ML18018B070

From kanterella
Revision as of 05:43, 29 June 2018 by StriderTol (talk | contribs) (Created page by program invented by StriderTol)
Jump to navigation Jump to search
Nine Mile Point Unit 1 - Responses to Questions Relating to Changes to the Technical Specifications
ML18018B070
Person / Time
Site: Nine Mile Point Constellation icon.png
Issue date: 11/23/1973
From:
Niagara Mohawk Power Corp
To:
US Atomic Energy Commission (AEC)
References
Download: ML18018B070 (248)


Text

CONTENTSPAGENO.Question1Question2Question3Question4Regulatory Guide1.22Regulatory Guide1.23Regulatory Guide1.24Regulatory Guide1.25Regulatory Guide1.26Regulatory Guide1.27Regulatory Guide1.28Regulatory Guide1.29Regulatory Guide1.30Regulatory Guide1.31Regulatory Guide1.32Regulatory Guide1.33Regulatory Guide1.34Regulatory Guide1.35...,Regulatory-.Guide

-l.36Regulatory Guide1.37Regulatory Guide1.38Regulatory Guide1.39Regulatory Guide1.40Regulatory Guide1.41Regulatory Guide1~42Regulatory Guide1.43Regulatory Guide1.44Regulatory Guide1.45Regulatory Guide1.46Regulatory Guide1.47Regulatory Guide1.48Regulatory Guide1.49Regulatory Guide1.50Regulatory Guide1.51Regulatory Guide1.52Regulatory Guide1.53Regulatory Guide1.54Regulatory Guide1.55Regulatory Guide1.56Regulatory Guide1.57Regulatory Guide1.58Regulatory Guide1.59Question5Question6Question7Question8.~~~~~~~1579.1012131415161718202122232425"26272829303132333435363738394041424445464749515354576062 Hl$'i PAGENO.Question9Question10QuestionllQuestion12Question13Question14~~~~0~~~~~~~s~~0~~~~~~~0~~~\~0~~~~~~~t~~~~~~~~~~~~~~~~~~04~~~~~~~~636572768189 C

QUESTIONSincetheTechnica1 Specifications appendedtoProvisional Operating LicenseNo.DPR-l7willbereissued.

atthetimeofconversion, theproposed.

changestotechnical specifications shouldbesubmitted assoonaspossibleforourreview.Therefore, pleaseprovidealistingofa11changestotheTechnical Specifications forNineMilePointUnit1(MMP-1)otherthanthoseidentified hereinthatyouwiU.considerinconnection withthelicenseconversion.

Includeadequatesupporting information forchanges'beingproposed..

RESPONSETheproposedmodifications totheTechnical-Specifications fallintotwocategories (a)thoserequested inlettersalreadysubmitted and(b)thoseproposedtobemadeatthetimeoflicenseconversion.

SinceTechnical Specification ChangeNo.9therehavebeenotherproposedchangessubmitted totheAECwhichhavenotyetbeenactedupon.Theyareasfollows:a.ProposedchangestoSpecificatjoy 3.3.6,"VacuumRelief";havebeensubmitted intwoletters.b.--"Proposed'environmental techriical specifications.

c.Reloadfuelapp)ication concerning rodblockandpeakingfactorfor8x8fuel.d.Proposedchangestospecifications 3.1.1and3.6.2concerning thereanalysis oftheroddropaccidentandtheAPRMrodblocksys-tem.OtherareaswherechangestotheTechnical Specifications.

areappropriate arediscussed below:a.Specification 3.2.5-changeprimarymethodofleakdetection totherateofrisemonitoring insumplevel.Asdescribed inresponsetoRegulatory Guide1.45amoresensitive methodofmonitoring primarysystemleakdetection hasbeeninstalled.

Thissystemwilldetecta0.2gpmchangeinflowintherangeof0-1gpmflowanda0.5gpmchangeforinflowsof1-5gpm.1LetterdatedMarch26,1973fromR.R.Schneider toD.J.Skovholt.

2LetterdatedJuly20,1973fromR.R.Schneider toD.J.Skovholt.

3LetterdatedOctober4,1973fromP.D.RaymondtoD.R.Muller4LetterdatedOctober16,1973fromP.D.RaymondtoA.Giambusso.

5LetterdatedNovember15,1973fromR.R;Schneider toMr.A.Giambusso.

b.Specification 4.2.2-changewithdrawl scheduletomeetthefollowing:

Firstcapsule-onefourthservicelife.Secondcapsule-threefourthservicelife.Thirdcapsule-standbyIntheeventthesurveillance specimens atonequarterofthevesselsservicelifeindicateshiftofreference temperature greaterthanpredicted thescheduleshallberevisedasfollows:Secondcapsule-onehalfservicelife..This:dr.capsule

-."standby.Theaboveisamodification toASTMStandardRecommended PracticeforSurveillance TestsforNuclearReactorVessels.Itwillassurethatthereisadequatemarginsofsafetyagainstfracturethroughtthevesselservicelife.c.Specification 3.6.2,Tables3.6.2band4.6.2bThesetpointsforthehighareatemperature fortheclean-upandshutdowncoolingsystemisolation shouldbechangedtoread190Fand170Frespectively.

Duetothefactthatthemonitorsareatceilinglevelandgoodcirculation ofairthroughtheseroomsdoesnotexist,normal""ambient-temperatures haveranged-from140Fto160F.d.Proposedtechnical specification forthehighpressurecoolantinjection systemispresented here.'newspecification (3.1.8)willbeaddedasfollows:3.1.8HIGHPRESSURECOOLANTINJECTION Appliestotheoperational statusofthehighpressurecoolantinjectionsystem.~Ob'ctive:Toassurethecapability ofthehighpressurecoolantinjection systemtocoolreactorfuelintheeventofaloss-of-coolant.

accident.

aeDuringthepoweroperating condition wheneverthereactorcoolantpressureisgreaterthan110psigandthereactorcoolanttemperature greaterthansaturation temperature, thehighpressurecoolantinjection systemshallbeoperableexceptedasspecified inSpecification "b"below.b.Ifaredundant component ofthehighpressurecoolantinjection systembecomesinoperable thehighpressure

coolantinjection shallbeconsidered operableprovidedthatthecomponent isreturnedtoanoperablecondition with15daysandtheadditional surveillance requiredisperformed.

c~Ifspecification "a",and"b"arenotmet,anormalorderlyshutdownshallbeinitiated withinonehourandreactorcoolantpressureandtemperature shallbereducedtolessthan110psigandsaturation temperature within24hours.4.1.8HIGHPRESSURECOOLANTINJECTION Appliestotheperiodictestingrequirements forthehighpressurecoolantinjection system.~OB'ective:Toverifytheoperability ofthehighpressurecoolantinjection system.Thehighpressurecoolantinjection surveillance shallbe.-performed'"as "indicate'd"bel'ow:

a.Atleastonceperoperating cycleautomatic start-upofthehighpressurecoolantinjection systemshallbedemonstrated.

b.Atleastonceperquarterpumpoperability shallbedetermined.

c.Surveillance, withInoerableComonentWhenacomponent becomesinoperable itsredundant component shallbedemonstrated tobeoperableimmed-iatelyianddailythereafter.

Bases:TheHighPressureCoolantInjection System(HPCI)isprovidedtoensureadequatecorecoolingintheunlikelyeventofasmallreactorcoolantlinebreak.TheHPCISystemisrequiredforlinebreakswhichexceedthecapability oftheControlRodDrivepumpsandwhicharenotlargeenoughtoallowfastenoughde-pressurization forcorespraytobeeffective.

Onesetofhighpressurecoolantinjection pumpsconsitsofacondensate pump,afeedwater boosterpumpandamotordrivenfeedwater pump.Onesetofpumpsiscapableofdelivering 3,800gpmtothereactorvesselatreactorpressure.

Theperformance capability ofHPCIaloneandinconjunction withothersystemstoprovideadequatecorecoolingforaspectrumofline-breaks isdiscussed intheFifthSupplement oftheFSAR.3

Indetermining theoperability oftheHPCISystemtherequiredperformance capability ofvariouscomponents shallbeconsidered.

a0TheHPCISystemshallbecapableofdeliveryrateof3,800gpm.b.Themotordrivenfeedwater pumpshallbecapableofautomatic initiation uponreceiptofeitheranautomatic turbinetripsignalorreactorlow-,water-level signal.cTheCondenser hot.welllevelshallnotbelessthan48inches(75,000gallons).d.TheCondensate storagetankinventory shallnotbelessthan105,000gallons.Duringreactorstart-up, operation andshutdownthecondensate andfeedwater boosterpumpsareinoperation.

Atreactorpressures upto450psig,thesepumpsarecapableofsupplying therequired3,800gpm.Above450psigamotor-driven-feedwater pumps,isnecessary toprovidetherequiredflowrate.Thecapability ofthecondensate, feedwater boosterandmotordrivenfeed-waterwaterpumpswillbedemonstrated bytheiroperation aspartofthefeed-watersupplyduringnormalstationoperation.

Stand-bypumpswillbeplacedinserviceat.leastquarterly tosupplyfeedwatex duringstationoperation.

Anautomatic systeminitiation testwillbeperformed atleastonceperoper-atingcycle.Thiswillinvolveautomatic startingofthemotordrivenfeed-waterpumpsandflowto.thereactorvessel..

Specification 3.6.2kwillbeaddedasfollows:E~k.HihressureCoolantIn'ection Initiation

-Thehighpressurecoolantinjection systemshallbeconsidered inoperable andspecification 3.1.8cshallbeapplied.Othertechnical specification changesarediscussed inanswertoquestions 2,3,7ofthissubmittal.

Tables3.6.2kand4.6.2kvillbeaddedasfollovssABE62kad462kPSEChE03.6.2kLinitinSCondition forOperation 4i6.2kSurveillance Requireuent psraueter MininunNo.oiTrippedorOperableriSsceneMininunNo.ofOperableInstrunent Channelsper0arable1SstSet~nReactorModeSvitchpositioninWhichFunctionMustSeeablSensorCheckInstrunent ChannelTestInstrunent Charms1~Cllbti(1)LouReactor'MaterLevel(2)Autonatic TurbineTrip1ft.belouvaterlevelatEl.302'-5uShutdovnRefuelStartsRunXXXXXXXXOn<<eperdayhoneOncepernonthEachOper-~tinSCycleOnceper3conths

LIMITINGCONDITION FOROPERATION SURVEILLANCE REQUIREMENT BASESICont'd.lS.2.SREACTORCOOIAVTSYSTEMIEAKACERATEC.2.SREACZORCOOIAVTSYSTESIIEALACERATE~ll~'UAppliestotheI(nitsonreactorcoolantsystenleak-agerateAppliestothcnonitoring ofreactorcoolantsystcnlcakagc.Obective:Toassurethatthenakeupcapability providedbythecontrolroddriveFunplsnotexceeded.

Todeteznlne thcreactorcoolantsystcnleakagerateandassurethatthclea'kagcllnitsarenotexceeded.

cification:

~SillIAnytineIrradiated fuellslnthereactorvesselandreactorcoolanttnapcrature lsabove2IIF~reactorcoolantleakageintotheprlnazycontalnaent frowunidentified sourcesshallnotexceedSgpn.Inaddition, thetotalreactorcoolantsystcnleakageintotheprlnazycoats(anent shallnotexceed25gpn.Iftheseconditions cannotbenet,thereactorvillbeplacedlnthecoldshutdowncondition withintenhours.Acheckofreactorcoolantsystcnleakageshallbenadcatleastoncepcrday.Allowable leakageratesofcoolantfrerethereactorcoolantsystcnhavebeenbasedonthepredicted andcxperlnentally observedbehaviorofcrackslnpipesandontheabilitytonakeupcoolantsystcnleakagelnthceventoflossofoffsltea-cpower.Thenoznallyexpectedbaclground leakageduetoequipaent designandthcdetection capability fordctezulning coolantsystenlea'kagewerealsoconsidered lnestablishing thellnlts.Thebehaviorofcrackslnpipingsystenshasbeenexperlaentally andanalytically investigated aspartoftheIISAECsponsored ReactorprinaryCoolantSystenRuptureStudy(thepipeRuptureStudy).workutllltlng thedataobtainedinthisstudyindicates thatleakagefranacrackcanbedetectedbeforethecrackgrowstoadangerous orcriticalsizebynechanlcally orther-nallyinducedcyclicloading,orstresscorrosion crackingorsonsothernechanisa characterized bygradualcrackgrcwth.Thisevidencesuggeststhatforlea'kagescuewhatgreaterthanthellnltspecified forunideatlfied leakage,theprobability lsswellthatinperfectlons orcracksassociated withsuchleakagewouldgrowrapidly.However,theestabllshtent ofallowable unidentified leakagegreaterthanthatgivenIn$.2.$onthebasisofthedatapzesently available wouldbeprenature becauseofuncertainties associated withthcdata.ForleakageoftheorderofSgpaasspecified in$.2.S,theexperinental andanalytical datasuggestareasonable narginofsafetythatsuchIcakagcnsgnitude wouldnotresultfrowacrackapproaching thecriticalsizeforrapidpropagation.

leakageofthenagnitude specified canbedetectedreasonably inanatterofafewhoursutilizing theavailable leakagedetection schenes,andlftheorigincannotbedeteznined lnareasonably shorttinetheplantshouldbeshutdowntoallowfurtherinvestiga-tionand<<orrectlve action.Atotalleakageof2Sgpnlswellwithinthecapacityofthecontrolroddrivesystennakeupcapability (pageIll-7oftheFirstSuppleuent).e Asdiscussed InS.I.Oabove,forleakageswithinthisnakeupcapablllty thecorewillrcaaincoveredandautonatlc pressureblowdownwillnotbcactuated.

eFSAR.4T

LIMITINGCONDITION FOROPERATION

.SURVEILLANCE REQUIREMENT BASES(Cont'd.)

sheprxaaxyscansofdetexaining thereactorcoolantleakagerateisbyaonitoring therateofriseinthelewisofthedxywllflooranxeguipeent drainlines.Dailychecksvillhesadethatnoalaxaehavebeenactuatedduetohighleak-age.rorcuspinfloveofonagpachangesontheoxderof0.2gpacanhedetectedvithin40ainutes.Atinfloweba-tveenoneandfivegpachangesontheorderofO.Sgpacanbedetectedineightainutes.leakageisdetectedbyhavingallunidentified leakageroutedtothedrywallfloordralatank,andidentlficd leakagerouteddirectlytothedrywallequlpscnt draintanks.identified leakageincludessuchlteasasreclrculaticu puapsealleakageandrecirculation puapsuctionanddischarge valvepackingleakoff.Anotheraethcdvillaonitortheth>>requiredtofillthetanksbetweentvoaccurately de-texaincdlevels.Whenthelevellnthetankreachesthelov-level svitchsetting,atiacrvillstartandoperateforapresettineinterval.

ifthetlaerresetsbeforethehigh-level svltchsettinglsreachedin-dicatingaleakageratevithinallowable liaits,noaction<<illresult,andthesystca"resetsforthenextfillingandtiningcycle.lftheleakagelshighenoughtocausetheleveltoreachthehighlevelswitchsettingbeforethetiacrresetsautoaatlcally, analazalsactuatedindicating aleakrateabovethepredetexalncd llalt(FirstandFifthguppies>>nts).

Additional lnfozxatlon lsavailable totheoperatorwhichcanbeusedforthodailyleakagecheck1fthedrywallsuspslevelelratsareoutofservice.lheintegrated flovpuapedfroathesuapstothevestadisposalsysteacsnbechecked.Qualitative infozaatlon lsalsoavailable tothaoper-atorlnthefoxaofindication ofdryvellataospheric

<<ondltions.

Continuous leakagefroathepriaarycool-antsysteavouldcauseanincreaselndrywalltesper-ature.Anyleakageinexcessoflggpaofsteaavouldcausescontinuing increaselndxywellpressurevlthresulting scras(FirstSupplcaent).

Reactorcoolantsystealeakdetection villbefurtherstudiedduringthefirstyearofoperation ofthefacility.

lftheresultsindicatethatsignificant iaprovcaents lnaonitoring capability csnbareallyachievedonapractical basis,suchisprovcaents willbeinpleaented.

Tables3.6.nd4.2.6bINSTRUMENTATION THATINITIATES

.PRIMARYCOOLANTSYSTEMORCONTAINMENT ISOLATION 3.6.2b-LinutinCondition foreration4.6.2b-Surveillance ReuirementParameter MinimumNo.ofTrippedorOperableTriSstemsMinirnurn No.ofOperableInstrument ChannelsperOperableTriSstemSetPointShutdownRefuelStartuRunReactorModeSwitchPositionInWhichFunctionMustBe0erableSensorCheckInstrulnent ChannelTestInstrument ChannelCalibration PRIMARYCOOLANTISOLATION (MainSteam,Cleanup,andShutdown)

(I)Low-LowReactorWaterLevelS5ftbelowminimumXnormalwaterlevelatElevation 302'-9"XXXOnce/dayOnceperOncepermonth3months(2)ManualMAINSTEAMLINEISOLATION XXXOnceduriageachmajorrefueHagoutage(3)HighSteamFlowMain-Steam IdncSl05psidXXOnce/dayOnceperOncepermonth3months(4)HighRalliation Main-Stealn Line<5tilnesnormalbackground XXOnce/shiftOnce/week Onceper3monthS(5)LowReactorPressure>850psigXOnce/dayOnceperOncepermonth3months(6)Low-Low-LowCondenser Vacuum(7)HighTemperature Main-Steam-LineTunnelCLEANUPSYSTEMISOLATION

>7in.mercuryvacUuln<200F(a)(a)XXXXNoneNoneOnceduringeachmajorrefueliag CUtagcOncedurlageachmajorrefueling outageOnceduringeachmajorrefueling outageOnceduringlnajorrefueHngCUtagc(8)HighAreaTemperature (S190rXXXOnce/week Onceduringeachmajorrefueling outageOnceduringeachmajorrefueling CUtagcl00

Tables3.6.2band..6b(cont.)INSTRUMENTATION THATINITIATES PRIMARYCOOLANTSYSTEMORCONTAINMENT ISOLATION 3.6.2b-LimitinCondition for0eration4.6.2b-Surveillance ReuirementParameter Minixnuxn No.ofTrippedorOperableTriSstemsMinimuxnNo.ofOperableInstrument ChannelsperOperableTriSstemSetPointReactorModeSwitchPositionInWhichFunctionMustBe0erableShutdownRefuelStartuRunSensorCheckInstrument Inst~eatChannelChannelTestCalibration SHUTDOWNCOOLINGSYSTEMISOLATION (9)HighAreaTexnperature i<170rXXXOnce/week Onceduringeachmajorrefueling outageOnceduringeachmajorrefueling outageCONTAINMENT ISOLATION (IO)Low-Low'eactor WaterLevel<5ftbelowxninimuxn XnormalwaterlevelatElevation 302'-9"XXOnce/dayOnceperxnouthOnceper3months(11)HighDrywellPressure53.5psig(b)X(b)(b)Once/dayOncepermonth0ncepex'months(I2)ManualXXOnceduringeachoperat-ingcycleNotesforTables3.6.2band4.2.6b(a)Maybebypassedintherefuelandstartuppositions ofthereactormodeswitchwhenreactorpressureislessthan600psi.(b)Maybebypassedwhennecessary forcontainment inerting.

h 2.UESTIONCertaintechnical specifications applicable tocontainment willberequired.

tobechanged.;

thesearediscussed.

below:GeneralDesignCriteriaNos.55,56,and.57specifyrequire-mentsforparticular classesofprimarycontainment penetrations.

Youpresentgeneralinformation toshowconformance totheserequirements inyourreport,"Technical Suaplement toPetitionforConversion fromProvisional Operating LicensetoFull-TermOperating License"(Application).

Pleaseprovideatabulation

.ofisolation, valvearrangement andfunction-on allfluid.line'penetrations oftheR&-1primarycontainment.

Thistabulation istobeincorporated.

inTable3.3.4oftheTechnical Specifications.

Includeintheabovetabulation adesignation ofallvalveswhicharedefinedtobeprimarycontainment testablepenetrations forpurposesofSection4.3.3.e(l) oftheTechnical Specifications.

CeIngenera1,theprimarycontainment leakageratetestingspeci-fications aretobeupdatedtobeconsistent withtherequirements ofAppendixJto10CFRPart50.Inparticular, Section4.3.3.d(3) istoberevised.tospecifythatasetofthreeintegrated leakratetests(TypeA)shallbeperformed.

atapproximately equal..,mnterva1sMuring.

each.ten-.year,.service period..Thethird.test-ofeachsetshallbeconducted whenIMP-1isshutdownfortheten-yearplantinservice inspection.

d.Similarly, Technical Specification 4.3.3.e(2) istoberevised.tospecifythatthepersonnel airlockdoorsealsshallbetested.,aftereachopeningwhenthereactorisinapoweroperating condition, atapressureof10psigandtheleakrateextrapolated to35psig.Theleakrateshallnotexceed5$ofLa.Airlocksshallbeleakratetested,atapressureof35psigatsix-month intervals.

e.CSection4.3.3.e(4) istoberevised.tospecifythattestingofmainsteamlineisolation valvesistobeperformed, at35psiginaccordance withAppendixJof10CFR50.RESPONSEa,bProposedrevisions toTechnical Specification 3.3.4isattachedandnotedbymarginalmarkings.

c,d,ePrimarContainment LeakaeRateTestinProposedchangestoTechnical Specification 4.3.3tobringitintoconformance withlOCFRSOAppendixJareattached.

Changestopages65,66and67oftheTechnical Specifications andBaseswouldberequired.

Asaresultofthefirstprimarycontainment leakratetest,theratioofL(22)/L(35)wasdetermined tobe0.735.ThisresultsinatestleakrateequationfromAppendixJ,whichisthesameasthecurrentspecification 4.3.3b(2).Thetestfrequency requirebythecurrentTechnical Specif--icationsisnotthesameasthatcontained inAppendixJof10CFR50.Changesareproposedintheattachedspecification 4.3.3.d.Threeprimarycontainment leaktestshavebeenperformed asfollows:1.Testat35and22psig(August1969).2.Testat22psig(June1970).3.Testat22psig(May1972).Changesarealsoproposedforspecification 4.3.3.e.(2) ande.(4)toallowtestingofairlocksandmainsteamisolation valvesinconformance withAppendixJof10CFR50.

LIMITINGCONDITION FOROPERATION SURVEILLANCE REQUIREMENT BASESICont'd.)

3.$.4PRIlQRTCCÃTAIhsKVT ISOIATICII VALVES4.3.4FRIMARYOavTAIbOKIT ISOIATIOX VALVESb~\blllAppliestothcoperating statusofthesystcaofisolation valvesonlinesopentothefreespaceofthepriaarycontainaent.

~bbbillAppliestotheperiodictestingrequiresents ofthepriaarycontainnent isolation valvesystcn.Toassurethatpotential leakagepathsfroatheprl-nsrycontainsent Lntheevcatofaloss-of-coolant accidentarealniaited.

a<<lblIIthcnever thereactorcoolantsystceteaperature lsgreaterthan2ISF,allcontaitsseat isolation valvesonlinesopeatothefreespaceofthepriaatycontainaent shallbeoperableexceptasspecltied in$.$.4bbelov.b.Intheeventanyisolation valvebccoaesinoperable thesysteashallbeconsidered operableprovidedatleastonevalveineachlinehavinganlnoperawevalvelslathenodecorresponding totheisolatedcondition.

c.IfSpecifications

$.3.4aandbarenotaet,thereactorcoolantsysteatcaperature shallbere-ducedtoavaluelessthan21SFvlthlntenhours.ebbToassuretheaural'Illty nrthcprivacycontainscnt isolation wivestoliaittbotential Iesiareoathsfrouthecontalnaent Inthecwntoeslose-oe-cnn)ant accident..

~SIlllIhepriaarycontslnaent isola'tlon valvessurveillance shallbepcrforaed asindicated (seeTable3.3.4).a.Atleastonceperoperating cycletheoperableisolation valvesthatarepowroperatedandautoastlcally initiated shallbetestedforauto-asticinitiation andclosuretines.b.AtleastonceperquarterallnornaIIyopenpoveroperatedIsolation valvesshallbefully-closetsndreopened.

c.Atleastonceperoperating

<<ycle.eachInstrument-lineflowcheckvalvewillbetestedforoperability; Doubleisolation valvesaraprovidedonlinespenetrating thaprlaaryocntalnaent andopentothetreespaceotthecontainaent.

Closureotoneofthevalvesineachlinevouldbasuttlcieat tonaintainthaintegrity otchepressuresuppression systea.Sxceptvherecheckvalvesareusedasoneorbothofasetofdoubleisolation valves,theIsolation closuretiaesarepresantai inrebel3.34.Isolation valvearrangeaents onlinesnotopeningtothefreespaceofthacon-tainnentarealsopresented lnTable3.3.4.Autoaatlc initiation isrequiredtoainlaixethepotential leakagepathstreethecontainsent lntheawntotalosswf-coolant accident.

bstailsoftheisolation valwearadiscussed inSectionVI%.~rorallovable leakageratespeclticattonsb seeSection3.3.3above.AsIllustrated inFigureE-$4ofAppendixE'uelrodperforation doesnotoccuruntilabout1$0secondsfolloving theloss-of-coolant accident.

Arequiredclosingtineof60secondsforallpriaarycontainaent Isolation valvesvillbeadequatetopreventfissloaproductreleasethroughlinesconnecting totheprivacycontaiteent.

Forreactorcoolantsysteatcaperatures lessthan$12F,theContain-seatcouldnotbeccaepressurlted duetoaloss-of-coolant accident.

The2)SFliaitIsbasedonpreventing pressuritation ofthereactorbuildingandruptureoftheblnvoutpanels.Thetestintervalofonceperoperating cycleforptcaaticlnltla-tionresultslnafailureprobability ofI.Ix10thatalinevillnotisolate(FifthSuppleaent,.

p.IIS).Herefrequenttestingforvalveoperability resultsinanorereliablesystcn.Inadditiontoroutinesurveillance ssoutlinedlnFirstAddenbhss toTechnical Supplesent toPetitiontoIncreasePoverLevel,eachlast-ruaent-line flovcheckvalvevillbetestedforoperability.

Allinstruaents onsgivenlinevillbeisolatedateachInstrusent.

Thelinevillbepurgedbyisolating thefleecheckvalve,openingthebypassvalves,andopeningthedrainvalvetotheequlpaent draiatank.shenpurgiaglssufficient toclearthelineofnon-conden-siblesandcrudtheflcv-check valvevillbecutIntoservicesndthobypassvalveclosed.Theaainvalvevillagainbeopenedandtheflov-check valvea)lovedtoclose.theflov-check valvevillberesetbyclosingthedrainvalveand.opening thebypassvalvedepressurizing partofthesystes.Instruaents villbecutintoserviceafterclosingofthebypassvalve.Repressurlting ofthelndlvldual Instrusents assuresthatfloe-check valveshaveresettotheopenposltlon.

Issued&CO-TI'FSAR68

LLfITI:1'tCotZ)III(CX PCROFIRAII(t Table336PRL6'dtYCHAI:X'TISOLTIC:VALVESDellVcncdPureCoancct1onOneLineAfrConncctfott (OneLine)t~atiotRclatfcNo.otValvestoPrfnsryOutsideOutsldcOutsideOutsideNorJPotftfo;Closed(a)Closed(a)Closed(a)Closed(a)vJtfveFevercP.o.F.oVJsfnuOper.Ifac60606060AcCfonoaInftiatfng

~llCloseCloseCloseCloseIn1cfat1ngSignalAllValvesHaveRcaoteManualgac'EuReactorvateslevellovlovordryvellhighpressureSvcessionChanberVent6FvreNConnection OneioeAirConnection (OneLine)DrywllNIM~akeu'(ttwT~aeOutsideOutsideOutsideOutsideOvicideClosed(a)Closed(a)Closed(4)Closed(a)Closed(b)F.o.F.o.F.o.F.o.P.o.6060606060CloseCloseCloseCloseCloseRcaccorvaterlevellov-lovordrywllhighpressureReactorvacerlevellov-lovordryvcllhighpressureNIMakeup(OacLinc)llufntDrainLine(OncLine)(OneLine)urectionhanberttstcrEcu(onsLfae)OvteideInsideOutsideInsideOutsideOutsideOutsideClosed(b)OpctlOpenOpenOpenClosed(b)F.o.F.o.P.oF.o.F.o.F.O.SellAct.Ck.eo60eo6060CloseCloseCloseCloseCloseReactorvacerlevellov-lovordrywffhighpressureReactorvatcrlevellov-lovordrywllhighpressureReaocenanw1Ataosphcre toPressureSuppression Sysc<<a(ThreeLines)ReactorCleaaupSysceaRelictValveDfschae(OneLinetoSupprcssioa CbaaberSaapliagDrZyell(IhreeLiaes)u(oneLine)OutsideOCsfdeOucsfdeOucsfdeOutsideClosedClosed(b)Closed(b)F.o.SellAcc.Ck,SeltActCk.F.o.F.o.6060OpenCloseCloseNegativeprcssurerelativecoatnosphere

!RcaccorvaccrlevelIttcIovorhighdryvellpressureNotcst(a)Thesevalvesaaybeopenforcoatafnacnc tillvfthnitrorcn.

(b)Ihcsevalvesvillperiodically beopenedforsanplfngornftrogeaaaltcup.(c)P.o.-PovcrOperated.

1m'CO7169 I

LIMITINCCONDITIO~vOR OPERATION Table3.3.4ntinuedPRIM'RTCONIAItDKhT ISOIATION VALVESRF.EPAF.NTAK~ne~itKNo.ofValves~Esct+~cLocationRelativetoPrfuarya{weHomalMaxfnunMotiveOper.TineActiononInitiattng Initiating SignalAslave.essku~Co~Srs(d)~PnS~ut(FoutLinesfroaSupp.Chan.)OutsideACHotor90Rcnotcannual~PG.b(I'oTestLfnestoSupp.Chan,)OutsideClosedACMotorMsx,90CloseReactorvsterlevellov-lovDveilVent6NConnection (OacLine)~alCcf(OacLine)OutsideOutstdeOutsideOutsideClosedClosedClosedClosedAir/DCSol.ACHotorAir/DCSol,ACHotorMsx.60Hax,60Hsx.60Hsx.60CloseCloseCloseCloseReactorvaterlevellov-lov,ordryvellhighpressureRectr.Pu=pCooltngdVieQSuSupplyLineReturnLfncOutsideOutsideOpenOpenSelfhct.Ck.DCMotorMax+30.Recetensnua1.ve11CnoleMatSu1'(d)SupplyLfaeReturnLtneOutsideOutsideOpenOpenSelfhct,CkiDCMotorHex'0Rcnotenanua1uue11sn~51(PLt~)INEWOutsideF.E0A1'OpenAir/DCSol.Msx,60OpenReactorlevellov-lovandhighdryvellpressureuIIIIh(FourLtacs)cistCbecbrBranch(OneBranchforEachSystcn)u~ScnnSuesto~Chaebc(FourLines)OutsideOutsfdeOutsideSelfhct.Ck,Selfhct.Ck,OpenACPtor60Resotensaualvalveineachseparatelineandoaevalveineachcocoonline.(d)Iheseareclassified ssnot-testable valvesandpenatratfonsi

LIMITINGCONDITION FOROPERATION SURVEILLANCE REQUIREMENT BASESICont'd.I 3.3.3LEAKAGERATE4.3.3LEAKAGERATEAliAppliestotheallowable leakagerateoftheprimarycontalnmentsystem.Appliestotheprimarycontalnmcnt systemleakagerate,ObectlvetObective:Toassurethecapability ofthccontainment inlimitingradiation exposuretothepublicfromexceeding valuesspecified inIOCFRIOOIntheeventofaloss-of-coolant accidentaccompanied bysignificant fuelcladdingfailureandhydrogengenrratlon fromametal<<sterreaction.

Toverifythattheleakagefromtheprimarycontainment

~ystemlsmaintained

<<ithinspecified values.Wheneverthereactorcoolantsystemtemperature lsabove215Fthcprimarycontainment leakagerateshallbe<<ithlnthelimitsof4.S.3.b.a.IntcratedPrimerContainmcnt LeakseRateTest(I)Integrated leakratetestsshallbeperformed priortoItdt(alStationoperation atthetestpressureof35pslg(Pp)andthetestpressure(Ptlof22psigtoobtaintherespective measuredleakratesLm(35)andLm(22).(2)Subsequent leakageratetestsshallbeperformed

<<ithoutpreliminary leakdetection surveysorleakrepairsimmediately priortoorduringthetest.ataninitialprcssureofapproximately 22psig.(3)Leakrepairs.Ifnecessary topermitIntegrated leakageratetesting,shallbeprecededbylocalleakagemeasurements.

Theleakageratediffer-ence.priortoandaRerrepairwhencorrected toPtshallbeaddedtothefinalintegrated lca'kagerateresult.(4)Closureofthecontainment isolation valvesforthepurposeofthetestshallbeaccomplished bythemeansprovidedfornormaloperation ofthevalves.~(5)Thetestdurationshallnotbelessthan24hoursforintegrated leakratemeasurements.

butshallbeextendedtoasufficient periodoftimetoveri-fy.bymeasuring thequantityofairrequiredtoreturntothestartingpoint(orothermethodsofequivalent scnsltivhy).

thevalidityandaccuracyofthelea'kagerateresults.Theprimarycontalnmcnt preoperational testpressures arebaseduponthecalculated primarycontainment pressureresponseIntheeventofaloss-of-coolant accident.

Thepeakdry<<ellpressure<<ouldbe35psigwhich<<ouldrapidlyredoceto22pslgwlthln100secondsfollowing thepipebrea'k.Thetotaltimethedrywallpressurewouldbeabove22pslglscal-culatedtobeabout10seconds.Following thepipebreak.thesuppression chamberpressurerisesto22pslgwltldn10seconds,cquallscs

<<ithdrywell pressureandthereafter rapidlydecayswiththedry<<ellpressuredecay.(I)Thedesignpressures ofthedrywallandabsorption chamberare62pslgandS5pslg.respectively.

(2)Thedesignleakratels0.5~A/dayatapressureof35pslg.Aspointedoutabove.thepressureresponseofthedry<<ettandsuppression chamberfollowing anaccident<<outdbethesameafterabout10seconds.Basedonthecalculated primarycontainment pressureresponsediscussed aboveandthe'suppression chatnberdesignpressure, primarycontainment preoperational testpressures werechosen.Also.basedontheprimarycontainment pressureresponseandthefactthatthcdrywallandsuppression charnbcrfunctionasaunit.theprimarycontainment willbetestedasaunitratherthantestingtheIndividual components separately.

Thedesignbasisloss-of-coolant accidentwasevaluated attheprimarycontainment maximumallowable accidentleakrateof).9yA/day at35pslg.Theanalysisshowedthatwiththisleakrateandastandbygastreatment systemfitter.efficiency of40percentforhalogens.

95percentforparticulates.

andassumingthefissionproductreleasefractions statedInTID-14844.

themaximumtotalwholebodypassingclouddoselsabout6.0remandthemaximumtotalthyroiddoselsabout150rematthesheboundaryconsidering fumigation conditions (I)AppendixE.FSAR(2)VolumeI.SectionVI.FSARIsauodO~-71 4

LIMITINGCONDITION FOROPERATION SURVEILLANCE REQUIRBhENT BASES(Con)'d)b.AcestanceCriteria(I)Themaximumallowable tea4xerateLpshallnotexceedI.5<<eightpercentofthccontained airper24hoursatthetestpressureof35psig(Pp).(2)Theallo<<able testleakrateLt(22)shallnotexceedthevalueestablished asfolloweri,t(22)~1.5i,m(22)/I m(35)(3)Theallo<<able operational leakrate.Lto(22)<<hichshallbemetpriortoresumption o(po<<eroperation folio<<lng atest(eitherasrncasured orfolio<<ing repairsandretestlshallnotexceed0.75Lt(22).c.Corrective ActionIfleakrepairsarenecessary tomeettheallo<<able operational leakrate.theintegrated leakratetestneednotbcrepeatedprovidedlocallca4gemeasure-mentsarcconducted.

andtheleakratedifferences priortoandafterrepairs.<<hencorrected toPtanddeductedfromthcintegrated leakratemeasure-rnent.yieldalea4geratevaluenotinexcessoftheallo<<able operational leakrateLt(22).tothreeintegrated leakratetestsshallheperfor<<ed atapproxinately equaiintervals duringeach10-yearserviceperiodwiththethirdtestineachten~earintervalcorresponding withtheten~srscheduled in-service Inspection shutdovn.

overanexposuredurationoftwohours.Theresultant doseswouldoccurforthedurationoftheaccMentatthelowpopulation distanceofcmllesarelowerthanthosestatedduetothevari-abilityofmeteorological conditions thatwouldbeexpec*dtooccurovera30-dayperiod.Thus.thedosesreportedarethemaximumthat<<ouldbeexpectedlntheunlikelyeventof~designbasisloss.of-coolant accMent.Thesedosesarealsobasedontheassumption ofnoholdupinthesecondary containment re-sultinginadirectreleaseoffissionproduct~fromtheprimarycontainment throughthcfiltersandstacktotheenvirons.

There-fore,thespeci((ed prltnarycontainment leakrateandfilterefficiency (Specification c.c.<)areconservative andprovidemarginbet<<ecnexpectedoffsltedosesandIOCFR)00guideline Ifm)ts.Themaximumallowable testleakrateasspecified ln4.3~3bis1.5%/dayat apressureof35pslg.Thisvalueforthetestcondition

<<asderivedfromthemaximumallowable accidentleakrateofabout1.9%/daywhencorrected fortheeffectsofcontainment environment underaccidentandtestconditions.

Intheaccidentcase.thecontainment atmosphere lnltlally wouMbecomposedofsteamandhotairdepletedofoxygen<<hereasundertestconditions thetestmediumwouldbeairornitrogenatambientconditions.

ConsMerlng thedifferences inmixturecomposition andtemperatures, theappropriate correction factorapplied<<as0.8anddetermined fromtheguideoncontainment testing.(3)Althoughthedosecalculations suggestthattheallowable testleakratecouldbeallo<<edtoincreasetoabout3.0%/daybeforetheguideline thyroiddoselimitgivenlnIOCFRIOOwouldbeexceeded.

establishing thet(m(tat1.5%/dayprovidesanadequatemarginofsafetytoassurethehealthandsafetyofthegeneralpublic.Itisfurtherconsidered thattheallowable leakrateshouldnotdeviatesignificantly fromthecontalnmcnt designvaluetotakeadvantage ofthedesignleak-tightness capability ofthestructure overitsservicelifetime.

Addft)ona(margin tomaintainthecontainment inthe"asbuilt"condition lsachievedbyestablishing theallo<<able operational leakrate.Theoperational limitisderivedbyrnultlplying theallowable testleakrateby0.75therebyproviding a25%margintoallowforleakagedeterioration

<<hichmayoccurduringthepcrfedbet<<ceoteakratetests~Theprimarycontainment leakratetestfrequency I~basedonmaintaining adequateassurance thattheleakrateremainswithinthespecification.

Theleakratetestfrequency lsbasedontheAECguidefordeveloping leakratetestingandsurveillance ofreactorcontainment vessels.(

)(3)TID-20583.

LeakageCharacteristics ofSteelContalntnent VesselsandtheAnalysisofLeakageRat~Determinations.

(c)locttt50appendixJ,Reactorcontain<<ant LeakageTestfngforIwatercooledrovertteactors

.Issued tl LIMITINGCONOITION fOROPERATION SURVEILI.ANCE REQUIREMENT BASESICont'd.Ie.LocalLeakRateTests(I)primarycontainment testablepenetrations andisolation valvesshallbetestedatapressureof35pslgeachmajorrefueling outageexceptbolteddoublegaskecedsealsshallbetested<<henevertheseallsclosedaHerbeingopened.andatleastateachrefueling outage.(I)Personnel airlockdoorscaleshallbetestedaftereachopening<<henthereactorisinaposeroperating oonditioa, atapressureof10pslgandtheleakrateextrapolated to35Psig.airlocksshallalsobeleakratstestedatapressureof3$psigatsixaonthintervals.

In44ehtest.ChsIeskr4teCnrreeted to35psigshallnotexceed5percentofL.(5)Containment components notincludedin(I)and-(2)<<hichrequiredteakrepairsfollowing anyintegrated leakageratesinordertornecttheallowable leakagerateunitLtshallbesubjected tolocalleaktestsat4pressureof35psigateachrefueling outage.(S)gheaalnsteaalineisolation valvesaretobeSeatedat4pressureof35psiildtiriag44threfueling outage.f.Corrective Action(I)lfthetotalleakagerateslistedbelowasadjustedtoatestpressureof22pslg,areexceeded.

re-pairsandretcstsshallbeperformed tocorrectthecondition.

(a)double-gasketed sealsl0Lt(22lThepenetratioa andairpurgepipingleakagetestfrequency, along<<,iththecontainment leakratetests.Isadequateto4llowdetection ofleakagetrends.Whencvcradouble-gasketed panetratlon(primarycontainment headequipmcnt hatchesandthesuppression chamberaccesshatch)isbrokenandremade.the~pacebet<<eenthegasketsispressurized todetermine thatthesealsareperforming properly.

Thetestpressureof35pslgisconsisteat withtheaccidentanalysesandthemaxlcnumpreop-cratlonal leakratetestpressure.

Iclsexpectedthatthemajor)tyoftheleakagefromvalves.penetrations andseals<<ouldbeIntothereactorbuilding.

However.itispossiblethatleakageIntootherpartsofthefacilitycouldoccur.Suchleakagepathsthatmayaffectsignificantly theconsequences ofaccidents aretobeminimised.

Iftheleakageratesofthedouble-gasketed sealpenetrations.

testablepenetration isolation valves.contalnmeat airpurgeinlet~andoutletsandthevacuumreliefvalvesareatthemaximumspecified.

they<<illtotal90percentoftheallowedleakrate.(5)Hence.10percentmarginisleftlorleakagethrough<<elisanduntestedcomponents.

Monitoring thenitrogenmakeuprequirements ofthelnertlngsystemprovidesamethodofobserving leakratetrendsandwoulddetectgrosslea'ksinaveryshorttime.Thisequip-mentmustbeperiodically removedfromservicefortestaadmaintenance.

butthisout-of-service timewillbekepttoapractical minimum.(b)(I)testablepenetrations 30>>Lco[22)andisolation valves(t)anyonepenetration or5>>vLto(22)IsolationvaIvs(c)primirycontalament airpurgepenetrationsandreactorbuildingtotorusvacuumreliefvalves50"Io(22)g.Continuous LeakRateMonitor(I)Whencheprimarycontainment isinertedtheconCalnment shallbecontinuously monitored forgrossleakagebyreviewoftheinertingsystemmakeuprequirements.

(t)Thismonitoring systemmaybetakenoutofserviceforthepurposeofmaintenance ortcstlngbutshallbereturnedtoserviceassoonaspractical.

IssuedTheaccessible interiorsurfacesofthedrywallshallbevisuallyInipccted eachoperating cycleforevidenceofdeterioration.

(5)Volumei.SectionVI.FSAR67 I,LII

~UESTZONCertainothertechnica1 specifications willberequiredtobechangedinadditiontoincluding requirements notpresently specified.

Thesearediscussed.'below:

Concurrent maintenance involving removalofccntrolrod.drivesand.drainingofthetorushasbeenrequiredpreviously ontwooccasions.

TheTechnical Specifications should'berevised.topermitthistypeofconcurrent maintenance andtospecifytheapplicable controls.

Your"an~sis'ofa'nticipated transients withoutscramindicates thattherecirculation pumpswould'betrippedwheneverreactorvesselpressureisequaltoorgreaterthan1150psia.Youarerequested toproposeappropriate technical specifications toreflectthisrequirement ifthetri~ingoftherecirculation pumpsis,infact,whatyouareproposing.

Inthisregard,youstatethattheinstallation ofthesetripswould.bedonebytheendofthefirstrefueling outage.c~InSection3.2.3.coftheTechnical Specifications, thebasisforallowingnigherchlorideionconcentration andconductivity athighsteamingratesistheloweroxygenlevelsanticipated athighsteamingrates,andthedatashowninFigure3.2.3.Thereferenced "Corrosion and$learHandbook" fromwhichthisfigureistakenstatesthatdataweretaken,onU-bendspecimens ofsevera1stainless steels,primarily type347,at500F,inpH-10;6watercontaining 50cpmPOg,exoosed.inthesteamphasewithintermittent wetting.Theoriginalfiguretitlestates:"Curveisbased.onobservations madeunderspecificconditions, (and)therefore isnotintended.

forgeneraluse."Therefore, webelieveFigure3.2.3isanunacceptable basisfortechnical soecifications ofchloridelevelsinneutral,phosphate-free waterat600FinPrrRsmadeoftype304stainless steel.Tnerefore, Section3.2.3.cshouldbedeletedfromtheTechnica1 Specifications orrevisedtoconformwithTable2ofRegulatory Guide1.56,"Maintenance ofMaterPurityinBoilingMaterReactors",

whichgives5umho/cmynd0.5cpmchlorideasacceptable limitsatsteamingratesP10~lb/hrforaB!Rwithafreshwater-cooled condenser.

TheSurveillance Requirement specified inSection4.2.3oftheTechnical Specifications shouldberevisedtodefinea"shorttermspike"andtoindicateactionstobetakenwhenthecontinuous conductivity monitorisinoperable.

Amaximumtimefor.operation oftheplantwithoutthecontinuous conductivity monitorsbeingoperableshouldbespecified.

RESPONSEa.Proposedrevisions toTechnical Specifications 3.1.4and3.3.7isattachedandnotedbymarginalmarkings.

b.SincethetimeoftheTechnical Supplement toPetitionforConver-sionfromProvisional Operating LicensetoFullTermOperating Li-censeanumberofchangeshavetakenplacewith,regardtoAnticipated Transients WithoutScram..Oneimportant changehasbeentheeffectontransients ofarevisedscramreactivity curve.Thesecondchangerelatestothestaffreviewandconclusison, includedin"Technical Report.onTransients WithoutScramforWaterCooledReactors".

"Wearecurrently reviewing ouranalysi's an'dconclusion againstthestaffpositiondescribed inthatreport.Information concerning thisrevisedanalysisandproposedchangestotheTechnical Specifications willbediscussed inourresponsetotheAECrequestofOctober19,1973.c.Proposedrevisions toTechnical Specification 3.2.3isattachedandnotedbymarginalmarkings.

1LetterdatedOctober19,1973fromMr.A.Giambusso toMr.P.D.Raymond

LIMITINGCONDITION FOROPERATION SURVEILLANCE REQUIREMENT BASES(COIIt'd.I 3.1.4CORESPRAYSYSTtzt4.1.4CORKSPIIAYSYSTOt~lrblaAppliaatotheoperating statusoftbecorespraysysteasAppliestotheperiodictestingzequirencats forthecozespraysystcas.Toassurethecapability ofthecorespraysysteastocoolreactorfueliatheeventofalossof-coolantaccident.

a>~bToverifytheoperability ofthecorespraysysteas.~5<<!fl1a.Wheneverirradiated fuelisinthereactorvessel,eachofthetwocorespraysystemsshallbeoper-ableexceptasspecified inSpecifications b,candd,below.b.Ifaredundant coraponeat ofacorespraysystembecomesinoperable, thatsystemshallbeconsidaredoperablaprovidedthatthecomponent isreturnedtoanoperablecondition within15daysandtheadditional surveillance requiredisperfozmed.

c.Ilaredundant component ineachoithecotesptaysystemsbecomesinoperable, bothsystemsshallbeconsidezed operablepzovidedthatthecomponent isrctuznedtoanoperablecondition withinTdaysaadtheadditional surveillance requiredisper-lormcd.d.Ilacorespraysystembecomesinoperable andallthecomponents areoperableintheothersystem,thereactormayremaininoperation foraperiodnottoexceedIdays.e.IfSpecifications a,b,canddarenotmet,anormalorderlyshutdowashallbeinitiated vrithinonehourandthereactorshallbeinthecoldshutdowncondi-tionwithintenhours.Ifbothcorespraysysteaebecca>ainoperable thereactorshallbeinthecoldsbutdcvncondition vithinteahoursandnovork(exceptasspecified lnfbelov)shallbepezforacd onthezeactozoritsconnected systaasvhichcauldrea>ltinloverinythereactorvaterleveltoserethansevenfeetelevenInchesbolovalai>usanoraallevel.Thecorespraysysteasurveillance shallbepcrforaed asindicated belov.a.Ateachas]orrefueling outageAutoatatic startupofoaesetofIxzapsineachcorespraysysteashallbedcaonstrated.

b.Atleastonceperquarterpuapoperhbillty shallbedecked.c.Atleastonceperquartertheoperability ofpoveroperatedvalvesrequiredforpropersys-tcaoperation shallbechecked.d.CorespravheaderpInstruacntat ioncheckOnce/daycalibrate Once/3aonthstestOnce/Isenthse.SurvelIlanceelahIncrgbleConantsshenacceprment orsystcabccoaesinoperable itsredundant coaponcnt orsystcashallbcdeaonstratcd tobeopera!lclracdiarcly anddailythereafter.

Thecorespraysysteaconsistsoltvoautonatlcally

~ctuated,independent, douMe-capacity systaascapaMeofcooliagreactorfuelfor~rangeofloss-ol-coolant accidents.

Forthevorstliaebrcak,aloss-of-coolant accldcnt~acoresprayofatleast$400gpnisrequiredvithinSIsecond>>toprovidefuelstability sufficiently toassureeffective corecooling.Eachcorespraysysteahas100percentcoolingcapacityfreeeathsprayheaderaadeachsupplypuapaet.Thus>specifying bothsysteastobefullyoperational vill~asurcto~highdegreecorecoolingcapability ifthecorespraysystealsrequired.

Allovable ouragesarespecified toaccountforccraponcnts thatbecoaeInoperable inbothsysteasandforserethanonecoaponeat inssystea.gothcorespraycyst>ascontainredundant supplypvrapsetsandblockingvalves.Operation ofoaepuapset~ndblockiagvalvelssufficient toestablish requireddeliveryrateandflovpath.Therefore, evenviththelossoloneofthereduadsat coupoacats

~asystemis~tillcapableofperforaiag itsintendedfunction.

If~rcdbadant couponeat isfouadtohavefailed,corrective aaiotensnce villbeginproeptly.

Nearlysllnainteaaace canbecoupleted vlthin~fevdays.Infrequently>

hov-ever>aa]oraalatenaace nightberequired.

Replace>>eat ofprincipal systeacouponcnts couldnecessitate outagcsinexcessofthosespecified.

Inspiteofthebesteffortsoftheoperatortozeturaequlpaent toservice,soaeaaintensncecouldrequireupto6aonths.lndctcruiaiag theoperability ofacorespraysysteatherequiredperfomaace capability ofitsvariouscor>ponents shallbeconsidered.

Eozexaaplerl.Thedeliveryratefretsonecorespraypuapandtoppingpuapshallnotbelesschan3400gpa~t~coubinedpuapdeveloped headof691feetofvster.Atthisdeliveryrateadequatecorecoolingisprovidedtopreventfuelwelting.(SectionVII)'TSAR32

LIMITINGCONDITION FOROPERATION SURVEILLANCE REQUIREMENT BASESICont'd.)

f.Workaaybepextoxaed oncontrolxoddrivesattimeswhenvaterfsnotfntheeuppressfcn cham-berandthecoresprayeyateashallbeconsidered operableprovidedthatthefollowing areaetx1.woaoxethanonecontrolxoddrivehousingortrnapenetration vill1>>openedatanytim>>.2.Ablindtfancevillbeinstalled ontheocntrolzo4drivehousfncvheneveracontxolxoddrivohasbeenreaoccdtoxmaintenance.

3~workvillnotbopeztozae4 xnthereactorvesselvhlle~controlzoddrivehousfnofsopen.4.Acontxolroddrivevillnotberemoveditthebackseatseal4oeenotfunction.

5.Aafniauaconfensate stororevolumeof300,000qallonsandaafniauahotwellstoragevolumeofCO,OOOValfonsvillboaaintaine4 dvzforthepczfodthatthetoruswaterlevolfabelovthatcorrespcodfxvf toainfxsasargyxequircaent.6.Thecontrolzoddriveremovalan4frxxcreplaces>>nt shallnotbeconcurrent items.Thepuwpshallbecapableofautcaatic initiation fromufow-fowwaterlevelsignalinthereactorvesselorahighcontainment pressuresignal.Theblockingvalvesshallbe<<apableofautoaatically openingfreeeitherslow-lowvatersignalorhighcontainment pressuresignalsimultaneous withlowreactorprcssurepczaissivc signal.(SectionVil)'Thecorespraydeliveryrateof3400gpashallbeavailable atthecorespraynoxlesinsidethere-actorvesselvlthin33seconds.6.backupdieselgenerator povershallbeavaflabl~to~llmotoroperatedcomponents.

geforethefirstmajorrefueling outage,instrumenta-tionvillbeinstalled tomonitorthefntegrlty ofthccorespraypipingvithinthereactorpressurevessel.Following installation ofthisfnstriacntatfcn, therequirements statedinspecification C.l.s4shallbofolfowd.Thetestingspecified foreachaajorrefueling outagevilldemonstrate component responseuponautomatic mystesinitiation.

Forexaxple,puapsotstarting(lov-lowlevelorhighdzyvcllpressure) andvalveopening(lowlowlevelorhighdryvellpressureandlowreactorpressure) mastfunction, undersimulated conditions inthesaneaannerasthesysteasarerequiredtooperateunderactualconditions.

Theonlydifferences villbethatdcaincrallxcd vatcrratherthansuppression chamberwaterwillbepuapedtothereactorvesselandthereactorvillbeatatmospheric prcssure.

Thecorespraysysteasaredesignedsuchthatdcainerallxed waterlsavailablc tothesuctionofonesetofpumpslneachsystea(SectionVlfFigureVlf-l).Thesystcatestintervalbetvecnoperating cyclesresultsinasystemfailureprobability of1.1x106(FifthSupplcaent, page113)andisconsistent vithpractical considerations.

Thenorefrequentcoaponenttestingresultsinaacrereliablesystem.wAtquarterly intervals,'tartup ofcorespraypumpswilldemonstrate pumpstartingandoperability.

Ãoflowwilltakeplacetothereactorvesselduetothelackofafow-prcssure permissive signairequiredforopeningoftheblockingvalves.Flow,insteadwillbere-cycled tothesuppression chaaberviaatestloop.Anorificehasbeenprovidedinthetestloopwhichvillsimulatethepressurelossduringemergency operation ofthesystca.Inaddition, thenoxasllyclosedpoweroperatedblockingvalveswillbeaanuallyopenedandre-closed todemonstrate operability.

Theintentofspeciticatfon 3.1ctfmtoallovcontxolxoddxfveaalntenance andtrxccreplacement atthetfs>>thatthosuppression chamberfsunwatered andtopertoxanormalfuelaovcaentactlv-iticsfntherefuolaudevithanunwatered suppression cf>>aber.Xiascdontheliaitcdtfaefnvolvedinpertoxacnce ofthecon-currentaaintenance tasks,procedural controlstoainiaizethepotential anfdurationotfeakaoetrnathecontrolro4drivehousfnoorfpkwpenetration an4available coolantaakrxppzcvfdesadequateprotection acafnstdrafnaqeofthevesselwhilethesuppression cheaterfedrain<<d.33 l

LIMITINGCONDITION FOROPERATION SURVEILLANCE REQUIREMENT BASES(Cont'd.)

3.3.7coztalzmbt srzarsrgtgxg.3.7CONTAINMENT SPRAYSYSTEMAppliestotheoperating statvaOfthecontalnnent sprs)svstenAppliestothetestingofthecontainment spra'ysystem.Obective:toassurethecapability ofthecontainoent spraysysteztoit>>itcontainzent pressureandteoperature Intbeeventofaloss-of-coolant accident.

Toverifytheoperabilhy ofthecontainment spraysystem.Duringallreactoroperating conditions wheneverreactorcoolanttemperature i~greaterthan215Pandfuelisinthereactorvessel:eachofthetwocontainment spraysystemsandtheassociated rawwatercoolingsystemsshallbeoperableexceptasspecified in3.3.7.b.b.Ifaredundant component ofacontainment spraysystembecomesinoperable.

Specification 3~3.7.a.shallbeconsidered fulfilled, providedthatthe<<omponent isreturnedtoanoperablecondition within15daysandthattheadditional surveillance requiredisperformed.

c.Ifaredundant component ineachofthecontainment spraysystemsortheirassociated rawwatersystemsbecomeInoperable, bothsystemsshallbeconsidered operableprovidedthatthecomponantisreturnedtoanoperablecondition>>qthin 7daysandthattheadditional surveillance requiredisperformed.

d.Ifacontainment spraysystemoritsassoclmed rawwatersystembecomesinoperable andailthecomponents areoperableintheothersystems.thereactormayremaininoperation foraperiodnottoexceed7days.e.IfSpecifications aorbarenotmet,shutdownshallbeginwithinonehourandthereactorcool-antshallbebelow215Fwithintenhours.lfbothcontafnoonc spraysystcnsbecnneinoper-ablethereactorshallbeinthecoldshutdowncondition withintcnhoursandnollork(exceptasspecified infbelov)shallbeperforsed onthereactorvblchcouldresultinleertrv)thereactorvaterlevoltonotrethansevenfeeteleveninchesbelovnozuallevel,(Elevation 302').Thecontainment spraysystemsurveillance shallbeper!ormed asIndicated halo>>ua.Containment SprayPumps(I)AtleastoncePvroperating cycloautomatic startupofthecontainment spraypumpshallhedemonstrated.

(2)Atleastonceeruarter.pumpoperability shallbechecked.b.NozzlesAt1<<astonceperoperating cycle.anairtestshallbeperformed onthesprayheadersandnozzles.c.RawWaterCoolingPump>>AtleastonceperquarterntanualstartupandoperabllRy ofthera>>watercoolingpumpsshallbedetttnnstrattvl.

d.Surveillance

<<Ithinoperable I',orv~ncnttt zhcnacoaponcnt orsystcn)<<coors inoperable itsredundant cooooncnt orzyztceshallIeJcnonstratctl tobeoperableiswcdiztcl>>

and~tallyt!<<rczftcr.

Forreact<<rcoolanttcnpcratvres lessthan215Fnot<<notghsteanIsgenerated duringaloss.of.coolest accidenttoprcssurltc thecontalnnent.

Infact.forcoolantteuperatures upto312F~theresultant loss-of-coolant accidentpressurevouldnotexceedthedesignpressersof35pslg.op<<ratios ofonlyonecoatainoent spraypooplssufficient coprovM<<therequiredcont<<inn<<ac sprayflow.tbespecified flowof3000gpn(approxinetcly 9Spercenttothedrywallandtbebalancetotbesuppression chaober)issufflcfent torewovepostsc<<identcorecoergyreleasesincluding asub-stantialcbcuicalreactionInvolving hydrogengeneration andvillalsolint<<preset.re andteopersture riseslntbepressuresuppression systcutobelovdesignvalues(Appendix E-II2.2.3p.g-)dandtheFifthSupple>>eat).'ach contain>>ant spraysystcuiseonsldcrcd opcraMevhenbochp4npzareCapableofdeltvering atless<<3000gpnat~~ptztpdeveloped headof3)Sfactofvatcrat50F.ReqidrlnbochFunpslnbochsystcooop<<table(400percent4ndancy)villassuretbeavailability ofcbecontatnzent sprs't'rst<<it

~'11Iovablc outogtcOr4Ape<<iflcdtoaccountforconponents thatI<<concinopcraitlc lnIoths)>>terszndfornorethanoneccepon-clt'IInasystctt~Thecorresponding raveatercoolingsystcelsdcslgncdtostztntaln contalnoent sprayvatercusp<<recure nogreatertbsnIAOI'tndcrtbcsesclinitingop<<racing conditions.

thecontalnoent spratravvat<<rcoolingsysteuiscon-OMeredoperablevbenthefloeratelsnotlessthan3000zpnatapepdeveloped headof540feetofvater.Thtspvnpdeveloped beadutilnalntalnahigherpressureontherauvotersidestthehestcxchangers thanonthecontatnoenc sidesothatanyleakagevillbeintothecontalnnent spraysystez.Electrical poverforallsstewconponcnts isnomsliy~vallablefrostcbcreservetransfer>>sr Epotilossofthisservicetbepuupingrcqutreoent villbesuppliedfroathedieselrcnerator.

Atleastonedieselgenerator shallalwaysbeavallsMetoprovidebac'kup~lectrlcal peerforonecontalnnent spraysystcn.corresponding ravwatercoollnxsystenandassociated

~lectronic cquip-eentrequiredforancona<<le s!stcuinitiation.

73

LIMITINGCONDITION FOROPERATION SURVEILLANCE REQUIREMENT BASESIG)nt'd.)

Worknaybeperfumedoncontxolxoddrivesattinesvhenvatcrisnotinthesuppression cfvxsber.

'thecontaineent spraystatenshallbeconsfdemd operablepmvfdedthefolloving arenett1.Nonorethanonecontxolzo4driwhousingorlplotpenetration villbeopenedatanycine.2.Ablindflangevillbeinstalled onthecon-trolzo4drivehousingvbcneveracontrolzcddrivehasbeenzeaovcdfoznaintenance.

3.Norkvillnotbeperfozxed lnthereactorvesselvhileacontrolroddrivehousinglsopen.Acontxolxoddrivevillnotberescuedifthebackseatsealdoesnotfunction.

$~Anfnfnuncondensate storageveloceof300,000gallonsandanfninunhotvalistoragevoluneot40,000gallonsvillbenalntaine4 dazingtheperfodthatthetorusvaterlewlisbelovthatoorxesponding tonininunNRSHrequfreeent.Autonatic initiation ofthecontainvent spraysystenassuresthatthecontainnent villcotb>>overpressurited dwtohydrogengeneration.

Thisautonatic featurevouldonlyberequiredifallcorespraysystcvsnaltunctfoncd andeigni'fcantnatal-vatcr reactionoccurred.

yorthenoraslopxrstingcondition of90ysuppression chanbcrvaterandtvopsigcontafrxscnt

pressure, coctainnent sprayactwtionvovldnotbenecessary forabout1$ninutcs.Ravvatercoolingaffectsthetcnperature ofthesprayvaccrandthesuppression chanberpool.Takingintoaccountthereducedsteancondensation capability sndincreased suppression chastervaporpressure.

Cheravvatcrcooliogvouldnotberequiredfornorethan20ninutesforinitialsuppression chaebertcvperatures upto110y.Thisassuuesthatallcorespraysystcesfail.Therefore, nanwlinitiation oftheravvatersystcnisacceptable.

Nearlyallnaintenance canbeccopleted vithin~fevdays.Infrequently, hovever,na)ornalntenance nfghtberequired.

Rcplaccnent ofprincipal systencoepooents couldnecessitate oucaccsofnorethan1$days.InspiteofthebesteffortsOftheOperaCOrCOCCCurnequipnentCOSeluic~sSanenafntenancecouldrequireupto6nonths.6~Thecontxolrc4drivercnovalandfpRNreplaceaent shallnotbeconccxzwt fteea.Incon)unction withcontainment spraypumpoperation duringeachoperating cycle.therawwaterpumpsandassociated coolingsystemperformance willbeobserved.

Thecontainment spraysystemshaflbecapableofauto-maticinitiation fromsimultaneous low-lowreactorwaterlevelandhighcontainment pressure.

Theassociated rawwatercoolingsystemshaBbecapableofmanualactuation.

Operation ofthecontainment spraysysteminvolvessprayingwaterintotheatmosphcrc ofthecontalnmcnt.

Therefore, periodicsystemtestsarenotpractical.

Insteadseparatetestingofautomatic containment spraypumpstartupwfllbcperformed duringeachoperating cycle.Duringpumpoperation waterwillberecycledtothesuppression chamber.Airteststodetermine flowstosprayheaderswillalsobeperformed atthistimeandcomparedtoinitialpre-operational airtesting,verifying thatpipingandiornoscleconditions havenotchangedsignificantly.

Designfeaturesarediscussed inVolumeI,SectionVIIB.Z.0ipageVII-19e).

Thevalvesinthecontainment spraysystemarenormallyopenandarenotrequiredtooperatewhenthesystemiscafledupontooperate.ThetesClntcrvalbetweenoperating cyclesresultslnasystemfaflureprobabflity of1.Ix106IpffthSupplement.

page11$e)andlsconsistent withpractical considerations.

Pumpoperabflity wiflbedemonstrated onamorcfrequentbasisandwfllprovideamorereliablesystem.Theintentofspecification 3.3.2fistoallovcontrolrcddrivenafntenance adfpRNreplacesent atthetinethatthesuppression chasberisunvatere4 an4toparfumnoxnalfwlnovenentactiv-itiesintherefwlnodevithanunentered suppression chsaber.basedonthelinitedtineinvolvedinpertoxnance otthecon-currentnaintenance tasks,pxocedural oontrolstoninhaixethepotential uddurationotleakagefronthecontrolroddrivehousingorcpRNpenetration an4available coolantnakeuppm-vidcsadequateprotection againstdrainageotthevesselvhilethesupprecsion chauberisdrained.74 I

LIMITINGCONDITION FOROPERATION SURVEILLANCE REQUIREMENT BASES(Cont'd.)

3.2.3COOIAuTOIDIISTRY 4.2.3COOLAITs3lfuISTRY aafffbbflbfff fApp)ics.tothereactorcoolantsystenchsaicslrequire-ments.Obective:ufffbillAppliestotheperiodictestingrequirencnts ofthereactorcoolantchenistry.

Toassurethechcaicalpurityofthereactorcoolantvatcr.Todcteraine thechcnicalpurityofthereactorcoolantvater.a.Thereactorcoolantvatershallnotexceedthefollowing linitsvithstcaaingrateslessthanl00,000poundsperhourexceptasspecified in3.2.3bsConductivity IChlorideionSafnho/ca O.SISaac.Thereactorcoolantwatershallnotexceedthefollowing Iinitswithsteauingratesgreaterthanorequalto100,000poundspcrhour.Conductivity ChlorideionIOxnho/ca 1.0ppad.IfSpeclflcatlons 3.2.3.a,b,andcarenotnet,nozaslorderlyshutdofna shallbeinitiated vithinonehoursndthereactorshallbeinthe<<oldshut-doffncondition vithintenhours.b.Forreactorstartupsthemaximumvalueforcon-ductivity shallnotexceedIOxmho/cm andthemaxi-momvalueforchlorideionconcentration shallnotexceed0.Ippm.forthefirst24hoursafterplacingthereactorInthepoffferoperating condition.

f~lf\*lSasnlcsshallhetakenatleastevczv96hoursandanaivzsdforconductivity andchlorideioncontent.Inaddition, Ifthecondwtivity Isconesabnosvai(otherthanshorttrnasnlkcs)ssindicated hvthecontinuous conducitivity aoni-tor,sannlcaslsllIetHenandanalvzcd.

!whenthecontinuous conductivity aonitorieinoperable, areactorooolantsfffapleshallbetakenatleastdailyandanalyxsdforccfxluctivity andchlorideioncontent.Ãaterials inthepriaarysysteaarepriaarily 304stain-lesssteelandthezircaloyfuelclaMinu.Tbereactorvatercheaistry Iiaitsareestabllshe4 topreventdaa-aqetotheseaaterials.

tdaitsareplace4onchlorideconcentration andcoxluctivity.

TheasstIafpoztant llaitisthatplacedonchlorideconcentration topre-ventstressoorzosion crackkwzofthestainless steel.whenthesteafaln9 rateislessthan100,000poundsperboursfaaorsrestrictive lialtof0.1ppahasbeenes-tablished.

Atsteaainuratesofatleast100,000poundsperhour,boikinuoccurscausinudeaeration ofthere-~ctorvater,thusaaintaininu oxygenconcentration atlovlevels.Ashortteraspikeisdefinedasariseinconductivity suchasthatvhichcouldarisefroaInfection ofaddit-ionalfeedvater flowforadurationofapproxiaately 30ainutesintine.!e.Iftbecontinuous oonductlvlty aonitorisinoperable fornorethan7daysthereactorshouldbeplacedlnthecolds.'futdovn ccsbdition vithin2Sbours.Ihenconductivity isinitspropernozaalrange,pNandchlorideandotherlapurities affecting conductiv-ityaustalsobevithintheirnozaalrange.Whenandifconductivity beconesabnozasl, thenchlorideaeasure-sentsareasdetodetezaine vhetherornottheyarealsocutoftheirnomaloperating valws.Thisvouldzxftnecessarily bethecase.Conductivity coul4behighduetothepresenceofaneutralsalt,e.g.,Ica2304,vhichwouldnothaveanaffectonpNorchloride.

Insuchacase,highconductivity aloneisnotacauseforshutdcwn.

Insoaetypesofwater-cooie4

reactors, con-ductlvities areinfacthighduetopurposeful additionofadditives.

InthecaseofSvg's,hovever,wherenoadditives areusedandwhereneutzslpNisaaintained, conductivity providesaverygoodaeasureofthequality43 1

Llt>IITINGCONDITION FOROPERATION SURVEILLANCE REQUIREMENT BASES(Cont'd.l ofthereactorvater.Significant changesthereinpro-videtheoperatorwithavarningaechanisa sohecaninvestigate andrcaedytheconditton causingthechangebeforeliaitingconditions, withrespecttovariables affecting theboundaries ofthereactorcoolant,areexceeded.

scethodsavailable totheoperatorforcorrect-ingtheoff-standard condition include,operation ofthereactorclean-upsysten,reducingtheinputofta-purttiesandplacingthereactorinthecoldshutdowncondition.

Theastorbenefitofcoldshutdovnlstoreducethetenperature dependent corrosion ratesandprovidetinefortheclean-upsysteatore.establish thepurityofthcreactorcoolant.Durtngstart-upperiods,whicharetnthecategoryoflessthanl00.000poundsperhour,conductivity aayexceed2uaho/cabecauseoftheinitialevolution ofgasesandtheini-tialadditionofdissolved actals.Ouringthisperiodoftine,vhentheconductivity exceeds2unhototherthanshortteraspikes).saaplesvillbotakentoassurethatthechlorideconcentration islessthanO.lppa.Theconducttvity atthereactorcoolantlsconttnuouslyaonttored.

Thesaaplesofthecoolantvhlcharetakeneveryo6hoursvillserveasareference forcalibration oftheseaonttorsandtsconsidered adequatetoassureaccuratereadingsoftheaonltors.

Ifconductivity isvithtnttsnoraalrange,chlorides andotherlapurlties villalsobewithintheirnoraalranges.Thereactorcoolantsanptesvillalsobeusedtodcteraine thechlorides.

Therefore, thesawpllngfrequeacy lsconsidered adequatetodetectlong-tata changeslnthechlorideloacontent.Hovever,lftheconductivity changessignificantly, chlorideacasure-nentsvillbeaadetoassurethatthechlorideliaitsofSpecification 3.2.3arenotexceeded.

4.~UES1lONProvideanassessment oftheconformance ofNMP-1designand.operation withthecurrentRegulatory GuidesofDivision1extending thedescription oftheApplication fromGuideNo.3..21throughNo.3..59.Inthisregard,thoseRegulatory Guidesaddressed inresponsetoparticular inquiries hereinneed.notberepeated..

RESPONSETheconformance ofNineNilePointUnit1withregulatory guides1.22through1.59follow.

REGULATORY GUIDE1.22-PERIODICTESTINGOFPROTECTION SYSTEMACTUATION FUNCTIONS TheNineMilePointUnit1protection systemisdesignedtopermitperiodictest-ingtoextendtoandincludetheactuation devicesandactuatedequipment.

Thereactorprotection systemautomatically initiates areactorscramtopreventexceeding established limits.Inaddition, otherprotective instrumentation isprovidedtoinitiateactionwhichmitigates theconsequences ofaccidents orterminates operatorerror.1Adetaileddescription ofthesystemisavailable intheFSARandadescription ofthecapability oftestingsensors,channelsandchannelcalibrations hasalsobeenpreviously presented.

As.presently,.designed, the,protection systemperiodictestsduplicate, ascloselyaspracticable, theperformance thatisrequiredoftheactuation devicesintheeventofanaccident.

Theprotection systemandthesystemswhoseoperation itinitiates aredesignedtopermittestingoftheactuation devicesduringreactoroperation.

Testingofactuation devicesandactuatedequipment isperformed onanindividual basisorinselectedgroupsdepending upontheparticular systemdesign.Forexample:Atleastonceperoperating cycle,power-operated isolation valves(exceptfeedwater andmainsteam.)arefullyclosedandreopened.

And,atleasttwiceperweek,thefeedwater andmainsteamlinepower-operated isolation valvesareexercised bypartialclosureandsubsequent reopening.

Adetaileddescription..ofa3.l,testing

.forthe,.protection

.systemandthesystemswhoseoperation itinitiates, duringreactoroperation, isavailable inTables3.6.2a-jand4.6.2-jintheTechnical Specifications.

Whenasensorcheckisshown,itindicates individual testing.Achanneltestindicates agroup.Wheretheabilityofasystemtorespondtoabonafideaccidentsignalisin-tentionally bypassedforthepurposeofperforming atestduringreactoroper-ation:a.Key-lockbypassswitchesareprovidedforhighdrywellpressureandhighwaterlevelscramdischarge volume.Allothersaread-ministratively controlled.

Thisisprovidedtopreventexpansion ofthebypasscondition toredundant ordiversesystems.b.Eachbypasscondition isautomatically andindividually indicated tothereactoroperatorbymeansofannunciators locatedinthemaincontrolroom.Actuatedequipment ofthesystemsinitiated bytheprotection systemaretestedperiodically duringreactoroperation andinamannerthatdoesnotadversely affectthesafetyoroperability oftheplant.However,insomecasesfullin-itiationofthesystemisnotpractical.

Forexample,thecontainment spray1NineMilePointUnit1,FSAR,SectionVIII2NineMilePointUnit1,Technical Supplement toPetitionforConversion fromProvisional Operating LicensetoFullTermOperating License.

systemusesanairtestandtheliquidpoisonisrecirculated toatesttank.Testingofsensorsintheareaofmainsteamlineisolation valvescanonlybedoneduringperiodsofstationshutdownbecauseofhighradiation levels.Test-ingofscram,associated withshutdownpositionofthemodeswitchalsocanonlybedoneinperiodsofshutdownsinceitalwaysinvolvesascram.Theprobability thattheprotection systemwillfailtoinitiatetheoperation oftheactuateequipment isverylowasindicated onpageIII-12oftheTechnical Supplement toPetitionforConversion fromProvisional Operating LicensetoFull-TermOperating License.Thefailureprobabilities arelowbecauseallprotective instrumentation hasthecapability ofbeingtestedandcalibrated andhasthecap-abilityofsensorchecks.

REGULATORY GUIDE1.23-ONSITEMETEOROLOGICAL PROGRAMS~~~Awindspeedanddirection sensorispresently inserviceatopthereactorbuilding.

Readoutforthissensorisprovidedonastripchartrecorderinthecontrolroom.A200foothighmeteorological towerequippedwithwindspeedanddirection andtemperature sensorsispresently beinginstalled atalocationapproximately 3000feetwestoftheUnit1Stationandatabaseelevation approximately thesameasUnit1grade.Temperature andwindsensorsarelocatedat36,100,and200footelevations andrelativehumiditysensorsarelocatedatthe36and200footelevations.

Asdiscussed inVolumeIIAppendixAoftheFSAR,wind speedchangeswithheight.Therefore,to estimatewhatitwould.be.atthe350.stack

.heightia

.powerlaw.approximation per'extrapolation hasbeenandwillbeusedtoobtainwindspeedatstackheight.Bothanaloganddigitalrecording willbeprovidedatthetowersiteforallsensors.Temperature willberecordedasambientat36feetanddifferential from36to100and36to200feet.Inaddition, stripchartrecorders inthecontrolroomwillprovideanalogrecordsofthetemperature and.differential temperature andthewinddatafromthe36and200footelevations.

Allwindinstruments willhaveadirectional accuracyofatleast+5degreesandawindspeedaccuracyof+0.5mphwithastartingspeedofapproximately 1mph.Znaddition, alowthreshold windmeasuring systemwillbeinstalled atthe36footelevation whichwillprovideanaccuracyof+0.13knots(0.15mph)or1percentwithastartingspeedof0.5knots(0.6mph).Temperature anddifferential temperature sensorswillhaveanaccuracy,,of Qess,than,,0,.5C.

-.Relative.humidity

~saccurateto+'3percent.from15to95percentrelativehumidity.

Continuous surveillance oftheremoterecorders inthecontrolroomandweeklyinspection oftherecorders atthetowersitewillassurepromptserviceandhighreliability ofthemeteorological instrumentation.

Semiannual calibration checkswillbemadetoassureaccuracy.

Monthlyandsemiannual jointfrequency distributions willbemaintained ofwindspeedanddirection byatmospheric stability class.Areporting formatwillbeestablished onabasisacceptable bytheAEC.

REGULATORY GUIDE1.24-ASSUMPTIONS USEDFOREVALUATING THEPOTENTIAL RADIOLOGICAL CONSEQUENCES OFAPRESSURIZED

>1ATERREACTORGASSTORAGETANKFAILUREThisguideisnotapplicable toNineMilePointUnit1,whichusesaboilingwaterreactor.13

REGULATORY GUIDE1.25-ASSKIPTIONS USEDFOREVALUATING THEPOTENTIAL RADIOLOGICAL CONSEQUENCES OFAFUELHANDLINGACCIDENTINTHEFUELHANDLINGANDSTORAGEFACILITYFORBOILINGANDPRESSURIZED 3/ATERREACTORSThefuelhandlingaccidentasdescribed.

intheFSARforNineMilePointUnit1isthedroppingofafuelbundleintothecorefrom30feet,themaximumallowedbytherefueling equipment.

Theexpected.

numberoffailedrodsislessthan76.FortheFSARanalysis, thereactorwasassumed.tobeoperating at18/0hirefor1000daysupto24hoursbeforethefuelassemblydrop.ApeakingfactoroflOwasassumed.inthatcalculation.

Thedepthofwaterabovethecoreisgreaterthanthe23feetspecified intheguide.Thisguideassumestotalreleaseisovera,2hourperiodwhereaswehaveconsidered both2hourand.~$0'day'do'se"although mostof'%heactivi'ty

'isrelease'd immediately.

Table1.25-1belowcomparesthedosesobtainedusingtheassumptions ofthisguidewiththosepreviously presented.

Ineithercase,theresultsarewithinthelimitsof10CFR100.

Table1.25-2givescomparisons offissionproductsreleasefractions andtrans-portMeteorlogical anddoseconversion factorsaregiveninTable1.25-3.Theeffectsthatthesefactorshaveinthecalculations areillustrated byTable.Asdescribed.

inVolumeIIoftheFSARthefiltersystemforNineMilePointUnit1wassizedforthedesignbasisaccident.

14

TABLEl.25-.1FUELHANDLINGACCIDENTDOSES(REM)SafetyGuide(2hr@0.78mi.)Technical Supplement (2hr80.'78mi.)0gThyroidWholeBody1.1x1021x10

TABLE1'.25"2FISSIONPRODUCTRELEASEASSUMPTION'S SafetyGuidelg'(3QK-'85)'NobelGasesTechnical SQolementl.g10$9975$0.25$85$None133forinorganic 1fororganicIodines(total)Inorganic OrganicFilterReduction ReactorBuildingMixingRetention ofIodineinFuelPool0.5joYes100effective decontamination factor100

TABLE1.25-3ATMOSPHERIC DISPERSION ANDDOSECONVERSION FACTORSSafetyGuideActualStack3."47xlom/sec,43ReleaseHeightBreathing RateTechnical SulementActualStack4.33.47xl0m/secIodineDoseConversion InfiniteCloud(Centerline Conc.)0-2hrs(9.5xlO5funigation)

Factors(ICRPCommittee II-l959)WholeBodyDose.x/Q,.Factors (SiteBoundry)SameInfiniteCloud.(Centerline Conc.)0-30days1.25x10

TABLE1.25-4EFFECTONDOSEOFFACTORSUSEDINTHECALCULATIONS

~Thaid'(2hr'O'O."78'mi.')

1.31512.5.75IAirborneActivityFilterefficiency Reactor'building holdupMeteorology WholeBod(2hr60.78mi.)17512575

REGULATORY GUIDE1.26-QUALITYGROUPCLASSIFICATIONS ANDSTANDARDS Alistingofthesystemswhichfallintothethreequalitygroupsdescribed bythisguideisincludedinTable1.26-1.'Thecodesapplicable toNineMilePointUnit1components atthetimeofconstruction aregiveninresponsetoRegulatory guide1.48.Anyfuturemodifications willbeinaccordance withstandards appli-cabletothequalityg'oupasclassified here.15

TABLE1.26-1UALITYGROUPCLASSXFICATXONS QualitGrouoBQualityGrounCQualitGrouDReactorrecirculation MainsteamLowandHighPressurefeedwater Condensate Controlrod.driveCoresprayLiquidPoisonShutdowncoolingHead.sprayEmergency Condenser Containment sprayReactorbldg.emergency ventilation Reactorinstrumentation ReactorventanddrainFuelpoolfiltering and.coolingReactorCleanupReactorGWastebldg.closedloopcoolingServiceWaterRadioactive wastedisposalOff-gasDieselgenerator fueloil,startingair,andcoolingwaterInstrument andbreathing airDrywellventandpurgeControlroomventilation DrywellandtoresvacuumreliefDrywellInstrumentation andleakmonitoring Fireprotection (foam6water)DrywellsumppumppipingResintransfer6regeneration Sulphuric acidtransferHydropumpdischarge Turbinebldg.closedloopcoolingScreenwashingHouseserviceair-RoofandfloordrainsCitywater

REGULATORY GUIDE1.27-ULTIMATEHEATSIlKTheultimateheatsinkforNineMilePointUnitNo.1isLakeOntario.Thisincludestheprimaryandsecondary forebaysasshowninFiguresIII-16,17ofVolumeIoftheFSAR.Thefollowing systemsobtainwaterfromthisheatsink.1.Maincondenser 8cCirculating water2.Servicewater3:Firepumps4.Containment Sprayrawwaterpumps5.Dieselgenerator coolingwaterpumpsIncaseofblockageofoneentrancetotheforebayanotherentranceexists'toa11owwaterinfromtheLake.Thevolumeofwateravailable fromthelakeisvirtually inexhaustable andissufficient tolastlongerthantherequired.

30days.Asdiscussed inresponsetoregulatory guide1.59,floodingispossiblebutthiswouldnothaveanyadverseeffectontheultimateheatsink.Otherphenomena suchasearthquakes oflargeenoughproportions toemptythelakearenotconsidered credible.

Shouldanabnorma1occurrence associated withthelakearise,thefollowing Technical Specifications wouldbeapplied:'pecification Specification Specification 3.1.3-Emergency CoolingSystem,3.3.7-Containment Spray3.6.3-Emergency PowerSourcesThesespecifications giveappropriate actionto'betaken.16

REGULAEORE GUIDEI.28-QUALIEEASSURANCE PROGRAMREQUIREMENTS DESIGNANDCONSTRUCTiON ItistheintentoftheNiagaraMohawkPowerCorporation tocomplywithlOCFR50Appendix3,QualityAssurance CriteriaforNuclearPowerPlantsand.FuelReprocessing Plants.NiagaraMohawkPowerCorporations QualityAssurance Ywnualsarecurrently beingrevised.tocomplywithANSI-45.2-1971.

17

REGULATORY GUIDE1.29-SEISMICDESIGNCLASSIFICATIONS Thestructures, systemsandcomponents, including theirfoundations andsupportsdesignated asClassIintheFSARSecondSupplement aredesignedtoremainfunc-~tional*following theMaximumCredibleEarthquake outlinedinthe(PHSR)Prelimin-areyHazardsSummaryReport,VolumeII,"Engineering Seismology."

Thesestructures, systemsandcomponents arelistedintheFinalSafetyAnalysisReportSecondSupple-ment.Thecriteriaofthisguidearemetwiththefollowing exceptions:

(1)Structures:

Thespentfuelstoragepoolfuelracksarenotspecifically designedtoresisteqrthquake forcesandaxenotlistedasClassIcomponents.

Thefalseceilingandlightsinthecontrolroomarenotdesignated asClassIcomponents andarenotdesignedtoresistearthquake forces.Theprimarycontainment isdesignated aClassIsystemandstressesresulting fromvariousloadingconditions combinedwithearthquake forcesmeetcoderequirements.

However,thesuppression chambercolumnswerenotallowedthe1/3stressincrease.

(2)~sstems:"'ThreepipingsystemswerenotdesignedtoClassIcriteriaassetforthinthisregulatory guide.Theseare:(a)Mainstream-afterisolation valves(b)Reactorheadspray(c)Reactorclean-up(3)Electrical:

Allcontxolboards,equipment anddevicesmountedonthecontrolboardsweredesignedtoremainoperableduringandafteraseismicdisturbance ofthein-tensitydescribed below.Thedesignissuchthatnocontroldeviceorrelayshallmalfunction causinganyinadvertent operation becauseofsuchseismicdisturbance.

Themaximumgroundmotionacceleration forthedesignseismicdistrubance iselevenpercentofgravityandthemaximumresulting responseacceleration isforty-five percentofgravityforoscillators intheperiodrangeof0.2to0.3seconds.Thedieselgenerators aswel3.astheemergency serviceportionoftheA-Cpowerdistribution systemaredesigned.

and.builttomeetthesamedesigncriteriaasmentioned above..Miscellaneous electrical components (limitswitches, localstarters, localcontroLpanels,etc.)werenotspecially designedtowithstand.

theeffectsofanearthquake.

18

However,thesecomponents areeitherlocated.inClassIstructures orareidentical toClassIEcomponents thataredocumented.

tocomplywiththeseismicdesigncriteriastated.above.Thesystemscontaining thesecomponents are:(a)Feedwater SystemintheTurbineBuilding(b)SpentFuelPoolCoolingControlPanellocatedintheReactorBuilding(c)Portionsofradioactive WasteSystemlocatedintheHasteandTurbineBuildings.

"Ele'ctrical

'cab1esasso'ciated withtheprotection systemandtheemergency serviceportionoftheA-Cdistribution system,including theonsiteelectrical powersources,arerouted.incabletrayslocatedintheturbinebuilding

REGULATORY GUIDE1.30-UALITvASSURANCE REQUIREMENTS FORTHEINSTALLATION INSPECTION ANDTESTINGOFINSTRUMENTATION ANDELECTRICEUIPIKNTAdequacyrelevantto.IEEE-336-1973.

hasbeendiscussed.

previously inthe"Technica1 Supplement toPetitionforConversion fromProvisional Operating LicensetoFullTermOperating License"onpagesIII-60,61.Toassurethequalityoftheinstrumentation andelectrical equipment thefollowing wereapplied..

(1)Detailedspecifications wereissued.(2)Selected.

shopsurveillance

,(.3).Field.inspections,,and tests(4)Fieldqua1itycontrolchecks(5)Installation inaccordance withapproved.

drawingsandinstructions (6)Preoperational testingSincethistimeIEEE-336-1971 hasbeenincorporated asANSIN45.2.4"Installation, Inspection, andTestingRequirements forInstrumentation andElectricEquipment DuringtheConstruction ofNuclearPowerGenerating Stations".

Thiswillbeusedasaguideinconforming withANSIN45.2".Quality Assurance ProgramRequirements forNuclearPowerPlants".20

REGULATORY GUIDE1.31-CONTROLOFSTAINLESS STEELWELDINGWeldmaterialmettherequirements ofSectionIIIoftheASMECode.Ferritecontentwascontrolled inthefillermetalitselfsothatasmallamountofferritewaspresentincompleted welds.Experience hasshownthatthesecontrolsareadequateforproducing satisfactory weldsinaustenitic stainless steelwithoutanyproblemoffissuring orhot.:cracking.

Exceptforrepairweldsinpumpandvalvecastings, ferriteweldingcontrolwasaccomplished byeithermainta'ining aminimumof5percentferriteinthefillermaterialorachromiumtonickelratioofatleast1.9to1.Thechromiumtonickelratiowasalsousedtocontrolferritecontentofthecastingsthemselves.

Heatinputduringweldingwasspecified in.termsof

amperage, voltageandinter-passtemperature limits.Theaboveprocedure wasfeltadequatetocontrolstainless steelweldingtopre-vent.fissuring orhotcracking.

21 0

'EGUIATORY GUIDE1:32-USEOFIEEESTD308-171CRITERIAFORCIASS1EELECTRICSYSTEMSFORItUCLWRPOLYGZiP~BATDlG STATIONSAdeauacyrelativetoIEEEStd.308-1971hasbeenaddressed.

onpagesIII-50thru56ofthe"Technical Supplement toPetitionforConversion fromProvisional Operating LicensetoFullTermOperating License."

Thisregulatory guideidentifies twopotential conflicts betweenIEEEStd.308-1973.

andGeneralDesignCriterion 17ofAppendixAto10CFR50.ThedesignofNineMilePointUnit1complieswiththeregulatory position.

NineMilePointUnit1hastwoindependent circuitsnorae1lyavailable

.from.the,transmission network.Also,-the.'battery-charger supplycapacityforNineMilePointUnit1isbased.onthelargestcombined.

demandsofthevarioussteadystateloads.Theyarealsocapableofsupplying sufficient capacitytorestorethebatteries fromthedesignminimumchargetotheirfully-charged statewhilesupplying normalsteadystateloads.'22

REGULATORY GUIDE1.33-UALITYASSURANCE PROGRAMREUIREMENTS (OPERATION)

Aresponsetotheregulatory positionasstatedinthisguideis,includedintheresponsetoaJuly26,1973,letterfromtheAEC.Thisisincludedasresponsenumber8intheattachment totheletterfromMr.P.D.RaymondtoMr.A.Giambusso datedNovember16,1973.23

'IREGULATORY GUIDE3..34-CONTROLOFELECTROSLAG klELDPROPERTIES Theelectroslag

~fielding processvasnotusedforcomponents imooranttosafetyatBineNilePointUnit1.24

REGULATORY GUIDE1.35-INSERVECE SURVEILLANCE OFUNGROUTED TENDONSINPRESTRESSED CONCRETECONTADTbKNT STRUCTURES Thisguideisnotapplicable toNineMilePointUnit1whichusesasteelprimarycontainment.

25

REGULATORY GUIDE1.36-NON-METALLIC THERMALINSULATION FORAUSTENETIC STAINLESS STEELThenon-metallic insulation usedatNineMilePointUnit1wasmanufactured byPittsburg CorningCorporation.

Theinsulation conformstoMilitarySpeci-ficationMXL-I-278 IDasdescribed under1.2Classification GradeIX.ClassCandGradeIII,ClassF.Inaddition, "Unebestos" insulation iscoveredbytheDepartment oftheNavyinPittsburgh, Pennsylvania underQPL-2781.

Certified chemicalanalysistestswereperformed on6samplesunderMIL-1-24244.

Theresultsofthesetestsshowedthatleachable chlorides rangedfrom86-102ppm,andthatleachable sodiumplussilicaterangedfrom135,000to150,000ppm.'ThisanalysisCal'ls'intheacceptable rangeasshownonfigure1oftheguide.Xnaddition, thetestsresultsdidnotvaryby50percentfromoneanother.26

REGULATORY GUIDE1.37-UALITYASSURANCE REUIREMENTS FORCLEANINGOFFLUIDSYSTEMSANDASSOCIATED COMPONENTS OFHATER-COOLED NUCLEARPOWERPLANTSThecleaningprocessatNineMilePOintUnit1forthereactorvesselandprimarysystemconsisted ofusing0.5percenttrisodium phosphate heatedto180F.Chloridecontentwaskepttolessthan10ppm.The-system wasthenflushedwithdemineralized waterequalinqualitytothatusedduringopera-tion.Procedures arepresently beingdeveloped at,NineMilePOintUnit.lusingANSIN45.2.1asaguideline.

27

REGULATORY GUIDE1.38-UALITYASSURANCE REUIREMENTS FORPACKAGING,

SHIPPING, RECEIVING, STORAGE,ANDHANDLINGOFITEMSFORWATER-COOLED NUCLEARPOWERPLANTSProcedures arebeingdeveloped atNineMilePointUnit1tocomplywiththisguide.ANSIN45.2.2-1972isbeingusedasaguideintheirpreparation.

28

REGULATORY GUIDEl-39-HOUSEKEEPING REUIREMENTS FORWATER-COOLEDNUCLEARPOWERPLANTSProcedures arepresently underdevelopment tocontrolworkactivities, conditions andenvironments atNineMilePointUnitNo.lusingANSIN45.2.3-l973 asaguidefortheirpreparation.

29

REGVIATORY GVIDE1.40-QUALIFICATION 1ESTSOFCONTINUOUS DU1YROTORSINSTALLED INSIDETHECONTKIRKNT OFHATER-COOLED NUCLEARPO)/ERPLAVZSAdequacyrelativetoIEEE-334hasbeendiscussed onpageIII-59oftheTechnical Supplement toPetitionforConversion FromProvisional Operating LicensetoFull-Term Operating License.Werearenocontinuous dutyClass-Imotorsinstalled inthecontainment.

Therefore, Regulatory guide1.40doesnotapplytoNineMilePointUnitl.30

REGULATORY GUIDE1.41-PREOPERATIONAL TESTINGOFREDUNDANT ON'-SITEELECTRICPONrRSYSTEMSTOVERIFYPROPER-LOADGROUPASSIGNIKNTS Arigorouspreoperational testwasperformed fortheon-siteelectricpowersystem.Theisolation waseffectedbydirectactuation of'heundervoltage sensingrelaysonPowerBoards102and,103.Eachon-siteelectricpowersystem(D.G.1025103,PowerBoards102and103,andallredundant engineered.

safeguard load.groupsfedfromthesepowerboards)wastestedindependently andeachtestincluded.

thefollowing:

(1)Injection ofsimulated accidentsigna1s.'(2)'Startupofthe'dieselgenerator (3)Startupofandsequencing ofredundant loadgroupundertest(4)Functional performance oftheloadsThedurationofeachtestpermitted.

thesystemtoachievestableoperating conditions andnoadverseconditions weredetected.

DuringeachtesttheD-Candon-siteA-Cbusesandrelatedloadsnotundertestwerenotrequiredtobedisconnected.

31

REGULATORY GUIDE1.42-INTERIMLICENSING POLICYONASLOWASPRACTICABLE FORGASEOUSRADIOIODINE RELEASESFROMLIGHT-WATER-COOLED NUCLEARPOWERREACTORSArevisedoff-gassystemisbeinginstalled atNineMilePointUnit1.Thisupgradedsystemwillreducetheoff-siteexposuretolessthan0.025mr/yr.Thissystemprovides20daysholdupforXenonand33hoursforKryptons.

Aflowchartforthesystemispresented onpgIII-27oftheTechnical Supplement toPetitionforConversion fromProvisional Operating LicensetoFullTermOperating License.Inaddition, valveleakoffhoodshavebeenplacedonvalvesin,areaswheretherehavebeenhighradiation levels.Thesehoodsventdirectlytotheventi3;-lation,.system.

Thetyroiddosetoachildfromradioiodine intakeviathemilkpathwayhasbeencalculated usingtheassumptions asoutlinedinAppendixAofthisguide.Assuminganannualreleaseof0.38CiofI-131,thedoseconversion factorsofAppendixCofthisguideandtakingintoaccountthatthenearestdairyfarmwhichis0.64misouthwest ofthestation,theresultant doseis3mr/yr.,ThisisbasedonaX/Qof4x10-8secs/mandanoffgasreleaserateofuci/rec3after30minutesdecay.Anenvironmental monitoring programasdescribed inSection4.3ofthePreparedEnvironmental Technical Specifications willlimitthedosetoachildsthyroidtolessthan15mrec/yr fortheentiresite.1.Letter'from Mr.P.D.RaymondtoMr.DanielR.MullerdatedOctober4,1973.32

REGULATORY GUIDEL.II3-COIIEROLOFSTAINLESS SEEELIIELDCLADDDlGOFLOSALLOYSTEELCOMFOli~TS Tlierearenostainless steelcladdingwelded.tolow-a1loy steelcomponents important tosafetyatNineMilePointUnit1.33

REGULATORY GUIDE1.44-CONTROLOFTHEUSEOFSENSITIZED STAINLESS STEELTheunstabilized, austenitic stainless steeloftheAISIType3xxseriesusedinthesystemsmentioned intneguidewasallsolutionannealedpertheASTMstandards atthetimeoforder.MaterialwastestedtoASTMA262-70tode-terminethedegreeofsensitization.

ThematerialusedatNineMilePoint,Unit1is304stainless andisfurnacesen-sitized.No"L"gradematerialwasusedatNineMilePointUnit1.Onmaterialotherthanwelded,testingwasperformed toASTMA-262ormaterialwasresolution heattreated.Nodemonstration astosusceptibility tointergrannular stresscorrosion wasprovided.

..Thecleaning.processinvolvedtheuseof0.5percentTSPsolutionwhichwascirculated andheatedto180F.Chloridecontentwaskeptto~10ppm.Asde-scribedintheSixthSupplement totheFSARsystemscleanedwithTSPandthenflushedwithdemineralized wateracttoinhibitchlorideattack.Weldingpractices weresuchastopreventexcessive sensitization.

34

REGULATORY GUIDE1.45-REACTORCOOLANTPRESSUREBOUNDARYLEAKAGEDETECTION SYSTEMSTherearetwosystemswhichcollectleakageinthedrywellatNineMilePoint~~Unit1.Onesystem,classified asidentified leakage,collectsleakagefromdrywellequipment drains.Thiscandetectachangeofapproximately 1gpminthe8-10gpmflowrangein20minutes.Unidentified leakageismeasuredbytherateofriseofsumpwaterlevelinthe'rywell.

Forsumpinflowsofonegpm,changesintheorderof0.2gpmcanbedetectedwithin40minutes.Atinflowsbetweenoneandfivegpm,changesintheorderof0.5gpmcanbedetectedineightminutes.Asecondtypeofunidentified leakdetection systemmonitorsairborneparticulates.

Thiswouldindicateanyleakagefromtheprimarysystembyshowingariseinactivity.

Athird,methodemployedistheanalysisofisotopiccomposition ofeffluents fromthedrywellaircoolers,thecleanupsystem,orwaterfromcondensed reactorsteam.Inaddition, drywelltemperature, humidityanddewpointaremonitored whichwouldalerttheoperatorofabnormalleakageconditions.

Alarmsinthecontrolroomindicateabnormalleakage.TheTechnical Specifications definethelimitsforunidentified leakageas5gpmandtotalleakageas25gpm.Theleakdetection systemsalthoughnotdesignedasseismicclassIarelocatedinseismicclassIstructures whoseintegrity willremainduringearthquake conditions.

REGULATORY GUIDE1.46-PROTECTION AGAINSTPIPEIrHiIPINSIDETHEPRIMARYCONTAIiSKNT

~Aspresented intheanswertoquestion10,thereisadequateredundancy tomaintaincorecoolingcapability.

Ananalysismadetodetermine theeffectontheprimarycontainment showsthatadeformation canoccurandinonecaseexceed50percentofthe'ltimate strain.Theonlycaseinwhichthiscanoccurisforoneoftherecirculation loops.Thiswillbeprotected byappropriate pipewhiprestraints.

36

REGULATORY GUIDE1.47-BYPASSEDANDINOPERABLE STATUSINDICATION FORNUCLEARPOWERPLANTSAFETYSYSTEMSThereactorprotection systemconsistsoftwoindependently poweredlogicchannels.

Eachlogic.channelconsistoftwoindependent triplogicchannels.

Thisarrangement iscommonlycalledoneoutoftwotakentwicelogic.Thesystemasdesignedisnormally" energized.

Itisdesignedtotripwhende-energized andfailsafeonlossofelectricpower.Duringnormaloperation ofthestation,operating bypasseswhichareautomatically ordeliberately inducedareindicated inthecontrolroom.Reactorpressurebelow600psiautomatically bypassesmainsteamlineisolation valveclosurescramandlowcondenser-vacuum scram.Controlroomindication is"Condenser VacBypass."Reactorpressurelessthan850psiisbypassedtopreventmainsteamisolation inallreactoroperating modesexcept"Run".Controlroomindication is"ReactorPressLow.".Reactorscramasaresultofaturbinetripisbypassedbelow40percentpower.Controlroomindication is"Turbine1stStatePressLow"Otherbypassesareoperatedfromthecontrolroom.Controlroomindication of"CRDScramDischarge VolumeBypassed" iskeyoperatedbutonlyoperatesinshutdownorrefuelmodes.Controlroomindication of"DryWellPressBypassed" isalsokeyoperated.

Emergency Ventilation Systemoperation ischangedduringtherefueling modesothatoperation isfrom.radiation monitoring ontherefueling

platform,

""Emergency "Vent-'System'Bypassed, Refueling

'Mode".'Thisprovidesmoresensitive monitoring duringrefueling operations.

Bypassswitchesonneutronmonitoring systemsarenotalarmedsincetheswitchesarelocatedontheoperating consoleunderthevisualcontroloftheoperator.

Visualsurveillance oftheconsolecandetermine whichneutronsystemsareby-passed.Engineered safeguards suchascoresprayandcontainment sprayhavenobypassesintheircontrolcircuits.

Breakermotorcontrol'voltage ismonitored andalarmedincontrolroom.Duringthesurveillance testingofthereactorprotection system,deliberate bypassing ofsomesensorsarenecessary toperformtherequiredtests.Thebypassing ofrequiredsensorscanonlybeaccomplished byisolation ofsuchdevicesoroftheattachments whichblockorpreventtheactuation ofsignals.Thisprocedure isunderthecontrolofthecontrolroomoperators.

Surveillance testprocedures describethemeansforbypassing whenrequired.

Althoughaparticular sensorina.'.logic channelmaybebypassedduringtestingotherprocesssensorsinthesamelogicchannelarefullyoperableandcapableofperforming theirintendedfunction.

Aredundant sensorintheredundant logicchannelisoperableandcapableofperforming theintendedfunctionofthesensorbeingtestedshouldtherequirement ariseduringthetest.Duringsurveillance testingonlyonesensoristestedatatime.37

REGULATORY GUIDE1.48-DESIGNLIMITSANDLOADINGCOMBINATIONS FORSEISMICCATEGORYIFLUIDSYSTEMCOMPONENTS Thefollowing codeswereusedinthedesignoftheNineMilePointUnit1seismicClassIsystemsimportant tosafety.a)ANSI-B31.1-1955b)ANSI-B16.5-1955Inaddition, tothesecoderecpxirements variousotheritemssuchasseismicandthermalanalyseswereperformed.

Ultrasonic andradiographic examinations weremade.Anindependent thirdpartyreviewofcalculations wasperformed byTeledyneMaterials Researchandwerefoundacceptable.

38

REGUIATORY GUIDE1.50-CONTROLOFPREHEATTEMPERATURE FORWELDINGOFLOW-ALLOY STEELTherearenostructures orcomponents important tosafetywhichuselowalloysteel.40

REGULATORY GUIDE1.51-INSERVICE INSPECTION OFASMECODECLASS2AND3NUCLEARPOWERPLANTCOMPONENTS ResponsetothepositionofthisguideiscoveredinanswertoQuestion9ofthissubmittal.

41 1

REGULATORY GUIDE152DESIGNTESTINGpANDMAINTENACE CRITERIAFORATMOSPHERE CLEANUPSYSTEMAIRFILTRATION ANDABSORPTION UNITSOFLIGHT-WATER-COOLED NUCLEARPOWERPLANTSAtNineMilePointUnit1thereactorbuildingemergency ventilation systemmini-mizestheradioactivity releasedfromthereactorbuilding.

Theentiresystemislocatedwithintheturbineandreactorbuilding.

Thesystemisdesignedtooperateunderthemostsevereoverallbuildingenvironment of150F,100relativehumidyand+0.5psig.Theemergency ventilation systemisdesignedtohandlesourcetermscomparable tothoseofRegulatory Guides1.3and1.25.Thesystemisredundant andconsistsofinletductworktakingsuctionfromthenormalreactorbuildingdischarge.

Therearedualbanksoffiltersforremovalofparticulates andhalogenswithamotordrivenblowerineach.Also,thereareredundant flowcontrollers, indicators andexhaustductingtothestack.Theflowdiagramforthesystemiscontained intheSixthSupplement totheFSAR.ThesystemhasbeendesignedtoseismicClassIstandards andishousedinseismicClassIandClassIIstructures, thereactorandturbinebuildings.

Foreachofthetwoloopspositionofinletandoutletvalves,discharge flowrateandlowflowareindicated

'inthecontrolroom.Highdifferential pressureacrossthefiltersisindicated inthecontrolroomalso.A10kwheaterisplacedbeforeeachfiltertraintolowertherelativehumidityfrom100percentto70percent.Thereisalsoprovision for60cfmofturbinebuildingairtocoolfiltersduetofissionproductdecayheat.Thisflowlimitstemperature to200Fforthedesignbasisaccident.

Eachsystemiscapableof1600cfmflowratewhichcanholdthereactorbuildingatanegativepressureof0.25inchwatergagetokeepbuildingexfiltration toaminimum.Allmaterials associated withthesystemincluding filtersweredesignedtoper-formtheirrequiredfunctionevenunderthepossibleradiation effectsassociated

...withthedesignbasisaccident.

Thepowertothesyst:emisfromredundant powerboards,onesupplytoeachfiltertrain.Theseareinaccordance withIEEE-308.

Instrumentation isinaccordance withIEEE-279.

Therearenobypasseswhichallowunfiltered airfrombypassing thefiltertrain.Inaddition, nooutdoorairintakeopeningsexistforthissystem.Thehighefficiency particulate filtersareCambridge filterssuitableforairtemperatures

-upto550F..Thefiltermediaisglassasbestoswithaluminumsep-arators.Thefilterelementsareinzincplatedcarbonsteelandthefilterhousingisgalvanized steel.Theelementsareofsuchasizeastobedisposable ina55gallondrum.Thecharcoalfiltertrainconsistsofsixtrays,eachofwhichare20incheswide,31incheslongand7.5inchesdeep.Eachbedis2inchesdeepandhasaflowareaof4.36squarefeetwithadwelltimeof0.3seconds.Thefiltercasingsaretype304stainless steelandtheunithousingsareofgalvanized steel.42

Thesystemwastestedatdesignflowandeachfiltertraintestedindividually.

Penetration oftheparticulate filtersrangedfrom0.002to0.022percentpenetra-tion.Thecharcoalfilterstestedat99.9percentefficiency.

Thecharcoalfiltersare.MSA85851.

Thesystemisdesignedforeaseofmaintainance andtestability.

Boltedcoverscloseoffthefilteraccessopenings.

Thehousingsareeasilyaccessible fromthesidesincethebanksarestackedontopofeachother.Thefiltersthemselves areeasilydisposable in55gallondrums.Specialtoolsforfilterremoval,re-placement andtestingareprovided.

Atleast2inchesofclearance existsbe-tweenfilterelements.

Thefiltersareinrigidhousingseliminating anyspecialalignment procedures.

Therearepermanent testtapsforperforming therequiredtesting.Electrical, waterandcompressed.air areavailable outsidethefilterhousing..

Thereisnolightinginsidethefilterhousings.

Theparticulate filterswerealsoshoptestedforminimumefficiency of99.97percentwithdioclylphthalate beforetheirinstallation.

Technical Specifications havebeendeveloped, limitingcondition foroperation 3.4.4andSurveillance Requirements 4.4.4coversystemoperability andtestingrequirements toassurethatitperformsitsintendedfunctionwhencalledupon.43

REGULATORY GUIDE1.53-APPLICATION OFTHESINGLE-FAILURE CRITERION TONUCLEARPOWERPLANTPROTECTION SYSTEMSTheprimeobjectives inthedesignoftheNineMilePointUnit1reactorprotection systemwere:(1)Component orchannelfailuredoesnot.interfere withtheproperoperation ofitsredundant counterpart.

(2)Allpotential singlefailuresaredetectable failureseitherbyperiodictests,anamolous indications, orbyalarms.Anorderlysinglefailureanalysiswasperformed ontheNineNilePointUnit1reactorprotection systempriortopreoperational testing.Potential undetectable failureswereidentified andassumedtobeintheirfailedmodeinthisanalysis.

Thespecified surveillance requirements intheTechnical Specifications definesthetestingprocedure toincludethefinalrelayactionresulting fromsensorandinstrument channeltesting.Theoperating modeswitchatNineMilePointUnit1doesprovidesignalstoredundant protective channels.

Theredundant circuitsaresuppliedfrominde-pendentswitchsectionswhichareseparated bybakelitebarriersontheswitchitself.Thecollective protection systemandlogic-actuator systemhasbeenanalyzedforsingle-failure modeswhichcoulddisablecontrolpowerforonechannelandfortheredundant actuatorcircuit.Thiscondition doesnotexistfortheNineMilePointNuclearStationUnit.gl.~~~~:The..single--failure analysisincludeda.systematic investigation ofpotential faultsandfailuresonaperchannelbasis.Itwasdetermined thatthesystemcouldwithstand thelossofaredundant channelandstillperformitsprotective function.

Interconnections betweenchannelswereanalyzedanditwasdetermined that,nocomponent failure>shortcircuit,opencircuitorgroundcouldcausethelossofaprotective function.

Thelogicsystemwasanalyzedforsinglefailureinamannersimilartothesinglefailureanalysisperformed onthechannels.

Nosinglefailuresinthesystemlogiccausedmultiple=

failuresinthechannelsoractuatorcircuitsthatwouldviolatethesingle-failure criterion.

Asinglefailureanalysiswasalsoperformed ontheactuatorcircuits.

Theanalysisassuredthatnosinglefailurecouldcauseasignificant lossoffunctionduetoanimproperconnection oftheactuators toasourceofenergy.Thelocationandarrangement ofprotection systemequipment wereanalyzedanditwasdetermined thatanacceptable degreeofseparation andindependence existstopreventlossofaprotective functionduetomissiles, fire,flooding, earthquake, temperature andchemicals.

~Itwasdetermined thatastackfailureintherightdirection couldcauselossoftheemergency buses,thenormalA-Csupplytothesebusesandtheemergency onsiteA-Csupplytothesebuses.Intheoverallsystem-failure

analysis, interconnections wereanalyzedtoshowthatasinglefailureofachannel,component oractuatorwouldstillresultintheremainder oftheprotection systemmeetingthesinglefailurecriterion.

44

REGULATORY GUIDE1.54-UALZTYASSURANCE REQUIREMENTS FORPROTECTIVE COATINGSAPPLIEDTOWATER-COOLED NUCLEARPOWERPLANTSProcedures arepresently beingdeveloped atNineMilePointUnit1tocontroltheuseofprotective coatings.

Theprocedures arebeingpreparedusingANSIN101.4-1972 asaguide.

0 REGULATORY GUIDE1.55-CONCRETEPLACEbZNT INCATEGORYISTRUCTURES ThedesignofNineMilePointUnit1wasperformed bytheNiagaraMohawkSystemProjectEngineering Department.

Communication betweentheNiagaraMohawkdesignofficeandthefieldconstructor wasdirect.TheNiagaraMohawkdesignofficehada'ieldrepresentative whowasliaisonbetweentheofficeandtheconstructor.

Thisliaisonassistedinthecommunication ofideasbetweenOfficeandConstructor.

TheNiagaraMohawkdesignofficesentspecifications, drawjngs,revisions ofthese,plusanyotherinstructions, totheconstructor withacopytotheNiagaraMohawkfieldrepresentative.

Thus,thecontractor hadtwosourcesforconsultation ordirection.

TheNiagaraMohawkdesignpersonnel visitedtheworksiteonafrequentscheduleandhaddirecttelephone communication viacompanytie-lineamongallpartiesconcerned.

.Tne.System ProjectEngineering:Department-was responsible foralldesignanddrawingsofClassIreinforced

concrete, structures.

Thedesignanddrawingswerepreparedinaccordance withtheACIcodes,applicable, atthattime.TheprimarycodewhichappliedwasACI318-63BuildingCodeReauirements forReinforced Concrete.

Controlofdesigndrawingsconsisted ofadesignprogresssystemshowingcurrentprogressandcheckoffoftherequiredapprovals (Responsible DesignEngineer, ChiefMechanical.and/or ChiefElectrical

Engineer, andtheChiefStructural Engineer).

Allstructural designswerereviewedbytheChiefStructural Engineerorhisassistant.

Placement ofreinforcing, watersteps, embedments, construction joints,congestion ofreinforcing andotherembeddeditemswereshowninconsiderable detailonthedrawings.

Largescalesketchesdeveloped themorecongested areastoassureproperplacement.

Manufacturers reinforcing detaildrawingswerecompletely checkedforcompliance withNiagaraMohawkdesignrequirements.

Thetypeand.requiredstrengthofconcretewasstatedonthedrawings.

Designpersonnel hadconsiderable experience intheuseofmassconcreteinpriordesigns.Therequirements andtechniques necessary forplacinglargecomplicated concretepourswascontinually reviewed.

Priortothestartofconcreting inanysegmentofthework,theConstructor woulddiscusstheworkatmeetingswiththevariouscontractors (piping,electrical etc.)and.withhisfieldengineerandinspectors.

Thecontractor alsohad~ediateaccesstodesignpersonnel, ifdesignchangeswererequiredduetofieldconditions.

Acheck-out routineforeachitemascompleted consisted ofaninspection reportcardwheresignatures ofboththeforemanforthecontractor andtheassignedinspector wereenteredaftercompletion andapproval.

Finalsign-offwasbytheChiefFieldEngineer.

Checkitemsincluded:

(1)Preparation ofsurfacestoreceiveconcrete(2)Formwork-forlineandgrade(3)Formwork-construction (4)Installation ofreinforcing steel,embeddeditems,box-outs, piping,electrical, etc.(5)Finalclean-upinpreparation forconcreteBeforeconcreting commenced, theconstructor's (inspector) revieweddetailsoftheconcretesuchas:(1)(2)(3)(4)(5)(6')Classconcretespecified

-(strength, slump,etc.)Readiness ofconcreteplantSuitableequipment fordelivering andhandlingconcretePlacement technique Pr'eparation forprotecting concreteduringplacement Preparation andmaterialforcuringconcrete 0

REGULATORY GUIDE1.56-VAINTENANCE OFWATERPURITYINBOILINGWATERREACTORSThecondensate demineralizers atNineMilePointUnit1havebeendeisgned.

andoperatedtopermitanorder~shutdownofthereactorincaseofhighcoolantconductivity levels.Alsosufficient instrumentation available tomonitorthefollowing:

1)Conductivity ofcondensate 2)Available capacityofthedemineralizers

  • 3)Purityofdemineralizer effluentMaximumlimitsonthereactorcoolantcomposition andconductivity havebeensetasoutlinedinSpecification 3.2.3oftheStation's Technical

-Specifications.

They-areasTollows:TABLEl.56-1TECHNICAL SPECIFICATIONS Conductivit Chloride10umho/cmO.lppmSteamingrateg100,0000Seeeming'rene

)100;000lb/hrlb/hr2umho/cm.5umho/cm0.1ppm0.5ppmTheseratesreflectthepreparedchangesmadetotheTechnical Specifications inresponsetoQuestion3c.REGULATORY GUIDE1.56Start-upSteamingrates(100,000 lb/hrSteamingrates+100,000lb/hr10umho/cm5umho/cm5umho/cm0.1ppm0.1ppm0.5ppmArecording conductivity meterwitharangeof0-10umho's/cmislocatedbetweenthehotwellouletand.theinlettothedemineralizers.

Thismeteriscalibrated.

usingcertified.

conductivity solutions..

Arecording flowmeterisalsoused.tomeasureflowratethrougheachdemineralizer.

Therearethreeconductivity meterswhichmonitorfeedwater conditions asfollows:(1)Outletofeachdemineralizer (0-lumho/cm)(2)Outletofeachdemineralizer (0-10umho's/cm)

(3)Upstreamoffeedwater isolation valves(0-20umho's/cm) 47 0

Theserecording" conductivity metersalarminthecontrolroom.Initialexchangecapacities ofresinsarenotmeasuredand.totalcapacities arenotdetermined afteroperation.

However,theregeneration cycleiscloselymonitored.

$lhenaresinbatchdoesnotrinsedownproperlyafterregeneration, itisreplaced..

Thisisdoneinplaceofreconditioning theresin.Resinreplacement isatsucharatethat,theaveragelifeofaresinbatchisfiveyearsandassuchprecludes significant lossofexchangecapacity.

Totalflowand.operating hoursareused.asthecriteriaforregenerating thedemineralizers.

Theminimumresidualdemineralizer capacityisnotdetermined.

Duetothewaterpurityrequired.

foroperation and.theuseofhighflowratecondensate demineralizers, qualityofdemineralizer influentwi11have,a.large effectonthedemineralizer.-effluent qualitylongbeforeresidualcapacityisexhausted.

Therefore, thedemineralizers arenormallyregenerated.'before theyreachaminimumexchangecapacitywhichwould.requireregeneration.

Becauseofthewaterqualityrequiredand.theuseofhighflowratedemineralizers, achangeinconductivity ofthedemineralizer effluentisamoresignificant factorthanionbreakthrough.

Therefore, thereisnoneedtodetermine thequantityofprincipal ions.Duetothenormaloperating rangeofcondensate puritythedemineralizers areregenerated

'basedonthroughput longbeforeresidual.capacity wouldeffectquality.,Chloride concentration is.determined byASTMStandardMethodD512-67,Reference MethodC.Toensurethatconductivity andchlorides areattheirlowestpractical level,concentrations atthedemineralizers outletarenormality maintained.

atthelevelsshownbelow;Conductivity O.lumhoicmChloride10ppbThereactorwaterisnormallymaintained ataconductivity of(1.0~mho's andachlorideconcentration of(0.1ppm(10percentoftheTechnical Specification limit)forsteamingrates)100,000lb/hr.Forrateslessthan100,000lb/hrtheconductivity ismaintained at(2p.mho'sandchlorideof~0.1ppm(sameasTechnical Specification limit).48

REGULATORY GUIDE1.57-DESIGNLIMITSANDLOADINGCOMBINATIONS FORMETALPRIMARYREACTORCONTAINYiENT SYSTEMCOMPONENTS TheNiagaraMohawkspecification fortheNineMilePointUnit1Containment datedSeptember 10,1964withrevision1onNovember25,1964definestherequirements forthereactorcontainment system.Themandatory codeaddendumistheMinter1973AddendumtoSectionIII-oftheASMEcode.Thel963Coderequiresthatstresslevelsduringtestcannotexceed90percent.ofthetabulated yieldstrengthattesttemperature foraprimarymembrarestressintensity.

Furthermore, theprimarymembraneplusprimarybendingstressintensity shallnotexceed125percentofthetabulated yieldstrengthattesttemperature.

Themembranestressesin,theNineMilePointUnit1containment havebeenlimitedto1.15timesthebasic.Codeallowables.

Thisissubstantially lowerthanthosestresslevelspermitted byNE-6222andNE-6322.Loadingconditions forwhichthecontainment functionisrequiredtosustain,incombination withspecificseismicevents,thatis1/2S.S.E.andS.S.E.werenotdefinedinthel963code.Theconservatism ofthatcodeandtheeffectofchangesinthetechnology ofseismicanalysis, enhancethepossibility thatthisvesselwouldmeetthecurrentcode.HForthepurposeofdetermining theeffectofjetimpingement, theChicagoBridgeandIronCo.has generated areportentitled"Loads'nSpherical Shells"datedAug.1964.,Fortheportionbacked'yconcr'ete witha2inchairspacebetweentheshellandconcrete,.

a.600,jet forcewasapplied.resulting inamaximumdisplacement equalto3incheswithoutrupture.Inadditi,on, GeneralElectricCompanyhasgenerated atopicalreportentitled, "JetLoadinginPrimaryContainment Vessel",byV.R.NetzelandJ.P.Brackton, datedApril,1972.hisreportwasintendedtoanalyzetheshellwhensubjected tojetimpingement loadsand-todetermine thattheshellwouldnotrupture.Thereportdemonstrates thecapability ofthecontainment vesseltowithstand jetforces.Thevesselshell,wherenotback-japbyconcrete, isdesignedtoresist'thesejetloadswithmaximumallowable stressvalueslimitedto90percentoftheyieldofthematerialattemperature inaccordance withtheallowable stresses.

Forthatpartofthevesselthathasa2inchairspace,theallowable straininthesteelstructure maybeconservatively basedonthefatiguecriteriaofSectionIIIofASME.Theevaluation ofallowable strainisbasedonFigure1-9-1ofthe1971issueofthisCode.Forcarbonsteelmaterialbasedon10cyclesoffatigueloading,thequartercycleallowable strainisshowntobeatleast3.9percent.Theresultsofthereportindicatethatthemaximumstraintobefoundisapproximately 3.3percentandtherefore withintheASMEcriteria.

FATIGUEEVALUATION Paragraph NB3222.4(d)definesvariouscriteriabywhichitcanbeshownthatthevesselisexemptfromafatigueanalysis.,

Althoughtherearenocalculations intheStressReporttosubstantiate thatthisvesselqualified fortheexemption severalsimilarvariousBWRtypecontainment vesselswhichhavehadfatiguecalcu-lationsindicatethatthevesselqualifies forthisexemption.

TheSummer1972AddendumtoASMEIII,Paragraph NE-3131(d)indicates thatthefatigueanalysisdoesnothavetoincludecyclicactivityduetoearthquake.

Paragraph NE-3222.4(d) 49

ofSectionIIIofASMEdefinessignificant cyclesasthosewhichwillprovideastresslevelto3S.Noneoftheearthquake stresscycleswouldprovideastresslevelgreaterthanSmandtherefore, noneoftheearthquake cyclesarenormally.considered.

tobesignificant.

EXPANSION BELLOWSThecontainment has10-90inchexpansion bellowsconnecting theventlinestothesuppression chamber.Theseexpansion bellowsarepositioned insideofthechamberandaredesignedforanexternalpressureof35psi.Atthetimeoffabrication oftheNineMilePointUnit1containment theCodedidnotincludeanydesigncriteriaforexpansion bellows.RecentAddendaincludecriteriaforestablishing minimumburst~ressure, meridional permanent strain,ananalysistodetermine instability, andadefiniteprogrambywhicheachofthesewillbedemon-strated.Paragraph NE-3810alsoincludesarequirement foracycliclifedetermination.

Thiscriteriadidnotexistatthetimethisvesselwasdesigned.

50

REGULATORY GUIDE1.58-UALIFICATION OFNUCLEARPOWERPLANTINSPECTIONS ANDTESTINGPERSONNEL Theformalindoctrinational andtrainingprogramforpersonnel performing qualitycontrolrelatedactivities consistsof:Familiarization withthecontentof:a)Regulatory criteriasuchasAppendixBto10CFR50;b)NiagaraMohawkQualityAssurance Manuals6Procedures; c)NiagaraMohawkQualityControlProcedures; d)Regulatory Guides;-e')Safety'Analysis Reports;f)FilesofQualityControlTypeRecords;g)Engineering codessuchasANSIandANSIStandards 2~On-The-Job TraininPersonnel performing QualityControlrelatedactivities areassignedresponsibilities withinanactiveproject.Theiractivities arereviewedbyasupervisor orotherexperienced memberoftheQualityAssurance/

QualityControlorganization.

On-the-job trainingincludes:

a)Auditing, i.e.planning, preparation, conduct,reporting, responding andfollow-up; b)Reviewing ofpurchasedocuments fortheadequacyofQualityAssurance content;c)Preparation orrevisionofdetailedprocedures implementing theNineMilePoint,-JamesA.FitzPatrick SiteQualityControlProcedures; d)'reparation ofresponses toinquiries fromRegulatory Agenciesregard-ingQualityControl/Quality Assurance; e)Evaluation ofvendor'sQualityControl.programs andmanuals;f)Observation ofskilledQualityControl/Quality Assurance consultants andinspection personnel insideandoutsideNiaqaraMohawk;g)Useoffilescontaining QualityControltyperecords/3~Provision forparticipation incollegelevelcoursesinvariousspecialprocesses, metallurgy, non-destructive testing,etc.4.Theprovision oftextsandperiodicals concerning QualityControlrelatedactivities.

Inadditiontotheforegoing, theQualityAssurance willconductmeetingsandseminarstoincludeasaminimumthefollowing:

a)ThehistoryofQualityAssurance; b)TheneedforQualityAssurance; c)Thefunctioning ofaQualityAssurance System;d)Detailedexplanations ofallQualityAssurance/Quality Controlpolicies, procedures andinstructions; e)Application ofvariousregulations, standards, codesandguides;f)Theroletobeperformed byallpersonnel performing activities subjecttoQualityAssurance

Coverage, including engineering, plantoperating andmaintenance, purchasing andstoreroom.

51

Thepurposeofaudits,toinsurethatthesystemisfunctioning andtorecommend improvements.

5.Theformal-indoctrination andtrainingofpersonnel involvedverifyconformance ofworkactivities toinspection, examination andtestingtovariouscodesandstandards; a)Trainingcourseswillbescheduled onaperiodicbasis;b)Non-destructive testingprogrammed instruction manualsproducedbyGeneralDynamics, willbeusedforinstruction.

c)Onthejobparticipation shallalsobeincludedintrainingprogram.d)Specificrequiredcapabilities forinspection, examination andtestpersonnel are-presently maintained intheQualityControlInspection file,suchas:personnel visionrequirements.

e)TheNon-destructive testingprogramwillmeettherequirements oftheAmericanSocietyofNon-destructive testingrecommended practiceSNTTC1Aandsupplements.

f)Proficiency testingoftrainingshallbeinaccordance withSNTTEClAandsupplements.

6.Inadditiontotheabove,indoctrinational andtrainingprogramproce-dures,arecurrently beingdeveloped atNineMilePointUnit1,usingANSIN45.2andthisguideasguidelines.

52

REGULATOR GUIDE1.5-DESIGNBASISFLOODSFORNUCLEARPOWERPLANTSAdiscussion ofthedesignbasisflood.isgiveninSections2.3.3and.12.3.7oftheNineMilePointUnit2PSAR.Theworstsiterelated.floodatNineMilePointwould.resultinascreen-wellflood.levelatelevation 2/2.gfeet.Thisi"sbased:onamaximumprobablesetupofLakeOntarioof4.1f'eetabovemeanlakelevelandamaximumprobablerainfallof0.35feet.Themaximumwaverunupassociated withthatfloodleveliselevation 263fee~.Topreventtheuni<frombeingaffectedastonefaced.dikewithatopelevation of263feetwillbeconstructed inLakeOntarioextending fromtheexistingdikeinfrontofUnit1onthewestand.totheeasternpartofthesitewheretheground.risestoelevation 263feet.Thequestions ofmaximumprobableflood.leveland.required.

protection arecurrently beingresolved, withtheAECStaffduringthelicensing reviewofNineMilePointUnit2(Docket50-410).Thefina1resolution willalsoapp+toUnitl.53

5.~UESNIONProvideasummarydescription ofthecurrentstatusofmodifi-cationswhichyoustated.~could,becompleted.

atthetimeofthefirstmajorrefueling outagethatbeganinApril1973.includeadiscussion ofthedesignchangesthatweremadetoKP-1sincesubmitta1 oftheApplication.

RESPONSEThefollowing isasummarydescription ofthestatusmodifications pre-.'sentedinthe"Technical Supplement toPetitionforConversion fromPro-visonalOperating LicensetoFullTermOperating License"whichweretobecompleted bytheend'fthe'irst'efuel'ing outage.a.Vibration Monitorin Acommittment wasmadeforinstalling arudimentary impactsystematNineMilePointUnitNl.Sincethistime,GeneralElectricinconnection withEmpireStateElectricEnergyResearchCorporation hasbeendeveloping aplanforinstallation ofaprototype vibration monitoring system.Thepresentscheduleisto'installthissystemattheJamesA.FitzPatrick plantin1975.NiagaraMohawkbeingamemberofEmpireStateElectricEnergyResearchCorporation willhaveaccesstoallresultsfromthisprogram.b.Recirculaticu P~umTriAtripoftherecirculation pumpsonhighpressurewasdiscussed intheTechnical Supplement.

ThestatusofthischangeisincludedintheresponsetoRequest3b.c.HihPressureCoolantInsectionSstem-Thehighpressurecoolantinjection systemservestocoolthereactorcoreforsmalllinebreaksandbacksup,thecoresprayandauto&epress-urization.

Thissystemhasbeenoperablesincethefirstrefueling outage.AproposedchangetotheStatusTechnical Specification isincludedinresponsetorequest1.d.Instrumentation forMonitorin DrwellConditions-Pressureandtemperature instrumentation wereinstalled beforeinitialoperation.

Additional widerangedrywellpressureinstruments wereinstalled priortothefirstrefueling outage.Thesehavearangeof0-75psigwithindication inthecontrolroom.SinceJuly,1973,severalotherdesignchangesweremadetostationoper-atingequipment andsystemstofurtherenhancethesafeandefficient op-erationoftheplant.Insummary,theyareasfollows:1NineMilePointUnit1,Technical Supplement toPetitionforConversion fromProvisional Operating LicensetoFullTermLicense.54

a.DelltoSuressionChamberVacuumBreakersLeverarmmodifications weremadetoimprovetheclosingtorqueonthevalves.Thesemodifications enhancetheclosingofthevalvefollowing testsoractualoperation byproviding amoreconstanttor-quethroughtout thevalvecycle.Inaddition, lowhysterisis indi-catingswitcheswereinstalled todetect'pen positions lessthanthemaximumallowable bypassareaon,eachvalve.b.SuressionChamberBafflesAllsuppression chamberbafflingwasremovedtoimprovethedischarge flowpatternfromtheelectromatic reliefvalvesduringtheiroper-ate:on.Itwaspossibleforhydraulic forcesandlocalhotspotstodeveloponindividual baffles.Therefore, toimprovethesafeoper-ationofthesystemallbafflingwasremovedand"ramshead"discharge installed.

Thebraketimingrelaywasreducedfrom1.0secondsto0.5secondsandthecontrolcircuitwasreconnected suchthathoistspeedwilldropinstantaneously toonehalfspeedwhenlimitswitchesopenthecontrolcircuit.Inaddition, asecondupperlimitswitchwasinstalled toopencontactsintheprimarymotorleads,andrepositioning oftheloadcellwasperformed.

Thismodification willaccomplish smootherbrakingofthegrapple.d.ReactorProtection SstemSnchronization HPanelmounteddialindicators wereinstalled toprovidesensitive instrumentation forsynchronizing ReactorProtection Systembusses162and172andcomputerbus167toandfromthemaintenance bus.Thisdesignchangeeliminates thepossibility oftrippingtheunitduringtransfers toandfromthemaintenance bus.e.EmerencDieselGenerator ModeSwitchTheemergency dieselgenerator modeswitchwasatwopositiontoggleswitchlocatedatthediesellocalcontrolpanel.Thisallowedanoperatortodefeattheautomatic startinglogicofadieselgenerator formaintenance purposes.

Therewasnoindication inthecontrolroomoftheswitchposition.

Amechanical lockwasplacedonthisswitchtoensurethatitalwaysremainintheautomatic position.

Controlprocedures weresetupformaintenance onthediesels.f.Condensate PumRoomProtection Thecondensate pumpswereprotected fromfloodingbyaddingbulkhead..doorstothepumproomsandsealingtheopeningaroundthelines.Thiswasdonetoprovideprotection oftheHighPressureCoolantInjection Systemfromfloodingduetoabreakinthecirculating waterlines.ThisanalysiswasattherequestoftheAECinaletterdatedAugust3,1972fromMr.D.J.SkovholttoMr.T.J.Brosnan.55

g.SnubbersonblainSteamLineDifferential PressuremonitorsPulsation dampening snubbershavebeeninstalled onthesteamflowdifferential pressureswitchlinestoenhancethefeedwater control.Avalvehasbeenadded-tothedischarge lineoftheliquidpoisonpumpsothatthesystemcanbetestedatdesignpressure.

i.Leak-offLinesfromRecirculation ValvePackin-Valves'have beenpla'cedintheleak-offlineswhichgototheequip-mentdraintanks.Thismodification willallowthesecondandthirdsetsofpackingsinseriestoseeserviceandminimizeleakagetothedraintanks.j.Feedwater ControlPowerSu1Thischangeinvolvedtheseparation ofpowersupplychannels.

Re-dundancyofpowersuppliesisaccomplished byusingdifferent busesforeachfeedwater train.k.AnticiatinTriTestCircuitrWiththeinitialdesignitwasimpossible totestthescramlogicat'ful'1'designratingwithoutscramingofthereactor.Originally, twostopvalveshadtobeoperated.

Achangewasmadetomonitorthecurrentinthecircuitwhenstrokingonevalve.Thisallowedtestingofonevalveatatimesothatnoscramresults.1.Electromatic ReliefValveTestCircuitrOriginally, yhenthevalveswereenergized andsubsequently de-ener-gized,thesolenoids wouldnotfullyresetduetoasmallcurrentflowthroughthecontactmonitoring.

lights.Atimedelay.dropoutrelaywasinstalled toeliminate currentflowthroughthelightsuntilthesolenoidisde-energized andreturnedtothefullyde-energized position.

56

6.~UES1IONThefollowing additional information regarding thecontainment atmosphere dilutionsystemisrequired:

a.Providecurvesoftheoxygenconcentration versustimeinthedrywellandsuppression chamberfollowing aloss-of-collant accident(LOCA)assumingnodilutionbysteam.b.includeacurveofcontainment pressureasafunctionoftimeassumingzerocontainment leakage.c.Also,provideacurveofnitrogenadditionrequirements fordilutions asafunctionoftimeusingtheassumptions givenina.and.b.above.d.TheACRShasrecommended forothersimilarplantsthatthepeakcontainment, repressurization levelbelimitedtoavaluesubstantially belowitsdesignpressure.

Defineandjustifytherepressurization limitforIRK-1.identify'equired.

purgerates,initiation time,andradiological dosesatthesiteboundaryduet0purgingoe.Providediscussion andanalysestosupporttheadequacyofthedesignbasesforthecontainment atmosohere dilution(CAD)systemanddiscusshowthesystemwillbeoperated.

Thediscussion shouldincludethefollowing:

(1)Thesamplingequipment, principles, design,operating procedures, equipment qualification forLOCAservice,timetosampleormonitor,locationofsamplingpointsincontainment, locationofmeasurement readout,samplingerrorsand,stratification considerations.

(2)Thepreoperational checkoutandevaluation ofthesamplingand.CADsystemsand.thetestingprocedures and.frequency forthesesystemsduringtheplantlifetime.

(3)RelatethemaximumrequiredrateofnitrogenmakeuptothedesignflowrateoftheCADsystem.Specifythecapacityof'heCADsystemnitrogentankandtheprovisions formonitoring thenitrogenlevelinthetank.(4)Thedesignpressurelimitations ofCADsystemcomponents andpiping,deliverycapability oftheCADsystemagainstpressurehead.ofthecontainment, andmakeuplimitations duetoinadequacy ofonsitenitrogeninventory ortimetoobtainoffsitemakeup(specify).

57

HYDRO%ENANDOXYGENCONCENTRATIONS INCONTAINMENT FOLLOWING LOSSOFCOOLANTACCIDENT15DRYWELL~100-cL5SUPPRESSIONCHAMBERN2INJECTION BEGINS0.1SUPPRESSION CHAMBER1.010TIMEAFTERACCIDENT(DAYS)100C)I-2CLDRYllELLNJECTIONBEGINS0.11.010TINEAFTIACCIDENT (DAYS)100Fiure6-1

CONTAINMENT PRESSUREWITHCONTAINMENT ATMOSPHERIC DILUTIONOPERATION.

ZEROCONTAINMENT LEAKAGE4030200.20406080100TIMEAFTERACCIDENT(DAYS).Fiure6-2

NITROGENADDEDBYCONTAINMENT ATMOSPHERIC

DILUTION, OPERATION FOLLOWING LOSSOFCOOLANTACCIDENT500400CDCDg300200C)100C)l-20406080100TINEAFTERACCIDENT(DAYS)I.igure6-3

onacontinuous basistominimizestratification andsamplingerrors.Thesemonitorswillbecapableofmeetingthemostsevereenviron-mentalconditions following anaccident.

ThelocationofsamplingpointsisshownonFigure6-5.Readoutwillbeinthecontrolroom.Equipment willbedesignedtooperateinthemostsevereenvironmental conditions.

Themaximumrequiredrateofnitrogenmake-upcomesinthefirst20daysfollowing anaccidentandamountsto7scfm.Thedesignflowrateoftheventsystemis0-100scfm.Thestoragetankholdsapproxi-mately1,100,000 cubicfeetofnitrogen.

Approximately 600,000cubic.feet,.are requiredtoinertthe,drywell,so thatintheunlikelyeventthattheaccidentoccurred, therewouldbesufficient capacityforover2monthsofContainment Atmospheric Dilutionsystemoperation.

Deliveryofnitrogencanbecontinued forcontainment pressures inexcessof40psig.Designpressurelimitswillbe350psig.Levelmonitoring ofthenitrogentankwillbeinthecontrolroom.Pipingwillmeettherequirements ofASMESectionIIIClass2.Pre-operational andoperating procedures willbedeveloped commensurate withprogressinsystemcompletion.

Inadditiontechnical specifications whichwillincludetestfrequencies andprocedures willbedeveloped onanappropriate timescale.'he:only sourceswhichcouldpotentially contribute oxygentothecon-tainmentfollowing alossofcoolantaccidentareoxygenentrained inthecoolantandleakagefromairsupplysystems.Themaximumamountofoxygenentrained inthereactorcoolantis0.0043lb-moles.Thisisbasedonamaximumcoolantconcentration of3ppmasdescribed inthebasestotheTechnical Specifications (3.2.3).Thereareserviceairandbreathing airconnections whicharevalvedclosedduringnormaloperation.

However,leakageontheorderof0.1scfhcouldbepossible.

The0.0043lbmolesfromthereactorcoolantandthe0.001lbmolesfromvalveleakageisnegligible incomparison tothe8lb-molesofoxygengenerated inthefirst16hoursduetoradiolytic decomposition.

Figures6-4and6-5showthecontainment atmosphere dilutionsystemwithback-upventingandthecontainment gasanalysissystem.respec-tively.ThedottedlinesonFigure6-4showthelineswhichareusedforcon-tainmentatmosphere dilutionandventing.Thesystemalsoutilizestheexistingstoragefacilities (withadditional storageadded),vapor-izer,isolation valvesandemergency ventilation filtersandfans.Thecontainment atmospheric dilutionsystemincluding nitrogenstoragetanks,vaporizors, pipingandvalvesisanengineered safeguards systemandisbeingdesignedtomeetseismicClassIrequirements.

Thesystem.willbedesignedinaccordance withthefollowing codesandstandards:

(1)USAECRegulatory Guides1.7and1.26(2)AS&IESectionIIIClass2(3)IEEE-279

STACKTURBINEBUILDINGREPBV8'EACTORBUILDINGEXHAUSTFANSIVTURBINEBUILDINGDUCTWORKENERGEttCY VENTILATIOHFANSDRYWELLVENTANDPURGEFAHBVBV~IV"~iVABSOLUTEBVCHARCOALWBVgDUCTHTRlttTANKABSOLUTECOttDEttSER FILTERSl-~IlIVAPORIZER IFEFCVWIN2Cgw~wrsmssraceBVISTORAGREACTORBUILDINGREACTORBUILDINGVEttTDUCTNORMALSYSTEI4NEyRppENI MAKE-UPMIVIVEL315.0'TMOSPHERE

-~lMAM'VBVlmlIVttIVIaIV'IIVIlIIIlIDRYWELLBVIVIVTORUSNORMALM-MANUALLY OPERATEDNITROGEN---CADSYSTEMFLOWLINESMAKE-UP1lTORUSCONTAINMENT ATMOSPHEREDILUTIONSYSTEMWITHBACK-UPVENTINGFigure6-4

CONTAINMENT GAS(H2AND02)ANALYZERSYSTEMRMCJH25ARPLKWL~IIC"AlWVIN,P9CtlCTCNOg~INC~CIS

UESTIONToassurethatferriticmaterials ofpressureretaining components ofthereactorcoolantpressureboundarywillhaveadequatefracturetoughness duringservicehydrostatic and.leaktests,providerevisedtemperature and.pressurelimitations established byusingtherequirements-.of AppendixG2000oftheSummer1972AddendatoSectionIIIoftheASMEBoilerand.PressureVesselCodeasaguide.Also,providethetemperature limitations forcoreoperation specified bytherecentlyrevisedandissuedAppendixGof10CFR50(Published intheFederalHeisteronJuly3.7,1973).Indicatetheoperating limitations onheatupand.cooldownplustheaboveinformation thatwi.llbeincludedinproposedchangestotheTechnical Specifications.

RESPONSEtAfracturetoughness analysishasbeencompleted fortheNineMilePointUnitNlpressurevessel.Theanalysisindicated thatthepresentl00F/hzlimitonnormalheat-upandcool-down areacceptable throughout thelifeoftheplant.Operating limitsonreactorvesselpressureandtemperature duringnormalheat-upandcool&own, andduringinservice hydrostatic testinghavebeenestablished usingAppendix"G"ofSectionIIIoftheASMEBoilerandPressureVesselCode,1971Editionasaguide.Theseoperating limitsassurethatalazgepostulated surfaceflaw,havingadepthofone-quarter ofthematerialthickness, canbesafelyaccommodated inregionsofthevesselshellremotefromd'scontinuities.

Forthepurposeofsettingtheseoperating limitsthereference temperature, RTNDTwasdetermined fromtheimpacttestdatatakeninaccordance withre-quirements oftheASMECodetowhichthisvesselwasdesignedandmanufact-ured.Ifthedropweight NilDuctility Transition Temperature isknown,thereference temperature tobeusedwouldbetheNilDuctility Transition Tem-perature.

Ifthedzopweight NilDuctility Transition Temperature isnotknown,RTNwouldbetakenasthelowesttemperature atwhichtheminimumCodeallowRleCharpyV-notch,energyrequirement wouldbeexpectedtooccuronthebasisofreportedCharpyV-notchtestdata.Thehighestreference temperature ofanypartofthereactorpressurevessel,pressureboundarymaterialisusedasthereference temperature forcalcu-latingonesetofoperating temperature andpressurelimitsfortheshellremotefromthecorebeltlineregion.Asecondsetoftemperature andpres-surelimitsforthecorebeltlineregionhavebeencalculated basedonthecorebeltline,region materialreference temperature appropriately adjustedforirradiation shiftwithvesselneutronexposure.

Therequirements oftheCodetowhichthevesselwasdesignedandmanufactured resultsinathirdsetofvesselshelltemperature pressurelimits.TheseareNilDuctility Transition Temperature

+60ForCharpyV-notch+60Fatpressuregreaterthan20percentofpreoperational systemhydrostatic testpressure.

Themostconservative oftheabovethreelimitswasusedtosetpressureandtemperature limitsforthevesselshell.60

Figure7-1givesthetemperature andpressurelimitsforinservice hydro-statictesting.Theuppercurvewillbelimitinguntilthepredicted NilDuctility Temperature shiftreaches30F.Figure7-2givesthechangesinCharpyV-notchtemperature shiftasafunctionofneutronfluence.Thiscurvewillbeusedtodetermine theshiftduringvessellife.AproposedchangetotheTechnical Specifications isattachedasarevisiontoSpecification 3.2.2andbases.

PRESSUREANDTEMPERATURE LIMITSFORINSERVICE HYDROSTATIC TESTING20015010050rr~REACTORPRESSUREVESSELSHELLRENTE.FROHCOREBELTLIHEREGIOHREACTORPRESSUREVESSELSHELLCOREBELTLIHEREGIOH0600800100012001400INSERVICE HYDROSTATIC TESTPRESSURE(PSIG)MEASUREDINTOPDOME1600Figure-1

THEEFFECTOFIRRADIATION ONVARIOUSHEATSOFA302B/A533B-CL'ASSTEEL

'600500400300I200100001610171018101910201021INTEGRATED NEUTRONDOSAGE(>1MeV)(<t),nvtFigure7-2

LIMITINGCONDITION FOROPERATION SURVEILLANCE REQUIREMENT BASES(Cont'd.)

$.2.2NINONREACTORVESSELTDO'ERAIURE MRPRESSURIIATICeI 4.2.2NININNIREACIORVESSEI.TENPERATURE FORPRESSURIATIOVf~lfflffIIAppliestotheninisacsvesseltcnperature requiredforvesselpressurization.

Appliestotherequiredvesseltcnperature forpressurization.

~fffToassurethatnosubstantial prcssureisinposedcmthereactorvesselunlessitstenperature isconsider-ablyaboveitsNilDuctility Transition Texperature (NUIT).Toassurethatthevesselisnotsubjected toanysubstantial pressureunlessitstcnperature isgreaterthanitsNUTI.~Slflla.thereactorvesselshallbaventedandshallnotbeinthepaveroperating oondition wheneverthepressurevesseltexperature islessthanNnxrplus60raeshovninPleura3.2.2a.b.Ihoreactorvesselheadboltingstudsshallnotbeundertensionunlessthotcnperature ofthevesselheadflangeandtheheadareequaltoorgreaterthanIOOF.~Slfl\a.Reactorvesseltesperature andpressureshallbenonitored andcontrolled toassurethatthepres-suresndteeperature linitsarenet.b.Neutronfluxnonitorsinstalled inthcreactorvesseladjacenttothevesselvalistcore~Id-planelevelshallberenovcdandtestedatthefirstrefueling outage.c.Naterialsexples,installed inthestean,stean/water, andvaterIeueesinsidethereactorpressurevassal,usedtononitorthasensitized stainless stealshallbeinspected onthefollowing schedules Figures3.2.2aani3.2.2bplotrespectively thepressurevs.tesperatuze Iinitsanithachangein30ft.-lb.Chaxpyv-notchcapability vs.integrated neutzondossage.Vbabasicdatafozfigure3.2.2btorA302n/AS330

-class1steelsisbasedce30ft.-lb.CharpyV-notchenergytransition tem-peratures whichhavebeencorrelated vithdropveightspec-lnennilductility transition forthissteel.Atthedesignexposureofsx1012notthechangeinNUITis6sp.Firstcapsule-onatouzthservicelifesecondcapsule-threefourthserviceliteThirdcapsulestandbyIntheeventthesuxveillance specinans atonequarterofthevesselscervioelifeindicate~shittofrefezence tcnpsrature greaterthanpredicted thascheduleshallbexevisedasfollovsxgeconicapsule-onebaltservicelifeThirdcapsulestandbythereactorvesselheadflangeandthovesselflangeinccebinatlon withthadouble'xy'ingtypesealarede-signedtoprovidealeaktightsealwhenboltedtogether.

thenthevesselheadisplacedonthereactorvessel,onlythatportionoftheheadflangeneartheinsideofthcvesselrestsonthevesselflange.Astheheadboltsarereplacedandtensioned, thevesselheadisflexedslightlytobringtogethertheentirecontactsurfacesadjacenttothe'xy'ingsoftheheadandvesselflange.goththeheadandvesselflangehaveaAUTtesperature of40Fandtheyarenotsubjecttoanyappreciable neutronradiation exposure.

Therefore, thenininunvesselheadandheadflangetcepersture forboltingtheheadflangeandvesselflangeIsestablished s>>40e60ForlOOF.Theintegrated neutronfluxatthevesselvaliiscalenlacedfreecorephysicsdataandwillbeneasuredusingfluxnonitorsInstalled insidethcvessel.Thisneasuredfluxvillbeusedtocheckandifnecessary correctthecalculated datatodetexuine anaccurateflux.Franthisdataaccesexvative NUITtenperature canbedetexuined.

Sincenoshiftvilloccuruntilsnintegrated fluxofIOIPnvtisreachedtheconfir-naticecsnbesadevaliinadvanceofanyshift.

LIMITINGCONDITION FOROPERATION SURVEILLANCE REQUIREMENT BASES(Cont'd.)

Vesselsaterialsurveillance saaplesarelocatedvlthinthecoreregiontopcrsitperiodicaonitoring ofex-posureandsaterialproperties relativetocontrolsaaples(Vol.IV,SectionI-D.p.I-24).~Inaddition.

sasplesvillalsobeinstalled toaonlrtorthesensitited stainless steelcosponents.

Sasplcsconsisting ofsensltlted stainless steelforgingsandstripsandannealedaaterlalvillbelocatedinthestean,a{xture,andvaterphasesinsidethere~ctorvessel.Detailedlaboratory exaaination ofthesesasplesvouldberequiredifinspections and/oranalysesofotherconditlons,e.g.~substantial deviations Inprisarycoolantchesistry, indicatethatstresscorrosion crackingofthesensitited stainless steeloccurred.

'FSAR.41

PRESSUREANDTEMPERATURE LIMITSFORINSERVICE HYDROSTATIC TESTING200150LLJI-10050REACTORPRESSUREVESSEl.SHELLREHOTEFROHCOREBELTLINEREGION~REACTORPRESSUREVESSELSHELLCOREBELTLINEREGION0600.8001000,12001400INSERYICE HYDROSTATIC TESTPRESSURE(PSIG)MEASUREDINTOPDOMlE1600Fig3.2.2.a

THEEFFECTOFIRRADIATION ONVARIOUSHEATSOFA302B/A533B-CLASS 1STEEL"'600500400lD300I2001000lpl61017lpl81019'020INTEGRATED NEUTRONDOSAGE(>1MeY)(<t),nvtFigure3.2.2.b

8.QUESTIONProvidetheproposedsurveillance capsulewithdrawal scheduleand,indicatethedegreethatKP-1cancomplywiththerecentlyrevised.AppendixHto10CFR$0(published intheFedere1~ReisteronJnIF17.1973)~RESPONSE.Thesurveillance..capsule

.withdrawal scheduleforNineMilePointUnit1willcomplywithSectionIIC.3aofrevised.AppendixHtolOCPR$0datedJuly17,1973.Reportswillbesubmitted.

pursuanttothisAppendix.

ThepresentTechnical Specifications willberevisedtoreflectthischange.62

9.~UES1IONProvidesufficient information aboutyourinservice inspection programforengineered safetyfeaturestoindicatethattheprogramprovidesadegreeofassurance ofsystemintegrity comparable totheprogramrecoaunended inRegu1atory Guide1.51,"lnservice Inspection ofASIDECodeClass2and3NuclearPowerPlantComponents",

May1973,withinthelimitsofaccessibility designedintoRP-l.Znc3udethecorresponding revisions, asappropriate, intheproposed.

changestotheTechnical Specifications.

RESPONSENineMilePointUnit1components weredesignedtotheANSIB31.1andB16.5codes.ThosesystemswhichwouldbeincludedasASMECodeClass2and3components ifbeingdesignedpresently are:ASMECODECLASSClass2SstemsClass3Sstems*Reactorrecirculation

  • Mainsteam*LowandHighPressurefeedwater
  • Condensate Controlroddrive*CoresprayLiquidPoisonShutdowncoolingHeadspray*Emergency Condenser Containment sprayReactorbldg.emergency ventilation Reactorinstrumentation ReactorventanddrainFuelpoolfiltering andcoolingReactorCleanupReactorandHastebldg.closedloopcoolingServiceWaterRadioactive wastedisposalOff-gasDieselgenerator fueloil,startingair,andcoolingwater.Instrument andbreathing airDrywellventandpurgeControlroomventilation DxywellandtorusvacuumreliefDrywellandInstrumentation andleakmonitoring
  • PRIMARYCOOLANTSYSTEMPresently, theinservice inspection programcoverstheprimarycoolantsys-tem,thoseengineered safeguards concerned withemergency corecoolingandthemaincoolantpiping.Theguidecallsforadditional areasforinspection toincludeallthosesystemsasclassified asASMECodeClass2and3components.

Procedures arecurrently underdevelopment atNineMilePointUnit1whichwillupdatethepresentinservice inspection program.Regualtory Guide1.51willbeusedasaguideintheirpreparation.

ThisrevisedprogramwillincludeallareaswhichwouldbeAS'odeClass2and3components ifbeingdesignedtoday.Appropriate Technical Specification changeswillalsobesubmitted.

64

10.UESTIONTheresponseonpageIII-2oftheApplication toshowconformance toCriterion 4bystatingthatadequatebracingisprovidedtopreventpipewhipisnotconsistent withtheFSARinformation.

Itisourunderstanding thatprotection againstpipewhipwasnotincludedinthedesignofNMP-l.Therefore, todetermine feasiblemeanstoprotectthecontainment, theprimarysystemandengineered safetyfeaturesagainsttheadverseeffectsofpipewhipintheunlikelyeventofapiperuptureinsidecontainment, providethefollowing information regarding highenergylinesinsidetheNMP-1containment:

a.Anevaluation describing thosesystemsthataread'equately protected againsttheeffectsofpipewhipduetoeitherofthefollowing:

'(1)Theuseoftwoindependent redundant systemswhereonlyoneneedbeprotected byaugmented inservice inspection orpiperestraints, or(2)Sufficient spatialseparation orstructural separation existstoprotectalltrainsoraredundant systemfrombeingaffectedbyasinglepiperupture.b.Whereanaugmented inservice inspection programisindicated, itwillfollowtheguidanceofEnclosure 1attachedhereto.c.Wherestructural designcriteriaareindicated toprovidetheprotective structures, thecriteriaofEnclosure 2attachedheretowillbefollowed.

RESPONSEa.SUMMARYAllhighenergylinesinsidetheprimarycontainment ofNineMilePointUnitNo.1havebeenanalyzedfortheeffectsofpipewhip.Inallcases,thecapability ofcorecoolingismaintained.

Table10-1listsallthehighenergysystemsinsidetheprimarycontainment.

Ithasbeenassumedthatanyoneoftheselinescanbreakanywhereinsidetheprimarycontainment.

Ifalinebreakoccurredallthesystemslistedintable10-1couldbeaffected.

However,becauseofredundancy andseparation, theengineered safeguard systemswouldstillperformtheirintendedfunctions.

Aninvestigation intotheirimpacting thewallsoftheprimarycontainment wasalsoperformed.

ThisanalysisshowedthatPgpostulated breaksandresulting impact,thecontainment wouldnotlose,itsintegrity andwouldsuffernolossoffunction.

b.CONTAINMENT INTEGRITY ANALYSISAreviewofthepipingsystemsinsidethedrywellwasmadetodetermine whichsystemscould,ifpostulated tofail,impactthecontainment withsufficient energytocauseconcern.Thethreesystemsconsidered ascontaining sufficient 65

TABLE10-1HighEnergySystems(1)mainsteam(2)feedwater (3)reactorrecirculation(4)corespray(5)containment spray(6)emergency condenser supplyandreturn(7)controlroddrivehydraulic (8)liquidpoison(9)reliefvalvedischarge (XO)shutdowncooling(ll)headspray(12)clean-up

energyuponimpacttorepresent theworstcasesare:(1)ReactorRecirculation (2)MainSteam(3)Feedwater Thefluidforcesgenerated bythebreakhavebeencalculated andaredis-cussed.below.Theseloadsarethenappliedtoamodelofthepipeandtheim-pactvelocityat,thecontainment isobtained.

Thestressesinthecontainment arecalculated bymodelingthecontainment, airgap,concrete, andimpacting misslewiththeappropriate

.massand.velocity.

FLUIDFORCESRecirculation LooTheforceatthebreakrisesfromavalueequaltotheproductofpressuretimesareatoabout1.125timesthatvalueinashorttime,thendecaysslowly.However,duetotheproximity ofthebreaktothereactorpressurevesselnozzle,someconservatism wasaddedtocoverpossibleimpingement effectsofthejetescapingfromthenozzle.Theactualloadappliedtothepipingsystemwas1.5timestheproductofpressureandarea.MainSteamTheforceatthebreakrisesfromaninitialvalueequaltopressuretimespipecrosssectional aretoamaximumof1.26thatvaluein0.052seconds.Feedwater Theforceatthebreakrisesfromaninitialvaluee'qualtoamaximumof1.125thatvaluein0.068seconds.JetIminementForceAsaresultofbreakintheRecirculation Systematthevesselnozzleajetisgenerated whichcanimpingeonthecontainment vessel.Thejetpressureis40psioveranareaof26,300squareinches.ImactVelocities andEffectsThevelocities ofthepipesandbeamswhichhavebeenanalyzedforimpactonthecontainment vesselaregivenbelow:~SstemImactVelocit(ft/sec)Recirculation MainSteam115100Feedwater 89Structural Beam(lOWF33)11566

Thebreakinthemainsteamsystemrepresents abreakatthevesselnozzle.Forabreaknearthemainsteampenetration, thesteamlinecannotreachthecontainment vesselwithoutstrikingthefeedwater system.Thiswouldreducethevelocityofthesteamlinesignificantly.

Assumingthatthesteamlinedidnotstrikethefeedwater line,animpactvelocityof270ft/secwouldre-,sult.Theallowable straininthecontainment vesseldemonstrates theadequacyofthestructure againstimpactsresulting frompipebreakandassociated whip.Theultimatestrainofthecontainment vesselis10percent.Thecalculated accumulative strainsfortheconditions analyzedaregivenbelow:Condition VesselThickness (in)StrainRecirculation LoopElbowRecirculation LoopElbowStructural Beam(12WF40)Structural Beam(12WF40)1.5'768.7681.56.1percent9.2percent4.0percent1.1percentWithrespecttothestructural'beams, thehighestvelocity(115ft/sec) occursforthe10WF33beam.Forconservatism, theanalysesusedaheavier12WF40beamIwithavelocityof115ft/secratherthantheactualvelocityof60ft/sec.c.SstemDescritions(1)MainSteamThemainsteamlinesdischarge fromthevesselatElevation 310feetandatthe90and270rediallocations anddescend.Inthisareatherearetwo10inchemergency condenser linesatthe67.5and292'radiallocations.

Theselinesareseparated atgreatenoughdistances soasnottobeeffectedbyanybreakofthemainsteamlines.ThemainsteamlinesproceeddownwardthroughElevation 295feetwheretheypassbysome1inchinstrument pigingatthe90radiallocationandacontrolroddriveexhaustlineatthe270radiallocation.

Continuing ondownfromElevation 295feettoElevation 264feet,thesteamlinespassbycontainment spraysparagers, feedwater linesoneachsideofthesteamlines,reliefvalvedischarge lines,shutdowncooling,reactorrecircu-,lation,coresprayandroddriveexhaust.Allcouldberupturedexceptfortherecirculation linesbecauseoftheirlargersize.Fromthispoint,thesteam0lineshealtoward180andexistthedrywelladjacenttothetwo18inchin-comingfeedwater lines.Therequiredsystemsforcorecoolingandsafeshutdowninthecaseofamainsteamlinebreakarethecontainment spray,corespray,andfeedwater.

Allofthesesystemshavetherequiredredundancy orbackupasdiscussed inparagraph d.below.67

(2)Feedwater Thetwo18inchfeedwater linesentertheprimarycontainment atElevation 263feetadjacenttothetwo24inchmainsteamlines.Atthispointthelinescurvearoundto90and270radialdirections.

At+45degreesoneachsideoftheselines,two10inchlinesproceedinwardandthenascendvertically.

Inthisrunthefeedwater linespassbysome12inchcorespraylines,14inchshutdowncoolinglines,6inchcontainment spraylinesand6inchcleanupsystemlines.Proceeding upwardtoElevation 295,feet, thefeedwater linesenterthereactorvesselatthe45,135,225and315radiallocations.

Duringthisascension theypassbythe12inchcorespraylinesandcontainment spraysparagers, and'a'lbinch'liqui'd'poison'line.Theonlydamagewhichcouldoccuristooneoftheredundant containment spraysandtotheliquidpoisonlines.becauseoftheirsize.Asdiscussed inpara-graphd.below,thissystemhasadequateredundancy evenintheeventthatonesystemisincapacitated.

Theliquidpoisonsystemisabackupsystemonly.Theprimarymeansofshuttingdownthereactoristhecontrolroddrivesystem.(3)ReactorRecirculation SystemTherearefiverecirculation pumpseachofwhichhasasuctionanddischarge line.Theselinesareatthe0,42,73o,114144,186,216,258,288an'd'330radiallocations betweenElevations 225feetto275feet.Theseare28inchand26inchdiameterlinesforthesuctionanddischarge respectively.

Otherlinesintheareaoftheserecirculation linesare:.(a)(b)(c)(d)(e)(f)(g)(h)10and12inch-Emergency Condensers 4and6inchContainment spray(0to10and18inchfeedwater (288,25812inchCoreSpray(258,115)14inchReliefvalvedischarge (288,6inchclean-up(42)24inchMainsteam(258,216,18614inchShutdownCooling(330)(330,0)360o,)216,144,114)216o)144,114)Thefirstfoursystems(a,b,c,andd)mayberequiredfollowing abreakintherecirculation system.Allhavetherequiredredundancy orbackup.(4)Containment SprayDuetothesmallsizeofthecontainment spraylinesandthefactthattheyarenotpressurized duringnormaloperation, rupturewouldnotcausedamagetoanyotherofthelinesbecauseoftheirlargersize.(5)LiquidPoisonTheliquidpoisonlineduetoitssmallsizewouldnotimpartdamageonanyothersystem.(6)Emergency Condensers The10inchemergency condenser supplylinesarelocatedintheareabetweenIP68

270and90radiallyatElevation 306feet.Inthisareathereareonlysomesmall'nstrument lines,a2inchheadspraylineandsome14inchcontainment sprayheaders.Thesupply"linesleavethedrywellandthe10inchreturnlinesenteratElevation 269feet.Inthistherearefourlines:'a)6inchclean-up(b)6inch,8inch,and12inchcontainment sprayTheonlyrequiredlinesintheeventofabreakofanemergency condenser linearethecontainment spray.Thesearesupplylinestosparagers anddamagingonewouldnotrenderthesystemunoperable since,therearefoursparagers.

Onlyonesparagercouldbedamagedbythebreakofanyoneemergency condenser line.(7)ControlRodDriveDischarge Duetothesmallsizeofthedischarge pipinginrelationtotheotherlinesnootherdamagewouldbeimpartedduetoaruptureofthisline.(8)CoreSprayTherearetwo12inchcorespraylineswhichenterthecontainment at240feetatabout,45oneachsideofthe180direction.

Theonelineinthequadrant0~0from180to270passesbythefollowing linesandthenrisesvertically:

00(a)10and18inchfeedwater (b)24inchmainsteam(c)'4inchreliefvalvedischarge (d)6inchcontainment sprayTheotHercorespraylineinthequadrantfrom90to180entersthedrywellandthenrunsnorthtothe0-90quadrantwhereitrisesvertically.

Thislinepassesbythefollowing lines:~(a)10and18inchfeedwater (b)14inchreliefvalvedischarge (c)6and8inchcontainment sprayBothlinesrisetoElevation 295feetwheretheyenterthereactorvessel0180apart.Intheirrisetheypassby10inchfeedwater liensandsomesmallcon-tainmentsprayheaders.Theonlylineswhichthecorespraycoulddamagearethefoursmallerfeedwaterlinesandthefourcontainment spraylinestosparagers.

(9)ReliefValveDischarge Ineach180radialsegmentofthedrywell,thatisfrom0-180and180-360therearethree14inchdischarge lines.Inthe0-180osectortherearethefollowing lines.(a)(b)(c)(d)(e)6inchclean-up10and18inchfeedwater 12inchcorespray6,-8and12inchcontainment spray24inchmainsteamInthe180-360segmenttherearethefollowing lines:69

(a)(b)(c)(d)(e)14inchshutdowncooling10and18inchfeedwater 12inchcorespray6,8and12inchcontainment spray24inchmainsteamThelineswhichcouldbedamagedbythereliefvalvedischarge thatarerequiredforcorecoolingarethecorespray,containment sprayandfeedwater lines.Nosinglereliefvalvedischarge linefailurecouldeliminate redundancy tothe'ointwherethesafeguards functionisinadequate.

(10)ShutdownCoolingInthe'270'to0'radiallocationthereare14inchsupplyandreturnlinestotheshutdowncoolingsystematElevation 270feet.Inthisareatherearethefollowing systems:(a)(b)(c)(d)10inchfeedwater line6and12inchcontainment spray14inchreliefvalvedischarge 3inchexhaustfromthecontrolroddriveThefirstthreesystemsmayberequiredfollowing ashutdowncoolingsystemlinebreak.However,nolinebreakinthissystemcouldresultinlossofredundancy inthoserequiredsystemstothepointwherethesafeguards functionisinadequate.

(11)Clean-UpSystemInthe0to90radiallocationa6inchlinecomesoutofoneoftherecircu-0lationlinesatElevation 263feetcleavesthedrywell,thenre-enters atEleva-tion263'eetandgoesbackintotherecirculation lineagain.Theonlylinesinthatareaare:(a)(b)(c)(d)(e)10inchfeedwater 12inchcorespray10inchemergency condenser returnline14inchsafetyvalvedischarge 6and12inchcontainment sprayDue.tothelargesizesoftheselinestherewouldbenoeffectonthembecauseofaruptureoftheclean-upsystem.(12)HeadSprayDuetoitslocationonthevesselhead,therearenolinesimportant tosafetyintheareaofthelinenorcoulditbedamagedbyanyoftheotherlines.d.ENGINEERED SAPEGUARDS PROTECTION Thepreceeding analysisshowthatengineered safeguard systemscouldbedamagedasaresultofpipewhip.However,innocaseisthedamage,extensive enoughtoresultinlossofcorecooling,a safeshutdowncapability.

70

Asdescirbed inparagraph cabove,thefeedwater system(highpressurecoolantinjection) couldbedamagedasaresultofaruptureinthemainsteam,recircu-lating,corespray,reliefvalvedischarge ortheshutdowncoolingsystemlines.Inanyeventsincetherearetwofeedwater lineswhicharephysically separated intheareasofconcernonlyonecouldbedamaged.Inaddition, coresprayandautodepressurization aretheprimesourcesofcorecooling.Highpressurecoolantrejection isonlyabackupsystem.Thereisnosinglepiperupturewhichcouldresultinlossoffeedwater andbothcorespraysystems.Therearetwoindependent corespraylines,180degreesapart.Thesecouldbedamagedbyruptureofeithertherecirculation orreliefvalvedischarge lines.However,because'ofredundancy andphysical'separation onlyonelinecouldbedamaged.Highpressurecoolantinjection servesasabackup.Thecontainment spraysystemcouldbedamagedasaresultofaruptureinthefollowing systems:(1)reactorrecirculation (2)feedwater (3)mainsteam(4)emergency condensers (5)corespray(6)reliefvalvedischarge (7)shutdowncoolingTherearetwocontainment spraysystemseachoneconsisting ofasupplyandsetofsparagers insidethecontainment.

Bothsetsofcontainment spraysystemscouldbedamagedasaresultofasinglelinebreakduetocloseproximity ofthesparagers.

Thiswouldnotresultinalossofcontainment coolingsincethesuppression chamberwaterwouldstillbecirculated throughthecontainment sprayBeatexchangers.

Degradation ofsprayefficiency couldoccurandwoulddependontheextentofsparagerdamage':Inanyevent,somesprayefficiency wouldremain.Theemergency condensers supplyandreturnlinesonbothsystemscouldbedamagedbyaruptureofthemainsteamorreactorrecirculation systemlines.However,thissystemisnotrequiredtomaintaincorecooling.Feedwater,

'corespray,andautodepressurization providethecorecoolingfunctionintheeventofalinerupturewithinthedrywell.Thecontrolroddrivehydraulic systemcouldbedamagedbyaruptureinthemainsteam,reliefvalvedischarge orreactorrecirculation system.However,souldtheselinesbedamagedtherodswouldscramonreactorpressure.

Theliquidpoisonsystem,whichservesasabackuptothecontrolrodsystemisnotsubjecttodamagebythesamelines.Theonlylinewhoserupturecoulddamagetheliquidpoisonsystemisalineinthefeedwater system.However,theliquidpoisonsystemisnotnormallyused.Itisonlyabackuptothecontrolroddrivesystemwhichisnotsubjecttodamagebyarupturedfeed-waterline.71

11.UESTIONThefollowing additional information regarding electrical andinstrumentation.

systemsisrequired.:

a.Paragraph sevenofSectionIII.C.3..a oftheApplication doesnotclearlyidentifythesystems(reactortrip,emergency corecooling,etc.)thatsatisfytherequirements ofthesecriteria.

includethisinformation inthisparagraph.

b.Yoursystemdescription inSectionIII.C.l.b oftheApplication

.doesnot

.clear~1.describe howyourdesignsatisfies therequirements ofSection4.4,4.5,4.6,4.15,4.17,andthe4.21ofIEEE-279.

Provideadiscussion inmoredetailoftheseIEEErequirements inSectionIII.C.l.b.

c.Thedescription ofhowyourdesignsatisfies therequirement ofSection5.2.3(5)ofIEEE-308isnotincluded.

inSectionIII.C.2.b oftheA~lication.

Includethisinformation inthisparagraph.

d.Arecentincidentoccurring inaBURresulted.

intemperature insidetheprimarycontainment exceeding thosetemperatures specified inthedesignofequipment required.

forsafetyandlocatedinsidethecontainment.

Providetheresultsofenviron-mentalqualification typetestsfora11electrical ClassIEequipment, including electrical penetration assemblies'and.

connections, located.insidetheprimarycontainment thatarerequired.

forsafety.Includethisinformation inSectionIII.C.3and.8oftheApplication.

RESPONSEThesystemsthatsatisfytherequirements described inparagraph 7ofSectionIIIC.l.a.oftheTechnical Supplement toPetitionforConversion fromProvisional Operating LicensetoFullTermOperating Licensearelistedbelow:(1)Class1Eelectrical systemsincluding:

(a)(b)(c)StationbatterysystemsEmergency dieselgenerator systemsEmergency serviceportionoftheplantservicea-cpowerdistribution system.(2)ReactorProtection Systemincluding powersupplies.

(3)Engineered Safeguards including:

(1)CoreSpraySystem(2)Containment SpraySystem(3)LiquidPoisonSystem4)Containment Inerting5)Emergency Ventilation 72

(6)Automatic Depressurization System(7)Contro3.Rod.DriveSystem(8)Emergency Condensers (9).Containment and.PrimarySystemIsolation Valves(3.0)Containment VacuumRelief(11)HighPressureCoolantInjection Systemb.Forprotection systemcomponents, vendor'scertified, designdatasheetsareavailable.

Theseverifythatsystemequip-mentis'adequate forachieving systemperformance requirements.

Verification ofadequacyonacontinuing basisisavailable inpreoperational test.results.andtheresultsofprotection systemsurveillance.

Thetestingrequirements arecontained intheTechnical Specifications.

Theprotection systemdesignincorporates dualindependent trippingchannelswith'each channelcontaining twoindependent instrument channels.

Thetrippinglogicofthetotalsystemisreferredtoasaoneoutoftwotakentwice.Thissystemwillaccommodate anysinglefailureandstillperformitsin-tended.functionandinaddition, provideprotection againstspuriousscrams.ForfurtherdesigndetailsrefertoVolumeI,SectionVIIIAoftheFSAR.Allprotection systemchannelsaredesignedtomaintainnecessary Junctional capaoility underextremesofconditions relatingtoenvironment, energysupply,malfunctions a'ndaccidents.

Channelsthatprovidesignalsforthesameprotective functionarefunctionally andphysically separated..

Thisresultsindecoupling ofanyadverseeffectsofaccidents, electrictran-sientsand.resulting environment.

Theprotection systemdesigndoesprovidepositivemeansofassuringthatamorerestrictive setpointisusedwhereitisapplicable.

Positivemeansofassurance areobtainedbytheuseofoperation procedures and.,checklists duringplantstartup,poweroperation, shutdownandrefueling.

AnexampleofthiswouldbetoswitchIntermediate RangeMonitorinservicebeforeSourceRangeMonitor's reachedfullscaleduringstationstart-up.

Itisinherentinthereactorprotection systemdesignthatanactiononceinitiated atthesystemlevelwillgotocompletion.

Theentiresystemisdesignedtobefailsafe.Initiation ofaprotective actioninanyoneofthefoursub-channels, willcauseahalf-trip.

Acoincident protective actioninitiation intheproperredundant channelwillcauseafulltrip.De-liberateoperatoractionisrequiredtoacknowledge theprotective actionandreturntheprotection systemtooperation.

73

Theprotection systemincludesmeansformanualinitiation ofprotective actionatthesystemlevel.Themanualinitiation capability isdescribed intheReference VolumeI,SectionVIIIAoftheFSAR.Itisinherentinthereactorprotection systemdesignthatnosinglefailurewithinthemanual,automatic orcommonportionsoftheprotection system,preventsinitiation ofaprotective action.Manualinitiation isprovidedfor:(l)Reactortrip(2)MainSteamisolation (3)ReactorCleanupisolation (4)ReactorShutdowncoolingisolation (5)Containment Isolation (6)StartCoreSprayPumps(7)OpenCoreSprayDischarge Valves(8)Containment SprayPumps(9)Containment SprayDischarge Valves(10)LiquidPoisonSystem(11)Containment Inerting(12)Emergency Ventilation (13)ControlRodDriveSystem(14)Containment VacuumRelief'he protection systemisdesignedtoacilitate therecognition,

location, replacement, repairoradjustment ofmalfunctioning components ormodules.Manualbypassesareincorporated foruseduringmaintenance.

Systemprotective actionsarealarmedbothonthestationannunciator systemandthestationcomputer.

Thepreferred powersupplyportionofthestationdistribution, systemsismonitored inthecontrolroomasfollows:C(1)115KVBusVoltage(2)115KVBreakerStatusIndication (3)Breakerstatusfor4160VsupplybreakersR1012and.R1013.(4)Powerboard.102and.103busvoltage(5)Powerboard.102and.103frequency Environmental Qualifications Thefollowing environmental typetestswereperformed.

onClass'Eelectrical equipment atNineMilePointUnitNo.1.(1)Electrical penetrations-Thesepenetrations weretestedforleaktightness underthefollowing accidentenvironmental conditions:

74

Temperature Containment ReactorbuildingPressureRelativeHumidity310F50-150F62psig100percent(2)Limitorgue valveoperators Theseoperators wereexposed.tosaturated steamatpressures upto90psigandtemperatures rangingfrom250Fto335F.Theoperators performed satisfactorily.

(3)Electromatic reliefvalvesThesevalvesweretested.for10hoursat62psigand.300F.Thevalvewascapableofperforming itsrequiredfunctionduringthistime.(4)ControlCableHightemperature cross-linked, polyethylene (Vulkene) cablewasused.,whichiscapableofwithstanding 340Fforaperiod.ofonemonth.75

12.~UEST10NTheadditional information regarding theupgradedradwastesystemforNMP-1asidentified belo~isrequired:

Asrequired.

byGeneralDesignCriterion 64in10CFRPart50,AppendixA,indicateprovisions madetomonitora11normalandpotential pathwaysforreleasetotheenvironment ofradio-activematerialinliquidandgaseouseffluents.

b.Fortheproposedsystemmodification toreturnequipment drainliquid.wastetothecondenser hotwellwithouttreatment inthewastecollector subsystem provide:(1)Description oftheequipment and.pipingmodifications whichwild.berequired.

(2)Criteriaand.meanstobeused.todetermine whethertheequipment drainliquidwastewillbereturneddirectlytothecondenser hotwell.c~Fortheupgradedoff-gasradwastetreatment system,analyzetheconsequences ofama1function orfailureofessential components and-estimate%he resulting dosestoplantpersonnel.

deForthesolidwastedatapointslistedintheEnvironmental ReportTab3.e3.6-2asnumbers25and.35,identifyand.quantifythemajorradioisotopes expectedfromthesesources.e.Providethedesigncodesand.standards forthenewwasteconcentrator, thenewwasteconcentrator storagetank,andtheneweauipment andprocessing linesforrerouting ofliquidwastes~RESPONSEa0As'described onpageIII-22oftheTechnical Supplement toPe-titionforConversion fromProvisional Operating LicensetoFullTermOperation License,provisions havebeenmadetomonitorthefollowing releases:

(l)(2)(3)(4)GaseousreleasesfromthestackLiquiddischarges tothecirculating watertunnelReactorbuildingventilation Wastebuildingventilation Inaddition, bothon-siteandoff-sitemonitorsassociated withtheenvironmental monitoring programareusedtotracetheeffectsofradioactive releases.

76

RESPONSE(cont'd)b.Theequipment drainswhichhavebeenmodifiedtoreturndirectlytothecondenser hotwellcontainonlycondensed steamfromthreesourcesintheoff-gassystem.Theyinclude(l)condensed steamfromtheoff-gaspreheater (2)condensate fromtheoff-gascon-denserand(3)condensate fromtheoff-gasventcooler.Allofthesesourcesoriginate frommainsteamanddonotcontainsig-nificant.

amountsofcontaminants.

This'llows thecondensate tobereturneddirectlytothemaincondenser hotwellwithoutany,processing.

Thecriterion usedtodetermine whetherthedrainsarereturnedtothehotwellisthattheconductivity belessthanlpmho/cm.Thisconductivity ismonitored andifthelevelreacheslgmho/cm,analarmsoundsinthecontrolroomandthecondensate canthenberoutedtotheturbinebuildingequipment draintank.c.l.Introduction Thepressureboundaryoftheentireupgradedoff-gassystem'sdesignedtowithstand ahydrogendetonation.

Inaddition, itisalsodesignedtowithstand acompletevacuum.Redundancy existsinallmajorsystemcomponents exceptthemixingnozzle,preheater, andcharcoaladsorbers.

Alltheselatterthreecomponents havenomovingparts.Thepreheater isonlyneededduringstartupofthesystemtoensurethatthetemperature oftheinletgasandsteammixtureattherecombiner isat350P.Undertheseconditions, thesteamissuperheated topreventsaturated steamfromenteringthere-combiner.

Normally, themixingnozzlesteamwillprovidesufficient superheat.

Wettingofthecatalystisnotaseriousproblembutcancausephysicaldamagetothecatalystbycrack-ingthepellets.Electricheatersareprovidedineachrecom-binertopreventwettingofthecatalystevenintheeventofamalfunction ordangertothepreheater duringthesystemstartup.Thechillersorfreeze-out heatexchangers areprovidedinthesystemtolowerthedewpointofthegasenteringthepreadsorbers andthecharcoaladsorbers.

Thelowerdewpointenhancestheper-formanceofthecharcoaladsorbers.

Thechillersoperatebycoolingthegasasitpassesthroughtheheatexchanger.

Coolingisprovidedbyafreonsystem.Anyleakageatthislocationwouldbefromthefreonsidetotheoff-gassideofthesystemsincepressureishigheronthefreonside(about45psia)thanontheoff-gasside(aboutl2psia).Leakageisdetectedandalarmedinthesystem.Freondoesnothindertheperformance ofthecharcoal.

Thethreechillersinthesystemperformonatimedcycleofaboutsixhours.Normally, oneunitisinservice,anotherisonstandby,whiletheotherunitisdeicing.Deicingrequiresaboutonehourperunit.Thesixhourin-service cycleisinterrupted ifthedesigndewpointof--4Fisreachedbeforetheprescribed 77

timecycleterminates.

Thissituation wouldputthestandbyunitimmediately intooperation automatically.

Thepreadsorber, whichhasaredundant, counterpart actsasanexpendable charcoalbed.Itcollectsparticulate daughterproductsthatresultfromradioactive decay.Provisions havebeenmadetoreplacethespentpreadsorber charcoal.

Thiscanbedonewiththesystemfullyoperatedsincetheredundant pro-.ceduresaresegregated byshieldwalls.Thecharcoaladsorbers donothaveredundancy butthecharcoaladsorbers (6)canbevalvedsuchthattheycanbedeividedinto"two'banks'of'threeeach.Intheeventofaproblemthatiscon-finedtothefirstadsorber, thefirstthreeadsorbers canbevalvedoutofserviceleavingtheremaining threeoperational.

Temperature ismonitored atthreedifferent locations oneachpreadsorber andcharcoal'dsorber.

Thesemonitored pointswillgiveanaccuratemeasurement ofthecharcoaloperating temper-atureforperformance calculation.

Thetemperature pointsalsogiveindication and,alarmintheeventofrisingtemperature intheadsorbers.

Eitheroftworedundent vacuumpumpsdrawsaslightvacuumontheentiresystembacktothemixingnozzleifthepumptrippedoff,thepressureintheentiresystemwouldslowlybegintorise.hAnalarmonthesuctionsideofthevacuumpumpwouldgiveanindication thatthevacuumpumpwasnotfunctioning.

Thestand-byunitcouldbeputintoservicetopreventafurtherpressurerise.Electrical powersuppliesforthesystemaredesignedsuchthatallredundant components, exceptthechillersrequiring power,aresuppliedfromdifferent powerboards.,Thechillersareallpoweredthroughthesameboard,butthereisabackuppowersourceintheunlikelyeventthatthemainpowersourcefails.Malfunctions Table12-1liststhemajorcomponents intheoff-gassystem.Thetablealsoincludesmodesofdamageormalfunction, actionrequiredandconsequences oftheindicated damageormalfunction.

Forexample,ifthereisalossofdilutionsteamtothemixingnozzle,decreases intemperature andinflowdownstream ofthecomponent occur.Theseresultinanalarmandtheeffectisrecorded.

Ifthemalfunction cannotbecorrected byopeningthevalvetoallowsteamormoredilutionsteamtopass,thenthesystemwouldbeshutdownandrepaired.

Thismalfunction resultsinnoreleasetotheplantevenifnoactionisinit-iated.Therecombiner stillfunctions evenifthereisnodilutionsteamavailable.

78 0

)ASLSliI~ItclrCCICN AAALISISSAIlctKC1stIODICAICD 5IAICSACllcllltACCICD15ISI)IAIID ItACIICS15DtfCAcaressestIsltlsttv IIIXIICIxtlitlesssteevt41s)tireLeslosoIKO~IrMsCecel)rc)oIroast)lrsllstLessof)evslfelosselDoellssfolossef5lessfoisclrsMlaDrtlMrtlaIKlttMlsflrvDsccersela1levIKM4Mla~less~LesssftcoftLAOoftff.fatlorS4I~I)IKlMMla~CI)5)Aires~tlat~ecOltecet4IXSc444~1ttei~iaeC~swSisterCKttCCNsIIverCleatrlesMfe)IOKDetr-lreseco)IreetslesMce)IMCDstrIOOM'I~)lsacIcwtkws5)sleeIx-+sxZ<')XIx<')ZIZXZxIIIIXIXIIZZZIt'IIIAZ55)AIA)CCS X(I)tcraertet lrttcVlletla~Crtc<<rtSets4alfsAettfetttfftlt~VM14Ml)CeSeclle\lt laAslOO4t444ettleaCKVIC44leAKSVOSOftttCSCIM, (I)ticsrtolcvoreclosevillrescereo)steeloMcMl.())tolvtevt4fstlvfco~cslsaA)witiaMteIM(c)lsassseIs)(I)~fiscAleeAslcosl~4MCMCOcollat'Mlvr4oecofsettler

Fireinthesystemisnotcrediblesincethedecayheatunderworstcareconditions inthecharcoaladsorberamountsto0.715wattsandacorresponding 0.4Ftemperature rise.3~Le~aceeLeakageinthevacuum;part.ofthesystemcanbetolerated upto110scfm.Underthoseconditions thevacuumpumpinser-vicecanoperatenormally.

Thisispossiblebecauseacontrolvalveinthesystematthevacuumpumpnormallyrecirculates mostoftheairinthesystem.Withincreased flowinthesys-.temtherecirculation valve.closesdown.Leakageatthemixingnozzleoratsomepointdownstream ofthevacuumpumpwillescapefrom.thesystemsincesystempressureattheselocations isgreaterthanatmospheric'ressure.

Themagnitude ofthereleasesheredependuponthesizeoftheleak.Sincethemixingnozzleislocatedintheturbinebuilding, anyleakagewouldbecarriedthroughthenormalventilation systemtothestack.Aradiation releasewouldbedetected, alarmedandrecorded.

Themagnitude ofanyreleaseatasamepointdown-streamofthevacuumpumpsdependsuponthesizeoftheleak.However,theactivityinthesystemislowbecausethegashasalreadypassedthroughthe"charcoal-adsorbers.

Anyreleasewouldgointoabranchoftheturbinebuildingventilation sys-temwhereradiation levelisalramed.andrecorded.

4DosestoPlantPersonnel Leakageoutofthesystemfromtwosources"was previously iden-tified.Onesourceisfromthemixingnozzlewhichisphysically locatedinthesteamjetairejectorroom.Thisroomwillbemodifiedsothatventilation intheroomissegregated fromthebalanceoftheplant.Thatis,theroomwillbecontrolled suchthatventilation leakagewillbeintotheroomandnotoutofit.'heonlyaccesstotheroomwillbethroughaseal-type doorandonlywhentheplantisshut-down.

Noaccesswillbepermitted duringoperation.

Leakagefromthesystemintotheroomwillbecarriedoutviatheturbinebuildingventilation system.Noplantpersonnel exposureisexpectedfromanyleakageatthissourcesTheothersourceofleakageoutofthesystemisdownstream ofthevacuumpumpswheresystempressureis,aboveatmospheric.

Atthispointinthesystemtheoff-gashaspassedthroughthechar-coaladsorbers.

Leakage,ifitoccurs,willenteranormallyre-strictedaccessareanearthestack.Xtwilldispenseintotheroomandbecarriedoutbyasegmentoftheturbinebuildingven-tilationsystem.Thesignificant XenonandKryptonisotopescontribute approximately 300'i/sec.

totheoff-gasstream..Thisisbasedonatotalactivityrateof50,000'i/sec; after30minutedecayandthedesignholdupof20daysforXenonand33hoursforKrypton.79

Basedontheaboveactivities, aventilation flowof2000cfmandaroomvolumeof8000cubicfeet,theMPCvaluesfrom10CFR20TableIforrestricted areasforKryptonandXenonisotopeswillnotbeexceededforaleakagerateof2.8percentoftheoff-gasstream.Znaddition, forleakageratesupto16percentonlytheMPCforXenon-133 isexceeded.

5.DecaHeatintheCharcoalDecayheatloadingwascalculated forthepreadsorber foritwillcontainmostoftheparticulate daughters decayingfromtheparentXenonandKryptongases.Thecalculation assumes,.that.thereactoroperateswithanactivityreleaseof50,000MCi/sec.foraperiodof10years.Forallpractical purposesallisotopesareinequilibrium afterthatperiodwiththeexception ofCS-137.Thecalculating assumesthattheairflowtothepreadsorber issuddenlyshutoffafterthisten-yearperiod.Itisalsoassumedthatalltheenergyfromdecayisadsorbedbythefirst40poundsofcharcoalinthepreadsorber (10percentofthetotalamountinthisvessel).Withtheseassumptions andacharcoalinventory basedona2.5hourdelayintheoff-gaspipe(transittimebasedinvolumeanddesignflowof22scfm),theheataddedamountsto,0.715watts.Assumingalltheheataddeddoesnotexcapetheoriginal40poundsofcharcoalthecorresponding temperature riseis0.4F.This.heatis.essentially

-allfromdecayoftheparticulate daughters withlessthantwopercentcontributed bythedecayoftheXenonandKryptongasescontained onthepreadsorber.

d.Thesolidwastedatapointslistedasnumbers25and35inTable3.6-2oftheEnvironmental Reportrepresent concentrated wasteandspentresinrespectively.

Themajorisotopesandrelativequantities fromthesetwosourcesareessentially thesameandarelistedbelow:Cesium134Cesium137Manganese 54Cobalt6027percent65percent2percent6percente.Thenewequipment tobeutilizedintheliquidwastesystemwiththeapplicable codesandstandards arelistedbelow:COMPONENT CODESSTANDARDS WasteConcentrator Concentrator HeaterConcentrator Condenser Concentrated WastePumpConcentrated WasteTankAllLiquidWastePipingandValvesASMEVIIIDiv.IASMEVIZZDiv.IASMEVIIIDiv.IASMEVIIIDiv.IASMEVIII.API(650)ANSIB31.0TEMA-RASTMA-24080

13.QUESTIONRegarding onsiteradiation protection tomaintainpersonne3.

exposures tolevelsaslopaspracticable, thefollowing additional infor-mationisrequired:

a.Providethequantitive resultsofplantradiation surveysfor1850NilToperation.

includesurveysofthecontrolroom,officebuilding, radwastebuilding, wastestoragebuilding, machineshoo,andotherworkspaces.Indicatethemaximumvalueforanysignificant areaandindicatetherangeofradiation levelswheretheymayvaryindependent ofreactorpowerlevel,suchasinproximity todemineralizers, radwastestorageareas,etc.Specificlocalized.

radiation areasshouldbedescribed..

rb.Provideadiscussion ofradiation levelsassociated withfuelhandlingthatis'basedonexperience withspentfueltransfertothestoragepool,fuelinspections, andreconstitution offuelassemblies, andonexpectation forspentfuelshipmentandany'therplannedfuelhandling.

Indicatetheexpectedreductions ifany,intheselevelsresulting fromuseoftheproposedaccessplatform.

c.Provideadiscussion oftheventilation systemsofallbuildings in.regardtoair'borne activity3.evels,estimation of'nhalation dosesduringnorma1operation, activityreleasesbywayoftheventilation systems,andairborneactivitymonitoring equipment, itslocationranges,maintenance, andcalibration.

d.Provideadiscussion ofthemanagerial andadministrative meansbywhichdosestopersonne3.

arekeptatlevelsthatareas3.owaspracticable.

RESPONSEa.Plantradiation surveyRadiation levelsinthefollowing areasremainlowatallpower3.evelsandmaybesummarized.

asfollows;(1)Controlroom(2)Officebuilding(3)Machineshop(4)StoreRoom(5)Auxiliary controlroom(6)Laboffice(7)Countingroomcountsmin300300-3501003.0010010075m~rar0.10.10.10.10.10.10.1

TurbineBuildingTurbinebuildingradiation levelsingenerally accessible areasarelessthan5mr/hr.Areasabove5.mr/hr,whichareposted,asrequiredarethefollowing:

(1)Passageway eastofwastesurgetank,(5-15mr/hr),(2)TurbineBuildingSampleSink;(10-40mr/hratedgeofsamplesink).(3)SentryPanel;(10-40-mr/hrbehindpanel,betweensamplecoolersandwall;160mr/hrcontactwithlines;13mr/hratfrontofpanel)'(4)Off-gassamplerig,upto200mr/hrduringsamplingofoffgas.)(5)Resintransfervalveat261footelevation, (20mr/hrat,2feetfromva1ve;5'r/hr'trope).Representative TurbineBuildingAreaRadiation Monitorreadingsat1725YNToperation areasfollows:.

AreamrhrAdministrative buildingentrancetoturbinebuildingTurbineoperating floor>(generator end)-Turbineoperating floor(feed.pumpend)FeedrumpareaElectrical switchgear areaCondensate demineralizer valveareaRegeneration areaMakeupdemineralizer area0.122.83.30.2'.3401200.3ReactorBuildingReactorbuildingradiation levelsingenerally accessible areasarelessthan5mr/hrexceptasnoted.,and.posted,asfollows:.(1)Elevation 237feet:entirelevelis.considered.

aradiation areaduetorod.drivepumps,roddrivemodulearea,roddrivedecontamination sinks(20~/hratedgeofsinks),rebuiltroddrivestorage,and'ventilation ductintheeastpassageway (overhead reading450mr/hrat1inchand15-20mx'/hr4feetoffthefloor).(2)Elevation 261feet:lastpassagefromairlocktoprecoattanks,(5-15mr/hr).(3)Elevation 261feet:reactorwatersamplesink;(25-70mr/hrstandingatsink;150-200mr/hrinsink;100-150mr/hr3inchesfromturbidity column).82

t(4)Elevation 281feet:areabyclean-upsurgetank;(12mr/hrat,3inches).(5)Elevation 281feet:fuelpoolfilterprecoattank,(20mx/hrat3inchesfromtank,5mr/hratrope).(6)Elevation 298feet:southpassageway, westofliquidpoisontank,and.westpassageway, duetomoistureseparator anddryerstoragepitdrainvalve(300mr/hrat1inchfromvalveinoverhead.)

anddrainline.(7).Elevation

'318feet;condensate

'linenearcontainment sprayheatexchangers, (48mr/hrat3inches).(8)Elevation 318feet,:.south.passageway.

near,linetospentfuelpool,(12mr/hrat3inchesfromdrainvalve).(9)Elevation 340feet:entirelevelisconsidered aradia-tionareaduetofuelpool(10-20mr/hratedgeofpool),toolstorageinnortheast corner(100-200mr/hrat3inchesfromtools;35mr/hratropebarrier),

fuelrod.stored.northofreactortopplugs(40mr/hrat3inches),neutronsourcestoredonsouthside(25mp/hrat3inches;5mri/hratrope).Representative ReactorBuildingAreaRadiation Monitorreadingsat1725K<Toperation areasfollows:AreaFuelpoolbridge(low-range)

Reactoroperating floor(equipment hatcharea)Reactorbuildingequipment draintankareaClosedloopcoolingareaCleanupsystemarea(nearpumps)Elevation 281feet-nearfuelpoolfiltersControlroddrivemoduleareaSpentfuelpool(eastend)Instrumentation room(elevation 237feet)Cont.sprayheatexchangeaream~r.ar220.42.23155290.4HasteBuilding(1)Controlroom:thewastebuildingcontrolroomradiation levelremainsbelow5mr/hrunderalloperating orprocessing conditions.

(2)Elevation 261feet-entirelevelisconsidered.

aHighRadiation Areaduetothefloordrainsample.tanks,whichread.100mr/hrupto5feetaway.Afenceisundercon-struction tolimitaccesstothesetankssothatthewastebuildingmaybereturned.to Radiation Areastatus.83

0(3)Wasteconcentrator room:Periodicaccessisnecessary forsampling, (1-2R/hrfieldinareaofsamplepoint).(4)Flatbedfilterroom:periodicaccessisnecessary foroperation andmaintenance, (200to1000mi/hrfieldde-pendentonprocessconditions).

(5)Elevation 225feet,.drumfillingandstorage:periodicaccesstobarrelconveyorsystemisnecessary foroperational adjustment andmaintenance.

Radiation levelsaredependent oncontentsofbarrelsinlocale,(spentres'in10-30R/hr;concentrated.

waste500-1000./hr).Arearadiation monitorreadingsaredependent uponprocessconditions ratherthanpowerlevel.Representative wastebuildingarearadiation monitorreadingsweretakenat1725MNToperation.

AreaRadwasteconveyAisleRadwaste-pumproomRadwaste-controlroomRadwaste-storageandshippingm~r4r0.9150.53b.Radiation levelsfuelhandlingDuringuelhandlingandincoreinstrumentation replacement operation radiation levelshavebeenmeasured.

Thesurvey~madeonApril24,1973showedthefollowing results:(1).Generallevel6inchesabovesurfaceofwaterinfuelpool,reactorcavityandstoragepit,(13mi/hr).(2)Toprailofhandrails,(3-6mr/hr).(3)Bridgeoverfuelpool,(7mr./hrat1inch).(4)Bridgeoverstoragepit,(10mr/hrat1inch).(5)Sippingheadcontrolcenter,(3-5mr/hrat1inch).(6)Underhead,southwest cornerofElevation 340feet,(5mr/hr).Severaloperators, technicians and.supervisory personnel indicated over10percentofMPBBuptakeof60CoduringwholebodycountsfromMay21toMay25,1973.Assumingaone-timeuptakeatthebeginning oftheoutage,lungdosefortheca1endarquarterforatechnician with15.6percentMPBBfor60Coand0.8percentMPBBfor58Cowas589mrem.Theequivalent wholebodydoseis196mrem,assuminga3:1ratiobetweenlungdoseandwholebodydose.Thiscalculation assumesthat236nCiwereabsorbedinthelungsat.thestartofth<<<<age.AtypicalCAMreadingof3000counts84

perminute(6x10"Ci/cc)wouldresultinanuptakeof115Ciduringfour40hr.weeks.Theestimateof236Cimaytherefore behigh,butgivesareasonable upperlimittoexpected, uptake.Nodistinction canbemadebetweenuptakeduetofuelhandlingactivities and.thatassociated withLocalPowerRangeMonitorreplacement.

Noincreaseinambientradiation levelswerenotedduringtransferofspentfueltothestoragepit.Thecaskforshipmentofspentfuelwillbebuilttotheapplicable standards.

Nodoseestimates arecurrently avail-able.Theproposedaccessplatformprovidesforconvenient washdownofthereactorcavityand.storagepitareasafterthewaterlevelhasbeenlowered.Timesavedincleaning, and.lowerairborneactivityresulting frommoreefficient cleaningwillresultinlowerdosesand.uptakeformaintenance personnel.

Theresultant decreasewillbesmallonaman-rembasis.Theprecisefigurescannotbeestimated fromcurrently available data.-.c.'Uentilation SystemsBydesign,buildingventilation isprovided.

topromoteairmotionfromareasoflowpotential contamination toareasofhigherpotential contamination.

Allstationventilation isexhausted bymeansofthemainstack.Inaddition, thewastebuildingatmosphere ispassed.throughhighefficiency filterspriortoenteringthemainstreamatthestack.Airborneactivitylevelsinstationbuildingaremonitored bymeansoflowvolumesampleslocatedinrepresentative areas.MonthlyaveragereadingsforMarch,Augustand.September 1973wereasfollows:MarchAuguacSeptember (1)'urbinebuilding, elevation 261feetgear.SteamJetirEjector)(2)Turbinebuilding, elevation 300feet(operating floor)(3)Reactorbuilding, elevation 237feet(nearControl.Rod Drive)(4)Wastebuildingelevation 247fe'et(5)Largeequipment decontamination room4.74x10uCi/cc2.81x10-12uCi%c1.98x10-12uCi%c-121.88x10"uCi/cc6.15x10uCi%c1.64x10uCi/cc5.61x10uCi/cc3.41x10uCi/cc2.93x10uCi/cc-ll.123.30x10uCi/cc8.10x10.uCi/cc6.10x10uCi/cc-ll.-118.43x10"uCi/cc5.20x10"uCi/cc4.64x10"3uCi/cc85

workgroupisotopeInhalation dosetoindividuals isverifiedtobelow'byperiodicwholebodycounting.

Resultsofwholebodycountingforstatiopersonnel duringoperation wouldbeexpectedtobehighestforoperators ormechanics spendingsignificant portionsoftheirtimeinthewastebuilding.

Nuclidesdetectedhaveremainedatlowfractions ofthemaximumpermissable bodyburden(MPBB)limit.Thisisreflected inthefollowing dataforindividuals, withbodyburdensinexcessofonepercent:\percent,MPBBcountingdateoperatormechanicoperatoroperatormechanicoperatormechanicsupervisor mechanicoperatormechanicoperatortechnician

operator, operatorsupervisor mechynicmechanicmechanictechnician mechanicmechanic6OCo60Co60Co60Co60Co60Co60Co60Co60Co60Co60Co60Co60Co60Co~all60Co60Co60Co60Co60Co60Co60Co60Cox.61.31.51.21.91.71.41.42.82.11.51.11'.3'-.25.02.31.21.02.91.43.'.0'1.12.83/19/733/2o/V33/19/733/21/733/19/733/19/733/19/733/19/733/20/733/21/V33/19/733/19/733/21/733/19/733/19/733/19/733/2o/V33/2o/733/20/73-3/20/733/21/v33/2o/V33/2o/73These'percentages maybeconsidered aschroniclevelsforthecalendarquarter.Fortheindividual withthehighestuptake(4.2percentofMPBBof60Co)thisamountedtoanuptakeof0.046Ciwithresulting dosetothelungsof154mrem/quarter.

Iftheeffective wholebodydoseisconsidered tobeonethirdofthelungdose,thischronicwholebodyexposureamountsto51mrem/quarter.(MPBBfor60Coisconsidered tobe1100Ci)Activityreleasedbywayofthemainstackiscontinuously monitored forparticulate andiodinebyafilterandcharcoalcartridge samples.Thesamplesarewithdrawn fromthegasstreambyisokinetic probelocatedhighinthestack.Samplesarechangedatleastweekly.Releaselevelsofiodinesand.par-ticulates from"thestack,including off-gas,averaged6.6percentofthetechnical specification releaseratelimitfortheperiodJanuarytoJunelg73.86

Airborneactivityismonitored bycontinuous airmonitorslocatedin.theReactorBuildingandTurbineBuildingventilation exhaustducts.Thesemonitorsalarminthecontrolroom.AlsoaportableConstantAirMonitorisnormallylocated'n Elevation 261feetoftheTurbineBuilding.

ThethreeConstantAirMonitorscoverarangeof50to500,000countsperminute,orapproximately 1011to1$7uCi/cc.Alarmpointsaresetatthe40hoursMPCforIandCo,(9x109uCi/cc).ConstantAirMonitorsarecalibrated semi-annually.

Associated countingequipment iscalibrated quarterly Maintenance ofPersonnel Radiation ExposureasLowasPracticable Recordsofpersonnel radiation exposures aremaintained.

byfilmbadge,charged.everytwoweeks.Exposureiskeptaslowaspractical bymeansoftheadministrative practices discussed below.Pocketdosimeters aresupplied.

toallpersonnel workinginradiation areasintheplant.Dosimeter recordsarekeptoncardsbytheindividual.

Dosimeter logsarekeptbythesuper-visorsofpersonnel routinely subjecttotheRegionradiation exposures intheplant.Inparticular, themaintenance andoperaionspersonnel keepsuchalogatalltimes.Logsarealso.keptforinstrument andradiation protection technicians duringmaintenance outages.First-linesupervisory personnel areresponsible forinitiating requestsforAuthorization toExceedRadiation'xposure Guidesfortheirpersonnel.

Thisauthorization consistsofareviewoftheindividual's exposurerecord.andauthorization uptoaspecificnumberofmremfortheweekforanyindividual exceeding 100mrem/week.

Thereviewisaccomplished.

byRadiochemistry andRadiation Protection supervisory personnel takingintoaccountexposurehistoryasrecordedby'ilmbadge,anddosimeter recordsfortheintervening period,.Radiochemistry andRadiation Protection supervisory personnel routinely comparedosimeter recordswithfilmbadgeresultstodetectdosimeter malfunctions whichcouldlead.toinadvertent overexposure.

AsaRadiation WorkPermitisrequiredunderthefollowing conditions:

(1)(2)(3)(~)Radiation exposureratesgreaterthan100mrad.perhour.Neutronexposure.

Contamination levelsgreaterthan10,000antresperminutepersquarefoot.Airborneactivityrequiring useofrespiratory equipment.

87

(5)Maintenance ofequipment, controlsorinstrumentation inRadiation AreasorHighRadiation Areas.(6)Entryintoanareaofunknowncondition.

Radiation WorkPermitsaremadeoutbyseniorRadiation Pro-tectiontechnicians withsupervisory personnel onca11forconsu1tation.

Necessary workprovisions arespecified onthepermitforcontrolofradiation exoosure.

Asystemutilizing thermoluminescent dosimeters (TLD's)isbeinginitiated.

TheTLDreaderisnowbeingcalibrated.

'Personnel trainingandprocedure writingisinprogress.

InitialplanningisunderwaywiththeEngineering Department forcomputerassistance tofacilitate calculation ofbest"dosetodate",information utilizing FilmBadge,TLDand.pocketdosimeter data.88 J

4.QUESTIONYourdescription ofcompliance withRegulatory Guide1.17asgivenonpageIII-44oftheApplication isnotadequate.

PleaseprovidethedetailsofyourIndustrial SecurityPlaninaccordance withRegulatory Guide1.17datedJune1973,asprop-rietaryinformation inconformance withSection2.790(d)of10CFRPart2.RESPONSEThereplytothisquestionisbeingsubmitted underseparatecoverasproprietary information.

89

.l~~<ar~