ML18026A233

From kanterella
Jump to navigation Jump to search
Semiannual Effluent & Waste Disposal Rept for Jul-Dec 1989. W/900301 Ltr
ML18026A233
Person / Time
Site: Susquehanna  Talen Energy icon.png
Issue date: 12/31/1989
From: Keiser H, Shank K, Widner T
PENNSYLVANIA POWER & LIGHT CO.
To: Martin T
NRC OFFICE OF INSPECTION & ENFORCEMENT (IE REGION I)
References
PLA-3354, NUDOCS 9003080483
Download: ML18026A233 (176)


Text

AC CELEBRATED Dl BUTI ON DEMO.i S TI0.'i SYSTEM REGULAT INFORMATION DISTRIBUTIO STEM (RIDS)

,~i'-

DOCKET FACIL:50-387 Susquehanna Steam Electric Station, Unit 1, Pennsylva 05000387 50-388 Susquehanna Steam Electric Station, Unit 2, Pennsylva 05000388 AUTH. NAME AUTHOR AFFILIATION WIDNER,T.E. Pennsylvania Power & Light Co.

SHANK,K.E. Pennsylvania Power & Light Co.

KEISER,H.W. Pennsylvania Power & Light Co.

RECIP.NAME RECIPIENT AFFILIATION

SUBJECT:

"Semiannu ffluent & Waste Disposal Rept for Jul-Dec 1989." 900301 ltr.

DISTRIBUTION CODE: ZE48D TITLE: 50.36a(a)(2)

COPIES RECEIVED:LTR Semiannual

/

Effluent Release Reports ENCL j SIZE:

NOTES:LPDR 1 LPDR 1 cy Transcripts.

cy Transcripts.

05000387 05000388 j

RECIPIENT COPIES RECIPIENT COPIES ID CODE/NAME L TR E CL ID CODE/NAME LTTR ENCL PD1-2 LA PD1-2 PD 1 1 THADANI,M 1 1 INTERNAL: ACRS 1 1 AEOD/DSP/TPAB 1 1 IRM TECH ADV 1 1 NRR/DREP PRPB11 2 2 NUDOCS-ABSTRACT 1 1 1 1 RGN1 DRSS/RPB 2 2 RGN1 FILE 02 1 1 EXTERNAL: BNL TICHLERiJ03 1 1 EG&G SIMPSON@ F 2 2 LPDR 1 1 NRC PDR 1 1 NOTES: 2 2 R

S h

D HGTE 'IQ ALL "RIDS" RECIPZEPlS:

S PIZASE HELP US TO REDUCE K~! CONTACT 'ZHE DOCUMEÃZ CON'HK)L DESK RDCN Pl-37 (EXT. 20079) K) ELIMZRAXR YOUR NAMB PBCH DISX%GBUTIQN LISTS FOR DOCUMENIS YOU DCSERT NEED!

TOTAL NUMBER OF COPIES REQUIRED: LTTR 22 ENCL

D Pennsylvania Power 8 Light Company Two North Ninth Street ~ Allentown, PA 18101 ~ 215 I 770-5151 Harold W. Keiser Senior V/ce President. Nuclear 21 5i770 4194

,eIlO I SII Mr. Thomas T. Martin Regional Administrator, Region I U.S. Nuclear Regulatory Commission 475 Allendale Road King of Prussia, PA 19406 SUSQUEHANNA STEAM ELECTRIC STATION SEMI-ANNUAL RADIOACTIVE EFFLUENT RELEASE REPORT Docket Nos. 50-387/NPF-14 PLA-3354 FILE R41-2A and 50-388/NPF-22

Dear Mr. Martin:

In accordance with 10CFR50.36a(a)(2) and the Susquehanna SES Unit 1 and 2 Technical Specifications, attached is the Semi-Annual Radioactive Effluent Release Report for SSES Units 1 and 2 covering the period July 1 through December 31, 1989.

Very truly yours, H. W. Keiser Attachment cc: NRC Document Control Desk-(original)

NRC Region I Mr. G. S. Barber, NRC Resident Inspector Mr. M. C. Thadani, NRC Project Manager

( 9003080483 89i23i PDR ADOCK 05000387; R PNU

3/l/90... 9003080483

~ANlVg

~

~Ate 8

~~

SEM NUAL EFFLUENT ck WASTE DISPOSAL REPORT FOR JULY - DECEMBER 1989 Pennsylvania Power 5 Light Company Two North Ninth Street Allentown, Pennsylvania 18101-1179 February 1990

SUSQUEHANNA STEAM ELECTRIC STATION SEMIANNUAL EFFLUENT AND WASTE DISPOSAL REPORT REPORT PERIOD: 07/01/89 - 12/31/89 Prepared by: ~~

.E. Widner U

0 B. H. Carson Senior Health Physicist Health Physicist Reviewed; C. J. Kal er Environm tal and Chemistry Group Supervisor Nuclear Approved:

K. E. Shank Supervisor - Radiological Ec Environmental Services.

Pennsylvania Power & Light Company Two North Ninth Street Allentown, Pennsylvania 18101

TABIE OF CONTENTS SECTION PAGE

l. Introduction and Supplemental Information......... 1
2. Effluent and Waste Disposal Data. ~ ................ 9
3. Meteorological Data and Dispersion Estimates...... 28
4. Dose Measurements and Assessments 60
5. Changes to the Offsite Dose Calculation Manua and the Solid Waste Process Control Program. ~ ~ ~ ~ o 70
6. Reports of Exception to the SSES Effluent Monitoring Program.. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 169

I IST OF TABLES PAGE Table 1: Supplemental Information. 6 Table 2: Airborne Effluents- Suranation of All Releases..... 10 Table 3: Airborne Effluents Table 4: Waterborne Effluents- Sunmation of All Releases... 12 Table 5: Waterborne Effluents ....... . ............. 13 Table 6: Solid Waste and Irradiated Fuel Shipments........, 16 Table 7: Solid Radioactive Waste- Class A 18 Solid Radioactive Waste- Class B.. 18 Solid Radioactive Waste- Class C.. 18 Table 8: Principal Radionuclides and Percent Composition:

Condensate Demineralizer Liner (Dewatered)...... 19 Table 9: Principal Radionuclides and Percent Composition:

Condensate Demineralizer I incr (Portland Cement). 20 Table 10: Principal Radionuclides and Percent Composition:

Condensate Demineralizer HIC (Dewatered)......... 21 Table 11: Principal Radionuclides and Percent Composion:

Reactor Water Fuel Pool Clean-up HIC (Dewatered). 22 Table 12: Principal Radionuclides and Percent Composition:

Liquid Radwaste Filter Media, Sludge and Evaporator Concentrations Liner (Portland Cement).......... 23 Table 13: Principal Radionuclides and Percent Composition:

Liquid Radwaste Filter Media. Sludge and Evaporator Concentrations HIC (Dewatered). 24 Table 14: Principal Radionuclides and Percent Composition:

Compacted Trash Strong Tight Container.......... 25 Table 15: Estimated Total Errors Associated with Effluent Measurements..... 26 Table 16: Data Not Reported in Previous Semiannual Report......... 27 Table 17: Meteorological Data Availability............... 30 Table 18: Joint Wind Frequency Distribution by Stability Class. 34 Table 19: Average Annual Relative Concentrations............ 52

LIST OF TABLES (cont.)

r PAGE Table 20: Maximum Offsite Doses and Dose Conmitments to Members of the Public..........,. 61 Table 21: Calculated Collective Doses to Members of the Public Within the Riverlands/Information Center Complex.. 66 Table 22: Calculated Doses for the Residential Area in the Southeast Sector Within the SSES Site Boundary.... 67 Table 23: Calculated Doses for the Residence in the West Sector within the SSES Site Boundary.............. 68 Table 24 Calculated Doses for the Residence in the West Southwest Sector Within the SSES Site Boundary..... 69 r

I IST OF FIGURES PAGE Figure 1: Airborne Effluent Release Points:

tucation and Detail................... ~ ~ ~ ~ ~ ~ ~ 4 Figure 2: SSES Waterborne Effluents:

Release Pathway . .... ~ . .................. 5 Figure 3: Susquehanna River Monthly Average Flow Rates..... 14 Figure 4: Monthly I iquid Radwaste Discharge Totals......... 15 Figure 5: SSES Wind Rose: 10-meter Sensors,,... ~ ........... 31 Figure 6: SSES Wind Rose: 60-meter Sensors. ~ ~ ~ ~ ~ ~ 32 Figure 7: Pasquill Stability Class Prevalences............. 33 Figure 8: Areas Within the SSES Site Boundary Open to Members of the Public . ...... ............. 65

SECTION 1 INTRODUCTION AND SUPP'MENTAI, INFORMATION

INIRODUCZION The Susquehanna Steam Electric Station (SSES) is located in Salem Township, Euzerne County, Pennsylvania. It is on the west bank of the Susquehanna River, 8 km northeast of Berwick. The Station consists of two boiling water reactor generating units, each with 1,050 MW net electrical capacity. The reactor and generating units were supplied by General Electric, while the Bechtel Corporation served as architect-engineer and constructor.

Construction of the Station began in the early 1970s. Fuel load began in Unit 1 in July of 1982. Initial criticality was achieved in the Unit 1 reactor on September 10, 1982. The reactor reached 100X power for the first time on February 4, 1983. Coranercial operation of Unit 1 was declared on June 8, 1983. Initial criticality of Unit 2 occurred on May 8, 1984. Unit 2 was declared coranercial on February 12, 1985.

Airborne effluents are released from the Susquehanna Station via five rooftop vents on the reactor building (see Figure .1). Each vent is continuously monitored, and a program of periodic sampling and analysis is conducted as specified in the plant Technical Specifications.

All waterborne effluents are released in batch mode and are sampled and analyzed prior to release. Waterborne effluents from the site are released into the cooling tower blowdown line for dilution prior to release to the Susquehanna River (see Figure 2). Blowdown line flow rates are at least 5.000 gpm during periods of liquid radwaste release.

The diluted effluent is introduced to the river by way of a perforated diffuser pipe placed on the river bed. The diffuser serves to rapidly and uniformly mix the station discharge with the main flow of the river.

This report presents a suranary of the quantities of radioactive materials which were released from the Susquehanna Steam Electric Station during the period from July 1. 1989 to December 31, 1989. In addition, this report serves as a medium for notifying the US Nuclear Regulatory Conmission staff of changes to PP&L's Offsite Dose Calculation Manual (ODCM) and Solid Waste Process Control Program (PCP) and documentation of any exceptions to the SSES effluent monitoring program which must be reported per Technical Specifications 3.3.7.10 and 3.3.7.11.

Table 1 contains supplemental information pertaining to effluents from the Susquehanna plant. Included are regulatory limits, sampling and analysis methods. and characterization of the number and duration of batch and abnormal releases, if any.

Table 2 contains a sunmation of all airborne releases, grouped into the radionuclide categories of gases, particulates, iodines, and tritium.

Average release rates are presented and compared to the applicable limits. Table 3 presents the totals of specific radionuclides in airborne effluents.

Waterborne effluents are sunmarized in Table 4. Average diluted concentrations are presented and compared to the applicable limits.

Table 5 presents the release quantities of specific radionuclides in waterborne effluents over the report period. Figure 4 presents the monthly discharge totals of liquid radwaste from SSES during 1989.

Tables 6 through 14 present a characterization of the solid radioactive waste shipped off site during the report period. Included are the volumes and curie contents associated'with each type of solid waste.

An estimate of major nuclide composition is presented for each waste type, as well as the number of waste shipments from the site, how they were transported, and their final destination. Upon investigation of the RWCU powdex resin shipments made between January 1 and June 30, 1985, a discrepancy concerning the calculation .of C-14 activity was discovered. Revised values for 1985 are included on page 17of this report.

Table 15 contains estimates of the errors associated with the measurements involved in quantifying effluents. Sampling errors, counting errors, and errors associated with determining effluent flow rates and volumes all contribute to the total error of effluent measurements. Error estimates are presented for each category of radionuclide detected in airborne and waterborne effluents and solid wastes during the report period.

Table 16 presents effluent data from previous report periods which was not available at preparation time for the associated semiannual report.

Section 3 of this report contains the meteorological data associated with the year 1989. Availability data for the SSES meteorological data are shown in Table 17. Meteorological data for the calendar year is presented in the form of joint wind frequency distributions by atmospheric stability class. These distributions are presented in Table 18.

Figures 5 and 6 are wind rose plots for the SSES primary meteorological 10 meter and 60 meter sensors. respectively. Figure 7 presents the relative prevalences of the Pasquill stability classes. In addition, the meteorological data from the report year were used to generate annual average relative concentrations (X/Qs) and deposition rates (D/Qs).

These values are presented in Table 19, and are required input for use of the GASPAR code for calculation of the doses resulting from airborne releases.

Section 4 of this report contains an assessment of the calculated doses attributed to the reported radiological effluents for the calendar year. The lADTAP II code was used for calculation of doses from waterborne effluents.

'Ihe GASPAR code was used for calculation of doses from airborne effluents.

The calculated doses and direct radiation estimates can be used to estimate the doses to maximally exposed members of the public. Table 20 suninarizes maximum calculated doses and dose ccemitments to members of the public from waterborne and airborne effluents and direct radiation.

Section 5 of this report is reserved for documentation of changes to the Offsite Dose Calculation Manual and the Solid Waste Process Control Program.

Section 6 presents a listing of cases (if any) in which airborne or waterborne effluent monitoring instrumentation was declared inoperable and was not'restored to operability within the time period specified in Technical Specification Table 3.3.7.10-1 or 3.3.7.11-1 Action Statements.

UNIT H REACIOR BUILQNG EXHAUST M VENT QRB00 CTM !45250 CTH AT 044IO EN> f AT BO-HO DEG F 385,000 Cl1I 2<ILIXN Cfll OUTSIDE AIR INTAKE REACTOR IRllLDING AT IOO-I20 DEG f AT IOO-l20 DEG f EXHAUST STACKS UNIT I DQSEL EXHAUST PLENUH TUIHXN2 Q~ UNIT H BUIUXNG T~ CAI TURBUIE BUILQNG AT I20 DEG e EXHAUST EXHAUST

~ +o

~ ~

VENT VENT

~

~ r~

aq

~ \

~~ ~

ro r~ og ~ rr

~

CONTROL IRIILDING

t. ~ r N

I

FIGURE 2: SSES WATERBORNE EFFLUENTS; RELEASE PATHWAY D IFFUSEk SUSQUEHANNA RIVER INTAKE 3l PM 39.I2I CPM CL SEWAGE RAINFALL 3I CPM POTABLE TREATMENT FLOW WATER I 0.200 CPM (2BI PLANT M (I BI 0-200 GPM RADIOACTIVE PARKING RADWASTE 0 200 AREA LOT AL TREATMENT POND WATER USES CPM C P

<26 CPM RAW WATER GKN ERAL I%5 GPM T1EATMENT WASTE PLANT PLANT TREATMENT USES

<5 CPM DEMINERALITEk WASTES D EMINERA LITER RAINFALL 50 CPM CQI IRATSD FLOW I I Bl EVAPORATION EVAPORATION I1.350 GPM l4.350 CPM CHEMICAL Cl c WASTE T1EATMENT

%87.000 GPM 487.000 GPM RAW WATER TREATMENT WASTES S S 50 GPM WATER A RECOVERY CL l Fll TER 48.000 CONDEHSRX CL MISC.

HEAT EXCHA NGKRS 38.88 0 GPM Ilal POND < CPM MAKE UP EMERGENCY KMKRCKNCf SPRAT HEAT HEAT

~

POND EXCHANGERS EXCHANCEIS EMEkGKNCT A

DEISELS p

KMKRGENCf EVAPORATION INTAKE 15 GPM COOLING TOWER BLOWDOWN l0.000 GPM (2AI

TABLE 1 SEMIANNUAL EFFLUENT Cc WASTE DISPOSAL REPORT DATA PERIOD: JULY DECEhSER 1989 SUPPLEMENTAL INFORMATION

1. Regulatory Limits
a. Fission and Activation Gases: 0.851 Ci/minute (Release rate limit based on Technical Specification dose rate limit of 500 mrem/yr from noble gases). This number is calculated based on the expected mix of noble gas radionuclides presented in Table 4.4 of the SSES Final Environmental Statement, NUREG-0564.
b. Iodine-131: 141 microcuries/minute (Release rate limit based on Technical Specification dose rate limit.of 1500 mrem/yr from iodine-131. tritium, and particulates with half-lives greater than eight days).
c. Particulates: 772 microcuries/minute (Releas'e rate limit based on Technical Specification dose rate limit of 1500 mrem/yr from iodine-131, tritium, and particulates with half-lives greater than eight days). This number is calculated based on the expected mix of particulate radionuclides presented in Table 4.4 of the SSES Final Environmental Statement, NUREG-0564.
2. Maximum Permissible Concentrations The concentrations of radioactive materials in waterborne effluents are limited to the concentrations specified in 10CFR Part 20 Appendix B Table II. Column 2, for radionuclides other than dissolved or entrained noble gases.

For dissolved or entrained noble gases, the concentrations are limited to the following values, as stated in the applicable Technical Specification:

Nuclide MPC (uCi/ml)

~~Kr m 2 E-4 SSKr 5 E-4 8 1Kr 4 E-5 8 8Kr 9 E-5 4 1Ar 7 E-5

>>aXe m 5 E-4

>>sXe 6 E-4

<>>Xe m 2 E-4

~>>Xe 2 E-4 These values are calculated using Equation 20 of ICRP Publication 2 (1959), adjusted for infinite cloud submersion in water.

3. Methods of Quantifying Effluents
a. Fission and Activation Gases: Gas samples are routinely collected monthly and analyzed with a Ge(Li) detector system which incorporates a data reduction program to determine radionuclide composition in terms of specific ac'tivity. Data tapes from the continuous vent monitors are used to determine the average concentration of noble

gases. The Ge(Li) isotopic scan is used to convert the continuous vent monitor activity to actual activity based on the determined nuclide mixture. The vent and sample flow rates are continuously monitored, and the average flow rates for each vent are used to calculate the total activity released in a given time period.

When the continuous monitors are out of service, manual grab

, samples are taken from each vent once each eight hours (once each four hours for the standby gas treatment vent).

b. Iodines: Iodine is continuously collected via an isokinetic sampling assembly in each vent. Filters are normally exchanged once per week.;and analyzed on a Ge(Li) system. The daily average flow rates for the vents and sample pumps are averaged for the duration of the sampling period, and a ratio of vent flow rate to sample flow rate is determined. The ratio is used to determine the total activity of each isotope released during the time period in question. When the continuous monitors are out of service. iodine is continuously collected on charcoal cartridges attached to air samplers which draw directly from the affected rooftop vent(s) or from alternate sampling ports available on the sample lines.

c ~ Particulates: Particulates are continuously collected via an isokinetic sampling assembly in each vent. Filters are normally exchanged once per week and analyzed on a Ge(Li) system. Flow rate corrections are performed as for iodines. When the continuous vent monitors are out of service, particulates are continuously sampled directly from the affected rooftop vent(s) or from alternate sampling ports available on the sample lines.

d. Waterborne Effluents: Each tank of liquid radwaste is sampled and analyzed for principle ganma emitters prior to release. Each sample tank is recirculated for a sufficient amount of time prior to sampling to ensure that a representative sample is obtained.

Samples are analyzed on a Ge(Li) system and release permits are generated based on the values obtained from the isotopic analysis and the most recent values for tritium, gross alpha, iron-55, and strontium-89 and -90. An aliquot based on release volume is saved and added to monthly and quarterly composite containers.

The monthly tritium analysis is done in-house. The quarterly composite is sent to a vendor laboratory for iron-55, strontium-89 and -90, and gross alpha analyses.

The concentration of each radionuclide in each batch is decay corrected from the time of counting to the midpoint of the release period, and is then multiplied by the volume of the batch to determine the total quantity of each nuclide released in each batch. The isotopic totals for each are summed to determine the total source term for the report period.

4. Batch Releases
a. Waterborne
1. Number of Batch Releases: 87
2. Total Time Period for Batch Releases: 1. 44E+04 minutes
3. Maximum Time Period for a Batch Release: 2.85E+02 minutes
4. Average Time Period for a Batch Release: 1.58E+02 minutes
5. Minimum Time Period for a Batch Release: 1.00E+00 minutes
6. Average Stream Flow During Period of Release of Effluent into a Flowing Stream: >6. 70E+03 gpm (cooling tower blowdown) 6.05E+06 gpm (Susq. River)
b. Airborne
1. Number of Batch Releases: 0
2. Total Time Period for Batch Releases: NA
3. Maximum Time Period for a Batch Release: NA
4. Average Time Period for a Batch Release: NA
5. Minimum Time Period for a Batch Release: NA
5. Abnormal Releases
a. Waterborne
1. Number of Releases: 0
2. Volume Released: NA
3. Total Activity Released: NA
b. Airborne
1. Number of Releases: 0
2. Total Activity Released: NA

TABLE 2 SEMIANNUAL EFFLUENT AND WASTE DISPOSAL REPORT 1989 AIRBORNE EFFIUENTS SUMMATION OF ALL REL1MSES Nucl ide Category Uni t Third Quarter Fourth Quarter A. Fission and Activation Gases

1. Total Release~ Ci 1.29E+01 1.19E+01
2. Average Release Rate for Period uCi/sec 1.62E+00 1.50E+00
3. Percent of Applicable Limit2 1.14E-02 1.06E-02 B. Iodine-131 1, Total Release Ci >3.28E-OS <2.20E-04 >2.18E-OS <1.60E-04
2. Average Release Rate for Period uCi/sec >4.13E-06 <2.77E-05 >2.74E-06 <2.01E-05
3. Percent of Applicable limit~ >1.76E-04 <1.18E-03 >1.17E-04 <8.57E-04 C. Particulates
1. Particulates with Half-lives >8 Days Released Ci >1.24E-04 <1.14E-03 >1.45E-04 <1.01E-03~
2. Average Release Rate for Period uCi/sec >1.55E-05 <1.43E-04 >1.83E-OS <1.28E-04
3. Percent of t Applicable Limit~ >1.21E-04 <1.11E-03 >1.42E-04 <9.89E-04
4. Gross Alpha Activity Released Ci >3.12E-07 <1.16E-06 >2.86E-07 <9.48E-07""

D. Tritium

1. Total Release Ci >3.60E+00 <9.54E+00 >2.21E+01 <2.59E+01
2. Average Release Rate for Period uCi/sec >4.53E-01 <1.20E+00 >2.78E+00 <3.26E+00
3. Percent of Applicable Limits >9.28E-03 <2.46E-02 >5.70E-02 <6.68E-02

~Notation: lhe first value presented (>) includes only activity positively detected at the 95X confidence level. Ihe second value

(<) includes detected activity plus the Lower Limit of Detection values of any samples in which activity was not detected at the 95X CL.

~Based on release rate limit derived from dose rate Technical Specification.

sBased on release rate corresponding to 3H Maximum Permissible Concentration (2.0 E-07 uCi/cc) in unrestricted areas. A relative concentration of 4.1 E-05 sec/m3 is assumed. Ihe derived release rate limit is 4878 uCi/sec.

~Reported values are based on third quarter 1989 sample analyses and fourth quarter 1989 ventilation exhaust rates.

10

SECTION 2 EFFf UENT AND WASTE DISPOSN DATA

TABLE 3 SEMIANNUAL EFFLUENT AND WASTE DISPOSAL REPORT 1989 AIRBORNE EFFLUENTS (Curies)1 Nuclide Third Quarter Fourth Quarter A. Gases 1 33)(e 1.29E+01 1.19E+01 Total 1.29E+01 1.19E+01 B. Iodines 131I >3.28E-05 <2.20E-04 >2.18E-OS <1.60E-04 Total >3.28E-05 <2.20E-04 >2.18E-05 <1.60E-04 C. Particulates. with Half-lives > 8 d 5

1'4Mn

>9.29E-05 <1.83E-04 >1. 20E-04 <2.07E-04 59Fe <1.40E-04 <1.43E-04 58Co >9.67E-06 <6.93E-05 <6.03E-OS 60Co >1.99E-05 <1.40E-04 >2.45E-05 <1.37E-04 65zn <1.66E-04 <1.46E-04 09Sr >1.12E-06 <2.77E-06 >6.,89E-07 <2.17E-060 90$ r <6.09E-07 <4.95E-07~

134Cs <6.46E-05 <5.74E-05 137Cs <6.32E-05 <5.81E-05 141Ce <6.29E-05 <4.20E-05 144Ce <2.46E-04 <1.61E-04 Total >1.24E-04 <1.14E-03 >1.45E-04 <1.01E-034 1Notation: The first value presented (>) includes only activity positively detected at the 95K confidence level. The second value

(<) includes detected activity plus the Lower Limit of Detection values of any samples in which activity was not detected at the 95K CL.

~Reprted values are estimated based on third quarter 1989 sample analyses and fourth quarter 1989 ventilation exhaust rates.

11

TABLE 4 SEMIANNUAL EFFLUENT AND WASTE DISPOSAI REPORT 1989 WATERBORNE EFFLUENXS SUMMATION OF ALI REI,EASES Nuclide Category Unit Third Quarter Fourth Quarter A. Fission Ec Activation Products

1. Total Release~ Ci >1.47E-02 <1.61E-02 <3.58E-02~
2. Average Diluted Concentration Uci/%1 >1.28E-07 <1.40E-07 >1.18E-07 <1.40E-07
3. Percent of Applicable Limit~ 4.33E-03 1.37E-02 B. Tritium
1. Total Release Ci 3.55E+00 1.10E+01
2. Average Diluted Concentration uCi/ml 3.09E-OS 4.30E-05
3. Percent of Applicable limit> 1.03E+00 1.43E+00 C. Dissolved and Entrained Gases
1. Total Release Ci 1.18E+06'3.01E-02

>4.05E-OS <1.31E-02 >1.17E-04 <5.97E-02 2 Average Diluted

~

Concentration uCi/ml >3.53E-10 <1.15E-07 >4.55E-10 <2.33E-07

3. Percent of Applicable I imit4 >8.82E-04 <2.86E-01 >1.14E-03 <5.83E-01 D. Gross Alpha Radioactivity Released Ci <3 <9.95E-OS E. Volume of

'6E-05'.12E+05 Waste Released gal. 8.42E+05 (Prior to liters 3.19E+06 Dilution)

F. Volume of Dilution Water Used

1. During Periods of gale >3.00E+07 >6.74E+07 Release liters >1.14E+08 >2.55E+08
2. Over Entire Period gal. >9.17E+08 >8 '8E+08 liters >3.47E+09 >3.25E+09

~Notation: The first value presented (>) includes only activity positively detected at the 95K confidence level. The second value

(<) includes detected activity plus the Lower I imit of Detection values of any samples in which activity was not detected at the 95K CL.

~Based on quarterly dose limits from liquid effluents.

3Based on the Maximum Permissible Concentration for 3H in effluents to unrestricted areas (3.0 E-03 uCi/cc).

4Based on the most restrictive Maximum Permissible Concentration for a noble gas, 4.0 E-05 uCi/cc (87Kr) from SSES Tech Spec Table 3.11.1.1-1.

~Reported values are estimated. Monthly and quarterly sample analyses were not available at the time of report preparation.

12

TABLE 5 SEMIANNUAL EFFLUENT AND WASTE DISPOSAL REPORT 1989 WATBURRNE EFFLUENTS (Curies)1 Nuclide Third Quarter Fourth Quarter A. Tritium 3.55E+00 1.10E+01 B. Fission and Activation Products 34Na 5 1Cr 9.45E-05 2.31E-03 54Mn >2.67E-04 <3.49E-04 >6.41E-03 <6.55E-03 55Fe 1.42E-02 1.69E-02 59Fe <1.33E-04 >1.12E-03 <1.56E-03 58Co <6.56E-05 >5.08E-04 <7.20E-04 60Co >1.23E-04 <2.18E-04 >2.85E-03 <3.15E-03 65Zn <1.48E-04 <6.42E-04 89Sr <4.72E-05 <1.27E-040 90$ r <4.72E-06 <1.27E-05'4 99Mo <3.50E-04 <1.74E-03 131 I <4.21E-05 <1.89E-04 134Cs <6.29E-05 <2.83E-04 137Cs <6.60E-OS <3.12E-04 14 1Ce <5.76E-05 <2.45E-04 1 44Ce <2.51E-04 <1.07E-03 Total >1.47E-02 <1.61E-02 >3.01E-02 <3.58E-02'"

C. Dissolved and Entrained Gases 4 1Ar <9.22E-06 <3.87E-05 85Kr m <1.39E-05 <5.72E-05 8 5Kr <1.26E-02 <5.75E-02 8 7Kr <5.01E-06 <1.86E-05 88Kr <2.80E-05 <1.19E-04

>>3Xe m <3.07E-04 <1.34E-03

>>3Xe >2.78E-05 <1.47E-04 >4.16E-OS <4.94E-04

>>5Xe m <5.05E-09 <1.13E-08

>>5Xe >1.27E-05 <3.74E-05 >7.49E-05 <1.70E-04 Total >4.05E-05 <1.31E-02 >1.17E-04 <5.97E-02 1Notation: The first value presented (>) includes only activity positively detected at the 95K confidence level. Ihe second value

(<) includes detected activity plus the Lower Limit of Detection values of any samples in which activity was not detected at the 95X values are estimated based on third quarter 1989 sample analyses CL.'-Reported and fourth quarter 1989 discharge volumes.

13

FIGURE 3 SUSQUEHANNA RIVER MONTHLY AVERAGE FLOW RATES DATA PERlOD: 1989 1800 1BOO 1400 D

o 1200 X

LLI I-z 10PP LLI Q

g 8OO C9 600 400 200 O~ 9o 0<

1989 14

FIGURE 4 SUSQUEHANNA STEAM ELECTRIC STATION MONTHLY UQUID RADWASTE DISCHARGE TOTALS DATA PERIOD: 1989 700 SOO SOO O

400 X

V) z O

300 U

200 100 0

e gee'89 y,p~ ~09 ~oi foe s~e oG 80~ o~c 1989 15

TABLE 6 SEMIANNUAL EFFLUENT AND WASTE DISPOSAL REPORT SOLID WASTE AND IRRADIATED FUEL SHIPMENTS Data Period: July 1. 1989 December 31, 1989 A. SOI ID WASTE SHIPPED OFFSITE FOR BURIAL OR DISPOSAL Number of Shi ents Mode of Trans rtation Destination 20 Truck Barnwel1, SC B. IRRADIATED FUEL SHIPMENTS Number of Shi ents Mode of Trans rtation Destination NOT APPLICABLE 16

CORRECTION OF 1985 RADWASTE SHIPMENT DATA AS REPORTED AS CORRECTED HEREIN Percent Activity Percent Nuclide of Total (uCi) of Total Am-241 O.OOE+00 0.00 A'g-110m C-14 7 6.07E+06 1.05E+04 0 '9 0 ~ 00 (<0. 014)

Co-58 7 4 '6E+07 7.12'.51 Co-60 8 5.82E+07 Cr-51 41 2.80E+08 45.67 Cs-134 O.OOE+00 0.00 Cs-137 1.60E+05 0.03 Fe-55 22 1.22E+08 19.89 Fe-59 2 1.57E+07 2.57 H-3 1.02E+03 0.00 (<0. 01')

I-129 2.56E+02 0.00 (<0. 01')

Mn-54 10 6.21E+07 10.14 Er-85 O.OOE+00 0.00 Ni-63 2.78E+06 0.45 Sr-85 O.OOE+00 0.00 Sr-90 O.OOE+00'.96E+02 0.00 Tc-99 0.00 (<0.014)

Zn-65 2.12E+07 3.47 Nb-95 5.06E+04 0.01 Co-57 O.OOE+00 0.00 Sb-124 1.57E+05 0.03 Ni-59 7.51E+05 0. 12 TOTAL ACTIVITY: 694.1 curies 612.384 curies CONTAINER VOLUME: 510 cubic feet 510 cubic feet 17

Table I SKNLANNUAL EFFlUENT ANO NASTE FOSAL RKPGRl SOLIO RAOIOACTLUE NASTE- CLASS A x Oats Period: tulg 1~ 1989 - Oecenber 31 ~ 1989 SOURCE OF NASTEI COHOEHSATE CONOEHSATE CONDL'HSA Tf RKACl'OR NATKRR, COND. OKN. RKGEH. RN FILTERS OENIICRALIZER OKNIHERALL ?KR OKNLHERAl.l?KR FUEL POOL CLEAN-UP IEUAPORATOR CONC.> CF,N,SA CENENl'LOULO SOLIOIFI CATION AGEHl' OENATERKO PORTUIO CENEHl OENATfRKO OENATEREO PORTLAHO PORTLAHO CfNKHT TYPE OF COHTAINERI CARBON STEEL LIIKR CARBOH STEEL LINER Hl C NLC CARBON STEEL LLHKR CARBON STEEL LINER Isotopes in units of uCL Arr?11 Ooaaf taa O.OOEIOO O.OOEt 00 O.OOEt 00 0.00f t00 O.OOEt 00 AB-ILan I +50K4 03 0 OOEt00  ?.61K 403 1.1?EI 05 O.OOEt 00 3.6?f403 C-11 1>> 15Eta5 2+53K 401  ?.OBEIOS  ?.FW402 O.OOEt 00 L.FFEI03 Co-58 8.35Et 01 I,5%4 01 1 LSEIOS 2. 86EI 06 0.00f I 00 9 95Eta3 Co-60 I L&IOC 2 51Etas 2 06EI06 2.66EI 07 O.OOEI 00 L.2&406 Cr-51 5 Slfta1 O.OOEIOO 1 39EIOS 1.7FEI06 O.OOE t00 O.OOEIOO Cs-131 9. 12K 403 8.?SKI 01 1.33K 406 O.OOEt 00 8 1?f403 Csu 137 1 69K481 5+~4 03 8 31Eta1 LA2Et06 O.OOEIOO 0.00Etaa Fe-55 I TsftOC 3.~405 3 16ft06 1.20Et 08 O.OOKt 00 2 21EIOF Fe-59 ?s LW401 a+ORIGO 1.83EI01 1.6LKI06 O.OOEI 00 O.OOKIOO H-3 ~ &sf4 03 2+15K 403 2 31Et01 1.87EI 03 O.OOEtaa 2 29Et03 I-L?9 C 1 69K402 4 5 BIOL C 3.19E403 + 2.19Et02 O.OOEt 00 < 3.50EIOL Nn<1 ~ A?f405 1.65E405 1. 19KI06 3.85KIOF 0 Oaftaa 1. 35E I 06 Kr8$ Osaaf taa 0 Oaftaa O,OOE t 00 O.OOEIOO O.OOE t 00 O.OOEI 00 Hi -63 O.oaf too O.OOK 400 O.OOEt 00 8 86EI05 O.OOEt 00 O.OOEI 00 Sr8$ O.QKIOO 0+IXKIOO O.OOEIOO 0. Oaf t 00 0 OOEtaa 0 OOEtaa Sr-90 5 39Eta? 6~26K 4 01 9.55EIO? 2 10E403 O.OOEI 00 O.OOEIOO Tc-99 <1 5?E402 < 5.~4OL C B.BOE402 1.99EIO? O.OOEt 00 6.99Etal Zn-65 1 96E40$ C+SOE401 2. 65EI 05 1 ~ 25EI OF O.OOEt 00 1 16ftas 1-131 Oeaaf taa O~OOEIOO 1.08Et 03 O.OOEIOO O.OOE tOO O.OOEIOO Co-57 O.OOEtaa 0~00K 4 00 O.OOEIOO O.OOEIOO 0. OOE4 00 O.OOEI 00 Sb-121 O.aaf t 00 Ooaaf 400 O.OOEI 00 0. OOEI 00 O.OOEt 00 0. OOEt 00 Zr-9S O.Oaf taa O,OOE400 O.GOEt 00 O.OOEI 00 0 OOEIOO O.OOE IOO TOTIH. AcrlvlrY cci> 1.326 0 923 7 3$ 9 207.$ 23 0.000 25. L32 COHrlllHER UOLTE Cf t3> $ 31 90 LF F.30 1317.50 135 80 0.00 LFF 90 SOLNCE OF MASTEI LIOU10 RH FILTERS NOH- COIPACTMLE COt%%C TED TRASH CONPACTK0 TRASH 01LY NASTK CF,N 53 TRASH SOLIOIFICATIOH AGEHT I OENAffREL) IML TYPE OF COITAIIKRI HIC STRONG 1'IGHT COHT $5 GAL LFN ORLNS ss OAL LFN ORws STRONG rIGHr CONT.

Isotopes in units of uCL An-211 O,OOEt 00 O.aaf taa O.OOEIOO O.OOEIOO O.OOEt 00 O.OOK t00 Ay-ILatt Le17K 405 O,OOEIOO O.OOEtaa 0 OOEtaa O.OOEt 00 0 OOEt00 C 11 L.?2Eta1 0 0%100 O.OOEt 00 O.OOE t 00 3.23EI03 O.OOEI 00 Co-58 1.07E406 0,00EI 00 O.OOEIOO O.OOEt 00 1.35K t01 O.OOEIOO Co~ 3~?LEIOF O,OOEt 00 O.OOEt 00 O.OOEtaa O.OOEt 00 1 39f.t06

9. LW403 a O.OOEIOO Cr-51 I+BOEI 07 O,OOE400 O.OOEt00 O.OOEt 00 Cs-131 I 3CEt05 0+OOE400 O.OOEt 00 O.OOEIOO O.OOEIOO 0. OOEt 00 Cs-137 1 11E40$ 0'.Oaf tea O.OOEt 00 O.OOEtaa O.OOE taa O.OOEtaa Fe-55 1.1?f 408 0~00K 4 00 O.OOK taa 0. OOEI 00 1.11EIOF O.OOEI 00 Fe-59 L.?&407 O~OOEI 00 O.OOEtaa O.OOEI 00 F.51Eta1 O,OOEI 00 H-3 I 89Eta1 O~OOEI 00 O.OOEt 00 O.OOEI 00 5 31Et02 1.99E403 O.OOEI 00 I-129 1.77Et02 O,OOEI 00 O.OOEt 00 O.OOEI 00 0. OOEI 00 Nn-51 9.13KIOF O,aaf I 00 O.aaf t 00 O.OOEt 00 1.93EI 06 0.00f I 00 Kr-85 O.OOEt 00 O~aaf taa O.OOEt 00 O.OOEt 00 O.OOEt 00 0. Oaf t 00 Ni M3 I 11E406 O,OOEt 00 O.OOEt 00 O.OOEt 00 1. 13E I 03 O.OOEIOO Sr-85 0 OOE400 0. OOEt 00 O.OOEIOO 0. OOEt 00 O.OOEI 00 O.OOEI 00 Sr-90 5 318403 0. OOEt 00 O.OOK t 00 O.OOEt 00 0.00ft00 O.OOEIOO Tc-99 1.17EI 03 O,OOEI 00 O.OOEI 00 O.OOEI 00 2. 30EI 01 O.OOEI 00

?n-6$ 3. 39E406 O,OOEt 00 O.OOEI 00 0. OOKI 00 L.<BK4 05 O.OOEIOO 1-131 0. Oaf t 00 O.OOEIOO 0.00f 4 00 O.OOEt00 O.OOEI 00 O.OOEIOO Co-SF O.OOKtaa O.OOKI 00 O.OOKIOO 0.00ft00 O.OOEIOO O.OOEt00 Sb-121 O.OOEIOO O,OOK t 00 0 OOEIOO O.OOKIOO O.OOE400 O.OOE ~ 00

?r-95 O.OOEt 00 O,OOEI 00 O.OOK ~ 00 a.ooftoo 0.00KIOO O.OOKIOO TOTAL ACTLUITV cci) 605. 133 0.000 0.000 0.000 17.730 0.000 COHTA1HER UOLUtK Cf t3) 11 50.00 0.00 0.00 11'F?.'FO 0 00 x No sr Class C Nests Oenereted c Act su be coo prised ln uhole or in part bq NOL valued

TABLE 8 Source of Waste: Condensate Demineralizer Type of Container: , Liner Method of Process: Dewatered

~lsoto es Activit uC1) of Total Am-241 0.00E+00 O.OOX Ag-110m 1.50E+03 0. 03'X C-14 1. 15E+05 2. 66'X Co-58 8.35E+04 1.935 Co-60 1. 14E+06 26.36K Cr-51 5.91E+04 1.37%

Cs-134 3.94E+04 0.91%

Cs-137 4.69E+04 1.08%

Fe-55 1.75E+06 40.46%

Fe-59 2.14E+04 0.49%

H-3 ~

8.99E+03 0.21%

I-129 (4.69E+02 <0.01%

Mn-54 8.62E+05 19.93K Kr-85 0.00E+00 0.00%

Ni-63 O.OOE+00 0.00%

Sr-85 O.OOE+00 0. 00'A Sr-90 5.39E+02 0.01%

Tc-99 <4.52E+02 ~ 0.01%

Zn-65 1.96E+05 4.53K I-131 O.OOE+00 0. 00'X Co-57 0.00E+00 0. 00'X Sb-124 O.OOE+00 O.OOX Zr-95 O.OOE+00 0. 00'X TOTAL ACTIVITY 4.33E+06' 100.00'X 19

TABLE 9 Source of Waste: Condensate Oemineralizer Type of Container: Liner Method of Process: Solidification-Portland Cement

~lsoto es Activit uCi X of Total Am-241 O.OOE+00 0.00%

Ag-110m O.OOE+00 0. 00'X C-14 2.53E+04 2.74%

Co-58 1.54E+04 1.67%

Co-60 2. 51E+05 27e19%

Cr-51 O.OOE+00 O.OOX Cs-134 9. 12E+03 0.99%

Cs-137 5.44E+03 0.59%

Fe-55 3.84E+05 41.605 Fe-59 0.00E+00 0.00%

H-3 2.45E+03 0.27%

I-129 Mn-54

( 5. 44E+01 ( 0.01%

1.65E+05 17.88K Kr-85 0.00E+00 0.00%

Ni-63 0.00E+00 0.00%

Sr-85 O.OOE+00 0.00%

Sr-90 6. 26E+O1 0. 01'X Tc-99 * (5.24E+01 < 0.01%

Zn-65 6.50E+04'.OOE+00 7.04%

I-131 O.OOX Co-57 O.OOE+00 0. 00'X Sb-124 0.00E+00 0. 00'X Zr-95 O.OOE+00 0.00%

TOTAL ACTIVITY 9.23E+05 100.00'X 20

TABLE 10 Source of itaste: Condensate Demineralizer Type of Container: HIC Method of Process: Dewatered

~Isoto es Activit (uCi X of Total AQ-241 O.OOE+00 0. 00'X Ag-110m 2.64E+03 0.04%

C-14 2.08E+05 2.83K Co-58 1.15E+05 1.56%

Co-60 2.06E+06 27.99%

Cr-51 1.39E+05 1.89%

Cs-134 8.25E+04 le12%

Cs-137 8. 31E+04 le13%

Fe-55 3. 16E+06 42.94%

Fe-59 1.83E+04 0.25%

H-3 2. 31E+04 0.31%

I-129 Mn-54

( 1. 19E+06

3. 19E+03 z0.04%,

16e17%

Kr-85 O.OOE+00 O.OOX Ni-63 O.OOE+00 O.OOX Sr-85 O.OOE+00 0.00%

Sr-90 9.55E+02 0.01%

Tc-99 < 8.80E+02 z 0.015 Zn-65 2.65E+05 3.60%

I-131 4.08E+03 0.06%

Co-57 ,O.OOE+00 0.00%

Sb-124 0.00E+00 0.00%

Zr-95 O.OOE+00 O.OOX TOTAL ACTIVITY. 7.36E+06 100.00%

21

TABLE 11 Source of Waste: Reactor Water Fuel Pool Clean-Up Type of Container: HIC

~

Method of Process: Dewatered

~Isoto es . Activit (uCi X of Total Am-241 O.OOE+00 0. 00'X Ag-110m 4.42E+05 0.21%

C-14 2.74E+02 0. 00'X Co-58 2.86E+06 1. 38%

Co-60 2.66E+07 12.82%

Cr-51 1.77E+06 0.85%

Cs-134 1.33E+06 0.64K Cs-137 1.02E+06 0.49%

Fe-55 1.20E+08 57.82K Fe-59 1. 61E+06 0.78%

H-3 1.87E+03 0.00%

I-129 4 2.49E+02 0. 00'5 Mn-54 , 3.85E+07 18.55%

Kr-85 O.OOE+00 0.00%

Ni-63 8.86E+05 0.43%

Sr-85 O.OOE+00 0.00%

Sr-90 2.40E+03 0.00%

Tc-99 4 1.99E+02 0.00%

Zn-65 1.25E+07 6.02%

I-131 O.OOE+00 0.00%

Co-57 O.OOE+00 0.00%

Sb-124 O.OOE+00 0.00'X Zr-95 O.OOE+00 O.OOX TOTAL ACTIVITY 2.07E+08 100.00%

22

TABLE 12 Source of Waste: Liquid Radwaste Filter Media, Sludge, and Evaporator Concentrations Type of Container: ~

Liner Method of Process: Solidification-Portland Cement

~Isoto es Activit uCi X of Total Am-241 O.OOE+00 0.00%

Ag-110m 3.62E+03 0.01%

C-14 1.77E+03 0.01%

Co-58 9.95E+03 0.04%

Co-60 1.24E+06 4.93K Cr-51 O.OOE+00 0.00%

Cs-134 8.42E+03 0.03K Cs-137 0.00E+00 0.00%

Fe-55 2.24E+07 89.13%

Fe-59 0.00E+00 0.00%

H-3 2.29E+03 0.01%

I-129 < 3. 50E+01 0.00%

Mn-54 1.35E+06 5.37%

Kr-85 0.00E+00 0.00%%d Ni-63 O.OOE+00 0.00%

Sr-85 O.OOE+00 0.00%

Sr-90 O.OOE+00 0.00%

Tc-99 6.99E+01 0.00%%d Zn-65 1.16E+05 0.46%

I-131 0.00E+00 0.00%

Co-57 O.OOE+00 0. 00'X Sb-124 0.00E+00 0. 00'X Zr-95 0.00E+00 0.00%

TOTAL ACTIVITY 2. 51E+07 100.00 23

TABLE 13 Source of Maste: Liquid Ra@taste Filter Media, Sludge, and Evaporator Concentrations Type of Container: HIC Method of Process: .Oewatered

~lsoto es Activit uCi X of Total Am-241 O.OOE+00 0. 00'X Ag-110m 1.47E+05 0.02'X C-14 1.22E+04 O.OOX Co-58 4.07E+06 0. 67'X Co-60 3.21E+07 5.31K Cr-51, 1.80E+07 3.00%

Cs-134 1.36E+05 0. 02'X Cs-137 1. 11E+05 0.02%

Fe-55 4.42E+08 73.08%

Fe-59 1.24E+07 2.05K H-3 1.89E+04 0. 00'X I-129 Mn-54

( 4.77E+02 9.13E+07 0.00%

15elOX Kr-85 O.OOE+00 0.00%

Ni-63 1. 11E+06 Oe18%

Sr-85 O.OOE+00 0.00%

Sr-90 Tc-99 ( 5.1.47E+03 31E+03 O.OOX 0.00%

Zn-65 3.39E+06 0. 56'X I-131 O.OOE+00 0.00%

Co-57 O.OOE+00 O.OOX Sb-124 O.OOE+00 0.00%

Zr-95 O.OOE+00 0.00%

TOTAL ACTIVITY 6.05E+08 100.00%

24

TABLE 14 Source of Waste: Compacted Trash Type of Container: Strong Tight Container

~Isoto es Activit uCi X of Total Am-241 0.00E+00 0. 00%

Ag-110m O.OOE+00 O.OOX C-14 3.23E+03 0.02%

Co-58 4.35E+04 0. 25'4 Co-60 1.39E+06 7.84%

Cr-51 9. 14E+03 0.05%

Cs-134 O.OOE+00 0.00%

Cs-137 O.OOE+00 0.00%

'e-55 1.41E+07 79.53%

Fe-59 7. 51E+04 0.42%

H-3 5.34E+02 0.00%

I-129 < 4.99E+03 (0. 03%

Mn-54 1.93E+06 10.89%

Kr-85 O.OOE+00 0.00%

Ni-63 1. 13E+03 0.01%

Sr-85 O.OOE+00 0.00K Sr-90 O.OOE+00 0. 00'X Tc-99 ( 2.30E+04 (0. 13'X Zn-65 1.48E+05 0.83%

I-131 0.00E+00 0. 00'X Co-57 O.OOE+00 0.005 Sb-124 0.00E+00 0. 00'X Zr-95 0.00E+00 0.005 TOTAL ACTIVITY 1.77E+07 100.00%

25

TABLE 15 SEMIANNUAL EFFLUENT AND WASTE DISPOSAL REPORT ESTIMATED TOTAL ERRORS ASSOCIATED WITH EFFLUENT MEASUREMENTS Data Period: July 1, 1989 - December 31, 1989 Measurement Estimated Total Error

1. Airborne Effluents
a. Fission and Activation Gases 15.9 X
b. I-131 13.3 X Particulates 15.8 X
d. Tritium 5.7 X
2. Waterborne Effluents
a. Fission and Activation Products 5.0 X
b. Tritium 3.3 X
c. Dissolved and Entrained Gases 8.4 X
d. Gross Alpha Activity None Detected
e. Volume of Waste Released (Prior to Dilution) 5.0 X
f. Volume of Dilution Water Used During Period 15.0 X
3. Solid Wastes
a. Condensate Demineralizers (Bead Resin Dewatered) 15.1 X
b. Condensate Demineralizers (Bead Resin Solidified) 15.1 X
c. Reactor Water Clean-up (Fuel Pool- Dewatered) 15.1 X
d. Liquid RW Filt'ers (Filter Media and Sludge Solidified 15. 1X
e. Liquid RW Filters (Filter Media and Sludge Dewatered) 15.1X
f. Compacted Trash 25.0X 26

TABLE 16 SEMIANNUAL EFFLUENT AND MASTK DISPOSAL REPORT DATA NOT REPORTED IN PREVIOUS SEMIANNUAL REPORT All data needed for preparation of the previous report were recieved in time for incorporation into the tables. No estimated values were used in the January June 1989 report.

27

SECTION 3 METEOROLOGICAt'ATA AND DISPERSION ESTIMATES 28

hKTEOROLOGY AND DISPERSION DATA h/eteorological data have been collected at the Susquehanna SES site since the early 1970s. At the present time, the meteorological system is based on a 300-foot high tower located approximately 1,000 feet to the southeast of the plant. Wind sensors are mounted at the 10-meter and 60-meter elevations on this tower. Vertical temperature differential is measured with redundant sensor pairs between the 10m and 60m levels.

Sigma theta (the standard deviation of horizontal wind direction) is measured at both levels'. Dewpoint and ambient temperature sensors are present at the 10m level. Precipitation is measured at ground level.

A back-up meteorological tower was erected in 1982. It is a 10-meter tower providing alternate measurements of wind speed, wind direction, and sigma theta.

SSES meteorological data is transmitted to the plant control room, Technical Support Center, and Emergency Operations Facility for emergency response availability. The data is also transmitted via telephone line data-link to the PP&L corporate computer. in Allentown.

On the corporate computer. the data is available for preparation of suranary reports, wind rose plots, and dispersion estimates.

Dispersion modeling for effluents from normal operation of SSES is done using ADSSES, a straight-line sector averaged Gaussian plume model designed to estimate average relative concentrations, The model was developed in accordance with Regulatory Guide 1.111. Wind directions for calm periods are distributed in accordance with the directional distribution by stability class of the lowest wind speed class.

ADSSES uses terrain corr'ection factors to account for the temporal and spatial variations in the airflow in the region. since a straight-line trajectory model assumes that a constant mean wind transports and diffuses effluents (in the wind direction at the release point) within the entire region of interest. The SSES terrain correction factors presented on the seventh page of Table 19 were determined as the ratio between puff-advection dispersion estimates and straight-line dispersion estimates based on 1973-'1976 meteorological data. The terrain correction factors are multiplied by the intermediate results of the straight-line model to approximate puff-advection model results.

29

TABLE 17 SEMIANNUAL EFFLUENT AND WASTE DISPOSAL REPORT MEIKOROLOGICAL DATA AVAILAILITY Data Period: 1989 Percent of Valid Parameter Hours Durin Period

1. Wind Speed
a. All Sensors Combined 99.8 X
b. 10-meter Sensors 99.8 X
c. 60-meter Sensor 99.3 X
2. Mind Direction
a. All Sensors Combined 99.8 X
b. 10-meter Sensors 99.7 X 1
c. 60-meter Sensor 98.2 X
3. Indicator of Atmospheric Stability
a. Temperature Differential or Sigma 'Iheta 99.9 X
b. Temperature Differential 98.2 X
c. Sigma Theta 99.7 X
4. Percent of hours for which valid 10m Wind Speed. 10m Mind Direction, and temperature differential were available. 97.5 X
5. Percent of hours for which valid 60m Mind Speed, 60m Wind Direction, and temperature differential were available. 97.0 X 30

N NNH 15/

5.4% SUSQUEHANNA NNE S1EAM ELE CTRIC STATION 3.5% 8.8%

WIND ROSE DATA PERIOD: 0 1/01/89 12/31/89 TOWER: ON-SITE (P) tQ ELEVATION: IOM 10% NE 3.0%

9.8%

5%

HNH 2.3/ ENE IS.3/

H CALM 3.6% E 1.0% 6.3%

HSH 7.1% ESE 3.9%

5/ WIND SPEED KEY 7.6-10.0 M/SEC 5.1- 7.5 M/SEC St:

9.9/ 10%

3.1- 5.0 M/SEC 1.6- 3.0 M/SEC SSH SSI: 0.0- 15 M/SEC

~ ~ ~ 6.7% 15% 0.0%

('I

!i. 1%

N NNW 627o SUSQUEHANNA NNE STEAM ELECTRIC ST'ATION 3.4X 18.2X 15K WIND ROSE DATA PERIOD: 0+01/89 12/31/89 TOWE R: ON-SITE (P)

NW E EVATION: 60M NE 33% 10.6X ENE 3.7r. 5 al I

CALM E

O.OR 3.0X WIND SPEED KEY ESE 2.67 IO. 1- M/SEC 7.6-10.0 M/SEC 5.1- 7.5 M/SEC SW 3.1- 5.0 M/SEC 112'SW 2.8Fe 764 3.5'E SSE 1.6- 3.0 M/SEC 0.0 /SEC

FIGURE 7 Susquehanna Steam Electric Staticn PASQUILL STABILITY CLASS PREVALENCES Data Pericd: 1989 Based on Joint Wind Frequency Distributions at 10 Meters (8537 Hourly Values)

SUGHTLY UNSTABLE g 4.S%

MODERATELY UNSTABLE NEUTRAL 34QS M 257 3.0%

40.Q%

~ VERY UNSTABLE 3dd 4.5%

SUGHTLY STABLE

~ VERY STABLE 553 B.5%

25d7 30.1%

~ MODERATELY STABLE dQ2 10.4%

33

SUSQUEHANNA STEAN ELECTRIC STATION HETEu~dLOGICAL REPORTS RUNDATE: 2/01/90 JOINT HIND FREQUENCY DISTRIBUTION BY STABILITY CLASS DATA PERIOD l YY/HH/DD/HH): 89/Ol/Ol/01 - 89/12/31/24 STABILITY CLASS: PASQUILL A KEY XXX NUHBER OF OCCURRENCES DATA SOURCE: ON-SITE LPJ XXX PERCENT OCCURRENCES THIS CLASS HIND SENSOR HEIGHT: 10H XXX PERCENT OCCURRENCES ALL CLASSES HIND HIND SPEED CATEGORIES (HETERS PER SECOND) HEAN SECTOR 0.0-1.5 1.5-3.0 3.0-5.0 5.0-7.5 7.5-10.0 >10.0 TOTAL SPEED 0 6 1 0 0 0 2.57 0.00 0 ~ 00

l. 55 0.07 0.26 0.00 0.00 0.00 1.80 7

0.01 0.00 0.00 0.00 0.08 0 1 1 0 0 0 2 2.56 0.00 0.26 0.26 0.00 0.00 0.00 0.52 0.00 0.01 0.01 0.00 0.00 0.00 0.02 1 0 0 0

l. 295 0 1. 64 0.26 1.03 0.00 0.00 0.00 0.00 0.01 0.05 0.00 0.00 0.00 0.00 0.06 6 6 1 0 0 0 13 1. 68 1.55 1.55 0.26 0.00 0.00 0.00 3.35 0.07 0.07 0.01 0.00 0.00 0.00 0. 15 ESE 1 0 0 0 9 1.81 1.03 1.03 0.26 0.00 0.00 0.00 2.32 0.05 0.05 0.01 0.00 0.00 0.00 O.ll SE 5 6 3 0 0 0 14 2.13 1.29 1. 55 0.77 0.00 0.00 0.00 3.61 0.06 0.07 0.04 0.00 0.00 0.00 0.16 SSE 0 12 6 0 0 0 18 2.83 0.00 3. 09 1.55 0.00 0.00 0.00 4.64 0.00 0.14 0.07 0.00 0.00 0.00 0.21 4 15 18 0 0 0 37 2.87 1.03 3.87 4.64 0.00 0.00 0.00 9. 54 0.05 0.18 0.21 0.00 0.00 0.00 0.43 1 16 15 0 0 0 32 3.10 0.26 4.12 3.87 0.00 0.00 0.00 8.25 0.01 0.19 0.18 0.00 0.00 0.00 0.37 0 58 99 8 0 0 165 3.37 0.00 14.95 25.52 2.06 0.00 0.00 42.53 0.00 0.68 1.16 0.09 0.00 0.00 1.93 0 7 46 24 0 0 77 0.00 1.80 11.86 6.19 0.00 0.00 19.85 0.00 0

0.08 0

0.54 5

0 '8 1 0.00 0

0.00 0

0.90 6

0.00 0.00 1.29 0.26 0.00 0.00 1.55 0.00 0.00 0.06 0 01

~ 0.00 0.00 0.07 0 1 1 0 0 0 2 2.82 0.00 0.26 0.26 0.00 0.00 0.00 0.52 0.00 0.01 0.01 0.00 0.00 0.00 0.02 0 0 0 0 0 '0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0 0 0 0 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 1 0 0 0 0 1 2.37 0.00 0.26 0.00 0.00 0.00 0.00 O.Z6 0.00 0.01 0.00 0.00 0.00 0.00 0.01 CALH 0 0 CALH 0.00 0.00 0.00 0.00 0

21 137 197 33 0 388 3.33 5.41 35.31 50.77 8.51 0.00 100.00 0.25 1.60 2.31 0.39 0.00

SUSQUEHAtttA STEAN ELECTRIC STATION HETEUs.~l.OGICAL REPORTS RUNDATE: 2/01/90 JOINT HIND FREQUENCY DISTRIBUTION BY STABILITY CLASS DATA PERIOD lYY/ttH/DD/tlH)t 89/01/01/01 - 89/12/31/24 STABILITY CLASS: PASQUILL 8 KEY XXX NUHDER OF OCCURRENCES DATA SOURCE: ON-SITE tP) XXX PERCENT OCCURREttCES THIS CLASS HIND SENSOR HEIGllT: 10H XXX PERCEttT OCCURRENCES ALL CLASSES HIND HIND SPEED CATEGORIES tHETERS PER SECOND I 0-1.5 HEAN SECTOR 0 ~ 1.5-3.0 3.0-5.0 5.0-7.5 7.5-10.0 >10.0 TOTAL SPEED 1 7 6 2 0 0 16 3.12 0.39 2.72 2.33 0.78 0.00 0.00 6.23 0.01 0.08 0.07 0.02 0.00 0.00 0.19 NE 0 14 5 0 0 0 0.00 5.45 1.95 19 2.64 0.00 0.00 0.00 7. 39 0.00 0.16 0.06 0.00 0.00 0.00 0.22 3 0 0 0 0 1.17 1.56 0.00 0.00 7 1.71 0.00 0.00 2.72 0.04 0.05 0.00 0.00 0 00 0.00 0.08 3 0 0 0 0 7 1.61 1.56 1.17 0.00 0.00 0.00 0.00 2. 72 0.05 0.04 0.00 0.00 0.00 0.00 0.08 ESE 2 0 0 0 0.78 0.02

l. 1'7 0.00 0.00 0.00 0.00 0
l. 955 1.70 0.04 0.00 0.00 0.00 0.00 0.06 SE 2 9 0 0 0.78 3.50 1.56 0 15 2.30 0.00 0.00 0.00 5. 84 0.02 0.11 0.05 0.00 0.00 0.00 0.18 SSE 2 7 0 0 0 0 9 1.96 0.78 2. 72 0.00 0.00 0.00 0.00 3.50 0.02 0.08 0.00 0.00 0.00 0.00 O.ll 2 6 5 0 0 0 13 2.75 0.78 2.33 1.95 0.00 0.00 0.00 5.06 0.02 0.07 0.06 0.00 0.00 0.00 0.15 15 5 0 0 0 23 2.34 1.17 5.84 1.95 0.00 0.00 0.00 8.95 0.04 0.18 0.06 0.00 0.00 0.00 0.27 26 31 5 0 0 66 3.28 1.56 10.12 12.06 1.95 0.00 0.00 25.68 Oo05 0.30 0.36 0.06 0.00 0.00 0.77 0 10 14 19 0 0 43 0.00 3.89 5.45 7.39 0.00 0.00 16.73 H

0.00 0

0.12 0

0 '65 0.22 0.00 0.00 0.50 0.00 0.00 0 0 9 5.06 1.95 1.56 0.00 0.00 3.50 0.00 0.00 0.06 0.05 0.00 0.00 O.ll 0 0 0 0 0 3.59 0.00 0.00 1.56 0.00 0.00 0.00 1.56 0.00 0.00 0.05 0.00 0.00 0.00 0.05 0 0 3 1 0 0 0.00 0.00 1.17 0.39 0.00 0.00 1.56 0.00 0.00 0.04 0.01 0 00 F 0.00 0.05 0 2 3 2 0 0 7 4.03 0.00 0.78 1.17 0.78 0.00 0.00 2.72 0.00 0.02 0.04 0.02 0.00 0.00 0.08 0 2 8 0 0 0 10 3.56 0.00 0.78 3.11 0.00 0.00 0.00 3.89 0.00 0.02 0.09 0.00 0.00 0.00 0.12 CALH 0 0 CALH 0.00 0.00 0.00 0.00 TOTAL 23 108 93 33 0 0 257 3.21 8.95 42.02 36.19 12.84 0.00 0.00 100. 00 0.27 1.27 1.09 0.39 0.00 0.00 3.01

SUSQUEHANNA STEAN ELECTRIC STATION HETEUIIULOGICAL REPORTS RUtIDATE: 2/01/90 JOINT HIND FREQUENCY DISTRIBUTION BY STABILITY CLASS DATA PERIOD I YY/HH/DD/HHI I 89/01/01/01 - 89/12/31/24 STABILITY CLASS: PASQUILL C KEY XXX NNIBER OF OCCURRENCES DATA SOURCE: ON-SITE (P) XXX PERCENT OCCURRENCES THIS CLASS HIND SENSOR HEIGHT: 10H XXX PERCENT OCCURRENCES ALL CLASSES HIND HIND SPEED CATEGORIES IHETERS PER SECOND I HEAN SECTOR 0. 0-1.5 1.5-3.0 3.0-5.0 5.0-7.5 7.5-10.0 >10.0 TOTAL SPEED 0.26 1 15 3.90 ll 2.86 0.52 2

0.00 0

0.00 7.53 29 3.09 0.01 3

0.18 19 0.13 7

0.02 0

0.00 0

0.00 0

0 '429 R.56 0.78 4. 94 1.82 0.00 0.00 0.00 7. 53 0.04 0.22 0.08 0.00 0.00 0.00 0.34 0.52 2

1.30 5

0.52 2

0.00 0

0.00 0

0.00 0

2.34 9 2 '2 O.OR 0.06 0.02 0.00 0.00 0.00 O.ll 1

E 5 3 0 0 0 0 8 1.38 1.30 0.78 0.00 0.00 0.00 0.00 2.08 0.06 0.04 0.00 0.00 0.00 0.00 0.09 ESE 5 2 0 0 0 0 7 1.37 1.30 0.52 0.00 0.00 0.00 0.00 1.82 0.06 0.02 0.00 0.00 0.00 0.00 0.08 SE 2 8 5 0 0 0 15 0.52 2.08 1.30 0.00 0.00 0.00 3.90 0.02 0.09 0.06 0.00 0.00 0.00 0.18 1 5 1 0 0 0 7 2.43 0.26 1.30 0.26 0.00 0.00 0.00 1.82 0.01 0.06 0.01 0.00 0.00 0.00 0.08 S 1 13 6 0 0 0 20 2.70 IAI 0.26 3.38 1.56 0.00 0.00 0.00 5.19 Q 0.01 0.15 0.07 0.00 0.00 0.00 0.23 SSH 17 3 0 0 0 24 2.15

1. 04 4.42 0.78 0.00 0.00 0.00 6.23 0.05 0.20 0.04 0.00 0.00 0.00 0.28 2 34 30 5 0 0 71 3.15 0.52 8.83 7. 79 1.30 0.00 0.00 1S.44 0.02 0.40 0.35 0.06 0.78 3 ll 2.86 28
7. 27 ll 2.86 0.00 0.26 1

0.00 0.00 0

0.83 14.03 3 '3 0.04 0.13 0.33 0.13 0.01 0.00 0.63 1 6 Rl 11 0 0 39 4.28 0.26 1.56 5.45 2.86 0.00 0.00 10.13 0.01 0.07 0.25 0.13 0.00 0.00 0.46 0 0 6 3 0 0 9 0.00 0.00 1.56 0.78 0.00 0.00 2.34 0.00 0.00 0. 07 0.04 0.00 0.00 0.11 0 1 15 0 0 0 16 3.95 0.00 0.26 3.90 0.00 0.00 0.00 4.16 0.00 0.01 0.18 0.00 0.00 0.00 0.19 1 4 13 6 0 0 24 4.23 0.26 1. 04 3. 38 1.56 0.00 0.00 6.23 0.01 0.05 0.15 0.07 0.00 0.00 0.28 0 8 15 1 0 0 24 3.36 0.00 2.08 3.90 0.26 0.00 0.00 6.23

0. 00 0.09 0.18 0.01 0.00 0.00 0.28 CALII 0 0 CALH 0.00 0.00 0.00 0.00 31 S. 05 0.36 151 39.RR 1.77 163 42.34 1.91 39 10.13 0.46 0' 0.00 0.00 0 385 100. 00
4. 51 3.25

SUSQUEHA)NA STEAN ELECTRIC STATION tlETE ndLOGICAL REPORTS RUNDATE: 2/01/90 JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS DATA PERIOD t YY/HM/DD/HH): 89/01/01/01 - 89/12/31/24 STABILITY CLASS: PASQUILL D KEY XXX NA)BER OF OCCURRENCES DATA SOURCE: ON-SItE )P) XXX PERCENT OCCURRENCES THIS CLASS WIND SENSOR HEIGHT: IOH )OR PERCENT OCCURRENCES ALL CLASSES HIND WIND SPEED CATEGORIES (HETERS PER SECOND) 0.0-1.5 HEAN SECTOR 1.5-3.0 3.0-5.0 5.0-7.5 7.5-10.0 >10.0 TOTAL SPEED 89 214 106 1 0 0 410 2.39 2.55 6.12 3.03 0.03 0.00 0.00 11.73 1.04 2.51 1.24 0.01 0.00 0.00 4.80 106 159 62 0 0 0 327 .2.08 3.03 1.24 4.55 1.86

l. 77 0.00 0.00 0.00 9.36 O. 73 0.00 0.00 0.00 3.83 ENE 65 51 14 6 0 0 136 1.97 1.86 1.46 0.40 0.17 0.00 0.00 3.89
0. 76 0.60 0.16 0.07 0.00 0.00 1.59 75 53 0 0 0 132 2.15 1.52 O.ll 0.00 0.00 0.00 3.78 O.BS 0.62 0.05 0.00 0.00 0.00 1.55 ESE 65 49 7 0 0 0 121 1.60 1.86 1.40 0.20 0.00 0.00 0.00 3.46 0.76 0.57 0.08 0.00 0.00 0.00 1.42 SE 63 63 Z4 0 0 0 150 1.93 1.80 1.80 0.69 0.00 0.00 0.00 4.29 0.74 0. 74 0.28 0.00 0.00 0.00 1.76
l. 61 65 SSE 20 0 0 0 75 1.86 0.57 146 1.86 0.00 0.00 0.00 4.1S 0.71 0.76 0.23 0.00 0.00 0.00 1.71 46 83 25 3 0 0 157 2.17 1.32 2.37 0.72 0.09 0.00 0.00 4.49 0.54 0. 97 0.29 0.04 0.00 0.00 1.84 62 89 29 1 0 0 181 2.00 1.77 2.55 0.83 0.03 0.00 0.00 5.18 0.73 1.04 0.34 0.01 0.00 0.00 2.12 151 119 9 0 0 323 2.76 1.26 4.32 3.40 0.26 0.00 0.00 9. 24 0.52 1.77 1.39 O.ll 0.00 0.00 3.78 21 90 129 74 2 0 316 3.80 0.60 2.58 3.69 2.12 0.06 0.00 9.04 0.25 1.05 1.51 0.87 0.02 0.00 3.70 13 43 98 45 0 203 3.95 0.37 0.15 1.23 0.50 2.80 1.29 O.ll 0.00 5.81 1.15 0.53 0.05 0.00 2.38 41 82 34 1 0 162 3.84 0.11 1.17 2.35 0.97 0.03 0.00 4.64 0.05 0.4S 0.96 0.40 0.01 0.00 1.90 9 41 126 33 2 0 211 3.85 0.26 1.17 3.61 0.94 0.06 0.00 6.04 0.11 0.4S 1.48 0.39 0.02 0.00 2.47 10 56 133 25 0 0 224 3.53 0.29 1.60 3.81 0. 72 0.00 0.00 6.41 0.12 0.66 1.56 0.29 0.00 0.00 2.62 47 114 114 13 0 0 288 Z.89 1.34 3.26 3.26 0.37 0.00 0.00 8.24 0.55 1.34 1.34 0.15 0.00 0.00 3.37 CALH 8 8 CALW 0.23 0.23 0.09 0.09 TOTAL 780 1362 1092 244 9 0 3495 2.73 22.32 38.97 31.24 6.98 0.26 0.00 100.00 9.14 15.95 12.79 2.86 0.11 0.00 40.94

SUSQUEHAKGL STEAN ELECTRIC STATION HETEOkOLOGICAL REPORTS RUNDATE: 2/01/90 JOINT HIND FREQUENCY DISTRIBUTION BY STABILITY CLASS DATA PERIOD t YY/HN/DD/HHt: 89/01/Ol/Ol <<89/12/31/24 STABILITY CLASS: PASQUILL E KEY XXX NUttBER OF OCCURREttCES DATA SOURCE: ON-SITE (P) XXX PERCEtkT OCCURRENCES THIS CLASS HIND SENSOR HEIGHT: 10H XXX PERCENT OCCURREttCES ALL CLASSES HlttD HIND SPEED CATEGORIES IHETERS PER SECOND) 0.0-1.5 HEAN SECTOR 1.5-3.0 3.0-5.0 5.0-7.5 7.5-10.0 >10.0 TOTAL SPEED 107 4.17 136 5.30 0.43 ll 0.00 0

0.00 0

0.00 254 9.89 1.69 1.25 1.59 0.13 0.00 0.00 0.00 2.98 183 97 6 0 0 0 286 1.43 7.13 3.78 0.23 0.00 0.00 0.00 11.14 2.14 1.14 0.07 0.00 0.00 0.00 3.35 268 55 7 0 0 0 330 1.23 10.44 2.14 0.27 0.00 0.00 0.00 12.86 3.14 0.64 0.08 0.00 0.00 0.00 3.87 0 180 15 2 0 0 0 197 1.05 M 7.01 0. 58 0.08 0.00 0.00 0.00 7. 67 2.11 0. 18 0.02 0.00 0.00 0.00 2.31 ESE 124 16 2 0 0 0 142 1.07 4.83 0.62 0.08 0.00 0.00 0.00 5.53 1.45 0.19 0. 02 0.00 0.00 0.00 1.66 SE 105 25 6 0 0 0 136 1.27 4.09 0. 97 0.23 0.00 0.00 0.00 5.30 1.23 0. 29 0.07 0.00 0.00 0.00 1.59 SSE 96 33 3 0 0 136 1.45

3. 74 1.29 0.12 0.16 0.00 0.00 5.30 1.12 0.39 0.04 0.05 0.00 0.00 1.59 98 63 25 0 0 190 1.86 3.82 2.45 0.97 0.16 0.00 0.00 7.40 1.15 0.74 0.29 0.05 0.00 0.00 2.23 107 4.17 153 5.96 1.01 26 0.16 4

0.00 0

0.00 0 290 11.30 1 ~ 91 a 1.25 1.79 0.30 0.05 0.00 0.00 3.40 53 121 26 0

, 2.06 0.62 4 '1 1.42 1.01 0 '027 0.16 0.05 0.00 0.00 0.00 0 ~

204 7.95 2.15 0.00 2.39 0.74 19 63 2.45 1.05 0.08 2 0 0.00 0.00 0 ill 4.32 2.37 4

0.22 0.74 0.32 0.02 0.00 0.00 1.30 H 15 22 5 1 0 0 43 2.01 Q

0. 58 0.86 0.19 0. 04 0.00 0.00 1.68
0. 18 0.26 0.06 0.01 0.00 0.23 6 ll 0.43 0.00 0

0.00 0 0 0.00 0.00 0.00 0

0.50 17 0.66 1.61 K

0.07 0.13 0.00 0.00 0.00 0.00 0.20 7 13 0 0 0 23 1 ~ 91 0.27 0.51 0.12 0.00 0.00 0.00 0.90 0.08 0.15 0.04 0.00 0.00 0.00 0.27 6 28 8 0 0 0 42 2.16 0.23 1.09 0.31 0.00 0.00 0.00 1.64 0.07 0.33 0. 09 0.00 0.00 0.00 0.49 58 63 5 0 0 0 126 1. 66 2.26 2.45 0.19 0.00 0.00 0.00 4.91 0.68 0. 74 0.06 0.00 0.00 0.00 1.48 CALN 40 40 CALtt 1.56 1.56 0.47 0.47 0'

1432 914 162 19 0 2567 1.57 55.78 35.61 6.31 0. 74 0.00 100.00

16. 77. 10.71 1.90 0.22 0.00 30.07 0 I

CO

SUSQUEHANNA STEAN ELECTRIC STATION t)ETEue.@LOGICAL REPORTS RUNDATE: 2/01/90 JOINT HIND FREQUENCY DISTRIBUTION BY STABILITY CLASS DATA PERIOD t YY/ttVDD/HH): 89/01/01/01 - 89/12/31/24 STABILITY CLASS: PASQUILL F KEY XXX NUHBER OF OCCURRENCES DATA SOURCE: ON-SITE )P) XXX PERCEt)T OCCURRENCES THIS CLASS HIND SENSOR HEIGHT: 10H XXX PERCENT OCCURRENCES ALL CLASSES HIND HING SPEED CATEGORIES (HETERS PER SECOND)

0. 0-1.5 t)EAN SECTOR 1.5-3.0 3.0-5.0 5.0-7.5 7.5-10.0 >10.0 TOTAL SPEED 27 6 0 0 0 0 33 1.09 3.03 0.67 0.00 0.00 0.00 0.00 3.70 0.32 0.07 0.00 0.00 0.00 0.00 0.39 97 13 0 0 0 0 110 1.04 10.87 1.46 0.00 0.00 0.00 0.00 12.33 I.I4 0. 15 0.00 0.00 0.00 0.00 1.29 ENE 385 46 0 0 0 0 431 1.12 03.16 5.16 0.00 0.00 0.00 0.00 68.32 4.51 0.&t 0.00 0.00 0.00 0.00 5.05 115 2 0 0 0 0 117 0.97 12.89 0.22 0.00 0.00 0.00 0.00 13.12 1.35 0.02 0.00 0.00 0.00 0.00 1.37 ESE. 32 0 0 0 0 0 32 0. 84 3.59 0.00 0.00 0.00 0.00 0.00 3.59 0.37 0.00 0.00 0.00 0.00 0.00 0.37 SE 26 0 0 0 0 0 26 0. 94 2.91 0.00 0.00 0.00 0.00 0.00 2.91 0.30 0.00 0.00 0.00 0.00 0.00 0.30 22 0 0 0 0 0 22 0.98
2. 47 0.00 0.00 0.00 0.00 0.00 2.47 0.26 0.00 0.00 0.00 0.00 0.00 0.26 2.91 26 0.78 7 0 0.00 0.00 0 0 0.00 0.00 0 33 3.70
l. 26 0.30 0.08 0.00 0.00 0.00 0.00 0.39 2 '319 0.45 0

0.00 0

0.00 0

0.00 0.00 0 23

2. 58
l. 27 0.22 0.05 0.67 6
l. ll 23 0.00 0

0.00 0.00 0

0.00 0.00 0

0.00 0.00 0.00 0 .

0.27 17 1.91 1.70 0.07 0.13 0.00 0.00 0.00 0.00 0.20 3 1 1 0 0 0 5 0.3% O.ll O.ll 0.00 0.00 0.00 0.56 0.04 0.01 0.01 0.00 0.00 0.00 0.06 0.00 0

0.11 1 1 0.11 0

0.00 0

0.00 0.00 0

,0.22 2 3 '3 0.00 0.01 0.01 0.00 0.00 0.00 0.02 1 0 0 0 0 0 1 1.10 0.11 0.00 0.00 0.00 0.00 0.00 0.11 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0 0 0 0 0 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1 0 0 0 0 3 1.69 O.ll 0.22 0.00 0.00 0.00 0.00 0.3%

0.01 0.02 '0.00 0.00 0.00 0.00 0.09 8 3 0 0 0 0 11 1.25 0.90 0.34 0.00 0.00 0.00 0.00 1.23 0.09 0.0% 0.00 0.00 0.00 0.00 0.13 CALt) 26 26 CALt) 2.91 2.91 0.30 0.30 TOTAL 768 96 2 0 0 0 892 1.07 86.10 10. 76 0.22 0.00 0.00 0.00 100.00 9.00 1.12 0.02 0.00 0.00 0.00 10.65

SUSQUEHAWA STEAN ELECTRIC STATION HETE>>...~LOGICAL REPORTS RUNDATE>> 2/01/90 JOINT HIND FREQUENCY DISTRIBUTION BY STABILITY CLASS OATA PERIOO l YYnmrOO/RR )>> 89/Ol/Ol/Ol - 89/12/31/26 STABILITY CLASS: PASQUILL G KEY XXX NUHBER OF OCCURRENCES DATA SOURCE: ON-SITE IP l XXX PERCENT OCCURRENCES THIS CLASS HIND SENSOR HEIGHT: 10N XXX PERCENT OCCURRENCES ALL CLASSES HIND HIND SPEED CATEGORIES IHETERS PER SECOND I MEAN SECTOR 0.0-1.5 1.5-3.0 3.0"5.0 5.0-7.5 7.5-10.0 >10.0 TOTAL SPEED 12 0 0 0 0 12 0.89 2.17 0.00 0.00 0.00 0. 00 ~ 0.00 2.17 0.16 0.00 0.00 0.00 0.00 0.00 0.16 62 5 0 0 0 0 67 0.94 11.21 0.90 0.00 0.00 0.00 0.00 12.12 0.73 0.06 0.00 0.00 0.00 0.00 0.78 326 46 0 0 0 0. 372 1.17 58.95 8.32 0.00 0.00 0. 00 0.00 67.27 3.82 0.&>> 0.00 0.00 0.00 0.00 6.36 O 57 2 0 0 0 0 59 0.92 10.31 0.36 0.00 0.00 0.00 0.00 10.67 0.67 Oo02 0.00 0.00 0.00 0.00 0.69 ESE 17 0 0 0 0 0 17 0.81 3.07 0.00 0.00 0.00 0.00 0.00 3.07 0.20 0.00 0.00 0.00 0.00 0.00 0.20 5 SE 5 0 0 0 0 0 5 0.83 0.90 0.00 0.00 0.00 0.00 0.00 0.90 0.06 0.00 0.00 0.00 0.00 0.00 0.06 7 0 0 0 0 0 7 1.07 1.27 0.00 0.00 0.00 0.00 0.00 1.27 0.08 0.00 0.00 0.00 0.00 0.00 0.08 1 0 0 0 0 0 1 1.67 0.18 0.00 0.00 0.00 0.00 0.00 0.18 0.01 0.00 0.00 0.00 0.00 0.00 0.01 1 0 0 0 0 0 1 0.92 0.18 0.00 0.00 0.00 0.00 0.00 0.18 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0

0.00 0

0.00 0

0.00 0

0.00 0 0. 0 0.00 0.00 0.00 0.00 0.00 Oooo 0.00 0.00 0.00 0.00 CO

'HSH 0 0 0 0 0 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0 ,0 0.00 0

0.00 0

0.00 0

0.00 0 0.00 p>>

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0 0 0 0 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1 0 0 0 0 0 1 0.41 0.18 0.00 0.00 0.00 0.00 0.00 0.18 0.01 0.00 0 F 00 0.00 0.00 0.00 0.01 i~

0 0 0 0 0 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2 0 0 0 0 0 2 0.53 0.36 0.00 0.00 0.00 0.00 0.00 0.36 0.02 0.00 0.00 0.00 0.00 0.00 0.02 CALH 9 9 CALH M

l. 63 I'
1. 63 0.11 0.11 691 53 0 0 0 553 1.07 88.79 9.58 0.00 0.00 0.00 100.00 5.75 0.62 0.00 0.00 0.00 6.68 0 CO

SUSOUEHANNA STEAM ELECTRIC STATION METEbnuLOGICAL REPORTS RUND ATE: 2/Ol/90 JOINT HIND FREQUENCY DISTRIBUTION SY STABILITY CLASS DATA PERIOD (YY/ttVDD/HH)) 89/01/Ol/01 89/12/31/24 ALL CLASSES KEY XXX NUMBER OF OCCURRENCES DATA SOURCE: ON-SITE )P) XXX PERCENT OCCURREt)CES THIS CLASS HIND SENSOR HEIGHT: 10M XXX PERCENT OCCURRENCES ALL CLASSES HIND HIND SPEED CATEGORIES (METERS PER SECOND) 0.0-1.5 MEAN SECTOR 1.5-3.0 3.0-5.0 5.0-7.5 7.5-10.0 >10.0 TOTAL SPEED 237 384 135 5 0 0 761 2.78 4.50 1.58 0.06 2. 12 0.00 0.00 8. 91 2.78 451 4.50 l.58 0.06 0.00 0.00 8.91 308, 81 0 0 0 840 1.66 5.28 3.61 0.95 0.00 0.00 0.00 9.84 5.28 3.61 0.95 0.00 0.00 0.00 9.84 1050 211 23 6 0 0 1290 1.27 12.30 2.47 0.27 0.07 0.00 0.00 15.11 12.30 2.47 0.27 0.07 0.00 0.00 15.11 O 442 5.18 0.98 0.08 7

0.00 0

0.00 0

0.00 0 533 6.24

l. 17 M 5.18 0.98 0.08 0.00 0.00 0.00 6.24 ESE 249 74 10 0 0 0 333 1.26 2.92 0.87 0.12 0.00 0.00 0.00 3.90 2.92 0. 87 0.12 0.00 0.00 0.00 SE 208 111 42 0 0 0 3.90 361 1.64 5 2.44 1.30 0.49 0.00 0.00 0.00 4.23 2.44 1.30 0.49 0.00 0.00 0.00 4.23 189 122 30 0 0 345 1.69 2.21 1.43 0.35 0.05 0.00 0.00 4. 04 2.21 1.43 0.35 0.05 0.00 0.00 4.04 S 178 187 79 7 0 0 451 2.07 2.09 2.19 0.93 0.08 0.00 0.00 5.2S 2.09 2.19 0.93 0.08 0.00 0.00 5.28 SSH 197 294 78 0 0 574 2. 01 2.31 3.44 0.91 0.06 0.00 0.00 6.72 2.31 3.44 0.91 0.06 0.00 0.00 6.72 109 401 305 31 0 0 846 2.78 1.28 4.70 3.57 0.36 0.00 0.00 9.91 1.28 4.70 3.57 0.36 0.00 0.00 9.91 46 182 245 130 3 0 606 3.67 0.54 2.13 2.S7 1.52 0.04 0.00 7.10 0.54 2.13 2.87 1.52 0.04 0.00 7.10 29 72 135 62 0 302 3.75 Q 0.34 0.84 1.58 0.73 0.05 0.00 3.54 0.34 0.84 1. 58 0.73 ll 0.13 53 0.62 93 1.09 37 0.43 0.05 1
0. 01 0.00 0.00 0

3.54 195 2.28 3.65 K

0.13 0.62 1.09 0.43 0. 01 0.00 2.28 17 55 147 34 2 0 255 3.67 0.20 0.64 1.72 0.40 0.02 0.00 2.99 0.20 0.64 1.72 0.40 0.02 0.00 2.99 18 92 157 33 0 0 300 3.39 0.21 1.08 1.84 0. 39 0.00 0.00 3.51 0.21 1.08 1.84 0.39 0.00 0.00 3.51 115 191 142 14 0 0 462 1.35 2.24 1.66 0.16 0.00 0.00 5.41 1.35 2.24 1.66 0.16 0.00 0.00 5.41 CALM 83 83 CALM 0.97 0.97 0.97 0.97 I TOTAL 3546 2821 1709 368 10 0 8537 2.16 CO 41.54 33.04 20.02 4.31 0.12 0.00 100.00 41.54 33.04 20.02 4.31 0.12 0.00 100.00 0

SUSQUEHANNA STEAM ELECTRIC STATION METEuxOLOGICAL REPORTS RWATE ) 2/Ol/90 JOINT WIND FREQUENCY DISTRIBUTION FOR ALL WINDS DATA PERIOD ( YY/ttVDD/HH): 89/01/Oi/01 - 89/12/31/24 ALL WINOS KEY XXX NUMBER OF OCCURRENCES DATA SOURCE: ON-SITE )P) XXX PERCENT OCCURRENCES THIS CLASS WIND SENSOR HEIGHT: 10M XXX PERCEMl OCCURRENCES ALL WINDS NIND WIND SPEED CATEGORIES (METERS PER SECOND) MEAN SECTOR 0. 0-1. 5 1.5-3.0 3.0-5.0 5.0-7.5 7.5-10.0 >10.0 TOTAL SPEED 238 386 135 5 0 764 2.12 2.75 4.47 1.56 0.06 0.00 0.00 8. 84 2.75 4.47 1.56 0.06 0.00 0.00 8.84 458 308 81 0 0 0 847 1.65 5.30 3.56 0. 94 0.00 0.00 0.00 9.80 5.30 3.56 0. 94 0.00 0.00 0.00 9.80 1075 217 23 6 0 0 1321 1.26 12.44 2.51 0. 27 0.07 0.00 0.00 15.28 12.44 2.51 0.27 0.07 0.00 0.00 15.28 O 450 84 7 0 0 0 541 1.16 M 5.21 0.97 0.08 0.00 0.00 0.00 6.26 5.21 0.97 0.08 0.00 0.00 0.00 6.26 ESE 250 74 10 0 0 0 334 1.26 2.89 0. 86 0.12 0.00 0.00 0.00 3.86 2.89 SE 210 2.43 ill 0.86 1.28 0.12 0.49 42 0.00 0.00 0

0.00 0.00 0

0.00 0.00 0

3.'e6 363 4.20 1.63 2.43 1.28 0.49 0.00 0.00 0.00 4.20 SSE 189 122 30 0 0 345 1.69 2.19 1.41 0.35 0.05 0.00 0.00 3.99 2.19 1.41 0.35 0.05 0.00 0.00 3.99 180 191 87 7 0 0 465 2 ~ 09 2.08 2.21 1.01 0.08 0.00 0.00 5.38 2.08 2.21 1.01 0.08 0.00 0.00 5.38 198 2.29 300 3.47 0.93 eo 0.06 5

0.00 0

0.00 0 583 6.75

'.02 2.29 3.47 0.93 0.06 0.00 0.00 6.75 110 404 310 31 0 0 855 2.79 1.27 4.67 3.59 0.36 0.00 0.00 9.89 1.27 4.67 3.59 0.36 0.00 0.00 9.89 46 185 250 130 3 0 614 3.66 0.53 2.14 2.89 1.50 0.03 0.00 7.10 0.53 2.14 2.89 1.50 0.03 0.00 7.10 0.34 29 75 0.87 139 1.61 62 0.72 0.05 0.00 0 309 3.58 3 '4 Q 0.34 0.87 1.61 0.72 0.05 K 0.13 ll 54 0.62 1.08 93 37 0.43 0.01 1

0.00 0.00 0

3.58 196 2.27 3.64 0.13 0.62 1.08 0.43 0.01 0.00 2.27 17 55 147 34 2 0 255 3.67 0.20 0.64 1.70 0.39 0.02 0.00 2.95 0.20 0.64 1.70 0.39 0.02 0.00 2.95 18 94 157 33 0 0 302 3.38 0.21 1.09 1.82 0.38 0.00 0.00 3.49 0.21 1.09 1.82 0.38 0.00 0.00 3.49 115 192 144 14 0 0 465 2.55 1.33 2.22 1.67 0.16 0.00 0.00 5.38 1.33 2.22 1.67 0. 16 0.00 0.00 5.38 CALM 84 84 CALM 0.97 0.97 0.97 0.97 TOTAL 3594 41.58 41.58 2852 33.00 33.00 1735

20. 07 20 07 F

368 4.26 4.26 0' 0 0.00 0.00 8643 100.00 100. 00 2.16

SUQlUEHANNA STEAN ELECTRIC STATION HETEOHOLOGICAL REPORTS RUND ATE: 2/01/90 JOINT HIND FREQUENCY DISTRIBUTION BY STABILITY CLASS DATA PERIOD ( YY/H)4'DD/HH): 89/01/01/01 - 89/12/31/26 STABILITY CLASS: PASQUILL A KEY XXX NW8ER OF OCCURRENCES DATA SOURCE: ON-SITE (P) XXX PERCENT OCCURRENCES THIS CLASS HIND SENSOR HEIGHT: 60N XXX PERCENT OCCURRENCES ALL CLASSES HIND SECTOR 0.0-1.5 '.5-3.0 HIND SPEED CATEGORIES (HETERS PER SECOND) 3.0-5.0 5.0-7.5 7.5-10.0 >10.0 TOTAL HEAN SPEED 1 1 0 0 0 0.26 0.26 1.04 0.00 0.00 6 3.11 0.00 1.56 0.01 0.01 0.05 0.00 0.00 0.00 0.07 1 6 0 1 0 0 0.26 8 1.56 0.00 0.26 0.00 0.00 2.08 0.01 0.07 0.00 0.01 0.00 0.00 0.09 1 3 1 0 0 0 5 0.26 0.78 0.26 0.00 2. 25 0.00 0.00 1.30 0.01 ,0. 04 0.01 0.00 0.00, 0.00 0.06 Cj 1 0 1.0% l. 04 0 9 2.05 0'.00 0.26 0.00 0.00 2.36 0.05 0.05 0.00 0.01 0.00 0.00 O.ll ESE 0 7 1 1 0 0 0.00 1.82 0.26 0.26 9 2.71 0.00 0.00 2.34 0.00 0.08 0.01 0.01 0.00 0.00 0.11 SE 2 2 1 0 0.52 0.52 1.06 0 9 3. 07 0.26 0.00 0.00 2.3%

0.02 0.02 0.05 0.01 0.00 0.00 0. 11, SSE 2 2 5 0 0 0 0.52 0.52 1.30 0.00 9 2.51 0.00 0.00 2.34 0.02 0.02 0.06 0.00 0.00 0.00 O.ll 2 2 10 10 0 0 24 4. 72 0.52 0.52 2.60 2.60 0.00 0.00 6.23 0.02 0.02 0.12 0.12 0.00 0.00 0.28 0 8 16 14 5 0 63 4.68 0.00 2.08 4.16 3.64 1.30 0.00 11.17 0.00 0

0. 09 12 0 '975 0.16 59 0.06 0.00 0.51 0.00 3.12 6 0 152 4.83 19.48 15.32 1.56 0.00 39,68 0.00 0.1% 0.88 0.69 0.07 0.00 1.79 0 1 22 59 17 1 100; 6.21 0.00 0.26 5.71 15.32 4.42 0.26 25.97 0.00 0.01 0.26 0.69 0.20 0.01 1.18 0 0 3 7 0 0 10 5.78 0.00 0.00 0. 78 1.82 0.00 0.00 2.60 0.00 0

0.00 0

0.04 0

0.08 0

0.00 0

0.00 0

0 '20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0 0 0 0 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 "0.00 0.00 0.00 0.00 0.00 0.00 0 0 0 0 0 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00. 0.00 0.00 0.00 0.00 0.00 0 0 1 0 0 0 1 3.15 0.00 0.00 0.26 0.00 0.00 0.00 0.26 0.00 0.00 0.01 0.00 0.00 0.00 0 01

~

CALH 0 0 CALH 0.00 0.00 0.00 0.00 TOTAL 13 162 153 28 1 385

3. 38 12.67 36.88 39.76 7. 27 0.26 100.00 0.15 0.57 1.67 1.80 0.33 0.01 6.53

SUSQUEHANNA STEAN ELECTRIC STATION HETEVcaULOGICAL REPORTS RNIDATE: 2/01/90 JOINT HIND FREQUENCY DISTRIBUTION BY STABILITY CLASS DATA PERIOD ( YY/NH/DD/HH): 89/01/Ol/Dl - 89/12/31/24 STABILITY CLASS: PASQUILL 8 KEY XXX NUHBER OF OCCURRENCES DATA SOURCE: ON-SITE IP) . XXX PERCEN)'CCURREttCES THIS CLASS HIND SENSOR HEIGHT: 60N XXX PERCEt)T OCCURREttCES ALL CLASSES NItID HIND SPEED CATEGORIES IHETERS PER SECOND) HE AN SECT'OR 0. 0-1. 5 1.5-3.0 3.0-5.0 5.0-7.5 7.5-10.0 >10.0 TOTAL SPEED 0.00 0

2.36 6 -.'-) .'2

4. 72 l. 975 0.39 1

0.00 0 24 9.45 4.06 0.00 0.07 0. 14 0.06 0. 01 0.00 0.28 3 9 2 5 0 0 19 3.18 1.18 0.04 3.54

0. 11
0. 79 0.02
l. 97 0.06 0.00 0.00 7.48 0.00 0.00 0.22 1 0 1 0 0 0 2 2.23

- 0.39 0.00 0.39 0.00 0.00 0.00 0.79 0.01 0.00 0.01 0.00 0.00 0.00 0.02

l. 975 2 0 0 0 0 7 1.76 0.79 0.00 0.00 0.00 0.00 2.76 0.02 0.06 0.00 0.00 0.00 0.00 0.08 ESE 0 3 1 0 0 0 4 2.58 0.00 1. 18 0.39 0.00 0.00 0.00 1.57 0.00 0.04 0.01 0.00 0.00 0.00 0.05 SE 0 2 1 0 0 7 3.79 0.00 0.79 1.57 0.39 0.00 0.00 2.

0.00 0.02 0.05 0.01 0.00 0.00 76'.08 0 3 0 0 0 7 2.92 0.00 1.57 1.18 0.00 0.00 0.00 2.76 0.00 0.05 0.04 0.00 0.00 0.00 0.08 S 0 5 1 2 1 0 9 3.74 0.00 0.00

l. 97 0.06 0.39 0.79 0.39 0.00 3. 54 0.01 0.02 0.01 0.00 0.11 SSN 0 13 9 5 2 0 29 3.96 0.00 0.00 5.12 0.15
3. 54
0. 11
l. 97 0.06 "0.79 0.00 11.42 0.02 0.00 0.34 0 21 12 14 0 51 4.23 0.00 8.27 4. 72 5.51 1.57 0.00 0.00 0

0.25 1

0 '419 0.16 26 0.05 13 0.00 20.08 0.60 0.00 0. 39 7.4S 10.24 1 60 6.16 5.12 0.39 23.62 0.00 0.01 0.22 0.31 0.15 0.01 0.71 0 1 2 7 1 0 11 6.03 0.00 0.39 0.79 2. 76 0. 39 0.00 4.33 0.00 0.01 0.02 0.08 0.01 0.00 0.13 0 0 3 1 0 0 5. 17 0.00 0.00 1. 18 0.39 0.00 0.00 1.57 0.00 0.00 0.04 0.01 0.00 0.00 0.05 0 0 3 3 0 0 6 5.51 0.00 0.00 1.18 1.18 0.00 0.00 2. 36 0.00 0.00 0.04 0.04 0 00 F 0.00 0.07 0 0 2 0 0 6 5.45 0.00 0.00 0.79 1.57 0.00 0.00 2.36 0.00 0.00 0.02 0.05 0.00 0.00 0.07 N 0 0 2 6 0 0 8 5.53 0.00 0.00 0.79 2.36 0.00 0.00 3.15 0.00 0.00 0.02 0.07 0.00 0.00 0.09 CALtt 0 0 CALH 0.00 0.00 0.00 0.00 0

6 70 76 79 1 254 4.58 Z.36 27. 56 29 92 31.10 0.39 100.00 2 '9

~

0.07 0.82 0.89 0.93 0.01

SUSQUEHANNA STEAN ELECTRIC STATION HETEat(ULOGICAL REPORTS RUNDATE: 2/01/90 JOINT HIND FREQUENCY DISTRIBUTION BY STABILITY CLASS'ATA PERIOD t YY/Ht)/DD/Ht)): 89/Ql/ol/01 89/12/31/24 STABILITY CLASS: PASQUILL C KEY XXX NUt)BER OF OCCURRENCES DATA SOURCE: ON-SITE (P) XXK PERCENT OCCURRENCES THIS CLASS HIND SENSOR NEIG))Tc 6QN XXX PERCENT OCCURR'ENCES ALL CLASSES HIND HIND SPEED CATEGORIES (NETERS PER SECOND) NEAN SECTOR 0.0-1.5 1.5-3.0 3.0-5.0 5.0-7.5 7.5-10.0 >Io. 0 TOTAL SPEED 1 9 23 12 1 0 46 4.18

0. 26 2.33 t 5.94 3.10 0.26 0.00 11.89 0.01 0.11 0. 27 0.14 Q.ol 0.00 0.54 0.52 2 ll 2.84 1.81 7

0.26 1

0.26 1

0.00 0 22 5.68 3.09

~ 0.02 0. 13 0.08 0.01 0.01 0.00 0.26 1 3 0 0 0 0 1.89 0.26 0.78 0.00 a.oa Q.oa 0.00 1.03 0.01 0.04 O.OQ 0.00 O.OQ 0.00 0.05 0 5 a 0 0 0 5 1.84 0.00 1. 29 0.00 0.00 0.00 0.00 1.29 0.00 0.06 0.00 0.00 0.00 0.00 0.06 0 0 0 2.05 ESE 0.26 1

1.03 0.26 1

0.00 0.00 O.ao l. 556 0.01 0.05 0.01 0.00 0.00 0.00 0.07 SE 1 3 5 1 0 0 10 3.41 0.26 0.78 1. 29 0.26 O.QQ Q.oa 2.58 0.01 0.04 0.06 0.01 0.00 0.00 0.12 1 2 3 1 0 0 7 3.15 0.26 0.52 0. 78 0.26 0.00 O.oa 1.81 0.01 0.02 0.04 O.Q1 0.00 0.00 0.08 0 2 7 6 1 0 16 4.91 0.00 0.52 1.81 1.55 0.26 0 ~ oa 4.13 0.00 0.02 0.08 0.07 0.01 0.00 0.19 0.26 1 ll 2.84 10 2.58 1.03 0.26 1

0.00 0 27 6.98 3.57 0.01 0. 13 0.12 0.05 0.01 0.00 0.32 1 14 26 19 4 l. 65 4.45 0.26 3.62 6.72 4.91 1.03 0.26 16.80 0.01 0.16 0.31 0.22 0.05 0.01 0.77 2 5 20 27 8 0 62 5.34 0.52 1.29 5. 17 6.98 2.07 o.oa 16.02

0. 24 0.32 0.09 0.00 0.73 H ~
0. 02 0.26 1

0.06 0.52 2 ll

2. 84 23
5. 94 1.55 6

O.ao 0 43 11.11 5.76 0.01 0.02 0. 13 0.27 0.07 0.00 0.51 0 1 4 & 1 0 12 5.33 0.00 0.26 1.03 1.55 0.26 Q.OD 3.10 0.00 0.01 a.a5 0.07 0.01 0.00 0.14 0 2 6 10 1 0 19 5.27 0.00 0.52 1.55 2.58 0.26 0.00 4. 91 0.00 a.oz 0.07 0.12 0 F 01 0.00 0.22 1 2 7 7 3 0 20 4.95 a.z& 0.52 1. 81 1.81 0. 78 Q.ao 5.1?

0.08 0.08 0.04 0.00 0.24 0.01 0.52 2

0.02 1.03 ll

2. 84 1. 29 5
0. 26 1

Q.OO 0

5.94 23 4. 16 0.02 0.05 0. 13 0.06 0.01 Q.QQ 0.27 CALH 0 CALt) 0.00 0.00 0.00 0.00 .

141 122 28 387 4.52 TOTAL 15 3.88 0.18 20 '780 0.94 36.43 1.66 31.5Z 1.44 7.24 0.33 0.26

0. Ol 1

loa.oa 4.56

SUSQUEHANNA STEAN ELECTRIC STATION HETEOrauLOGICAL REPORTS RUNDATE: 2/01/90 JOINT WIND FREQUENCY DISTRIBUTION BY STABILITY CLASS DATA PERIOD l YY/HN/DD/KH): 89/01/01/01 - 89/12/31/24 STABILITY CLASS: PASQUILL D KEY XXX NUHBER OF OCCURRENCES DATA SOURCE: ON-SITE )P) XXX PERCENT OCCURRENCES THIS CLASS WIND SENSOR HEIGHT: 60H XXX PERCENT OCCURRENCES ALL CLASSES WIND WINO SPEED CATEGORIES (HETERS PER SECOND) WEAN SECTOR 0. 0-1.5 1.5-3.0 3.0-5.0 5.0-7.5 7.5-10.0 >10.0 TOTAL SPEED 47 11$ 191 98 1.36 0.55 3.40 1.39

..") . 5.51 2.25 2.83 0.17 6

0.00 460 13.27 3.80 1.15 0.07 0.00 5.41 56 105 117 40 2 0 320 3. 13 1.62 3.03 3.37 1.15 0.06 0.00 9.23 0.66 1.24 1.38 0.47 0.02 0.00 3.77 20 40 24 17 8

0. 58 1.15 0.69 0.49 0 109 3.32 0.23 0.00 3.14 0.24 0.47 0.28 0.20 0.09 0.00 1 ~ 28 16 40 36 2 0 0 94 2.67 0.46 1.15 1.04 0.06 0.00 0.00 2.71 0.19 0.42 ESE 0.32 ll 0 47 35 1.01 1.15 40 0.02 0.12 4

0.00 0.00 0

0.00 0.00 0

1.11 90 2.96

2. 60 0.13 0.41 0.47 0.05 0.00 0.00 1.06 SE 14 22 12 0 0 92 3.27 0.40 0.63 1.27 0.35 0.00 0.00 2. 65 0.16 0.26 0.52 0.14 0.00 0.00 1.08 20 28 51 14 1 0 114 3.31 0.58 0.81 1.47 0.40 0.03 0.00 3.29 0.24 0.33 0.60 0.16 0.01 0.00 1.34 23 34 50 24 1 136 3.59 0.66 0.98 "

1.44 0.69 0.12 0.03 3.92 0.27 0.40 0.59 0.28 0.05 0.01 1.60 20 84 48 42 3 0 197 3.39 0.58 2.42 1. 38 1.21 0.09 0.00 5.68 0.24 0.99 0.57 0.49 0.04 0.00 0.69 24 107 3.09 2.68 93 58 1.67 ll 0.32 0.03 1 ~

2.32 294 S.4$

3.69 0.28 1.26 1.09 0.68 0.13 0.01 3.46 16 77 113 175 79 10 470 5.34 0.46 2.22 3.26 5.05 2.28 0.29 13. 56 0.19 0.91 1.33 2.06 0.93 0.12 5.53 3 23 73 106 27 5 237 5.50

0. 09 0.66 2.11 3.06 0.78 0.14 6.84 0.04 0.27 0.86 1.25 0.32 0.06 2.79 3 12 65 82 16 0 178 5.16 0.09 0.35 1.87 2.37 0.46 0.00 5.13 0.04 0.14 0.77 0.97 0.19 0.00 2.10 17 84 92 15 1 213 5.14 0.12 0.49 2 ~ 42 2.65 0.43 0.03 6.14 0.05 0.20 0 99

~ 1.08 0.18 0.01 2.51 7 16 84 92 4 0 203 4.80 0.20 0.46 2.42 2.65 0.12 0.00 5.86 0.08 0.19 0.99 1.08 0.05 0.00 2.39 19 56 113 72 0 0 260 3.98 0.55 1.62 3.26 2.08 0.00 0.00 7.50 0.22 0.66 1.33 0.85 0.00 0.00 3.06 CALW 0 0 CALN 0.00 0.00 0.00 0.00 303 814 1226 930 18 3467 4.15 8.74 23.48 35.36 26.82 0.52 100.00 3.57 9.58 14.43 10.95 0.21 40.81

0 SUSQUEHANNA STEAN ELECTRIC STATION HETEuaOLOGICAL REPORTS RLNDATE: 2/01/90 JOINT HIND FREQUENCY DISTRIBUTION BY STABILITY CLASS DATA PERIOD l YY/ktVDD/HH): 89/01/01/01 - 89/12/31/24 STABILITY CLASS: PASQUILL E KEY XXX NUHBER OF OCCURRENCES DATA SOURCE: ON-SITE IP) XXX PERCENT OCCURRENCES THIS CLASS HIND SENSOR HEIGHTt 60H XXX PERCENT OCCURRENCES ALL CLASSES HIND HIND SPEED CATEGORIES (NETERS PER SECOND) 0.0-1.5 HEAN SECTOR 1.5"3.0 3.0-5.0 5.0-7.5 7.5-10.0 >10.0 TOTAL SPEED 76 261 23 0 0

2. 97 10. 20 0.90 478 2.59 0.00 0.00 18.69 0.89 3.07 1.39 0.27 0.00 0.00 5.63 59 145 74 10 0 0 288 2.50 2.31 5.67 2.89 0. 39 0.00 0.00 11.26 0.69 1.71 0.87 0.12 0.00 0.00 3.39 39 35 25 7 1 0 107 2. 48 1.52 1.37 0.98 0.27 0.04 0.00 F 18 ~o 0.46 0.41 0.29 M 42 1.64 31 1.21 ll 0.43 0.08 0.12 3

0.01 0.00 0

0.00 0.00 0

1:26 87 3.40 2.00 0.49 0.36 0.13 0.04 0.00 0.00 1.02 ESE 36 27 14 6 0 0 83 2.29 1.41 1.06 0.55 0.23 0.00 0.00 0.42 0.32 0.16 0.07 0.00 0.00 3.24 0.98 5 SE 31 31 22 4 0 0 88 2.39 1.21 1.21 0.86 0.16 0.00 0.00 0.36 0.36 0.26 0.05 0.00 0.00 1.04 25 32 27 1 2.70 0.98 0.29

l. 25 0.38 1.06 0.16 0.04 0.04 1 90 3.52 0.32 '.05 0.01 0.01 1.06 22 43 56 26 7 3 157 3.73 0.86 1.68 2.19 1.02 0. 27 0.12 6.14 0.26 0.51 0.66 0.31 0.08 0.04 1.85 38 82 73 65 6 6 270 3.80 1.49 3.21 2.85 2.54 0.23 0.23 10. 56 0.45 0.97 0.86 0.77 0.07 0.07 3.18 25 115 123 40 5 2 310 3. 44 0.98 4.50 4.81 1.56 0.20 0.08 12.12 0.29 1.35 1.45 0.47 0.06 0.02 3.65 13 67 124 80 7 0 291 4 16 0.51 2.62 4.85 3.13 0.27 0.00 11.38 0.15 0.79 1.46 0.94 0.08 0.00 3.43 Q 8 18 32 12 1 0 71 3.60 0.31 0.09 0.70 0.21
l. 25 0.38 0.47 0.04 0.00 2.78
0. 14 0.01 0.00 0.84 10 9 8 0 0 0 27 2.26 0.39 0.35 0. 31 0.00 0.00 0.00 1.06
0. 12 O.ll 0. 09 0.00 0.00 0.00 0.32 6 13 19 3 0 0 41 3.09 0.23 0.51 0.74 0.12 0.00 0.00 1.60 0.07 0.15 0.22 0.04 0.00 0.00 0.48 13 12 24 1 0 0 50 0.51 0.47 0. 94 0.04 0.00 0.00 1.95 0.15 0.14 0.28 0.01 0.00 0.00 0.59 14 59 42 5 0 0 120 z.ez 0.55 2.31 1.64 0.20 0.00 0.00 4.69 0.16 0.69 0.49 0.06 0.00 0.00 1.41 CALN 0 0 CALH 0.00 0.00 0.00 0.00 TOTAL 457 980 792 289 28 12 2558 3.07 17.87 38.31 30.96 11.30 1.09 0.47 100. 00 5.38 11.54 9.32 3.40 0.33 0.14 30. 11

SUSQUEHAtt)A STEAM ELECTRIC STATION METEs...~LOGICAL REPORTS RUNDATE: 2/0 1/90 JOINT HIND FREQUENCY DISTRIBUTION BY STABILITY CLASS DATA PERIOD t YY/MM/DD/HH): 89/01/01/Ol - 89/12/31/24 STABILITY CLASS: PASQUILL F KEY XXX tw)ER OF OCCURRENCES DATA SOURCE: ON-SITE (P) XXX PERCENT OCCURREttCES THIS CLASS HIND SENSOR HEIGHT: 60M XXX PERCENT OCCURRENCES ALL CLASSES HIND HIND SPEED CATEGORIES (METERS PER SECOND) MEAN SECTOR 0.0"1.5 1.5-3.0 3.0-5.0 5.0-7.5 7.5-10.0 )10.0 TOTAL SPEED 40 248 15 0 0 0 303 2.07 4.49 27o87 0.00 0.00 0.00 34.04 0.47 2.92 0.18 0.00 0.00 0.00 3.57 58 81 3 0 0 0 142 1.67 6.52 9.10 0. 34 0.00 0.00 0.00 15.96 0.68 0.95 =

0.04 0.00 0.00 0.00 1.67 34 15 1 0 0 0 50 1.45 3.82 1.69  %. 0,11 0.00 0.00 0.00 5.62 0.40 0.18 0.01 0.00 0.00 0.00 0.59 19 12 0 0 0 0 31 1.37 2.13 1 ~ 35 0.00 0.00 0.00 0.00 3.48 0.22 0.14 0.00 0.00 0.00 0.00 0. 36 ESE 15 7 0 0 0 0 22 1.69 0.79 0.00 0.00 0.00 0.00 2.47 0.18 0.08 0.00 0.00 0.00 0.00 0.26 SE 13 1 0 0 0 18 1.62 1.46 0.45 0.11 0.00 0.00 0.00 2.02 0.15 0.05 0.01 0.00 0.00 0.00 0.21 16 8 1 0 0 0 25 1.48 1.80 0.90 0. 11 0.00 0.00 0.00 2.81 0.19 0.09 ll 1.24 1.69 15 0.01 0.45 0.00 0.00 0

0.00 0.00 0

0.00 0

0.29 30 1.96 0.00 3.37 0.13 0.18 0.05 0.00 0.00 12

l. 35 3.37 30 ll 1.24 0.22 2 0 0.00 0.00 0.00 0

0.35 55 6.18 2.39 0.14 0.35 0.13 0.02 0.00 0.00 0.65 3 37 26 0 0 0 66 2.79 0.34 4.16 2.92 0.00 0.00 0.00 7.42 0.04 0.44

l. ll 24 1.69 0.31 25 2.81 0.00 1.01 9

0.00 0

0.00 0.00 0.00 0

0.78 60 6.74 3.29

0. 13 0.18 0.29 0.11 0.00 0.00 0.71 1 2 2 0 0 9 3.17 O.ll 0.45 0.22 0.22 0.00 0.00 1.01 0.01 0.05 0.02 0.02 0.00 0.00 0.11 3 1 0 0 0 0 1.29 0.34 0.11 0.00 0.00 0.00 0.00 0.45
0. 04 0.01 0.00 0.00 0.00 0.00 0.05 1 5 0 .0 0 0 6 1.80 O.ll 0.56 0.00 0.00 0.00 0.00 0.67 0.01 0.06 0.00 0.00 0.00 0.00 0.07 0 5 2 0 0 0 7 2.72 0.00 0.56 0.22 0.00 0.00 0.00 0.79 0.00 0.06 0.02 0.00 0.00 0.00 0.08 N 11 41 10 0 0 0 62 2.18
l. 24 0.13 4.61 1.12 0.00 0.00 0.00 6.97 0.48 0.12 0.00 0.00 0.00 0.73 CALM 0 0 CALM 0.00 0.00 0.00 0.00 528 101 13 0 890 2.08 59.33 11.35 1.46 0.00 100.00 6.22 1.19 0.15 0.00 10.48

SUSQUEHAR4A STEAN ELECTRIC STATION HETEV~ULOGICAL REPORTS RUNDATE: 2/01/90 JOINT HIND FREQUENCY DISTRIBUTION BY STABILITY CLASS DATA PERIOD l YY/HH/DD/NH): 89/01/Ol/Ol - 89/12/31/24 STABILITY CLASS: PASQUILL G KEY XXX )A)HBER OF OCCURRENCES DATA SOURCE: ON-SItE (P) XXX PERCENT OCCURRENCES THIS CLASS HIND SENSOR HEIGHT) 60H XXX PERCENT OCCURRENCES ALL CLASSES HIND WIND SPEFD CATEGORIES (HETERS PER SECOND) 0.0-1.5 WEAN SECTOR 1.5-3.0 3.0-5.0 5.0-7.5 7.5-10.0 >10.0 TOTAL SPEED 33 180 1 0 0 5.96 32.49 0.18 0.00 227 2.06 0.39 0.00 40.97 2.12 0.15 0.01 0.00 0.00 2.67

.30 64 2 0 0 0 96 1.74 5.42 11.55 0.36 0.00 0.00 0.00 17. 33 0.35 0.75 0,02 0.00 0.00 0.00 1.13 25 10 1 0 0 0 36 4.51 1.81 ~ 0. 18 0.00 0.00 0.00 6.50 0.29 0.12 0.01 0.00 0.00 0.00 - 0.42 14 0 0 0 0 18 1.37 2.53 0.72 0.00 0.00 0.00 0.00 3. 25 0.16 0.05 0.00 0.00 0.00 0.00 0.21 ESE 0.90 5

0.36 2

0.00 0

0.00 0

0.00 0

0.00 0

1.26 7 l. 37 0.06 0.02 0.00 0.00 0.00 0.00 0.08 13 7 0 0 0 0 20 1.46 2.35 1.26 0.00 0.00 0.00 0 ~ 00 3.61 0.15 0.08 0.00 0.00 0.00 0.00 0.24 5 1 0 0 0 10 1.82 0.72 0.90 0.18 0.00 0.00 0.00 1.81 0.05 0.06 0.01 0.00 0.00 0.00 0.12 8 10 1 0 0 0 19 1.78 1.44 1.81 0.18 0.00 0.00 0.00 3.43 0.09 0.12 0.01 0.00 0.00 0.00 0. 22 5 15 2 0 0 0 22 1.87

0. 90 2. 71 0.36 0.00 0.00 0.00 3.97 0.06 0. 18 0.02 0.00 0.00 0.00 0.26 0.72 14 2.53 1
0. 18 0.00 0

0.00 0

0.00 0 19 3.43 2 '2 0.05 0.16 0+01 0.00 0.00 0. 00 0.22 3 7 7 0 0 0 17 2.60 0.54 1.26 1.26 0.00 0.00 0.00 3.07 0.04 0.08 0.08 0.00 0.00 0.00 0.20 0 2 0 0 0 0 2.01 0.00 0.00 0.36 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 '62 0.02 1 1 0 0 0 0 2 1.81 0.18 0.18 0.00 0.00 0.00 0.00 0.36 0.01 0.01 0.00 0.00 0.00 0.00 0.02 0.00 0

0.36 2

0.00 0 0 0.00 0.00 0

0.00 0

0.36 2 2 '3 0.00 0.02 0.00 0.00 0.00 0.00 0.02 0 6 0 0 0 0 6 2.53 0.00 1.08 0.00 0.00 0.00 0.00 1.08 0.00 . 0.07 0.00 0.00 0.00 0.00 0.07 N 8 30 13 0 0 0 51 2.39 1.44 5.42 2.35 0.00 0.00 0.00 9.21 0.09 0.35 0.15 0.00 0.00 0.00 0.60 CALH 0 0 CALH 0.00 0.00 0.00 0.00 TOTAL 153 359 41 1 0 0 554

27. 62 64.80 7. 40 0.18 O. 00 0.00 100.00 1.80 4.23 0.48 0.01 0.00 0.00 6.52

SUSQUEHA)Z)A STEAN ELECTRIC STATION HETEueivLOGICAL REPORTS RQ)DATE: 2/Ol/90 JOINT HIND FREQUENCY DISTRIBUTION BY STABILITY CLASS DATA PERIOD I YY/HN/OD/HH) s 89/Ol/Ol/01 - 89/12/31/24 ALL CLASSES KEY XXX NUHBER OF OCCURRENCES DATA SOURCE: ON-SITE )P) XXX PERCENT OCCURRENCES THIS CLASS NINO SENSOR HEIGHT: 60N XXX PERCENT OCCURRENCES ALL CLASSES HIND HIND SPEED CATEGORIES (HETERS PER SECOND) HEAN SECTOR 0. 0-1.5 1.5-3.0 3.0-5.0 5.0-7.5 7.5-10.0 >10.0 TOTAL SPEED 198 823 139 8 1544 2.84 2.33 9.69 1.64 0.09 0.00 18. 18 Q 2.33 9.69 4.43 1.64 0.09 0.00 18.18 M 209 421 205 57 3 0 895 2.46 4.96 2.41 0.67 0.04 0.00 10.54 2.46 4. 96 t.41 0.67 0.04 0.00 10.54

'21 106 53 24 9 0 313 2.47 M 1.42 1.42 1.25 1.25 0.62 0.62 0.28 0.28

0. 11 0.11 0.00 0.00 3.68 3.68

-5 97 101 47 6 0 0 251 2.12 1.14 1.19 0.55 0.07 0.00 0.00 2.95

1. 14'8 1.19 0.55 0.07 0.00 ESE 0.80 l. 85 00 57 0.67 ll 0.13 0.00 0

0.00 0.00 0

2.95 221 2.60 2.47 0.80 1.00 0.67 0.13 0.00 0.00 2.60 SE 74 71 80 19 0 0 244 2.70 0.87 0.84 0. 94 0.22 0.00 0.00 2.87 0'.e7 0.84 0. 94 0.22 0.00 0.00 2.87 68 81 91 19 2 1 262 2.83 M 0.80 0.95 1.07 0.22 0.02 0 01 F 3.08 0.80 0.95 V'j S

0.78 66 ill 1.31 1.07 129 1.52 0.22 68 0.80 0.02 13 0.15 0.01 0.05 3.08 391 4.60 3.56 0.78 1.31 1.52 0.80 0.15 0.05 4.60 0 SSW 76 243 169 132 17 6 643 3.55 0.89 2.86 1.99 1.55 0.20 0.07 7.57 0.89 2.86 1.99 1.55 0.20 0.07 7.57 Q 57 320 356 190 30 957 3.78 0.67 3.77 .4.19 2.24 0.35 0.05 11.27 K 0.67 3.77 4.19 Z.Z4 0.35 0.05 11.27 45 173 330 376 124 12 1060 4.99 0.53 2.04 3.88 4.43 1.46 0.14 12.48 0.53 2. 04 3.88 4.43 1.46 0.14 12.48 13 50 123 157 35 5 383 5.13 0.15 0.59 1.45 1.85 0.41 0.06 4.51 0.15 0.59 1.45 1.85 0.41 0.06 4.51 M 17 24 80 89 17 0 227 4.73 0.20 0.28 0. 94 1.05 0.20 0.00 2.67 0.20 0.28 0.94 0.13 ll 39 0.46 112 1.32 1.05 108 1.27 0.20 16 0.19 0.00 0.01 1

2.67 287 3.38 4.77 0.13 0.46 1.32 1.27 0.19 0.01 3.38 21 41 119 104 7 0 29Z 0.25 0.48 1.40 1.22 0.08 0 F 00 0.25 0.48 1.40 1.22 0.08 0.00 3.44 54 190 192 88 1 0 525 3.38 0.64 2.24 2.26 1.04 0.01 0.00 6.18 0.64 2.24 2.26 1.04 0.01 0.00 6.18 CALH 0 0 CALH 0.00 0.00 0.00 0.00 0

1195 14.07 14.07 2879 33.89 33.89 2519

29. 65
29. 65 1587 le.6e le.ee 0' 0.39 0.39 33 8495 100.00 100.00 3.52

SUSQUEHANNA STEAN ELECTRIC STATION HETER ..~LOGICAL REPORTS RLNDATE ) 2/0 1/90 MINT HIND FREQUENCY DISTRIBUTION FOR ALL HINDS DATA PERIOD ( YY/HH/DD/HH): 89/01/01/Ol - 89/12/31/24 ALL HINDS KEY XXX NUHBER OF OCCURRENCES DATA SOURCE: ON-SITE (P) XXX PERCENT OCCURRENCES THIS CLASS HIND SENSOR HEIGHT: 60H XXX PERCENT OCCURRENCES ALL HINDS HI)D) HIND SPEED CATEGORIES lHETERS PER SECOND) 0.0-1.5 HEAN SECTOR 1.5-3.0 3.0-5.0 5.0-7.5 7.5-10.0 >10.0 TOTAL SPEED 201 838 ,6)', 376 139 8 0 1562 2.83 2.34 9.74 ~c5iii 4. 37 1.62 0.09 0.00 18.16 2.34 9.74 4.37 1.62 0.09 0.00 18.16 219 428 205 57 3 0 912 2.52 2.55 4.98 2.38 0.66 0.03 0.00 10.60 2.55 4.98 a 2+38 0.66 0.03 0.00 10.60 ENE 125 108 53 24 9 0 c 319 2.45 1.45 1.26 0.62 0.28 0.10 0.00 3.71 O 1.45 1.26 0.62 0.28 0.10 0.00 3.71 M 98 103 47 6 0 0 254 2.11 1.14 1.20 0.55 0.07 0.00 0.00 2.95 1.14 1.20 0.55 0.07 0.00 0.00 ESE '68 0.79 85

0. 99 57 0.66 ll 0.13 0.00 0

0.00 0

2.95 221 2.57 2.47 0.79 0.99 0.66 0.13 0.00 0.00 2.57 SE 74 71 81 19 0 0 245 2. 70 0.86 0.83 0. 94 0.22 0.00 0.00 2.85 0.86 0.83 0. 94 0.22 0.00 0.00 2.85 68 82 91 20 2 1 264 2.84

0. 79 0.95 1.06 0.23 0.02 0.01 3.07 0.79 0.95 1.06 0.23 0.02 0.01 3.07 66 112 132 75 13 402 3.61
0. 77 1.30 1.53 0.87 0.15 0.05 4.67
0. 77 1.30 1.53 0.87 0.15 0.05 4.67 77 243 173 136 17 6 652 3.56 M 0.90 2.83 2.01 1.58 0.20 0.07 7. 58 0.90 2.83 2.01 1.58 0.20 0.07 7. 58 58 323 358 192 31 4 966 3.78 0.67 3.76 4.16 2.23 0.36 0.05 11.23 0.67 3.76 4.16 2.23 0.36 0.05 11.23 45 177 335 378 124 12 1071 4.98 0.52 2.06 3.90 4.40 1.44 0.14 12.45 0.52 2.06 3.90 4.40 1.44 0.14 12.45 Q 13 50 128 159 35 5 390 5.12
0. 15 0. 58 1.49 1.85 0.41 0.06 4.53 K
0. 15 0. 58 1.49 F 85 0.41 0.06 4.53 18 25 80 89 17 0 229 4.70 0.21 0.29 0.93 1.03 0.20 0.00 2.66 0.21 0.29 0.93 0.13 ll 40 0.47 112 1.30 1.03 108 1.26 0.20 16 0.19 0.00 0.01 1

2.66 288 3.35 4.77 0.13 0.47 1.30 1.26 0.19 0.01 3.35 Zl 41 120 104 7 0 293 0.24 0. 48 1.40 1. 0.08 0.00 3.41 0 24 F 0.48 1.40 21'.21 0.08 0.00 3.41 56 191 196 88 1 0 532 3.38 0.65 2.22 2.28 1.02 0.01 0.00 6.19 0.65 2.22 2.28 1.02 0.01 0.00 6.19 CALH 0 0 CALH 0.00 0.00 0.00 0.00 TOTAL 12)8 2917 2544 1605 283 33 ~ 8600 3-52 14.16 33. 92 29. 58 18.66 3.29 0.38 100.00 14.16 33.92 29. 58 18.66 3.29 0.38 100.00

AVERAGE METEOROLOGICAL RELATIVE CONCEHTRATIQN ANALYSIS DATA PERIOD: 01/01/89 TO 12/31/89 FIXED AHD SPECIAL DISTANCES DISPERSION ANALYSIS RADIOI.OGICAI. EFFLUENT DISPERSION PROGRAM ADSSES (CHDAP)0)

FOR CALENDAR YEAR 1989 SUSQUEMANNA STEAM EL'ECTRIC STATION; LUZERNE COUNTY, PA PENNSYLVANIA POWER 6 LIGHT COMPANY; ALLENTQWN~ PA DATE 22-FEB 90 ADSSES DEVELOPED BY MODIFICATION OF D3M PROGRAM ANDIFF AFFECTED SECTORS HNE NE ENE ESE SE SSE S SSW SW WSW W WHW HW NNW H 0.5 MILES (.805 KM) 7.6E-06 6.)E-06 4.0E-06 2. 'IE 06 1. SE-06 1.96-06 2.4E-OB 6.5E-06 1. IE-05 1. 6E-05 3.6E-05 1.6E-05 9.4E-06 9.0E-06 6. BE-06 6.0E-OB

?.OE 06 5.6E-06 3.6E-06 1.9E-06 1.3E-06 1.7E-06 2.2E-06 6.0E-06 9.7E-06 1. 4E-05 3.3E-05 1.5E 05 8.6E-06 8.3E-06 6.2E-06 5.4E-06 2.?E 08 3.8E-OB 2.9E-OB 1. 4E-08 1. OE-08 ').2E-OB 1.6E-OB 2.5E-OB 3.5E-OB 3.3E-OB 4.8E-OB 2.5E-OB 1.7E-OB 2.2E-OB ).BE-OB 2.0E-OB

?.BE 06 6. )E-06 4.0E-06 2. 'IE-06 1. 4E-06 1 9E 06 2.4E-OB 6.5E-06 1. )E 05 1.6E-OS 3.6E-05 1.6E-05 9.45-06 B.OE-06 6.8E-06 5.9E-06 7.6E-06 6. 1E-06 4.0E-OB 2. 1E-06 1.5E 06 1.9E-06 2.4E-06 6.5E-06 1. 1E-05 1.6E-OS 3.6E-05 1.6E-05 9.4E-06 B.OE-06 6.8E-06 5.9E-06

?.OE-06 5.6E-06 3.6E-OB 1.9E 06 1.3E-Oe 1.?E-06 2.2E-06 6.0E-06 9.7K-06 ).4E-05 3.3E-05 1.5E-05 8.6E-06 8.2E-06 6.2E-06 5.4E-06 7.0E-06 5.6E-06 3.6E-06 1.9E-06 1.3E-OB 1.?E-OB 2.2E-06 6.0E-06 9.7E-06 1.4E-05 3.3E-05 1.5E-OS 8.6E-06 8.3E"06 6.2E-06 5.4E-06 805. 805. 805. 805. 805. 805. 805. 805. 805. 805. 805. 805. 805. 805. 805. 805.

1.5 MILES (2.41 KM) 1.6E-06 1.3E-06 8.2E-O? 3.?E-07 2.5E-07 3.?E-O? 4.2E-07 1. 3E<<06 2.36-06 3.5E-06 8.7E-06 2.9E 06 1.9E-06 1.9E-06 1. 5E-06 1.3E-OB 1.4E-06 1. IE-06 6.9E-07 3. 1E-07 2. 1E-07 3. )E-07 3.6E"07 1. 1E-06 ).9E-06 2.9E-06 7.4E-06 2.5E-06 1.6E-06 1.6E-06 1.3E-06 1. )E-06 4,?E-OB 6.6E 09 5. )E-09 2. 1E-09 '1.5E-09 2. 1E-09 2.4E-09 4.0E-09 6.2E-OB 6. )E-09 1.0E-OB 3.8E-09 2.9E-09 3.8E-09 3.3E 09 3.3E-09 1,6E-06 1.3E-06 8.1E-O? 3.6E-07 2.5E-Q? 3.6E-O? 4.2E-OT 1.2E-06 2.2E-06 3.4E-06 8.6E-06 2.9E-OB 1.9E-06 ).BE-06 1.5E-06 1.2E-06 1.6E-06 1.3E-06 8.2E-07 3.?E 07 2.5E-Q? 3.?E-O? 4.2E-O? 1.3E-06 2.3E-06 3.4E-06 8.?E-06 2.9E-06 1.9E-OB 1.9E-06 1.5E-06 1.2E-06 1.4E-06 1.)E-06 6.9E-07 3.1E-O? 2. 1E-07 3.1E-07 3.5E-O? 1. 1E 06 1.9E-06 2.9E-06 7.3E-06 2.4E-06 1.6E"06 1.66-.06 1.3E-06 ).OE-06 1.4E-OB 1. 1E-06 6.9E-07 3.1E-07 2. 1E-Q? 3. 1E-07 3.6E-07 1. 1E-06 1.9E-06 2.9E-06 7.3E-06 2.5E-Q6 1.6E-06 1.6E-06 1.3E"06 1. 1E-06 24)4. 2414. 2414. 2414. 2414. 2414. 2414. 2414. 24)4. 2414. 2414. 2414. 2414. 2414. 2414. 2414.

2.5 MILES (4.02 KM)

B. 1E-07 6.3E 07 4.'IE-07 1.?E-O? 1.0E-07 1.5E-O? 1.9E-07 5.5E-O? ).OE-Q6 1.6E-06 4.4E-06 1.3E-OB 8.6E-07 8.6E"07 7.26-07 6.4E-07 6.5E-O? 5. )E-07 3.3E-O? 1.3E 07 8. )E-08 1.2E-O? 1.5E-O? 4.46-07 8.3E-O? 1.3E-06 3.6E-06 ) . 1E-06 6.9E-07 6.9E-07 5.8E-O? 5.2E-O?

2. 1E-09 3.0E 09 2.3E-09 8. BE-1Q 5. 5E-10 8. 1E-10 I.OE-09 1.6E-09 2.5E-09 2.5E-09 4.5E-09 1.5E-OB 1.2E-09 1.5E-09 1.4E-09 1.5E-09 B.OE-O? 6.2E-O? 4. 1E-07 1. 6E-07 ).OE-07 1.5E-07 ).9E-O? 5.4E-07 ).QE-06 1.6E-06 4.3E-06 'I.3E-06 8.4E"07 8.4E-07 7. )E-07 6.3E-07
8. 1E-07 6. 3E-0? 4. 1E-07 1.7E-07 ).OE-07 1.5E-O? 1.9E"07 5.5E-O? 1.0E-06 1.6E 06 4.4E"06 1.3E-06 8.5E-O? 8.5E-O? 7.26-07 6.4E-O?

6.4E"07 5.0E-07 3.3E-07 1.3E-O? B.OE-OB 1. 2E 07 1.5E-07 4.4E-D? 8. 1E-07 1.3E-06 3.5E-06 I.OE-06 6.?E-O? 6.8E-07 5.7E-O? 5. IE-07 6.5E-07 5. )E-07 3.3E-O? 1.3E-07 8.'IE-08 1. 2E-07 1. 5E 07 4.4E-O? 8.2E-OT 1.3E-06 3.5E-06 1. 1E-06 B.BE-O? 6.9E-07 5.8E-07 5. 'IE-07 4023. 4023. 4023. 4023. 4023. 4023. 4023. 4023. 4023. 4023. 4023. 4023. 4023. 4023. 4023. 4023.

3.5 MILES (5.63 KM) 4.5E-07 3.6E-07 2.5E-07 9.0E-OB 5.4E-OB 7.2E 08 9.8E-OB 2.8E-O? 5. 1E-07 8.6E-07 2.4E-06 7.0E-07 4.?E-O? 4.9E-O? 3.8E-O? 3.5E-07 3.5E-07 2.8E-07 1.9E-O? 6.9E-OB 4. 1E-08 5.5E-OB 7.6E-OB 2. 1E-07 3.9E-O? 6.7E-07 'I.9E-06 5.4E-07 3.6E-07 3.8E 07 3.0E-07 2.?E-07 I.)E-09 1.6E-09 1.3E-09 4.5E-)0 2. BE-10 3.5E-1Q 5.0E-)0 7.4E-IO 1. 1E-09 1.2E-09 2. )E-09 7. )E-10 5. ?E-10,8. OE-)0 6. 6E-10 7. 6E-10 4.4E-O? 3.5E-07 2.4E-07 B.BE-OB 5.3E"08 ?.OE-OB 9.7E-OB 2.7E-07 5.0E 07 8.3E-07 2.3E-06 6.8E-O? 4.5E-O? 4.8E-O? 3.?E-07 3.4E-07 4.4E-O? 3.6E-OV 2.5E-07 B.BE-OB 5.3E 08 7. 1E-08 9.7E-OB 2.8E-OV 5.0E-O? 8.5E-07 2.4E-06 6.9E-07 4.?E-07 4.95-07 3. BE-07 3.5E-07 3.4E-O? 2.7E-07 1.9E-O? 6.8E-OB 4. 1E-08 5.4E-OB 7.5E-OB 2.)E-OV 3.8E-07 6.5E-07 ).BE-06 5.2E-O? 3.5E-O? 3.7E-07 2.9E-07 2.6E-O?

3.4E-O? 2.8E-O? 1.9E-OV 6.9E-OB 4. IE-08 5.5E-OB 7.5E-OB 2. IE-07 3.9E-07 6.6E-O? ).BE-06 5.4E-07 3.6E-O? 3.8E-07 2.9E-07 2.7E-OV 5632. 5632. 5632. 5632. 5632. 5632. 5632. 5632. 5632. 5632. 5632. 5632. 5632. 5632. 5632. 5632.

TOTAL OBS 8760 TOTAL IHV OBS 158 CALMS LOWER LEVEL 86. 00 KEY: ENTRY I RELATIVE CONCENTRATIOH - XOQ (S/Mii3) ENTRY 2 DEPLETED RELATIVE CONCENTRATION (S/M~ 3)

ENTRY 3 RELATIVE DEPOSITION RATE ()/Mii2) ENTRY 4 DECAYED XOQ (S/M%03) - HALF LIFE 2.26 DAYS ENTRY 5 DECAYED XOQ (S/Mii3) - HALF LIFE 8.00 0 ENTRY 6 DEC+DPL XOQ (S/M~i3) - HALF LIFE 2.26 DAY ENTRY 7 DEC+DPL XOQ (S/Mii3) - HALF LIFE 8.00 ENTRY 8 DISTANCE IN METERS

AVERAGE METEOROLOGICAL RELATIVE CONCENTRATION ANALYSIS DATA PERIOD: 01/01/89 TO 12/31/89 FIXED ANO SPECIAL DISTANCES DISPERSION ANALYSIS ~ ~ RADIOLOGICAL EFFLUENT FOR CALENDAR YEAR 1989 DISPERSION PROGRAM ADSSES (CNDAPIO)

SUSQUEHANNA STEAM ELECTRIC STATION; LUZERNE COUNTY, PA PENNSYLVANIA POWER 8 LIGHT COMPANY; ALLENTOWN, PA DATE 22-FES-90 ADSSES DEVELOPED BY MODIFICATION OF DSM PROGRAM ANDIFF AFFECTED SECTORS NNE NE ENE E ESE SE SSE S SSW SW WSW W WNW NW NNW 4.5 MILES (7.24 KM)

3. IE-07 2.5E-07 I.SE-07 5.9E-OS 3. I E-08 4.0E-OB 5.2E-OB 1.7E-07 3.0E-OT 5.3E-07 1.6E-06 4.6E-07 3. IE-07 3.2E-07 2.7E-07 2.4E-07 2.3E-07 1.9E-07 1.3E-07 4.4E-OS 2.3E-OB 3.0E-OB 3.9E-OB 1.3E"07 2.3E-OT 4.0E-07 1.2E-06 3.4E-07 2.3E-OT 2.4E-07 2.0E-07 6.9E-)0 1. IE-09 9.0E-)0 2.8E-ID 1. 5E-10 I.BE-IO 2.5E-IO 4.2E-IO 6. 4E-10 6.8E-)0 1.3E-09 1.8E-07 3.0E-07 2.5E-07 ).TE-07 5.8E-OB 3.0E-OB 4.2E-IO 3. SE-10 4. BE-10 4.3E-IO 4.9E 10 3.9E-OB 5. IE-08 1.6E-OT 2.9E-07 5. I E-07 1.5E-06 4.4E-07 3.0E-07 3. IE-07 2.6E-07 2.3E-07
3. )E-07 2.5E-07 I.SE-OT 5.9E-OB 3. IE-08 3.9E-OS 5.2E-OB 1.7E-07 3.0E-07 5.3E-07 1.6E-06 4.5E-07 3.1E-07 3. IE-07 2.7E-07 2.4E-07 2.2E-OT 1.9E-07 1.3E-07 4.3E-OB 2.3E-OB 2.9E-OB 3.9E-OB 1.2E-07 2.2E-07 3.8E-07 1.2E-06 3.3E-07 2.2E-07 2.3E-OT 2.3E-07 1.9E-07 1.3E-07 4.4E-OS 2.3E-OB 2.9E-OS 3.9E-OS 1.3E-07 2.2E-OT 3.9E-07 '1.2E-06 1.9E-07 ).TE-07 7241. 7241.

3.4E-07 2.3E-OT 2.4E-07 2.0E-07 I.SE-07 7241. 7241. 7241. 7241. 724'I.. 7241 . 7241 . 7241. 7241. 7241. 7241. 7241. 7241. 7241.

7. 5 MILES ( 12. 07 KM) 1.4E-OT 1.2E-07 8.3E-OB 2.6E-OS 1. 'IE-08 1.2E-OB 1.7E-OS 6.2E-OB 1. IE-07 2.2E-OT 7.0E-07 I . BE-07 1.3E-07 1,4E-07 1.2E-OT 1.5 E-07 9.8E-OS 8.3E-OS 5.8E-OB I.BE-OB 7.3E-09 8.5E-09 'I.2E-OB 4.3E-OB 7.9E-OB 1.5E-07 4.9E-07 1. 2E-07 9. 1E-08 9.6E-OB B.TE-OB I.OE 07 2.6E-10 4.2E-)0 3.6E-IO 1. IE-10 4.5E 11 S.OE-II 7.0E-I\ 1.3E-)0 2.0E-IO 2. 3E-10 4.4E-IO 1. 3E-10 1. 2E-10 1. TE-10 1. 7E-10 2. 6E-10 1.3E-OT 1.'IE-07 B.OE-OB 2.5E-OB 'I.OE-OB 1.2E-OS 1.6E-OS 5.9E-OB 1. IE-07 2.0E-OT 6. SE-07 1.7E-07 1. 2E-07 1. 3E-07 I . 2E-07 1.4E-OT 1.4E-OT 1.2E-07 8.2E-OB 2.6E-OB I.OE-OB 1.2E-OB 1.7E-OB 6. )E-08 1. IE-07 2. I E-07 6.9E-OT I.TE-07 1.3E-OT 1.3E-OT 1. 2E-07 1.5E-07 9.3E-OS B.OE-OB 5.6E-OB I.TE-OB 7.\E-09 8.2E-09 1. )E-08 4.1E-OB 7.5E"08 I . 4E-07 4.5E-OT 1.2E-07 8.5E-OB 8.9E-OB 8.2E-OB 9.9E-OB 9.6E-OS 8.2E-OB 5.7E-OS I.BE-OB 7.2E-09 8 .4E-09 '1.2E-OB 4.3E-OB T.BE-OB 1.5E-07 4.8E-07 1.2E-07 8.9E-OB 9.4E-OB 8.5E-OB I.OE-07 12068. '12068. 12068. 12068. 12068. 12068. 12068. 12068. 12068. 12068. 12068. 12068. 12068. 12068. 12068. '12068.

15.0 MILES (24. I KM) 2.4E-OB 2.7E-OS 2.7E-OB 5.6E-09 2.4E-09 2.8E-09 3.5E-09 7.5E-09 2.0E-OB 3.5E-OB 1. IE-07 2.7E-OB 2.5E-OB 2.8E-OB 1.4E-OB 1.6E-OB 1.6E-OB 3.5E-09 'I.SE-09

~

2.3E-OB 2.2E-OS 1.7E-09 2.2E-09 4.6E-09 '1.2E-OB 2.2E-OB 6.6E-OB 1.6E-OB I.SE-OB 1.7E-OB 1.4E-OS 1.4E-OB 3.3E-II 7.2E-II 9.0E-11 I.BE-1) B.OE-12 9. )E-12 1. 2E-11 1.2E-I) 2.6E-I) 2.7E- 11 4.8E-'Il 1.4E-I I 'I.7E-II 2. 6E-'I I 2.4E-I I 2.9E-I)

2. 1E-08 2.5E-OB 2.5E-OB 5.2E-09 2.2E-09 2.6E-09 3.3E-09 6.8E-09 I.SE-OS 3. )E-08 9.4E-OB 2.3E-OB 2.2E-OB 2.4E-OS 2. )E-08 2.0E-OB 2.3E-OB 2.6E-OB 2.6E-OB 5.5E-09 2.3E-09 2.8E-09 3.5E-09 7.3E-09 1.9E-OB 3.4E-OS I.OE-07 2.6E-OB 2.4E-OB 2.7E-OB 2.3E-OB 2.2E-OB 1.3E-OS 1.5E-OS 1.5E-OB 3.2E-09 1.4E-09 1.6E-09 2. IE-09 4.2E-09 1. IE-08 ).9E-OB 5.8E-OB 1.4E-OB 1.3E-OB I . SE-08 1.3E-OB 1.2E-OB 1.4E-OB 1.6E-OS 1.6E-OB 3.4E-09 1.4E-09 1.7E-09 2.1E-09 4.5E-09 1.2E-OB 2. )E-08 6.4E-OB 1.6E-OB 1.5E-OB 1.6E-OB 1.4E-OB 1.3E-OB 24135. 24'135. 24135. 24135. 24135. 24135. 24135. 24135. 24135. 24135. 24135. 24135. 24 'I 35. 24135. 24135. 24135. O 25.0 MILES (40.2 KM) M 4.0E-09 3.6E-09 8. IE"09 1.5E-09 7. 'IE-10 4. OE-10 5.5E-IO 1.2E-09 3.3E-09 B. IE-09 I.BE-OB 3.2E-09 4.4E-09 3.7E-09 3.5E-09 2.2E-09 2.0E-09 4.4E-09 8.5E-10 3.9E 10 2. 2E- IO 3. OE-10 6.7E-IO I.BE-09 4.4E-09 9.9E-09 1.7E-09 5. IE-09 4.4E-12 7.6E-12 2.2E-II 2.4E-09 2.0E-09 1.9E-09 2.8E-09 4.0E-12 1.9E-12 1.0E-12 1. 5E-12 1.6E-)2 3.4E 12 4.6E- 12 5.9E-)2 1.3E-12 2.3E-)2 2.7E-)2 2.7E-12 5. OE-12 3.4E-09 3.2E-09 7.3E-09 1. 4E-09 6. 4E-10 3. SE-10 5. IE-10 I.OE-09 2.8E-09 6.5E-09 1.5E-OB 2.5E-09 3.5E-09 3.0E-09 2.9E-09 4.3E-09 3.8E-09 3.5E-09 T.SE-09 1.5E-09 6.9E-IO 3.8E- 10 5. 4E-10 1.2E-09 3.2E-09 7.6E-09 I.TE-OS 2.9E-09 4.)E-09 3.4E-09 3.3E-09 4.8E-09 1.9E-09 I.BE-09 4.0E-09 7.5E-10 3. 5E-10 1.9E-IO 2.8E-IO 5.7E-IO 1.5E 09 3.6E-09 S.OE-09 1.4E-09 1.9E-09 1.6E-09 1.6E-09
2. IE-09 1.9E-09 4.3E-09 8. 2E-10 3.8E-IO 2. IE-10 3.0E-IO 6.4E- 10 1.7E-09 4.2E-09 9.3E-09 1.6E-09 2.3E-09 2.3E-09 1.9E-09 I.BE-09 2.7E-09 40225. 40225. 40225. 40225. 40225. 40225. 40225. 40225. 40225. 40225. 40225. 40225. 40225. 40225. 40225. 40225.

C)

CO TOTAL OBS - 8760 TOTAL INV OBS 158 CALMS LOWER LEVEL 86.00 KEY: ENTRY I RELATIVE CONCENTRATION - XOQ (S/M+ ~ 3) ENTRY 2 DEPLETED RELATIVE CONCENTRATION (S/Mi ~ 3)

ENTRY 3 RELATIVE DEPOSITION RATE ()/Mi~ 2) ENTRY 4 DECAYED XOQ (S/Mii3) - HALF LIFE 2.26 DAYS ENTRY 5 DECAYED XOQ (5/Mii3) - HALF LIFE 8.00 DAYS ENTRY 6 DEC~DPL XOQ (S/M++3) - HALF LIFE 2.26 DAYS ENTRY 7 DEC+DPL XOQ (S/M+i3) - HALF LIFE 8.00 DAYS ENTRY 8 DISTANCE IN METERS

AVERAGE METEOROLOGICAL RELATIVE CONCENTRATION ANALYSIS DATA PERIOD: 01/01/89 TO 12/31/89 FIXED AND SPECIAL DISTANCES DISPERSION ANALYSIS ~ ~ RADIOLOGICAL EFFLUENT DISPERSION PROGRAM ADSSES (CNDAP)0)

FOR CALENDAR YEAR 1989 SUSQUEHANNA STEAM ELECTRIC STATION) LUZERNE COUNTY, PA PENNSYLVANIA POWER 8 LIGHT COMPANY: ALLENTOWN, PA DATE 22-FEB-90 ADSSES DEVELOPED BY. MODIFICATION OF 01M PROGRAM ANDIFF AFFECTED SECTORS NNE NE ENE E ESE SE SSE 5 SSW SW WSW W WNW NW NNW N 35.0 MILES (56.3 KM) 1.0E-09 9.2E-IO 2.1E-09 3.2E-10 9.6E-11 7.5E-11 1.2E-10 3.0E-)0 5.7E-)0 2.5E-09 3.8E-09 6. 3E-10 3. OE-10 4.6E-)0 1.2E-09 9. 2E-10 5.2E-10 4.6E-10 1.0E-OB 1.6E-10 4.8E-11 3.7E-11 5.9E-11 1.5E-10 2.9E-10 1.35-09 1.9E-09 3. )E-10 1.5E-10 2. 3E-10 6.2E-10 4. 6E-10 9.5E-13 1.6E-12 4.6E-12 6.9E-)3 2.2E-13 1.6E-)3 2. 6E-13 3.2E-)3 4.8E-)3 1.2E-)2 I .OE-12 2. 1E-13 1.3E-13 2. BE-13 8. OE-13 7.5E-13 8.5E-10 7.8E-10 1.8E-09 2.7E-'10 8.3E-11 6.2E-)1 1.0E 10 2.4E-10 4.5E-10 1.9E-09 2.9E-09 4. 6E-10 2. 2E-10 3. 5E-10 9. 4E-10 7. 2E-10 9.8E-10 8.7E-)0 2.0E-09 3.0E-10 9.2E-)1 7.0E-11 'I . )E-10 2.8E-)0 5.3E-10 2.36-09 3.5E-09 5.7E-10 2.7E-)0 4. 2E-10 1. 1E-09 8.5E-10 4.3E-10 3.9E-10 9.0E-'10 1.3E-)0 4.2E-)'I 3.1E-11 5.2E-)1 1.2E-10 2.3E-10 9.6E-)0 1.4E-09 2. 3E-10 1. ')E-10 1. 7E-10 4. 7E-10 3. 6E-10 4.9E-10 4.4E-10 1.0E-09 1.5E-10 4.6E-11 3.5E-11 5.7E-11 1.4E-10 2.7E-IO 1.2E-09 1.7E-09 2.9E-10 1.4E-')0 2. 1E- 'lo 5. 7E-)0 4.3E-10 56315. 56315. 56315. 56315. 56315. 56315. 56315. 56315. 56315. 563'15. 56315. 56315. 56315. 56315. 56315. 56315.

45.0 MILES (72.4 KM) 4.)E-10 3. 1E-'lo 7.3E- IO ).OE-10 2.3E-11 1. 1E-11 3. 6E-1 1.3E 10 1. 7E-10 1.0E-09 9.4E-10 1.5E-10 7.3E-11 . )E-10 4.0E-10 2. 6E-10 ll 1 1 1.9E-10 '1.4E-10 3.4E-10 4.7E-1'I 1.1E-11 5.0E-)2 1. 7E-11 6. 1E-11 7.7E 4.7E-10 4.4E-10 7.2E-1'I 3.4E-11 5.2E-11 1.9E-10 ) . 2E-10 3.2E-13 4.7E-)3 1.4E-12 1.9E-)3 4.6E-)4 2.0E-)4 7. )E-14 1. 2E-13 1.2E 13 4.0E-13 2.1E-13 4.3E-14 2.7E-14 5.7E-)4 2. 2E-13 1.8E-13 3.2E-10 2.6E-10 6.0E-10 8.2E-11 1.9E-11 B.SE-12 3. 1E-11 9.9E-1 ') 1.2E-10 7.1E-)0 6.6E-10 1.)E-)0 S.OE-11 7.8E- 11 2. 9E-10 1.9E-)0 3.8E-10 2.9E-10 6.8E-10 9.4E-'l l 2.2E-11 9.9E-12 3.4E-11 1. 2E-'10 1. SE-10 9. 1E-'10 8.4E-10 1.4E-)0 6.5E-11 1.0E-10 3. 6E- 'I 0 2.4E-10 1.5E-10 1.2E-10 2.8E-)0 3.8E-11 B.BE-12 3.9E-12 1.4E 11 4.6E-'ll 5.7E-11 3.3E-10 3.1E-)0 4.9E-11 2.3E-11 3.6E-)l ).3E-)0 8.9E-1 \

1.8E-10 1.4E-10 3.2E-10 4.4E-11 1.0E-11 4.6E-12 1.6E 1) 5.6E-)1 7.0E-1'I 4.2E-10 3.9E-)0 6.4E-11 3.0E-11 4.7E-)l ).7E-'10 1.1E 10 72405. 72405. 72405. 72405. 72405. 72405. 72405. 72405. 72405. 72405. 72405. 72405. 72405. 72405. 72405. 72405.

0.4 MILES (0.644 KM) 9.5E-06 8.4E-06 S.SE-06 2.8E-06 2.1E-06 2.6E-06 3. IE-06 8.7E-06 1.5E-05 2.2E-OS 4.9E-OS 2.3E-05 1.3E-OS 1.3E-OS 8.9E-06 8.3E-06 B.BE-06 7.7E-06 5.1E-06 2.6E-06 1.9E-06 2.4E-06 2.9E-06 B.OE-06 1.4E-05 2.0E-05 4.6E-05 2. 1E-05 1.2E-OS 1.2E-OS 8.2E-06 7.76-06 3.5E-OB 5.3E-OB 4.1E-OB 2.0E-OB 1.5E-OB 1.8E-OB 2.2E-OB 3.4E-OB S.OE-OB 4.6E-OB 6.5E-OB 3.5E-OB 2.5E-OB 3. 1E-08 2.4E-OB 2.8E-OB 9.5E-06 8.3E-06 5.5E"06 2.8E-06 2. 1E-06 2.6E-06 3. 1E-06 8.6E-06 1.5E-05 2.2E-OS 4.9E-05 2.3E-05 1. 3E 05 1.2E-OS B.BE-06 8.3E-06 9.5E-06 8.4E-06 S.SE-06 2.8E-06 2.IE-06 2.6E-06 3. 1E-06 8.7E-06 ).SE-OS 2.2E-OS 4.9E-OS 2.3E-OS 1.3E-OS 1.3E-OS B.BE-06 8.3E"06 B.BE-06 7.7E-06 5.1E-06 2.6E-06 1.9E-06 2.4E-06 2.9E-06 B.OE-06 1.4E-OS 2.0E-OS 4.5E-OS 2.1E-05 ).2E-05 1.2E-05 8.2E-06 7.7E-06 B.BE-06 7.7E-06 5.1E-06 2.6E-06 1.9E-06 2.4E-06 2.9E"06 B.OE-06 1.4E-05 2.0E-OS 4.6E-05 2. 1E-05 1.2E-05 1.2E-05 8.2E=06 7.7E-06 644. 644. 644. 644 644. 644. 644. 644. 644. 644. 644. 644. 644. 644. 644. 644.

0.6 MILES (0.965 KM)--

5.9E-06 4.8E-06 3. 1E-06 1.6E-06 ).1E-06 1.5E-06 1. BE-06 5 1E"06 B.SE-06 1.3E-05 3.0E-05 1.3E-OS 7.6E-06 7.1E-06 5.3E-06 5.4E-06 4.4E-06 2.8E-06 1. SE-06 1.0E-06 1.3E"06 1.7E-06 4.6E-06 7.7E-06 1.2E-OS 2.7E-05 1.2E-OS 6.8E-06 6.4E-06 4.BE=06 4.7E-06

~

4.3E-06 2.0E-OB 2.9E-OB 2.2E-OB 1. OE-08 7.5E-09 9.3E-09 '1.2E-OB 1.9E-OB 2.7E-OB 2.6E-OB 4.0E-OB 2.0E-OB 1.4E-OB 1.7E-OB 1.3E-OB 1.5E-OB 5.9E-06 4.8E-06 3.0E-06 1.6E-06 1. 1E-06 1.5E-06 ).BE-06 5. 1E-06 8.5E-06 1.3E-OS 3.0E-OS 1.3E-OS 7.5E-06 7. 1E-06 5.3E-06 4.7E-06 5.9E-06 4.8E-06 3.0E"06 1.6E-06 1.1E-06 1.5E-06 ).BE-06 5.1E-06 8.5E-06 1.3E-OS 3.0E-05 1.3E-05 7.5E-06 7.)E-06 5.3E-06 4.7E-06 5.3E-06 4.4E-06 2.8E-06 1.5E-06 1.0E-06 1.3E-06 '1.7E-06 4.6E-06 7.7E-06 1.1E-OS 2.7E-05 1.2E-05 6.8E-06 6.4E-06 4.8E-06 4.2E-06 5.4E-06 4.4E-06 2.8E-06 1.5E 06 ).OE-06 1.3E-06 1.7E-06 4.6E-06 7.7E-06 1.2E-OS 2.7E-OS 1.2E-OS 6.8E-06 6.4E-06 4.8E-06 4.3E-06 965. 965. 965. 965. 965. 965. 965. 965. 965. 965. 965. 965. 965. 965. 965. 965.

TOTAL OBS - 8760 TOTAL INV OBS - 158 CALMS LOWER LEVEL 86.00 KEY: ENTRY 1 RELATIVE CONCENTRATION - XOQ (5/M~' 3) ENTRY 2 DEPLETED RELATIVE CONCENTRATION (S/Mii3)

ENTRY 3 RELATIVE DEPOSITION RATE ()/M~ ~ 2) ENTRY 4 DECAYED XOQ (5/Mii3) - HALF LIFE 2.26 DAYS ENTRY 5 DECAYED XOQ (S/M~ ~ 3) - HALF LIFE 8.00 0 ENTRY 6 DEC+DPL XOQ (S/Mii3) - HALF LIFE 2.26 DAYS ENTRY 7 DEC+DPL XOQ (S/M~ ~ 3) - HALF LIFE 8.00 ENTRY 8 - DISTANCE IN METERS

AVERAGE METEOROLOGICAL RELATIVE CONCENTRATION ANALYSIS DATA PERIOD: 01/01/89 TO 12/31/89 FIXED AND SPECIAL DISTANCES DISPERSION ANALYSIS FOR CALENDAR YEAR 1989

~ i RADIOLOGICAL EFFLUENT DISPERSION PROGRAM AOSSES (CNDAPIO)

SUSQUEHANNA STEAM ELECTRIC STATION; LUZERNE COUNTY, PA PENNSYLVANIA POWER & LIGHT COMPANY; ALLENTOWN'A DATE 22-FEB-90 ADSSES DEVELOPED BY MODIFICATION OF D&M PROGRAM ANDIFF AFFECTED SECTORS NNE NE ENE E ESE SE SSE S SSW SW WSW W WNW NNW N 0.7 MILES (1.126 KM) 5.0E-06 3.9E-06 2.5E-06 1.3E-06 B.BE-07 1.2E-06 1.5E-06 4. 1E-06 6.8E-06 1. 1E-05 2.4E-OS 1.0E-OS S.BE-06 5.6E-06 4.5E-06 3.7E-06 4.4E-06 3.5E-06 2.2E-06 1. 2E-06 7. 9E" 07 1. 'I E-06 1. 4E-06 3.7E-06 6.1E-06 9.5E-06 2.2E-OS B.OE-06 5.2E-06 5.0E-06 4.0E-,06 3.3E-06 1.7E-OB 2.3E-OB 1.7E-OB 8.2E-09 S.BE-09 7.3E-09 9.7E-09 1.5E"08 2. 1E-08 2. 1E-08 3.2E-OB 1.5E-OB 1.0E-OB 1.3E-OB 1. 1E-08 1. 1E-08 4.9E-06 3.9E-06 2.5E-06 1.3E-06 B.BE-07 1.2E-06 1.5E-06 4.1E-06 6.8E-06 1. 1E-05 2.4E-OS 9.9E-06 5.8E-06 5.5E-06 4.5E-06 3.7E-06 4.9E-06 3.9E-06 2.5E-06 1.3E-06 B.BE-07 1.2E-06 1.5E-06 4.1E-06 6.8E-06 1. 1E-05 2.4E-OS 1.0E-OS 5.8E-06 5.6E-06 4.5E-06 3.7E-06 4.4E-06 3.5E-06 2.2E-06 1.2E-06 7.9E-07 1. 1E-06 1.3E-06 3.7E-06 6.1E-06 9.4E-06 2.2E-OS 8.9E-06 5.2E-06 5.0E-06 4.0E-06 3.3E-06 4.4E-06 3.5E-06 2.2E-06 1.2E-06 7.9E-07 1. 1E-06 1.4E-06 3.7E-06 6.1E-06 9.5E-06 2.2E-OS 8.9E-06 5.2E-06 5.0E-06 4.0E-06 3.3E-06 1126. 1126. 1'126. 1126. 1126. .1126. 1126. 1126. 1126. 1126. 1126. 1126. 1126. 1126. 1126. 1126.

0.8 MILES ( 1.287 KM) 3.9E-06 3.2E-06 2. 1E-06 1.1E-06 7.6E-07 1.1E-06 1.3E-06 3.4E-06 5.7E-06 B.BE-06 2.0E-05 7.9E-06 5.1E-06 S.OE-06 3.8E-06 3.2E-06 3.5E-06 2.9E-06 1.9E-06 9.4E-07 6.8E-07 9.4E-07 1. 1E-06 3.0E-06 5. 1E-06 7.8E-06 1.8E-OS 7.0E-06 4.5E-06 4.5E-06 3.3E-06 2.8E-06 1.3E-OB 1.9E-OB 1.4E-OB 6.6E-09 4.9E-09 6.5E-09 7.9E-09 1.2E-OB '1.8E-OB 1.7E-,OB 2.7E-OB 1.2E 08 8.7E-09 1. IE-08 9.0E-09 9.6E-09 3.9E-06 3.2E-06 2.1E-06 'I. 1E-06 7.6E-07 1.'IE-06 1.3E-06 3.4E-06 5.7E-06 8.7E-06 2.0E-OS 7.8E-06 S.OE-06 5.0E-06 3.7E-06 3. 1E-06 3.9E-06 3.2E-06 2.1E-06 1.1E-06 7.6E-07 1.'IE-06 1.3E-06 3.4E-06 5.7E-06 B.BE-06 2.0E-05 7.9E-06 5.1E-06 S.OE-06 3.8E-06 3.2E-06 3.5E-06 2.9E-06 1.9E-06 9.4E-07 6.7E-07 9.4E-07 1. 1E-06 3.0E-06 5. 1E-06 7.7E-06 1.8E-05 6.9E-06 4.5E-06 4.4E-06 3.3E-06 2.8E-06 3.5E-06 2.9E-06 1.9E-06 9.4E-07 6.8E-07 9.4E-07 1. 1E-06 3.0E-06 5. 1E-06 7.8E-06 1.8E-OS 7.0E-06 4.5E-06 4.5E-06 3.3E-06 2.8E-06 1287. 1287. 1287. 1287. 1287. 1287. 1287. 1287. 1287. 1287. 1287. 1287. 1287. 1287. 'I 287. 1287.

0. 9 MILES ( . 448 KM) 1 3.4E-06 2.7E-06 1.8E-06 8.7E"07 6.2E-07 B.SE-07 1.'IE-06 2.9E-06 4.7E-06 7.3E-06 1.9E-05 6.9E-06 4.3E-06 4. 1E-06 3.3E-06 2.5E-06 3.0E-06 2.4E-06 1.6E-06 7.7E-07 5.5E-07 7.5E-07 9.3E-07 2.6E-06 4.2E-06 6.5E-06 1.6E-OS 6. IE-06 3.8E-06 3.6E-06 2.9E-06 2.2E-06 1.1E-OB 1.5E-OB 1.2E-OB 5.3E-09 3.9E-09 5. 1E-09 6.6E-09 1.0E-OB 1.4E-OB 1.4E-OB 2.4E-OB 1.0E-OB 7.2E-09 9.0E-09 7.7E-09 7.5E-09 3.4E-06 2.7E-06 1.8E-06 8.7E-07 6.2E-07 8.5E-07 1. 1E-06 2.9E-06 4.7E-06 7.3E-06 1.8E-OS 6.8E-06 4.2E-06 4. 1E-06 3.3E-06 2.5E-06 3.4E-06 2.7E-06 1.8E-06 8.7E-07 6.2E-07 8.5E-07 1. IE-06 2.9E-06 4.7E-06 7.3E-06 1.9E-05 6.9E-06 4.3E-06 4. 1E-06 3.3E-06 2.5E-06 3.0E-06 2.4E-06 1.5E-06 7.6E-07 5.5E-07 7.5E-07 9.3E-07 2.5E-06 4.2E-06 6.4E.-06 1.6E-OS 6.0E-06 3.7E-06 3.6E-06 2.9E-06 2.2E-06 3.0E-06 2.4E-06 1.6E-06 7.6E-07 5.5E-07 7.5E-07 9.3E-07 2.6E-06 4.2E-06 6.5E-06 1.6E-05 6.0E-06 3.8E-06 3.6E-06 2.9E-06 2.2E-06 1448. 1448. 1448. 1448. 1448. 1448. 1448. 1448. 1448. 1448. 1448. 1448. 1448. 1448. 1448. 1448.
1. 0 MILES ( 1. 609 KM) 3.0E-06 2.2E-06 1.6E-06 7.0E-07 4.9E-07 7.2E-07 8.3E-07 2.4E-06 3.9E-06 6.3E-06 1.5E-05 5.6E-06 3.4E-06 3.4E-06 2.9E-06 2.1E;06 2.6E-06 2.0E-06 1..4E-06 6. 1E-07 4.3E-07 6.3E-07 7.2E-07 2. IE-06 3.4E-06 S.SE-06 1.3E-OS 4.9E-06 3.0E-06 3.0E-06 2.5E-06 1.9E-06 9.4E-09 1.2E-OB 1.0E-OB 4.2E-09 3.0E-09 4.3E-09 5. IE-09 8.2E-09 '1.2E-OB 1.2E-OB 2.0E-OB 7.9E-09 5.7E-09 7.3E-09 6.7E-09 6.2E-09 3.0E-06 2.2E-06 1.5E-06 7.0E-07 4.9E-07 7.2E-07 8.3E-07 2.4E-06 3.9E-06 6.2E-06 1.5E-OS S.SE-06 3.4E-06 3.4E-06 2.9E-06 2.1E-06 3.0E-06 2.2E-06 I.SE-06 7.0E-07 4.9E-07 7.2E-07 8.3E-07 2.4E-06 3.9E-06 6.3E-06 1.5E-OS S.SE-06 3.4E-06 3.4E-06 2.9E-06 2. 1E-06 2.6E-06 2.0E-06 1.3E-06 6. 1E-07 4.3E-07 6.2E-07 7.2E-07 2. 1E-06 3.4E-06 5.4E-06 1.3E-OS 4.8E-06 3.0E-06 2.9E-06 2.5E-06 1. BE-06 2.6E-06 2.0E-06 1.4E-06 6.1E-07 4.3E-07 6.3E-07 7.2E-07 2. 1E-06 3.4E-06 S.SE-06 1.3E-OS 4.8E-06 3.0E-06 3.0E-06 2.5E-06 1.9E-06 1609. 1609. 1609. 1609. 1609. 'I 609. 1609. 1609. 1609. 1609. 1609. 1609. 1609. 1609. 1609. 1609.

TOTAL OBS 8760 TOTAL INV OBS - 158 CALMS LOWER l. EVEL 86.00 KEY: ENTRY 1 RELATIVE CONCENTRATION - XOQ (S/Mi ~ 3) ENTRY 2 DEPLETED RELATIVE CONCENTRATION (S/Mii3)

ENTRY 3 RELATIVE DEPOSITION RATE ( 1/M442) ENTRY 4 DECAYED XOQ (S/Mii3) - HALF LIFE 2.26 DAYS ENTRY 5 DECAYED XOQ (S/Mi ~ 3) - HALF LIFE 8.00 DAYS ENTRY 6 DEC+DPL XOQ (S/Mii3) HALF LIFE 2.26 DAYS ENTRY 7 DEC OPL XOQ (S/M+ 3) - HALF LIFE 8.00 DAYS ENTRY 8 - DISTANCE IN METERS

AVERAGE METEOROLOGICAL RELATIVE CONCENTRATION ANALYSIS DATA PERIOD: 01/01/89-TO 12/31/89 FIXED AND SPECIAL DISTANCES DISPERSION ANALYSIS ~ ~ RADIOLOGICAL EFFLUENT DISPERSION PROGRAM ADSSES (CNOAP)0)

FOR CALENDAR YEAR 1989 SUSQUEHANNA STEAM ELECTRIC STATION; LUZERNE COUNTY, PA PENNSYLVANIA POWER 8. LIGHT COMPANY; ALLENTOWN, PA DATE 22-FEB-90 ADSSES DEVELOPED BY MODIFICATION OF DBM PROGRAM ANDIFF AFFECTED SEC)'ORS NNE NE ENE E ESE SE SSE S SSW SW WSW W WNW NW NNW N SITE BOUNDARY 3.8E-06 2.1E-06 1.9E-06 9.6E-07 1.5E-06 3.3E-06 3.6E-06 ).OE-OS 1.5E-OS 9.3E-06 1.2E-OS 5.2E-06 6.8E-06 6.4E-06 5.2E-06 4.6E-06 3.4E-06 1.8E-06 1.7E-06 B.SE-07 1.4E-06 3. )E-06 3.4E-06 9.3E-06 1.4E-05 8.2E-06 ).OE-OS 4.5E-06 6. 1E-06 5.8E-06 4.7E-06 4.2E-06 1.2E-OB 1.1E-OB 1.3E-OB 6.0E-09 ).OE-OB 2.3E-OB 2.6E-OB 4.0E-OB S.OE-OB 1.8E-OB 1.5E-OB 7.4E-09 1.2E-OB I.SE-OB 1.3E-OB 1.5E-OB 3.8E-06 2.)E-06 1.9E-06 9.6E-07 '1.5E-06 3.3E-06 3.6E-06 9.9E-06 1.5E-05 9.2E-06 1.2E-05 5.1E-06 6.7E-06 6.4E-06 5.2E-06 4.6E-06 3.8E-06 2.1E-06 '1.9E-06 9.6E-07 1.5E-06 3.3E-06 3.6E-06 1.0E-05 1.5E-OS 9.2E-06 1.2E-05 5.2E-06 6.8E-06 6.4E-06 5.2E-06 4.6E-06 3.4E-06 1.8E-06 1.7E-06 8.5E-07 1.4E-06 3.')E-06 3.4E-06 9.3E-06 1.4E-05 8.2E-06 ).OE-05 4.5E-06 6. 1E-06 5.8E-06 4.7E-06 4. 1E-06 3.4E-06 1.8E"06 1.7E-06 8.5E-07 1.4E-06 3.)E-06 3.4E-06 9.3E-06 1.4E-OS 8.2E-06 1)OE-05 4.5E-06 6. 1E-06 S.BE-06 4.7E-06 4. 1E-06 1319. 1770. 1384. 1287. 805. 547. 547. 547. 628. 1239. 1931. 1609. 1030. 1030. 981 . 981 .

NEAREST DAIRY ANIMALS (PER 1989 LAND-USE CENSUS)----

2.6E-07 2.2E-07 2.3E-07 5.9E-OB 1.0E-07 1.4E-07 9.8E-OB 2.2E-07 7. 1E-07 4.5E-07 7.3E-06 3.8E" 07 1.5E-06 2.7E-07 3.0E-07 2.2E-07 1.9E-07 1.6E-07 1.7E-07 4.4E-OB 8. 1E-08 1. )E-07 7.6E-OB ).7E-07 5.6E-07 3.3E-07 6. )E-06 2.8E-07 1.2E-06 2.0E-07 2.2E-07 1.6E-07 5.7E-10 B.BE-)0 1.2E-09 2.8E-10 5.5E- )0 7.4E 10 5.0E 10 5. 9E-10 1.7E-09 5.5E-'IO 8.3E-09 3.4E-10 2. 1E-09 3.9E-10 4.9E 10 4.2E-10 2.5E-07 2. )E-07 2.2E-07 5.8E-OB 1.0E-07 1.4E-07 9.7E-OB 2.2E-07 7.06-07 4. 3E-07 7.2E-06 3.6E-07 1.4E-06 2.6E-07 2.9E-07 2. 1E-07 2.6E-07 2.2E-07 2.3E-07 5.9E-OB 1.0E-07 1.4E"07 9.7E-OB 2.2E-07 7. )E-07 4:4E-07 7.3E-06 3.8E-07 1.4E 06 2.7E-07 2.9E-07 2. 1E-07 1.9E-07 1.6E-07 1.7E-07 4.3E-OB B.OE-OB 1.'IE-07 7.5E-OB '1.7E-07 5.5E-07 3. 1E-07 6.0E-06 2.7E-07 1. 2E-06 1.9E-07 2.2E-07 1. 5E-07 1.9E-07 1.6E-07 1.7E-07 4.4E-OB 8. 1E-08 1. 1E-07 7. 5E-08 1.7E-07 5.6E-07 3.2E-07 6. )E-06 2.8E-07 1.2E-06 2.0E-07 2.2E-07 1.6E-07 8045. 8045. 5953. 7241. 4023. 4183. 5632. 6275. 4827. 8045. 2735. 8045. 2896. 8045. 6758. 8045.

NEAREST GARDENS (PER 1989 LAND-USE CENSUS)----------

2.0E-06 7. 1E-07 4.8E-07 4.1E-07 1.5E-07 2.6E-06 1.5E-06 2. 1E-06 3. 1E-06 2.6E-06 1. 2E-05 2 ~ 9E-06 7.9E-06 1. 1E-06 3.2E-07 1.5E-06 1.7E-06 5.7E-07 3.9E-07 3.5E-07 1.2E-07 2.4E-06 '1.4E-06 ).BE-06 2.7E-06 2.2E-06 1.0E-05 2.5E-06 7.2E-06 8.6E-07 2.4E-07 ).3E-06 6.0E-09 3.4E-09 2.8E-09 2.4E-09 8.5E-10 1.8E"08 9.7E-09 7.0E-09 B.BE-09 4.4E-09 1.5E-OB 3.8E-09 1.5E-OB 1.9E-09 5.3E-10 4. 1E-09 2.0E-06 7.0E-07 4.8E-07 4.1E-07 1.5E-07 2.6E-06 ).SE-06 2. 1E-06 3. 1E-06 2.6E-06 1.2E-05 2.9E-06 7.9E-06 1.0E-06 3. 1E-07 1.5E-06 2.0E-06 7.0E-07 4.8E-07 4.'IE-07 1.5E-07 2.6E-06 1.5E-06 2. 1E-06 3. 1E-06 2.6E 06 1.2E-05 2.9E-06 7.9E-06 1.0E-06 3.')E-07 1.5E-06 1.7E-06 5.7E-07 3.9E-07 3.5E-07 1.2E-07 2.4E-06 1.3E-06 1.8E-06 2.6E-06 2. 1E-06 1.0E-05 2.5E-06 7.2E-06 8.4E-07 2.3E-07 1.3E-06

1. 7E-06 5.7E-07 3.9E-07 3.5E-07 1.2E-07 2.4E-06 1.4E-06 1.8E-06 2.6E-06 2.2E-06 1.0E-05 2.5E-06 7.2E-06 8.5E-07 2.4E-07 1.3E-06 2092. 3701. 3540. 2253. 3218. 644. 1126. 1770. ')931. 2896. 1931. 2414. 805. 3540. 6436. 2092.

NEAREST RESIDENCES (PER '89 LAND-USE CENSUS)-----"--

3.4E-06 7. 1E-07 4.8E-07 4. 1E-07 1.5E-06 2.6E-06 1.5E-06 2.1E-06 3.1E-06 3.5E-06 1.2E-05 B.OE-06 5.9E-06 4.2E-06 USE-06 1. SE-06 3.0E-06 5.7E-07 3.9E-07 3.5E-07 1.3E-06 2.4E-06 1.4E-06 1.8E-06 2.7E-06 2.9E-06 1.0E-05 7 'E-06 5.3E-06 3.7E-06 S.OE-06 1.3E-06

1. 1E-08 3.4E-09 2.8E-09 2.4E-09 1.0E-OB 1.8E-OB 9.7E-09 7.0E-09 B.BE-09 6. 1E-09 1.5E-OB 1.2E-OB 1.0E-OB 9. 1E-09 1.4E-OB 4. )E-09 3.4E-06 7.0E-07 4.8E-07 4.)E-07 1.4E-06 2.6E-06 1.5E-06 2. 1E-06 3. 1E-06 3.4E-06 1.2E"05 7.9E-06 5.8E-06 4.1E-06 5.5E-06 1. 5E-06 3.4E-06 7.0E-07 4.8E-07 4. 1E-07 1.5E-06 2.6E-06 1.5E-06 2. 1E-06 3. 1E-06 3.4E-06 1.2E"05 B.OE-06 5.9E-06 4. 1E-06 5 5E-06 1.5E-06

~

3.0E"06 5.7E-07 3.9E-07 3.5E-07 1.3E-06 2.4E-06 1.3E-06 1.8E-06 2.6E-06 2.9E-06 1.0E-05 7.0E-06 5.2E-06 3.6E-06 4.9E-06 ).3E-06 3.0E-06 5.7E-07 3.9E-07 3.5E-07 1.3E-06 2.4E-06 1.4E-06 1.8E-06 2.6E-06 2.9E-06 ).OE-OS 7.1E-06 5.2E-06 3.7E-06 S.OE-06 1.3E-06 1448. 3701. 3540. 2253. 805. 644. 1126. 1770. 1931. 2414. 1931. 1287. )126. 1448. 965. 2092.

TOTAL OBS - 8760 TOTAL INV OBS - 158 CALMS LOWER LEVEL - 86.00 KEY:=ENTRY 1 RELATIVE CONCENTRATION - XOQ (S/M+~3) ENTRY 2 DEPLETED RELATIVE CONCENTRATION (S/Mii3)

ENTRY 3 RELATIVE DEPOSITION RATE ()/M+~2) ENTRY 4 DECAYED XOQ (S/M~ ~ 3) - HALF LIFE 2.26 DAYS ENTRY 5 DECAYED XOQ (S/Mii3) - HALF LIFE 8.00 DA ENTRY 6 OEC+DPL XOQ (S/Mi~3) - HALF LIFE 2.26 DAYS ENTRY 7 DECiDPL XOQ (S/M~~3) - HALF LIFE 8.00 ENTRY 8 DISTANCE IN METERS

AVERAGE METEOROLOGICAL RELATIVE CONCENTRATION ANALYSIS DATA PERIOD: 01/01/89 TO 12/31/89 FIXED ANO SPECIAL DISTANCES DISPERSION ANALYSIS RADIOLOGICAL EFFLUENT DISPERSION PROGRAM ADSSES (CNDAP10)

FOR CALENDAR YEAR '1989 SUSQUEHANNA STEAM ELECTRIC STATION; LUZERNE COUNTY, PA PENNSYLVANIA POWER (L LIGHT COMPANY; ALLENTOWN PA DATE 22-FEB-90 *DSSES DEVELOPED BY MODIFICATION OF DSM PROGRAM ANDIFF AFFECTED SECTORS NNE NE ENE E ESE SE SSE S SSW SW WSW , W WNW NW NNW LOW POPULATION ZONE RADIUS (3 MILES) 5.9E-07 4.7E-07 3. 1E-07 1.2E-07 7.2E-OB 1.0E-07 1.3E-07 3.9E-07 7. 1E-07 1.2E-06 3.2E-06 9.5E-07 6.2E-07 6.4E-07 5.2E-07 4. 7E-07 4.7E-07 3.7E-07 2.5E-07 9.4E-OB 5.7E-OB 8.2E-OB 1.1E-07 3.0E-07 5.6E-07 9.1E-07 2.5E-06 7.5E-07 4.9E-07 S.OE-07 4. 1E-07 3.7E-07 1.5E-09 2'.1E-09 1.7E-09 6.1E-10 3.8E 10 5.3E-10 7.0E-10 1. 1E-09 '1

. 75-09 1.7E-09 3.0E-09 1.0E-09 B.OE-10 1. 15-09 9.3E-10 1. 1E-09 5.8E-07 4.6E-07 3.1E-07 1.2E-07 7.1E-OB 1.0E-07 1.3E-07 3.8E-07 7.0E-07 1.1E 06 3.1E-06 9.2E-07 6.1E 07 6.2E-07 5.0E-07 4.5E-07 5.9E-07 4.7E-07 3. 1E-07 1.2E-07 7.2E-OB 1.0E-07 1.3E-07 3.8E-07 7.1E-07 1.1E-06 3.2E-06 9.4E-07 6.2E-07 6.3E-07 5. 1E-07 4.6E-07 4.6E-, 07 3.6E-07 2.4E-D7 9.3E-OB 5.6E-OB B.OE-OB 1.0E-07 3.0E-07 5.5E-07 8.9E-07 2.5E-06 7.3E-07 4.8E"07 4.95-07 4.0E-07 3.6E-07 4.6E-07 3.7E-07 2.4E-07 9.4E-DB 5.7E-OB 8. 1E-08 1. 1E-07 3.0E-07 5.6E-07 9.0E-07 2.5E-06 7.4E-07 4.9E-07 5.05-07 4.0E-07 3.6E-07 4827. 4827. 4827. 4827. 4827. 4827. 4827. 4827. 4827. 4827. 4827. 4827 '827. 4827. 4827. 4827.

TOTAL OBS - 8760 TOTAL INV OBS - 158 CALMS LOWER LEVEL - 86.00 KEY: ENTRY 1 RELATIVE CONCENTRATION - XOQ (S/Mi ~ 3) ENTRY 2 DEPLETED RELATIVE CONCENTRATION (S/M%03)

ENTRY 3 RELATIVE DEPOSITION RATE ( 1/M+ 2) ~ ENTRY 4 DECAYED XOQ (S/M<i3) - HALF LIFE 2.26 DAYS ENTRY 5 DECAYED XOQ (S/Mi 3)

~ - HALF LIFE 8.00 DAYS ENTRY 6 DEC~DPL XOO (S/Mii3) - HA< F LIFE 2.26 DAYS ENTRY 7 OEC+DPL XOQ (S/Mi ~ 3) - HALF 1.IFE 8.00 DAYS ENTRY 8 - DISTANCE IN METERS

RECIRCULATION/TERRAIN CORRECTION FACTORS RING NAME NNE NE ENE E ESE SE SSE S SSW SW WSW W WNW NW NNW N 0.5 MILES (.805 KM) 2.35 2.21 2.38 2.32 2.58 2.43 2.68 2.44 2.27 1.92 1.82 2.32 2.56 3.00 2.50 2.'15 1.5 MILES (2.41 KM) 2.42 2.33 2.50 2.08 2.24 2.44 2.44 2.33 2.41 2. 14 2.33 2. 10 2.60 3. 10 2. 79 2. 19 2.5 MILES (4.02 KM) 2.58 2.50 2.72 2.06 2.00 2.25 2.43 2.20 2.33 2.06 2.40 1.96 2.41 2.95 2.75 2.37 3.5 MILES (5.63 KM) 2.82 2.36 2.73 1.86 1.78 1.75 2.08 1.82 1.88 1.77 2. 03 1. 64 2. 13 2.75 2.38 2. 11 4.5 MILES (7.24 KM) 2.31 2.41 2.87 1.80 1 . 50 1 . 41 1 . 63 1. 60 1. 61 1. 55 1.89 1.5'I 2.00 2.56 2.41 2.08 7.5 MILES ( 12.07 KM) 2. 19 2. 38 2. 84 1. 69 1. 10 0.93 1. 12 1.24 1.25 '1.27 1.60 1. 18 1.72 2.28 2.31 2.70 15.0 MILES (24. 1 KM) 0.96 1.41 2.46 1.00 0.68 0.59 0.65 0.40 0.57 0.52 0.60 0.44 0.84 1.19 I. 13 '1.04 25.0 MILES (40.2 KM) 0.32 0.38 1.50 0.56 0.42 0. 17 0.21 0.13 0.19 0.23 0.19 0.10 0.29 0.31 0.33 0.47 35.0 MILES (56.3 KM) 0. 13 0. 15 0.60 0. 18 0.09 0.05 0.07 0.05 0.05 0.11 0.06 0.03 0.03 0.06 0. 18 0. 13

45. 0 MILES (72. 4 KM) 0.07 0.07 0.29 0.08 0.03 0.01 0.03 0.03 0.02 0.06 0.02 0.01 0.0\ 0.02 0.08 0.05 0.4 MILES (0.644 KM) 2. 13 2. 17 2.37 2.31 2.71 2.45 2.56 2.35 2.30 1.90 1.73 2.29 2.55 3.00 2.35 2.'17 0.6 MILES (0.965 KM) 2.35 2.27 2.37 2.32 2.58 2.44 2.71 2.46 2.36 2.04 2.05 2.43 2.67 3.06 2.53 2.20 0.7 MILES (1. 126 KM) 2.45 2.31 2.42 2.32 2.53 2.46 2.77 2.50 2.38 2.14 2. 10 2.37 2.58 3.00 2.69 2.15 0.8 MILES ('1.287 KM) 2.35 2.33 2.53 2.33 2.67 2.70 2.82 2.50 2.43 2.18 2.20 2.29 2.74 3.30 2.73 2.25 0.9 MILES ('1.448 KM) 2.43 2.33 2.50 2.27 2.60 2.59 2.83 2.53 2.39 2.17 2.38 2.38 2.75 3.18 2.83 2.14 1.0 MILES (1.609 KM) 2.50 2.25 2.57 2. 15 2.39 2.57 2.59 2.46 2.31 2. 16 2.30 2.23 2.57 3.07 2.91 2.08 SITE BOUNDARY 2.37 2.38 2.52 2. 11 2.67 2.43 2.34 2.09 2.18 2.17 2.36 2.08 2.63 3.04 2.55 2.20 NEAREST DAIRY ANIMAL 2.29 2.41 2.72 '1.80 2.00 2.20 2.08 1.73 2.11 1.50 2.34 1.46 2.54 2.51 2.40 2.18 NEAREST GARDENS (PER 2.45 2.47 2.65 2.09 2. 12 2.45 2.77 2.43 2.36 2.12 2.31 2. 11 2. 14 3.00 2.40 2. 14 NEAREST RESIDENCES ( 2.45 2.47 2.65 2.09 2.58 2.42 2.77 2.43 2.36 2.14 2.31 2.32 2.60 3. 23 2. 61 2. 15 LOW POPULATION ZONE 2.45 2.43 2.73 1.96 1.89 2.00 2.26 2.01 2.11 1.92 2.22 1.80 2.27 2.85 2.57 2.24

DISTRIBUTION OF CALMS BY WIND SECTOR PASO CLASS NNE NE ENE E ESE SE SSE 5 SSW SW WSW W WNW NW NNW N

'A 0.0 0.0 0.048 0.286 0.190 0.238 0.0 0.190 0.048 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8 0.043 0.0 0. 130 0. 174 0.087 0.087 0.087 0.087 0.130 0:174 0.0 0.0 0.0 0.0 0.0 0.0 C 0.032 0.097 0.065 0.'161 0.161 0.065 0.032 0.032 0.129 0.065 0.097 0.032 0.0 0.0 0.032 0.0 D 0. 1 'I 4 0. 136 0.083 0.096 0.083 0.081 0.078 0.059 0.079 0.056 0.027 0.017 0.005 0.012 0.013 0.060 E 0.075 0.128 0. 187 0. 126 0.087 0.073 0.067 0.068 0.075 0.037 0.013 0.010 0.004 0.005 0.004 0. 041 F 0.035 0.126 0.501 0.150 0.042 0.034 0.029 0.034 0.025 0.008 0.004 0.0 0.001 0.0 0.001 0.010 G 0.024 0. 126 0.664 0. 116 0.035 0.010 0.014 0 002 0.002 0.0 0.0 0.0 0.0 0.002 0.0 0.004 HEIGHT OF VERTICAL MIXING LAYER c 1050.0 METERS HEIGHT OF CONTAINMENT STRUCTURE K 60.4 METERS THRESHOLD OF ANEMOMETER c 0.34 MPS MET DATA FILE USED - DIFF89 HEADER FILES USED - FIXED FLUID OUTPUT FILES USED - APPOI APP02 THERE WERE 5 SPECIAL RECEPTOR RINGS INCLUDEO IN THIS RUN.

USER-SPECIFIED RECIRCULATION/TERRAIN CORRECTION FACTORS WERE APPLIED TO THE MODEL CALCULATIONS.

DEPLETION WAS APPLIEO TO THE MODEL CALCULATIONS.

DEPOSITION WAS CALCULATED.

ALL OUTPUT DATA WERE WRITTEN TO THE GASPAR FORMAT FILE.

SECTION 4 DOSE MEASUREMENTS AND ASSESSMENTS 60

TABLE 20 SEMIANNUAL EFFLUENT AND WASTE DISPOSAL REPORT MAXIMUM~ OFF-SITE DOSES AND DOSE COMMITMENTS TO MEMBERS OF THE PUBLIC Data Period: 1989 DOSE>><<millirem)

Source 1st Qtr 2nd Qtr 3rd Qtr 4th Qtr Year~~

13 17 A. Waterborne Effluents 4.53E-04 3.40E-OS 8.01E-05 2.12E-04 5.82E-04 10 18 B.Airborne Effluents 1.51E-02 1.55E-02 3.62E-03 1.92E-02 5.60E-02 i) Iodines L Particulates 15 19 ii) Noble Gases 2.53E-03 1.94E-03 6.11E-04 5.63E-04 5.63E-03 12 16 20 C. Direct Radiation Based on meteorological data provided in Section 3. Data for the entire year was used for the calculations for airborne effluents.

THEIK ARE NO OTHER URANIUM FUEL CYCLE FACII ITIES WITHIN 8 KM of SSES "Maximum" means the largest fraction of the corresponding Appendix I dose design objective.

"Maximum" dose for the year may not equal the sum of the quarterly maximum doses because the doses may be to different organs or may be at different receptor locations.

The numbered footnotes on the following page briefly explain how each maximum dose was calculated, including the organ and predominant pathway(s).

61

Footnotes for Table 20

1. Dose to the adult total body primarily by the drinking water and fish pathways. Calculated at the closest downstream drinking water user on the Susquehanna River (Danville. PA) using the LADTAP II program.
2. Dose to the child thyroid via the cow milk, inhalation and ground pathways. Calculated at the residence at 1.7 mi WSW using the GASPAR program.
3. Dose to the total body via the plume pathway. Calculated at the residence at 1.7 mi WSW using GASPAR. Total body doses are a higher fraction of the 5 mrem/yr design objective than the skin doses are of the 15 mrem/yr design objective.
4. Based on environmental thermoluninescent dosimeters placed near SSES in unrestricted areas (See "Method for TLD Data Analysis" on the following page).
5. Same as Footnote 1, except the critical age group is the child.
6. Dose to the child thyroid via the vegetation pathway. Calculated at the garden at 0.5 miles WNW.
7. See Footnoe 3.
8. See Footnote 4.
9. Same as Footnote 1, except the critical age group is the child.
10. Dose to the infant thyroid via the ground, vegetation, inhalation and cow milk pathways. Calculated at the residence at 1.7 miles WSW.

ll. See Footnote 3.

12. See Footnote 4.
13. Same Footnote l,except the critical age group is the child.
14. See Footnote 6.
15. See Footnote 3.
16. See Footnote 4.
17. See Footnote 1.

18 'ee Footnote 10.

19. See Footnote 3.
20. See Footnote 4.

62

METHOD FOR TLD DATA ANAIYSIS The relationship between SSES preoperational and operational REMP TU) monitor-ing locations were used to estimate the relative offsite radiological dose from operating SSES during 1989. Twenty-nine TLD locations+ caaanon to both the preoperational and operational data base were selected.

An indicator/control ratio was used to estimate the individual station response while reducing the inherent uncertainties'ssociated with differences in placement design, length of field cycle and processing techniques.

Each of the twenty-nine caanon indicator locations were divided by the average control location response for each quarter. The preoperational and 1989 operational data was then compared and averaged over a quarterly and annual time period.

In all cases. the 1989 data was not significantly different from the preoperational average at the 95X confidence level. It can be concluded that through monitoring of the direct radiation pathway in the vicinity of SSES, no measurable offsite radiological dose or si'gnificant upward trend above normal ambient radiation levels could be detected. The offsite direct radiation dose from operation of SSES during 1989 is therefore estimated to be 0 mR.

~SELECIED INDICATOR UXATIONS:

1S2. 2S2, 2S3, 3S3, 3S4, 4S1. 4S3, SS1. 5S4, 8S2, 10S1, 11S2, 12S3, 13S2, 14S5, 15S4, 16S1, 6A4, 7A1, 15A3,16A2. 2B3, 7B3, 8B2, 9B1, 10B2, 10B3, 12B4, 16B1.

63

DOSES TO MEMBERS OF THE PUBLIC WITHIN THE SITE BOUNDARY SSES Technical Specification 6.9.1.11 requires that the Semiannual Effluent Release Reports include an assessment of the radiation dose from radioactive effluents to members of the public within the site boundary. Within the SSES site boundary there are four areas which are open to members of the public (See Figure 8):

~ The Susquehanna Riverlands Recreation Area/

Energy Information Center

~ A Residential Area in the Southeast Sector

~ Residences in the West and West-Southwest Sectors In the area comprising the Riverlands recreation area, which surrounds the Energy Information Center, four pathways of radiation exposure can be identified; plume, ground, inhalation, and direct radiation. There are no significant exposure pathways from waterborne effluents in this area.

There are approximately 50,000 visitors tothe Riverlands/Information Center complex each year. In order to facilitate dose calculations. it is assumed that each visitor stays in the area for one hour.

Thermoluminescent dosimeters are positioned near the information center and at another location within the Riverlands. Readings from 1989 indicate radiation levels are not significantly different than observed natural background (See "Methods of TLD Data Analysis" on page 63).

Use of the GASPAR code yields calculated doses for the Riverlands area for the report period. These doses are the total doses at the location from gaseous effluents during the report period. In order to compute doses to members of the public who stay for only short periods of time, these doses are converted to dose rates. Taking into account the estimated 50.000 person-hours of occupancy. the collective (man-rem) doses shown in Table 21 are calculated.

Doses at the residence at 0.4 mile SE are representative of the resi'dential area in the southeast sector within the site boundary. The exposure pathways present in the residential area at 0.4 mile SE are plume, ground, vegetation.

inhalation and direct radiation. The calculated doses for this location are shown in Table 22 ' thermoluminescent dosimeter placed at the residence at 0.4 mile in the SE sector indicated radiation levels that are not significantly different from background (See "Methods of TLD Data Analysis" on page 63.)

Exposure pathways present at the residence at 0.8 mile W are plume. ground, inhalation and direct radiation. The calculated doses for this location are shown in Table 23. A thermoluminescent dosimeter located at 1.3 miles in the west sector indicated direct radiation levels are not significantly different from background (See "Methods of TLD Data Analysis" on page 63).

Exposure pathways present at the residence at 1.20 miles WSW are plume, ground.

vegetation, inhalation. and direct radiation. 'The calculated doses for this location are shown in Table 24. The nearest thermoluminescent dosimeter indicated that direct radiation levels at this location are not significantly different from background (See "methods of TLD Data Analysis" on page 63).

FIGURE 8 ASEAS WITHIN THE SITE BOUNDARY OPEN TO MMES OF THE PUK IC 63' I

l Susquehanna I I

I Riverlands I I

I 1

RECREATION AREA j I

I I

I I

I I

I

\

Residence I

I I

I I

J I

Site Boundary I Re s i tial.

den I

I I

Area

/

I

/

/

/

/

/

/

r 65

TABLE 21 CALCULATED COLLECTIVE DOSES TO MEMBERS OF THE PUBLIC WITHIN THE RIVERLANDS/INFORMATION CENTER COMPLE)(~

Data Period: 1/1/89 12/31/89 Exposure Pathway Organ(s) Collective Dose (man-rem) plume<< total body, GI-tract, bone. liver, kidney, thyroid 1.73E-05 1.82E-05 skin 4.87E-05 ground<< total body, GI-tract, bone, liver, kidney, thyroid, lung 2.10E-05 skin 2.47E-05 inhalation; four highest organ doses:

teen thyroid , 5.66E-05 adult thyroid 5.54E-05 child thyroid 5.11E-05 infant thyroid 3.13E-05

~ Dispersion factors used are for 0.7 miles NE; values can be found in Table 14.

<< Doses via these pathways are not age-group dependent.

66

TABLE 22 CALCULATED DOSES FOR 'IHE RESIDENZIAL AREA IN THE 0 SOUTHFAST SECTOR MITHIN THE SSES SITE BOUNDARY Data Period: 1/1/89 - 12/31/89 NUCLEAR SERVICES GASPAR DOSE CALC ~ USING CAL YR 1989 MET DATA SPECIAL LOCATION 4 3 RESIDENCES AT 0.40 MILES SE ANNUAL BETA AIR DOSE = 1.03E-02 MILLRADS ANNUAL GAMMA AIR DOSE = 3.46E-03 MILLRAOS PATHWAY T.BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN

+ + +

PLUME I 2.02E-03 I 2.02E-03 I 2.02E-03 I 2.02E-03 I 2.02E-03 I 2.02E-03 I 2. 12E-03 I 5.69E-03 I

+

GROUND I 2.88E-03 I 2.88E-03 I 2.88E-03 I 2.88E-03 I 2.88E-03 I 2.88E-03 I 2.88E-03 I 3.39E-03 I

+ +

VEGET I I I I I I I I I ADULT I 8.79E-03 I 9.26E-03 I 1.55E-OS I 8.82E-03 I 8.76E-03 I 1.06E-02 I 8.73E-03 I 8.73E-03 I TEEN I 1.05E-02 I 1.10E-02 I 2.22E-05 I 1.06E-02 I 1.05E-02 I 1.21E-02 I 1.04E-02 I 1.04E-02 I CHILD I 1.66E-02 I 1.676-02 I 4.99E-05 I 1.66E-02 I 1.64E-02 I 1.90E-02 I 1.64E-02 I 1.64E-02 I I NHAL I I I I I I I I I ADULT I 6.00E-03 I 6.01E-03 I 1.08E-06 I 6.00E-03 I 6.00E-03 I 6.47E-03 I 6. 14E-03 I 6.00E-03 I TEEN I 6.04E-03 I 6.05E-03 I 1.51E"06 I 6.04E-03 I 6.04E-03 I 6.62E"03 I 6.24E-03 I 6.04E-03 I CHILD I 5.34E-03 I 5.34E-03 I 2.04E-06 .I 5.34E-03 I 5.34E-03 I 5.98E-03 I 5.506-03 I 5.34E-03 I INFANT I 3.07E-03 I 3.07E-03 I 1.58E-06 I 3.07E-03 3.07E-03 3.66E-03 3.17E-03 3 '7E-.03 R CS R ICSCSSCSSSRS ORGAN TOTALS FOR PATHWAYS PRESENT S5 I

CRCSmSC$ $ $ t I ROC xcRCS I

Si I I AT THIS LOCATION

+

ADULT I 1.97E-02 I 2.02E-02 I 4.92E-03 I 1.97E-02 I 1.97E-02 I 2.20E-02 I 1.99E-02 I 2.38E-02 I

+ + + +

TEEN I 2. 15E-02 I 2. 19E-02 I 4. 93E-03 I 2 ~ 15E-02 I 2. 14E-02 I 2. 36E-02 I 2. 17E-02 I 2 ~ 55E-02 CHILD I 2.68E-02 I 2.70E-02 I 4.95E-03 I 2.68E-02 I 2.67E-02 I 2.99E-02 I 2.69E-02 I 3.08E-02 I INFANT I 7.97E-03 I 7.97E-03 I 4.90E-03 I 7.98E-03 I 7.97E-03 I 8.56E-03 I 8.18E-03 I 1.22E-02 I

+ + + +

T.BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN 67

TABLE 23 CALCULATED DOSES FOR THE RESIDENCE IN %HE WEST SECTOR WITHIN'HE SSES SITE BOUNDARY DATA PERIOD: 1/1/89 12/31/89

~UCLEaR SERVICES GaSPaR DOSE CaLC ~ USING CaL YR 1989 MET DaTa $

SPECIAL LOCATION N 2 RESIDENCE AT 0. 80 MILES W ANNUAL BETA AIR DOSE = 3. 15E-02 MILLRAOS ANNUAL GAMMA AIR DOSE = 1.06E-02 MILLRAOS PATHWAY T.BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN PLUME I 6. 18E-03 I 6. 18E-03 I 6 '8E-03 I 6. 18E-03 I 6. 18E-03 I 6. 18E-03 I 6.495-03 I 1.74E-02 I GROUND I 1.93E-03 I 1.93E-03 I 1.93E-03 I 1.93E-03 I 1.93E-03 I 1.93E-03 I 1.93E-03 I 2.27E-03

+

INHaL I I I I I I I I I ADULT I 1.85E-02 I 1.85E-02 I 3.25E-06 I 1.85E-02 I 1.85E-02 I 1.99E-02 I 1.898-02 I 1.85E-02 I TEEN I 1.86E-02 I 1.86E-02 I 4.55E-06 I 1.86E-02 I 1.86E-02 I 2.03E-02 I 1.92E-02 I 1.86E-02 CHILD I 1.64E-02 I 1.64E-02 I 6.14E-06 I 1.64E-02 I 1.64E-02 I 1.846-02 I 1.69E-02 I 1.64E-02 I INFANT I 9 '5E 03 I 9 '5E 03 I 4 76E-06 I 9 '6E-03 I 9 '5E 03 I 1.12E-02 I 9 '5E-03 I 9 '5E 0$

ORGAN TOTALS FOR PATHWAYS PRESENT AT THIS LOCATION ADULT I 2 '6E-02 I 2 '6E-02 I 8. 11E-03 I 2 '6E-02 I 2 '6E-02 I 2.80E-02 I 2 '3E-02 I 3.8 lE-02 I

+

TEEN I 2.67E-02 I 2.67E-02 I 8.11E-03 I 2.67E-02 I 2.67E-02 I 2.84E-02 I 2.76E-02 I 3.83E-02 I CHILD I 2.45E-02 I 2.45E-02 I 8. 11E-03 I 2.45E-02 I 2.45E-02 I 2.65E-02 I 2.53E-02 I 3.61E-02 I INFANT I 1'.76E-02 I 1.76E-02 I 8. 11E-03 I 1.76E-02 I 1.76E-02 I 1.93E-02 I 1.82E-02 I 2,91E-02 I T.BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN 68

TABLE 24 CALCULATED DOSES FOR THE RESIDENCE IN THE WEST SOUTHWEST SECTOR WITHIN THE SSES SITE BOUNDARY DATA PERIOD: 1/1/89 12/31/89 NUCLEAR SERVICES GASPAR DOSE CAl.C i USING CAL YR 1989 MET DATA SPECIAL LOCATION > 1 RESIDENCE AT 1.20 MILES WSW ANNUAL BETA AIR DOSE = 4.75E-02 MILLRAOS ANNUAL GAMMA AIR DOSE R 1.60E-02 MILLRADS PATHWAY T.BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN PLUME I 9.32E-03 I 9.32E-03 I 9.32E-03 I 9.32E-03 I 9 '2E"03 I 9.32E-03 I 9.79E-03 I 2.63E-02 I GROUND I 2.40E-03 I 2.40E-03 I 2.40E-03 I 2.40E-03 I 2.40E-03 I 2.40E-03 I 2.40E-03 I 2.83E-03 I VEGET I I I I I I I I ADULT I 4.03E-02 I 4.07E-02 I 1 29E-05 I 4 . 04E-02 I 4 03E-02 I 4.19E-02 I 4.03E-02 I 4.03E-02 I

~' +

TEEN I 4.82E-02 I 4.86E-02 I 1.85E-05 I 4 82E 02

~ I 4 82E-02 I 4.95E-02 I 4.81E-02 I 4.81E-02

+

CHILD

+

I 7.57E-02 I 7 '8E 02 I 4 '6E-05 I 7 .57E-02 I 7. 56E 02 I 7 '7E 02 I 7 '5E-02 I 7 '5E-02 I I NHAL I I I I I I I ADULT I 2 '7E 02 I 2 '7E-02 I 4 .73E-06 I 2 .77E-02 I 2. 77E-02 I 2.98E-02 I 2.83E-'02 I

I 2.77E-02 I

I

+

TEEN I 2 79E-02 I 2 '9E-02 I 6 '2E-06 I 2 '9E-02 I 2 '9E-02 I 3 '4E-02 I 2.87E-02 I 2 '9E-02 I CHILD I 2.47E-02 2.47E-02 8.94E-06 2.47E-02 2.47E-02 2.75E-02 2.53E-02 2.46E-02 Z>>

I I I I I I I INFANT I 1.42E-02 I 1.42E-02 I 6.94E-06 I 1.42E-02 I 1.42E-02 I 1.68E-02 I 1.46E-02 I 1.42E-02 I 5 CC 1 25 55515K 5 C 555 55$ JOSS SSS 5$ ROC SS 5CCC ORGAN TOTALS FOR PATHWAYS PRESENT AT THIS LOCATION ADULT I 7.98E-02 I 8.02E-02 I 1.17E-02 I 7.98E-02 I 7.97E-02 I 8.34E-02 I 8.07E-02 I 9.71E-02 I TEEN I 8.78E-02 I 8.82E-02 I 1 ~ 17E-02 I 8.78E-02 I 8 '8E-02 I 9 '7E-02 I 8 ~ 90E-02 I 1 ~ 05E-01 I

+ + + + +

CHILD I 1. 12E-01 I 1. 12E-01 I 1. 18E-02 I 1. 12E-01 I 1. 12E-01 I 1. 17E-01 I 1. 13E-01 I 1. 29E-01 I INFANT I 2.59E-02 I 2.59E-02 I 1. 17E-02 I 2.59E-02 I 2.59E-02 I 2.85E-02 I 2.68E-02 I 4.33E-02 I T.BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN 69

SECTION 5 CHANGES TO THE OFFSITE DOSE CALCULATION hfANUAL AND THE SOLID WASTE PROCESS CONTROL PROGRAM 70

CHANGES TO THE OFFSITE DOSE CALCULATION MANUAL Due to the necessity of conversion to a new word processing system, this ODCM revision affects the entire manual. Changes other than those of a minor, editorial nature are sunmarized below. These changes became effective December ll. 1989.

1. Deleted Figure 1 (Flow Chart for Offsite Dose Calculations) because it was unnecessary and could be misleading, 2, Added indication to Equation 3 that the calculated setpoint count rate is to be added to the background count rate (p. 6).

3, Updated the SSES site boundary distances based on land purchases (Table 3, p, 19).

4. Eliminated dose rate parameters for radionuclides other than noble gases for the ground and food pathways, because Technical Specification 3.11.2.1 applies a limit on the inhalation pathway only (Table 4, p. 20),
5. Changed Equation 11 (individual dose due to waterborne eEuents, p. 22) to apply dilution factors to the fish pathway in addition to the drinking water pathway. This change is made to be in accordance with the methodology used by the LADTAP II code and to achieve a higher level of realism.
6. Added provisions for use of variable dilution factors based on measured river level instead of a fixed annual-average value based on historical data (pp. 22, I@4).
7. Expanded the description of airborne waste treatment systems in Section 8.2 (pp. 32,33).
8. Added a definition of appropriate treatment for airborne efBuents, including discussion of evaluations done when taking ventilation exhaust treatment system components out of service (pp.

33-35).

9. Updated the description and Bow diagrams of the solid radwaste processing systems, including addition of a Bow diagram covering dry contaminated waste processing (pp. 35,36,39,40).
10. Updated the description and maps for the Radiological Environmental Monitoring Program (pp.

41%9).

ll. Added PoHcy Statement 10.7 (pp. 54-55) on application of efBuent monitor line-loss correction.

factorN.

1? Added PoHey Statement 10.8 (p. 55-56) on selection of data for determination of compliance with dose rate HmitL 13, Added PoHcy Statement 10.9 (p. 56) on low-level radioactivity in the SSES sewage treatment plant.

14. Added Section 11 (p. 58) concerning ODCM review and revision control.

+EC S~

OFFSITE DOSE CALCULATION UAL Pennsylvania Power 8c Light Company Two North Ninth Street Allentown, Pennsylvania 18101-1179

PENNSYLVANIA PNER 5 LI6HT COMPANY SUSQUEHANNA STEAM ELECTRIC, STATION OFFSITE DOSE CALCULATION MANUAL Prepared By Date iizo S Reviewed By Ave em. oup up .- uc ear Date JAP Approved By Date t li anager- r Services PORC REVIEW AFTER APPROVAL SHALL BE ARRANGED BY THE PREPARER.

TABLE OF CONTENTS Revision

~Pa e Date

1.0 INTRODUCTION

..............,,,.............,... 1 12/11/89 2 12/11/89 3 12/11/89 2.0 SETPOINTS.....................,,....,,....,... 4 12/11/89

2. 1 WATERBORNE EFFLUENT MONITORS...,...,...,., 4 12/11/89 5 12/11/89 6 12/11/89 7 12/11/89 8 12/11/89 2.2 AIRBORNE EFFLUENT MONITORS................ 9 12/11/89 10 12/11/89 11 12/11/89 12 12/11/89 3.0 WATEPBORNE EFFLUENT CONCENTRATION MEASUREMENTS 13 12/11/89 14 12/11/89 4.0 AIRBORNE EFFLUENT DOSE RATES 15 12/11/89
4. 1 NOBLE GASES............................... 15 12/11/89 4.2 RADIONUCLIDES OTHER THAN NOBLE GASES...... 16 12/11/89 17 12/11/89 18 12/11/89 19 12/11/89 20 12/11/89 5.0 INDIVIDUAL DOSE OUE TO WATERBORNE EFFLUENT.... 21 12/11/89 22 12/11/89 23 12/11/89 24 12/11/89 6.0 INDIVIDUAL DOSE DUE TO AIRBORNE EFFLUENT...... 25 12/11/89
6. 1 NOBLE GASES............................... 25 12/11/89 6.2 RAOIONUCLIOES OTHER THAN NOBLE GASES...... 26 12/11/89 27 12/11/89 28 12/11/89 7.0 TOTAL DOSE.................................... 29 12/11/89 30 12/11/89 8.0 OPERABIL'ITY OF WASTE TREATMENT SYSTEMS........ 31 12/11/89 8.1 LIQUID WASTE TREATMENT.................... 31 12/11/89 8.2 GASEOUS WASTE TREATMENT................... 31 12/11/89 32 12/11/89 33 12/11/89 34 12/11/89 8.3 SOLID WASTE TREATMENT .................... 35 12/11/89 36 12/ll/89 37 12/11/89 38 12/11/89 39 12/11/89 40 12/11/89

Revision

~Pa e Date 9.0 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM. 41 12/11/89

9. 1 9.2 DEF INITIONS....................

PROGRAM.....................

41 12/11/89 MONITORING 41 12/11/89 9.3 CENSUS PROGRAM............................ 42 12/11/89 9.4 INTERLABORATORY COMPARISON PROGRAM....,... 43 12/11/89 44 12/11/89 45 12/11/89 46 12/11/89 47 12/11/89 48 12/11/89 49 12/11/89 50 12/11/89 51 12/11/89 10.0 DOSE ASSESSMENT POLICY STATEMENTS............ 52 12/11/89 10.1 SELECTION OF ANALYSIS RESULTS FOR DOSE CALCULATIONS 52 12/11/89 10.2 ASSIGNMENT OF RELEASES TO THE REACTOR UNITS 52 12/11/89 10.3 CRITERIA FOR POTENTIAL UNMONITORED RELEASE PATHWAYS 52 12/11/89 10.4 FLOW FROM THE SGTS VENT WHEN THE SYSTEM IS NOT IN USE 53 12/11/89 10.5 ODCM SETPOINTS ARE UPPER LIMIT VALUES 53 12/11/89 10.6 DEFINITION OF "APPROPRIATE TREATMENT" FOR L!QUID WASTES 53 12/11/89 10.7 MONITOR LINE-LOSS CORRECTIONS 54 12/11/89 10.8 SELECTION OF DATA FOR DETERMINATION OF DOSE RATE COMPLIANCE 55 12/11/89 10.9 LOW-LEVEL RADIOACTIVITY IN THE SEWAGE TREATMENT PLANT 56 12/11/89 57 12/11/89 11.0 ODCM REVIEW AND REVISION CONTROL............ 58 12/11/89 APPENDIX A - SAMPLE CALCULATIONS OF ODCM PARAMETERS........................... A-1 12/11/89 A-2 12/11/89 A-3 12/11/89 A-4 12/11/89 A-5 12/11/89 A-6 12/11/89 A-7 12/11/89 A-8 12/11/89 A-9 12/11/89 A-10 12/11/89 A-11 12/11/89 A-12 12/11/89 A-13 12/11/89 APPENDIX B - REPORTING REQUIREMENTS............... B-1 12/11/89 B-2 12/11/89 B-3 12/11/89 B-4 12/11/89

Revision APPENDIX APPENDIX C

D SITE SPECIFIC INFORMATION USED BY GASPAR SITE CODE..................

SPECIFIC INFORMATION

~Pa C-1 e

12/11/89 0

USED BY LADTAP CODE...,...,...,...,,, 0-1 12/11/89 0-2 12/11/89 0-3 12/11/89 0-4 12/11/89 APPENDIX E - METHODS USED TO GENERATE DOSE RATE CALCULATION WORKSHEETS.......................... E-1 12/11/89 E-2 12/11/89 E-3 12/11/89 E-4 12/11/89 E-5 12/11/89 E-6 12/11/89 E-7 12/11/89 DEC 11 $ 89

LIST OF TABLES Revision

~Pa e Oate Table 1 Radiological Effluent Objectives and Standards.. 3 12/11/89 Table 2 Oose Factors for Noble Gases ................... 18 12/11/89 Table 3 Annual Average Relative Concentrations and Oeposition Rates................................ 19 12/11/89 Table 4 Oose Rate Parameters for Airborne Radionuclides Other Than Noble Gases.......................=... 20 12/11/89 Table 5 Waterborne Effluent Oose Parameters for Adults.. 24 12/11/89 Table 6 Maximum Pathway Oose Factors Oue to Radionuclides Other Than. Noble Gases..;;...... ~ ~ o ~ 28 12/11/89 Table 7 Operational Radiological Environmental Monitoring Program.......................... ~ ~ ~ ~ 47 12/11/89 48 12/11/89 49 12/11/89 Table 8 Oetection Capabilities for Environmental Sample Analysis................................. 50 12/11/89 Table 8-1 Radiological Environmental Monitoring Program Annual Summary.................................. B-3 12/11/89 Table 8-2 Reporting Levels for Nonroutine Operating R eports ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ o ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ B 4 12/11/89

LIST OF FIGURES Revision

~Pa e Date Figure 1 Liquid Radwaste System Flow Diagram......... 37 12/11/89 Figure 2 Offgas and Recombiner System Flow Diagram... 38 12/11/89 Figure 3 Solid Maste Management System Flow Diagram.. 39 12/11/89 Figure 4 SSES Dry Contaminated Maste Processing...... 40 12/11/89 Figure 5 Onsite Environmental Sampling Locations-Susquehanna SES.....................,....... 12/11/89 Figure 6 Offsite Environmental Sampling Locations-Susquehanna SES............................. 46 12/11/89 Figure 0-1 Dilution Factors and Transit Times As A Function Of River Level ............... 0-4 12/11/89 OEC t ~ ass

LIST OF MORKSHEETS

~Pa e Revision Date Dose Pate Calculation Worksheet-Noble Gas Nuclides; Using Vent Monitor Data

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ o E 4 12/11/89 Dose Rate Calculation Worksheet-Noble Gas Nuclides; Using Laboratory Analysis Data

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ E 5 12/11/89 Dose Rate Calculation Worksheet-Nuclides other than Noble Gases; Using Vent Monitor Data

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ o ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ o E 6 12/11/89 Dose Rate Calculation Worksheet-Nuclides Other than Noble Gases; Using Laboratory Analysis Data E-7 12/11/89 OEC 11 l989

.Vi

1.0 INTRODUCTION

The purpose of this manual is to provide the parameters and methodology to be used in calculating offsite doses and effluent monitor setpoints for the Susquehanna Steam Electric Station, Units I and 2. Included are methods for determining maximum individual, whole-body, and organ doses due to waterborne and airborne effluents to ensure compliance with the V

dose limitations in the Technical Specifications. Methods are included for performing dose calculations to ensure compliance with the waterborne and airborne treatment system operability sections of the Technical Specifications. This manual includes the methods used for determining quarterly individual doses for inclusion in Effluent and Waste Disposal Semiannual Reports.

The dose models consider two release modes: .,airborne and waterborne. All airborne effluents are treated as ground-level releases. Dose to each of the seven organs listed in Regulatory Guide 1.109 (bone, liver, total body, thyroid, kidney, lung, and GI-LLI) are computed based on the individual nuclide composition of the effluent. The largest of the dose's are compared to 10 CFR 50, Appendix I design objectives.

Liquid effluents discharged into a river undergo mixing prior to consumption as either potable water or through the fish pathway. For releases to the Susquehanna River, river model dilution factors are used.

Doses to the seven critical organs-are determined from individual nuclide contributions and are compared to the 10 CFR 50 Appendix I design objectives. Compliance with the 10 CFR 20 maximum permissible concentrations is done on a batch-by-batch basis prior to discharge.

This manual discusses the methodology to be used in determining effluent monitor alarm/trip setpoints to be used to ensure compliance with the instantaneous release rate limits in the Technical Specifications. Methods are described for determining the annual cumulative dose to a real individual from liquid effluents, gaseous effluents, and direct radiation for critical organs to ensure compliance with 40 CFR 190 limits. The

calculational methodology for doses are based on models and data that make it unlikely to substantially underestimate the actual exposure of an individual through any of the appropriate pathways.

The Radiological Environmental Monitoring Program is described in Section 9.0 of the manual, which includes the annual land use census survey and interlaboratory comparison program.

It is the responsibility of the Superintendent of Plant-Susquehanna to ensure that this manual is used in performance of the surveillance requirements and for compliance with the limiting conditions of operations stated in the Technical Specifications. It is the responsibility of the Manager-Nuclear Services to ensure adequacy and correctness of calculational approaches.

OEC 1 q g89

TABLE 1 RADIOLOGICAL EFFLUENT OBJECTIVES & STANDARDS 10 CFR 50 40 CFR 190* 10 CFR 20 APPENDIX I STANDARDS STANDARDS"*

DESIGN OBJECTIVES (BOTH REACTOR (BOTH REACTOR (PER REACTOR UNIT) UNITS COMBINED) UNITS COMBINED)

WATERBORNE EFFLUENTS Dose to Total Body From all Pathways 3 mrem/year Dose to any Organ From all Pathways 10 mrem/year AIRBORNE NOBLE GAS EFFLUENTS Dose Rate to Total Body 500 mrem/year Dose Rate to Skin - 3000 mrem/year Garana Dose in Air Beta Dose in Air - - --

10 20 mrad/year mrad/year Dose to Total Body of an Individual 5 mrem/year Dose to Skin of an Individual 15 mrem/year AIRBORNE RADIOIODINES AND PARTICULATES Dose Rate to any Organ 1500 mrem/year Dose to any Organ From all Pathways 15 mrem/year TOTAL URANIUM FUEL CYCLE Dose to Whole Body From all Fuel Cycle Operations 25 mrem/year Dose to Thyroid From all Fuel Cycle Operations 75 mrem/year Dose to any Other Organ From all Fuel Cycle Operations 25 mrem/year TOTAL QUANTITIES RELEASED Krypton-85 Released per Gigawatt-Year 50,000 curies Iodine-129 Released per Gigawatt-Year 5 millicuries Combined Plutonium-239 and Other Alpha-Emitting Radionuclides With Half Lives

.Greater Than One Year Released per Gigawatt-Year -- .5 mi llicuries

" As curr

    • Techni reflected in Technical Specification 3. 11.4.

pecification limits set to ensure compliance w 0 CFR 20 limits 0

2. 0 SETPOINTS 2.1 WATERBORNE EFFLUENT MONITORS SPECIFICATION 3.3.7.10 - THE RADIOACTIVE LIQUID EFFLUENT MONITORING I UM N N SH WN IN TABLE 3.3.7.10-1 SHALL BE OPERABLE WITH THEIR ALARM/TRIP SETPOINTS SET TO ENSURE THAT THE LIMITS OF SPECIFICATION 3.11.1.1 ARE NOT EXCEEDED. THE ALARM/TRIP SETPOINTS OF THESE CHANNELS SHALL BE DETERMINED IN ACCORDANCE WITH THE METHODOLOGY AND PARAMETERS DESCRIBED IN THE OFFSITE DOSE CALCULATION MANUAL (ODCM).

A gross radioactivity monitor providing automatic termination of liquid effluent releases is present on the liquid radwaste effluent line. Flow rate measurement devices are also present on the liquid radwaste effluent line and the discharge line (cooling tower blowdown). Precautions, limitations, and setpoints applicable to the operation of the Susquehanna Steam Electric Station liquid effluent monitors are provided in the applicable plant procedures.

Setpoint values are to be calculated to ensure that alarm and trip actions occur upon approaching the MPC limits of 10 CFR 20 at the release point to the unrestricted area. The calculated alarm and trip action setpoints for the liquid effluent monitor and each flow measurement device must satisfy the following equation:

cf (Eq. 1) where:

C ~ the liquid effluent concentration limit implementing 10 CFR 20 for unrestricted areas (uCi/ml).

c the setpoint (uCi/ml) of the radioactive liquid effluent monitor measuring the radioactivity concentration in the effluent line prior to dilution and subsequent release.

OEC 2 1 589

the radwaste discharge flow setpoint, in volume per unit time, in the same units as F.

the dilution (cooling tower blowdown) water flow setpoint as measured prior to injection of the radwaste, in volume per unit time.

Radioactive liquid effluents from the SSES are only discharged as batch releases and are discharged through the liquid radwaste effluent line. The radioactive liquid waste stream is diluted in the plant discharge (cooling tower blowdown) line prior to entering the Susquehanna River. The limiting batch release concentration (c) corresponding to the liquid radwaste effluent line monitor setpoint is calculated from the above expression. The MPC val'ue used for the liquid effluent concentration limit (C) in the above expression for the liquid radwaste effluent line monitor setpoint is I x 10 uCi/ml or the actual MPC for identified mixtures. Therefore, the expression for determining the setpoint on the liquid radwaste effluent line monitor becomes:

c < (1 x 10 ) f (uCi/ml)

In order to prevent spurious isolations by the LRW effluent radiation monitor, the setpoint concentration, (c) can be defined as:

c X(A) where (A) is the actual tank concentration and X > I The setpoint dilution factor must then be some factor, Y (where Y P X), times the minimum dilution factor.

OE~ 2 1 1989

where F + f = the minimum dilution factor f M where F + f = the aetpoint dilution factor f

The requirements of Equation (2) are then met as follows:

Y(A) = MPC F + f f

Since, by definition, Y > X and Y(A) P X(A), then:

(c) = X(A) MPC F + f f

The setpoint concentration (c) can be converted to a setpoint count rate by use of the monitor calibration factor.

(Eq, 3)

Setpoint (cpm) = c (uCi/ml + Hackground (cpm)

Cal. Factor (uCi/ml per cpm)

The setpoint for the dilution water flow (cooling tower blowdown) is 5000 gpm from either cooling tower basin. The setpoi nt for the LRW discharge flow can then be determined from:

F+f = YA (Eq. 4)

Sample calculations for determining the release concentration limits and setpoints are given in Section A. 1. 1 of Appendix A.

The Service Mater System provides screened water from the cooling tower basin for cooling plant systems and equipment. The Residual Heat Removal (RHR) Service Water System provides water from the 6

QEG g 1 1989

Engineered Safeguard Service Water (ESSW) spray pond to the RHR heat exchangers. In post-accident conditions, RHR Service Water can supply water for vessel and containment flooding. The Service Water and RHR Service Water Systems are not normal pathways for liquid effluents. Radiation monitors are in place on these systems to provide indication of leaks across heat exchangers into the service water. The high radiation setpoints for these monitors are set at 2E-5 uCi/cc cesium-137 equivalent. Considering the radionuclides predominant in SSES liquid effluents, e.g., Co-58, Co-60, Fe-59, Mn-54 and Cr-51, use of a setpoint based on the Cs-137 MPC is conservative based on the following parameters:

1) photon abundance (85K)
2) magnitude of applicable MPC (2E-5 uCi/cc)

Because Service Water 8 RHR Service Water are not normal release pathways for liquid effluents, no credit should be taken for possible dilution scenarios. All service water should be maintained below 2E-5 uCi/cc Cs-137 equivalent.

In order to minimize the chance of a change in the background of a monitor masking a significant trend in monitored activity, the alarm setpoints for the Service Water and RHR Service Water monitors are determined as follows:

a. Mhen monitor background<(2E-5)/Cal. Factor:

HI RAD Setpoint = 0.5, Background + (2E-5)/Cal. Factor DOWNSCALE or LOW RAD Setpoint = 0.5 Background

b. When monitor background>(2E-5)/Cal. Factor:

,HI RAD Setpoint = Background + 0.5 (2E-5)/Cal. Factor DOWNSCALE or LOW RAD Setpoint = Background - 0.5 (2E-5)/Cal. Factor Where:

Setpoint = Alarm threshold value to be entered into monitor (cps for Service Water, cpm for RHR Service Water).

Background = Monitor background at most recent background determination (cps for Service Mater, cpm for RHR Service Mater).

(2E-5) Cs-137 Haximum Permissible Concentration (uCi/ml).

Cal. Factor = Monitor response factor per unit Cs-137 concentration determined during most recent

calibration (uCi/ml per cps for Service Water, uCi/ml per cpm for RHR Service Water).

The ALERT RAD setpoints for the RHR Service Water monitors are maintained at 80% of the applicable HI RAD setpoint (cpm).

2.2 AIRBORNE EFFLUENT MONITORS SPECIFICATION 3.3.7.11 - THE RADIOACTIVE GASEOUS EFFLUENT MONITORING M f N H NN LS SHOWN IN TABLE 3.3.7. 11-1 SHALL BE OPERABLE WITH THEIR ALARM/TRIP SETPOINTS SET TO ENSURE THAT THE LIMITS OF SPECIFICATION 3.11.2.1 ARE NOT EXCEEDED. THE ALARM/TRIP SETPOINTS OF THESE CHANNELS SHALL BE DETERMINED IN ACCORDANCE WITH THE METHODOLOGY AND PARAMETERS IN THE ODCM.

Noble gas activity monitors, iodine samplers, and practiculate samplers are present on the reactor building ventilation system (Units 1 and 2), the turbine building ventilation system (Units I and 2), and the standby gas treatment system exhaust vents.

Effluent system flow rate and sampler flow rate are measured on all of the systems allowing the vent monitor microprocessor to calculate release rates based on measured flow rates. Precautions, limitations, and setpoints applicable to the operation of the SSES airborne effluent monitors are provided in the applicable plant procedures. Setpoints are conservatively established for each effluent monitor so that the instantaneous dose rates corresponding to 10 CFR 20 annual dose limits in unrestricted areas will not be exceeded.

The general methodology for establishing plant ventilation airborne effluent monitor setpoints is based upon vent release rates derived from site-specific meteorological dispersion conditions, vent flow QEC 11 1989

rates, and measured or expected radionuclide mixtures in the gaseous effluents. The vent release rate can then be converted to vent concentrations for input as setpoints for the applicable detectors.

Since the vent monitors are programmed to calculate concentrations of iodine-131 and particulate being released based on the rate of accumulation of activity on the filters, setpoints can be established for the iodine and particulate channels.

The following method is used for calculating vent monitor high radiation alarm setpoints;

1. An isotopic mixture is selected for the detector in question, if applicable. Noble gas and particulate detector setpoints are based on actual isotopic mixtures obtained from vent sample analysis or the FSAR/FES expected release mixtures if actual samples do not contain sufficient detectable activity to accurately estimate the mixtures. The assumed isotopic mixtures are periodically reviewed to verify that they remain representative of plant effluents.
2. The selected noble gas or particulate mixture is used in the GASPAR program run to calculate the associated doses. The total source term (total curies used for the calculation) does not matter as long as the proper nuclides are present in the relative proportions indicated in sample analysis data or FSAR/FES tables.

For the iodine-131 setpoint, any release total for I-131 can be entered. The highest calculated annual average relative 10

concentrations (X/gs) at the site boundary are used for these GASPAR calculations.

3, The following ratio concept is used to calculate a release rate limit for the assumed mixture (or I-131):

Calculated Oose mrem Oose Rate Limit mrem/ r)

Tota GASPAR Source erm Limiting Re ease Rate Ci/yr The limiting release rate of the assumed mixture (or I-131) can therefore be calculated:

Limiting Release (Ci/yr)

(Eq. 5)

Total GASPAR Source Term Ci Oose Rate Limit, mrem/ r a cu ated Oose, mrem For the noble gas setpoint, the calculated whole body and skin dose rates via the plume'athway are subject to the 10 CFR 20-derived limits of 500 and 3000 mrem/yr, respectively. The whole-body dose rate limit is usually most restrictive. For particulates and for iodine-131, the maximum calculated organ dose rate via the inhalation pathway is subject to the limit of 1500 mrem/yr.

4. The limiting release rates are converted to limiting vent concentrations using high limit vent flow rates.

OEC g 1 589 11

Limiting Vent Concentration, uCi/cc Limitin Release Rate, Ci/ r) 1E6uCi/Ci (5.26E5 min/yr) (Vent Flow Rate, cc/min)

Sample calculations of waterborne and airborne effluent monitor setpoints are presented in Section A. 1.2 of Appendix A.

Vent flow rates and sample flow rates are monitored and recorded for each of the five SSES. release points. The measured flow rates are used to calculate vent concentrations and release rates. Flow channel setpoints are set at approximately 10% and 90% of the calibrated sens'or ranges to provide indication of possibly abnormal flow rates.

The main condenser offgas pre-treatment monitor provides indication of offgas activity prior to input to the holdup system. Alarm setpoints are based on two times and three times the steady state full power offgas activity readinas.

SPECIFICATION 3.11.2.6 - THE CONCENTRATION OF HYDROGEN OR OXYGEN IN GAS TREATMENT SYSTEM SHALL BE LIMITED TO.LESS THAN OR EQUAL TO 4X BY VOLUME.

Hydrogen recombiners are used at SSES to maintain the relative concentration of components of potentially explosive gas mixtures outside the explosive envelope. The main condenser offgas treatment system explosive gas monitoring system (offgas hydrogen analyzers) have setpoints to alarm at lX and 2X hydrogen.

OEC ig igss 12

3,O WATERBORNE EFFLUENT CONCENTRATION MEASUREMENTS SPECIFICATION 3.11.1.1 - THE CONCENTRATION OF RADIOACTIVE MATERIAL R LUENTS TO UNRESTRICTED AREAS (SEE FIGURE 5.1.3-1) SHALL BE LIMITED TO THE CONCENTRATIONS SPECIFIED IN 10 CFR PART 20, APPENDIX B, TABLE II, COLUMN 2 FOR RADIONUCLIDES OTHER THAN DISSOLVED OR ENTRAINED NOBLE GASES. FOR DISSOLVED OR ENTRAINED NOBLE GASES, THE CONCENTRATION SHALL BE LIMITED TO THE CONCENTRATIONS SPECIFIED IN TABLE 3. 11.1. 1-1.

Liquid batch releases are controlled individually and each batch release is authorized based upon sample analysis and the existing dilution flow in the discharge line. The methods for sampling and analysis of each batch prior to release are given in the applicable plant procedures. A release rate limit is calculated for each batch based upon analysis, dilution flow and all procedural conditions being met before it is authorized for release.

Table 3. 11. 1-1 mentioned in Specification 3. 11. 1. 1 contains the following "Maximum Permissible Concentrations of Dissolved or Entrained Noble Gases Released From the Site to Unrestricted Areas in Liquid Maste":

Nuclide MPC uCi/ml Kr-85m 2E-4 Kr-85 5E-4 Kr-87 4E-5 Kr-88 9E-5 Ar-41 7E-5 Xe-133m 5E-4 Xe-133 6E-4 Xe-135m 2E-4 Xe-135 2E-4 13

These values were computed using Equation 20 of ICRP2 (1959), adjusted fot infinite cloud submersion in water, with R equal to 0.01 rem/week, 3

the density of water equal to 1.0 gm/cm, and p pT equal to 1.0.

w T The liquid radwaste effluent stream entering the discharge line is monitored and will automatically be terminated if the pre-selected monitor setpoint is exceeded as described in Section 2. 1.

Additional monthly and quarterly analyses shall be performed in accordance with Table 4. 11-1 of the SSES Technical Specifications.

14

4.0 AIRBORNE EFFLUENT DOSE RATES SPECIFICATION 3.11.2.1. THE DOSE RATE DUE TO RADIOACTIVE MATERIALS L FLUENTS FROM THE SITE (SEE FIGURE 5.1.3-1) SHALL BE LIMITED TO THE FOLLOWING:

a. FOR NOBLE GASES: LESS THAN OR EQUAL TO 500 MREM/YR TO THE TOTAL BODY AND LESS THAN OR EQUAL TO 3000 MREM/YR TO THE SKIN, AND
b. FOR IODINE-131i FOR TRITIUM% AND FOR ALL RADIONUCLIDES IN PARTICULATE FORM WITH HALF LIVES GREATER THAN 8 DAYS: LESS THAN OR EQUAL TO 1500 MREM/YR TO ANY ORGAN ( INHALATION PATHWAY ONLY).
4. 1 NOBLE GASES Noble gas activity monitor setpoints are established at release rates which permit some margin for corrective action to be taken before exceeding offsite dose rates corresponding to the 10 CFR 20 annual dos'e limits as described in Section 2.2. The methods for sampling and analysis of continuous ventilation releases are given in the applicable plant procedures. The dose rate in unrestricted areas due to radioactive materials released in airborne effluents may be determined by the following equation for whole body dose:

wb (Ki)(X/Q)v (Q iv) (Eq 7) and by the following equation for skin dose:

0

$ (L( + 1.1 I

M() (X/Q)(Q'() (Eq. S)

DEC I1 $ 89 15

where:

K. the whole-body dose factor due to gamma emissions for each iden)ified noble gas r'adionuclide (i) (mrem/yr per uCi/m ) from Table 2.

the release rate of radionuclide (i) from vent (v)

(uCi/sec).

(x/Q) the highest calculated annual average relative concentration for any area at or beyond the site boundary in an u~restricted area from vent release point (v) (sec/m ) such as from Table 3.

'wb the annual whole-body dose (mrem/yr).

L. the skin dose factor due to the beta emissions for each iden)ified noble gas radionuclide (i) (mrem/yr per uCi/m ) from Table 2.

the air dose factor due to gamma emissions for each identjfied noble gas radionuclide (i) (mrad/yr per uCi/m ) from Table 2 (conversion constant of 1. 1 converts air dose-mrad to skin dose-mrem).

0 the annual skin dose (mrem/yr).

Sample calculations for determining whole body and skin doses from noble gas.radionuclides released from the SSES are given in Section A.2. 1 of Appendix A.

4.2 RAOIONUCLIDES OTHER THAN NOBLE GASES The methods for sampling and analysis of continuous ventilation releases for radioiodines and radioactive particulates are given in the applicable plant procedures. Additional monthly and quarterly analyses shall be performed in accordance with Table 4. 11-2 of the SSES Technical Specifications. The dose rate in unrestricted areas due to inhalation of radioactive materials released in airborne OEC 5 i 1989 16

l' effluents may be determined by the following equation for any organ:

'c i v Qiv where:

Pi the dose rate parameter for radionuclides other than noble3gases for the inhalation pathway (mrem/yr per uCi/m ) from Table 4.

Mv the highest annual average dispersion parameter for estimating the dose to the3critical receptor; relative concentration (X/Q) (sec/m ) for the inhalation pathway, such as from Table 3.

the release rate of radionuclide (i) from vent(v)

(uCi/sec).

0 the annual organ dose (mrem/yr).

Sample calculations for determining doses to critical organs from radionuclides other than noble gases released from the SSES are given in Section A.2.2 of Appendix A.

17

TABLE 2 DOSE FACTORS FOR NOBLE GASES Qhole Body Gamma Air Beta Air Dose Factor Skin Dose Factor Dose Factor Dose Factor K. L. N. N.

Radionuclide mrem r er uCi/m~ (mrem/ r er uCi/m~) (mrad/ r eIP uCi/m~) mrad/ r hr uCi/m~)

Kr-83m 7.56E-02 1.93E+01 2.88E+02 Kr-85m 1.17E+03 1.46E+03 1.23E+03 1.97E~03 Kr-85 1. 61E401 1.34E+03 1.72E+Ol 1.95E+03 Kr-87 5.92E+03 9.73E+03 6. 17E+03 1.03E+04 Kr-88 1.47E+04 2.37E+03 1.52E+04 2.93E+03 Kr-89 1.66E+04 1.01E<04 1.73E+04 1.06E+04 Kr-90 1.56E+04 7.29E+03 1.63E+04 7.83E+03 Xe-131m 9.15E~01 4.76E402 1.56E+02 1.11E+03

- Xe-133m 2. 51E+02 9.94E+02 3.27E+02 1.48E+03 Xe-133 2.94E+02 3.06E+02 3.53E402 1.05E~03 Xe-135m 3. 12E~03 7. 11E+02 3.36E%03 7.39E+02 Xe-135 1.81003 1.86E+03 1.92E+03 2.46E+03 Xe-137 1.42E+03 1.22E+04 1.51E+03 1.27E+04 Xe-138 8.83E+03 4.13E+03 9. 21E+03 4.75E+03 Ar-41 8.84E~03 2.69E+03 9.30E+03 3.28E+03 The listed dose factors are for radionuclides that may be detected in airborne effluents and derived from Table B-1 in Reg. Guide 1.109.

7.56E-02 = 7.56 x 10

TABLE 3 SAMPLE ANNUAL AVERAGE RELATIVE CONCENTRATIONS AND DEPOSITION RATES Site Rel ati ve Concentr ations Relative Deposition Downwind Boundar (X/q) Rates 3 2 Sector Miles sec/m D/0) m NNE .82 8.5E-6 2.2E-8 NE 1.1 2.6E-6 7.3E-9 ENE .86 4. 1E-6 1.4E-8 E .80 3.6E-6 1. 7E-8 ESE .50 5.7E-6 2.9E-8 SE .34 6.7E-6 3.7E-8 SSE .34 5.5E-6 3.5E-8 S .34 1.0E-5 3.4E-8 SSW .39 8.9E-6 2-. 5E-8 SW .77 1. 7E-5 3.4E-B WSW 1.2 1.8E-5 2.3E-B W 1.0 2.6E-5 2.9E-8 WNW .64 1.0E-5 1.2E-8 NW .64 7.0E-6 1.0E-8 NNW .61 7.5E-6 1.7E-8 N .61 7.9E-6 2. 1E-8 from 1980 Meteorology Summary for SSES Data Period: 01/01/80 - 12/31/80 Site Boundary distances are approximate, and current as of 11/88.

DFC gC $ 89 19

TABLE 4 DOSE RATE 'PARAMETERS FOR RADIONUCLIOES OTHER THAN NOBLE GASES Inhalation Pathway b p.

Radionuclide (mrem/ r hr uCi/m~)

H-3 6.47E2 ALL C-14 2.65E4 BO Cr-51 1.28E4 LU Mn-54 1.00E6 LU Fe-59 1.02E6 LU Co-58 7.77E5 LU Co-60 4.51E6 LU Zn-65 6.47E5 LU Sr-89 2.03E6 LU Sr-90, 4.09E7 BO Zr-95 1.75E6 LU Sb-124 No Data-I-131 1.48E7 TH I-133 3.56E6 TH Cs-134 7.03E5 LI Cs-136 1.35E5 LI Cs-137 6.12E5 LI Ba-140 1.60E6 LU Ce-141 5.17E5 LU a

The listed dose parameters are for radionuclides that may be detected in airborne effluents. Additional dose parameters for isotopes not included may be calculated using the methodology described in NUREG-0133.

b Based on infant age group, RG 1. 109 Tables E-10, 14 in accordance with methodology of NUREG-0133, pp. 22, 27.

c I = infant, C ~ child, T = teenager, A = adult, ALL = all organs, BO = bone, GI = gastrointestinal tract - lower large intestine, LI = liver, LU = lungs, TH = thyroid.

DEC g g lggg 20

5.0 INDIVIDUAL DOSE DUE TO WATERBORNE EFFLUENT SPECIFICATION 3.11.1,2 - -THE DOSE OR DOSE COMMITMENT TO A MEMBER OF THE E MATERIALS IN LIQUID EFFLUENTS RELEASED FROM EACH REACTOR UNIT TO UNRESTRICTED AREAS (SEE FIGURE 5.1.3-1) SHALL BE LIMITED:

a. DURING ANY CALENDAR QUARTER TO LESS THAN OR EQUAL TO 1.5 MREM TO THE TOTAL BODY AND TO"LESS THAN OR EQUAL TO 5 MREM TO ANY ORGAN, AND
b. DURING ANY CALENDAR YEAR TO'LESS THAN OR EQUAL TO 3 MREM TO THE TOTAL BODY AND TO LESS THAN OR EQUAL TO 10 MREM TO ANY ORGAN.

The calculations of dose received by the hypothetical maximally exposed individual from the ingestion of fish and drinking water are based on the nearest public drinking water intake location (Danville Water Authority).

Dose contributions from recreation, boating, 'and swimming have been shown to be negligible in the NRC 10 CFR 50 Appendix I dose analysis (June 1976) and do not need to be routinely evaluated.

The following expression is used to calculate the ingestion pathway dose contributions for the total release period for each batch release from all radionuclides identified in the liquid effluents released to unrestricted areas:

D ~ Ai (4t Ci F) (Eq. 10) where:

g ~ the cumulative dose commitment to the total body or any organ (w) from the liquid effluents for the time period, 4t, of each batch release (mrem).

4t ~ the length of the time period for a batch release over which C,.

and F are averaged for all liquid releases (hr).

Ci the average concentration of radionuclfde (i) in undiluted liquid effluent during time period, ~t, for any liquid effluent batch release (uCi/ml).

21

F = the discharge line dilution factor for C during any liquid effluent batch release. Oefined as the hatio'f the maximum undiluted liquid radwaste effluent line flow during release to the average flow from the plant discharge line to unrestricted receiving waters, A. = the composite dose parameter for the total body or any organ (z) for each identified principal gamma and beta emitter (i)

(mrem/hr per uCi/ml) (see Equation 11, Table 5).

=

A. k ((U +

Uf BF.)/O ) OF. (Eq. 11) where:

5 = 6 k = conversion factor of 1.1 x 10 (10 Ci/uCi)(10 ml/k )

r yr U = a receptor person's water consumption by age group from Regulatory Guide 1. 109, Table E-5.

Ow

= the dilution factor from the near field area of the release point to potable water intake. (The nearest potable water intake is located at Oanvi lie; dilution factors based on river level are given in Table 0-1 of Appendix O. These dilution factors are based on fluorescent dye tracer studies conducted't various river levels during 1985.)

Uf = a receptor person's fish consumption by age group from Regulatory Guide 1. 109, Table E-5.

BF,. = the bioa'ccumulation factor for nuclide (i) in fish (pCi/kg per pCi/1) from Regulatory Guide 1. 109, Table A-l.

OF, = the dose conversion factor for nuclide (i) in a receptor person for pre-selected organ (w), (mrem/pCi) from Regulatory Guide 1.109, Tables E-11, E-12, E-13, and E-14.

The projected quarterly dose contribution from batch releases for which radionuclide concentrations are determined by periodic composite sample analysis, as stated in Table 4. 11-1 of the SSES Technical Specification may be approximated by assuming an average concentration based on the previous monthly or quarterly composite analysis.

DKI: C i >eSs 22

However, for reporting purposes, the calculated dose contributions from these radionuclides shall be based on the actual composite analysis. The cumulative dose commitment to the total body or any organ for a quarterly or annual analysis shall be based on the calculated dose contributions from each batch release occurring during that time period.

In actual practice, the LADTAP computer code developed by the NRC to implement the liquid dose methodology of Regulatory Guide l. 109 wi 11 be used to perform the individual liquid pathway dose calculations for the SSES. The methods outlined above are consistent with those of the LADTAP code; site specific dose factors have been computed and are available for implementing the method described above, if required.

A discussion of the LADTAP code is given in Section A.3. 1 of Appendix A.

DEC 1 1 88S 23

TABLE 5 WATERBORNE EFFLUENT DOSE PARAMETERS FOR ADULTS Fresh Water Fish Ingestion Dose Factor Bioaccumulation Factor for Critical Organ Critical Dose Parameter (A. )

Radionuclide Ci k r Ci/liter (mrem/ Ci) ~0r an (mrem/hr er uCi/kl H-3 .9 1.05E-7 Total IIody 2.446E-1 Hn-'54 400 1.40E-5 Gl-LLI 1.294E4 Fe-55 100 2.75E-6. Bone 6.360E2 Co-58 50 1.51E-5 GI-LLI 1.748E3 Fe-59 100 3.40E-5 GI-LLI 7.863E3 Co-60 50 4.02E-5 GI-LLI 4.653E3 Zn-65 2000 1.54E-5 Liver 7.115E4 Sr-89 30 3.08E-4 Bone 2. 142E4 Sr-90 30 7.58E-3 Bone 5.272E5 Mo-99 10 9.99E-6 GI-LLI 2.333E2

~ I-131 15 1.95E-3 Thyroid 6.806E4 o Cs-134 2000 1.48E-4 Liver 6.838E5 Cs-137 2000 1.09E-4 Liver 5.036E5 Ce-141 1 2.42E-5 Gl-LLI 6.196E1 Ce-144 1 1.65E-4 GI-LLI 4.224E2 Additional factors for isotopes not included in Table 5 may be calculated using the methodology described in NUREG-0133.

b GI-LLI = gastro-intestinal tract, lower large intestine.

6.0 INDIVIDUAL DOSE DUE TO AIRBORNE EFFLUENT 6.1 NOBLE GASES SPECIFICATION 3.11.2.2 - THE AIR DOSE DUE TO NOBLE GASES RELEASED IN N, M EACH REACTOR UNIT, TO AREAS AT AND BEYOND THE SITE BOUNDARY (SEE FIGURE 5.1.3-1) SHALL BE LIMITED TO THE FOLLOWING:

a. DURING ANY CALENDAR QUARTER: LESS THAN OR EQUAL TO 5 MRAD FOR GAMMA RADIATION AND LESS THAN OR EQUAL TO 10 MRAD FOR BETA RADIATION, AND
b. DURING ANY CALENDAR YEAR: LESS THAN OR EQUAL TO 10 MRAD FOR GAMMA RADIATION AND LESS THAN OR EQUAL TO 20 MRAD FOR BETA RADIATION.

The air dose in unrestricted areas beyond the site boundary due to noble gases released in airborne effluents from the site shall be determined by the following equation for. galena radiation during any specific time period:

~ 3.17 x 10 D Mi (X/Q)v Qiv (Eq. 12) and by the following equation for beta radiation during any specified time period:

D~ 3.17 x 10 gI N) (X/g)g) (Eq. 13)

Where:

the air dose factor due to gamna emissions for each identified noble g~s radionuclide (i)

(mrad/yr per uCi/m ) from Table 2.

the air dose factor due to beta emissions for each identified noble ga~ radionuclide (i)

(mrad/yr per uCi/m ) from Table 2.

(X/Q)v the highest calculated annual average relative concentration For any area at or beyond the site boundary in an u~restricted area from vent release point (v) (sec/m ) such as from Table 3.

25 OEC 11 1989

D 9

the total gamma air dose from gaseous effluents for.

specified time period (mrad).

Db the total beta air dose for gaseous effluents for a specified time period (mrad).

the integrated release of each identified noble gas radionuclide (i) in gaseous effluents from all vents (v)'or a specified time period (uCi).

3.17 x 10 the inverse of seconds in a year (yr/sec).

A discussion of the method used to calculate the individual dose from gaseous effluents is given in Section A.3.2 of Appendix A. Also, sample calculations for determining gamma and beta air doses from noble gas radionuclides released from the SSES are given.

6.2 RADIONUCLIDES OTHER THAN NOBLE GASES SPECIFICATION 3.11.2.3 - THE DOSE TO A MEMBER OF THE PUBLIC FROM IODIN -131, RI IUM, ND ALL RADIONUCLIDES IN PARTICULATE FORM WITH HALF-LIVES GREATER THAN 8 DAYS IN GASEOUS EFFLUENTS RELEASED, FROM EACH REACTOR UNIT, TO AREAS AT AND BEYOND THE SITE BOUNDARY (SEE FIGURE 5.1.3-1) SHALL BE LIMITED TO THE FOLLOWING:

a. DURING ANY CALENDAR QUARTER: LESS THAN OR EQUAL TO 7.5 MREMS TO ANY ORGAN, AND
b. DURING ANY CALENDAR YEAR: LESS THAN OR EQUAL TO 15 MREMS TO ANY ORGAN.

The critical organ dose to an individual from I-131, tritium, and radioactive materials in particulate form with half-lives greater than 8 days released in airborne effluents from the site to unrestricted areas can be determined by the following equation during any specified time period:

= 3.17 x 10 0 g(R<) (W) (0() (Eq. 14)

OEC 5 1 1989 26

where:

'c = the total dose to a critical organ from radio-nuclides other than noble gases for a specified time period (mrem). ~

the dose parameter for each identified radi onucl i )e (i) for the inhalation pathway (mrem/yr p~r uCi/m )

and for food and ground plane pathways (m 'rem/yr per uCi/sec) from Table 6.

W v

the highest annual average dispersion parameter for estimating the dose to the critical3individual; relative concentration (X/Q) (sec/m ) for the inhylation pathway and relative deposition rate (0/Q)

(m ) for the food and ground pathways such as from Table 3.

Q;v

= the integrated release of each identified radio-nuclide other than noble gases (i) in gaseous effluents from all vents (v) for a specified time period (uCi).

3.17 x 10 the inverse of seconds in a year (yr/sec).

In actual practice, the GASPAR computer code developed by the NRC to implement the airborne dose methodology of Regulatory Guide 1.109 will be used to perform the individual airborne pathway dose calculations for the SSfS., The methods outlined above are consistent with those of the GASPAR code; site specific dose factors have been computed and are available for implementing the method described above, if required.

A discussion of the GASPAR code is given in Section A.3.2 of Appendix A.

OEC 2 i 1989 27

TABLE 6 HAXINN PATHMAY DOSE FACTORS DUE TO RADIONUCLIDES OTHER THAN NOBLE GASES Leafy Inhalation Ground Plane Cow Milk Vegetables Pathway Heat Pathway Pathway Pathway Pathway R R. R. R. R.

(mrs/yr (m m/em/yr (m2 . modem/yr (m . modem/yr (m . modem/yr Radionuclide er uCi m~ er uCi/sec) t er uCi/sec) er uCi/sec H-3 1.27E3 T, ALL 1.47E6 A, ALL 0 1.29E7 I, ALL 1.49E7 C, ALL C-14 3.59E4 C, BO 1.20E7 A, BO 0 1.20E9 I, BO 8.89E8 C, BO Cr-51 2.10E4 T, LU 4.53E5 A, Gl 5.50E6 1.51E6 C, GI 3.55E7 A, GI Mn-54 1.98E4 T, LU 4.11E6 A, GI 1.62E9 1.82E7 I, LI 9.58E8 A, Gl Fe-59 1. 53E6 T, LU 1.98E7 A, GI 3.20E8 1. 24E8 I, LI 9.91E8 T, GI Co-58 1.34E6 T, LU 1.03E7 A, GI 4.45EB 3.94E7 T, GI 6.25E8 A, GJ Co-60 8.72E6 T, LU 5.48E7 A, GI 2.53E10 1.83E8 T, GI 3.24E9 T, GI Zn-65 1.24E6 T, LU 6.69E8 A, LI 8.57E8 8.66E9 I, LI 2. 16E9 C. LI Sr-89 2.42E6 T, LU 1.32E8 A, BO 2.51E4 4. 13E9 I, 80 3. 60E10 C. BO oo Sr-90 1.08EB T, BO 8.51E9 A, 80 6.23E10 I, BO 1. 24E12 C, 80 Zr-95 2.69E6 T, LU 1.00E5 A, GI 2.91E8 4.28E5 T, GI 1.28E9 T, GI I-131 1. 62E7 C, TH 2.63E9 A, TH 2.09E7 2. 65E 1 1 I, TH 4.76E10 C, TH I-133 3.85E6 C, TH 4.83E1 A, TH 2.98E6 2.42E9 I, TH 8.08E8 C,'H Cs-134 1.13E6 T, LI 2.32E9 A, LI 7.97E9 3. 35E10 I, LI 2. 63E10 C, LI Cs-136 1.94E5 T, LI 3.60E9 A, LI 1.70E8 1.47E9 I, LI 2.25E8 C, LI Cs-137 9.07E5 C, LI 1. 92E9 A, LI 1. 20E10 3.09E10 I, LI 2. 39E10 C, LI Ba-140 2.03E6 T, LU 1. 98E6 A, GI 2.35E7 6.12E7 I, BO 2.77E8 C, BO Ce-141 6. 14E5 T, LU 8.75E5 A, GI 1.54E7 4.93E6 T, GI 5.40E8 T. GI Values presented for each pathway are the maximum R-s 1 for each radionuclide. Additional dose factors for isotopes not included in Table 6 may be calcualted using the methodology described in NUREG-0133.

I = infant, C = child, T = teenager, A = adult. ALL = all organs, BO = bone, GI = gastrointestinal tract lower large intestine, LI = liver, LU = lungs, TH = thyroid.

Pathway is skin. Not age-group dependent.

7.0 TOTAL DOSE SPECIFICATION 3.11,4 - THE ANNUAL (CALENDAR YEAR) DOSE OR DOSE COMMITMENT H - PUBLIC, DUE TO RELEASES OF RADIOACTIVITY AND RADIATION, FROM URANIUM FUEL CYCLE SOURCES SHALL BE LIMITED TO LESS THAN OR EQUAL TO 25 MREMS TO THE TOTAL BODY OR ANY ORGAN EXCEPT THE THYROID, WHICH SHALL BE LIMITED TO LESS THAN OR EQUAL TO 75 MREMS.

The cumulative dose to any member of the public due to radioactive releases from the SSES site is determined by summing the calculated doses to critical organs from the previously discussed effluent sources. The annual dose to critical organs of a real individual for the liquid effluents is determined by using Equations 10 and 11 of Section 5. The annual dose to critical organs of a real individual for the noble gases released in the gaseous effluents is determined by using Equation 12 modified by replacing M.1 with K. from Table 2 for the whole-body dose and 1

by Equation 13 modified by replacing N. by (L. + 1.1 M.) from Table 2 for 1 i 1 the skin dose of Section 6.0:

0 = 3.17 x 10 K. (X/Q) Q. (Eq. 15) 3.17 'x 10 (Li + 1. 1Mi (X/Q v (Eq. 16) b iv The annual dose to critical organs of a real individual for the radionuclides other than noble gases released in the gaseous effluents is determined by using Equation 14 of Section 6.0. For all dose calculations from airborne effluents, the deposition rate used in the analysis should be at the receptor location of the individual being evaluated, not the highest calculated annual average relative concentration or relative deposition rate for any area at or beyond the site boundary as given in Table 3. The direct radiation from the site should be determined from the environmental monitoring program's direct radiation (TLD) monitors. Since all other uranium fuel cycle sources are greater than 20 miles away, only the SSES site need be considered as a uranium fuel cycle source for meeting the EPA regulations.

In actual practice, the LADTAP and GASPAR computer code developed by the NRC to implement the liquid and gaseous dose methodology of Regulatory 29 OEG 1 1 f989

Guide 1.109 will be used to perform the total dose calculations for the SSES. The methods outlined above are consistent with those of the LAOTAP and GASPAR codes; site specific dose factors have been computed and are available for implementing the method described above, if required.

A discussion of the methods used to calculate the total dose to critical organs of a real individual is given in Section A.4 of Appendix A.

OEC i T 1989 30

8.0 OPERABILITY OF WASTE TREATMENT SYSTEMS 8.1 LI UID WASTE TREATMENT SPECIFICATION 3.11.1.3 - THE LIQUID RADWASTE TREATMENT SYSTEM, AS

, SHALL BE OPERABLE. THE APPROPRIATE PORTIONS OF THE SYSTEM SHALL BE USED TO REDUCE THE RADIOACTIVE MATERIALS IN LIQUID WASTE PRIOR TO THEIR DISCHARGE WHEN THE PROJECTED DOSES DUE TO THE LIQUID EFFLUENT, FROM EACH REACTOR UNIT, TO UNRESTRICTED AREA (SEE FIGURE 5. 1.3-1) WOULD EXCEED 0.06 MREM TO THE TOTAL BODY GR 0.2 MREM TO ANY ORGAN IN A 31-DAY PERIOD.

The SSES liquid waste treatment system utilizes two 300 ft horizontal centrifugal discharge type filters with 200 gpm normal flow. Liquid from the filters enter a mixed bed demineralizer with a volume of 140 ft and normal flow rate of 200 gpm.

3 High conductivity waste is treated in two stainless steel "pot boiler" evaporators which are heated with auxil'iary steam. There are two chemical waste neutralization tanks with 28,000 gal capacity. Low conductivity liquid wastes are collected in three pairs of LRW surge tanks. A flow diagram of the liquid radwaste treatment system is sow h ni n Fi guer 1.

Appropriate treatment for liquid effluents from SSES is defined in ODCM Policy Statement 10.6. In cases when a batch of liquid waste must be released with treatment less than that specified in Section 10.6, a dose assessment using LADTAP or the methodology of Section 5.0 shall be performed prior to release to ensure that the limits of Specification 3. 11. 1.3 are not exceeded.

8.2 GASEOUS WASTE TREATMENT SPECIFICATION 3. 11.2.4 - THE GASEOUS RADWASTE TREATMENT SYSTEM SHALL APPLICABILITY: WHENEVER THE MAIN CONDENSER AIR EJECTOR (EVACUATION)

~OPERATION.

SPECIFICATION 3.11.2.5 - THE APPROPRIATE PORTIONS OF THE VENTILATION EM SHALL BE OPERABLE AND SHALL BE USED TO REDUCE RADIOACTIVE MATERIALS IN GASEOUS WASTE PRIOR TO THEIR DISCHARGE WHEN THE PROJECTED DOSES DUE TO GASEOUS EFFLUENT RELEASES FROM EACH REACTOR UNIT TO AREAS AT AND BEYOND THE SITE BOUNDARY (SEE 31 OEC 4 1 1989

FIGURE 5.1.3-1) WHEN AVFRAGEO OVER 31 OAYS WOULO EXCEEO 0.3 NREM TO ANY ORGAN IN A 31-OAY PERIOO, The SSES offgas treatment system operates with four steam iet air ejectors maintaining condenser vacuum. Noncondensible gases are passed through one of three combiners (one for each reactor unit plus a common recombiner), reducing the amount of gases to be filtered and released. Gases pass through a two to nine minute holdup pipe before entering the offgas treatment system, which consists of two 100 percent capacity systems per reactor unit. Each system consists of inlet HEPA filters, precoolers, chi llers, reheaters, guard beds, and five charcoal absorbers and an outlet HEPA filter. i4lonitored, filtered air then exits to the turbine building vent. A flow diagram of the offgas and recombiner system is shown in Figure 3.

Filtered exhaust systems serve selected areas of Zone I, II, and III of the SSES reactor building. The Zone I and Zone II equipment compartment and Zone III filtered exhaust systems each consist of two 100% capacity redundant fans and two 55K capacity filter trains.

Each filter train has, in the direction of air flow, roughing filters, upstream HEPA filters, a charcoal filter bed, and downstream HEPA filters. Exhaust fan discharge is then routed to the atmosphere via the reactor building vents, where effluents are continuously sampled and monitored.

The turbine building filtered exhaust system draws air from those areas of the building that are most likely to become contaminated.

Two 100% capacity fans serve each system, which contains two 50%

capacity filter housings made up of a particulate prefilter, an upstream HEPA filter, a charcoal filter, and a downstream HEPA filter. Oischarged air is released via the turbine building vents, which are continuously sampled and monitored.

The radwaste building filtered exhaust system draws potentially contaminated air from selected areas of the radwaste building. The 32 DEC g 1 1989

system contains two 100% capacity fans and two 50% capacity filter housings, each containing a particulate filter bank and a HEPA filter. Filtered air is discharged via the turbine building vent.

In order to minimize the quantities of radioactivity in airborne effluents from the station, the ventilation exhaust treatment (filtered exhaust) systems are normally kept in service at SSES. As required, evaluations are performed to determine if components can be removed from service when the need arises for maintenance, testing, etc. In order to properly project the dose consequences of removal of a exhaust treatment component from service, there are two options:

1.. Take samples in the system in question, upstream of the filter trains, in order to characterize what would be released I

if the component was removed from service as proposed.

2. Take samples from the affected vent after the component has been removed from service, and evaluate whether it can remain out of service based on the analysis results.

Because the curr ent plant design does not provide for sampling exhaust systems upstream of treatment, the following procedure is used. to determine appropriate treatment of ventilation exhaust air when components must be removed from service:

A. Mithin two hour s of removal of the component from service, new particulate and iodine filters are placed in the system which continuously samples and monitors the vent which ultimately receives the flow from the component in question.

B. After a period of sample collection long enough to provide acceptable analytical sensitivities, the filters are retrieved and analyzed via gamma spectroscopy. Release rates are determined for particulate and i'odine nuclides.

33 O~~ 5 1 1989

C. The following equation is used to estimate the projected doses that would result if those releases rates were to persist for 31 days:

PROJD = (PRR x 0. 189) + ( IRR x 0. 135) where: PROJD = the estimated maximum projected dose at or beyond the site boundary over a 31-day period attributable to release rates PRR and IRR (millirem).

PRR = the total release rate of radionuclides 'in particulate form (uCi/minute).

IRR = the total radioiodin'e release rate (uCi/minute),

0. 189 = a factor to convert gross particulate release rate to a dose over 31 days. Based on the expected nuclide composition of SSES effluents from NUREG-0564, meteorological data collected over 1984-1988, and land-use census results from 1988. Calculated using GASPAR.
0. 135 = a factor to convert gross radioiodine release rate to a dose over 31 days. Based on the same 4

assumptions as above.

D. Based on the projected dose value (PROJD), appropriate treatment is defined as follows:

1. IF PNLlD is 0.03 sillirea or less, the component in question can reeain out of service. If the component remains out of service for an extended time period, an evaluation will be performed at least once each 31 days, based on recent vent sample analyses performed as part of the routine surveillance program. The value of 0.03 milli rem is 34 DEC ) g f989

105 of the 0.3 millirem action level for use of appropriate portions of the treatment systems. When projected doses are below this level, the exhaust stream in question is not a significant contributor to offsite doses attributable to the site.

2. If PRMD is 0.3 millirem or greater, the component in question must be returned to service as soon as it can be returned to an operable state.
3. If PROJD is above 0.03 but less than 0.3 millirem, a more detailed assessment is required. Particulate, iodine, and tritium release rates for the entire unit (reactor building vent, turbine building vent, and 1/2 of the SGTS vent)'re determined based on the most recent vent sample analyses available. These release rates are then converted to release totals (curies) over 31 days for all positively detected radionuclides, and input to the GASPAR program to calculate the projected dose totals over 31 days. If the maximum dose exceeds 0.3 mi llirem, the component must be returned to service as soon as it can be returned to an operable state. If the maximum dose is 0.3 millirem or less, the component can remain out of service in the same mar rer as in case 1 above.

8.3 SOLID WASTE TREATMENT SPECIFICATION 3.11.3 - THE SOLID RADWASTE SYSTEM SHALL BE USED IN OCESS CONTROL PROGRAM, FOR THE PROCESSING ANO PACKAGING OF RADIOACTIVE WASTES TO ENSURE MEETING THE REQUIREMENTS OF 10 CFR PART 20, 10 CFR PART 71, AND FEDERAL REGULATIONS COVERING THE DISPOSAL OF THE WASTE.

The SSES solid radwaste system was designed to solidify all wet wastes for ultimate offsite disposal. There are two Backwash Receiving Tanks, one per unit, which collect two filter-demineralizer backwashes per tank (2450 gal capacity). Air spargers for resin mixing are driven by instrument air. Regeneration Waste 35 ~~~ 1 1 1989

Surge Tanks (4) and Phase Separators (3) have internal mixing eductors for sludge mixing driven by recirculation flow. The Spent Resin Tank has a reversible progressing cavity pump and internal mixing eductors. Two solidification trains have waste mixing tank progressing cavity feed and mixing pumps, and screw conveyors for feeding of dry Portland cement. Mixing is facilitated by the addition of sodium silicate. Common solidification equipment includes waste container fillport, transfer cart, capper washdown station, and swipe tool; cement silo with rotary feed valve, aeration blower, baghouse, and exhaust fan; sodium silicate tank and pump. Vendor solidification services may be used in accordance with the SSES Process Control Program to supplement the plant solidification system or to take the place of the plant system when the plant system is out of service.

A flow diagram of the SSES solid radwaste treatment system is shown in Figure 3. Dry contaminated waste processing is depicted in Figure 4.

Dry contaminated solids may be compacted with a drum compactor into 55-gallon drums or with a box compactor into steel boxes. The trash compactors utilize hydraulic press pistons with exhaust fans and HEPA filters. In addition, dry contaminated solids may be processed using vendor supercompaction and incineration services. An automated dry active waste (DAW) monitoring system is used to segregate radioactive from non-radioactive solid waste.

OEC i ~ i98 36

f SOON VASOMTOO INATNO STEAN ~~TS OfTOM TOOK OEACTOO SELL SEAL LEAK OMIO OfACTOO OOILONO MMOS S SM SWAH OROMTOOS ~ OYWLLMANO

~

EOECAOTATN TOOONE OWLONO DOMW S~ OM SYSTM OAMASTE ONLONO OOANS SIM STSTSN IIDUIDOAONASTE LIOVN RAMIE COLLE CTNO 4 SOOOE TAOKS

~ T~TOOOS

~ TWA TOOO ~

01

~f OS LNDN flLTEOS 40RIP 01 LNUN OAMASTE

~ EWOE OALQEO

~ S.NI

~f LNUIO IIAOWASTE TANKS DT TSTA TKOU S fOM C~fWATS OEWO. ENON MONASTS COLLEClNO TAOK ~OOSSIAJS m OEM OEOEMMTNO TAOKS 05 CUEWCAL WASTE TO WASTE WXNO lAOKS OT.ST A. ~

lD 5tf hl AEON TASK L IDUN MONASTE COUDEKIATE STOOASE TAOK5

~ TO?LAJ iI OEVTMLQEO TAOKS CUE WCAL WASTE ~ 'l 555 SAWLE TAMSIKWS Dt IDEAL R IT.ITSAJ ST INA J Of KTO TASK SOWO Lt INAJ WITOAJ o

f~~f QS

~ STATNOS SOON AOK ONLEO NO~

4%LSR "P f 1 S~ SOCL SOOL CLfASWSYS COEWCAL OfCOOT~TNW OT I

LAO AOO Of COO O~ OADWALTE fVASOMTOOS DISTILLATE OE SAWLE TAPÃ

~ E Q4P ~ fill, TO CODLNO

~

CNEWCAL WASTE TAOK TMKO SLOW.

~ TOIS COEWCAL WASTE OOWO ISE TASK OS QO LAUOOOY SAMOS DESOLATE O ONt OOANO 0 DISTILLATEfAWt TADKeVma Ot STTAJ f

f

~ OSOOOE L OECOOTAN Of NATNO TfOOE OTSI CASK CL~ OMI EVAtDMTDO CDOCEOTOATE TD WASTE WXIUO TAKK5 STMASf TASK OTRI A.O LAINDOYDIAN ~ T STE TASKS Ol III A.O 015 LAUUDAYOhMS (I~ IAUUDhYDhAIU SILTEK5 5AI&ILTANKS DSOIlAJ Dl 115 t~

CDNCIUTAATE STDMSE t ~

LAUKOOY OAAN TAOK

~ lISA J LAUMAYDMN ~E TASK tlNSS Ot IIIA TAOK DISCNAKSE 011 Dt QS

AMBIENT TEMPERATURE CHARCOAL OFFGAS RECOMBINEA SYSTEM I OFFGAS SYSTEM UNIT I STEAM JET AIR EJECTOR UNIT 1 TURBINE SLOG MAIN 4 AUX STEAM EXHAUST I IF 302 OU LET HEPA F ILTE HAACOALADSOABEA BE FROM aNIT I UNIT I EL HEAT TRACING )

I E.136 I IT 310 I T.309 T 308 I T307 1T.

FF GAS BYPASS PRE IIAIN M0~I)' -T HEATEA

'IE-133 MOTIVE STEAM JET DELAY PIPE IF IA l IE 'IA IE. A B 0

T.303A STEAN DILUTIONSTEAM s I C 7 CON I STEALI I

OEN SEA JET IS 125 2 I INLET UNIT '. 1st Sl'AGE AIR EJEC.

RECOMB iw, ~ s: I I E.134 H2 HEPA PRE COOLER CHILLEA~~ GUARD B D VESSEL MOTIVE F ILTE R x TOR I STEAM CON JET OEN. 2nd STAGs. I COND SER )I IE.137

)II RECOMB COND I

COMMON OFFGAS RECOMBINEA SYSTEM I

I I I

STEAM JET AIR EJECTOR CONDENSER IIAIN UNIT 2 )I STEA+

II DELAY PIPE CON AMBIENT TEMPERATURE CHARCOAL OEN.

OFFGAS SYSTEM SEA UNIT 2 UNIT 7 OFFGAS AECOMBINEA SYSTEM 2 OFFGAS BYPASS MAIN 5 AUX TURBINE SLOG EXHAUST STEAQ UNIT 2 F ROLl UNIT 2 FIGURE 2 OFFGAS AND REt:O)SINER SYSTEH FLOW DIAGIVN

COCEIChTE RIIDIASTE CSCXNShlE $ KlKH. IV@LE IKKH fLEL PLXL ISCU BAQOI. QCU BAOOI LENIN, &SIN DENIIENILI?ER ITIN. ~IN Q/NX INES HASTE'LANE TAHCS F/D BACLOI. RECE I V IIXI IIVI( IKCKIVIIQTISS(

STOthK %8K. CP-301 S RNK VESSEL. LT-IOS hiB 2T- LOShiS MXIVIHOTAWI ll-22S 2T-225i O'1-ISB 2T-ISB 01-203 IKIXtCWIIIXI HASTE IP- I OQL.B FLAPS 2t-LOSSES 8%6 ~IN TAIS(

OT-321

~T RESIN TRANS Ot 320 P~

IO NOS tlW'ASTELIQIID RIIQSLSTE I~IS FILTERS IS'-302R B PLXLTAIX.E HASTE SLLOQE SDL1DIF ICAT ION PHASE SEPi SIST QI DT-331 RHCU l5CU PHASE SEP. PHASE SEPi OT-3 ISA DT-3LBB HASTE SLLIXK HASTE OISCWWK NIXIIO PLSIP CONTAINS 0'-332 10 WITS PISA'O SOS tLIP EVAPCRAIOR NIXIIQ COHCEHTRATE LSLSTE STORK% TIVE RHCU SL LODE 0 I SCHAROE ThHLS Ot-32S NIXIIEI Pu&

DT 307hiB IF~33L EVAPDRAICR fRDH COHCEMTRATF. EVAPORATOR 5IORAOE ItW(

OISCHAROE PUHP OP-320 LXLSIE GILIAIIER 0

FICURE 4 SSES ORIJ COHTANINATEG NSTE PRXESSING Paper, Plastic, Rags, Sheeting, Clothing Second-Sort Contaminated Dry Solid IIaste OrIJI Solid IIaste Ory Active geste (ON) llcnitcring Systsn (endor Shredder IPES Services Drtgt Miomctive? Box Compactor Rycrccepactiam Ocspactcr Incinerate 55~1.'nms or Boxes DE~ 4 f $ 89 40

9.0 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM

9. 1 DEFINITIONS Weekly: Once in each calendar week at intervals of approximately 7 days, plus or minus 2 days.

Semi-Monthly: Twice each calendar month at intervals of approximately 15 days, plus or minus 4 days.

Monthly: Once each calendar month at intervals of approximately 30 days, plus or minus 6 days..

quarterly: Once in each three month period of a calendar year at intervals of approximately 13 weeks, plus or minus 3 weeks.

9.2 MONITORING PROGRAM SPECIFICATION 3.12.1 - THE RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM SHALL BE CONDUCTED 'AS SPECIFIED IN TABLE 3.12.1-1.

Environmental samples shall be collected and analyzed (as a minimum) according to Table 7 at locations shown in Figures 5 and 6.

Analytical techniques used shall ensure that the detection capabilities in Table 8 are achieved.

A dust loading study (RMC-TR-81-01) was conducted to assure that the proper transmission factor was used in calculating gross beta activity of air particulate samples. This study concluded that the sample collection frequency of once per week was sufficient and that the use of 1 for the transmission correction factor for gross beta analysis of air particulate samples is valid.

The charcoal sampler cartridges used in the airborne radioiodine sampling program (Science Applications, Inc., Model CP-100) are designed and tested by the manufacturer to assure a high quality of radioiodine capture. A certificate from the manufacturer is supplied and retained with each batch of cartridges certifying the percent retention of radioiodine versus air flow rate through the car tri dge.

OEC ~~ e89 41

The results of the radiological environmental monitoring program are intended to supplement the results of the radiological effluent monitoring by verifying that the measurable concentrations of radioactive materials and levels of radiation are not higher than expected on the basis of the effluent measurements and modeling of the environmental exposure pathways. Thus, the specified environmental monitoring program provides measurements of radiation and of radioactive materials in those exposure pathways and for those radionuclides which lead to the highest potential radiation exposures of individuals resulting from station operation. Program changes may be proposed based on operational experience. Deviaticns are permitted from the required sampling schedule if specimens are unobtainable due to hazardous -conditions, seasonal unavailability, malfunction of automatic sampling equipment, and other legitimate reasons. If specimens are unobtainable due to sampling equipment malfunction, an effort shall be made to complete corrective action prior to the end of the next sampling period. All deviations from the sampling schedule shall be documented in the annual report.

Reporting requirements for the radiological environmental surveillance program are given in Appendix B.

9.3 CENSUS PROGRAM SPECIFICATION 3. 12.2 - A LAND-USE CENSUS SHALL BE CONDUCTED AND N A DISTANCE OF 8 KM (5 MILES) THE LOCATION IN EACH OF THE 16 METEOROLOGICAL SECTORS OF THE NEAREST MILK ANIMAL, THE NEAREST RESIDENCE AND THE NEAREST GARDEN* OF GREATER THAN 50 M2 (500 FT~) PRODUCING BROAD LEAF VEGETATION.

  • Broad leaf vegetation sampling of at least three different kinds of vegetation may be performed at the site boundary in each of two direction sectors with the highest predicted 0/g's in lieu of the garden census. Specifications for broad leaf vegetation sampling in Table 3. 12. 1-1, item 4C shall be followed, including analysis of control samples.

42

If a land use census identifies a location(s) with a higher average annual deposition rate (0/Q) than a current indicator location, the following shall apply:

I. If the 0/Q is at least 20 percent greater than a previously high 0/Q, the new location shall be added to the program within 30 days. The indicator location having the lowest 0/Q may be dropped from the program after October 31st of the year in which the land use census was conducted.

2. If the 0/Q is not 20 percent greater than the previously highest 0/Q, direction, distance, and 0/Q will be considered in deciding whether to replace one of the existing sample locations. If applicable, replacement shall be within 30 days.

l Any evaluations of possible location replacement should include the past history of the location, availability of sample, milk production history, and other applicable environmental conditions.

h A land use census will be conducted at least once per calendar year by a door-to-door or aerial survey, by consulting local agricultural authorities, or by any combination of these methods.

9.4 INTERLABORATORY COMPARISON PROGRAM SPECIFICATION 3.12.3 - ANALYSES SHALL BE PERFORMED ON RADIOACTIVE MATERIALS SUPPLIED AS PART OF AN INTERLABORATORY COMPARISON PROGRAM WHICH HAS BEEN APPROVED BY THE COMMISSION.

The laboratories of the licensee and licensee's contractors which perform analyses shall participate in the Environmental Protection Agency's (EPA's) Environmental Radioactivity Laboratory Intercomparisons Studies (Crosscheck) Program or an equivalent program which has been approved by the Commission. This participation shall include some of the determinations (sample medium-radionuclide combination) that are offered by EPA and that are also included in th e monitor>ng program.

OEC g g lg8g 43

The results of the analyses of these crosscheck samples shall be included in the annual report..

If the results of analyses performed by the licensee or licensee's contractor in conjunction with the EPA crosscheck program (or equivalent program) are outside the specified control limits, the laboratory shall investigate the cause of the problem and take steps to correct it. The results of this investigation and corrective action shall be included in h

the REMP annual report.

44 DF.C g t t989

FIGURE 5 ONSITE ENVIRNNENTAL SAMPLING LOCATIONS - SUSQUEHANNA SES

~

N

~

I ~ ~

I

~ ~

I I

I I

~ ~

I I

I ~

I I

I I

I I

I I

1 1 ~ ~

1 I 9 I

1 252 1 3 15 1 i> ~; 4 I 1 1

1 I

~ ~ 0 1

1 l4 LSS4 LeSL '$ 2 I S I

0 ~

$2 ~ 2$3 354 r I

~, 0 I 0 ~ l I I I I L4S 4S3 I 54 ~

~ )g I l3 L3$ 2 684 r r'.

$$ 558 es2 ~ ~

I ~ ~

L2$ 3 1$ $

Se 9$ 2 $$ 2 0 LL$3 I I I

I I ess LOSL I I L I ~ ~

I I I

~ .

~

r

I I

o I P I h I I ~ ~ ~

I I

I 8 I

DEC g T 589 /I / r,

~

~ ~

/

r ~,

pa

~0 0 ~ ~

~ ~

\ ~ ~

~0 ~ ~

FI6URE 6 PFFSIT'E ENVIRONENTAL SAN'LING LOCATIONS - SUSQUEHANNA SES wktdH Fr f ACFS 4tOV H P f WP VUOUT HVHCO f 4IO I <<r J 363 I~

VHIO H dfH H fI G H wr f r f k COAL

~ 15F1 vtw COLU U5 Hfw f P rf , 3Fl ~

PII C

'I P h (Ih

~ h V II F61 CO I5 l4 I I

y' X1 t >>J>> I l Cdf ~ 14E1 1482 I

dj~ I JP Cuff C f<<r:

I I ~

MI fS o 2Nt R

l I

f<<P, OPPBHCf I

I " ~ 13'A SE1,5E2 "OP 7S dr'E1 V.wh S>>'I

~ Ih>>P 5thw>CA~ ~ 12E1 f <

> /I "1 h C dCF i hIA H C far r' / 'f+vfr~ If .. g f<

> 5T IIAZLCTOII 0g r ~ IACCETOII dfCf ~ ~ >>er  ; 761 H O VHIOH CO ~ I'rVHI P H ,yS Oct: < S ~S89 46 TABLE 7 Page 1 of 3 OPERATIONAL RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM ~/

xposure Pathways

~ 1 Number of Samples and Locations* Sampling and Collection Fre uenc Type and Frequency of Anal sis <irboroe tadioiodine and llS2 0.4 mi SW - Former Golomb House) Continual sampler operation Radioiodine Canister: 'articulates 9B1 1.3 mi S - Transmission Line) with sample collection weekly.** analyze weekly for I-131 5S4 0.8 mi E - W of Bio. Consult.) 12E1 4.7 mi WSW - Berwick Hospital) 7G1 14 mi SE - PPEL Hazleton Chemical Particulate Sample: Lab) Analyze for gross beta 2S2 (0.9 mi NNE - Susq. Energy Info. radioactivity 24 hours Center) following filter change. 15S4 (0.6 mi NW - Transmission Corrodor Perform gamma isotopic 102 (3.9 mi N - Mocanaqua Substation) analysis on composite 3D1 3.4 mi NE - Pond Hill) sample (by location) 12G1 15 mi Si)W Bloomsborg Service quarterly. Center) )irect Radiation 1S2 Perimeter Fence - 0.2 mi N quarterly Gamma Dose: quarterly. 102 Mocanaqua Substation - 4.0 mi N 2S3 Perimeter Fence - 0.2 mi NNE, 2B3 Former Luzerne Outerwear-1.3 mi NNE 2F1 St. Adalberts Cemetery - 5.9 mi NNE 3S4 Perimeter Fence.,- 0.3 mi NE 3Dl Pond Hill - 3.4 mi NE 3F1 Valania Resident (Nanticoke) 9.1 mi NE CD 3G3 Wilkes-Barre-Horton St. Substation-m 16 mi NE 4S3 Perimeter Fence - 0.2 mi ENE 4E1 Pole (8) 46422 N35197 - 4.8 mi ENE 4G1 Mountain Top - Industrial Park 14 mi ENE 5S7 Perimeter Fence - 0.3 mi E 5E2 Bloss Farm - 4.5 mi E 6S4 Perimeter Fence - 0 ' mi ESE 6A4 Former State Police - 0.6 mi ESE ABLE 7 (Continued) Page 2 of 3 ~IS xposure Pathways Number of Samples and Locations* Sampling and Collection Fre uenc Type and Frequency of Anal sis 6E1 St. James Church - 4.7 mi ESE 6S9 Perimeter Fence - 0.2 mi ESE 7S6 Perimeter Fence - 0.2 mi SE 7E1 Harwood Transmission Line Pole P2-4.2 mi SE C3 7Gl Hazleton Chemical Lab - 14 mi SEa fll 8S2 Perimeter Fence - 0.2 mi SSE . 8B2 LaWall Residence - 1.4 mi SSE BD3 Howry Residence - 4.0 mi SSE 9S2 Security Fence - 0.2 mi S 9D1 Smith Farm - 3.6 mi S 10Sl Perimeter Fence - 0.4 mi SSW 10D2 Ross Ryman Residence - 3.0 mi SSW 11S3 Security Fence - 0.3 mi SW 11E1 Jacobsen - 4.7 mi SW 12S3 Perimeter Fence - 0.4 mi WSW 12E1 Berwick Hospital - 4.7 mi WSW 12Gl Bloomsburg - 15 mi WSW 13S2 Perimeter Fence - 0.4 mi M 13E4 Kessler Farm - 4.1 mi W 14S5 Site Pole 43996/N34230 0.5 mi WNM 14E1 Canouse Farm - 4. 1 mi WNM 15F1 Zawatski Farm' 5.4 mi NW 15S5 Perimeter Fence - 0.4 mi NM 16S1 Perimeter Fence - 0.3 mi NNM 16S2 Perimeter Fence - 0.3 mi NNW 16F1 Hidlay Residence (Huntington Mills)- 7.8 NNW aterborne a urface 6S6 river water intake line Monthly composite Gamma i so topi c anal ys i s. 6S7 cooling tower blowdown discharge Monthly composite Composite tritium line analysis at least quarterly. rinking 12H2 Oanville Water Co. Monthly composite Gross beta and gamma (Approximately 30 miles downstream) isotopic analy onthly. Composite for um analysis at 1 nuartorlv TABLE 7 (Continued) Page 3 of 3 Exposure Pathways Number of Samples Sampling and Type and Frequency and/or Sam le and Locations* Collection Fre uenc of Anal sis Sediment from 7B Bell Bend - 1.2 mi SE Semiannually Gamma i sotopi c analysis Shoreline semiannually. Hilk*** 12B2 Shultz Farm - 1.7 mi WSM Semi-monthly when animals Gamma isotopic and I-131 9D3 Broyan Farm - 3.9 mi. S are on pasture, monthly analysis of each sample. 10G1 Davis Farm - 14 mi. SSW otherwise 10D1 Ryman Farm - 3.0 mi. SSM 13E3 Dent Farm - 5.0 mi. W 14B2 Stola Farm - 1.8 mi MNW Fish and Outfall area Semiannually. One sample Gamma isotopic on Invertebrates 2H Falls, PA from each of two recrea- edible portions. (Approximately 30 mi NNE) tionally important species from any of the following families: bullhead catfish, sunfish, pikes, or perches. Food Products llDl 2ehner Farm - 3.3 mi SW At time of harvest Gamma isotopic on vegetable edible portions.

  • T e ocat>on o samp es and equipment were designed using the guidance in the Branch Technical Position to NRC Rev.

Guide 4.8, Rev. 1, Nov. 1979, Reg. Guide 48. 1975 and ORP/SID 72-2 Environmental Radioactivity Surveillance Guide. Therefore, the airborne sampler locations were based upon X/Q and/or D/Q.

    • A dust loading study (RHC-TR-81-01) concluded that the assumption of 1 for the transmission correction factor for gross beta analysis of air particulate samples is valid. Air particulate samples need not be weighed to determine a transmission correction factor.

'**Ifa milk sample is unavailable for more than two sampling periods from one or more of the locations, a vegetation sample shall be substituted until a suitable milk location is evaluated. Such an occurrence will be documented in the REHP annual report. Control sample location. b Two-week composite if calculated doses due to consumption of water exceed one mi llirem per year. In these cases, 1-131 analyses will be performed. The sample collector will determine the species based upon availability, which may vary seasonally and yearly. OEC 4 2 1989 TABLE 8 DETECTION CAPABILITIES FOR ENVIRONMENTAL SAMPLE ANALYSIS Lower Limit of Detection (LLD)a Airborne Particulate Water or Fish Nilk ~Anal sis ~Ci/l Gas Ci/m3 ( Ci/k, wet) ~( Food Products ~(/k . ( ( Sediment (k gross beta 1 x 10 2000 d'n-54 15 130 Fe-59 30 260 Co-58 15 130 Zn-65 30 260 Zr-95 15 I-131 1b 7x10 60 Cs-134 15 5 x 10 130 15 60 150 Cs-137 18 6 x 10 150 18 80 180 ea-140 60 60 La-140 15 15 TABLE 8 (Continued) a The LLO is the smallest concentration of radioactive material in a sample that will be detected with 95 percent probability and with 5 percent probability of falsely concluding that a blank observation represents a "real" s,ignal. For a particular measurement system (which may include radiochemical separation): LLO = 4.66 sb 2.22 EVY exp - d t) where: LLO is the "a priori" lower limit of detection as defined above (as pCi per unit mass or volume). s's the standard deviation of the background counting rate or of the c3unting rate of a blank sample as appropriate (as counts per minute) E is the counting efficiency (as counts per transformation) V is the sample size (in units of mass or volume) 2.22 is the number of disintegrations per minute per picocurie Y is the fractional radiochemical yield (when applicable) g is the radioactive decay constant for the particular radionuclide, and b,t is the elapsed time between sample collection (or end of the sample collection period) and time of counting. In calculating the LLD for a radionuclide determined by gamma-ray spectrometry, the background should include the, contributions of other radio-nuclides normally present in the samples (e.g., potassium-40 milk samples). Typical values for E, V, Y, and t should be used in the calculations. It should be recognized that the LLD is defined as an a priori (before the fact) limit representing the capability of a measurement system and not as a osteriori (after the fact) limit for a particular measurement. LLD for drinking water. 51 I 10.0 OOSE ASSESSMENT POLICY STATEMENTS 10.1 Selection of Anal sis Results for Oose Calculations For determination of compliance with SSES Technical Specification dose limits, effluent totals shall be based only on activity positively detected at'he 95K confidence level. 10.2 Assi nment of Releases to the Reactor Units For determination of compliance with SSES radioactive effluent dose limits which are on a "per reactor unit" basis:

a. Effluents from the Unit 1 Reactor Building vent and the Unit 1 Turbine Bui 1.ding vent shall be included as Unit 1 releases.
b. Effluents from the Unit 2 Reactor Building vent and the Unit 2 Turbine Building vent shall be included as Unit 2 releases.
c. Effluents from the Standby Gas Treatment System vent shall be equally divided between Unit 1 and Unit 2 release totals.
d. Waterborne effluents shall be equally divided between Unit 1 and Unit 2 release totals.

10.3 Criteria for Potential Unmonitored Release Pathwa s Oases from effluent pathways other than the usual, monitored pathways shall be included in determining compliance with site dose limits if an assessment made in accordance with the parameters and assumptions of the OOCM indicates that the total calculated dose contribution from unmonitored pathways exceeds 5% of the calculated dose from normal, monitored pathways. OEG t c <989 52 10.4 Flow from the SGTS Vent when the S stem is Not in Use When the Standby Gas Treatment is not being used, there remains a small amount of flow from the SGTS vent. This residual flow is exhaust from the battery rooms in the control structure. Because there are no identifiable sources of radioactivity in .these rooms, auxiliary particulate and iodine sample and noble gas grab sample at 4-hour intervals are not required from the SGTS vent when the SGTS continuous vent monitor is out of service, provided that-

a. the Standby Gas Treatment System is not being used,
b. there are proper administrative controls in place to ensure that the required sampling will begin within 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> if the treatment system is operated.

10.5 ODCM Set pints are U er Limit Values Effluent monitor alarm/trip setpoints calculated in accordance with the ODCM shall be considered upper limit values. Higher (less conservative) setpoints shall not be used, however lower (more conservative) setpoints may be used as required to maximize the utility of the monitor. 10.6 Definition of "A ro riate Treatment" for Li uid Wastes Technical Specification 3. 11. 1.3 requires that the appropriate portions of the liquid waste treatment system be operable and be used to reduce radioactivity in liquid wastes prior to their release when projected doses from each reactor unit to unrestricted areas would exceed 0.06 mrem to the total body or 0.2 mrem to any organ in a 31 day period. Appropriate treatment is defined as follows:

a. Filtration combined with demineraliiation is considered appropriate treatment for batches which yield projected doses greater than 6.54E-04 mrem to the total body or 2. 15E-03 mrem to any organ.

53 UE( i i $ 89

b. Filtration alone is considered appropriate treatment for batches which yield projected doses less than or equal to 6.54E-04 mrem to the total body and 2. 15E-03 mrem to any organ.

BASES The projected dose threshold values used are derived by dividing the site-total maximum projected doses without treatment (0. 12 and 0.4 mrem) by 31 days and by 6, the maximum possible number of batches released per day, to yield per-batch dose action levels. The two levels of "appropriate" treatment are in place so as not to require application of demineralization for treating low activity, high conductivity water (e.g., from Circulating or Service Water leakage). This would increase the overall efficiency of the solid radwaste program while ensuring calculated doses remain at a suitable fraction of 10 CFR 50 design objectives. 10.7 Monitor Line Loss Corrections In order to correct for airborne effluent monitor sample line loss, the following correction factors shall be applied to monitor data and sample analysis results: CORRECTION FACTORS ROUTINE EFFLUENT MONITORS IDDINE PARTICULATES Reactor Building Unit 1 1.5 3.2 Reactor Building Unit 2 1.5 3.2 Turbine Building Unit 1 1.6 3.6 Standby Gas Treatment 1.5 3.9 Turbine Building Unit 2 1.6 3.6 QEG 11 1989 CORRECTION FACTORS POST ACCIDENT VENT MONITORS IODINE PARTICULATES Turbine Building Unit 1 1.7 4.2 Standby Gas Treatment 1.6 4,4 Turbine Building Unit 2 1.7 4.3 Each indicated iodine and particulates concentration shall be multiplied by the appropriate correction factor to estimate the actual concentration at the inlet to the sample line. 10.8 Selection of Data for Determination of Dose Rate Com liance Airborne effluent monitor setpoints are maintained in accordance with Section 2.2 to alarm before the dose rate limits of Specification 3. 11.2. 1 are exceeded. Station alarm response procedures contain instructions for investigation and verification of monitor alarms. Because setpoint calculations must include assumptions about the composition of the monitored effluent, a monitor high alarm does not necessarily indicate that a dose rate limit has been exceeded. Dose rate calculations can be performed using the methodology contained in the worksheets contained in Appendix E, based on vent monitor data or vent sample analyses. For determination of compliance with the airborne effluent dose rate limits, vent monitor history data should be used with the shortest averaging period which covers the period of interest. The dose rate limits shall be treated as instantaneous limits, and an effort should be made to capture all available data in the early stages of response to an incident to prevent loss of the data. 'alid ten-minute averaged data should be the primary information used to determine the compliance status of an incident. One-minute averaged data should also be reviewed if available, but they may or may not provide additional information depending on the magnitude of the release due to the manner in which the QEG g 1 1989 monitors update values to be stored and associated statistical considerations. Averages over a longer period should be used only when data with higher resolution is not available. Grab sample analyses should be performed whenever possible to confirm or disprove monitor data, and to provide indication of the nuclide-specific composition of the effluent. When grab sample data are available which, based on vent monitor data, are indicative of the period of elevated release, dose rate calculations should be performed using the methodology of Appendix E and the actual effluent mix. The determination of compliance status should not be based on monitor data alone when it is possible 'to collect and analyze a vent sample which will be representative of the period of elevated release. 10.9 Low-Level Radioactivit in the Sewa e Treatment Plant Like all sewage processing facilities, the SSES sewage treatment plant can under certain conditions receive low levels of radioactive materials. The most notable scenario is when individuals who work on-site have been subjected to the medical administration of radiopharmaceuticals for diagnostic or therapeutic purposes. In these cases, normal biological elimination processes can easily result in levels of radioactivity in sewage treatment plant solutions and suspensions which are within the detection capabilities of the associated sampling and analysis program. Because disposal of sewage treatment plant sludge by controlled dispersal on specified tracts of land is a common practice, the following guidelines have been established:

a. All sludge collected in the sludge holding tank should be sampled and analyzed prior to land disposal to quantify any radioactivity present above natural background levels.
b. Sludge containing nuclides with short half-lives, for example iodine-131, should be contained on-site to permit decay to less than detectable levels.

XG gg $ 89 56

c. When sludge is contaminated with nuclides which have half-lives sufficiently long to make hold-up for decay impractical, the following options should be considered:

1, Dispose of the sludge as low level radioactive waste.

2. Obtain a special permit pursuant to the requirements of 10 CFR 20.302.
d. The sewage treatment plant effluent should be sampled monthly for radioactivity. This can be accomplished by drawing a sample from the chlorine contact chamber.

OEC ~ 4 ~989 57 II.O ODCM REVIEW AND REVISION CONTROL The Environmental and Chemistry Group Supervisor-Nuclear shall ensure that a total review of the ODCM is performed during each even-numbered year. Comments shall be documented and revisions initiated as appropriate. Each ODCM page shall be stamped with its revision date. The ODCM Table of Contents shall present the current revision date for each page so that any manual holder can check manual completeness based on a current Table of Contents. All ODCM revisions shall be reviewed by PORC after they have been approved by the Manager-Nuclear Services and have become effective. Any changes recommended by PORC can be reflected in subsequent ODCM revisions. ODCM copies shall be issued in a controlled fashion by the staff of the Nuclear Department Library. The distribution list shall be maintained by the Nuclear Department Library Staff. Any comments on ODCM contents or proposed revisions should be directed to the Environmental and Chemistry Group Supervisor. OF.C g 1 >989 58 APPENDIX A SAMPLE CALCULATIONS OF ODCM PARAMETERS A. 1 SETPOINTS A. 1. 1 Waterborne Effluent Monitors A. 1. 1. 1 Li uid Radwaste Dischar e Line Monitor For an unidentified mixture with an assumed MPC of lE-7 uCi/ml, an actual activity concentration of 1E-5 uCi/ml, and a blowdown flow setpoint of 5000 gpm, the setpoint concentration, c,,can be determined from c = X'(A). If X = 3, then the actual setpoint concentrati'on is: c = X (A) = 3 (lE-5) c = 3E-5 uCi/ml The setpoint value for the liquid effluent monitors is then determined by Equation 3 in the ODCM. for the above release conditions, the setpoint value, assuming -8 a typical calibration factor of 1.3 x 10 uCi/ml per cpm, would be: Setpoint cpm + Background (cpm) Cal. Factor 3 1 = 33.3 13 3 1.3 10 Setpoint cpm = 2.3E3 + Background A-1 The LRW discharge flow setpoint is then determined as follows: F + f= Y(A) HPt where Y is made equal to 10. 5000 + f = 10(1E-5 f= 5 gpm For an identified mixture with an actual MPC of 7.22E-7 uCi/ml and the same activity concentration, blowdown flow and X and Y values as above, the LRW discharge monitor setpoint value and LRW discharge flow setpoint become: Setpoint concentration (c) = 3E-5 uCi/ml Setpoint value 2.3E3 cpm + Background LRW discharge flow setpoint (f) = 36 gpm A. 1. 1.2 ~gk 0: Service Mater Monitor 0 kg d Calibration Factor = 300 cps 1.5E-S uCi/ml per cps (2E-5)/Cal. Factor = 1333 cps Because 300 cps is less than 1333 cps: HI RAD Setpoint 0.5 Background + (2E-5)/Cal. Factor ~ 0.5 (300 cps) + (2E-5)/( 1.5E-8) ~ 150 cps + 1333 cps ~ 1483 cps DOWNSCALE Setpoint 0.5 Background (0.5)(300 cps) 150 cps ~gk 0 0: 0 kg d 1400 0 Calibration Factor = 1.5E-B uCi/ml per cps (2E-5)/Cal. Factor 1333 cps Because 1400 cps is greater than 1333 cps: HI RAD Setpoint Background + (0.5)(2E-5)/Cal. Factor 1400 cps + (1E-5)/(1.5E-B) 2067 cps A-2 DE,G g 1889 DOWNSCALE Setpoint = Background - 0.5 (2E-5)/Cal. Factor = 1400 cps - 0.5 (2E-5)/1.5E-B) = 1400 cps - 667 cps = 733 cps A. 1. 1.3 RHR Service Water Monitor I I: I kg d = 160 ~ Calibration Factor = 3.9E-9 uCi/ml per cpm (2E-5)/Cal. Factor = 5128 cpm Because 160 cpm is less than 5128 cpm: HI RAO Setpoint = 0.5 Background + (2E-5)/Cal. Factor = 0. 5 (160 cpm) + (2E-5) /(3. 9E-9) = 80 cpm + 5128 cpm = 5208 cpm LOW RAO Setpoint = 0.5 Background = 0.5 (160,cpm) = 80 cpm ALERT Setpoint = 0.8 HI RAD Setpoint = 4166 cpm ~ I  : I kg d = 6000 I Calibration Fac tor = 3. 9E-9 uC i/ml per cpm (2E-5)/Cal. Factor = 5128 cpm Because 6000 cpm is greater than 5128 cpm: HI RAO Setpoint = Background + (0.5)(2E-5)/Cal. Factor = 6000 cpm + ( 1E-5)/(3.9E-9) = 6000 cpm + 2564 cpm = 8564 cpm LOW RAD Setpoint = Background - 0.5 (2E-5)/Cal. Factor = 6000 cpm - 0.5 (2E-5)/(3.9E-9) = 6000 cpm - 2564 cpm = 3436 cpm ALERT Setpoint - 0.8 HI RAD Setpoint 6851 cpm Gaseous Effluent Monitors A.1.2.1 Noble Gas Monitor To determine the release rate limit for noble gases, an isotopic mixture representative of plant effluents is selected. For example, the following mixture from A-3 OEC g 1 l989 Table 4.4 of the SSES Final Environmental Statement (FES) can be used: Argon-41 25 Ci/yr per,reactor Krypton-83m 4 Krypton-85m 1,700 Krypton-85 270 Krypton-87 32 Krypton-88 660 Xenon-131m 71 Xenon-133m 14 Xenon-133 12,500 Xenon-135m 220 Xenon-135 590 Xenon-138 299 Total 16,376 Ci/yr per reactor The above annual release quantities are entered into GASPAR with the following annual average dispersion estimates (

Reference:

1982 SSES Meteorology Report):

Relative Concentration 4.1E-5 sec/m Decayed Relative Concentration 4.1E-5 sec/m Decayed Depleted Relative Concentration 3.8E-5 sec/m

-2 Deposition Rate 4.2E-8 m This set of annual average meteorological parameters is the most conservative over the period 1973-1982.

The total body dose via the plume pathway which results is 18.3 mrem. Equation 5 of the ODCM is then used to calculate the limiting release rate from each of the five plant release points:

A-4 OF.C ~ l SGS

Limiting Release Rate =

32,752 Ci) (500 mrem r 8.95E4 8 95E4 C'/

Ci/yr per vent (36.6 mrem) (5 vents)

This limiting release rate is then converted to limiting (setpoint) concentrations using Equation 6 of the ODCN and high limit vent flow rates.

Sample High Limit Vent Flow Rates:

Unit 1 Reactor Building Vent 4.75E9 cc/min Unit 2 Reactor Building Vent 4.75E9 cc/min Standby Gas Treatment System Vent 5.04EB cc/min Unit 1 Turbine Building Vent 8.63E9 cc/min Unit 2 Turbine Building Vent 6.50E9 cc/min Limiting Vent Concentration =

(8.95E4 Ci/ r/vent ( 1E6 uCi/Ci 3 58E 5 C /

(5.26E5 min/yr) (4.75E9 cc/min) for Reactor Buildings 1IK2 Substituting the other vent flow rates into Equation 6 as above, the following noble gas high radiation set-point concentrations are calculated for the remaining vents:

Standby Gas Treatment System 3.37E-4 uCi/cc Unit 1 Turbine Building 1.97E-5 uCi/cc Unit 2 Turbine Building 2.62E-5 uCi/cc A-5 QEG g 1l989

A.1.2. 2 Iodine -131 yoni tor When the FES expected annual release quantity for I-131 (2.40E-1 curies) is entered into GASPAR with the dispersion estimates of A. 1.2. 1, the maximum calculated organ dose via the inhalation pathway is 4.88 mrem to the child thyroid. Using Equation 5 of the ODCM, the limiting I-131 release rate is calcu-lated as follows:

Limiting Release Rate

(.24 Ci) (1500 mrem/ r 1 48E1 Ci/yrj'vent (4.88 mrem) (5 vents)

Using Equation 6 of the ODCH, the limiting (setpoint)

I-131 concentrations can be calculated for each of the five plant vents.

Limiting Vent Concentration =

( 14.8 Ci/ r/vent 1E6 uCi/Ci = 5.92E-9 uCi/cc for (5.26E5 min/yr) (4.75E9 cc/min), Reactor Buildings 1&2 Substituting the other vent flow rates into Equation 6 of the ODCM above, the high radiation setpoints for the remaining plant vents are calculated to be the following:

Standby Gas Treatment System 5.58E-B uCi/cc Unit 1 Turbine Building 3.26E-9 uCi/cc Unit 2 Turbine Building 4.33E-9 uCi/cc A-6 phd g1$ 8S

A.1.2.3 Particulate Monitor Following are the SSES Final Environmental Statement (FES) expected annual release quantities for particu-late radionuclides:

Cr-51 1.2E-4 Ci/yr per reactor Mn-54 3.6E-4 Fe-59 1. 6E-4 Co-58 5.8E-5 Co-60 1. 1E-3 Zn-65 5.5E-5 Sr-89 1. 8E-5 Sr-90 3. 1E-6 Zr-95 8.7E-6'.

Sb-124 1E-6 Cs-134 1.3E-4 Cs-136 1. 3E-3 Cs-137 2.1E-4 Ba-140 4.2E-5 Ce-141 2.9E-5 Total 3.6E-3 Ci/yr per reactor When the above annual release quantities are entered into GASPAR with the annual average dispersion esti-mates of A. 1.2.1, the maximum calculated organ dose via the inhalation pathway is 1.33E-2 mrem to the teen lung. Using Equation 5 of the ODCM, the limiting release rate of particulates can be calculated:

Limiting Release Rate 7.2E-3 Ci 1500 mrem/ r = 8. 12E1 Ci/yr/vent (2.66E-2 mrem) (5 vents)

A-7 t)EC g"g $ 89

Using Equation 6 of the OOCM, the limiting (setpoint) particulate concentrations can be calculated for each of the five plant vents.

Limiting Vent Concentration =

(81.2 Ci/ r/vent (1E6 uCi/Ci) = 3.25E-B uCi/cc for msn yr cc msn Reactor Buildings 1&2 When the vent flow rates for the remaining five plant vents are substituted into Equation 6 as above, the following high radiation setpoint concentrations result.

Standby Gas Treatment System 3.06E-7 uCi/cc Unit 1 Turbine Building 1.79E-B uCi/cc Unit 2 Turbine Building 2.38E-B uCi/cc A.2 AIRBORNE EFFLUENT OOSE RATE CALCULATIONS A.2. 1 Noble Gases To evaluate the annual whole-body or skin dose from noble gas release rates, the highest calculated annual average relative concentration for any sector is selected from Table 3. For the SSES site, the critical downwind sector is the West sector with an

-5 3 annual dispersion factor of 2.6 x 10 sec/m . The expected release rate of the principal noble gas radionuclide, xenon-133, is 396 uCi/sec. To calculate the annual whole-body dose due to the release of any noble gas in the gaseous effluent, Equation 7 in the OOCM should be used. The whole-body dose factor (K.)

from Table 2 for xenon-133 is 2.94 x 10 2 mrem/yr A-8 OEG g 1 ~%>

3 per uCi/m . Substituting these values in Equation 7, the whole-body dose contribution from xenon-133 releases from the SSES would be 3.0 mrem/yr:

D K. X Q Q' (Equation 7) b

'b = (2.94 x 10 m~rem/ r) (2.6 x 10 sec) uCi/m m X (396 uCi/sec) = 3.0 mrem/year To calculate the annual skin dose due to release of any noble gas in the gaseous effluent, Equation 8 in the OOCM should be used. The skin dose factor (L.)

1 from Table 2 for xenon-133 is 3.06 x 10 mrem/yr 3

per uCi/m . The air dose factor (N,.) from Table 2 for xenon-133 is 3.53 x 10 mrad/yr per uCi/m .

Substituting these values and the previous values for release rate and annual dispersion factor in Equation 8, the skin dose contribution from xenon-133 from the SSES would be 7. 1 mrem/yr:

0 = (L. + 1. 1 N.) (X/Q) (Q'. ) (Equation 8) 0(3ppx1p2~mlSII/ I

+

uCi/m (3.53 x 10 ~))

uCi/m (2.6 x 10 m

)

x (396 uCi/sec) = 7. 1 mrem/year A-9 Oh.C g1$ %

A.2.2 Radionuclides Other Than Noble Gases To evaluate the annual critical organ dose from radionuclides other than noble gases, the highest annual average dispersion parameter for estimating the dose to the critical receptor is selected from Table 3. The highest annual dispersion factor is 2.6 x 10 sec/m in the West sector. The expected release rate of iodine-131 is 3.8 x 10 uCi/sec. The

-6 expected release rate of cesium-137 is 6.66 x 10 uCi/sec.

To calculate the annual critical organ dose due to the release of radionuclides other than noble gases in the gaseous effluent, Equation 9 in the OOCM should be used. The inhalation pathway parameter (P.) from l

Table 4 for iodine-131 is 1.48 x 10 mrem/yr per 3

uCi/m . Substituting these values in Equation 9, the maximum thyroid dose contribution from iodine-131 would be 1.5 mrem/yr from the inhalation pathway.

O,

- (P,.) (Wv) (a'iv) (Equation 9) 0 c

(1.48 x 10 mrem/ r) (2.6 x 10 sec) uCi/m Ill X (3.8 x 10 uCi/sec)

= 1.5 mrem/year INHALATION PATHWAY, I-131 A-10 DEC 11 1989

A. 3 INDIVIDUAL DOSE A.3.1 Waterborne Effluents The liquid effluent dose calculations are performed using the Liquid Annual Dose To All Persons (LADTAP) computer program.

This program may be used to calculate the quarterly (or any other time period) doses to both the maximum individual and the 50-mile population due'o radionuclides,released in liquid effluents from the SSES. The procedure involves the use of the computer code LADTAP which was developed by the NRC to perform

'ose calculations in accordance with Regulatory Guide 1. 109.

The User's Manual for the LADTAP program contains details of the calculational procedures. The total number of curies released for each radionuclide during the time period being evaluated must be supplied from the SSES radiation monitoring program.

A.3.2 Airborne Effluents The airborne effluent dose calculations are performed using the GASPAR computer program. This program may be used to calculate the maximum individual and population doses due to radionuclides released in gaseous effluents from the SSES. The code implements the semi-infinite cloud model and the dose calculational models of Regulatory Guide 1. 109 and is used to calculate all maximum individual and population doses and maximum individual organ doses from the SSES. A more detailed description of the GASPAR code can be found in the GASPAR dose code manuals dated October 17, 1975, and February 20, 1976. The total number of curies released for each radionuclide during the time period being evaluated must be supplied from the SSES radiation monitoring program. The meteorological parameters must be provided from the SSES meteorology program.

QEC g 1 >989 A-11

To evaluate the air dose from noble gas release rates, the highest calculated annual average relative concentration for any sector is selected from Table 3. This critical downwind sector is the West sector with an annual dispersion factor of 2.6 x

-5 3 10 sec/m . The expected release rate of the principal noble gas radionuclide, xenon-133, is 396 uCi/sec. The total release in a calendar quarter would be 7.9 x 10 seconds times 9

396 uCi/sec or 3.13 x 10 uCi. To calculate the quarterly gama airdose due to the Xenon-133 release in the gaseous effluent, Equation 12 in the ODCM should be used. The gamma air dose factor (M.) from Table 2 for xenon-133 is 3.53 x 10 2 mrad/yr per uCi/m . Substituting these values in Equation 12, the quarterly gamma air dose contribution from xenon-133 releases from the SSES would be 0.9 mrad:

= 3.17 x D 10 ~r M; (X/Q) Qi (Equation 12) sec D = (3.17 x 10 yr )(3.53 x 10 mrad/ r)(2.6 x 10 sec) 9 sec uCi/m m 9

X (3.13 x 10 uCi/qtr)

= .9 mrad/quarter To calculate the quarterly beta air dose due to the xenon-133 release in the gaseous effluent, Equation 13 in the ODCM should be used. The beta air dose factor (Ni) from Table 2 for xenon-133 is 1.05 x 10 3 mrad/yr per uCi/m 3 . Substituting these values in Equation 13, the quarterly beta air dose contribution from xenon-133 releases from the SSES would be 2.7 mrad:

Db 3.17 x 10 Zr Ni (X/Q) Q'i (Equation 13) sec 0> (3.17 x 10 2r )(1.05 x 10s r)(2.6 x 10 sec) mead/

uCi/m m A-12

9 X (3. 13 x 10 uCi/qtr) = 2.7 mrad/quarter Since the beta air dose is greater than the gamma air dose by a factor of 3 for xenon-133 and the dose limits are only a factor'f 2 greater for beta than gamma radiation, the beta air dose would be controlling for xenon-133 releases.

A.4 TOTAL OOSE The total cumulative annual dose to any member of the public from operations at the SSES should be determined by summing the critical organ doses to real individuals from all three sources of radiation. Only the maximum dose or dose commitment to a real individual needs to be evaluated.

4.4.1 ~fi 14 Af 1 The cumulative dose to any member of the public due to liquid effluents from the SSES should be determined from the LADTAP program used for evaluating the individual doses as stated in Section A.3. 1 of this Appendix.

A.4.2 Gaseous Effluents The cumulative dose to any member of the public due to gaseous effluents from the SSES should be determined from the GASPAR program used for evaluating the individual doses as stated in Section A.3.2 of this Appendix.

A.4.3 Direct Radiation The direct radiation to any member of the public due to operations at the SSES should be determined from the environmental monitoring program results.

OEG g 4 1989

APPENDIX 8 REPORTING RE UIREMENTS B. 1 ANNUAL ENVIRONMENTAL OPERATING REPORT, PART 8, RADIOLOGICAL A report on the radiological environmental surveillance program for the previous calendar year shall be submitted to the Director of the NRC Regional Office (with a copy to the Director," Office of Nuclear Reactor Regulation) as a separate document by Hay of each year. The period of the first report shall begin with the date of initial criticality. The reports shall include a summary (format of Table 8-1), interpretations, and an analysis of trends from the results of the radiological environmental surveillance activities for the report period, including a comparison with operational controls, preoperational studies (as appropriate), and previous environmental surveillance reports and an assessment of the observed impacts of the station operation on the environment.

In the event that some results are not available, the report shall be submitted noting and explaining the reasons for the missing results. The missing data shall be submitted as soon as possible in a supplementary report.

QE,G g t >989 8-1

8.2 NONROUTINE RADIOLOGICAL ENVIRONMENTAL OPERATING REPORTS When the level of radioactivity in an environmental sampling medium averaged over any quarterly sampling period exceeds the reporting level given in Table 8-2, a written report shall be submitted to the Director of the NRC Regional Office (with a copy to the Director, Office of Nuclear Reactor Regulation) within 30 days from the end of the quarter .

it If can be demonstrated that the level is not a result of station effluents (i.e., by comparison with control station or preoperational data) a report need not be submitted, but an explanation shall be given in the annual report.

When more than one of the radionuclides in Table 8-2 are detected in, the medium, the reporting level will have been exceeded I

if:

concentration (1 + concentration (2) + ... +

repor sng eve j 1 If radionuclides other than those in Table 8-2 are detected and are due from station effluents, a reporting level is exceeded if the potential annual dose to an individual is equal to or greater than the design objective doses of 10 CFR Part 50, Appendix I. This report shall include an evaluation of any release conditions, environmental factor, or other aspects necessary to explain the anomalous result.

OF-C g 1 1989 8-2

TABLE B-1 SAMPLE ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM ANNUAL

SUMMARY

Reporting Period: 1/1/79 - 12/31/79 All Indicator Location with Highest Medium or Type and Lower Limit Locations Annual Mean Control Locations Number of Pathway Sampled Total Number of Name, Nonroutine (Unit of of Analyses Detection Mean Distance 5 Mean Reported Measurement Performed L 0 Mean Ran e Measurements Air Particulates

( 10 pCi/m ) Gross Beta 336 26.6(234/234) 1D2 29.9(52/52) 28.2(102/102)

(7.7-71) 3.7 mi N (11-71) (9.8-64)

Gaoma 28 Be-7 81(20/20) 3D1 82(4/4) 85(8/8)

(37-130) 3.2 mi NE (54-130) (51-140)

Cs-137 0.6 1.6(4/20) 102 5.7(2/4) 2.7(1/8) 0 (1.1-1.8) 3.7 mi NE (2.3-9.0) (2.7) 0 Air Iodine 1-131 160 1.5 - (0/109) N/A N/A -(0/51)

(10 pCi/m )

o e: e examp e a a are provided for illustrative purposes only.

TABLE B-2 REPORTING LEVELS FOR NONROUTINE OPERATING REPORTS Broad Leaf Water Airborne Particulate Fish Milk Vegetation

~Anal sis of Gases ( Ci/k, wet) ~(C i /1 Ci k wet H-3 ,.()

Hn-54 1x10 3 Ci/m'.9 3x10 Fe-59 4x10 1x10 Co-58 1x10 3 x 10 Co-60 3x10 lx10 Zn-65 3x10 2 2x10 Zr-Nb-95 4 x 102(b)

I I-131 2 3 lx10 2 Cs-134 30 10 1x10 3 60 1 x 10 Cs-137 50 20 2x10 3 70 2 x 10 Ba-La-140 2 x 102(b) 3 10(

C3 ftl n

For drinking water samples. This is 40 CFR Part 141 value.

5R b Total for parent and daughter.

APPENDIX C SITE SPECIFIC INFORMATION USED BY GASPAR CODE

1) The distance from the facility to the NE corner of the U.S. (Maine) in miles 590 miles.
2) Fraction of year leafy vegetables are grown 0.33
3) Fraction of year cows are on pasture 0.60 (April-Nov.)
4) Fraction of crop from garden 0.76
5) Fraction of daily intake of cows derived from pasture while on pasture 0.42
6) Absolute humidity over growing season ~9.0 /m-3 Relative humidity is 67.6% if T is supplied.
7) Average temperature over growing season 60.2'F
8) Fraction of year goats are on pasture 0.60
9) Fraction;of daily intake of goat from pasture while on pasture 0.75
10) Fraction of year beef cattle are on pasture 0.60
11) Fraction of daily intake of beef cattle derived from pasture while on pasture 0.55 DEC g t $ 89

APPENDIX D SITE SPECIFIC INFORMATION USED BY LADTAP CODE

1) Total discharge from all units: 22 cubic feet per second 2). 50-mile Population: 1,608,000
3) Blowdown Rate 22 cubic feet per second
4) Total Annual Blowdown Volume: 6.94E8 cubic feet
5) Dose to Maximum Hypothetical Individual; Location = Danville, PA
a. Shorewidth factor: .2
b. Dilution factors: See Figure 0-1
c. Transit time to drinking water intake: See Figure D-1
6) Sport Fish Harvest:
a. Zero to ten miles:
i. 7,000 kg/yr usage ii. 219 dilution iii. 2.9-hour transit time
b. Ten to twenty miles:
i. 8,500 kg/yr usage ii. 263 dilution iii. 6.8-hour transit time
c. Twenty to thirty miles:
i. 8,000 kg/yr usage ii. 306 dilution iii, 11.6-hour transit time
d. Thirty to forty miles:
i. 13,000 kg/yr usage 332 dilution iii. 16. 1-hour transit time
e. Forty to fifty miles:
i. 6,800 kg/yr usage if. 361 dilution iii. 20.8-hour transit time DEg))~

0-1

7) Population Drinking Water Danville, PA (Closest active drinking water supplier)
a. Population: 9,000 served
b. Dilution factor: See Figure D-l
c. Transit time: See Figure D-1
8) Population Shoreline (Recreation)
a. 2ero to ten miles:
i. Usage: 354,000 manhours per year i i. 219 dilution iii. 2.9-hour transit time iv. Shorewidth factor: .2
b. Ten to twenty miles:
i. Usage: 268,800 manhours per year ii. 263 dilution iii. 6.8-hour transit time iv. Shorewidth factor: .2
c. Twenty to thirty miles:
i. Usage: 259,200 manhours per year ii. 306 dilution iii. 11.6-hour transit time iv. Shorewidth factor: .2
d. Thirty to forty miles:
i. Usage: 422,400 manhours per year ii. 332 dilution iii. 16. 1-hour transit time iv. Shorewidth factor: .2
e. Forty to fifty miles:
i. Usage: 211,200 manhours per year ii. 361 dilution iii. 20.8-hour transit time iv. Shorewidth factor: .2
9) Population Boating:
a. Location: 0-10 miles
b. Usage: 96,000 manhours per year
c. Dilution: 210
d. 2.9-hour transit time

~<<11 1989 0-2

10) Biota Dose
a. Location: Plant discharge b, Dilution: 5 c..1-hour transit time OEC g1 >989 D-3

FIGURE 0-1 DILUTIONFACTORS AND TRANSIT TIMES AS A FUNCTION OF RIVER LEVEL 80 1700 75 1600 H 70 1500 0 65 1400 U k fs DILUT ONS I R 60 I I

I

\

1300 L S 55 1200 U

'RANSIT TIAfES Rl HT AXIS 50 1 0

1100 T I 0 45 LP'F T AXIS 1000 0 40 I l 900 N 0 35 I 800 A F N 30 700 A V 25 600 I 20 500 L

L 15 400 R E 10 300 5 200 0 100 147 147.5 148 148.5 149 149.5 150 150.5 I5 RIVER LEVEL AT BIO. LAB (m above MSL)

Based on dye tracer study results

APPENDIX E METHODS USED TO GENERATE DOSE RATE CALCULATION WORKSHEETS (PAGES E4 - E7 BASED ON VENT MONITOR NOBLE GAS DATA A. WHOLE BODY DOSE RATE Equation 7 of the OOCM states that the whole body dose rate to unrestricted area due to gaseous effluents is calculated as follows:

0 b

+ K'/Q Q where:

0 the annual whole-body dose rate (mrem/yr).

wb K., the whole-body rate conversion factor due to 1

gamma emissions for each identified noble gas radionuclide (i) (mrem/yr per uCi/m') from Table 2 of the OOCM.

1V the release rate of radionuclide (i) from vent (v)

(uCi/sec).

(X/Q) = the highest calculated annual average relative concentration for any area at or beyond the site boundary in an unrestricted area from vent release point (v) (sec/m3).

The whole-body dose rate conversion constant is calculated as follows:

mr em/ r 0 b WB DOSE RATE fACTOR u m n i i iv g(fi)(Ki)(X/Q)(1,67E-2) where:

fi is the fraction of the total noble gas release which nuclide (i) constitutes.

1.67E-2 ~,the number of minutes per second.

The whole-body dose rate conversion factor (5.88E-4}

is based on the SSES final Environmental Statement (FES) expected annual noble gas releases and an annual average relative concentration of

4. 1E-5 sec/m3 (ref. SSES 1982 Meteorological Summary).

B. SKIN DOSE RATE Equation 8 of the ODCM states that the skin dose rate to unrestricted areas due to gaseous effluents is calculated as follows:

E-1

's where:

D the annual skin dose rate (mrem/yr).

Li the skin dose rate conversion factor due to the beta emissions for each identified noble gas radionuclide (i) (mrem/yr per uCi/m~) from Table 2 of the ODCM.

the air dose factor due to gamma emissions for each identified noble gas radionuclide (i) (mrad/yr per uCi/m~) from Table 2 of the ODCM (conversion constant of 1. 1 converts air dose (mrad) to skin dose (mrem).

The skin dose rate conversion constant (mrem/yr per uCi/min) is calculated as follows:

Skin Dose Rate Ds Conv. Factor = 60 ~i Q',.= + (fi)(Li + 1.1M,.)(X/Q)(1.67E-2)

(mrem/yr per uCi/min)

The skin dose rate conversation factor ( 1.16E-3) is based on the SSFS-FES expected annual noble gas releases and an annual aver relative concentration of 4. 1E-5 sec/m'.

II. BASED ON VENT MONITOR DATA OTHER THAN NOBLE GAS Equation 9 of the ODCM states that the dose rate from inhalation of radionuclides other than noble gases is calculated as follows:

6 (P,.) (~) (Q',)

where:

0 the annual organ dose rate (mrem/yr).

Pi the dose parameter for radionuclides other than noble gases for the inhalation pathway (mrem/yr per uCi/m~).

the highest annual average dispersion parameter for estimating the dose to the critical receptor (relative concentration (X/Q, sec/m~) for the inhalation pathway).

Q'iv the release rate of radionuclide (i) from vent (v)

(uCi/sec).

Ut,l; 1 X >989 E-2

The organ dose rate conversion factor for particulates and I-131 (mrem/yr per uCi/min) are calculated as follows:

0 Organ Dose Rate c Conv. Factor =

o, g'iv) =,. (f,.)(p.)(g )(1.67E-2)

(mrem/yr per uCi/min) where:

the fraction of the total particulate release which nuclide (i) constitutes (equals 1 for I-131 dose rate conversion factor).

The organ dose rate conversion factors (1.94 for particulates and 10.64 for I-131) are based on SSES-FES expected releases and an annual average relative concentration of 4. 1E-5 sec/m3.

III.BASED ON NOBLE GAS LABORATORY ANALYSIS The whole-body dose rate conversion constants (Column M) are calculated as follows for each nuclide:

0 mrem/ r wbi RB DOSE RATE CONY. FACTOR. uuuvman EO T(

iv (K.)(X/O)(1.676-2) i

'i 1

The skin dose rate conversion constants (Column P) of Form ODCM-2 are calculated as follows for each nuclide:

mrem/ r si SKIN DOSE RATE CONY. FACTORi u m n 6U tI + 1'Mi X/g 1'67E 2 An annual average relative concentration value of 4. 1E-5 sec/m3 was used for calculation of the constants.

IV. BASED ON LABORATORY ANALYSIS FOR NON-NOBLE GASES The organ dose rate conversion constants (Column BB) of Form ODCM-4 are calculated as follows for each nuclide:

D mrem/ r ci ORGAN DOSE RATE CONY. FACTOR u m n Hf ~i ( i)( )(1.67E-2)

An annual average relative concentration value of 4.1E-S sec/m3 was used for calculation of the constants.

Because different radionuclides result in maximum dose coomitments to different organs, the methodology is conservative because dose rate contributions from nuclides to differing organs are summed and compared to the dose rate limit which is applicable to any one organ. If an apparent noncompliance is calculated by this method, an organ dose from each radionuclide should be calculated to determine if an actual noncompliance exists.

Utl' g 889 E-3

DOSE RATE CALCULATION ltORKSHEET Noble Gas Nuclides; Using Vent Monitor Data NOTE: RELEASE RATE COMPLIANCE CAN BE DETERMINED BY DIRECT COMPARISON OF MEASURED RELEASE RATES WITH CALCULATED RELEASE RATE LIMITS. The methodology of this form provides the actual dose rate values associated with the measured release rates.

Noble Gas Release Rates:

Vent Release Rate (uCi/min)

RB1 . (A)

RB2 . (B)

TB1 (c)

TB2 . . (D)

SGTS (E)

A+B+C+D+E (F)

Whole Body Dose Rate (F) x (8.41E-04)

(mrem/yr)

) x (8. 41E-04)

(Tech. Spec. limit is 500 mrem/year)

Skin Dose Rate (F) x (1.45E-3)

(mrem/yr )

x (1.45E-3)

(Tech. Spec. limit is 3000 mrem/year)

Ut:U g 1 >989 E-4

DOSE RATE CALCULATIONWORKSHEET- Noble Gas Nuclides; Using Laboratory Analysis Data RELEASE RATES FROM VENTS (uCI per minute)

TpgplNK. STAND 8Y TURBINE 'L.' SITE NVCUD '=UNIT 1 GAS UNIT 2 TOTAL (L)x(M) 5.18'.45E-S 8.01'.93E 1.10E-5 9.30EA 4.05'.13E-2 1.01E-2 1.31E-2

%-.-13)S- 6.27E-5 4.43EK XE-133m 1.72'.27ER

%--100.: 4,75EA XE-135N 2.14E-3 3.02EN XE-135 1.24'.72'E-138 6.05E-3 9.76E-3 AR-41 6.05E-3 8.85E-3 SUM OF U/M EQUALS THE WHOLE-BODY DOSE RATE (mrem/yr) TECH SPEC LIMITIS 000 SUM OF LxP EQUALS THE SKIN DOSE RATE (mrem/yr) TECH SPEC UMIT IS 3000 SUM LxM SUM LxP

DOSE RATE CALCULATION MORKSHEET Nuclides Other Than Noble Gases; Using Vent Monitor Data Release Rates (uCi/minute)

Vent Particulates I odi ne-131 (A) RB1 (B) RB2 (C) TB1 (0) TB2 (E) SGTS A+8+C+D+E Maximum Organ Dose Rate From Particulates (S) x (1.19) mrem/year

( ) x (1.9O)- mrem/yr Organ Dose Rate From I odine-131 (T) x (10.1) mrem/yr

) x (10.1) ~ mr em/yr (CC) + (DD) mrem/yr; Tech. Spec. Limit 1500 mrem/yr E-6 GEG g t 1989

DOSE RATE CALCULATIONWORKSHEET- Nuclides other than Noble Gases; Using Laboratory Analysis Data RELEASE RATES FROM VENTS (uCi per minute)

)t)H) Q)5)()$ .

fP B~

. ='Nff~'$.'0

.-,g.'PLQG TURBINE STANDBY TURBINE (A) = SITE (B) 2 UNIT1 GAS UNIT 2 TOTAL HN 4.43E-4 CR-51 -: 8.76E-3 MN-54 6.85E-1 FE-58 .51'.

6.98E-1 GO-58 5.32E-1 CO-60 3.09E+0 ZN-65 4.43E-1 SR'.:: 1.39E+0 SR-90 2.80E+1 1.20E+0 I-131 1.01E+1 CS-1l .'.'.: 4.81E-.1 GS-136 9.24E-2 CS-137::".'". 4.19E-1 BA-140 1.10E+0 GE-141 3.54E-1 SUM OF (A)x(S) IS THE ORGAN DOSE RATE FROM 1-131, H.3, AND PARTICULATES (mrem/yr)- LIMITIS 1500 SUM (A)X(B)

CHANGES TO THE SOLID WASTE PROCESS CONIROL PROGRAM There were no revisions to SSES plant procedure AD~-311. SOLID WASTE PROCESS CXNTROL PROGRAM. during the report period.

168

SECTION 6 REPORTS OF EXCEPTION TO THE SSES EFFI VENT MONITORING PROGRAM On 11/22/89 the Unit 1 Circulating Water blowdown flow recorder (FR-11503) was declared inoperable after failing to indicate less than 200 GPM with valve HV-11503 closed. The work authorization under which the recorder was repaired was closed on 2/9/90. As required by Technical Specification Action Statement 3.3.7.10.b, this event is identified in the Semiannual Effluent Release Report.

The cause of the Blowdown Flow Recorder failing the validation test for radwaste release is due to mud/debris adhering to the target .

disc of the element (FE-11503). This causes mechanical deformation resulting in hysteresis, and the strain gauge element does not return to zero.

169