ML17339A598
ML17339A598 | |
Person / Time | |
---|---|
Site: | Turkey Point |
Issue date: | 02/13/1980 |
From: | FLORIDA POWER & LIGHT CO. |
To: | |
Shared Package | |
ML17339A597 | List: |
References | |
NUDOCS 8002210438 | |
Download: ML17339A598 (28) | |
Text
STATE OF FLORA DA )
) ss.
COUNTY OF DADE )
Robert E. Uhrig, being first duly sworn, deposes and says:
That he is a Vice President of Florida Power 6 Light Company, the Licensee herein; That he has executed the fore'going document; that the state-ments made in this said document are true and correct to the best of his knowledge, information, and belief, and that he is authorized to execute the document. on behalf of said Licensee.
Robert E .. Uhrig Subscribed and sworn to before me'this lg day or. x9 l~
)out <s ~,,
NOTARY PUBLXC, in and for the county of Dade, <<ij g ~~,
State of Florida 4y
~s Notary Public, State of Florida at Largo jfgj 'r C)i Ny commission expires- Eotldcd tlIr
.SZ
~ l reactivity insertion upon ej ction greater than 0 3/ I-/k. t rated. po..;er Xnoper ble xod cnorth shall,b detexnined within 4 eels
- b. A contxol xod shM~l b coils dered inop xable if (a) the xod cannot be moved by the CPJR<, o:
(b) the rod is sisal gned fro= its b &. by oxe than lS inches, or (c) the rod drop tame is not x: t
. c. Xf a contro3. x'od cannot be gloved by the.dr=.ve mecha 'z.sn outdo m shaQ be incxeased by 'boron addition to co-sensate for the withdraw @orth of the inoperable rod 5 CONTROL ROD POS3'.Tie XtTDXCATiO.'f Xf either the power range channel deviation alam or the rod deviation monitox ~
agan ara not opex'able rod positions shaU. be lo=oed once per shift and ~~ter a
~
load change gxeztex'han 10/ of rated pou r. Xf both a3.axms are inopexable for two hours or more, the mc1ear overpower trip shall be reset to 93K of r ted pover
- 6. POLER D3;SXRXHUT3'.ON LD4XXS Hot channe3. factors
'l).'Gefined Pith steam generator tube plu in the basis)~
ing >22Z and <25: .t7ze hot channel factors" st meet the fo lo:mug 3 "~its at ll times e capt curing lo~ joker phys-cs tests=
(Z) < ( ~ /P)~ r.(Z), for'P ~ 5.
(Z) <( *) zK(Z), forP'< 5
< l 55 $ 1.+0 2 '(l-P))
Vnere P is, the fraction o. rated po~ = at which tne cora is operating- g(Z}
. is the function given w. Figure. 3.2-3b~ Z is the core heigh't location o~ p Xf P, s predicted 'by approved physics ealcula-ions 'rceeds ( * ), the s
~
power ~3.3. be 3.i' ted to the rated. po=e= multiplied by the xatic of( )
divided by the predicted P,. or augmo ted surveys.U.ance of hot channel factox's shall be xmplezaent@i ( ~
(2) Vith steam generator tube plugging 22Z the hot channel factors (de fin in the basis) must meet the follo~iag 1":mits a" all times except during lo;"
e
..power physics tests: > .5 Pq (Z) < (:],.gg/P)x K(Z), for P Pq (Z) < (3.98)z E (Z), for P < 5 Fgg < 1;55 L3..+0.2 (3.-P) J Vnexe P is the fraction oi rated po:oer at which the core is operating- 3;(Z)
"-" F'igore 3.2-3a; Z is the core height 1ocation ot' .
q
- 'To be supplied based on results of revised ECCS analysis for 25/ steam'generator tube plugging.
3~2 3 2/13/80
Xf P , as predicted oy, approved phy i"s calculations exceed 3..99 power wi'Ll be 1ivited to the rated po-e= rultiplied by the ratio 1 99 divided by the pxe"icted P , or -. ~anted Qf surveillance of h '<
chmxe3. factors shall be inplea5nted Following initial loading befoxe the reactor is op"rated above 757. of power and at regular ef"ect:e full rated po=-er monthly interval thereafter po~er distribution. caps, ming the movab" e detecto= system shaU. be m con~inn that th hot chance factor 3.iaits o= the specification re s For the purpose of th" s co~parison (1) The measurement o= to<<l peSing facto, QF
-", srial3. b increased fax'anu&ctt'~ng tolerances "nd further, by P<
three percent to acc"u" t increased by five rce-t to account fc h asurerent error (2) The measurement o the enthalpy rise not channe1 factor~ 'Pja, sna3.1 be, incx'eased by our p cent to accou c xor measurement e~
X f either gaea ured ho, ch~ 1 factox'xce its limit specified 'under Xtem 6a, the xeacto po-e snail be reduced so as not to exceed a fraction of the rated value equa1 to the ration o. t"e Fn or <~g 2.>wit to measured va3.u whichever is 3.ess, and the high neu ron flux trip setpoine sha3.3.
by the sam atio. 3:f subsequ nt > core mappino cannot within a be'educed 24 hour2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> period, deaonst a"e that the hot cha nel ~a toxs are met, the xeactox sha3.1 be bxougnt to a ho" shutdo~o condition <<i'eturn to powex'uthorized only for +he p"rpose of physics testing-. one reactor may 'be returned to higher 'nower le el s wne easuxeMnts indicate th" t .hot charm 1 zactors within c
I'
<<M
.The refere-..ce equilibri ~~nicated axial x n>: difference. as a function of
~ ~
power 3eve3. (c&led tn target flux differ -..ce) -@hall be measured at least once p'er effective full po- r quarter. 3: tne a>mal flux difference has not been measured in the last effective full power month, the target f3ux difference must be update< =onthly by lin a= interpolation using Lhe most recent measured value and tne value pred ct d, fo the-end of the cycle 3.i'fe difference'hal3.
- d. -
Except during physics tests or during exco= calibration proceduxes'and as modified by items 6e thro'h Gg be3.or<, th. indicated axia3. flux.
be maintained with a + 57 band a)o-t the target flux difference, (this defines the targe ba"d on axial flu=- difference)
Xf the indicated axial =":.. difference a" a. pox r 3.evel gxe ter than 907 of rated po- er deviztes 3 2-1) 2/13/80
ItI HOT CHANNEL FACTOR NORMALIZED OPERATING ENVELOPE (for steam generator tube plugging 22/ and F q
=1.99)
LJLt
~ ~
~
6.,' ....t..-.. ~ ~ I. 4 ~
~ ~
~ ~
- . 0 !JLF t~ ~ ~ at
~~~~ ~ ~ ~
\ ~ 4!
~
L ~ -! ~ ~
~ ~ ~~ ~ t I -'"-'jL:=.:
~ t
~~
~ II ~
I tt ~>
~ ~
~ I t4
~
~ L4P
~
>.Lt
~ << ~
I 4~ ~
~ >>
hh
~ ~ ~ I~
~
~ ~
t~
~
~ ~
'aL th J th
~ ~ ~ ~ ~ I ~I
~ >4
'lJ' wtl 4
L!
I ~
4Jr>L ta ~ ~ ~
~
L ~
t
>>I 4 Ll
~ ~ - tt t PP
~ 4 t>>
I I ~ ~
44
'.r
~ tp
~ ~
4 I~
~ Lt I~ ~ ~ ~ I I~ >>4~
t
~ ~ ~
P LAL 4 4 I I >.L, ~4
~
~ L~
~ >>tI ~
t tw I ~ ~ ~ ~ ~
~ L P w" L P LL P Ptht ~ w L ~ l ~ ~ ~ 44
~ ~ ~~ 'L. I ~
>> ~ JL
~
! I'I L!Jr!
t
~
L ~ 4
.=': rL;t wl ~ ~ I 4 ' L! '
P I
~ ~
~ ~ ij!'.E- ~ 4 ~
~4
~ >4 I
4 t rat "LL ~
~
~
~
~ ~ I tL:a ~ ~
t ~ I ~ ~ 44 ~ ~ ~ 4
>>31 3 l."h
~ ~ ~
~ ~
4 t:L
~~ ~ t ~ \
~~ I >> ~ \ ~
,,OMM
~
t ~
IP~ P 3)
~~
I ~
!L! >> 4! ~~
J
~
~ I~ ~ I P ~
a
\~
l~
~
~ I ~ ~ BALLL LLJL
~ \
~
1~
~ ~ ~ ~ ~ I ta ~~
~ I Jh ~ <<> ~ ~ ~ ~4 Ltt
~ I
~
~
I
~ r 4>>1
~ t I' ~ I ~ ~
rI ~
t~ ~ ~~ I, Jg4
~
I~
~
~
~4 Lh ALP
~
/g I Ll>> t jt.".t ~ lt
>> L!
~ ~ I ~ ~4 ~ ~~
trr ~
jJ":L 1~
ht ~ P ~
Q <<4 1 ~ ~ 1 ~
~ 4 ~ ~
(
~ I t~ ~ ~
I~ LL L r, ~:.' 4 I 4 ~
t
~ I
' t ~ t ~ I ~
~ ~ ~
L ~ Jt
~ ~ F4 t ~
~ h
'g
- tth ~ ~
I ~
~ ~ IJ ~
h~ ~ ~
I~ I
~ ~ ~
PLtt It
~I~
t L
~~ ~ ~ ""
iji:j:;L:- ~ ~ ILL
}>>
~ ~
Pt t ~ ~
4 ~ ~ ~
~ >>.
~ I~ LL ~
~ ~
~ L
~ ~
<<J LVI
>4
~ ~
I ~
~ ~
I
/
0
~ ~ ~ 4
- l L I tta <<ttjJL 'h to ~ ~
~ ~ ~
l LW !tat ".LL: -. '86 CORE HEIGHT (FT.)
Figure'3.2-3a
HDT c&~iPi~ FAc10%-i 0%~~ -D OPP.tPK~<!'C ~~QPZ (FOR S:=~1 G"":"RIOR TQ>E PLUGGXLiG (25Z c t:2 F = *)
~ ~ 7 O ~ ~
~ ~ ~ 'r P
>~
~
7 0
~ ~ ~
~ 7 (1. 096
~
f 7 ~ ~ 0 ~, 7 0! $
~ ~ ~
7 ~
'(.938 9 ll.l )
C'
~
~ ~ 7 N
r
~ 7 ~
i ..-.- .. -- J ~ ~
~ ~ ~
0 0 g 7 )4 g 7
L 7
! ~ ~
~ ~
~ ~
' l 7
~ ~ ~
~
~~
~
7 7 t t
~ \
l
~ ', 7 z 't ~
~ a ~ ~ ~
w I ~ ~ ~
12.0'),~
w ~
~
t
.t ---;--"- =- -~,493 9
~
~ ~
S v
~ ~a r
~ O 7
7' l
~ ~ ~
7 4
~ ~ !
~ ~ ~ \
7
! f
.4:r.
~ 7
! -"-- - ~ ! l i 1
l S
I !
l t f 0 2 ~ ~
L t t.
~7 7 ~
0 0 e7 ~
~
~
~~ w a,
~
4 ~
iw 7 ~I ~
~ 7 ~
77
~ ~
~, w s4 4
7
~
~
~
~7
~ ~
)
~
7 BOXTo~l COZ=- HZCZZ (FZ)
- To be supplied based on results of revised ECCS ana1ysis for 25/
tube p1ugging. steam'enerator FXGUR:- 3 2-3b 2/13/80
TABLE 1 LARGE B REA Vi TIME SEQUENCE OF EVENTS DECL (CD=0.4)
Event SEC START 0.0 Rx Trip Signal 0.678 S. I. Signal 0.73 Acc. Injection 15.7 End of Bypass 27. 94 .
End of Blowdown 29.23 Bottom of Core Recovery
'6.86 Acc. Empty 59.85 Pump Injection 25.73
r/
0 TABLE 2 LARGE BREAK Results DECL CD=0.4 Peak Cl ad Temp. F 2160 Peak Clad Location Ft. 6.0 Local Zr/)l20 Rxn{max)W 7.365 Local Zr/H20 Location Ft. 6.0 Total Zr/H20 Rxn <0.3 Hot Rod Burst Time sec 34. 6 Hot Rod Burst Location Ft." 6.0 Cal cul ati on Core Power Nwt 102Ã of 2200 Peak Linear Power kw/ft 102/ of 1 l. 31 Peaki.ng Factor 1.99 Accumulator Water Volume (ft ) 875 (per accumulator)
Fuel 're ion +'c cle anal zed ~cc1 e ~Be inn PTP Unit 3 Al 1
\
PTP Unit 4 Al 1 'Al 1
TABLE 3 LARGE BREAK CONTAINflENT DATA (DRT CONTAINMENT)
NET FREE'OLUME 1.55x10 Ft INITIAL CONDITIONS Pressure 14.7 ps la Temperature 90 oF RMST Temperature 39 oF Service Water Temperature 63 'F Outside Temperature 39 oF SPRAY SYSTEM Number of Pumps Operating 2 Runout Flow Rate 1450 gpm Actuation Time 26 secs SAFEGUARDS FAN COOLERS Number of Fan Coolers Operating Fastest Post Accident Initation of Fan Coolers 26 secs
CONTAINMENT DATA (DRY CONTAINMENT)
TH ICKNESS AREA STRUCTURAL HEAT SINKS ~INCH ~(FT Paint 0.006996 51824"..69 Carbon steel 0.20 0.006996 996054.9 Carbon steel Paint 0.006996 35660.11 Carbon steel 0.4896 0.4896 11886 '
Carbon steel Paint 0.006996 0.2898 102000.0 Carbon steel Concrete 24.0 Carbon steel 0.2898 34000.0 Concrete 24.0 Paint 0.006996 4622.69 Carbon steel 1.56 1.56 1540.89 Carbon steel Paint 0.006996 1277.87 Carbon steel 5.496 5.496 425.93
.Carbon steel Paint 0.006996 951.525 Carbon steel 2.748 2.748 317.175 Carbon steel Paint 0.006996 '3550.0 Carbon steel 0.03 Paint 0.006996 80368.5 Carbon steel 0.063 Paint 0.006996 . 42278.25 Carbon steel 0. 10 0.006996 102400 0 Aluminum 0.4404 768.0 Stainless steel 2.1264 3704. 0 Stainless steel 0.1398 14392.0
.. Stainless steel 24.0 Concrete 24.0 59132.0 Concrete
.0 TABLE 4 REFLOOD I'NSS AND ENERGY RELEASES DECLG (CD=0.4)
Time sec Mass Flow lb sec Ener Flow 10 BTU/sec 46.85 0.0 0.0-48.570 0. 070 0.0009 54.551 34. 33 0.4457 64.664 79.06 0.6337 78.264 83.75 1.043
- 94. 164 90.99 1.122 110.764 238.4 1.511 128.064 274.4 1.561 165.464 283.9 1.481 206.664 29.1. 1 1.387 252.764 298.8 1. 27,8
g/
0 .
0 TABLE 5 BROKEN LOOP ACCUMULATOR FLOll TO CONTAINMENT fOR LIMITING CASE DECLG (CD=0.4)
Time sec . Mass F')ow lb/sec
'.0 0.0 0.01 2820.8 2.01. 2367.0 4.01 2081.9 6.01 1879.1
- 8. 01 1724.5
- 10. 01 1599.4 15.01 1368.0 20.01 1212.9 25.01 1105.9 30.138 '034.5 31.675 1015.2
- For energy flow, multiply mass flow, by an enthalpy of 59.62 BTU/lb.
I. 4400 -
TURKEY POINT NUCLEAR POMER STATION ZZ SCTP 3 TOF OOUGLE EHOEO COLO LEC CUILLOTIHE CO=0 ~ I OUALITY Of fLUIO GURSTl 6.00 fT( )'EAK> 6.00 ff(+)
- 1. P'>00
~ II Cl'II
- l. OOOO o
~ 0.~>00 0.0000 O.Z'>00 0.0 Cl O nc> c>n ocl O C l C>c>C>
Cl >'>
c> c> oCl c'l c>c>n C>C> Vl O o o O n a nnaao O O
O O a aO oooo n aOC>
C> C> >I C> > C> C>
o O c>O c>O C>C>c>c>
~
CJ Cl AJ c>
nl ~
C> c) v C> ~ l
~
~
l \ O' ~ ~
Cg
~
k)l
~ ~
C>
~
Cl CJ C
Q
'l \) Cl ~ .>C I ~ II,>
C> C> CJI > ~
~ 0 Ll a>C'l ~
o o~
o ~
0 ~ ~
c)cx>
I+~
oEV C>
~
D CJ o 0 ~
cc
~ ~
D O C> C>D>>
~
~
CV
~
IC>
~
CC>
~ ~
A c>c>'I<<NQ o CII a~
o ~
CC>
o ~
CC> r
~
clnc>a
~
CI>CCS>> IV 3
CI>
o o c> noc>
Ccl W CC>I>C TIRE (SEC)
Figure 1 I.quid equality.- DECLG {CO=0.4)
c 50.000 TUAKEY POlfll NUCLEAA POUEA STATlOH " 22 SCTP 3 TOF OOUBLE EHOEO COLD LEC GUILLOTINE CO=0.4 HASS VELOCITY GVASTc 6.00 FT( ] PEAK/ 6.00 FT(<)
~ \ c0.030
%A Al I
CO 20.000 IJ 0,0 0
.20.000
~
iQ,QQQ
-50.000 0n 0n 00 00 00 00000 ODDOD 0 n 00 noon 0n 0a na Clc1C~D 0 0 00,'OO 00 0000 0 0000 n g 0 0C1&g 0n 0n 0 ~
n Cl/
C) c3 0 cfc~c":)ct ~ C1 n n ~
n ~ ~ 0 n/lClc1 0 0 0 0 0 0000~
~ ~ ~ ~ ~ ~
cU
~ ~
I/l
~
CCl
~ ~
4 CClC/l>> ClC
~
0 I/l 0 0 NDc1cln CCl CClc/l>> ~
0 Pl 0 (1 0 cl c1t )cD CCl W CCl01~
TIHE (SEC)
Figure 2 llass Yelocity - DECLG (CD=0.4)
JCPII TUAKEY POIHT HUCLf.AA POVEA STATIOH - 22 SCTP 3'OF OOUOLE CHOCO COLO LCC CUILLOTIHE CO=0.4 600.00 HEAT TAAHS ~ COCff I 6'lE HT OUAST t 6 ~ 00 FTI I PCAX ~ 6 ~ 00 FTI+)
S00.00 100,00 z 300 00 Ai 200.00 I
I CD 1
-" I..I:I",,l'.I t
?0.000 60.000
'" S0.000 i0,000 30.000
~ t 20.000 6.0vuaO 5.0000 a.0000 3.0600 Z.0000 I.0000 A C5 a aa n
a
~0 a a a IV O
TIHE ISCC)
.Figure 3 Heat Tronsfere Coefficient =; DECLG (CD=0.4)
'500. 0 TURXEV PO[AT NUCLEAR POVER STAT[OR - 22 SGTP 3 TOF OOUOLE EAOEO COLO LEG GU[LLOT[NE CO>0.1 PAESSUAE COAE BOITOH ( l TOP e [~[
8000.0
[500.0 1000. 0 500.00 0.0 CI C7 Cl C7 o O 'CI O AJ T[HE (SEC)
Fj,gL[te 4 ppeSsure - DECL'CD=0.4)
1.00r'05 TUAKEY POIHT HUCLEAA POVER STATIOH - 22 SGTP 3 10F DOUBLE EHOEO COLO LEG GUILLOTIHE . CO=0<<i OREAK FLOE 'I 7.50T 04
<</<<
CD 5.00E<<Oa 2.50f<<Ol 0.0 CL.
CD
-2.50E<<Oa
-5.00E<<0l
~ ~
~
- l. 50l <<llew ~ IAIDO <<~<<<<<<<< '
INtll<<II<<le%~~ 5 ~ <<<<IIW+t$ %<<I<<<<<<~<<<<QINWMNPV<<<<I<<II& MKBSN%&PW+JAtW<<<<I<<MIAaCW <<8<<<< ~ aWCA aWSAIOQa%4
. I.00 E <<05 aaD a 8 an ~ l Q a
a a O.
a a Cg a a TINE lSEC1 I
- Figure 5 Break Flow Rate - DECLG (CD=0.4)
70,000 -
TUAKEY Pol' NV'EEAA POVEA STATION 22 SCTP 3 TOE OOVO'E EAOEO COV" ~EC Cutl<OTIAE CO=0.1 COAE PA.OAOP 50.000 c 25.000 C'IC CD LI 0.0
-25.000
-50.000
-70.000 CD n nn n n n n Cl n CD CD CD CD n n CD v n n CV IA TIHE (SEC)
Fi,gure 6 .
Core I'ressqre Drop - DFCLG {CD=.0.4)
2500,0 TURKEY POIUT AUCLEAA POVER STAT)0)l " 22 SGTP 3 10F OOUOLE EUOEO COLO LEG CU)LLOT)HE co=0. i CLAO AVC.TEMP.HOI AOO 9UASTt 6 ~ 00 FTt ) PEAKt 6.00 FT( ~ )
2003.0 C'0 Cl
)500.0
'X a
n l000 0
~
500.00 0'
C)
C7 CI C) aAl C7 Tl" )SEC)
Figure 7 Peak Clad Temperature - DECLG (CD=0.4)
2000.0 TUAKE Y POINT BOUCLE AA POVE R . T < T ION
- 22 SCTP 3 Tot' DOUBLE EWOEO COLO LEC CUILIOI'IHI Co=0.t fLUIO IEHPEAATUAE OUAST b.00 >Tt I PElK 6.00 <TII) 1750.0 1500.0 1250.0 Cl' C
1000.0
\ I P
"~ 150.00 500.00 250.00 0.0 nC)
A O C)
ED V1 TIHE ISECI Figure 8 'luid Temperature
. - DECLG (CD=0.4)
1000.0 TURKEY POl))T kUCLEAR POMER STATlOk - 'i'. SC" S Qf OOUOLE EkOEO COLO LEC GUILLOTINE C" 0 ~ <
l-FLOVRATE CORE BOTTOH < ) TOP, (e) 5000.0 LJ
'4J Vl C5 2500.0.
I C
CX Os 0.0
-250@,0
-5000.0
-1000.0 CD CD n
CD C>
CD Cl CD CD CD C7 CD CV TlHE (SEC)
Figure 9 Core Flow - Top and Bottom -. DECL6 (CD=0.4).
20.000 -
TURKEY POINT IlUCLEAR POVER STATION 22 SGTP 3 TOP OOUOLE,.EHOEO COLO LEG GUILLOTIHE CO=0.I VATER LEYEL(FT) 17.500 DO wA'C~&Z 15.000 12.500 10.000 I C0Al" 1 5000 5.0000 2.5000 0.0 Cl CI Cl C5 Vl TIRE ISEC1 C
Figure j0q -
REflood Transient - DECLG (CD=0.4)
2.0000 -
TUAXEY P01HT HUCLEAA POVEA STAT)OH 22 SCTP 3 TOF OOUOLE EHQEO C01.0 I,'EC CUILLOT1HE CO>0.1 FLOOO AATEtlH/SEC)
- 1. 1500
- 1. SOOO 1.2500 1.0000 0.)$ 00 on O.S000 O.ZSOO 0.0 n
a O
TINE lSEC1 Figure 10b, Rhflood Transient - DECLG (CD=0.4}
5000.0 TUAXEY POIAT AUCLEhA POUEA SThTIOA " 22 SCTP 3 TOF OOUOLE EllOEO, COLD LEC GUILLOTIllE CO*0.4 h C CUH i FLQV.
EJ i000.0 C>
3000.0 LJ LI C
2000.0 I000. 0 0,0 C) CI C7 CI CI C) C)
Ct C) CI O A n TIHE lSEC)
Figure 11 Accumulator Flow (Bl owdown):.DECLG (CD=0.4)
IP
fi f4f
~
~e
+
fee f
hi!5 $ 1<} e ~ i iet
~ ei
~
ft e
5}e
~ i e e
t
~
~ 1 it stet
'Hj
+
fjt t+e e
tlli:
tt ~e ett ~
1$
I 1 e
Ijej I!I ilj!i
~ ~ t
'e
,I e tr.e t f44
~ t 51 i' t 4$ tre jf t
$1 Wet im t ~ eet t 5$
~+
~ e ~ ~
t ttf t+t tt1
.$ 4
~ ~
ti e
.ij tt
~~
+ti
!T:
Ifj fle I'l' ~jj ISED lij ! I il;:!i!Ijl I'!IP
$ 55 eg tmf ~
ejf Q 4 it gt I! 4$
C/) i4 t4 if
\ ~
\t ttB jÃj
~ ee
.I iet i\
,ti tte
~ e~
I~
Pl 4f
~e e ei Re ~ ~ ~
\ $ e+ te e ~
tt e
ti ~
ee t ft-$
tt +i ei tte fthm t
~ t e+
f+ +tt rti ++t Ijl'll CD it ft p pl ill
~
$ 4$
ill ll I pjj4 li I! I e t I
i!i! I fjjj 'I ltI I e ljt !if i
ii!j
~
ef I $ if+ ti j $$ e jf I Ij
~
~ ete ri At
'+ +
t ~ et+ 4B
~ ~ f 45$ 1$ ~
I'l I;Il ei t
e tt I
- l. ie 4
$$ ij e
lj! I'5 et ~ t ~
4H~
Qjt te '
, i e
~ 'll ll'll t 5 .'5}f 5/t ID
$ 1$
ee+
e cele
~ t "Vt} t $ Hij el
~\ tet 0 20 40 60 80 100 120 140 160 180 200 THE (SEC)
Figure 12 Pump ECCS Flow (Ref lood) - DECLG (CD=0.4)
c' Tl
~ ~
I ~ ~
- I:
~ ~ ~ ~
I~ ~ ~ ~ '
~ ~ ~
~ ~ ~~ ~~
I
~ ~ ~ ~
20 40 60 80 100 120 140 160 180 TIME (SEC)
Figure 13 Containment Pressure - DECLG (CD=0.4)
I.oooo TURKEY POIHT RUCLEAR POUER STATIOH - 22 SGTP 3 TOF OOUOLE EROEO COLO LEC GUILLOTINE CO=0, l POVER O.e000 O,eOOO 0.4000 C) 0,2000 0.0 P.
O O O O CJ IV TIHE (SEC)
Figure.14-- -
Core. Power .- DECLG (CD=0.4)
TURKEY POIHT HUCLEAA POVEA STATIOH - 22 SCTP 3 TOf OOUBLE EHOEO COLO LEG. GUILLOTIHE CO=0.4 BREAK EHEACY
~ I
~
8 a Cl CP TIHE (SEt.'I I
- I pigLIte y5 . BI-elk EIIet gy ge]eased To Contai.nment - DECLG (CD=0.4)
'I
P
~ ~
~ ~ ~4 ~
~ 4
~ 'I CI ~ ~ ~ I CI CI ~ ~
~ ~ ~ e
~ ~
C)
CI CQ
~ ~
~ '
~ ~
~ ~
~ A ~ ~
--, I~
~ ~
~ ~
I~
CI CI
~ ~ ~~ ~~ << ~
I CI ~ ~ I
~ ~
I I~ 0 ~ ~ ~ ~
I
'I ~ I P 20 40 60 80 100 120 140 160 180 200 0
TIi4IE (SEC)-
Figure 16 Containment Mall Heat Transfer Coefficient - DECLG (CD=0.4)