pressurized water reactor (PWR) system with an electric power output of 900 MW.
The primary system overpressure protection installation consists of three safety relief valves (SRV) and three power operated relief valves (PORV) as shown in Fig. I-1, "V. C. Summer Pressurizer Relief System Flow Diagram".
The SRV's are spring loaded self actuated valves manufactured by Crosby Valve and Gage Co.
These valves are model HB-BP-86, type E and size 6M6.
The rated steam relief capacity for each valve is 420,000 lbm/hr.
The inlet pipe of each SRV is 6-inch schedule 160, 114 inches.long with insulated loop seal.
The average loop seal water temperature is 380 F.
The SRV's discharge to a 12-inch SRV/PORV common header through individual 6-inch lines.
The PORV's are globe type valves manufactured by Copes Vulcan, Inc.
These valves are model D-100-160, 3" NPS, 316 SS with stellite plug and 17-4PH cage.
The PORV's are operated by pneumatic actuators that are controlled by solenoid valves.
The rated steam relief capacity for each valve is 210,000 lbm/hr.
The PORV's are connected to the pressurizer through a 6-inch schedule 160 common header.
The PORV discharge lines are co'nnect'ed'to a 6-inch header which in turn joins the 12-inch' SRV/PORV common header.
The general layouts of the system for SRV's and PORV's are illustrated in Figs. I-2 and I-3, respectively.
Geed /Ccwan.ea ta s
.. II.
Descriptions and Results of Piping / Support Evaluations II.A Inlet and Discharge Piping Adequacy II.A.1 Analysis Procedure The integrity of the inlet and discharge piping and their effect on operability of the valves are analyzed for pressure, deadweight, seismic, thermal expansion, and valve discharge transient hydrodynamic loadings.
The piping behavior under valve discharge hydrodynamic load is analyzed in three steps:
(1) thermal-fluid analysis to determine the state and flow conditions of the fluid, (2) generation of transient flow forcing functions for piping dynamic analysis, and (3) perform time history piping structural dynamic analysis.
Piping analysis procedures for pressure, deadweight, seismic and thermal expansion loads are well established in the industry and will not be described.
RELAPS/ MODI, CYCLE 14 (RELAPS) was used for thermal-fluid analysis.
The RELAP5 computer code has been verified to be applicable for analysis of the SRV discharge problems by EPRI (Reference 5).
The RELAP5 control system is used for generating forcing functions concurrently with the RELAP5 thermal-fluid analysis execution.
These procedures were justified independently by Gilbert Associa6es, Inc. (CAI) as discussed in Appendix A of this attachment.
The GAI piping analysis computer code TPIPE, version 4.2, was used for the piping analysis. TPIPE is a general piping structural analysis computer code developed by PMB systems Engineering, Inc in San Francisco, and has been used by Tennessee Valley Authority, CAI, and other organizations for several nuclear projects.
The GJbtet/Ccmmoneea:th
ASME Code Class 1 inlet piping of the SRV's and PORV's was analyzed by Teledyne Engineering Services using the TMRPIPE code.
TMRPIPE is a proprietary code of Teledyne Engineering Services which also has many years of application on nuclear projects.
The piping configuration and support scheme are based on as-built information.
The operating conditions analyzed, load combination method, and the analysis results are summarized in the following sections.
II.A.2 Conditions Analyzed II.A.2.1 Safety Valve Discharge Transients The SRV discharge piping system was analyzed for the following SRV inlet fluid conditions:
1.
Saturated steam 2.
Subcooled water 3.
Saturated steam with 3800 F loop seal Thermal-fluid analyses were performed for all three conditions above, and the forcing functions predicted were evaluated.
It was concluded from this evaluation that the loop seal discharge case dominates the piping design.
A loop seal temperature distribution predicted by heat transfer analysis and suppor.ted by field measured data was used in RELAP5 inputs." This temperature distribution is shown in Fig. II.A.'2-1 and is equivalent to a loop seal overall average temperature of approximately 3800 F.
The three SRV's on the V. C. Summer pressurizer are identical and have the same set pressure of 2485 psig.
Therefore, it was assumed for the analysis that all three SRV's open simultaneously.
%ertICommensen tn
The inlet pressure transient used for the loop seal discharge analysis corresponds to a " locked rotor" transient which is the limiting steam discharge case as defined by Raference 3.
II.A.2.2. Power Operated Relief Valve Discharge Transients The PORV discharge piping system was analyzed for the following PORV inlet fluid conditions:
1.
Saturated steam 2.
Subcooled water at 3050 F 3.
Saturated steam with 4500 F loop seal 4.
Saturated steam with 2000 F loop seal The first case is applicable for loop seal drained dry. The second case simulates cold overpressurization transient conditions
(' Reference 3).
The third case is a contingency analysis to address a situation in which the loop seal is not completely dry but the thermodynamic conditions are sufficient to keep any water at the inlet of the PORV's at this temperature. The fourth case represents the PORV system original design.
For this low temperature loop seal, the RELAP5 analysis showed that the hydrodynamic loads on piping exceeded design limits. Therefore the PORV system was modified to drain the loop seal.
The inlet pressure transient used for the loop seal and steam di'schar"ge~ analyses corresponds to a " locked rotor" transient which is the limiting steam discharge case as defined by reference 3.
Evaluation of the RELAPS genetated hydrodynamic forcing functions for the drained loop seal for cases 1 thru 3 indicates that case three above dominates the pipe design, and only this case is used in piping analysis.
Gee t/Comen*em
~5-The PORV's may operate individually or simultaneously.
It was determined from the computed forcing functions that the single valve operation and the simultaneous valve operations give about the same order of magnitude of loads on the piping.
Consequently, the simultaneous valve discharge case was used in the piping system analysis.
II.A.3 Back Pressure Back pressures at the SRV's were analyzed for the steady state steam discharge from all three SRV's and shown to be less than 500 psig; the value used by the vendor for establishing valve blowdown and capacity.
II.A.4 Load Combinations and Acceptance Criteria Load combinations and acceptance criteria for the safety and relief valve piping evaluation of V. C. Summer plant were based on
" Load Combinations and Acceptance Criteria for the Safety and Relief Valve Piping Evaluation," given in Appendix C of this attachment.
II.A.5 Equipment and Downstream Piping Evaluations II.A.5.1 Safety Valve System The evaluation of the SRV discharge piping system has been completed. The results are summarized as follows:
1.
Piping stress - acceptable 2.
Support loads - acceptable 3.
Piping loads on SRV's - acceptable 4.
Piping loads on the Pressurizer Relief Tank - acceptable Gibert /COTmonet4M 4
II.A.5.2 Power Operated Relief Valve System The evaluation of the PORV discharge piping system has been completed.
The results are summarized as follows:
1.
Piping stress - acceptable 2.
Support loads - acceptable 3.
Piping loads on PORV's - acceptable 4.
Piping loads on the Pressurizer Relief Tank - acceptable II.A.6 Equipment and Upstream Piping Evaluation II.A.6.1 SRV Piping System The upstream ASME Code Class 1 piping of the SRV system has been evaluated for pressure, deadweight, seismic, thermal expansion and respective thermal-hydraulic loads.
This evaluation includes pipe stress, support loads, valve accelerations and valve nozzle loads.
It is concluded that the SRV upstream piping system is acceptable.
EPRI has reported pressure oscillations in the SRV inlet piping for some fluid conditions and upstream piping configurations (Reference 7).
It has been shown that the upstream pipe may be subjected to a 5,000 psig pressure oscillation.
These pressure oscillations have been evaluated and it has been determined that 4
the stresses are within code allowable for V. C. Summer plant specific piping.
II.A.6.2 PORV Piping System The upstream ASME Code Class I piping of the PORV system has been evaluated for pressure, deadweight, seismic, thermal expansion and G'Wt /Ccmmon.cas
respective thermal-hydraulic loads.
This evaluation includes pipe stress, support loads, valve accelerations and valve nozzle loads.
I't is concluded that the PORV upstream piping system is acceptable.
6 6
m P
O e
n Geert / Common
- eau 4
i I
.. _. ~.. _, -_..,, _ _.,.-.. -.
J III.
REFERENCES EPRI PWR Safety and Relief Valve Test Program Reports 1.
Valve Selection / Justification Report, EPRI, April 1, 1982 2.
Test Condition Justification Report, EPRI, April 1, 1982 4
3.
Valve Inlet Fluid Conditions for Pressurizer Safety and Relief Valves in Westinghouse-Designed Plants, EPF.I, March 1982 4.
Safety and Relief Valve Test Report, EPRI, April 1, 1981 5.
Application of RELAP5/ MODI for Calculation of Safety and Relief Valve Discharge Piping Hydraulic Loads, EPRI, April 1, 1982 6.
" Guide for Application of Valve Test Program Results to Plant Specific Evaluations", Rev. 1, EPRI, April 5, 1982 7.
" Pressure Oscillations in Safety Valve Inlet Piping", EPRI, March 17, 1982 G:tenICcmmon* eau
y
)
r E
T K
a Y
4 tA S
X T
M RF A F
1 E
EL R XC E
L IME G R
R RURD K R U S E.
X T E
G 2
1 C
I X
2 V. R F
'1 t2 l
U X
R C
c U
p P
S S
sO S
'l e
u7 S.
o cO E
g E
[
aL R
l b
R fN P
P 4,
"6 y go 1
go P
g OO R
L L
E H
z S
e 4
(R i
C s
R
[
/
U I
S SERP B
[
o lo S
<t~ n L,-x
~ z.
u.
A Se, -
<,:N
.' 4 s /.
,t:!l T e e,
- u a A= ;.t / E C
'g.,
i
.k.- f::7,h's r r,, : w rp
- i. *
- A * ?
G,,' '
d
- g.
- )
(do
- 4 c
4 ",- [d h.
l N
XN '
~*
M x m:
n a u i-m S s
/![,.j,g#*
M.d 1
t,
- o
.: g:, %'
f
./
g s,' t sd A
t 8
"f,b g.*
t
"'GPh4'M,.me ea%a c.q %h
~
sxt
.h.b. h'O 0
' =~ Cf'?f'.
f
~
I,<
. 9x. r..m m.:,-
s,a
- <.,,* e..
A i
G W 4' %g N.
,;,,::. 4 is.
g gg
... m. f a.e b j ( L1 ih N
4
.. af i g
g
,k,
$ s'e-
~z. c. '
Y
.{
- l lf f-.,
.. ~
t p.:. t
.~-
s.
s.
c m+
h *_,' %.'M E ) 8,'---M%;, #d,)c m.
t 1.a y
M. L,A[ 'h
-~
a
- ,' %'e ~p,':'%2 / 2 - Q"
', 4' e
W pf
- r
}
.N st
/
e.
, # ". I+ ~ e d fIf f
o s-g
.h' e.'
8, Ny'=s
'N, NN s:
- ' #8 7'" - [e
[
. +
~ e,.
N s,.: '. 1 s,,
,4 s
- m. 4N.__ q,hj v.
3 1.
(/
j N.,0. L Q-
^-
$j - f N,' ' ~ $[$$' h.,e'81,'3 4
t
ks,,*,)'$
',d '
<h 7
r/l I
en *
-t* s" Ns N
g
-t'.s'svo wt
-1L:%. i
=}*,-Q,. P[N , #-
l.
, f';
,U, e;
's s.,
s s
LaiSDLET(404x) g, A.j9 [. '
b*,!'d'
@e,* < ',
D FCa Cc'%'T set :=('a t
f,
j.,
i
/
C &4 bot 5 41T 31 C &,
Q, & f*'
's em W : s,' N 2,/ ^- '
U x :- i:, :'s %'
,N
~
'v
/ ;,. ? s'r' c
.. /...g f r../ g,-
) 3 p.
,p s1 g :x.w.ce s.
e C.:
.c
- -s;
,,~. ~
l-.
eC9#
t,/
a
-s v
f 4
pj i
h *s.Y #
K
%C;.
4 l.1% s n$
- 9. ;y *.2,; v '
sf fe r
<g-N-,4
.4 9.,*
r t
'f*
..s,-
.e q
p.
')
e 4
s.
~
~, /[~f.I
$,/
\\' Q.
/
Y s _;N l
/s Q
ss s '
.f/
p 1
7.n. w.
<W 1
,-:'., w
+
y.
S~
- /n~.
- .-
a
~..
c,..
n-
.K.*g*4 V*.'
< > ~
~ ' y, ~,/
w r*
g~
a f,-,
ps.,:.f.,'
,s.", s *,4 !g%r"'
r
,-g s
M, vm. N,.p. a$ r e *.
E i
F
,.e,a
,.)
, :.=>
g
...y G.
- c.,- sf 3-
.w.: r= s-j 2
ga
- . s :
C-.~ m e
., O gC..
','s s,
a f,4 *,,s '
/N
- *E S'.**;*
- 0 " I A**'
- ,,, e,
P ar ta si, s :% :
-e
/*c.4.,'
.I s*
[.
$3
- g**'.'I-x s
t ait : = 3 t.,* a=4. e 1 y
4 a wa.-% a..,
a af -
ED hp s
g N-}Yj
[s
- fy,-y,
- g e~
o m
.... =.,
,,s.f",f
[,
7
.P Mr C.0 2 *Je
.6, V
c.l e C *,,3 s.y e*
i, s '.,.2 N
g c '; / N D ;..' M t%b s
i.r. !f W~}7 Q f
/
p E '
4 Y*
H w.,.,,,
ii S
an u
5
[
i
..,.ww_-.~......_,,,..,..,,,,,,-
>{O 9-8 7
HT t,,,
g~
p&
/
3 iSI
.tr('
- r.N,W'g5
[
J3 a
v A %*
y Y
k
?".
g*%)'a.
}
8
'n h*
i e
g
+g g
j, N,y@pj N gA,s k
s, w m a%
c e
m&
q 8
+
x
=
'!/
G; v,<9
,.',+c Q
+;,.., e e
5:.,
[IY,'.'.a",}[
I r
C h
j.
s.
D MI "l
F au-ina 6
- fp %,
.C4,,,
s av.i.ssai a. - e.
.1 -
pu..
u$,.t
,g, a
q y
ldb\\s
,N ' /s Y
El
/
%m
% *n.u'1.\\ r )
s G
,e4'..., T A
y- -
um,/
E D
,f'&
- J D @
/,
@v f l3 Se,%,4 e
T-SECTtora A-A. t.r:
b <
- 'g..
a
-l
,s p -p n
.e
<s 2
,i[.
(
n6 il l idd*
F o
si m
(v s
Y m
3 sl %.x'{ f $
lf p :.
- h..,u
/,
Q,, ~,
- N
+-
y..
.., 7, -
Ny, f 's u.}
/ */, " c*~
h' '.
p-
- 4 y
y%,
- i.-
[%'i N 4
s s s,
r7 C
- \\
'4'
/- 7-[ ' k
,h"ik "'
S[.. -
G
'N I-
. ior yf
[^
s 1
'w < r 'e
-::l Jy" s '.y
.s ij.."- <
r
\\% *'?s A y
p
' W g.'4 N'
H s'%K,,
9 l
, s'J p'
qs.'
ir
~
Q ' ',}'<.[
.i~
l M*e l'= C" -
'~
-/0-
~""
h l
l l
5 4
3 2
1
+
- necx tm 4
v &<
tv-tun-cau.,.: n ru s.a,s e a t e varc.w.u, :
4 l
O m *'m c < w
-__ a
.. _w u.v.. a,.u r
O i G-i.'.4 L. " 4 4 4 4-l,,C ;, %. 3, $ se $ -
]
F. I. #,A t g
,j g
- i....;:
x l
4T 4,*jy; 8 e
- se* Ja8* t,i aae e
._e.'s.. _...,.
-u w;, s,s.
u c:N E 41w R: on GA!
..g
,1.-l6..Ac'iu. h, i,,... -
t.
.. ~~
m
..,, _.m
,, ; m,.
w' i.
s v#s a
--- m
, ~x. el -
._.~.s=
r
- e. s.---.-.t-, - - - _ -.
y
,m
. o.
- O..,{
[
',O r., g
-i g
' ', ' g, [,
,, /f i
l l
~
E
/ O P
f f
\\
i i
i i
f"s., :
.Af.
l e
+- -
1 i.=
3 4,, o -
,a-3./j' n
s Ila
- y
/
... u. i
/
4, 3
- 1.* _
[..,,..s.,
p
,.f.
- -e
,. g
,' u
..I e:
. w,.s.
i.ne.
. A. % 7 >. a gi..&t-(c,s.
.L. 4.,
a
. =
e g
t.,,et i
. #..a i
+p 7
t I
s 4
s y /.
r i
i i
2 p.,_ 7 b.m
_D E ' A.I_ L_ __ __A.
,t i
C i t.. }
V N
J,.s T twa, otri T rta c...
a >
3 g g
-.Q,e* j '
D AT f; 'f,,*h...-
aE y -y ', i b
g
,,. s 3
v.
cv, u
- K
- /. f..; 0 tm w c.. e <, s
^
c-
+
.v : u :.
.) S talt g 't g a :.r,,
)
g 0
6-
- (u N
i s - :, s, e y
g s
s
.- >. :,. t ;
.a s
- \\ F E r..
ov..: N T 4 I
.-\\'
7
" 8 - 6 0:
t 02 (as
'/-
/
i i,
i
//
-J-
.t n ae.
,/
n
,. ~
-i --
- I t
/
@3
- (<?I' L EA TE_E.DYtd AV_v5:5, a
aA::n.
c::
'5 $ 3 I' "**
QE [A 4 (*
c\\
7 C-Si40i T 2.
+-
- w
$ i.,. :.. -
l ALL N~ ~'E N.Nii;5 0 es:. e..
e lA:E GC CNLY g,,,,,,, y, e
[ t 3-L\\w'c.
~ ~ ~ ~ - ~ - ~
X m
.s C--O. r.
(
9
,,.,, t g
m e-w
[
- n. :~ :
Q s.s:..
.as. n...
C.
s
/
m vc cua m
. :c,r.
- v., t.c a t c s.
__ cT ail. :
r i:4. ie t 4.'
ntr a<-
de gaeg.
r..',,,.
us.) s. c ac :t: a..I rd s. It;
- i. : ers:.
- l' p
g.s.) f TIT sc :!: E*.: 3F a f::'
E g
/,3 te.) a. t : s.s c B: :sse !* ?: 3 '. * :!'
i
\\\\ \\,, '\\
q.: Arp ere
- 2. ;u n.n: ::..s:n* su c:. :: p.n e.L u,,,
L.>
4 w
s.
h
~
E. e.*'
ei V.S s.:
e
.,.e #
)
f)
- f a
/d
.. g I
j er ' ( (.
- ;l
. E '. t #
st:. *-
e
- q
%gp*AS'ed'g
-- - - u t-t wc
.g m._
,s,
~~.
' _. J ' '
~
D{ T
- \\
_-(
/
' i
- t -1 '
p/
u - :.'
Q
- x..-
o-
[
- m;
- s.
k-),-
.z.-
W,, '
r_,. :..:.4. i.r:m:. m e.e.,
i
.s -
)
U
{
D{TML. D n't;.C
' ?. v!: v.:3 s s :'s. 3
- - ~ ' " ~
y
.s m.,.
~.
9
.y
.6.
- g
- --(
l's
[, * : L* 4...e.*
p g
.___4_a___' _.. --. a.
~
.c.c m m :o ts.;
>i L,.-~_, }
a
..Oe.?
_Ji
...,e e.
1.-
1 3
,. *j k
?
5
. ' ~ * ~ ' - ^..
~
s.-
a-
_. _. A.; _2 * % _ -__ ___. e s 7 _D._ u.!
P
,e-r
,g g
o I
[%..-
- 7..:. _--W... C - ? : c ' _ _.! c
- 2. _d.
?, +
1 r
.4 A
L;_ i, i i o,, i. __o i _a_ _i i : T T. ~ - _ ~. __.~ ~.~ ~
FIG. I-2..
i
-.a==
= - --
=
.- - l m
i
.y -
- 3 j
lh x
. m -
v.-
.w. ~ t,. r
.n=~
.n
. o w, v.
~ ~m -
- ~.=+ --
m l'
y 5
4 l
3 2
1 Denism CEheftsas C%#-5444-0444Gi-oos
[cQ 4
5 narc.
l ANM) A5TERLS4 nasDiCATES A 2.utuk.;4 C-AwSC ( 8m" LO S 7.PL Supp3ILT f
Crt asTueG CopuT A
/
Caet4T AT A %) AFith attt O. Two t1
- ' / '
G S P-544R-04 4 4 r.I. OC Q SASID CW FnELD edALEOC**s% AND O "
"'eDaan.TS P5TE.
=
tS AD.Al f' C AL'.T A00 t ef a t LC.
""'8 C#"
C!:C PSP esc CTf 4 &(, s. FC O S
. 41
'.'. *.* j i
k, Pet e ras %
, gc N
- Th i
9
,.w c w.
u..
s wuic cus:
u.vam.
m v
5 E.N V. F ICa. IS,13.11 3a vp we usa.
v.
b.i a s. :
8 L.,sTsa.
+ iw 6, w rsm
- e.,. -
'Ja mq'
- 46
=
686 l SiNOW
^'*#**'3" # S*' 81 # #^
k
.111 > '
\\ RLM 048 l
l 4
{
6 r d*
'u m
m u,
.u, a 1.a 458 n-e r a:ca.
au -
/
m i o,,, w..,
O w5"+' ;, /g,u
,m
.u.... o
.v'
...u i z 3..-e:
e uoo
.u.
r',j:
( Q35' DETAll 'A'
.c c
p c.-
- c. m
.u
..m
% s.
.a,
<. w.
ur
[
I em p. 2-n
. [
C.
'(4,,,,
g i
C a
..m:--
- f
'e'
(,d a f
- P-
'7, i
- s A c'Q,,
W s t ik. e - t h a g a s.w i E;"t 3!! 7 5 -
t q' y( 4'
,3 u-e-n - s.u o sc -3 = u = ;.
p -. i..
6,-
.c n z
Dh..
.. u.c..... m x w. *s,a/;k*h',N,dc W' 'g
, ";' i*
- y'+(
'3
'* * * * ' - P - G 3 *O e
s s
r
,s
-- = ~ =
p.
rf n'
- 1
%w e a6,
'**-5*. * *-P-i?4 a Lv 3
'N
+' t, I
. /
.t
=
o e
y
/
r w -S* ;=
- r.3 g t i,.. D/,'b NY',,,'
vqy
- g. 5 scs.-e -n. 3.m. o AO
F C R-e-se* *. i.t s s.4
' $s s
g 7 ;, g **c=oss y' (/,'
s
- ?.f 3-Q *.,gs '
N ;.
~l*
/
W'- E ' ? ; A M = '
g.
(*p[ l 4 ( %
o
,3 g sff, ' '
Fc e.-E - e s ;-4 R E.'. c 4,*); g g,y g %
6
.g ece
=~73 e 9 p it o e
w,,h; f
- f..
- 3, te4ao.s.t<Tueg 5 m - b -m. n a -t o k
M
'.,a
/.
55'N 4-h,y # % s;'
s,,...
f fge.&.,. '.
W^'
w
,> WV:;y&a.
S
(
Jg' neau m Q :w *..
~ i'l::. *'g.
a..,%s x ~'-' ~
s y,-% *-(
3 w >
,s x,
%,',i *~.7; a
c..,_ m
.. m
- /G,;
p
' I.,. ss:Ql..f*'K@,'
ac.
s a6..
' x \\., *-
s',.4
- r. '."
9, 3
Mt.:. a rwan a.t
. a e, s
.t
- , c' * ~
63
- o 3 M*
N r
Sj! y* ',,
%'Q s,,.) %' ss.iKWk %_ Si%,'-
w e ce etr e. -
~
n
.(
is.
.*3
' *4 '* 5
=-e-T 1
~
estas
- m. g. s-1.. a[h%..
nh' sh,i, b
}fb j%3 D s e umsm:-
I
,'s-q r,
i
. p o.a.m.m.
. u, i
g/? g./
(h
'N, N
q E.5.) me se :ts...: e a r:-
F'
~
4 wr5 g
yx l
-,,.=*..
to.) au stomus s.aa a cue u ta a pu:u n
125
- 3. au vatuts a ta ru.T ans a::.ua +snet.s.t.
f
(..i e-
'N
/
1
.=
,#8
,g FC,P. TEgY.CYNE AN A gy tl 3,
73
.s y%
u s t.,/ +4-m s. i x
d.i p(hsj ,1,."'_
I
.s
?
J N '.- 4 s
A a ". ~ 1 N Mi.,Er.5 ' EE l
'[
\\7 l,l -
- 3 O N '-
s o:a mt
=
-i, N
/
s.
-5d s, v, i,
d, ::
.,.es as...
N as-o n'.
?
-,i j;.; fy,.; '
4 a s - t..-
s. m..,
'. ;@; f x
ese em a
G
__m....-
t A-1:UtM CAR 3Laha ELICTRIC & &&$ CCW*A1' 19 J 'L'
,...,,,.,, ILIllA% IATY 3GIE s
asse n u nn.e'in eseu w s
\\
,$e i /,g m.=. vie.w.s..a..n.enwi.ni e.m a as
... se
,-.t e, c. v;ngs,sen,,
univ..
e
[b
/
u
~'
s y.,q Q
ri,1 36'H,,6Nv ! 2 ? ? A.S.g,3:
8" " '
n-
.p p' r-W%.<.-l-W ?
- F *i
'~ ~' " ' ' '
Ge
,r'
- ~
su' u
n i
Q :,,
is 1
~2.t
-u,-a-m.a-u,m.a m,.Asa u,.
aua 8
9 i.
A I
APPENDIX B PIPING SYSTEM ANALYSIS PROCEDURE F
e J
9 t
e 4
i
.I 1
k 4
e e
1 Gbed /Ccmmoneca?.h
-.m..
APPENDIX -B PIPING SYSTEM ANALYSIS PROCEDURE ASME CLASS I INLET PtPtMG EQUlPMENT NOZ2.LE LOADS VENDOR APPROVAL
.c VALVF_
i ACCERLERATIONS
,L k
BLOWDOWN TIME MtSTCRY Y
7 p
LOADS PER DYMAMnC g
i RELAPS ANA'YSIS g
(TMR PlPE)
SRV PRESSUR\\ZER
~
CON N ECTioNS s
lf DEslGN
. UPSTREAM PlPE TES
^
SPECIFICATION l A SUPPORT
- STRESS COMBINATnONS EVALU ATtoNS REPORT i l AM ALYSIS FOR i
GEOMETRY PRESSURER, MODEt.tNG DEAD WEnGHT, UPSTREAM PIPE (TMR PIPE)
THERMAL EXPANSIOM STRESS
( SEtSMIC (,TMR PnPE)
---* EVALUATtoN ALLOWABLE STRESSES
I APPENDIX B PlPING SYSTEM ANALYSIS PROCEDURE VALVE
-+
ACCELERATIONS VENDOR NOM-SAFETY DISCH ARGE PlPnNG EQUIPMENT NOI2LE LOADS i
' I e
SRV SUPPORT i
3 QUAL \\ FICA'ilON (TES) p
?
ANALYSIS F*OR y
GEOMETRY
- PRESSURE, MODELING z DEADWElGHT, PORV INTERFACE (TPIPE)
THERMAL EXPANSION BLOWDOWN LOAD
=
4 SEISMIC (TPIPE) 3,
LOAD DOWNSTREAM
=
DESIGN COMBINATIONS PIPE SUPPORT INPUT EVALUATION BLOWDOWN TIME HISTORY
--> LOADS
= DYNAMIC bOWNSTREAM r
(RELAPS)
ANALYSIS (TPtPE)
PIPE STRESS i f EVALUATION AN ALYSIS d
REPORT ALLOWABLE STRESSES 9
4__
a a
- i. 4-4
--e-AM a
m--
5
--a,.
4-
- u e
O t
,i t
APPENDIX C LOAD COMBINATIONS AND ACCEPTANCE CRITERIA FOR PRESSURIZER SAFETY AND RELIEF VALVE PIPING AND SUPPORTS i
6 i
?
9
.6 i
i 1
GawtICowansew
't t
p--
my+y-e er--
yey e-q r-
+-w-p t-w-w
--w s-e-e
+w-v
-<w
r
~
~
LOAD COMBINATIONS AND STRESS LIMITATIONS FOR ASME CLASS 1 UPSTREAM PIPING VIRGIL C. SUMMER NUCLEAR STATION - UNIT 1 Condition Loadine Combinations Stress Limits Normal DESIGN PRESSURE AND WEIGHT 1.0 S H 1.5 S Upset DESIGN PRESSURE + WEIGHT + OBE 1.2 SH PRESSURE (
+ WEIGHT + VTC ( )
Faulted DESIGNPRE{S}RE+ WEIGHT +
2.4 SH SSE + DBA 3.0 Sg Fatigue NORMAL TRANSIENTS, OR UPSET Equation 10, 11, 12, (Normal /
TRANSIENTS, OR TEST TRANSIENTS, 13, and 14 of CODE Upset / Test)
+ WEIGHT + OBE + VTC Notes:
1.
VTC-resultant valve thrust condition f rom valve lif t(s) 2.
Fbximum pressure resulting f rom Note 1.
3.
S value shall be taken as defined in Note 1 of Figure NB-3222-1 of the g ASME Code.
t a
e 4.
-DBA-LOCA & MSLB G!bert / Commonwealth
l LOAD COMBI!1ATIO!!S AFID ACCEPTA!!CE CRITERIA FOR PRESSURIZER SAFETY A!!D RELIEF VALVE PIPIT 1G At3D SUPPORTS - SEIS!!ICALLY DESIGilED DOWilSTREAtt PORTIO!!
Plant / System Service Stress Combination Operating Condition Load Combination Limit C
1 11ormal 11 A
2 Upset ti + SOT D
g 3
Upset 11 + OBE + Sor C
g 4
Emergency N + SOT E 5
Faulted ti + MS/FWPD or DDPD D
1 SSE + SOTp e
e 6
Faulted
p y
O s
I h
DEFIt!ITIO!IS OF LOAD ABBREVIATIO!1S Es li
= Sustained Loads During fiormal Plant Operation SSE
= Safe Shutdown Earthquake SOT
= System Operating Transient MS/FUPB = Main Steam or Feedwater Pipe Break SOT
= Relief Valve Discharge Transient II U
DDPB
= Design Basis Pipe Break SOT
= Safety Valve Discharge Transient LOCA
= Loss of Coolant Accident E
SOT
= Max (SOTU; SOTE); or Transition Flow p
= Operating Basis Earthquake This table is applicable to the seismically designed portion of downstream non-Category I piping (and supports) necessary to isolate the Category I portion from the non-seismically designed piping response, and to assure acceptable valve loading on the discharge nozzle.
Use SRSS for combining dynamic load responses.