L-76-439, Letter Transmitting Supplemental Information Related to Previous Submission of 12/9/1976 Regarding ECCS Reevaluation

From kanterella
Jump to navigation Jump to search
Letter Transmitting Supplemental Information Related to Previous Submission of 12/9/1976 Regarding ECCS Reevaluation
ML18227C905
Person / Time
Site: Turkey Point  NextEra Energy icon.png
Issue date: 12/30/1976
From: Robert E. Uhrig
Florida Power & Light Co
To: Stello V
Office of Nuclear Reactor Regulation
References
L-76-439
Download: ML18227C905 (56)


Text

NRC FORM 195 U.S. NUCLEAR REGULATORY MtAISSION DOCKET NUMBER I2-7G I Y

~ 5 2 Fll E NUMBER NRC DISTRIBUTION FDR PART 50$ )OCKET MATERIAL TO: V. STELLO, JR. FROM: FLORDIA POWER& LIGHT CO ~

DATE OF DOCUMENT MIAMI, FLORDIA 12/30/76 R.E. UHRIG DATE RECEIVED

. 1/6/77 QLETTER QNOTORIZ ED PROP INPUT FORM NUMBER OF. COPIES RECEIVED l3ORIGINAL 6 UN C LASS I F I E D QCOPY DESCRIPTION ENCLOSURE LTR. RE. THEIR SUBMITTAL OF 12/9/76..TRANS THE SUPPLEMENTAL INFORMATION PERTAININB TO TEIE ECCS FOLLOWING...;.... REF~7ALUATION .......;

( 1 CARBON SIGNED CY'. RECEIVED)

( 15 PAGES)

PLANT NAI~: TURKEY PT /3 3 & 4 SAFETY FOR ACTION/INFORMATION SAB 1 ll ASSIGNED AD:

NC~iXE LEAR RAN ROJEO~MAHA E. PROJECT MANAGER'IC LIC ASST PARRISH ASST INTERNAL D ISTIC I BUTIOiV G FIL SYSTEMS SAFETY PLANT SYSTEMS SXTE SAFE NRC PDR HEINEMAN TEDESCO i ICE SCHROEDER OEL'D GOSSXCK 6 STAFF FrNGINEERING IPPOLITO E 0 MIPC MACARRY ERNST CASF. KNIGHT BALLARD HANAUER SXIWEIL OPERATING REACTORS SPANGLER HARLESS PAWLICK STELLO SITE TECH PROJECT MANAGEMENT REACTOR SAFF.'1 OPERATING TECH GAFQ fILL BOYD ROSS EISENHUT STEPP P, COLLINS NOVAK HULIfAN HOUSTON ROSZTOCZY AE.

PETERSON CHF.CK BUTLE SXTE ANALYSXS MELTZ VOLLIIER HELTF.I IES AT & I BUNCH SKOVHOI.T SALTZMAN J~ COLLINS RUTBFRG KREGER EXTERNAL DISTRIBUTION CONTROL NUMBER LPDR'XC:

NA~TLAB B OOQIMEHMAT~AIL REG V IE ULR KSON OR NSXC: LA PDR ASLB: CONSULTANT ACRS~>CYS He~r/

NI3C FORM 195 {2.76)

~

~<'> jl

'1t S 1 1 ( I fl (

Et q 1 tJ

egufato pg P. O. BOX 013100, MIAMI, FL 33101 CZ io'.) ~'tt T ID

)C FLORIOA POWER & LIGHT COMPANY

.N6 19V> December 30, 1976 h'lt'I Stttlon Dot)tt Get)

L-76-439 Office of Nuclear Reactor Regulation A-tn1 Victor Stello, Jr., Director Division of Operating Reactors U. S. Nuclear Regulatory Commission washington, D. C. 20555

Dear Mr. Stello:

Re: Turkey Point Units 3 and 4 Docket Nos. 50-250 and 50-251 Reevaluation 'CCS Su lemental Information The ECCS Reevaluation performed for Turkey Point Units 3 arid 4 was submitted by Florida Power & Light Company on D camber 9 I 1976 I (L 76 4 19)

Attached herewith is supplemental information related to the reevaluation which was requested by your staff..

Very truly yours, Rober/ E. Uhrig Vice President REJ/GDN/hlc Attachment cc. Norman C. Moseley, Region II Robert Lowenstein, Esq.

Q5 i I PEOPLE ~ .. SERVING PEOPLE

I r '

C v C

i Nll ",.3",9~%

I' 1

I

QUESTION Justify the statement, made in the L-76-419 letter of December 9, 1976, that Cycle 3 is more limiting than Cycle 4 in terms of the parameters used in determining the ECCS performance.

ANS VER The'ollowing response addresses Turkey Point Unit 3. The Unit 4 response will be included in the Unit 4 Cycle 4 RSE which will be submitted at a future date.

The ECCS analysis was performed for Cycle 3, Region 3.

Region 3 fuel, which has the lowest theoretical density (92.0%)

has the largest stored energy of any fuel region in the core, and therefore results in the highest calculated peak clad temperature for the ECCS analysis. Unit 3, Cycle 4 will not contain any Region 3 fuel, and the new fuel added (Region 6) has a higher theoretical density (94.5%) and lower stored energy than Region 3 fuel. Therefore Cycle 3. is more limiting than Cycle 4 with respect to ZCCS performance.

~ ~ ~

QUESTION Show which of the curves in Figuresla through Sd correspond to hot spot location and which to clad burst location (most of the curves are unlabeled).

Figures la through 4d and 7a through Sd have been labeled'so that comparison with Table 2 will show which curves correspond to hot spot location and which to clad burst location. The labeled curves are attached;

7 A ~ ~ ~

I

l.o l',o

~ 8 2,5' LU A

o7 C) 0-

.6 lO-' lO' lO' l02 2 TlME (SECONDS)

Figure 1a. Fluid Quality DECLG (CD = 1.0)

~

~

II a

v'

.95 Pu .90 d,o 70 IO'o' 5 Io'IME (SECONDS)

Io 2 Figure 1b. Fluid Quality DECLG (Cg = 0,6)

0

~

g h

l.2

~ 7 6 lpga. 2

~ 6* lPl 2 -, 6 I02 2 TlME (SECONDS)

Figure 1c. Fluid Quality DECLG (CD 0,4)

~

~

II

I.O

.8 IO, 2 5 IO 2 TIME (SECONDS)

Figure Id, FIuid Quaiity - DECLG (Cp ~ OAL

~

~

0

-50 C.e I

. - IOO E

C)

UJ 0

g -I50

~ <<200

-2r50 lo-' IQ~ 2 5 5 IQ' lo'lhfE (SECONDS)

Figure 2a, Mass Velocity DECLG (CD = 1,0)

I I~

V

IOO 50 LYJ O

I

-50 CD IJJ

~ -l00 4,0 /4'.5 lr>P

-200 lo-'o' lo'lME (SECONDS) 5 tO 2 Figure 2b, Mass Velocity - DECLG (CD 0.6)

I Ih Ih n

4.o

-10.

-20 0-S 2 10' 10' 10~ 2 103 TIME (SECONDS)

Figure 2c. Mass Velocity DECLG (CD = 0.4)

I ~ ~

30 20 I

"U IO LJI 4,o'f0

<<20

~ ~

io-' ro' io 2 5 io 2 TIME (SECONDS)

Vetocity - DECLG .(Cg

~

~

Figvre 2d. Mass ~

0,4)

4 l

l0~

0 1

2 l

i02 r~

UJ 4,.o CD U

2 4.85"

~ ~

i0 0 i00 200 300 '%00 500 T1ME (SECONDS)

I Figure 3a, Heat Transfer Coefficient . DECLG (CD = 1.0)

lt It I

I03 O

l I

2 lp~

r>

ill CD U 4.o'Pl 2

<<C fl.

r 6.s'O' sl s Sd

'00 300 TIME {SEOONOS) a Figure 3b, Heat Transfer Coefficient - DECI.G (CD = 0.6j

r 0

~ ~

0 V

t

IO~

O 2

I 0~

l w

C7 O ~

~

~ lO' I

lO' lOO 200 300 QOO 500 TlME (SECONOS)

Figure 3c, Heat Transfer Coefftclent DECLG (CD ~ OA)

IO~

U 0

l I

C4 k-U k

IXI h

io',o',

UJ U

U Ul C) h LtJ la V)

Cl+

to' IOO 200 TIVE (SECONOSj

'00 300 500 Figure 3d. Heat Transfer Coefficient ~ pECLG (Cp ~

0.4)

I

0 t

2000 I500 l000

<<P 4 BoT7on r00 0

IO I5 20.

TIME (SECONOS)

Figure 4a, Core Pressure - DECLG {CD = 1,0)

~ ~

h

2000 l750 I500 I 250:.

l000 4o'50 500 250 0 f00 200 !I00 500 TIME (SECOl<OS)

I i(it!r<! Oil, I ll!I(I Ti!!>>lwtnitt!II! Df.(ll.(i (CiU ~ O,n)

\

0 I I 'I

-20GO l750 l 500 I

I250 l000 '.

I I

I 4.o'50 500 250 0

l00 200 " 300

. Tlute (SCCONnS)

J Figure Sc, Fluid Temperature - DECLG (CD = 0,4)

P

'0 ~ ~ ~ ~ ~ ~

2000 C

l750 l500 I250

.,gd.s I000 2) 750 l

I 5pp 250 0 loo 200 300 900 500 TIME (SECONOS)

C)

Figure Sb. Fluid Temperature DECLQ (CD 0.6) CD 1

O

~ 4 ~

~

e

'I tl I

g II

1 2000 i750 i 500 i250 i000 4.0 g4g) g,gg 750 500 250 0

200 300 900 .500 TIME (SECOSOS)

Figure Sa. Fluid Temperature . DECLG (CD . 1,0)

I

~ ~ ~

2500 u 2000 0

CS I 500 IM Cl LaJ looo LaJ C5 500 0 I00 200 Q)0 500 TIME (SECONDS)

Fly~ra 7d, Penk Clncl Tompnrnttire Dl=.CI 6 (Cp OA)

d'I P

n ~

/

II F

I I~

2500 2000 CS ID C) d.o' 5 l500 wl000 POO l00 300 QOO 500 TlME (SECONOS)

Cl V

Ffgure 7c. Peak Clad Temperature - DECLG (CD 0,4)

EO M

I

'4

I

~

P h

H ~ bl

'P N

t

2500 o 2000 1-l500 A-d.o' I I IOOO o 500 0 I00 200 %00 500 TlME (SECONDS}

O Flguro 7b. Pool( Clod Tomporvturo - DECLG (Cp < O.GI I

'V 1

IV 0>

K ~

p) ~ ~

2500 o 2000 Ch C) g l500 4.Zg l I l000 8.o' UJ 500 l00 200 300 500 TIME (SECONDS}

,Figure 7a. Peak Clad Temperature DECI.G (CD = 1,0j

\ ~l ~

O.

P 1

I f

4 P

~ e I

~ =

A

2500 2000 l500 l000 TOP/ Dory oM 5pp 0 l0 20 ., =

30 TlME (SECONDS)

Figure 4d, Core Pressure DECLG ICg = 0,4)

4 r

1 N I)

~:

i V f I II I'~

~ (

l

2500 2000 l500 CC CA CA Ul r 7"aP4 ao77-o< .

500 0

f0 30 TIME (SECONOS)

Figure 4c, Core Pressure - DECLG (CD ~ 0,4)

4I, ~ ~

0

2500 2000 1500 CO M

<Y V7 C/0 l000 701 g 80770M 500

.l0 - l5 20 25 TIME (SECONOS) t ~

It Figure 4b, Core Pressure - DECLG (CD = 0.6)

~ ~

s v

-<o