ML19319C817

From kanterella
Jump to navigation Jump to search
Reactor Bldg Spray & ECCS Storage Tanks Drawdown Transient Analysis. Prepared for Util
ML19319C817
Person / Time
Site: Crystal River Duke Energy icon.png
Issue date: 07/15/1977
From: Ely R
GILBERT/COMMONWEALTH, INC. (FORMERLY GILBERT ASSOCIAT
To:
Shared Package
ML19319C808 List:
References
GAI-1955, NUDOCS 8003040783
Download: ML19319C817 (52)


Text

~

GAI-1955 w

( ) -

w' , .

CRYSTAL RIVER UNIT 3 NUCLEAR GENERATING PLAST REACTOR BUILDING SPRAY AND ECCS STORAGE TANKS DRAWDOWN TRANSIENT ANALYSIS Florida Power Corporation July 15, 1977 l

1 l

l i

Prepared by R. F. Ely, Jr.

8003040 7 7 3 Owihert /Cammemseelth l

s TABLE OF CONTDTr$

fa.ge Introduction 1 System Description 2 Mathematical Method . 3 Verification of Analytical Model 8 Design Criteria 9 Results of Drawdown Analysis 10 Enviror. mental Doses 12 Summary 15 References 16 i

/

Geert/Comwr.h

~

LIST OF TABLES Page I Reactor Building Sump Chemical Composition Design Criteria 18 II Reactor Building Sump pH Based on Chemical Composition Design Criteria 19 III Tank Inventory and Reactor Coolant Chemical Compositions 20 IV Decay Heat and Reactor Building Spray System Design Criteria 21 V Analytical Results to Maximum 'faOH Initial Condition Cases 22 VI Analytical Results to Minimum NaOH Initial Condition Cases 23 VII Minimum and Maximum pH in Building Spray and Decay Heat Systems for Maximum NaOH Initial Condition Cases 24 VIII Minimum and Maximum pH in Building Spray and Decay Heat Systems for Mini =um NaOH Initici Condition Cases 25 IX Parameters Used to Calculate Spray Removal Constants 26 X Parameters Used to Evaluate Environmental Doses 27 XI Environmental Doses Resulting from MHA 28 "altet /*m

< s .

LIST OF FIGURES

?.3.S*

I Schematic of Decay Heat and Reactor Building Spray Systems 19 II Model of Decay Heat and Reactor Building Spray Systems for Full Flow Drawdown Analysis 30 III Model of Decay Heat and Reactor Building Spray iystems for Half Flow Drawdown Analysis (A train) 31 IV Model of Decay Heat and Reactor Building Spray Systems for BST-1 Valve Failure Drawdown Analysis 32 V Model of Decay Heat and Reactor Building Spray Systems for BST-2 Valve Failure Drawdown Analysis 33 VI Analytical Results to Chemical Drawdown - Full Flow Case -

Maximum NaOH Initial Conditions 34 VII Analytical Results to Chemical Drawdown - BST-1 Valve Failure Case - Maximus NaOH Initial Conditions 35 VIII Analytical Results to Chemical Drawdown - BST-2 Valve Failure Case - Maximum NaOH Initial Conditions 36 IX Analytical Results to Chemical Drawdown - Half Flow Case -

Maximus NaOH Initial Conditions 37 X Analytical Results to Chemical Drawdown - Full Flow Case -

Minimum OH Initial Conditions 38 XI Analytical Results to Chemical Drawdown - BST-1 Valve Failure Case - Minimum NaOH Initial Conditions 39 XII Analytical Results to Chemical Drawdown - BST-2 Valve Failure Case - Minimum NaOH Initial Conditions 40 XIII ' Analytical Results to Chemical Drawdown - Half Flow Case -

Minirum NaOH Initial Conditions 41 .

Czibert /Cammonweenth

-s -

  • , s APPENDIX A - COMPILATION OF INPUT PA1WiETERS Page TABLE A-I Borated Water Storage Tank Drawdown Transient Analyses 43 TABLE A-II Equivalent Length in Pipe Diameters (L/D) of Valves & Fittings 44 TABLE A-III Pump Head Data 45 TABLE A-IV Tank Parameters 46 TABLE A-V Specific Volume & Viscosity Curves 47 9

Geibert/Canmonween

,a

~

i INTRODUCTIO$d This report has been prepared in response to a reques: from the Florida Power Corporation to evaluate the Reactor Building Spray and ECCS Storage Tanks drawdown transient for Crystal River Unit 3 Nuclear Generating Plant. The objective of the study is to track the fluid level in the borated water and sodium hydroxide storage tanks during the e=ergency safeguards operation of the reactor building spray systen and the decay heat systen to provide a basis to proposed changes to the systems.

This report has been prepared as a complete report, but reference is made to the " Borated Water Storage Tank Drawdown Transient Analysis, Revision 1" for the study of the system with its original design.

The GAI computer program " Thermal Hydraulic Analysis" was used to obtain a quasi-steady state solution to the drawdown transient. This report discusses the method of analysis and an analysis of the system assuming-various failure modes of operation to provide a basis for proposed technical specification changes.

e 4

-R-

)

SYSTEM DESCRIPTION The reactor building spray system is designed to furnish building atmosphere cooling to limit post-accident building pressure to less than the design value, and to redu 2 the building to nearly atmospheric pressure. In addition, sodium hydroxide in the spray removes the fission product iodine inventory from the containment atmosphere.

The decay heat removal system is designed to maintain core cooling for larger break sizes. This system provides low pressure injec-ion independent of and in addition to the high pressure injection provided by the make-up and purification system. In the event of a loss-of-coolant-accident, the system injects borated water into the reactor vessel for long ters emergency cooling.

The decay heat removal system and the reactor building spray system both take suction on the Borated Water Storage Tank (BWST) within seconds after the initiation of an accident. Sodium hydroxide from one sodium hydroxide storage tank (BST-2) gravity feeds into both systems and mixes with the borated water for pH control in the reactor vessel; sodium hydroxide gravity feeds into the reactor building spray system from the second sodium hydroxide storage tank (BST-1) and mixes with the borated water-sodium hydroxide mixture to maximise.

the spray pH before injection into containment. A simple schematic of the associated piping is shown in Figure I. It is to be understood the system is a modification of the original design in which 3ST-1 contained sodium thiosulfate for iodine removal.

Both sodium hydroxide tanks are designed and located to permit gravity feeding into the system and are also designed to inject their respective contents at a rate commensurate with the draining rate of the BWST. The contents of each tank are proportioned in such a manner that the correct amount of sodium hydroxide is injected for iodine removal and for pH control.

After the water in the 3WST reaches a low level, coincident with the e=ptying of the sodium hydroxide tanks, the spray pump suction is transferred to tha reactor building sump to recycle discharged fluids, thereby terminating the drawdown transient.

Geeruc . _ _. a

-S- b

)

MATHD'ATICAL NETH'.7 The drawdown trini cat is modeled by determining the steady state flow from the : n.- 1: h.ir initial level. The volume of fluid drawn frem the tank -

during a - e minute interva*. is calculated from the above flow. In some crac< a smaller interval was used because of rapidly changing steady state fl-. rataa. The tank levels are adjusted and another steady state balance

, is performed. This procedure is repeated until the transient is over.

The following mathematical descriptica has been extracted from Reference 2.

The computer program performs a steady state pressure balance on an arbitarv piping network. A relaxation interative method of network analysis, a modified Bernoulli equation, and the Colebrook equation (the basis of the Moody diagram) are the bases of analysis for the program.

The two fluid properties required to calculate the flow in a pipe are the specific volume and the viscosity of the fluid. These properties may be input into the cocputer program as a function of temperature for any fluids desired, e.g. sodium hydroxide or sodium thiosulfate. If the fluid in a pipe is wa'ter, these properties may be input as above or calculated by the program.

Assuming saturated water conditions exist in the pipe at a specified temperature, 3

the program calculates the specific volume as follows:

V# +aT1/3 + bT + CT4 ..

V =

s 1 + dT + eT 3

where V = specific volume at saturated water conditions (ft /lb) s 3

V = 3.1975 en /g c

T =t -t c

= critical temperature = 374.11 C.

t = temperature in degrees C a = - 0.3151548 I

b = - 1.203374 x 10

-3 i

G:bart!cammoneeseth

., . 'T

. d

= + 7.48908 x 10-13 d a + 0.1342489

-13 e = -3.946263 x 10 k = conversion constant 3 3

= 0.0160185 (ft /lb)/(cm /g)

Again assuming saturated conditions, the viscosity of liquid water is calculated as follows:

u = k241.4 x 10 247.8(T-140)~I where u = viscosity (lb/f t-sec)

T = temperature ( K) k = conversion constant

= 6.7197 x 10-8 (lb/f t-sec) /(Micropoise) 1 The Moody friction factor is then computed by interating the Colebrook 5

equation

=

f

- 0.86 in (3 7d * )

g e

where f = Moody friction factor c = pipe roughness (feet); the standard roughness of co==ercial pipe, 0.0018 inches, is assumed.

d = inner diameter of the pipe (feet)

R, = Reynolds Number dV

=

e v,u V, = fluid velocity in the pipe (ft/sec)

Qbert/Carwoneesta s

To compute the flow rate in a branch, the line resistance of each pipe must be known. The line resistance is calculated as:

5 R

g = 0.03115 f L,/d where R = line resistance from function j to junction 1 (ft/ gps')

f = Moody friction factor L, = equivalent length of pipe (ft)

=L+(f)d L = length of straight pipe (ft)

(h) = total representative equivalent length in pipe diameters of various valves and fittings d = inner diameter of the pipe (in)

In addition to the data required to calculate the above properties for each pipe branch in the system, data must be supplied to the program in which the branches are combined to form closed loops. To compute the flow rate in each branch, it is assumed that each closed loop obeys Kirchoff's second law,

, i.e. the sum of pressure drops due to pipe losses and elevation changes around any closed loop is zero. "'herefore :

H-EAP g -IAP p =R where H = pump head (psi)

AP g = pressure loss due to elevation gain (psi)

AP = pressure loss due to friction (psi) p R = residual pressure if loop is not balanced (R = 0 in a balanced loop)

Geert/Commonweeta

_g_

4 and R

H-EAP g -E (Q + AQ )2 =0 ij where Q q = previously calculated flow between junctions i and j th AQ = fl w added to each line in the k loop to balance k

Kirchoff's equation (=ake residual R equal 0) v1) = 144 V, R

Let a S

= I "ij Ii 13 b = 2E "ij c =H-EAP EL

~

"ij Then, using a modified form of the quadratic fo mula so the difference between large numbers is not calculated,

=- 2e AQ

-b- (b -4ac)b To balance the network, the loop with the greatest error is selected, AQ k calculated and the residual made zero. This process is repeated until the residual in every loop is less than 0.1 psi.

The system being =odeled is an open system (Figure 1). In order to mathematically close the system and insure the same pressure on the top of the fluid in each tank, i.e. 14.7 psi, a control valve (which does exist i

l l

Gibert/Cammenesoth l 6-

, n.

in the system and is set for the proper flow) was added to the discharge line of each pump, preset to the designated flow through the pump. The necessary pressure drop across this valve is calculated to insure the proper flow.

The pump discharge lines then converge to a cocmon junction (Junction 1, Figures II - V). A " dummy" fluid of low density and viscosity, is used to close the loop from Junction 1 to the top of the fluid in each tank. A large pipe (ID = 100 inches) is assumed so no f riction loss exists and the low density insures no pressure loss due to the elevation change. Thus, the same pressure exists on the fluid surface in each tank.

Other parameters eticulated by the program are:

1. Junction Pressure R Q + aE ij p ,p _ 11 11 d

ij v

s AE = elevation change between junctions i and j f

V,id = specific volume in the branch between junctions i and j

2. Fluid velocity (ft/sec)

V = 0 e

7(d)2 k = conversion constant 3

0.13368 ft 1 ,13, gal- 60 see G.itert/Comtwoesth 7-

s VERIFICATION OF ANALYTICAL MODEL As part of the start up and test p'rogram of Crystal River Unit #3, a test was conducted in 1975 to check the sodium hydroxide-sodium thiosulfate -

BWST drawdown by pumping water from the storage tanks to the fuel transfer canal. The test and results of both the full flow and half flow tests are recorded in Test Procedure 7 1 310 04 0 of Crystal River Unit 3.

A comparison of the observed and calculated results to the initial full flow and half flow tests is =ade in Reference 1. After the initial water test had been performed, four spring loaded stop check valves were replaced with conventional spring check valves. The system was retested in the full flow = ode. Comparison of the anslytical results assuming the new valves with the retest results is presented in Appendix G of Reference 2.

No further changes have been made to the piping since the swing check valves were installed and tested. Since the system is being used in the same manner as before, i.e. chemicals in all three tanks, it is not necessary to perform another water test to demonstrate the operability of the system.

Gbers/Commonesee DESIGN CRITERIA The partition of iodine between liquid and gas phases is enhanced by the alkalinity of the solution. Thus the spray system was designed to maximize the pH during the initial injection period and maintain d high pH in the sump after mixing and dilution with primary coolant, ECCS injection, and core flood tank inventories.

The proposed range of reactor building sump chemical comptsition at the end of the initial injection period is given in Table I. This represents the total inventory injected from the reactor coolant and core flood tanks as well as the BWST, BST-1, and BST-2.

The minimum and maximum pH in the sump based on the total sump inventories in Table I and the assumed inventories for the determination are shown in Table II.

The pH range of 8.6 to 9.8 is considered acceptable for long ters recirculation.

The minimum allowed pH in the spray header is 8.5 to provide iodine removal capability. The spray pH will be maximized during initial injection.

The core flood tank and reactor coolant inventory are included in Table III.

Subtracting these from the total sump compositions gives the design criteria for the quantity of chemicals to be injected by the building spray and decay heat systems from the BWST, BST-1 and BST-2. The resulting design criteria are given in Table IV.

The chemical inventories in the BWST, 3ST-1 and BST-2 given in Table III will be proposed in a revision to the plant's technical specifications.

I 1

i l

l G=bert /Canconwee".h t - - 0- l

4 I

RESULTS OF DRAWDOWN ANALYSIS The drawdc<wn transient is terminated when the level in tue BWSf reaches a predetermined level. Thus, as long as an appropriate volume and concentration of boric acid is in the tank, the boric acid requirements shown in Table II will be satisfied.

Due to the nature of the gravity feed system from the NaOH .anks, of greater concern is the quantity of NaOH that will be injected during the initial injection period. The rate of injection is also important because NaOH is to be injected continuously during the drawdown; the tanks should not be drained before the transient is over.

Four modes of operation were investigated.

1. the full flow design basis case with all components functioning properly
2. half flow case in which the A string only is functioning
3. valve in injection line B from BST-1 f ails closed, all pumps functioning
4. valve in injection line 3 from 3ST-2 fails closed, all pumps functioning The models of the decay heat and reactor building spray systems for each of the operational modes are shown in Figures II to V. System data used are tabulated in Appendix A.

Two cases were considered for each operational mode. They are:

1. Maximum initial level and concentration of NaOH in both BST-1 and BST-2 and the minimum initial level in the BWST.
2. Minimum initial level and concentration of NaOH in both BST-1 and 3ST-2 and the maximum initial level in the BWST.

GhertlCawnenweesta

The minimum and maximum initial levels and concentrations are those proposed for the technical specifications of CR3.

The results of the analysis of each case are given in Tables V and VI and Figures VI to XIII. In all cases the design criteria in Table IV are satisfied.

The maximum quantities of chemicals cannot be exceeded even if the chemical tanks are drained because the maximum tank inventories do not exceed the design criteria quantities. In the event either BST-1 or BST-2 did drain prior to the BWST, suf ficient NaOH would still be injected from the other tank for iodine removal and pH control during the initial injection period and would not hamper continued operation of the system.

The minimum and maximum pH in each spray header and in the decay heat pumps are shown in Tables VII and VIII. Only in the minimus NaOH BST-1 valve failure case was the pH in a spray header less than 8.5. In that case the pH in the other header was sufficiently high to maintain the net spray pH over 8.5.

The maximum pH calculated in the spray headers is 13.2. This pH is within the material compatibility constraints of the spray system piping. Upon initiation of recirculation the spray pH will be that of the su=p solution. This has been shown to be in the range of 8.6 to 9.8.

Geert /Co..wth 11 -

l ENVIRONMENTAL DOSES The maximum dose which an individual at the exclusion boundary and the low population zone could receive following an MHA is reduced by the sodium hydroxide spray injected by the reactor building spray system. The magnitude of the dose reduction factor depends on how fast airborne fission products are washed from the atmosphere. The expected washout rates are predicted from mathematical models which account for controlling removal mechanisms.

Many studies have been made, both experimental and theoretical, of the removal mechanisms. WASH 1329 reviews the spray absorption models used by the USNRC in evaluating design basis loss of coolant accidents in light water cooled reactors. The DL Model oescribed therein will be used as the basis for calculating the iodine removal constants in the various drawdown cases being considered.0 No credit removal of organic iodides by sodium hydroxide spray is allowed by WASH 1329. Thus the organic iodide removal constant, A,, is assumed to be zero in all cases.

The spray washout model for aerosol particles is represented in equation form as follows:

y , 3h EF p 2d V where A = spray removal constant for particles p

h = effective drop fall height E = total collection efficiency for a single drop F = spray flow rate d = mean drop diameter V = volume of gas space Qtert/ Cum 4

Using the parameters listed in Table VII, spray removal constants for

-I -I aerosol particles of 0.37 hr and 0.73 hr are calculated for the one header and two header cases respectively.

In the DL model presented in WASH 1329 the removal rate constant for elemental iodine is calculated as follows:

6VhFd e" VdU where. A, = elemental iodine spray removal constant V = verall deposition velocity d

h = effective drop fall height F = spray flow rate V = containment volume d = drop diameter U = drop terminal settling velocity The deposition velocity is evaluated from 1 1 1 V

d g H(

where K = gas film transfer coefficient

( = liquid film transfer coefficient H = iodine partition coefficient The gas film mass transfer coefficient is determined using the Ranz-Marshall equation:

0.5 g 0.33)

K g

=

d (2 + 0.6 Re c where D = diffusivity of iodine in gase phase R, = Reynolds number S

c" * * "* "#

G. tert /Cammommesta m C

s. -

The liquid film mass transfer coefficient is predicted by:

27 D L" 3d where D = diffusivity of iodine in water The parameters used to evaluate A, are listed in Table IX. Spray removal constants for elemental iodine of 12.8 hr and 25.6 hr were calculated for the one and two header cases respectively.,

The dose calculations reported here assumed the spray constants were as calculated above for the duration of the initial injection period of the case being considered. No credit for iodine removal by sprays was taken during recirculation of the sump solutien. This was to take into account re-evolution of iodine.

The environmental doses resulting from the 19UL were calculated using the INHEC computer program and the parameters tabulated in Table X. Assumptions given in Regulatory Guide 1.4 were also used.0 The calculated doses are given in Table XI. Both the one header and two header calculated doses are a small fraction of the dose limits specified by 10CFR100.9 1

l G2ert/Commoneene A

SintV.ARY Using the previously verified mathematical model, the system meets the design criteria in all single fanure cases considered.

The effect of the various drawdown cases on the iodine removal capability on the spray was shown to have a negligible effect on the calculated doses at the eite boundary and low population zone. Both the ens header and two header calculated doses are a small fraction of the dose limits specified by 10CFR100.

  1. 5 9

t

- I REFERENCES

1. Ely, R. F. Jr., " Borated Water Storage Tank Drawdown Transient Analysis, Revision 1", for Crystal River Unit 3 Nuclear Generating P ' ant, Florida Power Corporation, 30 January 1976.
2. Ely, R. F. Jr. , " Hydraulic Analysis of Piping Networks Usicc PIPF Computer Program," Topical Report GAI-TR-105, December, 1976.

'3. Keenan and Keyes, Thermodynamic Properties of Steam, John Wiley and Sons, Inc. (1936).

4. ASME Steam Tables, 1967
5. Vennard, J. K., Elementary Fluid Mechanics, John Wiley & Sons, Inc.

(1961).

6. Postma, A. K. , and W. F. Pasedag, "A Review of Mathematical Models for Predicting Spray Removal of Fission Products in Reactor Containment Vessels," WASH 1329, June, 1973.
7. Mackay, T. F., and R. F. Ely, Jr., " Computation of Radiological Consequences Using INHEC Computer Program," Topical Report GAI-Tr-101-A, March, 1976.
8. " Assumptions Used for Evaluating the Potential Radiological Consequences of a Loss of Coolant Accident for Pressurized Water Reactors,"

Regulatory Guide 1.4, Revision 2, June 1974.

9. Codes of Federal Regulations, Title 10, Part 100.
10. Parsly, L. F., " Design Considerations of Reactor Containment Spray Systems - Part VII. A Method for Calculating Iodine Renoval By Sprays," ORNL-TM-2412 Part VII, Oak Ridge National Laboratory, Oak Ridge, Tenn., February, 1970.

GJtart/C . _?

._m

d

11. Crystal River Unit 3 Nuclear Generating Plant Final Safety Analysis Report, Docket No. 50-302.

1 Geert/Carmem a

.n R57 m

em _,_

TABLE I FLORIDA POWER CORPORATION CRYSTAL RIVER UNIT 3 NUCLEAR GENERATING PLANT REACTOR BUILDING SUMP CHD1ICAL COMPOSITION DESIGN CRITERIA Acceptable Range of Reactor Building Sump Solution Compositions Following Initial Injection Period of Reactor Building Spray System.

Chemical Sump Chemical Range (lb)

Boric Acid 42600 - 55700 Sodium Hydroxide 11900 - 22350 0 6 Water 3.80 x 10 - 4.25 x 10 O

Geers/Commomwom:n m #

. . ~

4 m

. TABLE II FLORIDA POWER CORPORATION CRYSTAL RIVER UNIT 3 NUCLEAR GENERATING PLANT REACTOR BUILDING SUMP PH BASED ON CHEMICAL COMPOSITION DESIGN CRITERIA NaOH H B0 Water

  • pH (lb) ($b) (lb) 11900 55700 4.25 x 10 6 8.6 6

11900 35700 3.80 x 10 8.6 6

22350 42600 4.25 x 10 9.8 6

22350 42600 3.80 x 10 9,g

  • NOTE: The sump solution pH is not very sensitive to the water mass in the sump.

f Geert/C.... _ r.r.

w __

es, i TABLE III FLORIDA POWER CORPORATION CRYSTAL RIVER UNIT 3 NUCLEAR GENERATING PLANT TANK INVENTORY AND REACTOR C00IJNT CHEMICAL COMPOSITIONS Chemical Chemical Range DET-1 BST-1 BST-2 Boric Acid (lb) 40,792 - 47,967 - -

(ppm boron) 2270 - 2450 - -

Sodium Hydroxide (1b) - 9254 - 11,985 7985 - 10,340 (w/o) - 8.0 - 9.5 8.0 - 9.5 (ppm NaOH) - 80,000 - 95,000 80,000 - 95,000 Solution (gal dump volume 377,609 - 411,356 12,770 - 13,720 11.020 - 11,840 contained volume 415,200 - 449,000 12,970 - 13,920 11,190 - 12,010 Core Flood Tanks Reactor Coolant Boric Acid (lb) 1632 - 2667 50 - 4347 (ppm boron) 2270 - 3500 17.5 - 1450 5 5 5 5 Water (lb) 1.24 x 10 - 1.31 x 10 5.03 x 10 - 5.09 x 10 Geert/Commenmesc A

es TABLE IV FLORIDA POWER CORPORATION CRYSTAL RIVER UNIT 3 NUCLEAR GENERATING PLANT DECAY HEAT AND REACTOR BUILDING SPRAY SYSTEM DESIGN CRITERIA Chemical masses to be added to the Reactor Building Sump Following Initial Injection Period by the Decay Heat and Reactor Building Spray Systems:*

Chemical Chemical Range (1bs)

Boric Acid 40920 - 48690 Sodium Hydroxide 11900 - 22350 6 6 Water 3.17 x 10 - 3.61 x 10

1 l

l G.ibers/Commenweettn m

~

TABLE V FLORIDA POWER CORFORATION CRYSTAL RIVER tR3IT 3 NilCLEAR CENERATING PLANT BEALTOR BUILDING SPRAY AND ECCS STORAGE TANKS DRAWlXXJN TRANSIENT ANALYSIS ANALYTICAL RESULTS TO MAXI!ERI NaCll INITI Al. CONDIT!cN CASES

. Temp. Concentration Initial Level Tina Einal Level Volume Drawn From Tank M. ass of Chemical . Mass of Water (oP) (W/0) (Feet) (Hin.) (Feet) (Callon) (1.b . ) (Lb.)

' Full Flow Case 39.92 BWST 70 1.297 47.67 2.50 377,610 40,790 3,104,000 BST-1 75 9.5 34.66 5.08 11,710 10,230 97,440 BST-2 75 9.5 34.66 5.73 9,880 8,630 82,230 T tal Lbs. Inj ected: T Buric Acid - 40,790 >

NaOH .. - 18,860 1I2 0 - 3,284,000 BST-1 Valve Failure case 39.59 BWST TO 1.297 42.67 2.50 377,610 40,790 3,104.000 BST-! 75 9.5 34.66 12.89 8,620 7,530 71,710 BST-2 75 9.5 34.66 5.78 9,860 8,620 82,090

's Total Lbs. Inj ec t ed :

u Boric Acid - 40,790

" Nabit .- 11,140

' 182 0 - 3,258,000 BST-2 Valve Failure case 39.61 BWST 70 1.297 42.67 2.50 377,610 40,790 3,104.000 BST-1 75 9.5 34.66 5.18 11,670 10.190 97,110

  • EST-2 75 9.5 .

34.66 14.47 6,900 6,020 57,390 Total Lba. Injected:

Buric Acid - 40,790 Naott - 16.220 182 0 - 3,259,000 _

Half Flow A-String Case 80.44 BWST 70 1.297 42.67 2.50 377,610 40,790 3,104.000 BST-1 75 9.5 34.66 0.37 13,570 11,860 112.950 BST-2 75 9.5 34.66 2.37 11,030 9,640 91.780 Total tha. Injected:

, Boric Acid - 40,790 Naoll - 21,490 11 0 - 3,309.000 2

~

~

TABLE VI FLORIDA PO'JER ,0RPORATION CRYSTAL RIVER UNIT 3 NUC'. EAR CENERATING PLANT REALTOR BUILDitlG SPRAY AtjD ECCS STORAGI TANKS DitAVDOt!N TRANSIENT ANALYSIS ANALYTICAL RESU*TS TO HINIttlltt 11:011 INITI AL CONDITION CASES Temp. Concentration Initial txwel Time Final level Volume Drawn From Tank Mass of Chemical Mass of Water (DF) (U/0) (Feet) (Hin.) (Feet) (Callon) (Ib . ) (Lh.)

-Full Flow Case 43.11 70 1.40 46.26 2.50 411,360 .47,970 3,378,000 BWST 90,120 BST-1 75 8.0 32.26 4.94 10.820 7.840 32.26 5.70 9,070 6,570 75,600 BST-2 .

75 8.0 Total Lbs. Injected:

Boric Acid - 47,970 /

Naoll - 14.410 .

182 0 - 3,544,000 BST-1 Valve Failure Case

  • 42.85 1.40 46.26 2.50 411.360 47,970 3,378,000 BWST 70 66,700 32.26 12.04 8,000 5,800 BST-1 75 8.0 32.26 5.69 9,080 6,580 75,630 EST-2 75 8.0 Total Lbe. Inj ec ted:

Baric Acid - 47,970 8 Naott - 12,180 tl 18 0 2

- 3,521,000 I

BST-2 Valve Failure Case 42.86 70 1.40 46.26 2.50 411.360 47,970 3,378,000 BWST 90,090 32.26 4.95 10,810 7,830 BST-1 75 8.0 75 8.0 32.26 13.69 6,340 4,600 52.860 BST-2 Total Lbs. Injected:

horic Acid - 47,970

!!aull - 12.430 ,

182 0 - 3,521,000 e

Half Flow A-String Case 86.85 70 1.40 46.26 2.50 411.360 47.970 3,378,000 BWST 104,870 32.26 0.47 12,580 9,120 Bst-1 75 8.0 7,380 84,830 BST-2 75 8.0 32.26 2.46 10,180 Total Lbs. Injected .

Boric Acid - 47,970 Naoll - 16,500 182 0 - 3,568,000

3

~

TABLE VII FLORIDA POWER CORPORATION CRYSTAL RIVER UNIT 3 NUCLEAR GENERATING PLANT MINIMUM AND MAXIMUM pli IN BUILDING SPRAY AND DECAY llEAT SYSTEMS FOR MAXIMUM Naoll INITIAL CONDITION CASES N

A-TRAIN B-TRAIN DilRP 3B RBSP 3A DilRP 3A RBSP 3B Min Max Miln Max Min Max Min Max Full Flow Case 12.7 13.0 8.5 8.9 12.5 12.9 8.5 8.9 h BST-1 Valve l Failure Case 12.9 13.2 8.5 H.9 8.5 9.0 8.6 8.9 E

BST-2 Valve Failure Case 12.7 13.1 8.7 9.4 11.6 12.7 4.8 4.8 Italf Flow A-String Case 12.9 13.1 8.7 8.9 - - - -

~

TABLE VIII FLORIDA POWER CORPORATION CRYSTAL RIVER UNIT 3 NUCLEAR CENERATING PLANT MINIMUM AND MAXIMUM pil IN BUILDING SPRAY AND DECAY llEAT SYSTEMS FOR HINIMUM Na0li INITIAL CONDITION CASES N

A-TRAIN B-TRAIN /

RBSP 3A DhRP 3A RBSP 3B DilRP 3B Min Max Mira Max Min Max Min Max Full Flow Case 9.0 12.8 7.7 8.6 8.7 12.7 <7.7 8.6 BST-1 Valve Failure Case 9.2 13.0 <7.7 8.6 <7. 7

  • 8.7 7.7 8.6 BST-2 Valve Failure Case 9.0 12.9 7.7 9.0 8.8 11.9 4.8 4.8 Italf Flow A-String
  • Case 9.2 12.9 7.7 8.7 - - - -
  • pil of 8.5 attained af ter approximately 25 minutes.

TABLE IX FLORIDA POWER CORPORATION CRYSTAL RIVER UNIT 3 NUCLEAR GENERA'f1NG PLANT PARAMETERS USED TO CALCULATE SPRAY REMOVAL CONSTANTS Parameter Temperature 100 C( 0)

Viscosity of vapor (p y) 1.83 x 10-Opoise (10) g/cm3 (10)

-3 Density of vapor (p) 1.78 x 10

~

}

Diffusivity of iodine in gase phase (D ) 6.34 x 10 cm /sec (

5.14 x 10

-5 c,2 ,,e (10)

Diffusivity of iodine in liquid phase (D ) 7

)

Drop diameter (d) 1080 microns (

Drop terminal settling velocity (U) 480 cm/sec ( 0)

Partition coefficient (H) 5000(6) 2 x 10 ft 3 (11) 0 Reactor building free volume (V)

Effective drop fall height (h) 96 feet ( l)

Total collection efficiency for a single

. drop (E) 0.0015 (6)

- Gibert/Commonweath

TABLE X FLORIDA POWER CORPORATION CRYSTAL RIVER UNIT 3 NUCLEAR GENERATING PLANT PARA!ETERS USED TO EVALUATE ENVIRONMENTAL DOSES II Atmospheric dispersion coefficients exclusion boundary 0-2 hour 1.60 x 10~ sec/m

-5 3 low population zone 0-8 hour 1.40 x 10 sec/m

-6 s,cfm 3 8-24 hour 1.50 x 10

~

1-4 days 7.70 x 10 sec/m

~

4-30 days 4.50 x 10 sec/m

~

Spray removal constants (hr ) one header two header elemental iodine 12.78 25.56 aerosol particles 0.37 0.73 organic iodides 0.0 0.0 Containment Leakage Rate l1 0 - 1 day 0.25 %/ day 1 - 30 days 0.125 %/ day 11 Initial Inventories - Tables 14-50, 14-51 Odert/Cammenweeta

\

TABLE XI FLORIDA POWER CORPORATION CRYSTAL RIVER UNIT 3 NUCLEAR GENERATING PLANT ENVIRONMENTAL DOSES RESULTING FROM MHA 2 Hour Dose at Exclusion Boundary Case Thyroid Whole Body (REM) (RDI)

No Sprays 249 2.4 One Header 30 1.7 Two Headers 24 1.7 30 Day Dose at Low Population Zone Case Thyroid Whole Body (REM) (RDI)

No Sprays 106 0.6 One Header 9 0.4 Two Headers 8 0.4 1

GibET/Camm0M4Bitfl

FIGURE I FLORID A power CORPOR ATION . . ,

CRYST AL lllVER UNir J HuCLE AR GEHER ATING PL ANT *

  • BST- I SCilEMATIC OF DECAY llEAT AtlD ,

SODIUM REACTOR BUILDittG SPRAY SYSTEMS llYDROXIDE STORAGE ~

BST-2 tat 1K SODIUM llYDR0XfDE

, Es STORAGE E5

'/

ES RB WAY MM l l ," g DHT-1 N N BORATED I I E5

- ES Es WATER

, el _ _

STORAGE

, ar f TAtlK -

l ,

J _, -

ES ES c5

. - E5 ]f b

A, , /

LPI (Dill PUMP 5 l ' % \

gs ES - E5 h

y e5 Q y U

,j n

'b N

,, y, - ,],

E5 If HPl (MAKEUP) PUMPS r

M

---a A

~

N I g

g

%'s','~~'"'"--7 N

  • l g

t e o e u oi E.ORAT E D W A T E R l 31 l25 [2 g l ,

"* 0H BST-2 DitT-1 0  ! @

l DST-1 l l m DUMMY FLUID . - - - . - - - -

IlYDROXIDE ilYDROX1DE WATER OQ l STORAGE STORAGE STORAGE l l mo>Eh tat 1K tat 1K l l Ok r- j tat 1K g g 32 26 u a i 25 3?

I ED "E

'n7> }E I

33 k =U z.$ vi a.*

34 l -

24 4 RB5P ,23 22 ,

27 $

D D ] j $$ I! E t > 21 29

.$e--

> >z r z

{

RB5P l

g2 yy 33

-2 1 - - - -l I 40 g

.4 h

4 >10 20 28

-< Z l 19 y

a v.

DilRP .

18 ,,17 f 16 15 / m E

'Q '

l L N]I 9

l30 g

8 ]

l DilRP 7 6 5 4

I 3B , -

, s 1

N) L 4

f

m 1 -

s s_ ,'

i i N s ,

i s g l

t. E G E H Da l 7l25 *** *=== % ' 1  !

5 EOR AT ED W AT ER j31 32 Na OH g h DUMMY Ft_UID ------ ,

BST-1 BST-2 DitT-1 g E SODIUM SODIUM BORATED l ,[ n ilYDROXIDE HYDROXIDE WATER l 0'"o f$ h STORAGE  ! ,

STORAGE STORAGE r> r-l '<m

,k ._ ,

TANK TANK TANK l l nx 2 'a 32 26 14 l gm m l * -1 c-b EZU g

24 34 x ]

  • rn c m C RB5P ,23 22 27 k p""m q

-4 mO -

3A Z

l

%m

,< c MO z>

q >21 J mFmd la GE E E 1 35 p2o dz

-- - - .J g H*

20 28 m1 m 3 >-< 5 19 DilRP 17 16 15 m 1

18 m

I -

1 I

gi _ s_ _ _ ._ _ _ _ _ _ _ _ _ _ q s

~s

N s w% ____7 ,

l .

Ltatno N *%

l BOR AT ED WATE R l 31 l25 l2 g l -

N* 0H BST-1 BST-2 DHT-1  ! O DUMfAY FLUID ---_=-' l 8 HYDROXIDE ilYDROXIDE WATER i $0 Q STORAGE STORAGE STORAGE l l

l l

$Eh

=n TANK TANK TANK 1

y$ = >-r ,/

l -.

26 14 3 <m kE 1 32 I >O=2 r

< c-L33 my2 y 2a 34 lC

-m l3 1 a a Im C m C RB5P 23 l22 ,_

27

% na m l 3A f M4 m O

- =

, , 21 , ,2, E- a 8  : *O::

l.

i3 xo = s.

  • RDSP *Z i 3n  ;

12 Il 35

-J L-- J >oa

-4

(.> 10 20 28 ["Z

.i i cm e )

" -< z e w -4 19 .<

w DHRP 18 ,17 f 16 15 fI A N x 5

}

13e m

DilRP 7 j $ 4 2n , -

s L

1

~

N '- '

~~ _ ]

l N

s N s

~~~~~~7 l l

LEGEND l N  %  % l I

7 l

l l 1 l 31 l25 l2 g l BORATED WATER

"" " BST-2 DHT-1 I b f

BST-1

! DUMMY FLUtD = - = - - - - = =

HYDROXIDE ' HYDROXIDE W TER l l g Q STORAGE STORAGE STORAGE l

I l

"E$

=n>

TAHK TANK > t-

,?

TANK g 3 14 3 h l 32 l26 l 1 >> o

% l g F

<y H zc3o 33 g

O 1 yg 24 RDSP 23 l22 27 W 1 a >21 37

========l i C N 2

bW ge 9 "m 58 :

oo m=

13 ll o- ,y RBSP 12 l11 35 j g a t >10 20 28 m o h

19 h>k

  • 4

'DilR P IS N

t 18 1]

f 16

\  %

\

8 DilRP 6 5 t

7 .

r - -

50 '

j Figure VI Florida Power Corporation

' Crystal River Unit 3 Nuclear Generating Plant Analytical Results to Chemical Drawdown - Full 45 ,

i Flow Case - Maximum NaOH Initial Conditions f

h

. BWST

\ ,

\ ,

, -- -- - BS T- 1

\ , T- ,


3ST-2

\ l I

\ i i 40 \ ,

\-  !

-

  • i
g. , i i i

. e  !

\- i

. i i i  !

\ } #

\ . 1  !  !  !

i\ i i  ! I e i t \ l

\ i e

\ 3 i f

a 3 a. , 1 , , , . , i 2d T \ l ' ' I i i

,dj \ \ i e i  !

4 ~ N. \ i i  !

3 2 3 n i . i

  • i j

-2  % _\ i i t '

3 e 3  !\ > i i  !

W$ w .h i s  ! i e  ! '

3) U N i \ *  !  !

W

- S0 v 3 N' t

\

i

\t i - \ i  !

O \\ \' i  !

fg\ \  !  !

\ . i ll::

i

\\ g_ r \ '  ! '

is \ i e y *

& I \' - \  ! i

  • I t 1 0 25 l 'E \ l l ,

5 i i s\ \ i '

C i \* \, e a . .

1 . . , \m \' ' +

- i r \\ N -

. . i j- c i \ .\ .

>  ! \i\  !

O N' \ .

i i

. 4 N s\ t

)0 4 3 90

' " ss

=, @ f I 'N 8 '

> ' a

\\ a U \\  !  ! i i d.: -

. i Ng . .

\\ i i ,

O* . \\\  !

.O "

\ . .

\\ i ' i  !

- \  !

  • i

- 15 .\ , , ,

\ .' l 6 , .

O k\ '

I \ i' i _

i i i

.\\\ . I

. i  ! \ \' . 1 _ +

! 6 \\\ i ' i t \\ l *

! a \ \\ s i . . g\ i 10 \ \\ .

I i \ \ i e

'  ! t \ %_ \

I \ i 6 i i . ,

\ \\ . .

i

! > \ \s i  !

\ v . , ,

' \ \\'

4 i i \1 #

6 . \ N .

5 . , \ . ,

! \

  • i \  !

1 I \ s  !

2.5 _

t .  ! . .  !

i i i ,

i i . . 1 0 10 20 30 40 50 ou <0

- - - ~. -)

m

. 50 .

3

, e i i s I s i  !

! t Figure VII l l Florida Power Corporation 45 ' '

Crystal River Unit 3 Nuclear Generating Plant t i Analytical Results to Chemical Drawdown - BST-1 Valve

, , Failure Case - Maximum NaOH Initial Conditions

\ , .

\. i ,

\ '

BWST

\ , - - - B ST- 1 40 \

\


BST- 2

\' i e

\ '  !

\ , l

,\ . e i < r .

  • \ i e i  !

f

. \ .

  • f  !  !

. . 5 e f

\

8 35 ,

\, . ,

l i l

24 TN ' \ ! ' t '  !  !

d  % \  !

p:

w '

s

\

i

. i .

6 i

i O* a 1N \ i i i i 33 .s s x .

tj y i

.N '

\ i  ! t i

i j v 30

_'\\ t . I

\i \\

  • t i '  ! 1 o ,  %\ i l i 1
\ . 1 i 8 8 i i h t I ' '
i ' \\ 9

~

\ !\\  !  !  !

J T' i

' _ \\

. i

"  ! \!  !

\ \ L '

w5 f 9

, \ ,\ , ,

5 i .\ \ i \ i ' i C 6 s \! A e i i

' \,

2 g i \ i e

? AN \- i > '

3 o  ! N \ l

> i \ '\ l i

~

o \ \ i t '

- q e <

' g\' t i .

}u O .

\\ 1 i

, , O  ? T \ ' I i JL

) N U

I \ 8

!\  ! t

. T. i X . i

~

, i s i \ .

t  ! S i \  ; i O^ i <

\s e \ ' -

.~  ! \' t se i e E \g i '

s i i a \' s a

15 , \1 , \ ,

, , \, \ i , .

d e i \s \ t ' '  !

- i e a

\1 i

\!  ! '  !

. i . \1 \ <

si . , . i e i A . t i  !\ ' . i e

i i  ! \ s' i  !

i l \ i I *

\ s. e i 10 . , \ , .

( . . , \ \ a

! i \ s 6 e i t i i \- 6 i . i \' \ l e i , .

\ . i i

! -\ \ t 6 i

  • i  ! \ \'

s . i \ se .

. i \

5 ,

\ ,

, . . \ e

! i i \ s

! e 4 \i r i 2.5 , ,

. i . .

i i j t , e i

  • i e i  !  !

t i 0 10 20 30 40 50 60 70 enrndam,marrui &

50 , _

Oc .

, i I  %

i

. Figare VIII Florida Power Corporation 45 .

. Crystal River Unit 3 Nuclear Generating riant Analytical Results to Chemical Drawdown - BST-2 Valve '

\

Failure Case - Maximum Na0H Initial Conditions

\ .

\

BWST 40 - -- - BST-1

's i j .- ---

BST-2

\

\*

.\ . i i i >

\ i

  • i

, i

. \

\ i

\ .

t

j \ i i i  !

u 35 m \_, , , , ,

\ i i '

Zd X. '

t i

Tj _ _\' - _ \! i  ! t

NT \i . . . i i t i es N N \ i . I i i II X- s'
\  ! _

i i 0 ^ g 4\ l 6 i .  !

{}

-2 3

\

Ti \

N \

+

f 1 i

i

?

O h. \ . s\ i I . I  !

5 v30 ss . . .

Ni b I i i N Y.  ! i 3, . \ \s . .

M r\ N N i e >

O i

\ \ s i t t i

Z , \ \ '

t  ?  !  ! _t a  ! \ \ \ ' i i g I ' i \ a 4 . i m ,

. ic \ j _N i 4 . . I M ) ._ \ 1 s

' i t  ! 6 O \ \ i * . 6 i i C \ \i \- 6 6 l

2 J I i

\ \f . .

r i \ N .s . .

I o i \ \ \ i e i

^- '

3 4 \!\ t i i i  ;

x i X\ , <

2:

2u E i

'\ \

s\

i N i

6 e

4

.: : - 20 I

, ,\ ,s

\ '

=$ i t i '

i i

i \\

  • N i gf g +

r i  !

g- a i  ! \\ '  ! *

  • I w: i . \\- i .N. i . , ,

d' ' \ _ *s *  !

Od  ! \ t

! i ,

-3 6 \ 6 .N i i i j

-  ? \  ! s  ! i

. i sg . s . 4 15 . . w , \, ,

i 4 a

\\ i 7  !

d r \' i i e

\T . . 1 i , \ _

> . 6 .

  • i i\ > ,

! ' t

' \\ t i l e ' *  !  ! \\ r i 1 i i \ \ i ' ,

  • i ' \ \  !  ! t 1

,0 , , s \1 .

t ' \ \ l t .

i ' \ \ 8 i  !

i i a \ ' I  :

. , , \; -s , , i ,

i \ i 3

. l

  • i \ .\ l
  • i )

!  ! ' \ \ s a _ i i t \ \_  !  ! i i t i . \ \. .

5 i \ i .

, i i \ i  ! i i \ i t i j

, 6 . \i ,

3 e

\i . .

2.5 .

. . 4  ! ,

i i i i i .

l

{ . . ] e g a j 0 10 20 30 *U 50 00 /0 T61rvuRurmramh n TG m

50 . ,

,- , ,, A.

. , i i i 6 .

e a

' Figure IX

' Florida Power Corporation 45 Crystal River Unit 3 Nuclear Generating Plant

' Analytical Results to Chemical Drawdown - Half Flow l

, i Case - Maximum NaOH Initial Conditions .

i- i

\ i

\ , . Bk'ST

\

\

i '

i

- - - 3ST-1

  • ----- BST-2 40 \ ,

\ i  !

\. . .

\ i , . i t f A L i i i i

.g i  ! , .

\ * ' t i .

A i

. i t

\ <

i . ,

d A . .

a 35 < \ , , , , , , i

' i '

Z4 1 \ i t yj s

X, i

\!

N

' i 6

i 4

i

>d g A 6 dz \ it i O[ ^ \\; e \  ! i .

'  ! I i

y} j \\

\.

l \

i \

' i i i I '

w2 g '

!  ! I O V 30 \. \ l  ! . +

'_\ i ~\ . t i i i 0 '. * \ i i

]g _\i

\ i

\

A i

i . i 5

C \\ '\ i i

  • Z -N' \ a i j . .
\ \ \ t i . i i i y .

' \ '. \ i . .

g i  !

e \i A '  ! . .

mu .95 , \ s. \ , ,

3  ! \ i \

  • i  ! t i C i g , \  ! i  ; i .

{ w I i

s . \,

\

6

  • i i i i

-i c \.\  :\  !

  • i a > \ \ 6 \ . i . . i
9 \ s i \  ! *  !

. \ V i \ )

2 ] . p' 2

-4 30 ,

\ .i

\ 3 A

1 , ,

,, O ' . \i. \ . '

I i i 3: > . i

\i \ \ .  !

d-} j t i V:

' ' i  !

-- i. \ s . ,

t'*

  • h \ f e '

\ \ '  !

i _\ \ .  ! i .

i \ \  ! ' '

\ \"

I

. i \ . i i i 15 . \ 1 \ , , ,

- 9 \ \ \t 8 6

. I I 1 \ \i ' I i  ;

t \ \ N i e i

i 8 ' \ \

  • i 1

' i i i \.\!\ '  ! i i

! i . '. .\ . I i I a

! '. * \ '  ! i I

! ' i' \ l 4 .

\ A 6 10 N \ \ , ,

i . \ .\ .  ! .

i \ \\- i  ! . '

i t  ! \ _\ l  ! i i  ! \ \\ i ' 6

,  ! i \ .\ .' .

i a

\ \\ i

' '  ? \ s\

  • i f 4 >

\- s\ .  ! 9 I l

5 i . . 'w sg

' i  ! \\ f 1 i  ! i .\ '\!  ! >

1 i i \ W '

i 1

. i, i \

9.

. a. \ .i. ,

? ' i

\t  ; i i

! - \' i i e t X a t i i 6 . s i 0 20 40 60 80 100 l N - 562 - j

.3 50 '

' ~

,, , . , i c .

i ..  ! i4e  !-

1 e., , e

. , , i .. ,

E"#*

45 Florida Power Corporation

\ , ,

Crystal River Unit 3 Nuclear Generat2.ng Plant

.x ,

Analytical Results to Chemical Drawdown - Full Flow

\ Case - Minimum NaOH Initial Conditions

\

\i 1

.\ SWST 40 \ , , - - - B ST- 1 i i l


B ST- 2 e

\

\ f '

i

\ 6 i

\. .

  • \  !

e 1, . ,

I  !

a 1 i ( 4 l I I e i\  ; i . 6 6 f

u 3a , \ , , , .

l Zd i \  !  ?

y, s i i

i

\

\

! ' ' I gd i

  • i

\ 6

-2 \ t t i e 2[ n ^ c \: i  ! 4

  • O M \'. \ f ' I  !

e \\ t *\ l i I 5 I e"

w 2

%s 30 T; sf

\

8

' I i

%. A \ i , e } l i i 0 Ns T . .

'N ' \ i 6 7 U INN \

  • t i

0 i N\ \ 1 Z  : 5o \i i

I s' N  !

M *  ! \\ A-  ! i ju. 95 e N xs i i\

, \

i O ' \s b \ i  ; t C ,

\' . \ i  ! I i

=

w N.\ sT \ .

l i

E > i s i \- i .

o . I r i \% \  ! i i

4 i  ! \s \ 4 i i

< ' C^ ' '

E e: - 20 , .

As\ - , , ,

$U Q t i \ \ 1

' * }

  • 5 >  ! *  ! \N\- 1 i i z g- "

9 i >

I \A i i e wa e

! Ag . . 3 d' >

iA e .

. s\ .

33 of c:

i i

s\.o N

i ,

i

- 15 t - \\' i

- i y \\ e  ! i ,

n X' i  ! i

' ' i \\  ! l  ! i 4 is , i y a i i t  ;

- i \\ s  : i #

' \' \ i i i '_\ ,

a i \\ . i i 10 , , ,

\\s , ,

f ~~ \\ \. l l \g

  • i i . \ \ .

' . I \: \'  !  !

!  ! \i \\ '  !

I I \ \\  !

i -\ \ 6 5 i i t i . .

!  !  ! \ . . .

6 i i \ 1

\  !  ! _j

2. 5 r i i .

' ' t  !

4  ! ,

0 10 20 30 40 50 60 70

3 ,. -

50 . .  ! ' ' '

,'i i

4 ,

i 1 i

a 6

i I

t e [

i i , . .

a f Figure XI Florida Power Corporation

\ , ,

Crystal River Unit 3 Nuclear Generating Plant 45 -\

\

x Analytical Res tits to Chemical Drawdown - BST-1 Valve

\' Failure Case - Minimum NaOH Init'.al Conditions

\_ i

\' i BWST

\  !

'\ 1

' - - B ST- 1 40 \ ' BST-2

\ , .

\ 1

\ i

\

\

i t . -

..-r , i- , ,

\ ' - , i T i i ,

I i ,

' \ i + t

. i i  ;

a 35  : \\ -

4 l l l  :

5d \ , . .

u '\

f i

Og 1

\ I ' e i e  ;

$g '  ? i 3 2* g

\. r I  ! i i wI z< u \ i , 4 i

u .

' b h ' '

^' ' ' > i N  ! .

$ N 30 ',

a V

Qs \

\ i 3u ' \\

\ ' -x'A

\

\

i i , . ,

l J

N \ i 6 O T. A \ i .  ;

% s- A \, ,

' ' \t i a \ - 's 1 j g ' ' l

- 9 ', lA t5 f

i v

s I \\ i i i

\\ , , i l s \\' -

? ;2 i I \ \ i ' '

\ \ * '

3 0  !

N- l

g i x.

\ ,\-

\

A i j i ,

s a  !

' \ Ai ,

l i: 20

\\ -

X  ; -

i i '

2a v y

\\ l ' ,

d2- -

'\ i s ,

u b  ! \ 1 c

' 'k I \

\ ! \ i e i

- -4 US w-

\i T i '

3x i + \ i '

' ' h \ e i ,

3 ' V N '  ; i 9- 15 u \!  :

, ' i \~ N I n 1 i

\\ '

r, ,

' \' ' . [

d ' ' \\' \ i .

2 ' \ X ,

\ .\ . , ,

\= , j

.\

' I \ , i

' \ '

10 i i . \ 's , ,

t k i ' I ,

' \i j

! \

i l

\\\ s l

^

1  ! \ ! \ .

' i \. g  ; ,

' # \l \ , ,

' ' \ .

5  ! '\ r . i e

.\

I  ! \ t  ;

'  ? I \ i j j

~

' ' \

2.5 , ' '

!  ! i

! I i  !  !

0 10 20 30 40 50 60 70

. - - ~ . . . _ ~ _

50 - > '

. i. i.'

I i!

, , >,! . Figure XII

.l . .

Florida Power Corporation Crystal River Unit 3 Nuclear Generating Plant

\ Analytical Results to Chemical Drawdown - BST-2 Valve 45 \ .

Failure Case - Minimus Na0H Initial Conditions

\ >

\ i  !

\~  ! BWST

\

\

- - - BST-1 i

BST-2

\

40 \  ;

\ l

\ r  !

\ i I . r 3

\  !

\! , . . r . '

\t t ' '  !

N , I  !

3 N i i . l .

ird 35  ;\

! \ '

l 6

l

'  ?

W. i \ i i  ! .  !

3'

>f i

\

g t

i i

i I

i i

2: , . \ . .

2; m M

^^% \  ! i 1

'd 2 w 6 \ i i  !

4 35 0 N w _i A i i i  !

9- d

- 30 A

\

N

\

s ,

l

. i

\ l N. \ i i i  ! '

U \; N \ l i 6 . r Qw \

! s

% \

s\

6 l

6 3

8 i

3 i

i 0 '

1 1  ! ' ' '

2; t - Ti i t

" \ \N .  !

U \ \ s . I

\ i\ ' i  !

u 25 . \- \ s ,  ! . . .

O i -\ \ i l i ' i CD 'l \ m' t .  !

, f .i \ x i i i

3

. 1 , , .

2 o . \ \  % . . .

I > . r\ \ si r 6 '

$ 9  ! \ \ 7 i

- 4

< .  : A g ii . i

. A \ i . . 1 i: 20 ,

i \ 1 ,

x , ,

zu a .  ! Y \  ! , , , , ,

W E > i  ! N\ i T. .

i \ \ ' '

2 2, i.e s . 's % . i I i \ i \

  • O  ! s\ i s i i t~ t \\i N ! j 3 \  ! 4 T-'

15 , \ \

i . , \ . s , i i g \ i * . .

i

, \\

  • i '

i 6

i \\  ! i i.

f i

\.  ! i t i i \t i

  • I i \. *

. . \\ .

. . N\ i 10 \\ .

' i i \ \ i i

. 6

\ \ , .

I i \ \!

. . \ X. . .

i \ \ . .

! . \ \ t i I '  ? \'  !

i i \' _\ .

. \ \

5 , ,

_\

i .

! .\ i

!  ! ' \ 1 i .

t ' i t

! \  ! ,

6

\

2.5 , .

i i . . .

i 1  ! I t i . 6 0 10 20 30 40 50 60 70

~

50' n .J

. i .

. . Figure XIII

.. Florida Power Corporation

( '

Crystal River Unit 3 Nuclear Generating Plant 45 Analytical Results to Chemical Drawdown - Half Flow

\ ,

Case - Minimum Na0H Initial Conditions

\ .

  • A

\

x- . --

BWST

\.\ l

- - BST-1


B ST- 2

.\

40 \ l

\ i 1 .

i , .

. \

\ . l .

i

. 1 i ,

i i

\ r t .  ! i '

\ i

. I d 1 . i 1 .

u 35 \ . , , ,

24 \  ! i  !

i 13 \  ! I 4 '\ +

i i i i

  • d \ . . . i i i 53 m
  • J

% NN \,

\

l i i b$ c 0 \ 's i T '  ! i  ! I i

\' - ' ' ' ' '

E v*E 30

, .\\ \ i

\\ \ i i i o A N,, i \ t i

    • \ T i , .

N \ \ \ i i e \_i \i . 6 . .

= N \t t ' i i i'. > T i i i M f X. \ i i i i i i i c ' .N - ' ' ' '

u 25  ? \ \ \ l t i i i i \- \ i e i

(?  ! \ \ \  ! I i  !

L g \ ' \ l i

[  ! \ \ \ i i I 3 g i \ i  % i e i  !

>  ! N \. i t i 4

O i *.-sr y j i  !

7  ! s i\ \ i i i q3 4 i N \ i . .

-- . 90 , N \

\

\

\

.. Q i +

f ' i 30 T i \ \' \ i i i da ; "U i

N X \

\ i

\ i i

i i

~

t i \ \! i 0*~ i A.'x \i . . .

- s \ N  ! i ,

- s \ i  !

A i\ .\ 6\ i e

15 i , ,

\ s \ , , , ,

M i '

\ s \ 4 i i

i i

\ '

\ i i .

- i t \ s \ ' e . .  !

i i \ \ \ i  ! + i , i i i  ! \ \ i i , .

+ t 6 \ \ \i t i i i i  !\ \ 1 i j t i \ \ \ >

i 10 , , ' ;\ ,

, ' . . \ i

\ s \ t

! \ \\ 6 t \ .\ .

\ \\ >

t i

\ '\. i i I i \ \\ i

- i i \ 'A .

5

. , .\

I  ! l 's ! A i  ! l

. . e i , A  ;

i i \ \ i i i

.\ \ .

9.5 i #

\

! t *

\ i l

3

! t i \ i l i \  !

. . i i 0 20 40 60 80 100

n -

t e

a.

i  ;

j ,

j-f i

!- t 4

i i

I APPENDIX A i.

1 1- COMPILATION OF INPUT PARAMETERS i

I i

4 g

i i

4 i

F 1

l

[

i

{.

1 4

i <

i e

c.

i >

T i -

f-5 8

_ _ , - . _ - _42-

S O cme M

+

e t *Nol

.[

.s 'A

. 4. C. O.eses e.o

. e .art

e. s. e. w. O C C. em

.e ce @ em so .s ce N O .t ce O =r == 4 es ce O @ M e

. O. e. M .s.r*R.

. O. e war*e.e Oeseee.

  • . .en.
e. 4%.

< M == e't e e o in o OO.O N. s%e n. n. e. O

.==N N am N ce

& 6 e9 == et e s e e e e e

  • e s. e e e as nas Uw e e e e e a e o e
  • S e e he m te me em e N es em N e 0%e e o es e e @= en ee ==

eg .e=,= ee. C. es. e. e. e. e=.=

  1. 4. N. e. M. ce. r, e. en. .a. .va.
e. M.
e. O. O emC. C. 40M.N 4seN.=.

eememr=*4ys.e =fM.

O.

es =e> # b M pm e =A to e e M e. W3 ** G W tm e in8=*e@* 85 44*sees oei ce M NMreMNeNe=== 40 *,,.* 4N

- O*=

p3 ew k6 e M @ E0 a= re @ M 9 O es en = - .*M

  • e 4 *n, e =* N 4 se a= se se se er oe WO se C e e e. 0 0 0 0 0 0. O. C. 0 0. O. O. O. C 0 0 0. O. o. c. e. an. O. O. o. in. O. C. O. O.

es si= ee -

eawO w > e% to C e44Oe*e ** eON**e **e io e 4e e eN O4e== M C r* ==

  • e5 eeee.case4 4eto4 es

== to e ase e eaov5M - se M em me e et OON O ce o e oN se #89 O es S .J as se so ** se

> 3F ew ee WO e

se e se se as M ense as N se wese etsee ce u me me en se 3

  • Q e

e-u c

e.

e as we se me se se g, en e

e H

C 3

as se e se me se me me a=8 e

en.* er

>= k

d. "a e e U' 5
  • A w ,e e.e se se se ae N es .e se Q*7 3 sud es a >= x W

ax 2 ama O.

6 et s p.e se gg <

e Q2 . e

  • ( u e "e **d 06', f3"'*

4 ** >

==

W '

DC, p, as O 4

e*

l .-6.M e6 pe 5m e

A 4vanJ

.s .

e

.e.

ee .* *e .. ee ** .n es N e -- es I p en en g

=* G d=7. ha a4 Q e4 .

p.' t4 3 3 aus as to O

eg ==b N N N se se N o.e N

.3 in.

4 es e 4

g3 el

  • f'*

>=

ei O u ans H

O A. N e h.;

as N N em os se en N M @ me se me in en re se N @ m Pe P9 M O

O e

L

.e Se e

se en se O O O ** O M e e* N e O O es O 4 e e ce O e == e * ** O rw O O ==

A e se e N. 40. C e e. o. e. rs. as. o. =. 4. Q. e. o. e. e. 4 4. e. o. e5 O. a. O. @. 4. O. e3. o. et.

- == h ew e=.

4 eeN eeM es e .e e M =# te em M .8e. Nees. e .F @ 4=#.? r%@eme M rs o es 4 N pmrw @M** OMe es as e

C p% %F em P* 9%e9N es e e en e in es vs e N ee e e e Wt N e e ed es et P% of 2

g w N. N. *e. N. O. c'e. te. o. O. re N. ee. re. O. N. N. O. O. t.O.

M PtM M C M M O O ert P9 M M O #86 Pt O O 4 m me N 4 e ao N q M q M C. C.C. O.e.s O. 9% ett. O. O. es.

G.os.

es se es se se == ee me me == en me em me se se se se em Oe Y C

D U es e==N p. e C o M Me o e irs s'a se M.t ce ce 6.C e.

et .t in @ e 9 O == N em W5 @ es. so se.=-M--_ - NON receceN ,-t me 3

at i

e.~ . ~ . e e o o ~ , -,

Ie to W e

M .%

c't

.n . 4 e O - -, e c . P. e e me se e. M em == se m es ce ce to N ce N N e=s M #=* P* est M 5

C 4Ne O-NM4e4N 960 2,1 H N M 4 f. 4 N e e O as - Nse Mse .4 se *am = as e. te ce ce N es M N N ev N s'9 2

. ~

3 s

TABLE A-II EQUIVALENT LENGTH IN PIPE DIAMETERS (L/D)

OF VALVES AND FITTINGS

  • 90 degree elbow 14" pipe, 21" radius 13 10" pipe, 15" radius 13 4" pipe, 6" radius 14 3" pipe, 4-1/2" radius 14 2" pipe, 3" radius 14 2-1/2" pipe, 3-3/4" radius 14 45 degree standard elbow 16

. gate valve (fully open) 13 l check valve (fully open) conventional swing 135 standard tee (with flow through branch) 60 standard tee (with flow through run) 20 Y fitting ** 40 14" to 10" reducer 40 4" to 3" reducer 30 )

l 3" to 4" reducer 11 I 3" to 2" reducer 93 3" to 2-1/2" reducer 17.5 l

  • " Flow of Fluids litrough Valves, Fittings, and Pipe," Crane Technical Paper No. 410.
    • Assumed to be compromise of tee branch and tee run - therefore, L/D of 40.

GsRAtt /C-:7 _th v-

g .,

TABLE A-III PUMP HEAD DATA Decay Heat Pumps Flow (gpm) 0 1,050 1,700 2,000 2,300 3,000 3,300 4,150 Head (feet) 430 420 415 405 395 360 340 270 Re '.ctor Building Spray Pumps Flow (gpm) 0 600 1,200 1,425 1,675 1,850 2,125 Head (feet) 555 550 500 475 435 400 345 Make-up Pumps Piping not modeled. Treated as a 500 gpm tap off the main borated water line.

Geerticommoneesen f 4 m

5, h .

TABLE A-IV TANK PARAMETERS Elevation of Level Indicator Level Tap Calibration Elev. of Outlet ID (feet) Elevation (feet) Nozzle (feet)

BWST (DHT-1) 40' 121.0 121.0 120.5 Na0H (BST-1) 98.5" 121.0 119.0 119.5 NaOH (BST-2) 91.5" 121.0 119.0 119.5 Geert/Commonmusen a v

% e,

- e s TABLE A-V SPECIFIC VOLDE AND VISCOSITY CURVES NaOH (8.0 w/o) NaCH (9.5 w/o) p

-1 y p

-1 y Temp.

( F) (ft /lb) (lbm/ft-sec) (ft /lb) (lbm/ft-sec) 2.10 x 10 -3 40 1.466 x 10 1.85 x 10 1.443 x 10-50 1.469 x 10 -2 1.54 x 10 -3 1.446 x 10- 1.71 x 10-

-2 -

-3 60 1.472 x 10 1.28 x 10 1.449 x 10- 1.425 x 10

-3 -2 1.21 x 10 -3 70 1.474 x 10 1.10 x 10 1.453 x 10 1.478 x 10 -2 -2 1.05 x 10 -3

-0 80 9.50 x 10 1.456 x 10 90 1.481 x 10 -2 8.40.x 10- 1.459 x 10- 9.20 x 10

-0 1.485 x 10 -2 7.70 x 10 -0 100 1.463 x 10- 8.40 x 10 '

i A