ML020700529

From kanterella
Jump to navigation Jump to search
Cycle 25 Startup Report for Kewaunee Nuclear Power Plant
ML020700529
Person / Time
Site: Kewaunee Dominion icon.png
Issue date: 02/28/2002
From: Coutu T
Nuclear Management Co
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
NRC-02-019
Download: ML020700529 (39)


Text

Kewaunee Nuclear Power Plant N490 Highway 42 Kewaunee, WI 54216-9511 920.388.2560 Point Beach Nuclear Plant 6610 Nuclear Road Two Rivers, Wl 54241 920.755.2321 Kewaunee / Point Beach Nuclear Operated by Nuclear Management Company, LLC NRC-02-019 TS 6.9.a.1 February 28, 2002 U. S. Nuclear Regulatory Commission Attention: Document Control Desk Washington, D.C. 20555 Ladies/Gentlemen:

Docket 50-305 Operating License DPR-43 Kewaunee Nuclear Power Plant Cycle 25 Startup Report In accordance with our practice of reporting the results of physics tests, enclosed is a copy of the Kewaunee Nuclear Power Plant Cycle 25 Startup Report.

Sincerely, Thomas Coutu Manager-Kewaunee Plant Enclosure cc -

US NRC - Region III - w/o attach.

NRC Senior Resident Inspector - w/o attach.

Committed to Nuclear e>

.1 'ý_k U V_

KEWAUNEE NUCLEAR POWER PLANT STARTUP REPORT CYCLE 25 FEBRUARY 2002 Prepared By:

Date:

I -

zc

- 7z-2.-

ioor Engineer Prepared By:

Reviewed By:

Reviewed By:

Reviewed By:

Engineering Senior Analyst Lead Plant tAc r Engineer 1). -

LC,,NI Project Manager-Kewaunee/Point Beach Nuclear Lic A~ingDrector Date:

Date:.&- * -c.

Date: oI

'i--

iZOL Date:

.-,. -2.3 -65L

-i-

\\\\\\DOBLAN\\VOLI \\G ROUP\\FUELS\\WP\\CYCLE24.DOC

TABLE OF CONTENTS 1.0 Introduction, Sum mary, and Conclusion.......................................................................

1 1.1 Introduction......................................................................................................

1 1.2 Sum m ary.................................................................................................

1.3 Conclusion..............................................................................................................

3 2.0 RCCA M easurem ents.....................................................................................................

7 2.1 RCCA Drop Tim e M easurem ents......................................................................

7 2.2 RCCA Bank M easurem ents.................................................................................

7 2.2.1 Rod Swap Results...................................................................................

7 2.3 Shutdown M argin Evaluation............................................................................

8 3.0 Boron Endpoints and Boron W orth M easurem ents.....................................................

14 3.1 Boron Endpoints..............................................................................................

14 3.2 Differential Boron W orth.................................................................................

14 3.3 Boron Letdown................................................................................................

14 4.0 Isotherm al Temperature Coefficient............................................................................

18 5.0 Pow er Distribution........................................................................................................

20 5.1 Sum m ary of Power Distribution Criteria..........................................................

20 5.2 Power Distribution M easurem ents...................................................................

21 6.0 Reactor Startup Calibrations........................................................................................

32 6.1 Rod Position Calibration...................................................................................

32 6.2 Nuclear Instrum entation Calibration.................................................................

33 7.0 References........................................................................................... 34

-ii

'.V\\.DOBLAN\\VO L I 'GRO U PN FU ELSWP\\CYC LE24. DOC

LIST OF TABLES T able 1.1 Fuel C haracteristics...................................................................................................

4 T able 1.2 B O C Physics Test.....................................................................................................

5 Table 2.1 RCCA Drop Time Measurements.............................................................................

9 Table 2.2 RCCA Bank Worth Summary.................................................................................

10 Table 2.3 Minimum Shutdown Margin Analysis........................................................................

11 Table 3.1 RCCA Bank Endpoint Measurements...................................................................

15 Table 3.2 Differential Boron Worth........................................................................................

16 Table 4.1 Isothermal Temperature Coefficient........................................................................

19 Table 5.1 Flux Map Chronology and Reactor Characteristics...............................................

22 Table 5.2 Verification of Acceptance Criteria for FRA-ANP Heavy Fuel...............

23 Table 5.3 Verification of Acceptance Criteria for Westinghouse 422V+ Fuel.......................

24 Table 5.4 Verification of Review Criteria...............................................................................

25

-111

,\\'DOBLANWOLI GROUP\\FU ELS',WP',CYCLE24 DOC

LIST OF FIGURES Figure 1.1 C ore Loading M ap..................................................................................................

6 Figure 2.1 RCCA Control Bank C Integral Worth...................................................................

12 Figure 2.2 RCCA Control Bank C Differential Worth............................................................

13 Figure 3.1 Boron Concentration vs. Burnup............................................................................

17 Figure 5.1 Power Distribution for Flux Map 2501...................................................................

26 Figure 5.2 Power Distribution for Flux Map 2502...................................................................

27 Figure 5.3 Power Distribution for Flux Map 2503...................................................................

28 Figure 5.4 Power Distribution for Flux Map 2504...................................................................

29 Figure 5.5 Power Distribution for Flux Map 2505...................................................................

30 Figure 5.6 Power Distribution for Flux Map 2506...................................................................

31

-iv

'x\\DOB_LAN\\VO L I \\GRO UP\\ FU ELS\\WP\\CYCLE24. DOC

1.0 INTRODUCTION

SUMMARY

, AND CONCLUSION 1.1 Introduction This report presents the results of the physics tests performed during startup of Kewaunee Cycle 25.

The core design and reload safety evaluation (1) were performed by Nuclear Management Company (NMC) using methods previously described in approved topical reports (2, 3). The results of the physics tests were compared to NMC analytical results to confirm calculated safety margins. The tests performed and reported herein satisfy the requirements of the Reactor Test Program (4).

The reactor core consists of 121 fuel assemblies of 14 x 14 design. The core loading pattern, assembly identification, and burnable absorber configurations for Cycle 25 are presented in Figure 1.1.

Thirty-six (36) new Framatome ANP (FRA-ANP, formerly known as Siemens Power Corporation) heavy assemblies containing U0 2 rods enriched to 4.5 w/o U235 and four (4) new Westinghouse 422V+ assemblies containing U0 2 rods enriched to 3.3 w/o U235 will reside with 81 partially depleted FRA-ANP heavy assemblies. The FRA-ANP heavy assemblies contain approximately 405 KgU (per assembly). The four Westinghouse assemblies are Lead Use Assemblies (LUAs) containing approximately 402 KgU (per assembly). Table 1.1 displays the core breakdown by region, enrichment, number of previous duty cycles, fuel rod design, and grid design.

On December 1, 2001, at 2012 hours0.0233 days <br />0.559 hours <br />0.00333 weeks <br />7.65566e-4 months <br />, initial criticality was achieved on the Cycle 25 core. The schedule of physics tests and measurements is outlined in Table 1.2.

-1

",'DOB LAN\\VO L1IGR U P\\FUELS\\WP'*CYCLE24 DOC

1.2 Summary RCCA measurements are shown in Section 2. All RCCA drop time measurements were within Technical Specification limits. RCCA bank worths were measured using the rod swap reactivity comparison technique previously described (4).

The reactivity comparison was made to the reference bank, Control Bank C, which was measured using the dilution technique. All results were within the established acceptance criteria (4), and thereby demonstrated adequate shutdown margin.

Section 3 presents the boron endpoint and boron worth measurements. The endpoint measurements for ARO and Control Bank C inserted core configurations were within the acceptance criteria (4).

The available boron letdown data covering early reactor operation is also shown. The agreement between measurements and predictions satisfies the acceptance criteria (4).

Section 4 shows the results of the isothermal temperature coefficient measurements. The differences between measurements and predictions were within the acceptance criteria (4).

Power distributions were measured via flux maps using the INCORE code for beginning of cycle (BOC) core conditions covering power escalation to full power equilibrium xenon. The results indicate compliance with pertinent Technical Specification limits (5) and are presented in Section 5.

Section 6 discusses the various calibrations performed during the startup of Cycle 25. ý,'DOB LAN\\VOLI'GROUP"FUELS',WP\\CYCLE24. DOC

1.3 Conclusion The startup testing of Kewaunee's Cycle 25 core verified that the reactor core has been properly loaded and the core characteristics satisfy the Technical Specifications (5) and are consistent with the parameters used in the design and safety analysis (1). ',\\\\DOB LAVNWOLI IGROUP\\FU ELS\\WPýCYCLE24.DOC

TABLE 1.1 Fuel Characteristics Initial Number U02 Rod of W/O Previous Fuel Region U235 Duty Cycle 25 Rod Grid Region Identifier (Gad Load)

Cycles Assemblies Design Design(1) 25 C

4.1 2

8 Heavy HTP (8 rods - 8%)

25 C

4.1 2

9 Heavy HTP (12 rods - 8%)

25 C

4.5 2

8 Heavy HTP (4 rods - 4%)

25 C

4.5 2

8 Heavy HTP (8 rods - 4%)

25 C

4.5 2

8 Heavy HTP (8 rods - 8%)

26 D

4.1 1

20 Heavy HTP (8 rods - 8%)

26 D

4.5 1

8 Heavy HTP (4 rods - 4%)

26 D

4.5 1

4 Heavy HTP (8 rods - 4%)

26 D

4.5 1

8 Heavy HTP (8 rods - 8%)

27 E

4.5 0

16 Heavy HTP (8 rods - 4%)

27 E

4.5 0

20 Heavy HTP (8 rods - 8%)

27 E

3.3 0

4 422 V+

ZIRLO

( HTP denotes the FRA-ANP High Thermal Performance mid-grid design. ZIRLO denotes the Westinghouse mid-grid design. The FRA-ANP top and bottom grids are bi-metallic (Zircaloy and Inconel). The Westinghouse top and bottom grids are Inconel.

-4

'\\\\DOBLAN\\VOL I',GRO UP\\FU ELS\\WP'CYCLE24.DOC

TABLE 1.2 BOC Physics Test \\0.3OB LAN",VO [. 1GROUP FU ELS\\WPNCYCLE24. DOC Date Time Plant Test Completed Completed Conditions Control Rod Operability Test 11/26/01 0140 Cold SD Hot Rod Drops 11/30/01 0205 HSD RPI Calibrations 11/30/01 2152 HSD Initial Criticality 12/01/01 2012 HZP Reactivity Computer Checkout 12/01/01 2048 HZP ARO Endpoint 12/01/01 2048 HZP ITC Determination 12/01/01 2155 HZP Bank C Worth (Dilution) 12/01/01 2337 HZP Low Power Physics Test Completion 12/02/01 0323 HZP Power Ascension Flux Map 2501 12/05/01 1749 30%

Power Ascension Flux Map 2502 12/09/01 0218 73%

Power Ascension Flux Map 2503 12/11/01 0955 90%

Power Ascension Flux Map 2504 12/16/01 2132 99%

Power Ascension Flux Map 2505 12/17/01 1518 99%

Power Ascension Flux Map 2506 12/26/01 1608 100%

FIGURE 1.1 Core Loading Map A

B C

D E

F G

H J

K U078 4.5 4GAD4 C70 4.1 12GAD8 L

M D58 4.1 8GAD8 D62 4.1 8GAD8 4.5 8GAD4 D57 4.1 8GAD8 5

6 7

8 9

10 11 4.1 4.1 4.1 8GAI)8 8GAD8 8GAD8ý D76 4.5 4GAD4 E51 4.5 8GAD4 D59 4.1 8GAD8 U80 4.5 8GAD4 D63 E62 D87 D69 071 E81 C78 D55 D83 E52 065 4.1 4.5 4.5 4.1 4.5 4.5 4.5 4.1 4.5 4.5 4.1 8GAD8 8GAD4 8GAD8 8GAD8 4GAD4 8GAD8 4GAD4 8GAD8 8GAD8 8GAD4 8GAD8 4.1 8GAD8 C51 E59 C88 C76 E74 C96 D84 C80 E70 C74 C87 E63 C54 4.1 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.1 8GAD8 8GAD4 8GAD8 4GAD4 8GAD8 8GAD4 8GAD8 8GAD4 8GAD8 4GAD4 8GAD8 8GAD4 8GAD8 D54 E87 D79 E71 C61 D89 C69 D85 C62 E86 D82 E90 D70 4.1 3.3 4.5 4.5 4.1 4.5 4.1 4.5 4.1 4.5 4.5 3.3 4.1 8GAD8 8GAD4 8GAD8 12GAD8 8GAD8 12GAD8 8GAD8 12GAD8 8GAD8 8GAD4 8GAD8 C57 E54 C89 C77 E80 C95 D90 C85 E82 C75 C90 E66 C56 4.1 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.1 8GAD8 8GAD4 8GAD8 4GAD4 8GAD8 8GAD4 8GAD8 8GAD4 8GAD8 4GAD4 8GAD8 8GAD4 8GAD8 D52 4.1 8GAD8 D60 E57 D88 D56 C73 E67 72u D53 D86 E53 064 4.1 4.5 4.5 4.1 4.5 4.5 4.5 4.1 4.5 4.5 4.1 8GAD8 8GAD4 8GAD8 8GAD8 4GAD4 8GAD8 4GAD4 8GAD8 8GAD8 8GAD4 8GAD8 D81 4.5 8GAD4 Ebi E1-5 4.5 8GAD4 D51 4.1 8GAD8 C2 4.1 8GAD8 L81 4.5 8GAD4 4.5 8GAD8 D74 4.5 4GAD4 4.5 8GAD8 C91 4.5 8GAD8 E58 4.5 8GAD4 C53 4.1 8GAD8 E88 3.3 4.1 12GADE E64 4.5 8GAD4 C93I 4.5 8GAD8 4.5 8GAD8 C94 4.5 8GAD8 D75 4.5 4GAD4 4

4

+

+

+



Eb

.bU 4.1 4.1 E55 4.5 8GAD4 E83 4.5 8GAD8 C92 4.5 8GAD8 E69 4.5 8GAD8 4.5 8GAD4 C64 4.1 12GAD8 4.1 12GAD8 J

-I-

.89 3.3 4.5 8GAD4 4.5 8GAD8 577 4.5 4GAD4 4.5 8GAD4 4.1 8GAD8 4.5 8GAD8 12 13 E68 4.5 8GAD8 4.5 4GAD4 D71 4.5 4GAD4 E73 4.5 8GAD8 D68 4.1 8GAD8 4.5 8GAD4 t12 4.5 8GAD8 C59' 4.1 12GAD8 E77 4.5 8GAD8 4.5 8GAD4 4.5 8GAD8 4.5 4GAD4 CYCLE TWENTY-FIVE D

  • ASSEMBLY ID INITIAL ENRICHMENT GADOLINIA LOADING 6-

\\\\\\DOBLAN\\VOLI\\GROUP\\FUELS\\WPCYCLE24. DOC 1

2 3

4 C65~

4.1 12GAD8

2.0 RCCA MEASUREMENTS 2.1 RCCA Drop Time Measurements RCCA drop times to dashpot and rod bottom were measured at hot shutdown core conditions. The results of the hot shutdown measurements are presented in Table 2.1. The acceptance criterion (4) of 1.8 seconds to dashpot is adequately met for all fuel.

2.2 RCCA Bank Measurements During Cycle 25 startup the reactivity of the reference bank, Control Bank C, was measured during dilution using the reactivity computer. The reactivity worth of the remaining banks was inferred using rod swap reactivity comparisons to the reference bank.

2.2.1 Rod Swap Results The worth of the reference bank, Control Bank C, measured during dilution differed from the NMC predicted Control Bank C worth by 81.12 pcm or 9.2 percent. This difference meets the review criterion of 10% for reference bank worth. A comparison of the measured to predicted reference bank integral and differential worth is presented in Figures 2.1 and 2.2 \\\\\\DOBLANMVOLI\\GROUP\\FUELS\\WP\\CYCLE24.DOC

Rod swap results for the remaining banks are presented in Table 2.2. The measured-to predicted total rod worth difference is +8.4 percent, which is within the acceptance criterion of-5.0 percent to +10.0 percent. All individual remaining bank worths were within the 15.0 percent measured-to-predicted review criterion.

2.3 Shutdown Margin Evaluation Prior to power escalation a shutdown margin evaluation was made to verify the existence of core shutdown capability. The minimum shutdown margins at beginning and at end of cycle are presented in Table 2.3. A-5 percent to +10 percent uncertainty in the calculation of total rod worth is accounted for in the shutdown margin analyses. Since the measured total rod worth result fell within a-5 percent to +10 percent range compared to the predicted value, the analysis in Table 2.3 is conservative and no additional evaluations were required. \\\\\\DO B_LANZWOLI\\GROUP\\FUELS\\WPICYCLE24.DOC

TABLE 2.1 Kewaunee Cycle 25 RCCA Drop Time Measurements Hot Zero Power ",,.DOB LAN" VOLI" GROU P\\FUELSWP'CYCLE24.DOC Average Dashpot Delta T (Seconds) 1.256 Standard Deviation 0.030 Average Rod Bottom Delta T (Seconds) 1.740 Standard Deviation 0.043

TABLE 2.2 Kewaunee Cycle 25 RCCA Bank Worth Summary Reference Bank Measured by Dilution/Reactivity Computer Rod Swap Method RCCA Bank D

C*

B A

SA SB Total Measured Worth (PCM) 882.09 960.12 540.27 926.37 711.29 705.18 4725.32 WPS Predicted Worth (PCM) 866.0 879.0 511.0 826.0 639.0 639.0 4360.0

  • Reference bank \\'DOB LANWO L I GROU P' FU ELSkWP'CYCLE24. DOC Difference (PCM) 16.09 81.12 29.27 100.37 72.29 66.18 365.32 Percent Difference 1.9 9.2 5.7 12.2 11.3 10.4 8.4

TABLE 2.3 Kewaunee Cycle 25 Minimum Shutdown Margin Analysis RCCA Bank Worths (PCM)

BOC N

N-1 Less 5 Percent Sub Total Total Requirements (Including Uncertainties)

Shutdown Margin Required Shutdown Margin 5685 5081 254 4827 2439 2388 1000 ',\\\\DOB L.N\\VOLI GROUP" FUELS\\WP\\CYCLE24.DOC EOC 5997 5265 263 5002 2938 2064 2000

0 V

-z 0

0 0

C m

0 0

I-..

4-.

0 0

1250 1200 1150 1100 1050 1000 950 S900

(-)

S850 800

>1 750

.H 700 650 j

600 U

(

550 500 450 14 400

)

350 S300 250 200 150 100 50 0

-Measured Predicted

-t -

CD 0

~0 1

0 ~

CID 00 0

0-.()

t 0

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 Steps Withdrawn

10.0 9.5 9.0 8.5 Q4 8.0 4j) 5 7.0 6.5 6.0 S5.S

>1

  • H 5.0 4j U

4.5 (0

Q) 4.0 S

3.C

"*3.0 (D 2.5 (D

2.0 4*4

-4

10.

0.5


--Measured Predicted

]4&

5L I- -------------------------------------------------------------

0 0

10 20 30 40 50 60 70 80 90 1 0 110 120 130 140 150 160 170 ]80 190 200 210 220 230 Steps Withdrawn C) 0 CD C)

C) 0 C-)

0 C-)

3.0 BORON ENDPOINTS AND BORON WORTH MEASUREMENTS 3.1 Boron Endpoints Dilution is stopped at the near ARO and at the Reference Bank nearly inserted core conditions.

Boron concentration is allowed to stabilize.

The critical boron concentration for these core configurations is then determined by boron endpoint measurement.

Table 3.1 lists the measured and NMC predicted boron endpoints for the RCCA bank configurations shown. The results indicate a difference of-60 ppm and -64 ppm for the ARO and Control Bank C In conditions, respectively. The acceptance criterion on the all rods out boron endpoint is +100 PPM; thus, the boron endpoint comparisons are considered acceptable.

3.2 Differential Boron Worth The differential boron worth is calculated by dividing the worth of Control Bank C by the difference in boron concentration of the corresponding bank out and bank in configuration. Table 3.2 presents a comparison between measured and predicted boron concentration change and differential boron worth. No acceptance criteria are applied to these comparisons.

3.3 Boron Letdown The measured boron concentration data for the first month of power operation is corrected to nominal core conditions and presented versus cycle burnup in Figure 3.1. The predicted boron letdown curve is included for comparison. \\\\\\KNPP\\VOLI \\GROUP\\NUCLEAR\\LICENSING\\CYCLE REPORTS\\CYCLE 25 STARTUP REPORT.DOC

TABLE 3.1 Kewaunee Cycle 25 RCCA Bank Endpoint Measurements RCCA Bank Configuration All Rods Out Bank C In Measured Endpoint (PPM) 1949 1812 WPS Predicted Endpoint (PPM) 2009 1876 Difference (PPM)

-60

-64 '\\DOBLAN\\VOL I GROUPTFUELS\\WP\\CYCLE24.DOC

TABLE 3.2 Kewaunee Cycle 25 Differential Boron Worth RCCA Bank Configuration CB Change Measured (PPM)

CB Change Predicted (PPM)

Percent Difference ARO to C Bank In RCCA Bank Configuration ARO/C Bank In Measured Boron Worth (PCM/PPM)

-7.0 Predicted Boron Worth (PCM/PPM)

-6.6 Difference (PCM/PPM)

-0.4 '\\, DOB LAN\\VOL V GRO UP' FUELS',WP'CYC LE24.DOC 137 133 2.9

1400 K

~

  • ii 1

""II

+

MEASURED 1200 II I

Predicted 0

1200 I

Ii I

F i

0

" I i

I z

i *

  • * ! i b

1000z K.

I 0

800 o

600*.

I 400 CII 200 SJ

  • /0 0

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 Burnup (MWD/MTU)

Reactor Engineering 12/31/2001

4.0 ISOTHERMAL TEMPERATURE COEFFICIENT The measurement of the isothermal temperature coefficient was accomplished by monitoring reactivity while cooling down and heating up the reactor by manual control of the steam dump valves. The temperature change, reactivity change, and the temperature coefficient were obtained from the reactivity computer temperature coefficient analysis results.

Core conditions at the time of the measurement were Bank D slightly inserted, all other RCCA banks full out, with a boron concentration of 1935 ppm. These conditions approximate the HZP, all rods out core condition, which yields the most conservative (least negative) isothermal temperature coefficient measurement.

Table 4.1 presents the heatup and cooldown core conditions and compares the measured and predicted values for the isothermal temperature coefficient. The review criterion (4) of +3 PCM/°F was met. ',,DOB_LAN\\VOL I,GROUP\\ FUELS\\WP\\CYCLE24. DOC

TABLE 4.1 Kewaunee Cycle 25 Isothermal Temperature Coefficient Cooldown Tave Start Tave End Bank D Boron Concentration -

Measured ITC (PCM/°F)

-4.519 550.20°F 546.75°F 199 Steps 1935 PPM WPSC Predicted ITC (PCM/'F)

-5.495 Heat Up Tave Start Tave End Bank D Boron Concentration -

547.3 1°F 550.18°F 199 Steps 1935 PPM Measured ITC (PCM/°F)

-3.783 WPSC Predicted ITC (PCM/0 F)

-5.495 \\\\\\DOBLAN\\VOLI\\GROUP'FUELS\\WP\\,CYCLE24.DOC Difference (PCM/°F) 0.976 Difference (PCM/°F) 1.712

5.0 POWER DISTRIBUTION 5.1 Summary of Power Distribution Criteria Power distribution predictions are verified through data recorded using the incore detector system and processed through the INCORE computer code. The computer code calculates FQEQ and FDHN, which are limited by technical specifications.

These parameters are defined as the acceptance criteria on a flux map (4).

The review criterion for measurement is that the percent differences of the normalized reaction rate integrals of symmetric thimbles do not exceed 10 percent at low power physics test conditions and 6 percent at equilibrium conditions (4).

The review criterion for the prediction is that the standard deviation of the percent differences between measured and predicted reaction rate integrals does not exceed 5 percent.

The review criteria for the INCORE calculated quadrant powers are that the quadrant tilt is less than 4 percent at low power physics test conditions and less than 2 percent at equilibrium conditions (4). \\\\\\DO B_LAN\\VOL IGROUP\\ FUELSMWPTCYCLE24. DOC

5.2 Power Distribution Measurements Table 5.1 identifies the reactor conditions for each flux map recorded at the beginning of Cycle 25.

Comparisons of measured to predicted power distributions for the flux maps are exhibited in Figures 5.1 through 5.6.

Table 5.2 identifies flux map peak FDHN and minimum margin FQEQ for FRA-ANP heavy fuel.

Table 5.3 identifies flux map peak FDHN and minimum margin FQEQ for Westinghouse 422V+

fuel. These tables address acceptance criteria by verifying that technical specification limits are not exceeded. The Cycle 25 flux maps met all acceptance criteria.

Table 5.4 addresses the established review criteria for the flux maps. All review criteria were met for all the Cycle 25 flux maps. :,'ADOB LAN\\VOL 1GROUP FUELS.WP\\CYCLE24.DOC

TABLE 5.1 Flux Map Chronology and Reactor Characteristics Xenon EQ.

EQ.

EQ.

EQ.

EQ.

EQ.

Boron PPM 1660 1427 1409 1311 1306 1277 D Rods Steps 150 187 204 207 209 226 Exposure MDW/MTU 8

61 124 307 340 631 ',"\\DOB LANWO L I\\GROUP'FUELS\\WP\\CYCLE24.DOC Man 2501 2502 2503 2504 2505 2506 Date 12/05/01 12/09/01 12/11/01 12/16/01 12/17/01 12/26/01 Percent Power 30 73 90 99 99 100

TABLE 5.2 Verification of Acceptance Criteria for FRA-ANP Heavy Fuel Flux Map Core Location FDHN Limit 2501 G-4 (CK) 1.67 1.94 2502 G-4 (CK) 1.67 1.79 2503 G-4 (CK) 1.67 1.73 2504 G-4 (CK) 1.65 1.70 2505 G-4 (CK) 1.65 1.70 2506 G-4 (CK) 1.65 1.70 Flux Map Core Location FOEO Limit 2501 G-4 (CK), 31 2.63 4.70 2502 G-4 (CK), 25 2.42 3.16 2503 G-4 (CK), 23 2.32 2.55 2504 G-4 (CK), 27 2.28 2.34 2505 G-4 (CK), 20 2.25 2.32 2506 G-4 (CK), 22 2.21 2.30 FDHN and FQEQ include appropriate uncertainties and penalties.

Limit on FQEQ is a function of core power and axial location.

Limit on FDHN is a function of core power. \\\\\\DOBLAN\\VOLI\\GROUP\\FUELS\\WP\\CYCLE24.DOC

TABLE 5.3 Verification of Acceptance Criteria for Westinghouse 422V+ Fuel Flux Map Core Location FDHN Limit 2501 G-2 (KiE) 1.45 1.77 2502 G-2 (KE) 1.50 1.63 2503 G-2 (KE) 1.51 1.58 2504 G-2 (KE) 1.50 1.55 2505 G-2 (KE) 1.51 1.55 2506 G-2 (KE) 1.51 1.55 Flux Map Core Location FOEO Limit 2501 L-7 (ED), 30 2.35 4.33 2502 G-2 (KE), 25 2.18 2.92 2503 G-2 (KE), 26 2.12 2.37 2504 G-2 (KE), 26 2.07 2.15 2505 G-2 (KE), 22 2.06 2.14 2506 G-2 (KE), 22 2.03 2.12 FDHN and FQEQ include appropriate uncertainties and penalties.

Limit on FQEQ is a function of core power and axial location.

Limit on FDHN is a function of core power. \\\\\\DOBLANWOL1\\GROUPFUELS\\WP\\CYCLE24.DOC

TABLE 5.4 Verification of Review Criteria (a) Maximum Percent Difference 0.9 1.9 0.6 0.8 1.4 0.9 (b) Standard Deviation 3.2 3.4 3.5 3.6 3.7 3.3 (c) Percent Maximum Quadrant Tilt 0.8 0.8 0.4 0.7 1.0 0.8 (a)

Maximum Percent Difference between symmetric thimbles for measured reaction rate integrals.

Review criterion is 10 percent at low power. Review criterion is 6 percent at equilibrium power.

(b)

Standard Deviation of the percent difference between measured and predicted reaction rate integrals.

Review criterion is 5 percent.

(c)

Percent Maximum Quadrant Tilt from normalized calculated quadrant powers. Review criteria are 4 percent at low power and 2 percent at equilibrium power.

-25

'\\DOB LAN\\VOL I G ROUP\\FU ELS\\WP\\CYCLE24.DOC Flux Map 2501 2502 2503 2504 2505 2506

FIGURE 5.1 Power Distribution for Flux Map 2501 2

3 4

5 4

+

I 4

+

4-0.411 0.437

-6.059 1.094 1.131

-3.289 0.782 0.817

-4.260 1.270 1.326

-4.261 1.223 1.217 0.468 1.329 1.326 0.211 1.048 1.041 0.663 0.792 0.817

-3.059 6

7 8

9 10 11 0.3662 0.499 0.361 0.363 0.49 0.363 0.853 0.121

-0.551 0.49 0.87 1086

.12 1.06 0817

.49 1.337 1.326 0.830 1.302 1.326

-1.817 0.477 0.491

-2.792 0.795 0.817

-2.790 0.427 0.437

-2.492 0.414 0.437

-5.281 1.063 1.053 0.969 1.387 1.372 1.108 1.107 1.086 1.888 0.374 0.363 2.835 1.151 1.136 1.356 1.088 1.081 0.666 1.145 1.124 1.895 0.5121 0.498 2.852 1.067 1.053 1.330 1.377 1.372 0.372 1.089 1.086 0.267 0.3640 0.363 0.083 1.028 1.041

-1.239 1.122 1.131

-0.805 1.206 1.217

-0.904 1.338 1.326 0.875 12 13 0.465 1.0721 1.253 1.2201 1.0671 1.387 1.0711 1.2201 1.283 1.112 0.478 0.491 1.131 1.294 1.2171 1.056 1.367 1.056 1.217 1.294; 1.131 0.491

-5.138

-5.181

-3.145 0.2631 1.042 1.478 1.373 0.255

-0.8351

-1.724

-2.508 0.839 0.817 2.730 0.796 0.817

-2.558 0.4981 1.1491 1.314 1.236 1.0601 1.3671 1.056 1.2081 1.2961 1.102 0.477 0.491 1.131 1.294 1.217 1.056 1.367 1.056 1.217 1.294 1.131 0.491 1.570 1.574 1.569 1.5691 0.417 0.0151

-0.028

-0.781 0.170

-2.564

-2.793 0.819 0.817 0.196 1.326 1.326

-0.038 0.425 0.437

-2.835 1.217 1.217

-0.041 1.101 1.131

-2.679 0.475 0.491

-3.220 1.040 1.041

-0.106 1.288 1.326

-2.836 1.371 1.372

-0.109 1.063 1.053 0.931 1.071 1.081

-0.925 1.138 1.136 0.150 1.359 1.372

-0.977 1.044 1.053

-0.855 1.028 1.041

-1.239 1.213 1.217

-0.353 1.099 1.131

-2.794 1.301 1.326

-1.878 DMEASURED FDHN PREDICTED FDHN PERCENT DIFFERENCE Standard Deviation = 2.27 A B

C D

E F

G H

0.376 1.126 1.088 1.080 1.385 1.023 1.195 1.013 1.363 1.058 1.062 1.106 0.372 0.363 1.085 1.052 1.057 1.372 1.020 1.204 1.020 1.372 1.057 1.052 1.085 0.363 3.750 3.751 3.460 2.129 0.940 0.245

-0.739

-0.676

-0.692 0.076 0.903 1.945 2.454 0.528 1.173 1.190 1.387 1.090 1.201 0.890 1.191 1.071 1.368 1.145 1.144 0.510 0.498 1.123 1.135 1.367 1.081 1.204 0.906 1.204 1.081 1.367 1.135 1.123 0.498 6.070 4.470 4.837 1.492 0.870

-0.274

-1.755

-1.080

-0.962 0.102 0.872 1.897 2.432 0.383 1.129 1.100 1.072 1.381 1.011 1.189 1.013 1.361 1.058 1.052 1.096 0.371 0.363 1.085 1.052 1.057 1.372 1.020 1.204 1.020 1.372 1.057 1.052 1.085 0.363 5.569 4.018 4.553 1.4381 0.649

-0.873

-1.246

-0.667

-0.838 0.076 0.019 1.041 2.178 1

K L

M I

I 0.461 0.491

-6.053 0.824 0.817 0.856 1.095 1.086 0.847 1.128 1.124 0.356 1.090 1.086 0.359 0.820 0.817 0.379 0.487 0.491

-0.795

FIGURE 5.2 Power Distribution for Flux Map 2502 2

3 4

5 0.408 0.439

-7.044 I

I 0.461 0.495

-7.045 1.057 1.098

-3.770 0.777 0.821

-5,407 1.221 1.291

-5.407 1.206 1.194 1.005 0.830 0.822 1.059 1.296 1.292 0.333 1.045 1.031 1.329 6

7 8

9 10 11 0.391 0.531 038 0.386 0.532 0.3-086333 3

1.061

-0.338

-1.656 1.1

1.

r 1.0 T.~

1.062

-0.060 0.136

-0.969 4

.4

.4-4

.4

+

.4 1.099 1.081 1.619 1.072 1.098

-2.332 0.803 0.822

-2.252 0.3H8 0.386 0.362 0.423 0.439

-3.693 1.094 1.081 1.230 1.357 1.334 1.754 1.253 1.235 1.474 1.088 1.075 1.172 0.534 0.532 0.357 1.343 1.334 0.652 1.094 1.102

-0.735 0.3831 0.3861

-0.958 0.823 0.822 0.183 1.306 1.292 1.107 1.023 1.031

-0.815 1.087 1.098

-0.974 1.310 1.291 1.441 12 13 0.465{

1.029 1.207t 1.2031 1.0781 1.392 1.0801 1.2021 1.2441 1.076 0.477 0.495 1.0971 1.252 1.194 1.062 1.367 1.062 1.194 1.252 1.097 0.495

-6.200

-6.244

-3.602 0.712 1.535 1.836 1.695 0.678

-0.679

-1.951

-3.695 1.192 1.194

-0.134 1.201 1.194 0.603 0.508 1.126 1.2851 1.226 1.059 1.360!

1.0571 1.1841 1.273ý 1.074r 0.483 0.495 1.097 1.252 1.194 1.062 1.3671 1.062 1.194 1.252 1.097 0.495 2.645 2.653 2.652 2.647

-0.330

-0.490[

-0.508

-0.804 1.701

-2.097

-2.423 0.817 0.821

-0.463 1.292 1.291 0.085 0.430 0.439

-2.006 1.195 1.194 0.092 1.078 1.098

-1.849 0.483 0.495

-2.422 1.026 1.031

-0.514 1.266 1.292

-2.020 1.327 1.334

-0.517 1.079 1t081

-0.148 1.103 1.102 0.1109 1.066 1.075

-0.856 1.229 1.235

-0.453 1.167 1.166 0.103 1.322 1.334

-0.877 1.069 1.081

-1.082 1.022 1.031

-0.873 1.271 1.292

-1.594 U.8*U 0.822

-2.337 U.484 0.495

-2.342 1.273 1.291

-1.371 0.413 0.439

-5.858 D

MEASURED FDHN PREDICTED FDHN PERCENT DIFFERENCE Standard Deviation = 2.31 0.847 0.821 3.081 0.804 0.821

-2.094 A

B C

0 E

F G

H 0.396 1.132 1.113 1.094 1.357 1.023 1.183 1.004 1.327 1.055 1.083 1.110 0.393 0.386 1.102 1.080 1.062 1.334 1.012 1.186 1.012 1.334 1.062 1.080 1.102 0.386 2.695 2.695 3.037 3.051 1.739 1.038

-0.287

-0.761

-0.510

-0.669 0.315 0.717 1.866 0.558 1.209 1.295 1.397 1.094 1.191 0.896 1.175 1.068 1.356 1.236 1.173 0.541 0.532 1.166 1.235 1.367 1.076 1.186 0.908 1.186 1.076 1.367 1.235 1.166 0.532 4.851 3.696 4.834 2.165 1.626 0.422

-1.343

-0.894

-0.753

-0.805 0.049 0.566 1.767 0.403 1.138 1.129 1.082 1.351 1.003 1.174 1.006 1.327 1.060 1.077 1.103 0.388 0.386 1.102 1.080 1.062 1.334 1.012 1.186 1.012 1.334 1.062 1.080 1.102 0.386 4.353 3.258 4.556 1.911 1.259

-0.870

-1.003

-0.603

-0.555

-0.188

-0.278 0.109 0.648 K

L M

1.114 1.102 1.062 1.165 1.166

-0.060 1.104 1.102 0.136 0.491 0.495

-0.969

FIGURE 5.3 Power Distribution for Flux Map 2503 1

2 3

4 I

4-0.783 0.822

-4.780 4

I 1.218 1.279

-4.778 1.202 1.188 1.162 1.011 1.087

-7.002 0.462 0.497

-7.002 5

6 7

8 I

I 0.401 0.393 1.830 0.541 0.542

-0.203 0.385 0.393

-2.110 1.292 1.280 0.906 1.045 1.029 1.526 1.190 1.280

-7.001 0.765 0.822

-7.004 1.110 1.091 1.760 1.349 1.323 1.996 1.092 1.091 0.083 1.293 1.270 1.835 1.090 1.075 1.405 1.270 1.270

-0.008 1.177 1.173 0.333 1.111 1.091 1.879 1.334 1.323 0.847 1.080 1.091

-0.999 1.095 1.104

-0.842 9

10 11 12 0.824 0.493 0.822 0.497 0.182

-0.825 1.297 1.078 0.423 1.280 1.087 0.439 1.320

-0.810

-3.823 0.468 1.023 1.199r 1.200 1.085 1.395 1.086 1.199 1.234 1.066!

0.478 0.497 1.086 1.240 1.188 1.065 1.367 1.065 1.188 1.240 1.0861 0.497

-5.776

-5.820,

-3.283 1.052 1.8971 2.056j 1.972 0.926

-0.460j

.1.851

-3.824 1.190 1.188 0.202 1.272 1.279

-0.571 0.498 1.088 1.153 1.1891 1.0661 1.367J 1.0651 1.187 1.279 1.0741 0.490 0.497 1.086 1.240 1.1881 1.065 1.367 1.065

_ 1.188 1.240 1.0861 0.497 0.181 0.1931 -7.0011 0.084 0.056 0.000 0.000

-0.109 3.121

-1.105

-1.469 0.815 0.822

-0.876 0.409 0.439

-7.010 0.409 0.439

-6.827 0.416 0.439

-5.303 1.281 1.279 0.195 0.797 0.822

-3.064 0.482 0.497

-3.078 0.838 0.822 1.836 0.497 0.822 1~.10

.7

.0 1.049 1.087

-3.459 1.054 1.087

-3.064 1.108 1.104 0.335 1.190 1.188 0.194 1.029 1.029 0.029 1.323 1.323 0.030 0.396 0.393 0.585 1.071 1.075

-0.381 0.545 0.542 0.572 1.318 1.323

-0.408 0.389 0.393

-1.220 1.205 1.188 1.473 1.022 1.029

-0.641 1.024 1.029

-0.476 1.300 1.279 1.619 0.848 0.822 3.090 0.813 0.822

-1.107 13 D

MEASURED FDHN PREDICTED FDHN PERCENT DIFFERENCE Standard Deviation = 2.73 A B

C D

E F

G H

0.406 1,139 1.128 1.098 1.349 1.024 1.181 1.005 1.319 1.067 1.102 1.119 0.401 0.393 1.103 1.090 1.065 1.323 1.011 1.181 1.011 1.323 1.065 1.090 1.103 0.393 3.259 3.282 3.487 3.089 1.973 1.316 0.008

-0.633

-0.302 0.178 1.073 1.496 2.138 0.567 1.216 1.335 1.397 1.095 1.191 0.901 1.173 1.069 1.368 1.281 1.189 0.553 0.541 1.173 1.270 1.367 1.075 1.182 0.911 1.182 1.075 1.367 1.270 1.173 0.541 4.636 3.632 5.103 2.224 1.870 0.736

-1.076

-0.753

-0.558 0.044 0.866 1.390 2.050 0.409 1.138 1.143 1.087 1.345 1.008 1.174 1.008 1.319 1.073 1.100 1.118 0.398 0.393 1.103 1.090 1.065 1.323 1.011 1.181 1.011 1.323 1.065 1.090 1.103 0.393 4.073 3.155 4.826 2.047 1.671

-0.267

-0.559

-0.277

-0.295 0.770 0.945 1.405 1.197 J

K L

M 0.463 0.497

-6.821 1.124 1.104 1.830 1.173 1.173 0.034 1.105 1.104 0.109 1

1.259 1.280

-1.633

FIGURE 5.4 Power Distribution for Flux Map 2504 1

2 3

4 5

-+

I 0.471 0.500

-5.899 0.781 0.823

.5. 1 R6 0.413 0.442

-6.624 1.206 1.272

-. 1 96 1.042 1.082

-3.733 1.198 1.187 0.901 A

B C

D E

F G

H 1

K 0.489 0.500

-2.279 1.279 1.272 0.495 1.048 1.031 1.629 1.249 1.272

-1.816 0.807 0.824

-2.076 6

7 8

9 10 11 0.405 0.5441 08:71 0.398 0.54 0.398 1.809

-0.566

-2.814 1.122 1.166 1.098 0.821 0.496 1.102 1.172 1.102 0.824 4

0.500 1.824

-0.495

-0.399

-0.304

-0.940 0.424 0.442

-4.160 0.434 0.442

-1.809

-1.816 1.091 1.102

-1.043 0.801 0.824

-2.780 0.486 0.500

-2.779 0.467 0.500

-6.617 0.500 0.824

-661 1.2 1.018 1.193 1.199 1.0861 1.387 1.083 1.1911 1.226 1.055 0.479 1.0821 1.237 1.187 1.066 1.360 1.066 1.187 1.237 1.082o 0.500

-5.914

-3.597 0.994 1.820 1.934j 1.595 0.345

-0.873

-2.477

-4.159 1.178 1.187

-0.741 1.201 1.187 1.179 0.517 1.1181 1.27&t 1.ý227 1.5t1.349t 1.0571 1.179 1.2851 1.072k

.9 0.500 1.0821 1.2371

1. 18 1.66 1.3M0 1.066 1.187 1.2371 1.0821 0.50 3E 1 3.327 3.3224 3.319ý

-0.9294

-0.8454

-0.835

.0.6744 3.8721

-0.9524

-1.360 112

-044

-0.455 I

1.1doU 1.272

-1.761 1.101 1.102

-0.127 0.400 0.398 0.402 1.108 1.092 1.410 1.345 1.318 2.041 1.289 1.271 1.432 1.093 1.077 1.476 1.171 1.172

-0.128 0.550 0.547 0.402 1.325 1.318 0.546 0.393 0.398

-1.156 1.204 1.272 0.943 1.018 1.031

-1.280 12 13 1.285 1.272 0.975 0.409 1.134 1.127 1.100 1.346 1.030 1.186 1.003 1.305 1.061 1.098 1.114 0.404 0.397 1.101 1.091 1.066 1.318 1.015 1.186 1.015 1.318 1.066 1.091 1.101 0.397 2.969 2.988 3.254 3.180 2.101 1.507 0.000

-1.172

-0.994

-0.469 0.605 1.126 1.661 0.570 1.207 1.332 1.388 1.096 1.193 0.906 1.171 1.063 1.350 1.275 1.183 0.556 0.547 1.171 1.271 1.360 1.077 1.186 0.920 1.186 1.077 1.360 1.271 1.171 0.547 4.132 3.091 4.791 2.073 1.764 0.582

-1.533

-1.307

-1.309

-0.735 0.267 1.016 1.590 0.411 1.130 1.140 1.084 1.336 1.004 1.171 1.004 1.302 1.070 1.099 1.117 0.400 0.397 1.101 1.091 1.066 1.318 1.015 1.186 1.015 1.318 1.066 1.091 1.101 0.397 3.523 2.597 4.491 1.679 1.365

-1.123

-1.324

-1.113

-1.199 0.347 0.697 1.399 0.579 0.823

-0.947 0.810 0.823

-1.627 1.267 1.272

-0.448 1.182 1.187

-0.455 1.019 1.031

-1.203 1.302 1.318

-1.206 1.U5) 1.092

-0.659 1.064 1.077

-1.179 1.271

-0.669 1.303 1.318

-1.191 1.U((

1.092

-1.346 1.018 1.031

-1.290 l.Uold 1.082

-2.772 1.261 1.272

-0.849 U.14"1 0.442

-5.743 D

MEASURED FDHN PREDICTED FDHN PERCENT DIFFERENCE Standard Deviation = 2.36 0.846 0.823 2.769 1.U0b 1.082

-1.626 L

M 1

1 I

0.839' 0.824 1.821 1.0721 1.082

-0.933 Mud0 1.092 1.493 3

4 5

FIGURE 5.5 Power Distribution for Flux Map 2505 1

2 3

4 4

.4 I-

0.779 0.823

-5.394 0.463 0.500

-7.420 0.409 1.041 0.442 1.082 1.203 1.272

-5.393 1.204 1,187 1.398 1.064 1.082

-1.627 0.489 0.500

-2.220 5

6 7

8 9

10 11 0.406ý 0.5444

.36 0.398 0.54 0.398 1.935

-0.621

-3.015 1.I 9U.9

-0.282

-0.760 1.113 1.093 1.784

-3.808 1.009 1.031

-2.095 1.295 1.317

-1.701 1.249 1.272

-1.800 0.478 0.500

-4.380 0.U40 0.824 1.943 1.2B4 1.272 0.920 1.049 1.031 1.756 0.807 0.824

-2.040 1.1 23 1.102 1.933 1.113' 1.093 1.802 1.346 1.317 2.202 1.104 1.102 0.191 0.400 0.398 0.503 1.298 1.274 1.852 1.091 1.077 1.328 1.174 1.172 0.196 0.550 0.547 0.512 1.099 1.102

-0.318 1.325 1.317 0.615 1.087 1.102

-1.397 0.391 0.398

-1.884 0.822 0.824

-0.243 0.427 0.442

-3.529

-7.419 0.434 0.442

-1.787 1.286' 1.272 1.132 0.787 0.824

-4.384 1.074 1.082

-0.767 1.229 1.187 3.505 1.317 1.272 3.506 12 0.468 1.0124 1.192 1.200 1.087 1.3901 1.0861 1.200t 1.228t 1.044 0.482 0.500 1.082 1.237 1.187 1.066 1.361 1.066 1.187 1.237 1.082 0.500

-6.381

-6.433

-3.622 1.104 1.9791 2.116 1.876 1.095

-0.760

_3.521

-3.521 0.852 0.823 3.499 0.409 1.133 1.128 1.104 1.345 1.030 1.183 1.002 1.301 1.061 1.107 1.113 0.405 0.397 1.101 1.092 1.067 1.317 1.015 1.186 1.015 1.317 1.067 1.092 1.101 0.397 2.894 2.916 3.315 3.477 2.141 1.438

-0.236

-1.291

-1.215

-0.572 1.355 1.108 1.837 0.572 1.211 1.334 1.391 1.099 1.195 0.907 1.171 1.0641 1.349 1.277 1.183 0.556 0.547 1.172 1.273 1.361 1.077 1.186 0.920 1.186 1.077 1.361 1.273 1.172 0.547 4.644 3.294 4.800 2.168 1.996 0.767

-1.435

-1.239

-1.244

-0.860 0.346 0.964 1.700 0.414 1.132 1.141 1.085 1.338 1.002 1.170 1.004 1.3041 1.068 1.0961 1.111 0.398 0.397 1.101 1.092 1.067 1.317 1.015 1.186 1.015 1.3171 1.067 1.092 1.101 0.397 4.076 2.807 4.478 1.649 1.579

-1.320

-1.315

-1.123

-1.0251 0.094 0.339 0.872 0.176

-5394-539 1.38 1.56 2202

.328 0.61 0.823

-1.154 0.5151 1.1144 1.274 1.2231 1.056ý 1.346ý 1.054 1.7 127 100 0.492 0.500j 1.0821 1.237 1.1871 1.066 1.361 1.0661 1.187 1.237 1.082 0.500 3.0014 2.9941 2.999 2.9994

-0.910

-1.073

-1.098]

-1.398 3.234

-1.1551

-1.520 0.812 0.823

-1,348 1.262 1.272

-0.825 1.177 1.187

-0.826 1.014 1.031

-1.697 1.U9Z 1.093

-0.128 1.061 1.077

-1.476 1.274

-0.706 1.29H 1.317

-1.458 1.072 1.093

-1.940 1.017 1.031

-1.377 1.272

-2.940 1.19U 1.187 0.910 1.082

-4.390 1.25U 1.272

-0.983 0.418 0.442

-5.519 13 DMEASURED FDHN PREDICTED FDHN PERCENT DIFFERENCE Standard Deviation = 2.58 A B

C D

E F

G H

1 K

L M

I 1.172

-0.282 0.496 0.500

-0.760

FIGURE 5.6 Power Distribution for Flux Map 2506 1

2 3

4 5

6 7

8 9

10 11 12 13

-+

t 0.782 0.824

-5.039 0.416 0.443

-6.079 I

I 0.470 0.501

-6.074 1.044 1.079

-3.262 1.193 1.183 0.854 0.836 0.824 1.529 1.277 1.269 0.583 1.041 1.028 1.255 0.407 0.4 0.391 0.,401 0.ý55451 0.401 1.547

-0.490

-2.421 1.101 1.104

-0.308 1.072 1.079

-0.630 1.086 1.074 1.127 1.074

-0.978 1.285 1.293

-0.603 0.804 0.824

-2.355 J

1.121 1.104 1.531 1.113 1.097 1.404 1.334 1.311 1.708 0.402 0.401 0.399 1.310 1.293 1.276 0.553 0.551 0.399 1.113 1.097 1.413 1.318 1.311 0.526 0.397 0.401

-0.948 1.280 1.269 0.890 0.473 1.019 1.195 1.192k 1.083 1.382 1.082 1.189 1.22811.0590.483 0.500 1.079 1.233 1.183 1.066 1.361 1.066 1.183 1.233 1.079 0.500

-5.536

-5.569:

-3.114 0.778 1.576 1.550 1.510 0.524,

-0.446

-1.835

-3.477 1.204 1.268

-5.031 0.411 1.134 1.130 1.095 1.333 1.021 1.179 0.999 1.300 1.059 1.103 1.113 0.407 0.400 1.103 1.097 1.066 1.312 1.012 1.183 1.012 1.312 1.066 1.097 1.103 0.400 2.824 2.828 3.035 2.739 1.585 0.919

-0.363

-1.334

-0.899

-0.657 0.556 0.925 1.750 0.574 1.214 1.354 1.387 1.089 1.186 0.904 1.167 1.060 1.346 1.294 1.185 0.560 0.550 1.175 1.293 1.361 1.074 1.183 0.918 1.183 1.074 1.361 1.293 1.175 0.550 4.324 3.327 4.679 1.932 1.387 0.211

-1.525

-1.361

-1.350

-1.109 0.031 0.800 1.672 0.415 1.135 1.146 1.085 1.326 1.001 1.169 1.001 1.296 1.063 1.096 1.110 0.403 0.400 1.103 1.097 1.066 1.312 1.012 1.183 1.012 1.312 1.066 1.097 1.103 0.400 3.774 2.865 4.412 1.735 1.082

-1.087

-1.226

-1.087

-1.250

-0.319

-0.082 0.616 0.675 1.268

-1.285 0.519 1.118 1.278 1.226 1.058 1.352 1.059 1.176 1.261 1.062 0.491 0.500 1.079 1.233 1.183 1.066 1.361 1.066

_ 1.183 1.233 1.079 0.500 3.617 3.596 3.601 3.6011

-0.750

-0.691

-0.685.

-0.566 2.263

-1.548

-1.859 0.815 0.824

-0.996 1.268 1.268 0.008 0.436 0.443

-1.559 1.183 1.183 0.008 1.064 1.079

-1.381 0.490 0.501

-2.018 1.019 1.028

-0.875 1.249 1.269

-1.568 0.809 0.824

-1.833 1.300 1.311

-0.869 1.090 1.097

-0.638 1.103 1.104

-0.118 1.175 1.176

-0.119 1.311

-0.976 1.0M4 1.097

-1.167 1.094 1.104

-0.897 1.250 1.269

-1.489 1.054 1.079

-2.345 0.489 0.501

-2.338 1.019 1.028

-0.914 1.018 1.028

-1.177 1.182 1.183

-0.101 1.183 0.423 1.285 1.268 1.333 0.427 0.443

-3.480 0.419 0.443

-5.333 D

MEASURED FDHN PREDICTED FDHN PERCENT DIFFERENCE Standard Deviation = 2.20 0.847 0.824 2.829 0.824

-1.554 A

B C

D E

F G

H K

L M

1.170 1.176

-0.485 0.822 0.824

-0.231 0.497 0.501

-0.619 1

6.0 REACTOR STARTUP CALIBRATIONS 6.1 Rod Position Calibration The rod position indicators are calibrated each refueling in accordance with an approved surveillance procedure. The calibration includes the following:

a) The position signal output is checked at 20 and 200 steps for all rods.

b) The rod bottom lamps are checked to assure that they light at the proper rod height.

c) The control room rod position indicators are calibrated to read correctly at 20 and 200 steps.

d) The pulse-to-analog converter alignment is checked.

e) The rod bottom bypass bi-stable trip setpoint is checked.

The calibration was performed satisfactorily during the Cycle 25 startup; no problems or abnormalities were encountered and site procedure acceptance criteria were met. At full power, an adjustment was made to selected RPI channels to compensate for the temperature increase associated with power ascension. \\'DOB LAN'VOL I',GROUP'FUELS\\WP\\CYCLE24.DOC

6.2 Nuclear Instrumentation Calibration The nuclear instrumentation (NI) calibration was performed in accordance with the Kewaunee Reactor Test Program (4) during the Cycle 25 startup. A flux map was performed at approximately 70 percent power. The incore axial offset was determined from the data collected during the map.

The NI's were then calibrated with a conservative incore axial offset-to-excore axial offset ratio of 1.7. \\\\\\DO BLAN\\VOLI\\GROUP\\FU ELS\\WP',CYCLE24.DOC

7.0 REFERENCES

(1) "Reload Safety Evaluation for Kewaunee Cycle 25," November 2001.

(2) "Qualification of Reactor Physics Methods for Application to Kewaunee," October 1978 (submitted) and October 1979 (approved).

(3) "Reload Safety Evaluation Methods for Application to Kewaunee", WPSRSEM-NP-A, Revision 3, October 2000 (submitted) and September 2001 (approved).

(4) "Reactor Test Program, Kewaunee Nuclear Power Plant," (Revision 7, November 19, 2001).

(5) "Kewaunee Nuclear Power Plant Technical Specifications," Docket 50-305. \\\\\\DOBLAN\\VOLI\\GROUP\\FUELS\\WP\\CYCLE24.DOC