ML17157A337

From kanterella
Revision as of 19:46, 29 June 2018 by StriderTol (talk | contribs) (Created page by program invented by StriderTol)
Jump to navigation Jump to search
Proposed Tech Specs in Support of Facility Cycle 5 Reload
ML17157A337
Person / Time
Site: Susquehanna Talen Energy icon.png
Issue date: 09/24/1990
From:
PENNSYLVANIA POWER & LIGHT CO.
To:
Shared Package
ML17157A336 List:
References
NUDOCS 9010010143
Download: ML17157A337 (57)


Text

{{#Wiki_filter:~SUSQUEHANNA SESUNIT2CYCLE5TECHNICAL SPECIFICATION CHANGESSEPTEMBER 1990PENNSYLVANIA POWER5.LIGHTCOMPANY~~~49010010143 900924PDRADOCK05000388 INDEXDEFINITIONS SECTIONOEFINITIONS (Continued)1.26OPERABLE-OPERABILITY..................................... PAGE1-41.27OPERATIONAL CONDITION -CONDITION.......................... 1-41.28PHYSICSTESTS..... 1-51.29PRESSUREBOUNDARYLEAKAGE.................................. 1-51.30PRIMARYCONTAINMENT INTEGRITY.............................. 1-51.31PROCESSCONTROLPROGRAM.................................... 1-5lo32PURGE-PURGINGo ~~~~~~~~~~~o~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~1-51.33RATEDTHERMALPOWER...1.34REACTORPROTECTION SYSTEM'RESPONSE TIME.................... 1-61-61.35REPORTABLE EVENT...~-.....-.......... ~~.~..~........... ~...1-61.36RODDENSITY..................;....... ~scsawsussex/<~crtal.37SECONDARY CONTAIlNENT INTEGRITY...... ~~~~~~~~~~~~~~~~o~~~~~1-61-6'.38SHUTDOWNMARGIN...................... ~~~~~~~~~~~~~~~~~~~~~~1-71.39SITEBOUNOARY...........;.................................. 1-71.40SOLIDIFICATION................ ~...-.~........ ~~~.~~~.~.~~~~1-7141SOURCECHECKo~~~~~~~~~~~~~~~o~o~o~~~~o~~~~o~~~oo~~~~~~~~~~1-71.42STAGGERED TESTBASIS....................................... 1-7F43THERMALOERo~~~~~~~~~~~~~~~o~~~~~~~~~~~~~~~~~~~~~~~o~~~~11-71.44TURBINEBYPASSSYSTEMRESPONSETIME........................ 1-71.45UNIDENTIFIED LEAKAGE.................. 1-71.46UNRESTRICTED AREA............................-. 1-81.47VENTILATION DHAUSTTREATMENT. SYSTEM....................... 1-8~48VENTINGo~~~~~~~~~~~~~~~o~~~~~~~~~~~~~~~~~~~~~~~~~~~o~~~~~~~11-8SUSQUEHANNA -UNIT2 LISTOFTABLESINOEX-TABLE1.2PAGESURVEILLANCE FREQUENCY NOTATION................... 1-9OPERATIONAL CONOITIONS ........................ 1-102.2.1-1paQ3.3.1"1REACTORPROTECTION SYSTEHINSTRUMENTATION SETPOINTS ~~~~~~~~~~~~~~~~~~~5CghaSPE'CDFRACWWCPVeRS~SPVERRaeg<RP~~Z>eSREACTORPROTECTION SYSTEMINSTRUMENTATION ......... 2-4g/0Z-Ch3/43-23.3.1-24.3.1.1-13.3.2-13.3.2-23.3.2-.34.3.2.1-13.3.3-13.34323.3.3-34.3.3.1-13.3.4.1-1REACTORPROTECTION SYSTEMRESPONSETIHES.......... '/43-6REACTORPROTECTION SYSTEMINSTRUMENTATION SURVEILLANCE REQUIREMENTS ............'............. 3/43-7ISOLATION ACTUATION INSTRUHENTATION ............... 3/43-11ISOLATION ACTUATION INSTRUMENTATION SETPOINTS .....3/43-17ISOLATION SYSTEMINSTRUMENTATION RESPONSETIME.....3/43-21ISOLATION ACTUATION INSTRUMENTATION SURVEILLANCE RE(UIREMENTS ........................ ............. 3/43-23EHERGENCY CORECOOLINGSYSTEM'CTUATION INSTRUMENTATION ................................... 3/43-28EMERGENCY CORECOOLINGSYSTEMACTUATION INSTRUMENTATION SETPOINTS ................ 3/43-31EMERGENCY CORECOOLINGSYSTEMRESPONSETIMES......3/43-33EMERGENCY CORECOOLINGSYSTEMACTUATION INSTRUMENTATION SURVEILLANCE REQUIREHENTS;........ 3/43-34ATWSRECIRCULATION PUMPTRIPSYSTEMINSTRUMENTATION ................................... 3/43"373.3.4.1-2ATWSRECIRCULATION PUMPTRIPSYSTEMINSTRUMENTATION SETPOINTS 3/43-384.3.4.1-1 3.3.4.2-13.3.4.2-2 ATWSRECIRCULATION PUMPTRIPACTUATION INSTRUMENTATION SURVEILLANCE REQUIREMENTS ......... 3/43-39ENO-OF-CYCLE R'ECIRCULATION PUMPTRIPSYSTEMINSTRUMENTATION ................................... 3/43-42ENO-OF-CYCLE RECIRCULATION PUMPTRIPSETPOINTS ....3/43-433.3.4.2-3~~ENO-OF-CYCLE RECIRCULATION PUHPTRIPSYSTEMRESPONSETIME.................................. SUSQUEHANNA -UNIT2xxfv3/43"44Aaendaent No.31 LISTOFFIGURESINOEXFIGVRE3.1.5"13.1.5-23.2.1-13.2.2"13.2.3-13.2.3-23.2.4-1SODIUMPENTABORATE SOLUTIONTEMPERATURE/ CONCENTRATION REQUIREMENTS .SODIUMPENTABORATE SOLUTIONCONCENTRATION .....PAGE3/41-213/41-22MAXIMUMAVERAGEPLANARLINEARHEATGENERATION RATE(MAPLHGR) VS.AVERAGEPLANAREXPOSURE, ANF9X9FUEL.......~...............~3/42-2LINEARHEATGENERATION RATEFORAPRMSETPOINTS VERSUSAVERAGEPLANAREXPOSURE, ANFFUEL....~~....3/42-5FLOWDEPENDENT MCPROPERATING LIMIT.... 3/42-7REDUCEDPOWERMCPROPERATING LIMIT(~...~P .."~....3/42-8~ukeiu<'8i'PA~S' pggps~r)LINEARHEATGENERATION RATE(LHGR)LIMITVERSUSAVERAGEPLANAREXPOSURE, ANF9X9FUEL............ 3/42-103.4.1.1.1-1 3.2.6.1-14.7.4-183/43-183/4.4.6-15.1.1-15.1.2-15.1.3-la5.'.3-1bTHERMALPOWERRESTRICTIONS...............,......... MINIMUMREACTORVESSELMETALTEMPERATURE VS.REACTORVESSELPRESSURE~.SAMPLEPLAN2)FORSNUBBERFUNCTIONAL TEST......... REACTORVESSELWATERLEVEL.FASTNEUTRONFLUENCE(E)1MeV)AT1/4TASAFUNCTIONOfSERVICELIFE.EXCLUSION AREA.LOWPOPULATION EONE.MAPDEFININGUNRESTRICTED AREASFORRADIOACTIVE GASEOUSANOLIQUIDEFFLUENTS MAPDEFININGUNRESTRICTED AREASFORRADIOACTIVE GASEOUSANDLIQUIDEFFLUENTS.. 3/44-jb3/44-i33/47-1583/43-8'3/44"75-25-35-45-5g.Q.3gggoucEDPoeERMcPROPERIITrP6-aI~z7(nk~u S/0g-fe.TvRSx,u<SYpAs5~uoPERASc.e) geouceoeoete<<R~~<g(e.oc-RP> '3/0~-F4wgoPeRAB~e) SUSQUEHANNA -UNIT2XX11Amendment No.6O 1lDEFINITIONS RATEDTHERMALONER1.33RATEDTHERMALPANNERshallbeatotalreactorcoreheattransferratetothereactorcoolantof3293HIT.REACTORPROTECTION SYSTEMRESPONSETIME1.34REACTORPROTECTION SYSTEMRESPONSETIMEshallbethetimefntervaiframwhenthemonitored parameter exceedsftstripsetpofntatthechannelsensoruntf1deenergfzatfon ofthescrampilotvalvesolenofds. Theresponsetfaeaaybemeasuredbyanyseriesofsequential, overlapping ortotalstepssuchthattheentireresponsetfmefsmeasured. REPORTABLE EVEHT1.35AREPORTABLE EVENTshal'ibeanyofthoseconditions specified inSectfon50.73to10CFRPart50.ROOOENSITY1.36ROOOENSITYshallbethenumberofcontrolrodnotchesinsertedasafractionofthetotalnumberofcontrolrodnotches.Allrodsfullyinsertedfs.equivalent to100ROOOEHSITY.SECONDARY CONTAINMEHT INTEGRITY 1.37SECONOARY COHTAINEHT INTEGRITY shallexistwhen:a.Allsecondary cantafnment penetratfons requiredtobeclosedduringaccfdentcondftfonsareefther:1.CapableofbeingclosedbyanOPERABLEsecondary containment autoaatfc'fsolatfon system,or2.Closedbyatleastonemanualvalve,blindflange,or.deactivated automatic dampersecuredfnftsclosedposition, exceptasprovidedfnTable3.6.5.2-1 ofSpecification 3.6.5.2.b.Allsecondary containment hatchesandblowoutpanelsarecloEadandsealed.c.Thestandbygastreatment systeafsOPERABLEpursuanttaSpecificatfon3.6.5.3.d.Atleastonedoorfneachaccesstathesecondary containment isclosed.eThesealingmechanfsa associated witheachsecondary containment penetration, e.g.,welds,bellows,resilient materialseals,orO-rings,fsOPERABLE. Thepressurewithinthesecondary containment fslessthanorequaltothevaluerequiredbySpecification 4.6.5.1a. SUSquEHANNA -UNIT21-6 2.0SAFETYLIMITSANDLIMITINGSAFETYSYSTEMSETTINGS2.1SAFETYLIMITSTHERMALPOWERLowPressureorLow'low2.1.1THERMALPOWERshallnotexceed2RLofRATEDTHERMALPOWERwiththereactorvesselsteladomepressurelessthan785psigorcoreflowlessthan1'fratedflow.APPLICABILITY: OPERATIONAL CONDITIONS 1and2.ACTION:WithTHERMALPOWERexceeding 2'fRATEDTHERMALPOWERandthereactorvesselsteamdomepressurelessthan785psigorcoreflowlessthan10Kofratedflow,beinatleastHOTSHUTDOWNwithin2hoursandcomplywiththerequirements ofSpecification 6.7.1.THERMALPOWERHihPressureandHihFlow2.1.2IW1ththereactorvesselsteamdomepressuregreaterthan785psigandcoreflowgreaterthanlGZofratedflow.APPLICABILITY: OPERATIONAL CONDITIONS 1and2.4M3Wft(hQ@1essthan+8@andthereactorvesseIsteamdomepressuregreaterthan785psigandcoreflowgreaterthan1'fratedflow,beinatleastHOTSHUTDOWNwithin2hoursandcomplywiththerequirements ofSpecification 6.7.1.REACTORCOOLANTSYSTEMPRESSURE2.1.3Thereactorcoolantsystempressure, asmeasuredinthereactorvesselsteamdome,shallnotexceed1325psig.APPLICABILITY: OPERATIONAL CONDITIONS 1,2,3and4.ACTION:Withthereactorcoolantsystempressure, asmeasuredinthereactorvesselsteamdome,aboveL325psig,beinatleastHOTSHUTDOWNwithreactorcoolantsystempressurelessthanorequalto1325psigwithin2hoursandcomplywiththerequirements ofSpecification 6.7.1.SUSQUEHANNA -UNIT22-1Amendment No.26

2.1SAFETYLIMITSBASES

2.0INTRODUCTION

Thefuelcladding, reactorpressurevesselandprimarysystempipingaregg)principal barrierstothereleaseofradioactive materials totheenvirons. SafetyLimitsareestablished toprotecttheintegrity ofthesebarriersduringnormalplantoperations andanticipated transients. Thefuelcladdingintegrity SafetyLimitissetsuchthatnofueldamaeiscalculated tooccurifthelimitisnotviolated. ausedamaistdirtlyorvle,atep-aapprchissetoeslishafetLimisuchateRisotlethaneiitscifielnSpe'fioat'2.forFfu.Mgrearthathescifdlimreprentsaonserativearlatitothcondionsruirtomntainelclddin'nterheuecladdingisoneofthephysicalbarrierswhicseparatetheradioactive materials fromtheenvirons. Theintegrity ofthiscladdingbarrierisrelatedtoitsrelativefreedomfromperforations orcracking. Althoughsomecorrosion oruserelatedcrackingmayoccurduringthelifeofthecladding, fissionproductmigration fromthissourceisincrementally cumulative andcontinuously measurable. Fuelcladdingperforations, however,canresultfromthermalstresseswhichoccurfromreactoroperation significantly abovedesignconditions andtheLimitingSafetySystemSettings. Whilefissionproductmigration fromclad-dingperforation isjustasmeasurable asthatfromuserelatedcracking, thethermally causedcladdingperforations signalathreshold beyondwhichstillgreaterthermalstressesmacauserossratherthanincremental claddingdeteri-oratioerreheeladdgSet>>eeiaminiowh'doduonsotrsit'iliPR1.Tiesrepresenasignificant dearturefromthecondition intendedyesignforplannedoperation eMfeladdgiegrieyimiursingrmaopeat'add'ngantiipatdorat'alccuencteas99.9ofef1rs'ntcoednotxpeentrsi'onblinef.-.NF24(Resio1)2.1.1THERMALPOWERLowPressureorLowFlowTheuseoftheXN"3correlation isvalidforcriticalpowercalculations atpressures greaterthan580psigandbundlemassfluxesgreaterthan0.25x106lbs/hr-ft~. Foroperation atlowpressures orlowflows,thefuelcladdingintegrity SafetyLimitisestablished byalimitingcondition oncoreTHERMALPOWERwiththefollowing basis:Providedthatthewaterlevelinthevesseldowncomer ismaintained abovethetopoftheactivefuel,naturalcirculation issufficient toassureamini-mumbundleflowforallfuelassemblies whichhavearelatively highpowerandpotentiallj canapproachacriticalheatfluxcondition. FortheANF9x9fueldesign,theminimumbundleflowisgreaterthan30,000lbs/hr.Forthisdesign,thecoolantminimumflowandmaximumflowareaissuchthatthemassfluxisalwaysgreaterthan0.25x106lbs/hr-ft<. Fullscalecriticalpowerteststakenatpressures downto14.7psiaindicatethatthefuelassemblycriticalpowerat0.25x10lbs/hr-ft is3.35Mwtorgreater.At25Kthermalpowerabundlepowerof3.35Mwtcorresponds toabundleradialpeakingfactorofgreaterthan3.0whichissignificantly higherthantheexpectedpeakingthus,aTHERMALPOWERlimitof25KofRATEDTHERMALPOWERforreactorpressures below785psigisconservative. SUSQUEHANNA -UNIT282-1Amendment No.58 SAFETYLIMITSBASES2.1.2THERMALPOWERHihPressureandHihFlow0ApeOnsetoftransition boilingresultsinadecreaseinheattransferfromthecladand,therefore, elevatedcladtemperature andthepossibility ofcladfailure.However,theexistence ofcriticalpower,orboilingtransition, isnotadirectlyobservable parameter inanoperating reactor.Therefore, themargintoboilingtransition iscalculated fromplantoperating parameters suchascorepower,coreflow,,feedwater temperature, andcorepowerdistribution. Themarginforeachfuelassemblyischaracterized bythecriticalpowerratio(CPR),whichistheratioofthebundlepowerwhichwouldproduceonsetoftran-sitionboilingdividedbythe.actualbundlepower.Theminimumvalueofthisratioforanybundlein-thecoreistheminimumcriticalpo~erratio(MCPR).hSafy'mitPRassuressufficient conservatism intheoperatinRimihainteeventoananticipaeoperaionaloccurrence fromthelimitingconiionforoperation, atleast99.9Xothefuelrodsinthecorewouldbeexpectedtoavoidboilintransitio Temgineen~lcate+b,ianio.0athafim'iageda~aitatisicaprocedure considers teuncertainties inmonioringreoperating state.Onepecificuncertainty includedinthesafetylimitistheuncertainty inherentintheXN-3criticalpowercorrelation. XN-NF-524 ~~~(ARevision1describes themethodology usedindetermining theI'i.-dF-fd-oog~,~M7.TheXN-3criticalpowercorrelation isbasedonasignificant bodyofprac-ticaltestdata,providing ahighdegreeofassurance thatthecriticalpowerasevaluated bythecorrelation iswithinasmallpercentage oftheactualcriti-'alpowerbeingestimated. Aslongasthecorepressureand'flowarewithintherangeofvalidityoftheXN-3correlation (refertoSection82.1.1),theassumedreactorconditions usedinesaetylimitintroduce conser-vatismintoth'ecauseboundinghighradialpowerfactorsandboundingflatlocalpeakingdistributions are'sedtoestimatethenumberofrodsinboilingtransition. Stillfurtherconservatism isinducedbythetendencyoftheXN"3correlation tooverpredict thenumberofrodsinboilingtransition. Theseconservatisms andtheinherentaccuracyoftheXN-3correlation rovideareasonable dereeofassurance thatinsaierioaafitrou~tsioo'nne'.fboilingtransi-ionwereoccur,sreasonoeievethattheintegrity ofthefuelwouldnotnecessarily becompromised. Significant testdataaccumulated bytheU.S.NuclearRegulatory Commission andprivateorganizations indicatethattheuseofaboilingtransition limitation toprotectagainstcladdingfailureisaveryconservative approach. Muchofthedataindicates thatLWRfuelcansur-viveforanextendedperiodoftimeinanenvironment ofboilingtransition. SUSQUEHANNA -UNIT2B2-2Amendment No.5B POWERDISTRIBUTION >HITS32.3MINIMUMCRITICALPOWERRATIOLIMITICONOITION FOROPERATION 3.2.3TheNIMUMCRITICALPOWERRATIO(MCPR)shallbereaterthanorequaltothegreateofthetwovaluesdetermined fromFigur3.2.3-1andFigure3.2.3"2.APPLICABII ITY:'PERTIONALCONDITION 1,whenTERMALPOWERisgreaterthanorqWqIIAKDIIERIIALPOKlt.ACTION:WithMCPRlessthantheappl'cable MCPlimitdetermined above,initiatecorrec-tiveactionwithin15minutesndrtoreMCPRtowithintherequiredlimit;with-in2hoursorreduceTHERMALPOERolessthan25KofRATEDTHERMALPOWERwithinthenext4hours.SURVEILLANCE REUIREMENTS 4.2.3.1MCPRshallbedetermined tobeeaterthanorequaltotheapplicable MCPRlimitdetermine fromFigure3.2.3-1dFigure3.2.3-2:a.Atleaonceper24hours,b.Wit~n12hoursaftercompletion ofaERMALPOWERincreaseofat1st15KofRATEDTHERMALPOWER,andc.Initially andatleastonceper12hourswhthereactorisoperating withaLIMITINGCONTROLRODPATTERNforMCPR.d.'Theprovisions ofSpecification 4.0.4arenotaplicable.R+p>~~+uJx'THTHE/dccput~<6THReWp++~~SUS(UEHANNA "UNIT23l42-6Amendment No.58 3/4.2.3MINIMUMCRITICALPOWERRATIOLIMITINGCONDITION FOROPERATION 3.2.3TheMINIMUMCRITICALPOWERRATIO(MCPR)shallbegreaterthanorequal~~tothegreaterof:a)TheFlow-Dependent MCPRvaluedetermined fromFigure3.2.3-1,andb)ThePower-Dependent HCPRvaluedetermined fromthefollowing equation: HCPR=HCPR,+(MCPR-HCPR,)xSCRAMSPEEDFRACTIONwhere:HCPRandHCPR,aredetermined fromcurveAandcurveBofoneofthekollowing figures,asappropriate: ilFigure3.2.3-2:EOC-RPT,andHainTurbineBypassOperableFigure3.2.3-3:HainTurbineBypassInoperable Figure3.2.3-4:EOC-RPTInoperable SCRAMSPEEDFRACTIONisanumberbetween0.0and1.0(inclusive) basedonmeasuredcoreaveragescramspeed.Thisfractionisusedtointerpolate betweenCurveBHCPRvaluescorresponding toanaveragescramspeedof4.2feet/second andCurveAHCPRvaluescorresponding tothemaximumallowedcoreaveragescraminsertion timesgiveninSpecification 3.1.3.3.,TheSCRAMSPEEDFRACTIONisobtainedfromTable3.2.3-1.APPLICABILITY: OPERATIONAL CONDITION 1,whenTHERMALPOWERisgreaterthanorequalto25%ofRATEDTHERMALPOWER.ACTION:WithMCPRlessthantheapplicable HCPRlimitdetermined above,initiatecorrective actionwithin15minutesandrestoreMCPRtowithintherequiredlimitwithin,2hoursorreduceTHERMALPOWERtolessthan25%ofRATEDTHERMALPOWERwithinthenext4hours. 0 SURVEILLANCE REUIREME~~4.2.3HCPR,witha)SCRAMSPEEDFRACTION=1.0priortotheperformance oftheinitialscramtimemeasurement forthecycleinaccordance withSpecification 4.1.3.2(a), orb)SCRAMSPEEDFRACTIONasdetermined fromTable3.2.3-1usedtodetermine thelimitwithin72hoursoftheconclusion ofeachscramtimesurveillance testrequired, bySpecification 4.1.3.2shallbedetermined tobegreaterthanorequaltotheapplicable HCPRlimitdetermined fromFigure3.2.3-1andtheapplicable figureselectedfromFigures3.2.3-2through3.2.3-4:1)Atleastonceper24hours,2)Within12hoursaftercompletion ofaTHERMALPOWERincreaseofatleast15%ofRATEDTHERMALPOWER,and3)Initially andatleastonceper12hourswhenthereactorisoperating withaLIMITINGCONTROLRODPATTERNforHCPR.4)Theprovisions ofSpecification 4.0.4arenotapplicable. 0

TABLE3.2.3-1SCRAMSPEEDFRACTION.VERSUSAVERAGESCRAMTIMESRodPositions MAXIMUMTIMESTOROD'OSITIONS Seconds453925SCRAMSPEEDFRACTION.38.741.572.760.0.39.761.632.880.2.40.791.703.010.4.41.821.783.160.6.42.85'1.873.320.8.43.861.933.491.0NOTE:Determine SCRAMSPEEDFRACTIONfromfarthestleft-hand columnwhoselistedvaluesareallgreaterthanmeasuredaveragescramtimesusingmostrecentmeasurement foreachrod. I' ADfll2.0i8{30,$.9laCURVEA:EOC-BPTInoperable; MainTurbineBypasserableCURVEB:MainTurbineByssInoperable; EOC-BPTOpere~CURVEC:EOC-BPTdMainTurbine8asserableuOtlHl.3O)C~>>4J40LaQ.p1.6CLHo.).SO)- {6o.s.<2i 1.64.l.col I60.n.w---l68.93,i.33 BC1.411.401.33304050aoIoSoTotalCoreFlow(%OFRATED)FLQWDEPENDENT MCPROPERATING LIMIT.FIGURE3.2.3-180100 1.91.8(30,1.83) 1.7(37,1.69) (45,1.57) (60,1.43) 1.3(74.9,1.32) (100,1.32) 1.2304050607080TotalCoreFlow(%OFRATED)FLOWDEPENDENT MCPROPERATING LIMITFIGURE3.2.3-190100 1.7{26.1.64) 0.162)CURVEA:EOC-APTInoperable: MainTurbineBypassOperableCURVE8:MainTurbineBypassInoperable< EOC-APT.OperableCURVEC:EOC-RPTandMainTurbineBypassOperableCal-n~'abJpIQ)tOE~~1.5UlC~~CL01.4CLC3-{26.1.62) {25,1.44) {40.1{40.150)42)-{ds,I.4Q){56.1.47) {a6.1.{80.1.47) {so.1.46) {QoQ141)a1.411.40{80.1.37) C1.33{QO.Q.1.33).O1.22030eo4060ao70CorePower(%OFRATED)REDUCEDPOWERMCPROPERhTINQ LIMITFIGURE3.2.9-280100 l 2.01.91.8(25,1.90) LegendCURVEA:SCRAMSPEEDCORRESPONDING TOT.S.3.1.3.3CURVEB:SCRAMSPEED4.2ft/secE17U)C1.8O.0IZ1.51.41.3(25,1.65) (40,1.55) (40,1.73) (65,1.41)(65,1.50) (6e.4,1.47) 84,1.32)(100,1.47) (100,1.32) 203040eOBO7OCorePower(%RATED)8090100REDUCEDPOWERMCPROPERATING LIMITEOC-RPTANDMAINTURBINEBYPASSOPERABLEFIGURE3.2.3-2 2.01.9(25,2.0)(40,1.91) A.1.8(25,1.70) (65,1.77)(40,1.63) (65,1.54)(84,1.64) (100,1.56) 1.41.3LegendCURVEA:SCRAMSPEEDCORRESPONDING TOT.S.3.1.3.3CURVE8:SCRAMSPEED~4.2ft/sec(84,1.43)(100,1.38) 1.2203040eoeo7oCorePower(%RATED)8090100REDUCEDPOWERMCPROPERATING LIMITMAINTURBINEBYPASSINOPERABLE FIGURE3.2.3-3 2.0(25,1.95) 1.9LegendCURVEA:SCRAMSPEEDCORRESPONDING TOT.S.3.1.3.31.8E1.7U)C1.6O.0CC1.5(25,1.70) (40,1.57) (40,1.76) 'ACURVEB:SCRAMSPEED=4.2ft/sec(64.1,1.54) -A-(100,1.54) 1.41.3(65,142)(77.1,1.3 5)(100,1.35) 1.22030506070CorePower(%RATED)80SO100REDUCEDPOWERMCPROPERATING LIMITEOC-RPTINOPERABLE FIGURE3.2.3-4 100I=lgure8.4.1.1.t-h THERMALPOWERRESTCTtONS40lan70g0030-02040et~r~sag/:,"IIio-"'~So'Il~I~3d4540ddCoreFlow(%RATED)40ddr078ESa.e.ammu& tI1p~~SUS(UEHANNA -UNIT23/44-lbAmendment N0.60 Figure3.4.1.1.1-1 THERMALPOWERRESTRICTIONS 100QoII~'80I7050IDo50",:',ii."""~pop.~~1i~~~~~Llgi~PDPg>~B~QI~l5EIPL30~~20O~~110rIIP~~~r~~~303640'660565055CoreFlow(%RATED)70 REACTORCOOLANTSYSTEMRECIRCULATION LOOPS-SINGLELOOPOPERATION LIMITINGCONOITION FOROPERATION 3.4.1.1.2 Onereactorcoolantrecirculation loopshallbeinoperation withthepumpspeed<80KoftheratedpumpspeedandthereactorataTHERMALPOWER/core flowcondition outsideofRegionsIandIIofFigure3.4.1.1.1-1, anda.thefoilowing revisedspecification limitsshallbefollowed: Table2.2.1-1:theAPRMFlow-Biased ScramTripSetpoints shallbeasfollows:TriSetointAllowable Value+Specification 3.2.2:,theAPRMSetpoints shallbeasfollows:TriSetointAllowable Value'4M)T~K)SRB<(0.58M+45K)TSRB<(0.58W+48%)TSpecification 3.2.3:TheMINIMUHCRITICALPOWERRATIO(MCPR)shallbegreaterthanorequaltothelargestofthefollowing values:a.theMCPRdetermined fr1andxduII'30~3oRxsuRcrIpaxArejb.theMCPRdetermined ..-usTable3:3.6-2:theRBM/APRMControlRodBlockSetpoints shallbeasfollows:a.RBM-UpscaleTriSetoint+b.APRM-Flow BiasedTriSetoint~+Allowable ValueAllowable Value+ioAPPLICABILiTY: OPERATIONAL CONDITIONS 1*and2"+,exceptduringtwoloopoperation.P ACTION:InOPERATIONAL CONOITION 1:1.Witha)noreactorcoolantsystemrecirculation loopsinoperation, orb)RegionIofFigure3.4.1.1.1-1 entered,orc)RegionIIofFigure3.4.1.l.1-1enteredandcorethermalhydraulic instability occurring asevidenced by:SUSQUEHANNA -UNIT23/44-1cAmendment No.60 I REACTORCOOLANTSYSTEMLIMITINGCONOITION FOROPERATION Continued f.Withanypumpdischarge bypassvalvenotOPERABLEclosethevalveandverifyclosedatleastonceper31days.SURVEILLANCE REUIREMENTS 4.4.1.1.2.14.4.1.1.2.24.4.1.l.2.34.4.1.l.2.44.4.1.1.2.54.4.1.l.2.6Uponenteringsingleloopoperation andatleastonceper24haursthereafter, verifythatthepumpspeedintheoperating loopis<80Koftheratedpumpspeed.At,least50Koftherequi~edLPRMupscalealarmsshallbedetermined OPERABLEbyperformance ofthefollowing oneachLPRMupscalealarm.1)CHANNELFUNCTIONAL TESTatleastanceper92days,and2)CHANNELCALIBRATION atleastonceper184days.Within15minutesprior'.oeitherTHERMALPOWERincreaseresulting framacontrolrodwithdrawal orrecirculation loopflowincrease, verifythatthefollowing differential temperature requirements aremetifTHERMALPOWERis<30K""""ofRATEO'HERMAL POWERortherecirculation loopfTowintheoperating recirculation loopis<50K"""ofratedloopflow:a.<145'FbetweenreactorvesselsteamspacecoolantandBottomheaddrainlinecoolant,, b.¹¹<50'Fbetweenthereactorcoolantwithintheloopnotinoperation andthecoolantinthereactorpressurevessel,andc.¹¹<504Fbetweenthereactorcoalantwithintheloopnotinoperation andoperating loop.Thepumpdischarge valveandbypassvalveinbothloopsshalllbedemonstrated OPERABLEbycyclingeachvalvethroughatleastonecompletecycleoffulltraveldu~ingeachstartup"" priortoTHERMALPOWERexceeding 25%ofRAT'EDTHERMALPOWER.ThepumpMGsetscooptubeelectrical andmechanical stopshallbedemonstrated OPERABLEwithoverspeed setpoints lessthanorequalto102.5Xand105K,respectively, ofratedcoreflow,atleastonceper18months.mvoPaRhSLEOuringsinglerecirculation oopoperation, alljetpumps,including thoseinthelaop,shallbedemonstrated OPERABLEatleastonceper24hoursbyverifying thatnotwoofthefollowing conditions occur:¹¹¹ a.Theindicated recirculation loopflowintheoperating loopdiffersbymorethan10Kfromtheestablished singlerecirculation pumpspeed-loop flowcharacteristics. SUS(UEHANNA -UNIT23P44-leAmendment No.60 REACTORCOOL'ANTSYSTEMSURVEILLANCE REUIREHENTS (Continued 4.4.1.1.2. 7c.Theindicated diffuser-to-lower plenumdifferential pressureofanyindividual jetpumpdiffersfromestab-lishedsinglerecirculation looppatternsbymorethan10%TheSURVEILLANCE REQUIREMENTS associated withthespecifications referenced in3.4.1.1.2ashallbefollowed. SeeSpecialTestException 3.10.4.Ifnotperformed withintheprevious31days.Initialvalue.-Finalvaluetobedetermined basedonstartuptesting.Anyrequiredchangetothisvalueshallbesubmitted totheCommission within90daysoftestcompletion. SeeSpecification 3.4.1.1.1~ortwoloopoperation requirements. Thisrequirement doesnotapplywhentheloopnotinoperation isisolatedfromthereactorpressurevessel.Ouringstartuptestingfollowing eachrefueling outage,datashallberecordedfortheparameters listedtoprovideabasisforestablishing thespecified relationships. Comparisons oftheac.uaidatain'accordance withthecriterialistedshallcommenceupontheperformance ofsubsequent requiredsurveillances. +TheLPRMupscalealarmsarenotrequiredtobeOPERASLEtomeetthisspecification inOPERATIONAL CONOITION 2.b.Theindicated totalcoreflowdiffersbymorethan10Kfromtheestablished totalcoreflowvaluefromsinglerecirculation loopflowmeasurements. SUSQUEHANNA -UNIT23/44-.1f'mendment No.60 l\I0 REACTIVITY CONTROLSYSTEMSBASESREACTIVITY ANOMALIES (Continued) Sincethecomparisons areeasilydone,frequentchecksarenotanimposi-tiononnormaloperation. AlXdeviation inreactivity fromthatofthepre-dictedislargerthanexpectedfornormaloperation, andtherefore shouldbethoroughly evaluated. Adeviation aslargeaslXwouldnotexceedthedesignconditions ofthereactor.3/4.1.3CONTROLRODSThespecification ofthissectionensurethat(1)theminimumSHUTDOWNMARGINismaintained, (2)thecontrolrodinsertion timesare.consistent withthoseusedintheaccidentanalysis, and(3)limit,thepotential effectsoftheroddropaccident. TheACTIONstatements permitvariations fromthebasicre-quiriments butatthesametimeimposemorerestrictive criteriaforcontinued operation. Alimitation oninoperable rodsissetsuchthattheresultant effectontotalrodworthandscramshapewillbekepttoaminimum.There-quirements fotthevariousscramtimemeasurements ensurethatanyindication ofsystematic problemswithroddriveswillbeinvestigated onatimelybasis.Damagewithinthecontrolroddrivemechanism couldbeagenericproblem,therefore withacontrolrodiaeovable becauseofexcessive frictionormechan-icalinterference, operation ofthereactorislimitedtoatimeperiodwhichisreasonable todetermine thecauseoftheinoperability andatthesametimepreventoperation withalargenumberofinoperable controlrods.,0Controlrodsthatareinoperable forotherreasonsarepermitted tobetakenoutofserviceprovidedthatthoseinthenonfully-inserted positionareconsistent withtheSHUTINMMARGINrequirements. Thenumberofcontrolrodspermitted tobeinoperable couldbemorethantheeightallowedbythespecification, buttheoccurrence ofeightinopdrable rodscouldbeindicative ofagenericproblemandthereactormustbeshutdownforinvestigation andresolution oftheproblem.Thecontrolrodsystemisdesinedtobrintactorsubcritical ataratefastenoughtoprenHCPromecomglethahe1itseci-fo2.1.2urinherewetrsientanalydinhecyecifitraientalysrept.isanysisshowshatenetivacvitytesesultgfthecramithtavegereonsofthdresagiveintspecicatis,ovideeuiredrottioandPRemairearththemitecifidinon.1..eoccurrence oscramtmesongerthenthosespecfedshouldbevieweasanindication ofasystematic problemwiththeroddrivesandtherefore thesurveillance inter-valfsreducedinordertopreventoperation ofthereactorforlongperiodsoftimewithapotentially seriousproblem.Thescramdischarge volumeisrequiredtobeOPERABLEsothatitwillbeavailable whenneededtoacceptdischargo waterfromthecontrolrodsduringaSUSQUEHANNA -UNIT2B3(41-2Amendment No.31 1 REACTIVITY CONTROLSYSTBlSBASESCONTROLRODPROGSNCONTROLS(Continued) TheRSCSandRWprovideautomatic supervision toassurethatout-of-sequence rodswillnotbewithdrawn orinserted. Parametric ControlRodDropAccidentanalyseshaveshownthatforawiderangeofkeyreactorparameters (wh'ichenvelopetheoperating rangesofthesevariables), thefuelenthalpyriseduringapostulated controlroddropacci-dentremainsconsiderably lowerthanthe280cal/gmlimit.Foreachoperating cycle,cycle-specific parameters suchasmaximumcontrolrodworth,Dopplercoefficient, effective delayedneutronfraction, andmaximumfourbundlelocalpeakingfactorarecomparedwiththeinputstotheparametric analysestode-terminethepeakfuelrodenthalpyrise.ThisvalueisthenComparedagainstthe280cal/gmdesignlimittodemonstrate compliance foreachoperating cycle.Ifcycle-specific valuesoftheaboveparameters areoutsidetherangeassumedintheparametric

analyses, anextension

.oftheanalysisoracycle-specific analysismayberequired. Conservatism presentintheanalysis, resultsoftheparametric studies,andadetaileddescription ofthemethodology forperforming theControlRodDropAccidentanalysisareprovidedinXN-NF-80-19 Volumel.PL,NF-po-00g.<+0TheRBNisdesignedtoautomatically preventfueldamageintheeventoferroneous rodwithdrawal fromlocations ofhighpowerdensityduringhighpoweroperation. Twochannelsareprovided. Trippingoneofthechannelswillblockerroneous rodwithdrawal soonenoughtopreventfueldamage.Thissystembacksupthewrittensequenceusedbytheoperatorforwithdrawal ofcontrolrods.3/4.1.5STAND8YLIUIDCONTROLSYSTEMThestandbyliquidcontrolsystemprovidesabackupcapability forbringingthereactorfromfullpowertoacold,Xenon-free

shutdown, assumingthatnoneofthewithdrawn controlrodscanbeinserted.

Tomeetthisobjective itisnecessary toinjectaquantityofboronwhichproducesaconcentration of660ppminthereactorcoreinapproximately 90to120minutes.Aminimumquantityof4587gallonsofsodiumpentaborate solutioncontaining aminimumof5500lbs.ofsodiumpentaborate isrequiredtomeetthisshutdownrequire-ment.Thereisanadditional allowance of165ppminthereactorcore'toaccountforimperfect mixing.Thetimerequirement wasselectedtooverridethereactivity insertion rateduetocooldownfollowing theXenonpoisonpeakandtherequiredpumpingrateis41.2gpm.Theminimumstoragevolumeofthesolutionisestablished toallowfortheportionbelowthepump'uction thatcannotbeinsertedand'thefillingofotherpipingsystemsconnected tothereactorvessel.Thetemperature requirement forthesodiumpenetrate solutionisnecessary toensurethatthesodiumpenetaborate remainsinsolution. Nthredundant pumpsandexplosive injection valvesandwithahighlyreliablecontrolrodscramsystem,operation ofthereactorispermitted tocontinueforshortperiodsoftimewiththesysteminoperable orforlongerperiodsoftimewithoneoftheredundant components inoperable. SUSQUEHANNA -UNIT283/41"+Amendment Ho.31 3/4.2POWEROISTRIBUTION LIMITSBASESspec'tions thissec'ssurettheacladgternrtefoowingepstuleddsignsisloss--cooantccidnt11otexce22'imiecifiedinCFR0.4.3/4.2.1AVERAGEPLANARLINEARHEATGENERATION RATEThisspecification assuresthatthepeakcladdingtemperature following thepostulated designbasisloss-of-coolant accidentwillnotexceedthelimitspec-ifiedin10CFR50.46.The'peakcladdingtemperature (PCT)following apostulated loss-of-coolant accidentisprimarily afunctionoftheaveragehe=tgeneration rateofalltherodsofafuelassemblyatanyaxiallocationandisdependent onlysecondarily ontherodtorodpowerdistribution withinanassembly. TheTechnical Specification APLHGRforANFfuelisspecified toassurethePCTfollowing apostulated LOCAwi11notexceedthe2200'Flimit.ThelimitingvalueforAPLHGRisshowninFigure-3.2.1-1.Thecalculational procedure usedtoestablish theAPLHGRshownonFigure3.2.1-1isbasedonaloss-of-coolant accidentanalysis. Theanalysiswasperformed usingcalculational modelswhichareconsistent withtherequirements ofAppendixKto10CFR50.Thesemodelsaredescribed inXN-NF-80-19, Volumes2,2A,2Band2C..,3/4.2.2APRMSETPOINTS Theflowbiasedsimulated thermalpower-upscale scramsettingandflowbiasedsimulated thermalpower-upscale controlrodblockfunctions oftheAPRMinstruments limitplantoperations totheregioncoveredbythetransient andaccidentanalyses. Inaddition, theAPRMsetpoints mustbeadjustedtoensurethat>1%plasticstrainandfuelcenterline meltingdonotoccurduringtheworstanticipated operational. occurrence (AOO),incl.uding transients initiated frompartialpoweroperation. ForANFfueltheTfactorusedtoadjusttheAPRMsetpoints isbasedontheFLPOcalculated bydividingtheactualLHGRbytheLHGRobtainedfromFigure3.2.2-i.TheLHGRversusexposurecurveinFigure3.2.2-1isbasedonANF'sProtection AgainstFuelFailure(PAFF)lineshowninFigure3.4ofXN-NF-85-67(A), Revision1..Figure3.2.2-1corresponds totheratioofPAFF/1.2underwhichcladdingandfueiintegrity isprotected duringAOO's.SUSQUEHANNA "UNIT2B3/42-aAmendment No.58 'OWEROISTRIBUTION LIMITSeBASES3/4.2.3HINIMUHCRITICALPOWERRATIOTherequiredoperating limitMCPRsatsteadystateoeratinconditions asspeci-ifiedinSecification3.2.3arederivedfromanaly'fabnormaloperational transients. Foranabnormaltransient analys~swiththeinitialcon-ditionofthereacoreinatthesteadystateoerainlimititieuiredthattheresulting oneaswSaylMaIllgean'enassuminginsrumenripseinggiveninpec>>ca-tionSTaurehatef1cldingntegr'Sfetyimiisnexededurinnyant'padabrmaoperaonalrans'ent, hest1'titrientsheenalyztoeter'new'chrult'hct'inTICAOWRA0(C).etypeoftransients evaluated weielossofflow,increaseinpressureanower,positivereactivity insertion, andcoolantterneraturedecrease. 1>>ntrsienieergeseltaCPR.WheaddeotatyimiCP,threqredm'mumperanglitHofpec'cat'.2.isbt'ddpsentdinure3.2.1an.2.Thealuionfa'ntisientgins'thtsysteinitiparamersswn'hcyclepecifitransintanasisrportatarinputanAoreynacbeiortrnsientomputprogm.Toutpsofsproamalgw'thinitiHCPRfmthe'nputrfureranysesthetrmallimi'ngbule.Tecodesndmeodolotoevuateressuzatioandno-prsuriionentsardescridin-NF-791anN-NF-4-105.Theplnci-1reltofisevaation'heductiinMCcaudbetraent.Figure3.2.3-1definescoreflowdependent HCPRoperating limitswhichassurethatduringaflowincreasetran-sienreuingromamotor-generator speedcontrolfailure.Theflowdepend-entMCPRisonlycalculated forthemanualflowcontrolmode.Therefore automatic flowcontroloeranisnotermitted'. Fgure..efestperdepdentPRorat'lim'hiassesateSaty1'tMi1nobeviatedntevenofeedwerntrolerilur,RodW'drwalEor,oLo.RejeWioutMnTbineypaoperleitip(edroarededoercditiPCyclespecificanalysesareperformed forthemostlimitinglocalcorewidetran-sientstodetermine'thermal margin.Additional analysesareperformed todetermine theMCPRoperating limitwitheithertheHainTurbineBypassinoperable ortheEOC-RPTinoperable. Analysestodetermine thermalmarginwithboththeEOC-RPTinoperable andHainTurbineBypassinoperable havenotbeenperformed. Therefore, operation inthiscondition isnotpermitted. SUS(UEHANNA -UNIT2.B3/42-2Amendment No.58 POWERDISTRIBUTION LIMITSBASESMINIMUMCRITICALPOWERRATIO(Continued) AtTHERMALPOWERlevelslessthanorequalto25KofRATEDTHERMALPOWER,thereactorwillbeoperating atminimumrecirculation pumpspeedandthemoderator voidcontentwi',1beverysmall.Foralldesignated controlrodpatternswhichmaybeemployedatthispoint,operating plantexperience indicates thatthere-s'ultingMCPRvalueisinexcessofrequirements byaconsiderable marin.Duringinitialstart-uptestingoftheplant,aHCPRevaluation madeat25K,oRATEDTHERMALPOWERlevelwithminimumrecirculation pumpspeed.TheMCPRmargindemonstrated suchthatfutureHCPRevaluation belowthispowerlevelunnecessary. Thedailyrequirement forcalculating HCPRwhenTHERMALPOWER1sgreaterthanorequalto25KofRATEDTHERMALPOWERissufficient sincepowerdistribution shiftsareveryslowwhentherehavenotbeensignificant powerorcontrolrodchanges.Therequirement forcalculating MCPRwhenalimitingcontrolrodpatternisapproached ensuresthatMCPRwillbeknownfollowing achangeinTHERMALPOWERorpowershape,regardless ofmagnitude, thatcouldplaceoperation atathermallimit.3/4.2.4LINEARHEATGENERATION RATEThisspecification assuresthattheLinearHeatGeneration Rate(LHGR)inanyrodislessthanthedesignlinearheatgeneration eveniffuelpelletdensification ispostulated. SUS(UEHANNA -UNIT2B3/42-3,Amendment No.58 I1t 3/4.4REACTORCOOLANTSYSTEMBASES3/4.4.1RECIRCULATION SYSTEMOperation withonereactorrecirculation loopinoperable hasbeenevaluated andfoundacceptable, providedthattheunitisoperatedinaccordance withSpecification 3.4.1.1.2. LOCAanalysesfortwoloopoperating conditions, whichresultinPeakCladdingTemperatures (PCTs)below2200~F,boundsingleloopoperating conditions. Singleloopoperation LOCAanalysesusingtwo-loopMAPLHGR1imitsresultinlowerPCTs.Therefore, theuseoftwo-loopMAPLHGRlimitsduringsingleloopoperionassurtthePCTdurinaLOCAeventremainsbelow2200F.7ftE'RHAL4ME'R,TheMINIMUMCRITICALPOWERRATIOM~mitsforsingleloopoperation assurethatthSaetyLimitisnotexceededr'oranyAnticipated Operational Occurrence (AOO).Forsingleloopoperation, theRBMandAPRMsetpoints areadjustedbya8.5%decreaseinrecircuTation driveflowtoaccountfortheactiveloopdrivefiowthatbypassesthecore.andgoesupthroughtheinactiveloopjetpumps.Surveillance onthepumpspeedoftheoperating recirculation loopisimposedtoexcludethepossibility ofexcessive r'eactorvesselinternals vibration. Surveillance ondifferential temperatures belowthethreshold limitsofTHERMALPOWERorrecirculation loopflowmitigates unduethermalstressonvesselnozzles,recirculation pumpsandthevesselbottomheadduringextendedope.a-tioninthesingleloopmode.Thethreshold limitsarethosevalueswhichwillsweepupthecoldwaterfrom.thevesselbottomhead.Specifications havebeenprovidedtoprevent., detect,andmitigatecorethermalhydraulic instability events.Thesespecifications areprescribed naccordance withNRCBulletin88-07,Supplement 1,"PowerOscillations inBoilingWaterReactors(BWRs),"datedOecember30,1988.Theboundaries nftheregionsin.Figure3.4,1.1.1-1areaetermined usingANFdecayratiocalculations andsupported bySusquehanna SESstability testing.LPRMupscalealarmsarerequiredtodetectreactorcorethermalhydraulicinstability events.Thecriteriafordetermining whichLPRMupscalealarmsarerequiredisbasedonassignment ofthesealarmstodesignated corezones.Thesecor'e:onesconsistofthelevelA,8andCalarmsin4or5adjacentLPRMstr.ings. ThenumberandlocationofLPRMstringsineachzoneassurethatwith5Normoreoftheassoci.ated LPRMupscalealarmsOPERABLEsufficient monitoring capability isavailaole todetectcorewideandregiona:oscillations. Operating plantinstability dataisusedtodetermine thespecificLPRMstringsassignedtoeachzone.Thecorezonesandrequired'RYupscalealarmsineachzonearespecified inappropriate procedures. Aninoperaole jetpumpisnot,initself,asufficient reasontodeclareare-circulation loopinoperable, butitdoes,incaseofadesignbasisaccident, increasetheblowdownareaandreducethecapability ofreflooding thecore;thus,therequirement forshutdownofthefacilitywithajetpumpinoperable. Jetpumpfailurecanbedetectedbymonitoringjetpumpperformanceonaprescribed scheduleforsignificant degradation. SUSqUEHANNA -UNIT283/44-1Amendment No.60 DESIGNFEATURES5.3REACTORCOREFUELASSEMBLIES 5.3.1Thereactorcoreshallcontain764fuelassemblies. 79fuelrodsandtwowaterrods.Eachfuelrodshallhaveanominalactivefuellengthof150inches.Reloadfuelshallhaveamaximumaveraeenrichment of4.0weightpercentU-235.CTRROASSBL5.32eractororehallonta'85ontrrodsselieseaccsiinofaucifrmarayofstainessseelbesonta'ng43'hefbroncarbi,B,powersuoundbycruc'rmhapst'nlestshth5.4REACTORCOOLANTSYSTEMDESIGNPRESSUREANDTEMPERATURE 5.4.1Thereactorcoolantsystemisdesignedandshallbemaintained: a.Inaccordance withthecoderequirements specified inSection5.2oftheFSAR,withallowance f'rnormaldegradation pursuanttotheapplicable Surveillance Requirements, b.Forapressureof:1.1250psigonthesuctionsideoftherecirculation pumps2.1500psigfromtherecirculation pumpdischarge tothejetpumps.c.Foratemperature of5?5F.VOLUME5.4.2Thetotalwaterandsteamvolumeofthereactorvesselandrecirculation systemisapproximately 22,400cubicfeetatanominalTof528F.aveSUS(UEHANHA "UNIT25-6Amendment No.58 4I1 INSERTSInsertISCRAMSPEEDFRACTIONisanumberbetween0.0and1.0(inclusive) basedonmeasuredcoreaveragescramspeed.TheSCRAMSPEEDFRACTIONisusedtodetermine thePower-Dependent HCPRvalueinSpecification 3.2.3andcanbeobtainedfromTable3.2.3-1.Insert2,THERMALPOWERwillbelimitedsuchthatatleast99.9%ofthefuelrodsarenotexpectedtoexperience boilingtransition. Insert399.9%ofthefuelrodsexpected'o avoidboilingtransition Insert4TheTHERMALPOWER,HighPressureHighFlow,SafetyLimitisdefinedtobeacorecondition suchthatatleast99.9%ofthefuelrodsarenotexpectedtoexperience boilingtransition, whichrepresents aconservative marginrelativetotheconditions requiredtomaintainfuelcladdingintegrity. Insert5TheHCPRoperating limitsassurethat,duringnormaloperation andduringanticipated operational occurrences theSafetyLimitwillnotbeviolated. Inotherwords,atleast99.9%ofthefuelrodsinthecorewouldnotbeexpectedtoexperience boilingtransition. Themethodology usedtoestablish theHCPRoperating limitsisdescribed inPL-NF-90-00l. Insert6TheHCPRoperating limitassuressufficient conservatism inplantoperation suchthat,Insert7fractionoffuelrodsinboilingtransition forvariousHCPRvalues.Insert8duringananticipated operational occurrence atleast99.9%ofthefuelrodswouldnotbeexpectedtoexperience boilingtransition. Insert90ANFfuelismonitored usingtheXN-3CriticalPowerCorrelation. ANFhasdetermined thatthiscorrelation providessufficient conservatism toprecludetheneedforanypenaltyduetochannelbow.Theconservatism hasbeenevaluated byANFtobegreaterthanthemaximumexpectedhCPR(0.02)duetochannelbowinC-lattice plantsusingchannelsforonlyonebundlelifetime. SinceSusquehanna SESUnit2isaC-lattice plantanduseschannelsforonlyonebundlelifetime, monitoring oftheHCPRlimitwiththeXN-3CriticalPowerCorrelation isconservative withrespecttochannelbowandaddresses theconcernsofNRCBulletinNo.90-02entitled"LossofThermalMarginCausedbyChannelBoxBow." j%IplI1 Insert10assurethatatleast99.9%ofthefuelrodsarenot'expected toexperience boilingtransition. TheHCPRoperating limitsareadjustedbasedonmeasuredscramtimedatainSpecification 3.2.3toassurethevalidityofthetransient analyses. Insert11degradation inthermalmarginbesuchthatatleast99.9%ofthefuelrodsinthecorearenotexpectedtoexperience boilingtransition, Insert12Toassurethatatleast99.9%ofthefuelrodsarenotexpectedtoexperience boilingtransition duringanyanticipated operational occurrence, themostlimitingtransients havebeenanalyzed. Insert13Thelimitingtransient yieldsthelargestrequiredHCPRoperating limit.TherequiredHCPRoperating limitsasfunctions ofcorepower,coreflow,andplantequipment availability condition arepresented inFigures3.2.3-1through3.2.3-4.Insert14The,transient analysestodetermine theHCPRoperating limitsareperformed 'singmethodsdescribed inPL-NF-90-001. Certainofthepressurization transients areanalyzedstatistically assumingascraminsertion versustimecurvewhichisfasterthantheTechnical Specification 3.1.3.3,limits.TheHCPRoperating limitsareadjustedbasedonmeasuredscramtimedata.Insert15atleast99.9%ofthefuelrodsarenotexpectedtoexperience boilingtransition Insert16Figures3.2.3-2,3.2.3-3,and3.2.3-4definethepowerdependent HCPRoperating limitswhichassurethatatleast99.9%ofthefuelrodsarenotexpectedtoexperience boilingtransition duringthelimitingevent'(i.e.,Feedwater Controller'Failure, RodWithdrawal Error,orLoadRejection WithoutHainTurbineBypassoperable) initiated fromareducedpowercondition.. Insert17Inaddition, theHCPRlimitsforsingle-loop operation prote'ctagainsttheeffectsoftheRecirculation PumpSeizureAccident. Thatis,foroperation insingle-loop withanoperating HCPRlimit>1.30,theradiological consequences ofapumpseizureaccidentfromsingle-loop operating conditions arebutasmallfractionof10CFR100guidelines. Insert18Onefuelassemblyshallcontain78fuelrods,oneinertrod,and2waterrods.Allotherfuelassemblies shallcontain Insert19'1'ONTROLRODASSEMBLIES 5.3.2Thereactorcoreshallcontain185controlrodassemblies consisting oftwodifferent designs.The"original equipment" designconsistsofacruciform arrayofstainless steeltubescontaining 143inchesofboroncarbide(B4C)powdersurrounded byastainless steelsheath.The"replacement" controlbladedesignconsistsofacruciform arrayofstainless steeltubescontaining 143inchesofboroncarbide(B4C)powdernearthecenterofthecruciform, and143inchlongsolidhafniumrodsattheedgesofthecruciform, allsurrounded byastainless steelsheath.

NOSIGNIFICANT HAZARDSCONSIDERATIONS ~~Thefollowing threequestions areaddressed foreachoftheproposedTechnical Specification changes:1.Doestheproposedchangeinvolveasignificant increaseintheprobability orconsequences ofanaccidentpreviously evaluated? 2.Doestheproposedchangecreatethepossibility ofanewordifferent kindofaccidentfromanyaccidentpreviously evaluated? 3.Doestheproposedchangeinvolveasignificant reduction inamarginofsafety?Secifications 1.0-Def'nitions and34.2.3MinimumCriticalPowerRatioThechangestothesespecifications supportnewHCPRoperating limitsbasedonthePP&Lreactoranalysismethodsdescribed inReloadSummaryReportReference 3.Thelimitscalculated forU2C5willbeafunctionofscramspeed.Therefore, theformatforSpecification 3/4.2.3haschangedsignificantly andthenewdefinition isrequired. 1.No.TheHCPRoperating limitsforU2C5weregenerated withthePP&Lreactoranalysismethodsdescribed inPL-NF-90-001 (SeeReloadSummaryReportReference 3).TheU2C5NCPRoperating limitsarepresented asNCPRversusPercentofRatedCoreFlowandNCPRversusPercentCoreThermalPower.Theselimitscovertheallowedoperating rangeofpowerandflow.Asspecified inPL-NF-90-001, sixmajoreventswereanalyzed. Theseeventscanbedividedintotwocategories: core-wide transients andlocaltransients. Thecore-wide transient eventsanalyzedwere:1)Generator LoadRejection WithoutBypass(GLRWOB), 2)Feedwater Controller Failure(FWCF),3)Recirculation FlowController Failure-Increasing Flow(RFCF),and4)LossofFeedwater Heating(LOFWH)Asdiscussed inPL-NF-90-001, theothercore-wide transients arenon-limiting (i.e.,wouldproducelowercalculated ~CPRsthanoneofthefoureventsanalyzed). Thelocaltransient eventsanalyzedwere:1)RodWithdrawal Error(RWE),and2)FuelLoadingError(FLE).Thefuelloadingerrorevaluation includesanalysisofbothrotatedandmislocated fuelbundles.Page1of8 Sufficient analyseswereperformed todefinetheHCPRoperating limitsasafunctionofcorepowerandcoreflow.Analyseswerealsope}formed todetermine HCPRoperating limitsforthreeplantequipment availability conditions: 1)TurbineBypassandEOC-RPToperable, 2)TurbineBypassinoperable, and3)EOC-RPTinoperable. Core-Wide Transients ThePP&LRETRAN'odel andmethodsdescribed inPL-NF-89-005 andPL-NF-90-001 (SeeReloadSummaryReportReferences 2and3)wereusedtoanalyzetheGLRWOB,FWCF,andRFCFevents.The~CPRswereevaluated usingtheXN-3CriticalPowerCorrelation (SeeReloadSummaryReportReference 26)andthemethodology described inPL-NF-90-001 (SeeReloadSummaryReportReference 3).TheGLRWOBandFWCFeventswereanalyzedintwodifferent ways(asdescribed inPL-NF-90-001): 1)Deterministic 'analyses usingthe.Technical Specification scramspeed.(minimum',allowed); 2)Statistical Combination ofUncertainty (SCU)analysesatanaveragescramspeedof4.2feet/second. Thus,theTechnical Specification HCPRoperating limitscalculated forU2C5willbeafunctionofscramspeed.TheLOFWHeventwasconservatively analyzedbyPP&Lusingthesteadystatecorephysicsmethodsandprocessdescribed inReloadSummaryReportReferences 1and3,andtheLOFWHeventresultswerefoundtobeboundedbyresultsoftheotherthreecore-wide transients. TheminimumHCPRoperating limitrequiredfortheU2C5LOFWHeventis1.17.ResultsoftheGLRWOB,FWCF,andRFCFeventsarepresented inReloadSummaryReportTables3,4,and5,respectively. LocalTransients Thefuelloadingerror(rotatedandmislocated bundle)andtheRodWithdrawal Error(RWE)wereanalyzedusingthemethodology described inPL-NF-90-001. Theresultsoftheseanalysesapplytoallthreeplantequipment availability conditions previously described, andtheresultsareindependent ofscramspeed.TheRWEanalysissupportstheuseofboththeDuralife160CcontrolbladesandaRodBlockHonitorsetpointof108X.TheHCPRoperating limitsthatresultfromtheanalysesoftheseeventsarepresented inReloadSummaryReportTable6.Theseeventsarenon-limitingforU2C5.Basedontheabove,themethodology usedtodevelopthenewHCPRoperating limitsfortheTechnical Specifications doesnotinvolveasignificant increaseintheprobability orconsequences ofanaccidentpreviously evaluated. Page2of8 2.No.Themethodology andresultsdescribed abovecanonlybeevaluated fortheireffectontheconsequences ofanalyzedevents;theycannotcreatenewones.Theconsequences ofanalyzedeventswereevaluated inl.above.3.No.Basedonl.above,themethodology usedtogeneratetheHCPRoperating limitsforU2C5isbothsufficient andconservative. Furthermore, althoughthemethodology (PL-NF-90-001) isstillundergoing NRCreview,PP&Lbelievesitmeetsallpertinent regulatory criteriaforuseinthisapplication. Therefore, itsusewillnotresultinasignificant decreaseinanymarginofsafety.Secification 2.1.2-ThermalPowerHihPressureandHihFlow1.No.ThePP&LStatistical Combination ofUncertainties (SCU)methodsaredescribed inReloadSummaryReportReference 3.WhenusingtheSCUmethodology, thetransient aCPRandtraditional HCPRsafetylimitanalysesarecombinedthroughasingleunifiedanalysis. Asaresult,theThermalPower,HighPressureandHighFlowsafetylimitisnotrepresented asasingleHCPRvalue,butratherasacondition suchthatatleast99.9Xofthefuelrodsinthecoreareexpectedtoavoidboilingtransition. Asdescribed inAppendixBofReloadSummaryReportReference 3,thiscombinedanalysisandcompliance withtheresulting safetylimitcondition aresupported by"HCPRSafetyLimittype"calculations. The"HCPRSafetyLimittype"calculations wereperformed byANFusingthesamemethodsandassumptions asthetraditional HCPRSafetyLimitanalysis. AsshowninReloadSummaryReportTable1,aHCPRvalueof1.06intwoloopoperation assuresthatlessthan0.1Xofthefuelrodsareexpectedtoexperience boilingtransition. Themethodology andgenericuncertainties usedinthe"HCPRSafetyLimittype"calculations areprovidedinXN-NF-80-19(P)(A), Volume4Revision1(ReloadSummaryReportReference 6).Theuncertainties usedfortheSSESU2C5"HCPRSafetyLimittype"calculations arethesameasforU2C4andarepresented inReloadSummaryReportReference 18.Theresultsarepresented inReloadSummaryReportTablel.DuringU2C5,asinthepreviouscycle,theANF9x9fuelwillbemonitored usingtheXN-3criticalpowercorrelation. ANFhasdetermined thatthiscorrelation providessufficient conservatism toprecludetheneedforanypenaltyduetochannelbow'during U2C5.Susquehanna SESisaC-lattice plantanduseschannelsforonlyonefuelbundlelifetime. Theconservatism hasbeenevaluated byANFtobegreaterthanthemaximumexpected~CPR(0.02)duetochannelbowinC-lattice plantsusingchannelsforonlyonefuelbundlelifetime. Therefore, themonitoring oftheHCPRlimitisconservative withrespecttochannelbowandaddresses theconcernsofNRCBulletinNo.90-02.Thedetailsoftheevaluation performed byANFhavebeenreportedgenerically totheNRC(ReloadSummaryReportReference 17).Page3of8 Il~11PI1 2.No.Basedontheabove,themethodology usedtodevelopthenewsafetylimitcondition fortheTechnical Specification doesnotinvolveasignificant increaseintheprobability orconsequences ofanaccidentpreviously evaluated. Themethodology andresultsdescribed above.canonlybeevaluated fortheireffectontheconsequences ofanalyzedevents;theycannotcreatenewones.'Theconsequences ofanalyzedeventswereevaluated inl.above.3.No.Basedonl.above,themethodology'sed,to'enerate theThermal,Power,HighPressureandHighFlowsafetylimitcondition forU2C5isbothsufficient andconservative. Furthermore, althoughthemethodology (PL-NF-90-001) isstillundergoing NRCreview,PP&Lbelievesitmeetsallpertinent regulatory criteriaforuseinthisapplication. Therefore, itsusewillnotresultinasignificant decreaseinanymarginofsafety.Secification 34.4.1Recirculation Sstem-TwoLoo0erationThechangestothisspecification (i.e.,Figure3/4.1.1.1-1)reflectcycle-specificstability analyses. 1.No.COTRANcorestability calculations wereperformed forUnit2Cycle5todetermine thedecayratiosatpredetermined power/flow conditions. Theresulting decayratioswereusedtodefineoperating regionswhichcomplywiththeinterimrequirements ofNRCBulletinNo.88-07,Supplement 1"PowerOscillations inBoilingWaterReactors". Asinthepreviouscycle,RegionsBandCoftheNRCBulletinhavebeencombinedintoasingleregion(i.e.,RegionII),andRegionAoftheNRCBulletincorresponds toRegionI.RegionIhasbeendefinedsuchthatthedecayratioforallallowable power/flow conditions outsideoftheregionislessthan0.90.Tomitigateorprevent.theconsequences ofinstability, entryintothisregionrequiresamanualreactorscram.RegionIforUnit2Cycle5isslightlydifferent thanRegionIforthepreviouscycle.RegionIIhasbeendefinedsuchthatthedecayratioforallallowable power/flow conditions outsideoftheregion(excluding RegionI)islessthan0.75.ForUnit2Cycle5,RegionIImustbeimmediately exitedifitisinadvertently entered.SimilartoRegionI,RegionIIisslightlydifferent thaninthepreviouscycle.Inadditiontotheregiondefinitions, PP&Lhasperformed stability testsinSSESUnit2duringinitialstartupofCycles2,3and4todemonstrate stablereactoroperation withANF9x9fuel.ThetestresultsforU2C2(SeeReloadSummaryReportReference 20)showverylowdecayratioswithacorecontaining 324ANF9x9fuelassemblies. Page4of8 2.No.3.No.Figure3/4.1.1.1-1isalsoreferenced bySpecification 3/4.4.1.1.2,whichgovernsSingleLoopOperation (SLO).Theevaluation aboveappliesunderSLOconditions aswell.Basedontheabove,operation withinthelimitsspecified bytheproposedchangeswillensurethattheprobability andconsequences ofunstableoperation willnotsignificantly increase. Themethodology described abovecanonlybeevaluated foritseffectontheconsequences ofunstableoperation; itcannotcreatenewevents.Theconsequences wereevaluated in1.above.PP8LbelievesthattheuseofTechnical Specifications thatcomplywithNRCBulletin88-07,Supplement 1,andthetestsandanalysesdescribed above,willprovideassurance thatSSESUnit2Cycle5willcomplywithGeneralDesignCriteria12,Suppression ofReactorPowerOscillations. Thisapproachisconsistent withtheSSESUnit2Cycle4methodforaddressing corestability (SeeReloadSummaryReportReferences 4and5).Secification 34.4.1Recirculation Sstem-SinleLoo0erationThechangestothisspecification areeitherevaluated aboveorareeditorial innature.Thereference toSpecification 2.1.2isdeletedbecausethenewlimit(seeEvaluation ofSpecification 2.1.2above)willnotchangeforSingleLoopOperation. Theadditional figuresreferenced fromSpecification 3.2.3aretheresultoftheHCPRoperating limitanalysesevaluated above.TheothertwochangestoSurveillance Requirements 4.4.1.1.2.6,correctinadvertent typographical errorsthatoccurredduringtheissuanceofAmendment 60totheUnit2Technical Specifications. 1.No.Thechangesareeitherevaluated elsewhere inthisNoSignificant HazardsConsiderations evaluation, orareentirelyeditorial innature.2.No.Seel.above.3.No.Seel.above.Secification 5.3.1-FuelAssemblies Thissectionhasbeenchangedtodescribetheactualcoreconfiguration forU2C5,whichincludesoneinert(i.e.,solidzircaloy-2) rod.I<1.No.TheinertrodwasusedtorepairafuelassemblythatfailedduringU2C2.Thisrepairedassemblywasanalyzedandfoundtobeacceptable insupportofU2C4operation, whichwasapprovedbytheNRC(SeeReloadSummaryReportReference 5).Basedontheabove,useoftherepairedassemblydoesnotinvolveasignificant increaseintheprobability orconsequences ofanaccidentpreviously evaluated. Page5of8 ~iie2.No.SeeIabove.3.No.SeeIabove.Secification 5.3.2-ControlRodAssemblies Thechangestothisspecification areprovidedinordertorecognize thereplacement controlbladedesignbeingutilizedinU2C5.1.No.Themaindifferences betweenthereplacement Duralife160Ccontrolbladesandtheoriginalequipment controlbladesare:1a)theDuralife160Ccontrolbladesutilizethree'solid hafniumrodsateachedgeofthecruciform toreplacethethreeB~Crodsthataremostsusceptible tocrackingandtoincreasecontrolbladelife;1>b)theDuralife160CcontrolbladesutilizeimprovedB~Ctubematerial(i.e.highpuritystainless steelvs.commercial puritystainless steel)toeliminate crackingintheremaining B4Crodsduringthelifetimeofthecontrolblade;c)theDuralife160CcontrolbladesutilizeGE'screvice-free structure design,whichincludesadditional BCtubesinplaceofthestiffeners, anincreased sheaththickness, afulllengthweldtoattachthehandleandvelocitylimiter,andadditional coolantholesatthetopandbottomofthesheath;d)theDuralife160Ccontrolbladesutilizelowcobalt-bearing pinandrollermaterials inplaceofstellitewhichwaspreviously utilized; e)theOuralife160Ccontrolbladehandlesarelongerbyapproximately 3.1inchesinordertofacilitate fuelmoveswithinthereactorvesselduringrefueling outagesatSusquehanna SES;andf)theDuralife160Ccontrolbladesareapproximately 16poundsheavierasaresultofthedesignchangesdescribed above.TheOuralife160Ccontrolbladehasbeenevaluated toassureithasadequatestructural marginunderloadingduetohandling, andnormal,emergency, andfaultedoperating modes.Theloadsevaluated includethoseduetonormaloperating transients (scramandjogging), pressuredifferentials, thermalgradients, seismicdeflection, irradiation growth,andallotherlateralandverticalloadsexpectedforeachcondition. TheDuralife160Ccontrolbladestresses, strains,andcumulative fatiguehavebeenevaluated andresultinanacceptable margintosafety.Thecontrolbladeinsertion capability hasbeenevaluated andfoundtobeacceptable duringallmodesofplantoperation withinthePage6of8 ~~ limitsofplantanalyses. TheDuralife160Ccontrolbladecouplingmechanism isequivalent totheoriginalequipment couplingmechanism, andistherefore fullycompatible withtheexistingcontrolroddrivesintheplant.Inaddition, thematerials usedintheDuralife160Carecompatible withthereactorenvironment. Theimpactoftheincreased weightofthecontrolbladesontheseismicandhydrodynamic loadevaluation ofthereactorvesselandinternals hasbeenevaluated andfoundtobenegligible. Withtheexception ofthecrevice-free structure andtheextendedhandle,theDuralife160Cbladesareequivalent totheNRCapprovedHybridIControlBladeAssembly(SeeReloadSummaryReportReference 9).Themechanical aspectsofthecrevice-free structure wereapprovedbytheNRCforallcontrolbladedesignsinReloadSummaryReportReference 10.Aneutronics evaluation ofthecrevice-free structurefortheDuralife160Cdesignwasperformed byGEusingthesamemethodology aswasusedfortheHybridIcontrolbladesinReloadSummaryReportReference 9.Thesecalculations wereperformed fortheoriginalequipment controlbladesandtheDuralife160Ccontrolbladesdescribed aboveassuminganinfinitearrayofANF9x9fuel.TheDuralife160Ccontrolbladehasaslightlyhigherworththantheoriginalequipment design,buttheincreaseinworthiswithinthecriterion fornuclearinterchangeability. Theincreaseinbladeworthhasbeentakenintoaccountintheappropriate U2C5analyses. However,asstatedinReloadSummaryReportReference 9,thecurrentpracticeinthelatticephysicsmethodsistomodeltheoriginalequipment all6Ccontrolbladeasnon-depleted. TheeffectsofcontrolbladedepIetion oncoreneutronics duringacyclearesmallandareinherently takenintoaccountbythegeneration ofatargetk-effective foreachcycle.Asdiscussed above,theneutronics calculations ofthecrevice-free structure, showthatthenon-depleted Duralife160Ccontrolbladehasdirectnuclearinterchangeability withthenon-depleted originalequipment allBCdesign.TheDuralife160Calsohasthesameend-of-life reactivity worthreduction limitastheallB~Cdesign.Therefore, theDuralife160Ccanbeusedwithoutchangingthecurrentlatticephysicsmodelaspreviously ap'proved fortheHybridIcontrolblades(ReloadSummaryReportReference 9).Theextendedhandleandthecrevice-free structure featuresoftheDuralife160CcontrolbladesresultinaonepoundincreaseinthecontrolbladeweightoverthatoftheHybridIblades,andasixteenpoundincreaseovertheSusquehanna SESoriginalequipment controlblades.InReloadSummaryReportReference 9,theNRCapprovedtheHybridIcontrolbladewhichweighsless(bymorethanonepound)thantheDlatticecontrolblade.ThebasisoftheControlRodDropAccidentanalysiscontinues tobeconservative withrespecttocontrolroddropspeedsincetheDuralife160CcontrolbladeweighslessthantheDlatticecontrolblades,andtheheavierDlatticecontrolbladespeedisusedinPage7of8 yetJ'urtII4 theanalysis. Inaddition, GEperformed scramtimeanalysesanddetermined thattheDuralife160Ccontrolbladescramtimesarenotsignificantly different thantheoriginalequipment controlbladescramtimes.ThecurrentSusquehanna SESmeasuredscramtimesalsohaveconsiderable margintotheTechnical Specification limits.SincetheincreaseinweightoftheDuralife160Ccontrolbladesdoesnotsignificantly increasethemeasuredscramspeedsandthesafetyanalyseswhichinvolvereactorscramsutilizeeithertheTechnical Specification limitscramtimesorarangeofscramtimesuptoandincluding theTechnical Specification scramtimes,theoperating limitsareapplicable toU2C5withDuralife"160Ccontrolblades.SincetheDuralife160Ccontrolbladescontainsolidhafniumrodsinlocations wheretheBCtubeshave'ailed, andtheremaining B<Crodsaremanufactural withanimprovedtubingmaterial(highpuritystainless steelvscommercial puritystainless steel),boronlossduetocrackingisnotexpected. Therefore, therequirements ofIEBulletin79-26,Revision1donotapplytotheDuralife160Ccontrolblades.However,PP&Lplanstocontinuetrackingthedepletion ofeachcontrolbladeanddischarge anycontrolbladepriortoatenpercentlossinreactivity worth.Basedonthediscussion above,thenewcontrolbladesproposedtobeutilizedinU2C5donotinvolveasignificant increaseintheprobability orconsequences ofanaccidentpreviously evaluated. Thereplacement bladescanonlybeevaluated fortheireffectiveness aspartoftheoverallreactivity controlsystem,whichisevaluated intermsofanalytical consequences in1.above.Sincetheydonotcauseanysignificant changeinsystemoperation orfunction, noneweventsarecreated.Theanalysesdescribed inl.aboveindicatethatthereplacement bladesmeetallpertinent regulatory criteriaforuseinthisapplication, andareexpectedtoeliminate theboronlossconcernsexpressed inIEBulletin79-26,Revision1.Therefore, theproposedchangedoesnotresultinasignificant decreaseinanymarginofsafety.Page8of8 4011tte}}