ML20005F455
| ML20005F455 | |
| Person / Time | |
|---|---|
| Site: | Summer |
| Issue date: | 01/02/1990 |
| From: | SOUTH CAROLINA ELECTRIC & GAS CO. |
| To: | |
| Shared Package | |
| ML20005F454 | List: |
| References | |
| NUDOCS 9001160298 | |
| Download: ML20005F455 (32) | |
Text
-
.:y.
,s 6
'j my etc. i i
p y
n
[
South Carolina Electric & Gas Company l-Ie Application for Approval to incinerate
. Oil Contaminated with Very
(
' Low Levels of Licensed Radioactive Material 1
i.
w
=n
\\
'.- a.. wi V. C. SUMMER NUCLEAR. STKfION' SOUTH CAROLINA ELECTRIC AND GAS COMPANY January 2,1990 -h 9001160298 900104 PDR ADOCK 05000395 PNU .z
1 i i e Table of Contents 1.0 Introduction-- Page 1 .i.? Waste $tream Description................................ Page 3 2.1 - Physical Properties of the Waste Oil.......,.......... Page 4 - 2.2 Sampling and Analysis of Oil........................ Page 4 3.0 Description of the Proposed Disposal Method................ Page 6 3.1 Description of incinerator..........,............... Page 7 3.2 Incineration Facility Location...................... Page 7 - 3.3 Administrative Controls............................. Page.8 4.0-Evaluation of Radiological Impacts........................... Page 11 of Waste Disposal 4.1 Identification of Potential Pathways................. Page 11 [ 4.2 Dose Eval u atio n................................... - Page 13 4.3 Summary of Limiting Conditions..................... Page 14 ' 4.4 Comparison of Radionuclide Emissions to 40CFR 61, Subpart i Page 15 5.0 EnvironmentalImpa?. Assessment Page 19 5.1 Geology and Water Usage.......................... Page 19 5.2 Meteorology Page 19 5.3 Nearby Facilities and Communities.................. Page 19 5.4 Co n cl u sio n s...................................... Page 20 ' Dose Calculation i i 1
l 1 V. C. Summer Nuctear Station P - Application for Arproval to incinerate OilContarainated with Very Low Levels of Licensed Radioactive Material ~ Introduction 1.0 Pursuant to 10CFR20, Sections 20.305 and 20.302(a), South Carolina Electric -^ & Gas Company (SCE&G) requests approval to incinerate oil contaminated with very low levels of licensed.idioactive materials incineration of oil is a proven disposal technology which has been Commission approved for use by several nuclear power plant licensees with inconsequential radiological-impact on'the health and safety of the public. Other disposal options for waste oil are currently limited to solidification and burial at a licensed new surface land disposal site or incineration at a licensed commercial incinerator facility. While both of the latter disposal options involve inordinate msts, Qk shallow land burial would also represent inefficient use of the limited burial ground space. 2 Onsite1 incineration represents the most cost effective disposal alternative and would~ reduce the risk from toxic and fire hazards associated with storage as well as risk associated with transportation to licensed disposal facilities. Additionally, the Environmental Assessment presented in Appendix A of the Proposed Amendment to 10CFR 20.305 " Disposal of Waste Oil by incineration" (53 FR 32917) states that incineration of oil in industrial boilers has been the EPA's preferred method of disposal of used oil based on nonradiological considerations and concludes that onsite incinera-tion would not result in significant radiological effects on the quality of the human environment. Therefore, onsite incineration of slightly contaminated Page l of 20
m e t waste oil represents the most economical and safe (both radiologically and-non radiologically) method of disposal currently available. 1 This application addresses the specific information required by 10CFR 20, Section 20.302(a) as related to the alternate disposal of licensed byproduct material. This application also addresses conformance with the new NationaI - Emission Standard for Hazardous Air Pollutants (NESHAP) for radionuclide emissions from NRC licensed facilities (40CFR 61, Subpart I) as announced by. the EPA on November 1,1989 (Docket No. A-70-11). Even though this n'ew rule has not been published in the Federal Register and the EPA has announced a 90 day stay to reconsider the application of the standard in Subpart I to'NRC licensees, the analysis presented in this application demonstrates that this proposed disposal method would not require prior approval by the EPA based on the exemption criteria in section 61.106 of the new rule. e l l Page 2 of 20
3-p 2.'O ' Waste Stream Description Since initial start up, V. C. Summer Nuclear Station (VCSNS) has generated approximately 2000 gallons of spent lubricating oil which is slightly contaminated with radioactive material. The current generation rate of contaminated oil is abou.t 100 gallons per month. Two primary sources of contaminated oil have been identified at VCSNS: the reactor coolant pump -(RCP) motor oil and oil skimmed from the turbine building surge basin. Oil - from the RCP motors becomes contaminated because the oil reservoirs are exposed to the containment atmosphere through a breather line. Generally, oil from one RCP motor is changed during each refueling outage and results. in about 250 gallons per year. Oil froin the turbine building surge basin becomes slightly contaminated due to small amounts of primary-to-secondary leakage which have occurred at VCSNS. Oil is introduced into the h-surge basin via the turbine building sump due to incidental leakage from E various motors and pumps located in the turbine and auxiliary buildings. Radionuclides identified in waste oil generated to date include Co 58, Co-60, Cs-134, Cs-137, Mn-54, and Fe-55. Typical concentrations of these . radionuclides are presented in Table 1 below. Table 1 - Typical lsotopic Concentrations in Oil Nuclide Concentration (uCi/ml) Co-58 ~ 1.00 E-7 Co 60 1.90E-7 Cs-134 2.59E 8 Cs-137 4.51E-8 Mn-54 1.73 E-8 Fe-55 1.91 E-7 Page 3 of 20 .- m -
I 1 - 1 ll 1-2.1 Physical Properties of the Waste Oil _The waste stream is composed of spent lubricating oils with viscosities ranging from SAE 10 to SAE 50 weight and densities ranging from 53 to 55 pounds per cubic foot. Solids will be typically less than 10% by! volume. Additionally, the candidate waste oil will not exhibit any of l the characteristics of hazardous waste identified in Subpart C of 40CFR 261; " Characteristics of Hazardous Waste". 2.2 Samplina and Analysis of Oil The process for incineration will require oil analyses to determine the presence of radionudides listed in 10CFR 61.55, Table 1 and Table 2. Even though 10CFR 61 pertains only to land disposal ~of radioactive waste, Table 1 and Table 2 provide a complete listing of radionuclides - -J that must be considered for the protection of the general popula-tion.-- The lower limit of detection (LLD) for direct measurement of 10CFR 61.55 radionuclides will be consistent with the guidance provided in " Technical Position on Radioactive Waste CI'assification" Revision 0, May 1983 issued by the Nuclear Regulatory Commission Low Level Waste Licensing Branch of the Division of Waste Manage-ment (BTP). As stated in the BTP, the LLDs will be no more than 0.0 times the concentration for that radionuclide listed-in Table 1, and 0.01 times the smallest concentration for that radionuclide listed in Table 2. For this application, the definition of lower limit of detection is consistent with the definition provided by U. S. Nuclear Regulatory Commission, " Radiological Effluent Technical Specifica-tions for PWR's", NUREG-0472 (as revised), July 1979. An inferential measurement program will be implemented whereby concentrations Page 4 of 20
. ~- ?) Y, 4 of radioisotopes which cannot be rea'dily measured will be ratioed in a manner consistent with the BTP criteria. All radionuclides detected - by direct measurement as well as inferred radionuclides will be considered to determine the acceptability of oil for incineration. Prior to incineratio'n representative samples of candidate oil will be obtained bp methods described in' ASTM D 4057-81, Volume 05.03,- " Standard Practice for Manual Sampling of Petroleum and Petroleum Products". 1 L g 1 7 1 Lg O L l-y Page 5 of 20 .--e v w
1; u .O. ,'D 3.0 ' Descriotion of the Proposed Disposal Method = The proposed disposal method involves incineration in a dual chamber c incinerator. Waste oil is collected in tanks and locations in accordance with - L . applicable Health Physics, Industrial Safety,'and Fire Protection Procedures 1 and South Carolina Department of Health and Environmental Control 6 (SCDHEC) requirements. An incinerator permit will be obtained from the SCDHEC Bureau of Air Quality Control prior to operation. A feed tank will be utilized for injecting waste oil into the incinerator. Oil may be collected in a feed tank or transferred to a feed tank from other collection tanks. Prior to incineration, the feed tank will be isolated from any further collection of oil or licensed materials and representative samples will be obtained as described in section 2.2. The feed tank will then be transported to the incineration facility provided the oil is acceptable for incineration. Onsite gamma spectral analysis will be performed on the . samples and the results input into the inferential measurement program to ' determine the isotopes present and assure acceptability of the oil for incineration as described in section 3.3. The incinerator will typically be operated eight hours or more per day at a rate o ten gallons per hour until the contents of the feed tank are consumed. All transportation and incineration will be accomplished within the licensee owned 'and controlled area and will be in accordance with all applicable station Health Physics, Industrial Safety, and Fire Protection procedures and SCDHEC requirements. Ash from the incinerator will be handled as dry active waste (DAW) and will be disposed in accordance with 10CFR 20.301 requirements at a NRC licensed facility. Page 6 of 20 'n4
I ji ' 3.1 - Description ofincinerator The incinerator is comprised.of two chambers; the lower. chamber is e approximately 30 cubic feet in volume and the upper chamber is 20 cubic ' feet. The lower chamber is designed to operate at 1400 F and the upper-chamber at 1800*F. Residence time of exhaust gases in the upper chamber will be a minimum of one second which will assure acceptable opacity of. stack emissions; Both chambers are fired with #2 fuel oil with automatic temperature controls and safety shut down interlocks if the system runs out of fuel oil. Waste oil will be atomized, prior to burning, with 100 PSI to 250' PSI air. The control design for the upper and lower chambers also include safety interlocks with less than 100 PSI of atomizing air pressure or loss of U . waste oil feed. 3.2 incineration Facility Location The proposed incineration facility is situated approximately 2500 feet south-west of the VCSNS Reactor Building and is contained within the Site Area Boundary, Exclusion Area and Plant Property Line. Figure 1 illustrates the location c.f the facility with respect to the generating station. The natural topography surrounding the area has an elevation range between 250 and 450 feet above mean sea level (MSL). The elevation of the proposed facility is. -[ about 450 feet above MSL. The incinerator will be located within a cinder block building with outside dimensions of 16 feet by 13 feet. The roof of the building is approximately 17 feet above grade. The floor of the building is concrete which will be sealed for ease of maintenance. Auxiliary fuel and waste feed tanks will include secondary containment features and be located outside the building Page 7 of 20 + t
i g < >f / g g/ :@ 3 , / , '8>4 td-IMAGE EVALU ATION ((/ 4 + l.0 !!82 IkB y @ E=M l,l jj HM } l.8 I.25 1.4 i.6 I i 150mm 4 6" 4 r
- g gin %-_
f%* asp 4% 4 w <>+$% + % o t e y iL a
%9
- @k#
B o YA IMAGE EVALUATION [p/jg/j f'#,4 TEST TARGET (MT-3) / <r ///p % [ f /
- 4 fl//
Ys ~~~ fy \\+ l.0 lf a na pljHE i,l [m HMd l.25 111.4 1.6 ,d - 150mm 4 6" 4 d*% /f4* g ;; /xxxp +> 4f,3ppppp 1 .y $c w
r.p.f !' ' /*/; g y i-4 ggg p = - - -- come r= & '\\, ggg/r',( 4. m s s., p s
- .g ;f a q
\\ \\ /e,! g! AG(.g.q}.ci : \\' ,_/-*3?'<' [ ti. / - p%ph . 'c.~4 i r p g 'I ,x, i \\,; I$ 1j , -._y, f.] I,' 'NK l ' -g-fN.) >y 9.. .p r ', b.f.cg' Y%.;.$gjg, . 4 ' ;, ' ./ p
- y'd.
. m,,,,, y
- g
} p w: 2,3 r } 'N l5
- s j
..h. 3 i ,g 'f s tii - N, 1 S t i %w; u9 i .,,,/ g ! y c..' .w ,l. : : ,,f l'ly.u!. A..g *w.,.5; A.p n. .y* .m M,,y'I,.G.li! M. E-.R. _ i. ;4. ..,i # -- 4,.-h'6, R f i0 o/'%JJ U' i . h,,'J 'd,,-Qc[fI-
- .I $'
ii d h' l ') - At I wt L J E h,.% b p..!!,p!. h.i !M A 7.
- 1 wm 6
F .., - 1 e i i ,.I v 4 .9 hIF-j j [?'.' l 50;. ' ltT e
- i i
p; '.s . A 5.; ): l W [ I + g " [9- [,-e_. -.cr. '-.m i w =l i t t. J.d 4, p.!,n ..--.e.g jfje=$ i ik3 ;marrtg IJ, -. 'h i 1 i l 4 M !l',.., 4'" + t f j C,:lh" '-" 3",---,g-a y, jr:,en j I n.. '; n, =,i i , ' _, - '3 i y C,, p 1; y f 5f I f 5 7,t.ty;; a J + d n 1 ( v% QlJ . ~... _ m_ \\ __ja \\>I h,i 'I L l % u [l1_ s EI) [ l J ~ h uu g. j ]D;,,, 4 g a it -N g "..- L-Q. 4 Q l i lL y l i._.i 7., .-g +-) e I
==. j c; a 1 ] l} ( l 3 i i bI ( a ti s / L v A N 7 1 c '*h, l [i z Iji /' ~ P l i}} ..I / [f' l U a U.$.'t 1 n t l Il,i i i e: 112lI' llt 11
- s 43A lllill1 3
ni u- ,,.m g I ean6u ,,illlljl s I l.,,I11111ll e I. E ,r i ,,llll1 i < 4J ; .C l 5 ms - m l e l 3 ,l I F
m s ~ for additional safety. -Supply lines from tanks to the incinerator will be double walled with safety shut off valves at either end. The building will have dikes at each entrance for additional spill protection. o4 3.3 Administrative Controls Prior to incineration, each feed tank will be sampled and analyzed to ensure conformance with the limits presented in Attachment 1 of this request. These results and other pertinent data will be documented and retained by the licensee and made available for review and audit upon request. As stated in Section 2.0, the generation / disposal rate is not expected to exceed 100 gallons per month, however, this does not imply an annual volume limit for disposal. The volume of oil incinerated will be limited by the allowable-quantities of radioactivity in oil as derived in Attachment 1 of this request. Similarly, as stated in Section 3.2, the typical burn rate is 10 gallons per hour, however, the actual burn rate will be limited by 1 percent of VCSNS Technical Specification 3.11.2.1 as derived in Attachment 1 of this request (i.e. as specific activity of the oil decreases, the burn rate may be increased). The incinerator is expected to be utilized for oil disposal for the full operational . life of VCSNS. The basis for the limits presented in Attachment 1 include the assumption that the total quantity of radionuclides identified in oil will be released to the atmosphere during incineration. This is a conservative approach since a significant portion of the radioactivity will be retained in the ash residue. This assumption combined with the extremely low quantities of radioactivity allowed in oil prepared for incineration eliminates the need for sampling, filtering and/or monitoring of actual stack emissions. Page 8 of 20
- j e
j ', /v - N The limits presented in Attachment 1 will ensure the resulting annual dose to the maximum exposed individual in the public from oil incineration does not exceed a whole body dose of 0.1 mrem or 0.15 mrem to any organ. In addition, these controls shall ensure the dose rate at the site boundary due l to oilincineration is maintained less than 1% of the limits specified in VCSNS - e Technical Specification 3.11.2.1. The low levels of licensed materials involved in'the oil incineration process should negate.the need for personnel monitoring of occupational radiation exposure and the posting and labeling requirements of 10CFR 20.203(e) and (f). Radiation levels in the incineration - facility and from storage tanks are not expected to exceed-the limits for. permissible levels of radiation in unrestricted areas as defined by 10CFR 20.105. The level of radioactivity in oil should be well below the exemption l[ ~ criteria for labeling as defined by 10CFR 20.203 (f) (3). However, the 1 L incinerator access doors for ash removal will be labeled for containing-radioactive material since concentration of the radioactivity due to incineration may produce quantities of radioactivity greater than the values listed in 10CFR 20, Appendix C. Removal and disposal of ash residue will be t conducted in accordance with Health Physics procedures currently used at p the V. C. Summer Nuclear Station. Routine surveys will be performed in accordance with 10CFR 20.201 to verify that additional controls are not required. Additional controls will be established as necessary to ensure y compliance with 10CFR 20 based on routine survey results. I Access control to the incinerator facility and oil storage tanks will be established to prevent unauthorized removal of licensed materials as required by 10CFR 20.207. In addition, the soil and grounds in the immediate L Page 9 of 20
.<), fy AA vicinity of the incinerator facility will be surveyed to detect any concentration effect of radioactivity in the soil.due to deposition from the incinerator exhaust. Corrective actions will be taken as necessary upon . identification of any adverse trends. The frequency and extent'of these surveys will be established based on the potential for radiation hazards to be present and may be adjusted as experience is gained from the incineration r process. The low levels of licensed material and resultant doses negates the need for inclusion of these emissions in the Semiannual Radioactive Effluent Release Report required by VCSNS Technical Specification 6.9.1.8 and negates the need for considering the impact of oil incineration on the instantaneous dose rate limits of VCSNS Technical Specification 3.11.2.1. Therefore, revision to the VCSNS Offsite Dose Calculation Manual (ODCM) should not be necessary for allowing disposal of contaminated oil by incineration. i L [ L
- Q Page 10 of 20
l 4 ~ 4.0 Evaluation of the Radioloaicallmpacts of Waste Disposal To evaluate the radiological impacts-of a waste disposal method, a target dose is established below which the radiological impacts may be considered i negligible. For purposes of this application, a value of 0.1 mrem /yr to the r total body.of the maximum exposed individual and 0.15 mrem /yr to the maximum exposed organ have been chosen because these values represent a o small fraction (one percent) of annual releases defined under 10CFR50 Appendix I as being As 1.ow As Reasonably Achievable (ALARA). Several values have been suggested by various agencies as being doses which represent negligible risk and are therefore referred to as "de minimus dose". A value of 1 mrem /yr to the maximum exposed individual has been justified in some detail in IAEA-TECDOC 282 "De Minimis Concepts in Radioactive Waste Disposal" issued by the International Atomic Energy Agency, Vienna, 1983. Thus, choosing a value ten times lower than that recommended by lAEA will assure that the radiological impacts of the proposed alternate i disposal method are negligible. l i 4.1 Identification of Potential Pathways Evaluation of the potential exposure pathways generates a long list l. of exposure scenarios. Using the guidance of NUREG-0133, I " Preparation of Radiolooical Effluent Technical Specification for Nuclear Power Plants", October,1978, many of the pathways may be eliminated. The decision making process for pathway analysis L' resulting from atmospheric releases of radioactive materials in particulate form is discussed in the VCSNS Offsite Dose Calculation 1O ~ Manual Revision 12, September 1987 (ODCM) and controlling I Page 11 of 20 L
y lY, lw pathways forl atmospheric releases are presented in Section 2.2.2.b ~ and Table 2.2 2 of the ODCM. Guidance provided in IAEA-TECDOC-282 states that individual dose rates below '1: mrem /yr are low 'enough such that no significant population doses are likely. Therefore, only individual exposure pathways are considered in this application. Doses will be calculated for the maximum exposed individual outside the site boundary using methodology described by the VCSNS ODCM, Section 2.2.2.b. The ODCM in Section 2.2.2.b provides methodology for calculating maximum organ dose to an individual from atmospheric release of radioactive materials in particulate form. Atmospheric dispersion and deposition parameters (%' and D7Q' respectively) are provided for the controlling receptors, locations, and pathways as explained in Tables 2.2-7 and 2.2 8 of the ODCM. It should be noted that the location of the incinerator stack is approximately 2500 feet (750 meters) in the South West direction from the main plant vent. Therefore, an evaluation was performed to determine appropriate M' and 576' values to use for the actual incinerator location. The distance of each critical receptor with respect to the proposed incinerator location was determined and EQ' and D/Q' values for each location were calculated by interpolation of Tables 6.10-10 and 6.1-14 contained in the Operating License Environmental Report (OLER). A comparison was then made between the X/Q' and 5' values for the incinerator location and the main plant vent. For the controlling receptor and pathways, the X/Q' and D/Q' values given in .O. the ODCM for the main plant vent were higher than those calculated for the incinerator location due to the fact that the controlling Page 12 of 20
N ia i receptor did not change but the distance from the release point. -increased from 1.1 to 1.3 miles. Therefore, the more conservative ODCM values are used for dose calculations in this application. The annual land use census is performed to verify the receptor location. When the land use census indicates significant changes to receptor location, dispersion and deposition parameters will be adjusted as necessary. - As indicated in Table 2.2-2 of the VCSNS ODCM, the controlling receptor is a child eating vegetables from a garden located 1.1 miles (1,800 meters) from the main plant vent in the East-South East Sector. The limiting pathways for this receptor include inhalation of airborne particulates, direct radiation from ground plane deposition, and h ingestion of particulates deposited on leafy vegetables. All three of - . these pathways are additive and maximum annual organ and total body doses are calculated by methodology described in Attachment i of this request. 4.2 Dose Evaluation For purposes of this request, the total quantity of activity potentially. released to the atmosphere from incineration of contaminated oil each year was calculated such that the target doses discussed in Section 4.0 would not be exceeded. With the exception of Co-60, the organ dose criteria is most limiting. The allowable quantity of Co-60 which may be released was based on limiting the total body dose to 0.1 mrem / year (Attachment 1). Since most of the waste oil contains multiple isotopes, compliance with the dose criteria will be demonstrated by maintaining a calendar year inventory for each isotope. Prior to each burn, calculations will be performed to assure Page 13 of 20
. y;i[:: ~ ~ -~ ~ ' - ~ ~ ~ ~ -f
- e 9
$c offisite doses will not exceed the criteria specified. Actual quantities of each isotope released, Qi., will be compared with the allowable quantity, dio (Attachment 1), and the fraction of actual release compared to the allowable release for each isotope, i, will be summed. The sum of the fractions must equalless than one before incineration is permitted. Specifically, incineration will be permitted provided the following condition is met: [ 0,, 1-In addition to the annual dose criteria, the instantaneous dose rate. criteria at the plant boundary (i.e.1 percent of VCSNS Technical h Specification,3.11.2.1 and 10CFR 20 Appendix B, Table ll, Col 1 concentrations) will be satisfied by limiting the specific activity of the candidate oil and the burn rate as necessary (see Attachment 1). The maximum instantaneous release rate will be limited to 9.0 X 10-2 uCi/sec. 4.3 Summary of Limitina Conditions As a result of the exposure pathway analysis and subsequent dose calculations, the following limiting conditions are imposed: 1 A. An annual running inventory will be maintained and the total quantities of all isotopes, i, released will be such that in a calendar year the following condition will be satisfied, 0la y < g io Page 14 of 20 . ~.
.q;; .? m. T /. lA ; B. Burn rate and specific activity of the oil will be controlled to-assure the instantaneous release rate does not exceed 9.0 X. 10-2 uCi/sec. C. cAnnual land use census will be performed, per technical ' specifications, to verify appropriately conservative X/Q, EQ', i and D/Q' parameters are used. D. If isotopes not identified in this application are. detected in; candidate oil, an evaluation will be performed and documented to assure that doses from these isotopes are o accounted for and the dose and dose rate criteria given in Section 3.3 are not exceeded. .l' E. Disposal activities will be conducted according to applicable station Health Physics procedures as discussed in Section 3.3. Li F. Residual ash will be disposed of as dry active waste in accordance with 10CFR 20.301 and applicable disposal site criteria. 4.4 Comoarison of Radionuclide Emissions to 40CFR 61, Subpart i On November 1,1989, the Environmental Protection Agency (EPA) I announced the National Emission Standard for Hazardous Air l' Pollutants (NESHAP) under Section 112 of the Clean Air.Act for-j licensees of the Nuclear Regulatory Commission. Although the EPA has announced a 90 day stay to reconsider the application of the standard to NRC licensees, an analysis was performed using methods described in 40CFR 61.103 to determine eligibility for exemption from prior approval by the EPA based on criteria delineated in L ~~ Section 61.106 of the new standard. Page 15 of 20 1 =-
l L, Q h Demonstration of compliance with the exemptio'n criteria has been determined by utilization of the COMPLY computer code supplied by ' the EPA (EPA /520/1-89 003, January 1989). For each radionuclide, the ! Do (total allowable quantity derived in Attachment 1) value was. input together with appropriate building and stack heights, source to receptor distance, mean wind speed, and pathway information. The input parameters and results are as follows: Release height 7 meters. y Building height 5 meters. The source and receptor are not on the same building, Distance from the source to the receptor is 2092 meters. Building width is 6 meters. Default mean wind speed not used. Mean wind speed is 3.34 . m/sec. He produces his'own VEGETABLES at home. Distance from the SOURCE to the FARM producing MILK is 5000 meters. Distance from the SOURCE to the FARM producing MEAT is 5000 meters. l W/ Release (Qo) Whole Body Dose Nuclide Curies / Year (mrem / Year) 1 Co-58 0.5060 4.1 E 2 Co-60 0.0142 5.1 E-2 Cs-134 0.0163 2.6E-2 Cs-137 0.0156 5.7 E-2 Mn-54 0.2080 4.9 E-2 Fe-55 0.6780 3.5E-3 Page 16 of 20
ys x ..o b[' For each nuclide the whole body dose is less than.0.1 mrem. i Therefore, when the summation criteria in. Section 4.3.A is met, the 1 total doses from'all radionuclide releases will remain less than 0.1 mrem per year. Section 61.106, " Applications to Construct or Modify", states the following: (b) An application under 61.107 does not need to be filed for any new construction of or mcidification within an existing facility if one of the following conditions is met: (1) The effective dose equivalent calculated -by_ using-t methods described in 61.103, that is caused by all emissions from the facility including those potentially-d emitted by the proposed new construction or modification, is less tha'n 10% of the-standard prescribed in 61.102. (2) The effective dose equivalent calculated by using methods described in 61.103, that is caused by all emissions from the new construction or modification, is less than 1% of the limit prescribed in 61.102. A facility is eligible for this exemption only if the facility, based on its last annual report, is in compliance with this subpart. 6 The limit stated in 61.102 is 10 mrem per year. Therefore, a construction or modification application would not be required, y under (2) above, as long as the total dose equivalent caused by all emissions from the facility remain below 10 mrem per year and the Page 17 of 20
5 y q dose equivalent caused by emissions from the incinerator remain less : than 0.1 mrem per year. Administrative controls placed on VCSNS by. 1 Technical Specification 3.11.2.2, 3.11.2.3 and release criteria.for. i - incinerator operation given in Section 4.3 will assure ' compliance with the EPA exemption conditions'in section 61.106. j Page 18 of 20
k 2 t p. 5.0 : EnvironmentalImpact Assessment 5.1 Geoloov and Water Usaae 0 Operation of the proposed oilincinerator should have no significant regional or local environmental impacts. Since the disposal method l K involves atmospheric releases, the geology and water usage of the - region will not be impacted. The small quantities of dry waste R generated will be ' insignificant when compared to the total 7 quantities,of dry active waste routinely' generated at VCSNS. For additional information on geology and water usage, refer to Sections - -l 2.4 and 2.5 of the VCSNS FSAR. 3 5.2 Meteorolooy U The meteorology of the region (average wind speeds and directions p. and atmospheric stability) is constantly monitored as part of the environmental monitoring program. Any significant changes identi-fied will be documented and an evaluation will be' performed to assure the controlling receptors and pathways are appropriately selected. Therefore, the local meteorology will have no significant adverse impact on the prbposed method of disposal. For additional information regarding meteorology, refer to Section 2.3 of-the VCSNS FSAR. 5.3 Nearby Facilities and Communities The proposed disposal site is located on licensee owned and controlled property, within the Exclusion Area for the VCSNS and about one half mile southwest of the VCSNS Reactor Building. It is located about one half rnile south of the Monticello impoundment,1 Page 19 of 20
?z f 1, i mile south east of Fairfield Pumped Storage Facility and 1 mile east of ' the Broact River and Parr Hydro and Steam Plant. There are no other -large industrial facilities located within 5 miles of the proposed p disposal site (see Figure 2), 4 The only significant transportation facilities located nearby are South Carolina Highways 213 and 215 and the Southern Railways Parr-Blair'
- corridor,
[ Communities near the proposed incinerator facility site are Jenkinsville (2 miles east southeast), Monticello (5 miles north w northwest), Peak (3 miles south) and Pomaria (5 miles west). The proposed incinerator will have no significant impact on these . A
- y' facilities or communities, nor will they impact the proposed method of disposal.
] For more information regarding nearby facilities and communities, - refer to Section 2.1 and 2.2 of the VCSNS FSAR. ~ t 5.4 Conclusion The proposed activity represents the preferred method of disposal of used oil and will result in negligible radiological impacts on flora, fauna and man. Also, incineration of oil would result in the more appropriate usage of established low level waste facility resources. Therefore, a finding of no significant environmental impact is appropriate. ~ Page 20 of 20 -.. =
--.= rv ~ m.. ov F ' %m. ~ s,.->.~p:.r.. =.y Ag. .e .) i. ,s 4.s \\ s < f. y\\ 4 ik
- c..
q. 4 .sn f
- s. 4 s./ -
s..s- , -l.t. n. \\. / \\ 'y e _N... 1 .~. / N.. y r' \\: / l-O ty T. ~ d gx ] HEP ./ / s. I.- / \\, *. l" s. 8NQp y\\ g o \\ ~t
- s g-y a.
a 4 w i, s ?. 01s E l iu ,et=illl t i- .t
- t i
i =_ 2 gi Oil I! sii i i ~e it I,l m E$ E I' te I., i?
~ t -c Eki - ATTACHMENT 1 V-DOSE CALCULATIONS FOR OilINCINERATION 1.0 Discussion-Administrative controls will be established to ensure the resulting annual 9 dose to the maximum exposed individual in the public from oil incineration + does not exceed a whole body dose of 0.1 mrem or 0.15 mrem to any organ. in addition, these controls shall ensure the dose rate in unrestricted areas due to oil incineration is maintained less than 1% of the limits specified in VCSNS Technical Specification 3.11.2.1. t 2.0. Administrative Limits 2.1 Annual Dose The total quantity of radioactivity in incinerated oil will be limited to ensure compliance with the above dose limits. Table 2.0-1 lists the quantity of each radionuclide that, if released during incineration, results in either a whole body dose of 0.1 mrem or an organ dose of 0.15 mrem, whichever is most limiting. Since more than one radionuclide is normally present, the total' i quantity of radioactivity in incinerated oil will be limitec by summing tho, ratios of the quantity of'each radionuclide present in incinerated oil to the applicable value for each radionuclide presented in Table 2.01~. This .O summation shall not be allowed to exceed 1.0 during any calendar year. The - radionuclides listed in Table 2.01 are those normally present above LLD values in contaminated' oil. In the event that other radionuclides are E . identified during future operations, station procedures will be revised to incorporate the value for each radionuclide using the same methodology as l desenbed in this attachment. 2.2 Instantaneous Dose Rate The release rate of gross radioactivity during oil incineration shall be limited l to 9.0 X 10-2 uCi/sec. This limit shall be procedurally controlled by adjusting the burn rate based on the concentration of radioactive material present in the oil. TABLE 2.0-1 ALLOWABLE RELEASE QUANTITIES L OF RADIONUCLlDES IN Oil L ~/ H Nuclide 0;n, uCi L Co-58 5.06E5 Co-60 1.42E4 Cs-134 1.63E4 Cs-137 1.56E4 n Mn 54 2.08E5 U Fe 55 6.78E5 Page 1 of 9 L (L
/ i y y a f . l'% : Qu'antities of radionuclides released during a calendar year shall be limited by: O. T 2 < 1.0 7 o where Qia = total quantity of radionuclide i released during the calendar year 3.0 _ Derivation of Administrative Limits 3.1 R_eferences j 3.1.1-Regulatory Guide 1,109, Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of L Evaluating Compliance with 10CFR 50, Appendix 1, Rev.1 October 1977. 3.1.2-Offsite Dose Calculation Manual (ODCM) for South Carolina Electric & Gas Company, V. C. Summer Nuclear Station Rev.12, September 1987. 3.1.3 NUREG-0133, Preparation of Radiological Effluent Technical . Specifications for Nuclear Power Plants, October,1978. 3.2 Assumptions 3.2.1 Oil is burned at a rate of 10 gallons per hour. l 3.2.2 All, activity in the oil is released to atmosphere during incineration. 3.2.3 Dose to the maximum exposed individual will be calculated using methodology described in ODCM Sec. 2.2.2.b. l 3.2.4 Organ doses will be calculated using the limiting pathways p and dose conversion factors shown in Table 2.2-2 of the ODCM. 3.2.5 Total body doses will be calculated for the pathways shown in Table 2.2-2 of the ODCM using dose conversion factors - derived by methodology described in Section 5.3.1.1 (Inhalation) and 5.3.1.5 (Vegetation) of Ref. 3.1.3. E 3.2.6 Ground plane dose factors given in Table 2.2-2 (ODCM) are for total body. 3.2.7 (BR)a = The breathing rate of the receptor of age group (a), in m3/yr(Table E 5, Ref. 3.1.1).
- (-
L Page 2 of 9
- )
\\ I 7 h^ ' '3.2.8 (DFA )a The total bod inha!ation dose factor for the i = receptor of age group (a) fo the ith radionuclide,in mrem /pCi ~ (Table E 10, Ref. 3.1.1). F 3.3 Oraan Dose Maximum organ doses' are calculated pursuant to Section 2.2.2.b of Ref. 3.1.2. Dp = Maximum organ dose to an individual from radionuclides in. particulate form, with half lives greater than eight days (mrem), kt (eq.1) ') = 3.17 x 10-8 g t i) where: Wijl Relative concentration or relative deposition for the = maximum exposed individual, as appropnate for exposure pathwayj and radionuclide i. RI forinhalation pathway = 2.2 X 10-6 sec/m3 = Q relative concentration for the location occupied by the maximum exposed individual. =< D 51 for inhalation pathways = 8.4 X 10 9 sec.2 = V =Q annual average relative deposition at the location occupied by the maximum exposed individual. Rij Dose factor for radionuclide i and pathway j, mrem /yr =- per uCi/m3 or m2. mrem /yr per uCi/sec ~/ Qi-Cumulative release of radionuclide i over period of = interest (uCi). L 3.17 X 10-8 = the fraction of one year per one second. 3.3.1 Calculation of Allowable Release Quantity L -Quantities of each radionuclide are calculated which, if released, L. would result in a maximum organ dose of 0.15 mrem. l The dose equation presented above will be utilized for each radionuclide by setting Dp = 0.15 mrem and solving forW. p 1 LO Page 3 of 9 L ^
+, h h' e '4 N[T. - EXAMPLE: Af 1 For Co-58, Organ Dc..e INHALATION GROUND PLANE 3 2 mran-m se m - mren-se ? 0.15 mram = 3.17 X 10~g yr 1.106E6 (2.2E -6 c3) + 4.464E8 L e su UCi - yr m uCi - yr VEGETATION 2 m -mren-su (8.4E-9 m-2)+ 3.771f 8 (8.4 E - 9m - 2) "q ycj uCi-yr ~/ Solving for Qo 6o = 5.06 X 105 uCi - Therefore,'Qo for 0.15 mrem to maximum exposed organ is ~/ ~ Nuclide Qo uCi Co 58 5.06E5 - {- ' Co-60 1.93E4 Cs-134 ' 1.63 E4 Cs-137. 1.56E4 Mn 54 2.08 E S.- Fe-55 6.78E5 3.4 Total Body Dose -i Since Technical Specification 3.11.2.2 limits-organ doses-to controlling receptors, total body dose factors for particulate releases are not used in the VCSNS ODCM. Therefore, the total bo dose factors for inhalation and vegetation pathways are derived in the llowing sections (3.4.1 and 3.4.2 respectively) to be used in equation 1 to demonstrate compliance with the. 0.1 mrem total body dose criteria. The child represents the most sensitive receptor since the infant does not consume vegetation and there is not a grass-cow-milk receptor within 5 miles of VCSNS. O Page 4 of 9
n g V x i l g.< .lM 3.4.1 Total Body Dose Factors inhalation Pathway RI =' BR X DFA X Kl
- where, s
BR = Child Breathing Rate = 3700 m3/yr DFA : = Total Body inhalation Dose Factor (Table E 9, Ref. 3.1.1) KI = Constant of Unit Conversion,106 pCi/uCi mrem m3 Nuclide RI UCi - vr Co 58 3.16E3 - Co 60 - 2.26E4 Cs-134 2.25E5 i Cs 137 1.28E5 Mn 54 9.51 E3 - Fe-55 7.77E3 - 3.4.2 Total Body Dose Factors for Veoetation Pathway r-C (r) l - 1 t' -1e
- ].
RJ[D/Q) = K' (DF L,); U, f e + Us f, eh eq. 2 g ,g (m2. mrem /yr per uCi/sec) Section 5.3.1.5, Ref. 3.1.3 L -where, L Para-meter Value Description and Source L K' 106 pCi/uCi Constant of unit conversion L Ua 26 kg/yr Consumption rate of fresh leafy vegetation for child, (Table E-5, Ref. 3.1.1) Ua 520 kg/yr Consumption rate of stored vegetation for child,(Table E-5, Ref. 3.1.1) ft 1.0 Dimensionless default value for fraction of the annualintake of fresh leafy vegetation grown locally (Section 5.3.1.5, Ref. 3.1.3) f 0.76 Dimensionless default value for fraction of l g the annual intake of stored vegetation 7-- grown locally (Section 5.3.1.5, Ref. 3.1.3) I L Page 5 of 9 w af 9 4 e-w m s v-iw-,,- ,w
E w-
- l
[b]- Para-meter Value Description and Source tt 8.6 X 104 sec Average time between harvest of leafy = vegetation 'and its consumption (Section 5.3.1.5, Ref. 3.1.3) th 5.18 X 106 sec Average time between harvest of stored vegetation and its consumption (Section 5.3.1.5, Ref 3.1.3)' Yv 2.0 kg/m2 Vetation area density (Section 5.3.1.5, Ref. 3.1.3) '" Co 58 5.51 E 6 - 'l Co-60 1.56E-5 (DFli)a - Cs 134 - 8.10E-5 Total body ingestion dose factor for child. 4 Cs-137 4.62E 5 - (Table E-13, Ref. 3.1.1) mrem /pCi Mn 54 -2.80E 6 , Fe 55 1.89E-6 'Co 58 - 1.13 E-7 Co-60 4.17E 9 th A;- Cs-134 1.07E 8 Decay constant for the i nuclide (C. D. 4 Cs-137 -7.28E-10 Kocher, Decay Tables,1981), sec t ' ' d',W-Mn 54 2,57E 8 ,Fe-55 8.14E-9 E -Aw 5.73E-7 sec-1 Decay constant for removal of activity on o leaf and plantsurfaces by) weathering p (Section 5.3.1.5, Ref. 3.1.3 i r 0.2 Fraction of deposited activity retained on crops, leafy vegetables, or pasture grass for particulates (Table E-15, Ref. 3.1.1) b THEREFORE, substituting in equation 2 dose factors fortotal body of child due to the , vegetation pathway are, m2. mrem sec Nuclide ((D/Ol - ~ vr. uCi Co 58 1.97E8 Co-60 1.12 E9 Cs-134 5.55E9 Cs-137 3.38E9 Mn-54 1.74E8 Fe-55 1.32E8 h Page 6 of 9 L: L t.
+,s ij i o; I4.3_ Total Body Dose Factors fdr Ground Plane Exposure' Pathway (Table - 2.2 2, Ref. 3.1.2) o m2. mrem. sec luclide RGP ~ ~ vr. UCi = Co 58 4.464E8 Co 60 2.532E10 ' Cs 134 8.007E9 Cs 137 1.201E10 Mn 54 1.625E9 Fe-55 0.0 3.4.4 Total Body Dose Calculation / Total body doses may now be calculated for the values of Qo derived above-using equation 1 from 3.3. DPTB = Total body dose due to release of Qio _ Prs = 3.17 x 10-8 { Rl + RfP. +g O EXAMPLE
- O For Co-58 INHALATION GROUND PLANE -
D = 3.17 X 10" 8 E 3,16E3 (2.2 F - 6 ) + 4.464E8 o ~ ~ ers SE UCs - yr m UCi - yr. VEGETATION a= 2 ~ (8.4 E - 9 m-2) 5.06E5 uCl ~ (8.4E -9 m-2) + l.97E8 .];.c UCi - yr Dpis = 8.68E-2 mrem . Therefore, total body dose (Dpis) for each nuclide is as follows for specific Qo value derived in section 3.3.1. ~/ Nuclide DPTB@o). Co-58 8.68E-2 mrem Co-60 1.36E-1 mrem Cs-134 5.91E 2 mrem Cs 137 6.41E-2 mrem Mn 54 9.98E-2 mrem Fe 55 2.43E-2 mrem IO n/ As shown in the above, Qo deriv 1<j for a maximum organ dose of 0.15 mrem is limiting in all cases except Co 60. 'Q' of 1.93E4 uCi will result in a total body dose of o Page 7 of 9
Y ( f 4 5 h ~ ijq-~ 4: Therefore, the value of - Qve the limiting condition of 0.1 mrem total body. 0.136 mrem which is a Qo for Co-60 will se reduced such that the corresponding total body _ dose will be limited to 0.1 mrem. ~ Specifically, l 1.36E - 1 1.93E4 uci l.00E - 1 X uCl Solve for X X = 1.42E4 uCi i Therefore, for Co-60 i ~/. s Qo = 1,42E4 uCi in summary then, ,w / Nuclide Qo uCi. Co-58 5.06ES-Co-60 1.42E4 Cs-134 1.63E4 Cs 137 1.56E4 V Mn-54 2.09E5 Fe-55 6.78E5 3.5 Total Body Dose Rate Calculation The following calculation will determine the release rate for radionuclides from the oil incinerator which would result in a maximum dosc rate to an individual at the site boundary equal to 1 percent of Tech. Spec. 3.11.2.3. 'Therefore, concentrations of radionuclides at the site boundary would be-limited to 1 percent of the concentrations of 10CFR 20, Appendix B, Table 11,. Column 1 (see section 3/4.11.2.1 of VCSNS Technical Specifications). 10CFR 20 App. B MPC 1 Percent Isotope Table 11. Col.1 of MPC Co-58 2E 9 uCi/ml 2E-11 uCi/ml Co 60 3E 10 uCi/ml' 3E-12 uCi/ml Cs-134 4E-10 uCi/mi 4E-12 uCi/mi Cs-137 SE 10 uCi/ml SE-12 uCi/ml Mn 54 1E 9 uCi/ml 1 E-11 uCi/ml Fe 55 3E-8 uCi/ml 3E-10 uCi/ml The total gross activity concentration in waste oil to be incinerated will be l limited to a value which will assure that airborne concentrations will be less Page 8 of 9 /,\\..
b than or equal to 1 percent of the values listed in 10CFR 20, Appendix B. Table. II, Col.1. The following simplifying and conservative assumptions are made: - Since Co-60 has th'e most limiting MPC value, all activity in the oil is assumed to be Co 60. Incineration rate is 10 gal /hr. All activity in oil is assumed released to atmosphere From section'2.1.1 of the VCSNS Offsite Dose Calculation Manual (ODCM), the highest annual average ' elative concentration at the r site boundary, X/O, is equal to 5.3E-6 sec/m3 However, for this application,3.3 X 10-5 sec/m3 will be used based on the fact that the site boundary is closer to the incinerator stack than is the reactor building. The value of 3.3 X 10 5 sec/m3 was calculated by using actual distance to the site boundary (0.53 miles) and interpolation using the Operating License Environmental Report (OLER) Tables 6.10-10 and 6.1 14 and removing the building wake effect. Calculate the gross activity in waste oil which if incinerated at a rate of 10 gallhr would result in a concentration at the site boundary of 3E-12 uCi/ml. cps = Q. X/Q z
- where, Ces
' Concentration at plant boundary = 3E-12 uCi/mi = Q Average release rate in uCi/sec = Concentration in oil, Coit, times burn rate, R, = n Substituting, cps Coit. R. X/Q = or Colt = (35-12 uCi/ml)(3600 sec/hr)(106 ml/m3) = (10 gal /hr)(3785 ml/ gal)(3.3E-5 sec/m3) Coit 8.65 X 10-3 uti/ml = The corresponding maximum allowable release rate would then be: (8.65 X 10-3 uCi/ml)(3785 ml/ gal)(10 gal /hr) / (3600 = 09 10 2 uCi/sec = Page 9 of 9
e. -p C01Y: ~ OFFSITE DOSE CALCULATION MANUAL FOR SOUTH CAROLINA ELECTRIC AND GAS COMPANY VIRGIL C. SUMMER NUCLEAR STATION r +
- if
,,y g (w ty REVISION 12 ' September 1987 l - t A (2& v TO UCON~RO'__D Y.,, ~ COW ~ Revision 12 g' u Q Al ^# 9 MP e k t
i-1 T'N - UST OF EFFECTIVE PAGES 'QC j Pace Revision . Paae'- Revision-i. 12 1.0 1 12 il 12. 1.0 2 12 l iii. 12 1.0 3 12 iv 12 1.0 12-v' 12-1,0-5 12 vi 12 1.0 6' 12 e 'vii 12 1.0-7 12 viii. 12-1.0 8-12 1.0-9 12 1.0 10 12 1.0-11 -12 1.0 12 1.0-13 12 1.0 14 12 1.0 15 12 1.0 16 12 1.0 17 12. 1.0 18 12 1.0 19 12-1.0 20 12 1.0 21-12 N. 1.0-22 12 'lV 1.0-23 12 1.0 24 12 1.0 25 12 1.0 26 12 1.0 27 12 1.0 28 12 1.0 29 .12 1.0 30 12 1.0 31 12 1.0 32-12 1.0 33 12 1.0-34 12 1.0 35 12 1.0 36 12 1.0 37 12 1.0-38 12 1.0-39 12 1.0-40 12 O ODCM, V.C. Summer /SCEandG: Revision 12 (September 1987) i
y "U A
- ja l1'
~p. ~ - LIST OF EFFECTIVE PAGES (continued) Paae-Revision h Revision ~' ~ 2.0 1 - 12 2.0 46 12 -2.0 2 12 2.0-47. 12 2.0 3-12 2.0-48 12 2.0 4-12 2.0 49 12 2.0 5 12 2.0 12 em 2.0 6: 12 2.0-51 12-l 2.0 7 12 2.0 8 .12 2.0 9 12 3.0 1 12 .2.0 10 12 3.0-2 12 s 2.0 11 12 3.0-3 ,12 c 2.0 12-12-3.0-4 12 + -2.0 13-12 3.0-5 12 2.0-14 12 3.0-6 12
- 2.0 12
-3.0-7 12 2.0.12 3.0-8 12 7 2.0 17 12 3.0 9 12 -2.0-18 12 3.0-10 12 -i 2.0 19-12 3.0-11 12 '2.0 20-12 3.0 12 12 2.0 21 12 2.0 22-12 2.0-23 12 - c-2.0 24 12 2.0 25- ?' 2.0-26. 12 2.0-27 12 '2.0 28-12 ^ 2.0 29 12-2.0 12 2.0 31 12- -2.0-32 12 p 2.0 33 12 2.0-34 12 L 2.0 35 12 p 2.0-36 12
- 2.0-37 12 2.0-37a 12 2.0 38 12 l
2.0 39-12 L 2.0 40-12 ? 2.0-41 12 2.0 12 - 2.0 12 ~ 2.0 44 12 4 2.0-45 12 l ODCM, V.C. Summer /SCE&G: Revision 12 (September 1987) ii ~' .;i;
~- g, .t u, 1 3 f'lv; 1 CONTROLLED COPY DISTRIBUTION ] .g Person Copy # Director, Nuclear Plant Operations 1 Manager, CHP&EP _ 2 l Manager, Nuclear Liceresing 3 I Associate Manager, Health Physics 4 Associate Manager, Corporate Health Physics 5 Associate Manager, Radiological Analytical Services 6 ' Supervisor, Count Room - 7 1
- Manager, Support Services-8 Manager, Operations -
9 Associate Manager, Regulatory Compliance 10 ' V. C. Summer Document Section 11 Manager, ISEG 12 Associate Manager, Quality Assurance 13 Associate Manager, Environmental Programs 14 Resident NRC Inspector 15 s 4 I 3 f ODCM, V.C. Summer /SCEandG: Revision 12 (September 1987) iii
Table of Contents g-l3 PAGE List of Effective Pages i Controlled Copy Distribution List lii I - List of Tables v List of Figures vi References vii introduction viii L 1.0 LIQUID EFFLUENTS 1.1 Liquid Effluent Monitor Setpoints 1.0-1 1.1.1 Liquid Radwaste Effluent Line Monitors 1.0-1 1.1.2 Liquid Waste Discharge Via Industrial and Sanitary Waste System 1.0-10 1.1.3 Steam Generator Blowdown, Turbine Building Sump and Condensate Demineralizer Backwash. Effluent Lines 1.0 11 1.2 Dose Calculation for Liquid Effluents 1.0 27 1.3 Definitions of Liquid Effluent Parameters 1.0 35 1.4 Liquid Radwaste Treatment System 1.0 40 g5 2.0 GASEOUS EFFLUENTS 2.1 Gaseous Effluent Monitor Setpoints 2.0 1 2.1.1 Station Vent Noble Gas Monitors 2.0 1 2.1.2 Waste Gas Decay System 2.0 4 2.1.3 Alternative Methodology for Establishing Conservative Setpoints 2.0 6 2.2 Gaseous Effluent Dose Calculations .2.0 9 2.2.1 Unrestricted Area Boundary Dose 2.0 9 2.2.2 Unrestricted Area Dose to Individual 2.0 10 2.3 Meteorological Model 2.0-40 2.3.1 Atmospheric Dispersion 2.0 40 2.3.2 Deposition 2.0-41 2.4 Definitions of Gaseous Effluents Parameters 2.0 46 2.5 Gaseous Radwaste Treatment System 2.0-51 3.0 RADIOLOGICAL ENVIRONMENTAL MONITORING 3.1 Sampling Locations 3.0-2 3.2 Map of Sampling Locations (Local) 3.0 11 3.3 Map of Sampling Locations (Remote) 3.0-12 ODCM, V.C. Summer /SCEandG: Revision 12 (September 1987) iv
I i LIST OF TABLES Table No. - Pace No. j 1.2 1 Bioaccumulation Factors 1.0 30 1.2 2 Adult Ingestion Dose Factors 1.0 31 1.2 3 Site Related Ingestion Dose Commitment Factor (A,t) 1.0 33 2.1 1 Dose Factors for Exposure to a Semi infinite Cloud of Noble Gases 2.0 8 2.21 Pathway Dose Factors for Section 2.2.1.b (P,) 2.0 13 2.2 2 Pathway Dose Factors for Section 2.2.2.b (R,) 2.0 17 2.2 3 Pathway Dose Factors for TechnicalSpecifica-tions 4.11.2.4.1 and 6.9.1,13 (infant) 2.0 20 2.2 4 Pathway Dose Factors for Technical Specifica-tions 4.11.2.4.1 and 6.9.1.13 (Child) 2.0 23 2.2 5 Pathway Dose Factors for Technical Specifica-( tions 4.11.2.4.1 and 6.9.1.13 (Teenager) 2.0 26 \\ 2.2 6 Pathway Dose Factors for Technical Specifica-tions 4.11.2.4.1 and 6.9.1.13 (Adult) 2.0 29 2.2 7 Controlling Receptors, Locations, and Pathwe.o 2.0 33 4 2.2 8 Atmospheric Dispersion Parameters for Controlling Receptor Locations 2.0 35 2.2.9 Parameters Used in Dose Factor Calculations 2.0 36 3.0 1 Padiological Environmental Sampling Locations 3.0 2 ODCM, V.C. Summer /SCEandG: Revision 12 (September 1987) v
l t LIST OF FIGURES l Figure No. Pace No. 1.0 1 Example Calibration Curve for Liquid Effluent Monitor 1.0 26 1.4 1 Liquid Radwaste Treatment System 1.0-40 i 2.1 1 Sample Noble Gas Monitor Calibration Curve 2.0 3 2.3 1 Plume Depletion Effect for Ground Level Releases (6) 2.0-42 2.3 2 Vertical Standard Deviation of Materialin a Plume (o) 2.0-43 2.3 3 Relative Deposition for Ground Level Releases (D,) 2.0 44 i 2.3-4 Open Terrain Recirculation Factor (T) 2.0 45 2.5 1 Gaseous Radwaste TreatmentSystem 2.0 51 3.0 1 Radiolo l (Local) gicalEnvironmentalSampling Locations g; 3.0 11 W 3.0 2 Radiolo icalEnvironmentalSampling Locations i (Remot 3.0 12 l l l l 1 i O ODCM, V.C. Summer /SCEandG: Revision 12 (September 1987) vi
i l ) I REFERENCES i This Offsite Dose Calculation Manual was prepared for the Virgil C. Summer ] Nuclear Station by Applied Physical Technology based on information communicated directly to APT by South Carolina Electric and Gas Company personnel and the following reference documents: Boegli, T.S., R.R. Bellamy,hnical Specifications for Nuclear Power Plants"W 1. Radiological Effluent Tec NUREG 0133(October 1978). 2. " Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10CFR 120, Appendix I", U.S. NRC Regulatory Guide 1.109 (March 1976). 3. " Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10CFR 120, Appendix I", U.S. NRC Regulatory Guide 1.109, Rev.1 (October 1977). 4. " Final Safety Analysis Report", South Carolina Electric and Gas Company, Virgil C. Summer Nuclear Station. t 12. " Operating License Environmental Report", South Carolina Electric and Gas Company, Virgil C. Summer Nuclear Station. (nj 6. Wahlig, B.G., " Estimation of the Radioactivity Release Rate /Eguilibrium Concentration Relationship for the Farr Pumped Storage System, Applied Physical Technology, Inc., February 1981. 7. " Methods for Estimating Atmospheric Transport and Dispersion of Gaseous Effluents in Routine Releases from Li Regulatory Guide 1.111 (March 1976)ght - Water Cooled Reactors", U.S. NRC 8. " Methods for Estimating Atmospheric Transport and Dispersion of Gaseous Effluents in Routine Releases from Light Water - Cooled Reactors" U.S. NRC Regulatory Guide 1.111, Rev.1 (July 1977). 9. Slade, D.H.,(editor), " Meteorology and Atomic Energy"; U.S. Atomic Energy Commission, AEC TID 24190,1968. 10. " Measuring, Evaluating, and Reporting Radioactivity in Solid Wastes and Releases of Radioactive Materials in Liquid and Gaseous Effluents from Light. Water Cooled Nuclear Power Plants" U.S. NRC Regulatory Guide 1.21, Rev.1 (June 1974). l ODCM, V.C. Summer /SCEandG: Revision 12 (September 1987) vii
i i. e INTRODUCTION The OFFSITE DOSE CALCULATION MANUAL is a supporting document of the RADIOLOGICAL EFFLUENT TECHNICAL SPECIFICATIONS. As such the ODCM describes the methodology and paramenters to be used in the calculation of offsite doses due to radioactive liquid and gaseous effluents and in the calculation of liquid and gaseous effluent monitoring instrumentation alarm / trip setpoints. The ODCM contains a list and graphical description of the specific sample locations for the radiological environmental monitoring program. Configurations of the liquid and gaseous radwaste treatment systems are also included. The ODCM will be maintained at the Station for use as a reference guide and training document of accepted methodologies and calculations. Changes in the calculational methods or parameters will be incorporated into the ODCM in order to assure that the ODCM represents the present methodology in all applicable areas. Computer software to perform the described calculations will be maintained current with this ODCM. O' l l O ODCM, V.C. Summer /SCEandG: Revision 12 (September 1987) viii I
1.0 LIOUlO EFFLUENTS The Virgil C. Summer Nuclear Station is located on the Monticello Reservoir which provides supply and discharge for the plant circulating water. This reservoir also provides supply and discharge capacity for the Fairfield Pumped Storage Facility. The Parr Reservoir located below the pumped storage facility is formed by the Part Dam. There are two basic release pathways and sources of dilution for liquid effluents: the circulating water discharge canal and the liquid effluent line to the penstocks of the pumped storage facility. Allliquid effluent pathways discharge to either one or the other release point. Generally speaking, very low concentrations of radioactive waste are discharged to the circulating water discharge while generally higher concentrations of radioactive waste are released to the penstocks of the pumped storage facility during the generation cycle. 1.1 Liauld Effluent Monitor Setooints The calculated setpoint values will be regarded as upper bounds for the actual setpoint adjustments. That is, setpoint adjustments are not required to be performed if the existing setpoint level corresponds to a lower count rate than the calculated value. Setpoints may be established at values lower than the calculated values if desired. 1.1.1 Liauid Radwaste Effluent Line Monitors (RM LS,RM L7,RM L9) Liquid Radwaste Effluent Line Monitors provide alarm and auto-matic termination of release functions prior to exceeding the concentration limits specified in 10CFR 20, Appendix B, Table 11, Column 2 at the release point to the unrestricted area. To meet thii; specification, the alarm / trip setpoints for liquid effluent monitors and flow measurement devices are set to assure that the following equation is satisfied: O CDCM, V. C. Summer, SCEandG: Revision 12 (September 1987) 1.0 1
i t I hI d (1) F+f F f where: L C= the effluent concentration limit (Technical Specification 3.11.1.1) implementing 10CFR 20 for the site, corresponding to the specific i mix of isotopes in the effluent stream being considered for f discharge,in uCi/ml. l the setpoint, in uCi/ml, of the radioactivity monitor measuring the c= radioactivity concentration in the effluent line prior to dilution and subsequent release; the setpoint, which is inversely proportional to i [ the volumetric flow of the effluent line and proportional to the l volumetric flow of the dilution stream plus the effluent stream, represents a value which,if exceeded, would result in concentrations exceeding the limits of 10CFR 20 in the unrestricted area. L L f= the effluent line flow setpoint as determined at the radiation monitor location, in volume per unit time, but in the same units as F, l below. i F= the dilution water flow setpoint as determined prior to the release point,in volume per unit time. f At the Virgil C. Summer Nuclear Station the Liquid Waste Processing System (LWPS) and the Nuclear Blowdown System (NBS) both discharge to the penstocks of the Fairfield Pumped Storage (FPS) Facility through a common line. The available dilution water flow (F,p) is assumed to be 90 l percent of the flow through the FPS penstock (s) to which liquid effluent is being discharged and is dependent upon operational status of the FPS Station. The waste tank flow rates (fy, f,, and f,) and the monitor setpoints (c, c, and c ) are set to meet the condition of equation (1) for a y c given effluent concentration, C. The three monitor setpoints are determined in accordance with the monitor system configuration for this O ODCM, V. C. Summer, SCEandG: Revision 12 (September 1987) 1.0 2
discharge pathway. The LWPS discharges through RM LS, which has setpoint c for alarm / control functions over releases from either Waste u Monitor Tanks 1 or 2. The Nuclear Blowdown discharges through RM L7, which has setpoint c, for alarm / control functions over releases from the Nuclear Blowdown Monitor Tank. These two release pathways merge into a common line monitored by RM L9, which has setpoint c for control c functions over the common effluent line. Although the piping is arranged so that simultaneous batch releases from the two systems could be practiced, operational releases shall be frgm_ gnly one g.f the two hits.h_ n pystems 11 any aiven time. The method by which their setpoints are determined is as follows: 1) The isotopic concentration for a waste tank to be released is obtained from the sum of the measured concentrations as determined by the analysis required in the Radiological Effluent Technical Specifications Table 4.11-1 : E c, = E c, + c, + c, + c, + c, i 9 where: the concentration of nuclide i as determined by the C, = analysis of the waste sample. the concentration of Fe 55 in liquid waste as determined C,* = by analysis of the quarterly composite sample. ECg the sum of the concentrations C, of each measured gamma = 9 emitting nuclide observed by gamma ray spectroscopy of the waste sample. C,* the measured concentrations C, of alpha emitting nuclides = observed by gross alpha analysis of the monthly composite sample. O ODCM, V. C. Summer, SCEandG: Revision 12 (September 1987) 1.0 3
i b C* the measured concentrations of Sr 89 and Sr 90 in liquid = waste as determined by analysis of the quanerly composite sample. C/ the measured concentration of H 3 in liquid waste as = determined by analysis of the monthly composite sample. The Cg term will be included in the analysis of each batch; terms for alpha, strontium, Fe 55, and tritium shall be included as appropriate. Isotopic concentrations for both the Waste Monitor Tanks (WMT) and the Nuclear Blowdown Monitor Tank (NBMT) may be calculated using equation L (2). P.rior to being sampled for analysis, the contents of a tank shall be isolated and recirculated. The minimum recirculation time shall be: t, = 2V/f, (3) where: V= the volume of liquid in the tank to be sampled, gal. g f, = the recirculation flow rate being used to mix the tank gal / min. i This is to ensure that a representative sample will be obtained. Mechanical mixers shall ensure a similar minimum turnover. 2) Once isotopic concentrations for either Waste Monitor Tank or the Nuclear Blowdown Monitor Tank have been determined, these values are used to calculate a Dilution Factor, DF, which is the ratio of dilution flow rate to tank flow rate (s) required to assure that the limiting concentration of 10CFR, Part 20, Appendix B, Table 11, Column 2 are met at the point of discharge for whichever tank is having its contents discharged. Values for these concentrations will be based on most recent available previous composite sample analyses as required by Table 4.11-1 of the Radiological Effluent Technical Specifications. 9 ODCM, V. C. Summer, SCEandG: Revision 12 (September 1987) 1.0 4
ti f 6 l (4) ' f] C, DF = +5F (5) C C C C C i
- MPC, MPC,
- MPC, MPC,
- MPC, where:
e i C. the sum of the ratios of the measured concentration of = E nuclide i to its limiting value MPC for the tank whose MPC contents are being considered for release. For a WMT, X = M. For the NBMT, X = B. M PC, = MPC,, MPC,, MPC,, MPC,, and MPC, = limiting concen-trations of the appropriate gamma emitting, alpha emitting, and strontium radionuclides, Fe SS, and q tritium, respectively, given in 10CFR, Part 20, Appendix ( B, Table 11, Column 2. For gamma emitting noble gas l radionuclides MPC,is to be set equal to 2 x 104 pCi/ml, according to the Radiological Effluent Technical Speci. y fications. l SF = the safety factor; a conservative factor used to compensate for engineering and measurement uncer-tainties. = 0.5, corresponding to a 100 percent variation. l 3) The maximum permissible discharge flow rate, f,, may be calculated for the release of either the WMT or NBMT. First the appropriate Dilution Factor is l calculated by applying equation (4), using the appropriate concentration ratio term (i.e. M or B). O ODCM, V. C. Summer, SCEandG: Revision 12 (September 1987) 1.0 5
a-
- then, (6)
F,, + f,, F,, f, = f'F >>f ~ DF dP d8 where: F,, dilution flow rate to be used in effluent monitor setpoint = calculations, based on 90 percent FPS Station expected flow rate, as corrected for any recirculated radioactivity: (7) c F,p = (0.9) F, ( 1 - ) where: F, = the flow rate through the FPS Station penstock (s) to which radioactive liquids are being discharged. F,'should normally fall between 2500 and 44800 cfs. C, = the concentration of radionuclide iin the intake of FPS Station (that is, in the Monticello Reservoir). Inclusion of this term will s;orrect for possible long term buildup of radioactivity due to recirculation and for the presence of activity recently released to the Monticello Reservoir by plant activities. For expected discharges of liquid wastes, the summation will be much less than 1.0 and can be ignored (Reference 6). f,, the flow rate of the tank discharge, either f,, or f,3 = f,, flow rate of Nuclear Blowdown Monitor Tank discharge. = l (Conservatively this value will be either zero,if no release is to be conducted from this system, or the maximum l measured capacity of the discharge pump if a release is to j be conducted.) O ODCM, V. C. Summer, SCEandG: Revision 12 (September 1987) 1.0 6
- [7 f,,
flow rate of Waste Monitor Tank discharge. (Conserva- = tively this value will either be zero, if no release is to be conducted from this system, or the maximum measured j capacity of the discharge pump if a release is to be conducted.) l the Dilution Factor from Step 2. DF = If f, ia f,,, the release may be made as planned and the flow rate monitor setpoints should be established as in Step 4 (below). Because F,p is normally very large compared to the maximum discharge pump capacities for the Waste Monitor Tank and the Nuclear Blowdown Monitor Tank,it is extremely unlikely that f, < f,, However, if a situation should arise such that f, < f,,, steps must be taken to assure that equation (1) is satisfied prior to making the release. These steps may include decreasing f, by decreasing a the flow rate of f,, or f,, and/or increasing F,,, a i When new candidate flow rates are chosen, the calculations of Step l ( l L 3 should be repeated to verify that they combine to form an acceptable release. If they do, the establishment of flow rate monitor setpoints may r proceed as in Step 4. If they do not, the choice of candidate flow rates must be repeated until an acceptable set is identified. Note that if DF G '1, the waste tank concentration for which the calculation is being performed includes safety factors in Step 2 and meets the limits of 10CFR 20 without further dilution. Even though no dilution l would be required, there will be no discliarge if minimum dilution flow is e not available, since the penstock minimum flow interlock will prevent discharge. O ODCM, V. C. Summer, SCEandG: Revision 12 (September 1987) l 1.0 7
7 4) The dilution flow rate setpoint*, F,is established at 90 percent of the expected available dilution flow rate: h1 F = (0.9) F, (8) The flow rate monitor setpoint* for the effluent stream shall be set at the selected discharge pump rate (normally the maximum discharge pump rate or zero) f,, or f,, chosen in Step 3 above. 5) The radiation monitor setpoints may now be determined based on the values of ECi, F, and f which were specified to provide compliance with the limits of 10CFR 20, Appendix B, Table 11, Column 2. The monitor response is primarily to gamma radiation, therefore, the actual setpoint is based on E C,. The setpoint concentration, c, is determined as follows: (9) c s [C,X A 8 A= Adjustment factor which will allow the setpoint to be established in a practical manner for convenience and to prevent spurious alarms. (10) A = f/f g l If A 2: 1, Calculate c and determine the maximum value for the actual monitor setpoint (cpm) from the monitor calibration graph. If A < 1, No release may be made. Re-evaluate the alternatives present-l ed in Step 3.
- Set points for flow rates are administrative limits.
O ODCM, V. C. Summer, SCEandG: Revision 12 (September 1987) 1.0 8 L
NOTE: If calculated setpoint values are near actual concentrations planned for release, it may be impractical to set the monitor alarm at this value. In this case a new setpoint may be calculated following the remedial methodology presented in Step 3 for the case f, < f,. Within the limits of the conditions stated above, the specific monitor setpoints for th'e three liquid radiation monitors RM L5, RM L7, and RM L9 are determined as follows: RM L5, Waste MonitorTank Discharge Line Monitor: (11) [ C,- XA [ C 5 y y g NOTE: If no discharge is planned for this pathway or if E C, = 0, the monitor setpoint should be established as close to background as practical to prevent spurious alarms and yet alarm should an inadvertent release occur. RM L7, Nuclear Blowdown Monitor Tank Discharge Line Monitor: C, s [C XA 9 e 9 NOTE: In no case should discharge be made directly from the j. Nuclear Blowdown Holdup Tank. Its contents should l always be processed via the Nuclear Blowdown Monitoring i Tank. NOTE: If no discharge is planned for this pathway or if E Cg = 0, the monitor setpoint should be established as close to L background as practical to prevent spurious alarms and yet l alarm should an inadvertent release occur. RM-L9, Combined Liquid Waste Processing System and Nuclear Blowdown Waste Effluent Discharge Line Monitor O ODCM, V. C. Summer, SCEandG: Revision 12 (September 1987) 1.0 9
r- - The monitor setpoint on the common line, c, should be the same as h c the setpoint for the monitor on the active individual discharge line (i.e., c, u or c, as determined above): (13) C s MAX (Cy,C,) g g NOTE: If no discharge is planned for this pathway or if I Cg = 0, the monitor setpoint should be established as close to background as practical to prevent spurious alarms and yet alarm should an inadvertent release occur. NOTE: In all cases, c, c, and c are the setpoint values in uCi/ml. u c The actual monitor setpoints (cpm) for RM LS, RM L7, and RM L9 are determined from the calibration graph for the particular monitor. initially, the calibration curves were determined conservatively from families of response curves supplied by the monitor manufacturers. A sample is shown in Figure 1.01. As releases occurred, a historical correla-tion will be ' repared and placed in service when sufficient p data are accumulated. 1.1.2 Liouid Waste Discharae Via industrial and Sanitary Waste System (RM L5) in the Virgil C. Summer Nuclear Station liquid waste effluent system design, there exists a mechanism for discharging liquid wastes via the Industrial Sanitary Waste System. The sample point prior to discharge is one of the Waste Monitor Tanks. The analysis requirements are the requirements listed in the Radiological l' Effluent Technical Specificatio ns, Table 4.11 1. This effluent pathway shall only be used when the I following condition is met for all radionuclides,i: (14) e M i LLD O i ODCM, V. C. Summer, SCEandG: Revision 12 (September 1987) l-o 1.0 10 1
.----------o
1 I ^ [ y X c the concentration of radionuclide iin the C' = M waste contained within the Waste Monitor Tank serving as the holdi,ng facility for sampling and analysis pnor to discharge. C .the Lower Limit of Detection,(LLD) for radio- = LLD nuclide i in the liquid waste in the Waste Moni-i tor Tank as determined by the analysis required in the Radiological Effluent Technical Specifica-tion, Table 4.11 1. When the condisitons of equation (14) are met, liquid waste may be i released via the Industrial and Sanitary Waste System pathway. The RM L5 setpoint should be established as close to background as practical to prevent spurious alarms and yet alarm should an inadvertent high concentration i release occur. 1.1.3 Steam Generator Blowdown, Turbine Buildino Sumo, and Conden-sate Demineralizer Backwash Effluent Lines (RM L3,RM L10 RM L8,RM L11) e Concentrations of radionuclides in the liquid effluent discharges - made via the Turbine Building Sump, Steam Generator Blowdown, and L Condensate Demineralizer Backwash are expected to be very low or P nondetectable. The first two releases are expected to be continuous in I nature and the last a batch release. All will be sampled in an appropriate manner as specified in Table 4.111 of the RETS. The Steam Generator Blowdown Monitors, the Turbine Building Sump Monitor, and the Condensate Demineralizer Backwash Monitor provide alarm and automatic termination of release prior to exceeding the concentration limits specified in 10CFR 20, Appendix B, Table 11, Column 2 at the release point to the unrestricted area. In reality, all of these effluent pathways utilize the ODCM, V. C. Summer, SCEandG: Revision 12 (September 1987) 1.0 11
l-circulating water as dilution to the effluent stream, with the circulating water discharge canal being the point of release into an unrestricted area. h-However, to compensate for uncertainties in the transit times of activity dischcrge to the Industrial and Sanitary Waste System, discharges to that system will not be credited with dilution for the purpose of monitor setpoint calculations. The Steam Generator Blowdown Effluent may be released to the Circulating Water either directly in the Condenser outflow or via the ponds and sumps of the industrial and Sanitary Waste System; the latter path is preferred for chemical reasons in the first hours following startup. The Turbine Building Sump and Condensate Demineralizer Backwash Effluents enter the Circulating Water through the Waste Lagoons. For the sake ~ of clarity, two mutually exclusive setpoint calculation processes are outlined below. Section 1.1.3.1 is to be used whenever Steam Generator Blowdown in being released directly to the Circulating Water in the Condenser outflow, which is the normal mode. Section 1.1.3.2 is to be used whenever Steam Generator Blowdown is being released to the Industrial and Sanitary Waste System, or diverted to the Nuclear Blowdown Processing System, both of which are alternate modes. Each section covers allfour monitors (RM L3,RM L8,RM-L10 and RM L11). NOTE: When Circulating Water is unavailable for effluent dilution, releases containing activity above LLD should be discouraged via pathways which lead to it. Steam Generator Blowdown should be diverted to the Nuclear Blowdown Processing System. Condensata Demineralizer Backwash may be diverted to the Turbine Building Sump or not released. Turbine Building Sump effluent should be diverted to the Excess Liquid Waste Processing System. (These steps are to keep the calculated dose to individuals as low as reasonably achievable.) Furthermore, sampling and analysis of the Industrial and Sanitary Waste System is to be initiated and the measured concentrations used in the dose calculations of Section 1.2. O ODCM, V. C. Summer, SCEandG: Revision 12 (September 1987) 4 1.0 12
i l 1.1.3.1 Steam Generator Blowdown Effluent Direct to Circulatina ([ Water (Normal Mode) Equation (1) is again used to assure that effluents are in compliance [ with the aforementioned specification: cf (F + f) where: c, f, F, and C are the same generic terms discussed in Section 1.1.1. The available dilution water flow (F,,) is dependent upon the mode of operation of the Circulating Water System. Any change in this value will be accounted for in a recalculation of equation (1). The Steam Generator Blowdown flow rate (f,,) and the Steam l Generator Blowdown monitor setpoints (c, and c,) are set to meet s 3 1 the condition of equation (1). The Turbine Building Sump and Condensate Dimeneralizer effluents will be limited to concentra-tions less than MPC without claiming dilution (see below). There. fore, it is not necessary to consider their flow rates or concentrations r in determining the required dilution and monitor setpoints for 1 Steam Generator Blowdown. For conservatism, the Turbine Building Sump and Conden-sate Demineralizer Backwash monitor setpoints (c, and c ) will claim o no dilution from the Circulating Water, and will be set at the appli-cable concentration limit. That is: c5C (15) where: c and C are the generic terms discussed in Section 1.1.1. 1 RM L8, the Turbine Building Sump monitor alarms and terminates release upon exceeding the monitor setpoint (c ). The 7 discharge can then be manually diverted to the Excess Waste Processing System. RM L3, the first monitor in the Steam Generator Blowdown discharge pathway, alarms and terminates release of the stream. The discharge is then automatically diverted to the Nuclear O ODCM, V. C. Summer, SCEandG: Revision 12 (September 1987) 1.0 13
Slowdown Processing System. RM L10,the last monitor in the Steam j Generator Blowdown discharge pathway, alarms and terminates the release. Thus, RM L10 is redundant to RM L3 and the setpoint (c ) 33 will be determined in the same manner as RM L3 (c,). RM-L11, the I 3 Condensate Demineralizer Backwash monitor, alarms and terminates release upon exceeding the monitor setpoint (c ). The o discharge may then be manually diverted to the Turbine Building Sump or simply delayed. The method by which the monitor setpoints are determined is as follows: 1) The isotopic concentrations for any release source to be or being released are obtained from the sum of the measured concentrations as determined in the Radiological Effluent Technical Specifications Table 4.11-1. Equation (2) is again - employed for this calculation: i i E c, = E, c, + c, + c, + c, + c, s a where: EC, = the sum of the measured concentrations as determined by the analysis of the waste sample. EC, = the sum of the concentrations C, of each measured gamma emitting nuclide' observed by gamma ray spectroscopy of the waste sample. j C, the measured concentration C, of alpha emitting = composite sample. C, the measured concentrations of Sr 89 and Sr-90 in = i liquid waste as determined by analysis of the most recent available quarterly composite sample. O ODCM, V. C. Summer, SCEandG: Revision 12 (September 1987) 1.0 14 I-
[] C, the measured concentration of H 3 in liquid waste = determined by analysis of the monthly composite sample. 'l the measured concentration of Fe 55 in liquid waste as i C, = determined by analysis of the most recent available l quarterly composite sample. Isotopic concentrations for the Steam Generator Blowdown System effluent, the Turbine Building Sump Effluent, and the Condensate Demineralizer Backwash effluent may be calculated using equation (2). 2) Once isotopic concentrations for the Steam Generator Blowdown-have been determined, these values are used to calculate a Dilution Factor, DF, which is the ratio of the total dilution flow rate to effluent stream flow rate required to assure that the limiting concentrations of 10CFR, Part 20, Appendix B, Table ll, Column 2 are k met at the point of discharge. (16) C ' DF = s + SF p (17) C C C C C + F hlP C,
- MPC, MPC, MPC,5 MPC g where:
C, C,, C,, C,, C,, and C,; measured concentrations as = defined in Step 1. Terms C,, C,, C,, and C, will be included in the calculation as appropnate. ODCM, V. C. Summer, SCEandG: Revision 12 (September 1987) 1.0 15
1 L L L C' the sum of the ratios of the measured concen-g = MPc 5 tration of nuclide i to its limiting value MPC, for the Steam Generator Blowdown effluent..
- MPC, MPC,, MPC,, MPC,, MPC,, and MPC, are limiting
= concentrations of the appropriate radionuclide from 10CFR, Part 20, Appendix B, Table ll, Column 2 limits. For gamma emitting noble gas radionuclides, MPC,is to be set equal to 2 x.104 uCi/ml, according to the Radiological Effluent Technical Specifications. SF = the same generic term as used in Section 1.1.1, Step 2. 0.5 = 3) The maximum permissible effluent discharge flow rate, f, may now e be calculated for a release from the Steam Generator Blowdown, g (18) d( ds dc I, = DF DF d( d5 where: F, Dilution flow rate for use in effluent monitor setpoint = e calculations, based on 90 percent of the expected flow rate of the Circulating Water System during the time l of release and corrected for any recirculated activity: (19) C " F,, = (0.9) F II ~ I e ypq where: F, = the flow rate of the Circulating Water System during the time of the release. F, shoM normaHy 1 fall between 1.78 X 105 and 5.34 X 105 gpm. 1 ODCM, V. C. Summer, SCEandG: Revision 12 (September 1987) 1.0 16
{e; C,, '= the concentration of radionuclide i in the Circulating Water System intake, (that is, in the Monticello Reservoir), inclusion of this term will correct for posible long term buildup of radioactivity due to recirculation and for the presence of activity recently released to-the Monticello Reservoir by plant activities. For i expected discharges of liquid wastes, the summa-tion will be much less than 1.0 and can be ignored (Reference 6). f, Flow rate of Steam Gencrator Blowdown discharge. = o (This value normally will be either zero,if no release is to be conducted, or the maximum rated capacity of the discharge pump (250 gpm), if a release is to be conducted.) DF = the Dilution Factor from Step 2. Note that the equation is valid only for DF > 1; for DF :s 1, the effluent concentration meets the limits of 10CFR 20 without dilution as well as being in compliance with the conservatism imposed by the Safety Factor in Step 2. If f, il f,,, releases may be made as planned. Because F,is l normally very large compared to the maximum discharge pump capacity of the Steam Generator Blowdown System, it is extremely unlikely that f, < f,,, However,if a situation should arise such that f, l < f,,, steps must be taken to assure that equation (1) is staisfied prior to making the release. These steps may include diverting Steam L Generator Blowdown to the Nuclear Blowdown Processing System or decreasing the effluent flow rate. When new candidate flow rates are chosen, the calculations of Step 3 should be repeated to verify that they combine l l ODCM, V. C.' Summer, SCEandG: Revision 12 (September 1987) 1.0 17
E t i to form an acceptable release. if they do, the establishment of flow rate monitor setpoints should proceed as in Step 4. If they do not g provide an acceptable release, the choice of candidate flow rates L must be repeated until an acceptable set is identified. 4) The dilution flow rate setpoint for minimum flow rate, F, is l established at 90 percent of the expected available dilution flow rate: i ( F = (0.9)(F,) (20) Flow rate monitor setpoints for the Steam Generator Blowdown effluent stream shall be set as the selected discharge l pump rate (normally the maximum discharge pump rate) f,, chosen in Step 3 above. 1 5) The Steam Generator Monitor setpoints may be specified based on the values of E Ci, F,and f which were specified to provide compliance with l the limits of 10CFR 20, Appendix B, Table 11, Column 2. The monitor response is primarily to gamma radiation, therefore, the actual setpoint is based on E C. The monitor setpoint in cpm which corresponde to the calculated value c g is taken from the monitor calibration graph. (See NOTE, page 1.010.) The setpoint concentration, c, is determined as follows-(21) c s E c, x e 9 l Adjustment factor which will allow the setpoint to be B = established in a practical manner for convenience and to prevent spurious alarms. = f,/f, (22) o if B R 1, Calculate c and determine the maximum value for the actual monitor setpoint (cpm) from the monitor calibration L graph. ODCM, V. C. Summer, SCEandG: Revision 12 (September 1987) 1.0 18
. -.- - = _ /: I o [) If B < 1, No release may be made. Re evaluate the alternatives presented in step 3. NOTE: If the calculated setpoint value is near actual concen-trations being released or planned for release, it may be impractical to set the monitor alarm at this value. In this case a new setpoint may be calculated following the remedial methodology presented in steps 3 and 4 for the case f, < f,,. Within the limits of the conditions stated above, the specific monitor setpoints for the two Steam Generator Blowdown tnonitors RM L3 and RM L10 are determined as follows: For RM L3, Steam Generator Blowdown Discharge initial monitor, and for RM L10, Steam Generator Blowdown Discharge final monitor: (23) [ C, I: Sa"hb s XB 3 the isotopic concentration of the Steam Generator = Ec Blowdown effluent as obtained from the sum of the 8 5 l-measured concentrations determined by the analysis required in the Radiological Effluents Technical Specifications Table 4.11-1. NOTE: If no discharge is planned for this pathway or if E Cg = 0, the monitor setpoint should be established as close to l background as practical to prevent spurious alarms and yet alarm should an inadvertent release occur. l 6) The Turbine Building Sump and Condensate Demineralizer Backwash monitor setpoints are to be established independently of each other and without crediting dilution. They are to be based on the measured radio-ODCM, V. C. Summer, SCEandG: Revision 12 (September 1987) 1.0 19
/ 'l nuclide concentrations of the effluent stream and are to ensure compliance with the limits of 10CFR 20, Appendix B, Table ll, Column 2 prior to discharge. For each effluent stream, a concentration factor CF must be calculated, measuring the nearness of approach of the undiluted waste stream to the specified limiting condition of the Maximum Permissible Concentration. That is, (24) l C CF = [ +5F p (25) C CF,-= [ +5F p y (26) C ' CF o= [ n + 5F p g where: C' the sum of the ratios of the measured concentration of { MPC, = i nuclide i to its limiting value MPC;for the Turbine Building Sump effluent. C E the sum of the measured concentration of nuclide i(in i = MP C' liquid oni ) to its limiting value MPC, for the Condensate o Deminera izer Backwash effluent the concentration factor for the Turbine Building CF = 7 L. Sump Effluent. the concentration factor for the Condensate Demin-CF = o eralizer Backwash Effluent. O ODCM, V. C. Summer, SCEandG: Revision 12 (September 1987) 1.0 20
i the generic engineering safety factor used in Section SF- = 1.1.1, Step 2. 0.5 = If CF n 1, calculate c and determine the actual monitor setpoint (cpm) from the calibration curve, if CF > 1,no release may be made via this path. The release must either be delayed or diverted for additional processing. Because of spurious alarms, these remedial steps may be required if the monitor setpoints are only near the actual concentrations being released. Within the above limitation, setpoints may now be calculated for the two effluent monitors. Because they are primarily sensitive to gamma radiation, their setpoints will be based on the concentrations of gamma emitting radionuclides as follows: For RM l.8, Turbine Building Sump Discharge Monitor: 1 Where: (27) qs [ C, 7 + CF, 9 The gamma isotopic concentration of the Turbine Building = E C, Sump effluent as obtained from the sum of the measured 3 a concentrations determined by the analysis required in the Radiological Effluents Technical Specifications Table 4,11 1. CF, = The Turbine Building Sump Effluent Concentration Factor from equation (25). NOTE: If no discharge is planned for this pathway or if E C,=0, the monitor setpoint should be established as close to background as practical to prevent spurious alarms and yet alarm should an inadvertent release occur. O ODCM, V. C. Summer, SCEandG: Revision 12 (September 1987) q 1.0 21
For RM.L11, Condensate Demineralizer Backwash Discharge Moni-h tor: [ C, 3 + CF cs 3 3 9 where: The gamma isotopic concentration of the Condensate = EC Demmeralizer Backwash effluent (including solids) as ob-e o tained from the sum of the measured concentrations determined by the analysis required in the Radiological Effluents Technical Specifications Table 4.11-1. The Condensate Demineralizer Backwash Effluent Concen-CFo = tration Factor from equation (26). NOTE: If no discharge is planned for this pathway or if E Cg = 0, the monitor setpoint should be established as close to background as practical to prevent spurious alarms and yet h alarm should an inadvertent release occur. 1.1.3.2 Steam Generator Blowdown Effluent Not Directly to Circulatina Water (Alternate Mode) Equation (15) is again used to assure that effluents are in compliance with the aforementioned specification before dilution in the rec'eiving water: c5C where c and C are the generic terms discussed in Section 1.1.1. Because dilution is not considered in the setpoint calculation,it is not necessary to calculate maximum permissible discharge flowrates or anticipated available dilution flow rate. I O ODCM, V. C. Summer, SCEandG: Revision 12 (September 1987) 1.0 22
The functions of the four monitors whose setpoints are to be established are describe in Section 1.1.3.1 above. The method for the determination is as follows: 1) If a release is found to be permissible, flow rate monitors l for the active effluent streams (Steam Generator Blowdown - f,,, Turbine Building' Sump f,,, and j Condensate Demineralizer - f,) may have their setpoints i e established at any operationally convenient value. Since 10CFR 20 is to be complied with before dilution, the flow j rate of dischargesI.s irrelevant. j 1 2) The Concentration Factor of equations (24)-(26)is again 1 used to ensure the permissibility of the release: I { C CF = [ + 5F p l l C CF T* bp +5F y i C' CF o= [ o+5F p (29) C ' CF 3= [, +5F p 3 in which all terms are defined in subsection 1.1.3.1 and subscripts T, D, and S refer respectively to the Turbine Building Sump Effluent, the Condensate Demineralizer Backwash Effluent, and the Steam Generator Blowdown l Effluent. O ODCM, V. C. Summer, :iCEandG: Revision 12 (September 1987) 1.0 23
j; [ j b' 3 -i" If CF 5 1, calculate c and determine the actual monitor setpoint : i (cpm) from the calibration curve. If CF > 1,no release may be made via this path. The release must either be delayed or diverted for additional processing. Because of spurious alarms, these remedial steps may be required if the monitor setpoints are only near the actual concentrations being released. 7 Within the above limitation, setpoints may now be L cc'.culated for the four effluent monitors. Because they are pnmarily. t sensitive to gamma radiation, their setpoints will be based on the concentrations of gamma emitting radionuclides as follows: l For RM L8, Turbine Building Sump Discharge Monitor (using _ equation (27) above): l. L [ C, C 5 + CF 7 7 T 9 L where: h l. i l-- The gamma isotopic concentration (sf the Turbine Building = 't '. Sump effluent as obtained from the sum of the measured u T . concentrations determined by the analysis required in the 8 Radiological Effluents Technical Specifications Table 4.11-1. l \\ p CF = The Turbine Building Sump Effluent Concentration Factor r 7 from equation (25). NOTE: If no discharge is planned for this pathway or if E Cg = 0, the monitor 4 L setpoint should be established as close to background as practical to prevent spurious alarms and yet alarm should an inadvertent release occur. g' ODCM, V. C. Summer, SCEandG: Revision 12 (September 1987) 1.0-24 e
J 3 For RM L11, Condensate Demineralizer Backwash Discharge Monitor (using - equation (28)above): [ C, 3 + CF D c s; g where: the gamma isotopic concentration of the Condensate Demin- = eralizer Backwash effluent (including solids) as obtained from EC 9 the sum of the measured concentrations determined by the -analysis required in the Radiological Effluents Technical Speci. fications Table 4.11 1. CF = The Condensate Demineralizer Backwash Effluent Concen-o tration Factor from equation (26). 4 NOTE: If no discharge is planned for this pathway or if E Cg = 0, the monitor setpoint should be established as close to background as practical to prevent spurious alarms and yet alarm should an inadvertent release occur. For RM L3, Steam Generator Blowdown Discharge initial monitor, and RML-10, Steam Generator Blowdown Discharge final monitor: c, or q, s {C 3+G 3 3 g h w ere: The isotopic concentration of the Steam Generator Blow-gC- = o 5-down effluent as obtained from the sum of the measured 8 concentrations determined by the analysis required in the Radiological Effluents Technical Specifications Table 4.11-1. The Steam Generator Blowdown Effluent Concentration CF = 3 Factor from equation (29). NOTE: If no discharge is planned for this pathway or if E Cg = 0, the monitor setpoint should be established as close to background as practical to prevent spurious alarms and yet alarm should an inadvertent release occur. O ODCM, V. C. Summer, SCEandG: Revision 12 (September 1987) 1.0 25
F muaE 1.o.1 l Em4PLE CAllBRATION CURVE FOR LIQUID EFFLUENT MONITOR o 10.r.m. w _. - a=.m ....m ... m mm _ m.- -. _ m a mm m an===========
=ma=
=a
== s.m e.. .mtecessamen:musu.=.ac.=mi=.4s.mmmmum=i =e=======m=.-========% y 33, M.M iSCSIEM F. 2 %.W..*#.e,riMW 2.F JE34;,31333t.it.W' -fU '.?m%wa W - m mmmm m .w hE JEdkerJ525tM e AREL .? v.'s. 7 fa^3 Lw FJS A 8:53W5'nV'F M1 V ' % f..wn 4 M esrtmE M M uttfE W = Mi:",s d W yt 4g ' ' * = U, ; i,1 5W4:?dBEdEh tt.- & * " d.ceT "sh=fgP ..WWaa Vs/ ESP'?. J. y^ h ThW '.83 luyma.L,e,.EmmykWEY ~ %sn a " a hb. iW A 4t':.. gguy sP2r.k1L A:: (. M2afr6:M.1M.. K.p :" $. -. 1r.
- 4 ml T V**~2EMME mt.'1 ? % V %'M/4& wa n'.i$ab'a#We ME.'En-*;*Z Win, k N
A. y i "tDe mEhRREMk A ' ., N.' *. ' ' ;.f.' ' '. 3 F. # 5 M*E MQi W5.. A JME.:d =kEl.gh_i;EMM t*(~'_u _d,s.'1 =:5 p.7. L E. E _ :;)-~.* us?'" 1 A
_ _ _ _
= =4:=_cEEc Eg .=-: ::===== := = = c==x===- EE s-
- z EiE
=_
==========--a
- -- s. _:==
c::========_:=.=.= =. = = = .=. =_===7 ;.y __.g====lg35== =t ===========r =:=: = =c =~
====:=- ilih 53::="--"::::" :m=:===_====._=4 .=-=riEEEi e=EEEEEEEEEE,EE!EiEEEEEi%s=cag:::-========== 10 1
===*= a wa gmunde p na'. b<.m ~.9 '; 4 ~ *. a musJ ap1 ~. g. + > < *th *. m -c t.M ;s a o w~ -un rWe ?. s %Far me
- m. *44 o ww%.q-} a k
-.? w*+ ' a.tma.A.s % < 1. - a W.f.W "*x v i t' 9 e m f,
- [. k q q.y
,,-y..
- pf.
. ~ ,., x 1 ', N .g:. ..y s' "" *. sm u = 4 .........3.(gSgyQ j 'x y-t -r-g ;' 9 q;:.;a: g 39 q ypr. E w=_ J'i.u ::r.4 -" ; 7 ?. g 'r = w omw - g ;y. 'p;# G ' -' W. .. g A_- -.. ~ _ r s. k W )t, A v. = w ' ' " + '.. -. -.. - - =. pp , 3 .w y my.. r. -, 4 4 \\gg gg egg
- g. JRb Nys.
..g-3_.,._. g 3 g -',.y,- g ~ m= === =a=== L, _-== =. -_..~_=.=. z:=.-:.i=:.EE' =w-;as p:4 =h"=. :t -===:=n== =.~ . ~.-q'.4 m w.4:e c. A .t 1_ we;. ~ " = :::_ =:. - L:.._ ,, _=R M : Y,#m ME ': y o.. 4 ? n.-=
- 1. x ~ 12-an ;,.
.:=4: y ~ -; -=== :=== := :=: :;.- uw z : =
E.= =:s:=== ::==
=- w
.=.== c=.===n.=. :==.=..==.=.:.c.====z2==.= K= =r::w========w = = =
e=tF "E". ""*"':"'*""*2t"&*".n""'"*M "i*"9 "*ES_._***.**t"'f!P"e*21** t* '** ***c=s .2 .mm~.., "x 10 -**"****"***"""*"""*7"******"""*"*"*"***'"**** ...->. m m.n w e.., ~.1 &< ~ fn,s=m.w y.amw.se e- -A aw . Rn + y-- 7 . e+~ +. - ~ ww enum+.m : nmu.nIV.encM 4.A b. w - s e m.m.nAc agw m m m .1
- w. p '
p A,y eev M M.4.;# c.& atp?,p ' s 2 Q %pq.g.pp.. - .3& nub s 4*. .. A . MsdE +^N.
- ;atsbissa :
e .,o -s: M.. L ' %
- Q
.e .g.yf ?, F = f gg%th, y .y.. : s r .n b Oh$ MLJJ .e ?, + mana*ad N.mphuq'l p%u :m X & & Lt\\CEV BB & fwidiN W A Y L j. emessa.w.innA 4 A. tes.: A esM user.n ammAsk ' %e Sit M M M C u MW E'E'gM W.5IN. rim."..DU[ ' 54 OIC. M *M E" MATAS M S;'j1$ %.e g k13f Mc#
- W*
s Nm**e 'N U K3Gd541d M C s #J..mW C.W EO.3EBBBdW Li M mW M 7 2-d' An$b-Q ? #2 - _Nmx.IE = _.==iEE; E: en%::: =- g ac . = t- - =; -- r : =..;. ~ - P 'l_n q f.=. h. x x A =._c.E 5.s__E.55==._T"=E c-=--- - =
===c== 32_4=====::_==.-. E_E.'Ei 36:=!=='E._E = ES.g . ~ _ = =. = - a. r =ce-me= h.e~.m.._.m==.ea:m.:====r.==a
==
-3 -****"'E". *.E" CEES amamensinamensmulassene sin mesummeaumammamenesammamann$1 3".E*.E= eemumm.ammesmo.am$ EG C.sI"
- ""* ""':llll;EE Q"*. ER*..*.*J"*"*. " " ',M -'--
- EEmmemusemi-se ans amum'emmessemero*. ser ssestaammunens.auseim esman m
mamass.ww p@semyseumspur'eammsussa;ssamma.unis ammmmmes,agemassamammemammunammmeumame s mammine u a semansamensmusw sie.equeJ ) g m emam m e opan n e x ansen.m y$ w,* % *, c.e. Mgr(t * ' a. .lf. ee6 = TQLhfW D > ~ g x%'"'-Q# N-l 'L"S%=d*51Sff N$ @ 54 M8effRERF $tFWMe# vb 5. e. gQg $ ?, p ged '$ g pi G h !hQE%%C%'f' ~ g py~~gg dx ' @q -l f ' u L '- EMWE&Mid L L"M M M>XN U.s'MSESMMTULfL MW Uk= Nn { W m:sats". magm 'r.M.; M. - jet-C pnWt 3.w.t'. ja'E 4 u W W asat M Jkau.a - Mt ' &v M -'" } MMW%g #PMk. -M w w. p. w p c. . susMawsteseg.q. ' ' ' 'gs c. I E c.;* s %3rd.. g M id M & W M ?.a W g g g h s 7'. D <CREEEllh$f d d, g t@ g%a ' 0 v 53h.. J.d. : C 1 s3 3 = [3 515-.E:==_
- 10. g M
':.._:::=:======c==::=:==:.=d :===':,5g=--y =- 57 y; .--M===== c m _ g'- L:.p: =y.5*'t.:= =._ __9
- ==== g..L
="
== -==.
z
=:
==2:2C=l2 W: __._.===::===. scL E mn6;M ll==:= l327"."***I.===:enEEEn 5
- =c==3:=z.
d. ;.an w -"'... 4M 39- -- *- - < - -M-"*".J. \\ EE p _w enannsk..W C..p; *. .u. w a,. >, na w.. n ,h i c.; . v.x.s. m ).. ~. ss.". " g# f, e p W%% simm mpp.- -e i 3 9q2 g.. 'u.
- 4..g t.
.) e/ < y4 M-? 3. s. 1 s 3-
- g. '
y + g..,4..,g. g. ,.. fja, '.1
- k.. C11gg Q..y.g 4
3; y + w i.,;.g -g ,~- e.- ~ '.... e ...a a..; % M M:4!3i22 [s
- j,M 4 A.
E E'*g. )4.._.. -H..;4. ? c . &wx AEiFgC g. a. s a u ;.7 + i M: 7n
- ..5
- g.
r L ( M.E-A.tFS --. -
+x W
'[N
- Y 9
% NC$m 46 n nr y:
- Ld
\\ @f Ad; ;7 l ..7 5 Tyf Ub]. U.4 y g M - ..g. .g A H ~.M :s%-==am -e f w n, -&.. -i y K, L. ' s a w -&: #$FiWiU% E al.ess. k %#M,..' 5 2EE =_ -.y%. ..OC4
- .- ?-%
s. - n 2W: 12 R /.;:= wp a _ _. :::=mcn= _===
$i=h:t=s-.im h _ f.: ='.im w.- 3 ::===. M =.E -E s l
-== -b 2._. v=pnu 2nr:3 M--=%dp=w 0...=.=..:.:<=<..v:~..~.=c=g: r--- = .I C.::.:=" =.=m ns; =- -====r.cre _.=.L
== nt.55.;;.::::=;====~--- = =...cm.. :
- 7. 6. m -
.'=*=nes @ a"u==== w ig'"" 0=. ~.....( 6 c...e =' %.4+ .m n a ~~ y X==7. =.. .3.:.%..=. : g=.,.-t.n..v.x. 3 =.=...<C. :.. '~~====* E cc 10 $ =a=.h*==g; = .mm we n ~.w n <, m. n u.a - = w.*** a ~' m.s..m w .vo n = xm M t* w W*A x;M;,', V, h,
- .w.wM NE Maf. M AEtx M BL M Qj'
%~. I...w w.m s, ww .u.n wa,a. : +a M.J;eWapstA 7 U$* ../ " # puunnu gg x. [ .a a u st.w.it, @ ,4 '. *i:
- b
.P.w J M%y; gg e' %. :;t
- f,
% hfef LJN E d g g a O &g g s ; n n'fJ:p5sg gg,g y ug.4gi..'wpaw gg.pu,n gp.. J.;$ 3iy 5*m 4 i A Ta@ge,,,S.( e- = -
- g. Ass,su.assoma.msanem sun:muggggymm&
dw summ W W i a v.s.M v*evdgN i c v. w e E/m m ata ur a m@buv_A.4s Elli8 fFc U.t 4. 1euway ;le '-Mifi W N m na ea.wa.s;M.Mgligit"w3MMg>? 6Flc i ifilnRtgg - ' aute
- WIM81@M. Mat 17T
- / WDr>if' 8 emass andinem:M.rt maga; mQ95 s e WBtmehM&sMdhEMhmelBBCEE BEBhW=4edak Whmsse!@M i:"
M E H i R E B e p tai:MERRRMNERmlBEMBRuns==c52EulmHemssh.W=s.-a '- 10 " 1 E E MEEewm 1 2 5 10 10* 10' 10' 5 .m. 10 Count Rate (cpm) muum
(( 1? Dose Calculation For Liouid Effluents N The method of this section is to be used in all cases for calculating doses to individuals from routine liquid effluents. Four notes at the end of ' the section confirm 'the values which certain parameters are to be assigned in some special cases. 1 The dose. contribution from all radionuclides identified in liquid effluents released to unrestricted areas is calculated using the following expression: i . (31) - j D, = E' [ At, C,3 F A g I kul where: the cumulative dose commitment to the total body or any _ Dr = . organ, I i from the liquid effluents for the total time period i E Atg n mrem (Reference 1). i ) At, - the length of the kth time period over which C,g and F, are = \\E averaged for allliquid releases,in hours. the average concentration of radionuclide, i, in undiluted C,,. = liquid effluent during time period At, from'any liquid j release,in uCi/ml. the site related' ingestion dose commitment factor to the .I A = g total body or any organ, t; for each identified principal gamma and beta emitter listed in Table 1.2-3 'in mrem ml i per hr-uci. A = K, ( (U,/D,) + 4B F,) DF, (32) g the near field average dilution factor for C,, during any F, = liquid effluent release. Defined as the ratio of the maximum undiluted liquid waste flow during release to the product of the average flow from the discharge structure to unrestricted receiving water times 2. ODCM, V. C. Summer, SCEandG: Revision 12 (September 1987) 1.0-27
., -.. - ~.. .s 1 (averaae undiluted liould waste flow) Fk = ( (average flow from the discharge structure) x (Z) L where: 1 'Z=1 applicable factor when no additional dilution is to be. = considered. (Reference 1; Section 4.3) K, units conversion factor 1.14 x 105 = ((106 pCi/uCi)x(10 ml/t) + (8760 hr/yr)) 3 = 21 kg/yr, fish consumption (adult). (Reference 3) U, = Bioaccumulation Factor for nuclide i,in fish, pCi/Kg per pCi/5 BF,- = from Table 1,2-1,(taken from reference 3, Table A 1). ( DF,t Dose conversion factor for nuclide i, for adults in. = preselected organ, t, in mrem /pCi, from Table 1.2-2 (taken . from reference 3, Table E-11). L .U, 730 t/yr, water consumption (adult). (Reference 3) = D, Dilution Factor from the near field area within one quarter = mile of the release points to the potable water intake for adult water consumption; for.V. C. Summer, D, = 1. L (Reference 1) 1 l NOTE 1: If radioactivity in the Monticello Reservior (C,,) becomes > the LLD specified in Radiological Effluent Technical Specification, Table 4.11-1, that concentration must be included in the Dose y determination. For this part of the dose calculation, F, = 1 l and At, = the entire time period for which the dose is being calculated. O I ODCM, V. C. Summer, SCEandG: Revision 12 (September 1987) L 1.0 28 H
~. .i l ~ m a ,} ' NOTE 2:- During periods when the Circulating Water Pumps are not in operation, the possibility of leakage of activity from the Industrial Water System will be accounted for as follows. Sampling.of the liquid in the Sanitary _and Industrial Waste System will be initiated, and the measured concentrations of radionuclides will be used in the dose calculations with F, = 1 and a t, = the entire time period for which the dose is being calcualted.- -l NOTE 3: During periods when the Circulating Water Pumps are in operation, any releases to the Sanitary and Industrial Waste System are to be credited with dilution in Circulating Water for dose calculation purposes, even though such dilution was not claimed in the setpoint calculation. When taken in union - [ with th'e note above, this procedure results.in some overestimation of dose to the population because discharges L made to the Sanitary and Industrial Waste System just before b loss of Circulating Water will be counted twice in the dose \\ calculation process. 4 - NOTE 4: If radioactivity in-the Service Water becomes > LLD as determined by the analysis required by Radiological Effluent y' Technical Specification, Table 4.11-1, that concentration must be included in the Dose determination. For this part of the i l dose calculation, F, = 1 and A t, = the entire time since the l' last Service Water sample was taken. .i' l' r O ODCM, V. C. Summer, SCEandG: Revision 12 (September 1987) 1.0-29
q w 4 TABLE 1.2 ^ I" BIOACCUMULATION FACTORS
- O (pCi/kg per pCi/ liter) o ELEMENT-FRESHWATER-H 9.0E 01 L
C. . 4.6E 03 lL o -- Na 1.0E 02 D' P-1.0E 05 o Cr 2.0E 02 =! Mn. 4.0E 02 Fe 1.0E 02 Co 5.0E 01 Ni 1.0E 02 Cu 5.0E 01 Zn 2.0E 03. Br 4.2E 02 i Rb 2.0E 03 Sr 3.0E 01 Y 2.5E 01 2r 3.3E 00 Nb 3.0E 04 Mo 1.0E 01 i -Tc 1.5E 01 h Ru 1.0E 01 Rh 1.0E 01. Te 4.0E 02 f I 1.5E 01 Cs 2.0E 03 Ba 4.0E 00 La 2.5E 01 Ce 1.0E 00 Pr 2.5E 01 Nd 2.5E 01 W 1.2E 03 Np 1.0E 01
- Values in Table 1.2-1 are taken from Reference 3, Table A-1.
ODCM, V.C. Summer, SCEandG: Revision 12 (September 1987) 1.0-30
T ABL E 1. 2-2 Page 1 Of 2 ADULT INGESTION DOSE FACTORS
- M' (mrem /pCi ingested)
HvCLILE SONE LIVER T.80CY tuva010 KIONEY LUNG G1-LLI H 1 NO DATA 1.05E-07 1.05E-07 1.05E-07 1.05E-07 1.05E-07 1.05E-07 C 14 2.84E-06 5.68E-07 5.68E-07 5.68E-07 5.68E-07 5.68E-07 5.68E-07 NA-24 1.70E-06 1.70E-06 1.70E-06
- 1. TOE-06 1.70E-06 1.70E-06 1.70E-06 B.
P' 32 1.93E-04 1.20E-05 7.46E-06 NO DATA NO CATA NO DATA 2.17E-05 CR 51 NO DATA NO CATA 2.6eE-09 1.59E-09 5.86E-10 3.53E-09 6.69E-07 mm 54 NO DATA 4.57E-06
- 8. 7 2 E -0 7 No DATA 1.36E-06 NO DATA 1.40E-05 MN 56 No DATA 1.15E-07
- 2. 04 E-0 8 NO DATA 1.46E-07 NO DATA 3.67E-06 rt 55 2.75E-06 1.90F-06 4.4 )E-0 7 NO DATA NO DATA 1.06E-06 1.09E-06 FE 59 4.34E-06 1.02E-05 3.91E-06 NO DATA NO DATA 2.BSE-06 3.40E-05 CO 58 NO DATA 7.45n-07 1.67E-06 NO DATA No DATA NO DATA 1.51E-05 CO 60 NO DATA 2.14F-06 6.72C-06 No DATA NO DATA NO DATA 4.02E-05 NI 63 1.30E-04 9.01E-06 4.36E-06 NO DATA NO DATA NO DATA 1.88E-06 NI 65 5.28E-07 6.86E-08 3.13E-08 NO DATA NO DATA NO DATA 1.74E-06 CU 64 NO DATA 8.33E-08 3.91E-05 NO DATA 2 10E-07 NO DATA 7.10E-06 ZN 65 4.84E-06 1.54E-05 6.96E-06 NO DATA 1 03E-05 NO DATA 9.70E-06 ZN 69 1.0 3E-08 1.97E-08
- 1. 3 7 E-0 9 No DATA 1.28E-08 NO DATA 2.96E-09 84 83 NO DATA NO DATA
- 4. 02 E -0 8 NO DATA NO DATA NO DATA 5.79E-08 BR 84 NO DATA NO DATA
- 5. 21 E -0 8 NO DATA NO DATA NO DATA 4.09E-13 4
BA 85 NO DATA NO DATA 2.14 E-0 9 NO DATA NO DATA NO DATA LT E-24 R8 86 NO DATA 2.11E-05
- 9. 8 3 E-0 6 NO DATA NO DATA NO DATA 4.16E-06 R8 88 NO DATA 6.05E-08 3.21E-08 NO DATA NO DATA NO DATA 8.36E-19 A8 09 NO CATA 4.01E-08
- 2. 82 E-0 8 NO DATA NO DATA NO DATA 2.33E-21 SR 89 3.08E-04 NO DATA 8.84E-06 NO DATA NO DATA NO DATA 4.94E-05 SR 90 7.58E-03 NO DATA 1.86E-03 NO DATA NO DATA NO DATA 2.19E-04 SR 91 5.67E-06 NO DATA
- 2. 2 0 E-0 7 NO DATA NO DATA NO DATA 2.70E-05 5A 92 2 15E-06 NO DATA 9 30E-0 8 NO DATA NO DATA NO DATA 4.26E-05 Y 90 9.62E-09 NO DATA
- 2. 5 8 E-10 NO DATA NO DATA NO DATA 1.02E-04 Y 91M 9.09E-11 NO DATA 3.52E-12 NO DATA NO DATA NO DATA 2.67E-10 Y 91 1.41E-0J NO DATA 3.77E-09 NO DATA NO DATA NO DATA 7.76E-05 Y 92 8 45E-10 NO CATA 2.47E-11 NO DATA NO DATA NO DATA 1.48E-05 Y 93 2.68E-C9 NO DATA 7.40E-11 NO DATA NO DATA NO DATA 8.50E-05 ZR 95 3.04E-08 9.75E-09 6.60E-09 NO DATA 1.53E-08 NO DATA 3.09E-05 2R 97 1.68E-09 3.39E-10 1.55E-10 NO DATA 5.12E-10 NO DATA 1.05E-04 N8 95 6 22E-09 3.46E-09
- 1. 86 E-0 9 NO DATA 3.42E-09 NO DATA 2.10E-05 NO 99 NO DATA 4.31E-06
- 8. 2 0 E -0 7 NO DATA 9.76E-06 NO DATA 9.99E-06 TC 99M 2.47E-10 6.98E-10 8.89E-09 NO OATA 1.06E-05 3.42E-10 4.13E-07 TC101 2.54E-10 3.66E-10
- 3. 5 9 E -0 9 NO DATA 6.59E-09 1.87E-10 1.10E-21 AU103 1 85E-07 NO DATA
- 7. 9 7 E-0 8 NO DATA 7.06E-07 NO DATA 2.16E-05 aul05 1 54E-08 NU DATA 6.08E-09 NO DATA 1 99E-07 NO DATA 9.42E-06 l
l
- Values in Table 1.2-2 are taken f rom Ref erence 3, Table E-11 ODCM, V.C. Summer, SCEandG:
Revision 12 (September 1987) 1.0-31
4 -/L. q TABLE 1.2-2 (Continued) Page 2 Of 2 b l. m,CL IO!
- 0NE LIVER T. 600T THY 90lc EtDNEY Lu$C Gt-LLI retC6 2.75E-06 NO DATA
- 3. 4 8 E-0 7 NO DATA 5.3tE-06 NO DATA 1.7BE-04 a*ttom L.o0E-07 1.68E-07 8.79E-08 NO DATA 2.9tE-07 NO DATA 6.04E-05 n
TE125* 2.6SE-06 9.71E-07 3 59E-07 ' 8.06E-07 1.09E-05 NO DATA 1.07E-05 ,1 l TE127= 6.77E-06 ~2 42E-06 8 25E-0 7 1.73E-04 2.75E-05 NO DATA 2 27E-05 TE127 1.10E-07 3.95E-08
- 2. 3 8 E-0 8 8 15E-08 4.48E-07 NO DATA 8.68E i TE129p 1.15E-05 4.29E-06
- 1. A2 E-0 6 3.95E-06 4.8CE-05 NO DATA 5.79E-05
-i TEt29 3.14E.08 1.18E-08
- 7. 6 s E-0 9 2.41E-08 1.32E-07 NO DATA 2.37E-08 TE131M 1.73E-06 8.46C-07
- 7. 0 5 E-0 7 't.34E-06 8.57E-06 No DATA S.40E-05 TE131 1.97E-08 8.23E-09. 6. 2 2 E-0 9 1.62E-08 S.63E-08 NO DATA 2.79E-09
.s L-f8132 2.52E-06 L.61E-06
- 1. 5 3 E-0 6 1 80E-06 1.57E-05 NO DATA 7.71E-05 1 130 7.56E-07 2.23E-06 8.40E-07 1.89E-04 3.40E-06 NO DATA 1.92E-06 1 131 4.16E-06 5.95E-06
- 3. 41 E-0 6 1.95E-03 1.02E-05 NO DATA 1.57E-06 k
I 132 2.0)E-07 5.43E-07
- 1. 90E-0 7 1.90E-05 8.65E-07 NO DATA 1.02E-07 I 133 1.42E-06 2.47E-06
- 7. 5 3 E-0 7 3 63E-04 4.31E NO DATA 2.22E-06 I 134 1 06E-07 2.88E-07
- 1. 03 E.0 7 4.99E-06 4.58E-07 NU CATA 2.51E-10 l
I 135 4.43E-07 1.16E-06
- 4. 2 8E-0 7 7.65E-05 1 86E-06 NO DATA 1.31E-06 C5134 6.22E-05 1.48E-04
- 1. 21 E.0 4 No DATA 4.79E-05 1.59E-05 2 59E-06 i
C5116 6.51E-06 2.57E-05
- 1. 85 E-0 5 NO DATA 1.43E-05 1.96E-06 2.92E-06 C5137 7.97E-05 1.09E-04 7.14 E-0 5 NO DATA 3.70E-05 1.23E-05 2 11E ' (z.
C5138 5.5?E-08 1.09E-07 5.40E-08 No DATA 8.01E-08 7.9tE-09 4.65E-13 BA139. 9.70E-08 6.9tE-11 2.84E=09 NO DATA 6.46E-11 3 92E-11 1.72E-07 DA140 2.03E-05 2.55E-08
- 1. 3 3 E-0 6 NO DATA 8.67E-09 1.46E-08 4.18E-05 i
RA141
- 4. 71 E-08 1.56E-11
- 1. 5 9E-0 9 NO DATA 3.31E-11 2.02E-11 2.22E-17 9A142 2 13E-08 2.19E-11
- 1. 34 E-0 9 NO DATA 1.85E-11 1.24E-11 1.00E-26 Lat40 2.50E-09 1.26E-09 J.3JE-10 NO DATA NO DATA NO DATA 9.25E-05 LA142 1.28E-10 5.82E-11 1.4 5 E-11 NO DATA NO DATA NO DAT A 4.25E-07 i
- E141 9.3tE-09 6.33E-09 7.18E-10 NO DATA 2.94E-09.NO DATA 2.42E-05 CE143 1.65E-09 1 22E-06
- 1. 3 5 E-10 NO DATA 5.37E-10 NO DATA 4.56E-05 t'
CE144 4.A8E-07 2.04E-07 2.62E-08 NO DATA 1.21E-07 NO DATA 1.65E-04 PR143 9.20E-09 3.69E-09 4 56E.to No DATA 2.13E-09 NO DATA 4.03E-05 PRl44 3.01E-11 1.25E-11
- 1. 5 'st-12 NO DATA 7.05E-12 NO DATA 4.33E-18 NO147 6.29E-09 7.27E-09
- 4. 3 5 E-10 NO DATA 4.25E-09 No DATA 3.49E-05 w 197 1.03E-07 8.61E-08 3.01 E-0 8 NO DATA NO DATA NO DATA 2.82E-05 NP239 1.19E-09 1.17C-10
- 4. 4 5 E.1 1 NO DATA 3.65E-10 NO DATA 2.40E-05
{+ k t ODCM, V.C. Summer, SCEandG: Revision 12 (September 1987) 1.0-32
< M%; pgp e g. >. " s,m c.g 7 7 y, y,..,. 1 37 37 ,p s cy .l E l I ! SITE RELATED 3EST2DN DDSE 3DMMITtOT FACTOR, A gT (mrem /hr per sti/ml) I avC410Cf St.ut 3 CIVCD 1 1.StDY t tupetDI et19NCY t Lusse -I St-LLI t.- b 8 M*3
- 18. 99t + 0C D. 96t + Dt : 8. 96t + 00 : 3. 94C +98 : 9. 96t+ 04 t t. 96C +00 4 8. 96t + 001
'A I C*1e
- 13. t St + D.I:6 39C + 03 : 6. 30C e t 316. Set + 03 : 6. 30t +93 : 6. 39t + 0316. 30C + 03 8
=> * : = ~~ t ha*Re IS.dtt +0t s t.att + Dt :5.deC+82 :9.etC*tt tS. set +33:5.40C+98 t S.eSt +98 8 + i 1 P te.62C+07:2. 8 + C + 96 t t. 7 9C + D6 : 9. 9M
- 90 : 8. 98t + 9919. 98t
- 99 t S. Pet
- 86 8 I Cr=St
- 18. 00C + 00. t. 0tt + 3t i t. a tt e te : 4. 94C =Sl t a. 31'-98 t t. 90C + BS : 3. 76C + 881 I mn=Se te.seC+ts:4. 76 C + D 3 ! 9. StC
- tt 10. 00C+ 0011. 48t+ D3 t S. DSC + 9011. d4C e te t
! Mn=56 I t. 00C + 88 : 8. 20C + tt : 2. l tt + 8 t t e. 90C + 89 t t.88t+ Sa t t. Set e es t a. stt + e31 8 Fe*IS IS. 9 ?t +8216. 3 3t + tt: 3.e 3C +0f t e.60C+00!9.peC+94 t 3.stt +0f t s.Stt+48 8 7.1 I re.19 ; I 3. ett + 0 3 : 3. 79t +03 t 1. t&C* ta t e. 98Cete t t. 98C+00 t 9.19t +8811. t tt+94 8 - J I Ca*SS
- 8. 90C + 0414 5 t f
- St t a. 39C + 04 : 3. 00C + 08 : 0. 99t + 00 t t. 88t
- D9 8 3. 96C + 03 8
.~ I Co=69 2 8. 90C+98 ! d. SeC +0t t 9.SDC + et t e.99C*S8!9 90C+00 t t.99t+64 8 6.16C+031 I Ns=6 3 te.89t+44:2. 9 t t + 93 t t. d t t + 3 3 : 8. eet +90 t t.get+99 t g. stt +00 t &. 9?C
- St t 4
8 Ne=69 18.?st *08 2.t ttets ll.9 stets ts.tet+00tt.99t+00tt.Det+etts.64C+et t t Cv=64 t e. 80C + 90 : 8. 695
- Si t ?. 9 3C + 98 t t. 90C +99 t d. tSt*04 t e. 90C+90 t l. ast +031 8 2n=65 i t. 96t +94 : ?. Set e re t t. 39t +Sa t e. tet e e9 : S.94t +94 t g. seC + ge t e.73C + 641 15.ett+a 19 60t +0116.6.?C+etta.Det*99 6..S.eC+98 te.89t+00.f t.eatest I.... ie.ta+0 16.3=+.1 q
,t in.69 . I t. t.C +0.t tt. u.et.. 9 t.or.. 0=+.Si t r=.3 I D*=94
- 19. Bet + 9918. tet e tt ! S. 6? t + 98 t t. Set +9918. 00C+99 89. 90t +00 t d. dst =Se t t '9'*st 18.00C+98 :4.00Cose:2.38t*00 te.SeE+09:9.Det+0sts.est+9981.99EalS t Reate. it.90C+Det 3.03C+96 te.79t+D4 tt.99t+0010. Set +90tp. tac +09tt.03C+441 8 90 09 : 9.9eC + 09 t t. 95t eet t s. Set
- 94 t t.99t*S818. Set +D8 t t. SeC+90 4.8?t*99 t et=99 t e.90C+ 00
- t. 99t+98 t t.37t et t e.90C+99 t e.80t+80:9.90t+99 t t.13Co n t t i S**t9 te.?tt+t4:8. SOC +Dtil.8?C+88:9.99t*00:9.00C+9918.DSC+008'?'.6&C+033 8r.64 : 8.10C + 94
- t. ttt.+ C912. 00t + 0E 18. 90C +99 :9.98t*98 8 8. 00t +9913. 40C +04 t 1 Se=91 I t.
- 9C + 82 : 0. 83C + 0013. SM + tt t 8. SM e tS I S. 98t+0010. DOC +48 8 4. 8 9t + 03 8 S*=98 i t.MC+ 03 : e. 90C + 8813. aet est t 6. 00t+04 8.eeE+et t e. Set +0e t 6.60t* 03 8 t V-90
- 31. 36t + 99 : 0. 00t
- tt. 3. 69t =68 : 9. tet + 04 t t. Det*De t t. 86t +0011. e 6C + 0d l 3 v=95 e.
f t. 3CC
- S!! 9. 00t e tt ' t. 94C.De t e,89t +00 t e. 89t+9819. 00t+49 8 3. SeC =Se t -
-4 ~ ' 9 1 ?*98
- 8. 92 C + 9 8 ; t. 90C + DS : 5. 39C -4 8 t t.99C + 98 a t. tDC +00 t t. 9eC +041.1. t t t + 041 t T-93
- 8. S t C*t t t t. SCC +0t ' 3.S 3C e r3 : 9. 99t +0819. 90C+00 8 8. 90C+D8 :2.88t+43t
~ I va93. 13. 0 M
- t t. C. 90t e tt : 1. 9CE
- 02 ! 8. 00C + 09 : 9. 90t +99 : 9. Set
- 9918. ttg + 94 8 8 tr=91 I t.??C+ tt.9.tet-St : 6. tit *04 :8.00C+88 8 8.39t*88 0.00t+4812.88C+e31 t tr=9*
It.53Cets;3.t9C*tt.8. alt-et:9.99C+00te.6?t-et:0.89t+0019.S?t+est I *se*9f i d.d?C + 32 : 2.4 9C + 02.1. 3eC + 02
- S. 5M +90 t t.eSt+48 t t.08C+00 t t.S iC+061
- ne*99
- 18. DOC + 00 ' d. 41 C + 82 : 9.
- 9C + 01 : 9. tSt +08 t t. 99te ta l t. seC+04 t t. 87t + 03 8 1 Ts=99m it.9at *02 :9.32C*tt :5.9M 84te.80t+3015.36t+00td.9?t*ttle.9tt+StI i 7t a t es : 3.ett *O!!d. 34 C+ B218.3 SC *tt it.99C+ 88t?.95t*08 t t.89C-92 81.3t C = 8 31 t Rv=103 11.99t
- tt 19.99t+ 92 0. Set e ct.t.90C*00t?.S?t+91:8.00t+88 t t.att +031 t es-tOS t t.6tt+te 9.90 tate:6. Sit St it.D9C+99tt.13C+98 IG.99tetet t.84C+33
' e = s te it.99C*tt :9.teC+00.3.*3t *0519 90C+00:8.49t*ta tS.80t+00 tl.9tt *04 8 v I ag* s t ea t t.dtt +ta t t. Siteet ; ?.90C+60 : 8.998+98tt. SOC +0138. set +90tS.36C+03 t l ? I f e a t tle :2. 79C+ 93 t t.t tt+03 :3.?dC+0t te.39t*Stil.tSt+94 tt.80C+S8 t t.18t+De t I f e. s tte :7. tSC+ 99 : 2.Stt +03 : 9.99C +88 81. 99C+98 :R.968+44 :9.00C+99tt.36C+048 I fe st' tl.14C+C!id.11C+0 tit.40C+9119.dtt+tt:4.66C+08:9.00C+0019.99C+038 8 fe=889a.1.28t+84:4.d?C=03:1.59t+tD:4. s t t* 03 :S.08t+64 t t. 90C+ 98 : 6. 03C
- 041 3 Te=189 13.R?t*Di t t.23C+D8 :7.96C+D8 ' t.Stt+88 t t.3?t+S8:0.99t+S8:2.47t+S81 t Te = t ale: 8. 00C+03 ;9.9 tt+0t a ?.3aC+S8 t t.99C+93:8.98t+4319.etC+0919.74C984 8 8 f e =131 II.SSC*tt :8.9'C+00:6.d?C+98:1 6DC+01:8.99t+98 t9.00C+90t t.99C+99 8
- Te=138 f t.62C+ t3 t t.?tte ta i t.59t+038 8.9?t*S3t t.68C+8419.00C+44:9.Stt+04 8 I t=130
- 19. 91C +8 8 t t. 64 C+08 t t. 0f C+88 t t. tSC+94 t e. 89E*St!9. teC+00 !t.29C* tt !
.I !=135 t e. 96t
- 0217. t9C + t t l e. 96C + tt t t. 38C+9918. 84t+08 t t. 99C*00 t t. 9? t *081 3 !*t32 88.dtt+0316.d?C+0118.26t+03:P.86C+S3 8.SSE*98tt.94C+98 t1.Itt+011 I 2 333 :8.69C+02:2.9dC+02:9.9?C+S8te.33C+04:9.83t*SS:8.00C*S9tt.6dC+028
!=834 I t. 26C +0 8 t 3. 4 3C + 9 818. 3 3C + 6119. 9dC+ 98 t S. e6C+9810. SeC+ 00 : 8. 99C-93 8 IS 20C+0t i t < 30C? 2 iS. t SC+0t !9. llc +99tt.88t*ttle.99t+08 t t.96C+tti C P S SS t re=834 13. 03C+ 85 t ?. !!C +t9 t S. 89t e tS t e. 92C+S8 :2.33C+95 t?. ?St+04 t t. 86C*te t ! Cs =136 13. t ?t+04 : t.SSC+ tt !9. DIC+9410.00C+90 6.9?C+D419.SSC+03 t t.ett+94 8 t Ce
- t a? 13. 89C*ef t f. 3tE*0S ! 3.dtt*85 8 3.90C+00t t.89C*tS ts.99C+04 1.03C+041 1 Cs=l*O 8 8.69t+9t ;t.3 t t+42 t t.43C+02 8. 88C+0013.98C+88 *3.tSt+0 lit.t?C-931 1 S a
- t 19 19. 00C+ 08. 6. d t t-93 ; t. 64C =91
- t. tSt+ S8 :5.99t*98 83.64C-95 t t.60C +011 1 3 4= 1 d8 11. SSC+ 8 8 t t. 3?C+ 99 : 1. 8 3C+ 02 8 8. meC+00 : 9.83C*St :1. 35C+ 08 : 3.90C + Sa t t 34-841 14. 3?t+ 90 t a l 30C+03 : 1. 49C 0 & l t. BSC+0013.9?t-93 t t.8? Cat t : 3.86C-89 8 '
t 3 4-142 8 8.90C+08 : 2. 0 3C+ 09 t t.24C=St 19.9BC+99 3 3.?tC*ta t t. tSC=93 : 2.?ttale t I t,aatst 13.288-2111.00C=91:4. 76C
- S! : 9. 90C + t919. 89C + 08 : 0. 99t + 9911. 32C
- 04 8
- L a*143 f t.93C 0f t e. 33C=t3 tt.9?C.SS:9.80C*BS.B.00C+99:9.00C+4416.99C+018 t Ce=tet i t e t t C*Si t s.43C O t t 6. lSC =92 : 9.89C+ D9 :2.SRC=0118.60C+98 : 2.0?t*03 8 i Ce*843 11.81C=9118.9dC+02!1.t6C-8210.98t+88:4.60E=St10.99C*0013.99C*833
. J ! Ce-14d 14. t tC + 0t i t.?tC*Si t t.Rer + 99 t 9.DeC+et t s.84t+9s t s.seC+99 t t.altese t ! Pr = t d 3 t t. 3tt + 0t !!.tSt =8116.stE st : 5.00C+99 3 3.tSE*Si t9.BeC+00;S.??C+031 I Pr. tad :d.33C 03:1.79C 93:2.19C*Sd:9. ett ete : 8.St C-9310s ett+ 09 3 6.19C= t t !
- we=le? 19. 00C -3 8 81. g e C + 88 ! 6. t t t = 82 : 9. 80C + 6416. 00C=8 818. SSC + 00 :4.99C+031 8 u.te? : 3. seC + et t t. zst + 02 : e. 9eC+ e t : e. eeC + 9e : o.99t+ ee lt. ett+ ee : 6. 34C +641 839 11.tes.St 8.tSC-et t 6.m-e310.SSC+ee:3.98c-ette.seC+ee:2.S?C*e3:
- Calculated using equation (32 ) and Tables 1.2-1 and 1+2-2.
ODCM, V.C. Summer, SCE&G: Revision 12(September 1987) 1.0-33 = - - - - _ - - _ -_
-1.3 Definitionsof Effluent Parameters (continued ~ t -Term Definition I' ni ' he site related ingestion dose commitment 1.2 A" t = factor to the total body or any organ 1, for each identified principal gamma and beta ~ emitter listed in Table 1.2-3 in mrem ml per br-uCi. B adjustment factor which will allow the set-1.1.3.1 =- point to be established in a convenient manner and to prevent spurious alarms. -l 1 iiioaccumulation Factor for nuclide i, in fish, 1.2 B F' = pCi/Kg per pCi/l, from Table 1.21. i the effluent concentration limit (Specifica-1.1.1 C- = tion 3.11.1.1) implementing 10CFR 20 for the site,in uCi/ml. C* '= the effluent concentration of alpha - 1.1.1 emitting nuclides observed by gross alpha analysis of the monthly composite sample. the measured concentration of Fe 55 in 1.1.1. i C, = liquid waste as determined by analysis of the most recent available quarterly com-posite sample. C the effluent concentration of a gamma 1.1.1 = 8 emitting nuclide, g, observed by gamma-ray spectroscopy of the waste sample. the concentration of nuclide,i, as 1.1.1 C' = determined by the analysis of the waste sample. the average concentration of radionuclide, 1.2 C,, - = i,in undiluted liquid effluent during time period at, from any liquid released,in uCi/ml. i the concentration of radionuclide iin the 1.1.1 C,, = Monticello Reservoir. C, the concentration of Sr-89 or Sr-90 in liquid 1.1.1 = wastes as determined by analysis of the quarterly composite sample. ODCM, V.C. Summer, SCEandG: Revision 12 (September 1987) Page 1.0-34
y q l ~1 ~.3 Definitions of Effluent' Parameters (continued Term-Definition. Section ofI Initial Use. 'the measured concentration of H-3 in liquid 1.1.1, C, = waste as determined by analysis of the monthly composite. the setpoint,in uCi/mi, of the radioactivity 1.1.1 c- = monitor measuring the radioactivity con-centration in the effluent line tion and subsequent release. prior to dilu-the monitor setpoint for RM L7, the 1.1.1-c, = Nuclear Blowdown Monitor Tank discharge i line monitor, the monitor setpoint for RM L9, the com-1.1.1 c = c bined Liquid Waste Processing System and Nuclear Blowdown System effluent discharge line monitor. the monitor setpoint for RM L11, the Con-1.1.3.1 c = o densate Demineralizer Backwash discharge line monitor. l - _c = the monitor setpoint for RM L5, the Waste 1.1.1-u. Monitor Tank discharge line monitor. n1 Q- 'the monitor setpoint for RM L3, the initial 1.1.3.1 c, = 3 Steam Generator Blowdown Effluent line monitor. !} the monitor setpoint for RM-L10, the final - 1.1.3.1 C = Sb Steam Generator Blowdown Effluent line monitor. the monitor setpoint for RM L8,the Tur-1.1.3.1 -i c = 7 bine Building Sump Effluent line monitor. l CF = the Condensate Demineralize Backwash 1.1.3.1 o Effluent Concentration Factor. the Steam Generator Blowdown Effluent 1.1.3.2 CF. = s L Concentration Factor. CF the Turbine Building Sump Effluent Con-1.1.3.1 = 7 centration Factor. ODCM, V.C. Summer, SCEandG: Revision 12 (September 1987) Page 1.0 35 n)- C
1 J 1.3 4 Definitionsaf Effluent Parameters (continued . Term Definition Section of Initial Use ' he dilution factor, which is the ratio of the 1.1.1 DF-t = total dilution flow rate to the effluent - .t stream flow rate (s) ~ dose conversion factor for nuclide,i, for - 1.2 ~ DF, a = adults in preselected organ, t, in mrem /pCi found in Table 1.2-2. D' "= the cumulative dose commitment to the 1.2. total body or any organ, t ; from the liquid effluents for the total time period.- D* - Dilution Factor from the near field area-1.2 - = within one. quarter mile of the release points to the potable water intake for adult 1 L water consumption; for V. C. Summer, D, I l = 1. t the dilution water flow setpoint as deter-1.1.1 F = mined prior to the release, in volume per unit tirne. F, the flow rate of the Circulating Water ~1.1.3.1 = System during the time of release of the Turbine Building Sump and/or the Steam i Generator Blowdown. = the dilution flow rate of the Circulating 1.1.3.1 F, = e l Water System upon which the setpoint is ' based, as corrected for any recirculated. radioactivity. the flow rate of water through the Fairfield 1.1.1 F, = Pumped Storage Station penstock (s) to L which radioactive liquids are being dis-L charged during the period of effluent re-l lease.This flow rate is dependent upon operational status of Fairfield Pumped Storage Station. f the flow setpoint as determined for the 1.1.1 = radiation monitor location. f, the maximum permissible discharge flow-1.1.3.1 = c.. rate for releases to the Circulating Water. 4, ODCM, V.C. Summer, SCEandG: Revision 12 (September 1987) i Page 1.0 36 -.0
1 ..1'3 Definitions'of Effluent Parameters (continued: . y-q U -Term Definition I'C nit Use - f, h hw e M h kW hwkm 1.1.1 = e Monitor Tank discharge. f, - the flow rate of a Waste Monitor Tank dis-1.1.1 = o
- charge, i
f, the flow rate of the Steam Generator Blow-1.1.3.1 = o down discharge. f,~ the recirculation flow rate used to mix the 1.1.1 = contents of a tank, f, the maximum permissible discharge flow 1.1.1 = rate for batch releases to the penstocks. L F the clilution flow rate through the pen-1.1.1 = dp stock (s) receiving the radioactive liquid re-lease upon which the effluent monitor set-point is based, as corrected for any recircu-lated radioactivity. the near field average dilution factor for C, 1.2 F, = during any liquid effluent release. 1.14 x 105, units conversion factor. 1.2 g K, = L5 M PC, MPC' MPC MPC, MPC and MPC =-the 1.1.1 = limitfn,g con,,entrations o,,f the appr,opriate c y gamma emitting, alpha emitting, and ' strontium radionuclides, Fe-55, and tritium,- respectively, from 10CFR, Part 20l Appendix B, Table 11, Column 2. For gamma ' emitting noble gas radionuclides, MPC = = 2 x 104 ~ uCi/ml, according to the Radiological Efflu-ent Technical Specifications. the safety factor, a conservative factor used 1.1.1 SF = to compensate for engineering and measurement uncertainties.SF = 0.5, corresponding to a 100 percent variation. [ECi]o the sum of the measured radionuclide 1.1.1 = concentrations of the Nuclear Blowdown Monitor Tank. l ODCM, V.C. Summer, SCEandG: Revision 12 (September 1987) Page 1.0-37 LO e i \\
F i 1.3[ Definitions of Effluent Parameters (continued Term Definition - Section of l . Initial Use 'the Lower Limit of Detection, LLD, for 1.1.2 [Ci]m = radionuclide i in liquid waste in the Waste Monitor Tank, as determined by Technical Specifications, Table 4.11-1. [E Ci)y the sum of the measured radionuclide 1.1.1 =. concentrations for a Waste Monitor Tank. j the sum of the measured radionuclide 1.1.3.1 I [E Cils = concentrations for the Steam Generator - I Blowdown [E Cilo the sum of the measured radionuclide 1.1.3.1 = concentrations for the Condensate Demineralizer Backwash. L [ECi]r the sum of the measured radionuclide 1.1.3.1 = concentrations for the Turbine Building Sump. [E (Ci/MPCi)]3 the sum of the ratios of the measured 1.1.1 = concentration of nuclide i to its limiting l E value MPC, for the Nuclear Blowdown j Monitor Tank. [E (Ci/MPCi)), the sum of the ratios of the measured 1.1.1 - = concentration of nuclide i to its limiting l-value MPC,idered for release. for the Waste Monitor Tank t L< being cons [E (Ci MPCi)]s the sum of the ratios of the measured 1.1.3.1 / = concentration of nuclide i to its limiting value MPC ~ Blowdown, for the Steam Generator Effluent.- [E(Ci/MPCi)]o the sum of the ratios of the measured 1.1.3.1 = concentration of nuclide i to its limiting value MPC for the Condensate DemineralIzer Backwash. [E (Ci/MPCI)]7 the sum of the ratios of the measured 1.1.3.1 = concentration of nuclide i to its limiting value MPC, for the Turbine Building Sump Effluent the minimum time for recirculating the 1.1.1 t, = contents of a tank prior to sampling. ~ ODCM, V.C Summer, SCEandG: Revision 12 (September 1987) Page 1.0-38 i I
1.3 - Definitions of Efflutnt Parameters (continued l Term-Definition Section of initial Use 'the length in hours of a time period over 1.2 Atk = which concentrations and flow rates are averaged for dose calculations. 21 kg/yr, fish consumption (adult). 1.2 U, = 730 kglyr, water consumption (adult). 1.2 U, = the volume of liquid in a tank to be-1.1.1 V- =
- sampled, applicable near field dilution factor when-1.2 2-
= no additional dilution is to be considered; Z = 1. O ODCM, V.C. Summer, SCEandG: Revision 12 (September 1987) Page 1.0 39
1.4 LIQUID RADWASTE TREATMENT SYSTEM -Figure 1.4-1
- ]I E
ln o s s-y = i a j = g jg g{ 2 l l lv-n a g :* n- .a t,- a a j a l 4" 4.. : rn i r:-,i i i i---i r~.A i---i l j
- t i
^ ? Pi T is ii h ": i il if I li li il ,ll h II al i i 11 11 I il il 1[ l1 l fl i- . 1
- E
- 5 3
- E
- E g
j ' g 7r +g g D" i I !g b") g 5 5 t' e' 4 l I I) I I i i ~T. IF E I In i......... l
- l.g x
a a 8
- ri g
s-r-7 r:1 Erl s._:) ' $M l! J 1 Il 1;i 1 n g j h 8 a n I y Ii, i 1 I e I a s I a 11 $ li l' li 11 I1 5 il 1 I. E.i.i.l. i. l.ii g ODCM, V. C. Sumer, SCE&G: Revision 12 (September 1987) 1.0-40 i
l O 2.0 ' GASEOUS EFFLUENTS 2.1 Gaseous Effluent Monitor Setooints The calculated setpoint values will be regarded as upper bounds for the actua'l setpoint adjustments. That is, setpoint adjustments are not required to be performed if the existing setpoint level corresponds to a lower count rate than the calculated value. 2.1.1 Station Vent Noble Gas Monitors For the purpose of implementation c.f section 3.3.3.9 of the Technical Specifications, the alarm setpoint level for the station vent noble gas monitors will be calculated as follows: count rate of the plant vent noble gas mor;itor (= S, = S,, for RM A3) or the containment purge noble gas monitor (= S,, for RM A4) at the alarm setpoint level. ' 0.25 x R, x D, W) 1 5 the lesser of or 0.25 x R, x D (34) 3 the safety factor applied to each of the two vent 0.25 = noble gas monitors (plant vent and containment purge) to assure that the sum of the releases has a combined safety factor of gl which allows a 100 percent margin for cumulative uncertainties of measurements. D, Dose rate limit to the total body of an individual = 7 500 mrem /yr = R, count rate per mrem /yr to the total body = O ODCM, V.C. Summer, SCE&G: Revision 12 (September 1987) l 2.0-1 x
-. Y V:l L C, /((XTO) x F, x K,X,,). (35) = the measured concentration of noble gas radionuclide X,y = i o i in the last grab sample analyzed for vent v, pCi/ml. (For the plant vent, grab samples are taken at least monthly. For the 6" and 36' containment purge lines, the sam'ple is taken just prior to the release and also 1 monthly,if the release is continuous.) F, the flow rate in vent v, cc/sec. (1 cc/sec = 0.002119 cfm) = l C, count rate of the monitor on station vent v cor- = L responding to grab sample noble gas concentrations, l' X,,, as determined from the monitor's calibration curve. (Initial calibration curves of the type shown in Figure 2,1-1 have been determined' conservatively from families of response curves supplied.by the monitor manufacturers. As releases occur, a historical g_ correlation will be prepared and placed in service when sufficient data are accumulated.) 1 R7Q the highest annual average relative concentration in = any sector, at the site boundary. 5.3 x 104 3 sec/m in the SE sector * = total body dose factor due to gamma emissions from K, = 3 isotope i (mrem /yr per pCi/m ) from Table 2.1-1. D33 Dose rate limit to the skin of the body of an individual = in an unrestricted area 3000 mrem / year. = Reference 4,.Section 11.3.8 states that this is the annual average relative dispersion at the point on the exclusion boundary where highest concentra-tions may be expected. 9' ODCM, V.C. Summer, SCE&G: Revision 12 (September 1987) 2.0 2 .2
Figure 2.1-1 Sample Noble Gas Monitor Calibration i f I 10' - ":gm.c--.w.x..
- m. W.! ann..
3::lll:: L-mu:- -~%a n-- w e-: . mmamanamsmma stme= =me=====. .V4 Mar M* 4.1:
==ma u==we.or. e.2. 3ain,.{.i' e@ tam.;n J e4Eb. $C ' Md.# f. K51MMJWMEV'.%"x')gTy:.*N > ; MM M j_1 '.'..ap.#,-- e d ^ ' N M k 4 'd L 'G M 4 M T.iL'1.a' 'F-C i% '.
- < 43f -
i d: C ~ EBdH!!"5EMEJGEL EIMOME MME!!MMESS%dEBhUiM==,E Y. d4J.n "P *s'-.wE.h== 2 i gumass.ts.ge.s.seau :ltst? + J. 'fta.e 'wc.tCf'$#MS : .3 umL V :ss.W aranges M % g Y.rJ SW Wg '
- 1.Q jp eT.
- Q=pn E;..gw W.1, !Rtc?det"# :
2 JSN :J.j M.2. @ W. ElilWWMIEWE. <
- i K E's:.. % # f % e d w b ?
%= &WRR$"M O I $ns &.N ? ff %-% -. W N-H SQELE,. iiQ::fQ11%dsL== = -- ===f " b '.i-hC dOh M t $ 4 i; M. M -C :WLp. W?L. e 1 M- = M - - a EE 10'* gg.M=. :.5i==;:: =;.g===5 :== sp==='w ;:.=-- M==EEEL m=EriEE5 mM=EE : =:=s M i:EEac_=EE5E=d._ = ? 5 E 1ixi-g -==.=.:= = :=== = t:2==== :::= = m E= ======;;= = = = =: = =c -==== EL EEEE
- x=- - g. m.=...==5::::c=. 55===:e=========-:=:=========
s
- ==:========;::::===:::====="~=-=i
= 2 .m... %o.' ". w.m".%~::: N ::""'*""~.", " * **** ~ ~'"" ??t W %fs A % wy.rt 0;.wputes N*1% w - %.. s*' F,t W. f^ V ":::::::**~~~~~~" !*s. m5 suuns...M %4 t gnag;gtc.% ~ ;M%ts..WM MWO 44 t- . - -w. %* #'I.v'.w.%- n' q 'y Q .c. .f T-t M*
- lyM ' -.
y. : qe-.y2 W.phhugn tw n.rt 3.. - "~ ~ kn %. L', ~ M -' w"s ' '.y mA,.L - r y
- [N y*
'e: 9 'x.;w 4 gi %gM.hy&'a LEEb$ $ r [ egua W 1. 'E +4 3 4 M4 "T': ~ . * % le PWM 4 ~ '.:. M. l ? ? * *'.l %-. .t -'." " -. l g&_ - i ,gl;.. J W &}. f 7 gv.aQ. q@%}[.*':igy.g G: A ' ' i -M ,a* i4-M . ?W...x.-p.. a XM of %y Af. J $ g g.; pp,4 y 4 4 g p' '.' g y"qy-' " 9 g-" + 3% < " . -.. =..... .u EEEE:@- @--Q3k Q$'{5= :p -':= T.., - b 5 ' Y.,
==---l &"J. __ l h-h. 5: c.,a
- g
. = ~.: - -.- lg-kh.& _ }R : y =2 & h d; ---:.-L ' i:- u .x EEE==== = =:=== --======~= rE3n - n rs:= = = nt ~
- ===.".:lf=.e =;_===.l;=..=..:=.=.::.::=.
c=-
=======t:=__:s::=ar = =g:=xEc..: c =E
= =
nn.:: - . ".0y. - :==:':0~.::.=.$=.=4 r.W. :.:$.:.:=...w=w:'=w::::r+::.r ::~~. = :=.==.. =:=.=--gc. === :: = -: ::r_:: ::=I==er =.E z=: c
- =
..= : .... + ..s .J ..O. ".'.:.*.:"." ft." 10-2 ' 2:::El::====y.:4:tt=22".!!".=::1: asuma m._'-s g. m..g eq.As.%.g w %p ':: =l;;g...w s.v 'm.=2.j122Ef:22:1.:::::tt.."M::M:U'"w"'*w:"".E:E't*Ot
===.=...% m.n.e. =g**y a '
- e. an.r.w n
- e w. .mpyw.- . naus 7 % xg_ a w.1 .p.g.m *pb =r . x g' M
- ARF 1 ".--. -.. m_ a, 4
.; _. 4 c Mm$.VJ:Pe@ w e mp.a.", f y < - ' Nam.4
- 6 T"
y MOgg g; f ',';-- ' 6 & pu u, n.g; Qw j y x M.y j ; M M %)lM 1 k W.4%g.-ll;g.pg "g 4 a 4 .g,.y.,, g. q $M$$y..Q C g_g%yRMHMtGR %L.dW,QyJQ 7 p y. L" n _Aai.26 m J.3 usuun A:n %w..-Mih4e ; c;=t-6 g &aQ M:tkWs4 ML-MHM $.as, a &pk # 4 W W T4 maSra 3W,Wugp#h yt%' C V W * ' j * ; L 4
- ' i i '.0::h Maap..
41 #. &.Wa h O h dLM*% W D ".%*$ k & m a < Ab = L.d W W 7".dSEF"3% M5W$UansifL"4M7K % QiMERM43EMdgpe : - npygWm.4.M;t
- ,t Q==.g. W== *
+=.N E L h:A W- = y$ $ A W S M 0 p% : % Wl M= 5=.tW=5 L M;h.. : -c:2: 9x-n=. x E!.= =rr==q==:r..r. :::=m"".=52*=d:d" M::"=::--M?t:- : r EW '=":.... =C '
===:===.=:
p;: = = 3 x=a; t3p 9 s x c 3=== :. - w- = 10 3 _22E*.E' :"::"d::m Et.4..ll.l: 6 :::~ =.::
- v.C
_c==. d- -r =: ~r.=- ~ . 2.:..) :f:MI*.t ;O-4; l" ll:"=":** _ d. mlAn.'".m. E..O..:.*.~::=C'.* m:::.:=n::: MO.""*J::~ :
- s. O -
. _. E.... "- 1 .~.~.... Z <.i..C$; 2
- w...e.- <mm
,?,.. ( . 3%.3 ..--..y.
- m..,.:. w....
"". :::: i u. ....a.,. .w -..u. 'agnumg:wl m m.e. ww~_ o4 g u; w.- s me. w w + .n h. SEKA.lKE'i kN;;MM.hiNeiiMa$i@gygQg; p?#tssenesotasummassausaresma3sessr t N r M m pgb gg ygggy.$pgy) M9fW pf$377gg C,g 4 ltg* (Mf.t.;g7g4 p- - air 4 $2 u, sa t " - ERML7MMy.1' WMMh(Y@~ 6G55WL-M W.WDAWM N9W-andTM- %8Bhrt - fl . Mf.Y~ v 'C: '1 ACM gggggs.,w g45*g j g, g g g m# q#fsgT 4 Kses.si:ss J c ^ ' ~ + - V u g pp A... man e* r.gf.. **.;ff % i; AMJ . ; $$dipsW
- g(W _
A ,, J4 g.m;gx., 4,3% s _EE===== _ r. - -. 4 W ~ c.ggz _. -,...2 - - :1 as=:-----------.==m=.-====.=~-
==
=::m====::= r s::$*E:=:::=T= = m: w+:. 4...- =_ _ m=E= - m-r =mc = =.. = =_=. r=:== ;== = : cE%
- I:h. ::*ttd.. ::
7= = = =- rs :t a=._= = _-.=- = :': - %.h'.g =4
- =:~5.>.=..=m=.=.:::.l:=O:w::::::==.::::.M.~=... "U:.3::
.~.. .h. *CC , w. l-a.M.
- rm._. *.'
.:.wa.*w..._ r. :.c.:.::: ".. k : 3'*.l E.0"JO '-5::** *. "**.... =c..,,=. = --
- ""**"- O"t2 M"':
10.g Z1L": MK*." 23l7E."".CO22$Mh.- e "** ""l:':::f.2b. - w w ~ .' W m+. w ~c m e. t +.,Qf a.+ N * * * *w:W; -"'N amm 4 Wye r-. wm3 ,, '," w% 4A " *: e.+ e?-w a* + > ~ + 9 M$ N.h~-*p a.my . - 9. w y, ,y .F .J - EL Mg /. ' ~w. 4 ~ q -- y, -'s a g;gt.; u,Ae.w, y%q y ~ ~# W._ t ^ :+y g, %q ? MQN .L ? ^ 'g.. T f..-a % Q Q1,u.;gy g,.fcW"qk. ' h h }M M $idNkNdO M E g w.&
- 1 g
5 M$.. -Md5Y:5Niii$MbM ,g- $N1 M A: R -.i E MM asutd.:a '.a ."t ' ' 7' R '. 4W WM " 7W* '.fi#E d ? 3 i L 7 "' W :.* p a ' ' ;.e-M $$Utl ,' r + T
- (..Ifj a
l189$" 4 .'M M2@..Q-QJf.;. 5 3 bZe% {: :=.:EMiGSQg}:r(:..E=1* ri.=M= EE?d2d:':EEE:rter:-5='=d e .=E. A : G.- iEc 5 = s m_ X :: =;:z::cx= rg.Nr
- a===== = nc.=::= -
X9arta ~:tn6In5:ETEE.22 :g =c --- n:---------5F' C= iEN[:bb r= *=****me-em=E:m.*.m' MrWm cr***I!p!I*L'*EE~:5E.- m.*W----M.. h;k=E.!!E![:5h C'On.:h.=ll.**O: Zl::"C.EhEE!k 10 5 C .J ms"~m MMM=****** a-. ......wn m-w w u en sw ww.w%.gm% autan.artWm. p %h.mEM M YA ) enhetMW.awwes n.a.T1 w h-. m v - % e 4 g a.,&.m. h. w v o K.B.Wg.4.s a t.*s*A # 7 M 4 S g iaPF.W1.slmiC4%
- w% -
"fy ~ am 4e - in% WNgerates M t W g e?,ggs.A s gp1 Ca=nsh W,.*,"7.>tf*MiyyWM. q = %.' ~ w,' WQ g :Bg@f W v j;M.3'q.S$O314 y M p;E cu 7,
- e ww
.. 3 ]gd g[ 7 M '-3Q_d {b,. y . a u ~- .E = wM Q3g's g Q M r A n.n
- n. = s n
n amma:ws a muswe% w n-wmm sumuses (n,wwtww..w.w.sg,anmunamas,awan ew,w w.w.c- -" 0 *- 2m=: V;=;= 3 w w e m.asm.saman e e w A m amma m.wr.wwannwatsmessammusAm Jama.wds& : ww.it e t.er ps MBRehrdi&MsMMGM'3LMhMttHQBEEEEEBRMWJ;imtihMgMP523 a.; EEEEEEEMMMB6M4 MMMEE'dGM 10- E S N !h kfd b b N hhb S N $ b 5 E S NN.l{l M Q HB M ! N$E$ h ~F 10 10 10 10' 5 10 1 Count Rate (cpm) i
1 i R' =- count rate per mrem /yr to the skin s Cv + (R70 x Fv x E (L; + 1.1M;) Xiv) (36) 1 = i-skin dose factor due to beta emissions from isotope i L, = (mrem /yr per pCi/m ) from Table 2.1-1. l 3 1.1 = mrem skin dose per mrad air dose air dose factor due to gamma emissions from isotope i j M, = (mradlyr per pCi/m ) from Table 2.1 1. 3 NOTEi If two simultaneous releases out of the main plant vent should occur, calculate the setpoint for each type of release and use lowest setpoint obtained. At plant startups when no grab sample analysis is available for the continuous - releases, the Alternate Methodology of Section 2.1.3 must be used. h 2.1.2 Waste Gas Decay System The permissible conditions for discharge through the waste gas - decay system m'onitor (RM A10) will be calculated in a manner similar to that for the plant vent noble gas monitor, in the' case of the waste gas system, however, the discharge flow rate is con-tinuously controllable by valve HCV 014 and permissible release conditions are therefore defined in terms of both flow rate and concentration. Whereas, RMA-10 is used only to insure that a repcesentative sample was obtained. 9 ODCM, V.C. Summer, SCE&G: Revision 12 (September 1987) 2.0 4 l I
4 . For operational convenience, (to prevent spurious alarms due to l fluctuations in background) the setpoint level will be established at 1.5 times the measured waste concentration. . The maximum permissible flow rate will be set on the same basis-but include the engineering safety factor of 0.5. The RM-A10 setpoint level 5,is defined as: 5,$_1.5c (37) where: c = count rate of the waste gas decay system monitor corresponding to the measured concentration (pCi/rni). The maximum permissible waste gas flowrate f (cc/sec) is calculated from the maximum permissible dose rates at the site boundary according to: f,5 the lesser of f,or f, (38) O-where: f, = the maximum permissible discharge rate based on total body dose rate. = 0.25 x Da /[X7/ x 1.5 E X,d K,1 (39) I f, = the maximum permissible discharge rate based on skin dose rate. = 0.25 x D / [~ /Q x 1.5 E X,o (L, + 1.1M,)] (40) X 33 i Xid = the concentration of noble gas radionuclide iin the waste gas decay tank whose contents are to be discharged, as corrected to the pressure of the discharge stream at the point of the flowrate measurement. The maximum discharge pressure as governed by the diaphragm valve, 7896, is 30 psia. O ODCM, V.C. Summer, SCE&G: Revision 12 (September 1987) 2.0 5
I NOTE: The factor of 1.5 in the denominators of equations (39) h + and (40) places f, on the same basis as 5,. ) 7 When a discharge is to be conducted, valve HCV-014 is to be opened until (a) the waste gas discharge flowrate reaches 0.9 x ~ f, or (b) the count rate of the plant vent noble gas monitor RM A3 approaches its setpoint, whichever of ths above conditions is reached first. When no discharges are being made from the Waste Gas. Decay System, the RM-A10 setpoint should be established as near background as practical to prevent spurious alarms and yet alarm 'in the event of an inadvertent release. 2.1.3 - Alternative Methodoloav for Establishina Conservative Setooints. i 2 A more conservative setpoint may be calculated to minimize requirements for adjustment of the monitor as follows: g. For a plant vent: R,' conservative count rate per mrem /yr to the total body' j = (Xe-133 detection, Kr 89 dose). 'I C,' + [X70 x K,., x X,' x F,], (41) = g where: X,' a concentration of Xe-133 chosen to be in the = operating range of the monitor on vent v, pCi/cc. C,' the count rate of the monitor on vent v corresponding- = to X,' pCi/cc of Xe-133. total body dose factor for Kr-89, the most restrictive K,,, = g isotope from Table 2.1-1. O ODCM, V.C. Summer, SCE&G: Revision 12 (September 1987) 2.0 6
l L hi EAf R,' - = count rate per mrem /yr to the skin. 1 = C,'.+ [Xl/ x (L,.,, + 1.W,,,) x X,'x F,] (42) g g V where: l,,, = skin dose factor for Kr-89, the most restrictive isotope x. from Table 2.1 1. j M,.,, = air dose factor for Kr-89, the most restrictive g isotope, from Table 2.1 1. g For the waste gas decay system: f,' the conservative maximum permissible discharge rate = based on Kr-89 total body dose rate. ~ = 0.25 x D,. + [X/Q x 1.5 x X,'x K,,,) W) 1 g > h:/mj f,' the conservative maximum permissible discharge rate = based on Kr-89 skin dose rate. 0.25 x D + [X7/ x 1.5 x X,'x Rx,,,3 + 1.1M,,,)] W) = 33 g X'= the total concentration of noble gas radionuclides in o the waste gas decay tank whose contents are to be discharged, as corrected to the pressure of the [ discharge stream at the_ point of the flow measurement. c' count rate of the waste gas decay system monitor = corresponding to X ' pCi/cc of Kr-85. g - /~T) ~ ODCM, V.C. Summer, SCE&G: Revision 12 (September 1987) 2.0 7
_.___~. O TABLE 2.1-1 DOSE FACTORS FOR EXPOSURE TO A SEMI INFINITE CLOUD OF NOBLE GASES,* f Nuclide y Bodv* * * (K) 0-Skin * * *(L) y-Air * *(M) ' D-Air * *(N) Kr 85m 1.17E + 03 * * *
- 1.46E + 03 1.23E + 03 1.97E + 03 Kr-85 1.61 E + 01 1.34E + 03 1.72E + 01 1.95E + 03 Kr-87 5.92E + 03 9.73E + 03 6.17E + 03 1.03E + 04 l
Kr-88 1.47E + 04 2.37E + 03 1.52E + 04 2.93E + 03 Kr-89 1.66E + 04 - 1.01 E + 04 1.73E + 04 1.06E + 04 Kr 90 1.56E + 04 7.29E + 03 1.63E + 04 7.83E + 03 Xe-131m 9.15E + 01 4.76E + 02 1.56E + 02 1.11E + 03 Xe 133m 2.51E + 02 9.94E + 02 3.27E + 02 1.48E + 03 Xe-133 2.94E + O2 3.06E + 02 3.53E + 02 1.05E + 03 Xe-135m 3.12E + 03 7.11E + 02 3.36E + 03 7.39E + O2 i Xe-135 1.81 E + 03 1.86E + 03 1.92E + 03 2.46E + 03 Xe-137 1.42E + 03 1.22E + 04 1.51E + 03 1.27E + 04 Xe-138 8.83E + 03 4.13E + 03 9.21E + 03 4.75E + 03 Ar-41 8.84E + 03 2.69E + 03 9.30E + 03 3.28E + 03 l l l' L
- Values taken from Reference 3, Table B 1
- mrad m3 pCi-yr
- *
- mrem m3 L
pCi-yr.
- * *
- 1.17E + 03 = 1.17 x 103 L
l O ODCM, V.C. Summer, SCE&G: Revision 12 (September 1987) l. 2.0-8 L l
r; ?y O 2.2 Gaseous Effluent Dose Calculations 2.2.1 Unrestricted Area Boundary Dose 2.2.1.a For the purpose of implementation of section 3.11.2.1a of the Technical Specifications, the dose at the unrestricted area boundary due to noble gases shall be calculated as follows: current total body dose rate (mrem /yr) D, = X3 p K,Q, (45) = i current skin dose rate (mrem /yr) D, = 77Q p (L, + 1.1M,) Q, (46) = I where: O the release rate of noble gas radionuclide i as Q = determined from the concentration measured in the analysis of the-appropriate sample required by Radiological Effluent Technical Specification Table 4.11-2 (pCi/sec ). X7/ the highest annual average relative concen- = tration in any sector, at the site boundary (for value, see Section 2.1.1). 2.2.1.b Organ doses due to radioiodines and all radioactive materials in particulate form and~ radionuclides (other than noble gases) with half lives greater than eight days, will be calculated for the purpose of implementation of Technical Specification section 3.11.2.1.b as follows: current organ dose rate (mrem /yr) D, = O ODCM, V.C. Summer, SCE&G: Revision 12 (September 1987) 2.0-9
4 I l i = E X7/ P, (47) - i where: I ~ X/O = the highest annual average relative concentration in any sector, at the site boundary (for value, see Section 2.1.1) P, dose parameter for radionuclide i, (mrem /yr per = 3 pCi/m ) for inhalation, from Table 2.2-1. 4 6,' = the release rate of non-noble gas radionuclide i as determined--from the concentrations i measured in the analysis of the appropriate: l sample required-by Radiological Effluent Technical Specification Table 4.11-2 (pCi/sec). p og .2.2.2 Unrestricted Area Dose to Individual i i 2.2.2.a For the purpose of sections 3.11.2.2 and 3.11.2.4 of the Technical Specifications, the air dose in unrestricted areas shall be determined as follows: I i Dy air dose due to gamma emissions from noble gas = radionuclide i(mrad) u 3.17 x 10 8 E M, X/Q Q, (48) = i where: 3.17 x 10-8 = the fraction of one year per one second cumulative release of noble gas radionuclide i = over the period of interest (pCi). O ODCM, V.C. Summer, SCE&G: Revision 12 (September 1987) 2.0 10
i 1 s O air due to. beta emissions from noble gas Dp = radionuclide i (mrad). 3.17 x '10 8 E N, Xl/ $, (49) = i where: g air dose factor due to beta emissions from noble N, _ = 3 gas radionuclide I (mradlyr per pCi/m ) from Table 2.1 1, 2.2.2.b ' Dose to an individual from radioiodines and radioactive materials in particulate form and radionuclides (other than . noble gases), with half lives greater than eight (8) days will be calculated for the purpose of implementation of section 3.11.2.3 of the Technical Specifications as follows: dose to an individual from radioiodines and D, = radionuclides in particulate form, with half-lives greater than eight days (mrem) 3.17 x 10 8 E R,j W '$,', (50) = y q where: W,3'= relative concentration or relative deposition for the maximum exposed individual, as appropriate for exposure pathway j and radionuclide i. Xl/ ' for inhalation and all tritium pathways 2.2 x 10 6 sec/m3 = = < 6TQ' for other pathways and non tritium radio-i nuclides = 8.4 x 10 9 m2 s O ODCM, V.C. Summer, SCE&G: Revision 12 (September 1987) 2.0 11
1 (See the notes to Table 2.2 7 and 2.2-8 for the origin of [ l these factors.) R,j dose factor for radionuclide i and pathway J. = (mrem /yr per pCi/m3) or (m2 mrem /yr per l-pCi/sec) from Table 2.2 2. f = Cumulative release of non noble gas radionuclide i (required by Technical Specification 3.11.2.3) over the period of interest (pCi). 2.2.2.c For the purpose of initial assessments of the impact of unplanned gaseous releases required by Section 6.9.1.13 of the RETS, dose calculations for the critical receptor in each affected sector may be performed using the above equations as follows. For each location, X/Q' and D/Q' will be calculated according to the methods of Section 2.3 of i this ODCM, using the measured meteoro!ogical parameters for the period of the unplanned release. The location of the critical receptors and the pathways j which should be l analyzed for each are shown in Table 2.2 7. (For very rough calculations, the annual average R70 and 570 for each receptor are shown in Table 2.2 8.) The R,, for the ) appropriate exposure pathways and age groups will be selected from Tables 2.2 3 through 2.2 6. 1 9' ODCM, V.C. Summer, SCE&G: Revision 12 (September 1987) 2.0 12
L i A" i ): . Table 2.2-1 [ p. PATH @Y OOSE FACTORS FOR SECTION 2.2,1.b (P )* I' 'N4 ' g Page 1 of 3 AGE GROUP ( CHILD ) I ISOTOPEI INHALATI .....................ON 1 lH-3 1 1.125E+0 .........._.........3 l' IC-14 1 3.589E+04 1 ........................I INA-24 1 1.610E+04 I iP 35~~~~i"~5I505E+55~~ 2 ___.............. __...i ICR-51 1 1.698E+04 .......................1 o IMN-54 1 1.576E+06 ....__.................i IMN-56 1 1.232E+0 ..........__....... 5 I IFE-55 l 1.iiOE+05 ........................I IFE-59 1 1.269E+06 ........................I 1C0-58 l 1.iO6E+06 r ........................I ICD-60 1 7.067E+06 i INI-63 1 8.214E+05 .......................1 t l INI-65 I 8.399E+04 I l ICU-64 1 3.670E+04 \\ ........................I 12N-65 I 9.953E+05 I L IZN-69 l 1.018E+04 I IBR 83 1 4.736E+02 l .........I '.IBR-84 1 5.476E+02 I IBR 85 1 2.531E+0i ____....................I l 1RB-86 1 1.983E+0 ................... 5 I IRB-88 I 5.624E+02 .......................I IRB-89 1 3.452E+02 I ISR-89 1 2.157E+06 I ISR-90 1 1.010E+08 .................___...i L ISR-91 1 1.739E+05 i - See note, page 2.0-16 i 3 Units. mrem /yr per uCi/m 0004, V.C. Samar, SCtandGL Revision 12 (September 198J) 2.0-Q
Table 2.21 (Continued) / PATHWAY 00SE FACTORS FOR SECTION 2.2.1.b (P ) g Page 2 of 3 ACE GROUP ( CHILD ) i'55bT6Pki'~5555LET56h'i ISR-92 1 2.424E+05 I i lY-90 1 2.679E+05 I lY-91M i 2.812E+0 ......__...____.... 3 I 1f-91 l 2.627E+0 ................... 6 I lY-92 1 2.390E+05 I lY-93 1 3.885E+05 I IZR-95 1 2.231E+06 .........___............I 12R-97 1 3.511E+05 I INB-95 I 6.142E+05 I is6~ii"~~I~~i~3iii'Oi~~ ....... _____...... __ I ITC-99M i 4.810E+03 I ITC-101 1 5.846E+02 I IRU-103 I 6.623E+05 ....___________.........I IRU 105 I 9.953E+04 i IRU-106 1 1.432E+07 I IAG tiOM i 5.476E+06 1 ITE 125M i 4.773E+05 I ITE-127M i 1.480E+06 I ITE 127 I 5.624E+04 I ITE-129M i 1.761E+06 I ITE-129 1 2.549E+04 I ITE-131M i 3.078E+05 I ITE 131 1 2.054E+03 1 ITE 132 1 3.774E+05 I 11-130 1 1.846E+06 I i Units - mrem /yr per uCi/m OD04, V.C. Suromar, SCDmdG: Revision 12 (September 1987) 2.0-14
v t a 4 m Taole 2.2-1 (Continuea) h PATHAY DOSE FACTORS FOR SECTION 2.2.1.b (P ) f 4 4 Page 3 of 3 AGE GROUP ( CH .............-_...ILD ) 1 ISOTOPEI INHA ................LATION I !!-131 1 1.624E+07 I i 55~i35~~~i~~iI95 ~ .......______..._5E 05~~i 11-133 1 3.840 s ................__E+06 I 11-134 1 5.069E+ .....__............04 I 11 135 1 7.918E+ ..__...............05 I ICS-134 1 1.014E+ ...................06 i ICS-136 1 1.709E+ .................. 05 I ICS 137 I 9.065E+ ____...............06 i ICS 138 I 8.399E+ ___.............. 02 1 IBA-139 i 5.772E+ .__............04 I IBA-140 1 1.743 .................E+06 i IBA-141 1 2.919 l- .................E+03 t IBA-142 1 1.643 .................E+03 i ILA-140 1 2.257 ..............__.E+05 l ILA-142 1 7.585 L ......E+04 I tCE-141 1 5.439 .....E+05 I ICE-143 1 1.273E+ ......__.......__..05 I ICE-144 1 1.195E+ ...................07 I IPR 143 1 4.329 ........_....E+05 I IPR-144 i 't.565E+03 ...___..................i IND-147 1 3.282E+0 ................____5 I IW-187 l 9.iO2E+04 ...__....__............1 INP 239 I 6.401E+04 1 ( Units - mrem /yr per vCi/m3 l opcN, V.C. Sener, SCEandG: Revision 12(Seretmber1987)
t NOTE: ~ The P, values of Table 2.2-1 were calculated according to the methods of h Reference 1, Section 5.2.1, for children. The values used for the various parameters and the origins of those values are given below in Table 2.2 9 and its notes. B 1 e: I O ODCM, V. C, Summer, SCEandG: Revision 12 (September,1987) 2.0 16 m--% ,e- -.-e>- r w p9 y ,- q eew-+,g w 95m+-e+--- y
m i Table 2.2-2 PATHWAY DOSE FACTORS FOR SECTION 2.2.2.b (R )* g (For Dose Calculations Required by TS 3.11.2.3) Page 1 of 3 AGE GROUP ( CHILD ) ( N.A. ) ( CHILD ) l ISOTOPEI INHALATION I GROUND PLANEl VEGETATION I lH 3 1 1.125E+03 I 0.000E+00 l 3.627E+03 I IC-14 1 3.589E+04 1 0.000E+00 1 8.894E+08 i ___-24 l 1.610E+04 i 1.385E+07 I 3.729E+05 I INA .._-32 l 2.605E+06 I 0.000E+00 l 3.366E+09 I IP ICR 51 1 1.698E+04 1 5.506E+06 1 6.213E+06 I IMN-54 1 1.576E+06 I 1.625E+09 I 6.648E+08 i INN 56 1 1.232E+05 I i,068E+06 1 2.723E+03 1 ___-55 l 1.iiOE+05 l 0.000E+00 1 8.012E+08 l IFE IFE-59 1 1.269E+06 1 3.204E+08 i 6.693E+08 i ____-58 1 1.106E+06 1 4.464E+08 1 3.771E+08 i ICO ICD 60 I 7.067E+06 1 2.532E+10 l 2.095E+09 i INI-63 1 8.214E+05 1 0.000E+00 l 3.949E+10 1 INI-65 1 8.399E+04 1 3.451E+05 l 1.2iiE+03 I ICU ..._-64 1 3.670E+04 I 6.876E+05 I 5.159E+05 I IZN-65 l. 9.953E+05 I 8.583E+08 i 2.164E+09 I IZN-69 1 1.018E+04 1 0.000E+00 I 9.993E-04 I _............__...._-_'7.079E+03 I 5.369E+00 I ____-83 IBR 1 4.736E+02 I IBR 84 1 5.476E+02 1 2.363E+05 l 3.822E-ii I .__-85 1 2.531E+0i I 0.000E+00 1 0.000E+00 I IBR IRB 86 1 1.983E+05 1 1.035E+07 I 4.584E+08 i IRB 88 I 5.624E+02 l 3.779E+04 I 4.374E 22 i IRB-89 I 3.452E+02 l 1.452E+05 I i.642E-26 I ISR-89 8 2.157E+06 1 2.509E+04 1 3.593E+10 t ISR 90 l 1.010E+08 1 0.000E+00 I 1.243E+12 I ISR-91 1 1.739E+05 1 2.511E+06 1 1.157E+06 I See note, page 2.0-31 Units: inhalation and all tritium - mrem /yr per uCi/m3 i 2. mrem /vr oer uCi/sec Others -m 0D04, V.C. Sumar, ScamdG: RevisionIp (SeDteMer 1987) 2.0 W
I 1 Table 2.2-2 (Continued) { PATHWAY DOSE FACTORS FOR SECTION 2.2.2.b (R ) g Page 2 of 3 I AGE GROUP ( CHILD ) ) ( CHILD I __.............___.........(__N.A.....___......._______)_. i ISOTOPEI INHALATION 1 VEGETATI .__..................___. GROUND PLANEl........_____........._ON l ISR-92 1 2.424E+05 I l 1.378E+04 ____......_____......__8.631E+05____...__....._____....__I i lY-90 1 2.679E+05 1 I 6.569E+07 .........5.308E+03.___..__.........____....I i lY-91M i 2.812E+03 ...._____________......1 1.161E+05 l 1.737 .....______..________E_.05 I lY-91 1 2.627E+06 ......._____.1 1.207E+06 1 _____...______2.484E+09 I '_tY-92 1 2.390E+05 1 1 4.576E+04 _ _.....__.......__.....2.142E+05._____..............__...I lY-93 1 3.885E+05 ........__..............1 2.534E+05 1 4.482E+0 ....________........_.. 6 I lIR-95 1 2.231E+06 .___............I 2.837E+08 1 8.843E+0 .............8 i IIR-97 1 3.511E+05 ...-_.......1 3.445E+06 i *i.248E+0 .......__.....7 I INB 95 1 6.142E+05 1 1 2.949E+08 _____-.._-__....__........1.605E+08......__................1 IMO-99 1 1.354E+05 1 1 1.647E+07 ....______..............4.626E+06..___...................I ITC 99M i 4.810E+03 1 l 5.255E+0 ______....____........... 2.109E+05..__......._.........3 I I ITC-101 1 5.846E+02 1 1 4.123E-29 .................__..__..__2.277E+04.........................I I IRUliO3 1 6.623E+0 __............... 5 l 1.265E+08 1 3 .............__...... 97tE+08-I IRU-105 I 9.953E+04 ....____......____....__I 7,212E+05 1 5.981 _........._..........E+04 I IRU 106 1 1.432E+07 .__.............__.___1 5.049E+08 I i.iS9E+1 _......................_0 t IAG-110M l 5.476E+06 .._____1 4.019E+09 1 2.581E+09 _........................I ITE-125M l 4.773E+05 .__.._____......._______1 2.128E+06 1 3.506E+0 __..._...__________...___8 i ITE-127M i 1.480E+06 1 ...... ___.......____. ___1.083E+05 1 3.769E+09 i ITE-127 I 5.624E+04 I ...... ___._... ___....__3.293E+03 l-3.903E+05 i ITE 129M i 1.761E+06 1 .___.............___...____2.305E+07 1 2.460E+09 I ITE-129 1 2.549E+04 1 3
__..................... 076E+04 L
7.204E 02 i r ITE 131M i 3.078E+05 l 9 .._.....__................ 459E+06 1 2.163E+07 I ITE-131 1 2.054E+03 1 __....... _-_.._..._..... 3.450E+07 1 1.349E-14 i ITE 132 1 3.774E+05 1 _ _ _ _ _ _....... _ _ _.._ _...... _4. 9 6 8 E + 0 61 3.iiiE+07 i 11 130 1 1.846E+06 1 _____.......__...___....6.692E+06 1 1.370E+08 I Units: Inhalation - mrem /yr per pCi/m 2. mrem /yr per uCi/sec Others -m 1 l ODCM, V.C. Sanner, SCEmlG: Revision 12_ (SeptembGf_1987L _ _ ._. _. 2. 0g__
f[ Table 2.2-2 (Continued) PATHWAY DOSE FACTORS FOR SECTION 2.2.2.b (R ) 1 s Page 3 of 3 AGE GROUP ( CHILD _..__---__........__..)..___(_.N.A. ) ( CHILD ) I ISOTOPEl INHALATION 3 __IGROUND PLANEl..... ______.....____ATION I VECET 11 131 1 1.624E+ 4 _.....07 1 2.089E+07 1 . ____...__ _....___4.754E+10 t I 11-132 1 1.935E+ ...___.............05 l 1.452E+06 1 ..........____.... 7.314E+03 1 11-133 1 3.848E+06 ...............__...____1 2.981E+06 I 8.ii3E+0 4 ...._____.........______8__ _ _ - 11-134 1 5.069E+04 ......____......__1 5.305E+05 1 6.622E- ___...............___..03 i 11-135 1 7.918E+05 1 I 9.973E+06 ...............2.947E+06...__...___.___..._____I ICS-134 1 1.014E+06 ....______.......__.I 8.007E+09 1 ..________.... 2.631E+10 1 ICS-136 1 1.709E+05 _..___....1 1.702E+08 1 2.247E+0 .__.....................8 l ICS-137 l 9.065E+05 r ..........______...__.1 1.201E+10 1 2.392E+1 ..0 t ICS-138 I 8.399E+02 -.............___......l 4.102E+05 I 9.133E-ti i IBA-139 I 5.772E+04 ........ _............1 1.194E+0S I 2.950E+00 1 ....__.......___..........1 IBA-140 1 1.743E+06 ...................... 1 2.346E+07 1 2.767E+0 .__................... 8 i IBA-141 1 2.919E+03 ..............___......1 4.734E*04 l 1.605E-21 ......__.................._I IBA-142,1 1.643E+03 ......1 5.064E+04 1 .............._394.105E ____I ILA-140 1 2.257E+05 .......______.......____1 2.180E+07 1 3.166E+07 _..................._____...i 1 ILA 142 l 7.585E+04 ______..__'_..........1 8.886E+05 l 1.582E+0i ............________.......i g ICE 141 1 .5.439E+05 _...............____1 1.540E+07 1 4.082E+08 ................... __ __...i ICE 143 1 1.273E+05 1 _____........--_....._-_.._2.627E+06 1 1.364E+07 I ICE-144 1 1.195E+07 .....____I 8.032E+07 1 1.039E+10 t IPR-143 1 4.329E+05 __.-____......_........1 0.000E+00 1 1.575E+08 ____.....I IPR-144 1 1.565E+03 1 ...._____.........._2.ii2E+03 1 3.829E-23 I IND-147 1 3.282E+05 l 1 ..........--____.___...._1.009E+07 I 9.197E+07 I l L IW 187 I 9.iO2E+04 1 __ ___...____...... _...._2.740E+06 1 5.380E+06 I t INP 239 I 6.401E+04 1 ...___....____............_1.976E+06 1 1.357E+07 I Units: Inhalation - mrem /yr per uCi/m 2. mrem /yr per uCi/sec Others -m l ODN, V.C. Surmer, SCEandG: Revision 12 (September 1987) 2.0-19
i Table 2,2-3 PATHMY DOSE FACTORS FOR SECTION 2+2.2.c (R )* l g i (For Dose Calculations Required by TS 6.9.1+13) Page 1 of 3 j i ? I i i e b 694..tt.0W.......t.. int mo.e.t..t. ..I.u 6 t.....(.. tat.a.n.t..t. ..t..t est.na.s.t..i... t..t e.st.e.m.t..t.....t t e.st.a.a.et t. t..t e.eP.a.s.t. a.. .I..I.Se.t e.tt.e...t.we.ent.a.t.i.tu..i Ste.un.t.Pl.aut.t.ge t../CSu./M.ILt..l.te t/.tSu./s.et.et.t.S.e.t./t.t.es/n8L.a..l.e.t.t./.S.e..ti.n.t w.t.e.t.t.a.t.it.u. a .I M.3 1..D.. s..'.. 0 .it......... 6 4 6.i. e.lt...t..4 0 0 0t.+ 44.1
- 3. 4.%.?.t.e l.l... 4 0 0 4 48 00 8..I..l.l.?.z.II
.I. t 6 0 9t.* 4 0..s. 4 4 4 4t.* 44. 0 .44 I 3.646tett t 6 000t.+.00 .I..t 340t.+09..I...I etet..+00..0 0 8 09.t.+ 00... 4 0 0 0 0t..* t.t..I .t 0 0 0t.+0.e 0 .th.e.................... te I t.956t+44 0 4 309t.+4.?...4 n $.4.tt.ee.t....t 4 tt.tt.eet. .t. 3 34 64. 3.?....I. 4 e.t.tt.eet..t. 4 00 0t+0e...t .st.........................
- 33... 6. 3 0 30t..*.66.. 6..6 4 4 0t.+.64.I t 64 8t..e.t.t...t..4 4 66t.644 4..? tt.t.t..+.00....t. 4 699t.e tt
.I .c 000t.+44 0 088. 48...8..8 tt..et..e.t.e.i S S.t6t.+.66 8 4 ?.ttt.e.t6. 6 6 e ttt et.e...I...t ?.t98.+.4%...4 6 000t..+.44. 4 4 44.6t.ett t .e lit.e.*te t 9.9964*tt I l 6t.et..+44. 6 3 tt.et..*.t.?...I. 4 0.0 08..+.44 I...t 110.t..et.? .I. 4 St et.*.00
- 8. 0 000t+04..0
..In.n................. 66 .0. 7 5 60.t..+.444 4 464.t*.4 I
- t. 968.t.+44....l 4 tt.tt..*66.4..4 ttt.t..ett....i 4 00 64.+.00 8. 4 000$*tt t
.I F.t..* t.t...t. 4 6 9.et..+.4 4 4 4.440t+44 L .l 34..tt+.tt. 6 4 4004. 00 .t 4 439t..e t.?...I 9 000t..+.04. 4 6 ett.l.e.tt t .IF.t. 99.. 0..1 6.t M...*.4.. 8 8 80.et.+00.l 3 919.t..*.00 .I e. 00tt.eet..t 3 304t.*09 1..4 000t.+.00. 4 l 4 000t+44 I .nt.e. 40.... 4..?. ??..tt.e.tt....I..w. 46..et..+.09 4 6 995t..*.07..1..6 ettt..+.00
- 0. 0. 0844.+44. 4. 4 0 04t+.00.t 9 00 0t.*00 4
1 I t 140. 64....e..4 tte.t.+.46.. 0
- 4. S.ta.t+10.4
- 4. 499.t*tt....t 4 tt.tt..+44 6 ? h t?.t..*.09
.I 4 0000+44 4 t ... -. - 4.040t+00 .th..l 64...I..3 300.t..e.el...8 4 644t+.44. 6 3 499t.*.tt..4..4 4998..+0.D.l..6 s.t..it..e.lt...t 4.000t+44. 1 4 t 6 000t*00 .t h..l.4% 0 $.488t+64 6 3 45.4 t.+44...8 3 tt.tt*.t.t...t. 6 464t.+44 4..4 tttt..*. l.490.t..e.t e...i 6 076t.+86 1 3 00 7t+66..1..4 000t..+48. I f 9348..tt .I...t 640E+00 8 4 000.t*00 .st.u................... t i 64 I 4. 1 0 000$.*.t.t. I 4.000t*00 I .t3m.......65...I. 6 e60.t..+4%.. I 4 4434.*04 4 6 94.4t.+44. 4. 4 lt.tle.tt
- t. 5 8604.+.04
- 4. 4 000t.+00.... ~.t6 0048.*.00.
8 ( .t.tu 69.. 4..1 3ta.t..e.64. 4..6 4 4 0t.+44. 8 3 SS.5t*.t9 4..4 9408..+.44 0 4 t.ttt.+.44 8 4 000t..+00.~.8 4 e.t tt+n I 484. 43 6 8 000.t.+.4 9.6 f t?.9.t.+.03.1 0 339.t. 9.% 6..4 s.t.et..+.64 4 6 s.t.ete.c.t...t 6 000t.+44 .I t 999t*00 t 604.........04... 8 4 49et..e.c.t .I .t 36.3t..+49 I t.tt.e.t at .t..4 s.t.et.eet...t..0 6668.+.00 .I. 6.600t.+.06 I c 0068+00 4 .Itt. M......i
- t. 44eE.+44. 0. 4 400t.*.tt...t t. lt.e.t.et.t.
.t..4 t.tet.+0 1 4344401
- 4. 8 334t..e.t.t
.t 6 404t. 4 4..4 tt.et.t.et .t 4 000$.*.00. .t 6 040t+00 0 400. 06 4 1.944t+44 8 00..4 8 St.*.t.el.t. .t 4 0 00t.+64 4 0 000.t.*00 8 689....................... . 00....0..S. l.?.tt..eet....i 3 ??9.t..+44 4...t tt et.*.44... 4..4 4 96t..*4 4.. 4. 9 900t.*.t.t.. 8..0 999t..e.te. i 9 9008+49 0 6 0 9 99...1..3 2 6 6t.e.t t. I...l elat.+ 05...4 4 6934. 43 4 0 S.t.et..+.04..8 9 I.t9.E..*04
- 1. 0 ttttee.t t..4 0468.*40
.t 194. 99 8 4.436t+46 1 3 6098..*04 -.6 8 fl.e.t.e.t.e...t..3 et..et..eet...t 4 004t.+.99...4. 4 st.et..+00. 1. 0 000t..ett .t 190.. 90 4 4.6tet+47 0
- 0. 4 4t+44 4
4 t..tu.o.t.t. t 3 330t+.44
- 4. 4 33_0t*40..0 0 046t+00
.t 0 000t..*.0 _0 .it........................ 0 ...n... .i. 7 n t.+.0..i. ~3.n it.+46 3.n u+.0S. .I 4 000t..+44 i 4.0006. 00...t. 0 00.n+00 i i t.tt.u. o. z (PAstuat) (PAsnet) (rtro) (PAstvat) F 1 1 1 -l See notet page 200-32 Units: Inhalation and all tritium 3 mrem /yr per vCi/m Other pathways for all other radionuclides - m mrem /yr per vCi/sec ODN, V.C+ Stenar, SCEandG: Revision 12 (September 1987) 2.0-20
J 4 1 Table. 2.2-3 (Continued) PATHAY DOSE FACTORS FOR SECTION 2.2.2.c (R )* ) g f' Page 2 of 3
- $x l
1 l . 6...i.n..v. iw, i i.s.i n. i u ov......i.... tw.., i.....e..i w.a.r..i ...e..i w.a.t...i.. .i..i w a.n.t..i.....e..i w.a.t..i.. .i.in.. n n inicuinu e n.<curas.t n.<comiui u.<nt<=a.ti uutatin i m........................... ... ~... .......i... :... .,,.................. ::.. i..................................... i................. i ..e,...... .......i..s . ~........... ~... ...: i ..,in.... i i. _is. ..............i..... ....... - ~....... ............i.. i.. . ~... ..................i. :... _.......... m... t ..... ~. ... ~... .................i............ e..... _i. i............i.. ...i i,,....i.i........ _. .i ..... i 1 ~....... ........i ... ~. ..........,................i.....,... .i..., i........ ..n i .n. n.n....i...i o. n. n,i.. n.as. n i. .n.s..n.. i. i u.n_.n_ _ _ _ sais..e ...ne..n. .i... _. n..s n._. s... ..... i _. n.n.n. i....... .ite..........~.n.a....i.. o_n........i s n.n. i i .ne.....n...i..._..... ..n i i.nu.n .n u..n.. . n. s..n . _..an...n.i. .o. ...i u..n n i .i c..i.n....i.... u.n... i _. n.u n i. .n..u. n_ i. .n.s..n... _i._. u.n.. n i .in.v..i n....i...s n.u. n..i.i s.a.s..n i i n.u.. __ i.,. n.......i._..nu..o i. u.n. n - .v.. .n.s n__i v i .i. v...i n....i.......... .......i. n..u_ n. _ 3 _.n..u..n_ .........i, ... n..n........... ._..n u.... . n.u.n i.. n n.n. ............ i i..... _.. ........i.................... .i ..s........i..i is.a..., ............... _i 3....., ....................... i - (~%. .i.n. .u..a...i. 3 u.n. n. i... u.n...,.......i. i.n..e.... .e.. ............ i .u.n. s .i t.e...i n.a..i.....n.e..n....i .: u.n.. n.. n i ....a. n. i...i,n.s. n i.. u..n. n....i..... n.. n u ..i nt.a...i...s s.i st.. __..,s.,......... ......i.. _... . i.i. 3.. i .. ~...i. 3. n. n.. .n... .i t.s...n.....i.. n o..... .n.s.. ....n..i _..n.u..n. .i..u..,n..n.. i.................... i in ... n.. a o.n.......i...: 3..is..,..... ...., i........ .i n..ie.a...i...i...... ........n.. .i.r.. s...,..n n..... .u... .n....i..3 n.u....__.i o..n n i.. _ ..in i n.i .n... .i n.......... .i.,s ..ia..i..i n.n.. n. .i.....n..e. n....i... r.e.n... n.....i.........................................................i. i o.n..o....i...n. s..n....i. ~...n.e..n..i .n. ....u... ............, i ..i n..i n.i...i...i n....i..s. i.e. _. : .s. .i i .n_u..............~ .n...i.n.. .i...i u.n.. ...u... ...n _.n...... .3. n .............i _i...is..n_n..... o.n. n i .n.e n n.. i... u.... (PAswat) (PAswat) (rtto) (PAswat) 3 (3 Units: Inhalation and all tritium - mrem /yr per u Ci/m V Other pathways for all other radionuclides - m2
- mrem /yr per uCi/sec OD04, V.C. Sumer, SCEttdG: Revision 12(September 1987) 2.0-21
i L Table 2.2-3 (Continued) t PATHWAY 00SE FACTORS FOR SECTION 2.2.2.c (R )* g Page 3 of 3 ..c.a..s.e.e,......e..iw, i.........i G Duas eL .i.....i.:=.r. n.,..i.. ~i.s.w.., i...i ~tw.=.,.i _.i..tw , i i sw - * ~ ~ - ~ ~.t..i.. .i..s.ee..t 0.,.s.i... ... ~. ..u..L a. t : DN Lei ese/cDii/ns.fi tee /c0w/ Rite s Ces/CCt/ht..f.i. V N mai tee /c0W/M i..............,........................................,....................... ~...i.C 1.f.l.0m ie. see .i.i. i s i i e, i n... c.., i s.esic.se i... s... i i s.
- t. e....i..
.i.i...........3 is..... _....................... ......... i..s.e.t........e. i t e.e.t... is:. ....i................... ~.ee i..eese.ee i ee i. ...s... i .s ...t...... ins. ....i s sesc......i...its..ee...i......... ~.....,,~.t.............. - 5.........i.~s., e..i a.... .. e.s.........i..i...... -.....ee.. i.e.eeet. e._ i ..... ~. i .i is. .... e ....es t ..i.....ee.t e...i ........ e...i..............i i .s .i.i.......... .ic.sisi. ..i.....se.t.s....i .n.,..... _.....,.. ~...t. ..t.......,..... i .i.... . ec. e . eets....i...... _.... i i e,e.et...... is. i v.eest.., i es.. .ic.e...................... u. i,.,se. _e,.- ..ts. e i is... ie i .ee i ie i .. i..i .u..u. e...i t.e.rs....... .ic.e.is. .....i.. ..i.s. n u.. n i i. s.e i ....ee... -.. sees.ee -i .i t.s..i s, s tie.s. .s ...s..e...ietese. i._..is..tse.i .e _...on_ ee i n.ee.a.ie i .... i...e.es..ee i ... i .i.isc... .. _ee.i _..... _..e. ........ i .....es.ee ise i .....i ie..a es i _:.seet_-sa. i........ -.......... .u....,....... .i e...i a.....i..s. n.u..... es i . e.t..a.es.i n ..,...i......._. i s.ies.ee- -- .....s ....a... .. es.. e i ....es. .io...i e...i...i3,.t....,... .....i.~.n s i . s.een... i. s..es i .i.. i .........ee i i i.s..a.. :........i..,ses.. i .i 3 s.si... i .....a.eei .... i .io........... ..e .... es..ee _ i... :.........i..s. ....e..... ~..... i .it..i.: i .....s........i........_..i..............i........ -.. i ..e ... i es i s .o....i..s e.et e.,...i...s ne.es es..i.. .it...................i...s n u......... ..es .i....u. a.... .n.....i...n.e.s.. i.. 3.is. .. u..t...u.i....i.e. .i c.c........... ....u... u i u.ee .u..i. u_u.. _o .i c.t..i s...i..s t..s..es...i...s s. es..,. i i i ...e i v..,.... i si e.....i ..... _....es....i. ....es... n e,...s. s eses.... i.: i i.i.ac.es i e,...i .i i.nes.......... ...e. ..s......i....... ........i...... i.......:.... e i s3 3 3,.c i. .ict..................... i.. i ....es... i ........ o. .i..3 v. vie..e, i .i............................i... 3 .c..es.....................s. ,.e.st..ee i. ....i.................. ..... i .........es... .e. .... e.s.... i .ies.i.: ....eees...... .s i ....i........_ 3 sa.et.... i...a i.isc............. ....... i . i .i............c...: e i s.sv.it..e i ee i .....i.........i...........,. s sees.. n.s.. es i.............. ..e. i. ~....... s.,se. ..........t.... ..... e....i...... t... _. . i....i...i... n.v.....,.. ..e. .i v....i., .t.... e i v......... i 3 .i..t e.,........ ... :.......e. it.... i .. 3.,... . 3.,$..t.. .....i i ........ i .. i .......i........i......... i.. ..s.,. .s.ic........................................ s.e.ec.. .......i _i....... i......... ....... e.._i..... ......e. i (Putuu) (Putvu) (rtto) (PuTuu) Units: Inhalation and all tritium 3 - mrem /yr per uCi/m h Other pathways for all other radionuclides - m
- mrem /yr per uCi/sec 0004, V.C. Sumer, SCEaudG: Revision 12 (Seotembe'r 1987) 2.0-22 o
e 0 t iegta 2*2-t dY1HM 0053 3VD08S 30B S3D!0N 2* 2* 2* 3 )VN* - Q )308 0osa etontenous 84bn48P 941S 9*6'I*Ig( t d95e I oj g ..n..n....... .n. n. n....i.....i...n.,.... .m ...i..i.m m n n.n.. u s i m u n....i.....i..m...c....i.....i.. s n... i.... i..i.u..c....i.....i. m..n....i.. .i ua.ue .w ne nn m u.. n m ........................................... n. i ...u..a.n......i..., i n...i. n...u. a..i.n.i..u...n. u. ........i....r..............i.............i.i..s.......i.....i.i...........i...i. s.i... .e...is........ i.i..... 43...... i.. a. .r.........i.i...i......i .i.r..i... i si... .4 .....i...i.r..i r..s 4 i........., ......i.....4........... ....4..................... .i..e..r.o........i......i 4 44... 4........i...i.s.e..i s...4. ..i... i i. i .ie i s... ........................................................i.i...... ... i ...............................,........,..........i..,. ....i....i...i.r..._.. ..s ..i.........r.....i......... ,.i... i......i.....i i....... v..>..... .......i..,i............. ...... i . i4ec.......i i
- 43. 4 i
.iis... i i ici..s i iri....... ..........,4......i...............i. 3.............i ...i............i.........ici............ ti s..i ..e 4 ..is i .s i. 433... i .4 i i. e . 4..i..,r..i...v.si. i ...........i...i........ i ...... i eresa.... e cc.i... i i 4. ... i 4.......4 i 4........ ..n......i...i.w.,43... n.n..... w n. u.. i w n. n....i w n.......i...i.w..n..... .i .i.c.i.n.. u. i....w....... .u .o n.. r,33..n....i n.. . w n.n....i .i.w..n.. n....... 33.. 4.i....... r.e.i.i.. 4....i ...n.....i....w...n. u... w n...
- i..
. n...i. u..s.. .r..u.. n..i ..i..n.....,... w u... i i wu.u i i wu.n i, e ni.n i. ......nwn.. .n 4 n .:...........r.e..u.......,................................r.. i w n......i...i.r..i.u.......i i.n. rtn.u i r n... i ir.n.n i 4e.a.u i ...................................................... i ..v.i.u....i n i .u ir.is.ie i i...... i ....... i i....... i ar...... ) .n... .............. i irec........i.... ..... 3.... ..u.... .........i....c..:n........i..,.e.,....n....i,...u........i... n......i
- c.... n..i. i.r.,.n...u... i..r.,....... i
.n t ..n .n u.n .n. u.n s .....4,... i c.... i ....i. : i........ ....i.......... ..e.n.i...i.i i 4 ........i....s.c..ii................ _ ...............,3............,. i..ci i.. ..r.. 4... i .......i .:.. 4.......... ss . i ii.... .4 ........i .... i....................................
- 44...........i 4.c...............i
....r.i.u.. ..i..,.i.c..in...n.................. ...c. n..... 3..... i ........ i iv.n.n i .i n.n e ........i....r.i.n... n.. i .n c.n.n i e.u.n r...... i....i...................,....................................... ...i...a.r..s.4.3....i... .o....u.....i...i.c..i.n...n..i..... is.i... .i....4.c. ... 4. 4..i...e.r.. 3..i.e...i 4.... i.n.. ..u. n i ir n. n... uu ir.n.n i .a n u n i : n. n.......n..i r n.n .i ren..n i,i.c..n.u...i u n.n e i_riu..n..i .i.. n.....i...i.r..cn.n n. 1 n.. i )dysuw3( )dvsuw3( )uac( )dvsuw3( - 1 l l i , soa uoga' de6a 2*0-C2 C )s nu))s: !uyttenou tup el( gpnnw - maam/AJ daJ n)g /m 01yaJ degymets joJ elt ogyaJ aeptounottpes - w2, maam/la deJ n D / sac E*0 G 0005' A'D* smmr' sosuupO: uopsiou ;12 )saatawgaJ 168l(
t f f Table 2+ 2-4 (Continued) PAT HWA Y 00 SE F A CTOR S FO R SE CT IO N 2+ 2* 2* c ( R )
- g Page 2 of 3 1
i .att.tetu.p......... 4..CM..I L. D..D.... 4..W. A ....I.....t...CH..I L.D. 8.... 4..tu..ll D. l.... 4..C.M..IL.D...l...*.1..C.M .I..l.e t..t t.e.t..t...I m.*.*4L. a.t.t 0.N...I.C 0 0.Vue.P.l. ant..i..E.t.t./t.tu./n.l L..E.I..G.e.t./t.tu. i 6 80. 98.. 8..8 4 4 4t..*.05... 4. 0 6 3.t L.*.t t....t. 4 13.4t.* 4 6
- 4. 3. 4 9tt. n.t.a..t.t..te.t./ttu./M.IL.i..l.G.e.t/.S.t.
40.
- 4. 6 466.t.*tt t 4 4948. 49 9 8 3?.t.t.et.e...t 11 94 37
.t v......1... 6 9.t.e.t t.. 4..S 3 64t.*.4 3.. 6. 9. n t..it..*.tt. i 4 t.?.*t..* 05 8..4 t?.?t...........e.t...t..6 0SSE..* 4 4.. 8. 6 S6 9t..e t t. t tin 0 3 e.l f.E..*.t 3. 4..1 L 6.6 t.el.t.. t
- 5. 199.t +.4 6 3..0 6 0 0t.*.0 4
- 0. 0 0 0 0t..*.t.t.. I....t 044tott...I..1 73?t.*.tt 1
89...... 9 4.....e. 3. 6.t..?t..* 06...4...t t.e.tt.el6...iS. 4 99.t.*.4 6..4. 8 44 6t..e.tt..I..6 4 6.tt..e tt....t..8 006t..*.4?....I. t 404t..* 49 4 39 93 t.396t.e tt...t. 2 8 48.t.*.tt....t..7 3 4 9t.*.04 1 6 9994.. I .93. .1..3 De.tt.e.tt...i 3 63 4t..* 0 5....I...lS..?3t..*.0 4. i.L 94.?t. 3%. .l..4 lltt.+tt...t 0 39..tt.* 36..I. 4 t.?..bt.* t.e e .f.t 4..?.. 4. 9. 4 34t.*6.%...%.t 0974. 90....I 4 40.M.+ 66.4 .c.it. 96.....i..2 2 3 6.t.*.46...I...t03.7t.* tt..t. 9 ?.t6t..*.DS.I. 6 6 0 68.* .e.ta.et.?..e.3 6.L.it..*.tt .I..3 44.SE.* 66...4 4 6 99t.*.t.e...I.? e.llt 68 .I...l n e..tt.*.tt .B ? 3..tet..* t.?....I.0 0 4 3t.*.00 4 ... 96 1 4 7638. 3S .I S 419t.*tt. .t 1 4.49t*t? 4 e.. .I n.t. 99...I...l 3S..et..e.tt.. 1 4 6868.*.06..8..8 ?.8t.E.*.00...t
- t. 466t+ 44.a me.9%.... 6...6 l ett..*.tt. 4 1 699.t..et.t....#8 297t..*t0
- 1. 4 st.ett.et
.t .t 346t..et.t .t t 6738..*.tt. .t. 3 949.t..*40. t _.t t S t e.t. 03.4. 8. 94?t..*44 .I t t.d 9n 4 4 I t 64?t.*tt I t.t.tt.e.ts...e. 3 s s9t.*05 e.. 6 4 7 4t..ete...t. 6. 9tst.lt....... .t 6 400t.*tt..4 0 2904. 19....i..S 299.t.*t3 I .~ .I T. E.......... .le.u..t.t.i...e. 6 046t..ett .I..4 E.t.?t.*.t.t. 6. 9 9938..St....I.t 0 00t*60 __.6..6 644t..*.t.t .I 4 444t.*.00. 0. 4 lt.at.*te 4 .i t 3.. 4. 6. 68 3.t.e tt.t...t 8 6.t.t.+.44....I. t t tt.t..*.tt.t
- 4. 0 0 9E.*.0 94...f 96..tt.<*.4 3.. 4..4 9t.i t..*.tt.i. 3 971E *t.0 0
.t a. pet ts I 9 963t..*.0 4. 4...f t.i f.t.e tt. t..3.,.e 9 3t.* 4 0 .t
- 5. 00tt.tt.......t 4 466t..ot.t...t 7 t6..tE.*tt....I S 99..tt.*44
.lt.U......... .. ~. ite 4 4.438t*t? 8 4 .Inc.............. .S.4 49E..*.001..1 437.E e.te...4 6 968t..e.tt .n. 4 4438.*.tt. .t 9 I.ttlett .l.itan te.n...e..4 ?.?.at..e.tt.. t t n.te.t.*.u...4..?. 3?.?.t.*.t? 4..S 6948.*.t0 0 0 S.ta.t.e.t6
- 4. 6 e..tM..*t?.
I 3 S.66.telt.i.t.en...I..S 476te.te.. i 4 s.t.9t.*.49. 6. 6 748t..*.t0 9
- 4. S.?6.t.*.09 1 0 694t..*.0?
I t 1.e.tt.*.tt t I...l lt.9.E.*.l.t i e. .Itt.... st?M e t.400t.*te....I. t et.s.t.ett.. t 9 938t..*tt t I S, ..t t?.. 6..S 6444*.44..4 3 3938..*.43 0..1 19.t E.*.tt.i 1 6078. 44_ _ 060t.*.09 4..1 l.?.tE.*.00. 1
- 6. 4?t.t.*.tt..t 3 769.t..et9 9__
.t.it...... 4.646t.ott .t. 4 9398...49.8 3 943t*tt i 4 .ti.t.elt9m 0 8.?6.LE.*.te..4 4 30t.t..+4?. 4 .T 96.tt. 8 89.. 8..2 649t..et.e 1 3 4 764..*44.. 8. 6 1668.e.tt....t 9 44.S8.*.09 8 4 33 4t..*t.7..1
- 6. 394t..ete.. I. 3 46..tE.* tt __
178.......... t .09 .I. 4 0008.*04 _.1..0 t.t.tt.e .t.it..=.t 3..S M...t. 3. 0 78.t.+49...4. 9. 459.t.* H....t. 3 4 4 4t.e t? ..I. 9.,0198.+03 8. 1 6t..it...t.s...t 4 4 0 0 t.*.t e....t.7 3.6 48....08..4 ..tl...4..t ttet.*t3 .t. 2 163t.*. 415. 436 e 2 944t..*.t.3. 0 3 466t..*t7. 0. 0 499t. .n.. 8 38. 4..3 ?.?.4t.e.tt 1 4 960t.+.4 6 1..4 S t.a t..*.tt...t..t.o ttn.e n L ?... 33...4..4 e.l.etet.t .t. 4 64 4t..*.6 9.. 4..6 lt.et.et.t.i..1 3498. t?. I 115.......... ...14 e 8798 48
- 4. 4 lt.9te.te.. 1..3 8. tit.et? I
.i n.....i...i e.6.t..*.66. i..6 o..M *.u....i 3 ten
- De...i 6 net.t.
3 i.tu 48 4 4.i.tn tt....i .n..etett i (PAstunt) (PAstuat) (rtto) (PAsmt) Units: Inhalation and all tritium - mrem /yr per uCi/m3 Other pathways for all other radionuclides - m2
- mrem /yr per uCi/sec 0004, V*C' Sm nar, SCEandG: Revision 22 '(September 1987)
.-v, a
Table 2.2-4 (Continued) PATH @Y DOSE FACTORS FOR SECTION 2.2.2.c (R )* g (' Page 3 of 3 ] <( \\ t i l 4 l 1 i 1 .. c... n.. o......i...c..i a....i.......... ...i u..t i o....i.n..ow.....i.....e..c.u..n.e.i.....e..c.a..iu....i... i..c.u..it. iu....i.. .i.i i n..t o. a. n.,..e.t.. n.e..ic.o.r a..i u...i.p s..ic..o.< n_u..n..u... < c <. i m....u..m...e t.r.a.s.. n...v.e.n..u.n.. ..i.n.i....i o..a.c., i . s....... 233 v.,.,........i.3.,.........._... ......i..v s..i .i.. i................................i... 5... .....i..s. _i e,... i s..i..s.
- s. 3...
.~ .s..,....i n..e,..........e...i...s..s. .i.......... .i i.a: .i . ii se ~_. ...i. e. 5.. i. si se.. .e.. _ i i .i.i.i s.a.....i..s....... ....,........i....is.... .....i..s....... s. i ...i i s....i._.i............................................... ~.e,........ ~...,...... i .i.s.i.s. .....c. . :...........i....,.............i _...... ....... i........... .i t..i ns.....i..v....... ...i...i n. c......i.. ...,s.... .. s.. ..,s t. .. _i _c.i.s....i... 3..... .i c. ..n. . i n....i...i n.n....u. .i.... u.n.. n....i.~3. n.n.. s e...i i u n n..~i._i i n..e.... u.n...n i .,n..n..i...i n._n. n....i..s. u._n......i s. a..n i 4 ....n n....i.. n i t i. ens..n..n.o. i s. n.n.....3 u.a n - i s.no. n.. i...i o.n n .i._s.u..ss.o... ...in i 2 u. n i n i o i ..o .i s n..e n. i~ n.n.. ni c................~...._............_.. .in ... un o s i.. o n.n i s u..n. n i ..ne.n ........._i.. n..w.. n....i._... n.e. n..~i., n.n. n i i.n n... i. i i....i. i a.s..ic...... _...s.c.. i.i i ..n.. s n. i. s n.... 1 ...sa i . _... i _...... s..es.... 3 .e u... ...e...-.. _._. _......i. n..u... i..s n..n...n i e .n.. n i .n t .n i su. ..........: i ... i ................i...... I .i........................... .it...: ........i...... 3....i..s........ i i...._......i.......... ..3 i..,....... i i .i.. i . es,....... : .s....,...i .s..u....i.. ...i s..... .it............. _......................in....i...v u..n.. n.....i.... u. n..es.. i n n..... .......i.. ...., i t,n .n..e..n i ...n.n i..unoe i i.un n i t, .i c..s n..i...i.. s o. n.. n.. i...i s..o_c n.. i. i a..n. _n.i.i u..n.. i i u.n..o.s.i..s u.n...n. _i.. n. n....i. i.n.e n....i. .u.n... n. i .i c.t....ini s.un..n i s..an.u ~ s....an.n i -.i i u.n.... i n. c...n o e .ic.s................... ...sn... ...n.,s..... ..a. ~......... :: n.....i...i n.n_....i i. ...n.. . i.nu.n i.. nn o i i...soe e ip... n., w n..n.. ..,3. o.... 3..s............ i v.es.c.. i .. i .i n..
- i.......
(' i 3 e n................... ...........................i..........i..s. s %. .. i .iision i s....:.l. ..................i......... ..e,s.., ..i n e.... i i .in....,.........ac.............,....,........,.............i.l..... i I i .........i...i e s.o... i. 4. in...*.s .i
- n
- u i
l' i ..il,....... ... n..n. .i...i n.n..... i.....c........,.,....................................................i.. .i..s ...e.6 .i .i t a... ~... 9. i. :... .......i..............i..n. ,.......i. i. .. i 3 3.... n. . _. i nn.....inn... .i..... in n.. o.n... i n.n...n. (PAsTunt) (PAswat) (rtto) (PAsnmt) g 1 3 p,A Units: Inhalation and all tritium - mrem /yr per vCl/m Other pathways for all other radionuclides - m2
- mrem /yr per vCi/sec o
1 1-l ODN, V.C. Swenar, SCEhnMr Revision 12 (6eDtember 1987) 2.0-25 i 1 -, ~. -- ~ - -,
i l } Table 2.2-5 PATHAY DOSE FACTORS FOR SECTION 2.2.2.c (R )* l (For Oose Qlculations Required by TS 6.9.1.13) Page 1 of 3 ( 1 h V .a..tt. 40. Due....a t t.t.en.t.t.e..t.....tD. A..I sitthette l (ftthettt) (f tthettt i titthettel (Ttthettt) .i.n..t.w..t.i...:.=..4.u..t.a..i..a..t.u.0.n...................................,.................................. . a.t.i..u..tiet.mu i utect.< ter i utiet. mt i utentiat.vi nunti.= i . 3 6 6 6.i .n....i. 9 e.n.t. n i t.,...... i i u..n..+ + e .e.m._n.- _.i n 48.+.48..i..t.o .. 8 0 4...i 4 0 0 0t +44.._i 4 9994. 00.. i
- 8. 4..St..+ 49. i. s,...m.6.t. i. 8 n.et.+.n.,....i. 3. u..n. 0.:.. i
.ic......... _ ~ ...ie.... . 6. i.e.n.. t.t .i 3 4 488 0...I..a 6908. 00 t e.t.+ . ~.i r-..u.. n. i 3 in..t.u.... ~.i u...n.....i t...i..n e s.it. 00..69....i 9.. 4... 4...i a n....+ 6 4..e...i n..u... n... i 4.n e .n.i..i n...ia..n i 8.n9t+0$ i n i .~. i 00.n.+u t n.u..+.0...i 4 t.u.t. .n. i..t 60.n...n .ic........... .u i n. t....i S.u.6.t +a i S. u.t... .i...i n..u..... .i..S u.n.. u.. i
- 9.. 4 n.t.+.n. i s n.u...+.0S.....~i. i n..t..n....i.o i..t t.en..en.
.i..i. en.t.. n..i. 4 8 4 9.t.+.46....i...i n..u.. u....i.~9. n. u.+.n...i .s n.n +n i .in.......... i n .~. 4.St.a.. .w u i s.nu+n i m..i 9 n..et. 98 .i...S n..et. n. .i..9 u.n...n....i. 9 n..it. tt. i ti .et.t.........................-... ..St....t 6 440E.+.99 0 9.0088..*06.. 3 80 48 00...I..4 4644.*07. 0 4 38.38.+0.S 4 8 46.M.+4?.. i..t 9994.+.0?. t
- 8. 899.t.*00 e
8 F.8.69... 6...t SS.M.*.t4 1 6 8 96.6t..+66. .I l l.t.tt.+.49 0 0 4?.tt
- 09 4...S 4058.+69.. 8 9 094.t.*00.. 0 440.*19 l.344t..+.M. 4..4 468t*lt i 4 09%..E.*.00.
0 4 940B.*.00. I...l 1.968..*.49....I..t 380t..*07 .t.~3. 084t..+49 I 4 .ICO ..w..... 60....I..t ?t.tt..+44 4-8.63.8t.e.lt
- 4. 3 et.st..*.00.. I..? 60 04.+.08.I. S tt.tt.+49. 8. 9 lt.et.+.47..6. 3 8308.'.00 4
.la..t.63....4..S. t.te.t.+44 4..6 t.te.t+44.~4 6 lt.t.t.t.t t...i. s 3 69t..+.t t i 4 8 498.+.49 .I...l 08.3t..*09...0 4 6h.t.e.l t. 4 l 4 6.d.69.... m. 6?tt..*t.e 1..3 et.o.+.0$ 8 4 698.t..ott...I l 309t.*t.6
- 4. 8 et.tl..ete...I..l t.M..t.*.tt.. i 3 4. 68.*tt 8
6 3... . Lt. l t.u... i 64.... 4
- 6. 444t..+.64 8..6 99 4+.44.
4 3 995t..+46 4...n 9 534. 09 .I 6 h..M...46..60 0668 H. .e. 6 449t..*06 e i .e ta. 6%.... 8..8 846t.+.44....I. 4 9888..+.49. e..? 3 8 58.+49. 8. 9 6888.* 00. 0 6 n. 3.t..+49... 0..4 6 48t.+49...0 1 47 4 t.*09 0 4 tm.69.... 8...l S$.48..*03 0..0 6 9 0t*06 .I...l ?.608..l.t .i 4 et.tt..ett 4 0 0 00t.+44.. 4. 4 tt tt..+44.. 6
- t. 6678..... 9%.
4 I .l.et.a t a 4 3 440t..+.48... 0.? 0.?."t.+.48. e .t 7968. 04.. e 9 0648. 97 4..4 0008.+.00 .e. 6 099t..*t.0. 6 3 9..t.st..+ 40s..........0.4.. 0..4 3.te.t..e.tt...t 3 86.3t+49. I 8.t??t*83 1
- 9. 0 0 0t.+44 4 4 tl.e.t.e t t
.t. 0. 000.t.+.64. 8 8. 34 8 8..4 4 6. . 1% i .s t.a.-DS.......6 933.t..+.0.g .n 4 s.t.et..ec.t.. t .t t.l.et+.44 1 0 004t.+44 0 0 600t..ete...I. t 900.t.+49 0 4 tte.t.ett t .I S..D.* D6.... 6.. 6 n..et..*05... 6 8 4 39t..*.4.?. 8. 4 f.4.M +.89. I 4 8 0 68 000.. 0 6 4 96t..+.0 ?....I. 4 98 6 t.+.07
- 8. 8 ?.?.tt..*
.ID D.*tt.... 4. 4. et..M..+.44...4..3 ?.?.9.t..+.04 0 3 9868.*.44. 1 0 000.E.+.00 4 0 000E..*te .I...t t.ttt..e et. i. 3 8 698...t.t t .e t..t 09....1..3 989t..e.tt .I .l es.tt+49 .e 9.F7.48. 44 e 9 0 00.B +00 .e. 6 0 006. 00..e. 4. 6 908. 04.. 8 t.e.t.t. 88 86.. I .t ha. 99.....I..t 4 6 6.t..+66...0. 3 569t *.04..i..S. 6?.a.t..+49 6. 3 9454.*49. 0 8 ? t tle tt...I..3 994t.*.0? I..4 S. tat.*.t.e. 8 .p .I t.9. *. *.l. 4..4 t t.et..*.tt...1 0.000t*04 6 6.6.tt.t.elt 1
- 3. 049t.ett 8 8.3668+.4 4 8
_9. 699t..* t ? tet.t.'l.l 6
- 6. 00n+.44.i 6,m..tt i n..tt.a_i
.i n...n......t pn +n. i 8.t.nt.n i 8..tn+n S. net.it i .n-- i l (PAsfunt) (PAstung) (rtro) (PAsunt) t F s See notel page 2.0-32 3 l 3 Unit 5 : - Inhalation and al1 tritium - mrem /yr per yCi /m i Other pathways for all other radionuclides - m2
- mrem /yr per v Ci /sec 0D04, V.C. Sumar, SCEandG: Revision 12. (Sepember 1987) 2.0-26 r
t l Table 2*2 5 (Continued) g. PATHWAY OOSE FACTORS FOR SECTION 2*2*2*c (R )* g / Page 2 of 3 \\ } I 1 ) v .a.t.t. 80 0. WP....I t t.t.h.a.lt.e..l.... 4..W 6. ...I.....e t.t.t.m.a.t.t.e..t.....e t.t.t h.et.t.e..t ...e t t t.h.a.t.t.e..l.....e t t.t.h.e.t.t.t..i.( t ( t.h.a.t.t.t..i..
- 8..f.t 0109 t.l...l u.nate..t.i te...e.G.6.tuk..t.P L hm.t..e.te.t / C 0.u/ e.lL.t..l.t.e.t./.C. DW/n.t.a..i.l.4 680. 98....6..6 t t.t.t.el.l....I. 0. 6 3 4 t.e t.t.. 1. 4. 4.?.?.t.*.0 4.. 4
- 4. l..i.bt.
t .60. .t. 8. 6 4 0.t.* ? 4 7 0 t.* tt.. I..t 6 668. t.t....t. 3. 0 4 9.t.* 49
- 4 1 618.t.+.44...%
49 90 0 S.ltit*tt I l 300.t.*t3..4..4 d?.4t.*te 1 .... 0%
- * *= * *.0 9 6 58..*.t 4 0
.* *** ***.t i.t.e 8 4.6 .It...................... 9..t h.... 8. 3 2 0 0 t.*.t 3.. 8...l 8 6. 4 4.*.0 %...IS. 6 89 8...........6 8.. 8..9 l.l.et.*.t.t...I...t 6 4 6.t..e lt..1.*.0. 0 0 44..*.l4... 68. t.t.lt..tt.. t ..t?. 4 .I t.* t t I t 9 46.t.e.t6...4.. 4 44 7.t.e.t.e....t. 6. 4.?.l.t.* t.6... 6. 3. 9..t tt.*.t.t....t. 9. ?.9.?.t.*.65... 4
- 4. 69.tt.e.t.?... 6. 3. t.t t.t.* D9....e 99..........
i 93 8 8.640t*06 8 f.tettell I 4 t.t.t.t.*.0 6. 8. 3 lt.it..* 36...8. 6 6 4 0t.*. .it....................................t l.a.tt.. ell....I...l 3.8 t.t.* 9 4.. 4...l 6098.t.?. .I f. 68 6t. t.e..1. 4. 886.t.*36... 4. t 36 . 93 0 5 ?ttt*06 e 6.6.e.e..t 6968. 00...4. 4 9.t.a.t.e.t6. 4 430 .........e............. 9%.... 4. 3. 604.t..*.66... 0 4. 6.3?.t.*.tt I..6 t.t.t t.*.t.t... 4. 1 0 9 9t.+.49 4 4.ltll*tt t t 316t.+69...4. n 993.t.ett t 5 v. 0. t ?.....I. 6 3 4 4t..e t t....i. 3. 4 4 9t..e t.6... 8. 4 t t.t. t.* t e...t. 9 t..l.l t....................9 %
- 8. 4 ?.30.t.* 36.
.I l l t et.*.t.t...t 4 6.?.S.t.e t.?. m.6
- 1
.t he.* 95.....I..?., l..t it..e tt....I...l 6 0 6t.* 00... 0. 3 3 30.t.e tt....t4 t.t. t t.* tt. .i 4 96.34
- 4.?....I S. t t.tl..e t.t....i..4ll..tt.e.ts....t
.Im0 99... 4...f 609.t.*.tt...i 4 696t*66.. 0 1 8 8 34.*.68....I e 098.t.e.el....I l t.l at..*.03..1 S S.t.et..*64....I..8 393t.*.tt. i t.. .+.. .I.t C..= 9 9.n... 8..6 l t.t.t..* t 3...0..f. l t 9.C.* t.t....t..4 4 5.$.t.+ 4 4... 4 6 4 ?.t t..t t..t. 6. 6 4 9.t.*.t.i...i..? 7 668..19.I l e.t.tt.*.. 8 8..?.?t..*.64I. 3 f.t?.t. 50..0 0 4 6 4t.ot.t i 4 l.t.et.*.t.t 1..0 0 6 6telt...t. 3 8898. t t .t i.t.* t t i 8 6.6?tt*00 0 ..09 L 68.U.................... 193 8 f.038 teel 6 4.9648*60 I l.4138.*.05...I..? 168t.e tt....I .l 006t..e.te.1. 6 5968..*.:S....I S ?.t68.*t.t I .et.u......................................l e.l... 6. 9. t e t.t.*.4 e...t..?. 8.6 8.t.*.t.t....t..4 8 6 3t.+.4 4... 4. 3. 94 6.%. 9.%...4. 4 6 4 9t.* 44.. 4..4 6004. 86.. 1 4 0 39.t.e.t e..i .i t.W..*.l t 6... 6..4 64D.E.* 4 ?....I..S. t e tt e et....t..5 7 99.t.*.4 6.. 4..t t.let.e t.t...t 4 3..tt.t.*.t.t....t. 4. 346t..* t t..6..6 st..et. *.t t.. 4 .la.t.. ell en a 6.?ltte96 0 4 0.L 9.t.*.49..4..t l.l.t.t.e.n.t....t..1 3 44.t.+.49...4. 6. 998.t.*99... 4 6 6..t.at.*..tt...1..4 0 3.t t..e l.t...I .et.t...................... ltla 6 4.366 teel e t.880t*t6 I t 86. 8t..* 0 7.. 4. 4. t..e.t t..e et....I...t el.e.t.e t.?...I...t t ?.st..e et....e..4 3.?.l.t.e.tt.. 8 .l.i.t................................... tt?n I l.66 6t..*.t.6.. 8...l 09 38.*.06.. 4..3 4 8 6t..e tt..1..3 0 6 6t.e.tt...i 6 flat..e.tt...t..4 l.t.et.e.te....I. t 3 36t.e e 9..... .t .ti.t........... .tt? 6 9 999.t.et.e...t. 3 9934.*t3...4 9 l.?.t.t.*44...I. 4 609.t..* t0...1 0 49 6t.e.tt....i..S. st?t.=.09. 8. 4 n e.tt.e.et 6 . lit.......... 3 39.h. 4.. 6 97 6t..*.66...4..tS.tl.t.e t?... 4..4 669t..* tt...t. 3 9664..* t.t...I..t l.l.et..e t?...I..4
- 79. 9t..* 00....t.. 4 5 4 0.t.*.09.
I .l.i t..* 4 2 96 3 996tell l 3 4?.6t..*.64. 1..3 8 96t.*.t.t...t..6 0 69t.*.0 0 0..6 0 0 0t..e.t.t...i..8 6404..*06.. 6. 3 4 6 08 0 3. I .ett........................ .t.it.. 6 8.t n..1. 6 I.t t.t..*.tt... 8. 9 el.t.t.e.t 6..I t l.t9.t.e.t?....I...l e st.t..e t e.i.. 6 t.t.?.t.*..tt... 8.. 8. ?.36t.* 4 3..1..3 t.e t.t.*.0 ?....I 8 634 f.3364..*.4 3.. 4..3 el.et..*.t?...e. 3 0795..... 38 1 0 0068.*.00...0 4 940t..*.49..0..0 009t..ett...t. 6. 699E....lt..8 .i.i......... 411.133...+6..4 6 39.t..ett.I. a 96t.t.*t6....L. t 59.4%.+.49.. 1 8 34 9t o.t?.. 4 6 3.?.t%+.4 4. 4. 8 ?40t.e. ..i 30. .i....S..et.e.te....i 4 69 88.* 46 i ..,4.tt..eet..i 4 0068. 4.... .I i. i.bt.l.._...0668. 06..i. 4 3. 68. 07..4 (Punst) (Punat) (nto) (Pu u t) 3 ( Units: Inhalation and all tritium - mrem /yr per uCi/m Other pathways for all other radionuclides - m2
- mrem /yr per uCi/sec 0004, V*Ce Sunar, scEandG: Revision 12 (SeDtember 1987)
F i 6 Table 2.2-5 (Continued) PATHWAY DOSE FACTORS FOR SECTION 2+2*2*c (R )* g Page 3 of 3 6.C.t..t.i.t.u.r....e t.t.t h.6H..e..t.....t. 1.s 6. ...I.....t i.t.t.h.e.t.t.l..e.. .t i.t.l.e. sat.t.e..l.... 4 t.i.t#6084. 8..t i t t.e.en.gt.e..t.....t i.t.t.h.a.t.t.e..l m m .I.16 0199 8.1...t h.m.a4 6..t.i t.e.s..t.80.tWest..P.L.e.e.st.l.S.e.t / tt.e.s./R.I t.a..l.$.4 0./ C.0w / m.t.a.16.&. .t.l o t a l 4 6.e 6.et. *.6 9...I..t 609.t..e t ?..4...t l.t.%t.4..%.. 4.. 3 64tt..*.t9. 6m 866t.*.tt. t..4 3?.lt.e. 3..... 6 l.t t.l.e tt....a..t al.t.t.*.06.
- 8. 8. t.e t.t.*.0 6
.e. 1 3091. 47
- 1. 4. 9 0 6.t.*.0 0...6.4. 66.?.t...ts...t.. 3 l.e.tb...l.e...t
.el.......... . t33 0 90... 8. 4 8 6 8.t.*.4 3....I 98.......... .t33 f t.i.t t.e l.6.m. 4 94..tt.*.46...4.t 6t.at.e t.t...t 9 934t..et.t .t..3 496.t.*tt.. 4
- 9. 696t..elt...l..4 n.e.tt..*0 e
4 3.tt.tl..e te...I...S 399t.*tt. 4 8 903t.lt...t..0 e.l.et..et.e...t. 9 te.tt.ee t...a. 4 0 66t.*.t.e....i. 3 014t .t 48.......... e 634 8 . 08 e 48.......... 639 6.440t*tt t t.9 4 ?t e h t 3 ???t..el6..l..%. 9 08.....4%....l. 4 4 6 6t..e t t....t. 7. 1964..*.L 4... 0..% 038t.*H. t 4 .tt.t.....................................l a t...I...l l tt.t..*66. .I S 9 4 t4..* 69.. e 4 3.8 4.t.*.L 9. 8..1 3 3.t t.e t9....e.? 4 4 8t.+ 69...4..1 4.?.?.t..* te....e4 6.?.lt.e.n t. t 8 C.e..*.l 36....e. 1 9 3H..+ tt.t...t f tst et.t...4..8 149.t +49...... 4 3 6t..te..elt... 4. 1. 3 49.t.*.H....I..4.,.*.ll.t.*.t6 4 4 t.tt.t.eet t .I C.S. *.ll?.. 0. 0. 40 0t..*.tt....a.. 4 89 8 t.'.l.l...I...l t.e..ll..*.l t..t
- 9. 6 34t.+49..I. 6 4 998..+ 99....e8 ll.64.* t.t....t.. 8 340.t.*.L.t 6
.e t.t.....l a.t....i..S. l.6 6t..e tt...4. 4 8 488..*t5.. 4. 3 1494. 83.
- 4. 9 460t..*.06 4..0 99tD...tt
.t..4 0 00t..*66...e.6. 93M...l.t. t 5 66..*.l 30... 0. 6 46.*t..*43. 8..4 69.4t.*9%....t..f. t.e.lt*tt t 4 4 9 0t.*.06... 4 4 6 40E.*tt .t 9 e.t tt.*.t.t. .t. 3. 4.t.B.E. 46 I .I M. l.e t...t. 3. 0 331.* H....I..t 3.464.*.t.t...i 1 488t.*.tt...t. 3 6.H..L.*.tt..t..6 190t.*.t.t. t 4 39.M..*.M....i..3 6 36t.et.t 4 .l u..o l a.t...t..3 2 004..* t 3...1..4 F3.et.*64. e..4 9 888.*46... 6..0 te..tt.o.et. 4..4 00 0.$*t.0...t 4 6404.* tt. 4..e. 699t.*08. 4 194..*.t.ot....t..6 9.17.t.. ell....i.1. 464t..ete.t. 4 444.C'44.. 4. 4. 444t.*t6 6..0 066.t ot.t. I
- t. t.t.et.*.tt....t. 8 36,94.*.39
.I .IL. A..l e.t....t. 4 0f.t.t.. ell...4. 3 lt.e.t.*.t?...I. t 89 8 8
- 05....e. 6 699t..*4 8.
.i..S H...et.*.t t...t. 1 0 4 88.* 4 9. .i S. l t et.e tt .t 0 4 6....l43 t t pt et.*.04...8. 0. 0.t.M..et.t. t t S.t..at.*.tt. 4 4 lt..tS..*tt 4 4 lt.et.*.tt..4 4 8 988.* 00..t. 4. htE *lt............ t .e t.t........... ..n e.t...t. 6. t h.t..*tt. 4 .L lett.ee.t .t t pge.tt...i..3 et.tt..*.tt .t..6 f..t.et.*.06..i..f ?..t.3t+.M....e. 6 46 4te.tt. t .I C.E..*.l.4 3.. 6. 2 l.l.BL..*.tt....i..4 689.t +%. 4 1 6.?.tt.*M .i. 3 699t.ett. .I. l 134.t.*.t e..1 4 4 34E.+9.6...I..t..e l.e tt.*t.t...t .t t.t. n e.t...i...t 33.g *t t. t 4 4 33.gett. a. 4 650.t.e tt. .t. 3. 999.t.*tt .a. 4 6548..*.47.0. 3 ?.t6.t.*.tt....I..1 38H..e..l.e t .I P.t....l.e )....I..4 039.t.*.tt.. t. 4. 664.t.*.04.. 4. 9 S.t.at.e.t.t.
- 4. 5. e.t?.t.*t.t.
.t. 3. 37.48
- t 3..4 6. 90.0t
- 4 6...1.1. 3.4 9t.*.tt t
19 0. 6 4 4...I..8.J.43t..+03..1..8 8 8 88.*48 .I...l 830.E.*43. 4..4 t.let.eet .t..4 el.et.* 06..4. 0 049to.t.t..1..3 69.?t. 86 e c. .l.t... . 6 4.?....I. 3. ?.t.t.t.e.t.t....I
- t. 4 49.t.e.t.t.
t
- t. n l W+t.l.t
- 3. 413.t.e t?..I..t 1.%.34.*.49....I..t.14.M,..* H...I..t e.t et.*..tt.. t l.169t*t5 t S.740t*46 I
.IW*le? I t 646.t.*.t6. 6 3 999t.*.tt....I l 5798. 7% 4 7... .i....,.......................,............ i..t 9..a.*u._t. s u.n..+.n. i
- 3. a..n..on.
.t...i a.n.......,e.... 0.?f t.l...I..? 439t.*.le...t t ...n.....i... u. tE.*t. 4.... n t.* e t....i. 8. t en..e.t.,.. (PAsnat) (PAsus) (rten) (PAsut) i 3 Units: Inhalation and all tritium mrem /yr per vCi/m Other pathways for all other radionuclides - m mremlyr per vCi/sec ODCM, V*C* Stzumar, SCEandG: Revision 12 (September 1987) 2*M
1 Table 2.2-6 I PATHWAY DOSE FACTORS FOR SE CTION 24 2* 2* c (R )* i (m (For Oose Oilculations Required by TS 6.9*1.13) 1 s t i Page 1 of 3 i ...t..v..u....i.....u6 7..e.....I.. w. m............... 6.f I.....I..ADW6.7..e....e.... A..t........e... tuk..t..i ....I..e D.A..f I.. .. e r .D.. e E eDW ap I a I 86dt6Pti lea =6efl6m 1 6# 0 W*s 6*leC9memI4WI 6#6s 6# w .............'..........e......DP6ad.t.l ....... *..................t Deunt a t t 6#6s C 6 mea lt e t..........................$ <64 fin sn.3 s I.8+etete i s.90 I 8.Detteet i
- 6. Deet ett i 3.480tett I
..............................H..+00e...... 6.90st*tt..i.............e.................e.........8. 8,6est.eet . t..*.s e ......... 086t.*04l........ 0. 999t..*00.eee.8 6.3.st..eeg.....i. 8.*. e l et..e e.s... 3. 9 8..t M..e ete. e..t. 8. e.t..tt.o g fe.......8 876t.ete...t I 8 I a ..............H et..*94 inn.84 I 3. 4 8.30SE*tY I I .................... 3.834t*04.......... ...l M H.. 34..8
- 3. 6 MC
- 90 1 4.680 1 4.69 4
.....................t*6e....... ... 9t.*98 ............3 840t*t6.8
- P.88 8
. 9.Dett.*tt.......e........................t*99...................... 9. 948t*00..1 I left9 Celt I e 664 I f.999t*0? I
- 8. egat
- 9
......... 9...1 .ca.c l....s.. 8 eest.e t.e........i. 4 S96t.* 04....i...f. l.e.t t.e te...I...l f f 8t.*46.. 8..8 64st..*0.0.. 3. 8 8 8.?t.* 06....I...t.e.lett..eef.I i i 4
- nn Se i 8
4 ............ 6 eest.e et..i...n. 685t.*09........... 4.S?DC*07..........+..
- 4. 884t*4f I ?.tettete 1 9.
8 9.60 I i ...........................4.fM*04.............. 9t+0e I sme. 66 8 8.Daet*04
- l. M et*to I l.18M.#l 8 4.M88*98 1 0.00et*t 8 8.94M.98 i S.estteet i
......................................... m.. ~... m m m..... m...... 0 ............. m .I F C..e l s....i...860C..'94m.4.0. 000C..*90.1.8.9888..*0f... m.8.9. ~8M*tt..t. 9 49et*06.............8.9.t M *0.f...I.
- 8. D.eM..*e8. 8 f
I 8 m .m ... m Itt.tg a 4 446 tete i 3.8ta 8 8 8.999t*09 1 3
- 4. e9H ege i i
...............................t*00........ 8. HM *48.......................... 8 949E*07.......................... 9. g f M.*ee ICD.S$ I 9 49H+49 8 4.46e 8
- 9. M H '97 i S.ftatete I l.ptet*ef 4 e.ee3&*tt i 4.4338*e
...... m.......................C+04............. m............ m.................. ~................... 0.I . C D. 60.....i..S96 4C.+ %...I..4 9 88t..e lt....i.3 688t..ett...6..8 e 8 88..*99
- 8.. 8 te et.e t8...I...l. 699t..*00... 8. 8 199t..*09.
8 3 lut.63 8 e.380t*DS 4 0.teeteet i 6.?89t*99 I l.Dettelt i 8.394t*99 1 8.866t*00 8 8.settele t ................................................................. ~................................. l {s ............... Htete '.3 INI+68 8 8.8 3.e988*06 I I ?.stSt.64 i S.Statett i 4.te6t*S$ 1 8.04 ....................... 4. 4 8 M
- 00...............................................H+48 l
.ICW.64........... 0.M.C+44 3 4 ....... 3.m. D..f M..*06.. 8. 8 08 4 t.*.06..I. 8 3 Sit. t.S...I 6 m 888t e4...... 8. 8. 769t*t.e. a a f ... 9.ent.eet.... t l 38m.68 8 0.6ett*98 8
- 0. 80 M *0e 1
- 8. MM *99 8 4 4388*09 I l. leM ee9 I l.898t*00 I I
I ...................................................................................... m.. ..l.099t*99 l-18m*$$ $.9.864C.$8 8 8.Sette$8 i S.8Sft*lt i S.000t*00 8 0.000t+0e 0
- 0. SeM *00 8 8.8988 45 8
....................... m.......... m............................. m............... m............. l .........1. 4 e00C.*04..4...f.079t..et.a.......S MM..* 0. 6.. 80. 640C
- 4?...I..S. teet..*.ee.......l. Stet *S.t...i.
- 4. e f M.* 00.
8 100 03 i I t j ......................... m .....................s.............. .........t t 100 04 8
- 3. I S H e tt i 3 368t*09 3
- 4. 609C.89 1 0.0088+00 I a.etet*ee I
- 4. stet *te 1 8.sfW.l
[
- 08.eg I l. 4eM *el I a eest i 4.eestese I e.eesteet 4 3,eeegese i s.stetees I
- g. 30H +88 4
................................'ee l ... ~.............................................. -.... ... 06....8.8 8988..*00. 4..4 84fC..+0..?
- 00
.... 8 999E.*99.8. 4.S.tet*00...1..3 8988..*4.f I ....S. teSE..*0.t I I ... - 89et.*00...8 8... e i I 300 00 8 3.078t*48 i S.ffM*H I 8.899t*e9 i S.000E*e8 8 0.00et*e0 1 0.000t*te i S.eGet*44 8 l 180.e9 8 4.569teet I l. a fM *06 I a.eDet*SO I 8.000E*e9 i S.etetete 8 0.000t*SS I 8.9668 06 I 368 09 t ............ 6, e00t.* e6... 8. 8 509t*H....I..l 464t*99. 4..3.9688.*e0.. I...l e t9E..*Se. 8.8. 6.& fE.*4.9..89.Mlt..*498 .. m. e.... 188 90 I g.98etest i 3.gesteeg I s.6eetelg I l.84et*le 1 4.680telt 1 4 498t*89 8 4.te6tell I Iba.94 4 8.98H +et i 8.Sittees 1 4.3fft*06 4 f.3388 80 1 0.000t*80 1 4.648t*46 I l.4968*t6 8 (tasiver) (tastusti pass) (eastvet) See note, page 2*0 32 3 g Units: Inhalation and all tritium - mrem /yr per uti /m Other pathways for all other radionuclides - m2
- mrem /yr per 9C1/sec l
OD04, V.C. Sumer, SCEar@t Revision 12 (Septerber 1987) 2.0-29 . ~.
r-l' 3 P I Table 2+ 2.-6 (Continued) PATWAY DOSE FACTORS FOR SECTION 2*2.2 r; (R )* Page 2 of 3 ll l 6.t.t..&.l.t. ut....t. 6DWL.t. 6.....t..u.a. 4 .ca.....i. 6t.W.L.t..t.... 4. 6. 6pL.t.. 4.....%..a.t.W.L.t...t.....t. 6 6061.. I.....t. 6.t.W.L.t...t.. 6..I ttice t t im ttt 6 54............m.e.t.a....a...e.G.e.t.un.t.t.L.a ut t E t.t./ Cl..u./ m.t l. l.e.C.i t../ C.D.W./.nt.o 9 3... 4..4.S t.at.e..t e..1. 4 6 3 6 8.* 01...4. 9. 6.?.l.t..e t e...e..t 3 3 4t...... 48... 0..0 0 0 0 t.*.0 0....e..fe..s.t t * *9...0 0 el.et..*.t.t...i F .e t. 90..... 0. 1. 0 4 6.t.* tt....I..l. 3 6 0.t.e.t.t...t..? l. lit.e t.t....i l n e.t t.e.t6... 6. 4 96.%.L.*.D%... 4. 4 36 9.t.* t t....I..l e.l l.t.e t.t.. t .s t..t..e n.....a.. 6 9.t et.* t.3....I..l4 6. 6 t.e.t.t....t..6?.4 3t.a l 9... 6..0 0 4 4t..+ 4 4.. 4. 4 4 4 9%.*.t 9....t. 6..,.t l. et.* t.t....I..l 1978. 00....e .i t. 9 4 t t.et.* t.6... 6. 4 8 0 ?.t.* t 6..4 4 ?.t.6t.*.t6... 4. 6. 83 6t+.49. .l..S. 69.6t.*.t%... 4..?.e ?..?t..*.t?....I.t. tl et e tt...........t e 8 89.......... 93 1 7.353t*04 a 2.n e tt.e.ll....I. 9. ?.?t.t. 9.8...I..t6.%.?t.* 39 .st......................... 9 3..... 8..4 t.l 64..* t.t....I..t. l..l e.t.e t.t....t..?.S.t.e.t.* t.t....t. 8. t.t t.t...... 4. 4 0 0 0t.+ 6 0.. 4. 3 l tet..*.3 6...4..1 6 4 3.t.*.0 4...I 9? .I 4 494.t. 6.6.. 4 8 st.el.a tt....I..l. l..l?.t.* t6...0 .t ie,.9.%.... 8.. 4 769.t..e te....t. 8. 03?.t.*.60... 4. 9. 50.?t.* t.t...t..69 9 3t.* t9. 4 .l 369.t.o.t.t.
- 4. 4. 3948.* t0....l...n 6 9 4t.*.t9..e 688. 9?
l 13d.t.ett....t. 3 4*St.*46...4. 4 ?.t..?t.*44...t...l t.9..tt.elt.4 3 438.t.*39. .I .l ll.tt.....t.l...I. t. 6 60.t..* 09... 0 I .l a. t......... . tl 6 t et.t..*01...4. 4 6 6 54.*.6%.. l. 3 79.68..* 69...4 ?. ?.e.tt..e t.9... 0..4 6 39.t.*.4 ? .I. 9 29..?t.* 49...4..4 790t.*..tt.t 6 6m.t.......... 99.... 4. 3. 400.t.* 04....I..a.64 6.t.*.46...4..S. t.e.lt.e.t.*....I..t.3.69860.% 4 4.943t*t3............ 4. 4 ?.t..t t.*.0 8... 6. 4 4 8 64.*.0.?.. 4 118. 9 9n.. 4..4 6 6 6t..*.t 3..4.. t l t9.t..el.t...4..%. 94 3t.*.. .t e.u..l e.l.. 0. 3 99.t.t..e.et....t .t t?.?t..* 4 4.. 6...S 9.638 4 3..4. 9. e.39t..lt. .t...t el.e.t.e.t.t...I..t. 9 t ?t.*..l 9..,.8. 1. l t.?.t.* t.3...0 .l i t. *. %.9...4 4 t.t.et.*.tt...t. 4 4 6 0t..e.tt...I. 4 0 0 0E.* 00.6..3 l..et.t.*.t9. 0 .let i S.tet;*tt t 4 269.E.* t.t....I...l l e.t.t..e et....t. 6 tt9.E.*.l e...I..t. 53.?.t.* t.3.. 6 6 4 ?.t.t.e t9..i..Sl.?.?.t.*.49... 4 .le.u......................... ..l t s....t..e t..l 6t..e t e....i..f t..t t.t.*.t.t..t. 1 3.4 0E.*0 6.. 6. 3 5.3 38.. tt....t..4 0 0.0t.*.00...t..e 239.t.a te...4..3 39.4t.* t.4...I ( .I t.W. e l t. 6... 0. 9. 366t..*t.6...8. 1. 0.e.9.t.*.00...4. 6 3t.t.t.e.t.6...4...l t..llt.*.l.l.. 4. 3. 998.t..* 04....I..t l?.3t.e.l t....I...l t..e t.t.e..l t...I .l a.t... tlln 6 e 6 3 8t..o66... 4 4 e..l9.t..* t t...t...t6 99t..*.l t...t. 3 48.34..*.D9....I..l 996.t.* 09....I. 3 680.t..* 00...0..3 9.?.9.t.*.t9. 6 .t i.t.......... ..i t.l.n..1. 3.4 364.*tt....i..2 189.t.* t 6...6. 6 68 64..*.0 ?.I...l 46.08.* 09. 4. 7 9 0 68.* t 6...e. t ?.l..l L.* 00...13. 987.t.* 40....t .S t E.* l t.?.n.. 4. 9. 64 0.t.. ell....I...l lt.at.* tt....I...l 060t.* 00... 4. 4 53 6 t.*t.9. 0..3 6.?..lt.+.0? ..I S. 4 3.?t..*.00....I.l e.l tt..e et.. 8 .I t.t..*.l t.?....I..S.736.t.e.t.e....e. 3. 49 3t.+.4 3..4 g. t.t.t.t.+.4 4...i. 4. 4 3..et. 00... 4...c 4 0 0t.e.t t...t. 8.., s e.lt. 69.... 4 5 33.t.* 05..e .a.t t. 4 3 9n...i..48 6 0 t.*.66.4. 4 3 4 4.t.e t.?...6. 3 St.e.t.*t.t....i. 1. 690t.* 99 .I...l 6.el.t..* t.?...I. 6. 8.30.t.* 0 0....I l 8 6.t t..* 0 9.. 0 6 t.E.*l t9 8 6.936t*t3 6 3.t?6t*44 6 9.l 6..Pl..*.l.l.. 6..9 4 4 68.*.t4...t.. 4 4 0 0t..*.0 0...t. 9 l.t et..e t t...i. 3 00 6t.*.6 3.. 0 .c.it...................................... 33tn I l l.e..tt..e el....I. 9 4 9 9t.* 4 6...4..8 75.38.*.t.7.. 8 8 l t.tt..* 0 4.. 4..4 366t.*..ll....I..t 6t.et..e.l 3.. I...e e t.tt e t? .l i t........... ........4 ...l 3.%...i..1 3.9t.t..e l3...1. 3 49.0t.*t.?...I .l l.?t.t.*.30.1 6 0 00t.+44. 1 0 0 0 4.t.* t. .e.t t..*.l at...I. 1. 9 9 6t..e tt....i...s 9 60.t..*t.6... 4 ? 3t.at.*.t.?..I. 4 t.s.?t.e.t.?..I.l l?.tt...t...t 4 4 4 98.+0 4....I. 6 l.?.l.t.* ll....: ...tl 4 5 444E+66 I l 3.6 t.t.*.49 0 .i t. i a.t....i...i i 364..*.t6....i. 6 69 8t.*46....i..l 6 .5t.*60....i. 1. 3,.. 85. 0. ...i. 4 5308............................t. 9 t.ett.et,... . 6....i. 6. 38.68. 0. ....t (PAsnat) (PAswat) (FEED) (PASTURE) [ Units: Inhalation and all tritium - mrem /yr per u Ci/m3 h Other pathways for all other radionuclides - m mrem /yr per uCi/sec 0D04, V*Ce Sum mr, SCEandG: Revision L' ( :etember 1987) 2*0-30
1 l j t i iegta g.g-9 )jouttunap( d41HW A 0053 JV 310H S 308 53 31 !0 N 2' 2* 2' 3 ) O N. O de6a g oJ t L a hn/ e ( t t .m.... n..o... ........u.v.... 5.......e.i.v.....i.....i..o..v..a............v..s...i.....i.. o..v..s...i.....i....v..s.. e n. a i i , o o i owt i ..m...i.o. s..i...:.~. .i.i..i c..i....i....r. m....i o..a..i.3..o..o...., m....i.m....v..oa....m......... o....m i su n em .n w mvau si u u m ie=. i..i s. e.....i...i.r.. 3.4....i....r. o... 4....i....t. e.e.n.. i.s...i.. i..r..,.......................... i t.i... i
- c.......i. e..r.e sa.e s i
.r..... i i . e 53.....i....e..i.2. 34....i .e.r............................,3......i i.......i.. s..e. s. 3..i s....i...i.. s.n.i.... . i e reii.....i...i...a.i.... >..i.. ecei.......i..:..r.. 3..$4..... ..s..r... i .i...i : ev i . i. ti,3 es i i.s c .....e..............................................................i...i.r...e.i...i..s.,...c.is............i i.i..c.... i ..s..r..e s.a..e.s....i... r.e..s.. i....i....r..i....o.......i....r.i. i...... i..r.o..i...,... i..i e e ..,.s......i.t...e . ics i... a.es i 4i... i
- ::4...,. 3.....i....r.
3...is. i e r.....i. r 442-i i 4 tsis... i .is............,...........................3 4 3.....i...i.e.. s.a.. i e....i..i..s.,.s.i........................... .. t.....e......es....i..e..e. 43.... .i s.e..i.. ...............i....e.t.e.s.... i ii i..e i i i s .....i..s..r.. 3............ .s.e..i.....i..,.i...i. es....i ... 4.... se . i...i.r..s.a... ....i...i...........i..... 4e.. i ........ 4 e. ,4 i r..a. e s..i.....:.:.. e....i....r...s. ........i.....i 4e 3......i....e.... i seis.ie i i sei... iet i
- ...es i
.i.r.e......:..e i .r ...i...i....is.... e... _.. .is.........,.............................. . ire i seen.es i .re.es i e .. i.. ..e.........i..e..r.e.
- 2.......i...e.r..e.e s.......
e i 4 4 ei.ii. ..it. . : 4.i... i ..e.s.s.... s s a..a e .e e e.. .....i....... 4....i..s..r..s.i 4....i..s..r..43.. 4..i...i..4..s...s....i.4..........i....e..s........e 4 ...i.:..:.3... e .:.e ......i....,...i...e....i .e ... i..i...e...i. s,3. e....i.....4.c ...s r,,. ....i.....4. 3.. e ri i......i...e............i.... e.s........i..e..r..,i.......i ...,s.a....e...i
- ,4 e
.e e . re .s .i i ii.:... i . i . i er. ... i...e r e en.e e i....... i r..cs... ....i. ......i..,. s..e....i..e..r. i.. 4...i...i....a. es.i...i..e.s.e. s..e.i..................,....................... ........s ts ..s. 3.. e r e n.i.s...e...i.._....e....e .,... 3.. 4...
- 3. m 4
4.. .i s. i..i.....i......,....e....i..e..u.. u........i. .w...u.... 2.,...a saw. e .u e e w u... i u i .r m.n i r.n.e s i ..ii...i......3.es....e.i....et....i...i..s..:3.........,..............................................e... ,i s... s . e.u . siu. i... 4....i.....43. 4...<....r.,..u.........,...... u....i..s..r.. n.. u....i s . i :....es i ,843.. i i u s-33..i. . i s s.43.. i. 4.e. s .i i .is.a.............,......................................................i...i.... s.,.3..e...... 3..4.s i 4.. i i.. i 4 44 3... i
- 3.e4 i.i..
e....i.....n s 4 i e e v i sa.....i..,....,3.s...i... .e.s..e....i......e.n...e....i s....i . 4....i...i.r..c.i...i....i 4:....e n. . 4 e..i.....i.. :....s e.i. e s....i......... e t o .e.......i....r...a.. e t....i....4. e.n...s e....i ... i i ei,3..: i ........i...e e ...e es i 4i i e rees.. e .................................................................,: r e en.e s....i...i..e. a. e 4....i....r...s. e....i..... c.i. 4....i...s e.,......i...r...n..e.,....i..... :. s....i .,.e.i.4 e i ca s ..s .sa .r..a.3. e....i...i.e.s..s a...e e....i ..i............. 4 ...i...i...e.n..e.s....i....... ss 4.........e....4.., i ...i i... u....i...i.w e....r.e........i s...i..3.... 4 ,.... s i..... ....i....e.s..u...i.... 43..:: . i. 4...s u...i. 4.....a..e...i...... i.. 4....i s .u. u.u 4 n.
- i. e...i.....u..n. e m..i. e.r.u n...e.4...i
)WsW3( )WsW3( )J310( - )WsW3( i 4 1-1- 1 1 g i nunis: juyele)}ou tup e(( )J)))nu - maam/AJ daJ n)K /w 044aJ dggymets joJ elt ogyaJ aeppounet tpes - m waaw/ta daJ nO /sao l, 0001' A'D' snum. smuupes gepsiou IZ )saogawgaJ 168 ( E
- 0-U
NOTE: The P, values of Table 2.2 2 through 2.2 6 were calculated in accordance with the methods of Section 5.3.1 of Reference 1. Columns in those tables marked " Pasture" are for freely-grazing animals (f,= f,= 1). Columns marked " Feed" are for animals fed sesfely locally-grown stored feed (f = f,= 0). The values used for p each parameter and the origins of the values are given below in Table 2.2 9 and its notes. i l + 9 i 9 ODCM, V.C. Summer, SCEandG: Revision 12 (September 1987) 2.0 32
p Table 2.2 7 CONTROLLING RECEPTORS, LOCATIONS, AND PATHWAYS
- DISTANCE AGE ORIGIN
[ SECTOR (METERS) PATHWAY GROUP (FOR INFORM ATION ONLY) N** 6,400 Vegetation Child Vegetable Garden NNE 5,800 Vegetation Child Vegetable Garden 5,300 Grass / Cow / Meat Grazing Beef Cattle NE 4,700 Vegetation Child Vegetable Garden 4,700 Grass / Cow / Meat Grazing Beef Cattle ENE 2,400 Vegetation Child -Vegetable Garden E 5,000 Vegetation Child -Vegetable Garden ESE 1,'800 Vegetation Child Vegetable Garden SE 2,400 Vegetation Child Vegetable Garden SSE 4,300 Vegetation Child Vegetable Garden S** 6,300 Vegetation Child Vegetable Garden SSW*
- 5,500 Vegetation Child
-Vegetable Garden SW 5,300 Vegetation Child Vegetable Garden WSW 5,300 Vegetation Child Vegetable Garden W 4,300 Vegetation Child Vegetable Garden 3,400 Grass / Cow / Meat -Grazing Beef Cattle WNW" 7,200 Vegetation Child Vegetable Garden 7,200 Grass / Cow / Meat -Grazing Beef Cattle NW 6,600 Vegetation Child -Vegetable Garden 6,600 Grass / Cow / Meat Grazing Beef Cattle NNW 4,800 Vegett, tion Child -Vegetable Garden 4,800 Grass / Cow / Meat Grazing Beef Cattle See note on the following page for the method of choice of these controlling receptors. If a cow were located at 5.0 miles (8,000 meters) in this sector, an infant consuming only its milk would receive a greater total radiation dose than would the real receptor listed. Such an infant would not be the Maximum Exposed Individual for the site. ODCM, V.C. Summer, SCEandG: Revision 12 (September 1987) 2.0-33
i i NOTE: The controlling receptor in each sector was identified in the gj following way. Receptor locations and associated pathways were obtained from the August 1987 field survey. A child was assumed at each location, except that where a milk cow was listed, an infant.was assumed. X76' for each candidate reaptor was obtained by interpolation of values in Table 6.1 10 of Reference 5; i D/Q' for each candidate receptor was obtained by interpolation of values in Table 6.1 13 of Reference 5. Expected annual releases of each nuclide were taken from Table 5.2 2 of Reference 5. The pathway dose factors given above in Tables 2.2 3 and 2.2-4 were then used with the referenced values in the methodology of Section 5.3 of Reference 1 to compute total annual doses at each candidate receptor site for the pathways existing at that site. The E controlling receptor for each sector was then chosen as the candidate receptor with the highest total annual dose of any candidate receptor in the given sector. All listed pathways are in L addition to inhalation and ground plane exposure. G I O' ODCM, V.C Summer, SCEandG: Revision 12 (September 1987) 2.0 34
r. t Table 2.2-8 ATMOSPHERIC DISPERSION PAR AMETERS FOR CONTROLLING RECEPTOR LOCATIONS
- i DISTANCE
[ECTOR 2_OQ' D1 (MILES / METERS) N 1.4 E 07 6.2 E 10 4.0/6,400 NNE 2.5 E 07 1.1 E 09 3.3/5,300 NE 3.4 E 07 1.7 E 09 2.9/4,700 ENE 1.2 E 06 6.8 E 09 1.5/2,400 E 2.4 E 06 9.6 E 10 3.1/5,000 ESE 2.2 E-06 8.4 E 09 1.1/1,800 l SE 1.6 E-06 5.8 E 09 1.5/2,400 SSE 3.0 E 07 1.0 E-09 2.7/4,300 5 1.7 E 07 3.7 E 10 3.9/6,300 SSW 2.0 E 07 6.4 E 10 3.4 /5,500 SW 2.6 E 07 1.0 E 09 3.3/5,300 g'O p WSW' 2.0 E-07 8.7 E 10 3.3/5,300 W 3,6 E 07 1.7 E 09 2.1/3,400 WNW 6.6 E-07 2.5 E 10 4.5/7,200 NW 9.7 E 08 4.1 E 10 4.1/6,600 NNW 1.8 E 07 9.7 E 10 3.0/4,800 Annual average relative dispersion and deposition values for the receptor locations in Table 2.2 7. Values were obtained by interpolation in Tables 6.1 10 and 6.114 of Reference 5. Those tables are based on one year (1975) of meteorological readings and the FSAR dispersion model (ground level release, sector averaged model, with open terrain recirculation factors, dry depletion by Figure 2.31, and using decay with a half life of 8.0 days). As a result of the analysis described in the note to Table 2.2-7, the location of the maximum exposed individual for the site was identified as being the vegetable garden at 1.1 miles in the ESE sector. Therefore, the site X/Q' and tilQ'(Section 2.2.2.b and L following) are those from this table for that location. ODCM, V.C. Summer, SCEandG: Revision 12 (September 1987) 2.0 35
i [- Table 2.2 9 Page 1 of 4 PARAMETERS USED IN DOSE FACTOR CALCULATIONS Oriain of Value Parameter Value b[UREG W Table in R.G.1.109 SDec'f'C g ...For P * *
- i
- DFA, Each radionuclide E9 Note 2 BR 3700 m /yr E5 3
l
- *
- For Ri (Vegetation)* *
- r Each element type E-1 Y,
2.0 kg/mi E 15 l Aw 5.73 E 7 sec 5.3.1.3 \\ \\ l
- DFL, Each age group and radio-E 11 thru Note 2 nuclide E 14 U/
Each age group E-5 f 1.0 5.3.1.5 t t 8.6 E + 4 seconds E 15 t U/ Each age group E-5 f, 0.76 5.3.1.5 t 5.18 E + 6 seconds E-15 n H 8.84 gm/m3 Note 1
- For Ri (Inhalation)* *
- BR Each age group E5
- DFA, Each age group and nuclide E 7 thru Note 2 E-10 0
ODCM, V.C. Su.mmer, SCEandG: Revision 12 (September 1987) { 2.0 36
Table 2.2 9 Pace 2 of 4 PARAMETERS USED IN DOSE FACTOR CALCULATIONS Oriain of Value Parameter Value Section of Table in Site-NUREG R.G.1.109 SDeCific 0133 Plane)**g(Ground
- * *For R l
I SF 0.7 E 15 l
- DFG, Each radionuclide E6 t
4.73 E + 8 sec 5.3.1.2 o lO car orRiseaai-ieue *>
- F Q, (Cow) 50 kg/ day E-3 Q, (Goat) 6 kg/ day E-3
. U,, Each age group E5 Aw 5.73 E-7 sec-' 5.3.1.3 F,(8oth) Each element E1 r Each element type E 15
- DFL, Each age group and nuclide E 11 thru Note 2 E-14 f,
1.0 Note 3 f, 1.0 Note 3 3 E-15 Y, 0.7 kg/m t 7.78 E + 6 sec E 15 n 2 Y, 2.0 kg/m E 15 tf 1.73 E + 6 sec E 15 3 H 8.84 gm/m Note 1 ODCM, V.C. Summer, SCEandG: Revision 12 (September 1987) 2.0 37
i i Table 2.2 9 g Page 3 of 4 PARt. METERS USED IN DOSE FACTOR CALCULATIONS Oriain of Value Parameter Value Table in Section of Site-NUREG' R.G.1.109 Specific g
- *
- For R Note 4 (Grass /Cdw/ Milk)* *
- QF 50 kg/ day E3 U,,
Each age group E5 Aw 5.73 E 7 sec i 5.3.1.3 F, Each element E1 5 r Each element type E-15
- DFL, Each age group and E 11 thru Note 2 nuclide E-14 Y,
0.7 kg/m2 E 15 t 7.78 E + 6 sec E-15 n 2 Y, 2,0 kg/m E-15 L t, 1.73 E + 5 sec E-15 l f, 1.0 Note 5 f, 1.0 Note 5 f, 0.0 Note 5 f, 0.0 Note 5 3 H 8.84 gm/m Note 1 L l h ODCM, V.C. Summer, SCEandG: Revision 12 (September 1987) t 2.0 38 i
s Table 2.2 9(Continued) Page 4 of 4 NOTES 1; Site specific annual average absolute humidity. For each month, an average absolute humidity was calculated from the 7 years of monthly average temperatures in Table 2.3 49 of Reference 4 and the 5 years of monthly average dewpoints in Table 2.3 64 of Reference 4. The 12 monthly values were averaged to obtain the annual average of 8.84 gm/m. (Section 5.2.1.3 3 of Reference 1 gives a default value of 8 gm/m.) 3 2. Inhalation and ingestion dose factors were taken from the indicated source. For each age group, for each nuclide, the organ dose factor used was the highest dose f actor for that nuclide and age group in the referenced table. 3. Typically beef cattle are raised all year on pbsture. Annualland surveys have indicated that the small number of goats raised within 5 miles typically are used for grass control and not food or milk. Nevertheless, the goats were treated as full meat sources where present, despite the fact that their numbers cannot sustain the meat consumption rates of Table E 5 of Reference 3. 4. According to the August 1987 land use census, no cows or goats are kept for milk within 5 miles of the Station. These values are included for reference only. 5. Two columns of R,'s were calculated one for cows kept exclusively on local pasture (f = f,= 1), and one for cows kept exclusively on locally grown p stored feed (f,= f,= 0). See the note on page 2.0 32. O ODCM, V.C. Summer, SCEandG: Revision 12 (September 1987) 2.0-39
_HM w [yb .s j ae id.{_k 2.3 Meteoroloaical Model g 2.3.1 Atmospheric dispersion for all releases is calculated using a ground. ~ level, wake-corrected form of the straight line flow model. X/Q - the sector-averaged annual average relative = -i concentration at any distance in the given~ sector 3 (sec/m ) (51) n." 2.032 8T E = Nru,[,, 1 where: 2.032. = (2/n)i.2 divided by the width in radians of a 22.5' sector l-(0.3927 radians). L L 6=_ plume depletion factor at distance r for the appropriate stabill:y class from Figure 2.31. L i windspeec The windspeed classes are given in Table = 4A of Refe > 10 as 1-3,4 7,812,1318,19 24, and '> 24 miles pw ^ - number of hours meteorological conditions are observed n,.3 = to be in a given wind direction, windspeed class I, and atmospheric stability class j. s N. total hours of valid meteorological data, = 1 s distance from the containment building to location of r = interest (m) wind speed (midpoint of windspeed class i) at ground level u, = (m/sec). (v'3 o,) E, 2 + b /2n)6 2 thelese of (o = or 9 ODCM, V.C. Summer, SCEandG: Revision 12 (September 1987) F 2.0 40
7 p.. +. ,3 ; ?, k' l-s pi T'i where: r u\\ / vertical standard ~ deviation of the plume (in m) at o, = distance r for ground level releases under the stability - category indicated by AT/ AZ, from Figure 2.3 2. T terrain recirculation factor, from Figure 2.3 4 = n = 3.1416 b height of the containment building (50.9m) =. AT/A2. = temperature differential with vertical separation (*K/100m). 2.3.2 - ' Relative deposition per unit area for all releases is calculated for a 4 ground level release. L D/O =. the sector averaged annual average relative deposi-L tion at any distance in a given sector (m ). i 4 1 = 2.55 D n (53) g g rN
- where, deposition rate for ground level releases relative to-D,
= distance (r) from the containment buildino (from Figure 2.3 3). l l L 2.55 the inverse of the number of radians in a 22.5' sector = 1 i (22.5 )(0.0175 Radians / ) j number of hours wind is in given direction (sector). I n = o total hours of valid meteorological data. N = i F l L l: ODCM, V.C. Summer, SCEandG: Revision 12 (September 1987) 2.0-41 l l' i
gn; ~ -i j _ i figure 2.3-1 Plume Depletion Effect for Ground Level Releases (6) (All Atmospheric Stability Classes) Graph taken from Reference 8. Figure 2 m. E m i a 1 .g i / / / / / / 3 6 !s )
- e. g.
o 1 I I a / IO f J g- ./ a / N w B 's t I I I I I / 1 2 h q e. 9 h 9 9 w M N e o e o o d e o d FRACTION REMAININr, IN PLUME ODcM, V.C. Sumer, SCEandG: Revision 12 (September 1987) 2.0-42
i ' (f Figure 2.3-2 ~ .. r,-T Vertical Standard Q3viation of. Material in a Plume (o ) Z () (Letters denote Pasquill Stability Class) Graph taken from Reference 8, Figure 1 + 1000 l 1 I / ) I / / / / i r r r p p, j ./ / / f A ,s.- 100 / I "#'~ j j / / 7 / / ,,--~~ h /- / / c/- / / / l l /// /k/ / [ c / / / /,,/ /,, / a/ f / s' l 1 - / / .F J J / / / j '/ / /. / \\ / / ' 0,1 1.0 10 100 PLUME TRAVEL DISTANCE (KILOMETERS) 1 i L Temperature Chan Pasquill Stability with Height AT/aZ (*geK/100n) Ca tegories Cl assification l' < -1. 9 A Extremely Unstable -1.9 to -1.7 B Moderately Unstable l -1. 7 to -1.5 C Slightly Unstable -1. 5 to -0.5 D Neutral E -0.5 to 1.5 E Slightly Stable / 1.5 to
- 4. 0 F
Moderately Stable T > 4.0 G Extremely Stable 0D04; V.C. Stmner, SCEandG: Revision 12 (September 1987) 2.0-43 L
. - - - - - - ~. j_ Figure 2.3-3 { Relative Deposition for Ground-Level Releases (0 ) ]= ( All Atmospheric Stability Classes) 9 1 Graph taken from Reference 8, Figure 6 10-3 = 10-4 \\ m s ' a W A e T .t u .I h i G \\ 5 N e a e s $ 10-5 N L g 2 y 's E x y \\ k s\\ ag 10-6 \\ i F-3g-7 0.1 1.0 10.0 100.0 200.0 Pt.UME TRAVEL DISTANCE (KILOMETERS) OD04, V.C. Sumer, SCEandG: Revision 12 (September 1987) 2.0-44
- t:
Figure 2.3-4 Open Terrain Recirculation Factor Graph taken from Reference 7, Figure 2 8-I i I I y I ac / 6 / i E r w E / 5 / o .i - 5 S
- s CORRECTION FACTOR ODO4, V.C. Sunner, SCEandG: Revision 12 (September 1987) 2.0-45
F i 9, 2.4 Definitions of Gaseous Effluent Parameters Section of Term-Definition Initial Use. b height of the containment building. (2.3.1) = count rate of a station vent monitor (2.1.1) A C' = corresponding to grab sample radio-nuclide concentrations. C,' = the count rate of the monitor on vent v (2.1.3) corresponding to X,' uCi/cc of Xe-133. count rate of the gas decay system (2.1.2) c = monitor for measured radionuclide concentrations corrected to discharge pressure. c' the count rate of the waste gas decay (2.1.3) = system monitor corresponding to the total noble gas concentration. deposition rate for ground-level re-(2.3.2) D' = leases relative to the distance from the containment building (from Figure 2.3 3). D average organ dose rate in the current (2.2.1.b) = o year (mrem /yr). D" dose to an individual from radioiodine (2.2.2.b) = and radionuclides in particulate form and radionuclides (other than noble gases), with half-lives greater than eight -days (mrem). D; average skin dose rate in current year (2.2.1.a) = (mrem / year). D33 = limiting dose rate to the skin (3000 (2.1.1) mrem / year). D, average total body dose rate in the (2.2.1.a) = current year (mrem /yr). D,-= HWng dose rate to @e total My 0.1. 0 1 (500 mrem / year). Op air dose due to beta emissions from (2.2.2.a) = noble gas radionuclides (mrad). ODCM, V.C. Summer, SCEandG: Revision 12 (September 1987) 2.0-46
j Section of Term Definition initial Uje i <3 D y air dose due to gamma emissions from (2.2.2.a) = ( noble gas radionuclides (mrad). D/O = the sector averaged annual average (2.3.2) relative deposition for any distance in a given sector (m 2), D/Q' = annual average relative deposition (2.2.2.b) at the location occupied by the maxi-mum exposed individual. 8 plume depletion factor at distance r (2.3.1) = for the appropriate stability class from Figure 2.31. the flow rate in vent v (cc/sec). (2.1.1) F, = f, the maximum permissible waste gas (2.1.2) = discharge rate, based on the actual radionuclide mix and skin dose rate. f, - the maximum permissible waste gas (2.1.2) = discharge rate, based on the actual radionuclide mix and total body dose rate. f f, the maximum permissible waste gas (2.1.2) = i O discharge rate, the lesser of f, and f. t l x). f,' the conservative maximum per-(2.1.3) = missible waste gas discharge rate L based on Kr 89 skin dose rate. f,' - the conservative maximum permissible (2.1.3) = waste gas discharge rate based on Kr-89 total body dose rate. total body dose factor due to gamma (2.1.1) K, =- emissions from isotope i(mrem / year 1 3 per uCi/m ) from Table 2.1-1. K,89 = total body dose factor for Kr-89, the (2.1.2) g most restrictive isotope from Table l: 2.1-1. Skin dose factor due to beta emissions (2.1.1) L = from isotope i(mrem /yr per uCi/m ) 3 from Table 2.1-1. L,.,, = En dose fam for @@, & most Q.1.0 x L restrictive isotope, from Table 2.1-1. air dose factor due to gamma emissions (2.1.1) M' = from isotope i(mrad /yr per uCi/m ) from 3 Table 2.1-1. ODCM, V.C. Summer, SCEandG: Revision 12 (September 1987) u 2.0-47 l
pm Section of Term Definition initial Use . M,.,= air dose factor for Kr 89, the most (2.1.2) g restrictive isotope, from Table 2.1 1. air dose factor due to beta emissions (2.2.2.a) N, = , from noble gas radionuclide i(mrad per uCi/m ) from Table 2.1-1. l 3 number of hours meteorological (2.3.1)' l N,' = conditions are observed to be m a given wind direction, windspeed class i, and atmospheric stability class j. 3 l-total hours of valid meteorological - (2.3.1) N = data. dose parameter for radionuclide i, (2.2.1.b) - l P, = l (mrem /yr per uCi/m ) for inhalation, 3 l. from Table 2.2-1. l L l the release rate of noble gas radio-(2.2.1.a) l Q, = nuclide i as determined from the con-i L centrations measured in the analysis l of the appropriate sample required by Radiological Effluent Technical Speci-L fication Table 4.112 (uCi/sec). i g Q,' the release rate of non-noble gas (2.2.1.b) = radionuclide i as determined from the concentrations measured in the-J analysis of the appropriate sample required by Radiological Effluent Technical Specification Table 4.11-2 (uCi/sec). j 3,. = cumulative release'of noble gas radio-(2.2.2.a) l; nuclide i over the period of interest (uci) Q,' = cumulative release of radionuclide i (2.2.2.b) l ofiodine or materialin particulate ( form over the period of interest (uci). dose factor for radionuclide i and (2.2.2.b) R" -= pathway j, (mrem /yr per uCi/m2) or 2 (m -mrem /yr oer uCi/sec) from Tables 2.2 2 through 2.2 6. R,- count rate per mrem /yr to the skin. (2.1.1) = R, count rate per mrem /yr to the total (2.1.1) = body. h distance from the containment building (2.3.1) r = to the location o'intt.*est for dispersion calculations (m). ODCM, V.C. Surr mer SUandG: Revision 12 (September 1987) 2.0-48
i .I s. Section of ~ Term. ' Definition Initial Use R,' conservative count rate per mrem to (2.1.3) = N the skin (Xe 133 detection, Kr 89 dose). R,' conservative count rate per mrem to (2.1.3)- = the total body (Xe-133 detection, Kr-89 dose), i S
- count rate of the waste gas decay (2.1.2)
= o system noble gas monitor at the alarm setpoint. 5, count rate of a station vent noble gas (2.1.1) = monitor at the alarm setpoint. 5,, count rate of the containment purge (2.1.1) noble gas monitor at the alarm setpoint. 5,, coun,t rate of the plant vent noble gas (2.1.1) = momtor at the alarm setpomt. E, verticalstandard deviation of the (2.3.1) = plume, with building wake correction applied. . vertical standard deviation of the plume (2.3.1) o, - = L (A (in m), at distance r for ground level L ) releases under the stability category L~ indicated by AT/ AZ, from Figure 2.3 2. AT/AZ = temperature differential with vertical-(2.3.1) . separation (*K/100m). T terrain recirculation factor, Figure (2.3.1) =- 2.3-4. wind speed (midpoint'of windspeed (2.3.1) u, = class i) at ground level (m/sec). W, controlling sector annual atmospheric (2.2.1.b) = dis sersion at the site boundary, as rac ionuclide i. W,.= relative dispersion for the maximum (2.2.2.b) exposed individual, as appropriate for his exposure pathway j and radionuclide i. the concentration of noble gas radio-(2.1.2) X,o = nuclide iin a waste gas decay tank, as corrected to the pressure of the discharge stream at the point of its flow measurement. the measured concentration of noble (2.1.1) X,, I = ODCM, V.C. Summer, SCEandG: Revision 12 (September 1987) 2.0-49
t i / 53ction of Term' Definition Initial Use gas radionuclide iin the last grab sample analyzed for vent v (uCi/cc). l 1 X,' the total noble gas concentration in a (2.1.3) = waste gas decay tank, as corrected to the pressure of the discharge stream at the point of its flow measurement. X'= a concentration of Xe.133 chosen to be (2.1.3) y in the operating range of the monitor on vent v (uCi/cc). X/Q = - the highest annual average relative (2.3.1) concentration at an distance in a i _ given sector.(sec/m ). RTO = - the highest annual average relative -(2.1.1)' j concentration in any sector, at the site - boundary. R7Q' = - relative concentration for the location (2.2.2.b) i occupied by the maximum exposed individual. I 1 l 4 O ODCM, V.C. Summer, SCEandG: Revision 12 (September 1987) 2.0-50
s
- i. -
s 4 k n .m. a.=.oc,, m. Q... -,.*,.3n mk,,.,.s x. ~ s, a t ,.oe 2 ~*m'. - We .s ea s e g a ^ y).
- s. -
=" ) M e8, = .e, 9 t = 95 e " ss = 84 e h a. t et 9e e,
- e
.e s o83 e a s 8 c ~ e, e " n e ~ g = M g e .e ~ e e = 6 De e ~. ~. e ' e
- su
- H e =. " s e = e s M t u e
- e 9
a S e r I ,e _ t. y .+ _ t. x, + _ t. .s e e. - +. 4 e _ t. + _.+ + _.,- f 4 y + 4
- .y a8 O'
neee 9:::.i.: g e " = tt ...::.i.v e Be g n s s a m. a e ~ - mi . st t . e s a a 5 n a n e u s m a. as n
- e. v c e
m E .B.v a, r = A e 6 n wse = t e 9 _ f. s M s.se 9:::.i.: e e s 91 .r .a 9 m s u t ai o e er D o o m n m .e e.- n u. ) .t s. amo s es m - o . e-v .s e Ms e se =. n .._G. e a A . t 6 v G m 5 .u .vu o e .A 8 e. no c s 4 e s un e e f - OOnr. n mcg., - mnm.,o.o - ,.<-= o, ~ M." +r. c.7 0.DN eGw 3 3 4 [I,'! llI tt i A .,4 4 % a
~ Y l 0 x . 3.0-RADIOLOGICAL ENVIRONMENTAL MONITORING Sampling locations as required in section 3/4.12.1 of the Radiological Effluent Technical Specifications are described in Table 3.01 and shown on i the maps in Figures 3.01 and 3.0-2. As indicated by the ditto (") marks in the c - table, entries in the sampling frequency and analysis frequency columns apply to all samples below the entry until a new entry appears. ML/. - 4 2 (~N V. ODCM, V.C. Summer, SCEandG: Revision 12 (September 1987) 3.0 1 - = - =
m v- ' RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM VIRGIL C. SUMMER NUCLEAR STATION TABLE 3.0-1 Criteria for Selection Sampling and Sample 1 Locations. 1 Type & Frequency p 1 and/or Sample
- "#I AIRBORNE:
1. Particulate A) 3 Indicator samples to be taken at locations (in Continuous sampler opera- '2 1.2 SW Gross beta following filter - diiferent sectors) beyond but as close to the tion with weekly collection. 5 0.9 SE change; Quarterly exclusion boundary as practicable where the 10 2.5 NNE Composite (by location) for highest offsite sectoral ground level gamma isotopic. concentrations are anticipated.2 B) 1 Indicator sample to be taken in the sector Continuous sampler opera-6 1.0 ESE Gross beta following filter - beyond but as close to the exclusion boundary tion with weekly collection. change; Quarterly.- t as practicable corresponding to the residence Composite (by location) for having the highest anticipated offsite ground gamma isotopic. level concentration or dose.2 C) 1 Indicator sample to be taken at the location Continuous sampler opera-148 6.3 W Gross beta following filter of one of the dairies most likely to be affected. tion with weekly collection. change; Quarterly 2A Composite (by location) for l gamma isotopic. D) 1 Control sample to be taken at a location at Continuous sampler opera-17 24.7 SE Gross beta following filter f least 10 air miles from the site and not in the tion with weeklycollection. change; Quarterly most prevalent wind direction.2 Composite (by location) for gamma isotopic. [ ODCM, V.C. Summer, SCEandG: Revision 12 (September 1987) e >G G e 5-m
o. f i-RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM . VIRGIL C. SUMMER NUCLEAR STATION TABLE 3.0-1 XPmure Criteria for Selection Sampling and Sample 1 Locations Type & Frequency Pathway of Sample Number & Location Collection Frequency Location Mi/Dir _ of Analysis and/sr Sample
- 11. Radioiodine A) 3 Indicator samples to be taken at two Continuous sampler opera-2 1.2 SW Gamma Isotopic for lodine locations as given in f(A) above.
tion with weekly canister 5 0.9 SE 131 weekly collection. 10 2.5 NNE B) 1 Indicator sample to be taken at the location as given in f(B) above. Continuous sampler opera-6 1.0ESE Gamma Isotopic for lodine tion with weekly canister 131 weekly collection. C) 1 Indicator sample to be taken at the location as given in 1(C) above. Continuous sampler opera-14 6.3 W Gamma isotopic for lodine tion with weekly canister 131 weekly collection. D) 1 Control sample to be taken at a location Continuous sampler opera-17 24.7 SE Gamma isotopic for lodine similar in nature to f(E) above. tion with weekly canister 131 weekly collection. i 111. Direct A) 13 indicator stations to form an inner ring of Monthly or quarterly 1,2 1.2 5,1.2 SW Gamma dose monthly or stations in the 13 accessible sectors within 1 to exchange 5.7; twoor more 3,4 1.2W,1.2 WNW quarterly. 2 milesof the plant. dosimeters at each location. 5,6 0.95 E,1.0 ESE 7,8 1.2 E,1.5 ENE 9,10 2.2 NE,2.5 NNE 29 0.9 WSW, 30 1.0 55W 47 1.0NW I \\ ODCM, V.C. Summer, SCEandG: Revision 12 (September 1987) 3.0 _ _ _ _
4 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM VIRGIL C. SUMMER NUCLEAR STATION TABLE 3.0-1 l Criteria for Selection Samplingand Sample 1 Locations Type & Feequency. i S8mple Number & Location Collection Frequency Location Me/Dir ' of Analysis - d Sa pk B) 16 Indicator stations to form an inner ring of Monthly or quarterly 12,14 4.2 N,6.3 W. Gamma dose monthly or stations in the 16 accessible sectors within 3 to 5 exchange 5.7; two or more 32,33 4.5NNE.4.2ENE quarterly. miles of the plant. dosimeters at each location. 34,35 4.8 ESE 4.8 SE 36,37 3.1 SSE,4.9 NW 41,42' 3.9 5,3.9 55W 43 5.25W 45 5.9 WSW 46 3.7WNW 49 4.0NNW 53,55 3.0 NE,2.8 E l C) 8 51ations to be placed in special interest areas Monthly or quarterly 11,13 3.3 N,2.9 NNW Gamma dose monthly or such as population centers, nearby residences, exchange 5.7; two or more 15,16 2.555W,28.0W quarterly. l schools and in 2 or 3 areas to serve as controls. dosimeters at each location. 17,18 24.7 5E,16.5 5 l 31,54 5.8NNE,1.7ENE WATERBORNE: IV. Surface A) 1 Indicator sample downstream to be taken at Time composite samples 213.6. 2.7 55 W Gamma isotopic monthly Water a loc & tion which allows for mixing and dilution with collection every with quarterly composite (by j in the ultimate receiving river. month.5 location) or monthly sample to be analyzed for tritium. B) 1 Control sample to be taken at a location on Time composite samples 223 30.0 NNW Gamma isotopic monthly ~1 the receiving river, sufficiently far up-stream with collection every with quarterly composite (by such that no effects of pumped storage month.5 location) or monthly sample operation are anticipated. ~ to be analyzed for tritium. ODCM, V.C. Summer, SCEandG: Revision 12 (September 1987) O >G G
1P RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM ' VIRGIL C. 5UMMER NUCLEAR STATION - TABLE 3.0-1 "P" Criteria for Selection Sampling and Sample 1 Locations Type & Frequency f Sample Number & Location Collection Frequency Location Mi/Dir of Analysis d r pk C) 1 Indicator sample from a location immediately Time composite samples 17 24.7 SE Gamma isotopic monthly upstream of the nearest downstream with collection every with quarterly composite (by municipal water supply. month.5 location) or monthly sample to be analyzed for tritium. D) 1 Indicator sample to be taken in the upper Time composite samples 233 0.5 ESE Gamma isotopic monthly reservoir of the pumped storage facility at the with collection every with quarterly composite (by plant discharge canal. month.5 location) or monthly sample to be analyzed for tritium. E) 1 Indicator sample to be taken in the upper Grab sampling monthly 5 243 5.5 N As in IV(A) above. reservoir's non-fluctuating recreational area. F) 1 Control sample to be taken at a location on a Grab sampling monthly 5 183 16.5 5 Asin IV(A) above separated unaffected watershed reservoir. V. Ground A) 2 indicator samples to be taken within the Quarterly grab sampling 7 26 Onsite Gamma isotopic and tritium 27 Onsite analyses quarterly. Water exclusion boundary and in the direction of potentially affected ground water supplies. 8) 1 Control sample from unaffected location. Quarterly grab sampling 7 16 20.1 W Gamma isotopic and tritium analyses quarterly. ODCM, V.C. Summer, SCEandG: Revision 12 (September 1987) 3.0-5
r RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM VIRGIL C. SUMMER NUCLEAR STATION ' TABLE 3.0-1
- posure Criteria for Selection
. Samplingand Sample 1 Locations Type & Frequency U and/or Sample
- "'I VI. Drinking A) 1 Indicator sample from a nearby public Monthly grab sampling S
'28 ' 2.4 SSE Monthly gamma isotopic.- Water ground water supply source. gross beta and tritium analyses. 1 B) 1 Indicator (finished water) sample from the Monthly composite 17 24.7 5 Monthly gamma isotopic,
- i nearest downstream water supply.
sampling. gross beta and tritium j analyses. C) 1 Control (finished water) sample from an Monthly composite 39 14.0 55E Monthly gamma isotopic, unaffected water supply.. sampling. gross beta and tritium analyses. 1 INGE5110N: Gamma isotopic and 1-131 ' I Vll. Milk 4 A) Samples from milking animals in 3 locations Semimonthly when animals rodeuw a within 5 km having the highest dose potential. are on pasture 8, monthly analysis semimonthly when. 1 .w.* If there are none then 1 sample from milking other times.5 -.,e e-animais are on pasture, animals in each of 3 areas between 5 to 8 km monthly other times. i ..cu 4.m. distance where doses are calculated to be omwe-vn 9reater than 1 mrem per year.10 t t B) 1 Control sample to be taken at the location of Semimonthly when animals 16 20.1 W. Gamma isotopic and 1-131 a dairy > 20 miles distance and not in the most are on pasture, monthly analysis semimonthlywhen 'I s prevalent wind direction.2 other times.5 animals are on pasture, monthly other times. l t ODCM, V.C. Summer, SCEandG: Revision 12 (September 1987) e >G G
RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM VIRGIL C. SUMMER NUCLEAR STATION TABLE 3.0 1 Criteria for Selection Sampling and Sample 1 Locations. Type & Frequency. 5" """'I I' and/ r Sample C) 1 Indicator grass (forage) sample to be taken at Monthly when 6 1:0 ESE Gamma isotopic. one of the locations beyond but as close to the available 5 exclusion boundary as practicable where the highest offsite sectoral ground level l concentrations are anticipated.2 D) 1 Indicator grass (forage) sample to be taken at Monthly when noww Gamma isotopic. the location of Vil(A) above when animals are available 5 ,a,,,,. on pasture. , <,- um. E) 1 Control grass (forage) sample to be taken at Monthly when 16 20.1 W Gamma isotopic. the location of Vil(B) above. available 5 l Vill Food A) Two samples of broadleaf vegetation grown in Monthly when available.5 6 1.0 ESE Gamma Isotopic on edible 8 1.5 ENE portion. Products the 2 nearest offsite locations of highest calculated annual average ground level D/Q if milk sampling is not performed within 3 km or - if milk sampling is not performed at a location within 5-10 km where the doses are calculated to be greater than 1 mrem /yr.1C ODCM, V.C. Summer, SCEandG: Revision 12 (September 1987) 3.0-7
A*- RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM VIRGIL C. SUMMER NUCLEAR STATION TABLE 3.0-1 Criteria for Selection Sampling and Sample 1 Locations Type & Frequency p
- * " "*d"-
- * # ' * "'Y
'"*d" and/or Sample B) 1 Control sample for the same foods taken at a Monthly when available.5 18 16.5 5 Gamma Isotopic on edible location at least 10 miles distance and not in portion. the most prevalent wind direction if milk sampling is not performed within 3 km or if milk sampling is not performed at a location within 5-8 km where the doses are calculated to be greater than 1 mrem /yr.s IX. Fish A) 1 Indicator sample to be taken at a location in Semiannualcollectionof the 233 0.3-5 Gamma isotopic on edible the upper reservoir. following specie typesif portions semiannua;fy. available: bass; bream, crappie; catfish, carp; forage fish (shad). 8) 1 Indicator sample to be taken at a location in Semiannualcollectionof the 213 1-3 Gamma isotopic on edible the lower reservoir. following specie typesif. portions semiannually. available: bass; bream, crappie; catfish, carp; forage fish (shad). C) 1 Indicator sample to be taken at a location in Semiannualcollectionof the 243 5.5-6.5 Gammaisotopic on edible the upper reservoir's non-fluctuating following specie typesif portions semiannually. recreational area. available: bass; bream, crappie; catfish, carp; forage fish (shad). ODCM, V.C. Summer, SCEandG: Revision 12 (September 1987) O 4 9. = --
i RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM l VIRGIL C. SUMMER NUCLEAR STATION l TABLE 3.0-1 i " P "' Criteria for Selection Sampling and Sample 1 Locations Type & Frequerny f Sample Number & Location Collection Frequency Location Me/Dir of Analysis ' and ple l l D) 1 Controf sample to be taken at a location on Semiannualcollectionof the 223 30.0 NNW ' Gammaisotopic on edible the receiving river suf ficiently far upstream following specie typesif portions semiannually. j such that no effects of pumped storage cvailable: bass; bream, operation are anticipated. crappie; catfish, carp; forage fish (shad). l AQUATIC: X. Sediment A) 1 Indicator sample to be taken at a location in Semiannual grab sample.9 233 0.5 ESE Gamma isotopic. the upper reservoir. I i B) 1 Indicator sample to be taken at a location in Semiannual grab sample.9 243 5.5 N Gamma isotopic. the upper reservoir's non-fluctuating recreational area. f C) 1 Indicator sample to be taken on the shoreline Semiannua; grab sample.9 213 2.7 SSW Gamma isotopic. of thelowerreservoir. t j D) 1 Contr01 sample to be taken at a location on Semiannual grab sample 9 223 30.0 NNW Gamma isotopic. the receiving river sufficiently far upstream i such that no effects of pumped storage l operation are anticipated. l ODCM, V.C. Summer. SCEandG: Revision 12 (September 1987) 3.0-9 ' i ._j m
w n RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM VIRGIL C. SUMMER NUCLEAR STATION TABLE 3.0-1 NOTES (1) location numbers refer to Figures 3.0-1 and 3.0-2. (2) Sample site locations are based on the meteorological analysis for the period of record a presented in Chapters 5 and 6, V.C. Summer Operatina License Environmental Report. (3) Though generalized areas are noted for simplicity of sample site enumeration, airborne, water and sediment sampling is done at the same location'whereas biological sampling sites are generalized areas in order to reasonably assure availability of samples. (4) Milking animal and garden survey results will be analyzed annually. Should the survey indicate new dairying activity: the owners shall be contacted with regard to a contract for supplying sufficient samples. If contractual arrangements can be made, site (s) will be added for additional milk sampling up to a total of 3 Indicator Locations. (5 Not to exceed 35 days. (6) ime composite samples are samples which are collected with equipment capable of collecting an aliquot at time intervals which are short (e.g. hourly) relative to the compositing period. (7) At least once per 100 days. (8) At least once per 18 days. (9) At least once per 200 days. (10) The dcse shall be calculated for the maximum organ and age group, using the guidance / methodology contained in Regulatory Guide 1.109, Rev.1 and the parameters particular to the Site. ODCM, V.C. Summer /SCEandG: Revision 12 (September 1987) 3.0-10 e O 9
,.__?_..-.._. 2. 33;o sPm 45 ' O ~ C O t.EGENO ( .o cm.
- S 4
4 4 ":::"~~ijj O i g...., N $:- ? O PRiMART SAMetE toCATio=S ". e, D = OIRECTtTLD) SAMPLE SITE (ts0NTHLY) - j::-.
- y ) [,
. g. A = AIR PARTICULATE SAMPLE SITE g .{.. 3, g I = AtRBORNE RA0 tot 00lNE SAMPLE SITE gs, , -- g, nn: v teuo se. g 2 ' ' ~. -9 ~ p. m W = CATER SAMPLING LOCATION ,, IE ~ t/> C OaOTHER 'J l. ^ -- g" S' 7~.,, **., 03 oUARTERLY TLO(D) SAMPLING LOCATONS r 7.nsr N 'o g V 4
- sm.
c, -tE ' *7 i e, 'od. .q . ~r :iiMH-.iEE P
- .f c
T r inii
- H" M.
s-
- i
\\ o 1 ,. = = @ g n.:3:- N.,. - c~- 7.
- m-g=.
N. g s a. .c 3 .30 ~.,,,, g O. .\\. 4e s- . e j ,g .a 3 .r... -. y,, o i y ,m w I c. X.
- s
- s [. N... 's m ' ** * . s,. *. 7 .. I s w .,C ,., w e y.,".,, f$ e, 1, y g, R. ~ :
- d h
- w Es g
gI ;== eq 4,f q#- ts '1 1 ) .3 1 => im t.: 'm -e =~- u.. ~ c,, x i-
- s..
,o c-t_ f 3,' ~ - + m ....,, s. 2- '\\ so a. x,./ t 1,i yy_ 7 ., c. m i = e . ;bY \\ f.' ' U -8 * " m -~ ) j. ,o,. / 1 t ~ ~.. - 23. s =.- g r.o) c-se - cm s3 g tsc'esion g j o- . *e e, l se, s i zo"' t Yf G*** .3 'a s, g N, "e '
- f.
- D 7
Canno"' ,m tr h # *e p P
- g cut g
% s,* \\; e e pow. amin g'
- j c.
e- 'O M*
- i. 03 w
no g
- /
m i. N s y 16 , cm. . -.. **s\\, @g +.o .....' t .i '4. e6* ,.m, .g. = a., Jts ,P "4 4 3,, y, .3 + ', s *s i .,.. g,., -
- -s,
,,t. . 8 Ig < cm.e
- s. -
3, N .. + e c. I Tc**. 3s J + f o. l [
- 4 l* cm
( e / .g Pg* ,,,sf s. T atsvon in E5 e South Coreilne Electric S Get Co.. ge, [
- 8 F
,? ev an 't* v:. _
- av j- ~
vroet C.. Sea.saer Neclear Station t
- j w 1
q 5. RAoeos.oGiCAL ason Tonthe PaoGRAM ~* O /l '*. \\ l 1* 6 <? s3a S o k, s,s.t-toCAt. NotCAToR SAMPLE SITES /..d "..
== K a s
- /
aie n g-9 W,. ~ un s. a xi - l . n......-.- I c
~ ' " - 4 n .w c ~3 &A a V \\ j . V' yt h ~--- 3 a y vs /.+n '.6 m.: i- 'to h b AS => n h <+ O' 3 [rb 7 m ,J.y_ g-g t, D - u l .o 8 ( _e ,{ LEGEND N 5 s- ./ ut O CONTROL SAMPLE LOCATIONS m f 3 Q ~ A= AIR PARTscutATE SITE Q ~ / 4 D= DIRECT (TLD) SITE .I ^... W= WATER SITE ~'[ I= AIR 80RNE RADIOtODINE SITE On OTHER (GARDEN PRODUCTS, FISH, 6 I 8.!! 8 / SEDeMENT, GRASS, MILK) 1 .f I ~ -= k } - Ea' (~
== u m u., EE"&ere==: = - L / b k 1 t:5 1 / m y/ q Sowet. Cerafino Electric 8 Goo Co. d g' ) Virgil C. Sommer Nucleor Stelien - f 9, w / % IOnel LOCatieft Rap Tm d%. ~ ~,, ~ w p. g w u n i: < ~ ~ em e. 4-- + ~r - "" + ~ ~ ' ~}}