ML17157A421
ML17157A421 | |
Person / Time | |
---|---|
Site: | Susquehanna |
Issue date: | 08/31/1990 |
From: | THOMAS M. LARONGE, INC. |
To: | |
Shared Package | |
ML17157A422 | List: |
References | |
NUDOCS 9011190331 | |
Download: ML17157A421 (200) | |
Text
ThomosM.Laronge,In(-.10439N.E.FOURTHPLAINROA0~P.O.BOX4448~VANCOUVER,WA98662~(206)254-1213~FAX(206)896-2106September10,1990ORIINALENTBYFEDERALEXPRESPENNSYLVANIAPOWER&LIGHTCOMPANYTwoNorthNinthStreetAllentown,PA18101-1179Attention:Mr.RaymondS.Tombaugh,ProjectEngineer
SUBJECT:
REQUESTEDREVISIONSTOFINALREPORTONESWRHRLUBEOILCOOLERFAILUREANALYSIST.M.L.197-90-002
DearMr.Tombaugh,
WearepleasedtoprovidetheattachedreplacementpagesforourreportT.M.L.197-90-002,containingtheeditorialcorrectionsandsuggestionsprovidedbyyouandyourco-workersduringourmeetingonSeptember7,1990.Bestregards,.~c.c<ArthurJ.Freedman,~ExecutiveVicePresident(ThomasM.Laronge,PresidentAJF/TML:dhEnc:A/S9011190331PDRADOCKP901i1205000337PDC4Quo,lityforIndustryWeappreciateyourinputandhopethatthereport,ascorrected,willbesatisfactory.Pleasedonothesitatetocallifyouhaveanyfurtherquestions.
ThomasM.Laronge,Inc.AKNWLEDEMENTTheworkdescribedinthisreport,particularlytheworkon-siteandatPP&L's.HazletonLaboratoryandAllentownofQces,couldnothavebeenaccomplishedwithoutthewholeheartedsupportandcooperationofPP@Lpersonnel.Thewriterswishtoexpresstheirappreciationforthetime,effortandcourtesiesextendedtousduringthisproj'ect.Wealsowishtoexpressourspecialthankstothefollowingindividuals,listedinalphabeticalorder,fortheirextrahelpbeyondthecallofduty:D.P.DunnD.J.MorganT.J.PensockW.J.RhoadesR.S.TombaughL.E.WillertzPagei ThomosM.Laronge,Inc.TABLEFNTEAcknowledgementTableofContentsIntroductionConclusionsResultsofInspectionsListofInspectedEquipmentInspectionMethodsPhysicalMeasurementsandObservationsRHRLubeOilCoolersRCICPumpRoomUnitCoolersESWSupplyLinetoRCIClE-228BOtherInspectionsDiscussionofMeasurementsandInspectionsAnalysesofDepositsandMetalSurfacesAnalyticalMethodsICAPandChemicalAnalysesofDepositsSEM/EDSAnalysesofDepositsMicrobiologicalAnalysesDiscussionofAnalyticalResultsESWSystemChemistryandOperationsESWChemistryESWandRHRPumpOperationsSystemOperationsTheESWSprayPondESWandRHRPumpRunTimesRHRLubeOilCoolingWaterFlowVelocities666881214141517171820232527272828293032Pageii
ThomasM.Laronge,Inc.RootCauseFailureAnalysisSummaryPitInitiationPitPropagationEffectsofSulfur,IronandManganeseinDepositsComparisonofRHRCoolers(Copper)andRCICCoolers(Cupronickel)AppendixBibliographyListofTablesListofFiguresListofPhotographsPreliminaryReport3535363738404243456192Pageiii
ThomosM.Loronge,Inc.INTRDTINOnMay28,1990,aleakoccurredintheRHR2E-217CMotorOilCooleratthePennsylvaniaPowerandLight(PP&L)SusquehannaSteamElectricStation(SSES).ThisleakforcedashutdownofUnit1andadelayinstartupofUnit2untilallRHRmotoroilcoolingcoilscouldbereplaced,othercriticalheatexchangersusingemergencyservicewater(ESW)forcoolingcouldbeinspected,therootcauseoftheproblem.determinedandthepotentialforsimilarfailuresinrelatedequipmentevaluated.ThomasM.Laronge,Inc.wascontractedbyPP&LtoidentifytherootcauseoftheRHR2E-217CmotoroilcoolerfailureandtoinspectequipmentatotherlocationsintheplantcooledbytheESWsystem.Weworkedon-siteandinPP&L'sHazleton,PennsylvaniaLaboratoryandAllentown,PennsylvaniaofficesfromFriday,June8throughTuesday,June12,1990inclusive.Duringthistime,weinspectedthefailedcooler,severalotherRHRmotoroilcoolercoils,andothercoolers,heatexchangersandaccessiblepipingservicedbytheESWsystem.Weranon-sitemicrobiologicalassaysatsixlocationsforthepresenceofsulfate-reducingbacteria(SRB)andacid-producingbacteria(APB)thatcancausemicrobiologicallyinfluencedcorrosion(MIC),andwetooksamplesofheatexchangertubes,wateranddepositsforlateranalysis.WeworkedcloselywithPP&L'smetallurgistsandotherstaffmembers.Wejointlyinspectedfailures,pits,metalsurfacesanddepositsunderthelightmicroscopeandscanningelectronmicroscope(SEM)inthe'HazletonLaboratory.Wereviewedplantandcorporateengineeringofficerecords,includingtechnicalspecifications,procedures,heatexchangerinspectionreports,ESWwaterchemistryandoperatingconditions,andotherrelatedinformation.PP&Lprovidedaccesstoallrecordsandinformationpertinenttothisprojecttoassistusinourwork.Page1 ThomasM.Laronge,Inc.~~~~OnJune12,1990,intheAllentownoffice,wecompletedapreliminaryreportofourfindings.Subsequently,wecarriedoutthefollowingwork:~We,carefullyinspectedsectionsofRHRlubeoilcoolercoilsandRCICpumproomunitcoolerheatexchangertubesremovedduringoursitevisit.~Weanalyzedwaterandde'positsamplesandranscanningelectronmicroscope(SEM),electrondiffractionspectroscopy(EDS)andX-raydiffraction(XRD)analysesondepositsfromspecificlocations,i.e.,insidepits,onselectedtubespecimens.~Weranfurthermicrobiologicalstudiesonselectedtubestoassistincharacterizingthenatureofthecorrosion.~WestudiedplantESWsystemoperatingrecordsandotherpertinentplantrecordsindetail.~Wereviewedourownextensivefilesandcarriedoutaliteraturereviewoncausesofwatersidepittingcorrosionofcopperandcopperalloyheatexchangertubes.ThisAnalreportincludesallessentialinformationfromourJune12,1990preliminaryreport,allnewdataobtainedsinceJune12,1990andourconclusions.OurpreliminaryreportisincludedintheAppendixandshouldbeconsideredaspartofthiscompletereport.Page2 ThomosM.Laronge,Inc.NLINTheRHRlubeoilcoolersandtheRCICpumproomunitcoolersfailedbyacombinationofmicrobiologicallyinducedcorrosion(MIC)andconventionalchemicalpittingcorrosionmechanisms.2.TheESW,asmeasuredattheinlettoRCIClE-228B,ismicrobiologicallyveryactiveandcontainshighlevelsofsulfatereducingbacteria(SRB)andacidproducingbacteria(APB).3.TheESWAandBloopshavebeenstagnant(notrunning)between65and75percentofthetimesince1987.Duringthesestagnantperiods,depositsformedontheinternal(waterside)surfacesoftheRHRandRCICcoolercoilsandtubes.AnaerobicconditionsunderthesedepositsallowedSRBtogeneratesulfidesthatdestroyedtheprotective,passiveQlmonthecopper(RHR)coilsandattackedthe90:10cupronickel(RCIC)tubes.4.MICdidnotcontinueatahighrateunderthesedepositsbecauseofthetoxiceffectsofcopper,ions.Instead,conventionalunder-depositoxygenconcentrationcellcorrosionbecamethedrivingforceforcontinuingpittingattack.5.SulQdesprobablycontinuedtoplayaroleinthecorrosionprocess,evenafterpitinitiation.ContinuingpresenceofSRBinthesystemallowedsulfidestoformawayfromthecorrodingcoppersurfaces.Thesesulfidesthendiffusedwiththewaterandwereabletoattackpassivefilmsonthemetal.Bothdeep.sharp-edgedpitscharacteristicofconcentrationcellcorrosionandshallower,roundedpitscharacteristicofsulQdeattack,werefoundintheRHRlubeoilcoolingcoils(seePhotographs).SEM/EDSelementmapsshowsulfurpresentinallpits,butatvariouslocations,usuallynotnexttothemetalsurface.6.Manganeseplayedadualroleinthecorrosionprocess.InthemostseverelycorrodedRHRlubeoilcoolercoils,e.g.,thefailedcooler,2E-217C,nocontinuousprotectivedepositswereobserved.Rather,thedepositappearstohaveformedasaseriesofdiscretelayers,perhapsassociatedwithperiodsofflowandnoflow,waterchemistrychanges,etc.CoolerRHR1E-217Bshowedsimilardeposits.Thesedepositscontainedonlysmallamountsofmanganese.Manganeseprobablyactedasanelectrontransferagentinthesedepositstocatalyzethecorrosionreactions.Page3
'v Thomos7.M.Laronge,Inc.TheRHRlubeoilcoolersintheworstcondition(2E-217Cand1E-217B)takewaterfromtheESWBloopandthecoolersinthebestcondition(lE-217A,2E-217AandlE-217D)areallontheAloop.Thereasonsforthiscannotbepositivelydefinedfromtheavailabledata,butsomefactsareclear.PriortoJune1989theESWAloopranmorefrequentlyandcarriedmorewaterthantheBloop,butata20percentlowerflowvelocitythroughtheRHRcoils.SubstantiallyhigherlevelsofmanganesewerefoundintheAloopcoils,comparedtotheBloop.ThedifferentflowpatternsintheAloopmayhaveallowedmoremanganesetodepositinthesecoilsandtoformcontinuousfilmsratherthandiscrete',porousdepositsasdescribedinConclusion7.TheveryhighlevelsofmanganesefoundinconnectingelbowsfromcoilslE-217Aand2E-217B(oneoneachloop)remainunexplained.Theseelbowswerenot-corrodedinanyway.8.TwoRHRlubeoilcoolercoils,2E-217B(examinedinourlaboratories)andlE-217B(examinedbyDr.WillertzofPP&L)showedheavierdepositsandpittinginthetop(wateroutlet)layersofcoilsthaninthebottom(waterinlet)layers.Othercoilsmayalsoshowthiseffectbutwerenotexaminedinthisway.Theseobservationssuggestatemperatureeffect,butthetemperatureriseacrosstheRHRlubeoilcoolers(8'F)doesnotseemtobesufficienttoproducethesedifferences.Also,theRHRpumpsonlyoperatedbetween5and10'percentofthetimeeachyear,sothatverylittleheatwasavailablefromthissource.9.OtherthantheRHRlubeoilcoolers,mostofthecoolingequipmentintheESWsystemcontains90:10cupronickeltubes.TheRCICpumproomunitcoolersarecorrodedatleastasseriously,astheRHRroomcoolers.Wefoundone90percentthrough-wallpitinRCIC1E-228Bandone60percentthrough-waQin1E-228A.Weexaminedsectionsfromonlyonetubefromeachcooler.Thesetubesshowedlowmanganeselevelsandheavy,scalydepositssimQartothosefoundinRHR2E-217C,thefailedRHRlubeoilcoolercoil.RCIClE-228Bshowedthehighestlevelofmicrobiologicalcontaminationofallcoolerstestedduringthisstudy.10.Copperand90:10cupronickelarebothhighlyresistanttocorrosionincleanfiowingwater,butinbiologicallyactivesystems90:10cupronickelissometimesmoresusceptibletobiofoulingandMIC.Duringouron-siteinspections,weexaminedseveral90:10cupronickelcoolersinthedieselgeneratorsystemandfoundlittleornopitting.Wealsoexaminedthe2E-297AGRDXcondenserbutcouldnot'eterminetheconditionofthemetalinthesetubesbecauseofthelargeamountofdepositpresent.Page4 ThomasM.Laronge,Inc.11.ESWwaterchemistxydatashowaconsistentdownwardtrendinconductivityandcalciumlevelsduring1989and1990.LangelierIndexvaluesareoftenabove,+0.5andoccasio'nallyapproach+1.0.Somecalcium,presumablyascalciumcarbonate,wasfoundinmostoftheRHRandRCICcoolerdeposits.Page5
ThomasM.Laronge,Inc.RELFINPENLitfIneEuimnDuringourworkon-siteandinourlaboratory,weinspectedheatexchangertubesand/orESWpipingfromthefollowingunits:2.4,5.6.7.8.9.10.12.13.lE-217AlE-217B1E-217C2E-217A2E-217B2E-217C2E-217D1E-228A1E-228B2E-297AOE-505E1,2DOE-507DOE-533DRHRlubeoQcoolercoil.RHRlubeoilcoolercoil.RHRlubeoQcoolercoil.RHRlubeoilcoolercoil.RHRlubeoQcoolercoil.RHRlubeoilcoolercoil.RHRlubeoQcoolercoil.RCICpumproomunitcooler.RCICpumproomunitcooler.ESWGRDXsystemcondenser.Dieselgeneratorintercooler.Dieselgeneratorjacketwatercooler.Dieselgovernorcooler.InsInMthoIndoingouron-siteinspections,weusedthefollowingmethods:~Visualinspectionoftubesanddepositsaswesawtheminplaceorastheywerepresentedtous.~Videoprobeinspectionsoftubesinplace.~Visualinspectionswitha15Xmagnifyinglensoftheinteriorsurfaces'fcoolingcoilsandtubesthathadbeensplitlongitudinally.Page6 ThomasM.Laronge,Inc.~Microscopicexamination.ofselectedspecimensinthePALHazletonLaboratory.~Microbiologicalculturesofdepositsfromcoilsandtubes,usingmediaspecificforsulfate-reducingandacid-producingbacteria(SRBandAPB).Inourlaboratory,*wedidsubstantialadditionalinspectionandanalyticalwork.ThesedataaresummarizedinTablesandFiguresforeasycomparisonofspecimens:~Carefulvisualobservationofthenatureofthedepositsandcorrosiononeachspecimen,withphotographicdocumentation(Tables1and12andPhotographs1through41).Physicalmeasurements,i.e.,size,wallthickness,etc.'Table2).~Depositweightdensitymeasurements(Tables3and12).~Pitdepthmeasurements(Tables4and12).~Waterchemistrystudies(Table9andFigures4,5and6).~Chemicalanalysesofdeposits(Tables5and6andFigure2).X-raydiffractionanalysestoidentifycompoundsindeposits(Table7).Microbiologicalanalysesofsamplecultureson-site(Table8andFigure3).SEM/EDSanalysestoidentifyelementsindeposits(Table6,Figures9through22andPhotographs42through49).Page7
Thomo,sM.Laronge,Inc.PleaserefertotheseTablesandFiguresinconnectionwiththefollowingdiscussion.ThephotographsarearrangedinageneralorderofincreasingmagniQcation,sothatbyperusingthephotographs,thereadercangainanincreasinglydetailedcomparisonofthenatureofthepittingonthevariousspecimensmcaznined.PhsiMurmnrvtionFigure1isaschematicdiagramofanRHRpumpmotor,showingthearrangementofthelubeoilcoolingcoQs.Thecoilsarearrangedinastackofsixlayers,withfourturnsineachlayer.ForidentiQcationpurposeswehavenumberedthecoilsfromtoptobottomandletteredtheturnsfromtheinsideout,asshowninFigure1.Thus,coil3Bisthesecondfromtheinsideturninthethirdlayerfromthetop.PhysicalmeasurementsareshowninTable2.'urmeasurementsshowthattheRHRlubeoilcoolingcoilsandtheRCICroomcoolertubesaregenerallywithinspecifications.DeviationsaresmallandcanbeattributedtoproblemsinwallmeasurementsontubescontainingdepositsandtosomedeformationthatmustoccurwhencoppertubingisformedtomaketheRHRcoils.Thereisnoevidencewhatsoeverfromthesemeasurementsthatanyappreciablethinningoftubewallsduetogeneralcorrosionhasoccurred.TheRHRlubeoilcoolingcoilsarereportedlymadefromtypeKcopper,andtheRCICroomcoolertubesfrom90:10cupronickel.Nowetchemistrytestsweredonetoverifythesecompositions,butEDSanalysisonagallededgeofonetubefromRCIC1E-228Aconfirmed90:10cupronickelinthistube.A.RHRLubOiller1.RHRlE-217AWeinspectedsectionscutfromcoils2and5inthiscooleron-site(seeFigure1).Thesesectionsweresimilar.BothcontainedaPage8 ThomasM.Laronge,Inc.light,smoothlayerofblackdeposit.Veryslight,irregularpittingwas1observedunderthis'deposit.Therewasnovisibletuberculation.Wejudgethiscoiltobeamongtheleastcorroded(pitted)ofalltheRHRcoQsthatwestudied.Wealsoexaminedseveral90degreeelbowsthatconnectedthelayersinthelE-217Acoil.Theseelbowsappeartobemadefromadifferentalloythanthecoppercoil,perhapsabrass.Theseelbowscontainedasubstantialamountofablack,powderydeposit.Somebaremetalwasvisible.Wemeasuredthedepositweightdensityat15.4mg/ft2.Novisiblecorrosioncouldbeseenintheseelbows.However,pittingwasclearlyvisibleinthecoppertubeconnectedtooneelbow(Photographs37,38and39).2.RHRlE-217B'Wedidnotinspectthiscoilon-site.Inourlaboratory,weinspectedlayer3B.(seeFigure1)fromthiscoil.Wefoundalargeamountofdepositmixedwithtuberclesrangingupto0.25inchinbothdiameterand'height(seedescriptioninTable1).Thedepositweightdensity,measuredat31.7gm/ft2,wassecondonlytothedensitymeasuredinRHR2E-217C(seeTable3).Pitdensitywaslowerthanfoundinthe1Cand2CRHRlubeoilcoolers,butsubstantiallyhigherthaninthelAand2Acoolers(Table4).Themaximumpitdepthmeasuredonourspecimenwas0.025inch,or35percentwallpenetration(Table4).Thiscompareswith0.042inchmeasuredbyDr.WillertzofPP&Lonadifferentsectionfromthesamecoil.ThenatureanddepthofpittingintheRHRlE-217BcoilcanbeseeninPhotographs20through23.3.R~RR13-217Thiscoolerwasnotinspectedon-site.Inthelaboratory,thisspecimenwas.foundtohavethehighestmeasureddensityofpitting,butnotthehighestpitdepthorwallpenetration(Table4).Thedepositweightdensity,at24.1gm/ft2,wasinthehighestgroupPage9 ThomosM.Lo,ronge,inc.measured(Table3).Depositsweresmoothandbrowntoblackin~~~~color,withmanybrightgreen,redandsilvercoloredcrystalsaroundandinsidepits.Pits,mostlycoveredbytubercles,werelarge,shallowandhemispherical.'IhedepositsandpittinginthisspecimencanbeseeninPhotographs28through31;thecrystalsareapparentinSEMPhotograph47.4.RHR1E-217DFortherecord,wenoteherethatnospecimensfromRHRlE-217Dwereprovidedforourinspection.Dr.Willertzreportedonlylightdepositsandtuberculation,andverylittlepitpenetrationinthis'ube.5.RHR2E-217AThiscoilwasnotinspectedon-site.Inthelaboratory,thistubesectionwaslike1E-217A.ThebrowndepositwassimilartothatinlE-217B,butmuchsmallerinquantity(Table3).Tubercleswereminorandtherewasnovisiblepittingorgeneralcorrosion.6.RHR2E-217BOn-sitewefoundthiscoiltobeintermediateinconditionbetween1E-217Aand2E-217C.Thespecimenweexaminedcontainedstringyblackdepositsthatcoveredpart,butnotallofthesurface.NosigniQcanttuberculationwaspresent,butpitdepthswerequitesevere.Laboratoryinspectionsconfirmedtheseobservations.Wewereabletoexaminespecimensfromthesecondcoilfromthetop(2E-217B-2)andthesecondcoilfromthebottom(2E-217B-5),asshowninFigure1andTable1.Theentire2E-217B-2coilwassenttoourlaboratory.Photograph10showsthiscoilassplitforinspection.Thecentertubewasmcaminedindetail.Page10 ThomasM.Loronge,Inc.Thedifferencesindepositweightdensity,pittingdensityandpitpenetrationbetween2E-217B-2and2E-217B-5(Tables3and4)confirmsimilarobservationsmadebyDr.Willertzonthe1E-2178coQ,usingX-rayexamination.Depositcharacteristics,tuberculationandpittingintheuppercoil(2E-217B-2)weremuchlikethefailedcoil2E-217C.(seebelow)exceptthatpitsin2Bweremostlyhemispherical.Depositionandpittingin2E-217B-5wereverylight;thissectionappeared,visually,muchlikelE-217Aand2E-217A.Photographs32,33and34showthenatureofthepittingin2E-217B.Unfortunately,thesephotographsdonotdistinguishbetweenthe2B-2andthe2B-5coils.Weexaminedfour90degreebendsfrom2E-217B.Thesebendsappeared,visually,tobemadefromcopperandseemedtobequitedifferentfromthebendsinthe1E-217Acoil(seeabove).Depositweightdensitieswereintheintermediaterangeandnopittingorgeneralcorrosionwasobserved.Seealsothediscussionofchemicalanalysesofdeposits,(Page19.andTable5,Page50).7.~2E-217Itwasathrough-wallfailureinthiscoilthatalertedtheplanttothepittingcorrosionproblemintheRHRlubeoilcoolers.andotherheatexchangersservedbytheESWsystem.On-site,wefoundtheinteriorsurfaceofthe2E-217Ccoilcoveredwithathick,dense,layeredscalydeposit,quitedifferentinappearancefromtheothercoils.However,thetubewesawhadbeenremovedfromthesystemseveraldaysbeforeourvisit,sothatthedepositswerequitedrywhQeothertubeswerewet.On-site,wefoundlargetuberclescoveringnumerousrandompitsovermostofthesurface.Thesepitsvariedgreatlyinsize,shapeanddepth.Bothhemisphericalandirregularly-shapedpitswereobserved,asopposedtothemostlyhemisphericalpitsfoundinother1coils.Someofthepitsin2E-217Cweresharp-edgedandquitedeep.Page11 ThomasM.Laronge,Inc.Laboratoryinspectionsconflrmedtheseverityofcorrosionanddepositioninthiscoil.ThedepositweightdensitywasthehighestmeasuredinanycoiltTable3)andpitdensityanddepthwerealsoamongthehighestmeasured(Table4).Photographs17,18and19showtheheavydepositsanddeeppitsfoundinthiscoil.Anearthrough-wallpitcanbeclearlyseeninthelowersawededgeofthetubeinPhotograph17.8.2E-217DThiscoilwasnotexanQnedon-site.Inthelaboratory,wefoundthedepositweightdensitytobehighat27;3gm/ft2,comparabletodepositsincoilslE-217Band1E-217C.Pitdensitywaslessseverethanineitherofthesetubes.Pitpenetrationin2E-217Dwassimilarto1E-217Candlessseriousthanin1E-217B.Thedepositsweretypicallybrowntoblackwithgreenedgesaroundsmalltubercles.Pitsweresmallandhemispherical.Photographs24through27comparedtoPhotographs17,18and19showthedifferencesbetweenthedepositsfoundin2E-217Dand2E-217C.RRIPumRmniIr1E-22AnlE-22BTheRCICcoolersarereportedlytubedwith,90:10cupronickeltubes,asexplainedabove.Thetubesarestraightandinstalledhorizontallyinthecoolers.Thenominaltubediameteris0.5inch(Table2).ThismeansthattheRCICtubesmaybemoresubjecttolossofflowduetopartialtubeblockagethantheRHRlubeoilcoolersifdepositsshouldforminthesetubes.TheRCIClE-228Acoolerwasopenedinourpresenceduringourinspectionvisitsothatwewereabletoexaminetheinternaldepositsimmediatelyuponexposuretoair.Thisisimportantbecauseanaerobicbacteriathatcanberesponsibleformicrobiologicallyinfluencedcorrosion(MIC)tend-tobecomeinactiveuponexposuretooxygen.Page12
ThomosM.Lo,ronge,Inc.ThetubesinRCIClE-228Acontainedloose,browndeposits.MostofthesedepositsseemedtobeintheformofwellQocculatedsolidswithclearwater.Thetubemetalappearedtoberelativelycleanduringouron-siteinspection.WeunderstandthattheRCICIE-228AcoolerisservedbytheESWAloop.PP&LinformedusthattheRCICpumproomunitcoolerswerecle'anedaboutthreeyearsagoandthatlargeamountsofblackdeposit,presumablymanganese,wereremovedatthattime.The1E-228Bcoolerhadbeenopenedandcleanedforseveraldaysbeforeourinspection.Onetubehadnotbeencleaned,andwefoundthispipetocontainalargeamountofloose,blackdeposit.WeunderstandthatthelE-228BcoolerisservedbytheESWBloop.OnetubefromeachoftheRCICcoolerswassenttoourlaboratoryforinspection.Visually,thetubefromRCIClE-228AtcontainedlessdepositandfarfewerpitsthantheIE-228Btube.Whenmeasured,however,depositweightdensitiesinthesetubesweveroughlythesame(Table3)andpitdensityseemedtobe.higherin1E-228AthaninlE-228B(Table4).TheAcoolershowedthedeepestsinglepitmeasuredduringthisentirestudy;0.05inch,correspondingto91percentwallpenetration.ThelE-228Bcoolershowedamaximumof0.036inchpitdepthwith60percentwallpenetration.ThesedifferencesmaynotbesigniQcant,sinceonlyonesmallportionofonetubefromeachunitwasexamined.Also,theverticalandhorizontalsplitsdescribedinTables3and4arequestionablebecausetubeorientationcouldnotbemaintainedpreciselyduringremovalfromtheunitandduringcutting.Photographs14,15and16showthenatureanddensityof,depositsandpittingin1E-228A,andPhotographs40and41showaclose-upviewofonepitfromthistube.Thetypicalgreen,redandbrowndepositsfoundinbothDxeRHRandRCICcoolerscanbeclearlyseeninthesephotographs.Page13 p~l.'i ThomasM.Loronge,Inc.GESWSu1LinRIlE-22BDuringouron-siteinspections,wewereabletoexaminetheESWBsupplylinetoRCIClE-228B.Weunderstandthatthisismildsteelpiping.Thislinewasheavilycorrodedandcoveredwithauniformlayerofbrownscalerangingupto3/16inchinthickness.Notubercleswereseenandnopittingcouldbefoundunderthedeposit,asfaraswecouldreachintothisline.Seebelowforadiscussionofmicrobiologicaltestinginthispipe.Thispipe,aswesawit,wastypicalofmildsteelpipeexposedtocorrosivewaterformanyyearswithnochemicaltreatment.Theheavylayersofcorrosion-producedscaleareprobably,atthispoint,providingsomecorrosionprotectiontothepipe.WebelievethattheconditionofthispipeissimilartothatofmostoftheESWpipingexposedtosimilarflowconditions.D.thrIninDuringoursitevisit,weinspectedseveralcoolersandcondensersthatcouldnotbedismantledforsubsequentlaboratoryexamination.Theseinspectionsaredescribedindetailinourpreliminaryreport(Appendix);,theinformationissummarizedbrieflybelow.l.OE-7DDiInrtorackWrpierTubesinthiscoolerwerereportedtobe90:10cupronickel.Previouseddycurrent(ET)testingofthiscoolerhadidentifiedonetubewithatleast60percentwallpenetration.Weinspectedthistubeinplace,usingfiberscopeequipment,andfoundmanypitsthatappeared,throughthefiberscope,tobeverydeep.Thepitswererandomlydistributedandirregularinshape.Thecoolerhadbeencleanedbeforewearrivedsothatwedidnotseethedepositsinplace.Page14 Thomo,sM.Lo,ronge,Inc.2.E-DDi1vrnrIrWeexaminedthissmall90:10cupronickelsingletubecooleraftercleaning.Onlyminorpittingcouldbeseeninthistube.3.OE-505E12DDies1nrorIntrpolerThetubesinthis90:10cupronickelcoolerweretoosmalltopermitentranceofthefiberscope.Thetubeendswerecleanandcontainedmanysmallpits.Nootherobservationscouldbemade.4.2E-27AWRDXmnnr~Thisexchangerwasopenedjustbeforeourinspection.Thetubesandtubesheetswerecoveredwithheavydepositsthatmadeviewingthetubesimpossible.Thedepositsseemedtoincludecorrosionproducts,scaleandloose,slimymaterial.Microbiologicalactivityinthisdepositwaslow(Table8,Page54).e'iDiscussionofMeasurementsandInsectionsTable12summarizestheinspectioninformationfromTable1through4andgroupsthecoolersbyESWloop.BasedonthesedataweranktheRHRlubeoilcoolersinthefollowingway,fromworsttobest:PitDensity~pi~inkWorst1C25-3002C1-2001B5-502B-24-502D52B-512ANM1DNMtBestlANMNM=NotMeasured.DeepestPitInihe~2C0.0281B0.0252B-20.0252D0.0151C0.0132B-50.0072ANM1DNMlANMDepositWt.Densitygm~~f2C37.901B31.732D27.251C24.072B-213.212B-56.882A5251DNM1ANMPage15 0hl~1y'),V Thoma,sM.Loronge,Inc.tTheprecisionofthedatashownaboveisprobablystatisticallyunjustiQed,sinceonlyonesectionoftubefromeachcoilwasexaminedforeachdatapoint.Nevertheless,sometrendsareapparent.First,RHRlubeoilcoolersontheESWBloopseemtobeinworseconditionthanthoseontheAloop.WiththepossibleexceptionofRHR2E-217D,alloftheRHRBand"Ccoolers,usingESWBwater,showsubstantiallyhigherpitdensitiesanddepthsandhigherdepositweightdensitiesthantheRHRAandDcoolersontheESWAloop.InspiteoftherelativelyhighplaceofRHR2E-217Dinthisranking,pitdensitiesandpitdepthsforthiscooleraremoreliketheAlo'opcoolersthantheBloop.OnlythedepositweightdensityforRHR2E-217Dseemstobeinordinatelyhigh.However,itisinterestingthatDr.Willertz'srankingoftheRHRcoolersisalmostexactlythesameasourrankingbasedondepositweightdensity.ThefactthatbothdepositionandpittingweremoresevereinthetophalvesofRHRlubeoilcoolingcoils1E-217B(fromDr.Willertz'sreport)and2E-217B,comparedtothebottomhalves,suggeststhattemperaturemaybeasigniQcantfactorinthisproblem.However,thetemperatureriseacrosstheRHRlubeoilcoolersisreportedtobeonly8'F.Also,theRHRpumpshaveoperatedlessthan10percentofthetimesince1987,sothatheatgeneratedbythesepumpsdoesnotseemtobesi~ificant.SeethesectionofthisreportdealingwithESWsystemoperationsbeginningonPage27forfurtherdiscussionofthissubject.ThephysicalconditionoftheRCICpumproomunitcoolersdoesnotseemtobeafunctionoftheESWloops.Wheninspectedon-site,lE-228BseemedtobemoreheavilyfouledthanlE-228A,butmeasureddepositweightdensitiesareaboutthesame.BothtubesareheavQypitted.Page16 ThomasM.Laronge,Inc.ANALYEFDEPIANDALRFAEAniMhAvarietyofinstrumentalandwetchemicalanalyticalmethodswasusedtoassistinidentifyingelementsandchemicalcompoundspresentinthedepositsintheRHRlubeoQcoolers,theRCICpumproomunitcoolersandtheESWGRDXcondenser2E-297A.Thesemethodsincluded:Inductivelycoupledargonplasmaspectroscopy(ICAP)combinedwiththermalandwetchemicalmethodsto.,deflnetheoverallelementalcompositionofthedeposits.Scanningelectronmicroscopy(SEM)andelectrondiffractionspectroscopy(EDS)toidentifyelementspresentinmicrolayersinandaroundspeciQcpitlocations.X-raydiffraction(XRD)todefinespecificchemicalcompoundspresentinselectedpits.On-sitemicrobiologicalcultureteststodetectsulfatereducingbacteria(SRB)andacidproducingbacterial(APB)thatcancausemicrobiologicallyinfluencedcorrosion(MIC).DirectexaminationofcleanedmetalsurfacestohelpidentifymorphologicalfeaturescharacteristicofMICandgeneralunder-depositpittingcorrosion.Allofthisworkispresentedanddiscussedinthissectionofthereport.Page17 ThomasM.Laronge,Inc.hmilTable5presentstheresultsofICAP,thermalandwetchemical.analysesofdeposits.ThegreenandsomeofthereddepositsreportedinTable1andshowninthephotographscorrespondtocoppercompounds,probablycorrosionproducts.ThisisconfirmedbythehighlevelsofcopperfoundinalltheRHRandRCICdeposits.Itisentirelypossible,however,thatthesehighcoppervaluesalsoincludecoppermetalscrapedfromthetubesduringthesamplecollectionprocess.ThetwoanalysesreportedforRHR2E-217Crepresentdifferentsamplesrunbyseparatelaboratories.Agreementisexcellentexceptforcopper,discussedabove,andsodium,averycommoncontaminant.TheRHRlubeoilcoolerdatafromTable5areplottedinFiguret2.ThisFigurecomparescoolers1Band2C(heaviestdepositsanddeepestpits),cooler1C(highpitdensitybutintermediatepitdepthanddepositweightdensity)andcooler1A(leastdepositsandpit:tingofallcoolersexamined).Thedifferencesamongtheseanalysesarestriking:~Coolers1Band2C,intheworstcondition,showlowlevelsofiron,manganeseandcalcium,andrelativelyhighlevelsofsulfur.~Cooler1Cshowshighironandmanganese,slightlyhighercalciumandroughlyhalfthesulfurofcoolers1Band2C.~CoolerlA,inthebestoverallcondition,showsverylowsulfur,thehighestmanganeseandanintermediateironlevel.Baseduponexperiencewiththecombustionandthermaltdecompositionmethodusedtodeterminetotalsulfurinthedepositsamples,ourlaboratoryestimatedthatmostofthesulfurinthePage18 gIII~4<
ThomasM.Laronge,Inc.depositsfromRHRlE-217Aand2E-217Cwasprobablypresentas~~sulfate.Thisis,ofcourse,notaquantitativedetermination,butwereportedsulfateinTable5onthatbasisfordiscussion.Sincemanyinorganicsulfatesaresolubleitmightseemunreasonabletoexpectsulfatesindepositsofthistype.Infact,however,sulfatesarecommonlyfoundinwater-formeddeposits,e.g.,inrecirculatingcoolingwatersystems.Eventhoughsimplesulfatesaltsoftenhaveappreciablesolubility,complexinorganicandorganicsulfatesexistthatarelesssoluble.Also,thesulfateion,becauseofitshighchargedensity,adsorbseasilyonmanysubstratesalongwithappropriatecationsforchargebalance..Finally,mostflocculanthydroxides,includinghydroxidesofiron,aluminum,copper,nickelandmanganeseamongothers,wQIreadilyoccludesulfatesaltsastheyprecipitate.Manycorrosionproductsprecipitatefirstasthehydroxideandthendehydrateandcrystallizetoformoxidesandotherinsolublecomplexcompounds.Substantialamountsofsulfatecanbeheldonametalsurfaceinthisway.NofirmconclusionscanbedrawnfromtheseICAPdataalone,buttheobvioustrendsmustberecognized.Itiswellknownthatmanganesecanactasacorrodantoracatalystforcorrosion,or,underdifferentcircumstances,asafilm-forminginhibitor.Iron,particularlyirontransportedtothecorrosionsiteinthewaterratherthanformedinplaceasacorrosionproduct.canalsoprovideprotection.SulfuriscommonlyfoundatenhancedlevelsindepositsformedbyMIC.SeetheRootCauseFailureAnalysissectionofthisreportforbackgroundinformationandreferencesonthebehaviorofmanganese,ironandsulfurincorrosionprocesses.Curiously,thedepositsintheRHRlE-217Aand2E-217BelbowsarealmostidenticaltoeachotherandverydiQ'erentfromtheotherRHRcoolerdeposits.Theelbowscontainmuchlesscopper,moreiron,veryhighlevelsof,manganeseandasignificantamountofzinccomparedtotheRHRlubeoilcoolertubesthemselves.These.dataindicatethattheelbowsfromboth.coils.may,infact,bemadePage19 ThornosM.Lo,ronge,Inc.fromsomeformofbrass(seetheinspectiondiscussionsabove).Thehighmanganeselevelsintheelbowdepositsconfirmtheblackdepositsfoundduringinspection,butthereisnoreadyexplanationforthepresenceofhighermanganeseintheelbowsthaninthecoils.TheanalysisoftheRCICpumproomunitcooler1E-228Bdeposit(Table5)isdifferentfromtheRHRlubeoilcoolerdeposits.Thiscupronickeltubeshowedoneofthedeepestpitsmeasuredduringthisstudy(Table4)andtheanalysisshowstheexpectedcopperandlowlevelofnickelinthedeposit.TheironlevelismoderatecomparedtotheRHRcoolerdepositsandthemanganeselevelisverylow.Thisseemstoparallelthedeeppittingandlow<manganesedepositcontentobservedinRHR1E-217Band2E-217C.However,in'contrasttotheRHRcoolers,thesulfurcontentintheRCIClE-228Bdepositisverylow.Finally,thedepositintheDX2E-297-AcondenserisentirelydifferentfromthedepositintheRHRandRCICcoolercoils.Thisisamuchmore'typicalwatersidecorrosionandfoulingdeposit,highinironandsilica,verylowinmanganese,copperandsulfur,andwithasignificantlossonignitionindicatingthepossiblepresenceoforganicmaterial.Wewereinformedthatourinspectionrepresentedthefirst.timethe2E-297Aheatexchangerhadbeenopened,sothe'a'ccumulationofwater-bornesolidsisnotsurprising.Thisexchangermustbecleanedtorestoreperformance,andatthattimeitwillbeimportanttoinspectthetubesforpossiblecorrosiondamage.SEM-EDSAnIfDeEDSspectraofselectedpitsfromtheRHRlubeoilcoolercoilsandRCICpumproomunitcoolertubesarepresentedinFigures9through22,alongwiththerespectiveelementalcompositions~calculatedfromstandardlessanalysis(inwhichthedataareinterpretedmathematicallywithouttheuseofphysicalstandards).'hecorrespondingSEMphotographsappearasNumbers42through-49.Elementmapsforsulfur,chlorine,ironandmanganeseareshownPage20 In ThomasM.Larongl,Inc.asFigures23through29.AllofthesedataaresummarizedforediscussioninTable6.EDSspectraweretakenattwoselectedmicrolocationsineachdeposit.Forwimple,referringtoTable6,Photograph42showsaspeciQcpitinRHRlubeoilcooler1E-217B-3B.Figure9showstheEDSspectrumtakeninthemiddleofthedepositinthispitandFigure10showsthespectrumofthedepositatthebaseofthepit,nexttothemetal.ThecorrespondingelementmapforthispitappearsasFigure23.ConsideringtheheterogeneousnatureofthedepositsandthespecificityoftheEDSspectra,theagreementbetweentheEDSdataandtheICAPresultsinTable5isquitegood.TheEDSanalysesforchlorine(chloride)andsulfurareparticularlyinterestingbecausetheseelementsareoftenfoundnearactivecorrosionsites.Chloridesaccumulateinunder-depositpittingcorrosioncellsbyiontransportmechanisms,whilesulfuroftenappearsatMIClocationsthroughmicrobialmetabolism.ThechlorideandsulfurdatainTable6donotshowanyconsistentpattern.Consider,forexample,theEDSspectrafromthreediferentpitsinRHRlubeoQcoolercoillE-217B-3BaslistedinTable6.~FiureLocation~ChloridRHRlE-217B-3B9,10Insidepit16.42Pitbase6.75Sulf'urNoneNone11,1213,14InsidepitNonePitbaseNoneInsidepit15.93Pitbase0.246.1213.353.57NoneThesedifferencesmay.representheterogeneousdepositsortheymaybeadditionalevidencethatmorethanonecorrosionmechanismPage21 Thomo,sM.Laronge,Inc.tmaybeinvolvedinthepittingattackintheRHRandRCICcoolers.Dr.WillertzransimilarSEM/EDSanalysesontheRHRcoilsandfoundthesamevariations,bothonpitsfromthesamecoilandamongdifferentcoils.AgreementbetweenthetwosetsofanalysesseemstobegoodwiththepossibleexceptionthatDr.Willertz'sdatashowmoreelementsandespeciallymoresulfurinsomecasesthandoourresults.Inanefforttoidentifyspecificchemicalcompoundsinthedeposits,weranX-raydiffractionstudiesonselecteddepositsfromRHRlubeoilcoolerslE-217B-3B,RHR2E-217Canda90degreebendfromRHR2E-2178.TheresultsareshowninTable7.Thedataaredisappointing.Onlytheexpectedcuprichydroxide.cuprousoxide(cuprite)andmagnetitewereidentified.X-raydiffractionissensitiveonlytocompoundspresentinamountsgreaterthanabout2percentofthetotal,butwehadhopedthatothercrystallinecompounds,particularlysulfurcompounds,couldbeidentiQedinthisway.Elementmaps(Figures23through29)areausefulwaytoidentifythelocationsanddistributionofparticularelementsinamatrix.Elementmappingdoesnotdetermineconcentrationsofelements.Figures23through29showthatallfourmappedelements,sulfur,chlorine,manganeseandironarepresentinalldeposits.However,themapsdonotrevealanyconsistentpatternsinelementdistributionsinthedeposits.Ontheotherhand,themapsareespeciallyinterestingbecausetheyseemtoconfirmthedifferencesshownbytheICAPandSEM/EDSanalyses.Foracample,Figures23,24and25areelementalmapsofthreepitsinRHRlE-217B-3B.Figure23showsabinodalvoidinthemiddleofthepit,withalmostnoneofthefourmappedelementspresentinthisarea.Figure24showsbothsulfurandchlorine'oncentratedinthemiddleofthepit,withmanganeseandironinanouterring.Figure25showsmanganese,ironandsomechlorineinthemiddleofthepit,withsulfuraroundtheoutside.Page22 Thomo,sM.Laronge,inc.MicriloialAn1Table8summarizesallofthemicrobiologicalanalysescoQectedduringthisinvestigation.On-siteculturetestsforlivesulfatereducingbacteria(SRB)andacid-producingbacteria(APB)areshownintherighttwocolumnsofthisTable.Thesebacteriaarecommonlyinvolvedinmicrobiologicallyinfluencedcorrosion(MIC).Laboratorymicroscopiccountsfortotalbacteria(alltypes)andfortotalSRBareshowninthelefttwocolumns.ToputthedatainTable8intoperspective,considerthefollowingguidelinesthatarecommonlyappliedtobothonce-throughandopenrecirculatingcoolingwatersystem.Withatotalbacterialcountbelow10~to103cellspermlorpergram,asystemisconsideredtobeundergoodmicrobiologicalcontrol.Atthistotalcountlevel,anaerobicbacteriashouldalwaysbelessthan10~perml.Between103and104totalcellsperml,acoolingwatersystemisconsideredtobebiologicallyactive.Above104to10~cellspermlthereiscauseforconcernaboutbiologicalfoulingandcorrosionproblemsandabove106cellsperml,immediateactionisusuallyconsiderednecessarytopreventdamagetothesystem.Onthisbasis,the8.5x109cellspermltotalcountmeasuredintheESWBsupplywatertoRCIClE-228B(line1inTable8)isextraordinarilyhigh.Totalmicroscopiccountsincludebothliveanddeadbacteria,butevenifasfewas10percentofthesebacteriawerealiveinthesystem,thecountswouldbewellabovethedangerpoint.ItisalsoveryunusualtofindtotalSRBlevels,aliveanddead,above106permlinawatersample.Theon-siteculturetestsforliveSRBandAPBinthiswatersampleagreewellwiththetotalmicroscopicSRBcountandindicatethatasexpected,mostoftheanaerobicbacteriadiedorbecameinactiveduringshipmenttothelaboratory.tItisclearthattheESWBsupplywaterishighlycontaminatedwithbothaerobicandanaerobicbacteria.WehavenowateranalysesPage23
>tgI,,e),k ThomasM.Loronge,Inc.fromtheESWAsystem,butsincethesesystemscirculatefromacommonsource,wecanassumethatESWAisalsocontaminated.Thisisnotsurprising,sincethespraypondreceivesonlyoccasionalalgaecidetreatmentasneeded;noregularchlorinationormicrobialcontrolprogramisused.ThedepositsampletakenfromtheRCIClE-2288pumproomunitcooler(line2inTable8)producedthehigheston-sitelivebacterialdepositcountsfoundduringthisstudy,greaterthan107cellspergramofdeposit.Thiscoolerhadbeenopenforseveraldaysbeforeourinspection.ThefactthathighviableSRBandAPBcountswereobservedevenafterthisexposuretoairindicatesthatactivitymusthavebeenveryhighwhenthesystemwasclosed.On-sitetestresultsfromthethreeRHRlubeoQcoolersandtheDXcondenserareallonetothreeordersofmagnitudelowerthanthet1E-228BRCICroomcooler.Note,however,thatliveSRBandAPBcountsfromRHRlE-217A,theRHRcoolerinthebestcondition,areonetotwoordersofmagnitude~hfhrthanfrom2E-217C,thefailedcoolerintheworstcondition.ThisdifferencemaynotbereallysigniQcantbecausethesamplefrom2E-217Cwastakenafterthecoilhadbeendryandexposedtoairforseveraldays,whiletheotherRHRlubeoilcoolersamplesweretakenwhilethecoilswerestillwet.However,thetotalmicroscopiccountsshowthesametrend.Asexplainedabove,totalmicroscopicstainingtechniquesasusedinthisworkcountbothliveanddeadbacteriaandthusprovideanindication.ofwhatthepopulationsmighthavebeenlikewhilethesystemwasonline.ThesedataarepresentedgraphicallyinFigure3.Thenumbersdonotexactlyparallelthecultureresults,butthisistobeexpectedsincevariablenumbersofanaerobicbacteriawilldiedependinguponconditionstowhichtheyareexposed.Thetotalcountdataforthefourdepositsamplesshownin--*."Figure3areapproximatelythesame,withintheprecisionofthistest.However,theSRBlevelsinthedepositsfromRHR2E-217CandRCICPage24 0IIf1 ThomasM.Laionge,Inc.1E-228B,asever'elycorrodedcupronickelcooler,arebothtwoorderstofmagnitudelowerthanlE-217A.ThisisasigniQcant'differenceanditindicatesthatmicrobiologicalactivityalonecannotexplainthedifferencesinpittinganddepositformationfoundamongboththeRHRlubeoQcoolersandtheRCICpumproomunitcoolers.SectionsofcoilsfromRHRlubeoilcoolers1E-217Band2E-217CwerecarefullyexaminedunderastereomicroscopefordirectevidenceofMIConthesecoppertubes.IndicationsofMICareclearlypresent,butnopitscouldbefoundinthesetubesthatcouldbeentirelyandunequivocallyattributedtoMIC.DiinfAnR1Manganese,andprobablyalsodepositediron,appeartobeproviding'corrosionprotectionintheRHRlubeoilcoolersratherthanincreasingcorrosion.Sulfurlevels,asdeterminedbyICAPanalysis,correlatewithobserveddepthofpitting,butlocationspecificSEM/EDSanalysesforsulfurandchloridedonotcorrelateaswell.Elementmapsshowbothelements,alongwithmanganeseandiron,presentinalldeposits,butinsomecasesnexttothemetalsurfaceandinothercasesinthedeposititselforevenoutsidethepit.Microbiologicalcounts,usuallyassociatedwiththepresenceofsulfurcompoundsincorrosionproductdeposits,donotcorrelatewellwitheithersulfurlevelsorobservedfrequencyanddepthofpittingintheRHRlubeoilcoolers,althoughalldepositstestedshowedhighlevelsofanaerobicandtotalmicrobiologicalactivity.Allofthesedata,alongwiththeobserveddifferencesinpitmorphology,frequencyanddepth,indicatethattwodifferentmechanismsarecontrollingthepittingcorrosionprocessintheRHRlubeoilcoolersandtheRCICpumproomunitcoolers.Thesemechanisms.are.conventionalunder-depositpittingattackandMIC.Itisprobablethatmanypitsweremicrobiologicallyinitiated,butthenadvancedbyconventionalmechanisms.Page25 Thomo,sM.Laronge,Inc.MICandconventionalunder-depositcorrosionandsometimebedistinguishedbydifferencesinthemorphology(shapeandsize)ofthepits.Usingmildsteelasanexamplefordiscussion,MICtendstoproducecircular,dish-shapedpitswithroundededgesanQoftenwithsmallerpitswithinthemainpit.Conventionalunder-depositcorrosionusuallyproducespitswithirregularshapes,sharpedgesandstraightorundercutsides.Oncopper,thesedifferencesareobscuredbythefactthatthebacteriaresponsibleforMICoftendieorbecomeinactiveduetothetoxiceffectsofthecopperionsgeneratedbycorrosion.Thedepositsremain,however,andcorrosioncontinuesbyconventionalmechanismssothatthepitmorphologybecomesobscured.SeetheRootCauseFailureAnalysissectionofthisreport,beginningonPage.35,forfurtherdiscussionofthissubject.ThefollowingsectionofthisreportdiscussesESWwaterchemistryandESWandRHRpumpoperations.ThisinformationisneededtohelpexplainwhythiscorrosionisoccurringandwhydepositcompositionsandratesofdepositionandpittingattackaredifferentamongthedifferentRHRandRCICcoolers.Page26 s-p4l ThomasM.Loronge,Inc.EWSYTEMHEMITRYANDPERATIQN~ESWhAvailableESWchemistryparametersfor1989and1990areplottedinFigures4and5.Conductivityandcalciumlevels(Figure4)showacleardownwardtrendduringthisoneandone-halfyearperiod.Turbidityfluctuatedwidelyduringthisperiod,whilethepHremainedinthe8to9range(Figure5).Noexplanationforthesetrendsisreadilyavailable.Figure6showstemperatureandLangelierStabilityIndex(LSI)calculationsfortheESW,asprovidedbyPAL.ItisclearfromFigure6thattheLSIwilloftenbeabove+0.5,andoccasionallyabove+1.0,creatingadefinitepossibilityforcalciumcarbonatescaleformation.Underborderlinescalingconditions,suchasthese,smalltemperatureeorconcentrationchangesinthewatercancreatethedrivingforceneededtocausecalciumcarbonatetoprecipitateinaheatexchanger.Table9presentsananalysisoftheESWBwatersupplytoRCICpumproomunitcoolerlE-228B,takenduringoursitevisitonJune9,1990.LSIvaluesforthissample,asshowninTable9,rangefrom+0.4at80'Fto+0.7at110'F,makingthissamplemarginallynon-scaling.TheanalysisinTable9showstheESWasanalyzedtobeagenerallygoodqualitywater.Parametersofparticularinterestareironat0.74ppm,manganeseat0.75ppmandsulfateat53.6ppm.TheselevelsofironandmanganesearemorethansufficienttoaccountforthedepositsoftheseelementsfoundintheRHRlubeoilcoolersandtheRCICpumproomunitcoolers.Withroughly54ppmsulfatepresentinthewater,itisreasonabletoexpectsomesulfatecompoundstobeadsorbedoroccludedincorrosionproductdeposits.ThisprovidesafoodsourceforactiveSRBandindicatesthatatleastsomeofthesulfurreportedintheRHRandRCICcoolerdepositsmaythepresentassulfate(seeTable5).Page27
'll'J4trkWt ThomasM.Laronge,Inc.RecommendationsforwatertreatmentattheSusquehannaplantarebeyondthescopeofthisreport.ThedataclearlyindicatethattheESWisatleastoccasionallyscalinginnature,andthemicrobiologicaldatadiscussedinaprevioussectionshowthatthesystemishighlycontaminatedwithbacteria.EWnRHRPumrnThenatureoftheflowpatternsthroughtheRHRlubeoilcoolersandtheRCICpumproomunitcoolerscanhaveamajorimpactupondepositformationandsubsequentcorrosionintheseunits.Toinvestigatethisproblem,westudiedtheoperationoftheESWsystempumpsandtheRHRpumpsinsomedetail.WeappreciatethecooperationofferedbyPP&Lpersonnelinobtainingtheoperatingdatanecessaryforthisstudy.NotaQthedata-werereadQyavailable,andthefirstinformationprovidedtousturnedouttobeincorrect.Wehavereviewedthisproblemseveraltimes,andthefollowingdiscussionisbaseduponthelatestinformationwhichPP&Lassuresusisreliable.tmrinOurstudyisbaseduponthefollowingPP&Linformation:TheESWiscirculatedfromalargespraypondthroughvariousequipmentandbacktothepond.Makeupwatertotheponds,mostlyfromthemaincondensercoolingtowerblowdown,withadditionalmakeupfromtheSusquehannaRiverasneeded.TheESWsystemisdividedintotwoloops,labeQedAandB.Twopumps,labeQedESWAandC,drivewaterthroughtheAloopandpumpsBandDdrivetheBloop.ThesepumpstakewaterfromacommonsuctionpointinthePage28 ThomasM.Laronge,Inc.spraypond.Waterreturnstothepondthroughtwoseparateheaders.~ThefollowingcoolersthatwehaveexaminedareconnectedinparallelacrosstheESWAloop:RHRlubeoilcoolers1E-217AandD,and2E-217AandD.RCICpumproomunitcoolerlE-228A.ESWGRDXsystemcondenser2E-297A.~Thefollowingcoolersthatwehaveexaminedareconnectedin.parallelacrosstheESWBloop:0RHRlubeoilcoolerslE-217BandC,and2E-217BandC.RCICpumproomunitcoolerlE-228B.~AtanytimetheESWisflowing,oneorbothoftheESWAandBloopsmayberunningandeitherorbothoftheESWpumpsontheactiveloop(s)maybeinuse.Watercirculatesthroughalloftheequipment.oneachloopwheneverthatloopisrunning.BThEWSrPnThevolume.ofwaterinthespraypondisestimatedbyPALat26milliongallons.Weunderstandthatmakeup'fromthecoolingtowerblowdown"runsatfrom300to1000gpm,withanadditional200gpmavailablefromtheriverasneeded.Page29 (4
ThomasM.Laronge,Inc.Wedidnotpersonallyinspectthespraypond.WeunderstandfromPP&Lpersonnelandfromwatertreatmentvendorreportsthatthepondwaterqualityvariesseasonallyinturbidityanddissolvedandsuspendedsolids.Duringthesummermonths,algaegrowsinthepond;thisiscontrolledbyoccasionaltreatmentwithalgaecideandchlorinearoundtheedgesandacrossthesurfaceofthepond.ItisclearthatthespraypondisasourceofmicrobiologicalcontaminationandpossiblyalsosuspendedsolidsintheESWwaterandcoolers.Chlorinehas,inthepast,beenaddedtotheESWpumpsuctionpoint,butthishasnotbeendoneinrecentmonths.CEWRHRmRunTimPP&LprovidedmonthlyruntimedatainhoursfromAugust1986throughMay1990forboththeESWandtheRHRpumps.ThesedataarerecordedfordiscussioninTable10.Incalculatingthe"AssumedTotal"runtimesshowninTable10,weusedthefollowingguidelines:~WeunderstandthatpriortoJune1989,theentirecoolingloadforthedieselgeneratorswascarriedbyESWloopAandforthatreason,bothpumps,ESW-AandESW-C,ranwhenevertheAloopwasinoperation.ToarriveatatotalrunfortheAloopduringthisperiod,wesimplyusedthehigherofthetwohourlynumberseachmonthforpumpsESW-AandESW-C.Duringthissametimeperiod,theloadontheESWBloopwaslighterandusuallyonlyonepumpwasinoperation.TocalculatethetotalmonthlyrunhoursfortheBloop,wethereforeusedthesumoftherecordedhoursfortheESW-BandESW-Dpumps.Page30 ThomosM.Loronge,Inc.FromJune1989forward,thepipingwasrearrangedsothatthedieselgeneratorcoolingloadwassharedbetweentheESW-AandBloops.Duringthisperiod,ithasbeennormalpracticetooperateonlyonepumpatatimeineachloop.We,thereforesummedthedataforeachmonth,asabove,tocalculateassumedtotalrunhoursforeachloop.Theassumedtotalmonthlyruntimesshowagooddealofscatterthatobscuresanysignificanttrends.Tosmooththedata,wecalculatedannualruntimehoursasapercentoftheavailablehours(8,760hoursinayear).ThesedataareshowninFigures7Aand7B,representingtheESW-AandBloops,respectively.TheseFiguresalsoincludethepercentruntimesfortheRHRpumpsfromTable10,simplycalculatedbysummingthemonthlydata.tThehigherruntimesshownforbothESWloopsin1989comparedtootheryearsmaybeacalculationerrorresulting&omthefactthatbothpumpsprobablydidruntogetheroneachlooppartofthetimeafterJune1989.Thisquestiondoesnotsignificantlyaffectthedataforourpurposes.ItcanbeseenfromFigures7Aand7BthattheESWAloopranforroughly35percentofthetimefrom1987throughMay1990andtheESWBloopranforabout25percentofthetime,ontheaverage.TheexactQguresarenotimportant.Conversely,thedatasay.thattheAloopwasstagnantfor65percentofthetimeandtheBloopfor75percent'ofthetime.Itfollowsthatthecoolersconnectedtoeachloop,aslistedunderSystemOperationsabove,werealsostagnantfortheseperiodsoftime.Weassumethatthecoolerswerenotallowedtodrainandremainedfullwhilestagnant.Page31 I
Thomo,sM.Loronge,Inc.TheexistenceoflongperiodsofstagnationintheESWwatersystemisanimportantfactorinunderstandingthepittingfailuresthatoccurredinthecopperRHRlubeoilcoolingcoilsandthe90:10cupronickelRCICpumproomunitcoolers.Thepresenceofstagnant,contaminatedwaterinthesecoolersforextendedtimeperiodsrepresentstheworstpossibleconditionforcorrosionprotectionofcopperandcopperalloys,particularlywithnospecificcorrosioninhibitorsforcopperinthewater.ThisproblemisdiscussedindetailinthefollowingRootCauseFailureAnalysissectionofthisreport.TheRHRpumppercentruntimedatainFigures7Aand7BareameasureofthetimethatheatwasappliedtotheRHRlubeoilcooling.coils.WehavenoinformationonthetimesthatheatwasappliedintheRCICpumproomunitcoolers.HeatwasappliedtotheRHRlubeoilcoolersforasmallfractionofthetotaltime,butagain,moreinloopAthaninloopB(seeFigures7Aand7B).Giventhe8'Ftemperatureriseacrossthesecoolers,asdiscussedabove,andtheshortRHRpumpruntimes,itseemsunlikelythattemperaturedifferencesacrossthecoolercoilscouldbeasignificantfactorinthedepositionandcorrosionprocess.Nevertheless,thedatashowthattheRHRpumpswiththe"best"lubeoilcoolers,namelylA,2Aand1D,ranperhapstwiceasmuchasthosepumpswiththe"worst"coils,namely1B,1Cand2C.D.RHRLuillinWrFlwVlociFlowvelocityisanimportantfactoraffectingthenatureanddegreeofbothdepositionandcorrosionthatcanoccurintubularequipment.TheinitialdatasuppliedbyPALshowedveryhighflowvelocitiesintheRHRlubeoilcoolers.Thisseemedinconsistentinviewoftheloosedepositsfoundinsomecoolersandthefactthatnoerosionorerosion/corrosionwasfoundinanyofthecoolertubesorelbowsthatweexamined.This,wasconfirmedbyDr.Willertz'sinspectionsofthesetubes.Page32 ThomosM.LoroncIe,Inc.PALcooperatedfullywithusinresolvingthis.issueandwasabletosupplynewflowvelocitydatathatseemtobereasonableandthatPPM.assuresusaretheirbestestimates.ThesedataareshowninTable11andFiguresSAandSB,fortheAandBloopsrespectively.PP&LprovidedvelocitydatafortheAloopforallthreetimeperiodsshowninTablellandfortheBloopfortheperiodfromJune1989throughJune1990.BloopdatawerenotavailableforJune1986throughJune1989.AtPP@L'ssuggestion,wecalculatedflowvelocitiesfortheBloopduringthisperiodat20percentabovethecorrespondingAloopvelocities.ThelowerflowvelocitiesintheAloopfromJune1989through1990maycorrespondtomorefrequentuseofonepumpratherthantwoduringthisperiod(seeabove).ThereisnosimpleexplanationforthehigherflowvelocitiesintheBloop,especiallyduringtheJune1989to1990periodforwhichharddataareavaQable.ThesehighervelocitiesgoalongwithshorteroperatingperiodsfortheBloop,asexplainedinthepreviousdiscussion.Typicalcriticalwatervelocities,abovewhicherosionanderosion/corrosiondamagecanbeexpectedinheatexchangertubing,havebeenreportedintheliterature:Materi1Copperalloy¹122AdmiraltyBrassalloy¹4430090:10Cupronickelalloy¹70600ri1WrV1i6fps10tollfps12to15fpsRfrnThevelocitiesinTable11andFiguresSAandSBareabovetheguidelinesforcopperasquotedabove.Velocitiesinthe0.5inchdiameterRCICpumproomunitcoolersarelowerthanintheRHRtube'oflcoolersatabout2to3'feetpersecond.ExceptforsomeminordirectionalnatureinthedepositsinoneRHRlubeoilcoolerPage33
ThomasM.Laronge,Inc.(RHRlE-217B,seeTable1),wehavefoundnoevidencethatvelocityaffectedthenatureofthecorrosionintheRHRandRCICcoolers.However,waterflowvelocityalmostcertainlyinfluencedthetype,amountandphysicalformofthedepositsinthesecoolers.Page34 IJ' Thomo,sM.Laronge,Inl-.RTAEFAILREANALYIBrieflystated,theRHRlubeoilcoolersandtheRCICpumproomunitcoolersfailedbyacombinationofmicrobiologicallyinducedcorrosionandchemicalpittingcorrosionmechanisms.Periodsofstandingincontactwithstagnant,microbiologicallyactivewaterallowedinitialdepositstoformonthetubesurfaces.Underneaththesedeposits,anaerobicconditionsallowedsulfate-reducingbacteriatoproducesulfidesfromsulfateionsinthewater.Themicrobiologically-generatedsulfidesinitiallyattackedthemetalsurfaces.Thebaremetalexposedinthiswaytendedtoinhibitfurthermicrobiologicalgrowthunderthedeposits.However,oxygenconcentrationcellsnowexistedbetweenthemoistdepositsnexttothemetalandthebulkwater.Thebaremetalbecameanodicrelativetothemetalawayfromthedepositsandpittingcorrosionbegan'.Chlorideionsfromthewaterconcentratedinthepitthroughcomplexionformationwithcopperionsproducedthroughcorrosion.Ironandmanganeseinthewatersupplyalsoconcentratedinandnearthegrowingtuberclesandpits.Irondepositstendedtoreducethepittingcorrosionratebyinhibitingdiffusionofwaterthroughthedeposits.Manganesealsoservedinthisrole,butinsomecasesalsoincreasedthecorrosionratebycatalyzingtheelectrontransferreactionswithinthepitsandnexttothemetalsurface.Thispittingcorrosioneventuallyproducedthethrough-wallfailureofRHRlubeoilcooler2E-217CandtheincipientfailuresofRHRlE-217BandRCICpumproomunitcoolerlE-228A.ThereasonsforthelessseverepittinganddepositionobservedinotherRHRandRCICcoolersarerelatedtodifferencesindepositcompositionsandoperatingconditionsamongthesecoolers:Page35 ThomosM.Laronge,Inc.Thefollowingparagraphsofthissectionexaminethispittingcorrosionfailurescenarioinmoredetail.PiIniCopperand90:10cupronickelarechosenforheatexchangerservicebecauseoftheirgoodmechanicalandheattransferpropertiesandbecauseoftheiroutstandingresistancetocorrosioninclean,flowingwater.Thesemetalsaresostableinwaterthatheatexchangertubesthathavebeencorrodedunderdepositscanbesafelyreturnedtoserviceaftercleaning(4).However,itiswellknownthatcopperalloysareattackedbysulfides.Muchworkhasbeendonetounderstandandtodocumentthepittingcorrosionofcopperand90:10cupronickelthatcanoccurinsulflde-contaminatedwater(45@.Mostofthisworkhasbeendoneinmarineenvironments.Ionicconcentrationsare,ofcourse,quitedifferentinafreshwaterenvironmentsuchastheESWspraypond.Sulfideshouldnormallynotexistinthissystem.ThedifferenceisthattheESWspraypondisbiologicallyveryactiveandprobablycontainslargenumbersofsulfatereducingbacteria(SRB).Thisassumptionisbasedupontheknownlackofbiocidaltreatmentinthepond,probableanaerobicconditionsnearthebottomofthepondandtheestablishedhighlevelsofSRBintheESW-BsupplytoRCICcooler1E-228B.WaterintheRHRlubeoilcoolersandtheRCICpumproomunitcoolershasbeenstagnantfrom65to75percentofthetime(Table10andFigures7Aand7B).Duringthesestagnantperiods,suspendedsolids,biologicalmatterandsolublematerialsfromthewater,particularlyiron,manganeseandcalciumsalts,tendedtoprecipitateonthetubesurfaces.SomeofthesesolidsmusthavebeenmovedeverytimetheESWwatercirculated,butovertime,adherentdepositsaccumulated.tSulfldicmetabolicproductsfromSRBinthesedepositsactedinthesamewayassulfldesincontaminatedseawater;theyattackedthePage36 ThomasM.Laronge,Inc.metalsurfaces.Thesebacteriatheneitherdiedorbecameinactive.Popeetal(7)explainedthatlittleisknownaboutMICoricopperalloysinfreshwaterbecauseoftheknowntoxicityofcopperionstobacteria.Schiffrinetal+)showedthataerobicorganisms,e.g.,Pseudomonas,canalsoinducepittingcorrosionofcopperalloysbyformingdeposits.thatleadtooxygenconcentrationcellsandeventualdestructionoftheprotectiveoxidelayersonthemetal.Oncebaremetalhadbeenexposedbymicrobiologicallyinducedsulfideattack,standardunder-depositoxygenconcentrationcell,corrosionbecamethedrivingforce.Manyauthorshavedocumentedpittingcorrosiononcopper.During+)describedseveralcasesofpittingoncopperbeneathironoxidedeposits.ThephotographsinDuring'sbooklooksimilarinsomerespectstothoseinthisreport.TheAWWA('@explainspittingoncopperwaterpipingingreatdetail,withdiagramsandelectrochemicalmechanisms.Quotingfromthiswork,"Pitting(oncopper)ischaracterizedbythepresenceoftubercles,whicharerandomlydistributed.Theinsideofthetube(contains)blue-greenbasiccoppercarbonate(Malachite).Underthislayerisabrownlayerofcuprite(cuprousoxide,Cu20),whichisfriableandeasilyspalledfromtheunderlyingcoppermetal.Typically,manypitsataHstagesofdevelopmentareseen,butonly,afewhaveactuallypenetratedthewallthickness."ThisdescriptionseemstomatchquitewellthetheconditionsinthefailedRHRlubeoil'ooler,2E-217C.LymanandCohen(>0)comparedthechemicalcompositionsofmanywatersuppliesassociatedwithpittingfailuresincoppertubes.ThepH,chlorideandsulfatelevelsintheESW,aslistedinTable9,fallintoLyman.andCohens'angeofmaximumsusceptibilitytopitting.However,theauthorsalsopointoutthatmanysuccessfulapplicationsofcopperpipingexistinwaterswithsimilarcompositions.ChloridedoestendtoconcentrateatanodicsitesbecauseofcomplexionPage37 ThomasM.Laronge,Inc.formationwithnewlyreleasedcopperions.ThiscanfurtherreducethepHattheanodicsiteandincreasethecorrosionrate.EfffulfrIrnSulfidesandsulfatesmaycontinuetoinfluencethecorrosionmechanismduringthesecond,orconcentrationcellphaseofpitgrowth.TheAWWAmanual(@describespitmorphologyincopperpipes.Intheabsenceofsulfides,theAWWAclaimsthatmostpitsareirregularinshape,straightedgedandnarrow.WithsulQdespresent(fromthewater,notfromMIC),pitstendtobewiderandshallowerinnature.Themechanismdescribedhereisverysimilartochloride-.enhancedpittingcorrosionofmildsteel.BothtypesofpittingdescribedbytheAWWAareclearlyevidentintheRHRlubeoilcoolertubes.See,forexample,Photographs19,~~~~~~~~23,27,30,31,33and34.IntheESWsystem,SRBobviouslycontinuetoexistinthedeposits,althoughnotindirectcontactwiththemetalsurface.ItisentirelypossibleforsulfidesgeneratedbySRBmetabolismtocontinuetodiffusewiththewaterandaffectpitmorphologyasdiscussedbytheAWWA.ThefactthatSEM/EDSanalysesandtheelementmapsinthisreportshowedsulfurpresentatspecificbut'differentlocationsinvariouspitsanddepositsmaybetheresultofthiseffect.SeeTable6andFigures23through29.IronfoundintheRHRlubeoilcoolerandRCICpumproomunitcoolerdepositscomesmostlyfromthemakeupwatertothespraypond,withadditionalcontributionsfromironaccumulatedinthepondandfrompossiblecorrosionofESWtransferlines.SolubleironinthewatermaybeprecipitatedintheESWsystembychemicaloxidationorbytheactionofironoxidizingbacteria.Thesebacteriaareoftenfoundtocoexistwithotherbacteriainbiologicallyactivewatersystems.TheXRDdata(Table7)showthatironindepositswaspresenttentirelyasmagnetite.Thisisexpectedinlowoxygenlocations,i.e.,insideandunderneathtubercles.DependinguponotherPage38 ThomasM.Laronge,Inc.$1characteristicsofthespeciQcdeposits,magnetitemayprovidesome,barrierlayercorrosionprotection,oritmayserveonlytoincreasethesizeandnumberofthetuberclesandthereforetheintensityofpitting.Thepresenceofmanganese,atthelevelsfoundintheSusquehannadeposits,canbothaggravateandreduce'ittingcorrosion.Manganeseisamultivalentmetal.Itcanexistinseveraloxidationstatesandcanthereforeactasanelectrontransferagenttoencourageelectrochemicaloxidation-reductionreactions.This,ineffect,increasesthecorr'osionrateandparticularlypittingcorrosionundermanganese-containingdeposits(>>).Atthesametime,however,tightlyadherentlayersofmanganeseoxidescanprotectmetalsurfacesfromcontactwithwater.Manganeseoxidesareoftensuggestedasproductsofbiologicalmetabolisminmanganese-containingwaters.Bothofthesemechanismswereinvolved'intheRHRlubeoiltcoolerpittingcorrosion.process.TheRHR2E-217Ccoolershowedlittlemanganeseinthedeposits,butthedepositswerecrystalline,scalingandnon-adherentinnature.Eventhesmallamountofmanganesefoundinthisdeposit(Table5)canincreasecorrosivitybyaidingoxidation-reductionreactionsinvolvingelectrontransfer,asexplainedabove.TheRHRlE-217Adepositcontainedmuchmoremanganese,butasexplainedintheinspectionsectionabove,thesedepositswerelessscalingandmoreadherentinnature.Pittingattackwascorrespondinglylesssevere.ThevariationsinmanganesecontentofthedepositsmaybepartofthereasonforthedifferencesinconditionofthevariousRHRlubeoilcoolers.Theworstcoolers(2Cand1B)areontheESWBloop,whilethecoolersinthebestcondition(lA,2Aand1D)areontheAloop.TheESWAandBloopsmustbeconsideredasonesystem,sothesedifferencesarehardtoexplain.PriortoJune1989,theAloopranmorefrequentlyandcarriedmorewaterthantheBloopandatabouta20percentlowervelocity.Possiblymoremanganesecould-havedepositedintheAloopundertheseconditions.TheveryhighPage39 ThomasM.Laronge,Inl-.levelsofmanganeseinthelE-217Aand2E-217Belbowsremainunexplained.nfRHR1rRIlrurnikelItisinterestingtocomparetheconditionoftheRHRlubeoilcoolers(typeKcopper)withtheRCICpumproomunitcoolers(90:10cupronickel).ThediscussioninthisreporthascenteredontheRHRcoolersbecauseofthefailurethatoccurredin2E-217Candthenearthrough-wallpitsfoundinotherRHRcoolers.However,theRCICcoolerswerenotfarbehind.Wemeasureda90percentthrough-wallpitin1E-228Aanda60percentthrough-wallpitinlE-228B(Table4).TheflowvelocityintheRCICcoolerswasreportedbyPALasabout2to3feetpersecond.WaterflowsinboththeRHRandRCICcoolerswhenevertheESWpumpsarerunning.RCIC1E-228AisconnectedtotheAloopandlE-228BtotheBloop.RCIC1E-228BandtheESWBinletwaterlinetothiscoolershowedthehighestlevelsofmicrobiologicalactivityofallthecoolerstested.ThemanganeselevelinthedepositfromRCIC1E-228Bwasverylow,similartoRHR2E-217C.ItisclearthatthepittingcorrosionproblemisjustasseriousintheRCICroomcoolersasintheRHRlubeoilcoolers.ThisisimportantbecausetheRHRcoolersaretheonlycoppercoilsintheESWsystem;allothercoolersare90:10cupronickelorotheralloys.Cupronickelandcopperarebothknownfortheirexcellentresistancetocorrosioninclean,flowingwateratneutralandalkalinepH.However,cupronickelismoresusceptiblethancoppertobothgeneralbiofoulingandMIC(>2).Thisbehaviorhasbeenobservedanddocumented,butnot.explainedverywell.Copper(and304stainlesssteel)formpassive,protectiveAlmsthatprovidecorrosionresistance.90:10cupronickelalsoformspassivesurfacefilms,andobtainsadditionalcorrosionPage40 ThomasM.Loronge,Inc.resistancefromtheelectrochemicalnobilityofthealloyedsurface.Inthepresenceofacorrosiveagentsuchashydrogensulfidefrombiologicalmetabolism,andintheabsenceofoxygenneededtorepairpassivefQms,itispossiblethatfilmsonthesinglecomponentcoppersurface.mightbemoreresistanttoattackthanthoseonthetwocomponent90:1'0cupronickelsurface.0Page41 ThomosM.Larongt,Inc.ENDIPage42 pi'p,tErr4' ThomasM.Laronge,Inc.BIBLIRAPHYy1.ClaudeD.Tapley,"ProcessIndustriesCorrosion."NationalAssociationofCorrosionEngineers,1975.Texas,2.R.JamesLandrum,"FundamentalsofDesigningforCorrosionControl:ACorrosionAidfortheDesigner."Texas,NationalAssociationofCorrosionEngineers,1989.3.K.I.JohnsonandD.A.Neitzel,"ImprovingtheReliabilityofOpenCycleWaterSystem:ApplicationsofBiofoulingSurveillanceandControlTechniquestoSedimentandCorrosionFoulingatNuclearPowerPlants."Washington,DivisionofSafetyReviewandOversite,OfficeofNuclearReactorRegulation,U.S.NuclearRegulatoryCommission,1987.~'rthurH.Tuthill,"SuccessfuluseofCarbonSteel,CopperBaseAlloysandStainlessSteelinServiceWaterSystemsinOtherIndustries."PresentedattheEPRIServiceWaterSystemReliabilityImprovementSeminar,Charlotte,NorthCarolina,October1988.5.H.A.Videla,M.F.L.deMele,andG.Brankevich,"AssessmentofCorrosionandMicrofoulingofSeveralMetalsinPolluted8*1."81LNNN448.1,4ty1888.6.D.FSchiffrinandS.R.deSanchez,'TheEffectsofPollutantsandBacterialMicrofoulingontheCorrosionofCopperBaseAlloysinSeawater."Quernin,41,No.1,January1985.7.D.H.Pope,D.Tuques,P.C.Wayner,Jr.andA.H.Johannes,"MicrobiologicallyInfluencedCorrosion:AStateoftheArtReview."MTIPublicationNo.13,MaterialsTechnologyInstituteoftheChemicalProcessIndustries,Inc.,secondedition,1990.Page43 c~MH ThomasM.Laronge,Inc.8.EvertD.D.During,rrinA111nfIllurHiriV12NewYork,ElsevierPress,1988.9.AWWAResearchFoundation,nrn1rrinfWrDirinmpp.337-365.Denver,AWWAPress,1985.10.W.StuartLymanandArthurCohen,"ServiceExperienceWithCopperPlumbingPipe."Mri1PrinnPrfrmnV~111,No.2,pp.43-53,February1972.ll.VictorJ.LinnenbomandJeffreyJ.Forshee,"ServiceWaterSystemExperienceatBeaverValleyPowerStation."PresentedattheServiceWaterSystemReliabilityImprovementSeminar,Charlotte,NorthCarolina,October1988.12.DavidS.Hibbard,"CopperAlloyTubeApplicationsinPowerPlanteCondensers."PwrEninrin,August1981.Page44 P)jc0 ThomasM.Laronge,inc.LIFTABLETABLE1TABLE2TABLE3TABLE4TABLE5TABLE6TABLE7TABLE8TABLE9eTABLE10TABLE11TABLE12RESULTSOFVISUALINSPECTIONSOFSPECIMENSRESULTSOFPHYSICALMMBUREMENTSONAS-RECEIVEDSPECIMENSRESULTSOFDEPOSITWEIGHTDENSITYMEASUREMENTSRESULTSOFPITDEPTHSURVEYSCHEMICALANALYSESOFDEPOSITSSUMMIARYOFSEM-EDSANALYTICALRESULTSRESULTSOFDEBYE-SCHERRERX-RAYDIFFRACTIONANALYSISOFDEPOSITSAMPLESUSINGCOPPERK-ALPHARADIATIONRESULTSOFMICROBIOLOGICALANALYSESRESULTSOFTHEANALYSISOFESWBWATERSUPPLYTORCIC1E-228BPUMPROOMUNITCOOLERESWANDRHRPUMPRUNTIMES,HOURSRHRLUBEOILCOOLERFLOWVELOCITIESCOMPARISONSOFOBSERVATIONSANDPHYSICALMEASUREMENTSPage45 C(I TABLRESULTSOFVISUALINSPThomosM.LoIonge,Inc.NSOFSPECIMENSItemNumberDescritionRCIC1&228APumproomunitcooler.RCIClE-228BPumroomunitcooler.RHRlE-217ALubeoQcooler.RHRlE-217ALubeoQcooler,90degree90DegreeBendsbends.~RHRlE-217BLueocooer,3rowSection3Bfromtop,2ndcoQfromcenter.RHRlE-217CLubeocooler.PhotoNo.1,14,15.16,40,41,4311,48,491313,37,38,39,20,21,2,23,42,44,457,28,29,30,31,46,47VisualInsectionsofInteriorSurfacesUormthinbrowndepositsplustubercles,alsosomemse/tandepositsonsurfaces.Greenandreddepositsbeneathtubercles.Pitsmostlyhemispherical,somejaggedandirreular.Noundercuttin.Noeneralcorrosion.DeosftsandfttfnsfmQartolE-228A.Uniformthindeosits,notubercles,veslhtfttin.Apparentlybrasselbows.Blackpowderydeposit,somearemetal.Novisiblecorrosionunderdeposits,exceptpittingoncoppertube(PhotoNo.39).Mosysmoorownaceposft,someagreendeposits.Largebrowntubercles,0.25inchdiameterandheight.Under-depositpitsmostlyhemispherical,noodd-shapedored-edepfts.Largeamountosmoothbrown/blackdeposit,rightgreencrystalsaroundtuberclesandpits.Sparklingsilver/redcrystalsinbottomsoflargeshallowhemisphericalpits(SEMPhotoNos.46and47.RHR2E-217ALueocooer.6Uormrown,sto1E-217B,utmucsmaertubercles.Nosignificantvisiblelocalizedorgeneral'orrosion.RHR2E-217BLubeoQcooler.9RHR2E-217BLubeoQcooler,90degree90DeeBendsbends.10-RHR2E-217CLubeoQcooler.RHR2E-217DLubeoQcooler.8,9,10,12,32,33,3412,35,362,17,18,194,5,24,25,26,27Scatteredblackandgreendeposits,appeartoollowowpattern.Nosignificanttuberculatfon.HemisphericalpitswereQlledwitheenandblackdeposits.Apparentlycopperelbows.Smoothtan/blackdeposits.Novisiblelocalizedoreneralcorrosion.Heavygrey/greenscalydeposit,nosmoothrown/blacklayerasinothercoQs.Largetuberclescoveringgreenandreddeposits.Manyjaggedandhemisphericalpits,MostseverepfttfnofallRHRlubeoQcoocoQsexamined.Uormbrowndeposit,manysmalltubercleswithgreenedges,greendepositbelowtubezeles.Shallow,Mundpits,lessseverethanothercoolers.Page46
'I'8aii TABLE2RESULTSOFPHYSICALMEASUREMENTSONAS-RECEIVEDSPECIMENSSpecimenRCIClE-228AHorizontalSplitRCIClE-228AVerticalSplitRCIClE-228BHorizontalSplitRCIClE-228BVerticalSplitRHRlE-217A90DeBendsRHR1E-217B-3BRHR1E-217CRHR2E-217ARHR2E-217B-22ndRowFromToRHR2E-217B-2ndRowFromBottomRHR2E-217B-22ndRowFromTopsA,B,C,DRHR2E-217B90DreeBendsRHR2E-217CRHR2E-217DOverall,Length,Inches20.319.622.52.3to2.516.010.014.0VariesDependingonSecimenConsideredSecimenConsideredVariesDependingonSecfmenConsidered1.9to2.116.515.5OutsideDiameter,Inches0.6370.6350.6370.6370.9800.8730.8900.8550.875VariesDepenon0.8750.8250.90to1.00.8500.895InsideDiameter,Inches0.5290.5310.5280.5140.7600.7410.7650.7500.7430.7430.7130.75to0.850.7180.755MeasuredWallThfckness,Inches0.0550.0520.0600.0600.0980.0710.0710.058to0.0700.0650.0650.0560.0750.0750.070TypicalMinimumWallThickness+/-Tolerance,Inches0.049+0.0040.049+0.0040.049+0.0040.049+0.004Uncertain0.065+0.00450.065+0.00450.065+0.00450.065+0.0045.0.065+0.00450.065+0.00450.065g0.00450.065+0.00450.065+0.0045Page47 TABLE3RESULTSOFDEPOSITWEIGHTDENSITYMEASUREMENTS~SecimenRCIClE-228A,HorizontalSlitRCIClE-228A,VerticalSlitRCIC1E-228B,HorizontalSlitRCIClE-228B,VerticalSlitRHRlE-217A,90DereeBendsRHRlE-217B-3B,3rdRowFromTop,2ndRinFromtheInsideRHRlE-217CRHR2E-217ARHR2E-217B-2,2ndRowFromToRHR2E-217B-5,2ndRowFromBottomRHR2E-217B,90DereeBendsRHR2E-217CRHR2E-217Dm/ft210.677.137.727.7715.4031.7324.075.2513.216.8617.2337.9027.25DeositWeihtDensim/mm20.110.080.080.080.160.340.260.060.140.070.18~0.410.29'CalculatedaccordingtoASTMStandardD3483-83MethodAPage48 I
ThomosM.Loronge,Inc.TABLE4RESULTSOFPITDEPMSURVEYSSecimenRCIClE-228A,HorizontalSlitRCIClE-228A,VerticalSlitRCIClE-228B,HorizontalSlitEstimatedDensityofPitting,Pits/SquareInch5to50EstimatedMaximumPitDepth,Inches0.0500.0170.017alculatedPercentThrough-WallUsingMaximumPitDepth,Percent913328RCIC1E-228B,VerticalSlitRHRlE-217A,90DereeBends2to50.036EssentiallFreeofLocalorGeneralAttack60RHRlE-217B-3B,3rdRowFromTop,2ndRinFromtheInsideRHR1E-217C:5to5025to3000.0250.01318RHR2E-217ARHR2E-217B-5,2ndRowFromBottomRHR2E-217B-2,2ndRowFromToRHR2E-217B,90DereeBendsRHR2E-217CRHR2E-217D4to500.0070.025EssentiallFreeofLocalorGeneralAttack1to2000.0280.015EssentiallFreeofLocalorGeneralAttack3837Page49 ThomosM.Lo,ronge,inc.TABLE5CIIEMICALANALYSESOFDEPOSITSDatainWUeightPercentAllTestsRunbvICAPExcet"ParameterRHR1ERHR2ERCIC1EES%V"2'17A217BRHR1ERHRlERHR1ERHR2ERHR2E2MBGRDXElbowElbow217A217C217B-3B217C217CHor.solit2E-297AFeCuMnZnICaiIPAlIBaIglIiYia~T'IVCrMoSi02SO4"lCO""'.~U10.1922,802663.140.200,95NDADND.'4DYiD0.21<0.010.14NDYiDQTD5.009.5323.373.944290.270.970.49(0.63(0.47IO.o4~0.'2~I0.14)<0.01)0.15IYiDf'i2.9570.30?.070.79'.200.060.001.090.460.290.270.040.08<0.01<0.013.640.303.207.~Dl49.54l4.98,.'.83l1.40i2.08l3.93I0.39!0.23lO.22',0.18!0.26i0.05l<0.01l0.02,II~DiYiDi4D',I'.02'1.470.670.170.684.954.720220,030.040.030.050,010.01<0.01NDADND0.9657,901.220.250.774.484.480.210.040.070.040.26<0.01<0.01<0.01NDYiDXDIl0.86!80.30l0.89ii0.30iO.8Oii2.81'!0.00>0.41f0.04i0.10I0.08il10.00i<0.01'0.01i1<0.0'1,1.07'i8.40I!6.80ill~l3.36I4O.8O72.59l0.020.34'.110.27i0.08031i0,120.69l0.635.84i0.000.38,'.860.04l0.020,12I0.100.09i0.630.13l0.091.24I<0.01<0,01l<0.01<0.01,<0.01ND').80NDi0.63XD,0.10LOI(@:i'105C850CiNDYiDND<YiDiiIII9.40NDii,'ADND14.90'.10iuDIiiiDYiD11.?0i38.2012.50""SCombustiontoSO2SO4EstimatefromtotalsulfurdeterminationCO3YieutralizationPage50 1~II ThomasM.Laronge,Inc.TABLE6SUMMARYOFSEM-EDSANALYTICALRESULTSPage1of2Fig.illumbersEDSMAPSPhotosRHRPumLocationEDSWt.%'Aormal,Atom%iiletIntensitvI923I10!23IIII1EilE-2178-38WatersidepitbaseIIIIIIlI-2178-~8!DepositinsidewatersidepitIIClMnFeCUI16.42I83.58I6.750.65I0.91I91.69II2d.O4i73.96I11.45I0.710.98i86.8537.15100.4127812.173.05177,99112444i1B-217B-3BtDepositinsidewatersidepitIIIIIIIIIIISMnFeCU6.12II1,43I1.37I91.08I1.4785.59I4.891878011.3916.121.55I5.1524IIIII1E-2178-38!WatersidepitbaseIIIiIIII13.35)MnFeCu82.67'2.17!II1.SOi23.26I2'71II1.81I72.72'.30.106.034.93133.72131IIIIIlt14.IIIII45IlE-2178-38IDepositinsidewatersidepitIIIIIIIIIIIIIII1E-2178-38iWatersidepitbaseIIIIIIISClMnFeCuSClMnFeCli3.57i15.93II1.07IZ91I76.52I0.00I0,24I0,99I'72896.48!6.05I24.47I1.06I2.84!65.58',O.OOI0.43I1.142.58I9585I10,1256.673.409.08144.820.000.893.878.83211.9215I76II46I1E-217CAdjacenttowatersidepitII/IFeCli1.07I1.21I,98.93'98.79,'.75196.9116I2611E-217CIInsidewatersidepitbaseIIFeCu0.93I99.07I1.05I98.95I2.77167,81Page51 f<Zp ThOmaSM.Lo,rOnge,InC.TABLE6SUMMARYOFSEM-EDSANALYTICALRESULTSPage2of2Fig.NumbersEDSMAPSPhotosRHRPumEDSWt.%Normal,Atom%NetIntensitvi17IIII18II(I(I20-(1i1r2727I(IIIIiI48I11E228A(1I'1E-228AiIIIII(1E-228B((Il(1E-228BIIllII((HorizontalsplitI(Depositinsidewatersidepit(IIII'HorizontalsplitI(WatersidepitbaseIiIIII(VerticalsplitI,Adjacenttowatersidepit(rI(Verticalsplit,'InsidewatersidepitbaseIIIlClFeCUAlSiSKFeCQClMnFeNiiCUSClMnFeCuI0.11(3.79(96.09(10.2143.485.972.078.2130.050,35(1.475.71((87.77'85(0,25I0.79(15.73t4.88(75.50(429(95.51I1358(55.57(6.68(1.90(5.28i16.98'.61I6.39i5.01I86.32'.34(0.42,0.87(16.93,'.oo,'1.44i0.36'l285184.9518.40109.6613.558.9123.3655.191.335.897'7<71245196,886.140.70'72543.519.02119.1121I,29('1E-228BiI,Verticalsplit(AdjacenttowatersidepitrIIIrIIIIIClMnFeNiCu8.87',1.01i3.21i6.72',80.19l14.70r1.08'D.DI6.73'4.12i35.503.86121017.48176.60(III,1E-228BII(Verticalsplit'Insidewatersidepitbasel1FeCu5.35(94.65(I6.o4t93.96(17.22173.17'"Elementmapscoverpitareaforeachspecimen.Page52 I),+%1~~f TABLE7RESULTSOFDEBYE-SCHERRERX-RAYDIFFRACTIONANALYSISOF.DEPOSITSAMPLESUSINGCOPPERK-ALPHARADIATIONDepositSampleFromRHRlE-217B-3BLineNo.10"d"Measured5.373.722.942.682,532.47.272.142.081.74"d""'ables5.383.732.972.692.532.472.132.101.71.CompoundCuOH2CuOH)2Fe304CuOH)2Fe304Cu20uOH2Cu20Fe304Fe304LineNo.5.405.382.7DepositSampleFromRHRlE-217C"d"Measured"d""'ablesCompoundCu(OH)2Fe32.472.141.731.512.472.131.711.51Cu20Cu20Fe304Cu20LineNo.1.461.48DepositSampleFromRHR2E-217B,90DereeBend"d"Measured"d""'ablesFe304Compound2.952.532.432.151.952,952.512.472.131.95Fe304Fe304Cu20Cu20Fe304LineNo.1.491.48"d""'ables"d"MeasuredDepositSampleFromRHR2E-217CFe304Compound105.403.733.002.69.472.131.731.511.290.985.383.732,972.69.472.131.711.511.290,98Cu(OH)2CuOH)2Fe304CuOH2Cu20Fe304Cu20Cu20Cu20"'d"inangstromsPage53 ThomasM.Lo,ronge,inc.TABLE8RESULTSOFMICROBIOLOGICALANALYSESSamleTotalCountTveUnitsbvFITCTotalSRBbvIFALiveSRBLiveAPBbyOn-SitebyOn-SiteCultureCulture1E228BRCICroomcooler1E228BRCICroomcooler7Aoilcooler2E217BRHRoilcooler2E217CRHRoilcoolerIWater',Cells/mttlIIIIIIIIIDepositlCells/gmlIIIIIIIDepositJCells/gm~)I'IIIIIIDepositICells/gmiIIIIIII,IIDepositlCells/gmlI'III3SE+09IIIII3.8E+07l'1.8E+08IIlIIIIII1~9E+07IIII6.1E+06iIIII1.9E+05ItI8.2E+06iIIIIIIIlI<9.8E+04iIIII>1.0E+07iIIII>1.0E+07II>'1.0E+06'II>'1.0E+04IIIII>1.0E+04lIII>1.0E+07>1.0E+07>1.0E+05>1.0E+03>1.0E+042E297ADXCondenserI1IIIDeposit',Cells/gm',4.5E+07'1.2E+06I>1.0E+05,'>1.0E+04IIPage54 ThomasM.Laronge,Inc.TABLE9RESULTSOFTHEANALYSISOFESWBXVATERSUPPLYTORCIC1E-2288PUMPROOMUNITCOOLERSamleTakenJune9,1990ParameterpI-ITotalalkal.ConductivityAsMethodIi1ipHIpHI<CaCO3iTitrationi'umhos,'eteriIIPPM7.7183.0587.00AluminumBariumCalciumCopperIronMagnesiumManganesePotassiumSilicaSodiumZinci1iAlII,Ba',CaCO3i1Cui'FeiCaCO3iI,Mn'I1~Si02gT~ZntiICAPICAPICAPiICAPiICAPiICAPiICAPICAPICAPICAPi(0.10(0.10150.000.040.7455.600.755.754.7518.800.28ChlorideFluorideYlitrate]nitriteSulfateCl"FISO4ICICICIC33.300.1510.~~53.60LSIat80FLSIa<<OOFLSIat110F-:0.4+0.6-:0.70Page55 0
TABLEESWANDIilll<PUMI'IIML'S,IIOUI(SPage1of2LoopAIuopl3AssumedAssumedMoutltESW-AESW-C'l'otalFSW-I3l>W-I)Totall<lIi<Pumps1A113IC1D2A213=-2C20Aug46Sep-S6Oct-S6Nov-86'ec-86Jan-S7I'el)47-Mar47Apr-S7May47Jun-87Jul47Aug-87Sep-87Oct-87Nov47Dec47Jan-88I'eb48Mar-88Apr-SSMay-88Jun-88'407448l62213487289355173166190l503525692323377l36)53580264254S4074474311622l14767893461721651901503735552383377136S967416445-lS407.4484311622134872893551731661901503735692383377136596802644548042344760105SS5231320S189106108435553384156416284118257-174436217191'I641012210183415221185086113929574245214961269571423846110110811845358739917852125146398021'1105401003006204447204145l721221003111001091211425099242203017706982181329216102122l3-231304214300124113'05'21022904175005080137415400030'.03370221100032'211136000000144027640245372265210Note:RHRpumpdataforApril,1987includeJanuarythroughApril,1987.Page56
~+a%
TABL"ESWANDRlIRPUMP10IML'S,IIOIJI(SPage2of2I.oop13AssumedAssumedMontbLS'W-AESW-C'I'otalI'.SW-}3le-DTotalICI<Ill<Pumps1D2A'282C2DJul-88Aug-88Sep-88Oct-88Nov-88Dec-88Jan-89Feb-89Mar89Apr89May-89Jun-89Jul-89Aug-89Sep-89Oct89No~-89Dec89Jan-90Feb-90Mar-90Apr-90iVfay-90l08134635847O'Ilool68162506607360907651143210731412871100108133745737,.4010016816250760739942592123212467391511315632108l347458474110016816250760775913213553267855617483465259l27l3256967836334314126137166~D29881l044344051745741315146531001757243114789835040161012743551534352426226811134335471724014425533512112053567952921084367188ll51261329201210155211242387213241781593133l85261727151514137172208901100334315156'125650341120201000001001423101100007540001383105'l91512434729685521080083262178600008426170.1010008lo0009703Page57
ThomasM.Laronge,Inc.TABLE11RHRLUBEOILCOOLERFLOWVELOCITIESRHRPum4Jun-86toAr-87FeetpersecondAr-87toJun-89Jun-89toJun-90ESWLoopAI8.08.01D9.08.0Q22A9.08.07.32D10.5eiESWLoopB~,'B9.69.51C10.8922B10.88.02C12.6""8loopdataforJune1986throughJune1989calculatedas20'PohigherthancorrespondingAloopdata.8loopdataforJune1989throughJune1990areactualmeasurements.Page58 Pa ThomosM.Lcxronge,Inc.TABLE12COMPARISONSOFOBSERVATIONSANDPHYSICALMEASUREMENTSPagelof2CoolersESWLooARHR1E-217ARHR1E-217D2E-217ARHR2E-217DRCIC1E-228Ahoriz.splitRCIC1E-228Avert.splitESWGRDX2E-297APitDensityPits/s.in.Verylow,notmeasured.Nottested.LWreportedlittletonopitting.Verylow.notmeasured.5to50Notmeasured.DeepestPitInchesIIIIIIIIIlNotmeasured)lIINotmeasured)IIIIIII1IINotmeasuredIIIlIlIIII0.015IIIIIIIII0.050IIIIIIIIIIIII0.017IIIIIIIIIIIIIIl.iotmeasuredIIIDep.Wt.Dens.mn/s.ft.NotmeasuredNotmeasured27,~D10.677.13NotmeasuredvisualheavyObservationsIIIIl)Uniformthindeposit.'veryslightpitting.)iNottested.LWreported'lightgeneraloxidationIIw/greencoloration.lIIUniformbrowndeposit,I,nosignificanttubercu-IIlationorpittin~.IIUniformbrowndeposit,Imanysmalltubercles.',shallowroundpits.IIlUniformthinbrown,'depositwithtubercles,~hemisphericaland,'irregularpits,I,Uniformthinbrown,'depositwithtubercles,Ihemisphericaland',irregularpits.II,HeavyscaleRslime.no,'visiblepitting.Page59 ThomosM.Lo,ronge,Inc.TABLE12COMPARISONSOFOBSERVATIONSANDPHYSICALMEASUREMENTSPage'2of2Coolers<<~ESNVLBRHR1E-2178)<<<<IIRHR-1E-217CRHR2E-2178-2iRHR2E-2178-5IRHR2E-217CRCIC1E-2288horiz.split'E-2288splitPitDensityPits/s.in.5to5025to3004to50lto2002to50.017',7.72,0.036/.77DeepestPitDep.WVt.Dens.Inches'm/s.ft.II<<<<0.025)31.73<<I<<I<<<<<<0.013)24.07<<II<<0.0~><<13.21<<j<<I<<<<0.007'.86I<<0.028<<37.90Observations<<<<I<<<<Smoothbrown/blackand,'flakygreendeposits,<<largetuberclesand,hemispericalpits.<<1<<Heavybrown/blackdeposit,largetubercles<<andhemisphericalpits.<<'Scatteredblack/green<<,deposit,nosignificant'tubercles.hemispherical<<pits.<<<<<<Scatteredblack/careen,deposit.nosignificant'tubercles.hemispherical"pits.!'Failedtube.Heawscaly,deposit.manyjagged8r.,'hemisphericalpits.<<,Uniformthinbrowndepositwithtuhercles.Ihemisphericaland'irregularpits.;Uniformthinbrowndepositwithtubercles.I-hemisphericaland'irregularpits.
i'I>lt Thomo,sM.Laronge,lnl-.LITFFIREFIGURE1FIGURE2FIGURE3FIGURE4FIGURE5FIGURE6FIGURE7AFIGURE7BFIGURE8AFIGURE8B'IGURE9FIGURE10FIGURE11FIGURE12FIGURE13FIGURE14FIGURE15FIGURE16FIGURE17SKETCHOFVERTICAL,HIGHTHRUSTINDUCTIONMOTORGEH-3298COMPARISONOFDEPOSITCOMPOSITIONSOFF-SITEMICROBIOLOGICALANALYSESESWALKALINITY,CALCIUM8tCONDUCTIVITY'SWTURBIDITYANDpHESWLANGELIERINDEXDATAPERCENTESWANDRHRPUMPRUNTIMES-ESWLOOPAPERCENTESWANDRHRPUMPRUNTIMES-ESWLOOPBRHRLUBEOILCOOLERFLOWVELOCITIES-ESWLOOPARHRLUBEOILCOOLERFLOWVELOCITIES-ESWLOOPBENERGYDISPERSIVEX-RAYSPECTROSCOPYOFRHR1E-217B-3BDEPOSITINSIDEWATERSIDEPITENERGYDISPERSIVEX-RAYSPECTROSCOPYOFRHRlE-217B-3BWATERSIDEPITBASEENERGYDISPERSIVEX-RAYSPECTROSCOPYOFRHRlE-217B-3BDEPOSITINSIDEWATERSIDEPITENERGYDISPERSIVEX-RAYSPECTROSCOPYOFRHR1E-217B-3BWATERSIDEPITBASEENERGYDISPERSIVEX-RAYSPECTROSCOPYOFRHR1E-217B-3BDEPOSITINSIDEWATERSIDEPIT'NERGYDISPERSIVEX-RAYSPECTROSCOPYOFRHRlE-217B-3BWATERSIDEPITBASEENERGYDISPERSIVEX-RAYSPECTROSCOPYOFRHR1E-217CADJACENTTOWATERSIDEPITENERGYDISPERSIVEX-RAYSPECTROSCOPYOFRHRlE-217C'NSIDEWATERSIDEPITBASEENERGYDISPERSIVEX-RAYSPECTROSCOPYOFRCIClE-228AHORIZONTALSPLITDEPOSITINSIDEWATERSIDEPITPage61
ThomasM.Larongt,Inc.FIGURE18FIGURE19FIGURE20FIGURE21FIGURE22FIGURE23FIGURE24FIGURE25FIGURE26FIGURE27FIGURE28FIGURE29ENERGYDISPERSIVEX-RAYSPECTROSCOPYOFRCIC1E-228AHORIZONTALSPLITWATERSIDEPITBASEENERGYDISPERSIVEX-RAYSPECTROSCOPYOFRCIClE-228BVERTICALSPLITADJACENTTOWATERSIDEPITENERGYDISPERSIVEX-RAYSPECTROSCOPYOFRCIClE-228VERTICALSPLITINSIDEWATERSIDEPITBASEENERGYDISPERSIVEX-RAYSPECTROSCOPYOFRCIClE-228BVERTICALSPLITADJACENTTOWATERSIDEPITENERGYDISPERSIVEX-HAYSPECTROSCOPYOFRCIClE-228BVERTICALSPLITINSIDEWATERSIDEPITBASEELEMENTMAPS,RHR1E-217B-3BELEMENTMAPS,RHRlE-217B-3BELEMENTMAPS,RHR1E-217B-3BELEMENTMAPS,RHRlE-217CELEMENTMAPS,RCIClE-228A,HORIZONTALSPLITELEMEKI'APS,RCIC1E-228B,VERTICALSPLIT,TOPSECTIONELEMENTMAPS,RCIClE-228B,VERTICALSPLIT,BOTTOMSECTIONPage62 ThomasM.Laronge,Inc.Figure1SketchofVertical,HighThrustInductionMotorGEH-3298TopCapDCB.A1CEXEXED2CDXXED3tXXXXED4Q3XXED5CEXE3XD6CE3XXEOMotorShaftNutsandLockwashersJournalSleeveandThrustBearingOilLevelCoolingWaterOutletCoolingWaterInletSixrowswithfoureach,co-planarcoolingcoilsStatorFramePage63 t$iI~4 FIGURE2COMPARISONOFDEPOSITCOMPOSITIONS03000(QCPAz0K400)I-QKeec;0-1A1C1BRHRLUBEOILCOOLERS2C[IIIFegQMn~ca~sJPage64 14'~
FIGURE3OFF-SITEMICROBIOLOGICALANALYSESIE+09-1E+08=~1E+07-GKUJ0V)1E+06=UJ1E+05=v3>cgpXjw./)a~1E+04-1E217A2E217C1E228BHEATEXCHANGERDEPOSlTS2E297AQQTOTALBACTERIAIISULFATEREDUCERSPage65 I
800FlGUR4ESWALKALINITY,CALCIUM8CONDUCTIVITY8000OOEOOZ700600500400300200100CalciumConductivityAlkalinity700600.500400300200100OOJELl-OClz0Q198919900r-a--i---,-rarTat-7at-w~t-rww.rvwr002/0604/1105/2607/1108/0909/0611/0301/0303/0805/1506/0206/11MONTHLYDATA,1989TOPRESENTPage66
,r 1098765.432.1.FIGURESN/TURBIDITYANDpHpHTurbidity090031989I9900'1ttrT'f1il7TlII7TIII1TII02/0604/1105/2607/1108/0909/0611/0301/0303/0805/1506/0206/1IMONTHLYDATA,1989TOPRESENTPage67 FIGU6ESWLANGELIERINDEXDATATEMPERATURE100-804>CLLIC3z3.CCLLl(g2LSI60LUa40CL"I--20LLICL-0LLI0-20-1TII02/0604/1105/2607/1108/0909/0611/0301/0303/0805/1506/0206/11MONTHYDATA,1989TOPRESENT19891990rvtgqrT's;rrwawrT'sa-40Page68 17'4~I4'Itf0'I~l~~1II ThomosM.Laronge,Inc.60FIGURE7APERCENTESWANDRHRPUMPRUNTIMESESWLOOPA50I=4oZ30O20100.198719881989YEAR1990,'m'ESW-AggRHR-1A1RHR-1DRHR-2A~RHR-2DI60UJ50I-4030z.'OCCLLI100FIGURE7BPERCENTESWANDRHRPUMPRUNTIMESESWLOOPB19871988YEAR19891990'ESW-BggRHR-1BmRHR-1CII~FQRHR-2B~RHR-2CPage69 e)Ii'n~gh'IC4~E%
,ThomasM.Laronge,Inl-.Oz00t4121086420FIGUREBARHRLUBEOILCOOLERFLOWVELOCITIESESWLOOPAJun-86toApr-87Apr-87toJun-89Jun.89toJun-90TIMEINTERVALS,1986-1990eimRHR-1AggRHR-1DmRHR-2AggRHR-2DbO000t4t21086420FIGUREBBRHRLUBEOILCOOLERFLOWVELOCITIESESWLOOPBJun.86toApr-87Apr-87toJun-89Jun.89toJun-90TIMEINTERVALS,1986-1990ImRHR-1B+RHR-1CmRHR-2BggRHR-2CPage70 Jfl4P0 ThomasM.Laronge,Inc.FIGURE9ENERGYDISPERSIVEX-RAYSPECTROSCOPYOFRHR1E-2178-3BDEPOSITINSIDEWATERSIDEPITIq4~>~0'~'i~aJ~Il~lCALCULATEDRESULTSFROMSTANDARDLESSANALYSISElementClWeightPercent16.4283.58NormalizedAtomicPercent26.0473.96NetIntensit37.15100.41Page71 ThomosM.Laronge,Inc.FIGURE10ENERGYDISPERSIVEX-RAYSPECTROSCOPYOFRHRlE-217B-3BWATERSIDEPITBASE'cCXCALCULATED.RESULTSFROMSTANDARDLESSANALYSISElementClMnWeightPercent6.750.650.9191.69NormalizedAtomicPercent11.450.710.9886-.85NetIntensit22.812.173.05177.99Page72 ThomasM.Lo,range,Inc.FIGURE11ENERGYDISPERSIVEX-RAYSPECTROSCOPYOFRHRlE-217B-3BDEPOSITINSIDEWATERSIDEPITCALCULATEDRESULTSFROMSTANDARDLESSANALYSISElementSMnFeWeightPercent6.121.431.3791.08NormalizedAtomicPercent11.391.551.4785.59NetIntensit16.125.154.89187.80Page73 QCW' ThomasM.Laronge,Inc.FIGURE12ENERGYDISPERSIVEX-RAYSPECTROSCOPYOFRHRlE-217B-3BWATERSIDEPITBASE~/PAJQJ+ar~CALCULATEDRESULTSFROMSTANDARDLESSANALYSISElementSMnFeWeightPercent13;352.171.8082.67NormalizedAtomicPercent23.262.211.8172.72NetIntensit30.106.034.93133.72Page74 4~tflI~I'f'P Thomo,sM.Lo,ronge,Inc.FIGURE13ENERGYDISPERSIVEX-RAYSPECTROSCOPYOFRHR1E-217B-3BDEPOSITINSIDEWATERSIDEPITj+l(lpVl~~Q)0/'ALCULATEDRESULTSFROMSTANDARDLESSANALYSISElementSClMnFeWeightPercent3.5715.931.072.9176.52NormalizedAtomicPercent6.0524.471.062.8465,58NetIntensit10.1256.673.409.08144.82Page75 l
ThomosM.Laronge,Inc.FIGURE14ENERGYDISPERSIVEX-RAYSPECTROSCOPYOFRHR1E-217B-3BWATERSIDEPITBASEYCAYMYCOV~CALCULATEDRESULTSFROMSTANDARDLESSANALYSISElementSClMnFeWeightPercent0.000.240.992.2896.48NormalizedAtomicPercent0.000.431.142.5895.85NetIntensit0.000.893.878.83211,.92Page76
)h0 Thomo,sM.Laronge,Inc.FIGURE15ENERGYDISPERSIVEX-RAYSPECTROSCOPYOFRHRlE-217CADJACENTTOWATERSIDEPITCALCULATEDRESULTSFROMSTANDARDLESSANALYSISElementFeWeightPercent1.0798.93NormalizedAtomicPercent1.2198.79NetIntensit3.75196.91Page77 ThomasM.Laronge,Inc.FIGURE16ENERGYDISPERSIVEX-HAYSPECTROSCOPYOFRHRlE-217CINSIDEWATERSIDEPITBASE)~fVthlpshC,~h'l~~>'qg>vyj(f<tvsYhg~~UOJOlUY/h'~<0~4LP~'A,~g4pg~~CALCULATEDRESULTSFROMSTANDARDLESSANALYSISElementFeWeightPercent0.9399.07NormalizedAtomicPercent1.0598.95NetIntensit2.77167'.81Page78 Thomo,sM.Lo,ronge,Inc.FIGURE17ENERGYDISPERSIVEX-RAYSPECTROSCOPYOFRCIC1E-228AHORIZONTALSPLITDEPOSITINSIDEWATERSIDEPIT'lehCCAChhCCa1'ChCIJm4lLJUOJU*CALCULATEDRESULTSFROMSTANDABDLESSANALYSISElementClFeWeightPercent0.113.7996.09NormalizedAtomicPercent0.204.2995.51NetIntensit0.3612.85184.95Page79 J'
ThomasM.Laronge,Inc.FIGURE18ENERGYDISPERSIVEX-RAYSPECTROSCOPYOFRCIClE-228AHORIZONTALSPLITWATERSIDEPITBASE'leVA4tVU4hVQ~+~CALCULATEDRESULTSFROMSTANDARDLESSANALYSISElementSiSFeWeightPercent10.2143.485.972.078.2130.05NormalizedAtomicPercent13.5855.576.681.905.2816.98NetIntensit18.40109.6613.558.9123.365519"=Page80
~~3n=~~~,y'\l~'IVl+P Thomo,sM.Lo,range,Inc.FIGURE19ENERGYDISPERSIVEX-RAYSPECTROSCOPYOFRCIClE-228BVERTICALSPLITADJACENTTOWATERSIDEPITV5VUCCACOLJC5C~~~~~J('~YM//~)'ilpga(gC'~Pi.y~'~~,vgpssE5X4IUl~s,Žig<eCALCULATEDRESULTSFROMSTANDARDLESSANALYSISElementCIMnFeNiWeightPercent0.351.475,714.7087.77NormalizedAtomicPercent0.611.676.395.0186.32NetIntensit1.335.8922.5712.45196.88Page81 tl~Vl Thomo,sM.Larongt,inc.FIGURE20ENERGYDISPERSIVEX-RAYSPECTROSCOPYOFRCIClE-228BVERTICALSPLITINSIDEWATERSIDEPITBASEVbCEIUCALCULATEDRESULTSFROMSTANDARDLESSANALYSISElementSClMnFeNiCuWeightPercent2.850.250.7915.734.8875.50NormalizedAtomicPercent5.340.420.8716.935.0071.44NetIntensit6.140.702.2543.519.02119.11Page82 ThomosM.Loronge,inc.FIGURE21ENERGYDISPERSIVEX-RAYSPECTROSCOPYOFRCIClE-228BVERTICALSPLITADJACENTTOWATERSIDEPITbCCVCApA~>>iyi=>ii+(<i)J,hChC4t4(~<i,rgCALCULATEDRESULTSFROMSTANDARDLESSANALYSISElementClMnFeNiWeightPercent8.871.013.216.7280.19NormalizedAtomicPercent14.701.083.376.7374.12NetIntensit35.503.8612.1017.48176.600Page83 Thomo,shh.Lo,ronge,Inc.FIGURE22ENERGYDISPERSIVEX-RAYSPECTROSCOPYOFRCIClE-228BVERTICALSPLITINSIDEWATERSIDEPITBASEDVViCALCULATEDRESULTSFROMSTANDARDLESSANALYSISElementFeWeightPercent5.3594.65NormalizedAtomicPercent6.0493.96NetIntensit17.22173.17Page84 I~'FIGURE23ELEMENTMAPS,RHR1E-2178-38I.EGENDSMnPage85CIFe J~~I~gggmgg~i(g~iggggI;pygmygj"ggpj+igg%IHN~I~gg)gpg~i+iGQNcjmggjjggggigJJggI%I%IIGURE24~EI.EMENTMAPS,,RHR1E-2178-38I.EGENDSPage86CIle
I~IGURE25ELEMENTMAPS,RHRlE-2178-38LEGENDSMnPage87C1Fe
FIGURE26ELEMENTMAPS,RHR1E-217CLEGENDSMn,Page88C1Ie
FIGURF27ELEMENTMAPS,RCIC.1E-228A;HORIZONTAISPLITLEGEND.SMnPage89C1Fe.
FIGURE28EI.EMENTMAPS,RCIClE-2288,VERTICAISPLIT,TOPSECTIONLF.GENDSMn.CIFePage90 0
~S'liiiiQSSRR,fan%F498Riiiii55iRRf..&lkNQ,~~yplQRi55RRSRQl%%biiQRMWf:~MFIGURE29EI.FMENTMAPS,RCIClE-228B,VERTICAISPLIT,BOTTOMSECTION.LEGENDCIMn.Page91Ie ThornM.j.aronge,Inc.PhotographDesination10121314'5ApproximateMagnificationAsPrinted,Diameters0.30.30.40.40.40.40.60.30.30.30.30.30.31.91.9LISI'FPHOTOGRAPHSSecimenDesinationandDescritionofPhotoahsRCIClE-228A,As-Received.RHR2E-217C,As-Received.RHR1B-3B(lE-217B-3B),As-Received."3B"SignifiestheThirdRingFromtheTopandtheSecondRowinFromtheInsideDiameter.RHR2E-217D,As-Received.RHR2E-217D,As-Received.RHR2E-217A,As-Received.RHRlE-217C,As-Received.RHR2E-217B,As-Received.RHR2E-217B,As-Received.RHR2E-217B,As-Received.RCIC1E-228B,As-Received.RHR2E-217B,As-Received.RHR-lE-217A,As-Received.RCIClE-228A,InteriorViewofSectionofVerticalSlitTube.RCIClE-228A,InteriorViewofSectionofVertical.SplitTube,asSeeninPhotorahNo.14,AfterSandBlastin.Page92 ThomasM.Laronge,Inc.LISTOFPHOTOGRAPHS(Continued)PhotographDesination161718192021.2223242526272829ApproximateMagniAcationAsPrinted,Diameters4.72.32.32.42.02.01.02.42.44.32.12.3SecimenDesinationandDescritionofPhotorahsRCIClE-228A,CloseUpViewofInteriorSectionofVerticalSplitTube,asSeeninPhotorahNo.15,AfterSandBlastin.RHR2E-217C,CloseUViewofInteriorSurfaces.RHR2E-217C,CloseUViewofInteriorSurfaces.RHR2E-217C,CloseUpViewofTypicalInteriorSurfaces,AfterSandBlastin.RHR1E-217B-3B,ViewofInteriorSurfaces,AfterSectionin.RHRlE-217B-3B,CloseUpViewofInteriorSurfaces,-asSeeninPhotorahNo.20,AfterSectioninNote:DamaedWallisEvident.RHRlE-217B-3B,ViewofInteriorSurfacesofaSmallSectionofPie,AfterSectionin.RHR1E-271B-3B,ViewofInteriorSurfacesofaSmallSectionofPie,asSeeninPhotorahNo.22,AfterSandBlastin.RHR2E-217D,ViewofInteriorSurfaces,AfterSectionin.RHR2E-217D,CloseUpViewofInteriorSurfaces,asSeeninPhotorahNo.24,AfterSectionin.RHR2E-217D,ViewofInteriorSurfacesofaSmallSectionofPipe,AfterSectionin.RHR2E-217D,CloseUpViewofTypicalInteriorSurfacesofSecimen2D,AfterSandBlastin.RHRlE-217C,ViewofInteriorSurfacesofaSmallSectionofPie.RHRlE-217C,ViewofInteriorSurfacesofaSectionofPie.Page93
~'
ThomasM.Loronge,Inc.LISI'FPHOTOGRAPHS(Continued)PhotographDesination30333436;374041ApproximateMagnificationAsPrinted,Diameters1.63.81.61.64.71.21.61.21.61.611.012.5SecimenDesinationandDescritionofPhotoahsRHR1E-217C,ViewofInteriorSurfacesofaSectionofPipe,AfterSandBlastin.RHRlE-271C,CloseUpViewofTypicalInteriorSurfacesof1C,AfterSandBlastin.RHR2E-217B,ViewofInteriorSurfacesofaSmallSection.RHR2E-217B,ViewofInteriorSurfaces,asPicturedinPhotographNo.32,AfterSandBlastin.RHR2E-217B,CloseUpViewofInteriorSurfaces,asPicturedinPhotoahNo.33,AfterSandBlastin.RHR2E-217B,ViewofInteriorSurfacesofTwo90DegreeBends,AfterSectionin.RHR2E-217B,ViewofInteriorSurfacesofOne90DegreeBend,asSeenintheToofPhotorahNo.35,AfterSandBlastin.RHR1E-217A,ViewofInteriorSurfacesofTwo90DegreeBends,AfterSectionin.RHRlE-217A,ViewofInteriorSurfacesofOne90DegreeBend,asSeenintheBottomofPhotorahNo.37.RHRlE-217A,ViewofInteriorSurfacesofOne90DegreeBend,asSeeninPhotorahNo.38,AfterSandBlastin.RCIClE-228A,ViewofIrregularCraterBeforeRemovalofOverlyingMaterial.OverlyingMaterialwasRemovedtoPreparethePitforBioloicalExamination.RCIClE-228A,ViewofIrregularCrater,asSeeninPhotographNo.40,AfterRemovalofOverlyingMaterial.ThisPitwasBiologicallyExaminedtoDeterminetheExtentofBacterialContamination.Page94
Thomo,sM.Lo,ronge,Inc.LISTOFPHOTOGRAPHS(Continued)PhotographDesiation424445464748ApproximateMagnificationAsPrinted,Diameters151515151535015015SecimenDesinationandDescritionofPhotorahsRHR1E-217B-3B,SEMPhotographofTypicalPit.ElementMappingandEDSWerePerformedonthisPit.RCIClE-228A,HorizontallySplitSection,SEMViewofTypicalPitasSeenontheInteriorSurfacesof1E-228A.ElementMappingandEDSWerePerformedonthisPit.RHRlE-217B-3B,SEMPhotographofTypicalPit.ElementMappingandEDSWerePerformedonthisPit.RHRlE-217B-3B,SEMPhotographofTypicalPit.ElementMappingandEDSWerePerformedonthisPit.RHRlE-217C,SEMPhotographofPitContainingCrystallineDeosits.ElementMainandEDSwerePerformedonthisPit.RHRlE-217C,CloseUpSEMPhotographofCrystallineDeposits,asSeeninPhotoahNo.46.RCIClE-228B,TopHalfofVerticallySplitTube,SEMViewofSmallPit.ElementMainandEDSWerePerformedonthisPit.RCIClE-228B,BottomHalfofVerticallySplitTube,SEMViewofPit.ElementMainandEDSWerePerformedonthisPit.Page95 ThomasM.Laronge,inc.POSTOFFICEBOX338~CALIFON.NEWJERSEY07830~i201]832-5097~FAXt201)832-9775ARTHURJ.FREEDMAN,Ph.D.ExecutiveVicePresidentJune12,1990Mr.RaymondS.TombaughProspectEngineerPennsylvaniaPowerandLightCompanyTwoNorthNinthStreetAllentown,PA18101Sub)ect:PreliminaryReportofSomeSusquehannaESWCoolerInspections
DearMr.Tombaugh:
hisletterconstitutesourpreliminaryreportofourstudyofpittingorrosionintheSusquehannaESWsystemcoolers.Briefly,wehavedeterminedthattherootcauseofthepittingisconventionalunder-depositcorrosionaggravatedbythepresenceofhighlevelsofmanganeseinthedepositsnearthecorrosionsites.Microbiologically-influencedcorrosion(MIC)isacontributingfactorthatmayhaveaggravatedtheattackinsomecoolers,butMICisnottherootcausaoftheproblem.Detailsfollow.WearrivedatthePP&LAllentownofficeatabout11:30AMonFriday,June8,1990.AfterdiscussionswithLouWillertzandRayTombaugh,wewenttotheSusquehannaplantforrequiredtraining.LateFridaynight,weinspectedthe2E-217CRHRoilcoolercoil.Overthenexttwodays(SaturdayandSunday),weinspectedthefollowingequipment:1.1E-217A2.2E-217B3.OE-507D4.OE-533D5.OE-505E1,2D6.1E-228B7.1E-228A8.2E-297ARHROilCoolerCoilRHROilCoolerCoilDieselGeneratorJacketWaterCoolerDieselGovernorCoolerDieselGeneratorIntercoolerRCICPumpRoomUnitCoolerRCICPumpRoomUnitCoolerESWGRDXSystemCondenserllowingisasummaryofourdataandtheconclusionswehavedrawnfromourrktodate.QualityforIndustry III ThomasM.LaroncIe,Inc.InsectionMethod0doingourwork,weusedthefollowingmethods:Visualinspectionoftubesanddepositsaswesawtheminplaceorastheyweiepresentedtousattheplant.oVideoprobeinspectionsoftubesinplace.oVisualinspectionwitha15Xmagnifyinglensoftheinteriorsurfaces,ofcoolingcoilsandtubesthathadbeensplitlongitudinally.oMicroscopicexaminationofselectedcoolercoilsinthePP&LHazletonLaboratory.0Microbiologicalculturesofdepositsfromcoolingcoils,usingmediaspecificforsulfate-reducingandacid-producingbacteria(SRBandAPB).On-siteInsectionResults2E-217CRHROilCoolerCoilThisandtheotherRHRoilcoolingcoilaretypeKcopper.The2E-217Ccoolerhadbeenremovedfromthesystemforseveraldaysbeforeourinspection,andthespecimenswesawweredry.Theinnersurfaceswerecoveredwithaheavy,densescale.Areasofthisscalewerecoloredgreen,white,andbrown,indicatingdifferentmetalliccomponentsinthescale.Wecarefullycleanedthedepositfromsectionsofthiscoilandexaminedthemetalwitha15Xhandlens.Wefoundnumerousrandompitsovermostofthesurface.Thesepitsvariedgreatlyinsi.ze,depth,andshape.Mostwereirregularinshape,smallandshallow,butsomeweresharp-edgedandquitedeep.WetooksamplesofthedepositfrompittedareasofthiscoilandranbiologicalculturesforSRBandAPBasexplainedabove.Theseculturesshowednoresponsein24hours.After48hours,sufficientgrowthhadoccurredtoindicatethatlowtomoderatelevelsofthesebacteri.awerepresentinthiscoil.2.1E-217ARHROilCoolerCoilThe2E-217CRHRoilcoolercoilcarriesESWwaterfromtheB'loop.ToobtainacomparisonwiththeAloop,weinspectedthe1E-217Acoil,usingthesamemethodsdescribedabove.Weinspectedsectionscutfromthesecondcoillayerfromthetopandthesecondlayerfromthebottom.Thenatureofthedepositinthe1E-217Acoilwasentirelydifferentfromthe2E-217Ccoil.Wefoundnoneofthehard"scale"depositsdescribedin2E-217C.Instead,wefoundaloose,flowableblackdeposit,andbelowthat(nexttothemetal)ahard,firmly-attachedblacklayer.SEM/EDAXanalysisofthisdepositatHazletonidentifiedthisblackdepositasprimarilymanganesesalts.Page2
- 4gIIA, ThomasM.Laronge,Inc.,.Wefoundpitsbeneaththeblackdeposit.Allwereverysmall,irregularinshape,andrandomlydistributed.Nopitswereasdeepasthosefoundin2E-217C.2E-217BRHROilCoolerCoilToprovideasecondinspectionofoilcoolersontheBESWloop,weinspectedthe2E-217Bcoil.Thiscoilwasfoundtobeintermediateinconditionbetweenthe1E-217Aand2E-217Ccoils.Nohardscalewaspresent.WefoundsubstantialblackdepositsthatwerelateridentifiedbySEM/EDAXasprimarilymanganesecompounds.Theblackdepositwasstringyandcoveredpartbutnotallofthesurface.Underthedepositinthiscoilwefoundpittingthatwasmoreprevalentanddeeperthanin1E-217Abutnotasseriousasin2E-217C.MicrobiologicalculturesofthedepositscoveringthesepitsshowedlessactivitythaneitheroftheothertwoRHRoilcoolers.4,OE-507DDieselGeneratorJacketWaterCoolerThetubesinthiscoolerarereportedtobe90/10cupronickel.ETinspectionofthisexchangerhadidentifiedatleastonetubewithmorethan60Xwallpenetration.Weidentifiedthistube-fromthe"map"intheETinspectionreportandwereabletovisuallyinspecttheentireinsidesurfaceusingthenewly-acquiredfiberscopeequipment.Wewereableto.seemanypittedareasinthistube.Wecouldnotmeasurepitdepth,butsomeappearedtobeverydeep.Asinothercoolers,thepitswererandomlydistributedandirregularinshape.'hesetubeshadbeencleaned,andwewerenotabletocollectsufficientdepositformicrobiologicalanalysis.Tubesshouldbepulledfromthisheatexchangerformoredetailedinspection.5.OE-533DDieselGovernorCoolerWeexaminedthisverysmallsingletubecoolerbutwerenotabletomakeadetailedinspection.Thetubehadbeencleanedandnodepositswereavailable.Wecouldseewhatappearedtobeminorpittinginsidethetube,butnootherobservationswerepossible.6.OE-505E1,2DDieselGeneratorIntercoolerInspectionofthiscoolerwasdifficult.Thetubesweretoosmalltopermitentranceofthefiberscope.Thetubeends(internal)werecleanandappearedtoshowmanysmallpits.Nofirmconclusioncanbedrawn;atubeshouldbepulledfromthisexchangerforinspectionwhenpossible.7.1E-228BRCICPumRoomUnitCoolerThiscoolerhadbeenopen'forseveraldaysbeforeourinspection.Thetubesarecupronickel.Thetubeshadbeencleaned,butwefoundonetubethatcontainedsubstantialamountsoflooseblackdeposit.Wecouldnotusethefiberscopeeffectivelybecauseitfitonlyashortdistanceintothetube.Page3 ThomasM.LaroncIe,Inc.The"depositfromthisdirtytubeshowedthehighestmicrobiologicalactivityofanysampletested.'hissamplewasonetotwoordersofmagnitudemoreactivethananyoftheRHRlubeoilcoolers.Weunderstandt'hatthisunitisontheBESWloop.Onetubefromtheoutsidelayerwascutoutforinspection.Byvisual(15X)examination,thistubewasfoundtocontainnumerousunder-depositpitsofvaryingdepthandrandomshape.8.ESWBSulWaterLineto1E-228BBydisconnectingtheflexiblehosebetweenthe1E-228BRCICPumpRoomUnitCoolerandtheESWBsupplywaterline,wewereabletoinspecttheinteriorofthesupplywaterline.Usingthefiberscope,wewereabletoseeapproximately18inchesintothislineincludingone90-degreeelbow.Thismildsteellinewasheavilycorrodedandcoveredwithauniformlayerofscale.Thisscalewasdarkbrownincolorandvariedbetween1/16"andabout3/16"inthickness.Nooutstandingtubercles.werevisible.Thescaleprobablyismostlyironoxides.Weremovedsmallpiecesofscalefromthepipeopening.Theunderlyingmetalseemedtoberelativelysmooth.Noseriouspittingwasseen.However,viewingwasverydifficult,andthisshouldnotbeconsideredacompletestatementof.theconditionofthispipe.Thispipe,aswesawit,wastypicalofmildsteelpipeexposedtocorrosivewaterwithnochemicaltreatmentformanyyears.Theheavylayersofcorrosion-producedscaleareprobablyatthispointprovidingsomeprotectionagainstfurthergeneralcorrosionofthepipe.However,anyunder-depositcorrosiongoingonunderneaththesescalewillbeverydifficulttocontrolwithoutcleaningthepipe.Weranmicrobiologicalculturesonamixtureofdepositandwaterfromthispipe.Theculturesrespondedinlessthan12hours,indicatingveryhighlevelsofSRBandAPBatthispoint.Thegrowthratewassimilartotha'tfoundinthesamplefrom1E-228B.Thiswastheonlypieceofmildsteelpipingorequipmentthatweinspectedduringthisvisit.Webelieve,however,thattheconditionofthispipeissimilartothatofmostoftheESWpipingexposedtosimilarflowconditions.9.1E-228ARCICPumRoomUnitCoolerThisunitwasopenedforinspectioninourpresence,sothatwewereabletoexaminethedepositimmediatelyuponexposuretoair.Thisisimportantbecauseanaerobicbacteria,typicallytheSRBandAPBofconcernatSusquehanna,tendtoformspores(becomeinactive)inthepresenceofoxygen.This'nitwascleanerthan1E-228Bandcontainedbrownratherthanblackdeposits.Mostofthedepositsseemedtobeintheformofloose,well-flocculatedsolidswithclearwater.1E-228B,bycontrast,containedmuddywaterandslimy,blackdeposits.Page4 ThornosM.Laronge,Inc.containedlessdepositandfarfewerlE-228B.Weunderstandthat1E-228A10.2E-297AESWGRDXSstemCondenserWecouldnotseemorethanafewinchesintothetubesasinstalled.Onetubewascutfromthe"outsiderowforourexamination.ThistubepitsthanthecorrespondingtubefromreceivesESWwaterfromtheAloop.Thisexchangerwasopenedgustbeforeourinspection.Weunderstandthatthiswasthefirstinspectionofthisunit.Roughly75Xofthetubesheetwascoveredwithathickdepositconsistingofvariouscolored"scaledeposits"plusloose,slimyblackmaterial.Mostofthetubeswerepartiallyorcompletelyblockedwiththismaterial.Thesedepositsmustrestrictflowthroughthiscooler.Thefiberscopewouldnotfitmorethanafewinchesintothetubes.Also,thevoluminousdepositmadeviewingthemetalsurfaceimpossible.Wetookamixedsampleofthedepositformicrobiologicalcultureanalysis.Afteroneday,thissampleshowedonlylowlevelactivity.The2E-297Acoolerwasclosed,withnocleaning,immediatelyafterourinspection.Werecommendthatthisequipmentbecleanedandthoroughlyinspectedassoonaspossible.LaboratorExaminationHeatexchangertubingremovedfromfiveESWcoolerswasexaminedintheazletonLaboratoryofPP&L.Thisexaminationconsistedofvisualexaminationthandwithoutamagnifyingloupe,visualexaminationusinga0.7Xto4.5XnitronstereomicroscopeandSEM/EDSexaminationusinganAmray1830SEMfittedwithaPrincetonGammaTechnicalEDSAnalyzer.ThelatterwasoperatedbyMr.T.J.PensockandMr.L.E.Willertz..Thesectionsofheatexchangertubingexaminedwerefromthefollowingexchangers:~ExchacacVlacalStereomicroscoeSEM/EDS1E-217A2E-217B2E-217C1E-228A1E-228BXXXXXXXXXXXXXInallcasestheRHRpumplubeoilcoolersexaminedwereremovedfromthefifth"pancake"orhorizontalbankoffourloopsnumberingfromthebottom.Fourelbowseachfromunits2B(fabricated)andfrom2C(cast),respectively,werealsovisuallyexamined.Alltubesweresectionedinahorizontalplanesothat"top"and"bottom"couldbedistinguished.Additionally,asectionoftubingfrom2E-217Bwassectionedtop-to-bottomsothatthehorizontalsidescouldbeexaminedintact.TheRCICPumpRoomCoolertubesexaminedwerefromanouterlocationi'nthetubebundles.Thetubesweresplitwithoutnotingthespecificdirectionofstallation.Page5 tlil~>>
ThomasM.Loronc3e,Inc.Visualinspectionclearlyshowedforeignmat'ter,i.e.,scaleanddepositsonalltubewatersidesurfaces.Eachofthetubeshadnearlythesameappearanceonthewatersideexceptforthosefrom2E-217C.helattertubewasessentiallycoveredwithamottledmixtureofgreen,white,andbrowndeposits,rangingfromafewthousandthsofan,inchtobetterthan0.125inchinthickness.Thematerialappearedtohavebeenlaiddowninlayers.Thissuggestsformationinaseriesofdiscontinuances,discreteeventssuchason-offoperatingperiods,significantwaterchemistrychangesfromscalingtonon-scaling,andsoon.Thee..posedsurfacewasdryingoutandevidencedcrackingatintervalsof0.125inchto0.375inch.Thisresultedinarectangulartosquarepatternedpeelingappearance.Allotherexchangertubeswerecoveredtovaryingdegreeswithapredominantlybrowntoblack,"oily"appearingfilm.Thefilmwasmattedwithsmalltolargepatchesoforange-browntogreen-brownmaterialwhichhadadullsurfacefinish.Thedeposit/scalelaidinadistinctpatternonallexaminedtubes.Specifically,intheRHRpumpslubeoilcoolertubestherewasmoredeposit/scaleattheinsidediameterthanattheoutsidediameter.Additionally,therewasmorematerialatthebottomofthetubesthanatthetopofthetubes.Uponcuttingthesetubes,moredeposit/scalespalledfromtheinsidediametersurfacethanfromtheoutsidediametersurface.Wherethedeposit/scalespalled,ablotchyappearanceresultedshowingmetalsurfaceatomepoints.Mostoftheblotchestendedtorangeincolorfromacopperolortoanorange-browncolor.Pitswerefoundinalltubespecimensexamined.Mostofthepitswereround,althoughsomeelongatedpitsinthedirectionofflowwereseen.Nohemisphericalpitswithinpitswereseen.Whereasinglepitappearedtobethecompositeoftwoormoreindividualpits,thisappearedtoresultfromhorizontalgrowingtogetheratthecorrosionboundaries.Inotherwords,themorphologyofsmallhemisphericalpitswithinpitsthatisoftenascribedtothemorphologyresultingwhenMICoccurswasnotfound.Also,noodorcouldbedetectedonfreshlycutsurfaces.Notunnelingormajorundercuttingwasnoticed.Almostallpitswerecoveredwithdeposit/scalematerialintheshapeofatubercleexceptforthepitsof2E-217C.Thelattersimplyhadpitsbeneaththerelativelythickdeposit.Severalspecimensfrom1E-217A,2E-2178,and2E-217CweremountedforSEMexamination.SomeofthesespecimenswerevaporcoatedwithcarbontoreducethetendencyforsurfacechargingintheSEM.TheexactdetailsshouldbeobtainedfromMessrs.Pensockand/orWillertzastheydidthework.Wesimplywitnessedasignificantportion,ofthisonSunday,June10,1990.Whilethesampleswereinthescanningelectronmicroscope,EDSwasusedonmanyareastoobtainsemiquantitativeidentificationofmaterialspresentatexaminedsurfaces.Basically,theelectronbombardmentofthesurfacesesultsinthegenerationofx-rayswhoseenergiesareassociatedwithecificelements.Theseenergieswerescannedfromabout0toabout10,000ectronvoltsandthequantityofx-raysversustheirrespectiveenergiesPage6 ThomasM.Laronge,In(:.hwereplottedusingcomputergraphics.Theresultingplotorspectrumgivesanearexactideaofwhichmaterialsarepresentandaqualitativetosemi-qualitativeideaofhowmuchofeachmaterialispresent.Alldeposit/scalesamplesexaminedhad,atleast,thesamebasicfourelements,namely:1)2)3)4)Copper.Manganese.Iron.Calcium.Itisbelievedthatthemanganesecamefromeitheroftwosources.ThesearetheinfluentESWwaterandcorrosionproductsofcarbonsteelorothermanganese-containingmaterials.Itisbelievedthattheironcamefromthesametwosourceslistedformanganese.However,someoftheironfoundcouldhavebeentheresultofiron'II)oxidationby"ironbacteria"toiron(III).ItisbelievedthatthecalciumallcamefromtheESWinfluentwater.Thiscalciumdepositedastherespectivesolubilityproductsofcalciumwithcertainanionswereexceeded.Thesesolubilitiesarefunctionallydependentupontime,temperature,pressure,andtheamountandtypeofothermaterialspresent.Sufficeittosay,thecopperwasdetectedbecauseofthepresenceofcopperinthetubes.Othersourcesofcoppercouldnotbeexpectedtoyielddetectableamountsinthepresenceofcopper-containingmaterials.EDSanalysisshowedthepresenceofmanyotherelements.Bothchlorineandsulfurwerefoundwithinpits.Generally,thesematerialswerefoundtogether.Therewasonepitexaminedinwhichsulfurwasdetectedandchlorinewasnotdetected,butoverall,wheretheseelementswerefound,chlorinelevelswerehighandsulfurlevelswerelow,relativetoeachother.Bothchlorineandsulfur-containingcompoundsaretypicallyimplicatedinmanypittingcorrosionprocessesofcopperandcopper-bearingalloys.Themajordifferenceinimplicationisthatchlorineisinvolvedingenericunder-depositpittingandsulfuristypicallyinvolvedinMICpitting.Mic'robioloicall-Influenced'Corrosion(MIC)MICreferstoaspecializedformofunder-depositcorrosioninwhichthemetabolicproductsofbacteriaplayasignificantroleinthecorrosionprocess.Typically,SRBandAPBgenerateacidthatmakest'eenvironmentunderdepositsmorecorrosivetothemetal.ItisoftenassumedthatthepresenceofSRBand/orAPB(orotheranaerobicbacteria)inasystemisproofthatMICisoccurringinthatsystem.Thisisdefinitelynotthecase.InorderforMXCtobepositivelyconfirmedinasystem,threeconditionsmustexist:a.Theappropriatebacteriamustbepresent.Page7
~,n<
ThomasM.Laronge,1nc.b.Thedepositnexttothemetalsurfacemustshowsignificantlyhigherlevelsofsulfurthanwouldbeexpectedfromsimpleconcentrationofsystemwaterandsulfur-containinggeneralsystemdebris.c.ThemorphologyofthepitsonthemetalsurfacemustshowpatternsknowntobecharacteristicofMIC.IntheSusquehannaplant:SignificantlevelsofSRBandAPBarepresent.ThisisnotatallsurprisingsincetheESWwaterisdrawnfromapondthatsupportsaquaticplantgrowthandisknowntohaveanaerobicbottomconditions.Thispondreceivesnochemicaltreatmentotherthanoccasionalalgacidearoundtheedgesasneeded.b.TheSEM/EDAXdepositanalysispreparedbytheHazletonLaboratoryshowshighlevelsofcopperandchloride,tobeexpectedinunder-depositcorrosion,butonlymarginallyhigherlevelsofsulfurinsomecases.c.ThemorphologyofMIConmostmetalsconsistsgenerallyofshallow-walledhemisphericalpits,oftenwithsmaller"pitswithinpits."InsomecasesofMIC>severallayersofpitswithinpitsmaybeobserved.Onsomemetals,particularlytheausteniticstainlesssteels,tunnelingunderthesurfacemaybeseen.ThesecharacteristicpatternsofpitformationanddevelopmentwerenotenerallyfoundduringourinspectionsatSusquehanna.Asarule,thepitsendedtobe'eparate,randomlyorientedandirregularinbothsizeandshape.WebelievethatalthoughMICundoubtedlywasasignificantfactorinsomepitsandprobablyaggravatedcorrosiveconditionsinothercases,itwasneitherthemajorcausativefactornortherate-determiningstepinthepittingcorrosionprocess.Under-DeositPittinCorrosionWhendepositsareallowedtoformonametalsurfaceexposedtocorrosivewater,differentialconcentrationcellsarecreatedthatincreasethecorrosivityofthewaterlayerbeneaththedeposit,relativetothebulkwater.Ineffect,a"battery"isformedinwhichthemetalsurfacebelowthedepositbecomestheanodeoractivesiteatwhichmetaldissolves.Thisresultsinpittingcorrosion.Thedegreeofpittingthatoccursinanygivencasedependsuponmanyvariables,includingparticularlythemetalcomposition,thewatercomposition,andoperatingvariables.Flowconditions,temperature,andtimearethecriticaloperatingvariables.Thepresenceofmanganese,especiallyatthehighlevelsfoundintheSusquehannaESWdeposits,canseriouslyaggravatepittingcorrosion.Manganeseisamultivalentmetal.Itcanexistinseveraloxidationstatesand,therefore,encourageselectrochemicalreactions.This,ineffect,increasescorrosionrateandparticularlypittingcorrosionunderanganese-containingdeposits.Page8 Thomo,sM.Lo,ronge,Inc.RootCauseSummar'heevidencewehavegatheredfromtheworkdescribedinthisletterleadsusotheconclusionthattherootcauseofthepittingattackobservedoncopperandcupronickelheatexchangertubesintheSusquehannaESWsystemisconventionalunder-depositcorrosionaggravatedbythehighlevelsofmanganeseinthedeposits.SRBandAPBareclearlypresentthroughouttheESWsystem,andMICmustbeacontributingfactorinthepittingcorrosion.SomepitsmaybeprimarilycausedbyMIC.However,thechemicalanalysisandmetalsurfacemorphologyonallspecimensthatweexaminedindicateverystronglythatMICisonlyacontributingfactorandnottherootcauseoftheproblem.Wemustpointoutthatflowconditions,particularlylongperiodsofnoflow,canseriouslyaggravatepittingcorrosion.Thismayhelptoexplaintheheavierdepositsandmoreseriouspittinginthe2E-217CRHRoilcoolercoil,comparedtootherpartsofthesystem.Ourcompletereport,tofollow,willincludefulldocumentationanddiscussionofourfindings,includingappropriatereferencesandbackgroundinformation.Pleasecontactuswithanycomments,questions,requests,and/orinstructions.Verytrulyyours,g~ArthurJ.FreedmanExecutiveVicePresidentThomasM.LarongePresidentCC~DistributionFilePage9 sPENNSYLVANIAPOWER4LIGHTCOMPANY$E228At."hh~,'f',ili,'t'itlfftf'itffrV>AililPir;tst",tttttffit'Ittttttftftffttilttflightl4,t,flil<IiIiIiliIiIPENNSYLVANIAPOWER5LIGHTCOMPANY~&2E217CIs'sstslsfslstslstsshlslsllllsl>>ssitsfIffstlhfshtslllftstsfs(sfstslstsfstslstslststsfslstslslshfstshsls PENNSYLVANIAPOWER5LIGHTCOMPANY20PENNSYLVANIAPOWER8(LIGHTCOMPANY18-3B PENNSYLVANIAPOWER&LIGHTCOMPANY2DPENNSYLVANIAPOWER8LIGHTCOMPANY2A PENNSYLVANIAPOWERLIGHTCOMPANYPENNSYLVANIAPOWER&LIGHTCOMPANY2E217Bl"r"'Iri~t~m<,.~mmrrnti>rlmi'"l~~~sOtN,NFI>',.NQ0)sNHll'jh>sN~~~~~~~l>>"t>l>tsssl>tslsislst>lstsltisistsIitslslslstsl>tsistslsI>lstslstslstsIstslstsfstslstsl>tslstsl>t>l>t~I>t>ls,l>ls PENNSYLVANIAPOWER&LIGHTCOMPANY2E217B!"'.IWPs~10N6<l<~Ns<<6<(<f<N"Ns6<<<9<~~~~'s<I'sl<sls<sls<si<hlshlsl<l<l<lsf<I<I<hist<hi<I<I<I<!<hI<I<I<hi<I<I<I<I<hi~<<Is<<Is<sl<<Is<I<<'st'ssPENNSYLVANIAPOWER5LIGHTCOMPANY~s~'2E217B,,pry<,<fl~i<f</s<s/sg<s<~eeV~,Wr41<!'iss~Isl<<<I<I<I<<il<iil<iilfis<IIIlIlibel<shI1HII(IilliIftiiil<lil<i<l<I<l<lil<i<l<isl<hI<isl<<<Is<<Is<Is<IrigA'ale]ihlii~CIt's.Itttls4lililiiÃs'iiIailililiIiIsIsIsIsIsIsI~IIsisIsIIs(IsPENNSYLVANIAPOWER&LIGHTCOMPANY2E217B'isdpgggpJlt"lppl~illIllijslll~lsMImmVm!PTemriTqriqil'~.1@~ii)>l</~i/"'I,,tisi~5'Sli~lih'lltilalilslstslililililelils<slsiIiisliiI PENNSYLVANIAPOWER&LIGHTCOMPANY1E217All;,lii.l,:~llIlilrnteimamrp~nta1Igm~lalamsrlr"sl)>>lMs~S~alaaaaSllatlaaaa'Sala~~ISIaallaa~~~~~a~la~slsashlslslllslshhhllhhhlslalaslalahhiahlalalalalalalalllalalalslalsl~Islsl~allsaslsaslsaslsasIIhtM~~stSal'Saa'laaAllW~aaalaalasa.la'aagl,a~"...~pfs-a(s0pTZSMSM~as"]saaasw..ss I)'i<.hpcjrj,~f'IhI<Jgji>.p(gi.t~~)'.(<q,~4,~i'(VAIYI~~<4iVfl,Atttj'ieIgV$;.~:;V~i.s.C-'.K'.e.>)re">-'~+')~g(>gi4I.zp'y'"f'5'~pyq'gg((i'p)."44)~g4)'0)~CIiII~II~~'II~I'fis~'-e~I!I'4IVI0'I~FI~1'IIIII.i%l<~/JAILi'swf(C>~"4gl'I'g'(37~-l~R1i~lifta~.,:.'!jV~VUC.tlatR'"l,,'L"i,.~,'f;;l)'s",.>'W(f.WwA'ps~s4taaat'y<a+>s)Aw>tNar~ib S)~lf~tk~~~~pr,r)C()gyaI7Elr"i',.~f)'".<ni]-.<<i',~g~!~Kf-('k)]...ig)'~r(P",5I27~9'2$46719l2346789)23~~/P,',}4Pgq+g,g),.Q~,'-~P)'(P('iVVP)R;.));>!),')'('K(T)'I,V'o',V)')j,.i)",r'yiA,',,):~"4."'""*(~,~
Pt'
IIJIIJIS/I/IIJ'llf'I!jufI234667II<>I1Ii.'I~40~~~I~!'0'0I"'t'",'""'."~'il'~f~~"'~'j")"",j:p,'9.>>""...",Ig-'ll"I~~,~I0!0!0'4t,LL<'(k'~.jlKN",."~7Ir<I,j0l04J,>>~I)g))g~ItI~~s'2ls0~~0fI0A$~P~i!I~~;j,k"6IIjI!Ij~~ALII~~"~.,'~f>>"Ilf4A(,Q~',tlI4'>>i~~~)0~sf>>>>I>>/~Cg0isI:sI>>sjssiiilsjss'lsjsssslisii'ri~jsli'jssIjslisjsssstsslfjsIjsjslls'jIIIIIsiltlljsfIIjslsstsIIsjiissjsilsjsI!I!I23466769sl2
&)P~~~'~~rk i"'I"I")6Pp~gj,xabJ~gwp'gc>1~~+A%6%AO+AtHtg4gAtg'~~~,Q~~~v!ilp4~k'~h'sc)~$:tjiy,,",'g$4C('sl~~'~k)$'~3P.i~i<d<i.ffj',:ci'IlVj~gjQi
avvolP~~e>~L\~L'~vvL<.%Lall.l,I(v'Sr.,I.~.>l.!IIIu..4hi.l.'IBleak.'[$,)i~@@4lgf/)~)'qi,'];(vvt1il1>>i'l>>ll>>ll<>>ll'['I>>'ll'['ll'f'll'f'll'['ll'J'IIl[~II~J~III[lIP]ll14II~J'll')'IV]'ll']'II,6189I23466789Il234
.~Cg4I<pl'I~'
js'p$glIlg'~I)~V'I)'It!@14@2'I.tt,,,50THSQ,,l4,(',,pq(t,",.";1'0TQS.l3I.~4,),l!.l,')l1),11ll)li>Ji/iglP4yli~~IlgP,P//gl(//QA~'I~I'I'Il"40'ct0ir~r-~itrtrtrt1""'~"~"~~t':"'iree'i,n<<te<io)6<<~P~~~'i~"""r'0IlriIII'>rrQJ~'I~~IW~Ittqt'IgM)IitI7ai)I~k~'>4+CJ,~~i~gC~lPl~j~e)tgKrjtt(~
i~C'i)C.1'~PYV cg~
Shf1%I,I.CS',I0eV0>>I"Tf'II~tIJplt))If/"i/-:,III,V~'i)tf(Ca~14f)I,tIf'I[i~)",gtPII<<ef'II()~V>>h,qv.\(f~III~'I>>r""'-v')M+~TOX~3ka:f)wf1Ttf'I~tf'i>~'Vgpt'4offN~'4,Ige.Cff(f>>~'I(~]"L"pWjj>>'rtf>>I.V(,'gffqj"jf4/jlll1gf
A,~~~rI~I1j7rI)/4l~I77 tI~+Pg~jiQcQji.4(gilP]illlillijilIJlI~>!i~gy~'~Ia7~S~'1'
')1,Il4$'.L)e'ly~/('.t,I/'I4'f~'Eg);~~--K-'//
'Iip'b0AVe~III1 ty~~gait7YC.fi&I~HH
~,IJ0e~d'C'fyrl'IIVbC
+48%5~'P@~~h,IPr~Wv4trjtt~'/,Al'j'l~e,i-4~IO.~~II~iPC~i~I+g(h1'
&[<<f,~>r5'fi11
~Wkt~gQl'i%~>$>>4fQ~,p..Vgcf404~~e~C,;~p~1tP)~'I)~g//fiMa,4w,C>>Ar-gfiptlV,Vtkj-<,\I'//
4FT(II(,yIF~f1'~..+-~l(g(T et4~'~CCg')Z~~~c