L-76-439, Letter Transmitting Supplemental Information Related to Previous Submission of 12/9/1976 Regarding ECCS Reevaluation

From kanterella
(Redirected from L-76-439)
Jump to navigation Jump to search
Letter Transmitting Supplemental Information Related to Previous Submission of 12/9/1976 Regarding ECCS Reevaluation
ML18227C905
Person / Time
Site: Turkey Point  NextEra Energy icon.png
Issue date: 12/30/1976
From: Robert E. Uhrig
Florida Power & Light Co
To: Stello V
Office of Nuclear Reactor Regulation
References
L-76-439
Download: ML18227C905 (56)


Text

U.S. NUCLEAR REGULATORY MtAISSION Y

FROM:

FLORDIA POWER& LIGHT CO ~

MIAMI, FLORDIA R.E.

UHRIG TO: V. STELLO, JR.

NRC FORM 195 I2-7G I NRC DISTRIBUTION FDR PART 50$)OCKET MATERIAL DOCKET NUMBER

~

5 2

Fll E NUMBER DATE OF DOCUMENT 12/30/76 DATE RECEIVED 1/6/77 QLETTER l3ORIGINAL QCOPY QNOTORIZ ED 6 UN C LASS I F I E D PROP INPUT FORM NUMBER OF. COPIES RECEIVED DESCRIPTION LTR. RE.

THEIR SUBMITTAL OF 12/9/76..TRANS THE FOLLOWING...;....

ENCLOSURE SUPPLEMENTAL INFORMATION PERTAININB TO TEIE ECCS REF~7ALUATION.......;

(

1 CARBON SIGNED CY'. RECEIVED)

( 15 PAGES)

PLANT NAI~:

TURKEY PT

/3 3

& 4 SAFETY ASSIGNED AD:

NC~iXE ROJEO~MAHA E.

LIC ASST LEAR PARRISH FOR ACTION/INFORMATION RAN PROJECT MANAGER'IC ASST SAB 1 ll G FIL NRC PDR ICE OEL'D GOSSXCK 6 STAFF MIPC CASF.

HANAUER HARLESS PROJECT MANAGEMENT BOYD P,

COLLINS HOUSTON PETERSON MELTZ HELTF.IIES SKOVHOI.T LPDR'XC:

NSXC:

ASLB:

ACRS~>CYS He~r/

NI3C FORM 195 {2.76)

INTERNALD SYSTEMS SAFETY HEINEMAN SCHROEDER FrNGINEERING MACARRY KNIGHT SXIWEIL PAWLICK REACTOR SAFF.'1 ROSS NOVAK ROSZTOCZY CHF.CK AT & I SALTZMAN RUTBFRG EXTERNAL DISTRIBUTION NA~TLAB REG V IE LA PDR CONSULTANT ISTIC I BUTIOiV PLANT SYSTEMS TEDESCO IPPOLITO OPERATING REACTORS STELLO OPERATING TECH EISENHUT AE.

BUTLE B OOQIMEHMAT~AIL ULR KSON OR SXTE SAFE i

E 0

ERNST BALLARD SPANGLER SITE TECH GAFQfILL STEPP HULIfAN SXTE ANALYSXS VOLLIIER BUNCH J ~ COLLINS KREGER CONTROL NUMBER

~

'. ~<'> jl

'1t S

1 1

(

I fl (

Et q

1 tJ

egufato pg io'.)~'tt T ID

)C

.N6 19V>

h'lt'I Stttlon Dot)tt Get)

P. O. BOX 013100, MIAMI, FL 33101 CZ FLORIOA POWER & LIGHT COMPANY December 30, 1976 L-76-439 Office of Nuclear Reactor Regulation A-tn1 Victor Stello, Jr., Director Division of Operating Reactors U. S.

Nuclear Regulatory Commission washington, D. C.

20555

Dear Mr. Stello:

Re:

Turkey Point Units 3 and 4

Docket Nos.

50-250 and 50-251

'CCS Reevaluation Su lemental Information The ECCS Reevaluation performed for Turkey Point Units 3

arid 4 was submitted by Florida Power

& Light Company on D camber 9 I 1976 I (L 76 4 19)

Attached herewith is supplemental information related to the reevaluation which was requested by your staff..

Very truly yours, Rober/ E. Uhrig Vice President REJ/GDN/hlc Attachment cc.

Norman C. Moseley, Region II Robert Lowenstein, Esq.

Q5 i

I PEOPLE

~.. SERVING PEOPLE

i Nll I

C

",.3",9~%

C v

r '

I' 1

I

QUESTION Justify the statement, made in the L-76-419 letter of December 9, 1976, that Cycle 3 is more limiting than Cycle 4 in terms of the parameters used in determining the ECCS performance.

ANSVER The'ollowing response addresses Turkey Point Unit 3.

The Unit 4 response will be included in the Unit 4 Cycle 4 RSE which will be submitted at a future date.

The ECCS analysis was performed for Cycle 3, Region 3.

Region 3 fuel, which has the lowest theoretical density (92.0%)

has the largest stored energy of any fuel region in the core, and therefore results in the highest calculated peak clad temperature for the ECCS analysis.

Unit 3, Cycle 4 will not contain any Region 3 fuel, and the new fuel added (Region 6) has a higher theoretical density (94.5%)

and lower stored energy than Region 3 fuel.

Therefore Cycle 3. is more limiting than Cycle 4 with respect to ZCCS performance.

~

~

~

QUESTION Show which of the curves in Figuresla through Sd correspond to hot spot location and which to clad burst location (most of the curves are unlabeled).

Figures la through 4d and 7a through Sd have been labeled'so that comparison with Table 2 will show which curves correspond to hot spot location and which to clad burst location.

The labeled curves are attached;

A

~ ~ ~

7 I

l.o

~ 8 LU A

l',o 2,5' C) o7 0-

.6 lO-'

lO' lO' TlME (SECONDS) l02 2

Figure 1a.

Fluid Quality DECLG (CD = 1.0)

~

~

II a

v'

.95 Pu

.90 d,o 70IO'o' 5

Io'IME (SECONDS)

Io 2

Figure 1b.

Fluid Quality DECLG (Cg = 0,6)

0

~

g h

l.2

~7 6

lpga.

2

~

6*

lPl 2 -,

6 I02 2

TlME (SECONDS)

Figure 1c.

Fluid Quality DECLG (CD 0,4)

~ ~

II

I.O

.8 IO, 2 5

IO 2

TIME (SECONDS)

Figure Id, FIuid Quaiity - DECLG (Cp ~ OAL

~

~

0

-50 I

. - IOO E

C)

UJ0 g -I50 C.e

~

<<200

-2r50 lo-'

IQ~

2 5

lo'lhfE (SECONDS) 5 IQ' Figure 2a, Mass Velocity DECLG (CD = 1,0)

I I ~

V

IOO 50 LYJ O

I

-50 CD IJJ

~ -l00 4,0 /4'.5 lr>P

-200lo-'o' lo'lME (SECONDS) 5 tO 2

Figure 2b, Mass Velocity - DECLG (CD 0.6)

I Ih Ih n

4.o

-10.

-20 0-S 2

10' 10' TIME (SECONDS) 10~

2 103 Figure 2c.

Mass Velocity DECLG (CD = 0.4)

I

~

~

30 20 I

"U IO LJI 4,o'f0

~

~

<<20 io-'

ro' io 2 '.

TIME (SECONDS) 5 io 2

~

~

Figvre 2d.

Mass Vetocity -

DECLG.(Cg

~ 0,4)

4 l

l0~

0 1

2 l

i02 r~

UJ CD U

2 4,.o 4.85" i0 0

i00 200

~ ~

T1ME (SECONDS)

I 300

'%00 500 Figure 3a, Heat Transfer Coefficient DECLG (CD = 1.0)

lt It I

I03 Ol 2

I lp~

r>

ill CD U

2 4.o'Pl

<<Cfl.

r sl s

Sd 6.s'O'

'00 300 TIME {SEOONOS) a Figure 3b, Heat Transfer Coefficient - DECI.G (CD = 0.6j

0 0

r

~

~

V t

IO~

O 2

I 0~

l w

C7O

~ lO' I

~

~

lO' lOO 200 300 TlME (SECONOS)

QOO 500 Figure 3c, Heat Transfer Coefftclent DECLG (CD ~ OA)

IO~

U0 l I

C4k-U k

IXI h

UJ UUUl C) h LtJ laV)

Cl+io',o',

to' IOO 200 300 TIVE (SECONOSj '00 500 Figure 3d.

Heat Transfer Coefficient

~

pECLG (Cp

~

0.4)

I

0 t

2000 I500 l000

<<P 4 BoT7on r00 0

IO I5 TIME (SECONOS) 20.

Figure 4a, Core Pressure - DECLG {CD = 1,0)

~

~

h

2000 l750 I500 I 250:.

l000 4o'50 500 250 0

f00 200 TIME (SECOl<OS)

!I00 500 I i(it!r<! Oil, I ll!I(I Ti!!>>lwtnitt!II! Df.(ll.(i (CiU ~ O,n)

\\

0 I

I

'I

-20GO l750 l 500 I

I250 I

I l000 '.

I 4.o'50 500 250 0

l00 200 300

. Tlute (SCCONnS)

J Figure Sc, Fluid Temperature - DECLG (CD = 0,4)

P

'0

~

~

~

~

~

~

2000 l750 C

l500 I250 I000 2) 750 lI 5pp

.,gd.s 250 0

loo 200 TIME (SECONOS) 300 900 500 Figure Sb.

Fluid Temperature DECLQ (CD 0.6)

C)

CD 1

O

~

~ 4

~

e

'I tl I

g II

2000 1

i750 i500 i250 i000 750 4.0 g4g) g,gg 500 250 0

200 TIME (SECOSOS) 300 900

.500 Figure Sa.

Fluid Temperature

. DECLG (CD 1,0)

I

~ ~

~

2500 u

2000 0

CS I 500 IM Cl LaJ looo LaJ C5 500 0

I00 200 TIME (SECONDS)

Q)0 500 Fly~ra 7d, Penk Clncl Tompnrnttire Dl=.CI 6 (Cp OA)

d'I P

n

~

/

II F

I I ~

2500 2000 CS ID C) 5 l500 d.o' wl000 POO l00 TlME (SECONOS) 300 QOO 500 Ffgure 7c.

Peak Clad Temperature - DECLG (CD 0,4)

Cl V

EO IM'4

I

~

H

~

bl P

h

'P t

N

2500 o

2000 1-l500 A-I I

IOOO o

500 d.o' 0

I00 200 TlME (SECONDS}

%00 500 Flguro 7b.

Pool( Clod Tomporvturo - DECLG (Cp < O.GI I

O

'V 1

IV 0>

p)

K

~

~

~

2500 o

2000 Ch C) g l500 4.Zg l

I l000 UJ 500 8.o' l00 200 300 TIME (SECONDS}

500

,Figure 7a.

Peak Clad Temperature DECI.G (CD = 1,0j

\\

~l ~

O.

P 1

I f

4 P

~

e I

~

=

A

2500 2000 l500 l000 TOP/ Dory oM 5pp 0

l0 20

=

30 TlME (SECONDS)

Figure 4d, Core Pressure DECLG ICg = 0,4)

4 1

N

~:

r I) i V

f I II I'~

~

(

l

2500 2000 l500 CC CA CA Ul r

7"aP4 ao77-o<

500 0

f0 30 TIME (SECONOS)

Figure 4c, Core Pressure - DECLG (CD ~ 0,4)

4I,

~

~

0

2500 2000 1500 CO M

<Y V7 C/0 l000 701 g 80770M 500

.l0 l5 TIME (SECONOS) 20 25 t

~

It Figure 4b, Core Pressure - DECLG (CD = 0.6)

~

~

v s -<o