ML17037A265

From kanterella
Jump to navigation Jump to search
Response to Request for Information Concerning Regional Meteorological Conditions Characterizing Atmospheric Transport Processes within 50 Miles of the Plant
ML17037A265
Person / Time
Site: Nine Mile Point  Constellation icon.png
Issue date: 02/06/2017
From:
Niagara Mohawk Power Corp
To:
Office of Nuclear Reactor Regulation
References
Download: ML17037A265 (338)


Text

Re uest B2 provide the following information, concerning regional meteorological conditions characterizing atmospheric transport. processes within 50 miles of the plant, for as many relevant stations as practicable or necessary to define these transport processes within the region:

a. Wind speed and direction data at all height (s) at which wind characteristic data are applicable or have been measured;
b. Atmospheric stability data as defined by vertical temperature gradient or other well-documented parameters that have been substantiated by diffusion test data;
c. Monthly mixing height data; and
d. Total precipitation by month, number of hours with precipitation, rainfall rate distributions, and monthly precipitation wind roses.
e. Describe airflow trajectory regimes of importance in

~ transporting effluents to a distance of 50 miles from the plant, including airflow reversals.

Note: The regicnal meteorological information provided should be based on at least a one-year period of record and should be concurrent for each station with the period of onsite data collection. Both onsite and regional meteorological data should be presented for each hour, and tapes if possible also be available on magnetic to expedite the staff review. Sources of meteorological information, in addition to the onsite program, could include available National Weather Service (NWS) stations and ether well-maintained and well-exposed (e.g., other nuclear plants, university, private meteorological programs) meteorological facilities.

Res onse B2

a. Wind speed and direction data for the Syracuse Airport (ref . 11) for the period 1951-1960 are given in Table B2-1 by months and combined annual. Also the 1974 Local Climatological Summaries for Syracuse and Rochester (ref. 11) are. also given in Table 82-2. The 1975 Local Climatological Summaries were not yet available. The data in these wind roses closely resemble the site data from 1974-1975 and the earlier 1963-1964 data (ref. 4) .
b. The atmospheric stability as defined in the STAR Program for syracuse, 1967, are given in Table B2-3, as 1974-1975 data were not available (ref. 11) .

Page B2-1

c. Seasonal and annual mixing height data for morning and afternoon are given in Figures B2-1 through 5, which were abstracted from the Holzworth paper (ref. 12) on mixing heights.
d. Total precipitation by month, number of hours with precipitation, and rainfall rate distributions, were extracted from the Climatological Summary for Syracuse from 1951-1960 and local Climatological Summaries for 1974 are shown in Tables B2-1 and B2-2.
e. Covered in Meteorclogical Section 2. 2. 1 of the NNP2 PSAR (ref. 1) .

Page B2-2

TABLE B2-1 WIND SPEED AND DIRECTION DATA FOR SYRACUSE AIRPORT YEARS 1951-1960 Nine Mile Point Nuclear Station -'nit 2 Niagara Mohawk Power Corporation SYRACUSE, HER YORK Haacock AP Jh((VARY 7860 Obd.

PERCENTAGE FREQUENCIES A TEMPERATURE AND WIND SPEED-RELATIVE HUMIDITYOCCURRENCES: B OF WIND DIRECTION AND SPEED:

I N/'e0 e oeH S 'le ee ~ e/ LI Tr MPH 25 eetH AHO OYL0 Ho(/0LT OSMTVAT/Qe/S OT WINO STEED I

lee oeee eee IDIO ee Ni r r

,2 r

t I2 $

2 I 1

  • t II f!(IEIfek 2 I I ~

e N

~ e ( ~

L ~ ZI 1 ~ Sl 1

I 0 loL e) le

~

/~ ee ~ )e ~ Te ~ HIH H ~ ee eo eo/ee 4o?I 4ed e4/ eot r NNE .bl ~ + I I

1 ~ Si 4od 59/ 55 3 2 21 3 LI 4.

4 NE ~ +I 1 ~5 4~2 54/ 5 2'. 61 '; 2'l 45 ENE L ~ dl Le4 ~ 5j 4oW 704 1 lo T 15.' 15: dl 47 4el. 3 ~ ll 1 ~ 5 10 ~ 7', Te4 49/ 4S 2 E 2 ~

i 44/ 4 39/ 35 1 9 2

6 3

7 1

ti 3'5 11 22 23.

LZ 36 2 5'el8 26 15'1 16

/

I

(

s 128 2sl ESE SE 1~

1~ ll 2 ~ dl L ~ EI ~ 3l 2 ~ (3 1 ~ ll ~ 3. +

Sed/ do6 4e4 4 ~ 5 10 zz ze sel s ee 123 87:8 8 59I 56 22: 1 ll 677 loa oil of

~

')

34/ 3 47 92 101I SSE ~ 4/ ~ Zi + ~

2 F 91 903 13 11 Lo< 175 169 27 3 52. 68 71: 7 278 +I 29/ 25 64 71 95 39I 11 19/0 170 179'2 46: 79: , 6 ~ 6( 1 ~ 3 led 1 ~T ~ 71 ~ 4 4.3oz.4 115l 255 h ~ 9 1 ~ Ll 1 ~ 3 4 + I 4ohLL ~ 4 24/ 2 19/ 15 4 62 71 52 Tot 91 79 4/ 7 200 160 252 14 151 187 139.

66I 2

I 86 eo 63 101 4T 46 1

a 200 963 SS SV

~

~ 5( .9 L.s L.a 2 ~ < 3 ~ 1'3 ~ L

~

~ L' o ~ 3 'I local l ~ 4 9 '

14/

09/

LOI OSI 65 40 71 41 54 32 2

20 11T 155 75 111'9 71 1

6 66 19, 21 34 18 24'1" i

754 437 I VSV I V 2 '

' 'o as 2~4 3 '/ ~

~

0 9

~ L

~ 3

~

~ L 10 ~ 5) 2 ~ 0 l

04/ OOI 6 52 41 31, Sl 30'9 Zl I I $ L) 247 VNV 2 Ze2l 3.11 3 2

', Lob 1 ~ 7 ~5 11 ~ Stl 3 ~

11 ~ 3Z 2 ~ 4

-Ol/-OSi 5 14 14 11 7 ld LT 9 /

95 NV ~ /e, ~ L I

" 16/- 1 Oi 2 7 I e NNV L.a L.s 1.8, ~ L I 5 ~ 3/10 ~ 8 20 L.a 11/-if( 1 1 1 2 2 I

9 CALI(

T TAL 7 '6 hs. + ~0

~

La/ -ZOI I 5 4 ~ ~ ~

ZL/ ZSI I 4 TO'TA I.

~ 3 22 410 442 5 (4 2 L~L (0510612 105 1093'84I 37'36 461 416 17 li 5 51'9( 1 440 PERCENTAGE FREQUENCIES OF SKY COVER, WIND, AND OCCUIUKNCES OF PRECIPITATIVN AMOUNTS E RELATIVE HUMDITY FREOUEHCY OF OCCURRENCS FOR EACH HOUR 00 T(R DAY I//TO00T/LS AN ION Oe(oeec AT 0 v ceo(/0 T/e00(0 AT T I ~ ~ e Io I ll 9 03 ~ ~

~ ~ ~ ~ I~ )

'9 901 l 0

oee 24 24( 30 SL 30i 31 31 2 0 01 9 2122 4- O=: o I (o',m.l o .20.iso(To'do 0ol ee Ol T0 ee ee 22 30I 331 35 36 3 30 tt 3

2 3

2 33 2 9 1 3S 2 2

2 2 2 2 2 3 DAY 7 l(0(2 (2 '"

20. 4 29 I 09 ( 40 T9 I 49 i(00' L 3 3 2 I a eo Ice 1 1I 2 1 1 1 1 1 I I I

Is /0 eea I'I

~0 Oe'0 vo eo A o I e 00 ~ eee Ne e I 00 Zol 16i 5427 2 01 1 el 57 25 2 TOTAL eo e~~w Torah 67L44~62 se 52/4oh4 3 2 SIL~232 lTTL2$14 14 I 4~4 QLS 4@T 02 17I toi 541 Zbc zl I LI ZL( 32 32 14 03 sd 3) 19.31 34 15 3,'i 59'1'9/ 1 04 L9 17.'5'5 ZSI 3l I 32 34 lSi 1, 14I 05 17 57I 25'; ZOI 30 34 lbi 06 19 16 57; 24, Zl i Li 22I 26 36 ldl 07; 15 17 55, 25 3' + 21I 27 34 17(

08 (14 21 soi zel 2 1 22I 28 33 15(

PERCENTAGE FREQUENCIES OF 09 13 12 75 20 48I 29/ 3 2f! 28 30.

D CEILING-VISIBILITY: 10 1 12 75 1 51( 3 3 31', 24 15'S(

L4~

37i 32'8(

11 1 11 75 Lzl 3 4 321 29. 21 13.

CSUHO DIST( 12 14, 14 73 9/ 51 36( 4 5 361 30 L4 Il 13 13 14I 73/ 4'91 41 6 391 26,. L9' 0

14 Lf I

14/

1 73i 4/

14( 72: T 7'4 52(

48/

3dl 41 4!,

3 31 6 38, 24I 41 40'8 zzl 19(

4 9/

0IOI ~ ~4 lb 1~5 LZI 73l 10 SSI 34 2( 3 37 Ll VIS TO 2/0 I/2 TO 2/0

+

1~ + as

~2 17 18 15 14 15 70 13 12 7 14 56'I 55 29 29 ZI I

1 35 ze 28 32 25 29 13 ll I TO 2l/2 4o lo zot 1~ 3~ 19 2 71 1 55 30 t9 27 13 2 TO ~ 1~ 5~ Tos 5 ~ 2~ 4~ eo7 20 19 10 71 1 50 29 2 29 29 14 T TO LS 3~ To Oo To To 4ol 21 18 75 14 53 29 25 33 28 13 20 TO X 22 17 75 15 53 30 27 28 30 12.

22am 23 17 75 1 53 24 23 33 24 L4i TOTAL lo 4~ 3~ 9o To 9~ 4~ 100 AVO 16 7 1 53 30 24 29 Page 1 of 13

II lI

WIND SPEED AND DIRECTION DATA FOR SYRACUSE AIRPORT YEARS 1951-1960 Nine Hile Point Nuclear Station Unit 2 Niagara Mohawk Power CorPoration SYRACUSE NES YORK FEBRUARY Hancoct JLP 6782 0!7s.

PERCENTAGE FREQUENCIES TEMPERATURE AND WIND SPEED-RELATIVE HUMIDITYOCCIJRRENCES: B OF WIND DIRECTION AND SPEED:

vt>> ffoiftie OLMTVATeefs Of seIIt ce 5.1 ~ fc ~ K I$ 2>> MtK MtN Affo Owl ~ ocofD 25 ~ ~ Oolf lie rDvt oeKtcl oooo I f 2 2 ~

1 r

(-Is; s t 5 SA!

'$';j:f'(

& sit I & H le

~ 9.' 7

~ Il'o ed ~

I~

3

> ~ 7c ll 7~ ll ll ~ I Oefl fee le 2 ~ S 6>>6 l NflE ~ 4 ~4 ~1 ~9 4 '

64/ 60! I 1 11 5 4; l. 23 NE ~5 ~8 at ~ 1 1 ~5 5 '

s9/ ssl 2 9 4 3 4 8 2 2, 35 loT ob 4 ' 8~0 EHE ~ S.

' 3 '2 1~ ~ 1 1:,

54/ SOI 3. 10 8 3. 2 9. 17 7 ll 1 1, 4 2 l. 77 E - lob 3 F 2 ol; '

' 7~7 49/ 2 2 '1, 6 35 9 16 6 7 24, 4 3'; 142 ESE los 3 ' lob 7 + ' be ~ 4 '

39/ 35 45'4/

40,' 23 11 14,'1 12 85 46 34 37 10 37 20 17 360 SE 1 ~3 2 ' 4 1 ~

~

~ 6 I

5 ' 7~ 1 12 34 33 81 21 164 122 131 122 9 55 46 53 20l 8 2 967 SSE ~ 61 ~ 11 ~ 0 ~9 ~ 2 ~ 1' + 3 ~ 9, 9 ~ 6 34/ 30 c 45 55 49 LAA, 13 1$ 8 toff 199 243 6 62 59 66 eb'5 6": 1. 3 6 419 5 ~ 5 o9 1~ 4'1 ~ 6 6 ~ 2 ~ 1 ,'

F 312 '

29/ 25. 4$ 66 69 9 148 163 213 110 6 $9 '95 61 3 7 7 7 6 233 Ssw 3 ~9 8 1 ~0 +. . 3 ~ Oiio ~ 2 24/ 20. 24 4$

41'9 Tl 10 99 133 172 36 2 91'2 61 23

~

'10, 8! 6 856 Sie

~

~ 5 1 ~1 1~2 1 ~ 1

~ ~ 1

~2 e 4 ~ 1' ~7 19/ 15; 27 31 43 4 3 115 106 85 31 9 41 47 47 32 5' 2 1 638 ifsw ~ 6 2 ' 4~7 3 ' 1 ~0 ~ 1 + !LZ ~ LRL ~ 4

'ogt 14/ 10 1 24 31 14 L 6 16 115 59 5 4 41 34 31 13 i 3 716 491 Lf ~6 1 ~7 2

', ' F 2 ~9 04 c

~ 3 09/ 05! lb /9 21 5 2$ 45 43i 'L 7 22 37 9 12. 218 TfNw ~4 1 3 ' 5>>4 2 ~ 7 1 ~ 2' ~ 1' -'Lsot'L4>>9 04/ 1$ 21 Ll 6

19 18, 32i 3 2 30 I I 156 N>> ~7 ~ 8' ' 3 ' ~ 5; ~ 3' . 9>>223 ~ 7 00'Ol/-OS!

6 11 1$ 12 d9 HNw ~4 ~9 1~5 1 ~6 6 e 5 ~ LR1 ~ 8

-06/-10; ll 1 2 3 1 I t

23 CAI.H 1 ~ 0 I 1.0

-11/-15 1 2 i TOTAL Std 5 3>> 7 ~ 525 ~ 7 1 ~ 9. 2 ~ 3 + 10010>>7

-16/ ZOI 1 k I 3 5351 492 a

TOTAL 24 tbb 33l 559 302 106 995 4 792 PERCENTAGE FREQUENCIES OF SKY COVER, WIND, AND OCCURRENCES OF PRECIPITATION AMOUNTS: RELATIVE HUMIDITY:

CLOLLos 'HLHO st&so 'naTLYT scam o-To>>At-ffi FREOUENCY OF OCCURRENCE FOR EACH HOUR OF THE OAY  ! NUAUOITY vsI I.

1 llsftffccf TCS AN KCAft tfecfffo AT t.N ffcfAT Tf>>7>>fo AT 7 ~ ~ ~ 7 ~ ~ le ~ < ~oo 7 ~ ~ le le >>O

'- '-! ILs.lss- o. 20 so'20- so- to-!

I 7>>ICL ~SS 84, 81 81 84 8 73 76; $ 1 8 7 44!62: 7 7 7 d 6 5 7 1 ~OF 1 O- O- 4 w ~ 21 22 22 31t tb 26; 32. 28 20! 2 19 22 22. LSI 1 20 24! 2 2 2 21 ld 1 1 OAY ~ S '2 il&, 2  ; Ts!24 6 "20 At 40 !20 St 100, ol Io oe>>

1 24: 291 32 30! 32! 36l 33I 25'5I 2 2 2 23. 22) 25 2 2 2 2 2 6 l IDYLL

~ ( ~ e le 2', 3 I I ll le le ~

e 2

~ i

~ 0 Ol I I

I I l 00 5, 74' 15, 53 28! 1 19! 32 30 19."

I I21, Oe>> M>> Ocfo 20 TI 72; 12 55 2: 191 21 34 Lb' 3'2!

~ I ~

01 11 foiAL ~31~36~344'1 ~ F145)3 32 2 2 2 1 0 1 20 2lIL I 115!L A 1 LStLL 12 4 02 . iO; Tl, 151 55l 28 Lb 2135 19 6, 72. 16,'3 2'$

19'3, 21,'4 4! I 1,17(24 37 21, lb 8.'4'I 16 53 28' I 1'18,22 40 20; 05! 20 72l Lbl S5; 26 Z. I, 14! 28 36 21 06 I 19! LLl LTI 26 2,  ! + 15'8 36 21; 07! 16 2637 71,'.

53'b.

75 25: + LS 20 0$ ~ 16; ill 13 Se'4, 59 3'4, 3, 1 17 31 33 17 PERCENTAGE FREQUENCIES OF 09 LTI 12 TLl lsi 48 2 23 30 29 L7 CEILING-VISIBILITY: 10 I 191 14'7l ill 47; 39 I 6'9'4 5 31,'5'4 14 11! 16; 12 '12 10; 41! 39 4 20 Lt 12 13 15'2 16' 73 76 5* 44 il; 43, 41 47 4 s!l 6 41, 23. 18 12 8 44 1917 12 14 lel it 72', 44, 46, 12; 741 48 3 1 42! 20 15 15 9 3$ : 19 lb. 16 LS 14i 1 I 0 To Lfs o + 16 17 1 11' 49; 42 2. 6,39:20 22 13 slit TO XS 2>>

~1

+ ~1 ~1 le

+ + +

~2

~5 17 lb 18 20 ll ll 69I Tlt 9 53l 37.

55! 30:

1 3'6 24 22 15; 2I 33 261 241 15; 1'2 TO 4>>l 13 2 1 TO 21'2 2 TO A 2 TO 15 20 TO 20 25 Ot MOAT 8

~ 'I

~ 3 Lo) lo4

~

4o 4~

lo 3>>l bob 5 ~

7o&

1~1 lo 2>>

So

~

be 9>>

l>>9 Too 4>>2 20 21 22 24 23 22 22 1 22 11 64', 14 53 30 21 49: ls bl 491 14; 52 I is 53 30.

Se 52'2' 28'3 31!

2 2

2 3

3 3; 21 28: 25) 16, 2! 26 31 1

25'7,'1'9I 23 30'<<28I, 17.

21 32! 2bl 1$

16 9j 691 141 TOTAL ~ &o bo To bo AYG 19 131 Sl 3 27 26: 27I 17,"

I Page 2 of 13

]TIND SPEED AND DIRECTION DATA FOR SYRACUSE AIRPORT YEARS 1951-1960 Nine Mile Point Nuclear Station Unit 2 SYRACUSE ~ SETT YORK Niagara Mohavk Paver Corporation %ARCH Hancock hP 7660 Obs.

j PERCENTAGE FREQUENCIES A TEMPERATURE AND WIND SPEED-BELATIVE HUMIDITYOCICKlBENCES: B QF WIND DIRECTION AND SPEED WINO

? O.A v ~ II $ I~ O ~ II 1$ 2e 1I ~ I~ 2$ IAAJI. AHO OVEN

~ eOSSNTT 00$ $ CVATlcol$ Of WRIO $ 2$ 2ft

~I IIIIIeO eOSI. ~e

'l oeecteoI I I Setto

'I

~fjj fit:.j

~

1 ~ I ~ It I~ I ~ tl IS tl tt tt

~ Se ~ el 2 2 f IR ) I  : il ~ 6' 9 ~O ~5 I ',Zo9 4 ~ 0 R 2 2 R R 2 0 ~

I ,'it!IE ~ 3. ~ 5 ~ 4j ok lo3. Cod 69/ 65 I 4 3I Z' 14 'HE ~ 6. ~7 ~ 5' I .Lo9 6~I 64/ 60 li ~ 5' I ~ 3i el 59/ 55 54/ 50 3

5 3 I I I- 23 8

61 47 s

9 5 13 6

9, 11, 12" 22! Ll:

I I

i j

I 7~ 45 l]8

,EhE E 'I ~ 4

~ 2!3 ~ I 2o9 lo9' I ~ 0. I ~ 9 I ~ 7' ~ 3

+

2 + ~

+

+ I

'ol 4oo So4 9oZ ~ oS 9oo 49/ f15 3 1 10 3 Z. 16 12 5 I, 18: 19I 17: 6:  ! 3.

I:

6 8'

247 IESE

' ~ 2'ob ~ 0'9 ~ 2 Ido9 63 96 l,j, 402 Ii +

3 S 23 13 5 39 18 14 19! 43! 13i Si ~3 ~ ~

4~7 44/ 40 2 15 31 25 21 21 2 38 Lst. 74 82 18 2; 78'11 36. I 3! ]s I 754 ~ 4 ~ 7 ~~ ol ~3 ~ ]I I + ~ 3o21]oo o ]'

20'I 39/ 35 13 43 58 10 51 2 30 204 163 211 111 9'8 89: STI 52i 43 3l 296 ~ 6; 1 ~ I ~ 8 loo ~3 ]' + I 4o011 ~ 2 27'32 194 226 270 140.'8 34/ 30 29/ 25 24/ 20 4

5 12 85 58 50 56 132 16 47 50 5 35 20 20 228 154 174 SS 11 16$ 07 113 I 16:

2Z'4I 163.:Sdi 95 49.

65i 8 71.

33' 2 I 4s 14, 12I 2!

!11,15l 6. 3 268 18I'!

823 791

~ 3,

~ 7

~ 9l 3~3 ol I~ 6 I~ I'd

~ 7, 4 ~ 5 2o4 ol ~

~

~6 I

2 3 +

I to5 9o4 4o]

lto210 ~ 5 4~3 19/ 15 3 48 36 13 10 80- 69 42 9 44: 14 15' 416 'lf ~ Sl Zod )eL )o4 loo ~4 + .]lob]1 ~ 6 14/ 10 I 27 35 4 5 57 ZS 15 I ll Si 1) 190 O'IR ~6 2 ~ 2' 3 ~ 5j SAS 2 ' I~ O ~ ti ~ II )sos]4 ~ 3 09/ 05 11 10 2 5 27 2 I

I Lj 59 hO 5. I~0 2o4! 3o9 I~ 2 ~2 + i ,10 ~ ))2 ~ 7 04/ 0 ~

3 4 I: I 13 Hhtf ~ 4:, I~ 0 loS I lob o4 ~ ]S I ;5 011 ~ 5

-0]/-ns I 2 I i 4 CALH I ~ 3i I i le3, TOTAL 8 69 398 325 323. 308 7 3091303: 836 90d'51 Tl 155 108'09. 303 19 13: 41i 58! 40! I 440 TOTAL '1]o925 ~ To4fts ~

~ Io 2 ~4 ~4 ol + i 10010od SKY COVER, WIND, AND OCCURRENCES OF PBECIHTATION AMOUNTS: BELATIVE HUMIDITY.

FSEQIXHCT OF OCCUNNEHCE FOR EACH Houa OF THE OAT SNTTHTST%$ ~H NOSSR RSOOSC AT ~ ~

t ~ ~ t ~ o I~ I~ I t 2 ~ O ~ IO I' oose 4 0-la '- ,40" I Ot IO Ot

~O IOAIII OI 5

t3 31

]

71 21 2

Tl t

2 6

2 7

3 21 2

I 7 I

2 tj 7

I 5

13! 17!

.IS] 20j I I L I I 3

7 lli I 22i I 1 2 I I I I I

6 2

6 6

4 3 8 Tl]0 i 4

d. I TS 2$

22 ~ SR 4 '29 j

I, $ 0-f20. 40. 90.

~ 0 j 00 S~ 79 I 00;TSS tt Io oo Ie j 2 I I

'ec Io soo II 00 31 7. ~ L I 59, Zds ts 27 27 Zb. 14.

tOS o ceo Octo 01 )0! ~ Ct I 59 tb! 2 2! 20'$  ! 27'4; TOTAS 1 2 4 2@2 16 I 99 0~10@1 0 010 02 24i 9I bt I 60'3I 3 LI 2$ I 27 Zdi 21 03 291 10I 61 13 61: 2 I! 24:, 21l Zlj 62'5: I 24't 21'!

04, 29I 9. 63 24! 2)j 30! 22 0$ 24: 9j 63 I 56 24 I: t]i Zdl ZSI 24, 06 ~

24l 13: 63 17 51'5 tl ll 224!L! 26'ill 2$

01 23j 13I 65 14 S4 26, ti lt Z3l 24, 24I 23,'2:

0ti 22l 10i CS I SOI 32, 2 2i 30! 24E 21 12! 67 L3 )di 22i 23I'1st PERCENTAGE FBEQUENCIES OF 09 10 11 1$ '4 50'2'1 47!

5 Ill 5;

34 Lls 14!

D CEIUNG-VISIBILITYT 11 12 19 Lll 70 18, 14, '60 TI 44; 45I 30'4!

31! 13'3.

14:,43I 15i 14i ZOI 10, 14l ll! 9:

& 13 lll ]41 69 SI )vs $ 0 6'0 to. 41st 15. 14i 10 0 OI 14 19j 11: 11 4 I 19; 40: I, I L3i W  % W 15 1S'l'0 40, 52s 49'1 40'ds ill lt 10'9l ia 16 11: lsl dl SI 44s 46: sj 2 ]9j 42: 16 1]I 11 0 TO 2JIO TO 2fR

+

+

~Z

~4 17 22l 13 65 5'2'0 3l I ICI 4]i 15 LCI 11 TIN TO 2IA Zot 14 25i lls 64 51 31. 3; 4 44': 20 14 14 i TO 2I'2 lo 2~ lo Toa 19 29 IZj 60 15 Sd! 25i 3 5 43 1920 13i 2 TO ~ I~ 4o 5~ 3~ le 4~ lol 20 29 Sj 62 10 52'4,'d'5'd 2 )6 26 21 13; 2 TO $ $ to do I~ 0~ loa 21 27 TI 66 2 3 34 25 25 13, 22 24 LOI 62 I Ij ZCI 2 2 33 ZSI25 15 20 TO 20

$ $ ON OCRN 23 32'l 60 ld $ 0 24 Si'3' )I

t. 30, 2$ . 24 Is TOTAL 4o ]0 ~ 14o 5~ )o 100 AVO Z4 ))l 6 12 7j 34I 22 21 Ld I

I I Page 3 of 13

QIND SPEED AND DIRECTION DATA POR SYRACUSE AIRPORT YEARS 1951-1960 Mne MiIe Point Nuclear Station Unit 2 Niagara Mohavk Pover CorPoration SYRACUSE, NEW YORK APRIL Hancock AP 7200 Obs.

I PERCENTAGE FREQUENCIES A . TEMPERATURE AND WIND SPEED-RELATIVE HUMIDITYOCCIJRRENCES: B OF WIND DIRECTION AND SPEED:

ofe2O oe 22 ~ H $ 1e II~ H lSoe ettJI IAtK AHO OVIO Hoottt OONA'/ATloHT of TIWO SITTD TS Io <<oh He eoI<<

f,! f, jlf HI I I ~ Il ~ I ~ ~ It,lt lt Ie IIIS 22222 %est ~ H ~

SÃ<<2 C

f i tISl 2 f

H<<r Sa a T 6 Y a 6 j 6 ta16 f 6 ~ N .5 l.a lot od ~ li ~

)o$ 0~7 NNE ~4 od ~7 ~ 3 1 ~9 To9 69/ 3' 'NE ~ 4 oS ~ T. ~1 F 2 d S 84/ 60 1 3 ll 7 23

- fNE ~ 2'e]2 1o4 oe - 3e) ~ o9 79/ 75 8 7 22 17 3. 17; 76 f 21 ~ 3.2 ~ 0 2 ~ 3 to0 Teb 9<<2

' ~ ZI

~

74/ 70 4 1531 'SE 6'ol 69/

64/

65 60 1

2 4

9 15 21 9

15 4

7 5 10 17 14 72 72 19 97 76 32 49 4 l.'b 36 13 1836'3'4 71:

16.

39 2.

8, 4l 4'.

2' 3 6'i 12 1'

I 17$

342 547

SE

'SE ob 2 1 ~0

~ 6' lod 2<<0 1 ~3 loe 6

~ 1,

~ ZI

6~

4<<9. 0 ~ 2 Zl 16, 401 14 2j ~ L' loo 1 ~ 3 ~ 5  ; 4e))oee ra9/ 5$ 6 25 18 12 21 21 126 144 59,. 51 20 13. 83; 52 45I 22i 6 ll 163 C 0 lo? ~7 0 5o912 F 2 54/

49/

50 24 52 30 22 59 6 100 166 74 75 d3 8, 75: Td'$ . 20, 1 4 1 913 - SSII ~4 1~1

~0 loo 1

1 ~ )

~

I

~ 3: .

I 3~ bll ~4 45 39 ll 46 51 46 52 3 9$ 185 14t, 148 121 3 66I 114j 42, 4l )r I lol 1

'i 1 Z~ 251 Sbl 1 1 I ~6 ~5 1 ~2 )I . 4o4 9oT 44/ 40 1 43 39 7) 42 2 69 250 141'77. 147 1 27j 14dI 54. 3 TI 4 4 34'S 'SW ~ 0, 2et, 4 ~ 2 3 O I l12 ~ ill 0 ed 39/ 35 $4 42 42 68 4 24 124 11S" 1422 118 )I )ol loo 4'2 46'7l 2 19. 59 67I 3 4 4 2 9$ 6 j W ~ 72 2<<Cj 3oo ~ 2, ~ Li I 10 ~ IFl 1 ~ 0 34/ 30 4 22 34 34 26 92- 072 77 $ 7 30 515 1<<4i )ob Soo 2 ~ Zl 9 i )o954 ~

29/

122 1 I I WNs ~ 4'. ~ ~ 1! O

$ 9 ~ 3)2 ~ 26 24/

25 20 2

1 19 17 z'

14 2 2 3

16 16 17.

b 1' 6

,I 2I 2'

4 9' l 136 37 l Ns

NNS

~ 0, 1 ~ Oj 2<<4. 3 ~ 1 lod 1 ~ 7, 1~ )j

$ 4'"

~ 2.

O ~

+ i I I 5 ~ Ot, lob t

2

~

19/ 15 l 2 1 5 6 22 2I 2 1 23 CALN ~ 1 ~2 I lot~

14/ 10 5 I ~ I 5 'OTAL 211 ~ Sk 1 ~ bo ~ ol 7 ~ bl 1 ~ ~

~

10 0~8 T~OT Al 17 135 299 242 ~266 222' 4 6531187 709 737 565 $ 8 464' 425 316. 249 11 40 S 2 10 200 PERCENTAGE FREQUENCIES OF SKY COVER, WIND, AND OCCURRENCES OF HlECIPITATION AMOUNTS: RELATIVE HUMIDITY:

FREovENcY OF occURRENcE FoR EAcN NOUN of TNE oAY CUXSN WS Sf660 SCAIS O TO + t.SI As IcxR osehc AT t.S SONI COOIOS AT I

~ I I 2 ~ ~ IO II I t $ o O ~ ~ ~ N ~ I Noua I I

4S S9 44 48 54: 40 47 42 6 54 S 4 )2 44 4$ 45 $ 8 3 4 4 3 4 Of O. 4 b a )0 so.ITo.loo-.fo ot IO IO a 7 812 15 14 22 9 1 111 121)1015 717 1 1 1 1 1 1 SAY 6 7 TO )9 m I df, Ff I of hoo 25 20 17 17 12 12 14 1'7 1S 12 612 1 1 1$ 111$ 17 1 1 21 d I Ie Io to eI 3 2 2 1 3 2 3 1 1 2 3 2 2 3 5 5 tt IO<<IH 1 2 2 1 3 I 2

sl Io.ee w 1 I et lOIN O 00 35115 15 591 24 52 30 2322 21! 20 too e2 ooo oote 01 31, 14 55 14. 60 24 4I tbj 24. 24i 19I Tnt Al. 7$ 69 75 61 83 76 7$ 72 0 7 75 d 6 7 16 16 7$ 7 7 1 7 7 02 $ 3;10 $ 14'll 14 4I 252 25i 27'9I 03 29. ltl 5$ Sl 19 21j 20. 2) 04 32,'2t 5 14j 43. 22 Zl 23) 22 26 ze 05 29I ltj 5 lb, 59I 22 ZI 20'3 $ 2 24 06 29 10 41 14; S9I 2 21 24l 27 24 07 Sll bj dl 15 53, )1 5 26 Zfl 24 t0 06 2$ , 11 40; 31 42 102 15 15 PERCENTAGE FREQUENCES OF 09 24' J) 45j 42 4)I 46 1 101 44 12 15 ll D CEIIJNG-VISIBILITY: 10 22/I BI 1 $ 0, 34 1 11 9 11 4'0i 4 ) )3 1) 12 5 12 1) 2 1 1 4 4j Sbl 5$

fs 34 I 5 34'j SSi 10 $ 4 50 9 ll 10 5

2)2 14 1 42 4, 40 51 4'S 11 Sfi 2 12 0 f 15 2 $ 12 34 27 1) 9 5 0 To If% ~1 ld 7 35 S4 10 Sdi 21 10 11 d afl4 To lff I.Y T0 aIA ol 17 10 2

25 1 3 5$

dI 53 40 8 )4 27 1

$4 ll ll 8 I TO 2Ifa a TO ~ 2~ 2~ 2~0 2~ Zo 5~

~4 1OT T<<5 19 20 27 3) 1 l1 ll 41 20 5 21 3 32 25 3 16 34 1$ lf 19 14 11 10 9

12 7 T0 TO To 30 0 2~ 4o 1~ ~ bo9 21 ZZ 33

$5 1 ll 1TI S9 22 17 5$ 24 13 55 53 22 14 24 20 14 15 aT ot sole 2$ 31 1 17 $ 4 28 4 $$ 24 20 17 TOTAI Ao AV 2$ 1 ll 51 54 14 30 10 18 14 rage / of IS

I

~ )

~ ~ ~ 0 ~

'l'3I

~ I ) 'l ~ I ~ ~~ 2 0 ~ I ~

~

II

~

CI

~

~

~

~ ~

~ ~

~ ~

~~ 'l

~

OX 1 ~

~

~

'l' ~

~

3IA

l. '

~ A'

~ 0I

.. I I ~

~ '

IW ~ '

nmmaaaaaaaama=aaanaaaaaama o

~ ~

I ',

1

~ I

'3I 0 8 ~ 3I I ~

Xl I III I

~ ~

NiNSN

WIND SPEED AND DIRECTION DATA FOR SYRACUSE AIRPORT YEARS 1951-1960 Nine Mile Point Nuclear Station - Unit 2 SYRACUSE, NER YORK Niagara MohaT)k POT/er Corporation Hancock hP JUNK 7200 Obc.

PERCENTAGE FREQUENCIES A TEMPERATURE AND WIND SPEEDMELATIVE HUMIDITY OCCURRENCES: B OF WIND DIRECTION AND SPEED:

6~ of ~ I< 5.'I ~ If ~ H <5.'2 ~ H ~ ll 55 HtH AHO OY<t <Iovt<Y ot5<tvAT!o905 ol ww<) 50<<o W 090!3 09 'O)09 9

Ow I)

Iflf<

5 I ) ~ I > 5 g 3>> ~ 5 ' t 5 )a a (id 4 ~

4 h ~6 ~ 8 ~7 eC ~ I Ov!9 2 ' 4 '

99/ 95 7 4 HHE ~ 3 ~5 eC ~ I + I~3 7~3 94/ 90 4 4 23 13 99 d 9

I 11 59 HE ~ 5 ~ 7, ~5 ~ I I ~7 4~3 89/ 65 2 15 i I KHE ~ 5 ~ 7 ~ 7 ~I 2~ I 700 LC 2 126 70 26 19 216 dc/ 60 I I I I I~0 F 2 I ~ 3 ~5 o 5~0 7~ I 79/

74/

75 70 2 33 40 23 70 36 97 10 28'(0 45 6C S4.

1.

ll 4 159 8 187 156 161 228 64 16, 308 105 92 30 18 2 3

2 59! 42 56 99 47 124 21 26 7

4 2, I, 2 1.

539 831 241 KSE IE SSK I~3 2 I'd ' I INC F 2 3

' I~3

~3 I 3 Leo

~4

~ 4 el I

'6 beb'

' 6~4

~0 69/ 65: 15'7 ~ ~0 1~7 I'd 2 ' 2 ' 2 '

~

19 116 81 86 TC 10 db 261 185. 119 73 8 62 122 24 S' I< 365 4 64/ ~4 de9.' 2 boi 7 17 80 118 26 195 175 158 104 I 34 64 34 <~1 9 I 180 I~ 5 I le3 3

59/ /

I'f SSI< 7- 6 ~2 Set, 9 ~ 3 64'8 55 TL 91 1<0'0 8 92 174 190. 127 127'3 12 24 26 ~I 23 6 Z I; I 9KI Sa

~

I ~ 3 109 2 ~ I

~

8 ~ I 492 Te7 5< SO, 12 62 I 45 81 5 22 17 LO 10 2 522 H6<<  : I ~ 1. 2 ' 4 I7 412

~

9~6 9~ I 49/

42'3 0 2'

~2 CS!

C4/ 40l I 24 36. 10 21 31 16 10 7 I 180 H r loo 2 'led: ~

I 9 ' as 3'

~ ~

5' 2 e

( 15 <<hII ~5 I~3 4 ~ I .13 ~ 213 ~ 0 HH ~ 4'I' 0' 3~0 3~7 I~I

~

~2 10 ~ Lht ~ 4 5'40

\

I HH << ~ 3; I~ ~ 5 le6 ~ 2. 'ebiioe ~

~ VIAL 462 345. 461. 352 35 7815389 824. 739 41 I

16 334 532 569 61'IJ 42620 5 2 200 CALM I 2 ~ 0!

TOTAL R6 ~ 427 ~ 0<29 ~ 921 eT 3 ~ 8 ~ 1 ~ I ~ffr I 2 ~ 0!

II PERCENTAGE FREQUENCIES OF SKY COVER, WIND, AND OCCURRENCES QF i%ECIPITATION AMOUNTS: RELATIVE HUMDITY:

FRKO<<EHCT OF OCCURREHCE FOR EACH MOVR OF TMK OAT oolef 45<ATT<<5 Mutt(o<TT IT<5 5CALK 0 i A>< Th<aac AT t.H A<a<a Taowrf AT TO

~ =o" ' "r

~

27'9 t I O ) ~ O IO ~

I I I I ) ~ ) t 00 II a bj 7 19< 21< 23<

2I 7

20. 2 5(

1$ 2 14 Co Si 5 20 9 18 I 3 OF 9

jo. <4',0. 0-,

',/'<0 I 4, IS. ~ S5. 4 50 54'IO 00. '44.

OAT,'5 s 55 sa. 4 59 AT 69 TT ST.<m' 4< lf) 43 w 14) 99 5:7!

8 8. LZ 1j 0 4 9 btll 9 e 7 11 <5<TS w 5', 2 I t,' S 5 S I

I I 0! !o el 0

00 I I, I 2 I I

% Orle I I

~

I 40; 25< 59'7, 44 909

~ IOO Of I I I 00 i44:13 Li 291 30) 16 o Ooo <WIe I

40'5 I 01,'TII13 40 40. 13< 14 27( 35! tO; TOTAL 4 3 S4' 39 3 3 '3 S 3 'Sl 30!3 ~9 fa 33 I 3!! ~ 4 5 02 )19, 10 26'1 26< bll 13 14 21. 34! 24I 03 44'6 65: 11 13j 23'. 37 04 i 36'1 05 i33 18 49< 23; 65'2 39'4'3j

24. 66 ll 199 39. 31 10'8'2 30 24'1 06 33! 11 50: 58'4 LSI 24: 3$ ! 19

+, 28'6 25'l 26'4I 07 33 53 ZSI 510 19 0<< 34i 13 53, 20 55 25 I 3 53'3j ISI 6 PERCENTAGE FREQUENCIES OF 09 33'7 50 16 50. 32 I 10' 40I 15 ll< 4 D (ZKING-VISIBILITY: 10 32I ld 53 35 I 53'3 7, 4 11 t9; 21 54< 37 II 35, s'

'T" 12 !29 tt 13 I 28 tc 49 5 cS 44 50 7 49l 43 2 39 41; LO 4! 4.

!a 2 44' 3$ : 8 SI Si I

9 40% AX LC 27 Zb 41 15 28 23 49 d 44,41:

45'7 3

2 50< 34 4 49, 32 6'<

7 S.

3:

3 0 To <rs I 16 31 21 44 3 49i 5 479 30 I'I' 4 5<<>>

Ifs TO 5/t To sra

~

17 37 20 43 7 45'7 41':

45'l!

S453S 8 4 I 1$ 35 20 44 1 2( 40 34 9 4 5 I TO S <<5 5 TO 4 ol I

~

~

leT 9~

~

19 3C 20 45 13 20 40 2 40 21 44t IS 14 I'9,

+',

Its 50 ll 9, 54 20 10 7 4 6 T TO <5 5<< TO 50 I~ Se do do 9o 4 ' 21 44 17 39 22 43'5.

22 49 ls 37 27 40! 13 I< 49 2)I 14 10

+ I 136 31 19 12 23 48 14 38 25 40 15 I;. I; 24 35 26 14 TOTAL 00 AVG 37 1$ CS 17 57 26< I I, lb.< 33 19 14 ll Page 6 of 13

MIND SPEED AND DIRECTION DATA FOR SYRACUSE AIRPORT YEARS 1951-1960 Wine Mile Point Nuclear Station - Unit 2 SYIUICUSE, SETT YORK Matlara Mohavk POMer Corporation JULY Hancock AP 7440 Obs.

PERCENTAGE FREQUENCIES TEMPERATURE AND WIND SPEED-RELATIVE HUMDITYOCCURIIENCES: B OF WIND DIRECTION AND SPEED:

0 ~ <I ~ ss $ .< ~ Ss ~ Ss '1$ .20 IaPII 2$ M 0 H AIIO OVlt HctttlY 00$ 20VATION$ Of s<<<s<0 Tftfc

~I R 8

!g ta ii s 0 i0 f'i.i 0 I6 l )

'Ii; jill-j,i ',N Oes.vp

~ 5

~ ~

ed

~ .SI st

~8 s

~3

~ ~ ts,

+'

IS I' s 2 '

Is<CO 7~7 99/ 95< 'I I NNE NE ~

4 5

eb

~ 6

~ 5:

~ 5

~L

~ ]1

. Leb 6 ~ 0 1 ~ 7' ~4 94/ 90! 10 1 1 20 6 26 6 121 ENE ~ 5 1 ~ 1< ed ~ 1 s

~

2 ~ Zl 6 ~ 5 89/ 851 2 22 14 9 165 122 4: 87 30  : I 475  ; E leO 1 ~ 7: leo ~ ll +, 3e9 beZ 84/

79/

68 2 40 65 13 40 122 4S 12 3 271 4 22 328 21 390 190 50 58 106 d 915 294 'E 1 ESE leZ'eh 01 F 2 5 '

TSI 3 1 60 82 2 ~ 1: 209 loO ~

q detI AS 69" 32'0 74/ 7ol 20 131 113 94 44i 326 198 253 10 1 122 17 11 560

'l 1

SSE 1 ~ 7 2 ~ 5< ~ "< ~ 3i ~L S ~ 2l 5~9 69/ 635 100 100 155 149, 16 219 211 201 ]8]I 39 63 21 15: 1491 ~

5 1 ~ X2 ~ 6 le9 1 ~ 8 ~ 3<' 8 Ses 64/

59/

6 1 29 83 132 107l 31 74 39 101 182. 166 14 2 28 23 S 1004 s Sly ~ 6: 2 ~ L lesi ~2 eh Sob' '

54/

55 Sol 3

26 19 13 82 126 64I 12 32 451 50 i ~ 32 ~ T3 ~ CI 1 ~ L' L Sel', 8 ~ 0 3 1 6 99 USO 500 Leg ~L + 11 ~ 3! Sob 49/ 45I 3 3 <0 ~ 8< 2~ 4$ ] 7, ~1 o 9e4I F 2 I

sN ~ ~ 6, 2eh 4 ~ 4e4<

Ai ~a ~ ] 12 ~ 5ll 1 ~ 6

,- N~ ~ 9l 1 ~$ 3 ~ 21 3e41 e$ ~ 1 '.]0 ~ 1~1 ttto 0 .S'. L.a 2~ 1 1 ~5 ~L s

Iso] 9~9

. Ctea 2~L 2~

6 4 97 493+6J Q 8~89 SP 'C. A' 7 ~ 1'30 ~ 9I3

~

ebi& ~

2~ 10 8~4 PERCENTAGE FREQUENCIES OF SKY COVER, WIND, AND OCCURRENCES OF PRECIPITATION AMOUNTS: RELA~ HUMDITY:

CLOUOS 'aATTV2 UtttoTTV FREOUENCY OF OCCURRENCE FOR EACH HOUR OF THE OAY I~> '.,

$ CAL& 0 10 IIITOISITlts AM IIOIN Tt<O<ISC AT O.S ISCUt CII0002 AT

~ t I ~ O 1 1 ~ ~ <0 IS I ~ 0 0 I ~ 0 \~ SI HOUR 23'3'9 4]4- ll- 2$ -14 4 I 0<

Ot es

'.0>> es

. 23 d

ldi t3!

Ti 41 81 26'l 61 8

d.

4 5

Ll 911]

7!

21 5

11 5

18: 1 10,1

~

20 10 LTI 25 18 14 7 1 7 11! d 3 1 6 1 1

5 5

1 8 5 1

Of OAY l.r 8-lo O.

8 26 I 24 I 8 . 29

-04 00 40 20.-80.190.1 29 89,200.

I so IO IS Os 1 L(

1! 5 4. 2< 2 31 3' t 5 1 I tI IO II os 1 2: 2; 1 1 1 1 1 s

SO <0 Oe e' 1 ~ 1 00 IO <OI 4 I 00=;53 15 33 25 67) 8 1 133336 17 100 se os<00<I ~ I I 52 12 36 2S bbj St + + 11 30'8 21 TCTAA "35 30 37 441 ss ss ss ss' 3 38'5 36 33 37 41 32 27 3 3 313 3 3 3 22 47 14! 3& 26 67! Tl +. 9 2&1 37 e 10 ZL'40 25 v3 . 46 Lsi 31, 26 6&l 61 29 0 4 121 38 tb 69] S'.

~ 7 18 4S 30 C5 42! 20 3&I 24< 701 6 6 1940 35 Ob 431 14 44< 291 63l 7 1, 11 28 37< 24 02 39l 18 43'. 23< 6]i 15 +s tb 35 27'3!

06 '6) 15 47 22 59 19 48 30'4 SI PERCENTAGE FREQUENCIES OF 09 '5l 14 51 16 59 25 +

1 6,64 15,' 7, LO '31 21 48 12 bl 26 20 56 11. 6 6!-

D CEILING-VISIBIUTY: 11 31 23 46< 9 57 33 33 49 9 51 LZ '. 2T 28 45, 8'4 37 ls 42 4< 5' I

43'1 i3 ~ 27 31 42< Sl 52 43 31 4's

<<0<OUT ~

~ I>>! I s,

I UOAT$<

0  ! s>>

>>I

~

I>> I>> >

Os>> 1 00 14 21 29 43l 51 50 45 ]5229 I <

I IS>> s<>> I iS 1 32 25 43 5 49 45 1; 25821 Sl 0TO10 - + 0 16i35 22 43 5 50 45 Ll 3 53 32 b. 4!

lltiolt 12 IO2' s

I 0. +

~

~1 1

LT 140 20 40 ld, 42 18 40 1 Tl 22 4 58 37 + 2 53 32.

43 6

6<

3 5

110212 I I

~3 ~2 ~ 1

+

~

~1 1~8 L9 ,'40 20 40 11 71 20 144 20 36 23 68 9 ll 1 412 59

6. 60 18 6 6 5 2 TO ~ le 1~ le tet< le 2~ 004 9 7 2 TO1$ ~ 2~ S. 7. 1. T.S Zl I 49 17 34 21 65 1 + 1!47 31; 11 10

! 22 f 52 )4 34 26 bb 8 1; 29 40; 19 ll Ot MOtt I 23 56 15 29 21 73 6 AVG 40 19 40 17 63 20 +.

+ 18 37! 31 19'2, 11,'3I TOTAL + ~1 ~ 4! le 2~ 4e 7~ 9~ 5~ 100 +<

I 19< 18 12.

Page 7 of 13

MIND SPEED AND DIRECTION DATA EOR SYRACUSE AIRPORT YEARS 1951-1960 o

Nine Mile Point Nuclear Station - Unit 2 Niagara Mohawk Power Corporation STHACUSE, HIT TORK AQNBT Hancock Af 7460 Ohe.

PERCKNThGE FREQUENCES B OF WIND DIRECTION hND SPEED:

r oe Nor $ .ii soil lo Wp $ $ OAOA ANO OVtt i Icxaie cMcfvATQw oi Doc 4I%5 m oon & ~ ~

i i n.ss 4 w o isa o a ~ s ~

( i i i l N

~ ~

~ 9. L ~ Li e ~ ~

lo4 ~5 io '.aaeo i ) ~ Te) 99/ ICE ~ 5', ~ 7'% ~1 lod 4o)

~ 5' tet Tol

'l 2 1 5 liE ~9 oe o4 o ~ 1 94/ 90.. 2 5 Sl LS  ! 1 19 I a

94 E IlE oe Let, of ~1 2 ~ 8 eo7 89/ 85g 1 14 12 1 loo 88 t2 3'3:

2 244 E L ~ ), to) of  : 4o) SoT da/ 80.  !

40 55 2 l I 4 210 247 11 1 61. 3 I 703 ESE I l ~ LI 2oTi lol o2 l Sol'el 79/ 751 47 86 47 13 I 5 235 389 187 32, 43 09 21 1' j[

74/ 70. 21 115 88 85 64'. 243 215' 10 I 215 5E j 2e$ )o& e9 ~ 3 7oO Soe 2 177 321 47 73, 28 15, eo) 6)E 1o5' 2eN lol 'o7 . eet 4ed 1'0; I ~

~1 69/ 65'. e 40 114 147 154: 64 238 163; 247. 21 15 7. 1 511 5 too toZ loT 1~8 oe ol ~ o). to2 64/ 60 45 Tt 134 135. 11 118 1411 208, 13 12 22' l 8 l 059 Sew ~9 to11 to) lol o ' ~ Sj 8~2 59/ 55. 8 52 129 105; 29 tdi 143' edt '

54/ 50i 49/ 45:

3 ll 45 711 1 17 65 1 4

S.

1 2 253 sk 05k

~1 2e4 2o4

,'Loo; ).61 S.a L 3

~ 7 e

+

eo& To5

<LLeo Sea 44/

14 235'$ 50 0 2o I 3A ) le2 ~1 ~ et ~ e3 4 1 1 NIIV tef So4 2ot o4 'oeto ~ 5 Nil LotI )e) 2 3 ~ ~1 8 ~ 510 ~ 0 I

i I alik ~ 41 lof tol.. 1 7 ~ ~ 3, So+Oo5 TOTAL 1)$ 384 I

386'88 55 17 85 444 843 934. 54 EAL$l lof ~ lof 1 al $ 10 82 45 9 9 1 440 TOTAL 8~ )e Loot)ol lo7 ~2 LOO doo SKY COVER, WIND, AND ooooo OCCURR194CES OF PBECIPIThTION AMOUlMTS: RELllXIVE HUMKIITY:

CLOWN SCA$ 8 ~ $0 RO.M tl 18 O ~ l ~ o ~ ~ eo I a o ~ ~ e ~ ~ ie ~ I ~ ooo I 15 1 10 22 22 2 2 0 4. a 0. $ 8- 8)- 0 Ios 8$ :70 '80.

P 0 ei oooo L 2 8 8 l) $4 4 09,79109 jlC0 12 19 1 3 oo ae 8 5 1 ai oooo%

% 'lo % Q 1 t ew% ~~

~ ao lo IR io 00 1 2 481 12, 24i 40 9.' 24 41 24 tt Ol 4$ 1 ~ 1 lofAL 36 3 33 Se S5 35 3$ 9 9 $1 S 3 3 $0 $ 2 3 $ 4 3 3 02 4f 1$ 10 42 )t 03 l 4' 18, )t )41 04 241 44',. 5 15: )8 45 42'2'71 05 38, 1 04 $ )j 2 4. 14'4; $5 07 1 11 25: 44'0 08 ILAIL.": ) 2'. 2 Sett lt PERCKNThGE FREQUENCm OF 09 4 1 4'2 t4 121 I

4 CKIIJNa-VISIBIUTY: 10 4 1 1T 9 15 loi 9 4)24 27j 11 12 13 4 1

1 )i) $ 81 1,47'7:

1 11 1

71 Si S.

t 14 57, 9 2, 53321 0 4 t 15 9 Sdo 40 2'; SS; SL) SI 9

~ 'lO H + ~1 14 3 sj sd'e tg $ 1', 9 lh4 lO Vt 4 4 17 4 46' lit Xl Va 4 4 ~9 10 4 74 17 $ 1 51 0 S 4 l lO dlO tot 19 4 4 0 0 lO 4 lo 1~ lo to 4o ~ 4 20 4 14 to 9 12 22 4 $ 0 1$

~ Oo to 23 AV t

2 4

17 1 1 $ 2 SS 18 211 19 tl Page 8 of 13

WIND SPEED AND DIRECTION DATA FOR SYRACUSE AIRPORT YEARS 1951-1960 Nine MiIe Point Nuciear Station - Unit 2 Niagara Mohawk Power Corporation SYRACUSE> MEM YORE Hancock hP SEPTEMBER 7)00 Obs.

PERCENTAGE FBEQUENCIES A TEMPERATURE AND WIND SPEED-RELATIVE HUMDITYOCCURRENCES: B OF WIND DIRECTION AND SPEED:

0~ t

>I H S I~ oktH I$20 OLt1L 21 ALtH AHO CtCTS ~T ONSCNVATIOHS Ot NANO Sttso I

~ I>>> sa 2 2 f

2 s f'f ~ t >

I 2

~

~

I '

si

.~

I ~ OI I ~ ~

~ . ~

>e> i>e>> >a ll Il.l~ Il> I III Il eat

>>>>.>> Ol

~> ~ NN>> I oe

) ~ li 700 HHE ~ AI 102>I 5 ~ 7 99/ 95 2 I 4. 8  : HE ~ ei 109 404 94/

89/

90 I 5 I 25' l 46 i EHE

~ si

~ fi I

~ 8i

~ CL ~ SI

~

~ 609 85 4, 63. 39. I: 15' ti ld6 lol 84/

19/

80 75 9'2.>

24I 25'.

ll 14'! 3'0. 105, 14i 25, 48i 2i 282 ESE I

I ~ 2I

~

2~

I' 3 ~ &II le 509I 407 feei 402 74/ 70 2 19i 15: 46 27 31 I

3. 75 16001'30 65!

92!

19I S6i 2 4)I 7&i 3Q 499 407 SE Lob 3 ~ 9 I ~

I ~ 4i 2 ~ 8i I>SI

+ 4~ 4 '

69/ 65 16 31; 38'2 '11 216: 145. 122I 91 4)'9I 29I 11 137 I SSE tol Lo)I i le 709 64/ 60 57'1 67 52'0 8 59 206 165. 187i 14 34 91; 30I 25 247 i s I SSV 304i 3 AT tooe 2 ~ 7i loe L~ ~ )i 12 ~ I ~ 0 40 907 59/

54/

55 50 4

2'0 3S 58'14'.

47 122 94 119 39 lf2. 181I 252: 25 26 101 129 179 145 23! 52) lli 8 I 339 i

)II 2>O 100 ~ 8I 5 ~ 709 49/ 4f 18 32. 14i 12;. 944 HsL> )og 40$ I ~ 6i 9 ~ 900 44/ 40 8 37 62 63 2. 29 68 122 S6 l. 7i I, 6 I I 464 IH 104 )ofI I ~ li lo 906 5 13 26 32 3 25 61 25 2: 2' 39/ 3f 3 19 I 17I 12

~ ~

195 I NHH 04i led 3 ~ Oi 2 ~ T ~ 5i ~ L. 8~ lot 34/ I I 65 N~ ~ &I Ioa 2 ~ 8( 203l ~ fi ~ I 8~ 008 30 I

I I ~ HHN I ~ Oi 104 I ~ ~ ti 4~ Ool TOTAL 89 299 283i 471 505 4 55313 884 015I 15 0'5 ' ~ 73

(

CA' TOTAL 14 ~ 2~

I lo

) 30

~ 04I 04 I

I

~

8~7 PERCENTAGE HKQUENCDi3 OF SKY COVER, WIND, AND OCCURRENCES OF PRECIPITATION AMOUNTS: E RELATIVE HUMIDITY:

FREOLKNCY OF OCCURRENCE FOR EICN HOUR OF THE 0*T  ! 82LATnTS TawMNTT CTU SCALS ~ 18 aL t. ILI INTKHSITICS AK >>CAR OIOUN> AT t.IL NOUN CNONK> AT

~ 0 ~ ~ I~ I ~ ~ ~ ie Io>CI 19 2 2) 2 2 18 a 8. a a Te.~u-'a'sa'Sa!Fa a>> d 7 'l8 8" T) )4 8 i)9 I0%100!29 0I \0C>>H lo lo Ie >>

8 11 I 2 3 Colo ooa 2 D IO eeo>

~ 00 IO lel >>

00 48 Ll 40 14 72 11 II +'. 15: 23 34 26 100>> >oo 0>CA

)9 354 01 51 12 S I 73 10 0- 13; 20 40 26 TOTAL 35 43 4 4) 3~ 3 4 4 43 3 3 4 4 3 02 51 12 3 11 73 I 1. III 18 39 31 03 49 12 4 20 70 I i 10: 18 35 37i 04 49 11 40 10 e 12 i 818 32 42 05 4 13 4 18 71 Ll ., I 11 33 42 06 35 18 47 22 el 10 +I 8 17 32 44 07 36 16 48 26 43 11 + + 10 20 37 3)i 08 I )8 I 47 18 64 17 Ii 28 16 PERCENTAGE FREQUENCIES OF 09 33 21 47 ld 57 te l 5 49 2) 15 8 D CEILING-VISIBILITY: 10 I 31 t) 11 56 33 15! Lf 9 11 29 23 12 28 25 4

41 4 54 ll 44 37 Il

'3! fl l 34i 49 55j 7

7 5

i~i~.~

~

>>0 0>> i >>a ~

L3 25 2 14 2 2f 48 5 52 44 4 5 42 31 LI I'9i I; tI 45i 34 41 6 5

5 5

5 15 2 2 4 5 52 4)i LI 2: 41,'4 d 5)

It I'8:

0 TO I>S + + 16 35 23 4 58 37> 40 6 5 aTA To SIs + 0 17 I~ 43 7 dl 29i 44 Ll 8 7 I/2 To ao + + ~ I 18 43 I 43 12 72 ai 56 19 Ll I TO 2L'2 + loS 19 47 13 40 20 64 )l 45 31 11 9 1 TO ~

TOTS I ~ I~

I ~ )0 I~

4~ 90 1'5 804 9 '

20 21 47 4

I I

38 23 63 42 22 44

]4 +I 13 Ii

. I:31 35 20 I 24 31 30 12 14 1S OT HOSS

~

22 5 49 12 41 19 46 39 19 ed lf I 20 14 32 20 23 15 14 14 35 2L TOTAL 3~ ~ 0~ AVG 40 I 43 15 63 11 .t +I 12 30 14 22 14 Page 9 of 13

WIND SPEED AND DIRECTION DATA POR SYRACUSE AIRPORT YEARS 1951-1960 Nine Mile Point Nuclear Station - Unit 2 Niagara Mohas/k Pot/er Corporation SYRhcUBE Rrd 'goRR OCIOBER HaaCOCk hTI 7440 Obb.

PERCENTAGE FREQUENCKS A TEMPERATURE AND WIND SPEED-RELATIVE HUMIDITY OCCURRENCES: B OF WIND DIIKCITON AND SPEED:

WIII(2 0 ~ AI t II $ 2 ~ >>IRN ($ -11 MP.H 2$ Mftl AND OV(t N0((t(r (t OC$ VA((ONJ OI >>INC se((C, 222>>222 IN 2ete2 22 2>>V,2 op ~

I, I NIIe i:I;i~I'i It(II ~

tt ) II ~

I I2>> A r

S t 2 f2 f2 "I(iE t 2 I ).;

i $

A j fIE 2 H C 2

~ 6:

~

o9 loZ

~ ~

~

Ie 1

Ie 22

~ 1, N 22 N IOIoI '2N 3~5 8~ 1 I

I j I HRE j ~ 2 ~5 o4 ~1 ;1 ~ 24 ~ 5 89/ 85 l. 3 I 6 IIE ~ 5. ~7 ~3 ~1 :1>>65 ~ 6 64/ 4! Et(E ~ 3 1>>S 1 ~ 3, ~7 + ' .3rd 6 ~ 4 79/

74/

S 7

7 4 10 6 17 6.

4' 2 9

2 3

6 22 36 7.

52 55, 40. 23, 6

j I

1 11 19, 8;

14.

29(

5.

192 I

5, i 1 1' 2.

36 L15 292 E

ESE I F 2; 3

-1 ~ 2 2'

' 2 2oo

', ~1

~ 7 I

~1 e

~ 1 ~ 1

Sob

~

7>>1 7>>4'. 4 ~ 3 e9/ 26 6 20 I 7 66 101 31 47 34 8 4d6 3' j Tot; do4 64/

59/

6JS 6

2 13 20 46 48 22 31'5 21 22(

4'7; JS 102 170 82 41 2

56 4'd 7, 29.

66:

11(

36.

4.

231 39 2 Z L! 2 2'

817 SE SSE e

1 ~6

~ 92 11 0'eT,

~

1~

~3 2

1 ~1

~5 ~ 12

>>7

>>6 r.'5

'>>910

~ 7 ded 5 17 225' 106 228 92 92 141 2, 63 LDT( 20 1 L( 4 120 1~ 2 3~ 2 ~ 3. ~ 1 ~8 54/ 63 59 15( 108 275'51. 136 SS>> .e; 1.5'.0 ot 61' 5 14 58 103 1'339, 1092 41 16 260 1 ~5

~

3 1 3 ~1 5 F 41'25 203 171- 71 ~ 7 49/

44/

39/

45 4

35 8 50 31 8

38 4S 27 89 LLOI 77 133 1366 1

16 157 202. 158.

1 73. 79 116 148 132 57 73; 51 47: 3$

31: 13,

'92 38 13.'

2 1 2; 1'

j 4! 1 1

313 101 581 5>>

oSI tl 1 1

~ 1~

~ 62 ~ 04 ~ 1

~ 1 l>>62 ~ 9, 3 ~2 2 ~ 2'

~9 ~

o4 L

7

~ 1 o

! 5>>5,6

,'LO>>$ (LO>>7 I 6 ~ 110 ~ 8

~1 34/ 3 5 'Ll 4L 31 20 40 692 2 $ 2 268 'l('ll( ~ 72 1 ~ 6I Zod( 3 ~ 1' ~ 2, ~ 2  : 9 ~ 412 ~ 3 29/ 25 4 2 2 14 1 25 HO ~ 5 lob: 2 ~ 1( 2 ~ 2 ~ 5. ~ 1  ; Ted'll ~ D

~ I HR(( ~

O' ~ 4i 2>>ll 1 ~ 4( ~ 3. ' ~ 4)0>>3 I I I ~

CALH >>1 ~ 5 I I 1 ~ S:

70TAL 8 93 29/ 2>'- 44J 5~55 228 5431347'$ 4 869 68 222 Jtal 222. 12 e 22 22 22 440 TOTAL '13 ~ 628 ~ 0~1 1 ~7 4 ~ 7. ~ 7 ~1 + 100' ~4 PERCENTAGE HKQUENCES OF SKY COVER, WIND, AND OCCURRENCES OF PRECIPITATION AMOUNTS: RELATIVE HUlLGDITY:

FREOUEHCT OF OCCURRENCE FOR EACH HOUR OF THE DAT Rs(AT(YE H ((A(DITT ($ (I

'SCALE 0 I~ I MHNJ I

'H. ((0(tt l(CN(C AT Aa ICKY ONANC AT

~.';424-i: '!

t 2 ~ t o 2 ~ O 'IO II I t t ~ 2 ~ ~ le I I 40 34 26 22; 2S 26 ST $ 5 34 $4 31 3S SS 30( 24 SD 34 41 3 2 2 3 Of 4 4 4 I (2.I2$ - ~ ~ 2(>> SC 20, 00.

8 10 6; 810 10 10 11 9 6 5!6 5 11 d OAT I 2 . 'F 'IO (2I24 4 29 42( df Tf (df.,'I(0a ll 1 1 1 ~ -

Ot IC OI N 9 15 11 2t'9 14 14 14 10 18 13 13 14 Jd 16 15 14 1 15 1 I I I iWTR Ie 20 te 4 4 1 2 2 1 3 S 1 1 1 5 2 tt tO ot >>2 1 1 2 1 1 1 i

>>2 20>>IN ~ 1 I (22 IO Ite N 00 )41; 13! 46 65, 16 1 3 22: 24; 21; 25(

I eo >>2 ooe 02(o I 01 I 41." 11. 41( 16 67 17- + 2 18: 24'l( 24(

dl 63i + le",23'32:27) 41'6lh'6(

TOTAt I 6+1 61 59! 56 55 5~5! 63< 62 6$ 54 51 51 51 5 4 5 f4I 02 j 38! L4! 48I Ld] 16 + 2 03; 39( 14( 47.- IA efl! 19; + 2 15, 22'2 I 29, 04 I 39I 15! 46( 16'9 +. 1 15 LTI 33I 34; 05 12, 47 17 2 14 11 LLt 36 06 30; 19'. 51 64'5 68 let 2. 12,'6 34( 36 01 30! 15! 55 21 bl 192 + 2 11'7 Sel 3$

06 322 15 54 162 60 ZL! + 2 16 27 29'24 PERCENTAGE FREQUENCIES OF 09 28 14 56 15I 10 27 16 57 9(

SSI 30 + 37j 26. 14 CEIUNG-VISIBlIJTY: 54I 36; 1 1 121 SOI 18! 10 10 11 30 15 55 LOt 50! 39'5 1 1:23 48. LSI 1 6 12 29 17 4dj 42 2'32 42I 6 13 29 ld 532 7:

9(

48( 44( 1'3740 1

6( 6 6 14 29 20 5L (I 15 31 18 50j

46. 41 5'0i 34( 38'.

42 1' 39 39 32(

o 4'$3 36 112 e( 9, 33,'2 7'"

122 6 7

0 TO VS ~1 ~4 Je 34 14 53; 1 2 lATOaa ~1 11 35 15 SOI 12 51 $ 0; 2 19 50'2 9 9'1I 18 Sd 16 45( 14 6 20 I 1! +. 9 50 20 10 122 TO 2(t I TO 2l/2 lo

~

3'>>0 19 4$ 12 11 62 20 2( +'41 tT 15 11',

2TOA 1~ le 1~ to 1~ 9>> doo 20 13 44 21 59 19; LII +q 4 31 34 ld 13I 1~ 4>> lo De 6~ 6~ 21 42 13 45 18 61 19, 1' 4 27(26 26 15'8:

'524j24 29 4>>

22 43 13 44 16 23 42 13 44 AV6 34 15 50 14 61 22" 66 59 20'4I 1':lilt.

1 1

4 24'4 21 29 19 20 21'dr 4o 1

Page 10 of 13

~ I

~ ~ I r

~ ~

I I ~ ~

I ~ ~ ~ I ~

3I

~ I

~

CI

~

~

Dl I

'I ~

~ ~

~ I r

~ ~ ~

rr ~

~ ~

~ I ~

'I 3I Cl ~ 2 OIIW ~

~ ' 3l ~ '1' '

~0 3I' II~

~ ~

~ ~ ~

aaaaaaamaa=naaaaaeaam . I I

r ~ ~

I

~ ~

~ ~

~ ~ ~ ~ ~ ~

~ ~ I

~ 3 %II 3L ~

I~ I

%ANN.

0 WIND SPEED AND DIRECTION DATA FOR SYRACUSE AIRPORT YEARS 195I-1960 Mine Mile Point NRIclear Station - Unit 2 Niagara Mohawjc Pover CorPoration SYRACUSE, NEW YORK DECDERER Hancock AP 7440 Obs.

PERCENTAGE FREQUENCIES A TEMPERATURE AND WIND SPEED-RELATIVE HUMIDITYOCCURRENCES: B OF WIND DIRECTION AND SPEED:

No(((at ORSERYATCICS OI TPMO SPEED eTM D G ~ Me TT S.I ~ M ~ II IS7e MP.II 2S Met( AND OYER m oea tte Tehe T

et itf R $ t 2 SIT

.(I( f',f':

R 2 t I ~ I j

0 ta I I3RIj <<'.rl~'II<

0 I

t.0 I N

e I

~ 7,

~ I I

~ 7,

~ Tt

~8 Tl e4 T ~ Tt

~1 tt Il I tt a a ee TOTCT teb'e4 NNE ~ 3" ~ 4' 1 ~ 9'. 5~0 69/ 6 leb e4/ eo 1, 3 1 7. 3 I-3 1'2! 9; T

1(

I 1 42 NE ENE

~

~

~ 5'. leT

~6 e2 1 ~5

~1

~S + T4 ~ 3,7ed S~1 59/ 55 2 3 12 17( 8' 8 11- 26. 10 1 1 109 E

"'SE T 1~ 3~ 1)o41 ~1 + 9et Ted 54/ 50 3 2 d 9 36 18 23 12 18 18 8 5'el te2; I Teb Teo 49/

44/

45 40 ll 12 14 1

2 31T 80, 46 34 136 88 46 43 ZS 22 3.

12 38 81(

20, 12'4 1 1 164

$ 40 SE ,

1 ~0 3 ~ 6; 2 ~ 11 ~ 3

~5 eb + Sel' ~ 2 h)eb(ltd' 4elloe4 3 37 34 21 31 1; 17 39 15 1 644 SSE ~4 ~ 9,1 ~ 1 1 ~ 0 ~4 ~ 1 39/ 35 1 23 47 30 54 10 156 164'62 139 8 119'0 S2 26 1L' 2 2 103 5 I oT le4, 2eo F 2 AS ~1 Tool 1 ~ 2 34/

29/

30 25 i 2 20 29 46 51 64 46 88 23

21. 223 242,'281, 252 9'50( 182 214'l 125, 90 108 67I 76 59 6

10 8,

5 5'. 1

?

6$ 7 992 SSx SN

~ 3'. lo4 2

~ 5,' le5 2

' 2 2 AS

~4

~)

" Teoll ~ 1 Tebto ~ 8 1'. 3, 24/

19/

20 15 1 23 34 33'.

47 64, 27 10 6

. 145'.

106 143 132 20 147 177, 18 95'2' 4' 33; 79, 47!

60 es':

63.

37'9!

1 i ~ 3': 1 i

835 691 NSW N 'i5 le) e4' lebj 4eE 5eb 1e4 2 ' 4eo 1 ~ 2

~2

~1 '!

I

. 9eTZ) ~ 0 14/ 10 24 47 36 3 SS )Q. 1: )I lT 1', 427 TENTR ~ le)j Ze2'eb 1 el e4' +i I 9etS) ~3 09/

04/

05 00 1 18 25 31 27 43 16 2 29 24l 38 36'7 22T 27 7 ZI 1!

I I i i  ! 240 135 NW NNW le/i 6 2 38

~ S.

~

1e4T

~

~ ~2 9 el

+

+ 6 ~ TZ2eb

)ebjloet

-Ol/-05 1 14 12 8 11: I 63 CALN e9'. I I I

~ 9.

9 827 '

. I Wb/-10( 1 1 tl I I 7 TOTAL 81 ~1 3 ~ F beS loo ~ 1: 100 Oes I

-11/-15J 2 2 I 4

-16/-2 I 1 4 1 I e

~TOTAL 2 19 267 376 364 23 6'31'1201 210lld4 56 1I 72 672 543 362 14 13 )O 9 440 PERCENTAGE FREQUENCIES OF SKY COVER, WIND, AND OCCURRENCES OF PRECIPITATION AMOUNTS: E RELATIVE HUMIDITY FREQUENCY OF OCCURRENCE FOR EACH HOUR OF THE OAT CROUOS SCARE ~ 10 &P. SI l 00RATEYS URR(O(TT m l INTENSITIES A%. Ie(M CITOTSC AT P.IR NOVO tNOONI AT T I R t ~ $ ~ t e ~ le ~ e t ~ ~ N II I I

I 4

~

9 0 0 0 9 93'8( 97 9O 8 8 8 8 8 8 7 8 9 8 8 Of,O. 8. 4 ITS )S-TO. 00 (70.(00 90 iT a a te 2 2)j ZTI Sl[ 26 30I 21 19! 1 2 2 21 2 1 2 2 2 2 2 OAT $ 10 I 12 '24 8 2f bf," 7f 00 jIOO I ol lo co At tO Ie o a 22( 18! Zll 17'6 19I 21 ttj 4

2 t TTj 2 2 2 2 2 2 2 2 t 2 I

~

1 1 $ 1 tt to eea To ee eT lot Io Iee es I 00 17i 11 71 Sb; 33; 3 23: ZTI 33 14 ccs a too oe( ~ ( 01 7 f458.'1T 2 ' 2)i 29,: 29 14I 17'eI 1312

'2 TOTAL 4 4 4 14 13 13 13 13 1$ 12 3 12 1) 1$ 3 4 14 15 74 11 59i 30: +j 2 22 I 29j $ 3 14I 03 04 1 4'o 1 77 ll 60: 28 13 57i 30 1T J 1 29 32 21 32 $ 0 17 15 1,

05 lbj 11 SOT 29')'2 1';- 2 21 32 30 15 Ob, 1 15 +I 2 22 33 29 15 07 08  !

ll 12 81 l)( 55'2(

13 54( 3t';

1 2 23 32 27 22 32 30 15 15 11 ll 78 1 1 PERCENTAGE FREQUENCES OF 09 13 Slj 37i 2 25 29 31 12 tt

~

10 1 1 7 ltt 48T $ 9i OI 2 34 31 11I D CEIUNG-VISIBILITYE ll lj 11 1 1

73 10: 47( 41l 15 75 9! 44( 43l I 4 40 27'l'4 45 18I 9 I

13 12 75 8 46 45 25 16( 9

)',

44'(

ao 14 13 11 74 42 2 46 21 19. 9 49( +. 5 15 10 74 5! 43 25 EO 9 0 lo I/O Shf 1O 2(0 +

+ O ~1 16 17 ll 1

1 JJ 78 12 74 50'40'4(

54 )OI

)4! 1, + 4 3

40 27 19 33 29 25 11 ll

~3 l(2 lo SIR le + teo 18 1 8 76 57 ZS, tj 27 32 1$

I TO 21(2 2 lo ~

O

~2 le 3~ 2~ lo 9el 19 to 1

1 1 7 7

52 34) 2:

1 3

3 28 29 t9 27 31 t5 lt 14 e 4e ~5 7 lo IS Ze 8~ 6~ 9e 9e ~0 21 1 75 12 tS~ ~32 ll 4 25 31 15 SS Ol TOTAL

~

2010 fo 22 1 23 2 10 70 10 55 33 AVG 14 10 75 11 54 3 9 72 12 5 )OI 1' 1

1 +

4 3

3 27 30 24 21 $ 2 29 29 29 26 15 14 13 Page 12 of X3

I AI I~ I ~ I I ~

' ~ ~ ~ ~ ~

I' ' I I ' III ~0 I ~

Dt 0

'l I' ~ ~

I

~ ~

~ ~

~ I

~ ~

~ ~

a ~ W I ~

34 ~ ~ ~ 'l ~0 A I I II~

~ ~

QSQQ KR I

RRC3 I ~

~, I I ~

~ ~

TABLE B2-2 LOCAL CLIMATOLOGICAL SUeeRIES EOR SYRACUSE A.'(D ROCHESTER 1974 Nine Mile Point Nuclear Station Unit 2 Niagara Mohawk Power Corporation 1

Meteorological Data For The Current Year, SYRACVSEa NEV YORK HANCOCK INTERNATIONAL AIRPORI EASTERN Lautudet 'Long'tubate: Td 07 Elevation (ground):

410 fret Years 1974 Temperature F Wind Number ol days Aver ass ume'rfrty. Pa. nation Degree days Base 65 F a Temnvrature ' orssnue Extremes Water equivalent Fastest mrte Surrrite to sunset rnb X

g js I 0

E Maxinwm Minimum X X E (4) E ter.

g 0 u 0 E E ee C 'E I 0 0 I 58 'c. )r 406 ob << c ca E cs ca 0 re ct I 0 pc ts rv (Local time) jc ct "N3 CL oe L'e ci I ee J

0 fest ms.L JAN 33 ~ I ~ ed 2de 5 31 18 120 2 F 08 001 24<<2 IS ~ fo 1 62 2 4o 10<<S. 27 35 be) h 22 23 7 14 27 2 3004oa FEI 29o 13 ~ 21 ~ 5 22 I 120 1070 Oel2 22 2 7, I 77 2 4<<4. 10 ~ 23 49 7 ~ '9 Ti 19 14 6 11 24 4" 1000,0 HAR APR 39 ~

S9o 25 '8 32 '6 43 lf 28 5 ll 2

R9 10 100 49 Co)4 3 '9 I ~ ) 30<<3 0<<7 30 2'1

'1

~

'9 ~

5~

30 3 69 60 2 Set( 1)ell 5 ~ St II<<4(

N 10 14 Tof be9 Ti 1

19 11 11 13 4

2 0

0 5

0 24 6

OI 999 ~ 3 0'99 ~3 HAY 44 ~ I '4

8 14 3 2 33 5<<78 loO 12<<1 T T 7 bl 2 3 6(10 ~ 2I 22 7,4 13 14 ld 0 0 2 0 '9Sdeb JUH 75 ~ '5 45 9 10 4 13 5 4ob1 Iod 10 0~ 0~ db I Lofl Tod' r .I lf 7~I 12 15 lt 0(

0 2 I 0 0 0 999oo JUL AUD 8002 79e 56<<4

'1<<9

'do9l 92 4 21 4 4 46 11 14 14 12 9<<52 - 4<<0 4<<40 i<<f2 27 2 2 3 0~

0~

0, 0,

67 T) 21 I 8~

do 35 r 2$ 5 '

bo) ll 14 11 12 13 0 0

1000<<7 1003 ~ I SEP ddt 6 49 ~ 3 59 ~ I 63 13 3 24 20 3 4<<4f I ~ 88 3 0~ 0~ 60 be ~J 29 Teo 13 13i 12 0 1002o4 OCT 54<<2 Sded 4do5 71 4 25 28 54 lefd Oefb 14 I 2~ to 2<<3 74 2 3e 4~ 3 F 2 7 19I 10 8 1001ol NOV DEC 47<<3 3'

33 ~

25 ~ 0 I 40

~4

'0 74 51 I

6 14 4

21 5

12 104 4o95 3 '7 I ~R 1 ~ 00 12 1 ~

I 4~

tb ~

2~

70 25 2 15 I 81 St 2

2 S.CI 2 9<<

2 14 16 6 '

9 F2 2 2 bi 26 15 ld 0(

SI 0 0

ll 26 1001 ~ C 1001 ~ 0 3 5 2 JVH JAN JU Ha JAN YEAR 5f ed SleD 44<<9 94 10 5 16 487$ 40 foot3 4o01 2 ) 112 ' ~ 30 3 74 1<<g 6 21 7,4 41 10) 217 170 Sl 35 4 47 134 4 1001 ~ C ader Normals, Means, And Extremes Temptraturas F Normal Precipitation in inches w<< Mean number of days Average Degree days di 6 stat(on Normal Date 65 'F Water equivalent Fastest mite g f ti Temperatures 'F pretsuf e mb.

g g g g x RE I X X X X (a  % (b) Ettv.

E E a. E ta E ~ E ta 01 01 13 19 g g gg E E co c C n E

x I Si I~ <<

406 er a ev er O (ret ob ct E X 8 JI c (Local time)

IL 2 R a ee d. ca x se rs I( m.s.t (a) 25 25 25 25 ll 11 11 11 t5 14 25 t5 25 25 25 25 25 25 25 25

(

31<<4 15 ' 23 ' 10 1947 Zb 1966 12 ~ 3 0 to48 4<<59 1959 loot 1910 i<<47 1958 Tl<<0 1946 24<<5 1944 15 75 46 73 10r 4 Vfil 60 Ii 1914

~

3f Tog 7 21 19 14 td 1003 ~ 2 32<<7 lbof 24od 59 1974 <<22 1967 1131 0 2<<79 5 38 L951 I ~ 10 1948 1<<99 19bl 12<<4 1954 Zl<<4 1941 15 77 64 72 llo3 VHN 42 V 1941 40 1 ~ I 4 19 16 15 td 1003 ~ I 41 ~ 5 24 ' 33 F 2 77 1946 <<5 1947 944 0 3<<0) bo84 ISS5 I 04 1949 le)4 1914 37e2 1971 14<<7 1171 17 74 42 49 lie 1 VHN 56 SE 19$ 6 Cb Tof 6 20 IT 7 24 1000 '

fbe5 47<<4 Sded fdob 5 df IS14 9 1972 St 1971 555 0 3<<06 4<<91 1973

~

I 57

~

I ~ Of 1950 2 '2 3ol) 1949 1970 be4 1941 5<<9 1974 Tf 74 f2 $ 9 10o9 VHV lot 1973 1 2 1913 18 Tf 56 40 9ob 'VHV 52 HV 1957 51 bod 7 11 13 996o7 4beO 25 1944 272 14 3<<02 4 ~ 19 1972 1942 50 HV lgd4 54 beb 10 15 13 0 I 99' 77oT 5bol 44 ~ 9 '94 IS74 35 1944 44 103 3 ~ 09 lte)0 1972 I ~ 10 1942 3 ~ 4 ~ 1912 0<<0 000 ~ 2 76 54 43 4 ' VHV 49 HV 1941 42 4 ' 10 12 10 0 0 999,4 6200 80et bleb 59<<2 71 ~ $

69<<1 94 1946 97 1945 45 1965 40 1945 11 14 212 144

)cod 3<<50 9 't 4<<41 1974 1954 0 '0 I'949 I ~ TT 1949 F 01 4<<ZT 1974 1954 O<<0 0<<0 0<<0 0<<0

~ 3 71 85 I4 54 43 57 48 lo4 be2 NSV VHN 47 43 HV 1951 N'V 1958 44 b3 Se7 fo9 13 11 10 12 ll 10 0

0 0

0 1000o4 100te4 73 ~ 3 52<<3 dt.l 93 1973 28 I'945 120 54 te71 4 ~ 49 1958 0<<75 194C So09 I'9b0 0<<0 0<<0 ~ 4 Ib 61 7f I'>> 4 5 52 ii 1962 51 de0 10 12 10 0 s 100to9 42,C A <<3 42 '

33ob 5'

41 ~ 0 67 1943 14 1971 RO 1965 10 1947 392 720 0

0

)o09 F 25

~ e29 4 79 1955 1972 0 '1 lob4 1940 1943 3<<40 2<<09 I'955 1947 4<<4 1952 2<<4 1974 62 84 22%2 I'95 I 12 ~ 1 1973 dl 40 75 l2 49 77 10<<4 VSV at Vfi( 43 59 SE 195 4 44 25 do5 doS d

4 14 22 ll lb 0 5 IDOL 9

'1 lt2 E LSSO 1000 35<<0 21 ~ 2 2bol 10 1944 <<7 1913 1144 0 3<<09 5<<01 1959 1<<73 LSSI tell 1952 $ 205 1949 15 5 I'949 81 6R 74 79 10'o 5 VSN 52 ~V 1962 25 4 ' 5 24 19 24 1001<<9 AUD JAN Ji)H OCT AUO FEI JAN YR 57 ~ 4 Sled 4lol 97 I'945 I 24 1964 447I 551 S4<<41 IRe)0 I'972 Oetl L943 4 'T 1954 72<<4 1958 24<<5 1946 IO 60 61 70 Sob liNI( 43 SE DCT 11$ 4 7<<0 44 99 200 147 32 29 136 10 1001 ~ 3 Means and extremes above are frosa existing and comparable exposures. Annual extremes haw been Highest temperature 102 in July 1936; msximtsa monthly precipitation 15,92 in June 1922; mInimtsaexceeded at other sites in the locality as follotrs PreciPitation In 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> de79 in June 1922; maximtss snoufall in 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> 21.2 in January 192$ ( monthly precipitation D.19 in May 1020; fastest mile taind 69 S(( in Decesdrer 1921.max(m I

(a) Length of record, years, thrcwgh the IORHALS - Iased on record for the 194)-)910 per(od.

I current year unless othertr(se noted. DATE OF AH EX)ROE - The most recent (n cases of mt) t(pie based on January data. occurrence, (b) 10'nd above at Alaskan stat(ons. PRE VAILINIVIHD DIRECTION - Record through )$ 63.

Less than one half. v)HD DIRicTIDN - Vtmera)s (nd(cate tens of deqrees clocttr(se 1 Trace. frma true north. 00 (nd(cates cela.

FASTEST NILE VINO - Speed (s fastest observed Im(note va(ue trhen the d(rect(on (s (n tens of degrees.

Page 1 of 4

Re est C5 Furnish information on type, quantity, and yield {kg/m~)

of crops grown.

Res onse C5 Table C5-1 furnishes the requested information (refs. 20 and 21) .

Page C5-1

TABLE C5-1 CROP PRODUCTION WITHIN 50 MILE RADIUS Nine Mile point Nuclear Station - Unit 2 Niagara Mohawk pcwer Corporation uantit k / r) Yield k /m~

Fruit 3 x 10e 1-3 Potatoes 6.2 x 10~ 2.9 Fresh Vegetables 8.9 x 10~ 2' Processed Vegetables 3.5 x 10~ 0. 68 Grain 19x10~ 0.41 Page 1 of 1

Re uest, C6 Provide information on grazing season (give dates),

feeding regimes for cattle (such as grazing practices, green chop feeding, corn and grass sileage feeding, and hay feeding), pasture grass density (kg/m~), and yield statistics (kg/m~) for harvested forage crops for beef and dairy cattle feeding.

Res onse C6 A six month grazing season is conservatively assumed for the Nine Mile Point Nuclear Station Unit 2 analysis.

The season is assumed to extend from the first of April to the first of October. 'The deposition rates for the grazing period are given in Tables B5-10, B5-11, and B5-12. Dairy .cows are conservatively assumed to rely solely on pasture grass during this period. During the remainder of the year, dairy cows feed on sileage and hay. A 0.75 kg/mz yield was assumed for pasture grass and 2 kg/m~ for stored feed based on page C-10 of Regulatory Guide 1-AA (ref. 6) .

Page C6-1

Determine and indicate in tabular format the present and projected commercial fish and shellfish catch (in lbs/yr) from contiguous =

waters within 50 miles of the plant discharge. Report the catch by total landings and by principal species, indicating the relative amounts used as human food. Indicate the location of principal fishing areas and ports of landing associated with these contiguous waters, and relate these locations to harvest by species. Tndicate the relative amounts consumed locally. Determine and tabulate the present and projected recreational fish and shellfish harvest from these waters in the same format also indicating principal fishing areas and their yield by species. As above, indicate the relative amounts consumed locally.

Include any harvest and use of seaweed, other aquatic life, or any vegetation used as human food from these waters. Identify and describe any fish farms or similar aquatic activity within the 50 mile area utilizing water that may reasonably be affected by the power plant discharge. Indicate the species and production from each of these facilities, and indicate the relative amounts consumed locally.

Res onse C7 A total commercial fish catch for Lake Ontario of 3.2 x 10~ pounds is reported for 1970 on page 2.2 3 of the Nine Mile Point Nuclear Station Unit 2 (NNP2)

Environmental Report Construction Permit Stage (ref . 2) .

For the purposes of this ana lysi s, the catch was increased by a factor of four for conservatism (to 1.3 x 10~ lbs) to reflect sport fishing and growth in commercial fishing over the life of NMP2.

Freshwater invertebrates are not considered plentiful enough to warrant consideraticn in determination of population man-rem exposure in this vicinity of Lake Ontario.

Recent surveys indicate that the total Lake Ontario commercial fish catch for 1973 and 1974 was 2.7 x 10~ pounds per year.

'0 Total fish catch (commercial and sports fishing) within a mile radius of the NMP2 site by species is not available.

Page C7-1

Re est CS Identify any additional exposure pathways specific to the region around the site which could contribute 10 percent or more to either individual or population doses.

Res onse CS The Response to Request C9 describes the contributions to individual and population doses. These are considered to include all potentially significant pathways.

Page CS-1

Be uest C9 Annual Population Doses Calculate, using the information provided in response to questions 1-8 above and any other necessary supporting data, the annual total-body man-rem and the annual man thyroid-rem to the population expected to reside in the 50 mile region at the midpoint of plan operation as well as the annual total body man-rem and the annual man thyroid-rem received by the U.S. population at the same time from all liquid and gaseous exposure pathways. Provide as an appendix to your response a description of the models and assumptions used in these calculations.

Res onse C9 Table C9-1 summarizes a comparison of calculated annual doses to individuals with the design objective contained in Section 10CFR50.

lI, paragraphs A, B, and C of Appendix I to The doses to individuals in the adult, teen, child, and infant age groups resulting from gaseous releases are reported in Tables C9-2 through C9-8.

The doses to individuals in the adult, teen, child< and infant age groups resulting from liquid releases are reported in Tables C9-9 through C9-12.

The calculated annual total body man-rem and annual man thyroid-rem to the population expected to reside in the 50 mile region at the midpoint of plant operation are summarized in Table C9-13.

Total 50 mile population doses of 0.10 man-rem-whol body and 1.6 man thyroid-rem are calculated to result from liquid effluents. Total 50 mile population doses of 0.67 man-rem-whole body and 4.4 man thyroid-rem are calculated to result from gaseous effluents.

Table C9-14 provides a summary of the population doses from ingestion of potable water-and fish. These data are given in terms of adult, teen, and child age groups.

A brief statement of the basis is also given in the table. Similar data are presented in Table C9-15 for the fishing and boating doses. The only substantial contributions to the 50 mile population dose from swimming and shoreline recreation are at the Lakeview Summer Camp, Selkirk State Park, and in the case of swimming, the vicinity of the mixing zone. The contributions of activity at each of these locations are reported in Tables C9-16 and C9-17. Due to the large dilution in lake ontario, doses due to swimming and Page. C9-1

shoreline recreation at more distant locations are deemed to be negligible in ccmparison.

Table C9-18 summarizes the contributions to the 50 mile population dose from gaseous effluents. These data are based on the usage factors and dose factors reported in Regulatory Guide 1.AA (ref. 6).

The total U.S. population is not provided. The cost benefit analysis is based on the 50 mile population dose as directed by Regulatory Guide 1.PZ (ref. ).

Appendix C9-1 describes the models and assumptions used in all of the above referenced calculations.

Appendix C9-2 describes the Liquid Radwaste System used in these analyses. The gaseous effluents are described in Response to Request DO. Liquid effluent concentrations are described in Response to Request A3.

The potential dose from the ingestion of aquatic invertebrates is considered in computing doses to individuals (See Tables C9-9, 10, and 11). However, this is considered to be an inconsequential pathway relative to 'arge population groups and is not considered in the population man rem calculations.

is a small fraction of the fish contribution which has It been shown to he an extremely small population dose consideration.

As can be seen from the above tables, potential pathways have been considered which result in dose contributions which are much lower than the ten percont of either the individual or population doses as requested in Request CB. No significant additional exposure pathways specific to the region around the site are known to exist.

Page C9-2

Average Teeperature Heating Degree Days StfarrSfr Vr Snowfall Yolr Jan Feb Mar Apr May Juno July Aug Sept D~ct~Nov Dec ]Annual ~e4><ll J Aee arrl 0>> y>o>>>as J>e ysa >>sr Ar> Ilsyiyaa Tol ~ I o>>on July Aut Sept Oct Nov Dec Jan Feb Mer Apr May un Tofaj t ~11 Itis gI,) f It)50)i Ooo 0 ni Oro "5 )I '3

.5 Ii 44ot TS.i at ~ 2) 2) ~ )i 47 ~ ~ )i L)l 3)I I I ' jt Li.) Lo ~ 244 Les 1st ) AS neo

~ T C,O 2~ 1T ~ 5 ~ 4 TL ~ 0 I~ 3 ~ $5 Le)i )7 0.0 0,0

~7 ~ 0 Ie) ~ tl I I~ ~ I ) ~,n1 I I e

)3rf il, It)7&)I 0>0 Dani OeOI 0,0 7

Lo.n Los ~ Ltoi tjoo Ll

~ oa 0 ~0 Oeo T'ai 41 ~ 5 ~I~0 44 ~ 73,0 TL ~ ~ ZI 5) ~ 2 1~ ~

)I~ 7 LS.O ~7 ~ oL LL ~ 2 Ooo Dao ~0 ~ 7 tln.ea ItSS 54 74O,:IS)

'II'1310)t Ooo 0 OI 0,0 o.n t. ~ 2'

~

i~ I IS ~ I I I) I

~

I ~

o a Lat 141 I)OT Lots ILZ> ~ 14 ~a 7227 I ~ )7 )3 I eT Tsoi et atoi tt) TI01 ttt iafi )AS I ~ ol n,o

$~~

2'I,S ZS, ~ 'SD 5~4 O,D IOJ ~ S I ~ I~

~

ta ~ ~ I I I )I

~

I JI ~ I I I ~ a ~ &ST ZL ~ 173 Iaf ~ eis ~ 20 107 lnO )7 ~ )eeio Doo O,nl 0,0 2- ~ I a ~ 132 2 )io) tf ol I~ )~

ts ge ~ 4

~ 0 ~

)1 1

I

~ ~, ~

~~ I ST ~

anal

~ 7~ ~0 72 4 Ii t ~ 2 Sa, i ~ 1~~

$2~o as 0

)~ ~ I I

$ 0~

at ~ 0 I ~ 3103 ~ LO( Ie L II ajf ~ ia Igi1 ~ I) It~ 310 II ~ ~7~I

~ 1~3 Oao non LLZ 7

~ I ~ an IT,I 2~~

tl tee) ~

i),n SI ~

4~ &

TI ~ I ~4

~ ~ ~~

i7 ~ ) )t.t 30 ~

aa I I~ S~ 3'1 7 IT L>l a>I ~ 4) Iio ~ I)ST IZOL Loij ~ I ~ Ztt ~4 7 IO ~ IL1io&i'L 0 0 0 0 Dao 0.)/tt. ~ ~ ~ 1) el Isa ~ )isa tl

~4 I ~0 ~0 )0 ' Ltej all Oo4 noD

~ 7 2~ ~~

I ~ 5 ~ io 0/ LIS ) 74 ~ Lnaa Lgai Lot ~ IT ~ ~7 ~ ig ~ I ~ IL&ai Oso n.o Dao ~

I ~,n tej l)ot Lies Oeo ~

I ~ it I) 0,0 0,0 Dao I ~ 5 0.$ last 3 ~

7 7>7 0 0 noo Ital tt ZI I g4 I I I) I )I'D il ~ .7 IS & I ~ 4 I~ e) iaI ii I')

57 ~ I I ~ at

~

ia 1 ZO ~ 57,1

~ ~ 50 ~ ~

sn.t

~ ~ 7 71 ~ 0 ~ Too I

~1 ~ 4 t

12 ~ 7 St I

~

)t, ~ 21 ~ aero )tao&et LL It ~1 iio ~ 70 It)l Iit) Lot) >>>> ~ ~ 54 117 Lta) 0.0 Ooo 0,0 Ooo 7 I IO ~ ~o~

I ~ sa I 2r4 Ies 0,5 0,0 n,n natl TioS I ~ al I et ted lt n

~

~ ~

taej firn

)~

II I ~0 0 5~ ~

~ Tea 70 ~ ~

'4 Too ~

)ZAN >

~ ~~

~ Ie ~

~ ~0

~0 ~ 0 il ~

~

t I atra ID' 2)ol

~ )7,2 farl

~

aiog I ~ 4I octet al

~2 I4 I

L>

I~

70 I~ 5 2 '12 Tfa )LOT Ltig It IL ItSO Il 4 'L>00

~ sst

)It gj 437 ~

7))0 L'1 i a&is 0 0 0'

~ 0~0 7 11.4 ~ '. ) ~,I 14 ~ 7 I AS Oot I~ 0 o F4 IZ ~ ~ 7 I ~ ai It&S 2~ 0

~

~

Li I tie> aa I ~

4) ~ t 52 F 4 4

~ I I

~

)t'ai Tore Tt,t ates

~ ~

I

~ ~7 atot aoo! 22 ~

IT ~ 4 4I IT ~ ~

Ita) ~ I I'404S Ia tao 422 ~ 75 ~

114S Iios )ISO 122 iiilInl7 1170

$~7 Itis Loci jii STS ili LIO TO I)t .

F 447

~ 'ITI I ~ Ij i4 000

,I ~ I ~ 47 0.0 Dro 7 7 ~ 7 ~ 7 ti.) tgrt I I ~ tra Dao n,o 47, ~

2 10 ITS 2'IS 0,0 0 ~ ge ~ I lI I 24oi ) ~ ~

1'sa

I'IIT ie Oeo OeO ~ ~ ~ Se) I'o 7 ho tl ILO.i I ~ a4 1S ~ I t) I 43 I ~a 5' es ~ 0 eae4 assT 41 ~ I Sist ia. S JO ~ ~ aire III Tlt Litt if Igai Ital at 0 0 0,0 0 ty ~ ~ ZI ~ I tlat ) L) I Lto$

~ 0'eo

~ ~ Oo ~ 7 n.o 7' I ~ &7 g7 tnei ln,i

~

~ a.t $5~5 4$ ~ I 7I ~ t Tart ei,a $7 '

II )Tent ZS ~ ~ 41st I ~ 4$ 27 )0 St I LOLL I Lel 14)

IIOi Loe ~ Ig)1 10)0 5 ~ 1 ae)

~ ~ OI I) ~ Isl ILtit 50 0~0 0~0 o,o T I. I t) ~ I tt Lt,) ITALO I 0,0 h ~ 0 Ti ~ ~

Iaa ~ ITr ~ ZI ~ I 1) ~ 0 ai, ~ Soot ~1~ I Tn.o 41 0 I iee7 Jtet iT 7 I F 44047 teat il 7 471 ~ St alt ttS I41 ~

y I) i Tule 0,0 0,0 0 Oao ~ .5 ~, ~ 20 2 aasL )1st 0~0 n.o IL ~ ~ 0 0.0',t,

~ ~

'Itst gto ~ )0 ~ 4 )S ~ I II Sir ~ Ti ~ t ~ ~0 0 jest )~

~

)1 LSI IOT SOL ia5 11 ~ )0 ~ LO); iSn;

~ ~ 71 ~ 2 50 ll ~ 2 Zt ~ I 27>I IZ.S

~

57 ~ ~ 4$ ~ 'I 70 ~

ay II 44et

~

$1~~

~

Sl ~ ) ~0 ~ 4

~ Os )LE 24

~ 50 ~ ~

IT F 2 Ital&if Leaf 70 27 tg go 5~ 1~ I 1 ~ 5 LLil Lgli ILSZ 1041 7)0 Liat L)ol LL)~ 1021 Sli gia LLS. TIaf:

<t ~ 50- S ~ 0,0 Ltsl&$21 <<, 0 0,0 0~0 G. 0.Ol 0~0 I.L I $ .2 ) )

l) ~ ZI.Z Ii 5 LToS List I 0,0 0,0 n,o at. ~

Ioo.s ii II Sa'0t

~ 7 ZI ~ 0 LLea O.n I ~ SI ti 7 ~ Za ~ ~ )Ssl ii. 45 ~ 5 47,4 ~I~4 )) I ls

~ ~

I

)0 ~ 2 ~~ eo ill itt Lttt 14>'7 foie Loan is ~ its I

70)$

I ~ 52 Sl 0.0 Isa) aae 0.0 0~0 I I I at Il

~

~ ~ ~

LT ~ 5 )I,h ~ et 7

L 0~0 7'I ~ 5 alit Il I 0jei 5 DE IDIO&)I 27 LSO I ~ st I ~ SI 24 I ~ 2' ))a)

)I IS,T jl i

~ ~ 47 ~ I Tg,t ' ~1 ~ I

5) ~ 0 2( JI ~ I

)I

~ toL LPTL 72 Il7 5'L e4 25 ~ ~ ao tlo LI~ 1 tile Iofl 71L 2"I Zl ~ I $ 47 I)> LOS'I LLtl IZIT 4 ~ 7 SIT )tj

~I F 75 ,L ~ iaes!I O.O 0,0 nrn o'.o(

n,n 7.0 I ~ ~ &

0~I f2 ~ ) Itef tarn !7 AS

~ 0~0 ~ I ~ 'I 0 ~ 11 I>>I ei I ~ Sa IfSs

)DAN tosi ))eo 2 ~ ~ 5>

)3.5

~ ~

ii II~ jest

~ ~7 alai 7

70 ' ~

4 47 AD 7

)1

~3 ~ ~

el. ~ SS>i ID' I ~

27 ~ 4

~ SOTS L17207)

LtT) Ti Lt Lii )Ia Ti) Ioea )goo Lto ~ LOOI i'l )I~

I ~ Sl ~

~ ~ ll

'I 1

~ . ~ 2> 10 ~ 0 ~ L 0.0 tc ~ 1 ZS ~ 5 )15 5'I ~ ~0 ~ ij ~ I ~ 1 74,7 ae41 41st Si ~ 0 1~ ~ I Zl ~ 7 ae. ~

Lf)i 75 Ii 3 got 2

5~5

~

!fastness I>aSS&)a Lf!i&ST'so n,o 0.0 Oro 0,01 0,0 0~~

nen 7 I )tst 2~ ot )Loe )ieo T.r Ia.h 25 ' ~ e7 Lg>7 Ten 7 n,ni 74>I

~ of 7 I

nro IIai I ~

'I ~ 5 ~ tt ~ ~ 27 ~ 0 te,! it '

. 5) 7~0 41.2( 44.2 S ~ ~ I Sire ic ~ 2 ))e) STet Cooling Degree Days I ~ )7 5 ~ OoO o.n 0.0 T Sso II>a )5 ' Tg,e Lt>S Lot Oeo 0>0 LI ~ I I To,aj 70 I ~ 7 ~ I ~ tea )0 ~ I atro

.'-(

I ~ ST I' 1!.1 I I )iot ai ~ I ~ SI ' Ooo 0,0 St l Zt S al ~ Ifel t ~ oo Oeo ~,y')7 I

~

>0 ~ IL ~ eoi

'I ~ st.ao( O.o Oso

~ ~ S 5 7 7 I ~, II ) I, ~ II,~ ~ ~ ~

I~ 3 ~ 2I ~ 4 '

5 ~ ,5 42 SI 70 ~ SL ~ ~ I 41st 7>,ay sa I 47 ~ I st ~ I(

SO ~ 44 I~

' (; j.-(" o.n 0.0 '

I ~ . ~ II I.) )L ~ 30 'I tie ~ I' 0,0 h,n I)i I ra'S

~

(.."T~<<"(..1.-(

~

I ~ St ZI ~ 0 ZI ~ ~ ~7 ~ 47 ) 3~ )I aalu Doc(TOI ~ I Lie<<' ti ~7 27 an fa ~

aj ~ 0 Oj I ~ ~ ~; aa ~ I ~ e. ~ ~ ~4 ~ ) ii I ~ 50 ~ 0 AS. ay1 2'I ~ ~ I ~ o ~

Itit

~

(

1

~ 40&iI O,OI 0,0 I ~ iieet 0.0 0 2 7 27 ~ \ STs) 11 I 2 'S ~ ei 7 0~0 Line)

I tat I~ e ~ tS. ~ . >s.)1 I) al\' 57

~ 'I 44 ' TI ~ I'. )O,i 4~ ~ I ~ ~ io ~ 7 gest I

ia ~ ) I F 70 1 0 0 O'~

Ol n I

)ZI tai 14D LZT Lot it IIS

~ r I'204) 0 ~ 0 0 ~ 0 o,o 0.'0 0,0 T

too I I.D

~ .5 22

)I'aI~ I I) ~ tjan tteg

~

2 ~ o)

Let Sef lsol Lel O,l Oso nos 77 ~

II~

)

Itat tirI1 20 I ZI ~ 5 Il,i Ji, ~, ~ 1, 4' 4 ~ ~ 3. et,t> ea,L 3~~7 51 2 le) I iiot 2 ~ 5". IT,) SL I Ltaleia 0,0 t ~ 0 Itiieij 0.0 T 0 2 LI ~ I ~ ol )jet Lo) Oeo ll ~ n ~ )

~

~

5

~

~ Iaa) ~ 'I 5 ~ ~ 71 aa 41 TL.T. ea.L 51st $4~3 20 ~ ~ ~ 4,& I ~ 1L 0 17 I&&I II$ 'IIgi LLT 0 Ssi Oso n,o Oso Oel i,o LI~ 3 SI ~ I fiat Ljei aor 0 0 0~0 11 ~ )

25 ~ ~ 2) 'I )S,I 1> 41 ~ 41 ia ~ 01 73 2 47 ~ 5 I its) a).e Idea IPTZ

~

Laa) 20 ~ 5 ii I~

~ los) i), 1' 5~ 43 ~ T $ 4't

~

eton

~ ~

if,f I )I ~7 32 ~ 11

(

aire I ~ T) 0 7 0

~

ITTI 242 ~0 ZII ac 7~

0 0

>70

'I ~ 5 Lta)eii Ltii&47 0,0> 0,0 Oso o,o 0.0 I, ~ 7 T. I TL ~ 0 tl,o TED 0~5 Oof 0~0 III I I Ii II

) ~

I ~ Ti I~ ~ 7)j Ial LZI )I IOS 0~0 ooo 7 1> ~ 0 ) gtat> Looi Oe), T Ooo ~)~0 Itai Ii~ I La ~ 0 ZS I Ii I 2 say Slot .S l TI I )o,a 5' I ~1~ 5 itet Zest 44 ' I I ~ 47&il I'I~ I&41 neo Ooo 7 I a. ~ 4 )la 5 Los 7 7.: Dao Oen I)et Inst lt ~ ~

~

10 ~ 4 &~ ~ So,t e7 ~7 ~ Ir4 ~ n,7 SI I )'7 Jt 7 ae,t 0~0 0~0 0, ~ Il~ 5 ted I ta 5 ZL ~ ) 1 ~ 4 7 0.0 0~0 ate Ital LP4t LI ti ~ S

) tlo tt I~ )3,7

)o,a ae i a'.t(

5).e 4~ ~

I,! ~ t, I ~

TLe)

I ~

~ I

~ ~~

4'I ~ I 52.5

~

I IO ~ 0 IO ~ I t)rt 2)

~

Ii AT.I I

i

~ 4'1&70 0~0 0~0 I T ~ ,7 St ~ 5 ZL ~ 7 tS ~ ~ Ig ~ 7 1 el 0 g nr)i LZI ~ 5 I ii

~ ~ SS ~ 7 ~ ~ ~ SL ~

Ittn I~ ~I JI ~ 7 IT I) ST ~ 3 4) l 4 7 ~ ~ 4,0 41 I Stol 4I ~ 7 gS ai ~ TO&7) 0,0 Oeo Dro 0 I 7 0 >to ~ 'SD ~ 3 S,f STot iat Ooo 0~0 I)7 ~ 2 5( ~ ~ 5 t)L&TZ 0 ~ 0 Oao 0,0 0 0 Ii. 7 I ~,) II~ 2 5 0 ~ 0 Zf sf Tao Ooo o,n I)s,T I ~ TI I I ~ 'I I JI,I &7. ~ )1 ' T.t ~ 4.0 ~ 1st ~ Sei )) of ITo ~ tTZ&7) 0 ~ 0 uao Ooo ) I l. I tee ~ LL.t I ) ~ 1 )ei ) 1st ~I 2 I ~ 72 fi II ~

2~ ~

22 ~ ~ 2~

it,

~ 0 ia, iil

~ ~

1 54,1

~

~ i ~ 3 TZ. ~ 4tri )

~ ~5 Ii 5~ o~

~ 5 3~ o~

17 0 )0 ~ ~ aa f ~ 7) Ti 0,0 tsie75 010 010 7 )0 '

t ~ I, ~ tent ta,i LS $ 2 1 ~ 7 )1st 5~

Te ~ 7 ne" It)at I ~ 71 2~ ~ ZI ~ ~

tt ae lta1

~

~ ~

ji 5~ ) 4t ~ 4 72 t

~ 71 )la> ~1~0 S)e) 40 ~ 7 2~ .3 It4 4

~

0,0 0,0 O,O I ~ Ti tarn Ia ~ ~ I ~ L ajar ~ I1 4 ~ o ~ St>I aides ao ~ Jn ~ ' I aICDJD nilly 'ief tlo ~

)I' 11 ~ 1 II 5~o~ ~4 ~ 1 ' TI,Z> iaaf ~ tei SLo ~

' ao ~ I 2~ ot IT ~ 7 ICOID nas ~ 2 Sa,'I: 44,7 ii Iy I ~ eti I 01

~ I ~, ~ )to ~ ~0 IT ~ )aot 5~ ri I ay) 0 0 OI ~.~ t tSsj 2 o ~ LT ~ ~ S.n O, I n,o Ioe,)

Le,i Iioo 25,i ) ~ .Zl

)I'tta Sio )I IL ~ >I St ~ 5 Stan 42 ~ 5 0'),LI ZIPS )eeo Precipitation Year Jan Fob Mar Apr May Juno July Aug Sept Dct Nov Doc Annual I I ~ >$ ).I) Z.ts ) SI( 2>II I )I ~ .La(

~ ~ 2 ~ 5'1 t I~ I 2>71 2 ~ ti ) ~ Tt 3 ~ oo ~

I~ ) ~

It)7

) I~

I Lofo

), Ia Sate 2 ~3~ I ~ 41 GEST O,af 1.st lail ~ 5 ~ gals 2a ii) 3'a 0I 3~ Ii 10 ~ I~ 1L ~ )5

)~

li saI)

&I grot ) 0 '

1~ ~ 2 ~ 44 ~ ~1 2 ~ 44 as.

0 '4

'I

~ So ~ L~

I ~ 1I 2 ~ OI 2 5~ F ~ ) ~ ZASTA 4.02 S ~ 0$ Io ~ 0 ta t ~ 1 Lt)~ tel ~ toIT 2 ej ~ Osis 2 1 ool Loin ICOSA tale I ~ I ~ ) Is fear)

~ I'140 'I ~ 71 1~ tt S.at 1 ~ I aool )ot'I 2 12 ~ Lot) ~I L.I~

~

lo)t )eTII 1 ~ o & I Ital Lait 2 2$

I I,tl 2 ~~1 5 ~ t,a)

Iat7. 2)'10 tof4 Sall

)r'lI iro'I 2 72 2 II trie

~ ) oil I. el tref )oii

~4 lletl

~5~ ).SS iran 1 ~ 11 ~ eSS Iei) Oe t.ja 10 I, ~ 1 loll arel Lett 0>SI 5 F 44 'I) )tot ~

Lta ~ L,TS I

2 '5 tn ), ~ 1 ) ~ LE Sol'I 7 ~ 24 go ~ 5 2 ~ Ii Lett i. 1 1 5LeiS 2

~ OO )7 te tn>1I ~ ~ . ve ~ ac ~ I ~ li >en&i <<' rs' n it el&> 'I >>>&1 rwe'nt& haec ~ ~ ~ I~ et I &I 1&>a ~ ~

ItaS 2~ 2 14 >,0 ~ ),$ 0 )s ~ 7 1 St 2 ~ Ot ~ ,Ta ~ ost ' ) DIES i) ~ Ie Ita ~

~

Z,Tt I ~ 1) 2 ~ Ii gei) 1 Is

~

j,fi toil IS 4 ~ TI toZO 3 ~ Li )a,o&

4 4".and >&ran Valor<< .>IuVA ~ 'r n>V&ne thruuoh prrccpfcacfon, 1931'

.~ ~ urt>nt ~ <<ar I ~ 1 'ha Ie ~ I ~ ->'>l<<y lnninv. an Oat ~ err ) race 'Ity nrflC>

Itic 2 SI ~ I<02 tor ttoprracurr and ~ >r>>no>yrnl I Lt II 3120 SIST ) ~ 'I ~ Seat )o)oi 2. Li 0 ~ It ),LS Lac ~ t luna through It L4-40 I ~ ae 2

g ~ I' 2 il IO ) ~ 7 ) I ~ gros

~ ~ 2 'SJ L ~ 02 Le ~ 7 I 2 ~

1 ~ 24 lt )I )I OI

)2 ao. as

)1 '0 2 la ) io 2 17 > F 0 tj Iiegt

~ ~

~ 1 2$ Oi jeLO ~ I 14 2, II 2) >t )1 ij

~ ~ ~ ~ ~ 3~ ~

I ISD I Zs It S IS I 57 tea) 'ool 2 03 J.II 3

~

~

~

~

I ~ 4 1.74 I li Ia &L I

I ~ SL 1,) ~ I, ~ 'I le7 ~7 )'>I ~ '17 art t 5 Zt ~ I~ )JI Jolt 2 ~ I 2 )e

~

I ~ sf II 2 00 2 I~

~ $ I ~ Ie LI ~ 14 t ~ 03 'I 52

~ ~ 1 TS

~

)I I~

teil ft 72

~ ~

.~ to)I 5,7i 2.07 isis I SI Lo ~ 1 I'4 2 II I ~I 7~

I. 04 I.tt I.li I'0!I I) I~

~ 2 ~ ~ L IIS& 3 ~ Ta I.at I 7! I ~I lt I~ I~

I'ass I ~I i,l ~ I ~ I I.tn LT ~

Zoa)

Lo 2~ lj 3 lo

~ I ~ IT ~ .2 ~ 2.4 ~ 2 5)I )4 ~ ta

~

La!e 4,43 ) ~ 3! > o03 I I I ~ TI laTA I I,II I,ZT Io2 ~ 2.)l ),ut it OL ~

INST I ~ 74 g,ol Z.en ',to 2~ ~ LI la I 3 IS t ZI4 0 tJ lola 2 PO 11 LT I,t! tsj)ti

~ 3 ~ ~ ~ ~

~ Sl 5 ~ 21 L.)I ) 3 )oTO 1 ~ 41 04 I ~ )e)7 I 74 I.71 4toT ~

~

I~ 5~

I ~ io 1 I St~

s.II g, ~ I t,)11 g I&

F Z.ta ).te 5

Ir

~

li g ~ Si I ~ 01 2

~~

F il toast 0

~

' ) 7 Ls gati 2 ~ TT

~

4 )a 5 OI iL 20

~

I 4 ~ L ~ 4 lto2L

~

~

~

Leal I44t 1 2 ~ 10 i.l tate

~ gf ta 3,!7 I ~ OS loll STORY I ~ I~

I I'e 2 I loj ~ 2 te Z,IS I,ta', )elo toft l~tS lT

~ ~5~

go)I t 2) go ~ I 2I It 2 ~7 LO ~3 10 ~ 44 I'I~ 3 Ie ~ I I ~ I 'I 2 ~ I~

2 ~ OS l.ls t 7~

~ I ).44 loll Lail

~

~ Loge teLS

)~

)~

~

jt 0 ~,

~

0~~ 'I'.Ta 0 ZI I st ~

5 ' ) 0 ~ 17e ~ L 20 te ~ 7 27 BIO leOS 2 is Zest L. ~ 1 51 I ~I 2 ~0~ Ls)a lo ~ 0 2 70 2 ~ 7 I '12 2 ~ elt F

I tie I ~ I Z.ta ) 01 I~7~ 2 ~ 7) te ~ &I ),t)

Ital

~

I iT at li II F

II ) ~ 11 I~ 5~

geo 4~ )I

~

Sooo ILATS 2 71 Oo ~ 0 2 eOS

) ~ )2 ie4I t'ai )loca

)4 Og Ital teOI I, IO ~0 )eia ii i>I ~ 3 F 77 I I 7. 3,43 Poll 4 ~ 07 4.07

'0 II 'J

~

't

~

Ita'I I ~ 70 le)7 I ~ Ot L.at I~ li I ~ OI IS

) ) I

~ ~

). ~ I te1

~ ) Ti

~

2 '11 0 ~0 4

I 771 Lail I,OTI I.))

~ 2 ~ 54~

lej) ) ~ J)

).it )2 ~ 0$

E2-2 (coIIt)d) 2 ~ ) ~ et) TAILING LOCAL CYTOLOGICAL Sjnl<<LARIES I )il I ~ TI Lo ~ a ~ OT ~0 1. Join )eti ~o I'I toOl, to 54'I )ejt )cga )tsL ~

I ~ Tt I~ I 2, ~ 7 I',O)

~ I'te)O ),aj

  • I I ~ Lfj

~

~ ~ 71 ),es SS ~ IL FOR SYRACUSE A'jD ROCHESTER 1974 I ~ Tl I ~ TI I ~ IS 04 I e)I l,ie a,)I ),0 ~

~, ~ I 5~S~

Sat ~

7 OT

~

as ~ 7

)e ~ 2 t St I I ~

i,is) 5 )

I Il ~ eT) ie'tS F 3 Sto ~ 5 JIC040 2 ~ INTO ~~0 ~ S~ ',IT SO ~ 2>

Ni)te NiIe Poictt Nuc1ear Station - Unit 2 hi an 1 t.it t ~ eoj ). 11 ).OS 1 ~ 00 1 ~ $7 ),1'Ii F 27[ Z.la 2 ~ ~7 Z.tl g,aI ) ~ all Page 2 of 4 -'gicucara Jjohacck Potter Corporation

TABLE B2-2 (cont'd)

LOCAL CLD(ATOLOGICAL SI~D(ARIES FOR SYRACUSE AND ROCHESTER 1974 Nine Mile Point Nuclear Station - Unit 2 Niagara Mohawk Power CorPoration Meteorological Data For The Current Year RDCIrESTERc NEN YORK ROCHESTER NDNRDE COUNTY AP EASTERN n '3 07 N L~tmNl 77 40 Elevation (ground) . 547 lect 1974 Temperature F Wind Number of days Avriase Degree days srction Bare 65 F I Temperature 'F prcssure Extremes Water cquhclcnl Snow, ler pellets Recurrent Faucn mile Sunrac lo sunset << rnb c Z Z R R Z L(I c0 8

E jf 8 D Mce irnum (bl Minimum o oT I C o o To

<<CL r 0

<<C D o

0 0 I (Local time) 19 o o Je tfR8 t

e j 'u 'u 8 C

0 C 4 4( feet ff5 Z Oc I u co ~ 2 a idi Jqs- l Z ot m.sl, JAN FES Sf a 30, 19oo ll ~3 27 ~ I 2toS 4t

$7 27 2t 0

3 14 5

116 LI 4 lo7$

Zoob 0 ~ 55 0 '0 24 22 14 20o

~ 0, 0, 6 7 9 80 74 2

27 f3ad, 31 ]doll

]defi 45 SJ 27 23 30 3fl 4

5 tl 20

]4 14 27 2f 999oo NAR 41 bl I

' ZC ~

33 4'9

' 69 4 4 25 08 3obl 0.41 17 2' 10o 17 I 07 2 5 ao'2 ~ 3.:

41 43 Sw N ]7 Ad F 6 4 0 6

21 21 16 10 5 24 995 994 '

APR ~ 37 ~ 4 46 24 Id 10 CTf 2 ~ 00 Oaf5 7 ~ 2 4a 9 63 Rf babJ Cl 5 1$ 55 T'AI 3 20 15 2 11 S94 ~ 9 t NAY bl ~ 4 43 ~ 3 f3<<9 94 14 29 4 35t do42 3 ~ 45 lb I T t T 7 64

]lob'5 101 57 Tol lb '

JUN 70%0 f5 o4 05o7 ~9 10 lb 2 5 2 '9 Oe45 Zl Oo 0, 60 2 5

3~ 8 '

34 30 ll

'L

$8 Tol ll lf 17 11 0

0 4

0 993 994od JUL AUG 82 ~

$1 ~S fat 59 '

71 '

70 F 6 94 91 21 48 f2 Zf tl I I

20 181 2 F 82 Sebi le]9 t9 3 Zo35 3 4 Oo Oo Oo 0,

59 Tl 26 23 5 '.

Sadi 9eo, bod 24 33 II II 70 47 bol bof ll I?

12 d 9

0 996od 996 '

SEP 69of 4aoa 59 ' 83 13 35 t4 200 4 Sold I ~ IC 0~ 7$ 47 2 14 0 DCT 3dof 32 '

47ob 39of 80 0 I

Zl 10 t6 tl $ 35 Tff le f4 Oo53 14 3

Oo Oa 0, 20 TO 24 25 5 6 aTI 9<<4 33 32 29 LT 52

$0 bod 7~2 8 10 17 12 10 0

9 098 ~ 0 1002o7 NOV 35af 27ot 31 ~

TC 47 23 f 1034 3ot3 0 F 88 20 4~

tbo 2~

7, 25 8] 2 Cot ]0, 35 5 t

2 dab 3 2f 16 lf 993rd DEC 17 2o46 OaTS 2 2 3 84 2 4~ loot 31 NE 22 4ob 4 25 L9 27 995 '

YEAR t

SToP 38 F 2 47od JUL 14 DATA CORRECTED ATTER PUBLICATION OP TNZ N NTNLY FEB 5 0758 $4 30,00 nrem 3.8$ 10-1 IIA 102 ~ 10o NA LT-I 81 8 6 Tl 2 Ce) 8'f JAN 27 50 7of 51 $T tt7 104) 34 29 7 49 142 996ob ISSUE Normals, Means, And Extremes Temperatures 'F Relative Normal humidity pct. Mean number ol days Average Degree days 6 smlion Extremes Base 65 'F 8 Temperatures 'F pressure Water equivalent << mb.

a Min.

Z Z ZR Zo R g E k? Eg Elcv.

E E ). E tc E E Lc 01 07 13 19 c 0 Sf 5 gC E6 IC Z IC o E o E 4,.=)3 cc Jl Z Z e

C g

(local time) o a u

~ i E

8?

r uR 0 I i'.E 8 sc feet mat (al 11 11 34 34 34 31 11 34 23 34 3C 34 34 34 34 ll 31 ' 16<<7 24oo 68 1947 11 1968 127L 0 2etf 4a 10 1'064 Oodl 1940 1,44 1960 60et ]900 18 F 2 1066 74 74 07 Tt la N 5 i( 1950 37 dol 7 '

32 F 0 lbo9 24 ' dl 1965 <<4 1970 1120 0 tait F 07 I'950 0<<74 L96$ 2o43 1050 04 ~ 4 1958 ldeT 1000 74 75 6$ 71 1

]lob 7 73 N 19S0 43 7 ' 7 22 17 10 29 994 41 56ao

' 24,9 34 '

33oo Cb,l 70 93 1960 1970

<<2 1967 14 1970 992 567 0

0 EST 2 74 5 '2 4 90 1042 I'944 0 '7 I ~ 24 1971 1958 2~ tl lo99 1043 1042 40 3 1959 1700 1959 Tf 77 02 09 det 1974 0 4 1972 74 70 f3 00 ll 10ob

~I NSN Nfil 66 6$

N N 1950 1946 50 7<<3 Sf bo7 8

LS 18 15 lf LC 7

20 994a4 99f,4 07 R 45 7 5baf 94 1974 tb I'970 NSN 59 N 6 10 13 u 11 994ol 285 22 2 80 bob? ]074 Oofo 1045 3 ~ 8S I'074 Zao 1945 2<<0 1945 77 70 54 f9 9<<3 NS'N I'950 59 bob I 74ao SS ~ 4 46o9 94 196C 30 1972 44 103 2 54 ba50 1072 Oot2 1903 2 '6 ]950 Ooo 0 0 $ 1 78 54 00 8'o 4 SN 63 61 SN SN 1940 47 $ <<9 10 lt 15 11 12

]0 0

0 0 992e9 004 ~ 4 82 F 2 60a2 71 ~ 2 04 1906 42 1063 9 202 Ze89 I'047 0 70 1047 Oo98 1055 2o04 0 0 Ooo 82 $ 1 f? $9 Ta9 70 5 ~ 0 9 '

2 '9 1956 0 80ol 73o]

fdof 69 ~ 3 94 L905 floS ~ Re3 Sf]073 30 1965 20 159 to97 t f 9$ 106$ Oo74 1951 1064 T 1965 190f ~ 6 47 55 00 Tob SN SN

$4 59 NE N

1055 68 5 oT 13 13 10 10 9 0 0

0 0

0 990 P97 ~ 4 02 4 42e2 S2 ~ 3 84 1971 30 20 1903 I'P72 120 398 45 35 5 21 f tab? 7<<85 ~ 19l5 1055 0 AD ?4 1000 1943 2abl toft 1959 1045 7 1950

]oi 1960 Io4 7 Lgfb 86 47 59 73 1960 80 $ 3 59 73 doT drO SN 59 SN ]949

]941 01 5 o9

$1 dol lt ll lf 10 0 0 0 '998 ~ 3 47,9 33 ~ I 40of 79 1971 34,9 f LPTI 73$ 0 to43 5.51 1050 0 AD ?3 Oa73 1900 3o]3 ]045 lbe9 1972 11 2 LSSS 80 $ 1 09 Td 10 ~ 2 SN NSN 50 59 NN E 1950 32 4~2 6 22 11 15 2 0

1$

1000o2 995 '

Zlo7 tdo3 08 L966 <<5 1909 113$ 0 2 35 5o05 1044 Oodt 1954 lo59 ]9ll 4402 1970 ltad LSCC 80 41 T5 79 10ot NSN 56 N 1949 31 8 ~ 3 5 24 17 0 10 2$ 996,$

JUL JAN JUI, JUN NAY FEB FE8 JAN YR fT 2 34ob CTo9 98 1960 <<11 1904 0719 530 31 ~ 33 9a70 IP47 I'903 3 'S I'PTC 64ad 1958 ldo7 1960 79 80 60 08 F 6 NSN 1950 54 4o9 02 110 193 154 27 20

) 0 AD ?2 73 N 13 11 49 135 0 996ob I(cans and extremes above are from existing and comparable exposures. Annual extremes have been exceeded at other sites in the locality Ilighest temperature 102 in July 1936; Lowest temperature -22 Ln February 1934; minfmcxc month]y precipitation 0.08 Ln October 1924; max(ness as fdllowsl tion in 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> 4 .19 in August 1893; maximum snowfall in 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> 29.8 in ](arch 1900. precipita-( ~ ) length of record, years, through the NORNALS - Based on record for the Igl]-1970 per(od.

current year unless otherwise noted. DATE OF AN EXIRINE - The most recent In cases of carlt(pie based on January data. occlrrreiice (b) 70'nd above at Alaskan stat(ons. PREVAILINC NIKD DIRECTION - Record through 1963.

~ Less than one half.

NIRD DIRECTION - Nucera]s 1ndlcate tens of deqrees clockwise 7 Trace. froa true north. 00 1nd(cates calm.

FASTEST NILE NIKD - Speed ls fastest observed Im(note value when the dlrectlon ls ln tens of degrees.

Page 3 of 4

0 Avemgo Tomporoturo I~

Yoor I ~ )S I~ I~

Ia)7 I~ I~

~ Liao Ifat Liat Ical Ii I ~ aa Ical I pa If of Lit~

Lfo ~

I'll I ~ IL I ~ SI I ~ SS I~ I ~

L~ $ $

I ~ I~

I ~ )7 I ~ SI I ~ I~

taao I ~ at Iaat

~ I ~ al Iaaa tais i

Jan

2) ~ I
2) ~

))at Cari jis Il,a 22 Cao 2~o

)SKI 27>>

10 ~

22>>

~ sa jfe tt I~ s

2) ~ I 21 ~ I I~ s 21>>

jt I ~>>

CI >>

I ~o

~

I' r ~

I ~ >>S RI ~

~

Fob 2~ a Ci>>I

~

2 ~ sa Caa 2$ ~ I

$ 0 ~ I $ 4>> ~

$ )s

~

~

2 ~ oi 1$ >>I Cae II 2~

27 Itis

~

rt

)7 ~ a I ~ so CS>>7

)T,a lts 2 '7 il>> I la.t

)Soa

)1st

)Io) I ~ ei

)2 ~ I 11 ~ I

))

I~

Riot ) ~ sa Lira S'S>> ~

lail~

22>>

~

~

Io ~ I SI ~

2 '

~

I 7

7

~

aa,a Cart 2 ~ ao asia $ ~ I air ~ TC>>i 1~a~

ca>>2

$ 0>>a

)0>>0 aa I lail ~ ioj 70>>0

~

ai

~

I) I sa>>I aa,i $ )aa ~ I Tl el 70>>2 a ~ o'I a~~

~ ao ~

afoot

)0 ~ I ar ~ 2 alia

~ ar ~

I

)lao li>>2 lae)

~

21st )I ~ I at ~ 0 Sf>> ~ ~ Tea 72 ~ 2 7) a ~ asi Riel 27 o as>>a 17>> ~ ~ i>>0 7' 22>> ~

24>>a 2'I ~ I

)Sa ~

aa>>7

$ 1>> I Sl>>2

)'1>>l

~1 ~ 2 St ~ 2 I e ~ Tl,o lie ~ 17>>i il ~ $ 7 ~ I ~ I ~ fo ~ ~ lei

~

~ 4 ll>>

~

ST ~ ~

S~s~

)fr~

SC>>a SS>>a ar, ~ Ia ~ I i)sa

~ f, ~

I ai>> ~ 1 ~ 7 CSEE ~ irs

~

>>try spra ~ $ >>a 70, ~

'lP ~ I at 7 atra oa I $ ~ I ~ 7 ~ I To i ~

at,)

~

~0 ~

~

) ~ ~ af,j ~ 0 ~ 7 ~ st ~ 7) ~ ~

I i)

Cia ~ ao>>o af. ~ )4>> ~ ~ 7 ~ I 71>>i 7) ~ Sail Sa>>a 44>>7

~7 ~

TOol

~7 ~

~ a>>2 I

~ ~I II

~ ~

~ 1st

~

I ~ I )7 ) at>> ~ ~ 0>>2 ~ 7 ~ I 72>>7 70>> ~ ~ a>> ~2 )2>>a

~ io ~

I ~ ol Ciao a) I ~ ora $ ~ r ~ ~ l I 70 S ~7)Ss ~ ~ a>>0 1Sf,a

~7 ~ S

~ i>> ~

~

~

~

~

if>>a ,ifa I

~ 7 I 72 I

~a

~

ii>>0 ~ 1 ~

July 7$ >>i 71>>f 7 tat Tlat 72>> ~

7' Ti>>0

)1st 72 I

~

~ fe ~

7$ >>i

~ i>>2 To>> ~

~

~

~

~ 7 ~ SI Aui 70 7 'I ICAL

~ 7>>a

~ f>>C

~ isa

~

'Il fo)

~ 1st 70 ~ 7

~

oa I

~ ~7

~ isa 7)>> ~

ilaaiI

~

~ i>>C p,r

~a c

~ a>>a

~I I

~a I

~ i,a

~

~

~

~

~

~

~

1 4

I SOP) 40>>a

~I~

~ ael

~ to ~

~ 0>>i

~ lo ~

~ is'I 0 4)el

~ aot

)le

~ Lo ~

ical

~)~0

~

~

~

S~

I

~ ~1

~

~ 'I ~ 0 Sl ~ 0 ALAI

~ L.f )I I ir o I I

~ Ist

~ I>>

~

~

~

~

~

~

)Coi ai,f ao

)2>>0 70>>0 ~ Is ~ ~ 'I ~ S )1st $ 0 ~ ~ ~ isa

$2 ~ 2

$2 i

iT

~ ei i'I>> a

$ 0>>O

~ ~ a)>>7 Sail SS a

if>>0 it el Slot Ia>>4 I'1st Il a I)so i)

~

~

~

'I

)sl 17>>T lla ~ i)>>0 if>>a al>>0

)ST 0 it 17>>

)Too il it SI>>f )Tai Sar ~

~

S I ~ a'a'7 SI ~ ) ~ a ~

$ 7.) aa 7 cod ai ~ afar )aa ~

~

~2

~

~)~ )

)isa

~0 ~7 its ~

)7>>i 17>>i Stol

~

~

at ~ 1

~

~

So.j ~ I ~ I ts ~ )

~

ai,7 ~ I ~ I I ~ s ~

7

~

at I It>>a

~

7 Casa Sa>>2 2 '2

)Lo ~ lo>>I 2$ >>a 2'lot 11 ~ 4 Cree

$ 0>> ~

li>>7

)Lol

)Iel list iT>>l ital Anttu0 I S)o ~ its ~

)aoo Casa lt 7

)a I

~

~

taa ~

Ia>>0

)L ~ 7 7

~7 ~

al>>2 at, ~

SL ~ ~ it ~ ~

l) la>>i

~ ~ ai>>C il iio) if>>I il>>4 lOot 41st 14el

~

~ 7>>1

~ 1st ii >>1 its ~

alo' ale aio) ii>>2

~ a>>S

~

a~~I aa>>i ai,a ai>>S af ~ I I

~

Q I

Heating Degree Oayo SOeeO tf))rsvp L~

~ Saiss I Sissf I

~

~ )7 ST L~ S

)14004)

Lfi)v42 O)f ~ Cot) iali

'r Sf>>40

) ~ 4)ota

)fiant

\filsii I iioiT L~

I~

~

Liifoil ilail 47 a70 Ttaft I ~ 7)ofl Lffjsfl

)47)vfa

)Dfaaf)

July Aug SOp) De) joef Dee Cooling Degree Dayo

~Year

)fi LDTD

)AT)

IfTC t ~ 7)

If7 a

~

)7 ll 22

)0 Ci ta

~

LI I~

~

I I~ .

0 4'

I I

I i

I

)fi Isp

~ t L~

Crt if Cr RL

~2

)~

I~

)0 l)

Ca 1

~

I 2)f I LS ~

St')Lli ij Ti I'

~2 201

~

)Sf 70) lil 117 a77 F

SS)

~

07 72)

T40

~

7

'l JIn]Fob! Ijor Apr j)oyIjunoitulyJ a7 LLSC

~2 I)S

~

JOC) 201 atf OSD )202 Li)l L)00 002 $ )4 2ll liT Lii 47 Llt Lll ilt

)40

~

itl

~

L)1$ ))II LLI) ai I ~ 4 100 F 7 Lift L 117 I 004 LODI f14

$ ) )12 at 4 Ta4 ~ )7 I)07 LIII li II tll I ~ I i) 0 4)f I

~

lf 7$ ! Ill'I lit

))4 Sl 'I Lt) L)lf 10 tit

~a lfo

~ i

~

)OI I) )4ai L)47 )LIT 'II)

~

ll Lo)a 2$ )

Io) 2~

247 20 L

Feb Chr Apr Ltll Lttj Oji

~ IC )1St L2ii LLOL ))I~

TI) 'li1 Lao ~ 171 tii

~ al )lit )24t I)aa )127 L)IS )072

~ I ~ Lil2 Ljai L)jl LIL) it)

4) ~ Il oar Il~ 0 I ~ IO Coil Di) 411 IC $ 02 72 ~ Lift Lj'14 LR)$ 140 110

)4il Ll)~

41 ))DO )if)

Ill 4ft )I II Iil)

Cl)

Lfa Ls LT

~

I Ilt 14$

iaaj iotf tNj Ihf LDi Til )4i )lit it) Nt N

~

LS 7

477

$ 20

$ 04 Iil

$ 10 7

)$

Ll I

a thy ljj Ill itl Clj 407 SIT l)$

ILR 1st ILL

$ )I

~

LIT

)DR ti Cf1

)C I SL Ii

)L

~

LL~

~1 Tl

~0 7~

LT

)f I

TCCO)

)1 Oi)$

Tt 7240

~ I 4)al 4lif 707)

44) 2 70)0 411)

Tjit 4111 fOji

~ 70'7 044 I

~ Dil li j) I f004 4)ii 4114 4)10 Ijotp Doc Total

~

7

~

ai la i)$

~ ST

~ lt Sil

~

Snowfall Lf))s)i

~ ) Datsa)

LfS)s)a

) ~ )is)I Dat ll I~ I)sli I ~ )is)7 Lf)fsSI Lfsl>>S'I LfIS'I>>it Ltilsit

)f4)sil Liilsl)

Cia)sic Lfa441 Ltilsii I)i)v47 July Au)) Sept 0>>0 0>>0 0 0 Oit I ~ 0 0 ~

Lla)%2 0>>0 0>>0 0>>0 Italic) 0>>0 0>>0 0>>

Lfa)eia Oit 0,0 0 ~

'LI)4i) 0>>0 0>>0 0>>

0>>0 0>>0 0>>0 0>>0 0>>0 0>>0 0>>0 0.0 0>>0 0 ~0 0 ~0 0 '

4>>0 0>>0

~

~

0 ~0 0~0 0 ~0 I 00 I ~

~

0~0 0~0 Oio 0>>Q 4>>4 0 ~0 Ooo 0>>

0>>

0~

0~

0>>

0~

0>>

Ocp) 7 7

0>>4 7

Nov Doe Jon Fob f3or Lf)fo)1 0,0 0 ~ 0 0>>0 4oj 1>>7 1s t Ll>>7 ia>>f Lf)ls)~ 0>>0 0>>0 0,0 D>>0 7>>2 ~ is )as ~

~

7 I)sf

.I 7 )Ls ~ Csia Loi 1st Lf,~

0 ~0 0>> ~

~ >> ~ I ~ >>I )Lof )0>>2 Lt)is)7 0>>0 0,0 I ~~ 0 7 ~ al 2)1>> ~ 7>>i ~ >>L )0>>0 ),0 ~ >>4 ~ >>0 )

Lf)Ivat 0>>0 oot 0>>0 7 0 ~ I lo ~ 0>>I 21st LI>>4 )ef Oot Ltalsii 4>>0 Oot 0 ~ I F 4 )4>> ~ L)>>0 ~ >>T )Dot Oo O>>I ~ pt 0>>0 Lfa44'I 0>>0 0.0 0 ~

)faloaf 0>>0 Io0 0>>

Lta'10)0

)Ill

)1))sst

)i)20))

$)

0>>0 0>>0 0>>0 0>>0 1st 0>>t II 4I 0>>

7 7

0>>0 0.0 T

4>>L 7~S I~ s)

Cloa 7 )0 ~ I Cia ~ 2) ~ I

~ >>0 )0>>0 )7>>T 2$ >>4 Loi Daf 0>>0 t)sl

~ of IC>>a Trl ~ >>0 LL>>7 0.0 ~ ra la>> ~

T 0>>4 4>>0

~

List lf>>4 )4 '

I') 2'loi )1>>f ID>> ~

It )Tel I'I a 0

~

)lot l>>$

lo L)ol 21 ~ Loi fo) )tel )lac Ief lief

~

llsl 2Itsoj ltrj jjof

~ >>0 Li ~ R 2)>>T la) L)oi 2 ~ ot l>>0 ~ >>0 40>>2

~

1>>0 Lira Ltd 7 2):4 Lie ot

)fat 4iol ~ o

~ 1>> ~ RT>> ~ il 1 jr'I II 1 l)e

~

~

~

Ital LI

1) 1 Lfe io

~

L)rf

~

0>>7 I) I Lis)

~

~ el C.I ~ '.0 0>>0

~ <>0

)jo4 Sot ~ p4 ~ o4 lls ~ Til L)>>0 Cloj )1>>4 Oo4 Ope ~ oO 0>>2 )of. I' IL~ I Lto 1 ~I

)~ '2 iet Ti7 i)r~ lj>>I 1st Is 1

Te4 )jo 2)ot Ooi jeO 0>>0 0 ~ I Lle ~ It>> ~ )Tot Clif Ioj ~ pj 4>>l Lfafsit 1st 0>> ~ 0>>0 ~ >>0 2)0 )le) Ilo ~ Lie) LR ~ I 0>>% Opj 4>>0 Lt ~ I Liat )0 ' L)o fii I oj jloi jlo I 4pl ~ >> ~

Iej I

Toi 4>>l I'

Oel 0>>T

~ oi To4 I'

)>>4

)ef O>>0 7

~ e4 f

O>>0 f

f7 Oel f

L>>0 OpO t>>O y

Ip) best 0>>0 I>>I ~ >>O ~~ ol I~ L Sot Ope ~

o4 il 0>> ~

TCC)d 00>>0

~

~ >>0 Tfel

~ >>4 0>>0

~ a4 0 0 4 ~0 4>>0 lof Iaaf PD>>

liat 7)e'I 44>>I 70>>4 bio\

04>>7 iD>>I Tl>>I

~ loi

$ 0>>4 l)of Oet ~ o ~ Tlat 4>>0 ta4 Tlol lo Io) ~ >>0 ~ il ~ Lof 01 >>1 Ll)oi Iot If>>i Dot 4>>0 4>>4 1st

~ >>4

~ ol 70>>l L)I>>~

)40>>4 I ~ L ~ '7

~ 1st Tie ~

AC>>0

7) ~ L

)01st Tait taaa 22 ~ CS I I~ >>~ oo $ ) ~ 0 i7, ~ 7) ~0 ~ 4>>a I ~ I: $ 0>>) aleS )ace

~ aa>>0 Lfifsil 0,0 0>>o I, )0>>I ~ af tail Clei LI~ 7 pt 4>>4 fief taap St ~ I CI>>e

~

aara AQUI 70>> ~ ~ a,a ~ 7>> ~ ~ Qoa S)r) lis) )2>>) af sa )1 4447 T

~ oi )1st lie ~ )1st ie 0>>0 ~ >>I 70>> ~

S) I it ~ 2 27>>7

$2 ~ % 0>>0 0>>Q 0>> 7 L>>0 taaa I~ a ~ 20>>i ) ~ >>0 aa.s as I aa ~ 7 TQ 7 ~ aaa ~ ao ~ ~ if>>~ )fits'rl 0>>0 0>>0 0>> T Iol il>>0 Sf of Cfof 4>> Lol 7 ~ >>0 L)t>>4 Ideal 2$ ~ I I~ eo )Iri afar SS>>ai AS>>0 70>>T 72>>0 ~ 1>> ~ )0>>f ao I )ST I ~ ,af ~ ~ r I ~ IO I' CS ~7 $0~ I ai, ~ )i. i .I.I 72>>2, 7' ~I 0 ~ Slit a)oa CS S ~ ~ 7>>f )47007) 0,0 4>>0 I0>>~ ~ ol 1st ii>>2 Sa

)I'.7 lto iej Ojt ~ >>0 LDT)ofj 0 0 0 ~0 0 ~ 4 'I I ~ 2 Llo ~ Lto 0>>0 ~ >>4

.art 2~s ~ 'S at I ~ $ a,o ~ I~ S ~ is ~ ~ I>> ~ AT,a S ~ >>O afi ~

Ilia lOot if>>~ )17207) 0>> 0>> 0~ 4>>1 )4>>'I 11>>7 l>>0 I ~ e ~ io II~ 1 ~ it Tle ~

II 2

a ~ 7) 2 ' 2$ >>a )0 'I al I

~ ~ ~ o>>a ~S ~ I 7) ~ 0 ~ fa ~ ia>>S 17>>0 )1 ~ a'7, I! )4 7I Ltf)sfa 0,0 0~ Di 0 ~0 Csea List Riel ~ ~ ej 7 ~ >>4 ~ Do) taps 22 ~ I I I ~ ai>>0 st 70, 7)aa 7) ~ 0 ~)~ I $ )~ 0 ~1 0 Lifasfs Oat I ~ I~

2~a 27 ~ I CC ~

~

Sl>>4 1~

SS>>i I~ >>7 TI ~ ) IQ>>a $ ~ ol afar )1 >>$ )Ia ~ r

~

if ~

o~

0>>0 0>> 0>>) 4>>4 Ries atcll l nt aee )ass 12 7 af ~ 0 lis ~ ~ is ~ TI ~ ) ~ is) ~ 2>>7 $ ) ~ I jf>>7 Cf >>0) if>> ~ IICOIO 40>>$ iisi l) ~

Ras nil SI ~ ii>>C )'I, ~ ~ is ~ Tio ~ I ~ I 7 ~ >>I 7' )i>>i n)ln 7 I2 4>>'0 )0 ~ 4 2) ~ ) )0 ~ ~>>~ lio) 2$ ~ I li>>I iio~ lie Sf>>7 I)~ I aj>>7 )1st Cjoy2[ )I ) 0>>OI

)I'T>>L ~

ntn LT ~ ~ Iea ~

ecipit ation Jan feb CIOr Apr Aus I ~ IS 2~ '

I 2>>ai ).7a )rat ls)I los) 2 ~ '7 I I;lo je)l L>>0) )>>I) if>>i) tali I ~ )7 Co ~

) I I~ $ 7 lail i2, SfI

~

~

I~ ~ I 1>> ~ I L>>IT Crlf lo) ioTS I'll Loft L ~ 2$

i>>7)

)~ I'r)o Cal) I ~ I'I Roti 14 ~ 4 ~

i>>RL jail I ~ )$ I)~ 0)

I ~ )I

~

L~ ) 1st'I )~ 2 ~ )1 Cp) ~ Lot )ri) io ~ I S ~ 27 0>> ta ls)4 Lola CD>>)0 1>>) 2 F 47 2.$ ~ 2 ~ )'I 0>>ia lel Loft Lo ~ S las ~ ) ~ Sl 0>>i4 L>>DT 21 ~ L'

' 40

~ I'I at Isla l>>OI R 12 ) ~ )4 2>>TS le)2 Le ~ 2 I ~ 2~ la)l I ~ $2 "2>> ~ I lola 2 I'aa Isa)

I lotS tss ~ 2 ~ Ca I ~ Cl a>>SI Sail Rail le $ 'I I'll )&22 I>>f4 I >>Ol lola I DS lett Ciof )s)2 Lail 2>>72 l>>22 )oil i>>as ) ~ >>47 t>>0$ Isla Ci>>02 Litl 2,0$ 2 ~ $ ~ aa ~ I S,as oll C '10 )el I I ~ 42 ice) Lo ~ ~I 0 77 Stoat Ifa) 2~0 I ~ LI 2 ~ I 2>>)1 a>>f0 2 >>ii 2>>l 2>>II Ia ~ I 2 ~ I ~ aea) lii

~

Coa

~

I L>>7 ~ 2 TI L,in L )7 I 2 I Ol ll>>47

~

I 0 ~ Lail ~ >>CI a>>) ~ te)0 2 00 cacti

~ ~

F

~

F Iaaa 0>> ~ I j>>7 0>>77 Ir ~ I 2>> ~ I )ojt 2>> ~ I )o ~ 2 2 Tt~ 1 '4 ~ ~ Tf 2 S ~ 2>>it its 42

~ ~ Indtaatas ~ stat)rat nova or ratvcatte oj tnot aanta. Sav Stat)ant Lncat ton Ca' I~ .

Liar ia L>>0$ 2, ~ I ar) ~ ) ~ Oi asti ~ >>70 Coat 2 I Calf 2>>0) ~ )sic Roll ITIC ) ~ Sa 2>> ~ I 2 ~ fl Ls ~ I 10>>)2

~ 0 Ifai ~I )>>ti ) ~ Si 2 ~ 'Ti Isa>>rrd naan vata>>sa air>>va arr nanna throoah tl>> err>>at roar tur the prt tod hajtnntnj Ln caco ra jr 2~1 2 ~$

i>>) loll L>>if 2 ~ Il 2 ~ OI Rafa Cs ~ I C>>77 0>>77 lo)0 I ~ I Cii)t and Lfi) for attn tat)

'>>4I Lait I ~ 72 for caotrarateora, LORD Cor Orac)pttacton Iaaf il L~ 74 l>>7) $ >>07 i,j ~ L>>17 loll ~ >>04 )>>$ ) 2 ~ Io I'o ~ I 1>>41 ) ~ tt Raff ~ Si ttcy ocrtca orat)cata chrototh sapcccdoor Lfio accr pc chrotajh Occohar )Die jor trad)I)ca eton and Saoa>>ra))>>

It I I ~ Ti I ~ 2 ~ I ~ 7 ~ )>>77 ) ~ L ~ li>>1 L I~

I' S I I ~ I~

Ct ~

Cta7 l>>af L 2>>74 Irl)

~ IO S ~

2 ~ Tn Oa

) ~ ST I $ 4

$ >>I ~

2>> ~ 4

~

L~ ~

)sa) ae)a

~ >>a) 0>> ~ I L ~ 70 H I al Ceto L ~ )7 tali a ~

~

)S Se)s Lail 2 1$ ~

I't Lo ~ 7 21st

~S

'0

~

I~ Irs 1>>af aroa 2 7) I sf l>>0) ! ) 7 ~ I 'I aa)l 2 SL )Lofi I') 1>>PE L~ ~ ~ ~ ~ ~

I ~ SI I' I ~ TI i>>2$ ) 0 F Lett 0>>tl $ ~ 2'I I >>i) Toll Lif2 LE 7) 1) ~ 0)

Lfs ~ 1 ~ I~ 1>>2) l. ~ \ ~,Ia 1>>lt 0>>tf Cef) $ >>47 l>>SI 0>>ta Leaf I I~ Iaial

~

I ~ )7 Coil Isla I ~ TI 2,77 Rifi lo ~ I 2 ~ Ca 0>>li Caai 0>>tf I ~ ~ I I ~ ft ls,if I~ S ~ 2>>f) a>>20 0>>af ) ~ LO I ~ lf i>>SI 4>> I'I C>>$ ~ l>>$ S is ~ 1 I ~ 7 ~ 0>>il )So ~ 0 L~S ~ 1st 2 ~ 70 la)i I>> ~ I 2 ~ RI 2 ~ I ~ L~ ~ ) 2 ~ 20 2>>72 i>>07 I ~ Ii isla )I~ 2)

Ital 2>> ~ I Laic L ~ ~ 7 ) aft 1 ~ 0) L ~ S'I ~ >>OI 0>>jl ) ~ Tl 0.7) ) ~ 01 lio 74 it loll ) i>>ai I)ol) i>>if 'll Si I~ I

'I>>ff j>>II I~ 2 ~ To a>>O ~ C>>la Ta Of 0'>> Sa i>>$ ~

Iaat I>> ~ Ca ~ I.tt II.ra~ 2I 70)I 02 OI

~ I F

~

~

Ct I 72 I 2 ~ La)f 0>>CI

~

a>>0) ia)l e'll Caitf

~

I ~ at I ~ Ia Laa) 2 St I it Cata

~ ~ ~ ~ ~ L Ciao I'ii) la ~ 0>>i I ia )rlaI 2 77

~ I)

I ~ 0>>10 4>>ia Loci Cela Litt toll

~ LE I $ 2 2 7 ~ 0>>si O.Ta

~ ~

)oii jajt Cjial

~

ta ~ 1~2 CoOT ~ I I 'I ~

~

I cia ~ >>I C,lt )rat 2.0 ~a I ~ 4$ f>>77 2 ~ La fpaf 0>>ii Soll I ~ 7$ 2 ~ o)L it I 7 ~o~ L>>47 'lail La ~

L>>2 ~

2~7~ L>>17 asia ial) C Df )all 2 ~ ali

~

I~ ~ i tet) 0.7 a 2 ~ la I ~ )I l>>ai I ~ I L ~ I ~ I ai 2 ~~a 2 ~ la Cpj) coif )i ) L ~ Il I ~ ~ 2 S, AS L ~ ~ 4 Csl ~ ~ alt ) ~ I 'I lt ~ 7)

)oi ~ lie)a TABLE B2-2 (contod)

Iai ~

jefi )sal

~ ~ Loaf Lff0 Lol Cell L>>aa Irs ~ l>>0$ 1 ~ Ta ~ s ~ I So ~ I l>>10 )Toft LOCAL CLT)CATOLOGlCAL SU:-Lv)ARIES FOR SYRACUSE A.'iD ROCHESTER l974 IQT I ~ i)I 1 ~ ~ I I>>)a I ~ TI ) SI )s)f )>>It I ~ Tf I ~ Si )>>ac 1>>if Sist ~

~

I ~ S ) ~ Da 2 I ~ 2>> ~ I )>>SI ~ >>$ ~ loll )s)a l>>la Coll i>> ~ 1 I I ~ ll>>2 ~

I')

I ~ 72 I ~7~

I>>t I ~ To I ~ 7 2>>ti S. ~ I Crio

~

ft )>>CI 2>> ~ I 2>>la

~ si) 2 ~S

) ~ La Iota Lait 2>>DT 1>> ~ I )o ~ I lail)

Rill )oia Saa ~ I ~ )a l>>2$ 2rla ) ~ eio Page 4 of 4 Nine Nile Point Nuclear Station - Unit 2 Niatcara Mohawk Power Corporation itcoi at a>>a l,a I>>at 2 ~I Irf ~ Cof) Ref) )>>01 Cell lsi ~ I ~ 7$ 2 ~ 70 I I~

~

r ll 42

~

FIGURE B2-1 MEAN SPRING MIXING HEIGHTS Nine Mile Point Nuclear Station Unit 2 Niagara Mohawk Power Corporation (meters x 100) 14 14 7 12 14 10 7 18 10 l 12 16 12 8

9 10 10 8~8 MORNING AFTERNiOON Page 1 of 1

FIGURE B2-2 MEAN SUMMER MIXING HEIGHTS Nine Mile Point Nuclear Station Unit 2 wiagara Mohawk Power Corporation (r..eters x 100) 18 16 16 14 12 10 8

16 18 10 12 18 16 12 12 9 10ll 13 lo 12 ll 14 MORNING AFTFRNQON Page 1 of ]

FIGURE B2-3 MEAN AUTUMN MIXING HEIGHTS Nine Mile Point Nuclear Station Unit 2 Niagara Mohawk Power Corporation (meters x 100) 12

~

3 14

~67 12 II MORNING AFTER NOON Page 1 of 1

FIGURE B2-4 MEAN WINTER MIXING HEIGHTS Nine Mile Point Nuclear Station Unit 2 Niagara Mohawk Power Corporation (meters x 100) 4 5 10 10 MORNING AFTERNOON Page 1 of 1

P FIGURE B2-5 MEAN ANNUAL MIXING HEIGHTS Nine Mile Point Nuclear Station Unit 2 Niagara Mohawk Power Corporation

(>aeter@ x ].AA) 5 P.16 10 5

6 7 9 14 12 MORNING AFTERNOON Page 1 of 1

0 Re est B3 Provide the following topographical information:

a. A map showing the detailed topographic features (as modified by the plant) on a large scale within a 5-mile radius of the plant, and a smaller scale map showing topography within a 50-mile radius of the plant.
b. A plot of the maximum topographic elevation versus distance from the center of the plant .in each of the sixteen 22-1/2 degree cardinal compass point sectors (centered on true north, etc.), radiating from the center of the plant, to a distance of 50 miles.

Res onse 83

a. The topographic map within a 5-mile radius is shown in Figure 2.7-14 of the Nine Mile Point Nuclear Station Unit 2 Preliminary Safety Analysis Report, (ref. 1). The smaller scale topographic map is shown in Figure B3a-1.
b. The plots showing the maximum topographic elevation versus distance from the center of the plant are shown in Figures B3b-1 through B3b-4 .

Page B3-1

'etiso 1

La

~ r (

~/E

~ ll Aa ee

~

@~c" oo )f ~

C I

st Ce seas IIWs 0

/ I attest(or

~Ivy Bbs ~ BOP DD F I

/ PI Pea(sea@

Inr'

/

D sm Wa ~

~,

(Mp

,/ /

/

O rosa Cor ll C'

/ s I

0 0 L AKE 0 N TARIO /

S ITE

't

~ art tn $~

wav ILE AD OCErcrCCr 0 ((tetr r l

II tktatkt a

0 se wswm 0"

0 cceesto I~ l ~ I ktr k.r ~~ tp lO '

tr J I

I 0 ~

6 Pk caaLe(

OOI

~ t<<

a 0 C.

! I ~

wtao o

'k t'l(,

ktWIO OOOA D w Q ~

~

W W00OIO l tte ~

'( l

~ l Ieeg W, SER e ~ C ls g SOI ~ dl

'l

~~

'W ~,

~

I

~ rl<<l ~ ~

~

ass sett pnsoo 0 Wa '< ~ ekaa. I r l ~ a (

st

~k t ll(.

~at -0(

4+ 0 ",'Chk CPI t ~ i 'vases la r

s I it kl c (

'P:~

f l Qt 0 k

Ohertsttso no 0 ~ l'aaooo t e

'i( (

Det CPDPW o0 0 Qe

~ Iellso ta DD 0 III(OI

\ ~ Io(loca Css ~ J OA a~

I l'.I FIGURE 83a-I

't I I t, Osratgs I

(

<n

~ Cay C GENERAL AREA TOPOGRAPHY TO 50 MILES 0<<

0 Ik

,/ 'ro I 0 NINE MILE POINT NUCLEAR STATION- UNIT 2

) NIAGARA MOHAWK POWER CORPORATION

/ Isl I SCALE OF MILES a.. ~ n..

0 '0 IO l5 20 25. 30 40 45 50 CANADA 250 -27l 304 250 260 LAKE EL 246 250 LAKE EL 246 250 348 .45 I I l5 NORTH SECTOR 550 450 500 500 2m' LAKE EL 246'50 29I I. I5 33 45 NNE SECTOR l500 l200 I200 500'000 IOOO IOOO 523 260 299 33'.45 56'. NE SECTOR I900 I800 Figure B3 b-I l500 MAXIMUMTOPOGRAPHIC ELEVATION S (NORTHEAST QUADRANT)

I070 I IOO I800'I500 260'5 NINE MILE POINT NUCLEAR STATION -UNIT 2 NIAGARA MOHAWK POWER 3I7' CORPORATION 5G.I5'- 78.45'NE SECTOR 0 IO- l5 20 25 30 40 45 STATUTE ~MLES

0 0 10 15 ,50 i

i 800 2100'700 1500 700 I IZQO 1000 1

l2.00 560 260'8 45'- l.01'. 15 EAST SECTOR 1200 1000 1000 900 700 l 693 085 -507 260'01'.

15'-I?2.+ ESE SEC OR 1859 I

12l2 1000 050 510'00 500 500 ZGO 123.45'- 146 15'E SEC TGR l876 Figure B3 b-2 1602 MAXIMUMTOPOGRAPHIC ELEVATIONS (SOUTHEAST QUADRANT) 1000 NINE MlLE POINT NUCLEAR STATION-UNIT 2 500 485 500 500 NIAGARAMOHANK POSER CORPORATION 0

146.15'-

5'Q Ice.45'SE SCCTOe 15 2G Z5 STATUTE MILES 50 Mp 4y he p~

35 40

0 0 IO l5 20 25 40 5O I

I620 I476 I

IOS3 l009 I030 I

260'IO 407 58l; I6845'- l9l. I5'OUTH SECTOR 562 708 450 %8 540 430 5I4 472 4I3 ZGO IB I'.15'- 2l 45'SW SECTOR t

606 596 680 430 500 500 500 391 298 282 213'. 45'-236 I5'Vl S ECTOR Figure B5 b-3 MAXIMUMTOPOGRAPHIC ELEVATIONS (SOUTHWEST QUADRANT) l NINE MILE POINT 65l NUCLEAR STATION-UNIT 2 260 236'. l5' 250'50 258'5' SN SECTOR 250 250 250 395 405 NIAGARA MOHAWK POWER CORPORATION 0 5 lo, l5 20 25 30 35 40 45 50 STATUTE MILFS

~l 0

IO I5 20 USA CANADA 260 LAKE ONTARIO {APPROX M,EAN LAKE EL Z46 )

258. 45- 2 I.I5 WEST SECTOR USA CANA I LAKE EL 246 250 289 zoo'8l'.15'-

50 '.45'Mhf SECTOR I

USA CANADA 400 260 303'..45'- 5 6 I5'l/ SECTOR LAKE~ EL246 250 Figure B3 b-4 MAXIMUMTOPOGRAPHIG ELEVATIONS (NORTHWEST QUADRANT)

NINE MILE POINT USA CANA NUCLEAR STATION-UNIT 2 i'305 NIAGARA MOHAWK POWER LAKE EL246 250 CORPORATION 226.I5'-348'.45'NN SEMPER 0 5 IO. l5 ZO  : 25 50 50 STATUTE MILES

0 Re est B4 Provide the following information concerning meteorological data:

a. The identity of the sources of meteorological data used in the atmospheric transport models to assess the dispersion of gaseous effluents from the plant to a distance of 50 miles, and a description of the locations and elevations of all observations and the frequency and duration of the measurements made at each station.
b. A description of the cnsite pre-operational and operational meteorolcgical programs including the instruments, performance specifications, calibration and maintenance procedures, data output and recording systems and loca"ions, and data analysis procedures.
c. A detailed description of any model(s) to derive estimates of basic meteorological parameters, such as atmospheric =

stability, and inf ormation concerning the validity and accuracy of the model(s) .

~Res ense B4

a. Onsite Meteorolc ical Measurements A Complete onsite metecrological program is in service at Nine Mile Point to provide accurate documentation of the local meteorological condi tions. The facility began test operations in December, 1973, and has been in routine operation since January, 1974. The parameters measured are continuous wind speed and wind direction, ambient temperature, temperature difference, and precipitation. The majority of the ins rumentation selected for these studies is noted for durability rather than extreme sensitivity, commensurate with the exposure of the site. The accuracy and response specifications are suitable for the studies undertaken and comply with the recommendations of Saf ety Guide 23, bef . 27) ~
b. Onsite Meteorolc ical Pro ram
1. Instrumentation A plan view of the 200 ft tower installation is provided in Figure B41. Bendix-Friez Model 120 Aerovanes are used to measure wind speed and direction at the 200 ft, 100 ft, and 30 elevations. This information is recorded on Leeds ft tower and -Northrup Model 880 strip chart recorders.

Page B4-1

A Climatronics F460 anemometer and wind vane are also used at the 30 ft tower elevation for redundancy and low threshold measurements. Yellow Springs Instrument Company thermistors are used at 27 ft for ambient temperature and at the 100 ft and 200 ft tower elevations for temperature differences. Each temperature is recorded on a separate Esterline Angus Series A strip chart recorder. A Weathermeasure P511 E heated snow and rain gauge is used for precipitation. 'The recorder is a Meathermeasure P521 event recorder. The instrumentation performance specifications are provided in Table B4-1.

2 ~ Calibration and Maintenance The instrumentation was initially installed by the Climatronics Corporation under the supervision of Smith-Singer personnel. Niagara Mohawk personnel are responsible for maintenance and repairs which are performed a s necessary. Surveillance, including inking, charting, and routine preventative maintenance is also the responsibility of Niaqara Mohawk personnel. The entire instrument set is calibrated on a semiannual basis following the manufacturers'uggested calibration and maintenance procedures. Surveillance and calibration scheduling are specified in the station technical specifications and comply with Safety Guide 23 ( ref. '27 ) recommendations.

3~ Data Anal sis The analog strip charts are shipped to Smith-Singer Meteorologists, Inc. After each chart is scanned for instrument mal functions, hourly readings are extracted by Smith-Singer personnel. The data are

-routinely key-punched on a monthly basis. After key punch verification, a computer listing is generated of hourly readings. The data are again checked for inconsistencies by one of the instrumentation specialists and a meteorologist.

After incorporating any calibrations from site personnel, a final listing is generated. The data are then transferred to magnetic tape and a copy is made. Monthly summaries of the data are accomplished following the same procedures.

Page B4-2

The stability clas'sification used in the development of the Appendix I calculations is based essentially on the original Nine Mile Point Unit study of 1963-1964. The four turbulence classes used in that study are described in Figure A-8 of Appendix A, Meteorology, of the Preliminary Hazards Summary Report, Nine Mile Point Nuclear Station Unit 1 {ref. 4), and the, two-year distribution appears in Appendix A of the Final Safety Analysis Report on this same station {ref. 5).

In the NMP2 Appendix I calculations the set of hT classes shown in the right-hand column of Table B42 have been determined to be equivalent to the four turbulence classes. These ~T groups were used in lieu of wind direction fluctuations because the multiple recording requirements of the Nine Mile Point wind system made direction fluctuations hard to interpret in terms of the four turbulance classes as described in Figure A-8 .of Appendix A of the Preliminary Hazards Summary Report, Nine Mile Point Nuclear Station Unit 1,

{ref. 4) . Table B4-3, shows a comparison between the turbulence classes assessed by these hT categories versus wind fluctuations and shows very good agreement with the 1963-1964 Nine Mile Point data.

Page B4-3

TABLE B4-1 INSTRUMENT PERFORMANCE SPECIFICATIONS Nine Mile Point Nuclear Station Unit 2 Niagara Mohawk Power Corporation YSI Ambient Accuracy Thermistors +.2 C I Accuracy

+0.15 P,,

Weathermeasure Accuracy Rain Gauge 0.5% ',

C1imatronics Wind Speed Accuracy F460 + 25 mph or 1 5/

Wind Direction Accuracy

+1. 5% I Esterline Angus Accuracy Model A +1. 0%

Strip Chart Recorder .'&N Model 880 Accuracy Strip Chart Recorder 0.5% of electr'ical span.

Bendix Model 120 Wind Speed Accuracy Aerovane ~Ran e Avera e Error 0-10 mi/hr +.5 mi/hr 10-200 mi/hr +1.0 mi/hr Wind Direction Accurac'y

+2 Complete Range Page 1 of 1

0 TABLE B4-2 TURBULENCE CLASS SYSTEMS AND TEMPERATURE DIFFERENCES Nine Mile Point Nuclear Station Unit 2 Niagara Mohawk Power Corporation Brookhaven Te erature Difference Nat'1 Lab ~SstMI oC/100m B2 < -1.9 Bl -1.9<AT<-0.7

-0.7<AT<0.0 AT>0.0 Page 1 of 1

n TABLE B4-3 COMPARISON OF STABILITIES Nine Mile Point Nuclear Station Unit 2 Niagara Mohawk Power Corporation Stabilit Classes (%)

1974-1975 1963-1964 Smith-Sin er Smith-Sin er 1963-1964

~Stab11it Difference S stem Difference S stem Turbulence Class

'ery 5.2 4.1 Unstable Unstable 40.5 39.8 62.5 Neutral 25.0 11.6 19.5 Stable 29.3 36.6 14.0 Page 1 of 1

L A K E 0 N T A R I 0 NINE MlLE POINT NUCLEAR STATION JAMES A. FITZPATRICK UNIT 2 NUCLEAR POWER PLANT NINE MILE POINT NUCLEAR STATION UNIT I I

l965 I964 I975 - l974 I

I/2 4 METEOROLOGICAL TONER MIL ES 6 POV/ER PLANT FIGURE B4- I METEOROLOGlCAL TOWER LOCATIONS NINE MILE POINT NUCLEAR STATION- UNIT 2 NIAGARA MOHAWKPOWER CORPORATION

Re est B5 Provide the following information concerning concentration evaluations:

a ~ Estimates of relative concentrations (X/Q) and or deposition (D/Q) at points of potential maximum concentration outside the site boundary, at points estimated maximum individual exposure, and at points within a radial grid of sixteen 22-1/2 degree sectors {centered on true north, etc.) and extending to a distance of 50 miles from the plant.

A set of data points should be located within each sector at increments of .25 miles to a distance of 1 mile, at increments of .5 mile from a distance of 1 to 5 miles, at increments of 2. 5 miles from a distance of 5 to 10 miles, and at increments of 5 miles thereafter to a distance of 50 miles.

b. Estimates of X/Q for noble gas ef fluents and, applicable, X/Q depleted by deposition and D/Q for if iodine effluents at each of these grid points, as well as averages of these X/Q and/or D/Q values between all adjacent grid points along the radials.
c. A detailed description of the model {s) and the model assumption (s) used to determine the air concentrations and/or deposition, and information concerning the validity and accuracy of the model (s) and assumptions, and the identity of the meteorological data used.

Res onse B5 X/Q values are given in Table B5-1 for the stack; Table B5-2 for the radwaste building vent and Table B5-3 for the reactor building vent for the composite annual case. Also Tables B5-4, B5-5, and B5-6 show the X/Q values for the grazing period for each release.

D/Q values are given in Table B5-7 for stack; Table B5-8 for the radwaste building vent and Table B5-9 for the reactor building vent for the reactor building vent for the composite annual case. Also Tables B5-10,B5-11, and 85-12 show the D/Q values for the grazing period for each release.

c. X/ and D/ Com utations The Nine Mile Point site has been studied in detail in two separate periods, 1963-1964, when Nine Mile Point Nuclear Station Unit 1 was being designed and Page B5-1

constructed, and again during 1974-1975 for the development of Nine Mile Point Nuclear Station Unit 2 data.

The analysis of the diffusion and deposition is based on the meteorological data collected during 1974-1975. The following formulae and assumptions were used in deriving the X/Q and D/Q estimates.

Plume Rise a~ Main Stack Radioactivity will be released from three sources, the tall (416 foot) stack and two vent stacks in a rectangular structure between the reactor and turbine buildings.

The tall stack is isolated from other structures, and the volumes and speed of emission (31 m 3/sec and 10 m/sec, respectively) preclude any likelihood of signif icant downwash associated with either other structures or the stack itself. Plume rise has therefore been calculated by the momentum formula in the ASME Guide {ref. 13).

W, >4 h = hs + D e u where:

h e

Effective height of plume, m Actual stack height, m D Diameter of stack, m We Vertical efflux velocity at release temperature m/sec u Mean wind speed at actual stack height, m/sec.

b. Vent Stacks The vent stacks present a different problem, since they are undoubtedly af fected by the nearby building aerodynamics with moderate to strong winds. Their height is 187 feet and the top of the reactor building is only 12 feet lower.

The field data developed at Peach Bottom (ref.

14) and Millstone (ref. 15) are believed to be the best guide for evaluation of the downwash from these stacks. These + wo plants had emission speeds lower than those of the Page B5-2

reactor and radwaste building vents at Nine Mile Point Nuclear Station Unit 2 (NMP2), but their range of total emission volumes envelops that at NMP2.

Peach

-NMP2 Bottom Millstone Reactor Radwaste Reactor Turbine We (m/sec) 17. 5 17.8 12. 2 8.5 10 ~ 5 D (m) 2.2 1.2 4.5 2 1 1.4 Vol (m~/sec) 66.0 10.0 194. 0 29.0 16. 0 At Peach Bottom the plume rose freely when values of We/U from 3.5 to 4.0 were reached, while the Millstone results suggested that the plume was partially elevated as well as partially entrained during each time period in which Ve /U was less than 5.0. Based on these results total entrapment has been assumed for all values of We/U less than 5.5, a conservative assumption. Whenever entrapment occurs, the source height is assumed to be 10 meters above ground and a building correction factor (CA=632 m~) has been used. The wind speed was adjusted from the 200 foot level to the 26.5 meter level, to be representative of the average wind speed between the top of the vents and the ground. This evaluation procedure is in good agreem nt with observed data and should he conservative in the application.

2~ Diffusion Modelin The Gaussian diffusion equation applicable to 22 ~ 5 degree sectors and corrected for building wake was used for the computations. The stability was determined from the temperature difference between the 200 and 27 foot levels and grouped as shown in Table B4-2.

The equations expressing the change in o with distance are different for high and low elevation sources as shown in the following table.

Very Unstable Unstable Neutral Stable Sources Hi her Than 50 Meters

.40 x ~~ .33 x -e6 22 x '~a 06 x ~ >>

Page B5-3

Sources Lower Than 50 Meters

~ 29 g .91 ~ 25 x ~ 86 ~ ]9 )( 78 ~ 08 x ~ 71 where: az Vertical standard deviation of the Gaussian plume, m Distance downwind, m The X/Q and D/Q estimates have not. been adjusted for possible changes in wind trajectories and diffusion conditions with distance. The Nine Mile Point site is open and uncomplicated, with a vigorous, reliable wind flow. The data from the NMP2 tower should be quite representative of a large area.

Furthermore, the data available from other locations is insufficient to define variations in trajectories and diffusion in a meaningful way.

Changes in terrain elevation are considered too small to have. a significant effect on the estimates, and the calculations are developed on the basis of flat terrain.

3. Mind S ed Profile The winds taken from the 200 foot level on the Nine Mile Point Nuclear Station Unit 2 tower were assumed to increase or decrease with height according to the formula:

z Q "h

Z]

uh Mind speed at upper elevation, m/sec Mind speed at lower elevation, m/sec Upper height, m Zg Lower height, m Ranges from 0.16 to 0.50 for very unstable to very stable conditions.

Increases in speed for sources higher than that of the wind instrument are logical and in accord with observational data. Therefore, the tower winds were adjusted upward for stack calculations as well as downward for the vent releases.

Page B5-4

One of the most complex problems in reactor safety evaluations is the respresentation of the deposition of halogens. Although some field data are available, considerable evidence exists (refs. 16, 17 and 18) to suggest that an average deposition velocity (Vg ) of 0. 01 m/sec is often found with, active chemica3. compounds such as iodine. Therefore, reasonable estimates of D/Q should result from the single assumption of a uniform deposition velocity, of 0.01 m/sec. The D/Q estimates are based on this value.

Correction of the X/Q for removal by deposition and depletion have been made. For the tall stack source, it is evident that both deposition and depletion are very small. The vents have had deposition and depletion considered and the differences are more apparent at large distances.

The formulae for depletion follow those given in Chamberlain {ref. 19) .

Page 35-5

TABLE B5-l STACK X AT GROUND LEVEL APPLICABLE TO LONG TERM ROUTINE GASEOUS RELEASES Nine Mile Point Nuclear Station Unit 2 Niagara Mohawk Power Corporation ANNUAL X BY SECTOR (sec/m )

Distance Bearing (miles) C C 1>'iiQ 7<< 180<<Q

<<$ 5 ~ <<e~i~~<<(}9 ~>

~ ~>>91 t. (} ~ 2 ~ O$ 59f<<O8 5<<&giffg>>()5 5,bgh~t-n8 A,975OE 05 4<<9452K,~05 5<<1198F~08

<<Q(} 1 '14ef.<<ng 9>63954<<09 5 ~ dbms /8 <<(}y b,894eF. 08 6,0877k. OR S,sb2ba-(}V 4<<575'ilE,<<05 5<<iVRSE<<05

<<75 1.,3864(. OR 1<<2772'.<<06 5,745bt 0~ '5<<74ff3t">>V8 4<<502bt-.08 4 <<27 17E<<og ~,>4>>S-Oe 3.6424F,-Ou

'O I,6637k,<<()8 3<<5454/t',<<05 5,7 1245 (}8 4,8H(}1K. Oo 'e(>b~ 08  ;$ ,2644K.-OV 2,31ASE

'000 5 1

Oe 2<<7922E<<OS 1 1 '(}89'<<ne 3 <<~pn61I. <<(}8 5 '21St,<<08 4<<014~y~(}g 5<<03314<<08 2<<4b74E>>08 i<<6994E>>05 2,1347E>>b8 2 1,5504(. (~8 3,2b((5t.-n~ e.492eC-.OV 2,6390K<<08 1.90705. ne 1 ~ '500HF>>V 8 1 <<0009F<<08 1<<3166E.05 2 ~ 5(} 1 ~ 07f>4E.. Ak) f,0025f 05 1<<9458t>>05 1.99tbt:-08 1 'P37f>>08 1 '130k 05 7,3317K>>09 9 '096E>>09 3<<00 b<<e2/$ t'*<<09 9 <<() 54ih<<(.~9 3.5439'>>08 1 '5'544t>>05 1 ~ 0998k +('}8 8<<5/55E>>09 5 6031E<<09 7 <<5b17Ee{19 3,qn 7,01456. (l9 b,5675t:.09 1<<2457K>>09 1 2411K OV 8,7554L-O9 6,51i4y>>09 4<<4245K<<09 6,0021F~09 P.OA 5 <<198] t.<<n9 8,4598K-O9 1<<025Ot Oy 1 '}1~5E-Otf 7 <<1() 46K>>09 5.541(}E-.O9 5,585<E-O9 4<<8779K.09 4 <<H7 n~pg<<(}9 4, 577 Sk.-.(}9 0 <<5189t <<09 8<<428UF<<09 '5<<6937K 09 + ~ '5986j<<09 d<<9639K>>A9 4,O442E .09 5<<QO 4<<$ /654.<<(}9 3<<91106<<n9 7 '928K 09 7.1254K 09 4 '7344<<09 3 ~ S5P.lj 09 2,0957F~O9 3<<41106~09 7<<bO 2 ~ 541St <<09 2 <<2()8 3 t'09 :5,929eE-09 5<<7629K>>09 2.5762F. 09 2'<<0Q52f.<<() 9 1 ~ 2661Ee09 i,veooE-o9

'0,00 1.754i~k-O9 1. <<65785 <<(}9 2. 7 0 066 <<(}9 2<<5302f<<09 1,bg:boy<<Oq 1,2896t (}g 8 ~ 3357E<< 10 1<<144bE>>O9 1'5 ~ 00 1, 5A P5L (>9 3,2759L'9 1<<7775k.<<09 1<<e)05t>>09 l,OO55V,-n9 'l.4317k-lu 4,9781E 10 6<<8b78F>>10 RV.OO j.,l(li9f<<09 1 ~ (}36)5L<<09 1<<545lt' (}9 1,20(>b t<<09 7,3844K 1O 5<<2247$ <<i(} 3 <<6261E 10 S.O125E iO

~~<<00 9, 3.27&.<< 1(} R <<7 g f'i 4 P>> 1 0 1 y 0e 1 l t-<<09 9<<4554k>>lU 5,85156 <<.10 5,9949gg~iu d<<5513E~10 3<<9547F<<10 4v. OV. ') -,62484 .10 7<<54251->>10 ti,ho75t>>1Q 7,66'&dh.<<10 4.80~4L iO ~ ~ 1929 j@10 2 ~ 327WE,<<10 3.2u11E 1 O 55.OO b, 055~4. 3 (} ~ ~ 1985t'=1(} 7<<1$ 65t.>>].0 6 <<5472t"->>10 4 ~ V5i'.1t<<1 O 2.62cey-iO 1,9437E-.1(} 2.6b39E 10

~O<<00 5-.493.at.-] 0 5,2~'76I;-.- 1 u "i'8178,>>iO '5<<5451F .1u 5<<4563K,<<19 2<<2QQQp>>1Q 1 '504F>>10 2<<P5~5E."10 45,0O 4, I S51t..- 3(l 4,5575K. 1.V ~.0991K<<10 4 <<564HE.>>10 2 ~ 9>49( <<10 1.8768P-10 1<<42OOE>>10 i<<9540K>>iO 50, 0(} ff<<1226k<<10 3 ~ c3eg 1 f:- 3 (.} 4<<40004<<1O 8,94578~10 2,5852E<<i(} 1.620gy .10 i<<23>8E. 1O 1<<6762E .10 Page 1 of 2

j--PH ZJHAT OT ZJKADXZK'3A JZVZT GMU05IB TA 9)X ZDAT2 2ZBAKJZii BUOZBAQ PgTTrJOR> NSZT QYi0J

-QU EIC,i:36~ 8 .aBJQIJH SQioS &IiH SDiH ooidsxoqxoD xeno<<E AwsdoH axagaiH II 20TDZ2 Y8 3X JAURHA

( mho>a) ppixpaH eoasfaiG e+bfL <<.c d".-Sic."PP.P- b(:-3VCY~<~ f'i w 3 5 6 6 < 8(}~.QP f ~H +6 H. f'> ~ 5 << (;} ~ 5 a P c ae gg j' P.S -

I,t c.", $ O OQ~3P278,P g(}~ jdSd8, HP~3$ $ yO,d UVa3CiW88,6 b(}~3)&ado>> Q p'>~qya r (}>

ee 3f,t~f,l f~ c'U~37>

dC 985 (~b, ~ 6 (' j Ep p V, 8 50~805QEy", 60~ .i5'tI YS, E 5,r ~le 00>l RQ~ )~L> I K,q 5 Q () c g Q (,' ~~< y, ) ~ g g () g Q o L> t)goQPQ Q f>sa 3P5PP, E Pc}~3$ f <1~ f uO=du~aS,P'O-3~7~i~.5 5() 34PPB,L b(}~~ 5 e 5(} ~ 6 (} Q a~ ~a>>c (,3,f 0 P ~O-al~ r 5~. ~ yj)ca 3J&v<<!> E pcs'.H ~ 6() f cc

(}@~: $

80~39000,P d() "eood, l Rn QOVOP.L 5("~3<<}PKA ~5 bO 3<< l}"<<cc, f j) g} m .'3 i-') q" 0~E (} fl PQ~37$ KKccV 80 30~i L', f <0~3/<>Q~L zn 50~382w"ef BQ~ 385u.}, t (i }~3dc.'-. 7 80~3>Kghgl VV~352 Yc" 8 c e0 B~~PPu t 50~3VP<<.'C<L d (. ~ 3 (' Q 4 Pc)a 30@>>ij < 8 Qg.. 6

<A.,~5944 9()~3k L $ 8, 6 90 ~l-'i"5$ 8 8(-ALLIES.f v.0~37doS,f P () q, 9 K 7 c) 2, c;

~i ~(}~ 9<0 L V,E (sP P(}~3QKH8,5 e() 3v L~ 9') 3ov-(} 5, 5 uo 3uSLV.f yf)~QQpgQ~L p()~ 36<'Icb, P 6( ~3 f ~~~

Au<6'.QqP 8{'c~3Pr dP ~ 5 P(~~ Rd 6Q>>, ~} OQ ~ .g $ Q g Q . ~~ 38~.5468 PA 3MB he>H 3K ) 7P.@ $~

~) ar g <<') $

40+3~290,5 80=3~588,K Q(}~APE (" ~ 4 e(;-~l <<5 f. V e(}- 9<<5v4. 5 6'(.'c 3c' {,0 Vie C en 3f,de&.L P(} 358V:}, 5 P(}~.-"i5<<': $ 2 o 5 eo .>v4a Y () ~ 3 d P 5 (" o P PU ~ 9 j R<iS,S C.'.".}

'(.'a ~

oL.3YeKK,8 q(} ggpggr qo 9uF kd, f pn-)bohr',5 yaw 3<<}Q(; 7 o Q V(3~ 94~88 < .t 3i> 0 OV,VL of-3LnVe.~ Ul 3Y t Kl'-e 90~ <KP(3(} L PO-zk.of&,f. Po ahVhs. I r'(>a L)Qc. C l QLcogtgggog ~'7&55,<<'j Oy-&w~66.$ 80" Iu()05~ I. gi.i Rd.!!, l j( f Jef

..') 0() cc

(,c 5 U.,'~3c"f"0,5 L c. 3P l> P 9, 5 Ofa35.$ <<.'BOW U I aiPh<<.'~ <<('l QV~~)f.dUoE @Le )Qi}PV q h  : i~dc'Y~ Of), <<,"5 OL~3WV<<cK,S OL 'HPSPJ,K g$ dot.'oo.~ "cdhCAde 5 (}(~38.>ed,d QLe .9 c" g P? ~ 7 '.1 f ~ 3 ') 0 5 a$ VQ,U>

Ot-3>rye,L (g t ~'dQQgd o 5 OJ'~~LSh~aI' OL-avfuh.~ 05 qQQOU,l') ())a 3KAV J., H g~ j 3vCg C

(.':(} c,85 0 f ~340i 8, I Vf-30505,S l 'O 3 F 0 Q <<~ y t Vl 34e'P~.e' 3 d 7't.s 5, r,' i> t Ou,

/Jr Ddr('}l Ql-'}0, 0$ ~300SP,L GL 38dV8ef Ut<<39iAV,S ~38462 ll cc BJPP(;,c" pgc CQ 0$ ~358FS~.', v)~3>>0<<;8,2 ()j~35FAd,b g $ ~~$ >>PF ccrc 0L . () J~ 3LRQP,K  ;~ l 3dSS .f oP ('0. V>>

2 "o I eoaI

TABLE B5-1 (cont)

STACK X AT GROUND LEVEL APPLICABLE TO LONG TERM (ROUTINE) GASEOUS RELEASES Nine Mile Point Nuclear Station Uni.t 2 Niagara Mohawk Power Corporation ANRJAL X BY SECTOR (sec/m )

Distance (miles) 202 o'5 ?70.0 292 o 5 315.V 337,5 360o0 g25 2 o I 435K.~OH a.21~SF 08 5g8200tg09 5o0701t 09 1gli71t~08 1,9lb84Ej08 Ro0977Ee08 Rol442E08 g50 3,2804k 08 3o17~3E~08 3 p 1701E+08 9o1950V~09 J o9621E~05 3g2384E05 o 9017Ke08 3,1809E e08 g75 c.,55j25t~AH  ?,566OE-.n8 lo1049E~08 9.9890K 09 2gi3'54~~08 3o6406E+08 Bg8377Ee05 3g3588E<08 1g00 2,10054,~05 2 g 18856~05 1 o 0655K<< 08 1o0895F~Od 2.295VE. 08 0275K+)08 2g8948K<< 05 3o5957E 08 lg50 1,7007E-OH 1,80408 O8 9o7587~e09 1o07/7E~05 2,2368k 08 ~,9539E~05 i?,7300K<<08 3,ayOOF~05 2g00 1. 3130t'~08 lg]962E~08 7 g1555F~09 8,38648~09 leb670E<08 3, (1 $ i? 4 E y 0 i} dg0309Kc08 2.6148E 05 2g50 8,4108F~09 9o 1023E~09 5ob0876.~09 6.6794E-09 1,S097V Oa 2 g 376$ Ee08 1.5948F~08 Bg0578Ee08 Sg00 6,5g09t:.09 7 o1339F~09 4g4555t~09 5g3535h.~09 3.0O064 08 1o8922E~08 lg2b78E~08 1,687RE~08 3g50 5,2~515 09 5,6995E~09 '5g60'566~09 4,3563E 09 8o@1744~09 lo5330E~08 >,0263K 08 1g3759K+08 4g00 4o?7516 ~09 4l o6$ $ >F ~09 P,o9708F~09 S.t Veen-O9 6 o9507E.<<09 1g2036K~08 8,4668E .09 1,092uE~05 4o50 3,5bl3E. 09 '.f o 887 0E. -09 2g488VF-<09 3.027aV. 09 5,8O4OE.O9 1.0588E-'Oa 7,0869Ec 09 9 g 1599K~09 5,00 .$ .00916 09 3oP932E~09 2o11716~09 2o'5852Fe09 4,9384K,-A9 9o0089K~09 6o0343Ee09 7,8026E O9 7o50 1 o 57 19K-F09 lo7410f..~09 1o16366.~09 lo477>E~OS 2g713bt~09 Qg8649E.~09 3,32736~09 Q,B397E 09 lO.On loOge3t~OS lg1599E-09 8.956ot 10 1 g 1527Ee09 1,94636-09 3g3284E~09 g,38955,~09 3g1717E~09 3S,00 e, 194vt ..10 7g24?8F. 10 bo3515Er 10 9g5719t ~10 1.585bE 09 2oi375E~09 3,5906Ke 09 2e3043E~09 20gQO 4 o 5594t.c 10 5 g 41? 0 t' 10 5o2788t~10 S.a42>F. lu 3,0969E 09 1.5855E-.O9 1 g 3343Eg 09 1geaBeE~09 85o00 3o 6$ 04t <<10 4o320$ f:~10 4,4437F 10 v,o>>eE-.>v 6g91314~10 1.2378E-09 1g0791E~09 1 6714E<<. 09

~V,O0 2.9798K. 1O 3,56096~$ 0 S.7b43t-jO 5o 951OF ~10 7.5S11t-10 9.9579E~10 8, 87 89F. ~10 1.2054K..09 55,00 2o5044E.~10 2o99~1E~$ 0 '.>g2125t. 10 5 o 07496~10 be1670E~10 8 o 1912E~10 7,41t'E~10 l,0024E..09 "Qo00 a.l375t-.lv 2.5550E-10 2g765dE 10 4ohb05E~10 5o8348C~l0 6.86066,~lV 6,2807E 10 s,a54<E~10 45e00 1,8467t; 10 2,20eot, 10 8.4009K 10 5,7791K~10 4o49644~$ 0 5g833ggqs10 5,384bE lo 7g2229K~10 5O,00 >,6i39E. >0 lo9253K~lo 2oi0?18'~10 3,3027K .10 o9034~ .10 5o0237E~ii e,6b7aK~10 S,PeaoE~10 Page 2 of 2

TABLE B5-2 RADQASTE BUILDING VENT AT GROUND LEVEL APPLICABLE TO LONG TERM (ROUTINE) GASEOUS RELEASES Nine Mile Point Nuclear Station Unit 2 Niagara Mohawk Power Corporation ANNUAL BY SECTOR (sec/m )

Distance. Bering (miles) 67,5 90.V 112<<5 135<<0 157,5

<<25 1<<2955K~()6 1,2b36t ~06 2 << 1919t~a6 B<<10USI=.~06 1 o 45124<<>>06 <,1818F,06 7<<3596K~07 9 o 0167Ee07

<<50 6.8545~ OV b,00795 ~07 9<<29956<07 8.4577F 07 5oP720E~07 -4 o 2298E<< 07 2<<7307K<<<<07 3,3858E~07

<<75 "<<39244~07 4,0271E~07 5<<4252E~07 4<<8252F~07 2<<5307K~07 2 p 2571K~07 1.0940K 07 1 o8610Ew07 1.00 3.07986~07 2o7946607 5<<6$ 20i ~07 5, 1810E~Ol lo8000E~07 ip4304F~07 9o6$ 39E+05 io2056E+07 1<<50 2<<1342t:~07 3<<92'.52E~07 P- o 4251K- 07 2<<10v7K 07 io1590~ .07 9, 1897 Os E-'. 6 <<2510Eo 05 7,9009K 08 oOQ 1 <<1587 t;~07 1,036'5F+07 1<<~6506, 07 1<<0863K>07 ~o78>95~08 4.586~K-08 8,160%K~08 O,0833E~08 P<<50 8.2224K,08 7<<$ 03PQ@08 8<<809iRt:~08 7 o 5601E~08 So9728E~08 3 o 15686~05 8,1843E~08 2o7946E~08 6.1741K Oe 5,5114F-98 6<<5861k,~08 5<<60'65Ew08 2.,919'5K bs 2o3245E~08 1 o6120Ee08 Ro0640E<08 3<<00 io5967E<08 8,50 ~<<~359a~08 4,>1eoz ne 5<<1505t~08 4<<3561f~08 8,2531t',~08 io7957E~08 1 o8470Eo 08 4<<00 3,~110'8 3<<0908F~OB 4<<13586.~08 5,5055t.~08 1,S038K ~08 1o"3726~08 9,9890K~09 8o2205E~09 io2788E<08

)oa528Ke08 4<<50 3,2450K Oa P,9(}29E~08 5o42'59Es08 2 9000Fe'08 1.4867K. 08 1,$ 885F OO 2<< 7489K,e 08 2<<4625F~05 2,9007~ 08 2.4553F~08 1<<25038.~08 9,9<9PE 09 6o9234E+09 8<<8637K<09 5<<00 7o50 1o4642E 08 lo3242E~08 1<<55254~08 1 311St'. <<08 6<<6973k<<<<09 5.1890'9 3o6$ 96Ee09 Qe6569<~09 10<<00 9.~1206,-09 8,6074F~09 lo00498C 08 8.4912E. 09 4<<5768t~09 >o~0>SE~09 8 o 3125Ee'09 S,0069E-.09 15,00 5,02056~09 4<<6.8&gP'~09 5,41766+09 4,59O~F~O9 i? 4 1 61E~09 1,75536~09 1 o2367<~0 1.6470Ee09 2u<<QQ 3<<1925t 09 3,0239K 09 5<<462bh.~09 2,9<10F 09 1,580bt.-.09 1 o 1183K<<09 7,9398E~1O 1,0765E-09 P.5. 00 2<<24'27t<<*09 2, 1 o Sent. ~09 oQ544Et.09 2<<07475+09 1,139Sa 09 7<<8921Ee10 5,651aE 10 7,7387K~10 30q00 1.68'09K O9 1,615'Sf~09 1.82l,ot.-09 l<<558PE+09 8.7461K ~10 5<<9493K~10 4<<2988Ee20 5<<9118E~10 00 $ ,51778,<09 1<<2701E~Q9 ly42264<< 09 1<<22264<0'9 7.0017K 10 69$ 8Fe10 i,sacra 10 4 o 7078K<10 Ao,00 1.0671V~Q9 1,03025,.09 1 <<1475F~09 9 o 90546~10 5.78678- 10 3o 8217 E~10 8 o 8087E~10 3,80P5Eei0 45<<VQ 8,65756.~10 S,5564'O 9 4855k.~10 8 o 2187Ee10 4.8852K io 3.1888F~10

'0 2,3607K~10 3<<$ $ 06$ <10 50<<00 7.495>E 1O 7,2413E 10 7<<99444~10 6,95166,~10 4<<19466~10 2<<7107F 2,0196K~10 2<<7666K~1,0 Page l of 2

TABLE B5-2 (cont)

RADIX TE BUILDIHG VEHT X AT GQODHD LEVEL APPLICABLE TO LONG TERM (ROUTINE) GASEOUS RELEASES Nine Mile Point Nuclear Station Unit 2 Niagara Mohawk Power Corporation ANNUAL X/ BY SECTOR (sec/m )

Di,stance (miles) 315'o U SbpoQ o?5 7 6965K.+07 8 p 5749F.~07 4 p 5341 to.07 5o9195Eo 07 1 p413$ E ~06 2 o 7299Eo,06 1,8647K~06 Bo6iliF>06 oSQ ~,075OL~Oy 3o6795E+07 2 p 212'5E . 07 3,5529E~O7 7 o 16026~07 io2609E~I06 9o2915Ee 07 ly'.5356F~06 o75 1 o 7385Ee 07 >47ea 07 io3741E+07 2p40biPfe07 4o~i065~07 7o60~56O7 5 8275Ee07 8o4337E@07 1o00 l,iliHE-OV lo4325E+07 Sp5116E,~08 lo7355E,~07 ~o1319t~07 5,1643E 07 4o0438Ee07 5o8660E~07 l, o50 7,54095,.08 9p5634E~08 bo5432E~O5 lo2274E>07 ~ o 1543 K+07 3,0998E I07 I 2,7830F~07 @o0435E~07 Po00 3,880bP.~QS 4,97846~05 Spea20t ~08 bp795dE.~05 1,1577K,I07 ip8532F~07 1,499$ E~07 2 o 1813E+07 j

?o50 2o6972E~08 3o4788E<05 2o4922tip08 4,8577m: 08 8 o1817E~08 1 302@E 07 0609Ks07 1.5445E~07 boOO lp9962E~08 2o5863E~08 1o8715t~06 So6702E~08 6p1257t~06 9.7076K-O8 7o9465E~OQ ioi576K+07 Bo50 1,5663t, OS 2 o 0110E>08 1 o4712t;~08 P.,8989t. 08 Qo7870E~08 7o5521E~05 o 2107 E~08 9,0467K Oa Oooo 1.23928~06 7 o 6 1 73E+05 lo1985Eo.08 Bo3580E~Q8 5,8637t~08 6,065OE 08 5,0084K~08 7p3953Ee05 4ob0 1.02OSt 06 ip3557E~08 1o0049t,~08 lo97~5E-08 3o1996F- 08 4.9944K-O8 4o1412E~08 6o0312E+06 Qo00 6.5857E~O9 ipid70E~05 Ho6222tp'09 3o6868F+08 2,705dE 06 4.$ 971E~08 jo4f94)E>08 5o0876E~08 7p50 4o4764Fw09 5,9143~ O9 4o9$ 35fe09 9o56f9E~09 lo4271E~OS 2,ie0<E O8 lo818SKe08 2o6439E~05 jp,UO Po8563Ee09 3o7640E~09 8,4040E..09 bo258bte09 9o10028.~09 1. 531 eE~O8 .1462E 08 1 o6620Ep 05

-15 o 00 1 o5$ 98tp 09 1.985~E. 09 1.9867)..09 ~oS222F~09 4p8089E,~09 6.6025K O9 5o9725Eo09 Sop)28Ecp09 20o00 9oe627t'~10 ip2605E~09 1 o33$ 5t;:~09 2o5202F~09 5,0439K. 09 4, aaa OE .~p 9 5,754OE~09 5o3794E~09 25,00 7 o 0603 t"..p 10 8p9086F~10 9.72llt; 10 1p6669E<09 2o3323t~09 2.9180E~'O9 BoblBQEe 09 3,7267K~09 30p00 5,4039K.p10 6p7515t~lp 7p4862Fc 10 1o 27128@09 1.5946k,~09 ~oi592E.O9 1 o951$ Ee 09 2o7568E>09 35oUQ 4,3?56E 10 5 3b28E 10 '9 99264o 10 p io0078C~09 lo2477t;~09 1.6746K 'O9 1o5222E~09 Boi~86Ep 09 00,00 5o57POEp io 4.4O23E~10 4o9346t ~10 8 o 2&97 t'.~10 1,0089m:~09 io3439Ee09 lo2277Eo09 1,7146E~09 QQ ~ Qo So0170ts'10 3p7vl iF l0 4.15158.-30 6o8730E<30 8o$ 6244~10 io1068E~09 1,015QKe09 i,aiOSE 09 50 F 00 2p 5924lE . 10 3,1685F~ $ 0 Sp5516E 10 5.84aoe. 1O V.O67~E->O 9o3026E~10 8,5650E 10 1,1841E 09 Page 2 of 2

TABLE BS-3 REACTOR BUILDING VENT X AT GROUND LEVEL APPLICABLE TO LONG TERN (ROUTINE) GASEOUS RELEASES Nine Mile Point Nuclear Station Unit 2 Niagara Mohawk Power Corporation ANNUAL X BX SECTOR (sec/m )

Distance. Bering (miles) c,2, 'i u5,0 67p5 112I5 13,5,0 157.S 180,0 pR5 $ ,29054.~()6 lp2605t~06 2,1850K, 06 ?p0800E+06 1p4310E~06 1.1660K.V6 7,2053E~OV e.y982E 07 p$ 0 6,79OSF-nY 6,365IE~07 9p1994k~O7 ap3009E~07 5 p 16?2t,p 07 Qpib44E>>07 8,6585Ee 07 S,cooers p75 ~.33tbE, Oy 3p9908L~07 5.3<60i~07 4py25iE<07 2,765$ E~oy Hp2$ 9QEI~07 lp4559E~07 07 07',80'51E 1 p00 3,0402t,~Ay 2,76958.~07 5.9692K 07 5 p 1 165E~07 1.7S98e-ny ip407bFI~07 Mp393@E~05 1 p 1 646E~07 lp50 2,109ct..uy ip9076E~07 2 p3912E~07 2p071QE~07 1p13566~07 9.0559E~~08 bpi265Ep.08 7,6190E. 08 2pQO l,ioeOE, 07 l,OZ95<-07 l p?5176~07 lp07286~07 5,6865t.'8 4,5168/>QQ S,1055E-.08 3p9021K~08 HpgQ 8,1~97k-OS Tp3906f~08 8p76086~O8 7p472SE~05 ,$ ,9075F Qi 3.0989FI-08 B.i<QOE 08 ?p7$ 25E~08 5pOO b, 126 4 O t3 E. 5p~<629E~O5 6p51156~08 5p5$ 45E~08 2.8671k. 08 3,2$ 25$ ~08 1,578SE 08 2pQQSSE<08 jp50 <>

o 79obF ~05 4,2670~-08 Sp05666,~08 4,?~69'-oe 2p20'526~08 7VVOE. 08 ai 7?K. Oe lp5525E~08 4p00 3.8629'-5~8 3p439Uf OU Qp0579t,~05 5p4353E~08 lp75654~08 1.5918E~08 9,7125E~O9 ip2413E+08 4,Sn 5, 1925K,~08 2p8021F~05 5p5431E~O8 2p824QE~08 lp43826~08 1 p 1396E~08 7,9618E~09 1,0188E 08 SpQO 2,682<4~08 2,3977K 08 2.81398.~08 Qp$ 74gf ~08 2Q4bE..~08 9,5<18E, 09 6 671PEp 09 ep5428E~09 7p50 1,4O52E+08 ip2578E~08 1,469OE~08 ip2563E>08 bp8098t+09 4,879$ E~09 5 p 4151Es 09 Qp3775E~09 10,00 8.9~2Vt,-.09 ep0509F09 9,4035E-09 7 p9139E~09 5p9735t-~09 3p0757E~09 1535E~09 8,7651K~09 15p00 4p7614k~09 Q,gq?1L~09 Sp0625k~09 4.2eVie~O9 Hp1659t~09 ip6244E~09 1 p 1393E.~09 1p0762E~09

?Op00 5,O375E-09 ?o803b4 O9 Sp2535t~O9 2,7465K.. 09 >,41~9~-.09 1p0344F~09 '7p2753E~10 9p5547E<10 25.OO  ?., 1357t;~09 1 < ~9116 ~09 2.2975t= 09 l, 9417F'~09 1.0126k=09 7,2719E~10 5p1322Fp 10 bp8$ 28E+10 50,00 i.SV38E,-.09 1p50116~09 1p'7225L'~09 1o4570F~09 7obs>1t~10 5 p 4408F~10 3,5531E~ l. 0 Sp $ 917E~10 55p00 lo24~16 O9 l p 17965.~09 1,346vF 09 1pi401E,~09 bo07196~10 4.2518F lu Sp0215E~10 4,1111F.-10 40p00 1.0014E 09 9p5599E~(0 1,O863k 09 9,2069F~10 4,950$ E~10 3p 43~1K 10 dp448QE~10 Bp35658~10 45,00 5p2742E.~10 7 p9355Vm10 Bp9786h'.pig 7 p 6197E<10 <>

p 1 36ikk.~10 2,8437En10 Bp0359E~10 2 p 8061K<10

'50 p 00 bp 37654~10 6,7146K 10 yp56758.~10 6 <kSL1E<10 .$ p5259E~i0 2.4O44EI-. 10 1p728~E~10 Bp 3911E<10

0 TABLE B5-3 (cont)

REACTOR BUILDING VENT / AT GROUND LEVEL APPLICABLE TO LONG TERM (ROUTINE) RELEASES Nine Mile Point Nuclear Station Unit 2 Niagara Mohawk Power Corporation ANNUAL X BY SECTOR Distance B caging (miles)  ; 292.8 225,V 847 270,Q 5315~0 337 ~ Q 3eO.O y R5 ~o5225K~O7 sy3555E~07 4.40786~07 5y 5451E<07 io>989~"06 2 o 7119EqO6 1~8548K~06 i?66044K~05 ybO 2,9844t~O7 3~5822F~O7 2,1433K. O7 3~4649t,+07 7q03876,~07 )620756>06 9y1929KI07 1,8255E Ob Q 7 5r 1.682,5t ~Q7 2 o <) 917 E +07 32475+07 2,3397K,e07 460274h,~07 7o50$ 8E~07 5,7480K~07 8~356QEe07 1 gOQ 1, 1049K ~0.? le3989E~07 9,1558K 08 1 668516~07 3~08025~07 5oO966E07 9.9881E~OV 5g8144Ew07 1~5Q 7.31666...OB 9 o ~791E,05 b,3O60t~08 iy1958E.~07 2,1251,K~07 5o4'573Ee07 2g7482F~07 4y01?OK~07 2g00 3.78614 08 4~906QE~05 3.418OE. Oa 6~6525E~08 1 ~14765~07 1.6350E,,07 1,4847K: n7 2ii<87E+07 2~50 2,636gE.~08 3g4296E~A8 2y4278E,~08 4I677035~08 8, 1238E~O8 iy2925E~O7 1 g 0519E~07 1,5S65E~07 BAZOO 1.~5466.oe 2,8464K-OV 1y8235F~08 3.6042K.~OH 6,0828E-.O8 9,b412E.F08 7,8821E~08 1 y <514K~07 Sy5Q l I >133Ee08 1,9753K.O8 1,4278K; O8 2,83276~05 4,74666.~05 7,5018Ec;08 8,1'539Ee08 8g9896E<08 4yOO 1~210bfs 08 iq5832Fe08 1 1542Ec 06 2g2954Ee08 3,i2Oet=-.oe 6,O225Ee08 4 95498+08 7~2379E~08

@,50 9,9~896<09 io~024~+05 9y5765E~09 1,9OV1V..Oe Sp1552t'-F08 Oa956LE)05 4g088bEe08 5I97 19K<08 00 8 5541K.eQ9 1g0943F~08 8ei245F~09 1 o61 ~84+08 2,65586 na 4.1614E 08 3.4422K~08 5,0268K~08 7,50 4~2608F~09 5g6467E~O9 4 q0411 fs 09 8.7387F+O9 1,8784E~08 2, l 1 6PE~08 1~77486+08 2,8875Ke08 1Ve00 8.6773E. nq 3g5677E+O9 2y9845E~09 5g7393fe09 8,7195t~09 lg4088E~08 lgii20EeO8 1 ~5184K F08 15,00 1o41OOE,~09 iq8797E~O9 1,7342E~n9 3~ 1954K~09 4,5917K 09 6,6454E)09 5q7579E~09 8,8615E.09 8,9971E...>o 1 I l 9058~09 206()0 1yi7,52E~09 2.10O5E 09 2,90716~09 4,$ 093E~09 3 ~ 6071K~09 5y2254Ee09 25I 00 6, 5S'.3bE 10 8. 3233t.- 1 O 8. 58'1 VE.~10 1 o5119E - 09 2,03826~09 2y8303E+09 2,5072K~09 3y6215K~09 30o UO 4. 7 7 Hah.-1O 6y 19896+10 bn61.104~1O 1,1518K.~09 o$ 147 f 2,0866K~09 1.861VE 09 P.,<8006~09 35e00 3.7554F 1Q 4y 6287E~10 ~.Z76~a->0 9,1279feiQ lyl7'?~Eon% ii612$ E.~O9 1,4456Ec 09 2.O755E~O9 40,0O So0505E,~1Q 3 > 8921E. ~10 <I'5294~~10 '1'q4495f~lO ~,48946~10 ie2896E~09 i,ibiSE 09 166625K>09 45~00 2654524~10 Xy2231E~10 3.63186 10 6y2204E~10 7~8331E~10 1 p 0591E~09 9 I ~757F>10 1~3662E~09 50NOO 2,16526~10 2,7d80F 1V > e 1021E~ l 0 5,2,'905K.<10 6,509~6.~10 8,8854E~10 8,0564E~1O 1. 1,461E~09 Page. 2 qg 2 .

TABLE B5-4 STACK. I 'AT GROUND LEVEL APPLICABLE TO LONG TERM (ROUTINE) GASEOUS RELEASES GRAZING SEASON (APRIL 1 SEPTEMBER 30)

Nine Mile Point Nuclear Station Unit 2 Niagara Mohawk Power Corporation BY SECTOR (sec/m )

Distance Beari,ng (miles) 67o5 9O.O 135.0 o 157.5 180o0

!~

o25 5,79.$ 5t-.n9 4o3042E~09 3o3$ 99E'~05 3.8379K=OS io6242E~08 7,4823K-.Q9 1,5964K~os 3ob064E+08 o50 9o5993E~09 5o9089~~0 7 o 4134E.w08 Bo8554<~08 1 o3710E+08 1I8543Ke08 3o4331E~08 o7~ lo6215F~OH $ o 7758t.:F08 eo55'54K,~08 6o31034~05 2o317QE~08 1 o 1495E+08 io3ilc!Ee08 a,zi23e 0S 1oUO 1.966tE-l}8 2o45>5E~l}8 fo2232Eo.08 5.3457K-OV io9212E~08 1,0046E+03 9,8032K~09 lo7$ 34E~08 io50 2,Qf98h. 0g Po6632F~08 7 o 10388~08 4.3395E-08 io5424E~08 80S409EeoI9 7q2$ 86Eca09 1 o 3117Ee08 BoOQ $ o5836f:,,08 2o)623Ee08 So4376E~08 2o 781 $ E~08 9,8139K 09 5o8299K~Ot9 0,18246~09 8,4776K ae Po50 $ ,2575t 08 ) p7919E~08 4.2989F-O8 2o0786E~08 7o3230E+l}9 4o4641E+09 Bo,0323Ee09 6o4771E~09 5o00 1.0049'.-oa io3906E. 08 3o4289t'~08 1.6O31E-..OS 5,6433E~09 3o4966E~Ot9 Bo2922Ea09 5,0875Ec 09 3,50 8o1582E-09 .fof3P3F 08 2o7811~o 08 2717g~Q8 4o4746Ee09 2o8032E>0)9 io7902E~09 OyA920E~09 4oQO 6,73~96-l}9 9o3652F~09 c".o2942E~08 lo0327E"-08 >o6325t ~09 2.2943F.~0~9 1.4<36E~09 3,S585Z 09 4o50 5.6q8<E-09 7o8671F-=O9 lo9236E~08 8.5568F~O9 3o0089<~09 109137EA(}l9 loi896E~09 P.o8049Ee09 o00 4.81064-09 bo7074E~09 1.6>77K~08 7 o2174E~Q9 2,5363P.<09 lo6252E~OI9 1.0028fe09 P.,8788K~09 50 2.,6195K 09 3o6669E~09 8o8782F~09 3,8O33E 09 lo3146F~09 9.168OE lO 5q9107EolQ lo2390Fe09 iop00 lo82P3E~09 2.5805E 09 6oii39E~09 2o5976E~09 8 o5470E~i,0 7.0342E 1O 5.a594e ip 7,8Seza ip 1 goOO 1,2089E:09 fo7938F~09 3o9700E~09 1 o 7178<~09 4o9876E~10 5o5126Eo 1,0 5,1310E+ 1 P Oo9$ 55Eei0 2Uo00 9,06~26-10 lo~o58E~09 2o9372E~09 1.3019K. 09 3o45~1E 10 Qo4942Enfo 4o6093Ee10 2,7$ 57E~10 25ooO 7,0746K-)O 1 o 1 35PE.~09 2o2744E~09 lot}265F~09 2.5698K-ip 3.6637E .1,o 8,9046E ip io948PEs,l0 30.00 b.6676F.-fO 9o2846E~10 1.8150E 09 8 o 2571F~ l0 1.9972K .10 3,0107Ee 1',0 $ o 3301Ecy 1 Q lo4684Eo'10 3boOU a,6382E 10 7o7241E~10 fo4787E~09 6,8alfE fO 1.6009E 10 2.5045E >,O a,sa~iE iO ioi515Foi0 40oOU 3,8655V~10 6,5164F~$ 0 1.2293E-O9 5o709$ E~10 1,3105K~iO 2.11OSE 1!O Bo410$ Ec 1Q 9o2995Kei$

05o QO 3.2715E-10 5o5677E~10 1o0386t~09 4p84S3Ee10 1 o 09996~10 lo8012E>l;0 o0755EalP 7,se<4E~ii 50o00 2o80bgf e f 0 4,8116K-.$ 0 8.8965E-.10 4 o 1697K~ l 0 9o3524~~11 io5547Eel(0 1,8039E~10 6.4678E~li Page l of 2

TABLE B5-4 (cont)

STACK. 'AT GROIJND L EL APPLXCABM"TO LQN6 TEgf OUT'N 6A EQUS EASES GRAZING SEASON (APRlL 1 SEPTEMBER 30)

Nipe Mij.e Point Nuclear Station Unit 2 Niagara Mohawk Power Corporation X BY SECTOR (sec/m )

i)istance Begging il~) 270o0 315o0 pub 3,3355t 08 5,4898Ea08 2o8702E~09 2o2529fa09 4,1<0>E 09 1,1044K~Q8 8.5647K oa 1,6092K+06 oSO 5,53708~06 6,3161Ea08 6y0159Ea09 6oPP59Fa09 7,0955K~09 Ro0329E>08 Bo3728F~06 2,9SSSK 06 47 a) 2obbGQFa08 4,5612Ea08 5,7041Eo09 9,0089F O9 7.0068EaOq 1,79>>6K~05 1,762~Ee06 i?o6997E+08 1.00 2o2350E,a08 3o4550F~06 5,5519K O9 1on5906~08 So7242K~09 1 o 6161Ke08 1,4823Fe06 Ro5237Ee08 ip50 $ ,8957E~G8 Po5859Ea08 f 5o Qggi a09 1,ObOiF 08 5,0q5QFa09 1 o 3795F~05 1,2140E~oe RI2203Ee08 2oQO 1 o ~.523E,>>. Oe lo5379Fa08 5,5926Ea09 8oi22SE 09 2824Ee09 9,29BOE~Oq P o9lb90Fo 09 1,8386K~OS 2o50 io0382t; Qe 8o2346F>> 09 lol234Fa08 2',7827Ka09 6o4035E~09 ~p3056E+09 7,05SSe 00 6 o 0181 fo>>09 1.1790F~08 3o00 Ho5472Ea09 2,1930Ea09 5o0956Ee09 8,599OK~O9 5.0973K.O9 Z,67~2E~09 9o2301E~09 3o50 6.6608f -.09 6o7200E~Q9 io7606Ea09 0,1253Fe09 2o0886R.+09 0,36938~09 3o't248E~09 Vy3952Eco09 qoQO 5,4856E.-Q9 5o 422,7F.~09 1;aOPeE 09 ~,>989~-09 1,7113K 09 3.5819Ko09 3o0363Ee09 6,05006+09 Qo50 4 o ~921K 09 ~,4720t;O9 loPQ866a09 2o8083F~09 lo4269Fe09 Ro 981QKa09 Bo5262Ee09 5.OO63E 09 5oOG 8.9OQ>E-O9 3q7593Ea09 lo0255Eo>>09 Pog25Cffa09 1,20828+09 Ro5281Ka09 2,103OEe09 4o3883K+09 7o50 2.01798.-O9 )o97256~09 5o6005E~10 lo3664Ea09 6.2018EalO 1.4301E~O9 io2569Ke09 P,o859E~09 10o00 1.2033E-.O9 io3622E 09 4,2630K 10= 1,0355Fa09 So6351Ee10 1.1172Fe09 1.0908K 09 Ro0397go.09 iboVO S,5b~sa-. >0 9,8<62E-. 10 Qo2$ 92Ea10 8,3035Keio Ro303VE~10 9o3758E~1Q 1 p.0967 Ee 09 io803QE~09 20oQO 4.7039E.10 8o7857Fa10 0,5025E. 10 V,OO97E 1O 2 o1342Ea10 6.~8PSEalO 1 o0345Eo 09 io5736E~09 25oOQ 3o9D86E~10 Bo10336~10 4,577$ F~10 6o6233Ew10 Bo1772E~10 To0727E+10 9o1819E~10 1 o3343Ee 09 50'o 00 35o00 3 O~UOEe 10 3.0<17E-.1O 7 o 501QEalG bo84QBF~$ 0

~,~799'0 o 0702F+10 5o8911Eei 5o2242EiO Q 8,1679Ee10 2o0698Ka10 6,61866+1 5o8360Eo 10 j 7.9SBiEei0 iotR42E~O9 4 So6713E~10 9o5iBSEa10 oo.av 2,7204E,~ig 6o 1987K a10 3,7261K ~i o Po6335Ea10 1,970gh;~10 5gi562E~1$ 5o945QEa10 Soii65E~iP 05oQ0 2o40lOE,. 10 SO6031Ea10 So3880E. 10 Oo 1 194K +10 1o8329tai0 4,56'>>5E~lg 5,1P42Kei0 6o9900E>10 50o00 aol9Pl~-10 5o 0651Fal 0 3o0737Fai,0 3o6755F~10 1.t 93>~-.10 ~.Oat 9K~>O 4o5342Ea10 6p0PVOEa10 I

Page 2 of 2

r TABLE B5-5 A'g G QUAND L EL APPLICABLE TQ'ONG TAX ROUTINE GASEOUS RELEASES GRAZING SEASON (APRIL 1 SEPTEMBER 30)

Nine. Mile Point Nuclear Station Unit 2 Niagara Mohawk Power Corporation X/ BY SECTOR (sec/m )

Distance Beaging (miles) 90 ~ 0 135 ~ 0I $ 57,5 1,80o0 o85 1,56318~06 io9856E"06 4,7080K OS 2ob293E~06 1,0032K Ob 5oi92SFe07' 4,9021E~07 8189EeO7 o50 7,2/995.~07 9 o 10356~07 2oi16ZF~06 ig034ZE~06 5p8968Es 07 .774QE<07I Ro4510Ea 07 ia'7353K>OY o75 O.~S17F-.O7 5o4870F~07 1,270BE-06 5o7bbZEe07 2oib92Fe07 3o8225K 07I 1,5489K'7 0991116+06 io00 2,9765K, U7 3o7245F~O7 8.6187F. 07 3o7454Ew07 io~095E,~OV io2$ 6bE<<o07I io0793Kv07 6y7503Ke08 io50 P.,0$ 64F. 07 P.o520ZE~07 5o8390E~07 2o@500E<<'07 9.ZO33E 08 9 0784 f 7,4543K~08 Py6758E>08 2oU0 1,06 7 1 f +07 io3508E~07 ~ o 0917Ee07 lo2067E~07 4,71bZE og +06'o9729Ee08 Oo0535Ee06 P,p5746Ee08 Bo50 7,4983E-.08 9Scabs.-Oe Po 3736E<<07 8p6283E~QS 3.2ZVZE-.08 3o5405E+08 Z.a634E 08 ip83VBFe06 bo00 5,5908E. os 6o9666E,~OH io6223K~P7 6o3701K~08 Z,0109E~08 2p6561K~OSI 2,1569Ka06 iy3809K~08 3o50 4.3533K. Oa 5o4Z96F:eQ8 1,265SF. 07 Qo9P94E~08 io8607E~Og Po094$ K~Og( 1,7005K~OS ipd785E~OS 0 3o50375,~08 4o3751F-~08 1oOZ074<<.07 3 o 95218+08 3,0839K 08 io6990E~08] 1.3889K~OS 8p5710E~09 Oo50 a,v900E-08 3 o 6196E~08 8.4SiiE-0e 3o2596E~08 1,2103K 0e 1 o 4139K 05 i 1oib~i<~08 7yi$ 49E+Q9 5,00 2.4855E-.08 So05886,~08 7.3055E Og 2o75ii2E~08 1,0100E~OS ~oPO09Ft..08 ip0033Ea08 5q@8368<<F09 7o50 1,2637F. 08 1 o 6 l 82F~08 5o7676E~06 3.i~71bV~06 5,0080K 09 Qo43$ PPa09 5 p7791Ea09 3pd0$ 9K<09 30,00 7o9395F~09 ioAQ38F'~05 Z 39336 <<08 9o~~~4F+09 Olb68F~09 Qo 1PSOEo 09 ~

9,9<50K 09 1p8256Ep 09 15oQO 4,0873E. 09 5,7097F O9 lo2500E~08 5o304$ Ee09 3 o 5148E~09 2 o i 785K~09 2 q251OEn09 8p9968K~10 20o00 2,5057F~09 3o72P.if'~09 7,8106E 09 3o4293Ew09 9o17~1,E. f,e ',3S89E~09, 1,4755K oe 5p4305K10 25oVO lo7532E~A9 Z,6569F~09 So5960F+09 Z 02.156@09 bo2136E<<.30 . 9o4921E~10~ 1,0091K 09 3p 667i? K~10 30o00 3o2899E~09 2.0056F.e09 3I9777F~09 a.aa15e 09 Oo5190E~10 7 p 0158Eei 0 ) 7.8825K 1O R,6899K+10 35oQO 9,9~8<8,-10 io5756E~09 5.0686K-.09 1, f o4$ 21 e09 0521E~iQ 5.%POSE 3O~ 5 o 1 637Eei 0 Rpd270Ke10 40oUO 7.9230E-10 1.2749K-.09 2,0484K 09 f,o1354E~09 ~o73~7K~l,0 4p3347E~10'5@OEel0 O,9bVt E 10 ip60$ 8Ee10

~5o00 6,4837E. 10 1,0555F~09 Z,OOOse 09 9o3508E~lQ Zo2252E~10 O.0995E 10 ip3013E+10

'50 o 00 5o417Z~10 8.9033F..-10 1.675SF .O9 7,8%ieE 30 1.8S108-.10 P,,9707Ee $ 0 3,0081E~10 16080SKe10 Page 1 of 2

TABLE B5-5 (cont)

RADN.STE BUTLDIHG VENT X AT GROUND LEVEL

'APPLICABLE TO LONG TERN (ROUTINE) GASEOUS RELEASES GRAZING SEASON (APRIL 1 SEPTEMBER 30)

Nine Mile Point Nuclear Station Unit 2 Niagara Mohawk Power Corporation X/ BY SECTOR (sec/m )

Distance Bering (miles) PQ2ei 2/7 270oV 292 ~ 5 36000 oR5 6,5~686-ny ia01>SF 04 io6924F~07 7.eq41E-O7  %,2159E~07 ieli?86K~06 So143bEe07 l,ae6MeOO o50 Be2341F~A7 Oo3976E~07 7 e55256e 08 P,QBS1E~07 $ ,406PEe.07 5o8671E~07 4o8003Fm07 lo0354E~06 o75 1,2384k. Oy 2o6037E~07 4o2298E~06 2o55~9E~07 7.3186E 08 3o73616 >07 5,2158K 07 6oVOBRK~07 loQO eo2lb9F~08 ie79>2f'.07 2 7377K QS 1 o 7716F~07 0, 4612E ..08 2o609SKm0l 2 o3006Es 07 4,7177E 07 lo50 ~o5024F~08 fe2114E~07 1 o 776<6-O8 lo2176Fe07 2,7705Ee06 1o6007E~07 1,616OE 07 362789Ee07 BoQO B. 9 Q 1 l k -08 6e370UE~08 8e8669E~09 6.5<59E~08 1,5208E 06 9,7756E908 eo6900Ee0'6 io7853EL07 Bo50 2,0650E 06 ~.~646K-. 08 6,0909F-..09 4,63iaF 08 8.e891S 09 6o9347E~08 6.3397K O8 loP667E'~07 3oQO le5345F~08 3e33084~08 4,5251K.09 3o4603Ee06 6oOP73F~09 5,2060E~Q) 4,7753K .06 9o5323K@06

~o5Q >.>ae>k.-.na 2604OV 08 3.57396~09 P.o7355E~08 0,8657F~09 Qo0753E+Og 3.7<736 OS 7yOlb47K>06 Qo00 9,4870K.-09 2 e 1090Ee. 08 Po961,9F~09 2o2245Ee08 Bo8506F~09 3 o 2981Ke06 3,0330K 06 So05$ 3E>08 Qo50 7.7632K-09 ~VS60r-.08 2,5067K~09 lo8577E~08 3.1206K 09 2,7263Fe. 08 2o5162E~Q8 4o9963E~06 5o00 6o4605E~O9 ko4942t."~08 2,2508K O9 1. 58~56 ~08 2o5660Ke09 2p3035E<08 8.1296K 06 4.aa39E O6 7o50 3,2006E-a9 8 e 1266E+09 lo53016.~09 8o6697E~09 io2557K~09 io2029Em08 1.1303K oa 2o2269F~06 1Oy00 io~280t.~09 5,P7f QF 09 1p2672t'~09 5p6433E~09 7o5QOQE,~$ 0 7o5657E909 7,e777E 09 lo4277E~08 15o00 9 o gbfgte 1 0 2 e R381E+09 le0060E~09 3p0355E@09 3,7152E 10 3,9097K~OV e,3796E .09 7 o 7116K'~09

~0oon 6o0004E~1Q 1 o 8601E ~09 6 o 4017K-.10 1 o 9560K -09 Bo5554E~10 2o4605E<09 3o0295E+OCI Qo9786Ke09

~5oOO ~y550bf~10 1 o 3963F. ~09 7 e 2596K+10 1 o414QE~Q9 Ro2387E~10 $ ,7456E.09 Bo255AK+09 So'SP66K<09 80,0f) 3e8382E~10 1.1OiOE=09 6e<l@0~~10 1o102iE 09 ~ o 1 703Ee.10 $ ,3368E~09 1 o755QKc 09 Po6522Ka09 35oQO 3.~069K lo 9e7842F~10 5.7343F, 10 9oQ14lE~10 2,1O16E lO lo0799Ee09 1,0O9RE 09 2,0768K~09 40.00 3o09056~10 8o6955E~JQ 5.1S9af.-10 7ob057EelQ 2,0947E~10 9o0058F+10 1 o1591Ec 09 1.6765E~09 5a{)O 2,8288E 10 7e6787F~$ 9 ~,6609E 10 6.5SSSE-lO Bo0227Ee 10 V.6855F-iO 9,71S7F~ig 163857Ec 09 50oOQ 2,5995K-LO 6o9155t:. ) 0 ~.22OBF-1O '5 7322Ee10 e 6,6692Eel0 eo2789Ee10 1 o i 671E@09 pp.,ge 2. qf 2

TABLE B5%

REACTO BUTLBT56 VENT .'T GROUND LEVEL APPLICABLE TO LONG 'TERN (ROUTINE} GASEOUS RELEASES GRAZING'SEASON (APRIL 1 SEPTEMBER 30)

Nine 1Kle Point Nuclear Station Unit 2 Niagara Mohawk Power Corporatfon l

M'ECTOR (sec/m )

Distance Baggipg 1

(a+les) 90oo 112o5 135oQ <aooo o'R5 1.5S<7E.06 io9841E~06 Qo7025E~06 2o6P.14E~06 io003RE~O6 5o1908F<07 4,9a21E~07 4 o8119Ec 07 p50 7,2106E~07 9o0013fe07 Po0914E~06 io0233E~06 3,8968K~07 Ro7354Es 07 2,4510Eoo7. f,oV00$ Ee07 07~ ~p3387t,~07 S,CO>7Z O7 1,2807K 06 5,7i6OE 07 2.169aK 07 1 o 7 82 AE+07 1.5Z89a 07 9,a678K~O8 iooo 2,9078E.07 3p6702$ ~07 8q4787Em 07 3o720PF+07 1,4096K~07 1,209OE~OJ 1,0793KO7 4oRQSOK>08 io50 2,0000K Qf 2o4903E~O7 5o7450E~07 2,0397E~O7 9, 2013K ~08 8o9188E~08 Vp4SOBEa08 4p2099Ee 08 oooo 1 p0614tEt. 07 1 o 3i?,'09E+07 3o0096E~07 iq204QEe07 4,716RKe08 Op9$ 74E~ 05 4,0324K~08 R,3068Ea08 2.5O 7,<669'.O8 9o2868E~08 2 o1473f ~07 8.6>ROE.O8 3o2672Ko 08 3o508$ K+08 Bo8583Ka08 1,6678t.~08 3o00 5.5675K 08 6 9220K.08 1.6028'7 6.3517F 08 Ro4109E+08 Qo646QE+05 8,144IIE~08 io2710Ko06 4o3300Ecr08 5.3838E Os 1.2483E 07 4o9QBREe08 io8607E~08 2o0688Pa08 io678PK>06 ip0048E>06 3o50',ov 3o4759E~08 . Oo3236Fe06 1.0037E~O7 3o9189Ke08 1.4839K~08 1,671St 08 1.3S66Fa08 8.159OSo09 Qo50 2,8609K. 08 3o5623E~08 8o2800Ev 08 3o20766~08 1,2103K~08 ip3847E~08 ioi26REa08 6p7683Eo09 5ooo 2.40356.08 Ro9972E~Q8 6p9749Keos 2p6873Ee08 io0144Ee08 ioi709E~08 9.5@68K~Os 5o 7138K09 7oSO io2326F~Q8 1,5SOOa 08 3o633QE~08 ip3792E~08 5.oesoK o9 6,1925F. 09 9 2369K~09 8 pOR33Kc 09 10oOO- 7 7155K~09 9,ee6SE~a9 2o3045Eo.08 8o7932E<09 9.0668K O9 3,9875K 09 3p5?316c09 1.V9OQEa09 15o00 3.9926K~09 S,22aez O9 lo211BEe08 e,7997F~O9 1.5148K 09 2o109REe09 n.0373'9 ep0113i~io 20o00 2,4925K 09 3o357QF~09 7.6191'9 3oi394Ee09 9o17>1K~10 io3350F>09 io3625EN09 9o 3971K~10 25p00 ip7233E~O> 2,3943Eo 09 o2901E~09 2o2468F909 6.8136K 10 9.30O9F. 10 9.8a3OE~io 3 o 6512K< io 30,00 1 p 2717K~09 1 o818RE~09 3,91386~09 1.7u02Ee09 4o5190~~10 6o9030K~15 'Fp4822Kciio a.sSiaE aO 35 00 9p820RK~l0 1,0395EeO9 3o0273Ko09 1.3376K ~O9 >o<521E~iO So3509Ee io 5.9013Keio P.oai7K io Qoy00 7p8423Fe)0 l p 17416>09 P.,4204E~09 io0834E+09 2o7337Eeio qp285qge)Q ~o787QEeio ioS98<Keio 45o00 6.aaseE, 10 9o 7938K~10 1.9850K. 09 So9755Eeio 2p225BK~io 3,5195K 10 3,97088~10 1,299QE~10 50,00 5p3755Ec 10 8 o 3155K e 1 0 lo661$ F.O9 7 o 5726Ee10 1.8510E 10 2o949RK~1Q 3o3533FaiO 1,0789EokP Page 1 of 2

TABLE B5-6 (cont)

CTO BUILDING: ENT X AT 8 ODHD L EL APPLICABLE TO LONG TERM ROUTINE) GASEOUS RELEASES GRAZING SEASON (APRIL 1 SEPTEMBER 30 Nine Nile Point Nuclear Station Unit 2 Niagara Mohawk Power Corporation

-X/ BV SECTOR (sec/m )

Distance Bearing (miles) 2Oc.,o 5 270o0 o85 6,3o62E 07 9o86'78Ee07 1oRQQQEe,Q) 7o5$ 56E+07 4,2159K~07 1,1286E~06 8,0770Eo07 ip8801Ew06 oQQ P.ol<87E~07 Q,P<26E-O7 7,i267~-08 o9827ee07 1.4<62E~OV 5,8671F~07 0,7521Ke07 ip0343E~06 o75 1,1403K O7 P.o5561F- 07 3y98746~08 2o5i285E~07 7 o 3186Ee08 >,7361F~07 3o$ 829Eu07 6p7003E~07 io00 7,3997E 08 1.7<5OE-07 2,60546.~08 lo759bE~07 4o~612F- 08 2o6098E>07 2,2816Ee07 4,7166E 07 lo50 a,9>>9>-08 1 o 1870F. ~07 1,7099E 08 1o212VE~07 2 o 77D5F+08 io80076~O7 1p6063E507 3o3780Ee07 P,oOO 2.6224E .08 6o2936E~05 Bo6$ 97E~09 6o5263F O8 1o3208E~08 9,7750Ee(8 8o858QEn08 1o7851E~07 Ho50 i,eb9SV.-O8 4 o <187K. 08 5o9585Ee 09 gob]59E+08 8,8891F- 09 6o931PE>08 6,3199E~08 1o2682Ee07 5,00 i,aO96E~08 3o2903E~05 4,3792K-09 '5o4570E~08 6,42736.-09 5,1072K~)8 O.7571E Oe 9o5206K~08 50 1.,10516;-08 2 q 5601K~OH 3q38756s09 2o70216>08 Qo8857K~09 4 o 060PF.~Ott 3o7260E+08 7p4027F<08 4o00 ~~. 91505.~09 2o 0601F;~08 2o7324~>09 2, o 1824t'08 Bo8506E~09 3o 27158~0 3o0085E+08 5p9980E~08 4,50 7,3654E-O9 1o7034E~06 2o?84060 09 io8099F~08 3o1208K+09 2,70t9K~('I P. 0886Fo008 4,9SP8F~08 Qo0() bo1813E~09 1o0402F~OS 1.9665E 09 io5338E~05 2.58646~09 2o2768E~0 8 o100UE~08 ~',17~1ee08 7o50 ~.1>42K-09 7o7006E~09 1 o 2111K~09 8o2526F~09 lp2537K~09 1 o1795E~) 0932Ea08 Rp1587Ke08 1U,QO i 08931F-0 09 5o0006E;>> 09 9 o 0050E~10 5 3712F+09 7o0985Fev10 7e8088K+g bp9019Ee09 io3604F~06 oQO 9o?9054~10 P,o7048F-. 09 b o 1391'-+10 2o9111E~09 3o6327K~10 f 3o 8331 e0 S,680<K 09 7 p 1618K<09 20o00 5,58>1E.->0 1 o7267F- -0" 4o9007F~10 1 p 8612l:~09 2o$ 725E.ol0 2g5888E~) 2,0895E+09 4,5769E~09 25oOO '3,7561F-~10 1,2096E-09 a.ib~9E.-10 1o3052E~09 1,4616F .10 1.6O95F~0 1o8$ 05Ke09 3,P<46E+09 30o00 2.7~93K-iv 9o027AF~10 3,6238&~10 9 p 735QE<10 1. 0709K -.10 1.2$ 77F~o9 1,0280K 09 Po4506Ee09 55oQO 2 o 1082E~10 7o0780E")0 3 o 1993E .. f, 0 7.601aF-.<O So48VQE~11 >o<538Es)0 1 o1680~o 09 1 p 9312.Es 09 IO,QQ lo>172F- lO 5,7845E l.0 2o8629F~10 6o15~7E~10 Vo2505E~11 7o5872Ee)P 9,7865E~$ 0 1.8691E~09 45,00 1,~63bt:-10 a.8955E-.10 2o5946E~i0 5p13536~10 6o6002E,~if 6p2882Ee10 8,306$ E+10 1p'.5047Ee09 50 00 >.P94~F. 10 4o2637F~$ 0 2.37736.~>0 4.386OE-10 6.28jbbt-11 5,30016~10 7pP.)68E0210 ip>049E+09 Page 2 of 2

TABLE B5-7 STACK. D AT GROUND LEVEL APPLICABLE TO TONG TERM (ROUTINE) GASEOUS RELEASES Nine Kile Point Nuclear Station Unit 2 Niagara Mohawk Power Corporation "ANNUAL 'D/ Br 'ECTOR (m- )

Distance 67.S 157,S leooQ (mQ.es) o25 7,e285W->1 O,8983K.-11 e,065 7 t=-. 1 O S,H<Ovt~10 5 o 6731K-10 a,97286 10 4o9421E>> iO 5>>1166E'e)O

,50 1o l )c.&E 10 9o6236E'~).l Soe615E~10 6,883QE~10 6 o 07726 ~10 ~.eS01F;=10 ~.562VE~io 5,OSSZE.iO o 75 1, 58 46K.-.10 >,2749E~10 5o7389t.~lQ  %,725uF iu 4f,'r 841F-~10 ~,2@~16 10 So1261Fo $ 0 3.62$ 3E~10.

ioVO 1 <64b<kE ~10 ],5391t:~1V 5,7002t.-10 4,8546F~iV S,OS95t. 10 3,2057&~10 2,2969E~lo 2o 7719K~10 1 o'50 1, 7007 t= 1.379~6-)0 5,00526 1O 3.96596. 10 5,0106E l.o 2a<QS9$ ~10 1,6826~ >0 1141Eo10 2ovn $ .~354k. lu ),2420E;"10 P. o 4679K.~10 P.,bv67F-10 1oe8336:~10 $ ,4827(~10 9o6559Eeii io2976E~10 2o50 >,05Hgt,~>0 9,8765t":ll 1,9176t-io lo9657F .1V i,OOOQF~(0 1,0950E.1V f.iebOE 11 9y5991E~11

$ o00 4 Si.0t 6.~> 97t=->>

7o8940E.~11, 6,402>E. li 1,5] 2'26.o 1,2156t.

10 io52084~10 1,2i>ve~ -.10 1,0761K.-10 8,5)156- l 8,39888~11 6.6371E 11 5o4643faii Qo2921Eoii 7,8552K 5,808eE.il, ii 3q 5f) 10 1 o00 5,6073,t-.il 5 o P.7'516.~1 i 9 9569k. 9,8172E 11 - boh907~~ii 5,~715E~11 5 ~ 0577K>> 11 4,6576K..ii o,50 4,6sf 3g So9802t~)

coai59F 11 5,7509Ee 11 5o2941t 11 e.la~OE-1>

6o8465E~ll, 5 6907K, ii Oo0344t'.>11 2 o5007Eei 1 8,3e26E~ii 3oa636E~ii 5oVO J 7,OPOVB.. }1 0 7613t'-.~ i 3 o 724 1E'~ 1 1 3o2904Eii il 1

7,50 P.o2070E~>) g,OU55f=-.il 3.719>F 11 5,55ii E~ 1 1 2,~320t: 11 1 o 826E'~ 1 1 io2007EI 1.6>68E~ii 10o00 1.609Ot-.

1,25496.-.

11 1o55706-1.19346-.11 i?o534~t~ii 1.6<97~

2,369'r 49106>

6~ 1 1 1 o 5615K.~

9,8463K,~12 l 1 1 o 1900/~1 6o7i?76E 1 7,67226~12 Qo5095E~12 1,a~71K 6.1852K~i?

ii 15y00 11 11 1 o 1 1 L8

=

20,0n 25.00 1,0049E 7o9952t'2 9o5856L'~12 7 6 09 i.'6 ~ 12

>,2>b5h 9o2479k-~l ii lo0653g-ii Bo2220E+$ d b,bPO6t~i2 5,01934 12

<) o 6P.10P)~12 3.40806-id 5o2087Ee 12 8o<238E l2 O,oo03E 3o3050Eei2 ia

~

3Qo00 bo 5501L~$ 2 7 e 154UE<12 6,5487E 12 So876i34,~12 2e5942E'2 io8701E~12 2o5$ 28E~12 5i'o VO , Q65gif ~l jP 7'r 64L I 2 So614OE~i2 Qo975VF>12 ~,<)217t-. 12 P.,Q>BEE',->2 1 o4589Eo 12 lo96'51E+iR

~l0,OV < o 07336.~12 ~,BPg5f- ~12 q,ll7pot~)2 3,95416~12 2,5760E io5B55E,~12 i,i<97E~12 lo5429F+12 45.00 5o5108E~12 3,09618~12 Bo6>614o*12 3,16'73K.~12 lyH8826~12 io26775i'8 9.163rE 1> 1,2269Feia 50,0O 2o72136~12 9o53bbE+12 e.967~t-i2 o6052t'~12 iobi92t 12 0285E 7,3975Eo 1> 998911E+15 Page 1 of 2

TABLE B5-7 (cont)

STACK D/ AT GROUND LEVEL APPLICABLE TO KONG TERM (ROUTINE) GASEOUS RELEASES Nine Mile Point Nuclear Station Unit 2 Niagara Mohawk Power Corporation ANNUAL D/ BY SECTOR (m 2)

Distance Bearing (miles) 225~0 247 o5 270 oU 315'. 0 Q 25 2,7<<254.-10 2.21<<06.=10 5 ~818AE~11 5,0679E~il l,llbeE. 10 1.9677K~'iV Bo0969F+10 P ~ 1 g'55E;s 10 50 ~ o ~718E~10 3,166<<F 10 1 o 166 "E. - > 0 1,9S7SE 10 3,2312E~iu He8957K~10 3~f749E~10 7Q r,5389I'.10 2y5'/2T f. ~10 ly0988F-~10 9,93~~~-.11 2O1274E .10 ~,t'>air. '10 QO8280EIl0 3,8<88E~1,0 1~00 2 tie'3Dt 1O Rql7348-~10 1,0584E~10 1.0889K 10 2.aeOVE~10 4,0115F ~1V Z,e82VF lu 3, 881OE~10 lo5O 1,6S<<9t -tu io7577E~10 9,0700K 11 >,0be>r:-lO 2,8025E-$ 0 $ o j$ PgP ~ji Q g,7152E~10 5,0527K>10 gOO 1,0959k-10 $ ,f766('~$ 0 ~,o~7>E-11 8,2<596-11 1,60616~10 2~97996~10 2o008QE~10 2o5578E~10 Ro50 ~,2572K, 11 Ho923'SE 11 , 4'775K.~ 1 1 6,5171E 11 1,28656~10 2OQQQPEai$ 0 1,56e7E~10 2,0~roF iO

~o00 6,8792t'- l l 6o9366L~il .~inc 5.18196~11 1.0167E-iO $ ,8539E~i10 1.20045~10 1,6049E~10 So50 5,0687K.~i

~.1157K-i 1 5O5i'716+11 S, C701E-11 2,8883K-ll 4,15S7E~11 8,1823f li 1.4948K-lu 9,9879Ee 11 1o2935E<i0

<<oUO 1 a,<<9774..11 8,<<3565 11 6,7045E 11 1 o2265E, 10 861876E~11 i o0612E~10 Qo50 3,4057-~11 3~72~6E.ll a,SS1~6.-11 go855UF- 11 S,S88>E-i] 0$ 3PP~I1 0 6,8275K~11 8,8565K~11 ii 1

5o00 2,8657t.'-.ll ~,j<<a6E-11 1,~966F~11 2ol4$ 004,~11 O,7SOeE, 8,6710K il i 5,786AE 11 7,5>32E~11 7 ohio 1, 060at -11 1,62635 1,0725k~11 1,35978-11 2,5623K ~11 6099F.,l 1 8,137PF~ii 4,1189K>11 10oOO 9o4S62k- 12 1,0705K.~11 >,7ge>E..12 1,0602E-.11 1,8292E.-ii ~.1276' 2,2405K~11 P,q9983E>il ibo00 20o00 5,61606. 12

<<,0<<59K .

6,602bF

<<,8505E-.12

-$ 2 5, 7 $ 686.~ 12 a,6599k 12 6,7978K~12 MQF~12 1,29~64~11 1,0005K 11 1o99"BE~11

).4544E 11 1.5802E 11 1,2201E~11 a,166uE lo6793E~ii ii 25o00 5.08~at'2',~u03t=-12 3,7216E. 12 3,7>306~12 Qo927QE~12 7,8272E~12 1.10O~E.-.'>> 965073F~12 1,8123E~ii 50yVO 2o9112E+1~ de9299Eei2 4,71026~12 S.1S20E=12, 7,5321Ea 12 1,034( QE~ 1 1 35q90 1,SO0<>. 2,295lE.~12 2,5O6it.-.12 3,7302E<ii 4,69204 12 6o79~7E~12 6,0015E~12 8 ~ P509K~18 PQoQO 1,4851th. $ 2 1 o ~2>7 E.~ 1 2 18$ 32F-~12 2.9$ 5gt. 12 8,9251k 18 5o4685Eelg 4,838PE~12 6,t,690K~12 45OOO 1,1541t-'~12 y,a636F~12 1,4524k 12 o3911F +12 3,1869'-~12 4.0eOYE-la 3.9q96E~ie 5,0652E~iP.

50g00 9,5699L~15 1,1880'-id 1,1692t, 12 1,9O28E $ .6$ 9Ht~i2 > o 6947F~12 5,265@6~12 4~$ 559K~iR page 2 of 2

TABLE B5-8 RADQASTE BUILDIHG'VENT D AT GROUND LEVEL APPLICABLE TO LONG TERN ROUTIHE) GASEOUS RELEASES Mne Mle Point Nuclear Station Unit 2 Niagara Mohawk Power Corporation ANNUAL D BY 'ECTOR Distance (miles) 67<<S 13'5 ' 157<<b 180,0

<<25 1.03876,~08 1.0303K OS 1.S676k 08 lp82$ 9E+OS 1,2911K.I 06 1<<0494K~OS 6<<4710K+09 7 ~ 85776~09 y50 ~<<1725E+09 4,5433E 09 7<<23615.a09 6<<8234K~09 4,516UKa09 3 p lb017ga09 8<<2640Ea09 2,8162E+09 y75 2<<815'18a09 2<<621QEa09 5,9729k,~09 3<<7029K<09 2.3577K.O9 1<<8622Ka09 1 << 1654Ea09 1,O923Ka09 i<<QO 1,8649E 09 1.7141E 09 2,5~956.O9 2<<3552E~09 1.4675K 09 l. i 517F-69 7, 3 V S9F.+1O 9. 4140F a-1 0 i<<50 lp2252F~O9 1,11556 09 1,6295a~09 1,5038K..09 9<<2448KaiC 7<<2214K-iu <<6436EeiQ b,o113E~i0 2<<QO 6<<l)006~10 5,5]67K.]Q 7 <<9731K10 7<<53OBE~10 4 <<4f52$ fw) 0 ~ <<<681F<< IQ 2<<2310Eai0 L",9410K+10 2<<50 <,iOO4E..iO 3,7344E~10 5,3889E 10 4 '50$ E~10 2<<996SEaiO 2<<~391Eai0 1<<5010Eai0 iy9691E<10 3.aO 2.995ZE >0 2,70368.<IV 5,90358~10 $ <<5647E<<.$ 0 2<<16904a10 $ .6903K io 1 <<084lE~10 8,2401Keil

i. <396 f'a 1 0 5 ~ 50 2<< 27706 a $ 0 2<<0592Fa10 976SF io 2.73396 l,o $ <<6527t~10 1 p 2912E~10 1<<0949Eppi0 4<<OQ 1.7967E so 1,63>>E. lO 2 3614taio 2<<l689E~10 1<<$ 0986~10 1<<OR17E~10 6,5062Faii S.64S6C~>>

4<<50 l.4658K lo i ~ 3334Eaio 1.93506.-iu 1 p 7755t'~10 1 <<07116~10 8.~269Eaii 5<<2943Kali Y,t)35SKaii

$ <<QA 7<<50 1<<82496+10 6,3065Eali 1,1184Fp'10 5,8S12E ii 1 <<6227t;a) 6.5074tali 0 1 p 7

4904F<10

<<S12QE" il S 9/42/ a 1 1 4<<7170K. 11 6,9<9ZE.11 3<<5202fipii 4<<4140Eai 8<<2377Eaii 1 5y867PF-<<

2,9955Eeil ii 10<<00 5<<9573Eaii 3<<77176ail 5<<4021Eaii 4,96a9F~i 1 3.0244f ai 1 2 <<16$ 4E-11 1<<394SE~ii i,a944E~11 15.00 l<<9553Eaii 1<<9286E+11 2 '1596+11 2<<4990K>11 1 <<5578K+i i f ~ 0835Ewf,f 0,9630EriP. 9<<7625EII12 20<<OQ 1.$ 309E~li 1 p 1 321F~i l 1 <<5869t <<11 1.4t65E 11 9<<~241E~12 6<<3876E~12 4,1,498K 12 5 ~ 8539Kel2

?5<<OQ 7 p 2654Ea12 7 2569E+f2 i<<0205Feei) 9<<5022K':12 6.169O5-12 4<<$ 88$ E~(2 P.<<73TOK>12 3<<8591E+iP.

30<<00 5<<0322K.<< 12 0 p 9666t;~12 7,o350E ia 6<<6074E<ii2 4.8S56t ia 2<<9555/~1',P 1,9465Eai2 2<<6870K12.

35<<QO 3 << 6674t;~12 $ ,5714E;a12 ><<1023E+12 4,830$ E~iP. 5.2653m;.12 2<<19OBE~iI2 1<<4507Kai2 1.96916 12 40.VO 2.7639F~12 2<<659~E~12 ><<8423fa12 3<<655$ E+12 2 p 5008t;+12 1I676'IEeiIZ 1 p $ 122Eai 2 1 p 4.89~F.<12 45 F 00 21328Eal 2 2<<0336E+12 2<<9779Fai2 2<<8443E>12 1<<9511Eai2 1 p 5132E~)2 8,6854Eai5 l<<1525E<12 SO <<C)0 1,6756t.i.p 1.5892K..12 2, ~625Ep 12 2<<2566Ewik 1 <<5450t:a 12 >.0476E-1'q 6<<8829Fa13 9,0S6SE~1$

Page l of 2

RAD STE BUILDING VENT 3 'T TABLE B5-8 (cont)

GRQUHD LK EL APPLICABLE TO LONG TERM (ROUTINE) GASEOUS RELEASES Nine Mile Point Nuclear Station Unit 2 Niagara Mohawk Power Corporation ANNUAL D BY SECTOR Distance (miles) 202, '5 2u7o5 270o0 2A'o 5 315'g 0 360,O g25 b<<7 1 RSE,~l)9 7,3541EaO9 3,67S<t 09 <,5O16E-09 io1,552Ea08 2o$ 012E~V5 i.'548aK~OS 2>$ 468E~06 g50 2o ~4601,~09 29084f'9 1,5870t 09 2o2558E~U9 14614,+09 9, 6727F~O9 Oo8778Fa09 9obQOSE~09 o75 1,38'fbi'-09 1,60828, 09 9,1>57t .10 io$ 950~a09 ~o0003~~09 5 o 4818Ea(>9 Qo022QEs.09 5g6275Ee09 io00 e,ab<t<L io .l.o0308E,F09 b,OS31k-io 9,<9a7E 10 1,9736K. 09 3o5630fo09 2.658<K~09 3y7062Ea09 1,5O 5.7uikf-lv 6ob239L 10 5,9b40tal0 6.350<E .1.0 1,2e9ut:-n9 2,3107E Og 1,7<7OE~O9 Rg4255E~09 2o00 2,>>Obbt -1 0 3o2@55f ~$ 9 1,9839k. 10 S.2128K-.10 6.58~74-.10 1oi465E,aO'9 6.7075K~10 ioau6SK~O9 2o50 l. SOP.bi=-. 1 0 2o1959k-.lu 1,509VKa10 9,8e5bf.-.i 2,1e53E >0

],5885Falu 4,5159K 10 7o7663F S,6176E-10 I10 ~,9<7SF.-1O 8,1785Eg 10 5 g 91~9&~10 3o00 1.37914. 10 io59A55-1U 1 5.11776- iO 0 o31?3Eg 10 So5O 1.009bE-10 1,2115F.10 7o5625Ea11 lg2183EaiQ 2.367dt. 10 4o?597K<10 > o278~~~10 Q,eebSE~10 0 o00. 8 o 288~[-' 1 1 9.5>>OOE->> 6,0868Ea11 9,7565E~il ~blht >0 3,3OSOK~iio ag58<OE~10 3 g5292Fw10 Qo50 6. 1 4 08 t-. l 1 7o8049Fali S,O808t'i 8,09uif 11 1.>1874~10 2 7035K~:$ Q 8 o 09bbhe10 2.857<E~i,o So00 5, b103E-1 > bg5155k.all O,56516 11, 6,6952K 11 1,Rebut-io 2o2300E~,$ 0 lg74QSK~10 2,~6S2E 10 7g50 2o8293Lail 3,3uOl.b-j1 2,5928Ea 1 1 3.9>3OF-11 , I4125E+1 1 1 o 0720E~I1 0 8o>bS1E 1 g 1562Ee10 10qOU 1,7S92t-ii PoO406f ai1 1 g8020t a11 2,635OEa11 > o 971? ~F11 6o3635Fa'11 5.18?.1K~ii bg9717K>11 15.00 8,8ooOE. 12 1,0019K-11 9.ebb/E 12 l, o O101F ai 1 >o94~b~ 11 3 o 0154/~11 2 g 4999Ee 1 1 3.S220E~11 RO.OO 'i, 286( lF-a d1 5o8981E 12 5,90798,a12 8,qO05t~12 1ol3?bt~i> 1 o 7516K 1 '1 1. o4526Eg i1 lg9074K~11 25oOO 3,5glbEai2 3 o 9151K a i P. 5g8159f:al2 5o 4159K -1~ 7o3$ 9QEai? 1 o 1386Fa11 9,00155~12 ig221'5E~11 5O.VO 2g5255he'-12 Rg8161L~12 2 o b<45t;a12 3ob828E id 5,OWS9F.la 7o97>7K '12 6o5047fe12 8o $ 2bQEeig 55 o 0() lo89z~t-.12 2o1232t- 12 lo888bt 12 a.e1726-1~ >o71704a12 5 o8776ge','1P. 4.7904E 12 boise'59E~IR 40o00 i.45874~12 ig6020ta12 lo~0014 12 9? ObF-- 12 Ho8118tai2 4,49?6F.,id ~o6315E~12 4o6275Ee12 05o00 l.ioi3k. 12 $ o 2899K.aiba 1,0'596Ka12 1,,iie35Ee12 2o 1796K+ 1 P 3o5$ 88Ea,,]P ~o8251Fg12 ~o5987E~12 50o00, 9,uqI>'5E, 13 1 o 0237E~1P 8.1503~~13 1,1064<~12 lo'I229F-ale 2.85?VE 12 Ro2458Eo52 2.86<6E~la Page 2 of 2

TABLE. B5-.9 REACTOR BUILDING VENT D AT GROUND LEVEL APPLICABLE TO LONG TERM (ROUTINE) GASEOUS RELEASES Nine Mile Point Nuclear Station Unit 2 Niagara Mohawk Power Corporation ANNUAL D BY SECTOR Distance Bearing (miles) 67 95 90,0 155' 180o0 o25 1,035t.h. 08 1,0270E-OU 1,8613F~08 1,80176. 08 1.2716k oe l,o0337E+08 So3158Ke09 7O5707F>09 o50 - 4.VOSOt. 09 e,5U11E ~09 l y13b7E~09 6,668HE 09 4,40824 Oq 3o5377E<09 B,i933F~09 Rq7929Ea09 o'7 0 2,761kb,+09 2o5554F<09 5,8952K. 09 3.6u~ia-O9 2,2946k.~09 1o8258E 09 1,1488E~09 194$ 82E<09 1.0O 1,8266t=. o9 6$ 98E'.~09 2,458? E.e 09 2,29588-"09 lo4292te09 )o1.301/~09 7o172bE~10 Oo0209E~10 io50 1,2V] '5t;~09 . 1,1O09E -O9 1,5999K~09 1o4715E~09 9 0302EeiQ 7o0990E~10 ~,5~15'O 5I747bK~10 QoQO 6,021'YE~10 5 o 0555E,~10 7oBS98t'~10 7,P,]766+10 370i? Eev 1 0 ~,~073E-10 Bo[84IhEei0 2y828PE>10 2o50 4l,0908f ~ l 0 3~68996,~10 5q3>61F~10 o,8805E 10 ~,9460~ 10 2o2886E~I10 1.4678E 10 io98'BQK+10 QoQO 2o9585F-~10 2,6b23F.10 ~o~423h+10 3 o 52786+10 2oli?784~10 1 o 6491K>10 1 o0568Ec 10 1,3965E~10 3,50 2,24106.~10 2,0>48E~10 2 o 91'50E~10 2,6772E-10 1.6140K 10 1o2497E~1V 7 9976K~1,1 1o0629E>10 qoQ{) lo75~5E~10 1,5814K<10 2,29454.~10 2oiO79F~10 1o27076~10 9o8328F~I11 bo2810Eeii 8y3775E>ii 4,50 1.42O~E. 10 fo2787E,~10 1 o 8602K~10 1,70978,-.10 iq0304tro10 7 e9676KJii 5,08115~11 6o7903E'~1$

'5, 00 7o50 1.1749k, .10 5y79869,~11 lo0597F~)0 5,3045E~li 1,5<sbF 10 7 80~it.~ 1 l 1 o4211E< I, 0 o1805E~11 8,5609K o ~115K

o 7 4 ~o2861K~11 a,080bE~11 2o7820E>1$

10o0V 5o6064te)1 3o3504E~11 4.9S146~11 4.5$ 82E-. 11 a,r268V 11 2oOS31E~'11 io2864E+11 1 o7211E<i )

15o00 1,8<5bE 11 1,75966~11 2o56656~11 2o3626E~ll 1,4380E~ii 1.0306E-.'11 bo5$ 34Fe)2 So8554E~ii2 20.00 1 o1086t= 1o0507k'.~11 1,55978.+11 1o437bE~11 8o8995 bo2287F~I]2 ~ o9715E~12 5o 4721K~12 2S,OO 7 o 2359t-"~1.2 7 18516~12 1o0298F>11 9,5103K 12 5.9738K,-ia ~,1~26E Bo6435Ee12 o I12 ~o7017E~18 50.0O 5.0013K-12 5o030bt -12 7 o 1972K,~12 bo66166~12 4o2312t:~$ P 2.914aF;>Z 1 o8672Em 12 2o64PBE~18 35,00 Ãob166E~12 3,661bE~1.2 5 o25316~12 cl,8755K~12 So1244Es;12 2 o 1503E~'1 2 1o>78bE,~12 1.9587K 12 40,00 2.717Vt; 12 2o7526E 12 9,97206~12 5,6990F~12 2,~906E->Z io6459E~ig 1o0559Ee 1i'. io4972E~12 45oUO 2O1092F~12 2o1281E+12 3o0935E~l2 2,89295~12 lo8873h lo2993E~')2 8,3066K~)3 1.1758K~12 50,00 ],b84lt:.12 1o6866E'..12 2,47068~12 2o3215E~id 1o53$ 2E~12 io0529E~12 V,780PE~1$ 9,P584Eeip Page 1 of 2

TABLE B5-9 (cont)

REACTOR HUGE)XNG VENT D AT G OUND LEVEL APPLICABLE TO LONG TERM (ROUTINE) GASEOUS RELEASES Nine Mile Point Nuclear Station Unit 2 Niagara Mohawk Power Corporation ANNUAL D/ BY SECTOR (m- )

il Distance Bearing ,ll (miles) 2.70 ~ 0 rib.o 337 <<5 od~ 6.5394K O9 7o1157E~09 5,5097K.09 o4255E~O9 1.1410K.-OS 2o2833FeOH 1 ~ 538QEe08 137 1Ko. 08

,5O a,e>72'9 P..8130F. O9 1 o 51896~09 2oi687F~09 5,0PbOE.~O9 9oS398E'.~09 6.7801K.O9 o

9,5402E O'II o75 l,z335K.Oe lo5i40t~09 Oa67>88.~10 io5299F~09 Bo9191Eo ()9 5,3850E~09 3.9VOOE OV 5y5510EC 09 1 oOO 8,5188K in e,99>SE-.iO 5o6916t t 10 8.9870K lv l o QP4$ f'.eeP9 3,498OE-O9 go6047E~Q9 3 ~ 65&3E~O~

1 o50 5,49059,+10 boA55'56.-.10 5,742ut~10 b y O29'5F ~10 lo26234~09 2o275$ E~O9 lo7144Ee09 2q3962E>09 do00 2,7267E 10 3,1852F lu 1 o 8945E~10 Bo0907K~10 e,SOOaa .1O 1 o 13$ 9E~09 8o6P31Fal 0 loi960F+09 P.o50 1.~561'-lo 2oi56QE .10 1,2977'..iu 2o1160E<10 4o27228,+10 7o69086"-,10 So8757Ea10 8,1108E~10 3oQQ 1,&80E 10 1 o 5591E.~10 9o05ebk.~11 1 o 5378F~10 ~o08604~10 5,5699E,10 4,2615KeiQ 5,a65OE~10 go/0 1.0257E, 1O 1 o i827F~10 Yo224~4~11 1 o 1701K>10 2.5358E 10 4o2251K~10 Bo2354Ee$ 0 Q,OO08E~$ 0 Qopp 8,0qleP 9o3022E~ll >o7268F-~ll 9,237OE,.li lo8319E~10 ~ o 3172E~10 2o5426EclQ Bo4816E>10 4o50 bo546~F~>l 7 o5312E, 3 1 4,6831~ 11 7 o5242E>11 1,07885.~ig 2 o 6765E'o 1 Q P.o0503Eui0 Ro807$ K~$ 0

'5o VO 5,<256K.;11 6o2038E~11 5,9339F~ll 6 o 2~52t! 11 1 o2226F~lQ 2o2082Fe10 io6980E~10 Bo3158E<$ 0 7obo Ro6645ge11 3o0909F~11 2 o 1558t'-~ l 1, 9q3674E~il 5o9983t~li 1.0510E io 8,2136E~11 ioiii3E>10

] (1,0() lob3406~11 lo9O91F-~11 lo4877t~l> 2o258dt+$ 1 ~o~91~4~11 6.2060E;11 @,9018K+ 1 1 6,6627K~ii 1boUO 6,2057E~12 9o6167t~ld 8,67 33t:-.12 l. o2477F~11 lo8519~~11 2o~370Ep11 8,358F~ii 3 &112F> l 1 o

2OoQG S,o>Our=-12 So7532E+12 5o5549E 12 7 o 820~F~12 1 o 10024~1 1 lo7$ ~5F~11 1.4102Koll 1 oe804E+1 3 25oQO '5,3493K. 12 3o7783t.~12 57<69'2 5o2580t12 Yo2$ 5QE~lP. l.i216E-11 9o2266Ee12 1 o 2214K+ l i 30,00 2,37706.->2 2ob4385.~$ 2 2o628$ 8.~12 Bo70076~12 5o0$ 95EelP 7o8808E~12 6o4564EeiP, 8 o4840KI'l2, 3boUU io7627E,~12 lo94348.~12 >.9055E, la 2 o 69'SOF~12 3o6668E~12 5.8186E 12 O,Yy72E 12 6 q l 870Em12 4(>,00 1 o 3546Ec 12 ly48886.~12 1 o Q24gf ge12 2oO149E<12 2,7$ 52EeiP 4o<S~~E.~12 So605BK~lP. a,6850E 12 415 o 00 1 o U761E ~12 1o181bE~i2 1 o 09556~1? ly5457F<12 2o1673E~12 Bo5220K~ig 2,8271K~12 3o6575Eei2 5o.Qo HolfUbE~13 9.6~09t; 13 8.6496K 13 1.219~6-12 1 o7382F~12 2o85OQF~12 i8o2751E~12 R'o9$ 83Eel2 f

1 Page 2 of 2

TABLE B5-10

'STACK D AT GROUND LEVEL APPLICABLE TO LONG TERM (ROUTINE) GASEOUS RELEASES GRAZING SEASON (APRIL 1 SEPTEMBER 30)

Nine Mile Point Nuc3,ear Station Unit 2 Niagara Mohawk Power Corporation D/ BY SECTOR 1 I

t Distance Bear,ing (miles) 135o0 180o0 o25 5.'f93QL >1 4,3039E 11 5,3095F..-10 3o8377E>iO 1 o6241E~10 7,O816Feit 1,5959EaiQ 3,605QF~iQ o50 1,211lk 10 9,5896E-11 5o902QF>>10 7o4029E>>10 2 o 8$ 22Eei Q 1 o 36936m 10 1.8312E 10 3o0273E~iO o75 1ob]8UF>>$ 0 io77388.>>10 So5435E>>JQ 6.?879e~iO 2,~1$ 6F 10 i,ie58E~,10 io3069E~iO 2,305QE 10 loQO io~616F>>>O , 495E'>>10 Ll 7o2067Eo 10 So%i/7E>>10 . 1.9150K 1O io0003E~10 9,7678E~ii 1 o7059E~10 lo50 2,0115K-10  ? o 6S4P.E-. ).0 7,07bsE,>>10 O,SO9OC 10 io5358F- $ 0 8,4876Ec 11 7,l.705E 11 io3037E~10 3,00 1,56776. lg ?,1022E;.$ 0 5o3877F>>10 2o7507E>>10 9,7<ii,F- 11 5o7550Eo 1$ 4, 1 523 K o. 1 1 8o3575E~ii Qo50 lo2387F>>10 1.7073E. 10 <o2587E-10 2.0bOQE 10 7,2502E~il 4o3807E~1 1 8,9953K'$ 6o3276E<ii 3,00 9o85086>>li 1o3b4?E+10 3o3639E~10 io5767E>>10 5,5732k>>ii 3.4100K 11 Bo2583Eaii O,8190K $ 1 Sogo 7,9595E~}$ 1,1055E~iQ 2 o7148E,~10 1 o 2474E+10 4o~083~~11 2,71768~11 1 o763REe 11 3,9146K~i OoQO 6,5q02E. 9o$ 027F~11 Bo2?88<.10 f, o 0105E>10 3o5703E11 2o2117Eo il 1 o4153Eo 11 -3oi783Eeii 1

OobO 5o 4626E>>11 7ob142E+11 1,8603K~1,0 8 o 3541F.>1 1  ?,9509F,-. 11 io83~9F~i,i ioi637Eeii Gobi?666<11 5o00 4,6838E. 11 6.466OE 11 io5770E>>lQ 7o0313E~li 2.a824E-11 1o55OQE~li 9o'?85QKu12 2o205?E<11 7o50 2o486OE>>11 3o4833F>>li 8.0109K 11 3,676~6-ii 1o2762<~ii 8o6087F~l,? 5o7512Eeig iy0996F>11 10o00 1o7$ 84E>>11 Po4369E~11 So7483t'.~11 2o5027K-ii So2552E,o12 6o5975Eo ig 5o 1 i? 53Ee 1 2 6,7417EeiB 1>,OQ 20o00 1,1295'-il e,F88>E->z iob787E>11 1o2784E" 11 3o6972E>>ii Po6833E>>11 lo6384E 1,2nbsE l,i ii Oo7716<>>>2 So2487E 5 o 156$ E< ii? 0 o9213E~12 B,O880E~1R 4 o 1 1 42E~12 Qo2352Eei2 2o2001Ee 18 25,OO 9o8363E>>lR 2o0209E 11 9,1198E>>1P. 2 o 3627~ -- 12 3 o2463E~12 3,4250Eci2 1.52SQZ 12 6o~71OE'o8P76F.'.>>12 30oOO 7o6?33K- 12 lo5605E. 11 7oOiliE>>12 1 o7885F->>$ 2 2o>697E~12 Bo7202Ee12 ioi191E~1?

35o00 3o8219t'-- l2 5o9779F->>12 1.? 80't E-11 5o 4847F>>12 io5947E.12 2o0560E~i? 8,162OE 12 8o5452E~13 QU.OQ So0685E>>12 4o75a95.~$ 2 9o 8955F~12 V.3655K 12 io11~8<-12 1.6667K 12 io7325EeiR 6e7a><F 45,0o 2o500PL~12 '5o83888>>12 8 o 0916E>>12 3 o 5321F ~12 9oO/21F~1$ io~69RE~$ 2 1 o4030Ee18 5o0166Kco13 50o00 2o 0738F. 12 3o1443F>>1? 6 o 7162k, 12  ?.9013F.-.12 7 o51374>>13 1 o 1390Eo iii? 1 oi499Ec 12 0,0066E+13 Page 1 of 2

TABLE B5-10 (cont)

STACK D AT GROUND LEVEL APPLICABLE TO LONG TERM (ROUTINE) GASEOUS RELEASES GRAZING SEASON (APRIL 1 SEPTEMBER 30)

Novae Mile Point NUclear Station Unit 2 Niagara Mohawk Power Corporation D/ BY 'ECTOR (m- )

f I

Distance Bearing (miles} 247 o5 210o0 31~ o'0 337o5 l

ok'bO 3,33388~10 5,4883E~iv Zo8699e-.>1 2o2525<-11',7544t.-li 4,1398Eeii $ .1v43E~10 P.o5636E+10 1,8089Ke10 3,53GSF .1O 6,3055E-10 bo0022t'ol<86E~l$

7o4867E+11 2,0300E 10 a,3681E 10 2 o 062$ E>10 o75 2o65$ 4E:+10 4,5q06F~JQ 9o0036E~1 1 bo~916<+1i io7926F~10 1 o 7 f 61E'e 1 0 2o692QE~10 1 o00 2,2<588.~10 5,436bt.F10 5,5209m 11 loO'551E~10 6.705VE-1 1 io610QEIo10 lo4755E+10 2,8152E~10 a.50 1.~8478.-1O Z,567OK )O 4,9690K-.11 1 o 0525 t'.~10 bo0200tal 1 lo573?E;~10 1,2071Eo10 Bog>05Ee10 Bo00 1,5144E.-10 1.5188F~io 3,5445E 11 eo0238E<11 4,2406E 11 9o220PE~li 7o8855Eeii 1 o5ji?66E<10 2o50 iq0>62E~10 lo1047F"10 2o73}3t~li, 6o2981E.ll 3o2636E~$ $ 6o9900Fo 11 5o9319Eeii 1,1666E~10 3o00 3o50 7o9902E~11 6,4064E-J>

Bo370it~ll 6,5539E 11 2 o 1413E~11 1,714%t= ii 4,9898E 11 4,022@F.11 Bo55636~$

2,0462K~11 1 5.4813K 4,3270K ii ii 4,5882K+ii 3 6430Eaii 9.1077K~ii 7oR777K~11 OoQQ 4o50 5o2305f: f1 4o3O15E~11 5o26V9F~ll 4,3287E-11 1,39966~1>

]of.632E~11 3,3o12E-11 2o7561E~11 1 o6706E..

io$ 882E~11 1.1 5236K Ro9?71E.$

11 2o9688Keii 2o4532Eaii 5,@388K 0.9O19E~ii ii 1

5oQO ~o6575E 11 3 o 6258F'11 9o82756~12 Bo3597E~1$ 1 o1717<~11 2o4775E>ii Ro074lbEeii 4,1005K~ii 7o50 l,vpe~E.->> 1 o H782F~~1? io3031K~ii 5.931OE.ia lo3940E~ii 1 o~071Fo 1 1 2.4158K~ii iv.00 >,09~9~->> lo2997Fii 4,O397~-12 9o8598E~i? 3o6288E~12 1o0884E~11 1o051?Eeii io9887E~ii 15o00 5o'5858F 9,?810E.~12 >o9670E>12 To8981E~12 2o1669E~12 9o0511F~12 1,0<76K~ii 1 o 7351E~ 1 i POoGO 3.9587~->Z 8 o1014E~12 4 o 07? Sf ~12 6,8814E~12 ho 9861'12 7 o8743fc 1? 9o4322Eai2 1,46&if 11 P5o00 30oVO

$ ,1859t.-.12 2,5873K-12 7o1151E~lP.

5o9995Eeld 9

o l 51~F.~

o1704F<12

~ ~ 5o 8081E~12 4o7981<-12 io9039~~$ 2 1 o 68798~12 6o6862Eo 1?

5o5246E<<1P 7o7893E~12 6,2OS5K~ia 1.i79OE 9o3787Eaig ii 35o00 2q0572E~12 4,8736E-12 2o536?6+12 3o8768E~12 1 o3915Kei g 4,4806E 12 4 o 8980Ec 1?. 7q4774E~18

.40o00 >.o60564 12 3o8686F>12 1.9658E.iP. 5.1013K.12 io0931<e12 3o6038F~12 9,8798Eo 1? Ib,0165E918 45oQQ 1.2419K.-(2 3 o 1o500?E 12 Ro<7'518,~12 8~3519Ee15 Ro8987F~12 8,1025E ~12 4y8982E~12 5o.00 9.6O67E 13 A400E;el',3885E~12 1,1397K 12 1,9S47E-12 6o~01QE~13 2,3455K ie 2 q 5107Eu12 4,0373K .1R Page 2 of 2

TABLE B5-11 RADQASTE BUILDING VENT D AT GROUND LEVEL APPLTCABLE TO LONG TEE( (ROUTINE) GASEOUS RELEASES GRAZING SEASON (APRIL 1 SEPTEMBER 30}

Nine Mile Point Nuclear Station Unit 2 Niagara Mohawk Power Corporation D/ BY SECTOR (m-2)

Distance Bearing (miles) 90,0 iS7,5 18ooO o25 $ ,27748.-08 1a659$ E"08 4y042QE~Q8 2o3344F+08 I q 7527 t"-~09 4o 2213Ee09 4o008i2E+09 4q304'iK>09 o50 5,2582k-09 6o8856Ee09 io6589E~08 8,6O71E 09 5.0842E~O9 lo9424F>09 1,6128E~OS io43996~09 o75 2o9314E~09 3o8938E~09 9q$ 971Ee 09 4,5713E 09 1.5957F~O9 ioi787E<09 8,968aa iO 7,7884K~10 io00 1,8826F.-O9 2o5249E~09 6o12176.~09 2o8605E.,O9 9,8257K-10 7o9515E>> 10 5o7280E~i0 5.157~F..10

)o50 io209lK~09 )o6346F~09 3.9904E 09 1.8OeSE OV S.1207K io 5q 2912E~i D 3o$ 500Eeio 3,a948E~10 2o00'y50 5o6905E iQ 8,0465F 10 l,989OZ-.O9 8.6939'-1O 2.8919E. 10 Bo6704Es'10 1,7496E~10 1 o6550E>> 10 3.9596t; 10 5,4382F~10 iy3531E~Q9 5o8414E.10 $ .9250K 1O 1 o8175E~10 1 q 1679K~10 1 o 2918K~10 3o00 2o8481E.~10 3,9325F.-10 9 o 8362/~10 4,2118E10 1,5755K~10 lofti?02E~f,Q eo4168Fai) 9,4759K~ii 3o50 Po l536E>> 10 2o9905F~10 7q513lF 10 3 o 1984E+10 io0$ 34E~10 1,0085i~iO 6 4$ 69F~11 7 o 8$ 62Eo 1 i o O{j io6913E. 10 P..3e35F-1O 5o9588h:~10 2o5269E~10 6.0532E-.11 8 0404K~11 So8125Eei) 5o6957E~ii 4o50 l,by88b. ln lo9260E.10 4,86906. 10 2 o0512E~10 6 457 $ t'. e 1 1 6o5629Eeii 4,3845Faii 4,8943E~ii 5yQQ 7o50 1 o 1 351K10 5o5927E~i 1,608bE.-10 8oP~98E~ii 4o07406~10 2o0748K~10 io7255Ew10 9o0900F~11 o

So2973Ev 2o4593E>> 11 ii 5o5102Ewii 2o8560E<11 3o80'F3E>> ii 3 q 7818E+ 1 i 1 P,o3792E+1$ io7536E~1i 10.00 ~o3792~~11 5o 2231F ~11 io2766E~10 5o874~F~11 lo422~< 11 1-o772BE~ii 1o6606E ioOOa~E~11 15.00 1,6053&~11 2o7301F ~1$ 6ol771E~ii 3o0200E~11 6.55asK ia 8o5473E~18 9o0176Eei2 4o5045K~12 20,00 9o16804~12 >o6442E~11 3 o 5651E~11 io7679E~11 ~ o7761E~19 o 8611Kei P. So2057EeiR 2o5364E~i-2 25o00 5,8<084.-.i2 1,0599K .11 Po2882t~11 1, 12706~11 2o4611~~12 ~o0$ 36E~l?. 3o2219Eo12 1 o6201E>12

~0o00 85.00 4.0V90E->2 2o9050E. 12 7o18996~1?

5,0979E~12 lo5794E. ll 7 o6722E~ $ 2 5,5023E+12 lo7343<~$ 2 Po074$ E~1P. Hoii71K~l?. 1 oieiaE 1 o 149bP-~11 1o2900E~ii? 1 o 4816K>> 18 io4619Kei2 eoRi4SEe18 4O.OO 2,1937E~12 3o7579E>> 12 8o 7112K 12 4,1l,44Eei2 9o9823E~$ 3 1 o 1024E~12 lo0517E~12 SoPS87K<13 45,00 1 o=7109E 12 eo864lF 6 8129K -.12 3o1881E~12 7o9615E-13 So4716Ec 13 7o8270E5 13 4o9371K~13 50o00 1 5693E 12 2,2473E~l? 'jo465jgg~ 2o53V1E<$ 2 6.50>SE->3 6,6839K-..13 5o9936Ee$ 3 3o9667E<13 Page 1 of 2

0 TABLE B5-11 (cont)

RADVASTE BUILDING QENT D AT GROUND LEVEL APPLICABLE TO LONG TERM (ROUTINE) GASEOUS 'RELEASES GRAZING SEASON (APRIL 1 SEPTEMBER 30)

Nine Mile Point Nuclear Station Unit 2 Niagara Mohawk Power Corporation D/ BY SECTOR (m-2)

Distance Bearing (mQ.es) 202,S 225 ' 292 ~ 5 $ 15,0 o25 S,86ver~n~ e,0216E.-09 1,6669t~09 6o0711E~09 5.61)sE 09 9o3031,',K~09 6o6889Ke09 io<525E+08

,50 2,0053F 08 Ro4567E~A9 6,6178E-10 2,7)576 09 >,2Q45E~09 3,9897:Eeoc 3o325QKo09 7op029Eee09 e 7 1 e136)k 09 lo9200E~09 3e700bE 10 1,SV57F 09 S,9876K 10 2o2708E~OS e,O>30E~Oe g,p231E 09

),QO 7.5a38f; 10 1o232QF~0~ 2e'3858K~10 s,S687F.-10 ~,6012E-io io0672E+09 1,3684E~Q9 2o7775E~09 i, e50 S.O7~ot-io 7,9u2'lF 10 >,S376E~10 6o3955E~)0 2,2066K-10 9.4O21E~)O 9o073$ E~)0 1,8123K.OS 2eVO 2.6630k.~iO 3,8358F~)0 7 e 5536F-~ 1 1 3,0qOOF -10 ),02SSE, 10 < o 5912F~10 e,5607K 1O e,e586E 10 Re5O ),Sq838.-10 2,579bF~10 5o1008E~)1 2,07)9E-10 6,83846~1) S,078eE 10 9,0977F~$ 0 6,0065K~10 3 00 1o55666.~10 l,ebs)E-ao 5 o 7914E, l. 1 ,o961E $ 0 4,8919Ee 1) 2,2108E~10 Bo2433Eo 10 o,8575K~10 3oSO jeO375E~10 a,0276K. 10 p,asset-.ai 1o1005E~10 ~o6S39h~ai io6706'E~10 io705$ E~$ 0 3oPQBQE~10 q,00 eo)914k 11. ),a~not.-ao P.o477)E 11 e,asivE-11 o87e 1 o 3$ 22Fs 10 lo305OE~)0 2o592RK+10 e >C) 6ob292C~11 9, a 1 o~E~) 1 2,)36)~-ai 7o59O)6+11 2oz)S~F-1) io06P6Ewi0 1o0989E~10 Bo)001K~10 5,00 5.~7624-11 7,9t 96t-11 1,8SOQE 11 6,a570E ii i,v061E-aa 8,8182E ~11 9,0985K~il iqV44$ E~10 7,50 ioe00 2,5865K-al 1,5044L-11 0,3c>20K p,7q)8E 11 a 1 1o3013F~))

),as92F ai 8,662)F~ai 2,2971E~ 1 i eo9831<~a2 5o260ZiE~a2 0,3g67E~ii 2o6$

O,6680K

~o1252<>ii ii 8,7612Koii S.SOZOE ii a5o00 7,0847L~18 ae3782E~ai To7003E~12 ),)537E 11 2 o 5486K>>. 12 73Fe))'o2423E<11 i,se3l,E 11 Ro8398Kii 2ooOU 4,57141-'~12 "o635 5e5637E 12 6o96~)E~)2 1,8)sOE-12 7o3921Ecoii8 io2293E~11 1,689eE ii 25o00 3,3297E i2 6.5001'2 <,)Z76F. )2 8987K<)2 1.6799E"12 5 o 188iEo18 8o0128E'~18 1.O77>E 11 30,00 2,77964.12 go3580E~a2 S,)876K )2 3o7769E~12 ),b273F 12 4 o 0051'E~ 1 2 5o3050Eei2 7oP290E~18 35oVO 2,3069K )2. a,~'l506-)R P.o4854E~12 3o0069E~)2 1,OS66E~12 3o1986E>18 3 o6092Fc 12 5o0$ 41Eo 18 40,00 >,962PE,~)2 3e6650F~12 io9232F. )2 2o 3959E~12 io2893E~ai2 2,559OE 12 o5~66<~ie 3oy048E+18 05o00 1.5702K=12 2o9$ 83F~)2 1,0660E 12 1,8873E~12 1o0529E~12 po0$ jfgga)Q lo843OF~42 Ho>9918~12 50.00 ie2080~ 12 2,295~E )2 1 e 1 022K,~12 1,0755E~12 8,2812K 13 ).6036F~18 lo3820F~12 2oa778E~)2 page 2 of 2

TABLE B5-12 REACTO BUILDING VENT D AT GROUND LEVEL

'APPLICABLE TO LONG TERM (ROUTINE) GASEOUS RELEASES GRAZING SEASON (APRIL l SEPTEMBER 30)

Nine Mile Point Nuclear Station Unit 2 Niagara Mohawk Power Corporation D/ BY SECTOR (m-2)

Distance Bearing (miles} 2?og 67 o5 90o0 1>Sp0 o i'd% fo?710~~08 fp6579L~O8 4o0365E~08 2,3?6SE-08 8o7627E-. 09 4,2>95E-O9 4,0082E~09 4.8975E 09 o50 5o?094E. 09 bo78378~09 io6543E~08 8,5000E-.O9 5,0842E 09 $ p9038Ep.09 $ ,6$ 28F~O9 $ ,3988K~09 p75 ?o889PF~09 3p8099E~09 9,2049k.-09 O,5239E-09 io5957E~09 ip$ 391E>09 8,96828~$ 0 Vp3497E<$ 0 io00 io8'5508~09 Pp4729E~09 5.986?E 09 Ho8396E~O9 9o8257E~10 7 o6853Eo, $ 0 5,7880E 10 4p6606E>$ Q fp50 1.$ 940E-09 $ o6071F 09 so9017E-09 lo7978E~09 6 p1207f-~ f 0 5o 4>3F~$ 0

$ 3,6500K~$ 0 3,0037K $ 0 2p00 5,8446E,$ 0 7p9655E,~$ 0 1 p 9522F ~09 8 6764E $ 0 2o89$ 9E~10 Bo6249K~$ 0 1p7486E~$ 0 1.613BE~10 Bp50 3o9364E. i0 5q3955f:~ 1 0 1.3318K-O9 5o8315E~$ 0 io9250E~$ 0 $ p7929E~$ 0 1,1627K~$ 0 1496Eipi0 Bo00 2,8af3E fn 3p8986F~$ 0 9,6834'0 4o$ 980E~$ 0 io5755E~$ 0 1 3008Ee$ 0 8p2892Eooi) 6,6ZOQE~11 ho50 Po$ 3SBE 10 2,9535F~$ 0 7o3763F~$ 0 3o$ 747E<$ 0 $ a0334E~$ 0 9,8791K~11 6p2331Kco11 S,V@05E~ii Qp00

<,50

. $ .6697E;$ O

$ ,3434E-10 2p3$ 99F~$

lo875$ E"10 0 5,8P08E 10 4p72664~$ 0 2o490bF+10 2o Of 17E.- 1 0 8,0532E-. 1$

6o457$ E+1$

7y777$ E>$ $

be~071K~$ 1

~.8915f.

3p9802Keii ii 5,197RE 11 Q.O144K~1$

5o00 1.$ 0676-. $ 0 $ .5530F 10 3o9296E .$ 0 fo6646E+$ 0 5 o 297 3E~1 1 5o2457E~l,i 9,3<04E~$ 1 3p6708E<$ 1 7p50 5.3274K 11 7o6875E+1$ lo9677E~$ 0 8o8424E~$ $ 2 p 4593Ev. $ 1 2p6555E'~$ 1 $ ,8894K~11 ipV608E~,ii 10p00 3o22$ 5F- 1$ op75'51F~$ $ lo2191E~$ 0 5p$ 95$ Eeii io4223<~11 fa6657K>i 1. ip3585E~$ 1 $ pOiR17E>$ 1 15,00 lo5727E. $ $ 2,4$ 85E-$ $ 6q0774E~$ 1 ?p7793<~1$ 6o5528E~$ 2 8.3602K $ R eo$ 877K~12 4.SOB'lK $ 2

?Q,OA 9,2028E~12 $ ,4928E-$ $ 3o'5876E 11 1 o75>7E<$ 1 3o7761<~12 4o8963F.$ 2 So$ 862~ 1? Ro6844K>$ 2

?5o00 5o9525E~iP $ .0$ 9~E;$ $ 2p5540E~$ $ $ o$ 597E~$ $ 2,46$ 1E~1P $ 4$ 1$ @$ $ 3o4077Ec $ R 1,6789E~ iii?

3O,OO 4,lZ08E 2p9993F~$

>p 7,3495E~$ P. ie6234Fr fi So 13~OF ~ $ 2 io7343E~$ 2 Pp$ 509E>18 Bp3R43EeiiR $ piSBOF>$ P-

~S.OO 2 5o4748F+12 $ oi864E~$ $ 5,93$ 5E~$ 2 1.2900K $ 2 $ .5459E $ 2 1 p 64 $ 9E~ iiR 6,51696<$ 3 40eQO Po2693tel? o$ 740F~12 9p0(}726~$ 2 4o4684E+\2 9,98236 $ 3 io$ 54$ E~$ 2 1 o $ 97 1,EI.$ 8 S,o979E~$ 3 45p00 1o7705E~$ P. 3p2444E~$ 2 7p0484F~$ 2 3o lb $ 8F~ $ 2 7o96$ 5F~$ 3 8p887i?K~$ 3 8p9727E~$ 3 5p))57K> 13 SO.00 4$ 64E 12 Po5667E~12 S,653$ V->2 ?o7475Ee$ 2 6,'SO3$ E-.$ 3 7p0$ 65F+13 Sp89$ 2Eo $ $ QpigQQE@$ 3 Page 1 of 2

TABLE B5-12 (cont)

EACTO BULLDOG EHT D AT 6 UND LE EL APFL'XCABLE TO LONG TERM (ROUTING) GASEOUS RELEASES GRAZING SEASON (APRIL 1 SEPTEMBER 30)

Nine Mile Point Nuclear Station Unit 2 Niagara Mohawk Power Corporation D BY SECTOR (m- )

Distance Bearing (miles) 825pO 247.5 c!70 o 0 >15.0 3eo.a o 5,78564~09 R,752<6 O9 84E.~09 5.9<51,E 09 5pbilbE~O9 9o3$ 3$ E~09 bo6227E+09 j,o5460E~O8 oba lq9307L~O9 3,5048f'-O9 6 p19768~10 2,65946-09 1,2045K.~09 3.9997K~09 Bo2773Ke09 7,1926F..09 p75 1,0396E~09 1,8551E 09 3p4650F~ia ip5224Fe09 5o9876F-~10 2,27OSE~O9 2,00$ 0E~Oe 4o2i?QQE<09 1 oo0 6.7a9bE iO ] .1870F~09 2y2606E,~l0 9 o 8581K-10 3.bai2F- 10 1,0672E~OS 55006+09 2o>765Ke09 lo5~ 4,4793E-1O 7,6624K-10 lo4773F~10 6p3440F .10 2 o Z(}66E.~10 9.4021E~io 8,9814Ee10 1. 8119K~09 2 oOi} 2,360th,-lO 3,7755F~10 7o3865Ec 11 3o077QE~10 lp0289E~10 4,5g06E~10 4 530&E@10 so9574E+10 c? o50 ip68~j.E 10 2,5451F~1O 5.0341E~11 2p05876~10 6,83a4F-11 3o0754E~10 5,0826Esri0 6,geBBK~10 5pOO 1,2642F-10 1,83o5E 10 >o66SOE.~11 lo4747E~10 8919Eo i > 2,202OE 10 2o2287Eei0 0,3460K~10 8,5o 9o83<OF- 11 1,3905E.10 2o8179t~ii loll~OF~10 3,6839F~ii 1,6556E~$ 0 1,6872K 10 3,py64K~10 4oQO 7p868dk~il i,o967F 10 2,2630E 1I, 5,75544~11 2o8792E~11 i,2917F~10 io>2>OE~10 Bo559BE~10 4 o50 6,4369F~11 8,9859K-11,c.'o5$1,8882E 11 7pl287E~11 Po3159E~11 io038'HE~10 lo0676K~10 P.oQ57RKe10 5p00 5p3638F- 11 V,4792E-11 1,6265'1 5p9715E.~i1 i, 9 0 61E -.11 Rp5585E~11 8 o8224Ec 11 1,6933E~10 7o5O 2o5973~ li p5P66t ~i 1

%,9486K l1 lo01>~~

2.567bf: 11 7p4749E~12 li 5.2043K-11 2oi087E"li 8 p 9831E~ iP So2588F~12 4, l42<E~11 4,2957E 11 8 p l 972K> i 4,OO61E-ii 1

1VoOU 1 2o5066E<>.1 2o6$ 21E~11 15oOO 7ola 1,3294E--ll 4,8188E-12 1 o 1105E~1 1 Zo~6614~12 1,212eE~11 1 o~541Ec 11 2o4906E~11 20oQO 4,09b7F.. 7y9$ 524~12 3o6322E~12 6 o 6239K.~12 lo4389E~$ 2 7o0343EelP. Oo1629E~12 io530TE'<li 25oOO 2pbb"4~ 12 5o 1684K~12 2q8860E~12 4, 2853E-.12 9o4996Eei3 4.5260K 12 6,9003E ie 1o0386E~ii 30o00 1 p8907E, 12 y, 609 1F-~ 12 2,2954E-12 2o9571E~12 6o8986E,~13 3 o1363E<12 5o3257E'+12 7o432REoi12 35o00 >,4>r4Z-.12 2, 691d ~12

f. 1,8208F 12 2pl625E~12 5.5156E-l3 2,3120E~12 O,1107K 12 5o492$ Eei2 Qaqao 1,1bO7E~i.2 p,i424L-12 lo457PE~12 l o 67126~12 4o8453E~l3 1.8021E ia 3.1661K 18 4 p < 50SE<1P.

4S,aO 9.96Obt.~13 1,80?7F~i2 1 p1894E~12 1 o 3580F <12 4p5755E~13 1.4750F. 12 Ho4418E~12 3oP043Ee12 5aoQV 8.8627E i3 i,59a9f ~ i 9o9478Ep'l3 ip1499E-.12 4$ $ ~1$ 1,P555E~1P. lo893bK~12 295160Ei 12 Page 2 of 2

0 Part C Badiolo ical Dose Assessment Request C1 Ifpopulation there is a priori knowledge age distribution that the current 50-mile may be signif icantly different from the U.S. population distribution, then furnish the current age distribution of the 50-mile population (e. g., 0-12, 12-18, >18) .

Res onse C1 Table C1-1 provides the age distribution of counties within 50 miles of Nine Mile Point Nuclear Station Unit 2 (NMP2) and the distribution for the United States. This population distribution is not significantly different from the U.S. population distribution.

The population age distribution used in determining man-rem dose estimates is as follows:

A e Grou Percent Adult 62 Teen 14 Child 24 A total population of 1,324,000 persons within a 50 mile radius is projected for the year 2000 (Figure 2. 1-13, ref. 1) . This value =is used as being representative of the 50 mile population at the midpoint. of the NMP2 plant life.

Page C1-1

TABLE C1-1 Po ulation A e Distribution of U.S. and of Counties Within 50 Miles Mile Point Nuclear Station - Unit l2 l

Nin Niagara Mohawk Power Corporation 1

~Count 1970 Po ulaticn Under 5 5-0 g. 10-14 15-19 Oyer 19 Cayuga 77,439 8.63 9. 96 10. 57 9.59 61.23 Jefferson 88'09 9.01 10.42 10 ~ 77 9. 17 60.64 Lewis 23i644 9 ~ 44 11.66 12. 40 9.91 56. 58 l

Madison 62,864 9. 53 10.36 10. 57 12. 12 57. 42 Oneida 273, 037 8.63 9- 92 10. 13 9. 02 62. 29 I

Onondaga 472,746 8.90 10.26 10. 26 9. 47 61. 11 Ontario 78i849 8. 78 10. 71 10. 53 9. 42 60.55 l

I Oswego 100'97 9. 54 10. 74 10. 78 10. 50 58. 43 Seneca 35,083 8. 07 9. 91 I 8. 73 64. 01 Wayne 79~ 404 9.39 10.96 10. 74 8.57 60. 35 Total 1,292~472 8.93 10.29 10. 42 9. 50 60. 86 (all counties)

U. S. 203, 210, 158 8.42 9. 87 10. 26 9.45 62. 00

References:

1 ~ U.S. Bureau of Census, Census of Population 1970, General Population Characteristics Final Report PC(1) B1 National.

2~ U.S. Bureau of Census, Census of Population 1970, General Population Characteristics Final Report PC (1) B34 New York.

Page 1 of 1

Xl~

Re est C2 provide in tabular form the distances from the centerline of the first operational reactor for each of the sixteen sectors described in Section 2.1e3 of Regulatory Guide

4. 2, Rev. 1, to the nearest vegetable garden {greater than 500 ft~) out to a distance of five miles.

~Ree oeee C2 Field surveys conducted on November 21, 1975, December 8, 1975, and April 21 and 22, 1976, located gardens larger than 500 sq ft in eight of the sixteen sectors within a distance of five miles of Nine Mile Point Nuclear Station Unit 2. These Gardens are listed in Table C2-1 ~

Page C2-1

I 0

TABLE C2-1 NEAREST GARDEN OVER 500 FT> WITHIN FIVE MILES Nine Mile Point Nuclear Station Unit 2 Niagara Mohawk Power Corporation Sector Distance f+t.

N NNE NE ENE E 6,200 ZSE 7i 800 SE 8,700, SSE 8,400 S 7,900 SSW 9,700 SW 10,400 WSW 6,COO W

WNW NW NNW Note:

A dash (-} indicates none within 5 miles.

Page 1 of 1

Re uest C3 Tabulate for each compass point sector radiating from the center of the plant the location of the nearest existing milk-producing animals (cows and goats) within five miles of the site.

Res onse C3 Field surveys conducted on November 21, 1975, December 8, 1975, and April 21 and 22, 1976, located milk-producinq and meat producing animals within five m'es of the site in 6 of the 16 compass point sectors. The distances in feet to the nearest of the animals in each sector are tabulated in Table C3-1.

The Response to AEC Question 2.19 in the Nine Mile Point Nuclear Station Unit 2 Preliminary Safety Analysis Report (ref.1) shows dairy cow distribution and numbers within 1, 2, 3, 4, 5, 10, 20, 30, 40, and 50 miles. A 47 percent decline in the number of farms in Oswego County having cows in the five years from 1964 to 1969 is also indicated in that. response. That trend could account for the failure to find cows -n the east sector now versus 15 cows earlier.

Page C3-1

TABLE C3-1 NEAREST MILK PRODUCERS AND MFAT ANIMALS WITHIN FiVe, MILES Nine Mile Point Nuclear Station - Unit 2 Niagara Mohawk Power Corporation Distance Distance to Nearest Milk to Nearest to Near=st Hector Cow ~f~t Meat Animal+ft} goat. gfty N

NNE NE ENE

/TNT'istance E

ESE 7,800 7,800 SE 8,500 8,500 SSE

  • 12,0C 0 12,000 19,000 S 11,000 11,800 SSW 16,0GO 9,800

'W 11,800 8,500 WSW W

$7gPT NW Note:

A. dash (-) indicates non= within 5 miles.

Pag~ 1 of 1

Re uest C4 Provide data on annual meat (kg/yr), milk (liters/yr),

and truck farming production (kg/yr) and distribution within a 50 mile radius from the reactor. Provide the data by sectors in the same manner indicated in Sections 2.1.3.1 and 2. 1.3.2 of Regulatory Guide 4.2, Rev. 1.

Res onse C4 Tables C4-1, C4-2, and C4-3 provide data on annual meat (kg/yr), milk (liters/yr), and farming production (kg/yr), respectively, by sector within a 50 mile radius (ref s. 20 -and 21) .

Page C4-1

TABLE C4-1 MEAT PRODUCTION DISTRIBUTION WITHIN 50 MILES t

Nine Mile Point Nuclear Station Unit 2 Niagara Mohawk Power Corporation MEAT (Kilograms per year)

PRODUCTION DISTRIBUTION t,

SECTOR 0-1 Ml 1-2 MI. 2-3 MI 3-4 MI 4-5 MI 5-10 MI 10-20 MI 20-30 MI 30MO MI 40-50 MI N 0 0 0 0 0sO 0 0 0~ 0 0 ~0 G 0 0 0 1 6E+05 4o2E+05 NNE 0~0 0 0 0.0 0 0 O.o 0~0 3-5E+04 3 'E+05 4 9E+05 8.1E+0&

NE 0~0 0 ~0 0oG 0~0 0~0 0 ' 1 9E+G5 4o5E+05 6.0E+05 7o5E+05 ENE 0 0 G 0 0+0 0 0 0~0 4.7E+03 1 9E+05 3 6E+05 3 9E+05 4.8E+05 E 0.0 0~0 0 ~0 4.4E+02 1 ~ lE+03 2 o3E+04 1.9E+05 3 'E+05 3 'E+05 5.7E+05 ESE 0~0 1 1E+04 1.7E+04 4E+03 5.6E+03 4. 7E+04 1 9E+05 3 'E+05 7 3E+05 9.4E+05 SE 0 0 1.9E+04 4.5E+04 4.4E+03 5.c E+03 4.7E+G4 1.9E+05 2 3E+05 4.9E+05 1 4E+06 SSE 0~0 0 ~0 3.3E+o4 4 4E+03 5 'E+03 4.7E+04 1 ~ 9E+05 4 ~ 5E+05 6 4E+05 9.2E+05 S 0.0 G~0 2.3E+04 4. 4E+03 5 'E+03 4.7E+04 1.9E+05 4 'E+05 6 'E+05 7 SE+05 SSW 0 0 1.0E+03 1 9E+04 4.4E+03 5.6E+03 4 'E+04 1.9E+05 5.9E+G5 8 OE+05 9.4E+05 SH 0 0 1 OE+04 2.0E+03 4 4E+03 5.6E+03 4 7E+04 2 5E+05 5.0E+05 7.2E+05 8-8E+05 WSH 0.0 U~0 0 ~0 0~0 0 ' 0~0 7.4E+04 0~ 0 4 2E+05 6.2E+05 0 0 0 0 0 ~0 0 ' 0 0 0 ~0 0 ~0 0 ' GoO 0 '

HNW 0~0 0 0 0 0 0 0 OoO 0 ' 0~0 0 ' 0 ' 1 7E+05 NW 0.0 0~0 0~0 OaO 0~0 0 ' 0 ' 0' 0 0 5.7E+05 NNW 0 ~0 0 0 0+0 0 ' 0.0 0 ~0 I

0 0 0~0 0 0 2 ~ 8E+05 Total Production 2. 3E+07 Kilograms per', year Note: The typical notation 2.3E+07 represents 2.3X10 7 Page 1 of 1

TABLE C4-2 1 COW MILK PRODUCTION DISTRIBUTION WITHIN >0 MILES Nine Mile Point Nuclear Station Unit 2 Niagara Mohawk Power Corporation COW MILK (Liters/Year)

PRODUCTION DISTRIBUTION SECTOR O-l HI 1-2 HI 2-3 HI 3-4 HI 4-5 HI 5-10 HI 10-20 HI 20-30 HI 30-40 HI 40-50 HI N OeO 0~0 Oe0 0 ' 0~0 0 ' 0 ~0 0 ' 5eOE+06 1.3E+07 NNE 0 0 0 0 0 ~0 0 0 0 0 0 ' le 1E+06 1 1E+07 1 5E+07 2 'E+07 NE 0 ' 0 ' 0.0 0 ' Oe0 0 ~0 5 'E+06 le4E+07 2 AL OE+07 2.4E+07 ENE 0~0 0 ' G.O 0 ' 0~0 9e 9E+04 4. OE+06 9 'E+06 1 7E+07 2 1E+07 E G 0 G 0 0 0 9 3E+03 2 e 4E+04 5 OE+05 4eOE+06 6 BE+06 le6E+07 2.2E+07 ESE 0 ~,0 l. 5E+0> 0 ~0 9.3E+04 1.2E+05 9 'E+0, 4 AL OE+06 Be 7E+06 2.1E+07 2 'E+07 SE 0.0 2 ~ 5E+04 le5E+04 9.3E+04 1 2E+05 9.9E+05 4 AL OE+06 5 ~ OE+06 1 6E+07 6E+07 SSE OeG 0 ' 7-5E+04 9.3E+04 1 2E+05 9.9E+05 4 AL OE+06 le 1E+07 1 5E+07 2 'E+07 S 0 ' 0 ' 0eO 9.3E+04 1 ~ 2E+05 9e 9E+05 I

4eOE+06 1 1E+07 1 ~ 6E+07 1.8E+07 SSW 0 ' OeO 0 ' 9 3E+04 1 2E+05 9 'E+05 4.0E+06 1 ~ 4E+07 1 6E+07 1 BE+07 SW 0 0 0 ' leOE+04 9.3E+04 1 2E+05 9 9E+05 5 'E+06 1 ~ 1E+07 lelE+07 le3E+07 HSW Oe0 0 ' 0eO GeO OeO OeO 1 6E+06 OeQ 9 5E+06 9 'E+06 W 0.0 0 ' 0 ~0 OeO Oe0 0 0 0~0 0 ' 0 0 OeG WNH 0 0 0 ' OeO 0 ' 0~0 0 ~0 0 ~0 0 ' 0 ' 5.3E+06 NH 0 0 0~0 Ge0 0 ' 0 0 0.0 Oe0 0 ' 0~0 le7E+07 NNW 0~0 0 ~0 0 ~0 0 ' 0~ 0 0 ' 0 ' 0 ' 0 0 8 'E+06 l

Total Production 6.1E+08 liters per year I

Note: The typical notation 6.1K+08 represents 6.1X10 Page I of 1

TABLE C4-3 CROP GROWTH DISTRIBUTION WITHIN 50 MILES Nine Mile Point Nuclear Station Unit 2 Niagara Mohawk Power Corporation FRUIT {Kilograms per year)

SECTOR 0-1 NI 1-2 NI 2-3 Hl 3-O Ml 4M NI 5 10 MI ~10-20 HI 20-30 Nl 30~0 HI +0-50 Ml N O<<0 0<<0 0 ~0 0 0 0<<O 0 0 O<<0 0. 0 4. 5E+03 1.1E+04 NNL 0 0 O<<O O<<O 0~0 0 ~ o, O<<O 9.5E+02,. 9<<5E+03 1<<3E+Olt Z<<2E+0&

NE O<<0 u<<O 0<<0 O<<0 0<<O 0~0 9 7E+04 1 ~ ZE+04 1<<5E+04 1 SE+04 ENE 0 ' 0~0 O.O 0 ' 0 0 +03 3 7E+05 4<<2E+05 l<<8E+03 0<<0 E 0 0 3 jE+63 3 lE+03 8 7E+02 2.3E+03 4.7E+04 3.7E+05 6 'E+05 0 ' 3 1E+04 ESE 0 0 3.YE+03 6.4E+03 8 lE+03 l. 1E+04 9<<3E+04i 3.7E+05 4 'E+05 1<<2E+05 1<<6E+05 SE 0 0 3 7E+03 6 <<4E+03 8.7E+03 1..1E+04 9<<3E+04~'.3E+04I 3<<7E+05 4 7E+05 7 BE+04 2 1E+05 SSE 0 0 3<<7E+03 6 <<4E+0,3 8. 7E+03 1.1E+04 3.7E+05 . .9.6E+05 4 4E+06 .1 5M+06 0 ' 3 'E+03 o LE+03 8 <<74+OS 1 lb+04 9 3E+Olt, 3 7E+05 9 6E+05 1 2E+06 1 lE+06 SSW 0<<0 3 'E+03 6.4E+03 8 <<7E+03 1 LE+04 9 3E+O4,' 3.7E+05 4 ~ 9E+05 1 <<1E+07 9 <<1Eo05

l. RE+02 SW 3.7E+03 6 <<4E+03 8 7E+03 1.1E+O4 ~ 3E+04 ',

3.2E+05 1.4E+07 3 3E+07 2 'Ee07 HSW 0 0 0 0 0<<0 0~0 0<<0 0 ~0 9 'E+04 0 0 2 4E~<<05 2 8E+07.

W 0 0 O.O O.O 0<<O 0 0 O<<0 0 0 0~0 0 0 0<<0

' O<<9, WNW NW NVW 0~0 O.O 0~0 0

O<<0 0<<0 .

. O<<O 0<<0

..O.<<0 0~0 0~0 O.<<0 0<<O 0<<O 0 0 0 ~0 0<<O 0 ~0 .

0 0 0.0 O.<<Q 0<<0 0 ~0 0 <<0 ...40 ~0

~ .0 14.<<72+03

~ 6E+04 7~7E+03 Total Production 1.3E+08 Kilograms per year 1 Note: The typical notation 1.3EW8 represents 1.3X10 Page 1 of 5

TABLE C4-3 (cont.)

CROP GROWTH DISTRIBUTION WITHIN 50 MILES Nine Mile Point Nuclear Station Unit 2 Niagara Mohawk Power Corporation FRESH VEGETABLES (Kilograms per year)

SECTOR O-l MI 1-2 Ml 2-3 MI 3-4 Ml 4-5 Ml 5-10 MI 10-20 MI 20-30 MI 3OWO MI 40-50 MI N 0 0 0 0 0 0 OoU 0 0 0 0 0 0 0 ' 1 4E+03 3 5f+03 NNE 0.0 Oeo 0~0 0~0 OoO OeO 2 9E+0? 2o9E+03 4 if+03 6 Sf+03 NE 0 ' 0 0 0 0 Oo0 Oo0 0 0 6.Of+04 6 AL OE+05 3 'E+03 6eOE+03 7 'E+03

.l,elf+0.

ENE Q.O Oo0 Oe0 (po 0 OoO 2o4E+06 . 2 6k+06 7e7E+03 E 0 ' 2.4E+04  ? OE~04 5 6E+03 1.5E+04 3.0E+05 2 e4E+06 4'o 1 E+06 7 e9E+03 2 e7E+05 1 3E+06 ESE O.O 2 4E+04 4.1E+u4 5. ef+04 7 1E+04 6 OE+05 2 4E+06 3 26+06 1 OE+06 SE Oe0 2.4E+04 4.if+04 5.6E+04 7 lE+04 6.0E+05 2 4E+06 3 OE+06 7 6E+05 2 2E+06 SSE OeO 2 4.f+04 4 1E~04 5.6E+04 7.e 1E+04 6,0E+05 2 4E+06 J. ATE+06 2 OE+06 2. 55+06 S 0' 2 4E+04 if+04 5 o6E+04 7. 1E+04 6 OE+u5 2 4E+06 1 4E+06 2 lE+06 2 4E+06 SSH OeO 2.4E+04 4o lE+04 5 6k+04 7.1E+O~ 6 Of+05 2.4E+06 .1 76+06 ..+.2E+06 .1..7hW6 ..

SH 7 8E+02 2 4E+04 4 1E+04 5 6E+04 7olE+04 6 ~ OE+05 2 OE406 3 5E+06 7 8E+06 6 SE+06 HSH 0~0 0 ' OeO Oo0 0 ' 0 ~0 5 9E+05 .0 0 1 2E+Ob ..6 BE+06 = ..

., 1.&e3

' 0.0 0 0 Oo0 OeO H

HNH 0

Oo0 0 0 0 0 0 0 0eO OeO 0 0 0o0,.

OeO 0.0 00

.. 0 O.

0 0 0,9 00 47E+03 NH NNH 0

OoO UeO 0 '

0 ~0 OoO OoQ

.O.oO Oe0 OoO QeO 0o0 == 0.o.O: ..O. ~ .0 2o&E+03.=

I Total Production 8.9EW7 IQ.3.ograms per year Note:

The typical notation 8.9EW7 represents 8.9X10 Page 2 of 5

TABLE C 4-3 (cont.)

CROP GROWTH DISTRIBUTION WITHIN 50 MILES Nine Mile Point Nuclear Station Unit 2 Niagara Mohawk Power Corporation I

POTATOES (Kilograms per year)

(

SECTOR O-l Hl 1-2 Hl 2-3 HI 3-4 HI 4-5 Hl 5-10 HI 10-20 HI 20-30 Hl 30-40 Hl 40-50 HI N 0 O.O 0oV DoO 0 ' 0 0 I

0~0 0 ' 1 2E+05 3 DE+05 NNE 0 ' OoO OoD 0 G OoO OoO 2 5E+04 2-5E+05 3o6E+05 6oOh+05 NE 0 ' 0 G v~0 0~0 0~0 0 ' 1.7E+05 3.3E+05 3.9E+05 4.8E+05 ENE Oo0 G G O.G 0~0 0 0 6. BE+03 2o7E+05 4.1E+05 5.4E+04 9 9E+03 .

E OoO 2.7E+03 2 3E+03 e 4E+02 l. 7E+03 3 4E+04 2 7E+05 4.7E+05 7o4E+03 2o4k+05 ESE DING 2 'E+03 4.7E+03 6.4E+03 8-1E+03 e.vE+04 Z 7E+05 5.DE+05 8 9E+05 1 .1E+06 .

bE DoO IE+u3 lE+03 6.4L+03 8 'E+G3 6o8E+04 2 'E+05 3 4E+05 1 3E+06 4 4E+06 SSE G~G 2.16+03. 7E+03. eo4h+03 8. 1E+03 6 'E+v4 2o7E+05 2oeE+05 X .7m+05. 1,.3E+06.

S Oo0 2 7E+03 7E+03 6 4E+03 8.1E+03 6.vE+04 2 7E+05 2.eL'+05 8 8E+05 1 3E+06 SSW, GoG 2.7E+03 4 ~ 7E+D3 6. 4E+03 8.1E+03 6 ~ 8E+0't 2 7E+D5 1.5E+06 4..6E+Db .3, 9K+Q6 SW 8 9E+01 2 7E+03 4 7E+03 e.4E+03 8 lE+03 6 8E+04 5.3E+05 4 ~ OL+06 9. 1E+Oe 9. 4E+06 WSH DoO Do 0' 0 0 0 ' 000 0~0 0 ~0 Oo0 lo6E+05 0 ~0 0~0

.1 OoO 2E+06.= 7.9E,+06 0 0 OoD ~u G ~D OoO OoO WNW DoU ,DoO 0 ~0 0 ~ 0. OoO 0 ' 4.0. y~0 Qo D . Lo3++05 NW OoD OoD OoO O.O DoG 0 ' Oo0 0~0 0 oO 4o lE+05 NNW Oo0 OoO. OoV Do0 . DoV = -0 ' D.o 0 ,0 o.G. O.oO,, 2olE+05.

I Total Production 6.2E+07 Kilograms per year Note:

The typical notation 6.2E+07 represents 6.2X107 Page 3 of 5

TABLE C4-3 (cont.)

CROP GROWTH DISTRIBUTION WITHIN 50 MILES Nine Mile Point Nuclear Station Unit 2 Niagara Mohawk Power Corporation PROCESSED VEGETABLES (Kilograms per year)

SECTOR 0-1 Ml 1-2 Hl 2-3 Ml 3-4 MI 4-5 MI 5-10 MI 10-ZO HI 20-30 HI 30MO HI 40-50 HI N QoO Ooo 0 0 0~0 Ooo Oeo 0.0 Geo 8.4E+02 2.2E+03 NNE 0 0 0 0 0 0 0 0 0 0 Ooo le8E+02 le8E+03 .Zo5E+03 4o2E+93, Nf 0 0 0 ' Ooo Oeo Oe0 Ooo 6e6E+04 2 e 3E+03 3 e 1 E+03 3 e8E+03 ENE 0 0 OoO Geo 0 ' Oeo bo5f+03 2 6E+05 2 'E+05 le8E+03 2o2E+03 Ooo 2o6E+03 2 Zf+03 6 lE+02 1 6E+03 3o3E+04 ,2 6E+05 4 5E+05 1 6E+03 2 Sf+05 ESE Ooo 2.6E+03 4 e 5E+03 f 6 o 1 +03 7 8E+03 be5E+04 2 6E+05 5e2E+05 1 elE+06 1 4E+06 SE Oeo 2 'E+03 4.5E+03 6 1E+03 7 HE+03 6 5E+04 ,'2 o6E405 3 o 3E+05 3 o7E+05 6ooE+05 SSE 0 0 2 6E+03 4.5E+,03 b. if+03 7.Sf+03 6 'E+04 .2e6E+05 l.elf+06 .. 1>Sf+06 .,l.e 7E+06 S ooO 2 'E+03 4.5L 403 6 e lE+03 7 8E+03 6o5E+04 "2e6E+05 1 olE+06 1 o5E+06 1 o6E+06 SSW Ooo 2e6E+03 4.5E+03 6. lE+03 7 8E+03 6 U SE+04 2e6E+05 . loof+06 . Zo3F+06 .8o9E+05 SW 8 6E +01 2.6E+03 4 5E+03 6 lE+03 7.8&~03 6 'E+04 '3.7E+05 f 2 1 aob 4.3E+06 3.7E+06 WSW 0 '0 0 ~0 Oeo Oeo 0 ' Oeo le lE+05 ..O.eo .6ebE+05 3e7E+06 0~0 Ooo OeO 0 ~0 Ooo Oeo o.o o.o O.o O.o WNW 0 ~0 0 ~0 Geo . Ooo, 0 0 Oo0 0 e 0, 9~ 0 .3) e9 8WM+92 NW NNW Oeo 0~0 Ooo 0 ~ 0..

Ooo

,. V. oO....O,o 0 0 0

0 0 O.e.0 0 ~0

.O.e 0

)0 0

'O.o.Q..

Ooo M~O..O.M 0~0

., ~+93.

Ze9E+03 Total Production 3.5E+07 (Kilograms per year) t Note:

The typical notation 3.5E+07 represents 3.5X10 Page 4 of 5

0 TABLE C4-3 (cont.)

CROP GROWTH DISTRIBUTION WITHIN 50 MILES Nine Mile Point Nuclear Station Unit 2 Niagara Mohawk Power Corporation GRAINS (Kilograms per year)

SECTOR G-l Hl 1-? Hl 2-3 Hl 3-4 H1 4-5 HI 5-10 Hl 10-,20 HI 20-30 Hl 30-4u Hl 40-50 HI N O<<O 0~0 0 0 0<<0 0 0 G<<0 0 0 G~0 6 9E+05 1 SE+06 NNE G.G 0 0 0 ~0 0 Oou O.n 1,5E+05 1 5E+06 . 2 1E+0( 3 5E+06 Nk 0~0 0.0 0<<V 0~0 O<<0 O<<G 6 9E+05 1o YE+Oh 2 <<4E+Gb 3 oGE+06 ENE 0 0 0 ~0 0.0 0 0 0 0 1 o OE+04 4iOE+05 1o 1k+06 8 o9E+0> 9 oOE+05 L O<<0 4.0E+03 3 4k+03 9 ~ 4E+02 2 5E+03 5 'E+04 4 OE+05 6 ~ VF+05 6 SE+05 1 ~ 5E+06 ESE 0 0 4.0E+03 6.9E+03 9 4E+03 lo 2E+04 1 uE+05 4 OE+05 1 1k+06 3 LE+06 4 OE+06 SL 0 0 4 OE+03 6 9k~03 9.4L+03 1 ZE+04 loOE+05 4<<OE+05 5 'E+05 2 7E+06 8 3E+Ob 0<<V 4<<VE+03 6 Yk~03 9 4E+03 1 2k+04 1 oE+05 4 OE+05 5. 7E+06 .8 2E+06 1 GE+07 S 0 0 GE+03 6.9E+O~ 9 4E+u3 1 2E~G4 1 <<OF+05 4<<OE+05 5 7E+06 1 ~ OE+07 1 o2E+07 SSH 0~9 CIE+vo a<<9k+03 9 4E+03. 1.2E+u4 1. OE+u> 4 GE+05. 1 OE+07. 1 3,E+07 l,<<YE+07 .

SR l.3E+u2 4<<OE+03 6.9E+03 9 ~ 4E+03 1.2E+04 l OE+05 2 'E+06 4<<GE+06 9<<4E+06 lo4E+07 MSH GAG O<<0 0<<O 0~0 0~ 0 . 0.0 7.'3E+05 0.0,. 7-5E+06 8 lE+06 .

00 G 0 0<<O Gob 0 0 0<<0 00 0 0 0<<0 0~0 NNH 0 0 Oou 0 0 0.0 OoO G~O. 0 0 0~0 0<<0 .7 QS+Q5 u<<0 2 4E+06 NW NNM QoG 0 AU 0~0 0 oiJ 0<<G GAG 0,0..

0<<O k<<0= . 0 0 0 O~P O.'P,O 0~0 0... 0 0 0 O...l~+Qh Total Production 1.9E+08 Kilograms per year Note:

The typical notation 1.9E+08 represents 1.9X10 8 Page 5 of 5

,3 TABLE C9 CO&IPARZSON OF CALCULATED ANNUAL DOSES YO INDIVIDUALS WITH APPENDIX I DESIGN OBJECTIVES Nine Mile Point Nuclear Station - Unit 2 Niagara Mohawk Pow-r Corporation APPENDIX I CRITERION DESIGN OBJECTIVE C ALCULATED DOS E Gaseous Effluents Gamma Air Dose 10 mead/yr 0. 11 mrad/yr Beta Air Dose 20 mrad/yr 0.047 mrad/yr Noble Gas Total Body 5 mrem/yr 0.083 mrem/yr Noble Gas Skin 15 mrem/yr 0.12 mrem/yr Iodines and Part. 15 mrem/yr 2. 20 mrem/yr Any Organ (Thyroid)

Li uid Effluents Total Body 3 mrem/yr 0. 063 mrem/yr Any Organ (Bone) 10 mrem/yr  : 0.70 mrem/y Page 1 o

TABLE C9-2 ENiVUEL DOSES FROi4 NOKiLE GLS KFLUENTS Nine Nile goin Nucl ar Station - Unit 2 Niagara Mohawk power Corpo";ation CRITERION LOCATION OP DOSE EVLLUATION CALCULATED DOSE I

Gamma dose in air (mrad/yr) Boundary of restricted area - 1. mile East 1. 1x10->

Beta dose in air (mrad/yr) Boundary of restricted area 1,'ile East 4. 7x10 2 Dose to total body of an Boundary of restricted area mile Ease. 8. 3x10-~

individual (mrem/yr)

Dose to skin of an individual Boundary of restricted area 1I mile East 1. 2x10-~

(mrem/yr)

Page 1 of 1

TABLE C9-3 ANNUAL DOSES TO MAXIMUM INDIVIDUAL IN ADULT GROUP FROM RADIOIODINE AND PARTICULATE GASEOUS EFFLUENTS-Nine Mile Point Nuclear Station - Unit)2 Niagara Mohawk Power Corporation ANNUAL DOSE ~mrern/pre PATHWAY AND LOCATION TOTAL BODY SKIN BON E LIVER THYBOI D KIDNEY LUNG GI TRACT I

Inhalat on boundary of 8. Ox10-i NA 9 ~ Ox10 4 5. 1x10 3 9. 1x10-~ 1. 2x10-3 7. 5x10 > 9. 9x10 restricted area 1 mile East Deposition on ground- 2. Ox10-i 2. 4x10-i 2. Ox10-~ 2. Ox1 0- i 2. Ox10- i 2. Ox10- i 2. Ox10 > 2. Ox10 boundary of restricted area 1 mile East

)

)

Leafy vegetables 5. 7x10-~ NA 8. 5x10-> 7.2x10-3 7.3x10-< 6. Ox10-3 1. 1x10 3 6. 9x10 6,200 ft East Stored vegetables 3. 5x10 NA 5. 3x10-~ 3. 9x10-~ 3. 9x10-~ 1 6x10-~ 8.7x10-3 4.5x10-~

6,000 ft East.

Meat animal 9. 7x10-~ NA 9x10-3 1. 1x10-~ 9. 9x10-3 6 5x10 ~ 5. Ox10-~ 2. 3x10-3 7,800 ft East Southeast 1 ~ ~

Total of above pathways 2. 4x10-~ 2 .4x10-< 2. 6x10-i 2. 5x10 Oo 2 'x10 < 2.2x10-< 2.5x10 Page 1 of 1

TABLE C9-4 ANNUAL DOSES TO MAXIMUM INDIVIDUAL IN TEEN-AGE GROUP FROM RADIOIODINE AND PARTICULATE GASEOUS EFFLUENTS Nine Mile Point Nuclear Station - Unit 2 Niagara Mohawk Power Corporation ANNUAL DGSE~mrem~/r)

AND LOCATICN TOTAL BODY SKIN BONE LIVER. THY ROI D-

'ATHMAY KIDNEY LUNG . GI TRACT Inhalation boundary of 5. Ox10-4 NA 4. 1 x10-4 3. 6x10-~ 7. 9x10-~ 8. lx10 7. Ox10-3 6. Ox10-i restricted area 1 mile East Deposition on ground 2. Ox10 2.4x10 > 2.0x10 > 2 Ox10-> 2. Ox10- i 2. Ox10- ~ 2. Ox10 ~ 2. Ox10->

boundary of restricted area I 1 mile East 'I Leaf:y vegetables 3. 9x10-3 NA 6. 1 xl 0 > 6. 1 xl 0-3 5. 5x10-~ 3. 9x10-> 9. 2x10 4. 1x10-3 ft

~

6, 200 East Stored vegetables 4. Ox10-~ NA 6.7x10-~ 5.8x10-~ 5. 5x10-~ 1. 9x10-~ 1.3x10-> 4.8x10-~

6,000 ft East Meat Animal 6. 2x10-~ 5.0x10-4 7.7x10-i 6;9x10-~ 9xl 0-i 3. 6x10-~ 1. 2x10->

7,800 ft East Southeast NA 3 ~

Total of above pathways 2. 5x10 2.4x10-~ 2.7x10-~ 2.7x10-> 8. 9xt0-~ 2.2x10-> 2.2x10 > - 2.5x10 Page 1 of 1

TABLE C9-5 ANNUAL DOSES TO MAXIMUM INDIVIDUAL IN CHILD AGE GROUP FROM RADIOIODINE AND PARTICULATE GASEOUS EFFLUSNTS

~

Nine Mile Point. Nuclear Station - Unit,2 Niagara Mohawk Power Corporation PATHWAY AND LOCATICN 'TOTAL BODY SKIN- BONF.

ANNUAL.DOSE ~mt'A~at/

f IVER I~

THY ROI D i<IDNEY LUNG GI TRACT Inhalation boundary of 5. Ox10->> 6. 2x10->> 2. 4x1 0-3 1. 1x10-> 4. 3x10->> 6. 3x10-~ 1. 1x10-~

restricted area 1 mile East Deposition on ground 2. Ox10 2.4x10 > 2.0x10-> 2.0x10 2. Ox10- > 2.0x10-i 2. Ox10-i 2. Ox10-i boundary of restricted area I 1 mile East Leafy vegetables 3. 1x10 NA 9. 3x10-> 7.7x10-3 8. 4x10-> 4xl 0 1. 3x10 3 2. 9x10 6,200 ft East 2

Stored vegetables- 5 4x10-z 1 3x10-~ 9.9x10-z 1. 1x10- ~ 1. 6x10- z 2. 5x1 0-z 4. 6x1 0-z 6,000 ft East

~

Meat Animal 8. 010->> NA 8. Sx10>> 1. 1x1 0-3 1. Ox10-z 2.4x10->> 5. 8x10->> 1. 1x10-3 7,800 ft East Southeast

(

Total -of above pathways 2. 6x10- < 2 .4x10 > 3 4x10-< 3. 1x10-> 1 3x10o t

2. 2x10- i 2. 3x1 O-i, 2. 5x10-i Page 1 of 1

0 TABLE C9-6 ANNUAL DOSES TO MAXIMUM INDIVIDUAL IN INFANT AGE ROUP FROM=

RADIOIODINE AND PARTICULATE GASEOUS EPPLUENTS Nine Mile Point Nuclear Station Unit 2 Niagara Mohawk Power Corporation ANNUAL DOS~mremrEI PATHWAY AND LOCATICN. TOTAL BODY SKIN BONE LIVER THYROXD- KIDNEY- LUNG GI TRACT Inhalation boundary of 6. 5x10->> NA 9. 2x10>> 2. 4x 1 0 1. 8x10-i 3. Ox10->> 9. 3xl 0->> 4. 7x10->>

restricted area 1 mile Ease.

Deposition on ground- 2. Ox10- i 2. 4x10 ~ 2. Ox10 ~ 2. Oxl 0- ~ 2. Ox10- ~ 2.0xl0-> . 2.0x10-< 2. Ox10-~

boundary of restricted area I 1 mile East I

Leafy vegetables NA NA NA ft i

6,200 East Stored vegetables NA NA NA NA 6,000 ft East Meat Animal NA NA NA NA 7,800 ft East Southeast Total of above pathways 2. Gx10- i 2.4x10-~ 2.0x10-> 2.0x10-~ 3. 8x10- ~ 2.0x10- < 2. 1x10-< 2. Ox10 I

Page 1 of 1

TABLE C9-7 ANNUAL THYROID DOSES TO INDIVIDUALS FROM RADIOIODINE AND Nine Mile Point Nuclear Station - Unit 2 Niagara Mohawk Power Corporation PATHWAY ADULT TEEN CHTLD INFANT Inhalation 3. 5x10-z 3. Gx10-z 4 1x10-z 2x10-z Leafy vegetables 1. 6x10-i 1. 2x10 I 1 8x10 NA Stored vegetables 9. 1x10-~ 1. 3x10-z 2. 6x10-z Meat animals 9. 9x10-~ 6. 9x10-3 1. Qx10-z NA, Cow~s milk 2. 7x10-< 4. 2x10-~ 8. 2x10-< 2. Ox100 Deposition on ground 8. 0x10-z 8. Ox10-z 8 Ox10-2 8. Ox10 Total of above pathways 5. 6x10-i 6. 7x10- < 1.2x10o 2. 2x10O Page 1 of 1

TABLE C9-8 ANNUAL THYROID DOSES TO INDIVIDUAIS FROM RADIOIODINE AND PARTICULATE GA>EOU> rFvLUENTS GOAT LOCAT~ION ~<0 0 00 ft SS~E Nine Nile Point Nuclear Station Unit I2 Niagara Mohawk Power Corporat.ion t

ANNUAL THYROID DOS- BY AGE GROUP ~mrem/ r PATHWAY ADULT TEEN CHILD INFANT-Inhalation 3. 9x10-~ 3. 4x10-3 4. 7x10-~ 8. 1x10-3 Leafy vegetables 1. 7x10-2 1. 3x10-~ 2.0x10-~ NA Stored vegetables 9 9x1{} 1. 4x10-~ 2. 8x10-~

Goat' milk 3. 4x10-~ 5. 2x10-~ 1. Ox10-i 2. 5x10-i Deposition on ground 7. 1 x10-3 7. 1x10 7. 1x10-3 7. 1x10-~

Total of above pathways 6.3x10-2 7. 7x10-~ 1. 3x10-> 2. 7x10 Page 1 of 1

0 TABLE C9-9 ANNUAL DOSES 1Q-MAXIMUM INDIVIDUALIN ADULT AGE. GROUP Nine Mile Point Nuclear Station Unit,~2 Niagara Mohawk Power Corporation ANNUAL PATHWAY AND LOCATION TOTAL BODY BONE LIVER - THYROXD KIDNEY- LUNG. GI. TRACT.

Ingestion of potable 8. 1x10 1.2x10>> 8.5x10->> 1. 1x1,0-~ 8.3x10>> 7. 6x1 0>> 8. 5x10 water public water supply 8 miles West Ingestion of fish 5.8x10 2 NA 6.6x10-> 8.6x10-2 6. 7x1 0-~ 1. 7x10-~ 5. 8x10-~ 8. Ox10-~

near discharge Ingestion of aquatic 4. Ox10-> NA 3. 5x10-~ 9. 6x10-> 6. 4x10-~ 1. 1x10- ~ 4.4x10-~ 4.6x10-~

invertebrates - near l discharge I Swimming 100 hrs/yr 1. Cx10 1.2x10->> 1.0x1C->> 1.0x10>> 1. Qx10->> 1. Ox10->> 1. Ox10->> 1. Ox10 near discharge Fishing C boating 2. 5x10->> 3.0x10>> 2. 5x10->> 2.5x10->> 2. 5x1,0->> 2 ~ 5x10->> 2. 5x10->> 2. 5x10 500 hrs/yr near discharge Water skiing 100 hrs/yr 5. Ox10-5 6 . Ox10-5 5. 0 x10-5 5. Ox10-5 5. Ox10-5 5. Ox10-5 5. Ox1 0-~ 5. Ox10-5 near discharge 1 Shoreline recreation- 4. 1x10-5 4.8x10-~ 4. 1x10 ~ 4.1x10-~ 4 1x10-5 4. 1x10-5 4. 1x10-5 4. 1x10-5 lakeview summer camp (4i500 ft, SW)

Total of above pathways 6. 3x10 5. 3x10->> 7. Ox10-~ 9. 7x1 0-~ 8. 5x1,0-~ 2.9x10 1. 1x10-~ 1. 3x10-i Page 1 of 1

0 TABLE C9-10 ANNUAL DOSES TO. MAXIMUM INDIVIDUAL IN TEEN AGE GROUP-FROM LI UID EFFLUENTS UNDER E UILI.BRIUM CONDITIONS Nine Mile Point Nuclear Station Unit 2 Niagara Mohawk Power Corporation ANNUAL DOSE mrem/ r "'I TRACT PATHWAY AND LOCATION TOTAL BODY SKIN BONE LYVFN, THYEOLD KIDNEY LUNG.

Ingestion of potable 4. 6x10->> NA 1. 1 x10->> 5.1x10->> 8. Sx10-3 5. Sx10->> 4. 3x10->> 4. Sx10->>

water public water supply 8 miles West, Ingestion of fish- 3. 7x10-z 5. 1x10-~ 7.6x10-z 6.1x10-z 1.3x10-z 6. 2x10-~ 6. lx10-z near discharge Ingestion of aquatic 3. 1 x10-~ NA 2. 7x10-z 7. 6x10-> 5. Sx10-~ 8. 6x10-> 3. 4x10-~ 3. 5x10 z invertebrates near discharge Swimming 100 hrs/yr 1. Ox10 1.2x10->> 1.0x10->>'.0x10-4 1. Oxlo->> 1. Ox 1 0->> 1.0x10->> 1.0x10>>

near discharge Fishing 6 boating 2. 5x10->> 3. Ox10->> 2 410->> 2. 5x10->> 2 . 5xl 0->> 2. 5x10->> 2. 5x10->> 2. 5x10->>

500 hrs/yr near discharge Water Skiing 100 hrs/yr 5. Ox10-5 6 . Oxl 0-5 5. 0x10-5 5. Oxl 0-5 5. Ox10-5 5. Ox10-~ 5. Ox10-5 5. Ox10-~

near discharge Shoreline recreation- 2. 3x10 2.7x10->> 2 3x10>> 2.3x10-4 2. 3xl'0-4 2.3x10->> 2. 3x10->> 2. 3x10 lakeview summer camp

{4,500 ft SW)

Total of above pathways 4. 1 xlO-z 7. 5x10->> 5. 4xl 0-i 8.5xl 0-z 7. 6x1,0-z 2.3x10-z 1..1xlO-z 9~ 7x10-z Page 1 of 1

TABLE C9-11 ANNUAL DOSES 'IO MAXIMUM INDIVIDUALIN CHILD AGE GROUP FROM LI UID EFFLUENTS UNDER- E UILIBRIUM-CONDITIONS Nine Mile Point Nuclear Station Unit".2 Niagara Mohawk Power Corporation PATHWAY AND LOCATION TOTAL BODY SKIN BONE LIVER THIROIB- KIDNEY- LUNG GI TRACT Ingestion of potable 8. 3x10-~ NA 2. 6x10-~ 9.7x10-~ 2. 2x10-~ 5. Sx10-~ 8. 1x10-i 8. 6x10-4 water public water supply 8 miles West Ingestion of fish- 1. 5x10-~ NA 2. 4x10-~ 5.2x10-> 6. 6x10-~ 5. 6x10-> 4. 7x10-3 2. 6x10=~

near discharge Ingestion of aquatic 1. 7x10-~ 1. 4x10-~ 4. 1x1 0-> 6. 5x10-3 3.9x10-3 1. 5x10-~ 1. 6x10-~

invertebrates near discharge Swimming 100 hrs/yr 1. 4x10-i 1 2xl0 ~ 1.0x10 ~ 1 ~ Ox10 + 1 Ox10 1 Ox10-~ 1.0x10 + 1.0x10 near discharge P Fishing 6 boating 2. 5x10-+ 3.0x10-i 2.5xlQ-i 2.5x10-4 2.5x10-4 2.5x10-+ 2.5x10-i - 2.5x10 500 hrs/yr near discharge Water skiing 100 hrslyr

5. Ox10-~ 6 Ox10-~ 5 Ox10-5 5.0x10-> -
5. Oxl0-5 5.0x10-~ 5.0x10-~ .

5.0x10-~

near discharge Shoreline recreation- 4. Sx10-5 5. 6x10-< 4. 8x10-5 4. 8x1 0-5 4. Sx10-5 4. Sx10=~ 4. 8x10-5 4. Sx10-~

lakeview summer camp (4,500 ft SW)

Total of above pathways 1 ~ 8x10-~ 5.6x10-+ 2. 5x10-~ 5. Sx1 0-> 9. Sx10-~ 1. 1x10-~ 7. 5x10-3 4. 3x10-~

Page 1 of 1

TABLE C9-12 ANNUAL DOSES IO NAXINUM INDIVIDUAL IN INFANT ASE- GROUF-FROM LI UID EFFLUENTS UNDER E UILIBRIUM CONDITIONS ~

Nine Mile point Nuclear Station Unit~, 2 Niagara Mohawk Power Corporation PATHWAY AND LOCATICN TOTAL BODY S KIN BONE LIVER THYROID KIDNEY GI - TRACT Ingestion of potable 1 ~ 3x10 5.1x10-+ 1.6x10 5. 1x10-< 5.Sxl0-+ 1. 2x10-~ 1. 3x10-3 water public water supply 8 miles West Ingestion of fish NA NA NA NA near discharge Ingestion of aquatic NA NA NA NA invertebrates near discharge Swimming 100 hrs/yr NA NA NA NA near discharge Fishing C boating NA NA NA 500 hrs/yr near discharge Water skiing 100 hrs/yr NA NA NA NA NA NA NA near discharge Shoreline recreation . NA NA - NA NA NA lakeview summer camp (4F500 ft SW)

Total of above pathways 5. 1x10-~ 1. 6x10-3 5. 1 x1 0 2 5. Sx10-~ 2x10-3 1. 3x10=-~

I

1. 3x10-~ NA 1.

Page 1 of 1

TABLE CALCULATED ANNOAL DOSES FOR POPULATION WITHIN 50 KILES RADIUS Nine Mile Point Nuclear Station - Unit 2 Niagara Mohawk Power Corporation POPULATION MAN REM WHOLE BODY'HYROID Li uid Effluents Ingestion of potable water 1. Ox10-> 1. 6x10o Ingestion of fish 6. 6x10-~ 4. Ox10-~

Fishing 8. Ox10-a 8. Ox10-~

Boating 3. 4x10-~ 3. 4x10-5 Swimming 1 2x10-+ 1. 2x10-+

Shoreline recreation 7. 7x10- i 7.7x10-i Total 1 Ox10-> 1.6x100 Gaseous Ef fluents Plume immersion 1. 4x10- < NA Inhalation 3. 2x10-> 4. 2x10-~

Deposition on ground 3. 9x10- ~ 3. 9x10->

Ingestion of milk 3. Sx10-~ 2. 2x10o Ingestion of vegetation 9. 4x10-~ 1. 3x100 Ingestion of meat 5 4x10-~ 3. Sx10-i Total l

6. 7x10- > 4. 4K100 Page 1 of 1

0 TABLE C9-14 POPULATION MAN-REM DOSE- ASSESSMENT FROM INGESTION OF POTABLE WATER AND FISH Nine Mile Point Nuclear Station Unit 2 Niagara Mohawk Power Corporation DECAY DILUTION TIME AGE USAGE FACTOR ANNUAL DOSE /man-ream PATHWAY AND LOCATIGN FACTOR (hrs) GROUP (liters/yr or Kg/yr) BASES: TOTAL BODY THYROID potable water 130 53 Adult 370 190,000 consumers 6.6x10-< 8. 2x10-<

Oswego City and in 1970'ncr. by Onondega County pop growth to 263,000'.

130 53 Teen 260 Same as,'bove 8. Sx10-~ 1. Sx10-i 130 53 Child 260 Same as,'bove 2. 7x10-~ 6. 2x10- ~

Potable Water Subtotal 1 ~ 0x10-> 1. 6x10o Fish within 50 miles 1. Ox104 240 Adult 6.9 Total ish catch 5. 3x10-~ 2. 6x10 of 6. Ox104 kg/yr

1. Ox104 240 Teen 5.2 Same as abov 7. 5x10-6 5. 1x10-~
1. Ox10~ 240 Child 2 2 5. 1x10 9. Ox10-~

Fish Subtotal 6 ~ 6x10->> 4. Ox10->

Total of above pathways 1. Ox10-> 1. 6x100 Page 1 of 1

I 0-

TABLE C9-15 POPULATION MAN-RFM DOSE FROM FISHING AND BOATING Nine Mile Point Nuclear Station Unit 2 Niagara Mohawk Power Corporation I AKE POPULATION ANNUAL DILUTION DOSE RATE¹ ¹ USAGE POPULATION

¹ FACTOR (r em/hr) BASES (person-hrs/yr)

'CTIVITY DOSF. (man-rem)

Fishing 1. Ox1 0+ 5.0x10->> 6. 4x10~ fisherman 1. 6x10> 8 ~ Ox10 days 0 2.5 hrs/day Boating 87. 0 5. 7x10-<> 1,000 people/day 6.0x10~ 3. 4x10-5 ib 2 hr/day 10,000 people/wknd. 0 hr/wknd. for 12 wks Total of above pathways 4. 2x10-5

  • Dose estimate is not dependent on age group.

¹*Decay time for fishing and boating is C.O hrs.

Page 1 of 1

TABLE C9-16 POPULATION MAN-REM DOSE ASSESSMENT - FROM- SUMMING Nine Mile Point Nuclear Station Unit 2 Niagara Mohawk Power Corporation LAKE PER CAPITA ANNUAL DILUTION DOSE RATE+ AGE USAGE NUMBER OF POPULATION LOCATION FACTOR {rem/hr) GROUP {hrs/day) PERSON-DAYS DOSE {man-rem)

Lakeview Summer 17. 0 5. 9x10- ~ o Adult 11 ~200 500 pers/wkday 1.3x10-~

Camp 1,500 pers/wkend or 800 pers/day avg. for 10 wk season

17. 0 5. 9x10-<< Teen 22 400 Same as above 5.3x10-~
17. 0 5. 9x10- ~ o Child 22'00 Same as above 5.3x10-5 Camp Subtotal 1. 2x10-~

Selkirk State Park 120 8. 3x10->> Adult 6,200 1,000 swimmers/ 1 Ox10-6 wk for 10 wk season 120 8. 3x10-> ~ Teen 1,400 Same as above 4. 6x10-~

120 8. 3x10- > ~ Child 2~ 400 Same as above 8.0x10-~

Park Subtotal 2 3x10-5 Vicinity of 10. 0 1. Ox10-~ Teen 200 Con se rvative 8 ~ Ox10 Mixing Zone Estimate Total of above 1. 2x10-~

pathways

  • Decay time for swimming is 0.0 hrs.

Page 1 of 1

TABLE C9 POPULATION MAN-REi4. DOSE ASSESSMENT FROM SHORELINE.RED RATION.

Nine Mile point Nuclear Station - Unit 2 Niaqara Mohawk Power Corporation I

LAKE DECAY PER CAPITA ANNUAL DILUTION TIME DOSE RATE AGE USAGE POPULATION POP UZATION LOCATION FACTOR {hrs) (rem/br) GROUP FACTOR USAGE I DOSE {man-rem)

Lakeview Summer 17. 0 3.1 3, 6x10-> o Adult 2 hrs/day 11,200; person- 500 pers/wkday 8. Ox10-6 Camp Qays 1,500 pers/wkend or 800 pers/day avg. for 10 wk season 17 ~ 0 3. 1 3. 6x10-<< Teen 4 hrs/day 22,400, person- Same as above 3.2xlo-~

'ays

17. 0 3 1 3.6xlo-io Child 4 hrs/day 22,400 person- Same as above 3.2x10-s days Camp Subtotal 7. 2x10-~

Selkirk State Park 120 37. 0 5 ~ ox10 10 Adult 8. 3 hrs/yr 62NOOO persons 10,000 persl 2.6x10-i wkend for 10 wk season 120 37 ~ 0 5. Ox10->> Teen 47.0 hrs/yr 14,OOO persons Same as above 3.3x10-i 120 .

37.0 5.0x10 ao Child 9.5 hrs/yr 24 N 000) persons Same as above 1.1x10-~

I Park Subtotal 7. Ox10-~

Total of above 7. 7x10-~

pathways

TABLE C9-18 POPULATION MAN-REM DOSE ASSESSMENT FROM GASEOUS.EFFLUENTS Nine Mile Point Nuclear Station Unit 2 Niagara Mohawk Power Corporation ANNUAL-POPULATION DOSE--=

PATHWAY AGE GROUP TOTAL BODY man-rem) THYROID -

Th oid man-rem Inhalation Adult 2. 2x10-> 2. 5x10-i Teen 3. 3x10-+ 4. 9x10-~

Child 6. 6x10-+ 1. 2xl0-<

Deposition on ground 3. 9x10- i 3. 9x10-i Submersion 1. 4x10- i NA Ingestion of milk Adult 3x10- ~ 7.0x10-i Teen 5. 4x10-> 3. 4x10-~-

Child 1 7x10-2 1. 2x10o Ingestion of meat Adult 3. 3x10-3 2. 4x10-~

Teen 5. 5x10-i 3. 9x10->

Child 1. 5x10- ~ 1. Ox10-~

Ingestion of vegetation Adult 4. 5x10- ~ 5. 3x10-< .-

Teen 1. 3x10-> 1 Sx10-<

Child 3. 6x10-> 6. Ox10-i-Total of above pathways 6. 7x10-> 4.4xt0o

+Dose estimate is not dependent on age group.

Page 1 of 1

TABLE C9-19 SOURCE ACTIVITY FOR SWIMMING AND BOATING-MODEL.

Nine Mile Point Nuclear Station Unit 2 Niagara Mohawk Power Corporation, Average Energy Mevicc-sec Mixin Zone SelKirk State.-Park- at 5 miles- at 25 miles 0.4 3.1 x 10-~ 1 ~ 8x 10 2.6 x 10 3. 6 x 10-~ 3.1 x 10-~

0.8 1 1 x 10 6.2 x 10-~ 8.8 x 10-~ 1.2 x 10 1.1 x 10 1 3 5.4 x 10-~ 3. 1 x 10-~ 4 5 x10-> 6.1 x 10-> 5. 4 x 10-~

1.7 6.3 x 10-~ 3.7 x 10-~ 5 2 x10-> 7. 2 x 10-~ 6.3 x 10-~

2~2 2.0 x 10-< 1.2 x 10-~ 1.6 x 10 2. 3 x 10-~ 2.0 -x 10-~

2.5 8.8 x 10 s 5 ~ 2x10s 73x10 1.0 x 10-~ 8. 8 x 10-<<

3.5 3~6 ~ 10-+ 2.1 x 10-8 3 0 x10-~ 4.2 x 10-+ 3~ 6 x 10-~~-

Page -1 of 1

TABLE.C9 PARAMETERS USED EN CALCULATING POPULATION OSES FROM INGESTION-OF VEGETATION-Nine. Mile Point Nuclear Station - Unit 2 Niagara Mohawk Power Corporation

Vegetation WU Fruits Effective 1.9 x 10~

Adult Usage

~k/~r 6 6 Teen Usage

~k/~r 8 3 Child Usage

~k/~r 6.9 Crop Yield

~k/m

1. 26 J<

Mass Produced

~k/~r 1.3 x 10~

Holdup T~ me

~hr---

1.4 x 10>

Fresh Vegetables 1.9 x 10~ 44 ~ 5 56 2 46 ' 2 60 8.9 x 10~ 3.4 x 10<

Processed Vegetables x 10+ 29. 5 37. 3 31.1 1. 01 3.5 x 10> 1.4 x 10>

Potatoes 1 ~ 1 x10+ 52,7 '66 ' 55. 5 2. 92 6.2 x 10~ 1.4 x 10~

Grains 2.7 x 10~ 66 ~ 6 84 ~ 1 70 ~ 1 .41 1.9 x 10+ 1.4 x 10~

+ Note estimated actual population within 50 miles is 1.3 x 10~.

Page 1 of 1

TABLE Dl-1 TOTAL DIRECT COST ESTIMATE SHEET GASEOUS AUGMENT 1 Nine Mile Point Nuclear Station Unit 2 Niagara Mohawk Power Corporation Augment 100% Filtration of Reactor Building DIRECT COST (1975 8000)

BASIS FOR ITEM LABOR* EQUIPMENT/MATERIALS TOTAL COST ESTIMATE 1 PROCESS EQUIPMENT ,

6-30,000 CFM Charcoal/HEPA i Filtration Systems 144 702 846 Prefilter/4" Charcoal/HEPA given in Draft R.G.1-FF

~

2. BUILDING ASSIGNMENT 167. 8 154. 8 322.6 28'x20'x12' 8 9/ft NMP2 Project Estimate
3. ASSOCIATED PIPING SYSTEMS 48 18 66 Base given in Draft R.G.1-FF
4. INSTRUMENTATION 6 CONTROLS In Item 1
5. ELECTRICAL SERVICE 57. 6 24 81.6 Allowance given in Draft R.G.l-FF
6. SPARE PARTS 30 30 Given in Draft R.G.1-FF SUBTOTAL 417. 4 928. 8 1,346.2
7. CONTINGENCY 42 93 135 10% Given in Draft R.G.l-FF
8. TOTAL DIRECT COSTS 459.4 1,021. 8 1,481.2
  • Labor cost includes a labor cost correction factor of 1.6 from Draft R.Gt]-FF I

Page 1 of 1

C' TABLE Dl-2 ANNUAL OPERATING AND MAINTENANCE COST ESTIMATE SHEE GASEOUS AUGMENT 1 Nine Mile Point Nuclear Station Unit. 2 Niagara Mohawk Power Corporation Augment 100% Filtration of Reactor Building COST (1975 $ 000)

LABOR OTHER TOTAL BASIS FOR COST ESTIMATE

1. OPERATING LABOR, SUPERVISORY 15 Min/Shift + 40 hr Annual Test AND OVERHEAD 22. 8 given in Draft R.G.1-FF
2. MAINTENANCE MATERIAL AND 60 8 1~50$ + 30 8 9009 every 2 yrs LABOR 108 given )in Draft R.G.1-FF
3. CONSUMABLES, CHEMICALS & In Item 2 SUPPLIES
4. UTILITIES & SERVICES Haste Disposal 18 50$ /HEPA or Prefilter, 100$ /Charcoa 1 I

Electricity 15. 6 16 kw~Additional Fan hp for Filter given~in Draft R.G.1-FF

5. TOTAL 0 & M ANNUAL COST 1644 Page 1 of 1

TABLE Dl-3 TOTAL DIRECT COST ESTIMATE SHEET GASEOUS AUGMENT 2 Nine Mile Point Nuclear Station Unit 2 Niagara Mohawk Power Corporation Augment 100% Filtration of Turbine Building Exhaust DIRECT COST (1975 $ 000)

BASIS FOR ITEM LABOR* EQUIPMENT/MATERIALS TOTAL COST ESTIMATE

1. PROCESS EQUIPMENT 4-30,000 CFM Charcoal/HEPA Filtration Systems 96 468 564 Prefilter/4" Charcoal/HEPA as given in R.G.1-FF 2.. BUILDING ASSIGNMENT 28vx20>x12v g 3q/ft3
39. 6 41.2 80.8 NMP2 Project Estimate
3. ASSOCIATED PIPING SYSTEMS 19.2 20 39.2I Given in Draft R.G.1-FF
4. INSTRUMENTATION & CONTROLS Included in Item 1
5. ELECTRICAL SERVICE 38.4 16 54.4 Allowance Given in Draft R.G.1-FF
6. SPARE PARTS 20 20 Given in Draft R.G.1-FF SUBTOTAL 193.2 565.2 758. 4!
7. CONTINGENCY 19 57 76 10% Given in Draft R.G.1-F I
8. TOTAL DIRECT COSTS 212.2 622. 2 834.4
  • Labor cost includes a labor cost correction factor of 1.6 from Draft R.G.1-'FF Page 1 of 1

TABLE Dl-4 AREAL OPERATING AND MAINTENANCE COST ESTIMATE SHEE GASEOUS AUGMENT 2 Nine Mile Point Nuclear Station Unit 2 Niagara Mohawk Power Corporation Augment 100% Filtration of Turbine Building Exhaust COST (1975 $ 000)

ITEM LABOR OTHER TOTAL BASIS POR COST ESTIMATE

1. OPERATING LABOR, SUPERVISORY 15 Min/shift + 40 hr Annual Test AND OVERHEAD 15.2 as given in Draft R.G. 1-PP
2. MAINTENANCE MATERIAL AND 60 I ~1509 + 30 8 9003 every 2 yrs LABOR 72 as given in Draft R.G.1-FP j
3. CONSUMABLES, CHEMICALS & Included in Item 2 SUPPLIES
4. UTILITIES & SERVICES Waste Disposal 12 50 $ /~HEPA or Prefilter, 100 $ /Charcoal Electricity 10.4 16 kw Additional Fan hp for Filter as given in Draft R.G.1-FP
5. TOTAL 0 & M ANNUAL COST 109. 6 Page 1 of 1

0 TABLE Dl-5 TOTAL DIRECT COST ESTIMATE SHEET GASEOUS AUGMENT 3 Nine Mile Point Nuclear Station Unit 2 Niagara Mohawk Power Corporation Augment 100% Filtration of Condenser Vacuum PumpI DIRECT COST (1975 8000) t BASIS FOR ITEM LABOR* EQUIPMENT/MATERIALS TOTAL COST ESTIMATE

1. PROCESS EQUIPMENT 2-2000 CFM Charcoal/HEPA I

Filtration Systems 6.4 65 71.I4 Prefilter/4" Charcoal/HEPA given in Draft R.G.1-FF

2. BUILDING ASSIGNMENT 4.7 4.5 9.I2 Turbine Building 8x16xl2 6 3 9/ft3 NMP2 Project Estimate
3. ASSOCIATED PIPING 4.2 1.4 Allowance given in SYSTEMS Draft R.G.1-FF
4. INSTRUMENTATION & In Item 1 CONTROLS
5. ELECTRICAL SERVICE 3.2 6.2 Allowance given in Draft R.G.1-FF
6. SPARE PARTS Given in Draft R.G.1-FF SUBTOTAL 18.5 74.9 93.'4-
7. CONTINGENCY 9I 10% Given in Draft R.G.l-FF
8. TOTAL DIRECT COSTS 20.5 81. 9 102.4
  • Labor cost includes a labor cost correction factor of 1.6 from Draft R.G 1-FF Page 1 of 1

0 f

I TABLE Dl-6 ANNUAL OPERATING AND MAINTENANCE COST ESTIMATE SHEET GASEOUS AUGMENT 3 Nine Mile Point Nuclear Station Unit 2 Niagara Mohawk Power Corporation Augment 100% Filtration of Condenser Vacuum Pump COST (1975 $ 000)

ITEM LABOR OTHER TOTAL BASIS FOR COST ESTIMATE I

1. OPERATING LABOR, SUPERVISORY Used only during startup and l

AND OVERHEAD Neg shutdown Given in Draft R.G.l-FF

2. MAINTENANCE MATERIAL AND LABOR 2.4 8 1509 + 2 6 9009 Given in'Draft R.G.1-FF
3. CONSUMABLES, CHEMICALS &

SUPPLIES

4. UTILITIES & SERVICES Waste Disposal '.4 50$ /Filter, 100$ /Charcoal Given in Draft R.G.1-FF
5. TOTAL 0 & M ANNUAL COST 2.8 Page 1 of 1

0 TABLE Dl-7 TOTAL DIRECT COST ESTIMATE SHEET LI UID AUGMENT 1 Nine Mile Point Nuclear Station Unit 2 Niagara Mohawk Power Corporation Augment 100 GPM Radwaste Demineralizer DIRECT COST (1975 8000)

BASIS FOR ITEM LABOR EQUIPMENT/MATERIALS TOTAL COST ESTIMATE

l. PROCESS EQUIPMENT 220 ft3, Carbon Steel 150 psig, ASME VIII 3.8 150 153.8 NMP2 Project Estimate
2. BUILDING ASSIGNMENT 283 ft 8 4.3 9/ft

.6 .6 1.2 NMP2 Project Estimate

3. ASSOCIATED PIPING SYSTEMS 10 17 1500 ft 3 in.

200 ft 2 in.

NMP2 Project Estimate

4. INSTRUMENTATION & CONTROLS In Item 1-
5. ELECTRICAL SERVICE
6. SPARE PARTS In Item 1 SUBTOTAL 14. 4 157. 6 172
7. CONTINGENCY 16 '17 10 Percent Draft RG 3.-FP
8. TOTAL DIRECT COSTS 15. 4 173.6 189 Page l of l

TABLE Dl-8 ANNUAL OPERATING AND MAINTENANCE COST ESTIMATE SHEET LIQUID AUGMENT 1 Nine Mile Point Nuclear Station Unit 2 Niagara Mohawk Power Corporation Augment 100 GPM Radwaste Demineralizer COST (1975 8000)

ITEN LABOR OTHER TOTAL BASIS FOR COST ESTIMATE

l. OPERATING LABOR, SUPERVISORY 15 min/shif t AND OVERHEAD 3.3 80 Percent Capacity Factor Draft R.G. 1-FF
2. MAINTENANCE MATERIAL AND Draft R.G. 1-FF LABOR
3. CONSUMABLES, CHEMICALS 6 16.5 1 Regeneration Per Year 8 220 ft 8 75 5/ft3 t

Draft R.G. 1-FF

4. UTILITIES 6 SERVICES Waste Disposal 1.8 50 <~~I e ss Cost (Resin to be Replaced S/r~'isposal Every Five Years)

NMP2 Project Estimate

~ ~

TOTAL 0 & M ANNUAL COST 26.6 I

A~

Page l of 1

TABLE Dl-9 SURGERY OF ANNUALIZED COSTS Nine Mile Point Nuclear Station Unit Mohawk Power Corporation 2,'iagara I

Au ents Gaseous Li uid Cost Total Direct Costs (TDC) 1,481. 2 834. 4 102.4 189.0 Total Capital Costs (TCC) 2,340.3 1,318. 4 .161. 8 298.6 TCC TDC x Indirect Cost Factor of 1.58 Annual Fixed Cost (AFC) 249. 9 140. 8 17. 3 31.9 AFC TCC x Capital Recovery Factor of 0.1068 Total 0 + M Annual Cost 164.4 109. 6 2.8 26;6 (AB~C)

Total Annualized Cost (TAC) 414. 3 250. 4 20. 1 58. 5 Note: All values are in thousands of 1975 dollars.

Page 1 of 1

TABLE 91-10

SUMMARY

OF COST-BENEFIT Nine Mile Point Nuclear Station Unit 2 Niagara Mohawk Power Corporation Au ents Man-Rem Reduction Benefit (6 $ 1,000 per man-rem)

Total Bod ~Th roid Total Bod ~T11 10 id Gaseous Augment No. 1 0. 11 2.3 110 2,300 Gaseous Augment. No. 2 0. 014 0. 98 I14 980 Gaseous Augment No. 3 0.0 0. 22 I 0 220 Liquid Augment No. 1 0. 003 0. 25 I 3 250 l

Page 1 of 1

TABLE Dl-11 COST-BENFIT COMPARISON Nine Mile Point Nuclear Station Unit 2 Niagara Mohawk Power Corporation Radwaste Annualized Cost Benefit (8 $ 1,000 per Cost-Benefit Dollars Man-Rem) Dollars I

Ratio Whole Bod ~Zh 'd ~Wh1 Bd ~D Gaseous Augment No. 1 414,300 110 '2,300 3, 770 180 Gaseous Augment No. 2 250,400 14 980 17,900 256 Gaseous Augment No. 3 20,100 0 220 N/A 91 Liquid Augment No. 1 58,500 250 19,500 234 Page 1 of 1

APPENDIX C9-1 MODELS AND ASSUMPTIONS A DESCRIPTION OF MODELS AND ASSUMPTIONS USED.--IN-INDIVIDUALDOSE CALCULATIONS A 1 LI UID EFFLUZNTS A,.1.1 In estion cf Potable Water The City of Oswego water supply, eight miles west of Nine Mile Point Nuclear Station Unit 2 (NMP2), is the closest Take Ontario intake to the site. The lake dilution factor at this point is 130.0, as calculated using Regulatory Guide 1.EE (ref. 9) . A decay time of 29.0 hours0 days <br />0 hours <br />0 weeks <br />0 months <br /> is assumed, to account, for transit frcm release to intake. An additional 12.0 hours0 days <br />0 hours <br />0 weeks <br />0 months <br /> holdup for transport through the water purification plant is used {Page A-7, Regulatory Guide 1.AA, ref. '6) . The total time from release to consumption is 41 0 hours The dose, Ra~,

of age group a is:

mrem/yr, to organ j of a maximum individual Rzg 1100 ~ 0 Ua F DF D

ai]

< i q e

-~itp where:

Ua is the usage factor for age group a,. liters/yr, for a maximum individual. An adult usage of 730 liters/yr is assumed. For a teen, child, and infant 510 liters/yr are consumed (Table A-2, Regulatory Guide 1. 109, ref. 22) .

is the flow rate of the release stream, 46. 0 ft3/sec DF is the lake dilution factor at the point of intake, 130. 0 Qi is the release rate cf isotope i, Ci/yr is the dose factor for age group a, isotope i and ai] organ j, mrem/pCi ingested, (Table A-3, Regulatory Guide 1. AA, re f . C 9A 1- 2) is the decay constant of nuclide i, hr tp is the total time from release to consumption, 41.0hrs 1100.0 is the factor used to convert (Ci/yr)/(ft3/sec) to (pCi/liter).

Page C9A1-1

i For the maximum individual case, fish and fre sh-water invertebrates are assumed to be caught at the edge of the initial mixing zone. The appropriate mixing zone lake dilution factor is 10.0 (Table A-1, Regulatory Guide 1.AA) ~

A holdup time of 24.0 hours0 days <br />0 hours <br />0 weeks <br />0 months <br /> is assumed (Page A-S, Regulatory Guide 1.AA) .

The dose REF mrem/yr,.to a maximum individual of age group a

is'e3

'100.0 Ue F DF Bi Qi Dei~ e

-Xgt where:

Ua is the usage factor for age group a, of aquatic food type 0, kg/yr. For fish, the factors are assumed to be 21.0, 16.0, and 6.9 kg/yr for an adult, teen, and child, respectively. The corresponding factors for seafood are 5.0, 3.8, and 1.7, respectively. (Table A-2, Regulatory Guide 1 ~ 109)

F is the flow rate of the release stream, 46.0 ft~/sec DF is the lake dilution factor in Lake Ontario, 10. 0 B< is the bioaccumulaticn factor for aquatic food type 0, liters/kg (Table A-4, Regulatory Guide 1.AA)

Q< is the release rate of nuclide i, Ci/yr D

<~

is the ingestion dose factor, mrem/pCi ingested, (Table A-3, Regulatory Guide 1.AA) is the decay constant of nuclide i, hr-~

tp is the ho ldup time, 2 4 . 0 hrs (Page A8, Guide 1.AA)

Regu latory 1100.0 is the factor used to convert (Ci/yr)/(ft~/sec) to pCi/kg.

B. 1.3 Bwimmin Bc~a%in and Fiahin The point of exposure for calculating swimming, boating, and fishing doses is assumed to be near the point of discharge, Page C9Al-2

with an appropriate lake diluticn of 10:1. All age groups are assumed to swim 100 hours0.00116 days <br />0.0278 hours <br />1.653439e-4 weeks <br />3.805e-5 months <br /> per year; fishing and boating usage is assumed to be 500 hours0.00579 days <br />0.139 hours <br />8.267196e-4 weeks <br />1.9025e-4 months <br /> per year (Table 5. 5, ref.

26) .

A detailed model is discussed in Section B. 1.3 of this appendix.

A. 1.4 Shoreline Recreation The Lakeview Summer Camp is the closest point to the site at which this pathway exists. No decay time is assumed, and a lake dilution factor of 17.0 is used.

The dose, Ra~, mrem/yr, to the total body or skin of a maximum indiviGual of age group a is:

3.18 x 10 U W -Xitp R

a33 Q< e Dai)

F DF where:

Ua is the usage factor for a maximum individual of age group a, hrs/yr. Values of 12, 67, and 14 hrs/yr are used for an adult, teenager, and child, respectively (Table A-2, Regulatory Guide 1. 109)

W is the shore width factor, 0 3 (Table A 5, Regulatory Guide 1. AA)

F is the flow rate of the release stream, 46.0 ft~/sec DF is the lake dilution factor, 17.0 Qi is the release rate of nuclide i, Ci/yr is the decay constant of nuclide i, hr-~

tp is the holdup time from release to deposition on the shore, 0.0 hours0 days <br />0 hours <br />0 weeks <br />0 months <br /> t is the buildup time, 1.,31 x Regulatory Guide 1. 109) 10~ hrs (Page 1.109-9, D

ale is as previously defined Page C9A1-3

3.18x103 is the factor used for conversion from

{Ci/yr)l {ft3/sec) to pCi/liter, and to account for the proportionality constant used in the sediment radioactivity model.

A 2 GASEOUS EFFLUENTS-A.2.1 Ex osure to Noble Gases The individual annual gamma air dose, D~{r,0), mrad/yr, due to main stack release of noble gases at distance r meters from the main stack in the sector at angle 0 is calculated by the following equation as given in Meteorology and Atomic Energy, 1968 {ref. 23) and Appendix B of Regulatory Guide 1.AA {ref. 6):

260 D~(r,0) Pa(Ek) Ig (H,u, <z,Ek) Q<Aki r (60) u where:

r is the horizontal distance from the main stack to the receptor, m A0 is the sector width over which atmospheric conditions are averaged, radians u is the wind speed assigned to wind speed class ng m/sec f i.s the fraction of year for meteorological stability condition in wind speed class n and class j Na(Ek) is the energy absorption coefficient in air for photon energy EI, MeV, m-~

H is the effective height of main stack, m is the vertical standard deviation,. m I~ (H,u,a,Ek) is the integral accounting for the distribution of radioactivity {Page 352, ref. 23)

Q< is the release rate of nuclide i, Ci/yr Page C9A1-4

Aki is the fraction of disintegration of nuclide yielding photons in the kth photon energy group.

i The offsite location of maximum annual gamma air dose is found to be at r=1609 meters, east of the plant (e=90o) .

The wind velocities are classified into 6 groups (u 1 = 1.5 mph, u2 = 5.5 mph, u~ = 10 mph, u4 = 10.5 mph/

u5 =21 mph, and u6 = 24 mph) . Atmospheric stability classes equivalent to Pasquill classes A,B,D, and F are considered together with their frequency of occurrence (f ) for winds from the west direction (Page 2. 2-3, NMP2-PSARi~ and Table B1-7 of Response to Request B1) .

Gamma emitters released from the stack are classified into seven energy groups (El=0.4 MeV, E2=0.7 MeV, E3=1.3 MeV, E4=1.7 MeV, E5=2.2 MeV, E6=2.5 MeV, and E>=3.5 MeV) . The corresponding attenuation coefficients in axr,pa (Ek), are obtained from Figure 7.8, .ref. 23.

The values of the integral I (H, u, e , k) for each equivalent Pasquill stability clos and gamma energy group are obtained from Figure 7.21 and Figure 7.22 of ref. C9A1-1. Other variables for the integra ls Ig are as follows: The effective stack height is assumed to be 100 meters. The vertical standard deviations, a~, for each equivalent Pasquill stability class are obtained from Figure 1 of Regulatory Guide 1.DD (ref. 8) .

No credit for decay during travel from the point of release to the receptor is considered for this calculation.

A.2.2 Inhalation Doses The rraximum inhalation dose occurs 1 mile east of NMP2.

This inhalation dose, R ~,mrem/yr, to a maximum individual of age group a is:

4

  • R = 3.2 x 10 U Day) Qi

)

where:

X~'Q) stack

+ (Qi ~Q)reactor bldg vent

+ (Q i radwaste (Ci-sec) / (m~-yr) bldg vent Q is the release rate of nuclide i, Ci/yr

. X/Q is the atmospheric dispersion factor, sec/m3.

Values of 3.1x10-~, and 3.2x10-~, and 4.4x10-a sec/m~ are assumed for the reactor building vent, radwaste building vent, and stack releases respectively Page C9Al-5

Da<g is the inhalation dose factor for isotope i g organ j, age group a, mrem/pCi inhaled (Table C-1, Regulatory Guide 1.AA)

U is the amount of air inhaled yearly, m~/yr, taken to be 7,300, 5, 100, 2,700, and 1,900 for an adult, teen, child, and infant, respectively.

3.2x104 is the factor to convert (Ci/yr) to (pCi/sec) .

The maximum exposure point is located mile east of NMP2.

1 The dose, R~, mrem/yr, to organ j is calculated as follows:

R~ =1,0x10 12 SF Di) where:

Q$ (Q 6) stack + (Q8)reactor + (Q )

radwaste C'/( r-ma) bldg vent I

bldg vent is the release rate cf nuclide i, Ci/yr is the relative deposition rate at the point of exposure, m-~, values of 2.3x10-~,2. Qx10-~, and

4. 9x10- <<m-a are us ed, for the reac tor building, radwaste building vent, and stack releases, respectively S is the shielding and occupancy factor, 0.7 (Page C-2, Regulatory Guide 1.AA) is the decay constant of nuclide i, hr t is the buildup time, 1. 31 x 10'rs (Page Regulatory 'Guide 1. 109)
1. 109-9, is the dose factor for organ j (total body or skin),

D nuclide i/ adjusted to account for secular equilibrium, (mrem/hr) (pCi/ma) (Table A3, Regulatory Guide 1.AA) 1.0x10~a is a factor to convert, Ci to pci.

Page C9Al-6

A.2.0 In estion of Milk and Meat A six month grazing season is assumed for the NMP2 analysis.

The deposition rates for the grazing season are given in Tables B5-10 through 12, Response to Request B5.

The location of the nearest milk cow and meat animal has been determined to -be 7800 feet ESE of NMP2 (See Response to Request C3) The relative deposition rates at this point, 6, m-e, are 6.1x10-~o, 6. 1x10-<<and 1.5x10-<< for the reactor building vent, radwaste building vent, and stack releases, respectively. Corresponding X/Q values, sec/ms, are 9.2x10-a, 9.2x10-o and 1.5 x 10-s, respectively.

The location of the nearest goat has been determined to he, 19,000 ft SSE of NMP2 (see Reponse to Request C3) . The relative deposition rates at this point, m-a, are 6. 2 x10->>, 6.5 x10->> and 1.8x10-~~ for the reactor building vent, radwaste building vent and stack releases, respectively. Corresponding X:/Q values, sec/ms, are 1.7x10-a, 1.7x10-s and 1 8x10-~ respectively.

The concentration, is C <<v, pCi/kg, in the feed of i sotope i Civ =

Q< l.lx108 f< r(1-e E E)

+ Bi41-e i b) ih AE 7 AiP where:

stack i g~ctor i g)waste Ci/ (yr-ma)

Qi is the release rate of isotope i, Ci/yr 6 is the relative deposition rate at the location of the milk cow, goat, or meat animal, m-a is the fraction of the releases available for de-position for isotope i, as follows:

0.5 for iodine

1. 0 for other nuclides {Page 1. 109-50, Reg-ulatory Guide 1. 109)

Page C9A1-7

is the retention factor

0. 2 for particulates 1.0 for other nuclides (Page 1.109-9, Reg-ulatory Guide'1.109) is the decay constant for isotope i, hr-~

is the effective decay constant for isotope adjusted to account for weathering effects, i,

as follows:

~E = Xi+ 0.0021 hr-~

(Page 1.109-10, Regulatory Guide 1.109) tF is the exposure time, 720. 0 hrs (Page C-10, Reg-ulatory Guide 1.AA) is the buildup time, 1.31 x 105 hrs (Page 1.109-9, Regulatory Guide 1.109)

Y is the crop yield for the feed, 0.75 kg/ma for pasture grass and 2. 0 kg/m> for stored feed (Page C-10, Regulatory Guide 1.AA)

P is the effective surface density for soil,240 kg/m~

(Page 7, Regulatory Guide 1.AA)

Bi is the concentration factor from soil to crop isotope i (Table C-2, Regulatory Guide 1.AA) t> is the holdup time for stored feed (from harvest to consumption by the milk cow, goat, or meat animal@

2.2 x 103hrs (Page C-10, Regulatory Guide 1.AA) 1.10 x 106 is to convert (Ci/yr) to (pCi/hr) .

The concentration, Civ,pci/liter, for tritium is:

C = 3.17 x 107 Qii pCi/kg iv K q where:

H is the absolute humidity in the region, 5.87 gm/m3 is the ratio of tritium concentration in atmospheric water to tritium concentration in the plant water, 0.5 (Page 1.109-54, Regulatory Guide 1.109) g is the fraction of the total plant mass that is water, 0.75 (Page 1. 109-54, Regulatory Guide 1.109) 3.17 x 10~ is to convert (Ci-sec/gm) to (pCi-yr/kg) .

The concentration, Ci,pCi/kg, for C-14 is:

Page C9A1-8

= 3.17 x 10> Q< LX pCi/kg C iv k Q where:

x/Q is the atmospheric dispersion factor at the appropriate location, sec/m~

L is the fraction of the tctal plant mass that is natural carbon, 0. 11 (Page 1. 109-54, Regulatory Guide 1.109) k is the concentration of natural carbon in the atmosphere, 0. 16 gm/m~ (Page 1.109-54, Regulatory Guide 1. 109) other terms for tritium and C-14 calculations are as previously defined.

The concentration,Cim, pCi/liter or pCi/kg, in milk or meat is determined by:

-Kit Cim Fim (Civf~)fresh + (Ci fr)stored qFe where:

fr is the fraction of the animal~s feed composed of fresh or stored grain, 0.5 (See Response to Request C6)

Fi is the fraction (uptake factor) of the animal's daily feed which appears in a liter of milk, days/liter or a kilogram of meat, days/kg (Tables C-2 and C-3, Regulatory Guide 1.AA)

Q is the animal' daily feed, kg/day. A value of 50 kg/day is assumed for a milk cow or meat animal and a value of 6 kg/day is assumed for a goat (Page C-10, Regulatory Guide 1.AA) t is the transport time, hrs. For the milk pathway a value of 48.0 hours0 days <br />0 hours <br />0 weeks <br />0 months <br /> is used. For the meat, the appropriate time is 480.0 (Table D-2, Regulatory Guide 1.AA) .

The ingestion dose, Ram~, mrem/yr, from milk or meat to a maximum individual is:

Cim Daig "a Page C9A1-9

where:

D is the ingestion dose factor for isotope i, age group a, and organ Regulatory Guide 1.AA) j, mrem/pCi ingested (Table A-3, Ua is the usage factor for age group a, liters/yr or kg/yr. Values for the milk pathway of 310, teen, 400, 330, and 330 liters/yr are used for an adult, child, and infant, respectively. The corresponding0 values foz the meat pathway are 110, 65, 41 and kg/yr, respectively, ('able A-2, Regulatory Guide

1. 109 ~ )

Other terms are as previously defined.

A.2.5 En estion of Ve etation The stored-vegetable model is employed for an apple orchard, located 6000 feet east of NMP2. (See NMP2 Environmental Report Construction permit stage.) For fresh, leafy vegetables the calculation is made at 6200 feet east. (See Response to Request C2.) The atmospheric dispersion factors, X/Q, sec/m~, and relative deposition rates, 6, m-~, are presented below.

Reactor Radwaste Bldg. Bldg.

Vent Vent - Stack-Garden X/Q 7x10-~ 3. 7x10-7 5 'x10-a 2.8x10-+ 2 ~ 9x10-~ 5.3x10-~o Orchard 6'.

X/Q 3. 7x10-~

2 8x10

3. 7x10-~
2. 9x10-9 5.4x10 5.3x10-<<

The concentration, C< ,pCi/kg, of isotope i in the vegetation is:

Civ '1.1x10 qi<i where:

is the release rate of isotope i, Ci/yr Page C9Al-10

is the relative deposition rate at the location of the vegetation, m-a fg is the fraction of the release available for deposition for isotope i, as follows:

0.5 for iodine 1.0 for other nuclides {Page 1. 109-54, Reg-ulatory Guide 1. 109) r is the retention factor:

0.2 for particulates 1.0 for other nuclides (Page 1.109-9 Regulatory Guide 1. 109) .

is the decay constant fcr isotope i, hr-~

is the effective decay constant for isotope i, adjusted to account for weathering effects, as follows:

~E = ~g + 0 ~ 0021 hr-~

(Page 1. 109-10, Regulatory Guide 1. 109) tE is the exposure time, 1440 hrs (Page C-8, Regulatory Guide 1. AA) tb is the buildup time, 1. 31 x 105 hrs (Page 1.109-9, Regulatory Guide 1. 109)

Yv is the crop yield for the vegetation, 2.0 kg/m~

(Page C-8, Regulatory Guide 1.AA) p is the effective surface density for soil, 240 kg/m~ {Page 7, Regulatory Guide 1.AA) is the concentration factor from soil to crop for 8<v isotope i (Table C-2, Regulatory Guide 1.AA) is the holdup time from harvest to consumption by the maximum individual, 1440 hrs for stored vegetables, and 24.0 hrs for fresh vegetables (Page C-8, Regulatory Guide 1.AA) 1-10 x 10a is to convert (Ci/yr) to pCi/hr) .

Concentrations o f tritium and C-14 are calculated as described in Section A.2.4 of this appendix.

The ingestion dose Rave, mrem/yr, to a maximum individual is ave iv aij a Page C9Al-ll

0 where:

D~g) is the ingestion dose factor for isotope i, age group a, and organ j, mrem/pCi ingested (Table A-3, Regulatory Guide 1.AA)

U is the usage factor for age group a, kg/year.

Values of 520, 630, and 520 kg/yr are assumed for an adult, teen, and child, respectively for the orchard. For the garden, the corresponding values are 60, Q2, and 26 kg/yr, respectively (Table A-2, Regulatory Guide 1.109) .

All other terms axe as previously defined.

Page C9A1-12

B DESCRIPTION OF MODELS AND ASSUMPTIONS USED IN POPULATION DOSE CALCULATIONS B 1 LI UID EFFLUENTS B.1. 1 In estion cf Potable Water As discussed in the Response to Requests A5, A6, and A8, potentially significant public potable water supply intakes are limited to the City of Oswego water supply, eight miles west of the site. Users of the supply consist of residents of the City of Oswego and Onondaga County. In 1970, there were approximately 24,000 and 166,000 consumers, respectively (Page 2.1-2, ref. and Page 5.2-8, ref. 2).

1 Based on the population growth estimate discussed in Section 2.1 of the NMP2-PSAR (ref. 1), the number of consumers of the potable water from this intake is increased from 190,000 to 263,000. This accounts for a 38 percent increase to the midpoint of operation of NMP2.

A lake dilution factor of 130-0 is calculated by using Regulatory Guide 1.EE {refer to Response to Request AS and ref. 9) . Decay of radionuclides occurs based on a lake transit time of 29.0 hours0 days <br />0 hours <br />0 weeks <br />0 months <br /> from the point of discharge to the point of intake; transport time through the water purification plant and water distribution system is 24.0 hours0 days <br />0 hours <br />0 weeks <br />0 months <br /> (Table D-2, Regulatory Guide 1. 109, ref. 22).

The model used for calculating population doses from ingestion of potable water is based on Regulatory Guide 1.AA (ref. 6) . The concentration, C<< pCi/liter, of isotope at the point of intake is:

i D F where:

Q< is the release rate of the nuclide, Ci/yr t is the time from the pcint of discharge to the point of intake (lake transit time), 2 9. 0 hrs is the decay constant of the nuclide, hr-~

D is the lake diluticn factor, 130.0 F is the flow rate of the release stream, 46.0 ft~/sec 1100. 0 is the factor to convert (Ci/yr) / (ft~/sec) to pCi/liter.

Page C9A1-13

The dose, Ra~, mrem/year, to an average individual of age group a, to organ j is:

R) Ci Dai~ Ua e" it where:

C< is the concentration at the point of water intake, pCi/liter Dang is the dose factor for ingestion to organ jg mrem/pCi ingested (Table A-3, Regulatory Guide 1.AA) t is the distribution transport time, 20.0 hrs U is the usage factor for age group a of potable water, for an average individual. For an adult, 370 liters/yr are consumed; for a teenager and child 260 liters/yr are consumed (Table A-2, Reg-ulatory Guide 1 ~ 109),

The dose, D $ , man-rem/yr, to the 50~ile population (total body or thyn6d) is:

D> ~ 0.001 P ag a where:

P is the population served R is the dose to an average individual of age group a, to organ j, mrem/yr f is the fraction of the population served belonging to age group a 0.001 is the factor to convert mrem to rem.

B. 1.2 Incnestion af Pisll As discussed in Response to Request C7, a "otal 50-mile fish catch of 1.3 x 10~ pounds/year is assumed.

Page C9A1-14

Most commercial fishing occurs in the extreme northeast portion of Lake Ontario (Page 2. 2-3, re f . 2) . It i s conservative ly assumed that the lake dilution factor is 1 ~ 0 x 104 It is conservatively for human consumption.

assumed that the entire fish catch is Distribution transport time is assumed to be 10, days, in accordance with Table D-2 of Regulatory Guide 1.AA {ref. 6).

A total annual United States fish consumption by humans of

3. 2 x 10~ pounds is used (Table 1106, ref. 24), based on a consumption rate of 11 lb/person/yr and a U.S. population of 200 million. This assumption is conservative, since the model considers the Lake Ontario catch as part of the total U.S. catch. A larger U.S. fish consumption by humans would thus result in a smaller dose. The Lake Ontario catch, however, is increased by a factor of four to account for future growth in the fishing industry and consumption of the sport catch.

The model used in calculating the dose from ingestion of fish is based on Appendices A and D of Regulatory Guide 1.AA. The concentration, C <F, pCi/kg, of nuclide i in the fish is:

1100.0 Qi ~ P CiF a~, e 5 F where:

B< is the bioaccumulation factor in fish for water type s, fresh water in this case (Table A-4, Regulatory Guide 1.AA).

All other terms are as previously defined.

The dose, D Pg, man-rem/yr, to the population {total body or thyroid) is:

Page C9A1-15

0 8

D ~ 0.001 P ( aCiFU D e M i~)

i a where:

P50 is the 50-mile population m is the mass of fish caught annually from Lake Ontario, kg/yr M is the total annual. U.S. fish consumption by humans, kg/yr fa is the fraction of the population in age group a CiF is the concentration of radionuclide pCi/kg i in fish, U , is the usage factor for age group a, kg/yr. Fish ingestion for adult, teen, and child are 6. 9, 5. 2, and 2.2 kg/yr, respectively (Table A-2, Regulatory Guide 1-109)

D is the ingestion dose factor (total body or thyroid) i~ for age group a, isotope i, and organ j, mrem/pCi (Table A-3, Regulatory Guide 1.AA) t is the distribution transport time, (Table D-2, Regulatory Guide 1.109) 24.0 hrs 0.001 is the factor to convert mrem to rem.

Page C9A1-16

The COHORT-IX Monte Carlo Radiation Transport Code, (ref.

25) has been used to determine the dose rates to which fishermen, boaters, and swimmers may be exposed. The source activity is presented in Table C9-19 (See Response to Request C9) for the initial mixing zone, Lakeview Summer Camp, selkirk State park, and for an average lake dilution 5 miles from the discharge structure for recreational boating and fishing and 25 miles for commercial fishing.

B. 1. 3. 1 Fishin and Boatin

=-

The fishing and boating model assumes a disc source 50 feet in diameter, with a depth of 3 feet from the surface of the water. Dose ratio at points 1, 2, and 3 feet above the water are calculated to approximate the location of fishermen and floaters. Attenuation by the boat is neglected.

As expected, the dose rate is almost constant, at the three receptor points considered, indicating that the source model is essentially semi-infinite in this analysis. These dose rate levels are approximately half of the submerged dose rates calculated for swimmers, as would be intuitively expected.

In computing the population dose from fishing, an estimate of the number of hours of exposure is made as follows. An estimated total of 3.2 x 106 fisherman-days in 1960 is reported on page 8.4-5 of the NMP2-ER (ref.2) . This number is assumed to double to a value of 6.4 x 106 for the purposes of this analysis.

Each fisherman is assumed to spend 2.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> per day on the lake. This results in a population usage of 1.6 x 10~

person-hours per year. An average lake dilution factor of 1.0x10~ is used in this analysis.

In computing the population dose from boating, a twelve week season is assumed. An estimated 1,000 persons are assumed to spend an average of 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> per weekday boating during this season. On weekends, 10,000 persons are assumed to use Lake Ontario for boating within a 50 mile radius for an average time of 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> per weekend. These assumptions result in a total of 6.0 x 10~ person-hours per year for boating.

A lake dilution factor of 90.0 is estimated, corresponding to an average distance of 5 miles from the discharge. These are demonstrably ccnservative assumptions.

B. 1. 3. 2 ~Swimmin The COHORT-II Monte Carlo prcgram (ref. 25) is used to calculate the dose rate for swimming. A cylindrical source Page C9Al-17

5 ftt in in radius is enclosed in an annular mass of water of 10 f outside radius. The economics of computer time resulted in limiting the source region to the 5 f t radius cylinder. The attenuation of this much water can readily be shown to be a suf ficient representation of source contributions to a submerged receptor on the axis of the cylinder. The 10 ft outer cylinder is added to include backscattering into the source region, in the Monte Carlo analysis. A receptor point 2 ft below the surface is used.

The fact that this model accurately predicts the submerged dose rate is further confirmed by the excellent agreement with the model described earlier for boating and fishing.

As expected, the submerged dose rate is approximately twice the dose rate above the surface of the water.

An estimated 1,000 persons are assumed to swim at Selkirk State park each week during a 10 week season, as stated on page 5.2-5 of the NMP2-ER (ref. 2). Adults are assumed to spend 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> per day swimming and children and teenagers are assumed to spend 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> per day swimming.

At Lakeview Summer Camp, 11,200 person-days are assumed for adults and 22,400 person-days for teenagers and children.

In addition, it per weekend during a is assumed 10 week that season, 10 teenagers swim 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> in the vicinity of the mixing zone.

The large dilution afforded by the lake at more distant recreational areas within the 50 mile radius is sufficient to make additional contributions to population man-rem estimates of negligible proportions.

B.1.4 Shoreline Recreation Near the NMP2 site, there are two predominant beach areas.

The Lakeview Summer Camp, located 4,500 feet southwest of the station, is occupied for approximately 10 weeks per year. Maximum usage is 500 persons/weekday and 1,500 persons/weekend (Page 2.2-6, ref- 2) . This yields an average of approximately 800 persons per day during the 10 week period each year. It is assumed that of these, 160 are adults, 320 are teenagers, and 320 are children. An adult usage of two hours per day is assumed; for teenagers and children a usage of four hours per day is assumed. This is conservative, since the combined swimming and shoreline usage is eight hours per day.

Using Regulatory Guide 1.EE (ref. 9), a lake dilution factor of 17.0 is calculated. A decay time of 3.1 hours1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> is assumed.

Selkirk State Park is located 10 miles east-northeast of the station. According to page 2.1-4 of the NMP2-PSAR (ref. 1),

an estimated 10,000 people use the park each weekend; based on a 10-week season, the total usage is assumed to be Page C9Al-18

100,000 person-days. Age group distribution of 62 percent adult, 14 percent teenager, and 24 percent child is used, as discussed in Response to Request C1. Usages of 8. 3, 47. 0 and 9.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> per year are assumed for adults, teenagers and children, respectively.

Regulatory Guide 1.EE serves as a basis for calculation of a lake dilution factor of 120.0; a decay time of 37.0 hours0 days <br />0 hours <br />0 weeks <br />0 months <br /> is used.

The model used for estimating population doses from this pathway is in accordance with Regulatory Guide 1.AA. A shore width factor of 0.3 is used (Table A-5, Regulatory Guide 1.AA) . For the buildup time, a power plant lifetime midpoint of 15 years is assumed {Page 1. 10 9-9, Regulatory Guide 1.109) .

The footnote on Page A-9 of Regulatory Guide 1.AA identifies a necessity to account for secular equilibrium of parent and daughter. In lieu of the NRC model, dose factors of each, parent isotope are increased by that of its daughter

, isotope, where appropriate. This model has the advantage of accurately modeling a situation where the parent, release is small and the daughter release large.

The concentration, C , pCi/m~, in the shoreline sediment of isot ope i is 3.18 x 103 ~(1-e 1" 0 We is F D Xi where:

the release rate of isotope i, Ci/yr 9

i is is the decay constant of isotope i, hr-~

is the buildup time, 1.31x10s hrs (Page 1.109-9, Regulatory Guide 1. 109) t P is the holdup time, hr W is the shore width factor, 0.3 (Table A-5,

~

Regulatory Guide 1.AA)

D is the lake dilution factor Page C9A1-19

is the flow rate of the release stream, 46.0 ft3/sec 3 18x103 is a factor for conversion from (Ci/yr) /(ft~/sec)

~

to pCi/liter and to account for the proportionality constant used in the sediment radioactivity model.

The dose, R ~, mrem/yr,, to an organ j (total body or thyroid) of an average individual of age group a, due to the release of isotope i, is:

R ~ C U ag a aug where:

C i8 is the concentration in the sediment, pCi/me U is the usage factor for age group a, as previously def ined, hr/yr D

<~

is the external dose factor for isotope i, organ j, (mrem/hr) /(pCi/ma) (Table A-7, Regulatory Guide

1. 109) .

The dose, D P

, man-rem/yr, described above to the population ing the recreational facility is:

P

~ 0.001 P R Dg a a3 where:

P is the population using the recreational facility fa is the fraction of the population in age group a Rag is the 'dose to an average individual, mrem/yr 0.001 is a factor for converting mrem to rem.

Page C9Al-20

0 B. 2 GASEOUS EFFLUENTS B.2. 1 Ex osure to Noble Gases Noble gas exposure (total body) population doses, man-rem/yr, are calculated based on a semi-infinite cloud model. This model provides a good approximation over a 50-mile region. The appropriate equation is:

P 1.11 x 0.001 x 3.2 x 10 DT ~ S F

DFB i p r,6 Q*

r,6 i r,6 where:

Q< (x/Q) + Q, (x/Q) + Qi(x/Q) r,6 stack reactor ra Jvaate (Ci-sec) / (m~-yr) bldg vent bldg vent Q is the release rate of isotope i, Ci/yr x/Q is the atmospheric dispersion factor, sec/m3, for the sector centered at distance z, angle 6 DFB is the total body dose factor for isotope (mrem/yr) /(pCi/m3) (Table B-1, Regulatory Guide i,

1 ~ AA)

P,r,8 is the population of sector (r,6 )

S is a shielding and occupancy factor, 0.5 F (Page D-11, Regulatory Guide 1.AA) 0.001 is the factor to convert from mrem to rem

3. 2x10~ is the factor to convert (Ci/yr) to (pCi/sec) 1.11 is the ratio of tissue tc air energy absorption coef ficient (Page 1. 109-42, Regulatory Guide 1. 109) .

Page C9A1-21

0 B. 2. 2 Inhalation Doses Inhalation doses, Z, man-rem/yr are:

~ 3.2 x r,e.. g*

D 10 U D P aug a i r,8 r 8 where:

Q

, (x/~) ',

madwaste vent (Ci-sec) /{m>-yr)

(x/n)

'eator vent

+

Qi (x/Q) stack Qi is the release rate of isotope i, Ci/yr x/0 is the atmospheric dispersion factor, sec/ms, associated with the sector centered at r, angle 8 is the usage factor for age group a, m~/yr air.

These factors are, for adult, teen, and child, 7,300, 5, 100, 2,700, respectively D is the inhalation dose factor for age group a, isotope i, organ j, mrem/pCi inhaled (Table C-1, Regulatory Guide 1.AA)

Pr,e is the population occupying the sector centered at (r,g )

3.2x10~ is the factor required to convert (Ci/yr) to (pCi/sec) 0.001 is the factor to convert from mrem to rem.

B.2.3 De osition on Ground Dose factors are adjusted to account for secular equilibrium.

Page C9A1-22

0 The total deposition body exposuz'e on ground is:

dose, 9,P man-r em/yr, due to I

-X it )

D ~ 0.001 S F

1.p x 1p 2 r,0 ' (1-e r,0 where:

  • + +

r,0 6 reactor 6 radwaste r,0 or,e is the relative depositz5n rate, m-a, f8% 85 sector centered at r, angle 0 S is the shielding and occupancy factor, F 0.5 {Page D-12, Regulatory Guide 1.AA) is the decay constant of nuclide i, hr ~

is the buildup time,,1.31 x 10s hrs (Page 1.109-9, Regulatory Guide 1. 109)

,Q is the release rate, Ci/yr D is the total body dose factor, (mrem/hr) /(pCi/ma)

(Table A-3, Regulatory Guide 1.AA) . These factors have been adjusted to account for secular equilibrium between parent and daughter, where appropriate.

P r,0 is the population in sector (rp )

0.001 is the conversion factor from mrem to rem 1.0x10>> is the conversion factor from Ci to pCi.

B.2.4 In estion of Milk Distribution of milk production i.n the 160 subregions has been obtained using county data, as discussed in Response to Request, C3. The area of each subregion is ratioed to the Page C9A1-23

area of the county, and an appropriate percentage of the county production is calculated.

The average cow consumes 50 kg/day of feed; during the six-month grazing season, the cow' diet is assumed to be comprised of pasture grass only. For the remaining six months no direct intake of pasture grass is assumed. Crop yield s of 0. 75 and 2. 0 kg/m ~ are assumed for fresh and stored feed, respectively. A surface density for soil was taken to be 240 kg/m~. No holdup time is assumed for pasture grass; it is assumed, however, that on the average, 90 days pass between harvest and consumption of stored grain. A growing season of 30 days is a'pplied for all feed.

Four days are allowed for distributing the milk.

The above data represent values of Appendix C and Table D-2 is assumed that all milk is(ref.

from Regulatory Guide 1.AA 6). For conservatism, sold fresh (i.e., no canning or it other processing); 100 percent fresh daily feed is also a conservative assumption.

The concentration, pCi/kg, in f ed (fresh or stored) for any isotope exceptCiF, tritium or C-14 is determined by:

r e'~i .t h r,e p.f.

+ F CiF = 1.1 x 108 8 (1 e

~Fi ~v 3.

P where:

r,e (:~r,e)

'tack + ( <r,e)

'ereactor + (~r,e ) radwastem-~

bldg vent 6 is the relative deposition rate of seMNIP $ 9,8 )

Qi is the release of isotope i, Ci/yr is the fraction of the isotopic release available for deposition, as follows:

0. 5 for iodines 1.0 for other nuclides (Page 1. 109-54, Reg-ulatory Guide 1.109)

Page C9A1-2f

IP 0

0

is the retention factor:

0. 2 for particulates 1.0 for other nuclides (Page 1.109-9, Regulatory Guide 1. 109) is the effective decay constant, hr-~

is the e ffective decay constant for isotope adjusted to account for weathering effects, as i,

follows:

+ .0021 hr- ~ (Page 1.109-10, Regulatory Guide 1. 109) is the decay constant fcr nuclide i, hr tE is the crop (pasture) exposure time, 720 hrs (Page C-10, Regulatory Guide 1.AA) is the crop yield, 2.0 kg/m~ for stored feed and 0.75 kg/me (Page C-10, Regulatory Guide 1.AA)

Bi is the concentration factor from soil to crops for isotope i (Table C-2, Regulatory Guide 1.AA) tb is the buildup time, 1. 31 x 10'rs (Page 1. 109-9, Regulatory Guide 1.109) is the effective surface density for soil, 240 kg/me (Page 7, Regulatory Guide 1.AA) th is the holdup time from harvest to consumption, 0.0 hrs for pasture and 2160 hrs for stored feed (Page C-10, Regulatory Guide 1.AA) 1.1x10s is a factor to convert (Ci/yr) to (pCi/hr) .

For tritium the concentration C iF, pCi/kg, is:

r,o 1.7x10 7

  • iFr,g H ir,o where:

(<i ~"~~)r e ) + (<i (X ~ r,o )reactor + (<i (X~~)r,e )<<d<<<<e (Ci- sec) /m>-yr$

struck bldg. vent bldg vent H is the absolute humidity in the atmosphere, 5.87 gm/m3 Page C9A1-25

Q i is the release of isotope i, Ci/yr X/ is the atmospheric dispersion factor associated with the sector centered at (r,6), sec/m~

All other parameters are as defined above.

For C-14 the concentration, iF' pCi/kg Cip, is:

CiF = 2.2 x 10 Qi r,6 r,8 All parameters are as defined above for tritium.

For a six month grazing season the concentration Cip,gCi/kg, Iqa 1S Cip r,6 is r,6 iFr,6 2 where:

C ip is the concentration of nucl ide i in fresh feed, pCi/kg in sector (r, 6 )

C is is the concentration of nuclide i in stored feed, pCi/kg in sector (r, 6 ).

The concentration, Ciimr 6

, pCi/liter, in milk is:

i r,6 Ci Fm Cip r,6 Qp e.

where:

is the uptake factor from feed to milk, days/liter (Tables C-2 and C-3, Regulatory Guide 1.AA)

Qp is the animal's daily feed, kg/day (Page C-10, Reg-ulatory Guide 1.AA)

Page C9Al-26

is the distribution transport time, 96.0 hours0 days <br />0 hours <br />0 weeks <br />0 months <br /> (Table D2, Regulatory Guide 1.AA) .

The

,milk 50-mile is average concentration, approximated by:

5>, pCi/liter, in m

~c~

r Ms 0 B

r,6 where:

is the quantity of milk produced in the sector defined hy (r, e ), liters/yr Ms, is the quantity produced within 50 miles, liters/yr.

The concept of effective population was applied for this pathway, as recommended in Appendix D of Regulatory Guide 1.AA. The effective population,P~, is used when the 50-mile population does not consume the total production. The equation used is:

Mso X f, U, a

~here:

Mso is the quantity produced within 50 miles, liter/yr fa is the fraction of persons in age group a v is the usage factor for age group a. Values of 110, 200, and 170 liters/yr were applied for adult, teenager, and child, respectively. (Table A-2, Regulatory Guide 1.109)

P+ for milk is calculated to be 4.45 x 10o.

Page C9Al-27

The dose, P

Dg man-rem/yr to the population from the milk pathway is:

DP 0 001 Pso F

Ua fa D ai]

~here:

Pso is the 50 mile population D is the ingestion dose factor for age group a,

<~

isotope i, organ j, (mrem/hr) /(pCi/kg) {Table A-3, Regulatory Guide 1.AA)

All other parameters are as previously defined.

B.2. 5 In estion of Ve etation Vegetable production is obtained using county data as described in Reponse to Request C4. Five categories of vegetables are considered, and parameters which vary with the vegetable type are presented in Table C9-20 (see Response to Request C9). A retention factor of 1.0 and a soil surf ace density of 240 kg/ma are applied in all calculations. A growing season of 60 days is assumed (Page C-10, Regulatory Guide 1-AA), and the midpoint of plant operation is 15 years (Page 1. 109-9, Regulatory Guide

,1 109).

The model for calculating the concentration of an isotope on vegetation is the same as that for concentration in feed, described in the previous section.

The dose, DP man-rem/yr, is computed by the following equation:

P 0.001 Pso Civ Ua $ a Daij Page C9M-28

/'l 8

where:

C is the average concentration in vegetation over the 50-mile region, pci/kg All other parameters are as previously defined.

3-2.6 In estion of Meat The model for calculating the dose to the population due to ingestion of meat is identical to that presented in Section B.2. 4 of this appendix. County distribution data are used (See Response to Request C4) . Beef cattle, pigs, sheep, lambs, and hogs are considered; feeding habits of beef cattle are assumed for all livestock. Twenty days are allowed for distribution of the meat. Usages of 95, 59, and 37 kg/yr are assumed for adults, teenagers, and children, respectively. Stable element transfer data for meat are taken from Table C-2 of Regulatory Guide 1.AA. All other parameters are identical to those used in the, milk ingestion calculation.

An estimate for the dose from ingestion of eggs has been made. Chickens are assumed to eat ten percent of their body weight daily. Because their diet is all stored feed, and because of relatively low production, this dose is a negligible contribution to the meat dose.

Page C9Al-29

\

APPENDIX C9-2'he Liquid Radwaste System is shown in Figure A1-3.. The floor drain filter, which is shown out of service, is used only after an administrative procedure has determined that the radionuclide concentration in the floor drain tanks is negligible. Theref ore, for the purpose.of this analysis, the flow is assumed to be zero through this filter.

The assumptions used in estimating the liquid

-radianuclide releases are given below. The assumptions used are based on the recommendations given in Regulatory Guide 1-CC (ref. 7) .

Collection Time, Collection time prior to processing is based on the input flows. The redundant tanks are assumed to be filled to 80 percent capacity.

Waste Collector Tanks 15 hours1.736111e-4 days <br />0.00417 hours <br />2.480159e-5 weeks <br />5.7075e-6 months <br /> Floor Drain Collector Tanks 76 hours8.796296e-4 days <br />0.0211 hours <br />1.256614e-4 weeks <br />2.8918e-5 months <br /> Regenerant Waste Tanks 343 hours0.00397 days <br />0.0953 hours <br />5.671296e-4 weeks <br />1.305115e-4 months <br /> PROCESS AND DISCHARGE TIME Processing and discharge of liquid wastes is calculated as follows:

R Tank B R Tank R Discharge Canal A C A = Capacity of initial tank in flow scheme B = Limiting process based an equipment flow capacity C = Capacity of final tank in flow scheme prior to discharge R = Equipment flow capacity of process B Ra = Rate of flow of additional wastes inPuts to Tank C R = Flaw capacity of Tank C discharge pump Tp Process t ime c redite d for decay Td = Discharge time Page C9A2-1

process Time (TP T = 0.8A gal/Rb gpd P

Regenerant Evaporator 12.0 hours Waste Evaporator 12.0 hours Radwaste Demineralizer 3.3 hours DischarcCe Time (T~) For Decay Td = 0~0 All Streams 0.0 hours0 days <br />0 hours <br />0 weeks <br />0 months <br /> I

Fraction Dischar ed The Liquid Waste System is designed for maximum waste recycle and the system capacity is sufficient to process wastes for reuse during equipment downtime and anticipated operational occurrences. A discharge route is also provided. The fraction discharged is assumed to be ten percent for all streams.

Decontamination Factors Evaporators Iodine 1,000 Other Nuclides 10,000 Demineralizers (High-Purity Stream)

Anion 100 Cs and Rb 10 Other Nuclides 100 Evaporator Polishing Demineralizer Iodine 10 Other Nuclides 10 Floor Drain In uts Gallons/~Da Activity Fractio~nP~CA Drywell 700 1. 00 Reactor Building 2,000 0.01 Turbine Building 1, 000 0 ~ 01 Lab Drains 600 0.02 Total 6~ 300 Page C9A2-2

Drywell 3, 400 1. 00 Reactor Building 3,720 0 ~ 01 Radwaste Building 1,060 0. 01 Turbine Building ~2960 0. 01 Total 11, 140 Dilution Factor A prompt lake dilution factor of 10 is used assuming a submerged, high velocity ef fluent discharge point in deep water (Table A-1, Regulatory Guide 1. AA, ref . 6) .

The radioactive liquid waste discharge will be diluted with cooling tower blowdown and service water bypass before discharge into the lake through the discharge structure . 'Ihe average dilution f low rate is 21, 107 gallons per minute (see Response to Request A3) .

Page C9A2-3

Part D Effluent 'Ireatment S stems Provide detailed cost estimate sheets, similar to attachments A and B, listing all parameters (and their bases) used in determining capital, op=rating, and maintenance costs associated with all augments considered in the cost-benefit analysis. All costs should be stated in terms of 1975 dollars.

Res onse D1 Table D1-9 summarizes the augments to the gaseous and liquid radwaste systems analyzed.

Ga seous Au ments Three gaseous augments were analyzed using Regulatory Guide 1. FF (ref. 10) .

These are as fcllows:

1. 100 percent filtration of the reactor building exhaust
2. 100 percent filtration 'of the turbine building exhaust
3. 100 percent filtration of the condenser vacuum pump.

The detailed cost estimate sheets of these three augments are provided in the attached Tables D1-1 through D1-6.

One augment to the liquid, radwaste system was analyzed using Regulatory Guide 1. FF. This augmont consists of installing one 100 gallons per minute (gpm) demineralizer in addition to the existing demineralizex in the high purity stream. This augment puts two demineralizers in the high purity stream at all times.

The detailed cost estimate sheets are provided in Tables D1-7 and D1-8.

Cost Benef it The potential reduction to the annual population exposure based on items of augmentation described above are shown in Table D1-10. Table D1-10 also shows the "benefit" of each augment calculated by multiplying the dose reduction by $ 1COO per man-rem or $ 1000 per man-thyroid-rem as appropriate. As shown in Tables D1-9, D1-10, and D1 11, the <<benef it<<of each augment is much less than the corresponding annualized

cost, r esulting in cost-benef it rati cs orders of magnitude larger than one. Therefore, any addition of items of reasonably demcnstrated technology which have the potential of reducing population dose would not be cost-benefit effective.

Page Dl-2

0 Re uest D2 Provide the cost of borrowed money used in the cost analysis and the method of arriving at this cost.

Res onse D2 Niagara Mohawk Power Corporation has established that the allowed rate of return is levelized at 9.6 percent.

This represents the cost of money during the construqtiqn of Nine Milq Point Nuclear Station -. Unit 2 ~

Page D2-1

Describe the methods and parameters used in the cost-benefit analysis and provide bases for all parameters.

Include the following infcrmation:

a. Decontamination factors assigned to each augment and fraction cf <<on-line<< time assumed, i.e., hours per year used.
b. Parameters and method used to determine the Indirect Cost. Factor and the Capital Recovery Factor.

Res onse D3

a. Decontamination Factors and <<Cn-Line<<Time A decontaminatiqn factor of 10 for iodine an/ 100 for particulate was, used in each gaseous augment, which is consistent with Regulatory Guide 1. CC (ref. 7) . The

<<on-line<< time is assumed to be 100 percent.

Li uid Au ment decontamination factor 10 for Anion, 10 for Cs and Rb, and 10 for other nuclides was used for the liquid augment which is consistent with Regulatory Guide 1.CC.

The <<on line" time is assumed to be 100 percent.

b, The Indirect Cost Factor {ICF) was based on a three-@nit site, each with a unitized radwaste system. A value for ICF of 1. 58 was obtained using the method presented in Regulatory Guide 1.FF (ref. 10).

The Capital Recovery Factor (CRF) was determined using 9.6 percent as the cost of borrowed money and a service life of 25 years. A CRF of value of 0.1068 was obtained using the method presented in Regulatory Guide 1.FF.

Pag'e D3-1

Ventilation and Exhaust S stems For each r adj.oactive materials exhaust i s, th e BWR turbine tg land building housing s stems and mechanical vacuum p u mp, the Steam Generator se al

~ d. ys xr em vent exhaust Removal System (BNR) provide the a ~ Ventilation system flow rates and or orated too re d uce radioactivit y releases through the ventilatic a icn or exhaust systems.

b. Decontamination factors assumed and (include charcoal a b sorbers, HEPA falters, mechanical devices) .

c~ Release rates for radioiodine, noblee gaases ses, and radioactive particulates (C'/ i yr), and the bases.

d. Release, points i

locat o n, h erg '.'

t ofto release thee environment e

i including inside dimension of

~ ~

re le asee point exit effluent temperature, and exit For the containment buildin xng, p ovi e e bu.ldll g

) and a thorough description of th efficie c . I dicate the e pecte t ('f d)

If HEPA filters are used downstream of res

'torage tanks, provide the deconta sed o r 1 t'o Page D4-1

0 0

Res onse D4a BUILDING VENTILATION EXHAUST SYSTEMS 1 e Reactor B~nildin The reactor building ventilation consists of one supply, air system, two exhaust air systems, and one emergency recirculation air system.

The supply air system consists of a glycol heating coil, pregilters, high efficiency filters, and three vaneaxial fans. Normally, two supply air fans will be in operation and are capable of supplying adequate air for reactor building ventilation. The third supply air fan will be in standby and will start automaticallyair wheneverfans is either one of the normally operating supply stopped.

Each of the two exhaust systems consists of two vaneaxial fans. Normally, each system has one fan in operation ynd the other in standby. The standby fan will start automatically whenever the primary fan stops.

The emergency recirculation air system is designed for operytion under accident conditions in conjunction with the standby gas treatment system.

190,000 cubic feet per minute {cfm) is supplied to the reactor building to provide equipment cooling as required. Air is induced from areas of low contamination to areas of pr ogre s sively higher contamination.

70,000 cfm is exhausted from the refueling level through grilles located high on the wall adjacent to the spent fuel pool. The second exhaust system is also sized for 70,000 cfm, and its grilles are strategically located throughout the reactor building. Both exhaust systems discharge directly to the atmosphere without charcoal filtration through the reactor building vent.

The normal ventilation exhaust from the reactor building is monitored for radiation. %he refueling level branch exhaust is provided with a minimum ten second delay duct and additional radiation monitors upstream of the delay duct. These monitors will activate the standby gas treatment system and close the supply and exhaust air valves to prevent exhausting to the atmosphere any contaminated effluent which may rise from the surface of the fuel pool and be entrained in the normal ventilation air exhaust.

A negative pressure of 0.25 inch water column {in wc) wj.ll be maintained in the reactor building by bypassing supply a

air around the supply fans thereby reducing the Page D4-2

.I I supply air. A damper in the recirculation duct is modulated in response to building static. pressure.

Loca]. fan coil recirculating air coolers utilizing service water will supplement ventilation air cooling where required.

2~ Radwaste Buildin The radwaste building ventilation system consists of one supply air system and two exhaust, air systems.

The supply air system includes a glycol heating coil, prefilter, high efficiency filter, and two 40,000 cfm vaneaxial fans. One fan will serve as standby.

The normal building exhaust system consists of two units.

Each unit includes a pref ilter, HEPA filter, and a 35,000 cfm vaneaxial fan. One unit is standby.

Exhaust air from potentially contaminated tanks and equipment vents will be collected together and handled by a separate exhaust system. This system consists of two units. Each unit includes a prefilter, HEPA filter, and a 5,000 cfm vaneaxial fan. One unit is standby.

Both exhaust systems discharge directly without charcoal filtration to atmosphere through the radwaste roof.

building vent located above the reactcr building A radiation monitor is provided in the radwaste building

~

exhaust vent duct. The radwaste building ventilation is shut down manually when radiation levels exceed the preset limits.

3% Turbine Buildin The turbine building ventilation system consists of one supply air system and one exhaust air system.

The supply air system consists of a glycol heating coil, prefilters, high efficiency filters, and three 80,000 cfm vaneaxial fan of which two normally run. The thi,rd fan is in standby and starts automatically whenever either normally operating fan stops.

The exhaust air system consists of three 80,000 cfm vaneaxial fans also. The third fan is standby and starts automatically when either of the primary fans stop. The exhaust air system is ducted from return air grilles strategically located throughout the building to induce air from clean areas to areas where potential contamination is highest. The exhaust system discharges directly to the atmosphere through the main stack without charcoal filtration.

Page D4-3

A negative pressure of 0.125 in wc will be maintained in the turbine building by bypassing supply air around the supply fans thereby reducing the supply air. A damper in the bypass duct is modulated in response to building static pressure.

Local fan coil recirculating air coolers utilizing service water will supplement ventilation air cooling where required.

PROVISIONS TO REDUCE RADIOACTIVE RELEASE Gland-Sealin S stem Provision of a gland sealing system is incorporated to reduce radioactivity releases in the turbine building.

'ph'e gland seal system consists of two 100 percent clean steam reboilers to generate clean steam for sealing and two 100 percent exhauster units. The main feed to the clean steam reboiler is taken from the condensate system. The total maximum flow of sealing steam is 45,000 pounds per hour (1b/hr) .

Each 100 percent exhauster unit consists of a condenser

", and two 100 percent exhauster blowers. Normal operation consists of one blower running with the other on standby. The effluent from the exhauster which normally consists of 4250 lb/hr of air and 750 lb/hr of steam at 183 F and 1 inch mercury absolute (HgA) back pressure will be discharged directly to the stack. The gland sealing system uses main steam as on emergency auxiliary source.

Page D4-4

No ere)it has been taken for filtration devices in ventilation systems. No decontamination factors vere assumed or used ~

The holdup times for the offgas system charcoal delay beds are discussed in the Response to Request D4c.

Page D4-5

Res onse C4c Table D4c-1 summarized the calculated release rates for radioiodine, noble gases, and radioactive particulates (Ci/yr) .

The reactor building release rates are based on the summation of the containment and auxiliary building re)ease rates as described in Appendix B of Regulatory Guide 1. CC (ref. 7) .

The release rates for the turbine and radwaste buildings and the mechanical vacuum pump are taken directly from Regulatory Guide 1.CC.

The release rates for the offgas system are based on Regulatory Guide 1. CC using the following parameters:

Neight of charcoal 48 tons Operating temperature 70 F Dew point -20 F Number of shells in the main condenser The calculated holdup times are 28 hours3.240741e-4 days <br />0.00778 hours <br />4.62963e-5 weeks <br />1.0654e-5 months <br /> for Krypton and 533 hours for Xenon.

Page D4-6

Res onse C4d

'7here are three release points for gaseous effluents, the reactor building vent, the radwaste building vent, and the main stack. The reactor building ventilation exhaust is released via the reactor building vent. The radwaste building ventilation exhaust is released via the radwaste building vent. The turbine building ventilation exhaust, the mechanical vacuum pump exhaust, and the off-gas system exhaust are released via the main stack.

these release points are described as follows:

1. Reactor Buildin Vent Location See Figure D4d-1 Height ID of Vent 187 ft above grade (E1. 447~-0) 76 in. x 76 in.

Effluent Temperature 80-90 F (average, depending upon ambient conditions)

Exit Velocity - 3,500 ft per minute

2. Radwaste Buildin Vent Locqtion - See Figure D4d-1 Height - 187 ft above grade (El. 477'-0)

Ip of Vent 42 in. x 42 in.

Effluent Temperature 80 F (average)

Exit Velocity - 3,450 ft per minute 3.'ain Stack Location - See Figure D4d-1 Height 416 ft above grade ID of Vent - 2 meters Effluent Temperature ambient Exit Velocity (average) 10 meters per second Page D4-7

~Res onse D4e Primar Containment Coolin S stem The primary containment volume is approximately 540,000 cubic feet (cu ft) above the water of level in the the drywt.ll is suppression chamber. The volume approximately 340,000 cu ft.

The cooling system in the drywell utilizes unit coolers connected to ductwork throughout the drywell. Cooled air circulation will be provided to all equipment within the drywell to areas around the reactor recirculation pumps and piping, the control rod drive area, the annular spaces between the reactor pressure vessel support skirt and the biological shield and to the areas above and below the refueling seal. Return air is ducted from all areas where hot air is likely to pocket.

The system includes the following unit coolers:

One active and one standby unit at 8,500 cfm Four active units at 1 1,000 cfm Four active units at 16,750 cfm.

The total air circulated by all of the active unit ccolers is 119,500 cfm which is 21 air changes per hour in the drywell. Included in the active capacity is a 30 percent safety factor.

Each unit cooler includes a temporary air filter, a cooling coil, and a direct-ccnnected fan. The coils will be supplied with cooling water from the reactor building closed loop cooling water system.

'Primar Containment Pur e S stem The primary containment purge supply system consists of one full-capacity 3,500 cfm fan supplying filtered outside air from the reactor building ventilation system to the primary containment for purging and ventilation during reactor shutdown and refueling periods. The exhaust air will be passed through the standby gas treatment system and discharged through the stack.

The purge supply and exhaust piping to the primary

.containment will each be provided with two fast-acting pneumatic cylinder-operated butterfly valves in series in each of the two branches (one to the suppression chamber and one to the drywell) for integrity.

Page D4-8

f I

The Nine Mile Point Nuclear Station Unit 2 design does not use pressurized storage tanks.

Page D4-9

4 0

TABLE D4c-1 CALCULATED RELEASES OF RADIOACTIVE MATERIALS IN-GASEOUS EFFLUENTS-Nine Mile Point Nuclear Station - Unit 2 Niagara Mohawk Power Corporation ANNUAL RF.LEASE Ci/ r~

Radionucl i<Re Reactor(1) Turbine {2) Radwaste (3) Mechanical (2) Offgas {2) -,

Bu3.1d3.n Buildin Buildin Vacuum- Pum~

Kr-83m A A A 1.4 x 10o 10o-Kr-85m 6.0 x 10o 6.8 x 10> A 1.1 .x 10> 2 x 10> .

Kr-85 A A A 2+7 x 10z ~

2+i x 10z Kr-87 6.8 x 10-z- 2' 6.0 x x 10z 10'4x x 10<

  • 10~ 1 9 A Kr-88 6.0 x 10~ 2~ 3 x 10z A 3-0 x 102 5 3 x 10z-Kr-89 A A A A, Xe-131m A A A 50x10i 5.9 x 10<-

Xe-133m A A A 4.1 x 104 1.x 10o .-

Xe-133 1.3 x 10z 2.8 x 10z 1 ~ 0 x 2;3 x 10> 6~6 x 9 3x 10>

Xe-1 3 5m 9.2 x 10> 6.5 x 10z A 7~4 x .

'0z Xe-135 6.8 x 10< 6.3 x 10< 4-5 x 104 3.5 x 10z 1 X 10> .

Xe-137 A A A A Xe-138 1.4 x 1 4 x 10~ A 1~ 5 X 10> .

I-131 x 10-i x 10-> 4.5 x 10-z 3.0 x 10-,z 6 ~ 1 x 10 10'.4 1 9 I-133 1:4 x 10~ 7.6 x 10- ~ 1.8 x 10-> 20 3 10O-Co-60 2.0 x 10 2 0 x 10 9 0 x 10 1 1x 10-.>-

co-58 1 2 x 10-> 6 0 x 10-+ 4 5 x 10 6 ~3 x 10=>

Cr-51 6.0 x 10-+ 1.3 x 10 2 90x 10- s 2~3 *x 10-z ~

Mn-54 6.0 x 10-~ 6.0 x 10 3.6 x 10-z 4~3 10 Fe-59 8.0 x 10 5.0 x 10-4 1.5 x 10 z 1 6 1 0-z Zn-65 4.0 x 10-~ 2~0 x 10 1.0 x 10 5~2 10->

Zr-95 Sr-89 8.0 x 10-~ 1 ' x I 0-~

10-~

5.0 x 10-s 9 ' 10-+-

10-.>-

1.8 x 10 6.0 x 5.0 x 10 6 7 Sr-90 1.G x 10-s 2~0 x 10-s 3.0 x 10-4 3 3 10 Sb-124 4.0 x 10-i 3.0 x 10 50x 10-s 7.5 x 10 4'-

Cs-13 4 8.0 x 10-~ 3 ' x 10-~ 4.5 x 10-> 1 3=x 10-* ~

Cs-136 6.G x 10-i 5.0 x 10-s 4.5 x 10 4 1.1 x 10-~"

Cs-137 1. 0 x 10-z 6.0 x 10- ~ 9 0 x 10-> 2 0 x 10-z =

Ba-140 8.0 x 10-+ 1 ~ 1 x 10-2 1 0 x 10 4 1 2 x 10-z-Ce-141 20x10 6.0 x 10 2 6 x 10-> 3 ' x 10-~ "

C-14 9 5 x 10o 9-5 x 104-Ar-41 2.5 x 10-> 2 5 x '10~ ~

H-3 4~ 2 x 10> 4 2 10<-

(1) Released via reactor building vent (see Response to Request D4d)

(2) Released via main stack (see Response to Request D4d)

{3) Released via radwaste building vent (see Response to Request D4d)

Note: For Noble Gases "A~~ represents less than 1 curie.

Page 1 of 1

I

0O 0~i~

LA>

LAk 3P 0 ~a~ M l 283 6g5.t-5 547 096.97 LU' N I 283 500 Co goE~

~lH ego&

q9 z.s~'~,po

.--. "ga,66 q

8"'g k

k A - RADWASTE DUCT, N I 283 l65 E 546 559 EL 447-0" ux 8'EACTOR OU CT N I 283 I68 I Co~<"'00ih E 546 565 l go EL 447-'0" N l 283000 "5 k I

i FIGURE D4d-I GASEOUS RADIOACTIVERELEASE POINTS NINE MILE POINT NUCLEAR STATION-UNIT 2 NIAGARA @OHAeK PoeER CORPORATION SCALE: I" = IOO'-0'

)hf N For a pressurized water reactor having recirculating U-)ube,'team generators and employing all volatile treatment {AVX) to main secondary coolant chemistry, provide the following information:

Expected blowdown rate {lb/hr) and method of processing blowdcwn.

b. Number and type of condensate demineralizers {if applicable) and flow rate of condensate through polishing demineralizers {lb/hr) .

C Expected frequency of resin regeneration or

~

replacement, volumes and, radioactivity, of regenerant, and rinse sclutions, sluice water, or backwash water per batch of resin regenerated or replaced.

de Method of collection, processing and disposal of liquid wastes, includinq decontamination factors fo'r process operations.

assumed e, PGID ~ s and process flow diagrams for the steam geneiator blowdown system and condensate polishinq system.

This request does not apply to Nine Mile Point Nuclear ptatj.on Unit. 2.

Page D5-1

P' REFERENCES Nine Mile Point Nuclear Station-Unit 2 Preliminary safety Analysis Report, Niagara Mohawk Power Corporation, Docket Number 50-410.

2~ Nine Mile Point Nuclear Station-Unit 2 Environmental Report Construction Permit Stage, Niagara Mohawk Power Corporation, Docket Number 50-410.

3~ James A, FitzPatrick Nuclear Power Plant Environmental Report Operating License Stage, Power Authority State of New York, Docket Number 50-333.

4 ~ Nine Mile Point Nuclear Station Preliminary Hazards Summary Report, Niagara Mohawk Power Corporation, Docket Number 50-220.

5. Nine Mile Point Nuclear Station Final Safety Analysis Report, Niagara Mohawk Power Corporation, Docket Number 50-220.

6 Draf t Regulatory Guide 1.AA, <<Calculation of Annual Ayexage Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Implementing Appendix I,<<

U.S. Nuclear Regulatory Comrqission, 9/23/75.

I 7 ~ Draft Regulatory Guide 1.CC, "Calculation of Radioactive Materials in Liquid and Gaseous Ef fluents from Boiling Water Reactors (BWR s), <<U. S.

~

Nuclear Regulatory

'Commiss ion, 9/10/75.

Draft. Regulatory Guide 1,DD, "Methods for Estimating I

8.

Atmospheric Transport and Dispersion of Gaseous Effluents in Routine Releases from Light Water Reactors,>> U.S. Nuclear Regulatory Commission, 9/22/75.

9~ Draft Regulatory Guide 1.KE, <<Methods for Estimating Aquatic Dispersion of Effluent from Routine Releases,<<

U.S. Atoqic Energy Commission.

10 ~ Draft Regulatory Guide 1.FF, "Cost Benefit Analysis for Radwaste Systems for Light-Water-Cooled Nuclear Power Reactors,<<U.S. Nuclear Regulatory Commission, 9/4/75.

11 ~ National Oceanic and Atmospheric Administration, Environmental Data Service, National Climate Center, gshevil le, N.C.

page 1 of 3

II 0

/

12. "Mixing Heights, Hind Speeds and Potential for Urban Air Pollution Throughout the Contiguous United States, >>

G.C. Holzworth, U. S. Environmental Protection Agency, Of fice of Air Programs, Publication ¹AP-101, Research Triangle Park, N.C., January, 1972.

13, "Recommended Guide for the Dispersion of Airborne Effluents," M.E. Smith,-ASME, 1968.

1g. "Unit 2 Vent Plume Behavior Peach Bottom Power Station,"

Philadelphia Electric Company, Docket Number 50-277 and 278, Volumes 182.

15. "Gas Tracer Study of Roof-Vent Effluent Diffusion at Millstone Nuclear Power Station," W.B. Johnson, E. Shelar, R.E. Ruff, H.B. Singh, and L. Salas, Stantford Research Institute, SRI Pxoject 3588,1975.,
16. <<1968 Kinetics of Environmental Radionuclide Transport Through the Milk-Food Chain, in Proceedings of Environmental Surveillance in the Vicinity of Nuclear Facilities,<<C.A. Pelletier and J.D. Zimbrick, M,C Reinig, Editor, Thomas, Springfield, Ill., 1970.
17. "Deposition of Iodine onto Plant Leaves from Air,

~ ~

~

P.J. Barry

~

and Physics, 9:1149, 1963.

~

~

~

A.C. Chamberlain,

~ ~ 'ealth 18 <<Vegetation: A Sink for Atmospheric Pollutants, <<Hill and A. Clyde, Joux nal of Air Pollution Control Association, June, 1971.

19. <<Aspects of Travel and Deposition of Aerosol and Vapor Clouds," A.C. Chamberlain, A. E.R. E., HP/R1261, H.M.S.O.,

1953.

20. >> 196 9 U. S. Census of Agriculture,.<<New York Crop Reporting Service, Albany, New York, July, 1972.

2 t. >>New York Agriculture Statistics, 1974, <<New York Crop Reporting Service, Albany, New York, July, 1975.

22. Draft Regulatory Guide 1. 109, >>Calculatiop of Annual Doses to Man from Routine Release of Reactor Ef fluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I,>> U. S. Nuclear Regulatory Commission, March, 1976.

Page 2 of 3

S t

.0

(

0

23. <<Meteorology and Atomic Energy,<< D.H. Slade, Editor, U.S. Atomic Energy Commission, Office of Information services, July, 1968.
24. <<A Statistical Abstract of the United States," U ~ S.

Department of Agriculture, 1968.

25. "Cohort II Mcnte National Carlo Radiation Transport Code," Oak Laboratory Radiation Shielding Ridge Information Center, Dccument Number CCC198.
26. "Final Environmental Statement Related to Construction of Nine Mile Point Nuclear Station-Unit 2,<< U.S. Atomic Energy Commission, June, 1973.
27. Safety Guide 23, <<Onsite Meteorological Programs," U.S.

Atomic Energy Commission, 2/17/72.

Page 3 of 3

i.