ML051860247

From kanterella
Jump to navigation Jump to search
Presentation of Acoustic Circuit Model (ACM) Analysis and Steam Dryer Load Definition on 06/30/2005
ML051860247
Person / Time
Site: Quad Cities  Constellation icon.png
Issue date: 06/30/2005
From:
Exelon Nuclear
To:
Office of Nuclear Reactor Regulation
References
Download: ML051860247 (65)


Text

ExekIen.S Nuclear Acoustic Circuit Model (ACM) Analysis and Steam Dryer Load Definition June 30, 2005 1

Agenda Exekrtn Nuclear

  • Introduction P. Simpson
  • Plans and Basis for EPU Operations on Quad Cities R. Gesior Unit 1 (QC1)
  • Content of 60-Day Reports R. Gesior
  • QC2 ACM Assessment - 790 MWe K. Ramsden
  • Final ACM Assessment - 930 MWe K. Ramsden
  • Dryer Strain Gauge Response G. DeBoo
  • QC1 Data Collection K. Moser
  • Conclusions R. Gesior 2

ExekNcne Nuclear Introduction Patrick Simpson Manager - Licensing 3

Purpose ExekenM Nuclear

  • Discuss plans and basis for operation of QC1 at EPU power levels
  • Outline contents of 60-Day engineering evaluations for both QC units
  • Discuss the assessment of the ACM in determining steam dryer loading
  • Address NRC concerns with use of ACM methodology
  • Discuss data collected on QC1 during power ascension testing 4

ExekIgn.

Nuclear Plans and Basis for EPU Operations on QCI Roman Gesior Asset Management Director 5

Exe n.M Nuclear Contents of 60-Day Reports Roman Gesior Asset Management Director 6

Exekena Nuclear QC2 ACM Assessment

- 790 MWe Kevin Ramsden Senior Staff Engineer 7

QC2 ACM Assessment 790 MWe ExektnSM Nuclear

- Pressure and strain BnschDm a 65 gauge data from the dryer 790 .Te was not provided until CDI predicted the loads

  • CDI used only the in-plane strain gauges gugs plnestai asas s624 1.'ti~r n-ae InpaeStrain Gages used for Benchmark input for the ACM Out-of-Plane Strain Gages "A" MSL S5/S5A "B" MSL S IiS1 IA

'"C" MSL S351S35A assessment not used for First Blnd .

"D" MSL S41 IS41 A Benchmark at

  • CDI then used the in- 790 M~e vessel data to refine the model -

8

QC2 ACM Assessment 790 MWe (cont.) Exekn.M CDI Blind Prediction of 790 MWe Pressures Nuclear Sensor RMS pressure Min pressure Max pressure Mean (psi) / (psi) (psi)

(percentage of measured)

P-3 0.22 (111.7) -0.794 0.848 5.175E-9 P-12 0.26 (107.9) -1.017 0.981 1.366E-8 P-20 0.262 (119.6) -0.924 0.989 -2.849E-9 P-21 0.352 (97.8) -1.276 1.225 2.217E-9 P-24 0.111 (94.07) -0.53 0.443 -1.992E-9 P-27 0.047 (49.47) -0.163 0.13 . -1.227E-9 Measured 790 MWe Pressures Sensor RMS pressure Min pressure Max pressure Mean (psi)(psi) (psl)

P-3 0.197 -0.784 0.829 -6.182E-7 P-12 0.241 -0.889 0.855 -3.946E-6 P-20 0.219 -0.82 0.797 -1.916E-5 P-21 0.36 -1.098 1.057 -1.892E-6 P-24 0.118 -0.517 0.54 1.48E-6 P-27 0.095 -0.301 0.366 -5.656E-6 9

QC2 ACM Assessment 790 MWe (cont.) Exe nSM Sensor P-3 CDI 790 MWe Prediction Power Spectral Density (PSD) Nuclear PSD of Sensor P3 Measured/Predicted .--- u--. An 0.1

'IT, e I Is.

'-e

-111. '..

0.01 1 Lo0-3 PSDDmk i PSD_DI k A___.'

I 10-4 1v i-I~ 1 S

DRYER SENSOR LOCATIONS - 90" FACE I-06 0 50 100 150 200 Freqk frequency hz

- measured 10

- - - predicted coI

QC2 ACM Assessment 790 MWe (cont.) Exe I n Sensor P-12 CDI 790 MWe Prediction PSD Nuclear PSD of Sensor P12 Measured/Predicted 0.1 . s .uXs>r IS -. ..I\ t I

. . .1 0.01 I .10-3 PSD-Dmk S> PSDDi k 01___.

1-10 1~

  • I R, S O L. O iON S -90 FA DRYER SENSOR LOCATiONS -S0" FACE 0 50 100 150 200 Freqk frequency hz

- measured 11

- - - predicted CO-

QC2 ACM Assessment 790 MWe (cont.) Exe kbnM Sensor P-20 CDI 790 MWe Prediction PSD Nuclear PSD of Sensor P20 Measured/Predicted U.1 0.01 I10-PSDDmk hi PSD_Dik I .10-4 I1-5 I. 10-6 _

0 50 100 150 200 DRYER SENSOR LOCATIONS - 270' FACE Freqk frequency hz measured 12

- -- predicted

QC2 ACM Assessment 790 MWe (cont.) Exe Inm Sensor P-21 CDI 790 MWe Prediction PSD .t.

Nuclear PSD of Sensor P21 Measured/Predicted 0.1 0.01 1 10 PSD_Dmnk

. PSD_Dik P .--.

I 10-1.10- 6 0 50 100 150 200 DRYER SENSOR LOCATIONS - 270 FACE Freqk frequency hz

- measured 13

- - -. predicted C05t-

QC2 ACM Assessment 790 MWe (cont.) Exek5nSM Sensor P-24 CDI 790 MWe Prediction PSD Nuclear PSD of Sensor P24 Measured/Predicted 0.01

.- 4-Zl

. s:zcr ,

. .I-

. . I1-1

I- - 1.

PSD-Dmk

-4 i PSD-Dl ki-10 l 10-5

.I IN L CiO .9FACE

. -,.I

, _4- I ad i DRYER SENSOR LOCATIONS - 90'FACE 1 10-6 0 50 100 150 200 Freqk frequency hz

- measured

- - - predicted 14 CI;

QC2 ACM Assessment 790 MWe - Conclusions xekn.

Nuclear

  • Initial assessment demonstrated that the ACM reasonably predicted in-plant acoustic loading
  • Use of single-pair strain gauges identifies additional loads not seen on instrumented dryer data and amplifies
  • In-plant data reinforces that the acoustic effects are the dominant source of dryer loading for Quad Cities 15

Exekat n Nuclear Final ACM Assessment -

930 MWe Kevin Ramsden Senior Staff Engineer 16

Final ACM Assessment 930 MWe Exeklm, Nuclear 930 MWe model adjustment comparison

- Model configuration Minor refinements to the ACM were made prior to generating a final detailed load case for use in structural analysis models

- The model was adjusted to ensure that point P-21 fell within the 10% criterion

- This model configuration was used to generate the QC2 refined load mesh

  • Where applicable, both strain gauge and pressure data from the in-vessel dryer measurements were compared to the CDI load prediction 17

Final ACM Assessment 930 MWe (cont.) Exektn,.

CDI Prediction of 930 MWe Pressures (930 MWe Refinement)

Nuclear Sensor RMS pressure Min pressure Max pressure Mean (psi)/ (psi) (psi)

(percentage of measured)

P-3 0.682 (105.1) -2.262 2.193 -2.191 E-8 P-12 0.659 (92.3) -1.751 1.848 -2.036E-9 P-20 0.605 (120.5) -1.977 1.994 8.972E-9 P-21 0.804 (90.5) -2.289 2.337 -1.739E-8 P-24 0.251 (108.6) -1.034 0.986 -2.74E-9 P-26 0.044 (41.12) -0.177 0.171 -5.838E-10 Measured 930 MWe Pressures Sensor RMS pressure Min pressure Max pressure Mean (psi) (psi) (psi)

P-3 0.649 -1.935 1.875 2.488E-5 P-12 0.714 -2.156 1.936 1.214E-5 P-20 0.502 -1.707 1.753 2.622E-5 P-21 0.888 -2.367 2.26 1.838E-5 P-24 0.231 -0.81 0.831 3.644E-5 P-26 0.107 -0.334 0.356 8.724E-6 18

Final ACM Assessment 930 MWe (cont.) ExeI¢5nsm

  • 0 210 -

IC IC..

, Nuclear

.ihJituL 4 UliLI....A.iId.oo.J&I I. -

12-C ,9 I

': 0 a.,,i LIEIMMEEi PPpqpP!q 0-

, ,-^L -,-

b20 I 1.4 4 II 0,

2 4 0 1 30 4 40 40 24 4.4

  • ew Ie1:'1-rsv r..1 P3%cturd Predwied I, o I I..

t 1 11 I l~

0 1)

PSDDm0 A 7PSD D Li IP r ..

IL II U

-I I.11 Ii _ _ _ Iit _ _

________ 4 4 tilfpl N1 lwo SIX, Froqj 1- OI 9

.,,FE

-7.-.................

.7 boqlc1 IV

- IIIIXIWW g:xdicted LOCATIONS - 90'FACE

[ AF N -NNW 1*. s.

15-a I; C4 0s 08 12 1 I'S I0 i 1C ID 31 D So bO 70 to S 104 ill 124 120 140 1I0 Ion1 Cb10 iX, lea 19 2" mat

Final ACM Assessment 930 MWe (cont.) Exe el) n.M 10-

,A I 1I IW M U k Nuclear S.

E3 11c- N

... 11 , ts-.. ,^.

i .1 11

.1 0 0' 1 .- I 41-11' r-10, ,I r. - -- r r 0, , v-r'

- I D.. e.4 ca &.9 I 1 14 I a I.0 2 o 211 20 t 0 So i 10 10 go llp0h PSID)d.tw PI2 eawuiedPidided UI (J~l

~11 PD-S -I _

tg Dkj.Ij

-PSD o"u _

I I .1 I i

_ I _

, .17,

, . ,r, iI i' o So ', .

IOUJ I5 1aoty Frak i 1.. I -1

- mSwcd f h,

-- ITOOITWIkd ORYER SENSOR LOCATIONS - 90 FACE N. 4 N w t~gt i J2-is - q!

-1is, 2 .I . 0 1 12 14 l& IF 2 i 10 I13 ID 40 SU 6 7

  • 0 ID 1 1l 0 110 12'12110 1O lSOIce 1011 11111720 20 got _ _ _

co7

Final ACM Assessment 930 MWe (cont.) Exe knaM Nuclear PSD of Sensor P20 MeasuwdXiedicted AI (JUt PSDDunk R I 1*10 l 10 I I{a U} 5f0 1O ISM 20K' Froqk frequcnc hi DRYER SENSOR LOCATIONS - 270" FACE

- ilxeasu id

' 'w. predicted 21

Final ACM Assessment 930 MWe (cont.) Exe k6nM Nuclear I't) tb seisoir  !'2 1 .3'rilcd wNI~urLd II.

0 (Ij PSI) D)ri, e' PSI) l11-Ilkl DIl-ill

.11' 51I 10( 200 Frcqk firfalucicX tho DRYER SENSOR LOCATIONS - 270" FACE

- pici 1I1\r.

22

Final ACM Assessment 930 MWe (cont.) Exe krn.M 11.1 ISI ) * ;s 'r 1'-2I McamcLJ I'ecdicted Nuclear 0).01 PSI) DIk C___

I i-5 I II'-f Ixj t-40 o at D A. 04 23 Cat

Final ACM Assessment 930 MWe (cont.) Om Exekrn Nuclear I'M )a l' Scn>

ir I'2 c t PL l IcItf id I 1.1I I .1( 1 .

'7 PISI) [)I k

- 4 I 11 -

I -10 I-V1f iOUii IS511 I:rt. L Ircquclciy IV

_ 11c,Iktrl'\I

...* *X nfxhl cd1 W Y w _

24 CO

Final ACM Assessment 930 MWe - Conclusions ExeknM Nuclear

  • The frequency comparison for 930 MWe followed the same behavior as the revised 790 MWe comparison

- Good fidelity at the highest power signals

- Less favorable with the 0-20 Hz, 50 Hz, and 100 Hz low power signals

  • ACM captures the physical response, RMS, and frequency response well, generally within 10% for sensors with moderate to large signals
  • The frequency content of the ACM prediction is strongly influenced by the quality of strain gauge data
  • Use of multiple pairs of strain gauges at the measurement locations yields more accurate frequency content 25

Exeken Nuclear Dryer Strain Gauge Responses Guy DeBoo Asset Management Engineer 26

QC2 Finite Element Analysis(FEA)

Load Definition xe tam Nuclear

  • The dryer structural response frequencies that result in high stress are adequately defined by the load definitions

- FEA results

- Strain gauge results

  • The FEA for the three load cases (nominal, +10%,

-10%) provides reasonable assurance that the structural analysis accounts for frequency content that is not in the acoustic circuit load definition 27

QC2 FEA Load Definition Calculated Strain vs. Strain Gauge Data Exek1on.

Strain Gauge I Nuclear Ii~i i1 i 1111lBIgil FIIR 1l l, I ll1111 - *1 1 'a01

. 1j 11 M 1 ) II I il m IlIi A441 M ft W W W l L4 Li u' Ut S"MC

Mz_

III 1.-i

'.1 I "1 4-

,; 7I 4.r I . , 1,

. . I t I4 III I S I I I 4 It, Os In i7. 3 A'3 3 tt. rQ Q It7' IIQ . . 1. . ] I Il 'A I 4! I54 I '-

11:111t I I 11!, I - - " -, " , - j 4 Ui .t 3'3 44 it) U'1, tt b eILD 110 OA I 1 4, i Sti:. >j.l Y 1I i j) rW NIMMij

'0 C.I I,..

I MIIh Ill i I4t). Ill) . 17i . iv+

(A L16 dlf I 14 I; Ida U  ; '1 .10 4U4~ St iil iO Jl4 14t4l 1'U IU4 'iG IJJ 1-. libl tl I 4dl~1 9 :lb 1

28

QC2 FEA Load Definition Calculated Strain vs. Strain Gauge Data (cont.) xe inu m Strain Gauge 5 Nuclear is l _- I1j1 imx

' .I-Bg -91; >i 3 TVX.

>1Lxk, .. iA'Ak ,k~kbuzz.lI LAi J;iutg" k oj ii.

1, A__ u.J 6..).iii F.

il2.

.. ,.. . X IF _- Ad , h X a,, X, ,3 _ ,bQ, W _,, ,_}, I> X k= _kE x

,-l,, Ace , ,zh Ida ,4 F r1

..I ..

.X:...1X _I.==!car. nd1 A"iA&,w6,wLa" L&LLLw'" 1,16",

r ,

IMT17MTi i i

.. 1.' - - . . !, . - ,; 4A . P1. '.

29 CY3,

QC2 FEA Load Definition Calculated Strain vs. Strain Gauge Data (cont.) OXeml Strain Gauge 7 Nuclear

__11MA I-i-I 3.J e

,T;v

.i Z.2..- Z 7..... I 'd 5 ,A A- - --s .. 7e r -_

,.-4 x ~'

T--X'1rijZE

- V .

.. I .. A.....

1it-ri I" II tl I .. . . - .

i 1; I

.j~ .:11 v / _ , ..

2* ,3 k

~ -__zz_

. .,L~,

t H

I IJ

,-td

-F i,h *i I*

ik6ILh1 I1 I . . .1-1 AL A . AIJL fi ..

INT FT" lf r~ IF-Imr s -

.. . ,I . , . . .-... , 1R ld, 30 C'I~t

QC2 FEA Load Definition Calculated Strain vs. Strain Gauge Data (cont.) xe fl(5sm Strain Gauge 8 Nuclear 0100120MIN L

S a J A/ I. 4 I %

P ~ ~4 A " t14i I I~z , rVlj

'r .,A .

'Z IIII fi

1 t', 'tj

- 1, *4. t.

= Xx II.;%

.l 4i i

Ili4 I i .e . .:~V )j

.  :...., E 1i V

-- m- ,

= 0011i I I--- 1-111 6 A~~~~~~Ifi . .

i

,~~~~ 1a , o!,z l I-11 ij ,1,jjls,,ti~ly

,+1,1!; Ii

,f,

,, ^,, ,6s I%, '

I . , .

XI--T-m'

. J__<_i-A w

EI I I11. 1, 'I I ..

I 31 I 1._.

QC2 FEA Load Definition x n Calculated Strain vs. Strain Gauge Data (cont.) eIefl Strain Gauge 9 Nuclear t , L L st Is, ot, Os lo II. #,)14 1 IA11

( I >- I,

,iIi 4" AA ',..h . I I Xt~ '-. 1'iA ris ~ ~v ~ ~ ~ ~ ~ a ~

t Gl ~ I ~ t:> ~ ~~

' S i l l~.,,,~Q

~ Si o0 .i atr i-s U25- ll ;tj 130 i4 151 i' U 4 104" S I iS I UI JEN

'V '

rsi II^

. ,, " ., 1-t r

,*I I"I Il

    • i It Is . , of) -e,I1 ( e It*,. II. X1,., 41I s.......1 n........

119 ltl dI to;-i A4e l

._I

__.12II 1

'.C I-:. LAW^,,,Y T

K IIJ'I A

r7 '

6 Ii- IJ ll FfUWPIYFl" UUP iA I , u,,W-;-- ._- ~ - - 5--- *4i U' 11iOs tI Ui; I2 '4 I; Ie U It .1) Ai 40 ii (42 1O IU gio 114 1 1, .i 344 If t 11*2 I'U 14 I1r 111T Fi4il 32 CU P

QC2 FEA Load Definition Conclusions xe en M Nuclear

  • FEA strain predictions from the nominal load case provide the best agreement with the measured strains
  • FEA-predicted strain amplitudes are bounding or closely agree with the measured strain amplitudes
  • Frequency content of FEA predicted strains agree with or contain additional frequencies when compared to the frequency content of the measured strains
  • FEA-predicted strains on the skirt are significantly greater than the measured strains, demonstrating the conservatism of the ACM load definition on the skirt
  • These results confirm the accuracy of the ACM load definition and the FEA results 33

Exeen SM Nuclear QCI Data Collection Keith Moser Asset Management Engineer 34

QC1 Data Collection Exe nSM Nuclear

  • MSL strain gauges were re-configured to more closely emulate the QC2 configuration
  • For the first data collection during the QC1 start-up following dryer replacement, a total of five strain gauges failed - S3, S6, S1 1A, S31, and S36
  • Following Unit 1 scram, all the strain gauges were repaired
  • During second data collection effort on June 19, 2005, five strain gauges failed during the power ascension - S3, S31, S32, S36, and S37

- Three strain gauge failures were on MSL C

- Due to the strain gauge failures, data collected during this power ascension will not be developed into an acoustic circuit load definition 35

QC1 Data Collection Strain Gauge Configuration - Startup Exe kn.M Nuclear 1t 5s40 1S37 I L3I LlZ j Ls Si 1A

_LI Sli

>EZ 36 MSLZ v -D MSL MSL 11D

QC1 Data Collection Strain Gauge Configuration - June 19, 2005 ExeI10 nm Nuclear s9 S33 E¶1 E1 IS37 57 EZ S38 SI 1A LlS41A SI 36 sil FD 37 MSLZ MS'L MSL< vD )

c1I,

QC1 Data Collection (cont.) ExeknM Nuclear

  • The first data set collected during the QC1 new dryer startup had five strain gauge failures which affected the frequency and amplitude of the acoustic circuit

- This effect was discovered during the assessment at 790 MWe

- The effects can be seen in the time domain from the graph below Unit 2 TC 41a MSL "C" El 651 l S31-S33-Combined S32_S34 10

._ 5-I.-

en 0

-1 Time - Seconds 38

QC1 Data Collection (cont.) exe kmn Nuclear

  • QC1 Replacement Dryer Startup - MWt 2887

- For strain gauge locations where all four strain gauges remained functional, the comparison between QC2 and QC1 shows similar results QC1 Startup Test RMS Values Description U2100% TC13 TC14 TC15a TC15a conf TC15b MSL D 651 0.34424 0.24347 0.22684 0.23727 0.22905 0.23014 MSL D 624 0.42662 0.34998 0.33876 0.32475 0.33307 0.33077 MSL B 651 0.33262 0.21919 0.22048 0.21586 0.21298 0.21909 Peak to Peak Values Description U2100% TC13 TC14 TC15a TC15a conf TC15b MSL D 651 2.91904 2.03836 2.02524 2.16607 2.00220 1.93063 MSL D 624 3.34559 2.77784 2.71820 2.52859 2.71634 2.86414 MSL B 651 2.52878 2.00340 1.93664 1.84918 1.76978 1.89030 MSL B 651 PSD 1.OOE+OO 1.OOE-01 1.OOE-02 1.OOE-03 9

, 1.OOE-04 1.OOE-OS 1.OOE-06 I.OOE-07 39 1.OOE-08 Frequency [Hz]

CZC)

QC1 Data Collection (cont.) ExeOnSM MSL A&D 651 PSD Nuclear Frequency [iz]

MSL D 624 PSD 1 .OOE+OO 40 Frequencypkzl Ca-lI

QC1 Data Collection (cont.) ExekrnO Nuclear

  • QC1 - June 19, 2005 - MWt 2898

- For strain gauge locations where all four strain gauges remained functional, the comparison between QC2 and QC1 shows comparable results MSL B 624 PSD QC1 6/19/05 RMS Values Description U2100% TC12 TC13 MSLA624 0.42662 0.18919 0.28890 MSL D 624 0.42662 0.26056 0.35014 MSL B 651 0.33262 0.20613 0.28361 MSL B 624 0.25126 0.21434 Peak to Peak Values Description U2100% TC12 TC13 t MSL A 624 3.34559 1.74113 2.51446 MSL D 624 3.34559 2.24155 2.69300 MSL B 651 2.52878 1.89420 4' MSL B 624 2.27449 1.97877 7 1.OOE-08 Frquency [Hz]

41

QC1 Data Collection (cont.) Exe nOm MSL A&D 624 PSO Nuclear 9t; 0:I Frequency IN.]

MSL B 651 PSD I

42 Frequency [Hz]

MSL Comparison - QC1 to QC2 ExeOnm Nuclear MSL as-built review shows that both QC1 and QC2 are similar UNIT ONE UNIT TWO No. M.S. LINE NO. SIZE 1-3001A 1-3001B 1-3001C 1-3001D 2-3001A 2-3001 B 2-3001C 2-3001D PIPE RUN l.D. Length FT Length FT Length FT Length FT Length FT Length FT Length FT Length FT I A 20 PIPE 3.42 3.42 2 3.42 3.42 3.42 3.42 3.42 2 B 20 PIPE 33.84 31.33 31.42 33.84 33.84 31.13 31.34 33.83 3 C 20 PIPE 4.47 8.01 8.01 4.47 4.47 8.00 8.00 4.47 4 D 20" PIPE 6.50 6.50 6.50 6.50 6.49 6.50 6.50 6.50 5 E 20 PIPE 4.86 17.48 17.47 4.78 3.67 17.48 17.48 4.28 6 F 20" PIPE 16.06 13.57 13.68 16.17 16.32 13.67 13.68 16.38 7 G 6" PIPE 2.44 2.44 2.44 2.44 2.44 2.44 2.44 2.44 8 H _ 20- PIPE 18.89 18.83 18.83 18.93 18.83 18.83 18.83 18.83 9 I 20" PIPE 3.54 3.54 3.54 3.54 3.54 3.54 3.54 3.54 10 J 20- PIPE 4.73 3.65 3.65 4.73 4.73 3.65 3.65 4.73 11 K 20" PIPE 4.66 4.66 4.66 4.66 4.66 4.66 4.66 4.66 12 L 20"PIPE 12.26 13.34 13.34 12.26 12.26 13.35 13.34 12.26 13 M 20 PIPE 6.45 6.45 6.45 6.45 6.71 6.71 6.71 6.71 14 N 20 PIPE 4.67 4.67 4.67 4.67 4.67 4.67 4.67 4.67 15 0 24-X20" RED. 1.66 1.66 1.66 1.66 1.67 1.67 1.67 1.67 16 P 24- PIPE 3.16 3.16 3.16 3.16 5.33 5.33 5.33 5.33 17 Q 24" PIPE 19.50 19.50 19.50 19.50 19.00 19.00 19.00 19.00 18 R 24- PIPE 19.50 19.75 19.75 19.75 21.83 21.83 21.83 21.83 19 S 30 PIPE 0.50 0.67 0.67 0.67 0.23 0.69 0.69 0.23 20 T 24' PIPE 6.67 6.67 6.67 6.67 7.07 7.07 7.07 7.07 21 U 24" PIPE 10.00 10.00 10.00 10.00 10.50 10.50 10.50 10.50 22 V 24" PIPE 3.33 3.33 3.33 3.33 3.33 3.33 3.33 3.33 23 W 24" MSV*x DIM. 2.66 2.66 2.66 2.66 2.66 2.66 2.66 2.66 24 WI 24-MSV*Y-DIM. 1.48 1.48 1.48 1.48 1.48 1.48 1.48 1.48 25 X 20' CV INLET 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 26 Y 20 CV OUTLET N/A N/A N/A N/A N/A N/A N/A NMA 27 Z 20" PIPE 16.0 1.00 16.00 16.00 16.00 16.00 16.00 16.00 28 AA 20" PIPE 26.00 30.00 37.17 19.83 19.83 37.17 30.00 26.00 29 SB 20" PIPE 15.95 17.71 17.71 16.95 15.95 17.71 17.71 15.95 30 CC 20" PIPE 15.41 15.48 25.24 25.17 28.43 27.78 15.48 15.41 31 DO 20 90 DEG. EL. N/A N/A 2.54 2.54 6.75 6.75 N/A N/A 32 EE II 7.40 7.40 N/A N/A Total From RxVessel to X-7 115.67 126.77 126.96 115.74 114.67 126.67 126.88 115.34 Total From X-7 to HPTurb 161.43 167.68 187.15 167.98 187.33 206.24 172.62 166.33 otal From Rx Vessel to HP Turb 277.10 294.45 314.11 283.72 302.00 332.91 299.50 281.67 Length Difference Between Ul & 1.00 0.10 0.08 0.40 U2 (From Rx Vessel to X-7)

Length Difference Between U1 & -25.90 -38.56 14.53 1.65 U2 (From X-7 Vessel to HP 43 Length Difference Between U1& -24.90 -38.46 14.61 2.05 U2 (From Rx Vessel to Turbine)

C 1ZcI

QC1 Data Collection Load Definition - Application Exek nSM Nuclear

  • MSL C 651 elevation SO#indicates failed sensor I

- one of four strain gauges failed during QC1 s33 startup power ascension

  • MSL C 624 elevation

- one of four strain gauges failed during QC1 startup power ascension Fs-36A

  • Data available for
  • 1/2bridge (S32/S34)
  • 1/4 bridge (S33)

MSL(

44

QC1 Data Collection MSL C Elevation 651 Strain Gauges (cont.) Exe IOnSM QC1 MSL C 651 QC2 MSL C 651 Nuclear TC15a MWt 2887 TC41 MWT2885 NGLCTC4IRec 2651 S31/33,S32J34 TC15a MSL C 651 533/S32&34 1.Ez00 1.E-01 1.E-02 1.E-03 R 0.00 20.00 40.00 60.00 80.00 100.00 120.00 140.00 160.00 180.00 200.00 FCiq, HQ FPquoy. lb.

Comparison of QC1 and QC2 strain gauge measurements show similar amplitude and frequency 45 CZ(C

QC1 Data Collection Load definition - Application (cont.) Exeken Nuclear

  • QCI MSL C elevation 651 strains can be approximated by averaging 1/2 bridge (S32/S34) with 1/4 bridge (S33)

- Based on structural similarities between QC1 and QC2 MSL C

- Similar strain gauge measurements Application for acoustic load definition input

- S32/S34 will be averaged with S33

- This produces additional frequency response and amplitude that will result in higher dryer loads 46

QC1 Data Collection 80 Hertz Adjustment ExektnSM Nuclear QC1 Test Condition (TC) -15A evaluation of 80 hertz due to the reduced number of strain gages

- Results of first acoustic circuit assessment at 790 MWe

  • 80 hertz frequency amplitude higher with a single pair of strain gages

- In-vessel instrumentation

  • High speed pressure data was recorded for the vessel level instrument taps (59A and 59B) located in the dryer skirt region

- This data was provided an understanding of the acoustic pressure field in the vessel

- MSL instrumentation

  • Elevation 624 on MSL C
  • Accelerometers were installed on the MSL C Electromatic Relief Valve (ERV) 47

QC1 Data Collection 80 Hertz Adjustment (cont.) Exeknm Nuclear

  • Multiple locations were compared to determine whether non-acoustic loads are being introduced into data collected at the remaining MSL C strain gauge pairs, and to determine the appropriate reduction factor
  • Principal criteria applied in this evaluation are:

- True acoustic pressure signals will propagate; evidence of propagation was sought in the vessel level tap data and the MSL C 624 elevation data

- Non-acoustic signals may be reduced to background amplitudes of adjacent frequencies, but not below comparable data on the fully instrumented MSL D

- Minimized the frequency range for which data correction is applied 48

QC1 Data Collection 80 Hertz Adjustment (cont.) ExeIt n.m Nuclear Sensor P-20 CDI 790 MWe Prediction PSD Sensor P-20 CDI 790 MWe Refined Prediction PSD PSD of Sensor P20 Measured/Predicted PSD of Sensor P20 Measured/Predicted 0.1 0.1 0.01 0.01

.o0-3 PSDDmk PSDDmk i2 PSDDIk ,~ PSD_DIk I 1 106 1.106 0 50 100 150 200 0 so 100 150 200 Freqk Freqk frequency hz frequency hz

- measured - measured

--- predicted - - -. predicted 49 cZ-12

QC1 Data Collection 80 Hertz Adjustment (cont.) Exe 1k nSM Nuclear Sensor P-21 CDI 790 MWe Prediction PSD Sensor P-21 CDI 790 MWe Refined Prediction PSD PSD of Sensor P21 Measured/Predicted PSD of Sensor P21 Measured/Predicted 0.1 0.1 0.01 0.01 l .1073 PSDDmk PSDDmk PSD_Dik - -

. E1 PSD_DikI10 3 l .10- l .10-I ,10-6 I1.10-6 0 50 100 150 200 0 50 100 150 200 Freqk Freqk frequency hz frequency hz

- measured - measured

--- predicted --- predicted 50

QC1 Data Collection 80 Hertz Adjustment (cont.) Exekn.

Nuclear Observations from QC2 790 MWe Blind Comparison/Model Correction

  • Model configuration

- The CDI model for this case applied single strain gauge pair data only for the blind comparison; the refined case applied both strain gauge pairs at each measurement location; narrowband noise at 60 and 180 Hz was also filtered

  • Comparison of the Blind to the Refined Case

- Sensors P-20 and P-21 are on the dryer cover plate adjacent to MSLs C and D; as noted, the principal difference in the analytical prediction was the incorporation of both sets of strain gauge data at each location measured; the blind comparison, based on a single pair, showed significant signal strength at the 80 Hz location, which was not reflected in the plant data; the revised calculation, employing both pairs of strain gauges, shows a much more appropriate, though still conservative, representation of the plant data at the 80 Hz range; the following observations are salient:

  • Use of a single strain gauge pair in estimating dynamic pressures in the MSL may yield signal frequency content that is not representative of the actual plant acoustic loading
  • The plant data suggests that there is little or no acoustic loading at the 80 Hz frequency range. Indicated pressure loads at this frequency range appear to be in the noise levels of the instrumentation 51

QC1 Data Collection 80 Hertz Adjustment (cont.) Exe Onm QC1 MSL C 651 Single Pair Data Nuclear (TC1 5a: 2887 MWt)

Sample Rate = 2000 sps Power Spectral Density Date: 05-Jun-2005 Time Duration= 200.1995 s ec File: U1 2887 MWt TC 15 Stmin Ul Main Steam, TC-15a , MSL C 651 S32/S34, Ch 16 100 4--------------

10' L r - - - - - - - - I-- -- - - . . r - - - - - - -

lo-2 10 F-Un I i Z E Z I I I e 10 I IT Pz z 2 J  : z: 2z Z 7 2 2 2  : I 7 7 2 J 2 Z 2  : : Z 7 :

10-5

- -------- -- --------  : RMS= 1.1103 104 * ~~ ~- Pk-Pk= 9.6295 _ _ _

-  :---------  := :r:  : == 2: 4 Notch Filters On (60&180Hz)

  • ---- --- --- -------- Band Filter =2 to 200H --

10-7 L C) 20 40 60 80 100 120 140 160 180 200 52 Frequency [Hz]

QC1 Data Collection 80 Hertz Adjustment (cont.) Exe knSM Nuclear QC1 MSL D 624 Single Pair Data Comparison of QC1 MSL D Single Pair S41/S41A - Elev. 624 S42/S42A - Elev. 624 2887 MWt 2887 MWt Sample Rate = 2000 sps Power Spectral Density Date: 05-Jun-2005 Sample Rate= 2000 sps Power Spectral Density Date: 05-Jun-2005 Time Duration= 200.1995 sec File: U1 2887 MWt TC 15 Time Dumation = 200.1995 sec File: U1 2887 MWtTC 15 Strain UI Main Steam, TC-15a, S41/S41A D624, Ch 6 UI Main Steam, TC-1 5a , S42/S42A D624, Ch 7 100 I I -- - - - - - ---

- ------I--

10 -1I.

101 U I l I I I I l I I I I I I I -2 I I 10 I I - -/ t -f-----

' tT T 4 I--


+- -' - i - --- -

N 2 I I x =-

-- 2 S 22 ZZ=Z=

ZIi 22 2 2 2l--2 4 2 2 22 22 r 2-- - - - - - - 2- -- -

I -

I I I 22 .U 3

r- 10

<A 10-10 i{

I I I -- - -;- -l- - - - -F I---T --- -- - - -:- - g

- -4 I I I ____ I I ________

- - -_ l - - - - I- -- -- - ' - -- - n - -

I - -

-6. I I

I I

I I

I 10 FI} - - - - - - -_i__ - - -It I I I lI - -- - - -l - - - -

l .4 ---------- E-3-----iE-----E-----r---l=-==-E-rE---


---- R-- 10361 -

I I I I 140- Pk-Pk= 70664 10 -

- - - - - ----- 3---- - -- - - - - - Notch Filters On (60&18OHz)

I I I 7I I7O

- -r-Y A

-I

~- - - - - -- --T T - - -l Band Filter =2 to 200 It ,L 0 20 40 60 80 100 120 140 160 180 200 0I 20 40 60 80 100 120 140 160 180 200 Frequency [Hz] Frequency [Hz]

53 0- 31 C

QC1 Data Collection 80 Hertz Adjustment (cont.) Exe InM Nuclear QC1 MSL D Combining both Pairs of Strain Gages Elev. 624 - MWt 2887 QC1 MSLD 624 S41/41A, S42/42A, Avg 10 100

.S 10'1 10-2 I II

- F - - - - - - - - - - - - - -

I _ I __ I 10-3 20 40 60 80 100 120 140 160 180 200 Frequency, Hz 54

QC1 Data Collection 80 Hertz Adjustment (cont.) Exektnm Nuclear Unit I TC-15A MSL C single strain gauge pair prediction

  • The previous slide shows the PSD of the single pair prediction for the MSL C 651 elevation
  • QC1 MSL C strain gauge data shows a large 80 Hz signal that is not seen in either of the comparable QC2 MSL points
  • The 80 Hz signal is large relative to the 157 Hz acoustic loads present on all signals 55

QC1 Data Collection 80 Hertz Adiustment (cont.) ExekrnSM Nuclear PSD of Vessel Level CH 59A PSD of Vessel Level CH 59B PSD of Level CH 59A PSD of Level CH 59B I I 0.1 0.1 0.01 0.01 PSD_D k _ > PS_-D . a0 3

'M- 1103 l t10-4 l 10-4 I .10-5 6.07 I 6 0 50 100 150 200 50 100 150 200 Freqk Freqk frequency hz frequency hz 56 C3Z

QC1 Data Collection 80 Hertz Adjustment (cont.) ExeI*nM Nuclear Vessel Level Sensor Pressure Tap Data

  • The vessel level taps are located in the dryer skirt region and provide an independent means of confirming the frequency content of the vessel pressure field
  • The data was taken simultaneously with the strain gauge data; the two graphs on the previous slide show the PSD plots of the CH59A and CH59B vessel level taps
  • Large acoustic load at approximately 157 Hz is clearly present and dominant
  • The graphs show that there is little, if any, signal present in the 80 Hz range

. *This suggests that the 80 Hz signal in the MSL C 651 elevation pair is not the result of a propagating acoustic pressure

  • In contrast, the 157 Hz signal is clearly a propagating acoustic pressure 57

QC1 Data Collection 80 Hertz Adjustment (cont.) Exe n SM Nuclear QC1 MSL C 624 Elevation Single Pair Data Sample Rate = 2000 sps Power Spectral Density Date: 05-Jun-2005 Time Duration= 200.1995 sec File: Ul 2887 MWt TC 15 Strain UI Main Steam, TC-15a, MSLC624S35/S35A, Ch 12 10 d Zt=====-n===Zt= Z4ZrX=====

ZXXXXZC X W rXXCXX Wr---

C-I4 I - - - - - - - I - - -

L - - - -_ - - L -1 - -- -I----- - ------ L------__

I I I I 4J _ II

_ _ _ _ _ _ II __ __ _ I __ _ __ I _ __ _

10-2


4 __

n_

,-----,-----------,-----r-~j-4==F-==i====F==========F-= - - - - L- - - - - - I- - - -

... L - - -. ==== I -L - ---- - --

_~~~~

-I_-_-_~ L J _ _ _Z _ ZgL L_ l .-- r-- - -_-

10-3 I IZ N

t1 4 I ' 1 IS l 10-4 ---

V) - - -

I
4) L-- - - -- ---- ---- - -

V 10-5 -- 4F - - -- - - - - - - - \- -- - - - - J A

P

=4----- ---

U ---- - - - ---- F------ 4- U - --B--a-n- -- L - L

__-4---___-i---- _ - -_ _- - - - __ _- -- - - - - - IL- - - -

___u_______L______ ____L__JQL_ ___I__

10-6 _ _ _ __ _ _ _ __ L _ Z f EE= = -:

z

====  : - : _  : ::: :E::: = - -- Notch:

=1--- -_ - - -

_~~~~

__i-

~- - i

~ - -

4

_____--q---

~ I 4.-_ .. FI .__l____.

.37083 F - -_ - -

10-7 3.0105

-- - IL F-- - - - - - - - - - - - - -J - - -- -I-- - Pk--Pk=cF thF Iters On (60&180Hz)

-- ]

C r Z----N

_ ._ .. - - - - - - - - - B and Fillter = 2 to 200 Hz 10-8 I- i 0 20 40 60 80 100 120 140 160 180 200 Frequency [Hz]

58

QC1 Data Collection 80 Hertz Adjustment (cont.) ExeItn5 Nuclear MSL C 624 Elevation Data

  • The figure on the previous page shows the PSD of the response of the functioning strain gauge pair on MSL C 624 elevation
  • Comparison of this plot to the MSL C 651 elevation data demonstrates:

- There is some 80 Hz content, but it is very near the background level

- The 140 Hz signal component is more prominent at this location than the 157 Hz signal

  • These observations support that there is not a large propagating 80 Hz acoustic pressure 59

QCI Data Collection 80 Hertz Adjustment (cont.) ExeknI5 QC I C MVSL ERV Accelerometer Data (X-direction)

Quad Cities UI  %- 6/5/05 14:50 PM -- % 912 MWe Filtered Spectral Plot Nuclear

'C" ERV - XDirection Max See: 5 Second Composite grmns= 0.20768 I I I I I I I I I I 0.09 I I I I I I I I I I I

+/-.....L 0.08 I I I I I I I I 0.07 -- 0.1Th6 6lt@'7571L -- --

0 0.06 *F I

I I

I I I k

.2 0.05

.55 0.04 0.03 - ..

0.0------__ I _ __

"C~ EV - Diretion40 60 80~ 100 120 140 160 180 200  %-6/051:0P - 92M e FlrdSpcallo QC I C MVSL ERV Accelerometer Data (Y-direction) QC I C MVSL ERV Accelerometer Data (Z-direction)

Quad Cities Ul  %- 6/5/05 14:50 PM -9/a 912 MWe Filtered Spectral Plot Qa Max See: 49 Second Composite grmas 0.31935 "C" ERV - Aft Z Direction II I I I fI I I I Max Sec: 139 Second Composite grins=0.25037 0.04 0.09 4519 g 0.03 5 0,1

- -- - ---- -- -- - - - -- - -- - -L 0.08 0.07 I I I 0.065g& tSS8ItzI

- - -- - - - - 7 0.06 as

.2 0 0.02 .2 0.05

-I - - - -I

.~0.015 0.03 0.01 0.02 0.005 0.01 20 40 60 80 100 120 140 160 180 200 Frequency, Hz 20 40 60 80 100 120 140 160 180 200 Fresquency, Hz C __L_

QC1 Data Collection 80 Hertz Adjustment (cont.) ExeItnsm Nuclear MSL C Accelerometer Data

  • The three graphs on the previous page provide the x,y, and z direction acceleration vs. frequency data for the MSL C ERV
  • The accelerometers clearly show the 140 Hz and 157 Hz signals; these signals are the only peaks observed in all three axes, which is consistent with the large magnitude of these signals evidenced in other data provided
  • There is little or no 80 Hz signal component in any of the accelerometer data
  • The lack of 80 Hz components suggest that there is no propagating acoustic pressure at this frequency
  • Since this location is fairly close to the 624 elevation strain gauge pair, it supports the conclusion that the absence of 80 Hz signal component in the strain gauge data is due to the absence of a propagating signal, and not due to accidental location at an acoustic node point 61

QC1 Data Collection Conclusions Exeken.

Nuclear

  • Use of single-pair strain gauge readings introduces non-acoustic signals into the dynamic pressure time history being developed; this was demonstrated in the QC2 790 MWe blind assessment and revised 790 MWe predictions
  • A large 80 Hz signal is present in the single-pair data developed from the QC1 MSL C 651 elevation data
  • Vessel water level reference leg pressure data suggests that there is no significant 80 Hz signal contribution in the QC1 dryer skirt region; this is consistent with observations at QC2
  • Review of the frequency response at the MSL C 624 elevation does not show evidence of propagating 80 Hz signals 62

QC1 Data Collection Conclusions (cont.) Exektnm Nuclear

  • MSL C ERV accelerometer data shows no evidence of 80 Hz signal
  • Findings support the conclusion that the 80 Hz signal in the MSL C 651 elevation is a result of local structural effects and does not reflect a propagating acoustic pressure
  • If the single-pair strain gauge data must be used for dryer load prediction, it is appropriate to reduce the 80 Hz signal to a level comparable to that of adjacent frequencies
  • Inputs to load case are conservative 63

ExekOn.

Nuclear Conclusions Roman Gesior Asset Management Director 64

Conclusions ExekenS.

Nuclear

  • ACM is a viable methodology for determining steam dryer acoustic loading
  • Strain gauge readings demonstrate that the ACM captures the acoustic frequency content and amplitudes creating dryer response
  • QC steam dryer loads are driven predominately by high-frequency acoustic sources, making ACM an acceptable methodology for assessing these loads
  • Data application for QC1 produces more frequency and amplitude response than when all strain gauges remain functional 65