ML020700529

From kanterella
Jump to navigation Jump to search
Cycle 25 Startup Report for Kewaunee Nuclear Power Plant
ML020700529
Person / Time
Site: Kewaunee Dominion icon.png
Issue date: 02/28/2002
From: Coutu T
Nuclear Management Co
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
NRC-02-019
Download: ML020700529 (39)


Text

Kewaunee Nuclear Power Plant Point Beach Nuclear Plant N490 Highway 42 6610 Nuclear Road Kewaunee, WI 54216-9511 Two Rivers, Wl 54241 920.388.2560 920.755.2321 Committed to Nuclear e> Kewaunee / Point Beach Nuclear Operated by Nuclear Management Company, LLC NRC-02-019 TS 6.9.a.1 February 28, 2002 U. S. Nuclear Regulatory Commission Attention: Document Control Desk Washington, D.C. 20555 Ladies/Gentlemen:

Docket 50-305 Operating License DPR-43 Kewaunee Nuclear Power Plant Cycle 25 Startup Report In accordance with our practice of reporting the results of physics tests, enclosed is a copy of the Kewaunee Nuclear Power Plant Cycle 25 Startup Report.

Sincerely, Thomas Coutu Manager-Kewaunee Plant Enclosure cc - US NRC - Region III - w/o attach.

NRC Senior Resident Inspector - w/o attach.

.1

'ý_kU V_

KEWAUNEE NUCLEAR POWER PLANT STARTUP REPORT CYCLE 25 FEBRUARY 2002 Prepared By: Date: I - zc

- 7z- 2.-

ioor Engineer Prepared By: Date:

Engineering Senior Analyst Reviewed By: Date: .&- * -c .

Lead Plant tAc r Engineer Reviewed By: 1).- LC,,NI Date: oI iZOL

'i--

Project Manager-Kewaunee/Point Beach Reviewed By: Date: .-,. -2.3 -65L Nuclear Lic A~ingDrector

-i-

\\\DOBLAN\VOLI \G ROUP\FUELS\WP\CYCLE24.DOC

TABLE OF CONTENTS 1.0 Introduction, Sum mary, and Conclusion ....................................................................... 1 1.1 Introduction ...................................................................................................... 1 1.2 Sum m ary .................................................................................................

1.3 Conclusion .............................................................................................................. 3 2.0 RCCA M easurem ents ..................................................................................................... 7 2.1 RCCA Drop Tim e M easurem ents ...................................................................... 7 2.2 RCCA Bank M easurem ents ................................................................................. 7 2.2.1 Rod Swap Results ................................................................................... 7 2.3 Shutdown M argin Evaluation ............................................................................ 8 3.0 Boron Endpoints and Boron W orth M easurem ents ..................................................... 14 3.1 Boron Endpoints .............................................................................................. 14 3.2 Differential Boron W orth ................................................................................. 14 3.3 Boron Letdown ................................................................................................ 14 4.0 Isotherm al Temperature Coefficient ............................................................................ 18 5.0 Power Distribution ........................................................................................................ 20 5.1 Sum mary of Power Distribution Criteria .......................................................... 20 5.2 Power Distribution M easurem ents ................................................................... 21 6.0 Reactor Startup Calibrations ........................................................................................ 32 6.1 Rod Position Calibration ................................................................................... 32 6.2 Nuclear Instrum entation Calibration ................................................................. 33 7.0 References ........................................................................................... 34

-ii

'.V\.DOBLAN\VO LI 'GRO UPNFU ELSWP\CYC LE24. DOC

LIST OF TABLES T able 1.1 Fuel C haracteristics ................................................................................................... 4 Table 1.2 B O C Physics Test ..................................................................................................... 5 Table 2.1 RCCA Drop Time Measurements ............................................................................. 9 Table 2.2 RCCA Bank Worth Summary ................................................................................. 10 Table 2.3 Minimum Shutdown Margin Analysis ........................................................................ 11 Table 3.1 RCCA Bank Endpoint Measurements ................................................................... 15 Table 3.2 Differential Boron Worth ........................................................................................ 16 Table 4.1 Isothermal Temperature Coefficient ........................................................................ 19 Table 5.1 Flux Map Chronology and Reactor Characteristics ............................................... 22 Table 5.2 Verification of Acceptance Criteria for FRA-ANP Heavy Fuel ............... 23 Table 5.3 Verification of Acceptance Criteria for Westinghouse 422V+ Fuel ....................... 24 Table 5.4 Verification of Review Criteria ............................................................................... 25

-111

,\'DOBLANWOLI GROUP\FU ELS',WP',CYCLE24 DOC

LIST OF FIGURES Figure 1.1 C ore Loading M ap .................................................................................................. 6 Figure 2.1 RCCA Control Bank C Integral Worth ................................................................... 12 Figure 2.2 RCCA Control Bank C Differential Worth ............................................................ 13 Figure 3.1 Boron Concentration vs. Burnup ............................................................................ 17 Figure 5.1 Power Distribution for Flux Map 2501 ................................................................... 26 Figure 5.2 Power Distribution for Flux Map 2502 ................................................................... 27 Figure 5.3 Power Distribution for Flux Map 2503 ................................................................... 28 Figure 5.4 Power Distribution for Flux Map 2504 ................................................................... 29 Figure 5.5 Power Distribution for Flux Map 2505 ................................................................... 30 Figure 5.6 Power Distribution for Flux Map 2506 ................................................................... 31

-iv

'x\DOB_LAN\VO L I \GRO UP\ FU ELS\WP\CYCLE24. DOC

1.0 INTRODUCTION

SUMMARY

, AND CONCLUSION 1.1 Introduction This report presents the results of the physics tests performed during startup of Kewaunee Cycle 25.

The core design and reload safety evaluation (1) were performed by Nuclear Management Company (NMC) using methods previously described in approved topical reports (2, 3). The results of the physics tests were compared to NMC analytical results to confirm calculated safety margins. The tests performed and reported herein satisfy the requirements of the Reactor Test Program (4).

The reactor core consists of 121 fuel assemblies of 14 x 14 design. The core loading pattern, assembly identification, and burnable absorber configurations for Cycle 25 are presented in Figure 1.1.

Thirty-six (36) new Framatome ANP (FRA-ANP, formerly known as Siemens Power Corporation) heavy assemblies containing U0 2 rods enriched to 4.5 w/o U235 and four (4) new Westinghouse 422V+ assemblies containing U0 2 rods enriched to 3.3 w/o U235 will reside with 81 partially depleted FRA-ANP heavy assemblies. The FRA-ANP heavy assemblies contain approximately 405 KgU (per assembly). The four Westinghouse assemblies are Lead Use Assemblies (LUAs) containing approximately 402 KgU (per assembly). Table 1.1 displays the core breakdown by region, enrichment, number of previous duty cycles, fuel rod design, and grid design.

On December 1, 2001, at 2012 hours0.0233 days <br />0.559 hours <br />0.00333 weeks <br />7.65566e-4 months <br />, initial criticality was achieved on the Cycle 25 core. The schedule of physics tests and measurements is outlined in Table 1.2.

-1

",'DOB LAN\VO L1IGR U P\FUELS\WP'*CYCLE24 DOC

1.2 Summary RCCA measurements are shown in Section 2. All RCCA drop time measurements were within Technical Specification limits. RCCA bank worths were measured using the rod swap reactivity comparison technique previously described (4). The reactivity comparison was made to the reference bank, Control Bank C, which was measured using the dilution technique. All results were within the established acceptance criteria (4), and thereby demonstrated adequate shutdown margin.

Section 3 presents the boron endpoint and boron worth measurements. The endpoint measurements for ARO and Control Bank C inserted core configurations were within the acceptance criteria (4).

The available boron letdown data covering early reactor operation is also shown. The agreement between measurements and predictions satisfies the acceptance criteria (4).

Section 4 shows the results of the isothermal temperature coefficient measurements. The differences between measurements and predictions were within the acceptance criteria (4).

Power distributions were measured via flux maps using the INCORE code for beginning of cycle (BOC) core conditions covering power escalation to full power equilibrium xenon. The results indicate compliance with pertinent Technical Specification limits (5) and are presented in Section 5.

Section 6 discusses the various calibrations performed during the startup of Cycle 25.

ý,'DOB LAN\VOLI'GROUP"FUELS',WP\CYCLE24. DOC

1.3 Conclusion The startup testing of Kewaunee's Cycle 25 core verified that the reactor core has been properly loaded and the core characteristics satisfy the Technical Specifications (5) and are consistent with the parameters used in the design and safety analysis (1).

',\\DOB LAVNWOLI IGROUP\FU ELS\WPýCYCLE24.DOC

TABLE 1.1 Fuel Characteristics Initial Number U02 Rod of W/O Previous Fuel Region U235 Duty Cycle 25 Rod Grid Region Identifier (Gad Load) Cycles Assemblies Design Design(1) 25 C 4.1 2 8 Heavy HTP (8 rods - 8%)

25 C 4.1 2 9 Heavy HTP (12 rods - 8%)

25 C 4.5 2 8 Heavy HTP (4 rods - 4%)

25 C 4.5 2 8 Heavy HTP (8 rods - 4%)

25 C 4.5 2 8 Heavy HTP (8 rods - 8%)

26 D 4.1 1 20 Heavy HTP (8 rods - 8%)

26 D 4.5 1 8 Heavy HTP (4 rods - 4%)

26 D 4.5 1 4 Heavy HTP (8 rods - 4%)

26 D 4.5 1 8 Heavy HTP (8 rods - 8%)

27 E 4.5 0 16 Heavy HTP (8 rods - 4%)

27 E 4.5 0 20 Heavy HTP (8 rods - 8%)

27 E 3.3 0 4 422 V+ ZIRLO

( HTP denotes the FRA-ANP High Thermal Performance mid-grid design. ZIRLO denotes the Westinghouse mid-grid design. The FRA-ANP top and bottom grids are bi-metallic (Zircaloy and Inconel). The Westinghouse top and bottom grids are Inconel.

-4

'\\DOBLAN\VOL I',GRO UP\FU ELS\WP'CYCLE24.DOC

TABLE 1.2 BOC Physics Test Date Time Plant Test Completed Completed Conditions Control Rod Operability Test 11/26/01 0140 Cold SD Hot Rod Drops 11/30/01 0205 HSD RPI Calibrations 11/30/01 2152 HSD Initial Criticality 12/01/01 2012 HZP Reactivity Computer Checkout 12/01/01 2048 HZP ARO Endpoint 12/01/01 2048 HZP ITC Determination 12/01/01 2155 HZP Bank C Worth (Dilution) 12/01/01 2337 HZP Low Power Physics Test Completion 12/02/01 0323 HZP Power Ascension Flux Map 2501 12/05/01 1749 30%

Power Ascension Flux Map 2502 12/09/01 0218 73%

Power Ascension Flux Map 2503 12/11/01 0955 90%

Power Ascension Flux Map 2504 12/16/01 2132 99%

Power Ascension Flux Map 2505 12/17/01 1518 99%

Power Ascension Flux Map 2506 12/26/01 1608 100%

\0.3OB LAN",VO [. 1GROUP FU ELS\WPNCYCLE24. DOC

FIGURE 1.1 Core Loading Map 1 2 3 4 5 6 7 8 9 10 11 12 13 4.1 4.1 4.1 A

8GAI)8 8GAD8 8GAD8ý D58 D76 E51 E88 E64 D75 D59 B 4.1 4.5 4.5 3.3 4.5 4.5 4.1 8GAD8 4GAD4 8GAD4 8GAD4 4GAD4 8GAD8

______ ______ 4 4 + + + Eb .bU 4.1 C64 E55 E83 C92 U80 C93I E69 C65~

4.1 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.1 C 4.1 12GAD8 8GAD4 8GAD8 8GAD8 8GAD4 8GAD8 8GAD8 8GAD4 12GAD8 D63 E62 D87 D69 071 E81 C78 D55 D83 E52 065 D 4.1 4.5 4.5 4.1 4.5 4.5 4.5 4.1 4.5 4.5 4.1 8GAD8 8GAD4 8GAD8 8GAD8 4GAD4 8GAD8 4GAD4 8GAD8 8GAD8 8GAD4 8GAD8 U078 E68 D62 L81 4.5 4.5 4.1 4.5 4.5 4.1 4.5 4.5 4.1 4.5 4.5 E

4GAD4 8GAD8 8GAD8 8GAD4 8GAD8 12GADE 8GAD8 8GAD4 8GAD8 8GAD8 4GAD4 C51 E59 C88 C76 E74 C96 D84 C80 E70 C74 C87 E63 C54 F 4.1 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.1 8GAD8 8GAD4 8GAD8 4GAD4 8GAD8 8GAD4 8GAD8 8GAD4 8GAD8 4GAD4 8GAD8 8GAD4 8GAD8 D54 E87 D79 E71 C61 D89 C69 D85 C62 E86 D82 E90 D70 G 4.1 3.3 4.5 4.5 4.1 4.5 4.1 4.5 4.1 4.5 4.5 3.3 4.1 8GAD8 8GAD4 8GAD8 12GAD8 8GAD8 12GAD8 8GAD8 12GAD8 8GAD8 8GAD4 8GAD8 C57 E54 C89 C77 E80 C95 D90 C85 E82 C75 C90 E66 C56 H 4.1 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.1 8GAD8 8GAD4 8GAD8 4GAD4 8GAD8 8GAD4 8GAD8 8GAD4 8GAD8 4GAD4 8GAD8 8GAD4 8GAD8 D71 E73 D68 t12 C59' E77 D52 4.5 4.5 4.1 4.5 4.5 4.1 4.5 4.5 4.1 4.5 4.5 4GAD4 8GAD8 8GAD8 8GAD4 8GAD8 12GAD8 8GAD8 8GAD4 8GAD8 8GAD8 4GAD4 J C73 E67 72u D53 D86 E53 064 D60 E57 D88 D56 4.1 4.5 4.5 4.1 4.5 4.5 4.5 4.1 4.5 4.5 4.1 8GAD8 8GAD4 8GAD8 8GAD8 4GAD4 8GAD8 4GAD4 8GAD8 8GAD8 8GAD4 8GAD8 C70 C91 D81 C94 K 4.1 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.1 12GAD8 8GAD4 8GAD8 8GAD8 8GAD4 8GAD8 8GAD8 8GAD4 12GAD8 Ebi D57 D74 E58 .89 E1-5 577 4.1 4.5 4.5 3.3 4.5 4.5 4.1 L

8GAD8 4GAD4 8GAD4 8GAD4 4GAD4 8GAD8

____ J -I- C2 C53 D51 M 4.1 4.1 4.1 8GAD8 8GAD8 8GAD8 CYCLE TWENTY-FIVE D *ASSEMBLY ID INITIAL ENRICHMENT GADOLINIA LOADING 6-

\\\DOBLAN\VOLI\GROUP\FUELS\WPCYCLE24. DOC

2.0 RCCA MEASUREMENTS 2.1 RCCA Drop Time Measurements RCCA drop times to dashpot and rod bottom were measured at hot shutdown core conditions. The results of the hot shutdown measurements are presented in Table 2.1. The acceptance criterion (4) of 1.8 seconds to dashpot is adequately met for all fuel.

2.2 RCCA Bank Measurements During Cycle 25 startup the reactivity of the reference bank, Control Bank C, was measured during dilution using the reactivity computer. The reactivity worth of the remaining banks was inferred using rod swap reactivity comparisons to the reference bank.

2.2.1 Rod Swap Results The worth of the reference bank, Control Bank C, measured during dilution differed from the NMC predicted Control Bank C worth by 81.12 pcm or 9.2 percent. This difference meets the review criterion of 10% for reference bank worth. A comparison of the measured to predicted reference bank integral and differential worth is presented in Figures 2.1 and 2.2

\\\DOBLANMVOLI\GROUP\FUELS\WP\CYCLE24.DOC

Rod swap results for the remaining banks are presented in Table 2.2. The measured- to predicted total rod worth difference is +8.4 percent, which is within the acceptance criterion of-5.0 percent to +10.0 percent. All individual remaining bank worths were within the 15.0 percent measured-to-predicted review criterion.

2.3 Shutdown Margin Evaluation Prior to power escalation a shutdown margin evaluation was made to verify the existence of core shutdown capability. The minimum shutdown margins at beginning and at end of cycle are presented in Table 2.3. A-5 percent to +10 percent uncertainty in the calculation of total rod worth is accounted for in the shutdown margin analyses. Since the measured total rod worth result fell within a-5 percent to +10 percent range compared to the predicted value, the analysis in Table 2.3 is conservative and no additional evaluations were required.

\\\DO B_LANZWOLI\GROUP\FUELS\WPICYCLE24.DOC

TABLE 2.1 Kewaunee Cycle 25 RCCA Drop Time Measurements Hot Zero Power Average Dashpot Delta T (Seconds) 1.256 Standard Deviation 0.030 Average Rod Bottom Delta T (Seconds) 1.740 Standard Deviation 0.043

",,.DOB LAN" VOLI" GROU P\FUELSWP'CYCLE24.DOC

TABLE 2.2 Kewaunee Cycle 25 RCCA Bank Worth Summary Reference Bank Measured by Dilution/Reactivity Computer Rod Swap WPS Method Measured Predicted Difference Percent RCCA Bank Worth (PCM) Worth (PCM) (PCM) Difference D 882.09 866.0 16.09 1.9 C* 9.2 960.12 879.0 81.12 B 540.27 511.0 29.27 5.7 A 926.37 826.0 100.37 12.2 SA 711.29 639.0 72.29 11.3 SB 705.18 639.0 66.18 10.4 Total 4725.32 4360.0 365.32 8.4

  • Reference bank

\'DOB LANWO LI GROU P' FU ELSkWP'CYCLE24. DOC

TABLE 2.3 Kewaunee Cycle 25 Minimum Shutdown Margin Analysis RCCA Bank Worths (PCM) BOC EOC N 5685 5997 N-1 5081 5265 Less 5 Percent 254 263 Sub Total 4827 5002 Total Requirements (Including 2439 2938 Uncertainties)

Shutdown Margin 2388 2064 Required Shutdown Margin 1000 2000

',\\DOB L.N\VOLI GROUP" FUELS\WP\CYCLE24.DOC

0 V

-z 1250 0 1200 0 1150 0

1100 C

m 1050 - -Measured CD 1000 Predicted 950 -t 0

0 S900 0 I-..

(-)

4-. S850 0 800 0

>1 750

.H 700

> ~0 1 650 jU 600 0 ~

CID

( 550 500 -

-- 450 14 400

) 350 00 0-.() t S300 250 0

200 150 100 50 0

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 Steps Withdrawn

10.0 9.5 9.0 ---- --Measured Predicted C) 8.5 Q4 8.0 4j) 5 7.0

__ 6.5 - -- - ]4&

0 6.0 CD

>1S5.S

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - C)

  • H 5.0 4j U 4.5 0 C)

(0 C-)

Q) 4.0 0

S 3.C

"*3.0 5L - - -- - - -

(D 2.5 (D 2.0 I- -------------------------------------------------------------

4*4

-4 0 -.. . . . . .

C-)

10.

0.5 0 10 20 30 40 50 60 70 80 90 1 0 110 120 130 140 150 160 170 ]80 190 200 210 220 230 Steps Withdrawn

3.0 BORON ENDPOINTS AND BORON WORTH MEASUREMENTS 3.1 Boron Endpoints Dilution is stopped at the near ARO and at the Reference Bank nearly inserted core conditions.

Boron concentration is allowed to stabilize. The critical boron concentration for these core configurations is then determined by boron endpoint measurement.

Table 3.1 lists the measured and NMC predicted boron endpoints for the RCCA bank configurations shown. The results indicate a difference of-60 ppm and -64 ppm for the ARO and Control Bank C In conditions, respectively. The acceptance criterion on the all rods out boron endpoint is +100 PPM; thus, the boron endpoint comparisons are considered acceptable.

3.2 Differential Boron Worth The differential boron worth is calculated by dividing the worth of Control Bank C by the difference in boron concentration of the corresponding bank out and bank in configuration. Table 3.2 presents a comparison between measured and predicted boron concentration change and differential boron worth. No acceptance criteria are applied to these comparisons.

3.3 Boron Letdown The measured boron concentration data for the first month of power operation is corrected to nominal core conditions and presented versus cycle burnup in Figure 3.1. The predicted boron letdown curve is included for comparison.

\\\KNPP\VOLI \GROUP\NUCLEAR\LICENSING\CYCLE REPORTS\CYCLE 25 STARTUP REPORT.DOC

TABLE 3.1 Kewaunee Cycle 25 RCCA Bank Endpoint Measurements RCCA Bank Measured Endpoint WPS Predicted Configuration (PPM) Endpoint (PPM) Difference (PPM)

All Rods Out 1949 2009 -60 Bank C In 1812 1876 -64

'\DOBLAN\VOL I GROUPTFUELS\WP\CYCLE24.DOC

TABLE 3.2 Kewaunee Cycle 25 Differential Boron Worth RCCA Bank CB Change CB Change Configuration Measured (PPM) Predicted (PPM) Percent Difference ARO to C Bank In 137 133 2.9 RCCA Bank Measured Boron Predicted Boron Worth Difference Configuration Worth (PCM/PPM) (PCM/PPM) (PCM/PPM)

ARO/C Bank In -7.0 -6.6 -0.4

'\, DOB LAN\VOL VGRO UP' FUELS',WP'CYC LE24.DOC

1400 K ~

  • ii " . ...

""II

.. .. 1

+ MEASURED 1200 . . 1200 II I * .- ..- - .Predicted

  • ......... .,* 0 I Ii  ! F I i

" I i

  • I , * *,* . i * * * ! i z 0b 1000z

& K.

-' , I 0 800

_ o 600*.  :- I * "

400 , , " " :

CII 200 _ ____

SJ  :  : */0 0

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 Burnup (MWD/MTU)

Reactor Engineering 12/31/2001

4.0 ISOTHERMAL TEMPERATURE COEFFICIENT The measurement of the isothermal temperature coefficient was accomplished by monitoring reactivity while cooling down and heating up the reactor by manual control of the steam dump valves. The temperature change, reactivity change, and the temperature coefficient were obtained from the reactivity computer temperature coefficient analysis results.

Core conditions at the time of the measurement were Bank D slightly inserted, all other RCCA banks full out, with a boron concentration of 1935 ppm. These conditions approximate the HZP, all rods out core condition, which yields the most conservative (least negative) isothermal temperature coefficient measurement.

Table 4.1 presents the heatup and cooldown core conditions and compares the measured and predicted values for the isothermal temperature coefficient. The review criterion (4) of +3 PCM/°F was met.

',,DOB_LAN\VOL I ,GROUP\ FUELS\WP\CYCLE24. DOC

TABLE 4.1 Kewaunee Cycle 25 Isothermal Temperature Coefficient Cooldown Tave Start - 550.20°F Tave End - 546.75°F Bank D - 199 Steps Boron Concentration - 1935 PPM Measured ITC WPSC Predicted ITC Difference (PCM/°F) (PCM/'F) (PCM/°F)

-4.519 -5.495 0.976 Heat Up Tave Start 547.3 1°F Tave End - 550.18°F Bank D - 199 Steps Boron Concentration - 1935 PPM Measured ITC WPSC Predicted ITC Difference (PCM/0 F) (PCM/°F)

(PCM/°F)

-3.783 -5.495 1.712

\\\DOBLAN\VOLI\GROUP'FUELS\WP\,CYCLE24.DOC

5.0 POWER DISTRIBUTION 5.1 Summary of Power Distribution Criteria Power distribution predictions are verified through data recorded using the incore detector system and processed through the INCORE computer code. The computer code calculates FQEQ and FDHN, which are limited by technical specifications. These parameters are defined as the acceptance criteria on a flux map (4).

The review criterion for measurement is that the percent differences of the normalized reaction rate integrals of symmetric thimbles do not exceed 10 percent at low power physics test conditions and 6 percent at equilibrium conditions (4).

The review criterion for the prediction is that the standard deviation of the percent differences between measured and predicted reaction rate integrals does not exceed 5 percent.

The review criteria for the INCORE calculated quadrant powers are that the quadrant tilt is less than 4 percent at low power physics test conditions and less than 2 percent at equilibrium conditions (4).

\\\DO B_LAN\VOL IGROUP\ FUELSMWPTCYCLE24. DOC

5.2 Power Distribution Measurements Table 5.1 identifies the reactor conditions for each flux map recorded at the beginning of Cycle 25.

Comparisons of measured to predicted power distributions for the flux maps are exhibited in Figures 5.1 through 5.6.

Table 5.2 identifies flux map peak FDHN and minimum margin FQEQ for FRA-ANP heavy fuel.

Table 5.3 identifies flux map peak FDHN and minimum margin FQEQ for Westinghouse 422V+

fuel. These tables address acceptance criteria by verifying that technical specification limits are not exceeded. The Cycle 25 flux maps met all acceptance criteria.

Table 5.4 addresses the established review criteria for the flux maps. All review criteria were met for all the Cycle 25 flux maps.

,'ADOB LAN\VOL 1GROUP FUELS.WP\CYCLE24.DOC

TABLE 5.1 Flux Map Chronology and Reactor Characteristics Percent D Rods Exposure Man Date Power Xenon Boron PPM Steps MDW/MTU 2501 12/05/01 30 EQ. 1660 150 8 2502 12/09/01 73 EQ. 1427 187 61 2503 12/11/01 90 EQ. 1409 204 124 2504 12/16/01 99 EQ. 1311 207 307 2505 12/17/01 99 EQ. 1306 209 340 2506 12/26/01 100 EQ. 1277 226 631

',"\DOB LANWO L I\GROUP'FUELS\WP\CYCLE24.DOC

TABLE 5.2 Verification of Acceptance Criteria for FRA-ANP Heavy Fuel Flux Map Core Location FDHN Limit 2501 G-4 (CK) 1.67 1.94 2502 G-4 (CK) 1.67 1.79 2503 G-4 (CK) 1.67 1.73 2504 G-4 (CK) 1.65 1.70 2505 G-4 (CK) 1.65 1.70 2506 G-4 (CK) 1.65 1.70 Flux Map Core Location FOEO Limit 2501 G-4 (CK), 31 2.63 4.70 2502 G-4 (CK), 25 2.42 3.16 2503 G-4 (CK), 23 2.32 2.55 2504 G-4 (CK), 27 2.28 2.34 2505 G-4 (CK), 20 2.25 2.32 2506 G-4 (CK), 22 2.21 2.30 FDHN and FQEQ include appropriate uncertainties and penalties.

Limit on FQEQ is a function of core power and axial location.

Limit on FDHN is a function of core power.

\\\DOBLAN\VOLI\GROUP\FUELS\WP\CYCLE24.DOC

TABLE 5.3 Verification of Acceptance Criteria for Westinghouse 422V+ Fuel Flux Map Core Location FDHN Limit 2501 G-2 (KiE) 1.45 1.77 2502 G-2 (KE) 1.50 1.63 2503 G-2 (KE) 1.51 1.58 2504 G-2 (KE) 1.50 1.55 2505 G-2 (KE) 1.51 1.55 2506 G-2 (KE) 1.51 1.55 Flux Map Core Location FOEO Limit 2501 L-7 (ED), 30 2.35 4.33 2502 G-2 (KE), 25 2.18 2.92 2503 G-2 (KE), 26 2.12 2.37 2504 G-2 (KE), 26 2.07 2.15 2505 G-2 (KE), 22 2.06 2.14 2506 G-2 (KE), 22 2.03 2.12 FDHN and FQEQ include appropriate uncertainties and penalties.

Limit on FQEQ is a function of core power and axial location.

Limit on FDHN is a function of core power.

\\\DOBLANWOL1\GROUPFUELS\WP\CYCLE24.DOC

TABLE 5.4 Verification of Review Criteria (a) Maximum Percent (b) Standard (c) Percent Maximum Flux Map Difference Deviation Quadrant Tilt 2501 0.9 3.2 0.8 2502 1.9 3.4 0.8 2503 0.6 3.5 0.4 2504 0.8 3.6 0.7 2505 1.4 3.7 1.0 2506 0.9 3.3 0.8 (a) Maximum Percent Difference between symmetric thimbles for measured reaction rate integrals.

Review criterion is 10 percent at low power. Review criterion is 6 percent at equilibrium power.

(b) Standard Deviation of the percent difference between measured and predicted reaction rate integrals.

Review criterion is 5 percent.

(c) Percent Maximum Quadrant Tilt from normalized calculated quadrant powers. Review criteria are 4 percent at low power and 2 percent at equilibrium power.

-25

'\DOB LAN\VOL I G ROUP\FU ELS\WP\CYCLE24.DOC

FIGURE 5.1 Power Distribution for Flux Map 2501 2 3 4 5 6 7 8 9 10 11 12 13 0.3662 0.499 0.361 A 4 + I 0.363 0.49 0.363 I I 0.853 0.121 -0.551 0.461 0.824 1.095 1.128 1.090 0.820 0.487 B 0.491 0.817 1.086 1.124 1.086 0.817 0.491 4 + 4-

-6.053 0.856 0.847 0.356 0.359 0.379 -0.795 0.49 0.87 1086 .12 1.06 0817 .49 0.411 1.094 1.329 1.063 1.151 1.067 1.337 1.122 0.427 C 0.437 1.131 1.326 1.053 1.136 1.053 1.326 1.131 0.437

-6.059 -3.289 0.211 0.969 1.356 1.330 0.830 -0.805 -2.492 0.465 1.0721 1.253 1.2201 1.0671 1.387 1.0711 1.2201 1.283 1.112 0.478 D 0.491 1.131 1.294 1.2171 1.056 1.367 1.056 1.217 1.294; 1.131 0.491

-5.138 -5.181 -3.145 0.2631 1.042 1.478 1.373 0.255 -0.8351 -1.724 -2.508 0.782 1.270 1.223 1.048 1.387 1.088 1.377 1.028 1.206 1.338 0.839 E 0.817 1.326 1.217 1.041 1.372 1.081 1.372 1.041 1.217 1.326 0.817

-4.260 -4.261 0.468 0.663 1.108 0.666 0.372 -1.239 -0.904 0.875 2.730 0.376 1.126 1.088 1.080 1.385 1.023 1.195 1.013 1.363 1.058 1.062 1.106 0.372 F 0.363 1.085 1.052 1.057 1.372 1.020 1.204 1.020 1.372 1.057 1.052 1.085 0.363 3.750 3.751 3.460 2.129 0.940 0.245 -0.739 -0.676 -0.692 0.076 0.903 1.945 2.454 0.528 1.173 1.190 1.387 1.090 1.201 0.890 1.191 1.071 1.368 1.145 1.144 0.510 G 0.498 1.123 1.135 1.367 1.081 1.204 0.906 1.204 1.081 1.367 1.135 1.123 0.498 6.070 4.470 4.837 1.492 0.870 -0.274 -1.755 -1.080 -0.962 0.102 0.872 1.897 2.432 0.383 1.129 1.100 1.072 1.381 1.011 1.189 1.013 1.361 1.058 1.052 1.096 0.371 H 0.363 1.085 1.052 1.057 1.372 1.020 1.204 1.020 1.372 1.057 1.052 1.085 0.363 5.569 4.018 4.553 1.4381 0.649 -0.873 -1.246 -0.667 -0.838 0.076 0.019 1.041 2.178 0.819 1.326 1.217 1.040 1.371 1.071 1.359 1.028 1.213 1.301 0.796 0.817 1.326 1.217 1.041 1.372 1.081 1.372 1.041 1.217 1.326 0.817 0.196 -0.038 -0.041 -0.106 -0.109 -0.925 -0.977 -1.239 -0.353 -1.878 -2.558 0.4981 1.1491 1.314 1.236 1.0601 1.3671 1.056 1.2081 1.2961 1.102 0.477 1 0.491 1.131 1.294 1.217 1.056 1.367 1.056 1.217 1.294 1.131 0.491 1.570 1.574 1.569 1.5691 0.417 0.0151 -0.028 -0.781 0.170 -2.564 -2.793 0.425 1.101 1.288 1.063 1.138 1.044 1.302 1.099 0.414 K 0.437 1.131 1.326 1.053 1.136 1.053 1.326 1.131 0.437

-2.835 -2.679 -2.836 0.931 0.150 -0.855 -1.817 -2.794 -5.281 0.475 0.792 1.107 1.145 1.089 0.795 0.477 L 0.491 0.817 1.086 1.124 1.086 0.817 0.491

-3.220 -3.059 1.888 1.895 0.267 -2.790 -2.792 0.374 0.5121 0.3640 M 0.363 0.498 0.363 2.835 2.852 0.083 DMEASURED FDHN PREDICTED FDHN PERCENT DIFFERENCE Standard Deviation = 2.27

- 26 -

FIGURE 5.2 Power Distribution for Flux Map 2502 2 3 4 5 6 7 8 9 10 11 12 13 0.391 0.531 038 A 0.386 0.532 0.3-086333 3

I I 1.061 1.1

-0.338

1. r

-1.656 1.0 T.~

0.461 0.830 1.114 1.165 1.104 0.823 0.491 B 0.495 0.822 1.102 1.166 1.102 0.822 0.495

-7.045 1.059 1.062 -0.060 0.136 0.183 -0.969 4 .4 1.062 .4- -0.060 4 0.136 .4 + -0.969 .4 0.408 1.057 1.296 1.094 1.253 1.099 1.306 1.087 0.423 C 0.439 1.098 1.292 1.081 1.235 1.081 1.292 1.098 0.439

-7.044 -3.770 0.333 1.230 1.474 1.619 1.107 -0.974 -3.693 0.465{ 1.029 1.207t 1.2031 1.0781 1.392 1.0801 1.2021 1.2441 1.076 0.477 0 0.495 1.0971 1.252 1.194 1.062 1.367 1.062 1.194 1.252 1.097 0.495

-6.200 -6.244 -3.602 0.712 1.535 1.836 1.695 0.678 -0.679 -1.951 -3.695 0.777 1.221 1.206 1.045 1.357 1.088 1.343 1.023 1.192 1.310 0.847 E 0.821 1.291 1.194 1.031 1.334 1.075 1.334 1.031 1.194 1.291 0.821

-5,407 -5.407 1.005 1.329 1.754 1.172 0.652 -0.815 -0.134 1.441 3.081 0.396 1.132 1.113 1.094 1.357 1.023 1.183 1.004 1.327 1.055 1.083 1.110 0.393 F 0.386 1.102 1.080 1.062 1.334 1.012 1.186 1.012 1.334 1.062 1.080 1.102 0.386 2.695 2.695 3.037 3.051 1.739 1.038 -0.287 -0.761 -0.510 -0.669 0.315 0.717 1.866 0.558 1.209 1.295 1.397 1.094 1.191 0.896 1.175 1.068 1.356 1.236 1.173 0.541 G 0.532 1.166 1.235 1.367 1.076 1.186 0.908 1.186 1.076 1.367 1.235 1.166 0.532 4.851 3.696 4.834 2.165 1.626 0.422 -1.343 -0.894 -0.753 -0.805 0.049 0.566 1.767 0.403 1.138 1.129 1.082 1.351 1.003 1.174 1.006 1.327 1.060 1.077 1.103 0.388 H 0.386 1.102 1.080 1.062 1.334 1.012 1.186 1.012 1.334 1.062 1.080 1.102 0.386 4.353 3.258 4.556 1.911 1.259 -0.870 -1.003 -0.603 -0.555 -0.188 -0.278 0.109 0.648 0.817 1.292 1.195 1.026 1.327 1.066 1.322 1.022 1.201 1.273 0.804 0.821 1.291 1.194 1.031 1.334 1.075 1.334 1.031 1.194 1.291 0.821

-0.463 0.085 0.092 -0.514 -0.517 -0.856 -0.877 -0.873 0.603 -1.371 -2.094 0.508 1.126 1.2851 1.226 1.059 1.360! 1.0571 1.1841 1.273ý 1.074r 0.483 0.495 1.097 1.252 1.194 1.062 1.3671 1.062 1.194 1.252 1.097 0.495 2.645 2.653 2.652 2.647 -0.330 -0.490[ -0.508 -0.804 1.701 -2.097 -2.423 0.430 1.078 1.266 1.079 1.229 1.069 1.271 1.072 0.413 K 0.439 1.098 1.292 1t081 1.235 1.081 1.292 1.098 0.439

-2.006 -1.849 -2.020 -0.148 -0.453 -1.082 -1.594 -2.332 -5.858 0.483 0.803 1.103 1.167 1.094 U.8*U U.484 L 0.495 0.822 1.102 1.166 1.102 0.822 0.495

-2.422 -2.252 0.1109 0.103 -0.735 -2.337 -2.342 0.3H8 0.534 0.3831 M 0.386 0.532 0.3861 0.362 0.357 -0.958 D MEASURED FDHN PREDICTED FDHN PERCENT DIFFERENCE Standard Deviation = 2.31

- 27 -

FIGURE 5.3 Power Distribution for Flux Map 2503 1 2 3 4 5 6 7 8 9 10 11 12 13 0.401 0.541 0.385 A 4 I 0.393 0.542 0.393 I I 1.830 -0.203 -2.110 0.463 0.838 1.124 1.173 1.105 0.824 0.493 B 4-0.497 0.822 1.104 1.173 1.104 0.822 0.497 I

-6.821 1.836 1.830 0.034 0.109 0.182 -0.825 0.4970.822 1~.10 .7 .0 0.409 1.049 1.292 1.110 1.293 1.111 1.297 1.078 0.423 C 0.439 1.087 1.280 1.091 1.270 1.091 1.280 1.087 0.439

-6.827 -3.459 0.906 1.760 1.835 1.879 1.320 -0.810 -3.823 D 0.468 0.497 1.023 1.086 1.199r 1.240 1.200 1.188 1.085 1.065 1.395 1.367 1.086 1.065 1.199 1.188 1.234 1.240 1.066!

1.0861 0.478 0.497

-5.776 -5.820, -3.283 1.052 1.8971 2.056j 1.972 0.926 -0.460j .1.851 -3.824 0.783 1.218 1.202 1.045 1.349 1.090 1.334 1.022 1.190 1.300 0.848 E 0.822 1.279 1.188 1.029 1.323 1.075 1.323 1.029 1.188 1.279 0.822

-4.780 -4.778 1.162 1.526 1.996 1.405 0.847 -0.641 0.202 1.619 3.090 0.406 1,139 1.128 1.098 1.349 1.024 1.181 1.005 1.319 1.067 1.102 1.119 0.401 F 0.393 1.103 1.090 1.065 1.323 1.011 1.181 1.011 1.323 1.065 1.090 1.103 0.393 3.259 3.282 3.487 3.089 1.973 1.316 0.008 -0.633 -0.302 0.178 1.073 1.496 2.138 0.567 1.216 1.335 1.397 1.095 1.191 0.901 1.173 1.069 1.368 1.281 1.189 0.553 G 0.541 1.173 1.270 1.367 1.075 1.182 0.911 1.182 1.075 1.367 1.270 1.173 0.541 4.636 3.632 5.103 2.224 1.870 0.736 -1.076 -0.753 -0.558 0.044 0.866 1.390 2.050 0.409 1.138 1.143 1.087 1.345 1.008 1.174 1.008 1.319 1.073 1.100 1.118 0.398 H 0.393 1.103 1.090 1.065 1.323 1.011 1.181 1.011 1.323 1.065 1.090 1.103 0.393 4.073 3.155 4.826 2.047 1.671 -0.267 -0.559 -0.277 -0.295 0.770 0.945 1.405 1.197 0.815 1.281 1.190 1.029 1.323 1.071 1.318 1.024 1.205 1.272 0.813 1 0.822 1.279 1.188 1.029 1.323 1.075 1.323 1.029 1.188 1.279 0.822

-0.876 0.195 0.194 0.029 0.030 -0.381 -0.408 -0.476 1.473 -0.571 -1.107 0.498 1.088 1.153 1.1891 1.0661 1.367J 1.0651 1.187 1.279 1.0741 0.490 J 0.497 1.086 1.240 1.1881 1.065 1.367 1.065 _1.188 1.240 1.0861 0.497 0.181 0.1931 -7.0011 0.084 0.056 0.000 0.000 -0.109 3.121 -1.105 -1.469 0.409 1.011 1.190 1.092 1.270 1.080 1.259 1.054 0.416 K 0.439 1.087 1.280 1.091 1.270 1.091 1.280 1.087 0.439

-7.010 -7.002 -7.001 0.083 -0.008 -0.999 -1.633 -3.064 -5.303 0.462 0.765 1.108 1.177 1.095 0.797 0.482 L 0.497 0.822 1.104 1.173 1.104 0.822 0.497

-7.002 -7.004 0.335 0.333 -0.842 -3.064 -3.078 0.396 0.545 0.389 M 0.393 0.542 0.393 0.585 0.572 -1.220 D MEASURED FDHN PREDICTED FDHN PERCENT DIFFERENCE Standard Deviation = 2.73 FIGURE 5.4 Power Distribution for Flux Map 2504 1 2 3 4 5 6 7 8 9 10 11 12 13 0.405 0.5441 08:71 A 4 5I 0.398 0.54 0.398

-+

3 1 I 1.809 -0.566 -2.814 ___ ___

0.467 0.824 0.839' 1.122 1.166 1.098 0.821 0.496 B 0.500 0.500 0.824 1.102 1.172 1.102 0.824 0.500 4

-6.617 1.821 1.824 -0.495 -0.399 -0.304 -0.940

-6611.2 0.413 1.042 1.279 1.108 1.289 Mud0 1.204 1.0721 0.424 0.442 1.082 1.272 1.092 1.271 1.092 1.272 1.082 0.442 C

-6.624 -3.733 0.495 1.410 1.432 1.493 0.943 -0.933 -4.160 0.471 D 0.500 1.018 1.0821 1.193 1.237 1.199 1.187 1.0861 1.066 1.387 1.360 1.083 1.066 1.1911 1.187 1.226 1.237 1.055 1.082o 0.479 0.500

-5.899 -5.914 -3.597 0.994 1.820 1.934j 1.595 0.345 -0.873 -2.477 -4.159 0.781 1.206 1.198 1.048 1.345 1.093 1.325 1.018 1.178 1.285 0.846 0.823 1.272 1.187 1.031 1.318 1.077 1.318 1.031 1.187 1.272 0.823 E

.5. 1R6 -. 1 96 0.901 1.629 2.041 1.476 0.546 -1.280 -0.741 0.975 2.769 0.409 1.134 1.127 1.100 1.346 1.030 1.186 1.003 1.305 1.061 1.098 1.114 0.404 F 0.397 1.101 1.091 1.066 1.318 1.015 1.186 1.015 1.318 1.066 1.091 1.101 0.397 2.969 2.988 3.254 3.180 2.101 1.507 0.000 -1.172 -0.994 -0.469 0.605 1.126 1.661 0.570 1.207 1.332 1.388 1.096 1.193 0.906 1.171 1.063 1.350 1.275 1.183 0.556 G 0.547 1.171 1.271 1.360 1.077 1.186 0.920 1.186 1.077 1.360 1.271 1.171 0.547 4.132 3.091 4.791 2.073 1.764 0.582 -1.533 -1.307 -1.309 -0.735 0.267 1.016 1.590 0.411 1.130 1.140 1.084 1.336 1.004 1.171 1.004 1.302 1.070 1.099 1.117 0.400 H 0.397 1.101 1.091 1.066 1.318 1.015 1.186 1.015 1.318 1.066 1.091 1.101 0.397 3.523 2.597 4.491 1.679 1.365 -1.123 -1.324 -1.113 -1.199 0.347 0.697 1.399 0.579 0.810 1.267 1.182 1.019 1.302 1.064 1.303 1.018 1.201 1.261 0.823 1.272 1.187 1.031 1.318 1.077 1.318 1.031 1.187 1.272 0.823

-1.627 -0.448 -0.455 -1.203 -1.206 -1.179 -1.191 -1.290 1.179 -0.849 -0.947 0.517 1.1181 1.27&t 1.ý227 1.5t1.349t 1.0571 1.179 1.2851 1.072k .9 1 0.500 1.0821 1.2371

-0.455

-044 1. 18 1.66 1.3M0 1.066 1.187 112 1.2371 1.0821 I 0.50 3E1 3.327 3.3224 3.319ý -0.9294 -0.8454 -0.835 .0.6744 3.8721 -0.9524 -1.360 1

0.434 1.U0b 1.249 1.U5) 1.U(( 1.1doU l .Uold U.14"1 0.442 1.082 1.272 1.092 1.271 1.092 1.272 1.082 0.442 K

-1.809 -1.626 -1.816 -0.659 , -0.669 -1.346 -1.761 -2.772 -5.743

, , -1.816 ,

0.489 0.807 1.101 1.171 1.091 0.801 0.486 L 0.500 0.824 1.102 1.172 1.102 0.824 0.500

-2.279 -2.076 -0.127 -0.128 -1.043 -2.780 -2.779 0.400 0.550 0.393 M 0.398 0.547 0.398 0.402 0.402 -1.156 D MEASURED FDHN PREDICTED FDHN PERCENT DIFFERENCE Standard Deviation = 2.36

- 29 -

FIGURE 5.5 Power Distribution for Flux Map 2505 1 2 3 4 5 6 7 8 9 10 11 12 13 0.406ý 0.5444 .36 A 0.398 0.54 0.398 I 1.935 -0.621 1.I 9U.9

-3.015 0.463 0.U40 1.1 23 1.172 1.099 0.822 0.496 0.500 0.824 1.102 1.102 0.824 0.500 B 4 .4 I-

-7.420 1.943 1.933 -0.282 -0.318 -0.243 -0.760

-0.282 -0.760 0.409 1.041 1.2B4 1.113' 1.298 1.113 1.286' 1.074 0.427 C 0.442 1.082 1.272 1.093 1.274 1.093 1.272 1.082 0.442

-7.419 -3.808 0.920 1.802 1.852 1.784 1.132 -0.767 -3.529 0.468 1.0124 1.192 1.200 1.087 1.3901 1.0861 1.200t 1.228t 1.044 0.482 D 0.500 1.082 1.237 1.187 1.066 1.361 1.066 1.187 1.237 1.082 0.500

-6.381 -6.433 -3.622 1.104 1.9791 2.116 1.876 1.095 -0.760 _3.521 -3.521 0.779 1.203 1.204 1.049 1.346 1.091 1.325 1.009 1.229 1.317 0.852 0.823 1.272 1,187 1.031 1.317 1.077 1.317 1.031 1.187 1.272 0.823 E 0.615

-5.394 -5.393 1.398 1.756 2.202 1.328 -2.095 3.505 3.506 3.499 0.409 1.133 1.128 1.104 1.345 1.030 1.183 1.002 1.301 1.061 1.107 1.113 0.405 F 0.397 1.101 1.092 1.067 1.317 1.015 1.186 1.015 1.317 1.067 1.092 1.101 0.397 2.894 2.916 3.315 3.477 2.141 1.438 -0.236 -1.291 -1.215 -0.572 1.355 1.108 1.837 0.572 1.211 1.334 1.391 1.099 1.195 0.907 1.171 1.0641 1.349 1.277 1.183 0.556 G 0.547 1.172 1.273 -5394-5391.56 1.361 1.077 1.38 2202 1.186 .328 0.920 0.61 1.186 1.077 1.361 1.273 1.172 0.547 4.644 3.294 4.800 2.168 1.996 0.767 -1.435 -1.239 -1.244 -0.860 0.346 0.964 1.700 0.414 1.132 1.141 1.085 1.338 1.002 1.170 1.004 1.3041 1.068 1.0961 1.111 0.398 H 0.397 1.101 1.092 1.067 1.317 1.015 1.186 1.015 1.3171 1.067 1.092 1.101 0.397 4.076 2.807 4.478 1.649 1.579 -1.320 -1.315 -1.123 -1.0251 0.094 0.339 0.872 0.176 0.812 1.262 1.177 1.014 1.295 1.061 1.29H 1.017 1.19U 1.25U 0.823 1.272 1.187 1.031 1.317 1.077 1.317 1.031 1.187 1.272 0.823

-1,348 -0.825 -0.826 -1.697 -1.701 -1.476 -1.458 -1.377 0.910 -0.983 -1.154 1 1.1144 1.274 1.2231 1.056ý 1.346ý 1.054 1.7 127 100 0.492 0.5151 0.500j 1.0821 1.237 1.1871 1.066 1.361 1.0661 1.187 1.237 1.082 0.500 3.0014 2.9941 2.999 2.9994 -0.910 -1.073 -1.098] -1.398 3.234 -1.1551 -1.520 0.434 1.064 1.249 1 .U9Z 1.072 0.418 K 0.442 1.082 1.272 1.093 1.274 1.093 1.272 1.082 0.442

-1.787 -1.627 -1.800 -0.128 -0.706 -1.940 -2.940 -4.390 -5.519 0.489 0.807 1.104 1.174 1.087 0.787 0.478 L 0.500 0.824 1.102 1.172 1.102 0.824 0.500

-2.220 -2.040 0.191 0.196 -1.397 -4.384 -4.380 0.400 0.550 0.391 M 0.398 0.547 0.398 0.503 0.512 -1.884 DMEASURED FDHN PREDICTED FDHN PERCENT DIFFERENCE Standard Deviation = 2.58

- 30 -

FIGURE 5.6 Power Distribution for Flux Map 2506 1 2 3 4 5 6 7 8 9 10 11 12 13 0.407 0.4 0.391 A -+ t 0.,401 0.ý554510.401 I I 1.547 -0.490 -2.421 0.470 0.836 1.121 1.170 1.101 1.104 0.822 0.497 B 0.501 0.824 1.104 1.176 0.824 0.501

-6.074 1.529 1.531 -0.485 -0.308 -0.231 -0.619 0.416 1.044 1.277 1.113 1.310 1.113 1.280 1.072 0.427 C 0.443 1.079 1.269 1.097 1.293 1.097 1.269 1.079 0.443

-6.079 -3.262 0.583 1.404 1.276 1.413 0.890 -0.630 -3.480 0.473 1.019 1.195 1.192k 1.083 1.382 1.082 1.189 1.22811.0590.483 D 0.500 1.079 1.233 1.183 1.066 1.361 1.066 1.183 1.233 1.079 0.500

-5.536 -5.569: -3.114 0.778 1.576 1.550 1.510 0.524, -0.446 -1.835 -3.477 0.782 1.204 1.193 1.041 1.334 1.086 1.318 1.019 1.182 1.285 0.847 E 0.824 1.268 1.183 1.028 1.311 1.074 1.311 1.028 1.183 1.268 0.824

-5.039 -5.031 0.854 1.255 1.708 1.127 0.526 -0.914 -0.101 1.333 2.829 0.411 1.134 1.130 1.095 1.333 1.021 1.179 0.999 1.300 1.059 1.103 1.113 0.407 F 0.400 1.103 1.097 1.066 1.312 1.012 1.183 1.012 1.312 1.066 1.097 1.103 0.400 2.824 2.828 3.035 2.739 1.585 0.919 -0.363 -1.334 -0.899 -0.657 0.556 0.925 1.750 0.574 1.214 1.354 1.387 1.089 1.186 0.904 1.167 1.060 1.346 1.294 1.185 0.560 G 0.550 1.175 1.293 1.361 1.074 1.183 0.918 1.183 1.074 1.361 1.293 1.175 0.550 4.324 3.327 4.679 1.932 1.387 0.211 -1.525 -1.361 -1.350 -1.109 0.031 0.800 1.672 0.415 1.135 1.146 1.085 1.326 1.001 1.169 1.001 1.296 1.063 1.096 1.110 0.403 H 0.400 1.103 1.097 1.066 1.312 1.012 1.183 1.012 1.312 1.066 1.097 1.103 0.400 3.774 2.865 4.412 1.735 1.082 -1.087 -1.226 -1.087 -1.250 -0.319 -0.082 0.616 0.675 0.815 1.268 1.183 1.019 1 .300 1.018 1 0.824 1.268 1.183 1.028 1.311 1.074 1.311 1.028 1.183 1.268 0.824

-0.996 0.008 0.008 -0.875 -0.869 -0.978 -0.976 -1.177 0.423 -1.285 -1.554 0.519 1.118 1.278 1.226 1.058 1.352 1.059 1.176 1.261 1.062 0.491 0.500 1.079 1.233 1.183 1.066 1.361 1.066 _1.183 1.233 1.079 0.500 3.617 3.596 3.601 3.6011 -0.750 -0.691 -0.685. -0.566 2.263 -1.548 -1.859 0.436 1.064 1.249 1.090 1.285 1.0M4 1.250 1.054 0.419 K 0.443 1.079 1.269 1.097 1.293 1.097 1.269 1.079 0.443

-1.559 -1.381 , -1.568 , -0.638 -0.603 -1.167 -1.489 -2.345 -5.333 0.490 0.809 1.103 1.175 1.094 0.804 0.489 L 0.501 0.824 1.104 1.176 1.104 0.824 0.501

-2.018 -1.833 -0.118 -0.119 -0.897 -2.355 -2.338

_ J 0.402 0.553 0.397 M 0.401 0.551 0.401 0.399 0.399 -0.948 D MEASURED FDHN PREDICTED FDHN PERCENT DIFFERENCE Standard Deviation = 2.20

-31 -

6.0 REACTOR STARTUP CALIBRATIONS 6.1 Rod Position Calibration The rod position indicators are calibrated each refueling in accordance with an approved surveillance procedure. The calibration includes the following:

a) The position signal output is checked at 20 and 200 steps for all rods.

b) The rod bottom lamps are checked to assure that they light at the proper rod height.

c) The control room rod position indicators are calibrated to read correctly at 20 and 200 steps.

d) The pulse-to-analog converter alignment is checked.

e) The rod bottom bypass bi-stable trip setpoint is checked.

The calibration was performed satisfactorily during the Cycle 25 startup; no problems or abnormalities were encountered and site procedure acceptance criteria were met. At full power, an adjustment was made to selected RPI channels to compensate for the temperature increase associated with power ascension.

\'DOB LAN'VOL I',GROUP'FUELS\WP\CYCLE24.DOC

6.2 Nuclear Instrumentation Calibration The nuclear instrumentation (NI) calibration was performed in accordance with the Kewaunee Reactor Test Program (4) during the Cycle 25 startup. A flux map was performed at approximately 70 percent power. The incore axial offset was determined from the data collected during the map.

The NI's were then calibrated with a conservative incore axial offset-to-excore axial offset ratio of 1.7.

\\\DO BLAN\VOLI\GROUP\FU ELS\WP',CYCLE24.DOC

7.0 REFERENCES

(1) "Reload Safety Evaluation for Kewaunee Cycle 25," November 2001.

(2) "Qualification of Reactor Physics Methods for Application to Kewaunee," October 1978 (submitted) and October 1979 (approved).

(3) "Reload Safety Evaluation Methods for Application to Kewaunee", WPSRSEM-NP-A, Revision 3, October 2000 (submitted) and September 2001 (approved).

(4) "Reactor Test Program, Kewaunee Nuclear Power Plant," (Revision 7, November 19, 2001).

(5) "Kewaunee Nuclear Power Plant Technical Specifications," Docket 50-305.

\\\DOBLAN\VOLI\GROUP\FUELS\WP\CYCLE24.DOC