ML20098F341

From kanterella
Jump to navigation Jump to search

Exigent License Amendment Request 272, One-Time Extension of TS 6.8.4 Steam Generator Inspection Program - Response to Request for Additional Information
ML20098F341
Person / Time
Site: Turkey Point NextEra Energy icon.png
Issue date: 04/07/2020
From: Stamp B
Florida Power & Light Co
To:
Document Control Desk, Office of Nuclear Reactor Regulation
Shared Package
ML20098F340 List:
References
L-2020-064 AIIM-200310774-2Q-1(NP), Rev 1
Download: ML20098F341 (75)


Text

April 7, 2020 L-2020-064 10 CFR 50.90 10 CFR 50.91 10 CFR 2.390 Florida Power & Light Company 700 Universe Boulevard, Juno Beach, FL 33408 U. S. Nuclear Regulatory Commission Attn: Document Control Desk Washington D C 20555-0001 RE:

Turkey Point Nuclear Plant, Unit 3 Docket No. 50-250 Renewed Facility Operating License DPR-31 Exigent License Amendment Request 272, One-Time Extension of TS 6.8.4 Steam Generator Inspection Program - Response to Request for Additional Information

References:

1.

Florida Power & Light Company Letter L-2020-053, Exigent License Amendment Request 272, One-Time Extension of TS 6.8.4 Steam Generator Inspection Program, dated April 4, 2020

[ML20095J926].

2.

Florida Power & Light Company Letter L-2020-063, License Amendment Request 272, One-Time Extension of TS 6.8.4 Steam Generator Inspection Program - Response to Request for Additional Information dated April 6, 2020 [ML20097D658].

Per Reference 1, Florida Power & Light Company (FPL) requested an exigent amendment to Renewed Facility Operating License DPR-31 for Turkey Point Nuclear Plant Unit 3 pursuant to 10 CFR Part 50.90 and 10 CFR Part 50.91(a)(6).

On April 4, 2020, the NRC Staff requested supplemental information to facilitate review of the requested amendment. Per Reference 2, FPL provided the response to the request for additional information. to this letter provides Revision 1 of the proprietary Intertek Report AIM-200310774-2Q-1 submitted by Reference 2. The proprietary report was revised to identify the proprietary information in the report. In addition, as a result of additional reviews, a clarification was made to a statement in Section 6.2 (page 51) of the Intertek Report. The original statement, revised by Revision 1 of the Intertek proprietary report, is also reflected in Section 3.4.3 of the License Amendment Request submitted per Reference 1.

The attachment to this letter provides the affected License Amendment Request Section 3.4.3 statement and the updated wording reflecting the clarification. The clarification does not affect the analysis or its conclusions. The information provided in Enclosure 1 to this letter contains information proprietary to Intertek; therefore, it is requested to be withheld from public disclosure in accordance with 10 CFR 2.390. to this letter provides the non-proprietary version of Revision 1 of the Intertek Report AIM-200310774-2Q-1. The supporting affidavit and application for withholding information contained in Intertek Report AIM-200310774-2Q-1 from public disclosure is provided in Enclosure 3 to this letter.

The information provided by this letter supersedes the information provided by FPL letter L-2020-063, Reference 2 in its entirety.

The information provided in this letter does not alter the no significant hazards determination previously provided by the original application per FPL letter L-2020-053.

Turkey Point Nuclear Plant Docket No. 50-250 L-2020-064 Page 2 of 2 Should you have any questions regarding this submittal, please contact Mr. Robert Hess, Turkey Point Licensing Manager, at (305) 246-4112.

I declare under penalty of perjury that the foregoing is true and correct.

Executed on April 7, 2020.

Sincerely, Brian Stamp Site Director Turkey Point Nuclear Plant Florida Power & Light Company Attachment

Enclosures:

1.

lntertek Report (proprietary) AIM-200310774-20-1 (P), Revision 1, Operational Assessment for Deferring the TP3-31 Steam Generator Tube Examinations for Turkey Point Unit 3 to the TP3-32 Outage in October 2021, April 2020.

2.

lntertek Report (non-proprietary) AIM-200310774-2Q-1 (NP), Revision 1, Operational Assessment for Deferring the TP3-31 Steam Generator Tube Examinations for Turkey Point Unit 3 to the TP3-32 Outage in October 2021, April 2020.

3.

lntertek Affidavit for Enclosure to FPL letter L-2020-063 dated April 6, 2020.

cc: USNRC Regional Administrator, Region II USNRC Project Manager, Turkey Point Nuclear Plant USNRC Senior Resident Inspector, Turkey Point Nuclear Plant Ms. Cindy Becker, Florida Department of Health (without Enclosure 1)

Turkey Point Nuclear Plant L-2020-064 Docket No. 50-250 Attachment Attachment to L-2020-064 CLARIFICATION ORIGINAL L-2020-053 Enclosure Page 13 of 19 Section 3.4.3 POTENTIAL DEGRADATION MECHANISMS:

(affected paragraph only):

The more limiting mechanisms are the first five in the above list. These mechanisms are existing in other A600TT plants. The last two in the list, axial ODSCC in freespans and PWSCC in small radius U-bends, have not occurred in operating plants. These mechanisms are not formally evaluated but considered to be bounded by axial ODSCC at TSPs.

CLARIFIED The clarification is noted in bold:

The more limiting mechanisms are the first five in the above list. These mechanisms are existing in other A600TT plants. The last two in the list are not considered controlling mechanisms. Axial ODSCC in freespans (without the presence of a ding) has not been observed. These mechanisms are not formally evaluated but considered to be bounded by axial ODSCC at TSPs.

Turkey Point Nuclear Plant L-2020-064 Enclosure 2 Docket No. 50-250 Intertek Report (Non-Proprietary) AIM-200310774-2Q-1, (NP) Revision 1 Operational Assessment for Deferring the TP3-31 Steam Generator Tube Examinations for Turkey Point Unit 3 to the TP3-32 Outage in October 2021

OperationalAssessment forDeferringtheTP331Steam GeneratorTubeExaminationsfor TurkeyPointUnit3totheTP332 OutageinOctober2021 FLORIDAPOWER&LIGHTCOMPANY Attn:Mr.KesterThompson FloridaPower&LightCompany 15430EndeavorDrive Jupiter,FL33478 kester.thompson@fpl.com REPORTNO AIM2003107742Q1(NP)

ControlledDocumentI2 Revision1 NONPROPRIETARY PREPAREDBY WilliamK.Cullen RussellC.Cipolla BrianW.Woodman DATE 05April2020

AIM2003107742Q1(NP),Rev.1 NON-PROPRIETARY Page2 ListofRevisions Rev.

Date RevisionDetails Author 0

03April2020 InitialIssue W.K.Cullen R.C.Cipolla B.W.Woodman 1

05April2020 Minoreditorialchangeswithbracketsaddedfor referencetononproprietaryversion.

W.K.Cullen R.C.Cipolla B.W.Woodman

IssuingOffice IntertekAIM 3510BassettStreet SantaClara,CA95054 4087457000

W.K.Cullen 4129515001 william.k.cullen@intertek.com R.C.Cipolla 4086365322 russell.cipolla@intertek.com

Disclaimer Thisreporthasbeenpreparedforthetitledprojectornamedpartthereofandshouldnotberelied uponorusedforanyotherprojectwithoutanindependentcheckbeingcarriedoutastoitssuitability andpriorwrittenauthorityofIntertekbeingobtained.Intertekacceptsnoresponsibilityorliabilityfor theconsequencesofthisdocumentbeingusedforapurposeotherthanthepurposesforwhichitwas commissioned.Anypersonusingorrelyingonthedocumentforsuchotherpurposesagreesandwillby suchuseorreliancebetakentoconfirmhisagreementtoindemnifyIntertekforalllossordamage resultingtherefrom.Intertekacceptsnoresponsibilityorliabilityforthisdocumenttoanypartyother thanthepersonbywhomitwascommissioned.

AIM2003107742Q1(NP),Rev.1 NON-PROPRIETARY Page3 CERTIFICATEOFCOMPLIANCE

We,theundersigned,certifythattheIntertekAIMReportAIM2003107742Q1(NP),Revision1,titled OperationalAssessmentforDeferringtheTP331SteamGeneratorTubeExaminationsforTurkeyPoint Unit 3 to the TP332 Outage in October 2021, which was procured under Florida Power & Light CompanyPurchaseOrderNo.02410017,meetsthetechnicalrequirementsofFPL'sSteamGenerator Integrity Management Program per the Industry Guidelines, and the quality requirements of the Intertek AIM Quality Assurance Manual, Revision7.7. This report documents the results of both Phases1and2oftheFloridaPower&LightPurchaseOrderlistedabove.ThefindingsofthePhaseI preliminarystudywereprovidedverballyduringtheproject.

4/5/2020 RussellC.Cipolla ProjectManager

Date

4/5/2020 EvelynRyan QualityAssuranceManager

Date

AIM2003107742Q1(NP),Rev.1 NON-PROPRIETARY Page4 VERIFICATIONRECORDSHEET

ReportNo.:AIM2003107742Q1(NP)

Rev.:1 Date:05April2020 ReportTitle:OperationalAssessmentforDeferringtheTP331SteamGeneratorTubeExaminationsfor TurkeyPointUnit3toTP332OutageinOctober2021 OriginatedBy:

4/5/2020

ProjectEngineer

Date

VerifiedBy:

4/5/2020

Verifier

Date

ApprovedBy:

4/5/2020

ProjectManager

Date

QAApprovedBy:

4/5/2020

QualityAssuranceManager

Date

AIM2003107742Q1(NP),Rev.1 NON-PROPRIETARY Page5 ExecutiveSummary FloridaPowerandLightisplanningtorequestaonecycleextensiontothecurrentinspectioninterval fortheTurkeyPointUnit3(PTN3)steamgenerators(SGs).ThisrequestwilldefertheTP331SGtube examinationsatendofcycle(EOC)30toEOC31inOctober2021.Theobjectiveofthisevaluationisto providethetechnicaljustificationfordeferringtheTP331SGtubeexaminationbyoneoperatingcycle.

TheevaluationisbasedonarevisedOperationalAssessment(OA)performedinaccordancewithEPRI SteamGeneratorIntegrityAssessmentGuidelines(IAGL).TherevisedOAsupplementsthecurrentEOC 28CMandOAfortheMarch2017outageandevaluatesthepredictedconditionoftheSGsafterthree cyclesofoperation(Cycles29,30,and31).

PriorexaminationatEOC28(March2017)identifiedwearatantivibrationbarlocations,wearattube supportplatetubeintersections,andwearatflowdistributionbaffleplatesastheonlyexisting degradationmodes.TherewasnocorrosiondegradationobservedatEOC28orinanyprior examinations.TheOAevaluationforPTN3wasreevaluatedfortheexistingmechanismsincluding foreignobjectsknownorpostulatedtoberemainingintheSGsecondarysideusingthesamebounding deterministicEPRIIAGLmethods.Also,potentialmechanismswereevaluatedassumingsomecould becomeactiveintheoperatingperiodpriortoCycle28.

Theresultsoftheseanalysesdemonstratedthatextendingtheinspectionintervalbyonecycleisfully supportedbytheindustryperformancestandardsfortubeintegrity.Thestructuralintegrity performancecriterionmarginrequirementofthreetimesnormaloperatingpressure(3xNOPD)ontube burstwillbesatisfiedatEOC31fortheexistingandpotentialdegradation.Also,theaccidentinduced leakageperformancecriteriaforthelimitingaccidentconditionwillbesatisfiedforthecumulative leakagerequirementforanyoneSGandforallthreeSGsforoperatingperiodtoEOC31.

IthasbeenconcludedthatgiventheexaminationscopeimplementedatEOC28,allstructuraland accidentleakageperformancecriteriainNEI9706arepredictedtobemetthroughtheendofCycle31 fortheexistingandpotentialdegradationmechanisms.

AIM2003107742Q1(NP),Rev.1 NON-PROPRIETARY Page6 Contents Section

Page ExecutiveSummary......................................................................................5 ListofTablesandFigures..............................................................................8 1lIntroduction...............................................................................................9 2lExaminationScopeandResults.....................................................................................10 2.1 Background.............................10 2.2 ExaminationScopeatLastInspection......................................................................10 2.3 SummaryofInspectionResults...............................................................................10 2.4 TubePlugging..........................................................................................................11 3lOperationalAssessmentMethodology.................................................................... 21 3.1 TubeIntegrityRequirements...................................................................................21 3.2 PerformanceAcceptanceStandards........................................................................21 3.3 StructuralModels....................................................................................................22 3.3.1BurstPressureRelationshipsforWearDegradation............................................22 3.3.2BurstPressureRelationshipsforAxialCorrosionDegradation............................23 3.3.3BurstPressureRelationshipsforCircumferentialCorrosionDegradation...........23 3.4LeakageModels....................................................................................23 3.5InspectionIntervalAnalysis..................................................................24 3.5.1DeterministicAnalysis...........................................................................................24 3.5.2ProbabilisticMultiCycleAnalysis.........................................................................24 3.6MeasurementUncertainties.................................................................26 4lInputVariablesandDistributions................................................................32 4.1 TubingProperties....................................................................................................32 4.2 OperatingConditions..............................................................................................32 4.3 ProbabilityofDetection..........................................................................................33

AIM2003107742Q1(NP),Rev.1 NON-PROPRIETARY Page7 Section(Contd)

Page 4.4 DegradationGrowthRates.....................................................................................34 4.4.1WearDegradation.................................................................................................34 4.4.2CorrosionDegradation..........................................................................................35 4.5 InitiationFunction...................................................................................................36 5lOperationalAssessmentforExistingMechanisms.......................................40 5.1 AssessmentMethod................................................................................................40 5.2 AntiVibrationBarWear..........................................................................................41 5.3 WearatTubeSupportPlates...................................................................................41 5.4 WearatFlowDistributionBafflePlates...................................................................42 5.5 ForeignObjectEvaluation.......................................................................................42 5.6 SummaryofOperationalAssessmentResultsforExistingMechanism....................43 6lOperationalAssessmentforPotentialMechanism......................................50 6.1 AssessmentOverview.............................................................................................50 6.2 PotentialDegradationMechanisms.........................................................................50 6.3 CircumferentialODSCCatTTSExpansionExpansions..............................................51 6.4 AxialODSCCatTTSExpansionTransitions...............................................................53 6.5 PWSCCatTTSExpansionsTransitions......................................................................54 6.5.1WearDegradation.................................................................................................54 6.5.2CorrosionDegradation..........................................................................................54 6.6 AxialODSCCatTSPIntersections.............................................................................55 6.6.1AcuteInitiationModel..........................................................................................56 6.6.2LowSlopeInitiationModel...................................................................................57 6.7 AxialODSCCatTubeDingsandDents.....................................................................57 6.7.1AxialODSCCatHot/ColdLegDings5Volts........................................................58 6.7.2AxialODSCCatHotLegDings>5Volts................................................................58 6.7.3AxialODSCCatColdLegDents>5Volts...............................................................60 6.8 OtherMechanisms..................................................................................................60 6.9 SummaryofOperationalAssessmentResultsforPotentialMechanisms................60 7lSummaryandConclusions....................................................................... 65 8lReferences............................................................................................. 66

AIM2003107742Q1(NP),Rev.1 NON-PROPRIETARY Page8

ListofTablesandFigures Title

Page Table21 LongRangeInspectionPlan-TurkeyPointUnit3..............................................................12 Table22 TurkeyPointUnit3BasisforSteamGeneratorTubeExaminationsatEOC26.................14 Table23 TurkeyPointUnit3BasisforSteamGeneratorTubeExaminationsatEOC28.................16 Table24 SummaryofDetectedWearIndicationsandAnomaliesforPTN3-March2017.............19 Table31 RelationshipsforMeasurementUncertaintyforPTN3-March2017Outage..................27 Table61 SummaryofOAResultsforLimitingPotentialMechanism.................................................62

Figure21 SchematicIllustrationofTurkeyPointSteamGenerators...................................................20 Figure31 FlawModelsforWearDegradation.....................................................................................28 Figure32 FlawModelsforSCCDegradations......................................................................................29 Figure33 AspectsofMonteCarloSimulationtocalculateProbabilityofTubeBurst.........................30 Figure34 ProbabilisticSimulationtoDetermineWorstCaseDegradedTube-FullBundleAnalysis31 Figure41 ComparisonofProbabilityofDetectionFunctionsforAxialODSCC...................................37 Figure42 DefaultCrackGrowthRatesforA600TTTubingat611oF....................................................38 Figure43 ComparisonofVariousCGRFunctionsfromOperatingData..............................................39 Figure51 ComparisonofWearRatesatAVBTubeContactsforPTN3..............................................45 Figure52 OperationalAssessmentofAntiVibrationBarWearforPTN3(March2017)...................46 Figure53 OperationalAssessmentofTubeSupportPlateWearforPTN3(March2017).................47 Figure54 OperationalAssessmentofTubeSupportPlateEdgeWearforPTN3(March2017)........48 Figure55 OperationalAssessmentofFlowDistributionBaffleWearforPTN3(March2017)..........49 Figure61 LengthDistributionsofAllAxialSCCFlawsfortheA600TTFleet........................................63 Figure62 AxialODSCCBobbinCoilPODCurves...................................................................................64

AIM2003107742Q1(NP),Rev.1 NON-PROPRIETARY Page9 1lIntroduction FloridaPowerandLightisplanningtorequestaonecycleextensiontothecurrentinspectioninterval fortheTurkeyPointUnit 3(PTN3)steamgenerators(SGs).ThisrequestwilldefertheTP331SGtube examinationsatendofcycle(EOC)30toEOC31inOctober2021.Theobjectiveofthisassessmentisto providethetechnicaljustificationfordeferringtheTP331SGtubeexaminationbyoneoperatingcycle andmaintainingtherequirementsinNEI9706[1].TherevisedOAisperformedinaccordancewith EPRISteamGeneratorIntegrityAssessmentGuidelines(IAGL)describedin[2].TherevisedOA supplementsthecurrentEOC28OAfortheMarch2017outage[3]andevaluatesthepredicted conditionoftheSGsafterthreecyclesofoperation(Cycles29,30,and31).

PriorexaminationatEOC28(March2017)identifiedwearatantivibrationbar(AVB)locations,wearat tubesupportplate(TSP)tubeintersections,andwearatflowdistributionbaffleplates(FBP)astheonly existingdegradationmodes.TherewasnocorrosiondegradationobservedatEOC28orinanyprior examinations.TheOAevaluationforPTN3wasreevaluatedfortheexistingmechanismsincluding foreignobjectsknownorpostulatedtoberemainingintheSGsecondarysideusingthesamebounding deterministicIAGLmethods.Also,potentialmechanismswereevaluatedassumingtheycouldbecome activeintheoperatingperiodpriortoCycle28andmaynothavebeendetected,consideringthe examinationscopesfromtheEOC26andEOC28tubeexaminations.

TheresultsoftheseanalysesarepresentedinSection5fortheexistingdegradationmechanisms; Section6presentstheOAresultsforthepotentialmechanisms,fortheextendedoperatingperiodto EOC 31.

AIM2003107742Q1(NP),Rev.1 NON-PROPRIETARY Page10 2 l Current State of Turkey Point Unit 3 Tubes

2.1 Background

TurkeyPointUnit3hasthreeWestinghouseModel44Freplacementsteamgeneratorsthatwere installedin1982.Figure21isaschematicillustrationoftheSGsatPTN.Thelastinspectionin March 2017wasthe17thscheduledinserviceexaminationofthereplacementsteamgenerators,which constitutescompletionof21plantoperatingcyclessincereplacement.

ThelongrangeinspectionplanningforPTN3isshowninTable21.PTN3hasoperatedfor approximately30EFPYswithoutanysignificanttubeintegrityissues,with2cycleinspectionintervals successfullyimplementedinMarch2006followingCycle20.Similarsuccessfuloperatingexperiencehas beenobservedforPTN4.

TheexaminationandevaluationofPTN3steamgeneratorsfollowthepreoutagedegradation assessment(DA)plan[4].Tubeexaminationsarebasedonindustryqualifiedinspectiontechniquesand tubeintegrityassessmentareperformedinaccordancewithEPRIIAGL[2].Ithasbeenestablishedthat thelimitingcriterionfortubestructuralintegrityforTurkeyPointPlantsismaintainingthemarginof3.0 againstburstundernormalsteadystatefullpoweroperationprimarytosecondarypressuredifferential (3xNOPD).TherehasnotbeenanyreportedprimarytosecondaryleakageinanySGduringtheCycle30 operatingperiod[5].

2.2 ExaminationScopeatLastInspections AsdocumentedintheDA,theinspectionplanandscopeofexaminationsarebasedonexistingand potentialdegradationmechanismsaswellasindustryguidanceandoperatingexperience.The examinationscopesandbasesfortheexamsinthepriortwoexaminationsatEOC26andEOC28are giveninTable 22and23.ThesetablesprovidetheECTprobesthatwereused,thescopeoftheexams includingthesamplingplanandtheexpansionofthesesampleinspections,ifrequired,andthe degradationmechanismsofinterest,bothexistingandpotential.Atthesepastoutages,therewereno issuesthatrequiredexpansionoftheinspectionscopebeyondtheinitialscheduledexaminations.

2.3 SummaryofInspectionResults Consistentwithpriorinspections,theEOC28examinationinMarch2017forPTN3indicatedthatthe followingtubedegradationmechanismswerepresent:

Wearatantivibrationbar(AVB)tubecontacts Wearattubesupportplate(TSP)tubecontacts Wearatflowbaffleplate(FBP)tubecontacts WearduetoforeignobjectsatTSPedges

AIM2003107742Q1(NP),Rev.1 NON-PROPRIETARY Page11 Therewasnocorrosionrelateddegradationdetectedwithinthedefinedtubingpressureboundary.This includedthe100%sampleofalltubeswiththe+PointTMprobethathavebeenidentifiedashighresidual stress(signatureand2sigma)tubeswithinthetubesheetregion,anda25%sampleofhighresidual stresstubesexaminedattheFBPandTSPlocationsonthehotlegandtopTSPonthecoldleg.

AsummaryoftheinspectionfindingsforEOC28isgiveninTable24[3].Theresultsaresummarizedby SGandcategory(location).MosttubewearisassociatedwithcontactpointswithAVBs.Boththetotal countandthecountforthenewlyreportedindicationsaregiven.WearatTSPsandFBPsaremuchless innumbers.

2.4 TubePlugging AtEOC28,sixtubeswereremovedfromservicebyplugging:2inS/G3A,3inS/G3B,and1inS/G3C.A summaryofthesixtubesisgivenbelow[3].

TubePluggingSummary

S/G Tube Location Size Cause Repair 3A 2519 05C0.57 43%TW TSPEdgeWear Plugged 3747 AV3+0.21 35%TW AVBWear Plugged 3B 746 02C+0.74 12%TW TSPEdgeWearw/PLP Plugged/Stabilized 2471 04H0.58 23%TW TSPEdgeWear Plugged 4358 05H

Restriction Plugged 3C 1244 03H0.69 15%TW TSPEdgeWearw/PLP Plugged/Stabilized

TherewasonlyonetubeexceedingtheTechnicalSpecification(TS)repairlimitof40%TWandrequired mandatoryremoval.Therestofthetubeswerepreventivelyplugged(notrequiredbyTS).Candidates forpreventivepluggingwereselectedbasedonacombinationofobservedwearrates,detecteddepths, tubewearatmultiplelocations,andwearassociatedwithpossiblelooseparts(PLPs).Theprimary objectiveofpreventivepluggingwasaproactivemeasuretoreducethechancethattheCMlimits wouldbechallengedatthenextscheduledinspection.

AIM2003107742Q1(NP),Rev.1 NON-PROPRIETARY Page12 Table21LongRangeInspectionPlan-TurkeyPointUnit3 BasedonTechnicalSpecificationSection6.8.4.j.d.2(CompletingInspectionsPriortoPeriodEndPoint)

GuidelineInterval 1stISI 1stISIPeriod(120Months) 2ndISIPeriod(96Months)

Cycle#

CY08 CY09 CY10 CY11 CY12 CY13 CY14 CY15 CY16 CY16 CY17 CY18 CY19 CY20 CY21 CY22

RFO#

RFO09 RFO10 RFO11 RFO12 RFO13 RFO14 RFO15 RFO16 RFO17 RFO18 RFO19 RFO20 RFO21 RFO22

RFOOutageDates Oct83 Mar85 Mar87 Feb90 Oct92 Apr94 Sep95 Mar97 Sep98 Feb00 Sep01 Mar03 Sep04 Mar06

CycleEFPH 11950 9065 10983 11459 10859 10980 10910 11603 11740

419 11442 12911 11463 12725 10062 11060

EFPHCumulative 11950 21015 31998 43457 54316 65296 76206 87809 99549

99968 111410 124321 135784 148509 158571 169631

CycleEFPY 1.36 1.03 1.25 1.31 1.24 1.25 1.25 1.32 1.34

0.05 1.31 1.47 1.31 1.45 1.15 1.26

EFPYCumulative 1.36 2.40 3.65 4.96 6.20 7.45 8.70 10.02 11.36

11.41 12.72 14.19 15.50 16.95 18.10 19.36

CycleEFPM 16.37 12.42 15.05 15.70 14.88 15.04 14.95 15.89 16.08

0.57 15.67 17.69 15.70 17.43 13.78 15.15

PeriodEFPMCumulative 16.37 12.42 27.46 43.16 58.04 73.08 88.02 103.92 120.00

0.57 16.25 33.93 49.64 67.07 80.85 96.00

EFPMTotalSinceSGRP 16.37 28.79 43.83 59.53 74.41 89.45 104.39 120.29 136.37

136.94 152.62 170.30 186.01 203.44 217.22 232.37

PlugVisualInspection N/A N/A N/A 100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

SKIP

ECTBobbin 10%

10%

10%

100%

100%

100%

100%

100%

100%

50%

100%

100%

100%

SKIP

H/LTTS(SeeNote3)

N/A N/A N/A N/A N/A Sample Sample Sample

Sample 100%

50%

100%

100%

SKIP

C/LTTSRPC(SeeNote3)

N/A N/A N/A N/A N/A N/A N/A N/A

N/A N/A N/A N/A N/A SKIP

Dings&SpecInt.RPC N/A N/A N/A N/A N/A Sample Sample Sample

Sample 20%

30%

50%

50%

SKIP

Row1&2UbendRPC N/A N/A N/A N/A N/A N/A N/A N/A

N/A 20%

50%

50%

50%

SKIP

GuidelineInterval 3rdISIPeriod(72EFPM) 4thISIPeriod(72EFPM) 5thISIPeriod(72EFPM)

Cycle#

CY22 CY23 CY24 CY25 CY26 CY27 CY27 CY28 CY29 CY30 CY31 CY31 CY32 CY33 CY34 CY35 RFO#

RFO23 RFO24 RFO25 RFO26 RFO27 RFO28 RFO29 RFO30 RFO31 RFO32 RFO33 RFO34 RFO35

RFOOutageDates Sep07 Mar09 Sep10 Feb12 Mar14 Oct15 Mar17 Sep18 Mar20 Oct21 Mar23 Oct24 Mar26

CycleEFPH 675 12139 11958 10633 11412 5740

6688 11121 12552 12066 10520

2152 12432 12768 12500 12708 EFPHCumulative 170306 182445 194403 205036 216448 222188

228876 239997 252549 264228 274748

276900 289332 302100 314600 327308

CycleEFPY 0.08 1.39 1.37 1.21 1.30 0.66

0.76 1.27 1.43 1.38 1.20

0.25 1.42 1.46 1.43 1.45 EFPYCumulative 19.44 20.83 22.19 23.41 24.71 25.36

26.13 27.40 28.83 30.16 31.36

31.61 33.03 34.49 35.91 37.36

CycleEFPM 0.92 16.63 16.38 14.57 15.63 7.86

9.16 15.23 17.19 16.53 14.41

2.95 17.03 17.49 17.12 17.41 PeriodEFPMCumulative 0.92 17.55 33.93 48.50 64.13 72.00

9.16 24.40 41.59 57.59 72.00

2.95 19.98 37.47 54.59 72.00 EFPMTotalSinceSGRP 233.30 249.92 266.31 280.87 296.50 304.37

313.53 328.76 345.96 361.96 376.37

379.31 396.34 413.84 430.96 448.37

PlugVisualInspection 100%

SKIP 100%

SKIP 100%

SKIP 100%

SKIP 100%

SKIP 100%

SKIP 100%

ECTBobbin 100%

SKIP 100%

SKIP 100%

SKIP 100%

SKIP 100%

SKIP 100%

SKIP 100%

H/LTTS(SeeNote3) 100%

SKIP 50%

SKIP 50%

SKIP 50%

SKIP 50%

SKIP 50%

SKIP 50%

C/LTTSRPC(SeeNote3)

Periphery SKIP Periphery SKIP Periphery

SKIP Periphery SKIP Periphery

SKIP Periphery SKIP Periphery

Dings&SpecInt.RPC 50%

SKIP 50%

SKIP 50%

SKIP 50%

SKIP 50%

SKIP 50%

SKIP 50%

Row1&2UbendRPC 50%

SKIP 50%

SKIP 50%

SKIP 50%

SKIP 50%

SKIP 50%

SKIP 50%

AIM2003107742Q1(NP),Rev.1 NON-PROPRIETARY Page13 Table21LongRangeInspectionPlan-TURKEYPOINTUNIT3(contd)

BasedonTechnicalSpecificationSection6.8.4.j.d.2(CompletingInspectionsPriortoPeriodEndPoint)

GuidelineInterval 6th ISI Period (72 EFPM)

Cycle#

CY35 CY36 CY37 CY38 CY39 RFO#

RFO36 RFO37 RFO38 RFO39

RFOOutageDates Oct27 Mar29 Oct30 Mar32 Jul32

EndofPEO EndofPEO EndofPEO19Jul2032 CycleEFPH 205 12500 12500 12500 2200

EFPHCumulative 327513 340013 352513 365013 367213

ESTIMATED

CycleEFPY 0.02 1.43 1.43 1.43 0.25 EFPYCumulative 37.39 38.81 40.24 41.67 41.92

CycleEFPM 0.28 17.12 17.12 17.12 3.01 PeriodEFPMCumulative 0.28 17.40 34.53 51.65 54.66 EFPMTotalSinceSGRP 448.65 465.77 482.89 500.02 503.03

PlugVisualInspection SKIP 100%

SKIP 100%

ECTBobbin SKIP 100%

SKIP 100%

H/LTTS(SeeNote3)

SKIP 50%

SKIP 50%

C/LTTSRPC(SeeNote3)

SKIP Periphery SKIP Periphery

Dings&SpecInt.RPC SKIP 50%

SKIP 50%

Row1&2UbendRPC SKIP 50%

SKIP 50%

Notes:

1)

ThesePeriodicityTablesarebasedonTSTF510andApprovedPTNLicenseAmendments255and251,datedNov.6,2012.

2)

UpdatedusingFleetApprovedOperSchedule_2019FINAL(FPLRev3,6419)

3)

PTN3EPUConditionsstartedwithCycle26Operation

AIM2003107742Q1(NP),Rev.1 NON-PROPRIETARY Page14 Table 2 Turkey Point Unit 3 - Basis for Tube Examinations at EOC 26 Technique ExaminationSample Requiredor Supplemental Basis Degradation Mechanism

[Note9,10]

Bobbin 100%fulllengthinrows3andhigher.Row1&2examinationswillbelimitedtothehot legandcoldlegstraightsections.[Note7]

Required Degradation Assessment Wear/

ODSCC Screeningof100%ofdings/dents<5voltsinfreespanstraightsections.

Required Degradation Assessment ODSCC

+PointTM 50%ofthehotlegtubesheettotheextentofTTS+3.00toTEH[Notes1,2,3,&4]

Required ENGCSI2.2,Rev.42, Checklistitem1.D,andthe DegradationAssessment.

ForeignObjectWear PWSCC/ODSCC AllHotLegandColdLegPeripheryExpansionTransitions+3/2fromtopoftubesheet.

PeripheryTubesaredefinedasthetwooutermostperipheraltubesexposedtothe annulus,andallopenrow1and2tubesincolumns192.

Required ENGCSI2.2,Rev.42, Checklistitem1.D.,and theDegradation Assessment.

ForeignObjectWear Tightradiusubends-50%ofRows1&2[Notes1&2]

Required Degradation Assessment PWSCC/

ODSCC 50%ofhotlegfreespandings/dents>5voltsbetweenTSHand06H+1.00(notinspected inpriorinspection)[Notes1&2]

Required Degradation Assessment PWSCC/

ODSCC 50%ofdings/dentsatUbends(notinspectedinpriorinspection)

Required Degradation Assessment PWSCC/

ODSCC 50%ofdings/dentsatHLtubestructures(notinspectedinpriorinspection)

Required Degradation Assessment PWSCC/

ODSCC AlltubesadjacenttopreviouslyreportedforeignobjectsthatareactivelytrackedinApp.D areincludedinthisplanforexaminationusingtherotating+Point TMprobe.

Required

[Note8]

ENGCSI2.2,Rev.42, Checklistitem1.M.,and theDegradation Assessment ForeignObjectWear Diagnosticrotatingprobeexaminations(SpecialInterest,SI)willbecompletedasrequired basedontheresultsofthebobbincoil.

Required Degradation Assessment Degradation Visual Installedtubeplugs[Notes5]

Required EPRIExamGuidelinesRev.

7Section6.9&

SGMPIG1201 Plug Degradation Channelheadbowlscan(bothsteamgenerators)[Note6]

Supplemental WestinghouseOE (NSAL121)

CladdingDegradation Existingdegradationmechanismsarewearatantivibrationbars,tubesupportsandtheflowdistributionbaffles.

AIM2003107742Q1(NP),Rev.1 NON-PROPRIETARY Page15 Table22(Contd)TurkeyPointUnit3BasisforTubeExaminationsatEOC26

NOTES:

Note1: DataManagementtoselectlocationsnotinspectedduringtheprecedingtubeexamination(TP325).

Note2: Inspectionexpansion,ifrequired,willbeinaccordancewiththerequirementsoftheTechnicalSpecificationsandSection3.7oftheEPRISteamGenerator ExaminationGuidelinesRev7,andforforeignobjects,theEPRIIntegrityAssessmentGuidelines,Chapter10

Note3: Thisincludesminimum50%sampleofBLG&OXPindicationswithintheTubesheet

Note4: PertheTS,therequiredinspectiondepthforthe50%H/LTubesheetexaminationisTSH18.11.However,foreaseofacquisition,thetestextentofTSH

+3.00toTEHwillbeprogrammed.

Note5: ThevisualtubepluginspectionplannedforthisoutagemeetstherequirementsofEPRIInterimGuidanceSGMPIG1201,asevaluatedinAR01907053.The recommendedvisualtubepluginspectionintervaliseachtimeprimarysideisopenedoratleastonceeverytworefuelingoutages.Alltubeplugsinboth thehotlegandcoldlegplenumswillbevisuallyinspectedtoensurecorrectlocation,generalcondition,andabsenceofleakage,waterdropletsand/orboron deposition.

Note6: Visualinspectionoftheprimarychannelheadwillbeperformedandreviewedpriortoeddycurrenttestingtodetermineasfoundconditions.Theentire interiorsurfaceshouldbeviewedtotheextentpossible,withadditionalattentionfor(1)visualinspectionoftheprimarychannelheadsurfacecondition, includingthetubesheettodividerplatefilletweld,andthedividerplatetochannelheadfilletweldtoaddressOE305083fromWolfCreekUnit1;and(2)the areasofthebottomofthebowlforforeignmaterialandabnormalconditions.

Withthechannelheadbowlinadrycondition(duringplantshutdown),avisualscanofthelowlyingareasofboththehotandcoldlegsoftheinsidesurface willbeperformed.Keyareasofinspectionincludethechannelheadcladding,andthedividerplatetochannelheadweld.Theinspectionswilllookfor evidenceofgrossdefects(suchasindicationsinwelds,missingweldfillermaterial,abreachintheweldmetal,unusualdiscolorationoftheweldmetal,dings orgouges,etc.).Theinspectioncanbelimitedtotheapproximateareaincludedwithina914mm(36inch)radiuscenteredontheverybottomofthechannel headbowl.Theresultsoftheinspectionwillbedocumented.Ifanyunusualconditionsareobserved,therelevantactionsdescribedinNSAL121willbe followed.

Note7: PerENGCSI2.2,Rev.42,Checklistitem1.C,allinservicetubesthatareadjacenttooneofthefollowingpluggedtubesshallbeinspectedforpotentialwear duetocontactfromthepluggedtube:SG3AR33C44,SG3BR42C43,SG3BR42C45,SG3CR35C47,SG3CR38C54,SG3CR40C38.Reportanyevidenceofwear onneighboringtubestoWestinghouseforfurtherevaluation.CR20076264(AR#00438574)

Note8: EnsurethattubesadjacenttoR6C45andR7C45inSG3Bareexaminationwiththe+PointTMrotatingprobetomonitorforpresenceofaforeignobjector associatedwearatthe02Csupportelevation.(AR#01710324)

Note9: ForTurkeyPointUnits3and4,monitoringfortubeslippageaspartofthesteamgeneratortubeinspectionprogram(ateachscheduledinspectionrequired bytheSteamGeneratorProgram).

Note10: ForTurkeyPointUnits3and4,ensurethattubespreviouslyreportedwithAOBorCOB(AR#01831425)arereexaminedwiththerotating+PointTM.

AIM2003107742Q1(NP),Rev.1 NON-PROPRIETARY Page16 Table23TurkeyPointUnit3BasisforTubeExaminationsatEOC28 Technique ExaminationSample ExpansionPlan[Note3]

Requiredor Supplemental

[Note2]

Basis

[Note1]

Degradation Mechanism AffectedS/G UnaffectedS/Gs Bobbin 100%fulllengthinrows3andhigher.Row 1&2examinationswillbelimitedtothe hotlegandcoldlegstraightsections.

N/A N/A Required RequiredtosatisfyTS SR4.4.5.1andTS 6.8.4.l Wear/

ODSCC

+Point TightradiusUbends-50%ofRows1&2

[Note1]

Remaining50%.

AlltightradiusU bendsinRows1&2.

Required Degradation Assessment PWSCC/

ODSCC 50%ofhotlegfreespandings/dents>5 voltsbetweenTSHand06H+1.00

[Note1]

Remaining50%ofH/L ANDatleast50%ofC/L freespandings/dents.

[Note9]

100%ofH/Landat least30%ofC/L.

[Notes9&10]

Required Degradation Assessment ODSCC 50%ofdings/dentsatUbends>5volts

[Note1]

Remaining50%of dings/dentsatUbends.

[Note9]

Alldings/dentsatU bends.

Required Degradation Assessment ODSCC 50%ofdings/dentsatH/Ltubestructures

[Notes1]

Remaining50%ofH/L ANDatleast50%ofC/L dings/dentsattube structures.[Note9]

100%ofH/Landat least30%ofC/L.

[Notes9&10]

Required Degradation Assessment ODSCC 100%ofthehotlegtubesheettotheextent ofTSH+3.00toTEHforthesignature2 tubes

[Note5]

N/A N/A Supplemental Degradation Assessment PWSCC/

ODSCC 25%ofsignature2tubesatTSP&FBP intersections(allH/LandtopTSPonC/L side).

Remaining75%oftubes.

ExpandtoallC/L intersections.

Remaining75%of tubes.Expandtoall C/Lintersections.

Supplemental Degradation Assessment PWSCC/

ODSCC Diagnosticrotatingprobeexaminations (SpecialInterest,SI)willbecompletedas requiredbasedontheresultsofthebobbin and/orarraycoils.

N/A(performedas requiredtobound signalsofinterestsuchas PLP)

N/A Required Degradation Assessment Degradation Existingdegradationmechanismsarewearatantivibrationbars,tubesupports,andtheflowdistributionbaffles.H/L=HotLeg;C/L=ColdLeg

AIM2003107742Q1(NP),Rev.1 NON-PROPRIETARY Page17 Table22(Contd)TurkeyPointUnit3BasisforTubeExaminationsatEOC28 Technique ExaminationSample ExpansionPlan[Note3]

Requiredor Supplemental

[Note2]

Basis

[Note1]

Degradation Mechanism AffectedS/G UnaffectedS/Gs Array 50%ofthehotlegtubesheettotheextent of01HtoTEH

[Notes1,4,&5]

Remaining50%ofH/L fromTSH+3toTEHAND atleast50%ofC/Lfrom TSC+3toTEC.[Note9]

100%ofH/Landat least30%ofC/L.

[Notes9&10]

Required ENGCSI2.2, ChecklistItem1.D, andtheDegradation Assessment ForeignObject Wear PWSCC/

ODSCC AllHotLegandColdLegPeriphery ExpansionTransitions+3/2fromtopof tubesheet.[Note6]

N/A N/A Required ENGCSI2.2, ChecklistItem1.D.,

andtheDegradation Assessment LoosePart Detectionand ForeignObject Wear AlltubesadjacenttoPLPandLPM indicationsreportedduringthepreceding

+Pointtubeexaminations.

N/A N/A Supplemental Degradation Assessment ForeignObject Wear Alltubes(tubessurroundingactively trackedforeignobjectsandtubesadjacent tothosetubes)affectedbypreviously reportedforeignobjectsthatareactively trackedinAppendixD.

N/A N/A Required Requiredby ExaminationScope (FPENDE16001, latestrevision)

LoosePart Detectionand ForeignObject Wear Visual Installedtubeplugs[Note7]

N/A N/A Required EPRIExamGuidelines Rev.7Section6.9 and SGMPIG1201 Plug Degradation Channelheadbowlscan (allsteamgenerators)[Note8]

N/A N/A Supplemental WestinghouseOE (NSAL121)

Cladding Degradation Existingdegradationmechanismsarewearatantivibrationbars,tubesupports,andtheflowdistributionbaffles.H/L=HotLeg;C/L=ColdLeg

AIM2003107742Q1(NP),Rev.1 NON-PROPRIETARY Page18 Table23(Contd)TurkeyPointUnit3BasisforTubeExaminationsatEOC28

NOTES:

(1)

DataManagementtoselectlocationsnotinspectedduringtheprecedingtubeexamination.

(2)

RequiredexaminationsarethoserequiredbyTechnicalSpecificationsandindustryguidelines/operatingexperience.SupplementalexaminationsarerequiredbythisDegradationAssessment.

(3)

Inspectionexpansion,ifrequired,willbeinaccordancewiththerequirementsoftheTechnicalSpecificationsandSection3.8oftheEPRISteamGeneratorExaminationGuidelinesRev7,andforforeign objects,Chapter10oftheEPRIIntegrityAssessmentGuidelinesRev3.N/Ameansnotapplicableastheseinspectionsalreadycovertheentireanticipatedscope.

(4)

Thisincludesminimum50%sampleofBLGandOXPindicationsinthehotlegwithintheTubesheet.

(5)

PertheTS,therequiredinspectiondepthforthe50%H/LTubesheetexaminationisTSH18.11.However,foreaseofacquisition,thetestextentofTSH+3.00toTEHwillbeprogrammed.

(6)

PeripheryTubesaredefinedasthethreeoutermostperipheraltubesexposedtothedowncomerannulus,andallopenrow1,2and3tubesincolumns192.Sincesomeofthehotlegperiphery tubesaresampledintheTTSexam,theextentofexaminationfromTTS+3toTTS2appliestoallcoldlegperipherytubesandthosehotlegperipherytubesnotsampledintheTTSexam.Examinations areprogrammedfrom01HtoTEHforthehotlegandfrom01CtoTECforthecoldlegtocovertheexpansiontransitionregion.

(7)

ThevisualtubepluginspectionplannedforthisoutagemeetstherequirementsofEPRIInterimGuidanceSGMPIG1201,asevaluatedinAR01907053and01921577.Therecommendedvisualtube pluginspectionintervaliseachtimeprimarysideisopenedoratleastonceeverytworefuelingoutages.Alltubeplugsinboththehotlegandcoldlegplenumswillbevisuallyinspectedtoensure correctlocation,generalcondition,andabsenceofleakage,waterdropletsand/orborondeposition.

(8)

Visualinspectionoftheprimarychannelheadwillbeperformedandreviewedpriortoeddycurrenttestingtodetermineasfoundconditions.Theentireinteriorsurfaceshouldbeviewedtotheextent possible,withadditionalattentionfor(1)visualinspectionoftheprimarychannelheadsurfacecondition,includingthetubesheettodividerplatefilletweld,andthedividerplatetochannelheadfillet weldtoaddressOE305083fromWolfCreekUnit1;and(2)theareasofthebottomofthebowlforforeignmaterialandabnormalconditions.

Withthechannelheadbowlinadrycondition(duringplantshutdown),avisualscanofthelowlyingareasofboththehotandcoldlegsoftheinsidesurfacewillbeperformed.Keyareasofinspection includethechannelheadcladding,tubesheettodividerplateweld,andthedividerplatetochannelheadweld.Theinspectionswilllookforevidenceofgrossdefects(suchasindicationsinwelds, missingweldfillermaterial,abreachintheweldmetal,unusualdiscolorationoftheweldmetal,dingsorgouges,etc.).Theinspectionshouldcoverasmuchoftheinteriorsurfaceaspossible.In addition,theinspectionshouldcheckforforeignmaterialand/orabnormalconditionsatthebottomofthechannelheadbowl.Theresultsoftheinspectionwillbedocumented.Ifanyunusual conditionsareobserved,therelevantactionsdescribedinNSAL121willbefollowed.

(9)

Coldlegsampleshallincludealltubeswithdetectedhotlegcracking.Ifcrackingisthendetectedinthecoldlegsample,expandsampleto100%ofcoldleg.

(10) IfmorethanoneS/Gshowscracking,expandinspectionscopeto100%oftheaffectedsampleforallS/Gs.

AIM2003107742Q1(NP),Rev.1 NON-PROPRIETARY Page19 Table24SummaryofDetectedWearIndicationsandAnomaliesforPTN3atEOC28-March2017 (TotalCount/NewlyDetected/TubesPlugged)

Location Indication S/G3A S/G3B S/G3C Total AVB Wear 25/1/1 40/2/0 147/6/0 212/9/1 TSP(Lands)(1)

Wear 2/0/0 4/0/0 8/0/0 14/0/0 TSP(Edges)(2)

Wear 8/7/1 2/2/1 9/6/0 19/15/2 TSP(Edge/PLP)(3)

Wear 0/0/0 1/1/1 1/1/1 2/2/2 FBP Wear 0/0/0 2/0/0 0/0/0 2/0/0 TubeObstruction

0/0/0 1/0/1 0/0/0 1/0/1 S/GTotal:

35/8/2 50/5/3 165/13/1 250/26/6 Notes:

(1) IndicationsassociatedwithTSPwearatthelandcontactsofbroachedholes.

(2) IndicationsassociatedwithTSPwearatthelowerorupperTSPedges(firstobservedin2010).

(3) IndicationsassociatedwithTSPwearatTSPedgescoincidentwithpossibleloosepart(PLP)indication.

TheseindicationsareconsideredasloosepartwearattheTSPedge.

AIM2003107742Q1(NP),Rev.1 NON-PROPRIETARY Page20

Figure21-SchematicIllustrationofTurkeyPointSteamGenerators

AIM2003107742Q1(NP),Rev.1 NON-PROPRIETARY Page21 3 l Operational Assessment Methodology 3.1 TubeIntegrityRequirements Theoperationalassessment(OA)isforwardlookingandprovidesanestimateoftheoperationalperiod whereinthesteamgeneratorswillmaintaintheCMperformancecriteria.Theperformancecriteriawere establishedforstructuralintegrityandaccidentinducedleakagein[1].Thestructuralintegrity performancecriteria(SIPC)andaccidentinducedleakageperformancecriteria(AILPC)areasfollows:

StructuralIntegrityAllinservicesteamgeneratortubesshallretainstructuralintegrityover thefullrangeofnormaloperatingconditions(includingstartup,operationinthepowerrange,hot standby,andcooldown),allanticipatedtransientsincludedinthedesignspecification,anddesign basisaccidents.Thisincludesretainingasafetyfactorof3.0againstburstundernormalsteady statefullpoweroperationprimarytosecondarypressuredifferentialandasafetyfactorof1.4 againstburstappliedtothedesignbasisaccidentprimarytosecondarypressuredifferentials.

Apartfromtheaboverequirements,additionalloadingconditionsassociatedwiththedesign basisaccidents,orcombinationofaccidentsinaccordancewiththedesignandlicensingbasis, shallalsobeevaluatedtodetermineiftheassociatedloadscontributesignificantlytoburstor collapse.Intheassessmentoftubeintegrity,thoseloadsthatdosignificantlyaffectburstor collapseshallbedeterminedandassessedincombinationwiththeloadsduetopressurewitha safetyfactorof1.2onthecombinedprimaryloadsand1.0onaxialsecondaryloads.

AccidentInducedLeakageAccidentinducedleakageperformancecriterion:Theprimaryto secondaryaccidentinducedleakagerateforanydesignbasisaccident,otherthanSGtube rupture,shallnotexceedtheleakagerateassumedintheaccidentanalysisintermsoftotal leakagerateforallSGsandleakagerateforanindividualSG.Leakageisnottoexceed0.6gpm totalthroughallSGsand0.2gpmthroughanyoneSG.

TheoriginalTSleakagelimitsforTurkeyPointwere1.0gpmtotaland500gallonsperday(gpd)forany singlegenerator.Theleakagelimitswerereducedto0.60gpmand0.20gpmrespectivelyfollowingthe adoptionofthealternatesourcetermaspartoftheTurkeyPointLicenseAmendmentNos.244/240.

Notethatthelimitof0.20gpmequals288gpd.

Guidelinesforperformingtheintegrityassessmentofsteamgeneratortubingaregivenin[2].Ithas beenestablishedthatthelimitingcriterionfortubestructuralintegrityforPTN3ismaintainingthe marginof3.0againstburstundernormalsteadystatefullpoweroperationprimarytosecondary pressuredifferential[6].Insitupressuretestingguidanceforverifyingtubeburstandleakintegrity experimentallyduringtheoutageisgivenin[7].

3.2 PerformanceAcceptanceStandards Theperformanceacceptancestandardsforassessingtubeintegritytothestructuralintegrityand accidentleakageperformancecriteriaapplytobothconditionmonitoringandoperationalassessments.

Theacceptancestandardforstructuralintegrityis:

AIM2003107742Q1(NP),Rev.1 NON-PROPRIETARY Page22 TheworstcasedegradedtubeshallmeettheSIPCmarginrequirementswithatleasta probabilityof0.95at50%confidence.

Theworstcasedegradedtubeisestablishedfromtheestimationoflowerextremevaluesofstructural performanceparameters(e.g.,burstpressure)representativeofalldegradedtubesinthebundle.

Theacceptancestandardforaccidentleakageintegrityis:

TheprobabilityforsatisfyingthelimitrequirementsoftheAILPCshallbeatleast0.95at50%

confidence.

Theanalysistechniqueforassessingtheaboveconditionsmaybeeitherdeterministicorfully probabilisticincalculationformat.Thedifferentanalysismethodsandinputassumptionsforthese assessmentsarediscussedintheEPRIIAGL[2].

3.3 StructuralModels Theburststrengthofatubesubjectedtomechanicalwearandcorrosiondegradationwasestablished fromindustrymethods.Weardegradationisrepresentedasanonplanarflaw,whichingeneralhas limitedaxialorcircumferentialextentofthedamage.Corrosiondegradationischaracterizedbythe parametersdepthandlengthofanassumedcracklikeplanarflawrepresentingtheextentofthe degradation.Thisformofplanardegradationcanbeaxialorcircumferential,ormixedmode.Alibrary ofburstmodelsforvariousflawconfigurationsaregivenintheEPRIFlawHandbook[8].Figure31 showstheburstmodelsforweardegradations.Figure32showstheburstmodelsforaxialand circumferentialcracking.

Theburstmodelsaredevelopedfromregressionanalysisofbursttestdataonactualtubespecimens.

Thestructuralparametercontrollingtubeburstforaxialdegradationisthestructuralminimumdepth.

Forcircumferentialdegradation,thecontrollingstructuralparameteristhepercentdegradedarea(PDA) oftheflawbasedonthetubecrosssection.

3.3.1 BurstPressureRelationshipsforWearDegradation WeardegradationistheonlyexistingmechanismforPTN3steamgenerators.Typicalwearscarssuch asthosecreatedattubesupportstructurescanbewellrepresentedasaxialthinningwithlimited circumferentialextent(Figure31a).Giventhestructurallysignificantlengthanddepthdimensions,the burstpressureforanaxialwearscariscomputedfromthefollowingburstequation[8]:

R i

u y

B Z

h t

L L

R t

)

S S(

P

291 2

0 1

58 0

(31) wherePBistheestimatedburstpressureinpsi,Sy+Suisthesumoftheyieldandultimatetensile strengthofthetubematerialatoperatingtemperature,tisthewallthickness,Riistheinnertube radius,Listhecharacteristicdegradationlength,andhisfractionalweardepth(d/t).TheparameterR isthestandarddeviationoftheoffsetpressureandrepresentstherelationaluncertaintyinthe computationofburstpressure.TheparameterZisthedeviateforastandardnormaldistribution.For deterministicanalysis,thelower95%toleranceboundonburstpressureiswhenZisequalto1.645.

c

AIM2003107742Q1(NP),Rev.1 NON-PROPRIETARY Page23 3.3.2 BurstPressureRelationshipsforAxialCorrosionDegradation CorrosiondegradationisclassifiedasapotentialmechanismforPTN3especiallyatlocationsofelevated stress.Forevaluationofaxialcracking,thefollowingburstequationhasbeenusedbytheindustry[8]:

h t

L L

)

Z

(

R t

)

S S(

P C

i u

y B

2 104 1

58 0

(32) whereforODcracking,isequalto1.0,andforIDcracking,

t L

L h

R t

i 2

1 1

(33)

Theparametercisthestandarddeviationofmodelregressionpressureandrepresentstherelational uncertaintyinthecomputationofburstpressure.TheparameterZisthedeviateforastandardnormal distribution.

3.3.3 BurstPressureRelationshipsforCircumferentialCorrosionDegradation Again,corrosiondegradationisclassifiedasonlypotentialforPTN3.Forevaluationofcircumferential cracking,theindustryhasusedthefollowingburstequations[8]:

N P

m u

y B

Z

)

/

PDA

(

R t

)

S S(

P

100 35281 0

57326 0

(Region1)

(34a)

N P

m u

y B

Z

)]

/

PDA

(

[

R t

)

S S(

P

100 1

2227 1

(Region2)

(34b) wheretheburstpressureisthelowervaluefromthetwoaboveequations.PDAisthepercentdegraded area,Rmisthetubemeanradius,andPNistherelationaluncertaintyfortheregressionmodel.The parameterZisthedeviateforastandardnormaldistribution.

3.4 LeakRateModels Asdescribedin[7,9],atwophaseflowalgorithmcanusedtocomputeflowratesthroughcracksasa functionofpressuredifferential(p),temperature(T),crackopeningarea(A),andtotalthroughwall cracklength(L).Frictioneffectsandcracksurfaceroughnesswereincludedinthemodel.Calculated MSLB,roomtemperature,andnormaloperatingconditionleakrateswerefittedtoregression equations.TheleakrateregressionequationforMSLBconditionsisgivenas:

m n

p A

}])L

/

A

(

d

)L

/

A (c[

exp b

a

{

Q

(35) wherea,b,c,d,n,andmareregressioncoefficientsasdeterminedbyanalysisresults.TheleakrateQis expressedintermsofgpmatroomtemperature(70F).Toconverttogpmatanyothertemperature, c

c c

AIM2003107742Q1(NP),Rev.1 NON-PROPRIETARY Page24 thecalculatedQismultipliedbytheratioofthespecificvolumeofwaterattemperature(T)tothe specificvolumeofwaterat70F.Thepressure,p,isinunitsofpsi,Aisininches2,andL(equivalently Lleakasdefinedabove)isininches.Thecrackopeningareaiscalculatedusingappropriatemethods discussedin[7].

Equation33isappropriateforcomputingaccidentinducedleakratesforSCCdegradation.Thevalidity oftheleakrateequationsisprovidedbyacomparisonofcalculatedleakratesversusmeasuredleak ratesasdiscussedin[7,9].

Forweartypedegradation,thelikelihoodofthroughwallleakageisdeterminedfromtheprojected maximumweardepththatwouldleadtoapopthroughorthroughwallpenetration.Aspecificleak ratevalueisnotdirectlycomputedbutitisconservativelyassumedthatifawallpenetrationoccurs,the accidentinducedleaklimitwillbeexceeded.

3.5 InspectionIntervalAnalysis TheprimaryobjectiveofanOAistodeterminetheallowableoperatingperiodbetweeninspections.

Thiscanbeaccomplishedbyeitherdeterministicanalysismethodsorbyfullyprobabilisticmodelingof theinputvariables 3.5.1 DeterministicAnalysis Adeterministicanalysisapproachwasappliedfortheexistingwearmechanismstoestablishan allowablecycleormulticycleruntimeinaccordancewithEPRIIAGL.AplugonNDEsizingstrategyis usedforcalculatingtheallowableinspectionintervalforthesemechanisms.AdeterministicOAfor calculatingcycleruntimesrequiresconservativeestimatesforindicationsizeatbeginningofcycle (BOC),limitingsizeatEOC,anddegradationgrowthrate.Foreachweardegradationmechanism,the projectedmaximumworstcasedepthatthenextscheduledexaminationiscalculatedfrom:

INSP BOC EOC t

(WR)

d

d

(36) wheredBOCisthedepthinpercentthroughwall(%TW)attheBOC,dEOCisthedepthin%TWatEOC, WRisthegrowthrateduetowear(%TW/EFPY),andtINSPistheoperationalperiodinEFPYuntilthenext scheduledexamination.Equation36islaterusedintheOA(seeSection5)forthethreedetectedwear mechanismsfor3cycleinspectioninterval.

3.5.2 ProbabilisticMultiCycleAnalysis TheanalysismethodusedforthepotentialmechanismsforPTN3OAisafullyprobabilisticanalysisof thefulltubebundleinaccordancewithSection8.3oftheEPRIIAGL[2].Thislevelofanalysisisrequired becausethedeterministicapproachisnotcapableinaccuratelyevaluatingthepotentialmechanisms.A plugondetectionrepairstrategyisappliedforallindicationsfoundwithinthetubepressureboundary.

TheprobabilisticmodelconsistsofaMonteCarlosimulationoftheprocessesofinitiation,degradation growth,ECTinspection,andtheremovalofdegradedtubes.Aschematicillustrationshowingthe simulationprocessonhowthedistributionofworstcasecalculatedburstpressuresareestablishedis showninFigure33.Thestateofdegradationofthesteamgeneratortubingissimulatedinthemodel

AIM2003107742Q1(NP),Rev.1 NON-PROPRIETARY Page25 bythetotalflawpopulationthatisdefinedbyseveralattributes.Theseattributesincludethe populationsizeandthedistributionsoflength,structuraldepth,maximumdepth,andmaterial properties.Givenarandomizedsetoftheseattributesforeachflawindicationinthesimulated population,anestimateofburstpressureandleakagecanbemadeforeachindicationoftheflaw population.Fromtheseestimates,populationattributes,suchthedistributionofminimumburst pressureandaccident-induceleakagearedetermined.

TheprobabilisticcomputationswereperformedusingtheInterteksOPCONVersion3.03program[10].

ThelogicflowchartofthemulticyclemethodisshowninFigure34.Atimetoflawinitiation(Weibull) functionisapplied.Thephysicalprocessesofflawinitiation,flawgrowthandsimulatedinspections(via useofaPODfunction)aremodeledforseveralpastandfuturecycles.Benchmarkingofresultstothe observedinformationobtainedfrompastinspectionsprovidesassuranceoftheaccuracyofpredictions overtheoperatingintervaltothenextinspection.

TheOPCONprogramsimulatesuptoabout15,000individualinitiationsitesoverseveraloperating cycles.TheoverallsimulationprocessconsistsofmanythousandsofindividualMonteCarlotrials,each ofwhichsimulatesthedegradationstateofacompletesteamgenerator,orcompositesteamgenerator foragivendegradationmechanism.TheMonteCarlosimulationinvolvesmanytrialstoobtaina convergedsolution.

ThesimulationprocessisshowninFigure34,whichillustratestheMonteCarloprocess.Thereare threemajorstepsintheprocess:

FlawInitiation:Definetheattributesforeachflawfortheentireperiodoftheanalysistrial.This includestubematerialproperties,theflawlength,andtheflawshapefactor.Thisinformationand theinformationfortheundetectedpopulationofflawsfromthepriorinspectiondefinetheBOC population.

FlawGrowth:EachflawintheBOCpopulationgrowsatawearraterandomlysampledfromthe wearratedistributionfortheprescribedoperationalperiodforthecycle.Attheendofthisstep,the EOCflawdistributionisdefined.Thesetofflawsareevaluatedforburstpressureandleakage.The flawwiththelowestburstpressureisretainedforeachtrialtoestablishthedistributionofworst casevaluesforcomparingwiththeSIPCattheendoftheanalysis.Likewise,thecumulativeleakage foreachtrialisretainedtodeterminethe9550leakrateincludedintheleakageevaluationforall degradationmechanismsandcomparisonwithAILPC.

FlawDetection:Intheinspectionprocess,thePODisappliedtoeachflawintheEOCpopulationto createthedetectedandundetectedpopulations.Thedetectedflawsarecomparedwiththeplug limitfortheplantandtubesrequiringremovalareplugged.Forplugondetection,alldetected flawsareremoved(nodetectedindicationsflawscanbereturnedtoserviceatthestartofthenext operatingcycle,exceptinthecaseofapprovedalternaterepaircriteria,e.g.,H*ARC).The undetectedpopulationisimportant,andthatflawpopulationbecomespartoftheBOCdistribution forthenextinspectioninterval.

FortheevaluationofthepotentialmechanismsatPTN3,itisconservativeassumetoassumeforthe BOCdistributionofflawsfollowingthelastinspectionthatatleastoneSCCindicationhadinitiation sometimeinthepreviousoperatingperiodandthattheinitiatedindication(s)wherenotreported.Asa generalfigureofmerit,thesizeofthemissedindicationswillbeontheorderofthenosmallerthan5%

a

AIM2003107742Q1(NP),Rev.1 NON-PROPRIETARY Page26 PODvaluefortheECTtechniqueusedinthepreviousinspection.Thisassuresareasonableconservative startingpopulationforthesimulation.

Thesimulationprocessgeneratesarecordoftheresultsofalltrialsperformedfromwhichoverallburst andleakageprobabilitiesmaybeinferredandappropriatedistributionalinformationobtained.This processiscarriedoverthepastoperationalcyclesandcurrent/futureoperationalcycles.

Theactualstructuraldimensionsofeachflaw,dSTandLST,aretrackedforthecompletetrial.Growthis appliedtothestructuraldepth.Theshapefactorforeachflawisappliedatthebeginningofeachtrial priortoinspectionandthePODdetermineswhethertheflawisdetectedornotdetected.Thefinal outputcontainstheindividualcumulativedistributionsforactualstructuraldepths,detectedactual structuraldepths,andmeasuredmaximumdepths.Themeasureddepthdistributioniscreatedby applyingthemeasurementuncertaintytoeachflawbyrandomsamplingfromthelinearregression modelondepthsizing.

3.6 MeasurementUncertainty MeasurementuncertaintyforsizingofindicationswasappliedtoNDEresultsbasedonmechanismand ECTprobe.ThesourceofthesedataistheEPRIETSSdocument.Alinearizedrelationshipbetween actualsizeandNDEsizewasassumed.ForrelatingactualsizesfromNDEresults,

Error NDE Actual X

A A

X

1 0

(37) whereXActualandXNDEaretheindicationsizesforactualandNDEbases,andA0,A1,andErrorare regressionfitconstants(intercept,slope,andrandomerrorwhichincludethestandarderrorof estimate,e,forthetechniqueandanalystserror,a).Forrelatingmeasuredsizesfrompredictedactual

sizes,

Error Actual NDE X

B B

X

1 0

(38) whereB0,B1,anderrorareagainregressionconstantsderivedfromfittingsizingdata.

Industrydata(ETSS)wereusedtodefinetheparametersinEqs.37and38fromstandardlinear regressiondataanalysis[11].AsummaryofsizinguncertaintiesforthemechanismsapplicabletoPTN3 isgiveninTable31.Thescatterinactualdataabouttheregressionfitisassumedtobenormally distributedwithastandarddeviationequaltothestandarderrorofestimate.

MeasurementuncertaintywasappliedontherepaironNDEsizingcalculationsfortheexisting degradationmechanisms.Fortheprobabilisticanalyses,OPCONtrackstheprogressionoftheactual flawsizes(depthandlength),someasurementuncertaintywasnotrelevantintheOAforthepotential mechanismsinthissituationofaonecycleextension.

AIM2003107742Q1(NP),Rev.1 NON-PROPRIETARY Page27

Table31:RelationshipsforMeasurementUncertaintyforPTN3-March2017 Mechanism/

Location EddyCurrent Probe Sizing ETSS Reference ConditionMonitoring(1)

OperationalAssessment(1)

Intercept A0 Slope A1 StdError e

Intercept B0 Slope B1 StdError e

WearatAVBSupports(2)

Bobbin Depth(%TW) 96004.1Rev13 2.892 0.984 4.185 1.418 0.983 4.183

+PointTM Depth(%TW) 10908.4Rev1 0.130 1.058 3.784 0.704 0.924 3.535 WearatTubeSupportPlates(3)

+PointTM Depth(%TW) 96910.1Rev10 4.296 1.007 6.680 0.714 0.909 6.346

+PointTM Depth(%TW) 27905.1Rev2 4.400 1.093 2.000 4.284 0.909 1.824 WearatFlowBafflePlates

+PointTM Depth(%TW) 96910.1Rev10 4.296 1.007 6.680 0.714 0.909 6.346

WearinFreespan(4)

+PointTM Depth(%TW) 21998.1Rev4 5.809 1.024 6.284 0.976 0.861 5.764 ForeignObjectWearat TopofTubesheet(3,4)

+PointTM Depth(%TW) 21998.1Rev4 5.809 1.024 6.284 0.976 0.861 5.764

+PointTM Depth(%TW) 27905.1Rev2 4.400 1.093 2.000 4.284 0.909 1.824

NOTES:

(1) ConditionmonitoringsizingisActualversusECT.OperationalassessmentsizingisNDEversusActual.TheparametersA0,A1andeareobtainedfromETSS measurementuncertaintycorrelations.TheparametersB0,B1anditscorrespondingewerecalculatedfromaregressionfitoftheETSSsizingdata.

(2) ETSS96910.1Rev.10isnotqualifiedforwearatAVBs.

(3) ETSS96910.1Rev.10wasusedtosizeindicationswithinTSPlands.ETSS27905.1,Rev.2wasusedforsizingindicationsatTSPedges.

(4) WearinfreespanwasnotdetectedatEOC28(ETSS21998.1Rev.4wasnotrequired).Volumetricindication(loosepartwear)wassizedwithETSS27905.1, Rev.2.

a, c

AIM2003107742Q1(NP),Rev.1 NON-PROPRIETARY Page28

a)AxialThinning(LimitedCircumferentialExtent)

b)CircumferentialThinning(LimitedaxialExtent)

Figure31FlawModelsforWearDegradation(a)Axialand(b)Circumferential

c c

AIM2003107742Q1(NP),Rev.1 NON-PROPRIETARY Page29

a)PartThroughAxialCracking

b)PartThroughCircumferentialCracking

Figure32FlawModelsforSCCDegradation(a)Axialand(b)Circumferential.

c c

AIM2003107742Q1(NP),Rev.1 NON-PROPRIETARY Page30 Figure33AspectsofMonteCarlosimulationtoCalculateProbabilityofTubeBurst[2]

c

AIM2003107742Q1(NP),Rev.1 NON-PROPRIETARY Page31

MULTICYCLEMODELLOGIC Figure34ProbabilisticSimulationtoDetermineWorstCaseDegradedTube-FullBundleAnalysis a

AIM2003107742Q1(NP),Rev.1 NON-PROPRIETARY Page32

4 l Input Variables and Distribution Functions Theinputvariablesandthestatisticaldistributionsrepresentingtheuncertaintiesintheseinputsinthe OAtodeterminestructuralandleakageintegrityaregiveninthissection.Theseincludethemechanical strength,flawcharacterization(flawsizesandshapes),andmoreimportantly,theprobabilityof detectionfunctions(POD)anddegradation(wear)growthrates.

4.1 TubingProperties ThePTN3isathreeloopsystemdesignModel44F,witheachsteamgeneratorhaving3,214tubes.The steamgeneratortubinghasanoutsidediameterof0.875inchandanominalwallthicknessof 0.050inch.ThetubingmaterialisAlloy600thermallytreated(A600TT)[4].

ThemechanicalstrengthatoperatingtemperatureswasobtainedfromtheEPRIFlawHandbook[8]with thefollowingstatisticalvaluesforyieldplusultimatetensilestrength,y+uatT=650oFbeing established:

Mean:

134,668psi

StDev:

6,383psi

MinLimit:

122,000psi

MaxLimit:

150,000psi TheRTpropertiesforthemeanstrengthof7/8ODtubingis153,380psifromTable41in[8].Itwas assumedthatthetemperatureadjusmentfactorof0.878fromTable42in[8]for3/4ODtubingcanbe usedtoreducethemeanstrengthto134,668psiat650oFonarelativebasis.Followingthe recommendationsontheoptionsinSection4.2in[8],theRTStDevisusedforthevariationonthe elevatedtemperatureproperties.Thisassumptionisconservative.Themechanicalpropertiesgiven aboveareassumedtobenormallydistributedwhenusedinaprobabilisticanalysis.Theminandmax limitsonthedistributionwereestimatedtofallwithintherangeof2.0to2.4StDevaboutthemeanin ordertoremoveanyphyicallyunrealisticvaluesinthesimulation.

4.2 OperatingConditions Extendedpoweruprate(EPU)wasimplementedforbothunitsatthePTN.TheEPUlicenseamendment request(LARNo.2050wasapprovedbytheNRCinJune2012,licenseamendmentNos.249/245).The firstcycleatEPUconditionsforPTN3wasCycle26inSpring2012.EPUmodificationswere implementedovertheprecedingrefuelingoutages(Cycles24and25forPTN3).Modificationsincluded turbinegeneratorrewindsinthefirstoutagesandmajorcomponentreplacements(includingthehigh pressureturbine)duringthesecondoutages.

Atnormalfullpoweroperation,thedifferentialpressureacrossthetubewallhasbeenconservatively assumedas1514psibasedondesignparameters[6].Thissteadystatenormaloperatingpressure differential(NOPD)boundscurrentoperatingconditions,whichshowsactualNOPDundertheEPU conditionsislessthan1455psiforPTN3[4].

AIM2003107742Q1(NP),Rev.1 NON-PROPRIETARY Page33

Foraccidentconditions,maximumMSLBpressureisassumedas2560psi.ThisvalueforMSLBpressure isalsoconservativeandisbasedonreactorcoolantsystemdesignpressure.DuringCycle30,actual steampressureandTHOTforPTN3were791psigand610.6°F.PriortoEPU,THOTwas601.4oF TheoperatingparametersforPTN3usedforthepotentialmechanismarelistedbelow:

Normaloperatingpressuredifferential(NOPD) 1460psi

Limitingaccidentpressuredifferential(LAPD)

2560psi

Hotlegtemperature(THOT)

611oF Threetimesnormaloperatingpressure(3xNOPD)istherefore4380psi.PriorOAresultsfromEOC28for theexistingmechanismswerebasedonNOPD=1514psiandwerenotrevisedbecausetheyare conservative.

TheoperationalperiodforCycles26through31wereprovidedbyFPL.TheEFPYateachoutageis showninthetablebelow[12].

EOC OutageDate Inspection CycleLength (EFPY) 26 March2014 Yes 1.30 27 October2015 Skip 1.42 28 March2017 Yes 1.27 29 September2018 Skip 1.43 30 March2020 Skip*

1.38 31 October2021 Yes 1.45

  • Note:ProposedtodeferEOC30examinationtoEOC31.

4.3 ProbabilityofDetection Theprobabilityofdetectionfortheexaminationtechniqueusedintheinspectionprocessisan importantinputtotheprobabilisticOAbecauseitestablishesthesizeandnumberofindicationsthat canremainundetectedinthetubebundle.Whenassumingatthestartofacyclethatindicationsare postulatedtoexistafteraninspection,thelargestmissedpostulatedflaw(s)generallydefinestheworst caseEOCflawatthenextinspection.TheMonteCarlosimulationshowninFigure34,whenplugon detectioninspectionstrategyisused,theBOCflawpopulationis,bydefinition,thepopulationof undetectedafterinspection.

ThePODfortheinspectiontechniquecanbedevelopedinoneofthreeways:

1) Performancedemonstrationprocess(PDP)usinganalystdataondegradedtubeswithknown numberandsizesofthemechanismofconcern.Aspecializednonlinearregressionprocessis thenusedtoestablishtheprobabilityofdetectinganindicationofagivendepth.
2) AnanalyticallybasedAhatmethodologyorthesimilarEPRIMAPODmethodologywhichusesa signalprocessingapproachdealingprimarilywithflawsignalamplitudeandnoiseamplitudes.

AIM2003107742Q1(NP),Rev.1 NON-PROPRIETARY Page34

ThesemethodspermitthequantificationofPODfunctionbehavioralchangeswithvariouslevels ofinterferingsignal(noise)suchasmaybepresent.

3) Anempiricalapproachthatreliesonabenchmarkingprocesstoobservedinspectiondataover severalcyclesofoperation.Thecumulativedistributionofpredictedflawdepthsisclosely relatedtothesystemPODfunctionpresent.Inaddition,theabsenceofflawsbelowathreshold depthprecludesaPODfunctionwithanonzeroPODbelowthatdepth.Thiseliminatesa significantportionofpossiblePODfunctioncandidatesobtainedbyothermeans.

Inpractice,acombinationoftwoormoreofthesemethodsisoftenusedtoobtainarobustestimateof thePODfunctionparameters.

ThePODwasestablishedfromindustrydataresultingfromPDPasdevelopedforrecentOAsforSt.

LucieaswellastheTurkeyPointplants.ThePODasafunctionofweardepthderivedfrompulledtube bobbincoildata(EPRIETSS96004.1).ThePODparametersforlogisticandloglogisticmodelusedinthe MonteCarloSimulationareshownbelow:

)]

X

(

B A

exp[

)

X

(

POD 1

1

(Logistic)

(41)

)]

X

(

Log B

A exp[

)

X

(

POD 10 1

1

(LogLogistic)

(42) whereXisthedepthin%TW,andtheparametersAandBareobtainedbylogisticregressionanalysis ofhitmissdatafromPDPorMAPODsimulations.

TheloglogisticmodelwasusedintheOAforthepotentialmechanismsatPTN3.Themodel parametersfortheECTtechniquewereobtainedfromqualifiedindustrydataorderivedfrom evaluationsoftheinspectionprocesstoobtainthesystematicPODincludingtheeffectofsignalnoiseat thetubelocationofinterest.Forcomparativepurposes,the+PointTMandBobbinPODsfordetectionof axialODSCCatbroachedTSPsareshowninFigure41[11,13].Thisfigureshowstherelativedetection performanceofthe+PointTMversustheBobbincoilfordetectingSCC.

4.4 DegradationGrowthRates 4.4.1 WearDegradation Degradationgrowthratesfortubewearatsupportstructuresandflowdistributionbaffleshavebeen establishedintheoriginalEOC28OAfrompastinspections.Growthratesarebasedonrepeat measurementswherethedistributionofgrowthrateshavebeencalculatedandtrendedovertime.

ThesitespecificwearrateforAVBwearindicationsatTurkeyPointforEOC28haspreviouslybeen determinedin[14].The95%upperboundgrowthratewasconservativelyestimatedforuseinthe originalOA.ThewearratesforTSPandFBPtubecontactlocationsweredeterminedfromtheprior examinationresultsandhistoricalreviewsofpreviousoutageinspectionsforbothPTN3andPTN4.A summaryoftheestimatedmeanand9550wearratesisgivenbelowforbothunits[14]:

AIM2003107742Q1(NP),Rev.1 NON-PROPRIETARY Page35 WearMechanism AverageWR

(%TWperEFPY) 9550WR

(%TWperEFPY)

MaximumLimit

(%TWperEFPY)

AVBs 1.5 3.3 10 TSPatLands 3.67 6.5 12 TSPatEdges

6.5*

FlowBaffles 1.92 6.5 12

  • Note:FrommostrecentinspectionatPTN4atEOC30.Datatoolimitedtoestablish afulldistribution TheapplicationofthewearratesusedintheOAisdescribedinmoredetailinSection5.

4.4.2 CorrosionDegradation ThereisnoactivecorrosiondegradationinthePTNSGswithinthepressureboundary;crackgrowth ratesarethereforedevelopedfromindustrydatawhereavailable.Forthepotentialmechanisms,the EPRIIAGLtypicaldefaultdistributionhadbeenshowntoconservativeforA600TTbasedontheanalyses oftheavailabledata[13].ThenumberoftubeswithSCCindicationsintheA600TTfleetisnotenough todevelopreliablegrowthrateswiththeexceptionofcircumferentialODSCCattheTTSexpansion transition.Therefore,thedefaultdistributionsareusedintheOAforthepotentialdegradation mechanismsatPTN3.ThetypicalandboundingdistributionsrecommendedintheEPRIIAGLare plottedinFigure41.

Forcircumferentialdegradation,areviewofSCCdatawasperformedandcomparedwiththeEPRI defaultrates.Figure43presentsaplotofPDAandmaximumdepthgrowthfortheEOC14andEOC15 indicationsfromPlantA.Thesedatawereprovidedbytheutility.ThisplotincludestheIAGLtypical defaultPDAgrowthfunctionforcomparison.AsshownonthisplottheIAGLtypicaldefaultfunctionis judgedveryconservativeforthismechanism.Giventheconservatismofthisfunctioncomparedtothe PlantAgrowthdata,theOAforcircumferentialODSCCwillusetheEPRIIAGLtypicaldefaultgrowthrate asarepresentationofmaximumdepthgrowth.

Figure43alsoshowsthePDAgrowthfunctiondevelopedbyapplyingashapefactorof1.25.TheEPRI IAGLrecommendstheuseashapefactorof1.25toestimatemaximumdepthgrowthfromstructural averagegrowth.InthisexampletheIAGLdefaultgrowthsignificantlyboundsthePlantAdata.TheIAGL structuralaverage(PDA)growthactuallyboundsthePlantAmaximumdepthgrowth.IftheIAGLPDA growthisusedasamaximumdepthgrowthallowancethePDAgrowthcanbeestimatedbyapplication oftheshapedefinedin[2].ApplicationoftheshapefactorresultsinalognormalmeanPDAgrowth valueof1.28.Thisgrowth,whichstillboundsthePlantAdata,wasusedinasensitivitycasetoshowthe conservatismoftheIAGLdefaultgrowthandfurthersupportstheassumptionthattheEPRIdefault growthsratesareconservativeforthepotentialmechanismsinPTN3.Oneobservationofthe circumferentialdataisthatalargepercentageofcrackingpopulationbecomesnongrowers(between 10%toashighas40%).

AIM2003107742Q1(NP),Rev.1 NON-PROPRIETARY Page36 AnotherconclusionfromtheEPRIFeasibilityStudy[13]isthatthePWSCCgrowthratesareboundedby ODSCCgrowthratesforthesameSCCorientation.ThisobservationisusedtoapplytheOAresultsfrom theODSCCtoboundthebehaviorofPWSCC(seeSection6).

4.5 InitiationFunction TheWeibullstatisticaldistributionisusedtomodeltheinitiationofSCCinA600TTtubes.TheWeibull distributionisawellknowmodelforrepresentingtimetofailureinvariousformsofagingmechanisms suchasfatigue,cracking,etc.AthreeparameterfunctionisusewheretheevolutionofSCCduring operationiscalculatedfromaslopeparameter,characteristiclife(shapeparameter),andsetback.The WeibullmodelhasbeenutilizedinmanyOAsthataddressedSCCbehaviorofA600millannealed(MA) tubingformanyoftheoriginalSGs.TheWeibullmodelhasbeenshowntoprovideaconservative representationofflawinitiationtrending.

AIM2003107742Q1(NP),Rev.1 NON-PROPRIETARY Page37 Figure41ComparisonofProbabilityofDetectionFunctionsforAxialODSCC 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0

10 20 30 40 50 60 70 80 90 100 ProbabilityofDetection Depth,(%TW)

PODFunctionsforAxialODSCCatTubeSuportPlates

+PT(ETSSI28425)

Bobbin(ETSSI28413)

BobbinEPRIStudy a, b, c

AIM2003107742Q1(NP),Rev.1 NON-PROPRIETARY Page38

Figure42-DefaultCrackGrowthRatesforA600TTTubingat611oF

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0

2 4

6 8

10 12 14 16 18 20 22 24 26 28 30 CumulativeDistribution,CDF CrackGrowthRate,CGR(%TWperEFPY)

EPRIDefaultGrowthRatesforA600TTonStructuralAverageDepth EPRIIAGL"Typical" EPRIIAGL"Bounding" c

AIM2003107742Q1(NP),Rev.1 NON-PROPRIETARY Page39

Figure43-ComparisonofVariousCGRFunctionsfromOperatingData

a, b, c

AIM2003107742Q1(NP),Rev.1 NON-PROPRIETARY Page40 5lOperationalAssessmentforExistingMechanisms 5.1 AssessmentMethod AdeterministicOAwascompletedatEOC28fora2cycleoperatingperiodbasedonpredictedburst pressuresandaccidentinducedleakage,sitespecificstructurallimits,anddegradationgrowthrates throughtoEOC30[3].ThisOAwasreevaluatedfora3cycleoperatingperiodskippingthetube examinationatEOC30.TheOAconsideredthescopeoftheexamination,potentialforincreasedgrowth rates,andthepotentialforincreasednumbersofindicationsatsubsequentexaminations.

TheexistingmechanismsareweardegradationduetotubecontactpointsatAVBs,TSPintersections, andatFBPlocations.WeardegradationfromknownforeignobjectsineachSGarealsoevaluatedfor3 cycleoperatingperiod.TheOAforeachdegradationmechanismevaluatedaruntimeplanforfuture cyclesofoperation.ThedeterministiccalculationsforAVBwear,wearatTSPs,andwearatFBPisbased ontheguidancecontainedin[2].

Plug(orrepair)onNDEsizingstrategyisusedintheOAoftheexistingmechanisms.Thebasicanalysis stepsforeachdegradationmechanismare:

1. IdentifythelargestflawindicationwhichcouldpotentiallyremaininserviceatBOC
2. ApplyNDEboundinguncertaintytothelargestflawpotentiallyremaininginserviceatBOC
3. CalculatetheprojectedlargestflawatEOCforeachscheduledoutagebyapplyingthe upper 95thpercentilegrowthrateforthenextoperatingperiodtothelargestflawatBOC
4. ComparetheprojectedlargestflawsizeatfutureEOCinspectionstothestructurallimitsize
5. ComparetheprojectedlargestflawsizeatfutureEOCinspectionstoleakagesize AsuccessfuldeterministicOAfor3cyclesmustdemonstratethattheperformancecriteriafortube integrity(burstandleakage)willbesatisfiedattheacceptanceprobabilityofoccurrencelevelof9550 forallinputconditions.Compliancewiththestructuralperformancecriterionisindicatedwhen:

SL EOC d

d

(51) wheredEOCisthelimitingdefectdepthatthenexttubeexamination,anddSListhestructurallimit.The projectedlimitingdefectforwearisdeterminedfrom

)

t(

R W

d d

INSP DET EOC

(52) wheredDETistheactualdefectsizethatcanbereliablydetectedbytheinspectiontechnique,WRisthe boundingwearrate,andtINSPistheprojectedcyclelengthuntilthenextexamination.Forplug(or repair)onNDEsizing,theBOCdefectsizeisbasedondistributionofmeasuredorobservedsizes,the projectedlimitingdefectmustconsiderNDEmeasurementuncertainty:

)

t(

R W

d d

d INSP ERR NDE EOC

(53) wheredNDEisthemeasuredsize,anddERRisthetotalmeasurementerrorattheupper95%bound.

AIM2003107742Q1(NP),Rev.1 NON-PROPRIETARY Page41 VerificationbybenchmarkingpredictionswithobservationsasrecommendedbytheEPRIIAGL[2]is discussedin[3].Thisprocesswasperformedtoconfirmthatanalysisinputandassumptionsregarding detectionandprogressionoftheexistingdegradationmechanismarecorrect.Benchmarkingofthe predictedworstcasedepthsfromthepriorEOC26OAwiththeNDEresultsatEOC28tube examinationsdemonstratedthattheOAmodelcalculationresultsboundthelargestdetected indicationsforalldegradationmechanisms.Therefore,thisconfirmsthepriorOAmethodsand assumptionsforexistingmechanismsareconservative,andthereforeappropriateforassessinga3cycle operatingperiod.

5.2 AntiVibrationBarWear TheEOC28examinationforAVBwearconsistedoffulllengthbobbinprobeexaminationof100%of theactivetubesinRows3andhigher,and50%examinationoftheUbendregionsinRows1and2 by+PointTM.Wearindicationsweresized,basedonanEPRIqualifiedexaminationtechnique (ETSS96004.1).ThelargestindicationallowedtoremaininserviceatEOC28was36%TW(NDEdepth).

Thisdepthissizecorrectedtotheupper9550actualsizeusingECTmeasurementuncertaintyforthe ECTtechnique.

HistoricaltubeweardataforAVBsupportsfor2010through2017isshowninFigure51.Thesedata showthatAVBwearratesarelowwithalargepercentageofindicationsshowingnogrowth.Thereisno significantimpactfromthepoweruprate(EPU)implementedin2012.Thegeneraltrendisforboththe averageandupper95thpercentilewearratestoattenuateovertime.

TheresultsfortheOAareshowninFigure52.Theappliedwearrateis3.3%TWperEFPYand representsanupper95thpercentileboundasdescribedintheoriginalOAreport[3].Theprojected depthislessthanthe3xNOPDEOCStructuralLimitof64.9%TWaftera3cycleoperatingperiodto EOC31.Therefore,thestructuralperformancecriteriaofNEI9706willbesatisfied.Thecumulative projectedaccidentleakagewillbenegligibleoverthenextoperationalperiodbasedontheprojected limitingdepthsizesforthismechanism.

5.3 WearatTubeSupportPlates ForwearindicationsatTSPlocationsoccurringatthebroachedholelandsandatoutsidesurfaceedges, theprojectedwearrateforuseinthedeterministicOAwasestablishedfromcurrentandpast inspectiondata.TheOAstructurallimitforcomparingwiththeprojectedlimitingweardepthis calculatedas66.6%TWfromthegeometricprofilemodelforwearatthelandsofthebroachholesor TSPedges[3].ThelargestweardepthbyNDEfromtheEOC28examinationthatisreturnedtoserviceis 14%TWand19%TWforwearatthelandsandwearattheedges.DepthsizingforTSPwearuses

+PointTMprobes(ETSS96910.1andETSS27905.2).Measurementuncertaintyisappliedattheupper95th percentilevalueinaccordancewiththeEPRIIAGL.

TheresultsfromtheOAevaluationfor3cyclesofoperationareshowninFigures53and54.The appliedwearratesareboundingbasedontheevaluationdescribedintheoriginalOAreport[3].For wearatTSPedges,therewereverylimitedrepeatdepthdataforwearinpastinspectionsatPTN.The wearratethatwasconservativelyassumedasanupperboundwas10.7%TWperEFPY.Recent

AIM2003107742Q1(NP),Rev.1 NON-PROPRIETARY Page42 examinationatPTN4indicatedamuchlowerwearrateforthismechanism(0.4%TWperEFPY).Inthat assessment,aconservativeestimateoftheupper9550wearrateforTSPedgewearwasdefinedas 6.5%TWperEFPY.UsingthatvalueforPTN3givesthesecondprojectionthatisplottedinFigure54.In eitheranalysis,theprojectedworstcasedepthatEOC31islessthantheEOCStructuralLimit.

Insummary,theprojecteddepthsforbothTSPlocationsarelessthanthe3xNOPDEOCStructuralLimits aftera3cycleoperatingperiodtoEOC31.Therefore,thestructuralperformancecriteriaofNEI9706 willbesatisfied.ThecumulativeleakagerateforTSPwearindicationswasdeterminedtobenegligible basedontheupper95%onesidedtolerancelimitonpeakdepth.

5.4 WearatFlowDistributionBafflePlates TheEOC28examination,whichconsistedoffulllengthbobbinprobeexaminationof100%oftheactive tubes,detectedwear/volumetricindicationsatflowdistributionbaffleplates.Theindicationsweresized with+PointTMprobe(ETSS96910.1).TheEOCStructuralLimitforcomparingwiththeprojectedlimiting weardepthatEOChasbeenestablishedat71.4%TW[6].ThemaximumNDEdepthoftheindication returnedtoserviceis9%TW.

Duetolimitedinspectiondata,aboundingwearrateisestimatedfromthepastinspectionsforTurkey Pointandotherindustryinformationasdiscussed[3].ForthepreviousPTNOAs,withlittleornogrowth observedsinceEOC26,theupper95thpercentilewearratewasconservativelydefinedas6.5%TWper EFPYconsistentwithTSPwearrates.Theresultsofthedepthprojectionoverthreecyclesareshownin Figure54.Therefore,thestructuralperformancecriteriaofNEI9706willbesatisfiedatEOC31.The cumulativeprojectedaccidentleakagewillbenegligibleoverthenextoperationalperiodbasedonthe projectedlimitingdepthsizesforthismechanism.

5.5 ForeignObjectEvaluation SecondarysideforeignobjectsfoundinthesteamgeneratorsandPLPlocationsidentifiedbyECTatEOC 28wereevaluatedbyFPL.Allnewlydiscoveredforeignobjectshavebeenremovedincludingall discoveredloosepartsshortlyafterthefeedpump(SGFP)strainerfailure,whichoccurredinMay2013.

TherewerenosignificantpartsresultingfromtheSGFPstrainerfoundatEOC26orEOC28.The potentialofhavingadditionalloosepartsenterthetubebundlehasbeenevaluatedbyFPLJPNPTN SEMS96003.

FollowingthefailureofSGFPstrainersdescribedinAR1871783whichresultedinadownpowereventat PTN3,arootcauseevaluation(RCE)wasinitiatedwhichincludedanevaluationofpotentialsteam generatortubewearfromloosepartsresultingfrompossibleforeignmaterialintrusion[15].TheRCE confirmedthattheS/G3BSGFPsuctionstrainerhadcatastrophicallyfailedandintroducedforeign objectsintothefeedtrain.ThepiecesoftheSGFPstrainer,whichwererecoveredfromallthreeUnit3 steamgeneratorsduringEOC26FOSARinspections.

AlthoughitisnotlikelytohaveanystrainerfailuredebrisremainingintheSGsaftermultipleSSIs,any possibleforeignobjectsremaininginthefeedtrain(fromtheSGFPsuctionstrainerfailure)thathavethe

AIM2003107742Q1(NP),Rev.1 NON-PROPRIETARY Page43 potentialtomigratetothesteamgeneratorshavebeenevaluatedbyFPL[16].Inthisevaluation,the morelikelydebrisarisingfromstrainerfailurewereconsidered.Thelistofcredibledebrisisbasedon strainerconstruction,historicaldebristrappedinthestrainer,andthepartsofthestrainer(s)thatwere retrieved.

Themostlimitingweartimefromthisassessmentis3.68years.Thisextendstheallowableoperating timeforPTN3steamgeneratorstolate2020,whichsupportsatwocycleinspectioninterval.This weartimeanalysislimitsthewearprojectionstotheTechnicalSpecificationrepairlimitof40%TW, whichisgenerallymuchlessthananappropriatestructurallimittomeettheSIPCmarginrequirements.

Assumingawearscarfromaforeignobjectthatisa1inchlongofuniformdepth(flatshape),theCM structurallimitis53%TW.Byscalingtheweartimeforthepostulatedloosestrainerpart,theadjusted weartimebecomes4.88EFPY.

Allknownhistoricalforeignobjectsthatremaininthegeneratorsandareactivelytrackedhavebeen evaluatedbyFPLinJPNPTNSEMS96038[17].Thelimitingobjecthasbeenclassifiedasmetallicslag andresidesinS/G3B.Thelimitingoperatingtimeforthisloosepartis4.92years,whichislongerthat theextendedoperatingintervalof4.26EFPYforCycles29throughand31.Therefore,anypotential futurewearcausedfromhistoricalforeignobjectswillbeboundedforthe3cycleintervalbetweenECT inspections.

5.6 SummaryofOperationalAssessmentResultsforExistingMechanisms ThedeterministicOAconsistedofacomparativeevaluationoftheprojectedlimitingindicationsizewith thestructurallimitforeachmodeofdegradation.Themaximumcalculatedoperatingintervalforeach existingdegradationmodeissummarizedinthefollowingtable:

AllowableOperatingPeriodbetweenInspections DegradationMode AllowableInterval AVBWear 5.72EFPY TSPWearatLands 5.70EFPY TSPWearatEdges(1) 7.16EFPY FBPWear 7.04EFPY PostulatedLoosePart(2) 4.88EFPY ExistingLoosePartWear(3) 4.92EFPY

Notes:

1)

ThisallowableintervalisbasedonthemostrecentinspectionresultsonwearratesfromPTN4 inMarch2019.

2)

Reevaluatedlimitingforeignobjectfromstrainerdebristhatispostulatedtoexistinalimiting locationinthesteamgenerators.

3)

Theoperatingperiodforthelimitingknown/trackedloosepartinS/G3B.

Theseallowableintervals(i.e.,operatingperiods)canbegraphicallydeterminedforFigures52to55by calculatingthedifferenceinoperationtimefromthepointwherethedepthgrowthlinewould extrapolatecrossthestructurallimitlinefromtheoperatingtimeatthestartpointatBOC29.

AIM2003107742Q1(NP),Rev.1 NON-PROPRIETARY Page44 Accidentinducedleakagefortheexistingdegradationmechanismsisprojectedtobenegligibleforthree operatingcyclesbasedonthepeakdepthsprojectedtoEOC31.

Insummary,theupdatedEOC28OAsupportstheoperationthroughtheextendedoperatingperiod (Cycles29through31).TheperformancecriteriaofNEI9706willbesatisfiedforthethreecycle inspectioninterval.

AIM2003107742Q1(NP),Rev.1 NON-PROPRIETARY Page45

Figure51ComparisonofWearRatesatAVBTubeContactsforPTN3

0 5

10 15 20 25 30 35 40 45 50 55 60

-5.0

-4.0

-3.0

-2.0

-1.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 Frequency Wear Rate, WR (%TW/EFPY)

PTN-3 AVB Wear Rates - All SGs 2010 Data -Before EPU 2014 Data - After EPU 2017 Data - EPU Upper 95% Bound

AIM2003107742Q1(NP),Rev.1 NON-PROPRIETARY Page46

Figure52OperationalAssessmentofAntiVibrationBarWearforPTN3 10 20 30 40 50 60 70 80 90 100 26 27 28 29 30 31 32 33 34 Wear Depth, d (%TW)

Operation Time (EFPY)

Deterministic Operational Assessment PTN-3 Detected Wear at Anti-Vibration Bars - EOC 28 (3-Cycle OA)

Inspection Outage Skip-Inspecion Outage Structural Limit 3xNOPD EOC 29 EOC 30 BOC 29 EOC 31 a, b

AIM2003107742Q1(NP),Rev.1 NON-PROPRIETARY Page47

Figure53OperationalAssessmentofTubeSupportPlateWearforPTN3 10 20 30 40 50 60 70 80 90 100 26 27 28 29 30 31 32 33 34 Wear Depth, d (%TW)

Operation Time (EFPY)

Deterministic Operational Assessment PTN-3 Detected Wear at Tube Support Plate Lands - EOC 28 (3-Cycle OA)

Inspection Outage Skip-Inspection Outage EOC Structural Limit 3xNOPD EOC 29 EOC 30 BOC 29 EOC 31 a, b

AIM2003107742Q1(NP),Rev.1 NON-PROPRIETARY Page48

Figure54OperationalAssessmentofTubeSupportPlateEdgeWearforPTN3 10 20 30 40 50 60 70 80 90 100 26 27 28 29 30 31 32 33 34 Wear Depth, d (%TW)

Operation Time (EFPY)

Deterministic Operational Assessment PTN-3 Detected Wear at Tube Support Plate Edges - EOC 28 (3-Cycle OA)

Inspection Outage Skip-Inspection Outage EOC Structural Limit 3xNOPD EOC 29 EOC 30 BOC 29 EOC 31 Most recent WR from PTN-4 EOC 30 OA PTN3EOC28with upper boundWR a, b

AIM2003107742Q1(NP),Rev.1 NON-PROPRIETARY Page49

Figure55OperationalAssessmentofFlowDistributionBafflePlateWearforPTN3

10 20 30 40 50 60 70 80 90 100 26 27 28 29 30 31 32 33 34 Wear Depth, d (%TW)

Operation Time (EFPY)

Deterministic Operational Assessment PTN-3 Detected Wear at Flow Baffle Plates at EOC 28 (3-Cycle OA)

Inspection Outage Skip-Inspection Outage Structural Limit 3xNOPD EOC 29 EOC 30 BOC 29 EOC 31 a, b

AIM2003107742Q1(NP),Rev.1 NON-PROPRIETARY Page50 6lOperationalAssessmentforPotentialMechanisms 6.1 AssessmentMethod Thepotentialcorrosionrelatedmechanismshavebeenproactivelymonitoredbyperformingadditional qualifiededdycurrenttest(ECT)examinationsinpastoutages.Todate,PTNhasnotexperiencedany corrosiondegradationwithinthetubebundle,exceptatthetubeendswhichisoutsideofthedefined pressureboundaryforthetubesheetestablishedbytheH*AlternateRepairCriteriaforPTN3[19].In therevisedOA,theabovepotentialmechanismswereallpostulatedtoexistfollowingthelast inspection.Thesemechanismswereeachevaluatedbyperformingfullbundleprobabilisticanalysesto calculatetheprobabilityoftubeburstandleakagepotentialinaccordancewithSection8.3intheEPRI IAGL.Theprobabilisticmodelincludedtheimportantinputdistributionsformaterialstrengthproperties forthetubing,probabilityofdetectionfortheECTtechnique,alognormalcrackgrowthratemodel appropriateforeachmechanismatTHot,andtheuseofaWeibullinitiationfunctionpredictingwhenSCC flawshavedevelopedovertime.TheoverallnumericalmodelisdiscussedinSection3.

Thefollowingconservativeconditionswereassumedatthestartoftheanalysis 1)

AllpotentialmechanismsareassumedtobeexistingandevaluatedintheOA 2)

Itisassumedthatpriortothemostrecenttubeexamination,SCChadinitiatedandwasmissed (notdetected)byECTduringtheinspection.Thisassumptionwillcreateapopulationof undetectedflawsthatwillexistatthestartofthecyclefollowingtheinspection.

3)

ThedefaultcrackgrowthrateswereconservativelyusedintheOAfollowedEPRIIAGL recommendationsforA600TTtubing.

4)

Formechanismsthatweresampledatthelastinspection,thetubepopulationwasdividedinto twogroupingpertheimplementedsamplingplan(inspectedandnoninspected)inaccordance withSection8.6ofEPRIIAGL.Theprobabilityofburstandleakageassessmentwasindividually computedforeachpartiallyinspectedgroupandlaternumericallycombinedtogivethetotal probabilitiesforthemechanism.

InsupportoftheprobabilisticOAforthepotentialmechanism,aleadplantevaluationwasperformed wheretheoperatinghistoryofPTN3wascomparedwiththoseplantsthathaveexperiencedSCCto estimateequivalentinitiationtimesforeachmechanism.Thisinformationwasprimarilyusedto establishwheninitiationatPTN3wouldhaveoccurred,orwilloccur,andtohelptodefinetherangeof WeibullparametersappropriateforPTN3fortheOA.Theinformationforthisstudyiscontainedin[13].

6.2 PotentialDegradationMechanisms AsdocumentedintheDegradationAssessment(DA),thereareseveralcorrosionrelateddegradation mechanismsthatareclassifiedaspotentialforA600TTtubematerial.Thesemechanismsinvolveforms ofstresscorrosioncracking(SCC)ontheprimary(ID)orsecondaryside(OD),orientedeitheraxialor

AIM2003107742Q1(NP),Rev.1 NON-PROPRIETARY Page51 circumferentialtothetubeaxis,andoccurringatdifferentlocationsinthetubebundle.ForPTN3,these potentialmechanismsare,

1. AxialandcircumferentialODSCCatthetopoftubesheet(TTS)
2. AxialandcircumferentialPWSCCattheTTS(generallyboundedbyODSCCanalyses)
3. AxialODSCCatTSPintersectionsonnonhighresidualstresstubes
4. AxialODSCCatTSPintersectionsonknownhighresidualstresstubes
5. AxialODSCCattubedingsanddents
6. AxialODSCCinfreespans
7. PWSCCinsmallradiusUbends Themorelimitingmechanismsarethefirstfiveintheabovelist.Thesemechanismsareexistinginother A600TTplants.Thelasttwointhelistarenotconsideredcontrollingmechanisms.AxialODSCCin freespans(withoutthepresenceofading)hasnotbeenobserved.Thesemechanismsarenotformally evaluatedbutconsideredtobeboundedbyaxialODSCCatTSPs.

6.3 CircumferentialODSCCatTTSExpansionTransitions SampleinspectionshavebeenperformedatPTN3fordetectingtheonsetofSCCattheTTS.A50%

samplingofTTSexpansiontransitionregionwasperformedatEOC26andEOC28.AtEOC26,the inspectionemployedthe+PointTMprobeforSCCdetection.AtEOC28,theXProbereplacedthe

+PointTMfordetectingSCC.TherewasnoSCCreportedineitherinspection.

FortheEOC26groupoftubes,theconservativeinitiationassumptionisthatinitiationofSCCoccurred priortoEOC26onthetubeslastinspectedatEOC26.Thatis,SCCinitiatedintheoperatingperiodprior toEOC26andwasnotdetectedby+PointTM.Thisresultsinthelongestoperatingperioduptothenext inspectionatEOC31,whichisfiveoperatingcyclesfromtheEOC26inspection.Asusceptible populationsizeof120tubeswasassumed,60ofwhichareassignedtothepopulationlastinspectedat EOC26and60assignedtothepopulationlastinspectedatEOC28.

Forinitiationbehavior,aWeibullslopeof1.5forcircumferentialODSCCatunitswhichhavenot reportedSCChasbeenestimatedin[13].Thecharacteristiclifeisadjustedtoproduceoneinitiationat EOC25.AtEOC26,theaveragenumberofinitiatedflawsafterthe10,000trialsintheMonteCarlo simulationistwo,aslistedinthetablebelow:

CircODSCC-Summary50%ExamatEOC26 Outage EOC25 EOC 26 EOC 27 EOC 28 EOC 29 EOC30 EOC 31 PlantEFPY 23.41 24.71 26.13 27.40 28.83 30.16 31.36 ModelEFPY 3.0 4.3 5.72 6.99 8.42 9.82 11.32 CumulativeInitiated 1

2 3

4 5

6 7

ExamScope Skip 100%

Skip Skip Skip Skip TBD NumberDetected 0

NDD 0

0 0

0 4

a, b,

c a

AIM2003107742Q1(NP),Rev.1 NON-PROPRIETARY Page52 Forthe50%tubepopulationinspectedatEOC26,therelevantinputstotheprobabilisticOAmodelare providedbelow:

InputFileName:

TP3_CircOD_EOC25_1st_initiation_Case1_OA Weibullslope,characteristiclifeandsusceptiblepopulationsize 1.5,45EFPY,60 NormalOperatingConditionPressureDifferential:

1460psi LogNormalStructuralAverageGrowthMean,SD,andmaximum:

1.5,0.65,19%/EFPY ModelEFPYEqualtoFirstInitiation,EquivalentPTN3EFPY:

0,23.41EFPY ProbeTypeandPODParameters(EOC26):

+PT;13.56,11.12 ProbeTypeandPODParameters(EOC28):

XProbe;2.9,3.5 Forthisgroup,theprobabilityofburstatEOC31is2.44%,andtheprobabilityofaccidentinduced leakageexceedingtheAILPCis0.14%forthismechanism.

Forthe50%tubeexaminationatEOC28,thesameapproachisfollowedexceptthattheassumption thatoneindicationinitiatesintheoperatingperiodpriortoEOC28andisnotdetectedbyXProbe.At EOC28,theaveragenumberofinitiatedflawsafterthe10,000trialsintheMonteCarlosimulationis two,andatEOC31,thereare5SCCflawsinservicewith3beingdetectedbyXProbe.Theoperating trendisshowninthetablebelow:

CircODSCC-Summary50%ExamatEOC28 Outage EOC27 EOC28 EOC29 EOC30 EOC31 PlantEFPY 26.13 27.40 28.83 30.16 31.36 ModelEFPY 3.0 4.27 5.7 7.1 8.6 CumulativeInitiated 1

2 3

4 5

ExamScope Skip 100%

Skip Skip TBD NumberDetected 0

NDD 0

0 3

Forthe50%tubepopulationinspectedatEOC28,therelevantinputstotheprobabilisticOAmodelare providedbelow:

InputFileName:

TP3_CircOD_EOC27_1st_initiation_Case2_OA Weibullslope,characteristiclifeandsusceptiblepopulationsize:

1.5,45EFPY,60 NormalOperatingConditionPressureDifferential:

1460psi LogNormalStructuralAverageGrowthMean,SD,andmaximum:

1.5,0.65,19%/EFPY ModelEFPYEqualtoFirstInitiation,EquivalentPTN3EFPY:

3.0,23.41EFPY ProbeTypeandPODParameters:

XProbe;2.9,3.5 TheprobabilityofburstatEOC31forthisgroupoftubesis0.77%.Theprobabilityofleakageexceeding theAILPCis<0.14%forthismechanism.

Thetotalprobabilityofburstforthismechanismforcomparingwiththeperformancestandardof5%is calculatedusingaBooleansummationofthetwoprobabilities,

POB=1(10.0244)(10.0077)=3.19%

a, b, c a, b, c

AIM2003107742Q1(NP),Rev.1 NON-PROPRIETARY Page53 ThetotalPOBforthismechanismsatisfiestheSIPCmarginrequirementperformancestandard.

6.4 AxialODSCCatTTSExpansionTransitions TheOAforaxialODSCCatTTSisconfiguredinasimilarmannerasforcircumferentialODSCCattheTTS expansiontransition.Theonlydifferencebetweenthetwomodelsisthattheinitiationfunction[13].

ThepopulationjudgedtobesusceptibletoaxialODSCCatPTN3wasdeterminedto60tubes.Thus,for thepopulationassumedtohaveinitiatedonecyclepriortoEOC26,withasusceptiblepopulationsizeof 30tubesandWeibullslopeof1.5;characteristiclifeis40EFPY.

Thelengthdistributionappliedisthestructuralequivalentlengthdevelopedfromthecombinationofall TTS(ODSCCandPWSCC)andding/dentSCCindicationsfromtheA600TTfleet.Fortheshorterflawsa conservativelengthmeasurementuncertaintyallowancewasapplied.Theadjustedtotallengthwas combinedwithauniformdistributionfrom1.05to2.0,whichrepresentsaconservativeadjustmentto theratiooftotaltostructuralaveragelengthforthepulledtubedataofETSSI28424andI28425.

Figure51presentsaplotoftheappliedlengthdistributionwiththeasreportedlengthsandadjusted totallength.

Forinitiationbehavior,aWeibullslopeof1.5foraxialODSCCatunitswhichhavenotreportedSCChas beenestimatedin[13].ThecharacteristiclifeisadjustedtoproducefourinitiatesatEOC25.AtEOC26, theaveragenumberofinitiatedflawsafterthe10,000trialsintheMonteCarlosimulationisfour,as listedinthetablebelow:

AxialODSCCatTTSSummary for50%ExamatEOC26 Outage EOC25 EOC26 EOC27 EOC28 EOC29 EOC30 EOC31 PlantEFPY 23.41 24.71 26.13 27.40 28.83 30.16 31.36 ModelEFPY 4.2 5.5 6.92 8.19 9.62 11.02 12.52 CumulativeInitiated 1

2 2

3 3

4 5

ExamScope Skip 50%

Skip Skip Skip Skip 100%

NumberDetected 0

NDD 0

0 0

0 1

TherelevantinputstotheOAmodelareprovidedbelow:

InputFileName:

TP3_AxOD_TTS_1stinit_EOC25_Case1_OA Weibullslope,characteristiclifeandsusceptiblepopulationsize:

1.5,40EFPY,30 NormalOperatingConditionPressureDifferential:

1460psi LogNormalStructuralAverageGrowthMean,SD,andmaximum:

1.5,0.65,19%/EFPY ProbeTypeandPODParameters:

+PT;17.72,11.41 ProbabilityofburstatEOC31is0.25%forthistubegroup.ProbabilityofleakageexceedingtheAILPCis 0.23%forthemechanism.

Forthe50%tubeexaminationatEOC28,thesameapproachisfollowedwhereatleastoneindication initiatesintheoperatingperiodpriortoEOC28andisnotdetectedbyXProbeatEOC28inspection.At EOC28,theaveragenumberofinitiatedflawsafterthe10,000trialsintheMonteCarlosimulationis a,

b, c

a a,

b, c

AIM2003107742Q1(NP),Rev.1 NON-PROPRIETARY Page54 two,andatEOC31,thereare3SCCflawsinservicewith1beingdetectedbyXProbe.Theoperating trendisshowninthetablebelow:

AxialODSCC-Summary50%ExamatEOC28 Outage EOC27 EOC28 EOC29 EOC30 EOC31 PlantEFPY 26.13 27.40 28.83 30.16 31.36 ModelEFPY 3.0 4.27 5.7 7.1 8.6 CumulativeInitiated 1

1 2

3 3

ExamScope*

Skip 50%

Skip Skip TBD NumberDetected 0

NDD 0

0 1

  • Note:Examis100%ofthesampledtubes.

Forthe50%tubepopulationinspectedatEOC28,therelevantinputstotheprobabilisticOAmodelare providedbelow:

InputFileName:

TP3_AxOD_TTS_1stinit_EOC27_Case2_OA Weibullslope,characteristiclifeandsusceptiblepopulationsize:

1.5,45EFPY,30 NormalOperatingConditionPressureDifferential:

1460psi LogNormalStructuralAverageGrowthMean,SD,andmaximum:

1.5,0.65,19%/EFPY ProbeTypeandPODParameters:

XProbe;2.9,3.5 TheprobabilityofburstatEOC31forthisgroupoftubesis0.01%.Theprobabilityofleakageexceeding theAILPCis0.01%forthismechanism.

Thetotalprobabilityofburstforthismechanismforcomparingwiththeperformancestandardof5%is calculatedusingaBooleansummationofthetwoprobabilities,

POB=1(10.0025)(10.0001)=0.26%

ThetotalPOBforthismechanismsatisfiestheSIPCmarginrequirementperformancestandard.

6.5 PWSCCatTTSExpansionTransitions 6.5.1 AxialPWSCCatTTSExpansionTransition IthasbeenshownthatPWSCCgrowthratesareboundedbyODSCCgrowthratesandthatthe developedaxialODSCCgrowthratesareboundedbytheEPRIIAGLtypicaldefaultcurve[13].Axial PWSCCreportedlengthsareboundedbytheAxialSCClengthdistributionprovidedbyFigure61.

Therefore,astheaxialODSCCatTTSOAshowsprobabilityofburstandleakageareacceptable,theaxial PWSCCOAwillalsothereforebeacceptable.

6.5.2 CircumferentialPWSCCatTTSExpansionTransition

IthasbeenshownthatPWSCCgrowthratesareboundedbyODSCCgrowthratesandthatthe developedcircumferentialODSCCgrowthratesareboundedbytheIAGLtypicaldefaultcurve[13].Axial andcircumferentialPWSCCreportedlengthsareboundedbytheaxialandcircumferentialODSCClength a, b, c a,

b, c

AIM2003107742Q1(NP),Rev.1 NON-PROPRIETARY Page55 distribution.Therefore,astheaxialandcircumferentialODSCCatTTSOAshowsprobabilityofburstand leakageareacceptable,theaxialandcircumferentialPWSCCOAswillalsothereforebeacceptable.

6.6 AxialODSCCatTSPIntersections ThetubepopulationaffectedbyODSCCatTSPincludesnormalnonresidualstresstubesandthose tubesthathavebeenidentifiedashavinghighresidualstressesfromfabrication[19].AlltubesatTSP intersectionshavereceived100%Bobbincoilexamination.Inaddition,the77signatureand2sigma tubesreceiveda25%sampleinspectionby+PointTMatEOC28.TheSGwiththelargestnumberofhigh residualstresstubesisS/G3Bwith38identifiedtubes.Inthisassessment,twokeyassumptionsare made:

1)

Theatriskpopulationwasconservativelyassumedtocoverallhotlegtubeintersectionsinthe 38tubes,atotalof275locations.Thisnumberofpossibleinitiationsaddssufficientmarginto coverthepossibilitythatsomehighresidualstresstubesmayhavebeenmissedduringthe screeningofearlierbobbindataforcandidates.

2)

Nodirectcreditistakenforthe+PointTMexaminationsinceitisasmallsample.TheOA conservativelyreliesonthe100%Bobbinexaminationforpredictingthetubeintegritycondition atEOC31.TheperformanceofthebobbinPODisnotasgoodasthe+PointTMasshownin Figure42,particularlyintheuppertail(deeperdepths).

TheOAmodelusedconsiderstwodifferentinitiationfunctionstomodeltwopossiblepredicted behaviors.Basedontheperformanceoftheotherunitswiththismechanism,theinitiationmost resemblesanacuteinitiationmodelwhichinitiatessomediscretenumberofindicationswithinashort operatingperiod.Theseindicationsthengrowandeventuallyaredetected.Atsomepoint(s)inthe future,anotheracuteinitiationeventisexperienced.However,sincetheleadplantanalysiswouldhave predictedindicationslongagoatPTN3,theinitiationmaynotfollowanacuteinitiationmodeland couldbedescribedbyalowslopeWeibullmodel.Therefore,twoinitiationmodelswereevaluated,one withrapidinitiationofSCCinacluster,andthesecondhavingagradualevolutionofSCCoveratimeas observedwithotherSCCmechanisms.

Intheacutemodel,fourindicationsareassumedtoinitiatewithinaveryshortoperatingwindow.This valueisselectedbasedontheobservationthatexcludingthePlantBexperience,nootherhighresidual stresstubeSCCeventinvolvedmorethan4tubes.SincethismechanismhasnotbeenreportedatPTN 3,themodelissetupasarelativemodel.Thatis,theEFPYvaluesinthemodelarerelativetothe currentplantaccumulatedEFPY.Inthemodelthefirstinitiationoccursatapproximately5.7EFPYand thecharacteristiclifeisselectedas6EFPY,thus2.5indicationsareinitiatedatthispoint.The6EFPY modelinputrepresentstheEOC27outage.TheEOC28outageisrepresentedas7.4EFPYinthemodel.

Inthelowslopemodel,1predictedinitiateispresentattheEOC28inspectionand3initiatesare presentattheEOC31inspection.

Asmentionedearlier,a25%+PointTMinspectionofhighresidualstresstubeTSPintersectionswas performedatEOC28inadditionto100%bobbincoilinspection.Thesupplemental+Pointinspection wasconservativelyneglectedinthemodel.

a, b,

c a,

b

AIM2003107742Q1(NP),Rev.1 NON-PROPRIETARY Page56 Thestructuralaveragedepthgrowthrateappliedinbothmodelsistheupperbounddefaultgrowth value;thisfunctionhasaLognormalmeanof1.95andstandarddeviationof0.65.Thisgrowthrateis judgedconservativeforthismechanism.

TheappliedbobbinprobePODistakenfrom[13].ThisPODcurvewasconservativelyadjustedsuchthat thedepthassociatedwithaPODof0.33is40%TW.ThisPODcurveisconservativecomparedtothethe ETSSI28413PODcurve.Duetothemannerinwhichthemodelsweredeveloped,thePODcurvehas littleimpactonthepredictedprobabilityofburst,onlythenumberofdetectedindicationsattheEOC31 inspection.Figure62presentsaplotoftheETSSI28413PODcurveandthePODcurveusedinthis analysis.

ThestructuralequivalentlengthdistributionusedisbasedonthecombinedPlantBandPlantCflaw lengths.ThecombinedlengthdistributionwascombinedviaaMonteCarlosimulationwiththeuniform distributionappliedforaxialODSCCattheTTS..Thisdistributionadjuststhetotalflawlengthtoa structuralequivalentlength.Theratiooftotaltostructuralequivalentforallpulledtubesincludedin thedevelopmentoftheEPRIETSSdatabaseshasamuchlargerupperboundvaluecomparedtothe adjustmentdistributionthustheapplieduniformdistributionusedtoconverttotallengthtostructural equivalentlengthisconservative.

6.6.1 AcuteInitiationModel ThemodelpredictionsfornumberofinitiatedindicationsandBobbindetectionsfortheplant outagesareshowninthetablebelow.

AxialODSCCatTSPs - Summary 100% BobbinatEOC28 (AcuteCase)

Outage EOC 27 EOC 28 EOC 29 EOC 30 EOC31 PlantEFPY 26.13 27.40 28.83 30.23 31.73 ModelEFPY 5.8 7.07 8.5 9.9 11.6 CumulativeInitiated 1

4 4

4 4

ExamScope N/A 100%

N/A N/A 100%

NumberDetected 0

NDD 0

0 3

AtEOC31,theacutemodelpredicts3indicationswillbedetectedoutofthe4thatareinservice.

TherelevantinputstotheOAmodelareprovidedbelow:

InputFileName:

TP3_AxOD_HS_TSP_Bobbin_Ext_UBGrowth Weibullslope,characteristiclifeandsusceptiblepopulationsize:

25,6EFPY,4 NormalOperatingConditionPressureDifferential:

1460psi LogNormalStructuralAverageGrowthMean,SD,andmaximum:

1.95,0.65,28%/EFPY ModelEFPYEqualtoFirstInitiation,EquivalentPTN3EFPY:

5.8,26.13EFPY ProbeTypeandPODParameters:

Bobbin;21.9,13.3 At11.6EFPY,whichconservativelyrepresentstheEOC31outage,theprobabilityofburstis3.25%,

whichmeetstheperformancestandardof<5%POBfortheSIPCmarginrequirementof3xNOPD.The probabilityofleakageexceedingtheAILPCvalueis1.13%forthemechanism.

a, b, c a,

b

AIM2003107742Q1(NP),Rev.1 NON-PROPRIETARY Page57 6.6.2 LowSlopeInitiationModel ThelowslopemodelusesaWeibullslopeof1.5,characteristiclifeof140EFPY,andsusceptible populationsizeof275locations.PTN3onlyhas77identifiedhighresidualstresstubes,with38found inS/G3B.AllofthePTN3highresidualstresstubesare2sigmatubes,i.e.,identifiedinRows9and higher.ThesusceptiblepopulationsizerepresentsallhotlegTSPandFBPintersectionsfor38tubesand isjudgedconservativeaspreviouslydescribed.

AxialODSCCatTSPs-Summary 100% BobbinatEOC28 (LowSlopeCase)

Outage EOC 28 EOC29 EOC30 EOC31 PlantEFPY 27.40 28.83 30.28 31.73 ModelEFPY 4.00 5.38 6.83 8.25 CumulativeInitiated 2

3 4

5 ExamScope 100%

N/A N/A 100%

NumberDetected NDD 0

0 2

TherelevantinputstotheOAmodelareprovidedbelow:

InputFileName:

TP3_AxODSCC_TSP_EOC30_Case2A Weibullslope,characteristiclifeandsusceptiblepopulationsize:

1.5,140EFPY,275 NormalOperatingConditionPressureDifferential:

1460psi LogNormalStructuralAverageGrowthMean,SD,andmaximum:

1.95,0.65,28%/EFPY ModelEFPYEqualtoFirstInitiation,EquivalentPTN3EFPY:

3.3,26.77EFPY ProbeTypeandPODParameters:

Bobbin;21.9,13.3

At8.25EFPY,whichrepresentstheEOC31outage,theprobabilityofburstis2.6%whichmeetsthe performancestandardof<5%POBattheSIPCmarginrequirementof3xNOPD.Theprobabilityof leakageexceedingtheAILPCvalueis2.4%at1xLAPD.Forthismechanism,theprobabilitiesfromthe acutemodelandlowslopemodeldonotrequirecombinationaseachOAanalysiscaseissolvingthe samemechanismundertwoseparatesetofassumptions.

6.7 AxialODSCCatDingsandDents Tubedingsanddentsinfreespans,atUbends,andatstructures,havebeentestedinpastoutageswith ECTinasamplingprograminvolvingBobbincoilfordings/dentsignals<5volts,andwiththe+PointTM forsignalvoltages>5volts.Eachinspectionoutage,50%samplingisconductedonthehotleg(HL)side forthe>5voltspopulation,and100%for<5voltpopulation.Theprimaryfocusoftheexaminationsis tomonitorforSCConthehotlegwhereitismorelikelyforSCCtoinitiatefirstduetohighertube operatingtemperatures.Bobbintestingdoescoverboththehotlegandcoldlegsidesforthose dings/dentswherevoltagesare<5v.Therefore,threeOAmodelsrequiredarebobbinexamination scope,andoneeachforthe50%sampledpopulationsby+PointTM(EOC26andEOC28) 6.7.1 AxialODSCCatHot/ColdLegDings5Volts IfaxialODSCCinitiatedatthetimeestimatedfromotherplantexperience,thoseindicationswouldhave beendetectedatEOC28,ifthegrowthrateweredescribedbytheEPRIIAGLtypicaldefaultcurve.A a,

b, c

AIM2003107742Q1(NP),Rev.1 NON-PROPRIETARY Page58 growthrateofLNmeanof1.20withSDof0.65andmaximumof16%TWperEFPYisdeterminedto producealowprobabilityofdetectionandifthisgrowthratewereapplied,thattheprobabilityofburst atEOC31is2.31%andtheprobabilityofleakageexceedingtheAILPCvalueis0.26%assumingthat initiationoccurredatEOC21withnosubsequentdetections.

GiventhattheinitiationanalysisshowsthatindicationswouldbedetectedatEOC28withinitiationat EOC21,thesamemethodologyappliedforothermechanismsthatinitiationoccursonecyclepriorto themostrecent100%inspection,oratEOC27.Thestructuralequivalentlengthdistributionistakenfor thePlantDdingcracktotallengthdistributionandthesameadjustmentdistributionasabove.The evolutionofthenumberofinitiationsisshowninthebelowtable.

AxialODSCCatDings/Dents-Summary 100% BobbinatEOC28 (Case2)

Outage EOC28 EOC29 EOC30 EOC31 PlantEFPY 27.40 28.83 30.16 31.36 ModelEFPY 3.99 5.42 6.80 8.25 CumulativeInitiated 4

6 8

10 ExamScope 100%

Skip Skip 100%

NumberDetected 0

0 0

1

TherelevantinputstotheOAmodelareprovidedbelow:

InputFileName:

TP3_AxODSCC_DingDent_3A_EOC30_Case2 Weibullslope,characteristiclifeandsusceptiblepopulationsize:

1.5,200EFPY,30 NormalOperatingConditionPressureDifferential:

1460psi LogNormalStructuralAverageGrowthMean,SD,andmaximum:

1.5,0.65,19%/EFPY ProbeTypeandPODLoglogisticParameters:

Bobbin;74.06,41.31

AtEOC31,theprobabilityofburstforthe5vpopulationinspectedatEOC28is0.97%andthe probabilityofleakageexceedingtheAILPCis0.48%forthemechanism.

6.7.2 AxialODSCCatHotLeg>5VDings The50%+PointTMexaminationwasperformedatEOC26andEOC28forallthreeSGs.Becauseofthe longoperatingperiodfromEOC26toEOC31(5cycles),thisgroupoftubeswillbethemostchallenging ontubeintegrity.Thenumberofhotlegdings/dentsinS/G3Aisabout170soeach50%sample containsabout85dings/dents.ThesamecrackgrowthrateusedforthebobbinOAmodelwasused, whichisbasedonEPRIIAGLdefaultlognormaldistribution.Thesamelengthdistributionfromthe Plant Ddingcrackdatasetwasalsoused.FortheinspectionatEOC28,theevolutionofthenumberof initiationspredictedbythemodelisshowninthebelowtable.

AxialODSCCatDings/Dents-Summary 50%+PTatEOC28 (Case1A)

Outage EOC 28 EOC 29 EOC 30 EOC31 PlantEFPY 27.40 28.83 30.16 31.36 ModelEFPY 3.99 5.42 6.80 8.25 CumulativeInitiated 2

2 2

3 ExamScope 100%

Skip Skip 100%

NumberDetected NDD 0

0 1

a, b, c a,b

AIM2003107742Q1(NP),Rev.1 NON-PROPRIETARY Page59 TherelevantinputstotheOAmodelareprovidedbelow:

InputFileName:

TP3_AxODSCC_DingDent_3A_EOC30_Case1A Weibullslope,characteristiclifeandsusceptiblepopulationsize:

1.5,125EFPY,85 NormalOperatingConditionPressureDifferential:

1460psi LogNormalStructuralAverageGrowthMean,SD,andmaximum:

1.5,0.65,19%/EFPY ModelEFPYEqualtoFirstInitiation,EquivalentPTN3EFPY:

2.8,25.6EFPY ProbeTypeandPODParameters:

+PT;66.7,39.2 AtEOC31,theprobabilityofburstforthe>5vpopulationsinspectedatEOC28is0.62%andthe probabilityofleakageexceedingtheAILPCis0.37%forthemechanism.

TheOAforthe>5vdings/dentsinspectedatEOC26wasevaluatedasCase1B.Exceptforthelonger operating,theinputparametersaresimilarasCase1A.Forthe5cyclesfromtheinspectionatEOC26, theevolutionofthenumberofinitiationspredictedbythemodelisshowninthebelowtable:

AxialODSCCatDings/Dents-Summary 50%+PTatEOC26(Case1B)

Outage EOC26 EOC 27 EOC 28 EOC 29 EOC30 EOC31 PlantEFPY 26.13 27.40 28.83 30.23 31.73 26.13 ModelEFPY 3.88 5.30 6.57 8.00 9.38 10.83 CumulativeInitiated 1

2 2

3 3

4 ExamScope 50%

Skip Skip Skip Skip 100%

NumberDetected NDD 0

0 0

0 1

TherelevantinputstotheOAmodelareprovidedbelow:

InputFileName:

TP3_AxODSCC_DingDent_3A_EOC30_Case1B Weibullslope,characteristiclifeandsusceptiblepopulationsize:

1.5,100EFPY,85 NormalOperatingConditionPressureDifferential:

1460psi LogNormalStructuralAverageGrowthMean,SD,andmaximum:

1.5,0.65,19%/EFPY ProbeTypeandPODParameters:

+PT;66.7,39.2 AtEOC31theprobabilityofburstis1.16%andtheprobabilityofleakageexceedingtheAILPCis0.54%

forthemechanism.

Forthethreesubmodels,thetotalPOBandPOLfromaBooleancombinationare:

POB=1(10.0116)(10.0062)(10.0097)=2.73%

POL=1(10.0048)*(10.0037)*(10.0054)=1.38%

ThetotalPOBforthismechanismsatisfiestheSIPCmarginrequirementperformancestandardof5%.

ThePOLisalso5%.

a, b,

c a,

b, c

AIM2003107742Q1(NP),Rev.1 NON-PROPRIETARY Page60 6.7.3 AxialODSCCatColdLegDents>5Volts Dingsanddentsonthecoldlegsidearenotexaminedinthesamplescopesofpastinspections.

AlthoughitisnotexpectedthatSCCwillfirstdevelopinthecollegside,thereisariskthatsmallSCC flawsexitintheuppertopTSPs(05Cand06C).Thisriskisevaluatedasacheckonanyadverseeffectsto theburstandleakageprobabilities.

TheOAmodeltoevaluatethisconditionisbasedsolelyonprojectedperformanceofthetubingasno inspectiondataareavailableforcoldlegdents>5V.ThetemperatureatthetopcoldlegTSPis estimatedat565oF.TheassociatedtemperatureadjustmentfactorbetweenthePlantBtophotlegTSP andPTN3topcoldlegTSPis1.70resultinginanequivalentfirstinitiationof21.1EFPY.

AtPTN3,21.1EFPYisapproximatelyequaltoEOC23(20.83EFPY).Foratemperatureof565oF,the temperatureadjustedEPRIIAGLtypicaldefaultgrowthratewouldhaveaLognormalmeanvalueof 0.41.Inthisanalysis,aconservativevalueof1.0fortheLognormalmeanwillbeusedwithstandard deviationof0.65,andmaximumvalueof12%/EFPY.Thefirstinitiationpointisconservativelytakenat EOC23,or20.83EFPY.

Thereare1711coldlegdents>5v.TherelevantinputstotheOAmodelareprovidedbelow:

InputFileName:

TP3_AxOD_DNGDNT_ColdLeg_GT5V_OA Weibullslope,characteristiclifeandsusceptiblepopulationsize:

1.5,200EFPY,1700 NormalOperatingConditionPressureDifferential:

1460psi LogNormalStructuralAverageGrowthMean,SD,andmaximum:

1.0,0.65,12%/EFPY ModelEFPYEqualtoFirstInitiation,EquivalentPTN3EFPY:

2.8,21.1EFPY ProbeTypeandPODParameters:

Bobbin;74.06,41.31 TheprobabilityofburstatEOC31is0.11%andtheprobabilityofleakageexceedingtheAILPCiszero.

Therefore,theriskislowthatSCConthecoldlegsidewouldcauseasignificantincreaseintheburst probabilitiesorintheleakagepotentialforthisdegradationmechanism.

6.8 OtherMechanisms ThetwootherpotentialmechanismslistedintheDAareaxialODSCCinfreespanregionsandPWSCCin smallradiusUbends.Bothdegradationmechanismshavenotbeenobservedin600TTplantsexcept whenstressrisersarepresent.Duetolimitedexperienceandoperatingdataforthesemechanisms,itis assumedthattheywillbeconservativelyboundedbytheresultsoftheOAcaseforODSCCatTSPs.

Therefore,thetubeintegrityforthesemechanismswillbemaintainedduringtheextendedinterval.

6.9 SummaryofOperationalAssessmentResultsforPotentialMechanisms TheOAforthepotentialmechanismsidentifiedforPTN3SGtubinghasbeencompletedtosupport deferringtheEOC30inspectionsbyoneoperatingcycle.TheOAevaluatedallpotentialcorrosion degradationmechanismsinundertheassumptionthattheyareactivefollowingthelastinspectionat EOC28.Theresultsforprobabilityofburst,leakage,calculatedleakratesunderthepostulatedlimiting accidentconditionsaresummarizedinTable61.

a, b,

c a, b

AIM2003107742Q1(NP),Rev.1 NON-PROPRIETARY Page61 ThecalculatedprobabilityofburstforallevaluatedmechanismssatisfytheSIPCmarginrequirementof 3xNOPDforthreecycleoperatingperiodthroughtoEOC31.Thecumulativeaccidentinducedleakage isdeterminedbysummingtheprojectedleakratesatEOC31.Itwouldnotbecredibletoassumethatall potentialmechanismswouldbeactiveinoneoperatingperiod.Plantswhohaveobservedmultiple corrosiondegradationmechanismislimitedtotwooratmostthreemechanismexistinginasingle period.AssumingthreelimitingmechanismsbecomeactiveinoneSG(i.e.,axialODSCCatTSPs, circumferentialODSCCatTTS,andaxialODSCCatdings/dents),thecumulativeleakrateisdetermined tobe0.11gpm.ThisleakagevalueislessthantheAILPCleaklimitof0.2gpmforanyoneSG.Therefore, bothtubestructuralintegrityandleakageperformancemeetstherequirementsofNEI9706andthe PTN3TechnicalSpecifications,undertheveryconservativeconditionthatallpotentialmechanismsare evaluatedasexisting.

AIM2003107742Q1(NP),Rev.1 NON-PROPRIETARY Page62 Table61 SummaryofOAResultsforLimitingPotentialMechanisms Mechanism ModelCase Probe Type ExamSlope Probabilityof Burst Probabilityof LeakageExceeding AccidentInduced LeakLimit Calculated 95/50Leakage (gpm)

CircODSCCatTTSExpansionTransitions Generic

+PT(EOC26)

XProbe(EOC28) 50%

3.19%

<0.28%

0.051

[Note3]

AxialODSCCatTTSExpansionTransitions Generic

+PT(EOC26)

XProbe(EOC28) 50%

0.26%

0.24%

0.0005 CircPWSCCatTTSExpansionTransitions Bounding

[Note1]

+PT(EOC26)

XProbe(EOC28) 50%

<3.19%

<0.14%

<0.051 AxialPWSCCatTTSExpansionTransitions Bounding

[Note1

+PT(EOC26)

XProbe(EOC28) 50%

<0.26%

<0.24%

~0 AxialODSCCatTSPincludingHigh ResidualStressTubes Acute LowSlope Bobbin 100%

3.25%

2.60%

1.13%

2.4%

0.0099 0.059 AxialODSCCatTubeDings/Dents S/G3A Bobbin(<=5v)

+PT(>5vHL) 100%

50%

2.73%

1.38%

0.0004 AxialODSCCatFreespans Bounding

[Note2]

Bobbin 100%

<2.6%

<1.13%

<0.0099 PWSCCinSmallRadiusUBends Bounding

[Note2]

+PT 50%

<2.6%

<1.13%

<0.0099 Notes:

1)

PWSCCatTTSisboundedbyODSCCatTTScases 2)

SCCatfreespanshasnotbeenobservedinA600TTplantsexceptwhenstressrisersarepresent.TheOAcaseforODSCCatTSPsisusedtoboundtubeintegrity conditionforthesemechanisms.

3)

LeakrateanalysisbasedonEPRImethodologyin[9]

AIM2003107742Q1(NP),Rev.1 NON-PROPRIETARY Page63

Figure61:LengthDistributionsofAllAxialSCCFlawsfortheA600TTFleet

a, b, c

AIM2003107742Q1(NP),Rev.1 NON-PROPRIETARY Page64 Figure62:AxialODSCCBobbinCoilPODCurves 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0

10 20 30 40 50 60 70 80 90 100 ProbabilityofDetection Depth,(%TW)

BobbinPODFunctionsforAxialODSCCatTubeSuportPlates ETSSI28413 AppliedCurve a, c

AIM2003107742Q1(NP),Rev.1 NON-PROPRIETARY Page65 7lSummaryandConclusions TurkeyPointUnit3ispreparingaonetimelicenseamendmentrequesttoallowtheplanttodeferthe TP331steamgeneratorstubeexaminationstothenextscheduleoutageinOctober2021.Insupportof theLAR,thePTN3EOC28OAwasreevaluatedtoprovidethetechnicalbasisforskippingthespring 2020SGinspections.TheOAconservativelyevaluatedthepotentialcorrosiondegradationmechanisms asbeingactiveinadditiontotheexistingmechanicalwearattubesupportsandflowdistributionbaffle plates,andallknownorpostulatedforeignobjectsintheSGsecondaryside.

ThefollowingconclusionsweredrawnfromtherevisedOA:

1)

TheresultsfromtherevisedOAfullysupporttheskippingoftheEOC30inspection.

2)

Structuralintegrityperformancecriterionmarginrequirementofthreetimesnormaloperating pressure(3xNOPD)ontubeburstwillbesatisfiedatEOC31fortheexistingandpotential degradation, 3)

Accidentinducedleakageperformancecriteriaforthelimitingaccidentconditionwillbe satisfiedforthecumulativeleakagerequirementforanyoneSGandforallthreeSGsfor operatingperiodtoEOC31.

Therefore,giventheexaminationscopeimplementedatEOC28,allstructuralandaccidentleakage performancecriteriainNEI9706arepredictedtobemetthroughtheendofCycle31fortheexisting andpotentialdegradationmechanisms.

AIM2003107742Q1(NP),Rev.1 NON-PROPRIETARY Page66 8lReferences

[1]

SteamGeneratorProgramGuidelines,NuclearEnergyInstitute,NEI9706,Revision3 (January 2011).

[2]

SteamGeneratorManagementProgram:SteamGeneratorIntegrityAssessmentGuidelines, Revision4,EPRI3002007571ElectricPowerResearchInstitute,(June2016).

[3]

ConditionMonitoringandOperationalAssessmentforTurkeyPointUnit3SteamGenerators BasedonTurkeyPointEddyCurrentExaminationResultsforEndofCycle28,March2017, IntertekAIMReportAIM1602101842Q3,(June2017).

[4]

DegradationAssessmentforTurkeyPointUnit3andTurkeyPointUnit4SteamGenerators, UpdatefortheTurkeyPointUnit3EndofCycle28RefuelingOutage(March2017),IntertekAIM ReportAIM16101015121Revision1,(March2017)

[5]

EmailfromK.Thompson(FPL)toR.Cipolla(IntertekAIM),PTN3QAregardingprimary secondaryLeakageduringCycle30,(3/28/2020)

[6]

StructuralLimitEvaluationforSteamGeneratorTubeDegradationatTurkeyPointandSt.Lucie NuclearPlants,IntertekAIM,ReportAIM150588682Q1(November2016)

[7] SteamGeneratorManagementProgram:SteamGeneratorInSituPressureTestingGuidelines, Revision5,EPRI3002007856(November2016)

[8]

SteamGeneratorManagementProgram:SteamGeneratorDegradationSpecificManagement FlawHandbook,Revision2,EPRI3002005426,ElectricPowerResearchInstitute,FinalReport (August2015)

[9]

DepthBasedStructuralAnalysisMethodsforSteamGeneratorCircumferentialIndications, ReportTR107197P1,ElectricPowerResearchInstitute,(November1997)

[10] UsersManualforOPCON3.03OperationalAssessmentandConditionMonitoringofSteam GeneratorTubes,AptechEngineeringServices,Inc.,(2007)

[11] EPRIExaminationTechniqueSpecificationSheets,EPRIqdatabase.

[12] EmailfromK.Thompson(FPL)toR.Cipolla(IntertekAIM),Cycles29,30,31EFPY,(3/29/2020)

[13] FeasibilityStudyforthePotentialtoExtendInspectionIntervalsforA600TTFleet,Intertek ReportAIM19061063621,Rev.0,ElectricPowerResearchInstitute10011093,(December2019).

[14] DegradationGrowthRatesfortheSt.LucieUnits1and2,andTurkeyPointUnits3and4Steam Generators,IntertekAIM,ReportAIM150588682Q2(October2016)

[15] CR1871783,Unit3BSteamGeneratorFeedwaterFlowandPressureTransientWhileat100%

Power,TurkeyPointNuclearUnits3&4RootCauseAnalysis,NEXTeraEnergy,(12/2/2013).

AIM2003107742Q1(NP),Rev.1 NON-PROPRIETARY Page67

[16] DebrisImpactonSGTubeIntegrity(Revised),RevisedCalculationforSGWearRateIAWWCAP 14258,Rev.3,FPL,(7/17/2014).

[17] FloridaPower&LightCo.,TurkeyPointUnit3,10CFR50.59EvaluationforUnit3Steam Generators'SecondarySide,ForeignObjects,FPLJPNPTNSEMS96038

[18] WCAP17091P,H*:AlternateRepairCriteriafortheTubesheetExpansionRegioninSteam GeneratorswithHydraulicallyExpandedTubes(Model44F),(June2009)FPLReferencePTNENG SESJ09016EngineeringEvaluationRequestforH*:AlternateRepairCriteriaforSteam GeneratorTubesheetExpansionRegion.

[19] ScreeningforHighResidualStressConditionTubesPTNUnit4,AREVAReport515035368001, (October22,2009)

Turkey Point Nuclear Plant L-2020-064 Enclosure 3 Docket No. 50-250 Intertek Affidavit

1ntertek lntertek AIM 3510 Bassett Street Santa Clara, CA 95054 USA Tel +1408.745.7000 Fax +1408.734.0445 lntertek.com/aim/englneering Total Quality. Assured.

AFFIDAVIT for AIM 200310774-2Q-1 State of California, County of Santa Clara:

(1) I, Michael T. Cronin, have been specifically delegated and authorized to apply for withholding and execute this Affidavit on behalf of lntertek USA, Inc. dba lntertek AIM (lntertek).

(2) I am requesting the proprietary portions of lntertek report AIM 200310774-2Q-1 be withheld from public disclosure under 10 CFR 2.390(a)(4), and for the following reasons to be considered pursuant to 10 CFR 2.390(b)(4).

(3) In making this application for withholding of proprietary and confidential information, I have personal knowledge of the engineering practices and procedures utilized by lntertek, and the ability in designating specific information and data that are considered trade secrets, privileged, confidential, commercial, or financial information.

(4) Pursuant to 10 CFR 2.390, the following is furnished for consideration by the Commission in determining whether the information sought to be withheld from public disclosure should be withheld.

a.

The information sought to be withheld from public disclosure is owned and has been held in confidence by lntertek and is not customarily disclosed to the public.

b.

Public disclosure of this proprietary information is likely to cause substantial harm to the competitive position of lntertek because it would enhance the ability of competitors to provide similar technical evaluation justifications and licensing defense services for commercial power reactors without commensurate expenses. Also, public disclosure of the information would enable others to use the information to meet NRC requirements for licensing documentation without purchasing the right to use the information.

c.

The information sought to be withheld from public disclosure has been provided to lntertek under a license and/or non-disclosure agreement by a third party and may not be customarily disclosed unless the third party waives its rights to the information.

(5) lntertek does not publically release or disclose proprietary or confidential information in the course of business. Information is held in confidence if the release of which might result in the loss of an existing or potential competitive advantage, or discloses client proprietary information, as listed below:

AWPl-10774-1

a.

The information reveals details of proprietary practices or procedures used by lntertek to include analytical methods or processes, where its disclosure to any of lntertek's competitors without license from lntertek will be harmful to lntertek's business.

Page 1 of 2

AFFIDAVIT for AIM 200310774-2Q-1

b.

It consists of supporting data, including test data, relative to an analytical procedure or process, the use of such would give lntertek's competitors an economic advantage.

c.

It reveals procedures, methods, or data which are proprietary to a third party, for which lntertek is obligated to protect.

d.

Its use by a competitor would reduce that competitor's expenditure of resources or improve that competitor's competitive position.

e.

It contains patentable methods for which patent protection may be desirable.

f.

It reveals cost or price information, production capacities, budget levels, or commercial strategies of lntertek, its customers, or its suppliers.

g.

It reveals aspects of past, present, or future lntertek or customer funded development plans and programs of potential commercial value to lntertek.

(6) The attached document is bracketed and marked to indicate the bases for withholding. The justification for withholding is indicated by means of lower case letters (a) through (g) located in the upper left corner within the bracketed area enclosing each item of information being identified as proprietary. These lower-case letters refer to the types of information lntertek customarily holds in confidence identified in Sections (S)(a) through (g) of this Affidavit.

I declare that the affirmations set forth in this Affidavit are true and correct to the best of my knowledge, information, and belief.

I declare under penalty of perjury that the foregoing is true and correct.

Executed on:

Director of Engineering AWPl-10774-1 Page 2 of 2

JURAT A notary public or other officer completing this certificate verifies only the identity of the individual who signed the document to which this certificate is attached, and not the truthfulness, accuracy, or validity of that document.

State of California County of Sa.,r,ta Gl~Ct Subscribed and sworn to (or affirmed) before me on this 5 th day ot_A_,p~r_; _( ___.

20J.O by ~fehad Thr, rl\\.ru C.X--o n~ n proved to me on the basis of satisfadory evidence to be the personOO who appeared before me.

)l.;JJA._~

l. Signature OPTIONAL INFORMATION DESCRIPTION OF THE ATTACHED DOCUMENT (Trlle or description of attached document)

(Tille or desaiplion of attached document ainlilued}

Number of Pages __ Document Date. ___ _

Adcfdional infonnatlon 2015 Version www.NotaryClasses.com 800-873-9865 (SeaQ INSTRUCTIONS The wonJing of a6 Jurats corrpleted ii Ca6fomi8 lift.er Jtmary 1, 2015 nll8l be in the foon as set forth within this Jurat. 1hel9 am no exceptioos. If a Jurat to be COllf)leted does nat follow this form, the oota,y l1IJSt oonect the verbiage by using a jJnd stamp CtJflfainklg the cofT&ct wording or allsching a separal& jsat roan such as this one with ooea contsin the proper wmiilg. /n addilion, the notary nllSl requ/t& 8ll odJ OI alfimBlion ffl the document signer regarding the truthWless ri the rontents of the docurrent. The document must be signed AFTER the 08lh or dmalloo. If the doamlent was p,eviously signed, ii must be,e-signed ii front of the nata,y pubic during the jJl'lt process.

  • State and county information must be the state and county where the document signer(s) personally appeared before the notary public.
  • Date of notarization must be the date the signer(s) personally appeared which must also be the same date the jurat process is completed.
  • Print the name(s) of the* document signer(s) who personally appear at the time of notarization.
  • Signature of the notary public must match the signature on file 'Mth the office of the county clerk.
  • The notary seal Impression must be clear and photographically reproducible. Impression must not cover text or lines. If seal impression smudges, re-seal if a sufficient area permits, otherwise complete a different jurat form.

+ Additional information Is not required but could help to ensure this jurat is not misused or attached to a different document.

+

Indicate title or type of attached document, number of pages and date.

  • Securely attach this document to the signed document with a staple.