ML20237G784
ML20237G784 | |
Person / Time | |
---|---|
Site: | Three Mile Island |
Issue date: | 09/08/1986 |
From: | Stier E GENERAL PUBLIC UTILITIES CORP., STIER, E.H. |
To: | |
References | |
LRP-A-001A, LRP-A-1A, NUDOCS 8708140195 | |
Download: ML20237G784 (353) | |
Text
{{#Wiki_filter:_ - _ _ _ _ _ j@ - / R (1. sc) l l m., ti l i,
'87 AUG 11 Pl2:34 i .~f ' I 00C' v i
TASf lVII"K. t REACTOR COOLANT , INVENTORY BALANCE TESTING l picket ist IN8 offida! t . No. In the mtter of _f N l
$b llaff, IDENTifl!D b w V,_ Rif.!!VED Applicant _ - . REJECTID latmener Cont's Off'r nATI N- E -
Contento, om _ wi 9Q Reporter M 1 fff014019506090s
^UW c o5%yjjj;o
TMI-2 REACT 0R C00LANT I NVENT0RY BALANCE TESTING l PREPARED FOR GPU NUCLEAR CORP. BY EDWIN H. STIER INVESTIGATIVE STAFF: FREDERICK P. DE VESA ROBERT T. WINTER SEPTEMBER 5, 1985 VOLUME V (C) DOCUMENT Tabs 15 - 37
INDEX TO DOCUMENTS Tabs i Letter, P. R. Clark to E. H. Stier, February 1, 1984. 1 2 Statement'of Facts submitted by the United States, (United States of' America v. Metropolitan-Edison Company), February 1984. l l ! 3 Statement of Metropolitan Edison Company With Respect to l Plea Agreement, (United States of America v. Metropolitan 4 l Edison Company), February 1984. 1 i 4 TMI Unit 1 and 2 Operations Department Shift Assignment, January 6, 1978; August 15, 1978; January 1, 1979. (Includes TMI 1 and 2 Shift Schedules, August 15, 1978-and January 1, 1979). 5 Metropolitan Edison Company, Three Mile Island Organization Charts, (various dates - 1978 and 1979). 6 Metropolitan Edison Company, Position Descriptions for: I Vice President - Generation, Met Ed Unit Superintendent, Nuclear Unit Superintendent, Technical Support Supervisor of Operations TMI Nuclear Shift Supervisor Shift Foreman Control Room Operator 7 TMI-2 Corrective Maintenance Work Requests and Job Tickets (in record number order). 8 TMI Station Radiation Work Permit' Detail List (excerpts), j October 1978-January 1979. l
9 TMI-2 Radiation Work Permits (in record number order) . 10 TMI-2 Daily Plant Status Reports (" Morning Report") and Shift Supervisor Turnover Notes for: October 16-19, 1978 November 8, 1978 December 20, 26-31, 1978 January 1-15,'1979 February 12, 14-15, 18-19, 1979 March 1-27, 1979 11 10 Code of Federal Regulations 50 (excerpts)
@s 50.36, 50.36(c)
Appendix A 12 U.S. NRC Regulatory Guide 1.45 Reactor Coolant Pressure Boundary Leakage Detection Systems, May 1973. 13 U.S. NRC Regulatory Guide 1.16 Reporting of Operating Information, Appendices A-E, Rev. 4, August 1975. 14 TMI-2 Technical Specifications (excerpts) 1.14-1.17, 3.4.6.1, 3.4.6.2, 4.4.6.2 6.5.1.6, 6.9.1.8, 6.10.ld, Table 1.1 15 TMI-2 Final Safety Analysis Report, Supplement 3. ; 1 16 Standard for Light Water Reactor Coolant Pressure Boundary j Leak Detection, Instrument Society of America, ISA-S ) 67.03, 1982. I
17 TMI Administrative Procedure 1010, Technical Specification Surveillance Program, Rev. 13, January 9, 1979. 18 TMI Administrative Procedure 1012, Shift Relief and Log Entries, Rev. 8, November 4, 1977. 19 TMI-2 Surveillance Procedure 2301-3Dl, RCS Inventory, Rev. 2, May 4, 1978. l l 20 TMI-2 Operating Procedure 2103-1.2, Soluble Poison Concentration, Rev. 4, June 12, 1978. 21 TMI-2 Temporary Change Notice (TCN), No. 2-79-070, March 16, 1979. 22 Plan of the Day (POD) Meeting Minutes (with Work Item Lists and Supplemental Work Lists) : October 23, 1978 January 5, 1979 i January 8, 1979 ' January 9-14, 1979 March 15, 1979 March 23, 1979 23 shift Supervisor's Meeting Minutes: October 5, 1977 July 11, 1978 24 Shift Foreman's Meeting Minutes: October 18, 1978 January 4, 1979 March 22, 1979
4 l. 25 General Office Review' Board (GORB)' Meeting Minutes, January 10, 1979. 26 Plant Operations-Review Committee (PORC) Minutes, March 5-9, 1979. 27 Generation Review Committee (GRC) Meeting Minutes, November 30, 1978. 28 TMI-2 Licensee Event Report 78-62/IT (Draft), November 1978. s 29 TMI-2 Licensee Event Report 78-62/lT, November 1, 1978, (with) cover letter, J. G. Herbein to B. H. Grier [NRC), November 1, 1978). 30 Document Review Sheet for LER 78-62/lT (with PORC Action Item tracking and closeout documentation - circulates first draf t LER) . 31 Letter, J. L. Seelinger to B. H. Grier (NRC), (Prompt Report of Reportable Occurrence. Includes internal memorandum, Seelinger to Herbein, Troffer and Lawyer), October 19, 1978. i 32 Metropolitan Edison Company correspondence Accountability Check Sheet, (concerning LER 78-62) , November 1, 1978. 33 US NRC (D. Haverkamp) Inspection Reports: November 8, 1978 l January 5, 1979 January 26, 1979 i ! j
34 Floyd, J. R., Operations Memo 2-78-19, October 20, 1978. 35 Floyd, J. R., Operations Memo 2-78-2, December 23, 1977. 36 Letter, J. Seelinger to N. Palladino (NRC), August 9, 1984. 37 Letter, J. R. Floyd to N. Palladino (NRC), August 13, 1984. ( I i 38 Letter, G. A. Kunder to N. Palladino (NRC), August 13, l 1984. l 39 Metropolitan Edison Company, G. A. Loignon - Lead Auditor, OA Audit Report 78-31 (includes checklists, findings and working notes) , January 24, 1979. 40 TMI-2 Surveillance Procedure 2301-S1, Shift and Daily Checks, signed-off data sheets for Reactor Building Sump ) surveillance, December 18-20, 1978; January 1-15, 1979. I 41 TMI-2 Primary Radwaste Auxiliary Operator's Log (excerpts), October 16-24, 1978, January 7, 1979, March 23, 1979. 42 TMI-2 Utility Printout (excerpts showing Reactor Building 1 Sump level indication for one-minute intervals), ! January 9, 1979. 43 TMI-2 Control Room Alarm Printout (excerpt), January 16, 1979, (establishes duration of RB sump level - computer point 185 on Analog Trend Recorder). l
.j
l 44 Analog Trend Recorder No. 4' Strip Chart (excerpt), January 8-16, 1979 (annotations indicate data and RB Sump level computer point as data source). 45 Kunder, G. A., Informal Notes from file " Ops Notes," January 13, 1979. 46 TMI-2 Reactor Building Emergency Entrance Log, (form from Health Physics Procedure 1630.2), October 19, 1978. , 47 TMI-2 Control Room Daily Attendance Sheets: January 16, 1978 October 10, 1978 October 12-14, 1978 ( October 16-18, 1978 1 December 26, 1978 - January 15, 1979 i March 21-25, 1979 I l 48 TMI-2 Control Room Log (excerpts) : October 15-16, 1978 November 5, 1978 December 18-19, 1978 January ll, 1979 February 2, 1979 1 February 7, 1979 l March 21, 1979 1 49 TMI-2 Shift Foreman Log (excerpts) : October 5-8, 1978 October 15, 1978 October 30, 1978 December 18-19, 1978 January 11-13, 1979 February 2, 1979 February 7, 1979 February 19, 1979
50 TMI-2 Shift Test Engineer's Log (excerpt) October 16-20, 1978. 51 TM1-2 Computer Log (excerpts): April 8-12, 1978 May'23, 1978 May 25, 1978 October 18,'1978 November 18, 1978 November 21, 1978 December 14, 1978 52 Notes taken by Attorney at NRC Interview of M. Coleman, April 10, 1980. 53 TMI-2 Field Questionnaire No. 2669, Makeup Tank and Level Transmitters, November 10, 1978. 54 On-the-Job Training Quarterly Review: M. J. Ross, j (1977-1978, 1978-1979, 1979-1980). l l 55 Floyd, J. R., Operations Memo 2-79-01, January 25, 1979. l i i 1 t
)
l [ corrected 1/17/86] j
I 1 I 50 TMI-2 Shift Test Engineer's Log (excerpt) October 16-20, ) 1978. ; 51 TMI-2 Computer Log (excerpts) : April 8-12, 1978 May 23, 1978 May 25, 1978 October 18, 1978 vember 18, 1978 1 No ember 21, 1978 i Dec mber 14, 1978 52 Notes taken y Attorney at NR' Interview of M. Coleman, I April 10, 198 . ' 53 TMI-2 Field Questi nnaire No. 2669, Makeup Tank and Level Transmitters, Novem r 10 l
\,1978.
I
'N
p- =-
" := - "psW ~ Supple'nent 3 h13.6/1h.1 Your responses in Amendment 21, to our RAI item h1.20 vere not totally e cdequate.. The NRC staff's position is that each nuclear power plant should ;
be thoroughly tested during the initial test program. The NRC staff considers that suitable testing should be conducted to demonstrate proper operation of; 1) systems and design features utilized to support normal
- eperation of the facility, and 2) standby systems or design features provided to prevent, limit or mitigate the consequences of postulated accidents.
Therefore, modify or clarify your application for the items or issues described below to provide assurance that suitable testing vill be accomplished. The number of the items below are keyed to your responses to Item bl.20 contained in Amendment 21. (3) TP 160/k does not provide for appropriate tests of the thermal recombiner system. I (7) Provide assurance that the entire system vill be appropriately tested during the preoperational test phase. (12) TP 600/10 does not provide for appropriate.,t,est,s pf all reactor coolaint l system 16al 'det'ec~ tion systems'. l l l (1h) Provide assurance that the system vill be appropriately tested. 1 j (17) Provide assurance that the systems vill be appropriately tested. ' \ (20) The information pertaining to safety classification that was provided in your response is inconsistent with other information provided in Section 10 of the FSAR. Provide assurance that suitable tests will be conducted to demonstrate proper operation of main steam line isolation valves. (23) Provide assurance that those portions of the communications systems that are utilized for evacuation and other alarms and for public address within the plant will be preoperationally tested. (25) Provide assurance that the irradiated fuel transfer system vill be preoperationally tested. (26) Provide assurance that the system vill be preoperationally tested. (28) Provide assurance that the systems vill be preoperationally tested. (31) Provide assurance that appropriate expansion and restraint tests for the power conversion system and the emergency core cooling systems vill also be conducted for piping and components located outside of the reactor building. (33) Provide assurance that the entire ventilation system vill be preoperationally tested. (3k) Provide assurance that the atmospheric steam dump valves vill be
., appropriately tested.
83 L13-6 Am. 28 (5-30-75)
) Suppismant 3 413.6/14.1 (Cont'd.) . M
RESPONSE
(3) Information is now available to support the Test Abstract for TP 160/1, Hydrogen Recombiner Test, added to Appendix ikA by Anendment 28. /(7) As listed in the Master Test Index, TP 173/2 assures that the entire Auxiliary Building Ventilation System vill be appropriately tested during the preoperational test phase. l (12) ;TP 600/10 is intended to Am===trate the primary means of'E4Ce~cting eeeetof Waat system ~1eakage. ;Appropr_iate_ i assurance of proper operatiod of the -other leaka6e detection 6evices is accomplished through calibration. I cf ,the Instrumentation ? (1k) As listed in the Master Test Index, TP 2h0/3 assures that the entire Intermediate Closed Cooling Water System vill be appropriately tested. As listed in the Master Test Index. TP 230/1, TP 230/2 TP 231/3 and l(17) TP 232/1 assures that the Radioactive Liquid, Gaseous Collection, Treatment i and Effluent Systems vill be appropriately tested. (20) As listed in the Master Test Index, TP 271/k includes closing and timing
- of the main steam isolation valves under operating conditions.
f (23) As listed in the Master Test Index. TP 380/1 assures that those portions of the ecznmunications systems that are utilized for evacuation and other ) alams and for public address within the plant will be preoperationally tested. l (25) Refer to Test Abstract in Appendix 1kA for TP 120/5, 6, 7, 8. I (26) As listed in the Master Test Index, TP 265/2 assures that the Condenser Circulating Water System vill be preoperationally tested. (28) As listed in the Master Test Index TP 276/3 6ssures that the Condensate Storage Tank and Main Condenser Hotvell and Associated Controls vill be preoperationally tested. (31) As listed in the Master Test Index, SP 800/21 assures that a formal visual sxpansion and restraint inspection program at each power pisteau vill be ! l conducted for piping and components located outside of the reactor building. (33) As listed in the Master Test Index, TP 177/2 assures that the entire Fuel . Bandling Building Ventilation System vill be preoperationally tested. (3k) As listed in the Master Test Index, SP 320/3 assures that the atmospheric steam dump valves vill be appropriately tested. With no condenser vacuum l and no steam flow, control signals are fed to the atmospheric dump valves and proper valve motion is verified. 1 S3-k13-6a Am. 33 (10-8-75) (- i
e s
- ISA-SG7.03 e
1982 4 STANDARD STANDARD FOR LIGHT WATER REACTOR COOLANT PRESSURE BOUNDARY LEAK DETECTION f b i
~
Sponsor INSTRUMENT SOCIETY of AMERICA 67 Alexander Drive l P.O. Box 12277 Research Triangle Park, North Carolina 27709 L
~~ ~~~~~~n :::;;':: .: - - - . .. . . . .. . _ j
.. o ,
1 1 1
; .T, l % l I
i J l 6 l f g l l ISBN O 87664-734 4 ISA S67.03 Standard for Ught Water Reactor l Coolant Pressure Boundary Leak Detection Copyright 81982 by the instrument Society of Amer-ica. All nghts reserved. Printed in the United States of America. No part of this publication may be repro-duced, stored in a retrieval system, or transmitted, in
- any form or any means electronic, mechanical, photo-copying, recording or otherwise without the prior writ-ten permission of the publisher.
INSTRUMENT SOCIETY OF AMERICA 67 Alexander Drive P.O. Box 12277 Research Triangle Park, North Carolina 27709 Copyright
- 1982 by the Instrument Society of America
( j k
do?.03 PREFACE This preface is included for information purposes and is noi part ol' S67.03. This Standard has been prepared as a part of the service of the Instrument Society of Amenca toward a goal ot . uniformity in the field of instrumentation. To be of real value, this document should not be static, but should be I subject to penodic review. Toward this end, the Society welcomes all comments and criticisms, and asks that they be f addressed to the Secretary, Standards and Practices Board. Instrument Society of America 67 Aleaander Dnvc, P O l Boa 12277. Research Tnangle Park, NC 27709, Telephone (9191549 8411. The ISA Standards and Practices Department is aware of the growing need for attention to the metric system of umt-in general, and the International System of Units (SI) in particular, in the preparation of instrumentation standards. The Department is further aware of the benefits to USA users of ISA standards of incorporaung suitable references to the l' SI (and the metric system) in their business and professional dealings with other counmes. Towards this end this Department will endeavor to introduce SI - acceptable metric units in all new and revised standards to the greatest extent possible. The Metric Practice Guide. which has been published by the American Society for Testmg and i Matenals as ANSI dedgnation Z210.1 (ASTM E380-76. IEEE Std. 268 1975), and future revisions, will be the I reference guide for definitions, symbols, abbreviation, and conversion factors. It is the policy of the Instrument Society of America to encourage and welcome the participation of all concerned individuals and interests in the development of ISA standards. Panicipation in the ISA standards raaking process by an individual in no way constitutes endorsement by the employer of that individual of the Instrument Socacty of Amenca or any of the standards which ISA develops. The American National Standards insatute (ANSI) assigned work on this standard to ISA Committee SP 67 " Nuclear Power Plant Standards" in Decernber,1973. The assignments, considered a priority project needing urFent and prompt acnon, was given to Subcommittee SP-67.03 chaired by M. J. Kimbell dunng the May 20, 1974 Boston ISA lbwei Conference. The subcommittee performed a literature search of leak test standards and current nuclear power pl mt practice in relation to reactor coolant leak detection for representative pressurized water and boiling water po*c reactors. This infomtation was utilized dunng the preparation of this Standard together with comments received from concerned reviewers. f The information contained in this preface, the footnotes and attached Appendices A and B is included for informanon only and is not a part of the Standard.
~
The following individuals served as members of the ISA Subcommittee SP-67.03 which prepared this standard: NAME COMPANY U. Shah, Chamnan Washington Public Power Supply System M. J. Kimbell Bechtel, Inc. B. G. Atraz General Electric Co. J. Dodds Bechtel Power Corporation J. Hersey Bechtel Power Corporation M. Hildenbrand Nuclear Measurements Corp. R. Ulman Victorcen inst. Co. L. S. Loomer Bechtel Power Corporation ! R. M. Norris Washington Public Power Supply System ; M. F. Reisinger Combustion Engineenng. Inc. l B.Segal U.S. Nuclear Regulatory Commission O. B. Stramback General Electne Company
- 1. Sturman Bechtel Power Corporation T. N. Crawford Pacific Gas and Electne Co.
J. H. Geben Iowa Electric Light & Power Co.
'Ihis standard was approved by ISA SP67 in January 1980.
NAME COMPANY B. W. Ball Brown & Root, Inc. G. G. Boyle Honeywell T. Crawford Pacific Gas & Eleet'ic Co. J. M. Dahlquist, Jr. Baltimore Gas & Electne Co. T. Evans Pyco, Inc. Oo H.,C. L Fron Detroit Edison Co. R. L. Gavin Sargent & Lundy E. M. Good Florida Power Corp. W. G. Gordon Bechtel Power Corporation 3 r gy.p y
~ ~ --
m -- ' - '~~
O Instrument Society of America Bums & Roe. Inc. m' 'S S. C. Gottilla Yarway . W L. F. Griffith T. Grochowski Babcock & Wilcox Co. G. Harrington Rosemount H. S. Hopkins Westinghouse Electric Corp. R.J.Howonh General Physics Corp.
- k. N. Hubby Leeds & Nonbrup Co.
R. T. Jones Philadelphia Electnc Co. , i J. R. Karvinen MERDI-CDIF M. J. Kimbell Bechtel. Inc. - J. R. Klingenberg W. R. Holway & Assoc. J. V. Lipka Gilben Anoe., Inc. S.F. Luna General Atomic Co. D. W. Miller Ohio State University G. C. Minor MHB Technical Assuiates ' J. W. Mxk EG&G J. A. Nay Westinghouse Elec. Corp. O. E. Peterson Commonwealth Edison Co. R. L. Phelps Jr. Southern Calif. Edison Co. M. F. Reisinger Combustion Engineering. Inc. R. M. Rello Air Products & Chemicals. Inc. U. Shah Washington Public Power Supply System J. Tana Ebasco Services. Inc. R. J. Ungantti Philadelphia Electric Co. K. Utsumi General Electric Co. R. C. Webb Pacific Gas & Electric Co. E. C. Wenzinger. Sr. U.S. Nuclear Regulatory Comm. W. C. Weston Stone & Webher Engr. Corp. ^ i i This standard was approved for publication by the ISA Standards and Practices Board in October 1982. @ l NAME COMPANY . T. J. Harrison, Chairman IBM. Corporation l P. Bliss Consultant W. Calder The Foxboro Company l i N. Conger Continental Oil Co. B. Feikle Bailey Controls Co. R. T. Jones Philadelphia Electnc Co. ; R. Keller Boeing Company l
- 0. P. Lovett Jr. ! sis Corp.
I E. C. Magison Honeywell. Inc. A. P. McCauley Diamond Shamrock Corp. J. W. Mock EG&G Idaho Inc. E. M. Nesvig ERDCO Engmeering Corp. G. Platt Bechtel Power Corp. R. Prescott Moore Products Company W. C. Weidman Gilben Associates K. A. Whitman Allied Chemical Corp. J. R. Williams Stearns Roger. Inc. D. A. Christensen' ! L. N. Cornbs' R. L. Galley
- R. G. Marvin' W. B. Miller
- Moore Products Company R. L. Nickens'
' Director Emeritus .1 )
J tsuunuary s.,c.a, us ... ,,... 56I.U3 TABLE OF CONTENTS Um.x Section
.. . . . . . 7 l introduction . .. . . . . . . . . . . . . . . . . . . . . . . . ... . . . . . . ....................................................... . . . . . 7 2 Scope ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3 Purpose ........................ ... . . . .
7 4 Definition > and Desenptions . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . .
. K 5 Leakage Clas.ifications and Sources . . . . . . . . . . .. . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 5.I Leakuse Classifications . . . . . . .
x 5.2 Potential identified bakage Sources . . . . . . . . . . . . . . . . . . . . . . . . . V 6 General Design Requirements .... .. .... .. ..... . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 6.1 Pnncipal Monitoring Systems for Unidentified Leakage .... . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 6.2 Coolant Laakage Detection System Performance .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 9 6.3 Safety Classi0 cation ... .. . . . . . . . . . .. 9 6.4 Collectmg and Messunng identified bakage> . . . .. . . . . . . . . . . . . . . . . 9 6.5 M onitoring Inters ystem Leakage .... . . . . . .. . . . . ... . . . . . . . . . .. . .. . . . . .. . . . . . . . . . . . . .. . . -. . . . .. .. .
9 6.6 System Availability ..... .. ...... .. .... .. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 6.7 Human Engiacenng and Operability Features . . . . .. . .
.. 9 6.6 Power Sources . ... ...... .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... .. 10 6.9 Design Basis Documentation ... .. . . . . . . . . ... . . . . . . . .
10 7 Specific uskage Detection Methods and Requirements . ... .. ....... . . . . . . . . . . 7.1 Sump Level and Sump Pump Discharge Flow Monitonng Leakage Detection .. ... . . . . . . . to 7.2 Radiation Momtonny Leakage Detection . . . . . . . In 7.3 Contamment Air Cooler Condensate Flow Collection for Leakage Detection .. .. .. . .. . ti Ii 7.4 Reactor Coolant Inventory . . . . . . . . . . . . . . . . . . . . . .. .. 12 7.5 Humidity Monitonng Leakage Detection .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ..
. 12 7.6 Temperature Monitormy Leakage Detection . . .. .
l .1 7.7 Pnmary Contamment Pressure Monitonng . . . . . . . . . . . . .. , l-g 7.8 Tape Motsture Sensors for Leakage De:ection 7.9 Visual Observation ... ..... ... . .. . .
. . . 13 I3 8 References .. .. . . . . . ... . ~..... ... . . . . N l
Appendix A Leakage Not into the Contamment . . . . . . . . . . . . . . , , N
. 10 Appendix B Suggested Methods and Procedures for uakage Detecuon Systems ..
LIST OF TABLES Tchte p,q3
#3 I Capabilities of bakage Monitoring Methode .. . . . . . . . . . .
l 1 i l l l l l 1 0 ; i 1 5 m gny ;,,.; a. ,w w ~ . y .- . . m . ., , . . .n ..w . .
- r ,-
l l l
,07.U) 1 INTRODUCTION value to a recognized accepted standard value, or idM valoc" Reference Instrument Society of America ilSA:
Nucicar powcr plant > vary widely with respect to hizc, Standard S51.1 1979; "Procca instrumentatmn 'icanun. c pacity, and desigri details. Available leak detection methods must be individually cammined by the designers ology." at determme their suitabihty for a particuler plant or Bolling Water Reactor (BWR) - A nuclear ste;un system. The applicable federal regulation on the require- supply system in which process steam is generated in ments for Reactor Coolant Pressure Boundary (RCPB) the reactor vessel. terk detection is specified in the Code of Federal "The adjustment of device or 6cnes el Regulations Title 10, Pan 50 (10CFR50), Appendix A, Calibration devices, in order to bring the output to a desired value Cnten:n 30.* within a specified tolerance, for a particular value 01 Detection of leakage from pressurized pipes and vessels input."
Reference:
ISA S51.1 1979. is needed because small leaks may develop into larger leaks or ruptures. During reactor operation, detection of Coolant - The fluid contained within the reactor cool-reactor coolant leakage from nonisolatable portion of ant pressure boundary. the RCPB is important to allow early identification of Leak - An opening, however nunute, that allows unde. mmor flaws before they can develop into a pipe break sirable passage of a fluid from its contammg boundaner I cr component rupture that could result m the accidental Leakage - The fluid that passes through a leak l hc f loss of coolant. Smee the RCPB is housed in a contam. fluid referred to in this Standard is the pnrnary coolam l ment structure, physical access is hmited dunng power water unless otherwise stated. l operation and remote indicating leakage detection sys. tems are necessary." Abnormal Leakage - That leakage from the Reutui l I Coolant Pressure Boundary (RCPB) which is consid. This standard defines design eriteria that are intended to card to be unusual, unexpected or in execu of tecsun. insure that adequate RCPB leak detectica espdilities are cal specification allowances. l provided to the nuclear plant operator and to meet the intent of the Code of Federal Regulations. However, the Allowable Iabge - That leakage value defined in ! burden of proof of compliance with federal regulations plant operational technical specifications above which shill remain the responsibility of the plant owner. plant operation must be altered or interrupted as nece-2 SCOPE sary m perform correcuve actions to reduce the leak. ) This standard covers identification and quantitative men. ".8 * ** *
* # * **I"***
surement of reactor coolant system leakage in light water identified Leakage - See Section 5.1.1. cooled power reactors. l.cak detection for gas and liquid hge RisiC U'aka'ge expressed in volumetric metal cooled reactors and for containment buildmg stnic- units per unit of time at 20*C ard one atmospher.- tures surrounding the reactor coolant pressure boundary p,. essure.
~ - - - -
is not covered in this standard. .
'" #~
3 PURPOSE Monitoring Instrument System - A system that prv. The purpose of this standard is to standardize entena, vides mformation about RCPB leakage conditions so th.it rnethods, and procedures for assuring the design and the opeator can take action. j operational adequacy of reactor coolant pressure boundary leak detection sysm used in light water cooled nuclear Nuclear Safety Related (NSR) - Instrumentatwn ) power plants. A . *er objec% is to encourage design "which is essential to: 1) Emergency Rea: tor Shutdown' i improvements yielemg increase 4, utihty and wettability of 2) Containment isolation 3) Reactor Core Coohrg. 8) . retetor coolant leakage detection systems. Containment or Reactor Heat Removal. 5) prevention ur mi;igation of a significant telease of radioactive materi.d j 4 DEFINITIONS AND DESCRIPTIONS to the environment or, is otherwise essenual to provide As used in this standard, the following defimtions apply. reasonable assurarse that a nuclear power plant can be . Accessible Area - An area routinely or penodically Operated without undue risk to the health and safety of l
)
entered by plant personnel in the performance of routme the public."
Reference:
IS A S67.01 1979. functions dunng normal plant operation and in accordance Non Nuclear Safety (NNS) - instrumentation not m. : with applicable health physics procedures. eluded in NSR. Accuracy " Degree of conformity of an indicated Operating Basis Earthquake (OBE)- That carthquake ; which ". . . could reasonably be capected to affect the j Pl ant site during the operating life of the plant; it is that i
*ourt retmed federal asuisuons moi aereued in eas amiant cover earthquake which produces the vibratory ground motion !
she reqwnmems for RCPB fracture prevennon, inservice inspecuorn g coolani makeup capabihty and quahry naurance as scectried in the Code of Federal Regulauons. Tune to, Pan 50 (10CHL5o), Refer
- for which those features of the nuclear power plant necessa"y for continued operation without undue nsk tu
' the health and safety of the public are desyned tu ** s A pro informanon on pnrnary cooim icaxage octec, remam funcuonal." Reference 10CFRl00 Appendix A. t uon aumoe of the conwnmem suucture for bo.hns water remeton I (B WR) lij(d).
l 7
,,.,--.,.-y...,.m- .w m -
i i
P instrument Society of America
\
Pressurized Water Rosetor (PWR)- A nuclear steam rapid and reliable assessment of plant operating condi- N aupply system in which the pressurized prunary coolant tions. The fo"owing leakage classifications, as .d m fluid a,s lecated by the reactor core, and the process this Mard, facilitme idemificatim M lea. ms steam is generated in a steam generator by heat transfer g ;, ,;,, g g, ,g from the pnmary coolant. 5.1.1 Identined 1ASkage Primary Containment - The structure that encloses (A) Lankage into collection systems, e.g.. pump seal the reactor coolant pressure boundary. of valve packing leakage that is cc:lected and Raeetor Coolant Pressure Boundary (RCPB) ". . . all measured, or those pressure containing components of boiling and pres- (B) Leakage inso the containment which meets all of sunaed water cooled nuclear power reactors, such as the following conditions: pressure vessels, piping, pumps, and valves, which are: (1) The leaks have been specifically located and (1) Part of the reactor coolant system, or the rate quantified, (2) Connected to the reactor coolant system, up to and includmg any and all of the following: (2) The leaks are not cracks or Gaws m ihe RCPB. (i) The outermost containment isolation valve in An example of (B) above is a quannfied leakage system piping which penetrates pnmary reac. of component cooling water into the contammem. tor containment. 5.12-Unidentified Leakage (ii) The second of two valves normally closed dunng normal reactor operation in system pip- , Leakage into the containment which is not elamtied as mg which does not penetrate pnmary reactor idemified'E~ age, contamment. ""~$1.7 I ,,., ~..ntersystem Leakage (iii) The reactor coolant system safety and relief Coolant leakage across RCPB passive barriers such as valves. heat exchanger tubes or tube sheets, into other closed For nuclear power reactors of the direct cycle boih.ng ,y g-gems. Such leakage is not normally released to the water type, the reactor coolant system extends to and containment atmosphere - - and"isT sepa'rdte' c'lassificatmn. n meludes the outermost containment isolation valve m the 5.1.4 Other,Laskage main steam and feedwater piping."
Reference:
10CFR50, Any. leakage not from the RCPB and outside of tne Section 50.2(v).
- reactor containment structure, if not covered by tne abow Sensitivity ". . . ratio of the change in output classifications. An example of such leakage could be magnitude to the change of the input which causes it leakage from steam or feedwater lines outside the con-after the steady 4 tate has been reached."
Reference:
ISA tainment structure of a BWR runt. A summary ot such S51.1 1979. leakage sources and typical de,*.ction methods frequentiv ' Time Constant ,'The time required for the output of used is given in Appendix A of this standard. a first order system forced by a step change to complete 5.2 Potential identified Lankage Sources 63.2 percent of the total noe or decay."
Reference:
ISA Vanstions in plant designs do not allow a single defini-S51.1 1979. uve check list of all potennal leakage sources. (fonever. Time Response of lastrumentation ", . . an output probable leakage sources can be identified durmy plam expressed as a function of time, resulting from the opph. de$ign and appropriate leakage detection, measurement cation of a specined input under specified operatmg and collection (leakoff) systems provided. Collecuon and conditions."
Reference:
ISA $51.1 1979, isolation, to the catent practical, of leakage from idenn-5 LEAKAGE Cl. OSSIFICATIONS AND SOURCES fied sources enhance the - morutoring capamhty 10: De significance of leakage from the RCPB will depend unidentified leakage. The following are some' of the upon the leak location, the leakage rate, duration, and more common types of leakage sources that can he the nature of the flow path permitting the leakage. easily identified:- Through wall cracks or flaws are the most difncult to (A) Dynams.e seals such as valve stem packmp. pump detect and monitor because they can occur at any RCPB nw shah seals and cetml md Jnw gland ds location. This type of leak is also of most concem (B) Storic seals auch as the reactor head pressure because the leak may develop from some unpredicted seals, equipment gaskets and valve seat se.a m combination of internal defects and esternal stresse> in a Imes connected so the RCPD. monisolatable portion of the RCPB. - (C) Pressure relief sysrems such as pressure rehet 3.1 Lesli ge Clasalfications Valve 5. fuP:ure disks and safety rehef vaher k A principal concem in leakage monitonng is the capabihty to discriminate between unidentified leakage from the (D) Passive interface boundaries with she RCPB such as instrument bellows, disphragms and Bomdon RCPB and leakage from identifiable sources into the tubes, thermometer wells and heat exchanger tuber enm6 r,t. P iny a% to discriminate allows more l L____--_-____-__-_______________________
56/.03 Boundary Leak u s....m i j 6 OENERAL DESIGN REQUIREMENTS This standard is not intended to replace applicable hand. intersystem leakage. Acceptable methmis include r;ulni n - tivity monitoring and water mventory inumtoiing .sce l books and texts. such as References (II) and (12), Appendix A for additional information. which provide detailed design and analytical techniques. 6.6 System Availability Suggested methods and pocedures (c- developing re. I quired desiFn informaoon are given in the references and The RCPB leakage detection systems shall be deugned l appendices to this standard. to operate whenever the plant is not in cold shutdown condidon. l 6.1 Principal Monitoring Systems for l UnidenUned leakage 6.6.1 Ambient Cond!Gons At least three dissimilar, diverse, and independent pnnei. Monitoring system shall be designed to maintam speci. pal rnethods "of monitonng coolant le Aage from the fied accuracy and performance featurch for the ranyc ol RCPB to, the containment shall be povided. One of ambient temperature, humidity, and radia9on levels thai
; these methods shall be sump level nrxt/or sump flow an expected at the component locations during nonnal i monitoring. Other acceptable methods are identified in Plant operauons.
i Secuon 7 and Table 1. 6.6.2 Seismic Events 6.3 Coolani leakage Detecuan System Performance The sump monitoring system and at least one of the The sensitivity and response characteristics for each of other diverse monitonng channels provided shall be dem-l three pnneipal leak detection monitonng systems shall onstrated to be acceptable for the design requirements l be shown by design calculations or performance tests to after any seismic event for which plant shutdown is not required i.e., less than an operstmg basis carthqu.ike be capable of indicating and alarming a i gpm (3.8 hters/miKi leakage 'mcrease within one hour. It n recog- The guidelines of IEEE Standard M4. Reference t 6s. nized that some systems other than sump monitonng may be used for seismic qualificanon. may not be capable of .necting this requirement during Recorders need no: function dunng or after sennue events certam normal plant oper:6ng condi6ons. In these cases, provided alarm and indication capabihty remain available-j these systems shall be designed for leakage sensitivity - that is as high as reasonably achievable. When identified leakages are supenmposed on unidentified leakages the 6.7 Human Engineering and Operabilyv Features above sensitivity requirements shall apply also. 6.7.1 Displays and alarrns for all leakage detecoor sy*. 6.3 Safet) ClasslDcation where addinonal process displays related to leakage are The RCPB leak detecuon systems covered in this stan. identified, these indications should be provided at one dard are non-nuclear safety systems or momtonng mstru. general display location. Leakage momtonng displays ment systems. may also include computer functions and CRT displays 6.4 Collecting and Measuring Identified Leakages Qu8ntitative measurements with Procedures for locanny leakage sources should be monitored and controlled f rom Seals reher systems, and other probable sources of leak- one general display location. age shall be identified Leakage colleenon and measure-ment systems shall be provided for sufficient identined 6.7.2 Capability for online calibration of leakage detec-sources to limit the expected leakage to the containment non channels by simulated detector outputs or omer atmosphere to the extent practical. The residual uncol- means shall be provided. Readouts, alarm set po nit lested hquid leakage shall not prevent unidentified hquid and calibration factors shall be capable of penode ad;um le.ikage monitonng systems from meeung Section 6.2 ment to compensate for changes in actual environment.d requirements- or background condiuons. Leakage to the primary reactor containment from identi- 6.7.3 Leakage measuring system displays shall be fied sources shall be collected or otherwise isolated so C2Pressei m volumeme units or if expressed m other ht'. ufuts. CCCVCf55 0 C8Pability shall be provided. Capabihty for trend rnonitoring of measured leakage sha!! be (A) The flow rates from identified leaka are monitored
, provided.
separately from unidentified leaks. 6.7.4 Capability for entire channel calibration and mam-(B) The total flow rate from identified leaks can be tenance dunng refuehng outages shall be provided The established and momtored with a acnsitivity cap- leakage detection systems shall be designed and located able of detecting a i spm (3.8 hters/ min) leakage for case of periodic testing, servicing, removal, anJ mercase wPhin I hr for PWR plants and 2 gpm replacement. O.6 liters / min) leakage mcrease within I hr for g BWR plants. 6.8 Power Sources 6.5 Monitoring Intersystem Leakage Two of the three p.incipal leakage detection systenn shall be energized from separate power sources Seisnu. Provisions shall be made to monitor systems connected cally qualified systems shall be powered from scannah to the RCPB through passive barners for indicanons of ly qualified power sources. 9
~..,-,.y .,-..,m...._ y._. 7 . . , , . , . . - ___ s .... .
Instrument Society of America ' 6.9 Design Basis Documentation containment leakage including containment cooler V,/
. condensate (See Section 7.3.). Sensitivity and re-Compliance with this standard shall be supported by h shall be auch h a w p m I design bssis documentation to include the followmg: liters / min) of liquid collected into the sump can (A) The data and design basis used for the design of be detected in less than one hour. For an msuu-each RCPB leak detection system, e.g., primary mentation method to be acceptable for a given coolant temperature, pressure, radioactivity. configuration, verificadon by calculation that the above requirements will be satisfied is required.
(B) A descripnon of the analytical derivations and methods used to determine esch system's sensitivity. The leak location is not identifiable by' this method response time, and alarm set point. unlesraelatively small areas of piping are drainmg into I (C) The limitation and approximate accuracy of each different sumps for each area. Both sump level change and sump discharge flow can be monitored to deteci a ] ! leak detection method and its leakage measure, i leak. l ment range in coolant volume per unit of ume. Gaseous releases from identified leakage collection pomis (D) Seismic qualification as appropriate. shall be controlled so that they, do not decrease the (E) The procedures which describe *the calibration and effectiveness of the radioactivity monitors, operation of the RCPB leakage detection systems. 7.2 Radiation Monitoring Lankage Detect. ion (F) identification and seismic classification of the power source for each monitonng system. Monitoring the containment for radioactivity is a require-ment specified in 10CFR50 Appendix AITI. Momton I 7 SPECIFIC A.EAKAGE DETECTION METHODS used to meet this requirement may also be u>ed for AND THEIR REQUIREMENTS RCPB leak detection provided the monitors meet the requirernents of this standard. The response and >cnsium The objective of leakage detection is to identify and ! quantify the leakage to such an extent that the senous- ty characteristics of monitor outputs shall be correlated assa cf the leak can be deternuned he following sub, to leakage rates and coolant acuvty sections present requirements and bnef descriptions of 7.3.1 Air Radioparticulate and Radiogas Activity methods that have been successfully applied to the Monitors detection, measurement. or location of leakage from the S RCPB01. Methods considered to be developmental, such (A) Desenpuon $ as acousttelti1! and ultrasonic, or not in general use are Air radiation monitors have the potennal for dere not discussed in this standard However, this should not - tion of coolant leakages from the RCPB. The discourage the utilizanon of such methods if they meet sensitivity and response time depends, among other the requirements of this standard. De calculational meth- things, on the sampling system design. contam-ods and procedures discussed hereafter and in the Appen- ment atmosphere mixing characterishes the rasha. dix B represent idealized cases. These methods and equa- tion detector charactenstics, the ambient raduuun ti:ns can and should be modified and refined as needed background, and the concentrations of detectab!c to fit specific cases, e.g., purge versus nonpurge isotopes in the coolant and in the contamment I containment, contamment atmosphere mixing and trans- atmosphere. I port tirne, recirculation, filtration for calculauon of esti. The quanutauve measurement of coolant leakage maad leakage rates. may sometimes be feasible by this method. but Table I summarizes the capabilities of detection memods extensive current infonnation about plant pnyucal presented in this standard for detecting, measunng, and pararneters and coolant radioisotope mventory are locating leakage from the RCPB. Current general prac- required in order to perform the computauons tice is to provide at least three principal detection Graphical representation of the relanonship of leak-methods one of which is sump monitoring. age rate to the principal parameters enn be used to canmate leakage. However, plant process com-7.1 Sump level and Sump Pump Discharge Flow Puters,are a potentially more useful tool for rapid Mmitoring We Detect 6on reductmo and interpretation of the monitored data Reactor coolant pressure bourulary leakage can be detected Sufficient data and understanding of the prmeiples and measured by monitoring open containment sump are aseded to properly interpret an increase m levels and/or surnp pump discharge flow meestiol. De radiauon monitor readout in terms of coolant following requirements apply: leakage. For example, a decrease in reactor power (A) identified equipment leakage from large valve stem I*"* I ** Y **"'" *" I"*'**'* I" 'h* P'I *"O '""I
- packing glands and other readily identifiable ant radioactivity burden, and , thus an appaieni a leakage rate that is actually a taise .
sources shall be monitored by piping the flow to closed equipment drain tanks or sumps so that an tV average background identified leakage rate can be (B) Sampling System Design established. De piping between the sample line inlet and the (B) Open contsintnent sumps shell col'eet unidentified detector location shall be desigt ed in accordance
. $7.03 15 gpm approximate the observed data. These with ANSI .13.1. N " Guide to Sempling Airborne activity levels are in the range of the Maw Radioactive Materials m Nuclear Facilities".1%9 mum Permissibic Concentrauons (MIO ol (C) Assumptions for Design Computations 10CFR20. Table I for Xe 133 and 1131.
For maximum monitor sensitivity cases c.; . These assumptions provide a uniform design basis and shall be used to estimate the capabilities of when failed fuel levels are low and the con-radiation momsors so detect coolant leakage from tainment airborne concentrations are low shou-RCPB and to show compliance with the design ly after a startup, the airborne activity levels can be neglected. However, it should be real-requirements of Section 6. A model to detennine ized that increases in containment activity may the radioactivity concentrations is given in Appen- ) dix B. Due to the range of operating condinons be due to temporary spiking incre.ises ;n the which may be expected from plants, several calcu- coolant concentrations rather than due to in-creases in leakage following stanups ar.d powei lations will be necessary to cover most situations. transients. These calculations will cover the range of expected equilibrium containment sirbome concentrations. (6) Monitor background count rates shall be based The following assumptions shall be used unicss on the activity and radiation levels expected techmcal justificauon is provided. at the detector location. (11 Expected coolant and RCPB leakage activity levels shall be taken from the American Na- intersystem laakage of coolant through the RCPB into nonal Standard Source Te*m Specification (ANSI N237). If paniculate monitors are used, other systems, e.g., primary to secondary system leaks the situation in which there is no failed fuel, in beat eachangers, is detectable by secondary system i.e., only corrosion products in the coolant. liquid radiation monitoring or secondary system olbras monitoring, shall be included. Coolant concentrauons will vary by orders of magmtude within short time kadiation monitoring does provide the capabihty for de-penods ,due to changes in operating conditions. tection of small intersystem leakages of coolant through the RCPB, but sensitivity requirements are not dehned (2) For paniculate monitors, owing to differences in source terms in PWRs, only Rb 88 which by this standard. Some of the factors affecting sensiuvtty
) is in secular equilibrium with its parent iso- and response time are the concentration of the detectable ishtopes in the secondary fluid, proximity of the sam- j tope Kr 88 need be considered. For BWRs. a l spectrum of isotopes shall be used. For the pling point to the leak, and required cooling of turh case with no fission products. several of the temperature samples for proper detecuon funcoomng.
corrosirm products will have to be considered The quantifichtion of leakage can be accomplished if since nt, single isotope dominates. . correlated with the known secondary system parameters such as flow, volume, activity, blowdown, and back-For gaseous monitors, Xe 133 gives over 95 i percent of the dose and is sufficient for PWR ground activity along with the pnmary system acovity analyses. For BWRs, a spectrum of isotopes Actual leak location can be identified only as being in shall again be used, the common barrier area between systems, or possibly. For iodine monitors, the five radioiodines 1131 to a panicular part of multibarrier systems by use of through l 135 should be considered because isolating valves or the type of detectable isotepn of their abundance as fission products 7.3 Containment Air Cooler Condensate Flow (3) Coolant leakage shall be assumed to be Collection for Lankage Detection uniformly mixed in the appropnate contain- The condensate flow-monitonng method consists 01 rnea- i ment or dry well free volume, unless HVAC suring the flow rate of the liquid runoff from the drum and building design mdicate that uniform mix- pans under each containtnent air cooler unit The in-ing will not occur within one hour. If the crease of such condensate runoff can be indicative of containment is continuously purged then this increased vapor phase leakage into the contammenim effect shall be included. The f*8Ponse and sensitivity characteristics of the instru-(4) Plateout factors of 0.999 for particulate,0.99 mentauon system used for conesate Dow momtonny for iodines, and aero fo shall be estimated for determmmg the abihty to detect conservative design bas. is shall be rapplied noblet Iases as oneagym leakage within one bour. The baseline of not. the activity in the coolant leakage. See Refer- mal condensate flow aball be derived from the range of sace (16) for additional informauon. nonnal operat ng parameters anticipated includmg the sapacted normal leakage from both the RCPfl and auxil-Q ($) The equilibrium containment airbome activity levels shall be based on available operating inry systems which could affect normal con...nsate Dom 7.4 Reactor Coolant inventory data or other documented basis such as Refer-ence (5). The concentrations at equilibrium in The reactor coolant closed loop design of PWR piants a containment from a contmuous leak of 1 to t1 . . . . . . .-.--m..--- . ,- - --- -. - .,n,-- y g - ,
l l
. i Lastrument Society of America J
permits the maintenance of a coolant inventory which is and contained spaces around piping and equipment, e.g . j c nstant except for controlled additions, controlled thermocouple anached to the metal sheathmg of thermalls insulated RCPB piping. False alarms are also min mved Q f j discharges, and uncontrolled leakage. Controlled coolant additions and discharges can be measured, recorded, and in this manner. ; corrected to maintain the inventory balance. The resulting Differential .emperature measurement may tx. nsed wheie informanon ts useful m evaluuting the integrity of the ambient temperature can be measured entenng and culmg RCPB. His surveillance method cannot generally be Irom rooms or areas containing RCPB equip nent and used on BWR plants with sufficient accuracy to be of. piping, e.g., with sensors located in heating und venulat. value to detecung small RCPB leakage. ng ducts. This application method minimizrs the effects In establishing this method for PWR plants the following of inlet temperature variations and thus may merease l parameters must be at 6 cast considered measurement sensitivity, provided that meast.renent re- 1 "Ponse time does not become tm long. The sanw apiib (A) Density (temperature and pressure) of each lluid CauN PnnC1P .l es desenbed previously f.or ab>olute tem-being measured. perature measurement also apply to the differennal tem. (B) Water levels in pressurizer and all collection points. perature measurement. (C) Duration of monitonng penod. 7.6.1 Sensor Time Response Characteristics l 7.5 Humidity Monitoring leakage Detection Temperature sensor response charactenstics expre>>ed in l I'** ""5 'h*' "'* 9" '*d DY I"***"**"'*"""'"* I Humidity momtonng can detect the increased vapor con . are usually based on tests in moving Guids at stais a i tent of air produced by the vapor phase poruon el flow conditions, most commonly, in water nowmg .o 1 ! coolant leakage. Humidity detectors placed withm the ft/sec 0.914 m/s) past the sensor. Sensor response used l pnmary contamment have the potential to detect leakage for leakage detection shall be stated m term > oi the i but suffer the quantitative uncenainty of the unknown anticipated fluid conditions that correspond to the miended i proportion of hquid to vapor from any leak source. measurement application. Sen>or time respimse charavier f When used in large volume containment areas, the sens" istics in a mnving air stream will usually be meseral tivity may be on the order of several gpmMI. These { orders of magnitude longer than -for the same sensor j detectors cannot locate leakage except for area localiza- using 3 ft/sec 0.914 m/s) water flow velocity put the i. non of the source, thus responding best m small con- sens r. 1 tained volume areas. The response and sensitivity charac-tensues of the humidity detectors shall be considered m 7.6.2 Sensor Temperature Response to l' estimaung system capability to meet the entenon of Coolant Leakage detecung a one gpm leakage within one hour. The base- Temperature sensor response to a one gpm coolant leak- ! line or normal specific humidity shall be based upon the age rate shall be estimated for each unique menummem l range of normal operauon parameters anucipated mclud. apphcstion by one of the followmg methods: ) ing the expected normal leakage rate. (A) Calculation of sensor response time from lahnea. 7.6 Temperature Monitoring Leaks ge Detection con details of the sensor and the surrounJmg ; The sensitivity and system response time of this leakage enclosed fluid conditions that result from coolant detecuan method is highly dependent upon the followmg leakage. application conditions: (B) Correction and correlanon of manufacturer sensor time response charactenstics under stated Guid son- I (A) The volume of space to be momtored by each l ditions to agree with the anucipated apphunon temperature sensor, ! fluid conditions. ' (B) The thermal transport distance and condiuons be-(C) Test measurement of the overall temperature sen-tween the sensor and the potential leak locations. sor system response under conditions which umu-(C) Potential beat losses from the measured volume. late the anticipated leakage detecuon appheauon (D) Nonnal temperature fluctuations expected in the conditions. absence of coolant leakage. Suggested procedures for methods (A) and (B) above are , I (E) he presence, or potential presence, of abnormal given in Reference (13) and Appendis B of this standard heat sources other than coolant leakage. Temperature sensors with remote electrome indication , and tnp devices shall have provisions for calibraung the I (F) The temperature sensor time constant (includ.mg tnp dev ce by insertion of a calibraung signal of known the time mterval between monitonng each point in value. This method will usually permit ready idenunca. mulupomt sequennal monitonng systems). tion of trip devices which are not funcuoning or are out i Multiple temperature sensor locations are ureally neces. of calibration.* ., ; sary to monitor large volumes such as equipment rooms or contamment buildmg areas to provide usef ul leakage 4 ,,, nee,or ,,,,,,in, ,,ci,,, ,,,,,pionn nau moya wnonno Occurence Reporu in wtuch unfi of neipoinu ior temperaivre ami.o ( l "i m measurement sensitivity'l. Temperature response and sen. (ranstas from 0.5 to srmer than 6 percent error' uccurred 'h nm i i detecuon apphcauons. See USAEC omce of Operanon> t sitmty can be optimized by mounung sensors m con- sa,a7 -5,tpo,m onen. noci,,, pn.e, piani saiey neiaica inunona fined spre such as relief valve or seal leakoff lines smoon", vuE.ES 003, daad Avaim 19R j 12 l 1 3
I 1
. Sui u) h. .u no.o y . .. .n. i ,, ,
7.7 Primary Containment Pressure Monitoring . activated by moisture tus produced by a leak) win.h j l RCPB leakuge will cause a pressure incicase in the may be used with an inchcatmp device that gener.ites .in I pnmary containment structure. The detection capabihty "I """ ",' F ""' * *" '**"'" """ 'I" D d d " ' b4 cf a pressure monitonng system is on the order of large from the piping on which they are mounteJ and 1. inly leakage because of the large size of the containment precisely locabre the leak arca. However, the amount ni j volume. Small leakage may cause pressu : changes that I*akage, cannot be measured. Typical design ent na are l fall within the ranFe of nonnal containmt.nt pressure 88ven in Appendix B.5. fluctuations for considerable penods of time. 7.9 Visual Observation j Quantitative measurement of leakage by pressure This is the most flexible of all rnonitoring methods. bui momtoring methods is of questionabic value for small detection sensitivity is heavily dependent upon inc he leaks due to the large number of vanables which can quency of inspection and accessibility of equipment am.is 1 influence the measurement. Also this method provides The American Society of Mechanical Engineers Boiler no information on the leakage source location within the and Pressurt Vessel Code. Ser. ion XI, covers penodic ; monitored containment volume. mandatory inspection requirements of the RCPU incio. { 7.8 Tape Moisture Sensors for Lankage Detection si n of devices such as closed circuit television. teinpera-ture sensitive tapes and pamt can be valuable aids m l The moisture sensitive tape method is a contmuous locating and identifying leakage sources. This method n. i monitonng system consisting of a sensmg element which not recommended as one of the pnneip.d monitonny is normally placed next to the insulation of process systems; however, it can be used to augment other detet- l piping. The element provides an electncal signal when tjon methods with respect to leak location. l l
? )
i ') TABLEI ! 1 CA PDILITIES OF LEAKAGE MONITORING METHODS I i
! Leakage leakage ' . Detection Measurement Lenk Method l Sensitivity Accuracy Location , Sump Momtonng l Ga G P6 Condensate Flow Monitors i G F' P l Radiogas Acuvity Monitor l F F F Radioparticulate Activity ! F F F Monitor .' l l i
s l Pnmary Coolant inventoryd , G G I P j (Based on Makeup Flow I integrator) ' Humidity. Dew Point F P P Tape Moisture Sensors O P G ! Temperature F P F i i Pressure F P P 8 Liquid Radiation Monitore G F F Visual' F P G
- G (Good) . can generally be apphed to meet mient of stus standa/d if properly desired and unland F (Fair) . may be acceptab6c. marpnal, or unable to meet intent of this uandard depending upon apphcanon con.
diouns and the number of meawrtment pomt6 or luc 4tiurn
- P (Poor) - noi normally recornnended but miths be used to monitor specific confined locanons 8
For PWR dunns ucady uate conditions
- For detection of indenyuem kakspe. may also be sacd for locanon function m sump or drain monnonn;
' Provided that the kak. age area is visible 13 g , v. . . . r -, r .r -
(- -- 9 y e,w . n.,r \ y i ___________________U
0 Instrument Society of America 8 REFERENCES
- 9. A. H. IUose and D. R. Miler, " Detection of Leaks -
Vh, in teaccessible Areas of the Boiling Water Reactoi-I. Code af Federal Regulations, Title 10, Part 50 - Nuclear Power Plant", Conference Proce2Jings. U.S. Licensing of Production and Utilization Facilities. Atomic Energy Commission CONF-671 il. Januarv Appendix A, " General Design Critena for Nuclear 1968. Pwcr Plants", Cnteria 14, 31, 32, 33. 10. U.S. Atomic Energy Commission, Docket No 50-
- 2. Code of Federal Regulations Title 10. Part 50 - 220. May 4,1972. Description of Leak Detecnon Licensing of Production and Utilization Facilitics, System of Nine Mile Point Nuclear Station.12 J Appendix B. " Quality Assurance Critena for Nuclear Schneider, Niagara Mohawk Power Corporation to Power Plants and Fuel Repmcessing Plants". D. J. Skovholt.
- 3. W. A. Maxwell, "A Survey of I.mak Detection 11. J. M. Harrer, J. G. Becherly, " Nuclear Power Reac-Methods for the On Line Monitoring of BWR and tor instrumentation Synems Handbook", Vol. I and PWR Loops" Southern Nuclear Engineering, Inc., Vol. 2, Office of Infunnation Services, U.S. Atonne SNE 36 (UC 37 4), October 1%7. Energy Commission,1973.
- 12. S. Glasstone and A. Sesonske, " Nuclear Reactor
- 4. R. L. Bell, "A Progress Report on the Use of Acoustic Emission to Detect incipient Failure in Nu. Engmeering" D. Van Nostrand Company, Inc.
l clear Pressure Vessel", Nuclear Safety, Vol.15, 13. Rosemount Engineering Company Bulletm voll No. 5. September-October 1974 Rev. B, Appendices C and E. .
- 14. A. J. Hornfeck, " Response Charactenstics of Ther.
! 5. U.S. NRC Report NUREG-0017, " Calculation of nemeter Elements ,, Transactions of the Amenc.m l Releases of Radioactive Materials in Gaseous and Society of Mechamcal Engineers. February,19 69 Liquid Effluents from Pressunzed Water Reactors" 15. W. H. McAdams, ,' Heat Transmwen . Md.naw.
- 6. IEEE Std. 344, IEEE Recommended Practices f.or Hill Book Company.1954.
Seismic Qualification of Class IE Equipment for 16. USAEC Report WASH 1258, " Final Environmental Nuclear Power Generating Stations,1975. Statement concerning proposed Rule-Making Acinur
- 7. Code of Federal Regulations. Title 10, Part 50 Licens- Nurnencal guide for design objective and Imntmg ing of Production and Utilization Facilities. Appen- conditions for operation to meet the entenon "as dix A, "Geners! Design Criteria for Nuclear Power , low as practicable" for radio-active material in light 1 Plants" Criterion 64. water cooled power reactor effluents" Wash. D C. .
l
- 8. U.S. Atomic Energy Commission Docket No. 50- July, 1973. W '
254, November 29, 1973, Abnormal Occurence 17. US DOE COO /2974-2 UC 78, "Acousuc Momtonny Report, B. B. Stephenson. Commonwealth Edison Systems Tests at Indian Point Urut I. Final Report" Company, Quad Cities Nuclear Sta:on to J. F. . prepared by Westinghouse Electric Corporanon ! O' Leary. (WCAP %50). I h i 1 l I THESE APPENDICES ARE INCLUDED FOR INFORMATION PURPOSES AND ARE NOT A PART OF THE STANDARD APPENDIX A LEAKAGE NOT INTO THE COPfTAINMENT A.1 latersystem Leakage Detection any systems should be monitored for intersystem leakage E*" exchangers Ms reactor coolant cleanup or chenu-Pmcess systerns connected to the portion of the reactor. cal and Mume contml systerns). If these systems se coolant system pressure boundary that is inside contain, isolated from the teactor coolant system dunng normal ment up to the second system isolation valve should be **"
- 8' ** **' ' D * * ' P" '? '
"P***
monitored for the detection of intersystem leakage, if isolation valves) should be monitored.' Table A shese systems or components are not isolated from the reactor coolant system dunng normal operation
- the inter-the systems or components for PWRs and 11WR con.
nected m me scactor coolant system that should oc [ face between components of these systems and second- , rnonstored for the detection of intersystem leakage. Taole A 2 identifies the typical methods used for mtersptem
'As liapied in secuan 6.6 of as saadart leakage detection.
14 1
.w
isoundary Lea um. ...n. 587.03 - TABLE A 1 SYSTEMS AND COMPONENTS CONNECTED TO itEACTOR COOLANT PRESSURC llOUNIDAlty i A. Pressurized Water Reactors
- 1. Accumulators l
- 2. Safety injection Systems (High and Low Pressure)
- 3. Pressurizer Relief Tank
- 4. Secondary Side of Steam Generaton,
- 5. Residual Heat Removal System (!nlet and Outlet)
I
- 6. Secondary Side of Reactor Coolant Pump Thermal Barriers l
- 7. Secondary Side of Residual or Decay Heat Renmval Heat Exchangers I 8. Secondary Side of 1.etdown Line Heat Exchangers i i ,
- 9. Secondary Side of Reactor Coolant Pump Seal Water Heat Exchangers i B. Bolling Water Reactors
' l. Safety injection Systems (High and Low Pressure Core Spray and Coolant injection Systems)
- 2. Residual Heat Removal System (Inlet and Outlet)
- 3. Reactor Core Isolation Cooling System
- 4. Steam Side of High Pressure Coolant injection (BWR-4 only)
! 5. Secondary Side of Reactor Water Cleanup Systern Heat Exchangers
- 6. Secondary Side of Reactor Coolant Pump Integral Heat Exchangers
! 7. Secondary side of Residual Heat Removal Heat Exchangers l l l TAllLE A 2 TYPICAL INTERSYSTEM LEAKAGE DETECTION METHODS l Methods ' i
- 5. Pressure or A P j 1, Lifting of Relief Valves i
' 2. Leak-Off Temperature or A T 6. Coolant Sampling
- 7. Radiation Monitoring l
- 3. Tank or Sump Level Indication S. Cooling Water Temperature or A T
- 4. Flow Rate or A Flow or Level Rate ?
I A.2 Primary Coolant Laak Detection detected by methods similar to those described in Sec. tion 7.0 of this standard. Such detection methods may l Outside of the Containment l initiate a safety related isolation from the reactor coolant Boiling water reactor plants have some systems outside system. Table A 3 indicates potential reactor coolant the containment, such as feedwater and main stream lines, which contain reactor coolant at or near reactor leak sources outside of the containment structure und leak detection methods used for their detection Thn operating pressure and temperature. These systems are type of leakage is not covered by the scope of thn l not a part of the RCPB, although they contain reactor coolant, Leakage in such connecting systems is presently standard (see definition of RCPB). 15
- - . . . . . .. ,....-g,.,-, 7
] )
1
\
lastrument Society of America J TABLE A 3 POTENTIAL LEAK SOURCES AND TYPICAL LEAK DETECTION METHODS d. . - 1 A. Potential 1.mak Sources
- 1. Residual Heat Removal System 1
- 2. Reactor Core Isolation Cooling System
)
- 3. Feedwater System Outside Containment
- 4. Main Steam Lines and Equipment Outside Containment 1
- 3. Typical Laak Detection Methods
- 1. Leakoff Temperature or A T '
- 2. Airborne Radioactivity
- 3. Sump Level. Flow Rate, or A Flow or Level Rate
- 4. Humidity Measurement j
- 5. Pressure or A P '
- 6. Liquid Radiation Monitor i
- 7. Cooling Water T or A T i
- 8. Cooling Air T or A T i
APPENDIX B g SUGGESTED METHODS AND PROCEDURES FOR LEAKAGE DETECTION SYSTEMS B.1 Sump Level and Flow Measuring Methods - B.1.1 Purpose A hydraulic icvel memory is provided by usine a ' sensing well which is piped to the sump .it .m ; This Appendix outlines suggested instrumentation meth- elevation below the lowest operating level in the ods for measuring sump level and leakage flow sump. The well is isolated from the sump by monitoring. It contains general equations for measure. solenoid-actuated valve. KV 3 which is operateil ment resolution and response time. These equations are by tame-cycle controller. KC 3. Valve KV 3 is based on simplifying assumtions and may require some closed most of the time. However, it opens pen- ; modification for a given configuration. odically to equalize the level in the sensing we!! ) 5.1.2 Methods with the level in the sump.. The level in the sensing well is measured by level tramonuer < B.I.2.1 Analog Level Transmitters and LT 18. The time penod between valve KV 3 elos. Level Memory Method ing and KV 3 opening is refened to hereafter n (A) General Description the measurement period. T. The output of level transmitter LT 1 A is adjusted by electronic con. This method uses a sensing well as a hydraulic verter LY-1 to compensate for any nonlinear level- , level memory device and compares present with no volume characteristics of the sump. if applicable. l previous values on timed cycles. Data recording and alarms for several measurements are provided. The difference in the outputs from electronic cuti-Fi B and and general equations in verter LY 1 and level transmitter LT lB is pm. vided continuously by subtracting relay. LDY 2. The output of LDY 2 is transmitted to g:nn (B) Details of Operation relay FY-2A. which is used to calibrate the Leakage inside the containment. other than identi. 300P by compensating for the meuvremem iw-fied leakage which is piped to the equipment riod and sump dimensions. The output o1 drain sump. drains into the containtnent sump as 2.A. at the end of each measurement penott. ;py unidentified leakage. The sump level is measured Provides a pseudo-instantaneous. leak rate h continuously by level transminer LT 1 A. The out- measurement. This output is recorded on pen 2 L put of this transmitter is recorded on one pen of of rec rder LY l/FR 2. the dual pen escorder LR 1/FR 2. The sump level is controlled by electronte level if
J g67.03 - Boundary leuk ocu. .o..
. =
l .1 e Eg!I Ig lgE [N iE E$$ $$
^- -$ Es $$ar , , g , g , g ,
________________q
- a m , i i .
I i i .
! i ! ~_, l l l n l gllet !
l l I I g . Wa i t R I w I l- I
.. q l i i n I e !
i A I l l [ l
- 4. _ _ _ _ _ U _ _ _ 4 _ _ A _ _ _ _ _ __ _ __ _ , I
! Y 1 I
I l 0
,. l l
I l I t . I l E
) r-l t 5 l .
I I I 1 I ! I E i i 1 2 l I I We -4 l [ l a i Ee i e i E I I
*g l 3
i t e l i A
. +
4 y i l 1 W. i ! I 5 ~ -+ te gn I i I i " f i 1 1 I l +j l I I I 7 i 4_ _ , ! 31. - _ J ,_ L __- ,5 i L_, I i l 9 s I l L [e s E ' I i I E * ', I" g, l l i 5 - b~ b5 I u__a___- , ( --4i i l N v u8 ig* AL l r' l L_._______________._______.J 17 l
..,..,.._.._ . _ . . . . m. m., 7., . ,,.7, . .- . 7' ' $ T
- T'#~'
i r I _ _ _ _ _ _ _ _ _ _ _ -
l i Instrument Society of America
.. l E t, te U
ta w L-
$ 1-g _ -
E a l
. .J -_a I __J __j 1,- !
o TNE.1(MINUTES) T T
+-+ +-en kT ----- VALUE OF LEVEL IN HYDRAULIC MEMORY (OUTPUT OF LT IB)
ACTUAL SUMP LEVEL-(OUTPUT OF LT-I A)
~:
L = TOTAL SUMP CAPACITY , 12 = SUMP LEVEL AT WHICH LS 1 TUR.NS ON THE SUMP PUMP 1: = SUMP LEVEL AT WHICH LS 1 TURNS OFF THE SUMP PUMP T = MEASUREMENT PERIOD t = SUMP FILL TIME t2 = SUMP DRAIN TIME iA = TIME FROM LAST LEVEL MEMORY RESET PRIOR TO BEGINNING OF SUMP PUM ' DRAIN l 1 Figure B-2. Typical Sump Fill / Drain Operation Curve i l switch L.S-l. When the level in the sump in- 1.0 gpm within one hour. The output of FY 2A creases to the upper setpoint la LS 1 ope is is passed to peak-memory device FY 28, which valve HV-4 and turns the sump pump on. remembers the highest value attained by the When the sump level decreases to low level li, input until its memory is reset. However. the LS-1 resets which turns the sump pump off. input to FY 2B is interrupted by a time del.i> and momentarily opens valve KV 3, resetting relay that is' activated once every 40 to t>0 the sensing well. Also, the peak memory devicc. minutes by time cycle connoller KC 2. The FY 28, is reset at this time. Thus, the pseudo- same si. er opens valve KV 3 momentanly, .ind l instantaneous and increase leak rate measure- then closes valve KV 3 to start a new mea,ure-ment cycles are restarted. The sump and level enent cycle. The time delay relay is adjusted so memory levels are shown as a function of time that as soon as the first measurement penod n g l l in Figure B 2. completed the input to FY 2B is interrupted. ! One alarm branch. FDAH.2. monitors the in. In this way the pseudo-instantaneous leak rate crease in the rase of unidentified leakage into for the first meuurement penod is retained uy FY 28. The leak rate messunng cycle a the sump. This branch provides an a! arm when the inersase in leak rate eueeds 0.5 spm to repeated, during which time the output of l ,,
. M1.UQ 11.1.2.4 Pump Controlled by Timer and FY.2B remains constant at the highest value Level Switch Method during the Grst measurement period. Receiver switch FDSH 2 substracts the output of FY 2B For mis Mod it is necem h h wg pw from the output of FY-2A, The resulting differ- discharge flow be . accurately measured. This method once represents the increase in leak rate. If employs a timer to tum the sump pump on and a level this difference exceeds the act point of 0.5 sw tch to tum it off. By measuring the time it taken tu 1.0 3pm. FDSH 2 actuates a high. unidentified pump the sump down and the pump discharge flow rate, leak rate alarm. FDAH 2. an average leak rate can be determined. The pump hc-quency established by the timer must be selected such Another alarm branch. FAH 2, monitors the that the requirements of Section "1.1 of this standard com total rate of identined and unidentified leakage be satisfied. The general equations related to this meibod into the sump. His branch has steeiver switch FSH 2. which receives the output from FY 2A. are described in' B.I.3.3.
The set point for FSH 2 is set to correspond to B.1.2.5 Samp Level er Flow Moultoring the total leak rate limit defined in the Plant M M~' " ' " - - - -- M ehod Technical Specification (typically 5 gpm). If this This method employs a single level or flow measurmi; set pomt is exceeded. FSH-2 actuates a high device and a microprocessor. %e microprocessor can ir leak rate alarm. FAH 2. Prognmmed to do all of the surery comparison, pump in addition to those described above, this sys. contr 1. recording display, alarm function. described tem has the following features: above. In addition, the microprocessor can simplify the calibration procedures for the leak detection systemt (1) The sump pump may be started and stopped by hand switch HS-4. NOTE (2) An additional level switch. LSHH 5. which Presently supplied radiation monitors usually tw is independent of level transmitter LT I A. clude field located microprocessors that can be actuates an alarm in case of pump failure. pr grammed r these additional functions. (3) An additipnal timer. XC-4 is provided to generate an alarm in the event that the B.I.3 General Equations pump out time eaceeds the normal pump-out time plus 10 percent. B.1.3.1 Anales Level Transducer and Level Memory B.1.2.2 Integrated Level Switches Method (A) Definitions This method employs the use of several levei switches Q = Sump capacity: gallons with slightly different set points. An average leak rate is q = Actual volume of h. quid in the sump. determined by measuring the time it takes for the sump Sallons level to increase from one set point to the next, taking - I L = Sump level (depth of sump)$ inches into account the identified leak rate and the sump j geometry. One of the following methods may be used. , g ; (1) Level transducer with electronic switches T = Measurement period (per.iod of time that the sump level is measured to determanc j (2) Individual independent level switches, or an average leak rate); minutes I (3) Flost type transducers with magnetically coupled = Percent of level capacity to which sump m switches is allowed to fill (between high & low ne general equations related to this method are de. set points): % scribed in B.I.3.2. = Pump discharge flow rate: gpm P B.1.2.3 Drain Pan with Moaltoring of = Change in level during ith measurement Flow into Surnp Method A le , Period; inches if the sump design can be coordinated before construction, = Resolution (degree to which menuring it would be possible to install a shallow drain pan just R system can detect leak rate): gpm below the floor level in which the sump is instal'ed. gg This would collect all of the leakage coming into the , , nump and direct it to a central point in the dram. pan fuH acale that would allow the total sump flow to pass through a = Level measurement loop error: E 010 spm flowmeter. Depending on the type of sinehes flowmeter, it may be necessary to provide a trap so that
$ the meter is filled. This method will provide an actual instantaneous sneasurement of the leakage flowing into a = Leakage rate (when assumed constant)-
8Pm the sump. With additional instruments such as those Emi
= Measured average leak rate for the ith described above, the inctease in leak rate can be deter- measurement penod: gpm mined and the sump emptied.
19 l
- . . . - - - - - - .,.m ..,..,....- . . .
7 l l
I R Instrument Society of America l K, = Actual average leak rate for ith men- Mou Q surement penod: spm 9" " 100 'N D. . ti = Sump fill time: minutes When the sump is filled to the high level set pome m 12 = Sump drain tirne: minutes one measurement period, Equations (B 3) and indi give a maximum value for resolution as follows: k = Number of measurement periods that are completed before the pump starts run' Rma = ' ii'" ' nmg: mteger 0+000
. Substituting Eiquation (B 6) into Equation (B-4) gives ta = Time from last level memory reset pnor the following limiting equation for the measmement to beginning to drain the sump: mmutes pe M . T:
NOTE O# Tm ill.h Fcr metric uraits, substitute litres per second for 10,000 gpm, meters for inches, and seconds for minutes (E) Level Change to Measurement Error Relationship in these definitions. The sump level for this method is allowed to mere.ne [ until it reaches the high level, then the pump is (B) Assumptions activated and will run until the sump level dmps (1) The measurement penod starts immediately af. down to the low level. Prior to primary pump ter the sump pump stops. activation, the change in sump level for a pven mea-
. surement penod may be expressed as:
(2) The error m determining the measurement period T, is not significant. gg, . I, TL (g,3, (C) Expression for Measurement Error The level measurement loop error may be expressed in general, the level measurement loop error, e, as: may be expressed as: ,L,, l - E= ine , 100 -
~"
( ! e=
~
I (c.)2
~
v2 (B 1) Note that the above equation is equivalent to the resolution expressed in terms of inches. Therefore. to ( where: be detectable, a level change must be greater than the
- level measurement error.
I c, = accuracy of the ith instrument used m the level measurement loop (= % of span) 41. > E iu im o = number of instruments used in the level mea- Substituting Equations (B 8) and (B 9) into equanon surement loop (integer) (B-10) gives: Since, for this method, the hydraulic level memory is L TL , elj,i ,g,,, allowed to equalize with the actua] sump level when Q 100 the sump is being pumped down, the accuracy of the of level switch controlling the sump pump will have no eQL,i effect on the total system error for average leak rate T > i L 100 ' O'I I detection. Therefore, it is not necessary to include the and accuracy of the level switch in the above equauon for level measurement loop error. 4* IB-13) g, > LT 100 (D) Resoluu.on (F) Determining the Measurement Penod T The measured average leak rate for the ith measure- In order to rneet the requirements of this standard, the ment period may be expressed as follows: measurement period. T, must be determmed care ully , L. = 1,e R (B 2) The following equations are provided for tha purpme. ! Refernns to the Typical Sump Fill / Dram Opersoon l where the resolution, R, may be expressed as (See Figure B. 2), it can be seen that t A a cunud-
- cred dead h so far as leak detection is concuned (B-3)
R = *100T since it is not a part of a complete measurement , As indicated in this standard, a resolution of 1.0 gpm cycle. Likewise,12 is leak detection dead ume smee l or better is required, therefore, the pump is draining the sump at this ume. Any R s 1.0 (B 4) leakage that may ccur during these two time penmis (tA.12) must be taken into account when deternmung [- The maximum number of gsllons that can be collected the measurement period T. To accomphsh thn. the l in the sump in one measurernent period may be dead tirne plus the measurernent penod must be ler expressed by: than 60 minutes to be able to detect a one gpm 20 l 1
.a
. .>7.0'3
- ==
increase of leakaFe in one hour. This equation may be g g g g g, g g
* " * " "'; adjacent level switches is equal tu the level chanp (B 14) that would be caused by a one gpm leak rate in une LA + t: + T < 60 hour.
or T < 60 - t: - to (B-15) N ae S (B.23, 60 t Assuming that the leak rate is constant (x = constant)' B.I.3.3 Equations for Pump Controlled by Timed umt we have: Level Switch 1"9- (B . s (A) Definitions it 100x The definition of Paragraph B.I.3.l A apply. l
* (B) Assumptions l (B-17) 12-(p,, (1) The sump pump discharge now rate is constant Since t A = ti - kT. Equation (B 15) may be expressed and is independent of surnp level.
cs: (2) The error in measuring pump down time is not O significant. T < 60 - (p *x)l00 100x I"9. + kT (B 18) i (C) Expression for Measurement Error 6000(p x)(x) mQp The equations of Paragraph B.l.3.lC apply. (l.k) T < IB 19) (p - x) (x)l00 (D) Resolution C' Resolution may be expressed as Equation (Lb6) of l I T < *O. P 6000x(p - x) (B.20; Paragraph B.I.3.1.D. ) x(p - x) (k 1) '"O' (B 24) ! R.u = 10.000 12 1 B.1.3.2 Integrated Level Switches for the sump pump controlled by level switches (A) Definitions method. For the sump pump controlled by a timer and l The definitions of ParaFraph B.I.3 I A apply. The s' level switch method, the sursp could possibly fill l following defininon also apphes to this method: completely. For this case, m = 1. N = Number of level switches employed in an inte. D.2 Condensate Flow Monitors grated level swtich method. Containment air coolers have drain pans that duct con-tamment atmosphere condensate to a sump. Othpr hquids (B) Assumptions e ming to the same sump can come from liquid sources Assume that the leak rate is directly proportional to s 16 comainmem, e.go service water. It is useful m the associated change in sump level. measure the chiller condensate m order to distmguish it (C) Expression for Measurement Error from these other liquids because the pnneiple source ul humidity in the containment is primary coolant flashing. Equation (B l) of Paragraph B.I.3.lC applies. One method of measuring condensate flow is to proude (D) Resolution . the drain pan with level switches. Then the measurement ts made in the same manner as for the sumps described To detect an unidentified leak rate of one gpm previously. The pans usually have gravity flow to the wittun one hour, the d;fference in set points of sump; thus, a valve can be used to centrol when the pan adjacent level switches must not exceed the is emptied. level change that would occur for a one gpm leak rate at the end of a one bout penod. Depending on the cooler size and expected 00*. it ma) i be possible to find a flow mets for this apphcat on. Al < (1.0 gpm)(60 min) L (B-21) However, it is cautioned that these are relatively snull q flows and the flow meters may be susceptible to becom-or . mg plugged. Al < 60L (B 22) B.3 Radioactivity Monitoring Methods 7 B.3.1 Altborne Radiatico Monitoring Coolant Leak-(E) Level Change to Measurement Error Relationship "8 ' M '** "* *"' Equations of Paragraph B.I.3.1E apply. The instantaneous containment atmosphere radioactivity (F) Determining the Number of Level Switches Re- c ncentrati n due t react r coolant leakage, for a sinyle quired to Satisfy Standard radioisotope, may be expressed as: in order for this method to detect a one gpm leak rate y dA = LC - AAV PrLC - QA (ib2.% withm one hour, a sufficient number of switches must dt 21 c3-
. . ......n..-.. - - . . . , .- , 7
I Instrument Society of America l l system should be calibrated and tested by the suppher ni l' where Q') V = containment free volume, cc . the order specified below to ensure that the complete A = concentration of radioisotope m the contam- system and all components conform to this specificanon j l ment atmosphere, nCi/cc . The test procedure should provide a step-by step method i C = concentration of radioisotope in the reactor cool. of venfying that all adjustments have been made and ant, pCi/cc that all functions operate properly. High and low linnts , L = leakage rate of reactor coolant to containment at. shall be specified for all adjustments, and should he ! mosphere, liters / min. listed on a system checkout sheet. De actual value ot A = decay constant of isotope, min the adjusted vanable should be recorded on the system Pr = plateout factor, fraction of leaking radioisotope checkout sheet. that is removed by plateout, dimemionlea Q = atmosphere removal rate (purge rate) of contam- Any of the tests or calibrations may be witnened by the ment, cc/ min (Q is zero for a containment with- reactor owner's representative 'at his discrenon. N purge) (A) ELECTRICAL CHECKOUT The electrical checkout should include point to-point continuity tests Simplifym.g equauon (B-25) yields: d2 , W (1 - Pr) . AA DV (B 26) and electncal insulation tests in accordance with ihe dt V requirements of Section 20 5.3.4.1 and 20-5.3..t.2 oi l Solution of this differential equation gives the isotope ANSI C37.20, Standard for Switchgear Anembhes. acuvaty concentration in the containment atmosphere as a However, coaxial and shielded cables should not h.ise funcuan of time for a given leakage rate. high voltages applied to them, nor should they be tested with megohmmeters. The manufacturer should For A = A. at t = 0, the solution is be responsibic for protecting instruments and deuces (B-27) that may be damaged by high voltage tests A= -[ - A.] e-'a *@ ' (B) OPERATIONAL TESTS The completely assem-This equation may be used to estimate the radioacovity bled, piped, and wired racks should be tested at the transient in the containment atmosphere due to a reactor
- factory in the presence of wimesses. (It is recommended coolant leak, and thus form the basis for esumating that pnor agreement be reached that any costs arisine monitor response to a leak. from these tests, incluc' g the repair on leak > or the replacement of defective matenals, will be borne by
\,
B.J.2 Airborne Radioactivity Monitor Sensitivity the manufacniterb Coolant leakage from the RCPB that does reach the, containment atmosphere vaponzes and is diluted by the (C) CALIBRATION After the instruments have been air in the containment free volume. De containment air accepted by the witness of (A) & (B) above. uut is conunuously sampled, ducted through detectors de- before shipment, each sampler-detector readout system signed to measure radioactivity in the form of gases. should be factory calibrated with aopropnate hquid or particulate, iodides, or a combination of these and gas sources. Aerosol detectors are calibrated by cross. retumed to contamment. Typical minimum detectable con- referenced standards. The sources should be traceah;e centracons at a 95 percent confidence level m a 1.0 to the Nanonal Bureau of Standards and eahbnaed mr/hr Co-60 gamma field for detectors currently avail- according to ASTM D 1690-67. D 2459 72, and D able are as follows: 2577 72, as applicable. This calibrauon should consi.st s of: Detector Type Concentration isotope "
*I 'Y***** '* *# '" **
- h. ioparticulate o Ucca C 7 Ci/ce" l 131 (2) Recording the background countmg rate m .i
- c. Radioiodine 1 x 10-*
specified Co-60 gamma field, unally 1.0 mR'hr. B.3.3 Liquid Radiation Monitor Seruitivity (3) Introducing a laboratory-calibrated concentr. mon A typical h. quid radiation monitor is capable of respondmg of the reference or control isotope mio the to a minimum detectable concentration of 10-8 pCuce of sarnpler, and recording the counting rate above 2n-65 in a 1.0 mr/hr Co-60 gamma field with a 95 background. percent confidence level. (4) Recording pertment environmental condinons and 8.3.4 Typical System Factory Checkout Calibration operating parameters, such as detector high and Field lasta!!stion Specification for Radiological voltage, spectrorreter and amphrier gain setonp. Monitoring Systems ratemeter time constant, ambient temperature. sampling system temperature, sampling system Before delivery, the complete tsdiologica! monitonng pressure, and actual gamma field intensity
- For a one tour collecuon tune or less with a moving filier tape as De calibration procedure should be performed with l to 1.5 inches per hour tape speed.
three concentrations. The lowest should prnduce
** T,or a one hour collecnon urne or leu with a faed fiker.
counting rate in the lowest decade of response, the
- anew refereced isoepes are used for sostneent cahbroon. median shall be approximately midscale between the eiere. inowv semenry swid te cron+cshbmed to the no lomt and hight.st concer.trations, and the hignes:
. < - c. - * *2i-
937 03 hours must be without any failure or dritt Freater in.m i should produce a countmF rate in the last decade of l specified. Durmy the Orst 100 hours the synem 611
/ response.
be themah cycled twy mb 24 houn to 120 A plot of the concentration of the reference isotope in 10*F and 70 :e 10*F with at least 2. hours at each terms of micro-curies /cc versus the net counting rate mmina{ tempenuure. De deteem shah be pLeed in produced should then be drawn on log-log scales. a radianon field that causes the readout to indicate m This plot should be used as a calibration curve in the the second of third dende of the detector runpc field. The three concentrations should lie on a straight Compliance with the drift specification may be cheLLed , line within one standard devianon of the net count D '*** "U" ' ) rate. Following the dispersion of each concentration 'I he ! into the sampler, a sample of the concentration should (E) FIELD CHECKOUT AND CALIBRATION onsite checkout should consist of using the auxthary be extracted into a glass vial for separate verificauon cf each concentration, at a place designated by the calibration source and/or the check sources to check the calibration of each detector and, unless excepuun reactor owner or his representauve. has been panted, to exercise au equipmem luncuans The followmg procedum should be used to demon- such as alarms and remote rundouts. When the sywm strate that the system meets radiological sensiuvity -M instruments meet tk fustinal quun specificanons: ments and the performance guarantees, the system may be accepted. (it is recommended that the mano. (!) Deterrnme the standard deviation of the back- facturer be requested to submit a quotauon to provide Fround counting rate under the specified operal-mg condmons (including 1.0 mR/hr Co-60 gam- a field engineer, if needed, to repair any stupiing ma field) by takmg the square root of the back- damage, make final connections, and check out .uid groue 1 coununF rate. calibrate the system.) B.4 Humidity Mc.nitoring (2) Muluply this standard devianon of the back. ground counting rate by the specified factor. B.4.1 Calculation of Leakage Rate usually 2.56 (2.56 corresponds to 99 percent
~ The instantaneous change in containment atrnosphere spe statistical confidence; for 95 percent confidence, cific humidity due to coolant leakage can be expressed multiply by 1.%). by the following relation:
A n J (3) From the calibration curve plotted as described fB 28) above, determme the net counting rate resulting from the specified minimum detectable
. M h= xL - i=1 I c, where concentration. De counting rate so determmed must be greater than 2.56 (or 1.96 if so M = total mass of atmosphere in contamment specified) nmes the standard deviation of the w = containment atmosphere specific humidity . mao background counung rate for the system sensitivary. of water vapor / mass of atmosphere to be acceptable. L = total leakage flow rate into the contamment.
mass / time An auxiliary Co-60 or Cs 137 calibration source should a = fractim of leak tha! flashes to vapor. be supplied as a field calibration aid. For the scintilla- Ibm-vapor /lbm-hquid tion detector instrument, the calibration sources should c, = cmdensation rate of "ith" catabmem air coob be taped to the detector crystal and the detector inserted ing unit, mass / time into its shielded sampler that has been purged, and the n " number of Operating containment air cuolmg resultant counting rate data recorded on the calibranon umts Curve . The fraction of leak that flashes to vapor can be deter-The posioon of the calibrauon source should be clear- mined from the isenthalpic relation: ly recorded by the use of identifymg reference marks (B 2% on the sampler and on the source. The system should h = ah, + (1 x) hr be calibrated in the field by using the auxiliary calibra- where uon source data Calibration data and decay curves for the auxiliary calibration sources should be supplied b = enthalphy of reactor coolan. m RCPB. Bru1bm. with the system manuals. (J/Kg) hs = enthalpy of saturated vapor at contamment tem-After the auxiliary calibration source is removed, the ature Btu /lbm (J/Kg) detector is replaced in the purged shielded chamber, hr = enthalpy of saturated h,qu,di at conta nment tem-and the check source is actuated. De counting rate Perature, Btu /lbm (J/Kg) data resultmg from the actuation of check source, B.4.2 Estimation of Humidity Transient
% should also be recorded on the calibration curve.
(Q (D) SYSTEM OPERATION De radiological monitor- The following derivation is useful in esumaung the hu. midity transiem in a containment due to an RCPU leak ing system shall be calibrated and operated as a sys- and thus forms a basis for estimating monitor's respon>c tern at the manufacturer's plant. The system should be operated for 200 hours conunuously, and the last 100 to a led.. 23 e,- - % r- - , . - - - , . - . . .
g .a _ --- - Instrument Society of America B.5 Tape Moisture Sensor Design Criteria De condensation rate in a containment air cooling unit he following typical design criteria are recommended U can be estimated by: (B 30) for moisture sensitive tape leak descetion systenn q = m(hi h2)- mh.2(wt - w2) (A) The tapes should be manufactured with h.docen where frec chemicals and conductors should be stamiess sicel, q = heat removal rate of air cooling unit, Stu! min, (Waus) . (B) The resistance between two stnps of conductor should be at least 10 megohms when the tape is dry. m = air mass flow rate in coolm.g umt. Ibtn air / min, (Kg/sec) The resistance of the tape should be not moie than
= enthalpy of air entering cooling unit. Btullbm. 100,000 ohms when moistened in one spot wah one hi UlEE) drop of water. De length of separately monmned = enthalpy of air at condensing temperature. Stu/ detector strips should not exceed approximately 20 bi lbm, (J/Kg) .
feet (6 meters). b.2 = enthalpy of saturated h. quid (condensate) at (C) he tape shoule not be applied directly to an leaving temperature, Bru/lbm U/Kg) uninsulated surface if the surface temperature eweeds I we = specific humidity of Air entering air cooling the boiling point of water. Weep holes in msulanun unit.lbm-water vapor /lbm-rir.(Kg vapor /Kg air) and cover materists should be provided so that water w2 = specific humidity of air leaving air cooling leakage from the pipe or vessel will dram on thJ tape unit,ltim-water vapor /lbm air (Kg vapor /Kg air) The tape should be qualified for the ambient ei suon- ' mental condition. of the application. This ecuation can be sched for wi by trial and error by assuming a final u:nperature, which determines the out- (D) A con rol unit which performs a cononuns ehed let conditions h.2. b2 and w2. and seekmg a balanced each 30 seconds or less and is capable of ide'notyn;: equanon. Upco solution of this equation the cor. densa- any single fault and of annunciating a zone alann tion rate, c, assumieg no reevaporsuon is: condition should be provided. c = m(we - wa) (B 31) , p;gure B 3 illustrates a typical installation method. Cther sensor and system designs are avadable. It can be shown that over any p actical range of concern ~ the above relationship can be replaced by the mathemati- 8.6 Estimating Temperature Sensor Time Constant cal appronnnauon. from Sensor Confipration and Fluid Cundhions c = a wj + S wi y (B 32) Realistic time constant estimates for thermocouple re. sistance thermometers and other types of temperature Where: a. S and y are constar.t coefficients dciennined sensors can be computed since the sensor time constam from a fit to parametne data of wi versus e, for the is the active sensor mass heat capacity divided by the conditions of interest, calculated using Equations 48-30) heat transfer rate to tne sensor m4>>. Tins retaounslup n and (B 31). These coefficients require denvation for each l containment configuration. given by the followi'ig expressions: Substitutmg Equation (B 32) into equation (B 28) with tEQ i1339 wi = w and for equal capacary cooling umt gives. MCpm I M = EL + a w2 - S w + y (B 33) T
- hA VCPv gm he solution to this equation for w = wo at t = 0 is. ,,
h^
~
18 + W - K ] where
= time constant: h (hrs), s (sec) e_ srK e ,j (8 34) T
! w S-K - B (j,,3,,,.C. y*C) H = heat capacity:
,h', 2a g_W Q = heat transfer: h (watts /*C. w/C)
B
" h = heat transfer coeffici:nt: g, ( )
where A = heat transfer area: f 2 (m2) k = p2 - 4a (y + xL) M = mass of juncti n or sens r materist 16. tkp g C,. = mass basis specific heat of junction material. O"2 a w.
%-8 2a - p + Vk BTU f J g Equation (B-34) may be used to estimate the specific lb*F \Kg*C/ 4 l
humidity transient in the containment due to an RCPB C,, = volume basis specific heat of junction matenal leak. The designer is cautioned that where other effects, auch as mixing, condensation, etc. are significant, these gig f _,J_g l ' famn should aim be ine!Wd in the equations used. ft)*F \ M)*C)
7.(1) yp1jTUKJfMJr/M TAff INJW47AW RCPB Pfff i l
/ <i. . , y
- 8 ,
~
s C% a %w. s ; y - i A s ' ' )
\ ,. i 1
4 1 c
%.e 9 /
l, I ,. _ l _s. =~ 70 RfADOW ,
'M ~~ ;,,- Z N.frR U M E W \
{ j Figure B-3. Typical Moist 6tre StretivfTs'pe fistallation ( i i ! I
.g V = volume of junction or sensor material: ft , (m l 8 i b=b d (B 38) i Satisfactory estimates of sensor time constants can usus't ****f*
ly be computed, where A T between sensor and set BTU W rounding fluid is sufficiently low to make radiation ei. k = fluid conductivity: g g (M j fxts negligible, by assuming that the major resistance tuf heat flow lies in the film coefficient betwees. the sensor ' N. = Naswlt number: dimensionless , and fluid medium. his assumption is va:c for a single time constant system such as a bare therrnegoople. Whea d j = sensor h ft (meter) t the sensing elemen ,is inside a well rht.re ma!; be to - One expression for the Nesselt number is: . Q or assumed more films to be q oc?!aveng.t consider. De bear. ar a. 'vansfet' esta j Nis= 0.43 i X RJ Pr eSi (13 39) ' film surface , he heat transfer film coefficient (h) is determined teu; /
- Table B-1 te'ow gives values of X and Y as a function the existing f%ht ainditions as expressed in the fouw;/ of RefMk!'s tJaiber that apply in iguation (B 39) abuve.
sng rejarre.shw . '
' d ', s .
25
'( ;<j l' .' \ ="r-y s
( r y;q ap , q -cw= ' 4
^o e ,l '
ly I i ur a s--
lastrument Society of America TABLEB1 .V.n VALUES OF X AND Y AS FUNCTION OF REYNOLDS NUMBER . X Y l Reynold's Number 0.989 0.330 l 0.44 0.911 0.385 4 40 0.683 0.466 ; 40 4,000 1 0.193 0.6I8 4,000 40,000 , 0.0265 0.805 40,000 '400.000 - ,
-I
_ deviations from reality will have been made in the an-The Reynold's number (Re) and Prandt! number (Pr) are sumptions used in calculations. The values for X and Y derived from the following expressions at the measure-in Equation (B-42) above are derived from Table B-1. ment fluid conditions. as a function of Reynold's number for the respecine j 4 Re = gp(dimensionless) (B 40) fluid conditions.
.. Temperature Sensor Response Churacteristica (B-41)
Pr = hdimensionless) The response of a single time constand (v) system tu a where: 588P change input is given by the following exprenuom p = fluid density: h (h) 7, . 7,(g ,t) + Te . tB 43) whem v = fluid velocity; ft/hr('") h = temperature at a time t Tv = final step change temperature value l = senscIt 63 percent itsponse time constant p = fluid viscosity: lb/ft-hr(b,8, ) t l
~
T, = temperature before step change . f When the response is exponential as for the above ungle l d = sensor diameter. ft (m) time constant capression, it can be shown that the dy-BTU W na tic arm of indicated ernperature in degnes is simply k = fluid conductivity; g g ,p (W 'C the rate of change in temperature multiplied by the time i constant (t).' J
= specific heat: After a time interval corresponding to three time C, Ib *FBTU ( K, ,C) constants, a sensor will have attained 95 percent of the .
I asponse to a sep change. Therefore, for a ramp ur B.6.1 Converting Sensor Time Constant for Different constant inte of temperature change, the instrument lug Fluid Conditions - time in seconds is approximately equal to the time con-When the manufacturer of a temperature sensor provides stant after elapse of a time equal to three time constants. the instrument time constant for a given set of fluid Some emperatum sensor designs, e.g, a sensor wnh ! conditions,'the data can be converted to a new set of thermowell, constitute a multiple time constant system i fluid conditions. Thiimethod usually is capable of more mat includes one or more thermal tag time constants. accurate estimates of time constants because manufactur- General practice, and the iment of this standard. in to ers' data is usua!!y based on actual tests. permit lumping of these sensor delays into a single inne constant, see Referenec (14). This procedure is not stnct-
!f the tirne constant 11 as measured under one set of ly correct in te mathemmical serac,' but will give satin-conditions and the ti is desired for another set of fluid factory eenrnstes of sensor response over relattvely small conditions, then the stationship can be empressed a indicated in equation (B 42) since the heat capacity and emperature sacremems, .
sansfer area of the thermometer remain unchanged. B.6.3 Coolant Leakage Measurement Sensithit) l vi k2 (0 43 + X Rei YPr2038) (B,42) The rate of change of temperature for the proce>s lluid E ,b2hI" ki (0.43 + XiRe Y Pr 8*) is a system can be estimated for an assumed ecolant , leakage rate or heat input rate from the following gener- l Calculated values for sensor time' constants should corre- alized equation: lett well witla experiments! results. Otherwise significant y w I
4 io.- ... . .. J Re.atoe l . Boundary Leak Detection f
.s 1 esion ,o 2mPernwrc. Howem, & Wyr sen>My pr (B-44) est mates of respective exposed surface areas (A), over-(di ) = I Q(if5Pu:)-I Q(output) all heat transfer coefficients (U) and differenc M and C, are the average mass and heat temperature capaci.is the rate of and heat sink area tempera l of the heat transfer Guid, dT/dt equation for heat losses apphes:
Y e cf the fluid temperature, I Q (input) is the (B 41) ? isti:n cf heat inputs within measuresnent system I Q (losses) = Ut Ai e ti + - U.A.at. Jartes and I Q (output) is the sumtrusion of heatWhere n corresponds to the number of different heat from the system boundary. d to be sem a nks considered removal in the calculation. and thining mechanisms are significant When addi these .itial conditions at t = o are assurne l .iy state coolant leakage, constant environment sa should tem- also be included in the estimates. For the purpose tures and the only new heat input to the system i of these calculations, justinable simplifying assumptions coolant leakage flashmg to steam vapor at a con- are permissible in arriving at heat transfer coefficients,
. rate, then (B 45) area, etc. For longer periods of leakag l d.
ICp dT (p) = Wh,-I Q (losses) WnPemmre Merences. Ussg he meh h e
= flashin8 age rate that will produce a finite and measurable tempe ere W = coolant leaka8e rate and b 8 sture change (sensitivity) in a given unit of time can be l I
tam or steam enthalpy. estimated. With auch backup design calculations, a co d temperature rate of ant leakage detection system which alarms on rate of l 4e subsature instrument indicate change of temperature rather than absolute d ol or differe! .anyc. t dT/di for the equivalent Guid temperatun:temperature rute may be justinable. The above methu change after a time lapse of three sensor time con-and rearrange the esumatmg sensitivity assumes complete and instantane. l ints (sec Section B.6.2 above), l t leakage rate in
.iation, then an expression of coo an ous mixing of flashing coolant and air vo .ms cf rate of change of indicated temperature for measurement introduces large ermrs in the response calculation. i.e.. .iste ume intervals is derived as follows: -
large mixing volumes with considerable distances be-(B-45) W= (h MC,t (h ) + 1 Q (losses) - tween se,psor and postulated leakage, ne summation of heat losses from the measurement the included in the calculations or the temp ystem hmits will be a nonlinear funcuon of time asmixing volumes. - 9 tem fluid (usually air and water vapor) temperaturesink masses increase in , increases and as the heat 21
. - y- -r -
r./,
}N /='10L Revision 13 9 01/09/79 THREE MILE ISLAND NUCLEAR STATION VASTER CO ADMINISTRATIVE PROCEDURE 51010 TECHNICAL SPECIFICATION SURVEILLANCE PROGRAM % {Q~ {p Table of Effective Pages h Date Revision Page Date Revision CON. R0. LED COPY ' ace Date g:
1.0 01/09/79 13 26.0 2.0 01/09/79 51.0 13 27.0 52.0 3.0 01/09/79 13 '28.0 4.0 01/09/79 53.0 13 29.0 54.0 5.0 01/09/79 13 30.0 6.0 01/09/79 55.0 13 31.0 56.0 7.0 01/09/79 13 32.0 8.0 01/09/79 57.0 13 33.0 58.0 9.0 01/09/79 13 34.0 10.0 59.0 35.0 60.0 11.0 36.0 12.0 61.0 37.0 62.0 13.0 38.0 14.0 63.0 39.0 64.0 15.0 40.0 16.0 65.0 41.0 66.0 s ' 7.0 42.0 ,' a.0 43.0 67.0 19.0 68.0 44.0 69.0 20.0 45.0 21.0 70.0 46.0 71.0 22.0 47.0 23.0 72.0 48.0 73.0 24.0 49.0 25.0 74.0 50.0 75.0 Unit 1 Staff Recomm nd Approval Unit 2 Staff Recommends Approval Approval __ I Date Approval Date Cognidnt 0'ept. Head Cognidnt'Oeht. Aead Unit 1 PORC Recommends Approval Unit 2 PORC Recommends Approval M Date D*7ES Date M-?/ V'-Chairinan of PORF p '.vCha'irinan of PORC Unit 1 Superintendent Approval Unit Superintendent Approval _ kf (9bt;w Date / W- 79 's
/w" Date a :
p' / Manager Generation Quality Assurance Approvat S Nff.T ga rggg De te _/~ 9_2;-
1010 ) Revision 13 . 01/09/79 THREE MILE ISLAND NUCLEAR STATION
)
ADMINISTRATIVE PROCEDURE #1010 TECHNICAL SPECIFICATION SURVEILLANCE PROGRAM 1.0 GENERAL To maintain, schedule, and control all surveillance procedures within NRC specifications and plant operations management requirements, and record and report surveillance on a current schedule, results history, and exception condition basis.
~1. 2 SCOPE The scope of this procedure is limited to the legal requirements and personnel responsibilities of Technical Specification Surveillance.
i The Nuclear Plant Surveillance Scheduling System Report Procedure llanual and the Generation Maintenance System Edit / Update Procedure
) Manual give detailed information on the computerized portions of the system. It should be consulted for any specific cuestion on
{ the use of input forms, system codes, output reports etc. 4
1.3 REFERENCES
1 1.3.1 Technical Specifications. TMI Unit 1 and TMI Unit 2. I 1.3.2 Nuclear Plant Surveillance Scheduling System Report Procedure Manual - GPU Service Corp. ; 1.3.3 Generation Maintenance, System Edit / Update Procedure Manual - l GPU Service Corp. 2.0 RESPONSIBILITIES l 2.1 The TMI Unit Superintendents are responsible for rompliance of their respective Surv;illance Test Schedules to their respective Technical Specifications: l 1 n I i j
i 4 ~1010 Revision 13
, 01/09/79
- a. Unit 1 Technical Specifications - Section 4 -
- b. Unit 2 Technical Specifications - Section 3/4 . I 2.2 The Unit Superintendents are responsible for assigning a Supervisor to schedule and coordinate the required Surveillance Test Programs i 1
for their unit. (Said Supervisor hereafter referred to as the i G.M.S. Coordinator). The G.M.S. Coordinator may be the same person for both units.
)
2.3 The G.M.S. Coordinator shall be responsible for: (a) Scheduling of all tests with a recurring frequency of once per week or less. (eg. once per month, once per year, etc.)_ 3 (b) Informing the PORC Chairman and the Supervisor-Quality Control l l of any testing not accomplished within the allotted time I interval. (c) Informing the PORC Chairman and the Supervisor-Quality Control 5 4 whenever test results do not meet their acceptance criteria by l submitting to them a copy of the test's E/D Sheet as soon as is practicable after receiving the data (in the case of a ' previously reviewed, but recurring "E" or "D", the PORC Chairman and the Supervisor Quality Control need not be informed). 1 (d) Maintaining a Follow-up Action tog of all Exceptions and l Deficiencies. 2.4 The Supervisor-Quality Control is responsible for providing surveillance.
- of the Surveillance Test Program at a frequency, and in areas,
! selected by the 00A Department. Those procedures selected by the QA Department fc. surveillance will be stamped with the following words on the computer scheduling sheet. " Performance to be observed by Quality Control. Notify QC at least four hours prior to starting i
#010 . Revisier, ;3 01 . task". The QC Department shall be notified prior to the perfor/09/79 mance of a task which QC has elected to surveil (at least 4 hours notificatici is preferred).
3.0 REQUIREMENTS - (Scheduling, Accomplishment, Retest) 3.1 Scheduling Requirements 3.1.1 Tasting with a frequency of more often than once every seven (7) days is manually scheduled by the G.M.S. Coor'dinator. 3.1.2 The G.M.S. Coordinator shall issue to each department (normally two (2) days prior to the start of a new week) a Weekly Checklist applicable to that department which includes all Surveillance Performance Forms. 3.2 Accomplishment Requirements 3.2.1 Upon completion of each procedure the results shall be compared to the acceptance criteria. If any parts of the results are unsatisfactory, corrective action must be taken as described l in Section 3.2.4 - Exceptions and Deficiencies. 3.2.2 Data sheets will be signed by the person performing the task, and reviewed and approved by his foreman where required by the forms and procedures. 3 't. 3 The G.H.S. Coordinator shall insure a record of completed testing is maintained, and inform the PORC Chairman, and the Supervisor - Quality Control of any testing that will not be completed within the specified time interval. 3.2.4 Exceptions and Deficiencies Problems encountered while performing surveillance testing shall be I recorded on an Exception and Deficiener List (Enclosure 2 for Unit
') 1 and Enclosure 3 for Unit 2 and Station Surveillance). This list.
3.0 - l l
1 1010 I
' Revision 13 01/09/79 when required. Will be attached to the completed Surveillance Data l Package. All Exceptions and Deficiencies must be evaluated and initialed as soon as possible (to show review) by the Shift Supervisor.
(See 3.2.4.2). . 1 3.2.4.1 Exceptions l Exceptions are defined as problems encountered during surveillance testing related to obtaining required plant conditions or to i the use of an existing procedure (i.e. - equipment'out of I l service or a procedure which can not be followed). Exceptions I l relating to procedures may be resolved by the use of a Temporary ! Change Notice and/or a Procedure Change Request (See AP 1001 l for details). The TCN is used when time does not permit the 1 use of a Procedure Change Request or when a temporary condition does not require a permanent procedure revision. Exceptions relating to plant conditions may be resolved by rescheduling j part or all of the Surveillance test. The action taken to , resolve an exception should be explained in detail on the Exception and Deficiency List. Resolution of an exception should not require retest if the intent of the test is r.ot affected. 3.2.4.2 Deficiencies Deficiencies are problems relating to test results not meeting the test acceptance criteria. Deficiencies are normally resolved through corrective maintenance performed in accordance with a Work Request followed by a successful retest. NOTE: All work requests generated as a result of a r. surveillance procedure deficiency should contain:
it; w Revisier. 13 01/09/79 (a) "1" in the " Priority" number' space. (b) Surveillance Procedure number which contained the deficiency in the " Describe Malfunction or Modification Desired" blocks. (See Retest Requirements below for details). If a Deficiency is evaluated to be a Reportable Occurrence by the Shift Supervisor, it should be immediately reported to the appropriate Unit Superintendent (or his designated alternate) or the appropriate Supervisor $L f Operations since the Deficiency may require an immediate report or a report within 24 hours to the NRC. Corrective action should g initiated immediately g resolve deficiencies, j 3.3 Retest Requirements 3.3.1 A Retest is required when initial test results fail _to meet the acceptance criteria or when the test could not be entirely performed. Retest results may be recorded on another set of 3 data sheets or in the retest section of a Work Request. 3.3.2 The retest may be accomplished by repeating all or part of the '
]
Surveillance Procedure or by including in the Work Request sufficient retest requirements to meet the intent the Surveillance
]
Procedure, 3.3.3 The system / component may be retested immediately following corrective action or later as plant conditions permit. 3.3.4 For instruments covered in the Technical Specifications , Surveillance Program, an out-of-service sticker shall be affixed to the readout device prior to the start of any ; testing .or maintenance which could render the instrument ! inoperable. , 5.0 . O
I i i 1010 1 Revision 13 !
. 01/09/79 ]
l The sticker shall be logged into the " Instrumentation Out-of-Service Log" by the Shift Supervisor or his designee. The sticker shall not be removed until all testing or maintenance l 1s complete or the instrument is returned to an operable 1 status and the sticker has been logged out of the " Instrumentation Out of Service Log" by the Shif t Supervisor / Foreman or his designee. 4.0 ENCLOSURES 4.1 14crmal Surveillance Data Flow (Enclosure 1) shows typically the , 1 processing of Surveillance Data from the initial test performance l l until all open items are closed out. Surveillance flow may deviate from this Flow Chart.
]
l l- 4.2 Surveillance Procedure Exception and Deficiency List (Enclosure 2) shows the form used for "E's" ind "D's" for Unit 1 Surveillance and typically the "what" and "who" of various protions of the i form. 4.3 Unit 2 and Station Tech Spec Surveillance Exception and Deficiency ) List (Enclosure 3) shows the form used for Unit 2 and Station "E's" and "D's" with typically the "what" and "who" of various portions of the form. 6.0
)
1010 Revision IJ 3 Surveillance 01/09/79 Data Flow Enclosure 1 Test j Performance j 1 l Deficiency j i Shift supervisor Review & Initial E Exceptica If Reportable Occurrence
. NotifybnitSupt.
E or Supv. Ops. D y l E i Foreman Approve l
> Test Performance GMd "oordinator C & Cognizant j Deficiency k Engineer Review of Data if j Exception Necessary n
v l Provide Chairman of l PORC & Supervisor-Q.C. a Copy of ' l New E/D Sheet
' ) ) l '~' >(
{ CopyEbSheet $ InputDatat[ComputeTnrough $ to Follow-Up g Performance Forms E Action Log g S . u - a e f Heview of Input Edit / Update % s Operations C Make Corrections as Necessary v - File in Cont y y; Room
<- ~
ol e Late Jobs-Inform Request Daily Trouble Report dobs Approaching Late D ! PORC Chairman, ( Review Daily Trouble Report H Expedite Performance th , Supervisor Q.C. ~ b Clear E's/D's As Can-Receive Retest Data from Appl. Dept. A J, J, Clear In Clear From Follow- Sign-off Or,iginals in Computer Up Action Log Control Room File 7.0
- 1015 EHCLOSURE 11 Revision :
01/09/79
, Surveillance Procedure Exception and Deficiency List Surveillance Procedure flo. Name Date Data Taken
- Date Completed and/or Justified No. E/D Par Description Resolution Signoff Date Enter Brief description of The Shift Foreman, each E and/or D encountered Shift Supervisor, Department Foreman insure paperwork is for each E or D encountered Review EAD Sheet for possible Reportable Occurrence. Their l Shift Superviso initials show review.
Responsibility ?"S* i I
_- ~~w' 2*a -
. UNIT 2 AND STATION N
- TECH SPEC SURVEILLANCE Exception and Deficiency List
-~
dRVEILLANCE PROCEDURE NAME SURVEILLANCE PROCEDURE NUMBER DATE DATA TAKEN _ . THIS SURVEILLANCE IS REQUIRED FOR MODE (Sl_ MODE h t u lle.(S) A se TAKEN IN 4.ra r..r m . ., - . DATA.aeove .
. , . 1,,,, A .
couenwe=v ossicaatoa I >
~, ,, g ,,, ,y,, _ ,,,, i.oe m ou uNt? 7gg M E I*D+ , SCHEDWLe NO. .. .. ., m n,.
n nn T fl I l , l . ; 03 lo ol TIS; { 1
} #, L8f.h E / D Nunsee,/ Panny Rnph aR 3eet. / Peretiptumi (If apol.)
Ol3 A '
' l l l I 0 4 C ,
l lll Il O 3 A l{. { l i l!T 0 4 C l llll l < l ! O 3 A l ! l llll j ll j 0 4 C ' l l lI lllll l
- f. A_ i l l l l
l!ll l! O ! 4. C l l ' ll ll l l!I l l, l , ' IIIl _ RESOLUTION DESCRIPTION (Tfhyl.)
'XN
- SEQ No. M *- pes 44fphew
} '
0 3 A l l ! [0 4 C l l ; O 3 A l ll l 'l ' l l 0 4 C l lllll l ' [ J! i i l O 3 1A
~ l1 ll l l lllI.
04 C i ll l ,l;lll 1 i ii. I,Illlil L I Il!I!!t -- SHIFT SUPERVISOR COMPLETE SECTION BELOW: TEST COORDINATOR COMPLETE BEL. I NO QUESTION
~ The Resolu' tion column has fully ex-
- 1. This E or D placed the Unit into an action statement. plained what has been done to close out this itern. (I{ Appl .)
- 2. This E or D was caused by Equipment Failure.
_ This E or D is closed:
- 3. This E or O has caused the performance of this Surveillance to be unsatisfactory for Mode (s)_.
with regard to satisfying the intent of the Tech Spec. i Shif t Supervisor Initials & Date: --
l . ./ ' ' . Revisien 8 / a P 0 11/04/77 THREE MILE ISLAND NUCLEAR STATidN STATION ADMINISTRATIVE PROCEDURE 1012
'{ .
SHIFT RELIEF AND LOG ENTRIES I - (- rase of Ef4ective Pages Date CONTRO. LD COPY Page Revision Page Date Revision & _Date M. 1.0 08/11/75 3 2.0 11/04/77 8 2.1 11/04/77 8 3.0 01/12/77 6 4.0 08/11/75 3 5.0 08/11/75 3 6.0 08/11/75 3 7.0 08/11/75 3 8.0 08/11/75 3 9.0 11/16/76 5 i10.0 06/20/77 7 '11.0 06/20/77 7 I l { i Unit 1 Staff Recommends Approval Unit 2 Staff Recommends Approval Approval - A Date Approval # Date Cognizant Dept. Head Cognizant Dept. Head Unit 1 PORC Recommends Approval Unit 2 PORC Recommends Approval
@ 4D w Date /0/'
3 /b7 O 8 iki(~-1/v Date O ' p Chairman of PORC i
/.theirman of PORC PORC comments of included PORC comments of _ included (date) (dats) 9y- Date By Date Approvai. '
N) $ Mgr. , Gen.- Quali3,V/ Assurance Date /W77 Approval
- A t'f Date_/C /
?
(Antin,n Superinter dent / ' . .
,u .vu Revisiun 3 I THREE MILE ISLAND NUCLEAR STATION ADMINISTRATIVE PROCEDURE #1012 SHIFT RELIEF AND LOG ENTRIES Table of Contents 1.0 GENERAL 1.1 Purpose 1.2 Scope I 1.3 References 2.0 RESP 0NSIBILITIES 2.1 Station Superintendent / Unit Superintendent )
j 2.2 Supervisor of Operations I i s 2.3 Shif t Supervisor /Shif t Foreman I! 2.4 Control Room Operator J j l 2.5 Supervisor-Quality Control ) J 3.0 REQUIREMENTS f 3.1 General 3.2 Hourly Log 3.3 Control Room Log : 3.4 Control Room Log Prior to Initial Criticality 3.5 Shift Foreman tog 3.6 Radio Log 3.7 Shift Relief , I I 1.0 i 4 _._.__._____m._______ . _ _ _ _ . _ . _ _ _ _ _ _ _ ___
i - i01; Revisicn 3 o 11/04/77 1.0 GENERAL j 1.1 Purpose This procedure establishes the requirements for shift relief and for recording station operating activities in logs or other controlled documents on a shift basis. l.2 Scope This procedure outlines the responsibilities of the on-duty and the on-coming shift personnel during shift relief. It also describes the various shift records and logs involved and i the instructions required to maintain these records to conform l to Technical Specifications and to assure the adherence to the requirements of FSAR. 1.3 References l a. Metropolitan Edison Technical Specification Section 6.5.
- b. Appendix A, N.R.C. Safety Guide 33, Section A.
- c. F.S. A.R. Volume 4 10 (Unit 1),11,12,13 (Unit 2)
- d. Hourly Log (Form 3042379)
- e. Control Room Log
- f. Shift Foreman Log 9 Radio Log - Form 00:4-ME
- h. Met-Ed Co. 's Operating Instructions & Procedures applying to the use of the Mobile Radio System.
2.0 RESPONSIBILITIES 2.1 The Station / Unit Superintendent shall be responsible for the implementation of the recording of all data relative to the testing and operational status of the TMI Nuclear Station. 2.0
Re.: 1 :.
- li,:;/77 2.2 The Supervisor of Operations shall be responsible for tne I ' review, approval and storage of the logs and records. The supervisor of Operation's (or his designee) shall review the !
t I L 1 4 I
\ l i
i 2.1 '
'*- 1012 Revision 6 01/12/77 .
{
- Control Room Log and the Shift. Foreman's Log a minimum of once per week and document the review by initials or signature.
J The Supervisor of Operations shall institute action where necessary to correct any deficiencies in the recording techniques or significant operating abnormalities adverse to quality and determine the cause of such significant operating abnormalities which have occurred since his last review of the shift foreman's 109 Significant abnormalities are defined as plant conditions which have potential for affecting the health and safety of the public. 2.3 The Shift Foreman shall be responsible for the review and sign off of the Shift Foreman's Log at the completion of each shift. He shall also make all the detailed entries in the Shift Foreman's Log. ! 2.4 The Control Room Operator shall _be responsible for maintaining l I and signing off the Control Room Log. The control room operator shall be responsible for maintaining the Radio Log. (per par. 3.6). 2.5 The Supervisor-Quality Control shall be responsible for the surveillance and audit of all the subject documents. . 3.0 REQUIREMENTS 3.1 General i 3.1.1 Shift records are defined as Hourly Log, Control Room Log, Shift Foreman Log, Check off Lists, Recorder Charts and Computer Printouts that describe or record operating information and events. These l records comprise the information that is necessary for evaluating operations or for analysis of previous operations. I - - - - - - - - - . - - - _
i
~' i s8- Revision ;
3.1.2 All log entries, reports, chart notations, etc. , must be legible, accurate, understandable and written l in ink. 3.1.3 Upon assuming the duty, the operator (s) will record the time and date and make the appropriate notation indicating his knowledge of the plant status, e.g.
- a. Hot Shutdown - as before !
- b. Cold Shutdown - as before
- c. At Power - as before j
- d. Hot Standby - as before i
3.1.4 All log entries shall be prefaced (in the left hand margin) with the time of entry in (24) twenty-four , l hour notation (e.g.-0800, 1300, 2400, etc.). , 3.1.5 The individual responsible for maintaining logs must
' l sign and date the portion or portions of the log :
which cover their shift assignment. 3.1.6 Upon completion of the duty, the operator will sign the log. l 3.1.7 Each recording instrument shall be checked on the 11 to 7 shift for correct timing and legibility of marking. 3.1.8 Each chart shall be marked with the date, time, and instrument recorder name when replacing the chart paper. In addition, the variable speed recneder charts shall be marked to indicate any change in the chart speJd. 4.0 h_
;P 1012 05m/M Revision 3 3.1.9 If it becomes necessary to make any corrections whatsoever in the various logs, erasing is prohibited.
A single line will be drawn through the incorrect information and the corrected information shall be recorded adjacent to or in a space available with i reference to the deleted information. The individual . I l making the entry shall initial the lined out information, j l l 3.2 Hourly Log 3.2.1 This log will reflect plant parameters on an hourly I basis. It will normally be prepared by the plant l ro per tor n the event th t the co u t ! functioning. If manual preparation is necessary it l will be performed by the control room operators and auxiliary operators. 3.3 Control Room Log 3.3.1 This log will contain the following types of information:
- a. Information concerning reactivity.
- b. Alarms pertaining to reactor core conditions with detailed explanation.
- c. Any abnormal condition of operation.
- d. Releases of radioactive waste, gaseous or liquid.
This log is an official document required by F.S. A.R. and cannot be removed from the Control Room unless authorized by the Supervisor of Operations. 5.0
l d U- ,evis;on 3 l, 3.3.2 The 11 to 7 shif t shall-initiate their Control Room Operator's 1.og on a new page. It shall be prefaced i
) with a brief description of the plant status, e.g. l
- a. At (80) Eighty Percent Power '- WT-/MWE l
- b. Rod Positions
- c. Statements regarding unusual evolutions or aligivnents.
- d. The following equipment is out of service (list).
3.3.3 All alarms that involve reactor core conditions shall be recorded by the operator along with an ! explanation or reason for the alarm e.g. T ave, Reactor Coolant System, pressure, flow, or power. 3.3.4 All reactor startups - record time, T ave, rod positions, l 3 primary pressure and boron concentrations (all normally taken at 10-8 amps on the Intermediate 4 Range). 3.3.5 Reactor Shutdown - Record rod position, Tave, time, l Boron Concentration and reactor power prior to inserting rods for shutdown. 3.3.6 Plant Startup - Record the major events and time of occurrence, e.g., starting RCP's, starting turbine warmup, etc. 3.3.7 Plant Shutdown - Record the major steps in shutdown and the associated times. 3.3.8 Each system startup, significant status chanaes, anc shutdowns shall be recorded. Also, record major 1 6.0
1
. Ap 1012 08/11/75 . Revision 3 l l.
unit status changes such as opening of primary system, flooding of fuel transfer canal, etc. and the time of the event. 3.3.9 Equipment Malfunction - List the equipment and j t problem and any restriction placed on the plant. 3.3.10 Abnormal o,peration - Record any condition that causes principle primary or secondary parameters variation from normal. 3.3.11 Reactivity Changes - Record the addition or dilution of RCS Boron Concentration, assignment of rods to , different groups, power changes, etc. 3.3.12 Reactor Trip & Turbine Trip - Record the conditions l prior to the trip, cause of trip (if determined), l [ corrective action taken and time of the events. 3.3.13 All significant power level changes in th'e power range shall be recorded. 3.3.14 Start and stop of any radioactive gaseous or liquid releases shall be recorded in the Control Room Log along with the release permit number. 3.3.15 Any abnormal valve line ups and equipment out of service, or returned to service shall be recorded. 1 3.3.16 Changes of position of any " defeat", or "by-pass" switches shall be recorded. l 1 3.3.17 Acenmplishment of testing - Record title and number 1 o! the test performed, and the start and completion times or time of suspension of the test. The perfor-mance of all periodic tests and inspections required by the Technical Specifications shall be recorded.
"' .i. ;vn 3.3.18 Tht above sections are not meant to be all inclusive but merely indicates the type of entries that s.hould be made. When doubt exists, enter it in the log.
3.4 Control Room Log Prior to Initial Criticality The following operations shall be recorded by the control room operator. 3.4.1 Execution of switching orders - Record order number and time as indicated on the switching order. 3.4.2 Placing equipment out of service or returning equipment to service Log the name and alphanumeric designator of the equipment, time of shutdown or return to service and reasons for shutdown or nature of work completed. 3.4.3 Accomplishing Test Function - Record the test number, title and time the test was started and completed. l 3.4.4 Operating systems under direction of startup - List the system with a brief description, e.g., Jogginp 5.R. valves SR-V-2 and SR-V-6 for position indication i checks. 3.4.5 Major Plant Status Changes - e.g., Filled C.W. Basin for Tower 1A, Filled Borated Water Storage Tank, De-Energized 0.E.S. 4160 Bus, etc. , also record the l time of the event. 3.4.6 Completion and Turnover of Systems - e.g., Acceptance of a system by Met-Ed - Record the date with a description of the System and Systems' Boundaries. ! 8.0 i _ = - - - - _ - _ _ - _ _ _ - . _ . - _ - _ _ . - - - _ -
- ' 1012 Revision 5 11/16/76 3.5 Shift Forenan Log 3.5.1 This log will contain a summary of.the station operation and major events that occur on each shif t.
Significant abnormalities which, occur will be explained in greater detail than would be expected in the .;. control room log. 3.5.2 The left hand side of the log should be reserved for changes in status of E.S. components, and major. plant status changes at the discretion of the Shift Foreman. 3.5.3 When equipment covered by-Tech Specs. is taken out of service, the reason, time Tech. Spec. requirements and sample results (if applicable) will'be noted on the left hand page of the Shif t Foreman's Log. Additionally, all requirements for running, sampling and/or testing will also be noted, delineating times, when above must be accomplished. (i.e.) 7/31/75 1100. Ran SP #1303-4.16'on IB Diesel generator to prove its operability, removed 1A DG I from service for oil ring inspection an'd repair. 'l B DG must be tested daily until 1 A DG is returned to service, j 8/1/75 1100. -Tested-1A DG in accordance with SP
#1303-4.16. Test satisfactory.
When the equipment is returned to service the time /date shall also be noted on the lef t' hand _page of the S.F. Log. i
. Revis h /
06/20/77 j 3.5.4 Upon assuming the duty the Shift Foreman shall record in his log the plant conditions which exist.
- a. Temperature (RCS) i
~!
- b. Pressure (RCS)
- c. Boron Concentration (RCS)
- d. MWe Net
- e. Rx Power
- f. Control Rod Positions 3.5.5 Upon being releived the Shift Foreman will note that fact along with the time and sign his section of the log.
( 3.6 Radio Log 3.6.1 This log will contain the data which must be recorded to meet the requirements of the (FCC) Federal Communications Commissions' Rules and Regulations, such as (1) Log any contact with another f base station and (2) Log entry made and signed by technician performing maintenance on the radio unit. 3.7 Shift Relief , j 3.7.1 All shift operations personnel shall be responsible for maintaining , { l their duty station until properly relieved. The Shift Supervisor, j l l Shift Foreman, Control Room Operators and Auxiliary Operators shall be relieved by qualified personnel only, e.g. those personnel who are properly licensed and properly informed of J the plant status, operations in progress, and any special instructions which may be applicable. The relieving individual will discuss the plant status, operations in progress and special instructions with on-duty personnel so that he is , l adequately informed prior to assuming his shift duties. 1 10.0 . I
60;z Revision 7
.= ,
26/20/77 , 3'.7.2- The Control Room Operator will acknowledge his understanding and awareness of the changes in the plant status since his own
-last entry by signing the Control Room Log prior to assuming the shift duty. -3.7.3 During his shift the relieving individual shall insure adquate review of station logs, records, special instructions, etc.,
which have been generated since his last shift. The logs and I
- records to be reviewed should include:
- 1. Shift Foreman tog l
- 2. Control Room Log 1 I
- 3. Hourly Computer Log l 4. Tagging Application Book l 5. Equipment and Fuel Status Boards
- 6. TCN and SOP Books
- 7. Standing Order Book )
- 8. Operations Memo Book
- 9. Preventative Maintenance Schedule Books
\
- 10. Revision Review Book 1
11.0
" '* " 7 f 2301-3D1 l id Revision 2 ( t - 5' 78 i iONT!!0i1ED COPY}r 'THREE MILE ISLAND NUCLEA ptr, O,. t 68 r p\ {Q{y UNM M SURVERMNCERCS PROCEDURE INVENTORY 2301-3M
,a,e, 0 NOTJEMOVE 1 ,,,, ,, ,,,,,,ive g Date Revision g Date Revision g Date .R evision 0 26.0 51.0 1.0 08/19/77 52.0 2.0 08/19/77 0 27.0 28.0 53.0 0.0 08/19/77 0 54.0 4.0 08/19/77 0 29.0 30.0 55.0 5.0 12/12/77 1 56.0 6.0 08/19/77 0 31.0 32.0 57.0 7.0 08/19/77 0 58.0 8.0 08/19/77 0 33.0 34.0 59.0 9.0 05/04/73 2 60.0 10.0 05/04/78 2 35.0 36.0 61.0 9* .0 08/19/77 0 62.0 12.0 08/19/77 0 37.0 38,0 63.0 13.0 08/19/77 0 64.0 14.0 05/04/78 2 39.0 40.0 65.0 l 15.0 05/04/78 2 60.0 1 16.0 08/19/77 0 41.0 42.0 67.0 17.0 08/19/77 0 68.0 18.0 08/19/77 0 43.0 44.0 69.0 19.0 08/19/77 0 70.0 20.0 0 45.0 08/19/77 46.0 71.0 '1.0 08/19/77 0 72.0 22.0 0 ' 47.0 ,
08/19/77 48.0 73.0 ! 23.0 08/19/77 0 74.0 24.0 0 49.0 08/19/77 50.0 75.0 25.0 Unit 1 Staff Recommends pprovat Unit 2 Staff Recommends Approval Approval Date Approval Date ~ Cognizant Dept. Head Cognizant Dept. Head Unit 1 PORC Recommends Approval tin ~ih 2 PORC R ommends Approval N Date 13 __ Date ' E-( Chairrnan of PORC g< 'Vairman of PORC __ Unit 2 Superinten nt Approval Unit 1 Superintendent Approva! D ate -"~~ JA nN,rf Date E ,V k . Ma we Genern*:on Qual;ty Av irarec Approvat, __ _, /k _ _ _ D a t e ,, _ , _ _
2301-3D1 Revision 0 08/19/77 THREE MILE ISLAND NUCLEAR STATION UNIT f2 SURVEILLANCE PROCEDURE 2301-3D1 RC SYSTEM INVENTORY 1.0 PURPOSE. To insure coq:11ance with TMI Unit 2 Technical Specification 3.4.6.2 which states: iC5 / e r ._, k bdd N *
- a. No pressure boundary leakage.
- b. 1 GPM Unidentified leakage.
- c. 1 GPM total primary to secondary leakage through steam generators.
- d. 10 GPM Identified leakage from the Reactor Coolant System.
- e. 8 GPM Controlled leakage at a Reactor Coolant System pressure of 2155 + 20 psig. _.
By performance of Technical Specification 4.4.6.2.d which states: Reactor Coolant System leakages shall be demonstrated to be within the above limits by performance of a Reactor Coolant System Water inventory balance at least once per 72 hours during steady state operation. 2.0 APPLICABLE SURVEILLANCE FREQUENCY AND MODES Surveillance Frequency - At least once per 72 hours during steady state operation. Modes - 1, 2, 3, and'4. 3.0 LIMITS AND PRECAUTIONS
~ ~
3.1 Avoid addition and removal of water from the reactor coolant and Make-up systems during this test. The following operations should , not be conducted during this test: O 1.0 ,
, 'l l
~- --
r, , d .' t J ~ I , , , l.,A _' , ,_
,' > 2301-3D1 f R. .
i Revision 0 i . 08/19/77 I s it . Make-up or chemical addition to the make-up system, i lb'. Sampling of the RCS or make-up system. i
/
- c. Venting or draining of the RCS or make-up filters.
d .' Changing purification demineralizers or make-up filters in
/ .
service.
- e. Boration or deboration.
3.2 The RG and make-up system should be maintained in a steady state condi. tion during this test. Changes in valve line-ups, coolers-in-service, pumps-in-service, etc. should be avoided. l 3.3 For the most accurate determination of the RCS leak rate, the f initial and final conditions of reactor power, RCS temperature, pressuie and pressurizer level should be identical.
*4
- a. The same sources should be used when recording initial and final RCS temperature, pressurizer level, make-up tank level and RCOT level. Differences in sources could be misinterpreted as RCS leakage when comparing successive readings.
3.,5 Minimize power level variations during this test. 4.0 LOCATION OF SYSTD /ASSEMBH NOTE: See enclosure two for source of data. 4.1 he computer is thn favored source of information. 4,2 If two or more inwts are not obtainable on the computer, the patch panel is to be used to (htain the required data. S.0 EQUIPMENT REQUIRED S.1 Leads for patch panoi to voltmeter. 6.0 PROCEDURE 6.1 If the computer is available, initiate the " Reactor Coolant Leakage Test" as detailed in Enc 1'sure 11. Data sheets for hand calculations are provided for use as folives: pr ' I I- _ _ _ _ _ _ _ _ -
i
" 2301-3D1 '
J" Revision 0 08/19/77 i
. Data Sheet For Use When f 1 Computer is operational but not available for RCS program. l 1
i 2 Computer not operational, 5.1.1 Obtain samples of secondary coolant from OTSG's end perform a If activity { gross activity analysis of the sample per 2304-3D3. ! levels are significantly above background (>T where T = 3 x background + background) this indicates a possible leak. When a primary to secondary leak is indicated, the magnitude can be determined from the growth of specific nuclides in the secondary l
\
system. If the gross activity analysis indicates no leakage, enter O_ on line 27 on Data Sheet 1 or line 29 on Data Sheet 2. 4 6.2 If a hand calculation is being performed, obtain the applicable data sheet (see step 0.1) and take the initial set of data. After a minimum on one hour, take the final set of data and determine the net RCS leak rate as per instructions on the data sheet. ! 6.3 If changes to the RCS inventory must be made during the performance of this test, they must be accounted for using Data Sheet 4., Operations such as adding water to the Make-up Tank or sampling the RCS may be accounted for in this manner, however, these should be avoided if at a'l possible. 6.4 If the net RCS leakage is excessive as defined by the acceptance criteria in section 7, proceed as follows: l 6.4.1 Pe .rm another determination of the RCS leak rate.
,e
-w., \'
I . '. : 2301-3D1 . Revision 0 08/19/77 6.4.2 Insure that no un-accounted for operator action has occurred that would change the RCS inventory. (See section 3.1 for a listing of possibilities). If such an action has occurred, it invalidates the measurement. Enter this in the " Remarks" section of the data sheet, clearly describing the action that l l l invalidated the measurement. 6.4.3 Initiate action to determine the source of leakage. Check l items'such as:
- 1. Proper valve line-up.
- 2. Valve stem leakage.
- 3. Make-up packing glands.
- 4. Relief valves not seated properly.
6.4.4 if sources of leakage are found, initiate Data Sheet 3, Identified Leakage.
- 1. Document completely the source of leakage. (Example:
MU-V-159A, 3/4" Make-up line drain to A loop, stem leakage through packing gland).
- 2. Determine the leak rate. The most perferred method is to collect the leakage in a calibrated container. (Obtain from Chemistry Dept) over a known period of time. Use Data Sheet 3 Identified Leakage, to document the method used to determine the leak rate. Include: equipment used, length of measurement and quantity of leakage collected (Example: Used 50 cc graduated cylinder to )
I collect 40 cc of water in 10 seconds). I 1 I
- 3. Determine the leak rate and enter on Data Sheet 3 Identified Leakage, j
1 2301-301 i Revision 1 J 12/12/77 l
- 4. The Shift Supervisor shall make the initial determination )
J 4 of the safety implications of the leak. If he decides that there are possible safety implications, he shall notify the proper personnel in accordance with Station AP 1014. Call of Standby Personnel to Plant. 7.0 ACCEPTANCE CRITERIA 7.1 If the identified reactor coolant leakage rate ( Line 30 of RCS ) Leakage Data Sheet 1 or line 32 on Data Sheet 2 exceeds 10 gpm, 1 proceed with ACTION statement 3.4.6.2.b. ! l 7.2 If unidentified reactor coolant leakage (Line 31 of Data Sheet 1 or line 33 on Data Sheet 2 exceeds 1 gpm, proceed with ACTION j statement 3.4.6.2.b. 7.3 With any PRESSURE B0UNDARY LEAKAGE. proceed with ACTION statement 3.4.6.2.a. . 7.4 With primary to secondary OTSG tube leak greater than i gpm, proceed with ACTION statement 3.4.6.2.b. -) l 1
\
l i 1 i i
I,
- 2301-301 Revision 0 DATA SHEET 1 08/19/77 RCS LEAK RATE For Use When Computer is Available Initial Conditions - To be taken at one minute intervals Computer t j t 2
t 3 l Point l Line 1 Time t=2 { l Line 2a T Lo p A 393 + + = +3= FT CA l c Line 2b T Lo p A 390 + + = 43= FT HA H O Line 2c T L op B 396 + + = 43= FT CB c O ( Line 2d TgLoop B 391 + + = 43= FT HB , Line 2e Unit Tave (Sum of Lines 2a, O 2b, 2c, and 2d + 4) 44= F Tave
- Line 3 Przr Level 1682 + + = 43= in L PZR Line 4 MU Tk ' Level 347 + + = 43= in L MUT Line 5 RCDT Level (Patch Panel + + = 43= VL RCDT DVM #64)
- Final Conditions - To be taken at one minute intervals.
Computer t t Point t) 2 3 j Line 6 Time t=2 O Line 7a T to p A 393 + + = +3= FT CA c line 7b THLoop A 390 + + = 43= 4T HA O Line 7c T Loop B 396 + + = 43= _FT CB c Line 7d T Loop B 391 + + = 43= %T HB H Line 7e Unit Tave (Sum of Lines 7a, O 7b,7c,and7d44) 44= F Tave Line 8 Przr Level 1682 + + = 43= in L PZR _Line 9 MU Tk Level 347 ,
+ + = 43= in L MUT Line 10 RCDT Level (Patch Panel + 4 =_ 43=
___ V LRCDT DVM#61)
i 2301-3D1 Revision 0 08/19/77 DATA SHEET 1 (cont'd) NOTE: Carry Algebraic signs through all steps.
- 1. Mass change due to RCS Temperature change.
(Use line 2e and Figure 1 to determine density) 3 Line 11 a. Initial Density 1bm/ft (Use line 73 and Figure 1 to determine density) l 3 Line 12 b. Final Density 1bm/ft
- c. RCS Volume change (line 11 minus line 12 x 10,678*
ft 3)
- NOTE: 10,678 ft 3is the RCS Volume'for 582 0F l minus the pressurizer. For 532 F use 10,673 ft3 . If more accuracy is required for other temperature >525 F use a linearly extrapolated volume. j 3 l Line 11 lbm/ft 3
-Line 12 lbm/ft Line 13 10,678* ft3 x lbm/ft3=_ lbm j i
- 2. Mass change in Pzrz. Level l (Line 3 minus Line 8 x 120.8 lbm/in)
Line 3 in :
-Line 8- in Ibm Line 14 120.8 in x in = lbm
- 3. Mass change in MU Tank Level (Line4minusLine9x255lbm/ inch) ,
Line 4 in
-Line 9 in Ibm
_Line 15 255 in x in = lbm 7.0
^~ . l 1 - - 2301-3D1 l Revision 0 )
08/19/77 DATA SHEET 1 (cont'd)_ l
\
1
- 4. Total RCS Mass Change (Algebraic sum of lines 13,14 and 15)
Line 13 RCS Tave change of mass , j Line 14 Pressurizer mass change Line 15 MUT mass change Line 16 RCS Albm {
- 5. Total RCS change in gallons
- a. Mean Tave (line 2e plus line 7e + 2) {
l O j Line 2e F O
+Line 7e F O
Line 17 RCS +2= FT HEAN
)
i
- b. Use Figure 2 and Line 17 to find i Line 18 Conversion factor from lbm to gallons: gal /lbm l
l c. RCSInventorychange(Line16timesline18) Line 16 lbm Line 19 xline 18 gal /lbm = cal = RCS Volume Change f
- d. Operator c,aused changes to system Line 20 (FromDataSheet4): gal i e. Total RCS Leakage ,
(Algebraic sum of lines 19 and 20) Line 19 cal.
+Line 20 cal.
l l Line 21 RCS = gal. Total Leakage
- 8.0 l
l ;
1 I 2301-3D1
'.cr*.-. Revision 2 05/04/78 J.
DATA SHEET 1 (cont'd) i
'ej.
l
.6. Total Leak Rate ,,
- a. Duration of Test (Line 6 minus Line 1)
Line 6 ,, h m
-Line 1 h m Line 22 = h m= min
- b. Leak Rate (Line 21 divided by Line 22)
Line 21 Line 23 +Line 22 = gpm Total Leak Rate ] (Identified and Unidentified) ,1 l
- 7. Identified Leak Rate
- a. Volume change in RCDT
]
(Use Figure 3 for level to volume conversion) l Line 5 V= gal
-Line 10 V= gal Line 24 RCDT Volume Change = gal
- b. Operator caused change to the RCDT
~
Line 25 (From Data Sheet 4: gal CAUTION: Removing water from the RCDT should be entered as a negetive change to' the water inventory. ' - Line 26 c. Identified leakage: gpm (sign should be minus) l (From Data Sheet 3) Line 27 d. Primary to Secondary OTSG Tube Leak: opm (Sign should be minus)
- e. Identified Leakage to RC Drain Tank.
(Algebraic sum of Line 24 and 25). ]
'I a
1 _____ -_-_ _I.
2301-3D1 l
..
- Revision 2 l
' DATA SHEET 1 (cont'd) ' . . 05/04/78 line 24 RCDT Volume change Line 25 RCDT change by operator Line 28 sal Identified RCS Leakage to RCDT F. Identified Leak Rate to RCDT Line 28 gal. l Line 29 + Line 22 m= gpm Identified Leak Rate to RCDT (should be neg'ative or zero) l
- g. Total Identified Leak Rate .
1 (Sum of line 26, 27 and line 29) f Line 26 gpm Identified leakage (From Data Sheet 3) Line 27 gpm Primary to Secondary leakage
+ Line 29 gpm Identified Leak Rate to RCDT ;
l Line 30 gpm total. Line 31 Abs value of line 30 gpm total Identified Leakage.
~
I
'MMI_T,: Line 31 shall not exceed 10 gpm. (See Acceptance Criteria 7.1).
Line 27 shall not exceed 1 gpm (See Acceptance Criteria 7.5)
- 8. Unidentified RCS Leak Rate (Subtract Line 31 from Line 23) l Line 23 gpm Total Leak Rate I
-Line 31 gpm Identified Leak Rate Line 32 gpm Unidentified Leak Rate (1 gpm maximum)
LIMIT: Line 32 shall not exceed 1 gpm (See Acceptance Criteria 7.2). I REMARKS: PERFORMED BY DATE f*BDr'"q ov fp T P _-___--_m
[ 2301-3D1 Revision 0 08/19/77 DATA SHEET 2 RCS LEAK RATE For Use When Computer is Not Available Initial Conditions - To be taken at one minute intervals Patch tj t 2 t 3 Panel Point Line 1 Time t= 2 Line 2 Tave 36 + + = 43= V Tave ! f.ine 3 Przr level 23 + + = +3= in L PZR . ( Line 4 HU Tank 96 + + = 43= in L MUT Line 5 RCDT 64 DVM + + = +3= VL RCDT Final Conditions - To be taken at one minute intervals Patch Panel t j t 2 t 3 l Point ' Line 6 Time T= 2 Line 7 Tave 36 + + = +3= V Tave l Line 8 Przr Level 23 +
+ = 43= in L P2R Line 9 MU Tank 96 + + = +3= in L MUT Line 10 RCDT 64 DVM + + = +3= VL RCDT CAUTION: When using patch panel voltage, be sure to record the voltage Polarity (+ or -) and treat this as an algebraic sign.
11.0
--^^
a ---r _ _ _ _ _ _ _ _ _
- - es.1 m 2-
[ __
<*3, p 2301-3D1 .p 88$)99
- DATA SHEET 2 (cont'd)
NOTE: ' Carry Algebriac Signs Through all Steps
- 1. Volume change due to RCS temperature,
- a. Temperature conversions
- 1) Initial temperature ('570 minus, line 2 times 5):
Line 11 570 F - (Line 2 V x 5 F/V = F
- 2) Final temperature (570 minus line 7 times 5):
O O Line 12 570 F - (Line 7 V x S F/V = F
- b. Initial Density (Use Line 11 and Figure 1 3
Line 13 to determine density) lbm/ft
- c. Final Density (Use Line 12 and Figure 1 3
Line 14 todeterminedensity) 1bm/ft RCS volume change (Line 13 minus Line 14, times 10,673 f t3 )
~
d. 3 Line 13 lbm/ft 3
-Line 14- lbm/ft Line 15 10,673 ft3 x lbm/ft 3
- 2. Volume change in PAP, level (Line 3 minus Line 8 x 120.8 lba/in)
Line 3 in
~ -Line 8- in Line 16 120.8 lbm/in x in = lbm
- 3. Volume change in MU Tank Level (Line 4 minus Line 9 times 255 lbm/in)
Line 4 in
-Line 9- in Line 17 255 lbm/in x in = lbm 12.0
2301-3D1 Revision 0 DATA SHEET 2 (cont'd) 08/19/77
- 4. Total RCS Mass change (Algebraic sum of lines 15,16, and 17) !
Line 15 Tave change of mass ; Line 16 Pressurizer mass change j l Line 17 MUT mass change l l Line 18 RCS albm ) l
- 5. Total RCS change in gallons
]
- a. Mean Tave (Line 11 plus Line 12 + 2) l
" ~
0 Line 11 F 0
+Line 12 F k.ine 19 O RCS +2= FTHEAN
- b. Use Figure 2 and Line 19 to find
~'I'e20 Ln conversion factor from 1bm to gallons: gal /lbm
- c. RCS Inventory change (Line 18 times Line 20)
Line 18 albm Line 21 xline 20 gal /lbm = gal J
- d. Operator caused changes to system Line 22 (From Data Sheet 4: gal
- e. Total RCS Leakage (AlgebraicsumofLines21and22)'
Line 21 gal ,
+Line 22 gal Line 23 RCS gal Total Leakage
- 6. Total Leak Rate
- a. Duration of test (Line 6 minus Line 1)
Line 6 h m
-Line 1 h ,
Line 24 h m= min
_m_ __
-w -- -A ' 2531-301
^- Revision 2 05/04/78 i DATA SHEET 2 (cont'd) b .- Leak rate (Line 23 divided by Line 24) Line 23 ; Line 25 4Line 24 = opm Total Leak Rate 4 IdentifiedandUnidentified)
- 7. Identified Leak Rate
- a. Volume change in RCDT .
. (Use Figure 3 for level to volume conversion)
Line 5 V= gal l l
-Line 10 V= gal Line 26 _RCDT Volurne Change = gal , . b. Operator caused changes to the RCDT I Line 27 (From Data Sheet 4: gal j
CAUTION Removing water from the RCDT should be lg j _ entered as a negative change to the water inventory. Line 28 c. Identifie[ leakage: gpm (sign should be minus) l (From Data Sheet 3) Line 29 d. Primary to Secondary OTSG Tube Leak: gpm (sign should beminus)
- e. Identified leakage RCDT (Algebraic sum of Line 26 and 27).
Line 26 RCDT volume change !
'Line '27 - -- - RCDT change by operator Line 30 ---
(gal Identified should RCS Leakage be negative or zero) to RCDT l esse -.m ee m emmen.. --
2301-301
- Revision 2 . 05/04/78
_ DATA SHEET 2 (cont'd)
- f. Identified Leak Rate to RCDT Line 30- gal
_Line 31 + Line 24 m= gpm Identified Leak Rate to RCDT (should be negative) 9 Total identified Leak Rate (Sum of line 28, 29 and 31) Line 28 gpm Identified leakage from Data Sheet 3
+ Line 29 gpm Primary to Secondary leakage + Line 31 gpm Identified leak rate to RCOT Line 32 gpm total. $
Line 33 Absolute value of line 33 _gpm total identified Leak Rate. O LIMIT: Line 33 shall not exceed 10 gprn.(See Acceptance Criteria 7.1)
- 8. Unidentified RCS Leak Rate (Subtract Line 33 from Line 25) l Line 25 gpm Total Leak Rate
-Line 33 gpm Identified Leak Rate l Line 34 gpm Unidentified Leak Rate (1 gpm maximum) l LIMIT: Line 34 shall not exceed 1 gpm (See Acceptance Criteria 7.2)I Remarks:
l 1 PERFORMED BY DATE APPROVED BY DATE 15 0
- j ! - 2301-301 Revision 0 l 03/19/77 ;
DATA SHEET 3 RCS LEAK RATE IDENTIFIED LEAKAGE f I
- 1. Source of Leakage (Describeindetail,attachdrawingifnecessary)
- 2. Method used to determine leak rate (Describebriefly)
- 3. Identified Leak Rate: __ gpm (for use in Step 7.c of Data Sheet 1 or 2)
Performed by -- Date
- 4. Possible Safety Implications (ShiftSupervisorCheckOne)
Yes(Initiatenecessaryaction) No Explain l i I Sh'ift Supervisor Date I 16.0 T ,-a . . . . _ .. . . . .
.o
f .- !. ' 2301-3D1 ( Revision 0 08/19/77 DATA SHEET 4 RCS LEAK RATE OPERATOR CAUSED CHANGES TO RCS INVENTORY Identify operation that caused change: { 1. l
- 2. Time Operation Started:
. Time Operation Completed:
- 3. Calculations: )
l I
- 4. Total change to RCS inventory: gal. !
NOTE 1: If change is to RCDT enter in section 7 of Data Sheet 1 Line 25 and Data Sheet 2 Line 25. NOTE 2: If change is to any other part.of the system, enter in section 5 of Data Sheet 1 Line 20 or Data Sheet 2 Line 20. l NOTE 3: SIGNS: Removals from the system have a negative (-) sign. ; l Additions to the system have a positive (+) sign. l l PERFORMED BY DATE APPROVED BY DATE i L l 17.- __.-__m_a
1 I a - o s. ce n . I
- e. o, c. r* es o *
.' e .
_% _._..%.___ _. %.. C _%. _ .% .D_9 9 301-301- c. _. .-.- _ _ .
~ & -! %. geyfston Q. !.. D. ... . ... .1 4. _.. . _ _ . !. _ ' . Y. .... .. _. ._ . . R. ... . i : . _. . g p .c .
f....0 ..
- p ,.
- w. .
. ..r ., ..i t..-l,.. . _ . . . . . , . 3. . . . 1. . . '1 . . _. . . f ....__ _.. . _ .. . ..__ . . ....= . . .. .. *. l .. ._._e._... .. . . . . .. ....
_l..
. . r... _.. . . . _=. . .. ..... . . . _.. . .
e
- t. - _ . . _ .._.
. _ . _._.4_. . . ._ _... _ . _ . ._.
n . _. . .... .._.
..t. .. ... . w. r. ._ ._..r.... . :. . . . p. . . . . 5 . %. . . . . .. _ . . . _a........
w
. . _ . _ ._ _ . . ._._n_....
- o. ..s..i.......
.. r .
a
.. . . . .. .L. . .o . .t.
_. .; .l.. ,_-
- . * .l*. .6.. .
1 _. .. -
.... . . 1 . . . ... ... I.s. ._. _.._.._.....d. .
_. _.... ._. s l _.4.._ . . _. . .. . . . . _ . . . . ._.
. 9..._.._.... . . . ..r .. . . . .
9
...4... . . _ . ._. . ..... . . _. . . . ..9. . ._._.,....s..2 > ..... .1.. . . .. . . . .. . . . . _ . . _ . ..., . . ._ .. _.,i . . _ _ . . . _. ... . . . .. ..r......... . _..... . ........t.__.. . _ . . . .r._.... .m. .
_....t_..
.. ...i ._. ... .t . . .
i
. .... . . . ._.. .. . _ . , . _ _ . . . _ ....4.... . . t_.....__- . . ........_.x......
1
.. . .... , . . . . . .t. . _ . _ . . . . . . . _. .. ........ . ._. .. ... .. . 1 . . . . . . __.4..... . . . . _ _ . ..._ . .J... __.... ... . .... . . .... _._. . s . ... . . ._. i ._. .. . . . . . . . . .. t . . . . . . . . = . . .. ._.... . . .. .. . , . _.. _J . ._. .. . ._. . , . .
_...i.._., . . _ . . _ . . . . .... .._..t.._.._. _.... _... _. . 3, . . . . . . . _ .
. . . . ._ . . s. .. . ... . . . ._ ._...._.._...c .. . . . . . . ._.. . .. _ . . ....a........ ._.._. ...a. _. . . _
- e. ,
.. r. .. ..
eq c'
.._ .. __.}._._._.... _..... _ _ . . .__..g._........i ._..r__..._...t._._.... ._... 3. - . . .....t._.. . ...._._.t._.__._.... .._...._._....,_..._.4...r.....
- r. . ... ._..__
..._....... ._ _. _ . . . _ . _.__. . . . . . _ _ ._A..__ .
4
.. t t_.._..._. . . . _ . . . .__ . _ _, .. ._. _. . _. .___ . . . . . _ - ._.r.._. . _ r._ . _. _,. .. _._. ._. . _ ...._r....
r.i__ .. i
.,._...._,...,._..._.._._.i.. 1.__..__._._.._...__.. . . ._x. .._..l_.. . _ . ,. ..._a,_.....5,_._..._.._ . ,
- n. , . . _ . . . _ . . . .
- u. . . . ... _ . . _ .. ... . . . . . ........__.._.._.._.a..._... ..__n_._.. .a.._. ... ._. . , . . ... .... ..
. _ . . . .. _ . ._. .. ,_ . ._ .. ._..__._..t_..._..i._.._......._... . . _ . .. .._t ._....c=_-._..._ . _ _ . , ...-t__._ _ _
c~,,_._......_.t._....._._. .__. . ..... __ . ..t_.._.....
. ____.._...L r-_._ '_ . . . . ._.. . .. ._.. _ ...a.. _ ._ .._ . e . .. .. ........_...r. ... ____.__.__t_..._.__.._ ,O,__...._.-. _ . . . .._ , . .r.-...._._._._.._.._.__.._.... .. . . . _ .. . , .- .__.6.... _. . .. . . . . . . ...
3 _ .5._ . ._.._..._... 4h 4. _ . ... _ s . _'d A* Q
,..L_.._..,.._......._t_._._ .L.. . . j .. _. .., _ _ . . _ . . . , .. ._. ..g.. . _ . . . . _.. . _
6 ..
**p,-..... 7. .. .. C' . . .._.. .
l > _.
.. . .. .,..l.. . .
(. cz' , r', ,. . . . _a . . . , .. .e>..._.._._..._.._.6.._._.. _...5.e...g......
._...i.. ._..j_.._ ..._.t _. _. . ... .. . . . . _ . ._...._...._ g i
y . . . t. .. _ _ .. . .l.. ..,... ... . _ .. ).g.... 4,
..g...,.. . . . ._..q_.. . . .m.. ......... ....r.._.._.. . . . . . . . . .. ...-, . , . ......g...,..... .. ....._L.. . . _ ,
_.. .. . . . . . ...._...._._7_......._,... _...__ . . _ . ,. . . . .. ,. . .. g
.t ~...... .L ...__.{__.. .. . _ . .. ...j.. . . . , _ .._..y. . . . _ _ . . . _ . _ .4._._. . . . . ,._f..... ., r...t_...i.......,.._... .4., . _ . .._.
_ . _ .1. _ . ..s... ....-.)._._...1.... . . . . . . . .
, _ . . ....., y .. _._. .t.. . ... _.. . ...r . . .p_ . . . . . _ . 7..- r-.. [. 9 .' ..t_ ~...~..'. - ' ' ' . ' _ ' _ - * . ... .-'_..._-...-I.. * . '[ . . . . * . - ' "'-s.-'..'.'..t.-'.._W.......'.I._.
q .. . . . .- _. .
. . . .,_...._._.._.,.._.J...1p+, ....,.._. . . .. . ... . . . . . _ _ ._.._l .. .. .1.... ._...,_._,..g....._ . . _ ._._y .5.. .i. . ... . . . . . .... %.. ... ... _.. .. . _ . . . ._. s. .._.4,... . . . 4. . . _ . ..._. . .._ _ 1_... .. - .. .. ..t. . ., .. .. .....l. . .. . .. - . .... .. p _.. ..__!,__*.I_~. .L.... ._
p
+ .......
t_.-__ - . .
..h._._.,....
i v l ._. .4 , .. .} ..., ...i .
..t... , ...........I._..._.. . _ .t..__. . _ .. ...... m.... .. .,......._.....l. . ..t_.._.. . . .. ..,. . .._.l.. .. . ..I.. .. . . . . _ . (,
i __,.._._i. _. .......,. . _ . , .._ . . . .,._..
. .l . . , . . . _ . ., .. . .l. . . . L.. ... .p. ._. ..i__........._..r....._ _.. ,. . _ ..~. . . . .. I. . j. ...... _ ... .. .. _... . . ... ._.t_.. ...... .. . .. __. ... ... ._ .. ... ....._;..._.,._..s. . . . . . . . , ..l_.. . . . e.. _. ..f ..,. .. ._._. _.., . ._.. . ......_.._....m_.. .._...,r..,_... ....._A . l, ..r. Q . . .l . 4 ,
e,
.. . .. s. . ..t. a .. . ..... _. _..... .... . .. _ . . __._.. ...,_._....._...t......,_.......L.._......._.1.. . . . . ._ . ....... . .. . . . .
y . ... . ._ . .
.4._... .
l.
. . . .. _.f_... . . . _ . _ .. _..p... . _..... ., .. .. ... .. p_... . ._... ._.6.
_ .i ..
. . _ _. _! _ .. .._. .L. ....._._.]._._.f._..l..,... .._.t......_ ... _f.. _... i.. .. .. . . .
t
.. . f _ .f.... . - .. .....l... .. ...
s.
. . . .. ....l . . ._. , ..t __.. ,. . . . . ..-1 . .. . . . c,U s
i _._,_.g. . . ._. . . . . . . . . . . . . . . . . . . . . . . . . . . .- r !
- 1. . . !
, . ..%_ _. ._-.. .l.. .. .. . ... ,. .. ....L... ..._,_.4_.......t.... .... +...., _. * ....i....... ..1.... .,.. ta . _. . . .g . . . . ... . m. . - .I..._....r....* _. .. *. _. . .--+ ._. .
i
. _ ... .. .4.. - .. _. . . _ , . . . . . , , , .s......
a.. -.. . . . . . . _ _ _ _ _ _ , .
. ._. .. . . . . _. . . . . - - , . . _.. .t. . . ... ._. .... ._. -. .._-f-_._. ..... .. ._ ..
_ . . . ._. .~ .. .... o t, . . . 4 - _ . . . _.. .. 1._._.. . . _.._ ...... a
. - - l_....i..........._....,.-....-......_
o _. -t . .. o o
,..=
W.. .. J. .. .. .J
. . . .. . .. ..... . . .. ... ~. .. - . r. _. ...,-.r.._.p __ . b ._. fbi,...}-...-.....l_.._...... ..a &s . . . , . . . .
_ 6...... ...
..._ .. b.)./,_.. ....
s . . . ... .. . . . . . .
. . , . . . ...,..[........ _...
r... . f .. .. . ..... . 1.....g .e.... . . ..6. .... .
.. . _. . .._._..t... .m
.0c
. .I.
- o. i._.I....i.. ... .
. . .] . . .__ . .. i.__.. .! .. .. . . , ... l . l . .. ... ... .
3_..._....
. j .._., .4_,..._..._...,...
i .. . ....
. ..i . . . p.. .. .. .Q).,w .< ~
i F .e.u. w l.
....e..**l.... .g ^' . . ..- . M. .....
g
.1. . .
l _ . . . . .s....f.
. .... . O.
1 . . ..
. t . ,g . . ,.. ..., . . 1. .6 . .. . . . ..,t. . i-% ....,..t = . . . . .. , 4 .1,. .... . l. . , .... p.. l . . .t.... . .. .. .., .. ~ . .. . . . ., .. .I.... . . ... ..s,. _ . - . . . . .- -. . ...._...._...f..- .. . .. . . . g .. .g. .. . . .-- . , I, .....,.Q. 9 ..... .1.. -
_l,.
. . . . . , g.
4 e.
... .j . .. .. g. .{.. ... . ! . . l..
j...,[... .
..( .._ . .;g... ., . .. . -
l ..
. . . . .~ ....... . ...N e.. , ,. ..[. . ... J... .l. .. .,} ....,.i. .,.- --. P. . . . _.. . .g.., ... *%
l g.
..L . .. ...i: bt . .W.
l
- I I i. - * .'..
.'.' ne . . rfh. . . . . . .6 .l l- e .I-. . . - -J -- - - . r ".,, I - r. . . .
l
.l. . .,. 9,-. . . ., . ...- : . ' .'.:.; :.y ;, ,. .: . . ,. y -. . -- .--. L. . .i . ,. .i 1 **
j -. "l:-
..J. . l .. ' ... g. .. -l - ;4-,_, ... .l.:; . ),
1 j
... l' -.. . . . .: -):.: , ,.R :', , ' . .r ., .,. es q @. .[* . t ,.
B
x _ o y *= c 2301-3D1
, . . P .-..
g g _ o. u h e.C; Q . C .. . _. Revision 0 .
. . . . ......... .a,._.. .... . . . . , , .
i .. . . , .. .. . r -...
. -., ~.. . .. .. ... .. -. r. . .
[ , e . t
. . u, .... . . ..... . .. . ... . 1. - ... . . . . . p -- . . . . .. - - . . .... _.... . u..- . . . . . . . . ...T'~. .
- p. -g,
~-
q.
-.: .: .- ..4.. =-
o g . .
- ;t m . r.. .r .
u -. o - .g-- l
,, g 4, a. . ._. N ....t.... .i.. .,. . .. . . ... . . *.... .o % .%. -* . . . .. .~.. . . .n.. . . .... e.... ..
o
.. -- ~ . . . .....P.~.~..-... ...x. . . . .. .. *~~s. . . .. . . f. . .~ . .... ..... ;L * ..... . ... . . ..g. . ~.. .. . .. ... .. .... o. .. . . . .......-
n. e
, , . .. ~. % . .. ....... . 3. .. ...... . . .. .. ... 1. . g e. . .... ...... . .,ag-"..~.. . . ,. . . . . . .......... . . . . ,..a.... .... . . . . ... . ...a. . . . . -. . . . . - . . . . . . . ... . . . . . . .l . . . .e.. . ., %. .. . . . . . . . . ..j - - - - ._.. . . -.._ . . . . . . . . . ..s.... ...- - . - . . .- . g ."e . g* g.u. . r .. -- .. l ": _. *-- ....- . o Q . . . . _ . . . . n. . r- .. _.. ...s= .... ... . . _ . . .. . .. . ......I . . .. ~....... ..._. .. .. .... ... .. .. . . .,....L.... . . . . . . .....e...... .e.... * . . . ...., . . . ... .. .. . . . . ..... . . . . .. . . .... . .. . . . .N,s'. . .4 -.r* .- . . . . . ._ . . .. . . . . _ , . . ... ....y..... .. ..s.. .. ... .. .. .. . . . . . . ._ . . .. .q..-.-.~ ... .3... . . . . ...-.
6
, . . _- i.. . . . . . . . . .. . . . . . + . . . ... . . ... . . . .. . = - . ~j. ~.
e ... .- l ... .- ...t. .
. . . . . . . - r ....L.... .. ... . . . . . ._. . . . .. . . . . . . ... _ . . . . .. .... . . . - . . .. . . . ~ . . . .. .. .. .... .,... -. .. .... . . . .... ...... . . . . .... . ~ . ... ..+ ..F...,..... . . .. ... e. j .. . . . . . .~~. , ....--. ...,,... .. .. .. .... ,_....,_5..... . . . . . . . 1 ..... 6.... . . ... . . . . . . , .... . . - . . _ ,..m, .... ,e ... .........._i...
p -. .J .- ..... .. _. . ..
.. .. . . . . .-... . .. . . . .. . . . . . ....g . . . . . _ . - . .. , .4... -.&.... .
j
.. - Q*%, . . . . a ._).. . ......_..i..=..4 . . .. .. _. . , . , . .......,s . - .. g _. . -... ...._ . . . . . ... ..a._.... ..g.. _ .. . ... . . . . . . . ~ . . . . .,f..._.... . . ... .. , . . ... . _ .- . . . . . ~ . .......... a. 1 .4...._..y... . . . . 4 ._ . j . . .. ... ... p... 1 p .9 . .. . , , . . , ..q. . 5.. . .a . . , ,. , . . ... .... . . . - .-... .. . ..... ..., ... . . . .t. . . . , . . . . . . . . .......i. .n........ . . . . . . . . . . . . t . . .. __ . ._. ..
L. _ . .. . .. . . _ ...s. . .. .._
- w. g
' - , . . . . . ....,=m.. - ,- - .. . . . . . ' . I,.., .* . .i... ... . . . ,_= ... ..... . , . .. 8 . . .. . . . . . . *.6...- ... ,+-.-1 _.*.. ,_t. . .= =(-. .._4 . _ . . . . . -.. .,. ., .... .* *.. ' + - . 'g. .. . , ., .,. .. ,. ... . 4.g,.
4 . .,4. . . _ . . .
.f, . . . . . . , , .,,4._. .. . . . ,.. .g.-.'t.=.'... .. . .. F"*
g N i...... .. .
. , . .,.4 . .p . . 4 ,..
D 7. . . . ,. .. #.....
...e., --..._. . ..,.. . ... .. ... .. _ . . .. .y L. .,6.. . . . ... . _ . . . . .-..1......4_
g - .. .. .. . . - . .. . . . . . . _ w. .
. .....I O $ . . -. - .* .- . . _ . . - ........- ._--F .-.'.' . . - . . - -- . .. ...e..,- ..-..T'.-- -. ...*.i.'... .-- . . - . . , -.-p.. - ^- o. )... *a.
I ar.
- IeN,
.. *L . ...--e . . _ . .. . ..- 4. .. . . . ..... ... . . , . . . , .. ,. ..... ..-.....T-'..- . . , , .... ..g.8...., . , . - 4 -.6 f a--- -- me e - . - .4*** . = = ~ . . - = = = a.r-..*
} ) [ C) . . ..:- . . . . . .. . _ .. .,......... .- ..... .., t
. .. . .. .L.... . . ,. . . . . = ... . , = -..*....6...* . . .. . ... .. . + . . ..e. ..8-.. . . . , . . . .- .L... * . * * * * . . . . .6=.=. . _ . , - .'-.a=**a.$.a--..-**$.*
. g. t
. , . . . . ...g....p. .e. ....e. ! .. . . .. .. _. .. h.... . . . . ,...
- 6. .
..9i..
J
,..l 4. .... e .l.. ).. . . . .. . . . .b .)-. .... .4 . .T ... . .g..,,..,. j _. .).. .,
1
.. .. .. .. . . . . . , . .[ . .. .. . s .
1
._.6.._.., . 4 g... .. . . . , . . . . _ . . . . ....p . .l. .. . . . . .... .. .. . . . .(.- .. 6 ...- ....y... . . . ..
4 .....
...v...... . . . . . .. .....4. . e.*I ..., .. ..a. . . .. .ee g4 . ...L, _ .. . . . ... ,....... .. . . . t._ . . ....,g.........,.......,. .. . . , , , , , . . . . . , . . , , , .. ;
p ) . .
.5 ..4 - , .. -..4.g.. . . . -. . . . . ..,,.,,..e.,,,4,...."7...,p,.g....... ..!...6.. .....6..h..,... .. . . . . . . }. . . - ._ . ...-.e.. - .6...,6.. .+ ...a p ........... . . _ _ L. . . . .... . . _ . . . .. ... .. . ....... _ . .. . ... ..l..[.*.p.._.........r..__.....
e.,.
. . . .. . .. . . .. .,. ... ._ ..,..... . . .. , . . . .. r . ,' . . . , . . . ... . . . . . , . ., g i .eg.e- . e e.. .. . --.* = . . _ . . .. .....*y . ... . . . .e. r . . l ..s..........d.>..g. , ,.. , ...e g .. ....,...g,.*t _ ... .. 1. . . . ...- _ .. .. . . . . . . . . . ...i.... .. . . .. ._ .... . . .g..,. . . -. . d 6 ... . .. .. .. .. . . ......_. . .. ..... -_. . . . . . . . ,. .! ...... y( ..l....... .. .. , . .. .. . . . _....._. _.... .. . .l.,...... 4 u. .i..._..., . .. . . _ . ........... _ . .. ,i . .. . . . . . . , .. r_ . . .. _ . . . ..... .. g) . ... _. . . . . . _ ...,r.. . . . . . . . ....
O,,
. . ...,e ... . . . L. . .....
- 1. _ . . . . .
.3.i.,. ...
j
.... .. .,._ .....T-..... . . . . . -l.. . . .. . . . . .. ._ . L. . . ..., . , . . . .. . . . . a. _ . .
s
.j . .. _ _ .. .. , . L... . . . .. . . . .. .. . . . . . . . . . . . .... .. ... . . . . . . . . . . . . -. . . . . ~ -..-. ~._-- . _ . . ... -. .-..4..... ... .._. . . . . . . . . . .~ . . _ . . . . .. .3..- ...,,t.. . . . . . . . . . ... . ...., .. ._..... . .g .. . .7 ;, , *. g.g . ~ . .. ..._ . .......
g i l f0
._.......s.,. .... . e 9 ._. _.. ._ s. . . . ...+ .....-
_.. _ .. _ . _ ._. . .. ._.. ..y... e
~ . . .. -.. . ... .~...... - . , .. . , . . . .._.g... . ...., .t........_. .
- 4. .....
. , . . . . gg . . . . t %.6.. . . . ; . . . _ . . ... .. . - .4 .. .... ... - --. . .g . . . ... ... ....h. . qu 2.,..~._...
_. ._...J.. ... . . .. r-.. ... .. ... q.
. . ..s . . .. .... .s.o. , . . . . . . .t. . ..%.. M. ...,...-. . . . .... , .L...,
_. ...y.. _ . .. ., .., y,*-. .
..+ .. . . . . . . ... .f.. -. . ~. ,, . . . . . . . . ... . . . .s._ ., . , . ~. _ . . ... . . .. ...
_ s.<\ t.....
. . .vc. .m ~t . a....
(~
. t . . . . . . .. . . .. . . . . . . . u. ..... -l M .,. ...... . .; - 4. . " .. ....,;.:.:. : ._ ) . .. ;;.:;; L. - :. ' ; %- R._ -- -.. -. . , . ... n.; .u n; %.: -* .~ - * * -~. ...i>- . ,...
4tQ .. .
* -- 6. ;_
t.... .
._ . . i. . , . . ... ... i. . , . . < , _ .._., , g. g... .g .~. .-- .. .s 4 . v , --. , .~ .. ~.> . d ..- . . -gg . , , .l . :L- . .
a;p. .
.. . . . . l. . ---.. t ; , ~L.7 - . . . . %
w .' ' . .m. . .-r. .y - . . . . , .
. . .. .s.
- 1. =.
.... . .:. :. ' . i. . . . '..i..., - . .- . . . l- i *'.- g . ..,. . . . * .t . !, . . t .: . .; . . ; a .. . = ... - ...- .. ...: . . ~ -. .; >m m m .. .. .I . .
24 2. ....
2301-301
- s FIGURE 3
< . - Revi._s__i.o. n 0 i !! . . :* . .
- ' kii* . *~ ~
l . .... ... ..
- *"*q: ": " ' -*--- : b" ". : :mur ... . _ .en ~* *~. :::: . ::p -
- -t. . : .......: :..... .
nb:. ,
- n e:"::n- e-h: ::d "m! in:ri.!! b= n S-05 Uhs iFrfa:5 - =; -
bh :p; Fij=: @e.
.%l:: -r
- # uip:;;.-
-: ::n: .n. . . ..m:r:. .: .. . : n rtu. ...=M
- = . :
~:- ~:::~.
- . .: . :tu u. ,
e.
." " n :-:::- ::1 : -
C, .. . . _ . 4
. .: a =.c- . n. : :.-t -: *- . , ;;. . : . ;,.gg;,; . ..:j;.:. ..:. g a
- r:
y,;:,_ ; . . . . . ;. { 0 : U.* .;,;. t:- : n: n..cuar -- nJ :. : ;'b. . n r : r:
- r ::::::" : u. _=
2= -tn=a%_: .' -::m': ' : :. :: erhn
.* - - 5. : . .. i' {h ~
E H.N5 5; $* : h.u I
.1. ' .. ; rJ - * * -
5? :* 5 n :~
.. ::1 - : ..;;,;
- .:: . .nurut.~n. .l=:: ;:u t: . .j:f:;.:ua .:. _. n.r l'm. u:
* ~ ~ * * * . . . . J . :- :.::*.; -*i.. ..U:...
1J::C u ...:* C;.-* :*T;.T.-
= -2.:1. : a.r :: .: p . - .
9 24 - .:d =. t-t :-: :-:-::r; :rtne
'N . N5 :i:"!. Y.!NN.5 : ifra M!N~,N E-:2. ! R.N b b N N b N N b 5d i ! =Iiah '.;M !- FiM.iE .' 4M ii=M M :=WPME i= !=hbid==NE~.M rb!!+.s
- Pri-E ' - -
g c- -
- .. inz . -u.:. r: .r.::n.....y::r ' - ""~r r " 4, z c.r -.
- r. -c ; nn .
.:arrn$n.:::- x u . ::;-.. - . . - :.: _. - '. - : .n :- :: n.:t:- I ::n: . . x =.::n : t u . r . .;.: -t - ... " :.
s.= . . M. b
=_r:*t m :- .= cr::-- x.m: .. . ::::. ;;:-: :.: ..n:;:n : u s .. . .- u .: .:: . - :;_ reu - -- Au :c= r a: 3-r===
t--
- - . :: =:.;u .
r- -- r r- t : . ._.=
.rart:=t.~ : P:n- .---::{ - -( : : ...~.: :*- =n - - . 1:. . . n t:._r :r-- .1 u.n.:-- .: :rc=r. : .:
- ct: : . =E :_~ ";=:=r-n.::.: : = : -- ;-r4.v :..; nd ==::~
-- : .:. ; .: . .a r e::- .- A.n.. =:r: n d::
nn:c :.ur:::
=- .nr - ._* .c '--- -
i- - " y==-* .:.
- =-17. .= ". ' . _: =_:. .
.7 _=.. r--r : == .: ; - 5 : m : . :nr : .. .. 3 :: .~ a- -- .- ...q=--
- a=. n= e n.:.2 un =: :: . : ... ._:@ . . _ - - - - " - " - - - " " - " - - - -~ e
. .rp-".
- : . n ;.:-:-:.=: . b. -n-".==
=..:= -.an u := - . q. - "---- 2 -----.. : .::= m :.= rn :r. .:. -- ::.: .~------ : .:.. .= u T : . .: r ~: = : :=n: c : .-- . - . " " -:-. --..--~rt-- ~:- - .." cr . . t r t_ _ . "" 'N-__nurn:--r- =:{~-- .=J
- -"?
- = . . . -
N, i
-:.: =. t = ==: _ : n. _- =tu. u .;-_ =. =:._u =. .:..= -: . - ._=-::.==.= .r r.r. : nu= 7 r .:
u
./;;p= .n.;-= . g r- meru . . .-r =- =.u= l~ ===_.":. -= rc . r -:=.r:( .:
tr.=-= .v_c :t ~~;.T n - n=: _ =m t .: = : n 2 run ;. .tur:: r_r r - _-p._~rru--- n = =m:ar:2.rur.r._: O m.t::n: nn u .r . . _ : r na _- - h::: r 3- -r x . . : t .- - _ . . . _ I- := ::=-- r--::- n.=: . : . - M =1:x t. r: .. =& = =. --
. . .._. . ._ .~ ..... .;: _; .. = .u ... : n=_ @ z. . .=_ . a .u_
- ._.r=..._-.4,:.__- L: s. :_ .: . . ..e . =. :=._.. .: . _*.. -. ::=.._=:----l....__.--
.. ' . _ _ . . ._. .z....uu._. . . - .t .._. . ~~k.n.
gr :r H r _: L . ._ . = ; c.,, 7:r4;nnE_ u :::- - : =---E_. =u. .; r= 2.: r ." !,r:: - - rr
- 2. : . . : = ~a-- 2=-::=-cu.=
L. #: :. -=nu- .: =a . :=
- :: :: .224 '_ra_._ n. -_--_,n_ _ -m- r-_
- .=-
- = :r- - - =_" .:_. . ._ :x .22 6 .-.
n n : _-- - : = :.; . A tn _ a - u- g-
==rm- . :-: . - 2.__ . m_._e.:r. . . . . : .
___,=.t .:t .NI cc.~.: - , _ . . _ .: . r. . . I=. ?- . . .
=:e n. - n2
- 2. =
;- -} 2 c : r n _.r r: t. :.
_ + = .;_ : ,o, g_.._.._=.__._4......2....-
- _ _ -:__,_ i .
_ . . - " . ~ . _ =_n.::.:.:.
. .. =. _- . . . .. . ._.: . . M. . :..d. - , . ....~ ._r_;r. . ._____._.___s. _ . _ . _r__._.
w _. :.n : ... N ar-
. _ .~ ._.- ' ::::: . _ -j .....p. . .. ..... _j.__h. . _... _ s..... p g:- :.:._c_=._.q =. . .:
1
.:.rc_.
4
....._g_.._.... . m a _ _ .r:.=. = . . . _ _. . . 2. 1. _ _ _r. *e-
- .;-- = . 2. :::1 ;r:_;; ----~-:- ~. _. * - : .: :.: O cr: : :.F= ; :a =.
- .:: t_-;_=: ?= r u x- n ==._-A. .:2= -
n : _._ --~: ::_ =-- O
- .::Tr t=
- L: r== 1. ::-:: 2. = .::.::::=- *: r nr: :- :.
- c = .u rt _ ._, _ . . .=r ,
N
.. = -.~N 5 ;= r = :.: ::.::- :- : rn. - n rr .'. :: r.n. ~ - - -. . : .= r._..__ _--< - .=:- :r o
- . Lw=.
y,,
.=_1 _ f :=_=:-.=~_::::. __- _. =_ p=....._ . r-:::=: =_n _:. _ _ . _ = _h== *
- ==T .. . .
-_ . _.. __ _. . __.=;
_ . a . .: r_ .- .- v
.__ _: ....... c .. : i.n L. . -- . . . _17..:_2 ::_.n_._.A..
- c. -.a.... ..r._. : . u.. ; .2:,=_ : ;c. _ . r.. :L ;.r. n..u. t ". 7. 2.
- - ----- - c. .. r, ;_ - .r.r: r= 2.-
Dd
- . " . = = = yl . , : ". __ .
. : : = u - _:= . - - -: v_::i.~. - ' - :j .=nrr[.__ n :g_== c. !: .:174.4. . = = - =- :
__ F _ .~ .~t -r-- . '~~a 4 t & *
- cd - .- to
-= .r ;ir" ---- l .;. '. :--;: =. %.__
- n :: - . .r- W g
n :- ==;' -:: _. J . . cauJ _ . . : rr..-.;r; n .{c :=::.121:rf.: m .:-.= : :---" .= t::-' . _ _ . _ . . _ _ . .
*u = : - _zc ;- -- - -- .a = r. _ . : %
- :=- :: - _ . . : a .. . :._. t.. ::_:
.e =: , _=u:.:: L_ _u_ = -.- (:_ r. h-. . :=.2=.= : .:. ::. -- . -- - 3 m
Lu . a - '_==_.:-.y r. :. ;. : T. y_ :.a.:=.: = t . . u ::;;t:.:.=--1::: . O 3 -._-- -_: r - - _ _ . _ . _-- "-
=r.., - -{ ; n : k. _. . _::; \- - - - - \ . ::_ : ~_._. ..,f- ;;; . r. . -r :. r_--- ;.-- ::.- , .y:_::
w 4 -- --r- == - t - =_: k:. .:5 =r r- " - ' - = . _ .: . __. ' -: : v = r s = :-- t = = _ 2 M g 1 : . "". F #d.. .;'#.i '; .;.E. '. _-'T.Ci. i.~.7 . .L[ .~ _I'_~hy.: .#_. _.._ _E._ .d. . _. ~. j__nI.,725
~ ['r.' .;;r.[;5_ 4r-..~-).. _ _'.
{ _C_ LJ a r
. . - . . . , _ ' h--- _~ :- :: ;_ . :--- : -.
l
- r :l:: .c= c - a ;;;2. .. :__ i ; r 1 . ~ .:L - : : 4 y
? C :__;r:-' r::_- .-: =.; . *I:.. _~ ;= T :. _. .
_- a
- x =t--;:= --""t- .
- , ': = .: L._..~.:n~.- _ . ..._._._.__=c---~~.". , _ _ . .
=_.._:=..=. :..__:::c. .) o a =.=_-.._=._:=._a_r_z_.t-:=._:.2.(...__'.'-*._-'.
c: - _.._7.._ . p =n..n. a,r.a..=..e.
- a. .: :: ".. . . . o
- -t. :J_. - :: :: r . _.- ..=
w, -_._.- ___ Ci
. . . .. e . .2 . . . ...-..- . . . _ . ...._1._g . c- . A . - ' .S... . u. r. 2 . _ . . .L: :.a. . -_ . . . :-.. . ._- -T.r__: . ...__...\..
_:.__ ..l . i . .n u. . m.. . . a3 =._t..__3_u__--._
- . .. 2_:ir r. .:..L . _. . .=. .t. .
=m. . = .c .u. .
I .. ~-_ .. :- = n:: -r =: = =~ 5- : .- r_ r - .n:.. y t .. . . . .-:r : ..
. .p.c = u- :- un : . i ~ : p r ..:- -
P
.c=-
wo e r= r:d- -zu= .:; . . , == . = = .y _ . u. :-
- m. ;- : n. . . . . - = : ; ur_ :_ n==.:,r+m= = -
p _a w= ===;. r-s% - _.r n: : . :=.r.
=- - r -. . - *
- :- c.-_A,r. }c. . c m . =m.1:
- c .. P.
- i ~c :m . .
pe a:=
.-- --)= m =:-- rc. _ . . . . am. .;; == n:. . .:. t._ :.:.: : . . . ..u 2.
o
- = :- --:_ : . . .. . . ". ; 2.:. e -e .* .c . . u . c . ._ a
'r 2L ~ ~ ~ ~ *~"~~~~~M'- M *6 _c;j -- ! Li' C$. .E = Z--- ; I2~: 9.i.i.".d~ P'## '"I '2" " " ~' ~~2 -
C 2: Z
- ..n :n;;a- . 2 ::- u ;.. i. r; . - n . . r.c
- 4,
.-tu N. -r : "r- : 7. e . _ " . pe:= .1 2 .: n * 2. : c . -- - .. .: . n=. ... ..
es : ..-:. . . . ~ )e u 1:::t :. a - un1:_ . - -==" '
- h. M -E I 5["$r: d 5"_-@.~M M U;.?-5._
n s.@:;E-i Ndi fi~~D... ".:.:. .;5[i :-~I-~ ' '. *! 1 9 ~~ - 2..c z ,:. .. .3. : .u. ._q. . .n :
. r. .-" m. "n q. .- . .n. nx [.:u. : r. . .
- m. =. == .n_" =n:c t . _n :. .:. =.u. . a.. ..=, g2._ n .
c{
. . u.-
- 2. y . .
Sili. .::i.! ."._ SIS _ ".I:52 :ii _l._. =.~. ii;.i .-i a=/5fi?- f":55~ii_--izi::.-TN#5
$ Edd.htEi"..i -
- . _iq).1.L.._._.. . _ _
. : =_-. . - . ::_ [..- c - :....L.r
- n. u.. _:: =. ._n . . . . 1
. . _. . . . . . ..=..a..=..f,_...n....,.....r..a...r...=..
- : , .. . : =. .
;: m. . i.. . c. t. . .: ..re. .r. ...;;. ay... r.i. .. _. . . . .. . . - wr.
9H & d. n ' :-fd :;]_:.j . E J.;h
. ii"iudhprid.pM_ "j.up:F.'il . _~;
i _
.:i:
u->;a
"^
- u. . a mi. W. . . . . . . G . n_ . .
. 7. : 1__ e.
- ..l c: 9.j n l . :; .
.6;
- . 3 ..
...l.. ::
nu. ..:.::-- :: E' :.. :. . . --
;.la. . _. . j -J: .: . . ' . .._ _. : . . _ .."t..._. . ." : [: ..-...i..
O4<- ..m __c._.. :: ,_. .
- ..:x. . - .-4...- ..:. .:.
n.i. . ..._.
- c. . a. . .: . . . ...a..._..:
.:1 :::. h::. . ._,- - . . . . . . : . u_c. . r. . . . .1. ... c. . v, . . . . ..:7..,..... . . . . ... 4 . .. . -
9
' M.g t. . m . . . . . "3_.. . .:. .a . .p !_ __q u. . .:. h:_. :~-f
- 1. . _ .. _I. .p.F : a--. . . 4. . . ,
........:..i. . . . . . . ..(i .q. . ... ... . . . .. ,. -,.... . .,.I, . . .n. p. ..g. ...j... .,..... ...,... .n ;;n.,.= . .. ...o , . . . . . . , i a
- o = .
G . ,. a e
- g 3 =
a e = e- a e. e. ,o w . f f ' 8 s I 4 I g g ' 4
' s e g
i
--------_-__--_-_______j
- ~ . . sn +8' 2301-301 g Revision 0 x ," M 08/19/77 e- O M O> c-to w >N WO
- j ,
5 . CE C E -
~
O La N R1 C a
*- 9 i
CL N M &n N e er. e- 84. *P-M s H @N &n OC 'NN $8 M lt N W D
- Ch
& C e- O r= to O E & L D %
- 0. O O O D 5 5 5 0 r= 0 J O O + 'O W D C c=
z a +J 4J +8 U C O est O W D o O O f 5 h 7 " Z U 5 O W L Q. O la W O C C C
.O ar- ar- =r- TJ W N W C @ O O D r=
7 N O m e-l l O i . a l N O C O O' N e
&n m - en W b W > W eJ H elC eC m:C H >- E &
M W W Z @ 4J
>4 ct Q M - Me N m W r-O W
LL W O 3., D C Cr* D C .J w m 0 C O M E +8
.J W W U U H E
[ i E CC m .) O W D >- E .J J W E l O M O W W L to w to to e W W U 2* H ZJ ZJ ZJ O Cf O CC DW DW DW W "O I OH OZ OZ O Z- OJ W EZ U <C U ett U EC UW C W Q. Q. CL WZ *s-JE J .J J Ct GC M OE O ct O Cd D. eJ OD CM CM CM W &W CC W J .O
>- H &H >=>= >-- H W to O' ZM ZZ ZZ ZZ >g i OZ CW CW OW Wa W j Uw UU UU UU JJ .O h . a E - .C O eC C W h- E e e-* CL CL CL O- 8T. +8 O OO O O CL e CL OO O O O * .J J J .J T G Cx' U r* O t W ZT U U >- WO b- t- >- F- F GC C CM b Ch. W N CL w C- NMW La @ N @ N CO CO N W C Ch Ch Ch m C% Ch Ch Ch CO CO CO @ v .eC m .C L U MM MMM MMM M M M r= M Q U 4J 4J C 4O O. O 2;
v .J E t
~
k>- g W W w - E & E O g Ra mW "a WW U-Z
=
W> W> M> est et elC a g *WJ nW RJ W Cr' KO CL >=C s
l
^^ "-~- - -
s l
.* a - -- 2301-3D1 {
l Revision 0 1 j
- 08/19/77 I
ENCLOSURE II ) Computer Determination of RC Leak Rate j
~ ~ \
1.0 PURPOSE This program is designed to perform all the calculations accomplished l on Data Sheet 1. The plant computer will automatically gather all inputs and, average three minute intervals of the initial and final rh ings. This program is run from the programer's console of the Bailey 855 computer. It may be run at any time the programer's ( console is not being used by another program. 2.0 PROCEDURE 2.1 Turn on the programmer's selectric typewriter next to the Bailey 855 computer. Be sure that the " OUTPUT SELECT" switch is on " UTILITY l COMPUTER". - - - - 2.2.1 If the computer piintout on the selectric shows a question mark (?), type "r" , then depress the " Return" Key. The l
~ - i
[ computer will respond with an exclamation mark (!). Proceed )
' 'to 2.2.2.
2.2.2 If- the printout on the selectric shows an exclamation mark <
'(!), type"RC"andthenpressthe" Return" key. (See sample l printout: Attachment 1).
2.3 The computer will then request the time interval over which the s 0 test is to be run. Any interval from 1 to 8 hours in one hour
- i 6
intervals may be choosen. Enter a single digit, then press the 9 $ " Return" Key. i - l 22.0
)
Q
. . - . - . - - . . . . . . - . . . . . r , , .
b
J l
,[ 2301-301 Revision 0 08/19/77 1
2.4 The computer will now request known leakage. Enter " Identified , Leakage" (as determined by Data Sheet 3) in gallons per minute. EnteroperatorcausedchangestotheRCDTortheRCS(asdetailed onDataSheet3)ingallons. CAUTION: For the above entries, be sure to enter a decimal point. If no decimal point is entered, the computer will insert one according to the format it expects to see. 2.5 The computer will now print out all requ' ired data. Be sure to attach data sheets detailing any entries made in step 2.4. l i l l l 23.0 4 j
l _c. _ - . -
*- 2301-3D1 Revision 0 ;
08/19/77 { l 1
. ATTAcitMENT 1 /
l
!rc )
DATE: 01/20/75 {
/
TIME: 16: 3:38 . i REACTOR COOLANT IfAKAGE TEST AP A308-D.1 DESIRED IllTERVAL (1-8 HOURS) 4 1 Et4TER IDENTIFIED LEAKAGE FROM D5 Q301D.1.2 (GPM) ) [ l EttTERRCCTCHANGE(GAL) ENTER RCS CilANGE (GAL) TAVE PR2P. LVL MUTK LVL RCOT LVL 1
' TIME TCA THA TC8 TH3 (F) (F) (F) (F) (F) (iN) (Ill) (VOLT) !
79.603 8.925 16: 3:54 556.977 601.055 556.250 600.719 578.750 238.311 79.095 8.945 16: 8:54 557.031 601.070 556.180 600.719 578.742 230.178 0.0473 GPM . LEAKAGE PLUS LOSSES (<30 GPM): GROSS RCS LEAK RATE (<10 GPM): -0.1463 GPM flET U:1 IDENTIFIED LEAK PATE (<1 GPM) -0.3763 GPM . OPERATOP.: 4 APPRO'!ED: ~
)
l l . O 24.0 ' o w_____________-_______________-
egpay.s. _ _ _ {._ spy?.n. M: y,,
%. ~ 'f103-1.2 '
- 9. Revision 4 1 .'. ,.
06/12/78
'N$ t(HTR0'*'*T" UDPY THREE MILE ISLAND NUCLEAA STATION ~ , N T ~~R CN" Y ' * ' ' ' ' "^"o "" c'"""'
SOLUBLE POISON CONCENTRATION
'-' 2 30 NOT RL J i. 1. ., ~ ,
1 ne as e m na e m .en e, ) ? 1.0 06/03/77 2.0 0 26.0 10/19/77 2 S1.0 03/03/76 3 06/03/77 0 27.0 06/03/77 0 51.1 3.0 03/03/75 3 06/03/77 0 28.0 06/03/77 0 51.2 03/03/78 cq [i 4.0 03/03/78 3 29.0 10/19/77 2 51.3 03/C3/78 3 3
- 5. 0 10/19/n 2 30.0 06/03/n 0 51.4 03/03/78 6.0 3 06/03/n 0 31.0 03/03/78 3 51.5 03/03/78 7.0 3
} 03/03/78 3 32.0 03/03/78 3 Aq a.0 10/IS/n $2.0 06/03/77 0 2 13.0 06/03/n 0 13.0 06/03/n 0 } 1 h]3 9.0 10.0 IW19/n 4 2 38.0 06/03/n 0 54.0 es/03/n 0 35.0 03/03/78 3 65.0 06/03/n
-n 11.0 3 35.0 06/03/77 0 0 -0 55.1 03/03/78 ? f0 7 12.0 13.0 03/03/7s 03/03/78 3
3 37.0 03/03/78 2.0 E/03/77 0 3 56.0 06/03/77 57.0 03/ 03/ 70 0 3 3 J. . ~ 14.0 05/03/78 3 39.0 03/03/78
.M 3 15.0 03/03/78 3 40.0 06/03/77 0 % 16.0 03/ 03/78 3 41.0 06/03/77 0 3.' 17.0 06/03/n 0 42.0 06/03/77 0 " ;; , 18.0 06/ 03/77 0 43.0 06/03/77 0 y, , 19.0 10/19/77 2 44.0 06/03/77 0 M 20.0 06/ 03/77 0 45.0 06/03/77 0 X , 21.0 06/03/77 0 45.0 06/03/77 0 Tf . 22.0 06/03/77 0 47.0 06/03/77 0 .C 4 U0 10/19/77 2 48.0 06/03/77 0 -i , 24.0 06/03/77 0 49.0 06/03/77 0 .s d 25.0 09/08/77 1 50.0 06/03/77 0 D' ). , '4 Unet 1 Seff A- ^ Aggroel Urwt 2 Staff h...s c.:*
pg .h*.? Ao:must k D.en Aeprom % c -m c -- a y.
' %,g Mb uz: 1 PO*C A- 1 ^ Assumel . . h... e 4 .-;
k.; Dem o C:~_,,,!' _ . .
- g. - --
u vu 0u
- , 1 J t-a 'f 48 er t J k 5 6 pip ik ~~ ~
kff f:. kl/ Data /, M
/./ fj ' /
we-y ce.:< w om, Am. rune Axnnen AW c-
~
- w. - . .-
i c i .%. ?, 9.b 6 N " M , d Y b '
su 4 -
, . , , - - m __________;-,_. . ,
c,g:. h4/ Ti c '$h.
.i. . ?, ~. 5'k.I 1 .. s o . , '* ^ *1* 4403-1.2 V ' ' hevision O ' - -
06/03/77 x3 , THREE MILE ISLAAD NUCLOWt STATION h
. .. g t W IT S2 OPERAT!nG PROCEDWE 2103-1.2 ' s.'d A sowstE Potson ConctmAT!cm y $**p.;* }> '3 Table of Comtsats ./wN b lY
) b 1.0IDi4WH 3.0 g* A?.'
- 4.0
? -.. 2.0 LDUT5 MS PKCAlffitr:5 x Ti ., . ; 3.0 PEEWISITts g: :(
1 sites are within besty of Procedure. h smE: All ?. ) y Q: u w 6.0 J r ":i:l l 4.0 PN ~~ 9 ,:. , 4.1 Filltag the beetor Coolant Systen 6.0 0980... c,s -4 7.0
' j;f;.? 4.1.1 Prefeguisites $94 Filltag using Durinereltred hter 7.0 gQ'j ,s A.1.2 4.1.3 Filling using norated hter 9.0 ' ' M. n 4.2 Deborstion Frsa Mode 5 to %de 3 17.0 .' ?? 46,c.! E, Prerequisites 17.0 h;l[y w.
4.2.1 4.2.2 Pm:edure - Deboration 18.0 Pld.C
.. <,5 4.3 Deboration From Mode 3 to Operating Conditions * , .3 21.0 r/1 .i , (%de 2 or 1) s Prerequisites 21.0 .Qjij 4.3.1 dat.)] ~p 4.3.2 Procedure - Deboration From %de 3 to %de 2 or 122.0 NA~ 4.4 Feed and Bleed 25.0 .N P , ' M . .,
h;!,I J 4.4.1 Preregwisites 25.0 W.,qt y . 25.0
? 4.4.2 Procedure - Feed and Bleed ?'i%:
4.5 D8eration By DW>rtting Wintralizers 28.0 SW 4.5.1 Prerequisites 28.0
; I .- 4.5.2 Procedure 29.0
- ) .. -
- I 1.0
^ - - - - - - - - - - - - - - . _ _ . _ _ _ . , _ _ _ _ _ _ . _ _ . _ ,
. . . .*.~; .2 'g'; .
TU Nr 6.
,,,3 - , S
- 2103 1.2 d hevision 0 06/03/77 h 4.6 Sete F W 31.0 3 jy 4.s.i er.r isit 3i,o n.
- 4.
4.6.2 Proceders M.0 T 4 7 Borstles to .a.gt, $m (unde 3) 1525*F 33.0 } g
- ' 4. 7.1 Preregusities 13.0
} -(p 4.7.2 Proconsre M.0 h$ 4.8 tors.W ts Ossiden 1 3DO*F 35.0 j,},&!"i
,.] 4.8.1 Prgregrisites 31.0 w:-
- y
( w;;.. : 4. 8. 2 w ,s x.0 j! D pn - 4.9 Detttion ta Coold:me 1 4fF 1 (Mode 4 or Mode 5) 3B.0 jhCc . 4.9.1 Prerequisites E.0 hN e.',4
^ 4.9.2 Procedure 38.0 SyH . ., y y Appendix kj N #
Enclosart 1A RCS Fill liith Darineralized Water 40.0
- t. w . f, ,.ff, }.#
, Enclosure 15 RCS Fill Frsm SANT 8 RCET (Or Duria Mater) 41.0 $$0 Enclosert 2 Feed 8 Bleed Qf, J j 43.0 'p'{,, , Encloswre 3 Satd Feed to RCS (Nomal Makeup) 44.0 v.V;M . Enclosvre 4 tatd Feed to Alter RCS Cecantration epi (Lst,s than 30 ppus) 45.0 lif ',l Enclosure 5 wk.: RCS Makeup During Cooldoum (no Immon) 46.0 s ,: ..
c: .
,, b - ' 8.fg N %' 'x ' . f 3I'5 s
2.0
... . ,e gy.. ?
kl9p:Sy ~ 4.:.s . [Nini....
,,. .. a -
2103-1.2 nevision 0 i 06/03/77 [ THREE MILI ISLAND NUCLEAR STATION lj WIT F2 OPERATING PROCEDURE 2103-1.2 , q (3 sin imJ r Pol 5m CWCDITRATION
.e ,-6 J1 1.0 REITitENCES Ae
) ',8 3 1.1 Drawings applicable for Operation E 1.1.1 Chasical Additten. B&R Bug. 2025 1.1.2 taector Ceekst Itekamp and Purificatism. B&R Dug. 2024 s. 1.1.3 hadmasta Msposal - 5elid. DIA Bul. 2039 m,; k 1,1.g andanta Msposal . haector Coolest Liguld. gaa tag. 2027 } 1.g opmtkig precs4sres Aepticable f* er m ti e l0.ev j ', i.r.1 no6-4.1. Ittsc. LWid #85t* M5P'581
,.[. l 1.2.2 2106-4.4 solid unste Msposal IL.
1.r.3 2106-1.2 mhe-up & Purification Systas "i. 1.2.4 2104-1.12. Ch 5cai nedttism 1.2.5 21ct3-1.1. Filling & yestieg The Itc Systas f5.. 1.2.6 2104-2.2 omrimer:11:sd hter kO 1.2.7 21a2-1.2. Approec* to Critica11ty 4; i.2.s 2102-1.1. m it #**t*P j5 1 1.3 nieuractmes' Iastractica stw.als El 1.3.1 t, app laterpece Co. (M.ATER) #*ric Acid P8'P5 ' *d '"[5-4 1.3.2 Miltaa noy ca. (ttAitR) cm Moodtog make-w Tek % FM stral-Ps-leosm) 1.3.3 Lapp Interp+:e Co. (fLATER) "w8 tic PvaP (Mod'l "ES-3)
- 1. 3. 4 L&PP laterpe:e Co. (fLATIt) Lieta MmW W Md:
Pe: js (7bdel PCES-1) 3.0
Y 2103-1.2
- I /
.' 1.4 Systen h <criptions 1.4.1 Chemical Addition (Index h . 18) 1.4.2 Risc. Lipid hste Disposal (Index h. 44) l ,
F 1.4.3 Sohd uit: pisposal (Index Mo. 33) 1.5 Tables and Figures 1.5.1 Fipm 1 - Doron Shutdown Re<Wirments p. 1.5.2 Fipre 2 A/S - RCS Expansion Vobn n. Tempratun y i 1.5.3 Fipm 3A - BMT Pump Counter Setting vs. Gallons Pumped 1.5.4 Fipn 38 - SMT Level n. Volume vs. T.S. hquind Doron Ca.contration. i 1.5.5 Figen 4 - 3emon knoctivity Worth vs, Pouer Tromstants 1.5.6 Figure 5A 8 4 C - htur:1 Logs of lAmeers 1.5.7 Figum 6 - Level n. bron for T.S. in ISAT. 1.5.8 Table 1 - Water Level in RCS n. DC5 Volume (Gal.) . 1.5.9 Table 2 - Calculated Volum: vs. Litpid Level ISAT. I 2.0 LIx1Ts AFD MicAt1T10RS 2.1 Egipment 2.1.1 Prior ~ to starting boric acid injection pumps CA-P4A, CA-P4C insan a flow path has twen properly set up. ' 2.,1. 2 f.cfer to Operating Procedures below for Applicable Equipw.t f ( Limits and Precautions. _ Chemical Addition (2104-1.12) i Mateup and Purification Systan (2104-1.2) Filltag ard Venting the Reactor Coolant Systee (2103-1.1) , 2.2 Atninistretive ! c 2.2.1 The CRA Safety Groups will always be at their upper' itsits l when in exic 1 or 2 (Tech. Spec. 3.1.3.6). 2.2.2 Terwinate boration oc dilutice if neute.m count rett, contr:1 rod ir:Jiczttats., or other rs:ctivity idicatio.: bcNye in en erratic or evJtpected senem*. 4.0
'e J h ' * * ' '
gs . '
. J. ~ N.c .. 'T.k O ,_
a
% 2103-1.2 hevision 2 M.' = 10/1t/77 c:e w .y,1 han performing a change la hona concentrate sample letdzan 'l 2.2.3 line owry tour. htte sderitical. tasere sampling is pertorie:! .g .. j appeorientaly owry 30 pas tema.
jf If actusi horsa cancestation deviates frsa supected by sers 2J.4 kk then 100 pen tores dile critical or M pre hersa while w,: zt i sdcritical. deternian the cause.
- %s The hone camcastatten ta the E System shall set he reduced j
t.2.5 eniess the fol)ecing condittens are met:
.h, g , At least see K pump is operette; er one M ruusul pt:0 a. @ev.1 u ts cirtslattag reacter coe14st applying 7,2000 gro to sf- ..im . the reacter passere vessel (Ted. Spec. 3.1.1.2). !TT *
- b. Een decrossing horn concastration een then 50 p:e while nestdema a 1/it plot versus supunt of unter ad6d d c. t to the E5 seat be inittsted and astetained.
.,y:[U .
- c. hem shutdemi seurte esage counts (cys) must he centinuwsly '
q-- munitored when decreasing RC5 berse cancantrstion. 4[.?!
- - Qi The Debersting Desimer 11rst shocid be used den the RCS 2.2.6 Q;; ,o- stration is within approrientaly 200 ppu horon of the yd" i
pd] fiasi calculated and af life ICS borsa esecartruttcn. A Prior to S.A. dilvtion source reage lastnanntation should te - q 2.2.7
> 2 cys. ..w A. l , , R.I. instnomatation should be esmitered during boren chams.
2.2.8
, gg;#
De art blood ce coolinsa use betch feed saly. k[ k;6. a
' 2.2.9 men taruinsting feed from CA-MA/48, stap pump befoet cle:tr:g 2.2.10 Qcji . s . .
disdarge stive. ir% *
.x.
2.2.11 lem es Ntc sarjaply of toric kid rad /or de:rir.ersitut mo:tw pct:- to tculetten cf feed.
' : y..
5.0
. .: ~~ *~~~"~" -
u . .- .J . gj;g , . .~
8 ,.
'l.n. .w. . .. ; . .v < ;= . . . . ~ , , . . . ,/ . . . . . . , > _ , a. .s,,,,
4:..;,y=
. ~,l .h fh..' ^
k_ k. ' ' . ~
$;: D , .. " 4.
i
^ '
v[.. 1,.N# %
-g:- s s . u .11 -
a , ' - t, ' gg '
'A ' 2103-1.2 hevision 0 1 06/03/77 l 2.2.12 !asure uAn RC System is in % des 3, 4 or 5 boron concentrations l
are usintained per Figum 1.
)
2.2.13 The following definitions apply to this pescessrt: l toestion: Addition to the E5 of torated water of a higher i i concentration than that of the RC5. I !. Dilvtion: Reesetion of the BCS bores concentrattan gener:11y tty addition of durinees11aed unter to the ats, i Rumpval of heric Acid from the letdeun fluid oy d Osborstion_: i dehorstieg dem6aersliants, the efflesat of dick is i returned to the ES. The tabersting Businertlizers t should be used d en the ES concastretien is vithis } approstantaly 200 ppm boron of the final calculated d. and of life RCS boram cancentrstic. !
.4 before any operstian dich will change the horic acid ce:ce::tritier.
'j 2.2.14 j 5 of the BC Systas is per Toned, the time rogstred ta sche tt: ; change f.hould be detetuined. If the operation mO for e l
' significantly longer period them calculated or if the R: ten Systas is disrupted. (e.g. , t. ass of letdza flow or seie ? 'l pump), terwinate the process untti the cause is thternited ed '
- u
,' corrected. 2.2.15 Prior to dilution operation, sample the source of d=rir:er:11::t
- mater and determine that it meets the requirements for priwy makew.
4.0 OPitATitG Pt0CIDiM 5 4.1 Filling the Ibxtor (.colet System 6.0
W. 2103-1.2 ,
. .. . Revision 3 ;
03/03/78 . 1 Discussion The RCS any be filled to its total cold volume 64.560 pallons uhtle in the (% 5) cold shtdom condition vstni domin. unter. provided i Cold shutdown the caid shutdown mergia does not go below 15 sk/k. I a i ) boron coaccatrettom required to maintain 15 saberitical condition Q ts found en Figure 1 (< 300*F). ' 3 '
- The volume of Denia. htar to be added for fill is determined from i
j Table 1 untich Itts ES Veless vs Level Indication. , l M The precedure evtlined below and equations of Encieser,1A are to ? be stilland for filling the RCS with durin unter. j Ti CETit!R: If the solsties to the ogsethus of thcleesre 1A ladicate duelmersliand water addition will redscs RCS Doron below ['
- that required for 11 saberitical mergin then Borated
.g thiter must be used for fill per step 4.1.3. M Preregutsites
/ 4.1.1 MOTI: !aitta) each stap.
_1. The sinisum borom rameentration desired for a filled RC Syste gj _ at 18 has been deteewined frem Figm 1. (< 300*F). $j _
- 2. Insere at-T-1 A is 12 /3 full.
toric Acid pe CA-MA and CA-P44 are set for full stroke and gj 3. are operable 1420 strokes t 9.5 pm (See F19sre fF s. p;j *
- 4. Initial volient of E has been determined from Table #1.
4.1.2 7.--r ' 7 (fill using Durineraliand hter) 7' dd: 50TE: laitial each stap. N 1. Dsterwise volume of Dhi required for filling. Enclosurt 1A. If - i _
- 2. Calcolata the final boros concentration from Enclowre IA.
f t is deters:iacd that tse final bor;* concentration will te 7.0 o
-- .ame-w assue e a
9
= 1m W ,g
Wy.
. c $1 ' M: . ~ h iX .,
tito-1.2 .j
,1 . , '. heviston !
0 10/19/77 l i prester er egaal to that remired for 15 st4 critic.1 astgin at
' [
140*F (See Figues 1. < 300*F). pescoed with fill wing ensinereltred unter. If adding desta. unter anly to fill the acs wov1d g r .cs - ,,,,s.m.tt - redt....t.. , 15 satcritics) (Figure 1). them enthod out1 teed to 4.1.3 aasst g be used for fill. f.d 9 lasere all preengrtsites and salm itee es have been est per 3.
")
tin-1.1. F1119st and testies the teacter Coelant $pstem. [4
- 4. Sempie berga overy 38 god and cautions with fill and aest.
. fj tarify en totorforsace with other processes.
Ni 5. ) .~,-
- 5. IgMS 1s to "tenan1* position, 1
j 7. If the reacter is shutdann and dehoretten gruter thea $3 r/:3 M J
.O is to be perforsuHf. a 1/W plot umst be tettiated weses tha $.! amount of unter added to the RC3. Also, a recor*r should to &;}y; e .. set g to escord source renga cps if marmney as Gei.Macd 9:'
s.. j k N Ni I MdIOf
- E. Set up required betd en Fedoro batd castro 11er.
.. w , Open S Y294. ' ' 9. L' T*
- 10. Open O lr10.
.p; ..] _
N
- 11. Adjust DY9 ta proper flow.
.gI
- 12. Ilmattse ankaup tank level and red positions.
hj,tej
%2 ESTE: team the hate is cesskta SY10 will close a d i.<t. ,', !#'d 3
Bleed and Feed krto Tefwinated Alarm will ame::1ete. o.. . ,- *
- 13. Ple::e bate controller in STOP-RS:3TE.
. ;u ' .. . '
- 14. C1 era E Y214.
.j;r*
- 15. Checi/clete P.)-Y10.
%', I C.0 i r ee-4 ~mov eomaemw s ee m % e q *MW # TO , 94 9
_ j. , ' TS: 4T'.
.f Q A$$lq:- ~ , g, .
2 u L c . -t "
- I d 7 N k '*
2103-1.2 Revisic,2
'l 10/19/U r 9 16.
Record the noter of pe11ons added to the stCS tr, CTO Log tool. j I , v,
- 17. Take appropriate readings and couplete Enclosure 1A eM cte
)
- Q "
1 t, snift r.r for roi d fiitos. 3
}]j Feed Process Casplets ; y 8perster Date/ Tic:a
- s
-) 4.1.3 Procedure (Filltag Ustag Borsted Water)
My,i E: Isttial each step.
, gh. Th 305 can be f111od to its tstal cold volues of $3,400 gets, n. .} [;] (utick tecludes the IWT and 185P piplag) by either setr.; Ti . .4 ,M.:
ser$c aese and essemersitand amtsr e n earte Act4 ae cocic m:g:
, I Acid solstlen from WT-1B er T-It.
t; OT1 n. The somittens for ustog M CMT and desirwslized inter er 75 d . , :/(( - DET and RCET borstad enter for fill are est1tmed in Enclosure 1;. y p.' 1.
. ?.C; Determine volume of berated enter to be added for filltr.g (See > 'qa , ye Tabis (1b N ' C..:J '['q ,j 2. Determine final concentration of boron required for tte K'3 f< '
(See/fpure1.<300*f). l #; 3.
;(.c . N.] -f . r: .
4 Detararfme laitial boron concentration of RCS. Deterwise the volume of boron (M) regwired for fill (Enclosuro
- . 2 18). # s D, *, acte:
Enclosure IB enables addition or both BAKT borm (j h[ ,
<g,fy solution and ItCET boren solution to achten tfe } ,54.{ .. required boron concentration in the ItCS accerttr.; to "[...- M. . Ff per 1 (< 30f f).
9.0 _ - _ _ _ _ _ _ - _ _ \
gh . ea
^% .Q. - 2103-1.2 "
- hevision 4 06/12/78
- 5. Deterstne tk volume of dominere11 red unter to be added, n
(Enclosure 18). NOTE: Enclowre 18 enables addition of RCST loren Solution } l
' after adding concentnted boron Solution from the
) - a. a- Insure all prorsquisites and vain lineups han been met per 6. 2103-1.1. Filltag and vesting the tasctor Coolant System.
.d q 1 alTTE__1:
To use the horic acid six taak to fill the ICS p to
. . .' qv.s stap 4.1.3.7.
gj,4 e.
;} upTE 2: To use the reclaimed beric acid tank to f til the t:5 f - go to step 4.1.3.N.
} w. Y. ' ECTE 3: To use a bleed tank for filling the RCS y to ste> 4.1.3.45. A.) ra,. .< . -
+. .: , * ? ?s ?~e 6.-n?
t2 . -,
<r / .. kib (gi>i NiUc;.1/ :- ~CY!'s-: .. hfd l:e
- B, ~.,K[, {
7, ; D- .
' hb'+'hl 7
X y;_'?.{
?y1lh ' %f: .4.v 1: 1 1
- 4. ,
- 10.0
- -.y ;k 4
.3 1 % em3 A w-OO
AP,. L .
*Q.
w t';-
.2,2 we <</ '
B+'t y ) . 4 *. 2103-1.2 W Rwi t im 03/b/E
- 7. Feed fras toric Acid Mtz Tank (CA-T-1):
- 8. Verify no interference with other processes.
b 7 9. EYB in the 'Aprual" positten. ) *9 P 10. Adjust Gorfc Acfd Puup troke for desired flow.
- 11. Set poric Acid Pump hetch cestroller for desired sp.enttty (Z:
Figure 3). i] CAUTION: If BANT is the T.S. ted. insure sufficie:t volt.cc
,' to food the ACS and amtstain stahan T.S. Icret.
m 4 12. Lineup the followtag selves for the approprtata m.
.. ki 4A pump # per >
b talve Postt6es kitiel Dalve Pe;1 tie- Jr' t ' ' '.
' Na.M. W5 tN.S!I.k .
CbV1M Closed C&MM G ese'
"..ct +
e .
*P 4 % CA-Y129 open CA-Y129 Span I
0 C&Y130 Spen CA-Y130 Opon
~ .3 C&Y222 Open CA-Y232 Open g d_ ms ]
r
? CA-YZ23 Open CA-Y221 Open se 13 l ~ ,. ! . g y.
CA-Yl32A % CA-Y220 %
.y[z,.N CA-Y133A Open CA-Y1328 Open A
3 .} r 1
.g CA-YZ29 Close CA-Y1338 Open CA-YZ28 Open CA-Y230 Close CA-Y138 Open CA-Y138 Open ..'.s d CAY 219 Close CA-Y229 Close '( ;y - CA-Y233 Close _
CA-Y219 Close C&Yno a . ,e a. {7,g ...h,i$; u. Ope +no. C& YZ33
". ! '. ^ ' 14. Set *ktch 51re" to ICT in eress of thet estre' (' it: W : ' .h. .g+,w l .
Satch Controller.
<? a .:. '~ . 15. Record level cf f.M and deterrie W ef hid.1=1. .c ., [t) s
- 1. 0
. M 1 ^. . .'
i
@?k- '; . .
N%: mp -
FND.1.2 . s- ervisto, 3 03/03/78
- 16. Start regaired Doric Aid Pump (s) CA-P-4A_
CA-P-48 b I Sy pu111mg out cm control switch en Centrol Penel 3.
- 17. Check flew ttte en hatch Castroller.
~k 18. Ituatter askeup tank level, tal positions, and SART level.
q 4 WDTI: Issen the horic kid Pump tatch Counter (s) runs est the V ic k W pump (s) will step. j Close 8th-510 uten hatch is cumplete. I! 19.
, *83
- 20. tecord DET 1 eval.
h6{ . Ka::a Fontore tatch Castrs11er la 51tP/RDUTE. 21.
.. ,j.{;
- 22. Place teric AcW Ptup struts to eartmen.
,. " .]-l.j tocord gallems of Seric kW added te CED Log.
46 - D. k-".'~ .. ;'. :.
' pggg pyggggg gg p1gge Operstor Date/T u.:
i
- 5
Feed From teclaimed Boric kW Tank: N
$*djh.2 Verify no interferisca with amether process. ,, jd 25. ; e i
- 26. IU-VB in the 'morum1' position.
j ".i) Verify proper oil level in the haric kid p:, ens. Z7. Q' c;3 jyl
.'p CAlfT!ait: If BART 1s the T.S. tank, use valve lineup for CA-s J - 3~ N' sa P44 below.
hiQ
?Vji 28. hecord level of RSAT and calculate and of batch level fra ~+fjgj =
l. n. b Table 2. CAtJT10m: If R2AT is the T 3. tanE, verify batch cc . be e.:'I:
.,..,. .4. *:, .
e .y' ,y ... and still leave T.S. volume in ter.t. See Fip re C. y 74' . C. . ?9. Lineup the followin9 valves for the appropriate rc(s). lS ".A p' p.? Y.l .-
. ,lN.i av , .# , f ' a '.tp ,; n.. , f. . ;'
12.0
.m , . h .' ,
- r , ,,
#b * .. . ., -r 'v ' ). .2.- 'f~ ~ ~
r .
'l , -
c #>. - s- .
*s * " F103-1.2 .P4 hevisioe. 3 Rj 03/03/76 .s Mf.q: 48 Pusc 4A Pump ;g *.g W Valve Position Initial Valve Position Initial 'd5 Close CA-Y217 Close 9 CA-Y217 "'.'.?
CA M18 Open CA-Y218 Om tZ Jp Close CA-7232 Close sid CA-Y130 CA-Y221 Close CA-Y130 CPen s24 Open CA-YZ21 Open 3p? CA-Y232 _
*+d CA-Yt33 Close .: .y CbVt22 (Den wg %
40-1
- x: y Car-Y223 % CA-Y220 CA-Y132A Open CA-Y1322 Open
) $Ni:.iSi i'dM CbY133A (Den ., CA-Y135 % fp>. ; CA-Y136 Open
."- Cb(228 Open Curias CA-Y22, C1 m -3 Op th.c CA-Y22, Close CA-Y230 Close cla ~{M i
CA-YZ31 Close n,,3.j CA Y230 Close Uh tsyd CA-YZ19 Close
% CA-Y233 Close ..s.1 :,
- 30. At the Ited thste Penel (Aux. 51dg.) lineup the valves as ft
#l 5: - #h follows:
[ Valve Position - lattial I hY106 Open
'fd :.E.; les-Y107 open 1
L'4 [ ,' E V110 Close tc5-Y151 Close
- M,f[>' -
- CS-Vill Open l l
_ _31. Ester require! st. tees, as detensined frcs Fig.- 2 l'.. c.
, . - ; strtAe cc mter for req tred Eoric Acid Pe p.
13.0 -
r . ., . , , :. ~ .
.. . .. . . .. c . .},k ,' , ~
M "
. 1. . / .4 -
_ '. g . .
- .9m .. e - Y , _. ~
g, f f f. : p ,.. f .-x; M f M:l;Q '
~ ... . . , . ,,03.,., 1 Revision 3 ,
i 03/03/78 l
- 32. Open OV10.
- 33. Set Foxbors totch Controller to the batch site desired.
M. Start the heclaimed Boric Acid pee at the Rad Westa Panel.
- 35. Start CA-MA(t).
- 36. Check flow rete en tatch Centro 11er, '
- 37. Ibnitor innheup Task level. Os positions and ISAT 1evel.
UtfT10s: Itunitor tatch Centre 11er closely and stap the hectatmed Soric Acid pump (185+3) and CA-MA(8) eben the j coenter tatches est to provset deed bending the t I teclatsed Doric Acid Pu g and the toric Acid Pus , I C' ? "(5). I ! 35. Place Fezbers tstch Castrs11er 1a STDP/RDUTI.
- 39. Close MJ-Irlo.
NDTT: If the D r is being used to uset Tech. Spec. 3.1.2.1 tk::n completa the following staps (4.1.3.35-35).
- 40. Close WD5-111. ;
- 41. Close CA-Y218. l l
l 42. Open CA-Y130. )
- I l 43. Record level of RSAT. j 44 Record gallons of boric acid added in the CR0 Log. I I
! Feed Procass O.Dista [ ' Operator Time /Date j
- 45. Feed from RC Bleed Tank i
- 46. Verify no interforsa.s with another process. ,
- 47. EYS in ths "Itmus1" positice. t ,
C7:17!C
- Tt:2 hate tbste Tr: .:fe- P;:n e'll start if t'.e raing pese trips. ;
14.0
g 03/03/78
- 48. Limong the fellering valves for the appropriate Bleed Tank /tensta Transfer pump, tel-PSA tDL-PtB 4
@, Wolve pas. Iettial Velve pes. Initial 'l j tel-Y31A Open tcL-Y318 Open !.! IEE-Y3EA Close imL-Y3Ea Close 4 ? ICL-V534A Open teL-134A Close t@L-VDet Close ISL-EMS Open j WEL-Y1152 Open ICL-V1152 Open
, it2.-MO Clese ICL-Y40 Close 3
"{ CL-Y33A Cloce IRL-Y335 Clese
*A* 85eed Tami 'A' Sland Tank j W Ytti Open ICL-VtBA open "t* Elsed Tank *S" Blood Tank . ICL-Y215 Open ICL-YZ8B OPen ; *C" Bleed Tank *C* 81eed Tank 1
icL-Y29C Open teL-Y28C Open f;
- 49. Set batch size en Foxboro Satch Centro 11er.
1 J 50. I Start tenste Tromsfer Ptee ICL-P-5A er 8.
.?.
9 51. Check flew rste on latch Comtroller, adjvst vith EY9. 4 j 52. Manitor makeup tank level and CRD posittens. , CAUT10R: Sacers the running tieste Transfer Pump lamediately (: 3 after EV10 closes bocarse they do not evtomatically r; shutdoest. 3
- 53. Chect/Close %V10 =Aen batch is casolete.
- 54. Flace Foxboro Batch Controller in $TDP/RDCTI.
i
- 55. Stop the rwining ideste Treesfer pm. )
I l 15.c t
<e p ,a . u4 -
t'
.~; .y- .J; 4 '~- , . .s .,, - . . . <4 , ... 25 :..
w - e . I F103-1.2 hevis1on 3 1
$3/03/78
- 56. Close the valves that eers opened in step 4.1.3.48.
} ) 57. Ancord the ptions of boric acid added to the K5 in the Oto ; i Lee, a C tsee N cass Complete
. (perster Ttus/Dsto t
4 (n. '6 40 \ J Ae?,' $
;N.., e ' *4 e .:
d N.- 2 -
" j M.
s[s..
' a*l 5..[.*'d . p_ .6 . i '* '.14*.
9
. ~<[d f.,.h (* * 'h $['a y l-gl3
( , , dej n - F m\ r *
.Ii ic. o.
I
,3,M, .1 ;s 9 f,' i W l" ,-
l 7,. . l e f g a ..g
- 16.0 a_-_________-- -_
. O n. w g. ,g .- .., . 3- .' = . , - . .. . ,j :; .: I f .& r 'r Y + , .[ . . s c. . ? ,. 4. .-q, " Ag;. ,, y " 3
$,4 f8
' T AYri, _ ,.f'.i C
. ,3 Q h . ; '..ll l.,'ls l *;' .*f ~,' hf* -A ~ - ' * ., a .A: d. ~9 ;~
{la%<'WindW e 's
- f. -
T.
2103-1.2 f, '
Revision 0 (- 06/03/77 L g L. 4.2 Osborettog frem Mode 5 to Mede 3 f. A J Discwasten ,..s 8 [ tering bestup from 140' to 582 . RCS water avansion volse (approx- , testely 25.000 gallems) will be letdom to a blood tank. RCS feed ; and b)ead ta reduce the esid/ refueling bores concmatretim to hot L F stancy horsa esacastraties will est be h atti the RCS te!ccruture is > 5tS*F. H. Wtilias the , -T 7 estllmed below and the equation of Esclosert , i I te reds::n the SCS berem concentesties to that required to asistaia a 11 het sabcritical enff in. (Figers 1 > S25'F). them using food & bleed ogmations of Enclosert 2 pici the ese uhtch e~
^
is closest to the existing RCS temperature. In this case it would f F he the 525'F ogmation. hott also that curves art pesvided in l Flysrs 5A., S & C for ease in camputattom of netwrs) logs. e 6-4.2.1 Prefsquisites p , I e0TE : lat.141 each stap. ., P.
- 1. The continuous dilute permit is satisfied when:
F
- a. The batch start and size contacts are closed and the Safety Rod Groups 1-4 are fully withdramm, and the CRA s_
i, . group 5 is greater than 251 withdramm. : e.
- b. Reacter power 15%. y
- c. Mateup tard level is > than the Itw k.. 21 setpoint.
Am RC 51eed Tani is at least \ full of water, or the systma is 2. a. t altped to rective Desin teater via M'J-1r294.
- 3. Prio- to lev of 525'F. d:terwine the bore cwtratten ree;:tre,1 te metat.ain 1% $6 critical in Hot Starcy (see Figure i . > 52ff c:.:-v!. ) .
17.0 f i
e.: g ,,..a.,,. r . . . g,4 '..; . ! y ys .-
.. e 7i ~ .. ~ - * :..~ c :' .~. , .'%, ..:. '.
f57,4.
- . . ; i. . a. . :. --
.. . .' G -A . 6. . 'W.s 1 ~.. pt. . p. ' - . . ev . *94 . . .. '^ - ,6.,,, .** :p _
s a c.Wg:
; . . v. ' ; ~~ . . A74'if ~
y -. 3.; c .9 _,w ; . ggi. q.4-
.w 'Y 2101-1.2 ,
i I hevision 0 ; 06/03/77 E: It is oors efficient to run bleed and feed at a higher temperature.
- 4. The Mnkeup at J Pwrtficattom System is lined up per 2104-1,2.
4.2.2 procedere(In1tialoechstep)
- 1. Beterwise volume of RC to be displaced for tecrease in Tav frgs 140"F to 582*F.. ($ee Figert 2). lasert astftc6ent RCET capecity is assilable (aperastustely 25.000 gallons). l
- 2. 10:1le the esector cashurt cheststry is being established f i
during plant bestap (2102-1.1) a11p RCET *** er "C' to receive i M. M: tarify no 1stafference with other processes. ,
- 3. Lettsua to reactor coolant blood tank 5, or C per the following I linee:
Tad B Tad C , 4 i Valve Positica lettials Valve Position Initielt t i Ct.-V46 % R -Y46 % ( n -V45 Close R -Y45 Close . ! n -V965 Open n -V963 Open i O.-V964 Close R -Y964 Close j i c.-Y953 Close R -Y965 Close j
- 4. If it is desirable to batch feed during heatup thee refer to sectico 4.6 ef this preadste toile a:intaisin 11 st6:ritical errin (5:e Fict:- 1. Cern 3CC T - 525*F).
- 5. Af ter the trate- Co le:t Sy:t= Ter is gruter tr.r. (>)
525 T, tei;in etica to the 15 r.dcr1ticzl cer.titim p:r 8 F17::n 1, > 525 T c:. re.
~*Wy[... ? .'
le . ce
,p;-
A is - j ,%%7e ~ '**
. . ~'Th@Nl titG-1.2 G.;.,;;. /d Revision 2
[* 10/19/77 7$ e.j n0TI: Group 5 aust be withdrawn > 25% to allow feed a w ) ij bleed per 2102-1.2. 3 ; . j j 6. Linew to feed the Nakew System from RCBT *A" (after wrifying A 3 no interference witA emother process) as follows:
., let-P5A R -psa .Valw Pos. Initial valg pos. tattial
) 4: IAL-Y11A Apen lAL-Y318 Spen i j IEL-Y3EA close ISL-Y3EB close t l
- uBL-VEMA Spen teL4MA clou '
E -75 M B Q aee tEL-534 epen
~! EL-Y1152 Open I tBL-V1152 tree l
d ImL-seo cisse neL-Me ciou ; ISL-Y334 Close lEL-Y33 Close 4 ML-V294 then IEL-Y28A Open
] $ 7. Place EUB in the "Norus1" Positten.
1
} A
- 8. Set enount of feed on batch controller egal to (V ) calculatica F ;
in Enclosure 2.
.S j 9. Start hste Transfer Ptap ICL-P-5A or 8.
J. 10. Checi flow rete on batch controller, adjust with EY9. v
.j 11.
Monitor makew tant len1 (raintain betmeen 75 85 inches) ar.d te
,; OtD pasitIans.
CAlfT10M: Secure the twming unste transfer pump immediately 1 i after EY10 closes because they do not automatically , I
%, 'l C
E, j"'- - 2103-1.2 t;, hevision o i-(c '. 06/03/77 7:4'- hY*b
- 12. Wien the tetch Controller batches out stop the Wste Transfar Pump.
h[
$5i M.
- 13. Place EV8 in the 'morum1" positten.
$.:.S
- 14. Chect/Close E Y10, ih?
r-
- 15. U' Place the fouhore Batch Castro 11er la *STOP/RDunt".
L .n..
- 16. Close the volves that note apened in stap 4.2.2.6. Ye
- 17. Close the valves spened la step 4.2.2.3. h-
- 18. Encard gallans of ankamp added to RCS in C20 Leg, h..
Feed Procu s Canelete ,. Eiperator Dete/T1en r. [* P L g b. s N i e p -n 20.0
TCYFI M E[8X,,Wt.!.fy'p 74h;Y,.Q.$.v.[.Q(.Y.y%).m c' + -
- b. % ? l :. Q 9 ? g
.m 'T 4W"- 1::
s' . ' , . > i .'
]h'3t*<M *f,, ; Ip 4.~ fgy.h & ~tt % . ', . .. .- .
u. W'. h kI .w . v;..'t 5 % . l l
,e2 4 3 4..v yq : w.+ m. -
1
.: .n. K.- . ,. ..' ..s ;:: ,,4, j,. :,{. . .. g y* , . .., .~Ms .. - ., ' 'y ' .
4 .
* .. . 4 E gg4l%h,s-o .. 3.} g ?f :y uel :.' ..l} . ,_ % A. . ? ~Y ',s: "* * ' ' ;
Y$Y N?- ( . * * *.1
%.3 ,
2101-1.2 , Revision 0 l 06/03/77 il J 4.3 Deborsting Frsa Mode 3 to Operating Conditions (Mode 2) ,' Discussion brith bovsn concentration in the RCS set (Figure 1 > 525'F) to f i unintain 11 subcritical mergin, refer to 210bl.9, hs6ctivity ! Salance, and calculate the boron rweatration required so that the l l desired control rod positions will be obtained during reactor , I startsp. l Achieve the esgetred beron cancmatratica for its startup usteg feed ! and bleed of antar according to the proceders outlined below and j the ogmation given in Enclosars 2. Meam using the feed and bloed )
. 5
{ equetians of Enclosure 2 pict the one which is closest to the j existtag RC5 tempersters. In this case, it would be the equation - for 525*F er 532*F. Carves are pewided in Fi stre t 5A/3/C for ease e in camputattom of natural logs. 4.3.1 Prerequisites t . } NOTE: lattial each step. ; t j 1. The boron concentraticm is amintaining a 11 suberitical margin per Figure 1 (Curve > 525'F). ,
- 2. RCBT (A) should be at least half full of unter.
2 3. Detsruine the final boron concentration desired at 532'F. ; See 2101-1.9 (Reactivity B.alance) for required boren cmcentration I j
}
for the ECP. l i 4 Centinows dilutt permit is satisfied as foi?ous:
- a. B.atch size is selected that is greet:r than the intetrettd ,
tetch size ir41csted a ,d start /stcp witch is in tM start position. 21,0
..~.
dr7-
*** %?. .
2103-1.2 hevision 0 06/03/77
- b. Control rod groups 1-4 fully witMremn.
- c. Contest red group 5 is prester then 251 witMream.
3 - Makeup tank lent is above the low-los Iew) interlock d. }1 , setpoint. (18') 4.3.2 Proceeste a0TE: Initial each stop. , 1. Detenrise the values of unter required to food and blood to j; .. the E@ bersa conometration per Enclosere 2.
.j i
- 2. Verify so 1sterference with other processes.
fi
- 3. Latdemn to reactor coolant bleed tank 8 se C per the follering j
}1 .j limoup: .h Tank C g Tank 3 .j Positten initials j Valve Position Initials Valve R -V46 Open '- E -V46 Open _
R V45 Close
/! R -Y45 Close .Y I Open E -Y965 Open __
R -7963
'el,o R -7964 Close
- n -Y964 Close _
. :t E -Y965 Close E -Y963 Close
[j '
~.-;,.. s 'Q 404 Mi d 4. Lineup to feed the h System from RCBT (A) as follows: .4 L-e, y; .h re q j' 22.0 l
- 1
.. ,7 % . 1 -s . . .ii -'~~~ ~^ # - ^ ' ~ - - ~ ~ -
, ,fy ,
w4 Q-
- e. -
t
. .- - , . lG - ;3 , , , ~%Q;n ' '1 21 Cal.2 Revisfon 2 , 10/19/77 b .i nsa,-PSA TEX-PSB x t Tj Valve Initial pes. . _Pos . _ Valve Jnitial 1
LEE-Y31A (Den IRL-Y318 Open i A
! I LEE-Y36A Close lEL-V368 Close IEE-V534A Open tEL434A Close I"
tEL-Y5344 Close } e IEL4348 Open IEL-Y1152 Open lEL-V1152 Open
-4 A LEE-V4C Clase E -900 Close IEE-Y334 Close IEE-V33B Close
} ISL-529A Spen IEL-VISA %
,$, ..:;7 5. Place E V8 fa the "morus1' position.
y']1 6. Set amount of food on batch castec11er ogsel ts (f p
) calculation e
- in Enclosurt 2.
g-N>a 7. St. art Idaste Trsnsfer Ptap Itt-P-5A or 3. M.N A3 1 _ ,,8 . Check flor rete on batch controller, adjust with EYS. M! 9. n: -) Moniter askeup tant lew1 (as1ataf n betusen 75-85 inches) and 2,j CitD posf tions. m@ CMTION: Secure the rweing waste treetsfer pump fusediately
.,&j J .Wh after EV10 closes because they do not automatically #$;I q-{ shutdown.
f. 10. thee the Batch Controller batches out stop the weste transfer pay, 11. Place E YB in the *ll:rus1* Position.
- 12. Che:L/Close S Y10. I
- j
. l 23.0 j
w: w...
/
StR% ' a .- 263~
,' 'yd '
h' . .
' .*i ' ' . , ,
Revision 0 } 06/03/77 l ) 13. Place the Foxboro Batch Controller in '5 TOP /RDOT[*. f
- 14. Close the valves that vert opened in step 4.3.2.4.
, 15. Close the valves opened in step 4.3.2.3.
i
- 16. Recor11 pellons of ankaup added to RCS and CR0 Log. ,
I } ',. Feed % s Complete -
.e., - tem. i l
I !
. h, 8
I l a 9 t i i t i e
, 24.0 f
ig . . 2 T I % y R
.. ,' * ,. ~
- s. . 3- gp
.' 21tD-1.2 ,.
Revision 1 09/08/77 p j 4.4 Feed and 81eed Processes . Diseussion
- Soros addition say be accompitshed using the feed and bleed enthod b evtlined below shich sees concentnted beric acid fr9s the AC Bleed a.
p; Tests a: the soorts of feed. The source concentration appears as y,.; Cf fa the aguettens of Enclosure 2. tems estag the agostism of ? teciseers 2. pict tem een thld is closest to the existieg RC3 ; e temperstem. tote else that cerves em pewided in Figures 5A, 8 8 i C for esse is competatten of antarsi laps. , 4.4.1 preregrisites . E: Isttfel each step. ?
- 1. Feed and RW persrf t received fren M 8.E34. *F88 Enable Gerste-Osterate. ,,
t'
- 2. Beterwise initial horse came-tration (Crt), k
- 3. Deterwine ffmal concantretfom desired (Crf).
'~
M: See 21tD-1.9. 'hnectivity Salence" for coyutation. '
+-
P
- 4. Feed and bland is desired rather than batch feed to the ankaup p tent. *
- 5. lasset edagsatt bleed space in RC Bleed Tants WI.-T-18 and T-
[ IC. i'
- 6. Inset adequate feed volume is available in it Sleed Tants MX.-T-1A or T-18 or T-1C.
4.4.2 Procedure -
- 1. octemte te ie %tres re fe nin te e-se c:,e in l th blec.f it:i as the soc Ce (Sce Em::losure 2). l l
- 2. Yeriry e ir.te-rem::e etth et.w proce.:e:.
25.0 i
y - r.
'Y*r% s N5-gw, 4, A' 'f t1051.t .s . .; tevision 2 10/19/77
} Letdown to fwactor coolant bleed tank 8 or C per the following _ 3. , lineup: Tank C _ Tank 8 l h Wolve Positten lattialt_ j ; Valw Position laitials j Open s Open hv46 7., let-W6 G ese IRIL-M5 _- tEL-M5 Close -
.d.i Open j 3 teL-V963 Open __
1AL-1965 } [ teL-Y964 Dese -
l ist-Yp64 Ciese --
Close hj h ?965 E V963 Close -- if Lineup to feed the ledeep Srstas from ACST (A) as fo11strs:
- j. _ 4. teL-PSB 4 ' HPSA Isttial
-) .5 ..sj valve Pos. Initial Valve Pos.
W Y318 Open __
$3 W Y31A Open _
1d h Y368 Close e' W Y36A Close - g,q tel-SMA Close -- tCL-Y534A Cpen _ J NGL-SM8 Cpen -_ 1 tOL-Y5M4 Close 1 14 imL-Y1152 Open W Y1152 Open _
. g. s: u WOL-V40 Close _
tel-V40 close __
.' j, ICL-V138 Close -
40L-Y33A Close - _ :..i d tot-vtaA open _ ut ._
,/ j tot-rfu open _
- Place MJ-YB 1a the
- Bleed" pc51 tion. t
_5 .
'ij y ;y.. ,;. :q _ _6. set answt of feed on batch controller esat to (v in inclosvre 2.
D'i - A J.% . i
l % '.; Wi: m
^ '5l:,,'
- i. .
- v. ..
~
j; .G.. m - N'b,. ' 2105 1.t Asvision 0 06/03/77
- 7. Start waste transfer pump let.-P-5A or 8.
] 8. Deck flow rate on batch controller, adjust with MU-Y9.
- 9. Monitor makeup tank level (maintain between 75-85 inches) and CR0 positters. p(
CAUTION: Secure the running wasta transfer peup tenedtately } after DY10 clones because they do not estamatically shutensa.
- 10. Isses the latch Centm11er batches est step the weste transfer
} ' peop. t-
- 11. Place E18 la the " normal" positten.
M. Choct/Deee EYle. ,
- 13. Flace the Foshere Estch Cantmlier is 'STtr/IDCTI*.
- 14. Close the salves that wem aposed in step 4.4.2.4.
- 15. Close the valves opened in stap 4.4.2.3.
- 16. Verify that centrol reds are within proper red index and/or ALAIM 8.F)4, "FAS WTO TDMinATI", is roostved.
- 17. Record pa11 ens of unkeup added to RCS in CR0 1.09 .
Feed Process Camplets Operator Date/ Time t l 1 f
~
l 4 27.0
Q
$* ^ ~ :q ~..,..
4
- 4
* ** - 2103-1.2 Revision 0 06/03/77
' 4.5 Deboration using Deborating Domins. ) .3 Disenssion } Deboretton is accompitsbed tomar11 and of core life with the feed and bleed method etch uses the effluent of the deboreting desineraltrer si j as a saurts of feed. This enthod siptficantly ro6sces the amoest vt of unsta water from the RCS dich mat be pescassed as a result of } 'd.: ' l care fuel depletten. 1
'M The efrisant concastratten of the dehoesting darteefeliter amm uj o.; as Cf la the ogsettees of Enclosure 2. This esty be deterstmed by '4.q .? sample anr.1ysts rr using the ICS bores concentratten and the AF cf nd the deberettag desiaeeslizer. $jj4 Q2 lesen usteg the equations of Enclesars 2 pick'the one etch is c, t*
7$ closest to the existing RCS temperature. In this case it would e" ; 8 j aorus11y be the 582 ogmation. Nota also that curves are provied [j, in Ftpures 5A, t & C for use in cesyntation of natural logs.
*fi.G 4.5.1 Prereguts1tes g _.
g! x'; mort: Isttial each step.
- 1. The lmborating Dominera11rers should be used een the RCS
.t' - trretion is withis approxiestely 200 ppm boron of the n., 'j
- f tmal caleviated end of life RCS boron concentration.
N g. ,
- 2. Deterstne the initial boren concentration of RC (Cri).
4 Determine the final boron concentration of RC (Crf).
.m'i 3.
T*1 jd 4. Verify EYB lt, in the "notipal" position and that OY10 is w+ F77 , closed.
, g.;
- 5. Feed and $1eed perstt received per ALNN 8.Ey. (re Ent.ble e, 4
*4 h h a .j 28.0
J9 m; v; n . y... - . c . h .' w .n.... .. ; ,' .
' . : ~. a%, g . y z g g ;~
g *.q 4 s ., .
.i'7. . s. . .k .s. p. .,_ , - ....:&pi .y!g : +& . ^'
- 7. . ,q;. . -
,~ '
3 3 y . j.F_ . (,*. . .;. _ , , ;- ( . . .\
' 4.> ,
l
?'
2105-1.t Ilevision 2 t 10/19/77 ICH: It may be requimd to initiate flew through the desimerslimers te obtain samples out of the dominers11:er ' l to detenrtas the teria, factor for use la the caleslations. This tattial Dominertlizer run should be closely coordianted arith the Oasistry Ospertammt to stair 1re , l h m t h to M s h 10 M W .
- 4. IInteap tant, level aersel opersting remps.
- 7. If the esectse is shetdan and dehorstles greater than 50 pre ;
ts to be performed, a 1/N plot verse the assunt of unter j added ta the RC5 seat he feitiated. ,
- t. Recorder should be set up to record sovrte rente tsunts if ICS '
l deboration is to be perfomed while shutdam. if required as detersined by the Shift Supervisor /Forsume.
- 9. Notify Osmistry Department to obtain av rasples which any periodically be sec.=ssary to obtate.
NOTE: The Shift Forsman entst use same judgammt as to when a periodic check of the outlet of the Debor. Denin. Dorce Concentration shculd be made by the Rad. Chem. , Tech. Procedure (Deborstion via Deborating Dasineralizers) 4.5.2
- 1. Using taclesure 2, detemine the volume (Y p ) to be utilf red I
for deboratim using continuous feed and bleed. Set this votes (Vp ) on batch controller.
}
- 2. D?tereir.: nmtretion of toric Acid = (Cf) to bs used as fc:d.
c'"I: Cf trill te W. 6n. ef fle:nt beren c=ec.tr:tice. d
- 3. t:rrify ea tete-fem e e. ce.:r pr:ces:es. r
?
M A
I
+#
4'$?*W
'th O /,o//
IA %k g) IMAGE EVALUATION TEST TARGET (MT-3)
// / fI*g,, / +
4 6" > llll h
*p:s h/// "W// 'O a o% // $++9>
1
........,.t...-...-m --
5 .
., yjp. ; ~ .- . ; _ y *Q s . /.,- ~ ; .4 .
p ' ,;p Ey;,
. . L - 2. *
- 2101-1.2 Revision 0 I:
06/03/77 L:
- 4. Osberettog durineralizer is Itned up per 2104-4.20.
- 5. Close E V46,
- 6. Open h v45.
- 7. Go to start en the prb-Pv11 panel for the appropriate Deborating 8 L
tosia, as specified by the Shift Supervisor / Shift Forsman. WOL-K-1A er ICL.-E-18 (Checkeme)
- 4. beset and set Feu6ere Batch Castro 11er for desired batch size.
- 9. Open E V10.
- 10. Flace 1 5 45 la the ' Bleed" positten.
- 11. flumitar fhe follaeing:
- a. Itake w Tank level
- b. Centrol had positions (C20 aust annitor the CRL cantievously '
Wile using the dehorste desin.).
- c. Deborstieg Damia. H.T r e by taking periodic samples and analysis by the Chemistry Ospartment. t
- 17. ftmlter batch controller for shutdesa. i.
_eUT_I,: tenen the desired batch site is complete securs the cowoments as follows: ' r
- 13. Verify EV10 closed. , [. -
- 14. Verify EY8 in
- normal' position. .
- 15. Push stop pushutton for the operating deborating domin.
r
- 16. Place Foxboro Batch Centro 11er to STOP/K1CTI.
- 17. Close WV45.
- 18. Record dich desineralizer was usee and 'he gallons processed i ;
the cao Log.
- 19. Derify trat control rods art within preper rod index. and/or AUL5 8.F34 (F15 AUTO TIItxtrATI) is received.
Or6erstlen Camplete Oprator este/ Time
Revitten 3 03/03/78 4.5 Datch Feed to RC System pisevssten Normal makeup to the RCS will be accomplished prior to rectipt of L r l MTT tow level alare (55"). Ihkeup will be added to the MIT stilizing cos metreted boric acid from the BMT. RCET nr hocialand BA tank whild durin, unter will be added staultamoevsly using a unsts Ifer pisip (or 80 YF94) thru E Y9. l Since flew rate of the ami pumps will be I 16 spa the flow rute of l duris. inter will have to be adfasted via EY9 se that the edi1tions ef Spric Acid and Seria. thter terziasts at the sans time. This tasures good string during ambaup. For sumsple 30 gnis. of concentrated 34 ses1d be added at R 10 gem in 3 sisartes. Then the flow rate to stamitaneously add 300 gals. of durin, unter uould have tc be controlled at EYf to espaal 100 gpm. Use the pescadwre evtlined below and the aguttoms of Enclosure 3 for noms 1 an% to the E5. Also for muell amounts of feed or for saml1 changes in teron concamtration use Enclosure 4 to determine final boron concentrations or required ; feed volumes depending on the evolutica desired. 4.6.1 Prerequisites e0TE: Initial each stap.
- 1. Ikkaup is desired to the RC Systas.
- 2. Concastration of the feed is determined (no'us11y will be existing RCS boron concentration).
- 3. Obtain appropriate section of 4.1.3 (this procedm) for l
required signeffs of step 4.6.5 end 4.6.6. i 31.0 E 9 -. / ,. au.w.uww . _ -~-~ .a-~.
i., 2 Ti: r$'
'N[
t 3,[
. ign ! ',,...- 2103-1.2 Itevision 3 03/03/78 il 4.6.2 procedurs (Satch Feed)
- 1. Detefulne from the makeup tant level, the volume of fesd to be j added (Vp ).
.1 1 IcTE: l' of IER = 31 gallons.
- 4 2. Deterwine the feed concentration (Cf). Homelly this will be
,3 Lj the existing RCS concentration. %~ i
- 3. See taclesure 3 for method of calculottag amount of beric acid a
j] and W te be used and set this amount of W en batch controller. y v
- 1. *l 4. Mck flow rate for durinersltrad amtse dich can be vttitzed
'4.
j.) crith a fles rate for beric acid peeps CA-P-4A and p-45, both j lajections shesid step at the same time. (See Figure f3A & 33), f A. g 5. Begin tsjecties of determined volume of RA according te:
- a. Step 4.1.3.7 of this F+:^ f N den estag the BRMT as s
., feed.
mi :
- b. Step 4.1.3.24 of this F-:-::fre when using the RSAT as A
e, vi
*f .
feed.
- c. 5 tap 4.1.3.45 of this procedurs admen using a bloed tant d as feed.
9
- 6. Terutnate the feed process as follows:
7 f, s. Fras RAMT per step 4.1.3.18-23.
'Q .
d b. From IBAT per stap 4.1.3.37-44.
.h4 , '*G c. From Bleed Tank per step 4.1.3.52-57. I h, ,~
- 7. Log enourt of batch feed required in CR0 Log.
Process Complete Operator ktrf)tme i
-4 Y i 32.0 *I
g[ .
. 4 k. ' ' g.,4
- _ w$.m:h -
e r. A.g..
-. ~ . . -s .*
1103-1.2 Revision 0 06/03/77 4.7 toration tc Hot 5taney (Mode 3) 1 525'F Discussion 9 Following Rx trip, the RC5 cools from 582 to 545%. This mounts
yO to a contraction or approximately 5000 gallons fra Figure f2.
Y fr.5 Fsrther coeldom to 532' causes amether 1300 gallen contraction.
&f Fo11ering Rx trip borated unter equal to the existing RCS concentration A ." $$ any be added te v ata for the caeldom contraction, es lose at g
the namen volse la the care russies ebeve its equilibrim volse, vi; . .e 5.A This time to decay to equilibrium Namen is feed on Figure M. M
'd Additten of unter at RCS concentration elle Ianen is above equilibrium gej d .; will omsare a 11 tot stameg Shetdes IInefin is nietatead. The W}; method for adting horsted inter equal to the NCS cancantration to .v NI account for system cetraction, terile the peak Ieman rammins above h) .i equilibrium, is evt11aed below. The calculations for the amount of n,g
{ pj.j Wroted boric. acid and diluts boric acid /desin. unter dich , ,. n e
- t. -
-w,
'? must be added to match RC5 boron concentration, are outlined in h'-f.d Enclowre 3.. If cocidoun to less than 525% is to te acceplished 64 or the tx will remain at hot staney Imper than the time it takes b;d;f a ? Ienom to decay to its equilibrium value; then utilize the calculations y"9 4 w.: outlined in Enclosure 5 to determine the aucunt of concentrated g: .
V' Soric Acid and dilute boric acid which must tw added to account for J.J
~
l {', system contraction and maintenance of 11 subcritical (Figure 1 > 5, 625*T). 4.7.1 Prerequisites
', t'OTI Inttial ecch 5tep.
- 1. Fced soletica is cr:11:.51e (c .d cc .= .tr:ti n c te--f r.;d) 1:
- E Eleed tots. It is p efer:ble ta e't f~:d re htf-, 1:P---
t . n w
- m-> +.w- -n .- m . .n
w;
'l9 . , q'f.' .}D;* . . M 2103-1.2 ,
lievision 0 06/03/77
- 2. Initial ItCS boron concentration is kamn (C I ri
- 3.
Desired itCS boron concentration that will maintain a subcritical aergin of 11 has been deterstned (C,.f fres Ff pre #1, >
~ $25'F).
- 4. Obtain appropriate section of 4.1.3 (this Fexue) to allow for sf poffs of step 4.7.2.6 and 4.7.2.7.
- 5. Detofirine length of time plant will be at hot stan6y canditics.
- 4. 7. 2 Proceerre (boration to list Stamey) g lattial each stap.
- 1. Beteviriae shriatage of it.C. solene to coeltet dem to $25"F Teve. See Flynre 82,
- 2. If the stay at het stanew is supected to be less them the -
time ta original asaan sham la Figure M, heration say be l' deleyed by usig LC. 81eed Tank storege for contraction ankaup prwided estar is Blood Tank is equal to or prester than existing RC5 concentration.
- 3. lature Feed Tank dich will he used for shrintepe injection .
has concentration egual to or greater than ItC Systan. If less. taject boric acid according to [nclosure 3 dich utilim r-diInta sad concantratad boric actd addition. . 4 Initiate feed to the MJ tank per step 4.1.3.7 (of this procedurt) to seistain makeup level as stCS contracts during cooldown.
- 5. If the itC5 is to be at hot staney greater thaa tier to original ,
secon shows in F1purt H. korate wsing batch feed accordin; to Enclosurt 5 dich vttlim dilute and concentrated boric acid Sufficicat to esintain a s6criticzl strt in > 11 in the atrme Jf 12".cn. 6 1
m , .;_
. w..
( W. I. tf.
. ' . " . S4 2103-1.2 .;* .r. . ' . hevisten 3 03/03/78 a0TE: Feed and blood per Enclosure 2 any also be used.
- 6. Initista boration from the horic Acid Mix Tank per stap 4.1.3.7 (this procedurs). or km:latand Doric Acid Tank per 4.1.3.N.
or frun the blood tanks per step 4.1.3.45.
- 7. than the desired concentration is reached tarvinate the process
_f] per the appitceble section initiated in step 4.7.2.6.
$f 1
- 8. W ausent of feed rugstred la C50 Lag.
Jh r; hj terstifa W1sts .et.o e
.~.
c. M.* s.s'I d 5 y' W:) 81 s,,1 y k AR
,9 j:j 2:.
i
.i N , c ,.b.
I; _'
.y.
t.
~ '
35.0 2
l 4.8 Scration to Cooldoun 1 to 300'F f Discussion thile cooltag dom the RCS (1300'F) it will be necessary to 6dd ! borated uter to the RCS to accoat for system contraction and salatam ce of 15 subcritical mergin. l The calculations used te detenrine the amont of concentrated beric l ! acid fms the SANT or heclafand BA tank and dilute beric acid from a RCST are fand is Enciesers S. ' i The anset of contraction and hence the overell volume of ankaw reesired during coeldom (1 25"F)saybedeterminedfresFiptre(2 by abstracting the sels, present at the higher tamperstart from those at the lamer tampersters. 4.8.1 Prerogelsites i 8011 : lattial each step. 1. Initial borna concastration of RCS is known (Cg). 2. Desired RCS boros concastraties that will metatain a sdcritical surgia of 11 has been detarwined (CRf) from Figurt #1 (300' - > 525*). ! 3. Volme required to be fed to RCS is available in RC Bleed f y. Tant.s R -T-1A R -T-18. and R -T-1C. '
- 4. i Obtata applicable section of 4.1.3 (this procedurt) to allow '
for signeffs of steps 4.8.2.3. 4.8.2.4 and 4.8.2.6. ( 4.8.2 w Procedure (Boration to Cooldcun 1300'F) laitta) each step. _ _1. De'armine total volwe of fatd that is required. Se: Fleww , W2.
%.0
.m e. < g, 4
4 a .. .
~ 2103 1.2 4 Aevisio . 3 9 03/03/78 f '
- 2. Determine amounts of concentrated horic acid and odeup feed to be added per Enclosure 5. Use RC Tag . 300*F.
3. In1tiate concontretad herie acfd IQection (Volume F) from bccic acid six tank CA-T1 per step 4.1.3.7 of this procedure.
- 4. thsa required concentrated toren addttten is coupleted, batch feed herstod unter (polume D) free the E Sleed Tanks ICL-T.
IA. R -T-18 and lEIL-T-1C per stap 4.1.3.45 e' ;this proceders. \ r CatfTION: Food asistien shes1d he the same concentration as FC A N concastraties. If feed Is less then RC concentretton.
*; , inject horic acid by fo11eris8 Enclosure 5.
j 5. Gioerve Mataup Tank level and reisa level to apper operstiet , - v ,' 1 j , j 4
- 6. Terminate the process by performing steps 4.1.3.52 through se
,43 4.1.3.57 of thfs procedure.
w o.';
- a. d{
- 7. Record amount of feed required in CR0 1.0g.
Soration Complete
,k<> .
t.n<- m 38. 4:4:\ ', )
, o h'h,[,If + .. e: $gy,j k ,W- .' g..?h?',
d4?d. z.g - 1 r h&; yy . 37.0 g,' ,u *, ,, ._g
4.9 Beration to Cooldtam 1 140'r (mode 4 or 8tx4 5) { Oiscussion l l thile cooling doun the RCS (1 140'F) it will be necessary to add boretad uster to the RCS to accowt for systan contraction and safstamance of 11 saberttical maryta. } The calculatfans used to deteewfae the anset of concentrated boric acid from the 0Alti er hactalmed BA tant and dilute beric acid from f a 8CET art famed in Enclosere 5. The annuet of contracties and hence the omroll volume of ankamp required during cooldawn any 4e deteesiaod frem Figers it hy setractieg the gals. present at the higher touperature fram these at the leer tempetstart.
- 4. 9.1 protoquisites EDTI: la1tial each stap.
- 1. >
Initial borm concentration of RCS is taam (CRI). 2. Dastrid ACS boron concentration thet will asintafa a secettIcal umryin of 15 has been deterwined (CRf) from Ffpurt #1 (< 300'F). 3. Volume required to be fed to RCS is available in RC bleed . tanks ifDL-T-1A. R -T-18 and E .T-1C. ' w 4 Obtain appitcable section 4.1.3 (this procedure) to allow for signoff of steps 4.9.2.3. 4.9.2.4. and 4.9.2.6. - 4.9.2 Proceduru (Boration to Cooldown 1 1 40'F) 1. Determine total volume of feed that is required. See Figure
- 92. \
- 2. Determine at: 3unts of concentrated boric acid and asteup feed to be added per Enclosurt 5. }
Use RC Tarp. = 140'F. 33.0 t
.;4> :,;* '.;.-p-r t . O ~ ' ..;.< -
i
..s<. x r. xp;, _Ng. ' ~ ,,.- - .a R p , ; ,. .; n.: . l =, .1 + , .< ' - # f:
Qi 2103-1.2 Revision 3 g&.i.l-03/03/'8 6M
$y, h ,.
- 3. Initiate concentrated boric acid injection (Volume F) from g' 7 boric acid six tant CA-T1 per step 4.1.3.7 of this procedure. Ihf hj .;<-
4 temen regwired concentrated boron addition is completed. batch y i;;
, .p .
feed horsted unter (Volume 0) from the it.C. Sleed Tanks tRM.-T- g.yf a s.- 1 A. let.-T-15 and tel.-T-1C por stap 4.1.3.45 of this WAm. CALTTION: Feed soluttaa should be the same concentration as E t'ih., -), s concentrattaa. If food is less then RC concentration. J:.N. . inject beric acid by following Enclosen 5. ,%. .. . -.? - gic,
- 5. Observe lhtane Task level and raise level to weer operating pri8t* d'h[.~
c.v
- 6. Terminsta the process hr perforwing staps 4.1.3.52 through ((:.
4.i.3.s7 ef this pr c.e.re. jgg.-
.h.N
- 7. Record amount of feed required in CR0 t.sg.
.+.
toration Ca wleta k>. s. :.1*g. Osta/Ttes ~ ~j (.
-:a Wt N . ,r..
s.
%l s.(
k,' s
= 'g ?
e' . 4 i 6 I 29.O @.6vhetHihe*r4N39WMpilmqup@WsWapmWulgEas#MEndP$i' Tv5=( A
' ~. - . . " }. . .,.s; . 6..-
J 210bl.2 #' Revision 0 05/03/77 7%
%.2 b6 Dett05URE 1 A pg;.
LI. RCS FILL if1TK DCMIM WATER E** . p rb. 1 EA515_ E', . Crt initial bore cancentention in RCS = 124 pas % f.[. (Actual concentration frist sample analnis) N _ gallons (fable 1) e Vrt = initial volume of RCS = v Vrf = final volume of W 912CD = M,ii40 gallons I,$i-Deu = makeup system volume = M30 gallons ' 7
?:
Crf = final borem camountrstian in RCS i gallons required to fill RCS (Table 1) AV = frf - Vrt = Y YT = Vrf + teu = 90490 gallons 11 RIRMJLA g Crf = IU * "I V 111 Calculate the final beror concentratten attained by fill with r-Omnia Water: [ I I
- UI p; Crf = I s0490
?
Crf a ppe boron . d Data Perfomed By _, :- W p. Data Approved By r 40.0 I
~' -~ ~- c- ; ..;;; . sv .a . s.. . ,,,
~ . + y . v_ . , g .
f- g
?;.. ;
_ pg
.( a. ,
- .~
.. , , _ N,k'[$+ , ...- . . . . . .^ , * ~, . ,
1 e- 'o *. i y,ny3,y Revision 0 r 06/03/77 DICLOSURE IB r RCS FILL FACM SMT A2 RCET (OR OD(IN MARR) I sAsis - Cri = initial becon concentration in RCS = 2270 pps - (Actualconcentrationfressupleanalysis) ; Vri = lattial wlume of RCS = ss11sas(Table 1) , Crf = flaal horse concastration essired in ES = pps (Figure 1) p Y, = mlume of concastrated (M) Doric Acid Nix Tank Solstlen C = concentration of Seric Acid Rim Task Solstie (M = 12.250 ppm) 3 (Actas1 camcastratim from suple analysis) AV = frf - tri = en1has regstred to fill tr5 (fable 1) V D = solume of dilste horic acid er darts unter. C, a concastration of Wilsta horic acid or desis unter soit: assim unter C ,= o p ,me V 7
= total wimme of aCs and nu system = to,eso sallens. )
II FINRILA V g = (Crf)(VT)-(Cd)(Vri)-(C )(p AV) (Cg l-(Cp) 111 Calculate the amount of concentrated boric acid needed from the BMT to achieve the desired RCS concentration. Vg=( )(90490)-( )f )-( )( ) ( )-( J Y g
= pallons of boric acid from SMT IV Determine the amount of dilute boric acid needed from the RCET o- de:In t )
weter as follers: ; i 41.0
. es 5
V; c fu g>, to . c .. ,-
.s .
s .
, . .y.a.y; s .{., . .. ? ,'g . . ... '* . ,', -* v. ~ *.~,NN. .' 210bl .Z-Revision 0 M/03/77 VD * 'I ~ YB VD
- phons fm W or bin hr h rformed By Oste _
O md By Osta i I 1 e h i 3 i l 9 42.0 9
m. 5;
.s .
b fj. .-
- .-t - .- .v - . . -s. .. $. 4, ,,, ,,g.., , , . . 2103-1.2 b iston 0 06/03/77 VD * 'I ~ IB VD " 9411ons fras RCST or Desin llater Performed By Oste O a ;;d By aste i .j k e i.
S A<.' t
, .lA. .M i 44 ' .; ).
J~ L,! .*f
.k
- 4 1
.1 i M .i i ?. ; ; 'i
.N.9 q .
.1 m
i
, 1
- e. ,
,8 g
f I .;t i , 1 ; i i 42.0 h
- l
~
m g1 s.. aY.
- t 2103-1.2 F
/b FEED AED SLEED CALCULATIONS 1 SA515 Vy = total volume of RCS and MJ Systas at the appropriate systas temperatures (Figvfe2)
Cri = initial boros concentration of RCS Crf = final boren concentration desired in RCS = ppe '. Y = volume of feed required 7 C F
= bersa concentration of feed solution = ppm M 1: them adding concuatrated beric acid7C will either be 84G. RCET or RAT cancantration.
} p 2: them adding desin unter C 7
= 0. r M 3: then adding Osborsting Domins effluent. pC will be the effluent horsa concentration uhers # of a toren in T Debor. Durin. = Bocca Out as determined by Chem. Lab I" analysis. E h
_M,_: use Figures SA, 8 or C for calculation of natural logs. g II. FON ULA - L CJ-L Cri), f Vp = (VT I I# ECF M E" iia ;. til Calculate the amount of feed required to achieve desired RCS boron W. concentration. , y ,- I Vp =( ) Lnj J-; 4 Y p
= onllons of feed required. ,
Performed By Date Approved By Date i 43.0 !
2103-1.2 .s hevision 0 F. ' 06/03/77 g DICT 0!Mtf 3 p,.~ RATCH FIED TD RCS (IIOWL MAKIUP) 0.-' W., I Basis ? - g:. V 7
- veise of feed desired y.
V, = nlme of Mc acid wiM h, C *
**"C*"I'*
- I'"
- I '"d ' N'8 F
I.t..Y C, a concentration of beric acid selvtion from BM. IRAT or RC8T V O = velems of dilute beric or darte unter k p. I CD = concrantratten of dilete horic acid or durin unter ( r; . E: If desta arter used Cy = 0 peut ;. . 3 11 RNptJLA y. Vg *(I)F(C-C) p y p b (Wa
!!! C4 rin ATI TE V003E Or BORIC ACID itEQUIRED V
g =( ) - a v V g
=
eallons of bric acid r.; ce
!Y Deterurtne amoet of durinen11 red unter or dilute boric acid to c; fleish batch t V
3 =Yr - 's Vo=( )-( ) [
=
V D eallons of desin unter or dilute acid. Peri M Sy Date
- f. . , -
Approved By Date L L 44.0
$ . Y ^ ^
). 7
- y. '. . . -
wd y ;. .,
- . 3 s. .s. .,- _s .
,'d 5; - 'lN ~ ll, . . . .; k ' 7
w v.; m; ~. .
, t ;_ _ gyg .....t. .'.' 2103-1.2 I i
EMCLOSURE 4 g'3g/g 0 n P SATO4 FIID CALCULATIONS TO ALTER RCS ConCEKTAATION CAUTION: Gily good for batch feed less than 1000 gal. and less than 30 p r. pgs boron increase or decrease. L i E: For betch feeds prester than 1800 pel, or changes in boron p ranweatretten greater than 30 ppm the Bleed and Feed Method {i will have to to used per Enclosere !!. p. I DASIS E = total volume of RCS and m system at the appespriata system T tempetstars(F1 pert 2) Cg = lattial RCS bersa concastration Less then 30 peut Cg a final RCS borse cancentrstion .) difftsegace V = volume of food required -) F Cp = cemenstration of fand solution L. M: Busin Water = 0 ppm 8 k[. F'
!! F0aptLA (Cg)-(Cg) [ 'F
- II I (Cg)-(C g)
T $. t: , -
!!! p'QLATE the quantity of feed solution required to attain desired ;
final boron cancentrattom of RCS. h 5-L ? !A V 7 =( ) i, D-c a L. . Vp
- eallons of feed. f.,i,
!V The f1 mal RCS rame==tretion can be calculated fram a W amount c, r
of feed solution as follaws: C g
- II )(CT r1I *IIT IIIF I (VT I
- II FI E' II I*( II I '
C
#I ( )+( )
cg- r;:e (fir.s1 tcs com .) i redernes ef pate [ 45.0 i i
2103 1.2 [. p gygig 0 k r ENCLOSURf 5 r' . RCS MMIUP DutinG C00LD(WN (NO F.50M) ,, Volume of torated Water required to camprisate for the shrink volume h n and to achiew adequate Shutdown Margin seen taking the teactor Coolant kf System to Not 5taney Not Shutdoun or Cold Shutdoun condition using batch p-feed from the Boric Acid Ria Tank or the heclatsed Boric Acid Storage Tank ( g.. and an RC 81eed Tank. . I BASIS . V, a solisme of concentrated (M) boric acid (Wim Tank) solution C, a concastratism of beric acid (Rin Tank) selvtlen (M = 12253 ppet) t If BAT is used tasteed of SMT use appropriate concentration) , (BOTE: V D = volume of boric acid from blood tank Cp = concentration of feed from blood tant Cri = initial toron concentrattan of RCS C a final concentration of RCS , rf V hot = volume of hot RCS (Figuri 2) T Vgid a volm of cold RCS (Figure 2) AV = differince in RCS velm during cocidoun f. 11 FCBBER A V 5
" (I Tald)(Cg-C,g)-aV(Cri+CD I (CI~IC}
B D 111 CALCLn. ATE the change in the RCS volume frem hot to cold conditions . (Figure 2) BUTI: For V cold ese anticipated RCS temperature at cooled dwn candition i.e. 140' for cold shutdown. r 46.0
,_ __ ___s t- -- -- --m- - . >- - -- "~
f_f E E Y 5W .
}h 5 g
s:RF::R:wdwi+.;wn ..E*kY'TODT c.:w u.> ed.h 3. :v:h:a:a ..uw aw =w=. edLA uwm , m %_..
< .s -
i
ta 2103-1.2
;~
nevision 0 p '
- s. . 06/03/77 L. -
Pg~ aV -(vpid)-(Vhet) y E7 j ' f aV -( )-( ) 1 _ g s11ons of food needed to compensate for shrinkage, b af * . L. IV CALWULTI omount of concentrated beric acid required to cooldown *r
'{r and maintain 11 saberitical candition per Figure 1.
I?- Vg =(Vpid)(C,,g-Cg )-(AV)(Cg+C D I h (Ca l-tcD) g.:
=( )( - :J :( + 1 i V, ;l t a, V = unllens of cascastrated beric actd required.
5 (, l V Deteemitee gematity of beric acid from blood tanks regwired to ecsplete t; V p = AV - V, . V p*( )-( ) P V
- gallons of dilute boric acid requirvd. O.
o, D - k-r cote- > fr perfomed sy_ h aww
~
hy r I e l'
. e Y.'
i-47.0 i l l 6 , i
- ' h - . m 'd h g 3 - &y u ,_ _ . . -- h r, . r. u ,. . , .
.. 2103 1.2 Revision 0 FIGUE 1: 941TD0181 DORON ComCENTRAT10N5 VS EFPD M /II $ NOTES: 1.
2. First Cycle 421 EFPD Safety Rods K11 Out itroops 1-4)
- 3. No Renon N -
- 4. MFP Someefts - - -
- 5. 11 ok/k Satcritical h _ . . ... . . . . . .
.1400. . .. .- .
g . . . . . . . . . . . . . . . . . . Ito aar4 .
.q gg,. .. .. .. . - . . _ . . _ _ . c . . . . . . . . . .... .. . . . . . _
o . ._ . . . .; . . . . . E _ _ . . _ _
....___..._._....____sl N
q m ;
.a. - wer i
- 2. . .
3 _.
.. ;g _ . . . . . . _ . ... . _ _._ . .- . _ ._ ~
g' g . _.. . . . . _ . . . . . . . . .. C ., g g . . _ _
.. g Tav>5MF v
_ N i u
/ -
o l983- -
.. s e a
1
.M * ': a:
303 e
.. .i i
a 4 i
?OO -
s v't. ggW m_. 4 J. . g g.. r
. _ _i 'I 50 100 150 200 150 220 223 CO i - e e 1 a # # : # :
w ~j , Effecttye Full Poer Days 4S.0 p _ , - . . , - - . . - w . . ~ ~ ,e 2nn . .
.%g@[i7 f=. '" ,ZLi~1 _ ;, , ., s k ::, .
.V..
- r.
. '.^
- P. ".r" 5 .-
2103 1.2 g* ,
%sst o 06/03/77 .
ps - N.
. K.a. '
t ) . pf p.' g b
.\
e i
- l t..^.
. . Ah .
r;, , . I N t. v.
- o. I. ._ _.. ,
y>y.\ g : : l g.e.,.x _ K>
- 4. . ; . .
t .
. . . h.
p ... j i . . . t - _ 9
! l ., ~, .%.. *-
i _Rh . Q[' w _.
._ . . __ .E ..,.g;.
Ja p.: m.
$ q' . , $g pp en t 4.e y g
_. ~ 5 m g.,; , g ~
- Io w
_j
=
W E -
-eW % 't"W
- g. F,-
gg "'
- t. wd- .
- 8 w
g . . _ _ _ _ _ . . _ _ _ . . . _ e 3;r; g w
=
- 4. ..
m v s.
> ,_ .s . 5 cw.
g et . . . WE . 4 Y WW g . . _ - - . . . . .. . w
>e 6 1,..
g-m ag.
>= .. .E.
c o w Eb- 4."
*. en x g.~ ,.,.
E a 2 . ss
=
O . m . . . _ _ _ . 8 .. r z . . . . . . . _ _ _ - .m 4:' Was w. ; m Nz -- c I _E r:7 ', U u e tw E f f f I 8 ~ t f 8 I I O 6
, ~ ,i E R a a a a g.-
_ ~ _ _a . w w N _ _ _ _ _ - _ 28.8 L-
a. 4 w f.. . . .* .;_1. .. __
.a.. .. ,,7. 9; t - *1 .4 , y]y ' r. ;8. . i ;.*y .,c4. r , e. -r: g . ..; . .. ,.,,. _g .
r{ .
.Q.g.. .: r- -
- t- ,.
--...*-..T..,.. ---r,... -.r..>.j.., ,; ,- . . , . . ~r. .. g % .t a - *. .j c . . . : .z.. . 7 - .~. . _ . - r . . : ..
3A _,. 8 . .-
, . ,p : :.; . . , c - .
- i. I i. i .: .
.i .Arytstop.3 . . .
T ..i.g0RIC. .AC.,lD
-- $0ttJTIC1 Pi WD V.S-57R,OKI OCUMT,ER SE.TT!M FP.. FLOW RATE.S..OF .1 10 EP . , 120 . . . .... . .. . . .. ... .
l .- , .; ... .
..4 ..-..s,- .: / I .-. . P : ? )2a re 4
t
.- .- l,. .. " .r . . . .
g- r - p ;. j .--- I w. .
.r. :n :. ; :.r. . . ;; :.1 : -.- .:. _r: r- 1 -t. . - p -
Q. , . ,. . -
.: L . s . .:.. 5. . L. -.. .. .. _n. 1 . ..g., , 4, .A. y.;.;a, .c r :1 s : 1 :. :-J:.. , . ,. . -.;. ., . .; ..p. ..,-; ..m , ,. e,
- - g. . '. # - . ;h .. [,, .: -
7 40 - jJ', "l:~ . . ~ . ~-'D 4 fi.'yh {.i M. MTy, :P -
.,ja . . . N- ==-- .Y! .~,. ._-M . = - *i , , *. : ld#.~ ~. g-
- d *,3:7_- "=%'
- y. .. % .
E_.A.t. : M ..'E p.* ~.* *a a. {-< W .w.-v,. .=, =yiM5 M-T 5. =-r, .-?Q %p.i -Toe e f+_ ,..
~
- 1. Fs115 tree $4t%gbg . .#f : .- 5.. t. : , -
. r ,
_- I8 M22. d Ich ages 1s Ju.:# #.:- - - * - U-d .I*#: .-i s ~-'L'iit-#ED ;- a-W~.i--/ :Mid iF_r.~; 1.p r .
- S e . *W _ ;;_;.3- - .. ,, ; ;; . :, _*- *a --r-- 1-M :s. -
= - --l y9 r:-- . *:-t== --
m-- m-... fM.. , , :- --::. J _/ =_ :. : - {* g W E E9t SNET 1 ewe) .- - r :s..
. u_.; -. .r- = r. .- ; . .:..Y - . k.- =, = == .- w., ..:n .a=-
M.. -=>
=- .-
s= :: r- <-.-; u..o-e
.:, .n . --. _ . @. . - --: -- --=
damp me. :: -
% =- . .:. y g 2 =:: :: . c.w.
a ;w :s
.:n :-- -/,.1 kg:e: -n - .
2 :lE- - atturacy $g gagg g .:ta.L :.- = ., . .. , , - v. : - - - ::= < , . m._m . - .
.= i !y.. . .
gn:=="
.1cE: _ :f::- - - - - a, _ . . ::_.=. -::
- :. a
- =.- .=.. :- - -
e i ::.
- -1 :9y. r._
.?:.El . _ .y:,,, , ,, .-.
w.y.
.u:.:: ' - ;a, - c '=- 7 2 -;: a _-=_. w_ - - - .r=- ;- e, .2._: .-- -:1 ="i- M c= - . ==.a 3.2 T .: -'s r_s :E:.C,r7. . ;:: *: r: r y =, T *- . ~ ..
2
- m. , -
=_ - . _ m= . r . -~
m , , . . , ~ r:i J..~ __1
& . ass .;~ ~1- 5 ci :::25 s 2".-% ~ *l,fU ' _' i 1 f,"2;-C '
Z ~EF _ w _,4. -
-.g A:#=.d --+-- ._ ' - ' _ - ..p.=-:serc c,:P -+-. :., -. ~ .'.
3.-i - : : : .: r 1-- - eg., -
,2:1 ::-a ' :m;;;;; ;a;:L.= I., .w -__ __"-- ..Ar ~ ~ c:- G. .**
gg :- - ;-- . m J _a . ,___ _
=- :;; =r . .:2.=- I_ ., l. :
n '-t - :-
~T ~# ~2 ~.Ca. 4 ~;M; i~~k.
1- ._ '
- -s .::. 9 --
- . . . .': ; = t.-1 .p: -:: .L:-
.L3 ~:: M I- .I:!, ',r*'::-, t:_. 2:;. !I hs:: "M - .g :
M E=:2E33-5
~" -
g: dQ : -*::: a W:: :g:. .:a b : ~ ?. 7.2C.:. L. Q :[ 4::.:4 .-%,1. 7 '.
. .:r i_r =G LL._ . ,4 i , , , :.*,r,,,' =x./: .._:- - r . w.- . .rr - - - ; :- . . m _ . . .l ._r_.._..
_ . . = . -
--:z-:: -.. -:. ._ -.. . . , --j$. -. ::3-_:: 6 ..=_.:_,..: +x- ,r=- Q _.,. .- - :. = C..--- :p:.: . . - - ...j=-+ _ - , . -. .t.- -r :- . _,
u_ 4 ..
= 2= ._.=. ._:T . . , . _ - - r- ~_. t _ . =_m.: , z _ ._-# .- _-%....---. :~j .__. . + -
- I .r. : +-- h._q -
-+%.- --J -r -:rr- - .: : :.1.:;-- - --- : - 1.e ~.1"~~:==:: '- -f-I 2-' _r , . - ; l .:
L.g *:.i
- H,_ e - .: :--, ; g .: --
-TI:::1 n-] :t -'.. - -= -- : . -
_ r -- -t-- .s.:.
~r :- : - - - - - - .:: _:: _ . .:q. .:.---
m :- _:----=,
- - ,.:3 -
5t .A3._._d55 a t QLa.
- _nt
..eo ._.) ? - ~ : : ~~ . y..,' :.;; f.: p~:.
i
.-#$;.;c;r:.1:._ --.4 :. . '%:; , tr.-:--: , p--'. - :.; yr m- .e :-
q; :. pt- - A -*s ":. F ::= :_l .T :.4 . :; - :T ' - r' :+- , .::: .
.cg_= - - :. = -g-. . .-a . _ . . R .a -- y - . a. . . . _ . 2..,_ : = . . . .~1. . _ _ ' ,~~ -...T. I=l . . l:- . "-~ ':.:
A- :-i --
..a . :2~_. , :- . . - _ . . . _ - - . . _ . .
v
.i r. : , . ,-:_::Q_.. E _. . ,::_.* _:r._n...s._*..- --q--i . -
Aria :_:.c._.e .:, e. _ .4_ . .t: : : p. .=._m :: . tr.
. -1 . J. . . . :- = . . .._ .. . T_
- ;c- :g % u.:.=;; . . ~ ~ ~
--- s r e'L:; ~ 4 l'=r- Ci --.: :.. . -- r r -n4-=;. ;;:d ::2. ' %y. uJ =5.t' - r .- . aC.T'i. . ., "g".:. --:.: ::-, -m' . :i. s:: ::, 1, 2:., .= _ f gs--.J_.=a-, .=L -- :.. .r: : .~ --] m-- r. _. . _ .. . _ - . . ;.. . / .:2.:._.7. .':.:. . .-__:~- . D. .g_c.._E_. .:- . _.h - :..... :: r .= = _ .. _ ..T . .~.i . ; ' . a3 .+. . =.1:-.1, . .- ._ ':'r _.-e.. 3 E~.3_ ., _, t:. F '. ._ . _ _ . . .. - t. . .y. _: -. t-; q 3 . '-
- cr c, a_ r:; : ,- * - y.:" 1_: c.
., .:::' q:.t. .-3 e :.2_: - - .w = r -: : -d - c_- =r : i 'L.:- -:n- 4.-@ -i e* c a . :L.; :.i -n : . - - : ' i. :- er. ..- r._, . .:-- .:- . - 3, , ::. . .: . :. a =- =; v ..:..-2 3. ..a l '- ;a:- .c_w.; =
M :]' =.rt__: ".r :. r.= :- . ~ ~ = - = _ - rzh *. ..._:2 =...=_ rYN 4 r. . -1 : = ..u_1: rp_.:.t.: <
- _ - :-:::::x.:.
r.1.. . :-:- %;; _~L-4 .: 26_: I- u - . _; -: __- . r .=.fg :m"
-t- : -e 2 1 -- ::"'m :.1 _r .--:: -er : "= C- :
J: .:: . . r:L';;_.- --"-.; r.
=!' ::-- ; ,,1._: c_=. : . - . .. .: _::_ r. , /-4 _.m . E_1 _ = = _ - - _.:.- riF:: . r4, e . . _. 2 : .:_{.:: g-t -
c. a q ,-- . -r.__-t :.9 :3 .: _:- ..--_ =,q:.:. =f; #_:t
& + .x=; - - 2. ; -_-r4 _ _ w , =r--1.--m J. --- . . c*
6 c r'
- e-
,._7,,._ . .4.g:-v. _ _ _ - :.--r. m. . .-- T=5 . j r ;--:
- . . : c- - G 1,_._ . . . - - - - =r--~=-..
v- - - - < 3: A ;. s.:=j , _= . - - .3. 3a_::r* _- :. rt=; ' .a- r r- g ,
- rt:- -r-t :: 4: /7 .:t : ,. :, _ . . - = . _. m
- f --- -9 w- , . - t :-- -+- : .
~
yiT t5t . _N '-E:-M $7 ~ - -MSE:!#'"~__ '[/ : i-T-N:~f5 ' 2"f f$:@I:MM S I._-'l~- [ - 5. d .l_ 6
~ ~
E-4EEi.G _-f W_-".EE fet~.: . Ef_=. 5:F, =E G - F"= ="'E;X-fM":2Ei="f="a _-U T====W-'::W=M -; ' : :- f% -- ::___': +-' m: '.
- - ' s n. ' J 1- r'- r--
- g=, 22 : a . r .;i =r m =rt :
= _ _ , - . r- -
e.-. r.;::t c- F,-:c:..:-( t /_ <#r .- 3 _ . .:.-'-- .:4 _' 17' '
- ; -r -~
78
-.-:.; ::=_.=.:- . _ . - ._- c- - '.:. . . _
_. a _ rs. : - .. . =- _ g;z.
- -- __;.:p 4 c; _. ;. ,_: 's- t :.A.=- :- _. .se==: . a.- : .a _--- _- c == ,. , / =: - - . _.4.. ., 3. ;. =. .
- . a . ._2___.. _ _ . - _ . .
EW 8.-5 -ki_d.~ . ~ ~ , ~ _~Y.M _.WY: ='.:-: ':W T. s-:: ;-3.$W*h%.- -8:& M=.1= --sI;d:I=.5 - _ i . "~~ :2=-M__-
. . _ .,u _ __ .._ _ . _ . _ . ... ._ ~ .:-W:/e-3.::= m_ -7.,.f.__ , - . 3_ ":- .@ : .- ~s :-- .er-[. .-C _. - . - ~ 'c t -rF .. ; ;}2:I5= -- ,,:~l ~ : M dbI_U :
3 7'.. 5 ~~n_~ * :5 7-T8 -$2.:I2s:_52'" MS E~.M_. "MM'ij ';;: -%f.
~ *-i . ,_s-h':=g. [2 * - _ ,;:: .:- - -
- i::: -ra . y. /.g ::q.-e-.. ge q.- .c p :T' e -
./t" ={ .3 r - . - _-: v:2 , . :. ._ -- _ 1 - e . _ . -:-y 24 , . _t- ~%y 1 .- .: _2-s/. -...- - w--g_c .2.-
r.-
.'r=
r m.: .r . )._a ., ,_ _'
.: f:--- , a=u :.- .-g.=.g : 2 =ta:r._;;g . l . . ,v ,3_:%.c.3 , _ .3 . -
f _ ;: . f d. ~; :- ... 12-u
.: n
- .a. . : ::j._ -
- 6. , __ . . -
- .1 :. .=__, ; --W:/. : { r .A . :._3 . ,--: r
.. _, .. =T--wl .: g. :, -A t-. == - d- w .s .r:.r -}_ ; -
- a - ~l.:: e . :,
_2 ;c:-- E . g-t m.ua _ _ _ -. . _ , .-
- --. . ?- r- .- .- .- p F, ._. 2 /;:.=.. a p r.:. _E._q :r. q.. ;1.__ j,].,-. m r c-q. rr. K .J;~,_~.,; _9, ,;. ( .j_ _. :. . -I ,
4
- 1. -( _?. r_-j.4, .. .. .
_t.
..s. . . :- . s. . - - t.: 2 l .--} - /-- 1 .~. . ;. W'Q . 7.
y w.F =- *-1 l .: .-s i._V;i.; ;F .". u,
- 3..:1:
- I:_. ,-- . . , . i
' , : . . I' . ~ 4 .:(M " E
- ~I:1 -' 7 '.u- 'I "- I ~2-__ 7--
l I -t 2- 1 ~ * " _ g-i 3 -[ g._ _.; J._4_'] 5_ lj
-,;-[/i: ' i ri H d -
m . . , . i
-J-;
134 " . F-j F ..--
,.4' .' i :i F $ ._ .:
- t. _3 ' :~rW'. .
- i #:- L-- 1 ' . 6-.
+ >- ,
- .i _a_ :- . :; _ . . .: . :f . __ -M.... . - - ._:) .. '- .-i. : - n : _ __._ _ -. s . .,a..: . i. . .~ ; - - .t : . r.:- , 3 ._ . .. :. <
4 t_
, ..-1. .:, .. , - . _4 e;r-.-
4m - -< M9 __ .. -- u 4 _ __.
-1:, _ .-yg / ,4. ;, 3 _ . _g.= , . .,,, 6: -* , : ). .
s n. . .
' ~ . .;, . ; :: .J . . . 4e_- b- . 4. .. L ft :d - !
- 4. i ..,.: s !
--- ;- __: -- .~ . 4. .. t. :. 4.25.*7 '.J.-4.M .V.N. _i.. l -i :f #: : 1 -E
( , 5.f ._ - . J :_--j r. n . .:e. .!-4 .:. F.i . '1 '.1 r1,+3Q . g.-i: i-E . .:t - : - .a3,_.:1rr ,
._ . o , ...e d . .W -.w
~
k_n
. v t ,;.% ,
=,e**,.', 2103-1.2 ! Revision 3 FIGt.5tE 33 03/03/78 8eric Acid Rin Ta d Level vs. Volume vs. T.S. Asquired toron Concentration En 25 HB 25 ll3 25 o m- n , .c .0 ,,,, I 71 9 21 1692 41 2665 2 768 22 1741 42 2713 3 816 23 1739 43 2762 4 M5 N gg3g 44 ,,j; 5 814 25 1987 45 tess 5 352 BE 1335 46 anos I IMI 17 1994 47 gggy , 8 1059 2g 2013 43 m 9 110s 29 20B1 49 3054 10 1157 30 M30 50 m 11 1205 31 gl?8 51 3151
'E 1254 32 2227 st 3pon I3 IE 33 2276 53 3248 ;
14 1331 M 22 y y 15 1400 35 r373 55 3346 l' 1449 36 2422 56 3394 , II 1497 37 1 i 2471 57 g 18 1546 78 2519 58 M92 19 1595 39 m g f 1 I l 51.1 l l
k l hwf ston 3 FIEsti 38 (cont'd) #I toric Acid Mix Tank Level vs. Volume vs. T.5. tequired toren Concentration
' TECH. SPEC. CONC. 00POM SOURCE LEVEL ' VOL M rih. DCpt0M sua. 50R0h (in.) (Gal.) (PPH) (Pf94) 60 3589 NOT DOUGH 13L M FOR TECH SPEC USE 61 3636 NOT DIOUGH M FOR TECH SPEC USE 62 3686 ICT DIOUGH VOLM FOR TECH SPEC USE l
63 3735 NOT CEUGH 13L M FOR TECH SPEC USE 64 3784 ICT EXWGH VOUM F0k TECH $PEC USE I 65 3a32 ICT DIOUGH M FOR TECH SPEC USE 66 3381 WT DeuGM RR TED4 SPEC tl5E D 3$30 WT DENGH VtLM FOR TECH SPEC USE I GB M78 Ici DeuGH VouME FOR TEDI SPEC USE l 69 4027 WT DIOUGH 13LM FOIt TECH SPEC USE l 70 4076 13.059 13,125 71 4124 12,907 13.125 l f 72 4173 12,755 13,125 73 4222 12,607 13.125 74 4270 12.465 13.125 l 75 4319 12.324 13,125 76 4368 12.186 13,125 - 77 4416 12.053 13,125 78 4465 11,921 13.125 79 , 4514 11,791 13.125 l
, 51.2 s
i
~
6 M &, m & A ,a ,.n
Revision 3 3 03/03/78 v. 2. Fla m 38 (cent'd) i},j toric Acid Rix Tank I' Len) n. Volume n. T.S. Anguired Doron Concentration Eg' Rlp itcu. sPtc. cost eOnon sounct .:- trytt youK sun. aunum UN.W 'y; (1a.) (Ga1.) (M) (M) .- . s 30 4E2 11.g7 13.125 tb l 31 4611 11.M3 13.125 p/ p e. l 82 4660 11.422 13.1 5 ,. [ ' I w i 33 470s 11.306 13.1 5 ;., , es 4757 11.149 13.1 5 i. c-i 35 4005 11.077 13.1 5 36 4854 10.956 13.125 p: :... 37 4903 10,856 13.125 'y 1. 88 4 951 10.751 13.125 ,~ tr' ~ < 39 5000 10.645 13.125 , 90 5049 10.542 13.125 [.h 91 5097 10.443 13.125 ,,,b f n 92 5146 10.343 13.125 d, 93 5195 10.246 13.125
$4r g #' ~~
94 5243 10.152 13.125 {',rg., 95 5292 10.058 13.125 K *. '" , p~ 96 5341 j 9.966 13.125 LF' ; ' . 97 5389 9.877 13.125 f 95 54 38 9,788 13.125 ; 99 5487 f 9.701 13.125 [' l 51.3 I
1-t/1'
'n ,, . .. . -
d
.. 21 5 1.2 7:.
Ihref aien 3 ge.:e ID/03/78 gf s. FIEstE 35 (cont'd) tf], Soric Acid Rix Tank t Level n. Volume n. T.S. Regwired toren Concentration ;p' TECN. SPCE. CXNE. 30hom SolstCE jpff LEYEl ' ER.1PE RIR. sUisIn fUUl. su u 5 (tm.) (Gs).) (PPel) (P991) g,p 3- 100 5535 9.616
~
13.125 R$' 101 55M 9.532 13.125 $hi - 102 5613 9.449 13.125 l4-103 56S1 9.369 13.125 ;,] ~ 104 5730 9.299 13.125 // t.',- 105 5T19 9.21 0 13.125 ',,7 A. d ', ' 106 9t!7 9.135 13.125 (Q[
, .m 107 5476 9.058 13.125 Y.I k;
108 5925 8.964 13.125
- 4.g.., .
109 5973 8.911 13.125 QS. 110 6022 8.839 13.125 : I 111 6071 8.767 13.125 '*2t T 9- . 112 6119 8.699 13.125 e. t sh-j 113 j 6168 8.630 13.125 ;yy . 114 j 6217 8.562 13.125 W .f .,. , . l . -; , 115 j 6265 8.4 96 13.125 y; ,.. ! 2 116 6314 8.430 13.125 C:.;
', M5 -
117 6 353 8.365 13.125 ] 118 6411 8.303 13.125 119 6460 8.240 13.125 51.4
hyvision 3 - 03/03/78 - E-l [IGWtt 38 (cont'd) 4^ k toric Acid Mix Tank $ Level .s. Vol me vs. T.S. hoquired toren Concentration r
- t. -
TIDI. SPEC. CONC. DONON SOURCE %- LEYD. VtLL84E fMIN. DORON AM. DORON L. (in.) (sal.) (Pm) (Pm) ?. . 120 6508 8.179 13.125 b 4 121 6557 8.118 13.125 3. v - 122 6406 S 057 13.125 g 1 1Z3 5654 7.999 13.125 b 124 5703 7.M1 13.125 I g .. 125 6752 7.E3 13.125 - 126 MOD 7.575 13.125 E p* 1 27 Gett 7,575 13.125 128 8998 7.575 13.125 [i E' 129 69 4 7.575 13.125
~
130 6995 7.875 13.125 CAUT10R: Streight well ef tad ends at appros.130". Do not mosed tats level. 7.-
- tottas of tad to level transitter holds 670 pallon. k[ >
ETI 1: Stralpht us11 section of tad holds 48.65749 pallons kl
?..
per inch. A r,> EDTE 2: The product of volme in gallons and boron in ppm must (s. .; acoed 53.225,000 to spaltfy for Tech Spec source of Conc. Doric Acid. L ETT 3: 1.750 pse Doron = It boric Acid. I i I si.s g
~ . ftp-1.2 * #..,,*[' * ' Ff tK 4 : R 11 TAR 51ptT} ngpi h et ten 0 '
ri ' a y Tcisa ir ants ~ - atuun-- ;
._[ . # N.E*M N NI . . t lO s.w - .
0 1005 l q .
- c. . .: . , .t . . . . .
. t rr.. . . . .
i i am , a i ! i i i .
,i u . ,
e- . .
.. i , . , r _. _._ .._ __ _. . ... . _ , ...., . . .. . . .J... . . . . . . . . . .
t.2o . us nn. taiwtiri uwigsT Tatrrr.T.' eirviinfrisii-3 h .*. I , ._ , . _' _ ._214 _me.s._.to het.e. rs_ to M. _ytu.__) 80s F.P. eget_11_h_ei.e_ _ -
~ ; 2.st. . _ . . . . . i_s._u_rs_._e_e__ net.._m t_o .os. .c_. .ui ses r.r. .wt i_t b_et s_
b
= - -
14(Hrs. to wm ts wismi sa r.P. 6611mi=
.s i.M: . .. _ ._ _ . _ . . . I
- 1. 5 - - #' - - -
- 1. 3LA- -12 Mrs te ktam to Men 120'. F.P. emai' 1.0 . .
g e.5 . 1
.
- l i
in um samana (mas) . . .. . - +
}
52.0
. :.=_... ,
.,s e . ' .[ , " , . ' (. s ,.',,1 ' ' ' ~ ~-
f.
- M,w m .e .
., q, w , .,.,...r h*-/ '_'. 1[ , . ~ ,'"n .
a Y, > e e 2103-1.2
*,
- Revision 0 '-
4 *
, 06/03m N -
e e. to ett er M C M - O 95 O O O O.
- e. @ vs W h O. O. O. ,. O. O. j f .
. *=, .e 1
- e. e. . . . . . e O
n . .
. a a v . , . . e # e q w e v O j ..,m, . . . . . _. m, O . . . .. .=
I
..-......__--....,.....m. en .. . . I i
5
~ , , . . ! .. . 6 , . .. . .....i 6 , . . I -u . u_
f.
. . . .j .'.. . 4 : . ;. . . . ' . H, . . . . a' . . 1! ~ : . . . > .t.
l- 8 , -y Y i o
~
8 s
._r= . . . . . _ . _ . .
e..... . } l . . es ., .
! .g l ' ! t .i .
l l ' J 1 '
' 1 v . a . _. _
i
.. j 4 C
e
. .l'. ' .. .. 1' . . .p . _ . .t.. _; . . p _ q .. 9 $ d' ' ,,5 8 . . .. .. ... p .J .b . . . . .L ..
w . , . . _ __
. .- e l . . . . _ . _ . _ . .._ _ . . .. .. _ _ . -.___ 4.e ~
a . _ _. . . _ . . . . . _ . ._.s ,. _.
- E - ........._.,......_...4 ""
- e. . . . . . . .
p 9 6 .
. . . ,m at d"*
E 90 . g
.. w et * . . . . fl ,,,J I
- i I
C W .A ' cr . d. , h.
*g .
x ) w ,t I ..
. en h
1 . ) - t 1 - ... . .G.a ' 1
.i h i e . . -(
4
.C * .l l .r I I
t i. i i ... .. . .. 53.0 W .F
,'.t 4 .%
g, . p. 9 S.. ff V, t*.
.4 *.,td'N- -
J'N
- C!
en w S S 8.R
. M. X.
M
- m. M r=
a_ R* 2 2 M*
- w. 2 = t w M
N
~. *= ~. 2 . ..
a s y 1 1 ? i e i i i v = = r p' . g q 9 3
, .q.. 4 a. . . .2133.1.2 .. .
- 9. __.. .. .. .
_v. .-
- 1. -
1 0 gl a ' 1 ',,,, 7 .
. _. . . _ _ . , . . . . . _ . . . ,a ,
g
- t. . ,
i .
.5 . .. .. __ .: . . ._ 4 _ . . . . . . . . . -n.. ' ,A. , . !. c. - . ._ . .. .T. , v... .3; Ji' -p < ._ .. . . . . . .. .. . -C,, .,
b 5 .'
. .. . Y... , + + . _ _ . _ . ... . . . g..,,.i, e . ... _. .. .. . . _ . . . _ g..* ; -.-
o . g N
. 'A, ..* s.
m .
*W . 'a ..M s . i . >.,wy ~
i-e. R.
+- . . . . .. . ; .... .. . . g..- ~ c '.
e . .
.o a ; . s .-
i _ .. . . . _ , .._ . . . . a. g W i ** I
._,..j.,, i i.. . .g
_ . i . , a
. . .e c.....
g 3 g
. .q_ __ q. _ %_3 ..y..
f j .. . . .. e ..q , .
. _ __ 3 .____3_ __ . .. . . . . . _ . - - . . . .y . .. i . . g w (
c . . _ . . . . . . _ . . . . . . . . . . %.
. 1 .I 4 ...-_...._._..N-. . . . . _ ... . ..
m
** j j ..g 4 . . g h .m._..I 4
- I i l
- 1 . . . .i i
i E
...0 . - - .. - ._ _._.. . _ . ..D A * .4 f *"m*.
6 t . l \ . . . l j s o yn
.,g - . ,. . . . . ..> e. . .._ .. z ,
,.c. " s~
.... a y;.
- e. a
' I. e 8 8! a s.. T e.. N
- a. .
- a. .
e.
- a. p!-E. .
t IL
, g 3
_i .j .
. . . .! .i.
5 7 U ,J 1._ _ 510bl.2
. i ~.,. .. .+ , _ _ . - _ . . _ _ . _ . .. . .. *Hda0 - - - - - b,.'-
y .- Etwyy
- 4. , .}.. . w ..., .. . .. . s .
(. x
- a. .. a m
. . t.
i
. _ _ . _ . _ , . _ . . . _ . _ . . . . . .. . L,. .i . . e i pw. .i o .._ ..___i__ __ _ . . _ , . . . . . . . . . ; -; r, , .............__.+...._.._ . _ . _ . . . . . .. . r, + . .
g./ , i s.g
. . _ _ . . .. . _.. g...
n I e
. 1 q ,
l r a c
. . .. , o g :
_ .. . . L r
- O t e.
c N s y C rw . .. .
H . e e
W N
. L. - r - . . . . _ ?
e L a e, -
. . .. .. .. .~. .
V N . CI'
- w k '.*
O \ h . ..
. ~ ..
ras p'
, ..g . . . . . . . _ . . _ . . . . .
e i.
*
- m.
J ee .
<O.
t w _$_.. ..r. h.
< 3 ' ....e. .
k
*. . O y . . .. _..... .
e > i._ s . . . __a. is te. . - t ? hr. 1
. .-i; . ; . I.... . . . ,
55.0 r\s h _. _.- ^ , - ~ -__
^ -- - . ~ - - _ . .n - . _ m n_ .wx c o n_a a _
) .. : . . . ~~ - . I. .w f M
- p . . 2 ' . U m_. 4'g+..g,;.
_ . 1
.........e+ .- ;t
- b . .
. .,;1i
- I.'*.} T .
( . _._ .'pt
. .. 7 , - - u t' p . ,i. v
- 4. . g. g, .. ....- ..._ rge . , . .,. ' .
g -'
- a. _
- .- ,1 . , .
ri. . ~K. ' 4. H 9 _t . . 1 g.,
. i. ,4 .n 4r. 74t3m4,.....,*. .t my.N.g,.n+r,_E',..,I+++ M l
44 7 o { 9r M__i 2 r,: ..5
- - .. .. .t . , ,t+ - / 1 g a 74-te n mg.'- .- g .
E,,u g.
*+. .
W~.,7 p . e9) 3n r .-Qup...,__k r..r .E +. .+ . rt g_17 3 rI
- t. y a 4.
.4, s ( "F - . 2 , . II .
o eA
- - .% p 1 ,-, . . . . . - .
R.-
.]- ssA _c , +tN d- L L. r . m 4 _;. p.4 g. -*4. ^344-t, .a o
e-
- t. - 3 .
* . 1 e /-, a. f -r nuE _. .
u.up-c.A e
/ r . . . . . . , . '. ....~
ig.,__.+- A- 31
._.:j -
_ / f - J7,4. .. eA c t ed i T . . . v t
- . e.,4%, ;3 . . .p. . .. , ..u..
e J
~. .I .~-
i . n1 v'U t
^f r.,
1ev as 5
)
s . . . . _. t..-
] . .:
e p . t 5 .d4
.k.4 . . 1 re f
T .tr W ,. ._ n....-. .c
.. h.8; .-9 *5 i. . i . - .
t. 0 . c. M s _ . .. . 4 _ .i. d .1 t . ..'. e. .
/ f 0u e *e. m ~ ,- .
1 ;i . . 0 *b , .. , , 3., ;- n F st a
.p 5 _. 7T 8 l . . .i - . .
0s
. 2 i s.;
p,. f - l mi . I
. n e s o u a .he.%.,...-.....
[,
.l +,~ . .... . . . . a . .
c _ g.- e . S . u I
;43 t .l
_4
,4 w s C o . 9-1 .. .
i. 3........t .. . .
. ...i >.T 9 ny i\ ^
Iee
. . a a, se rg e
C . - . ..
, l q .. .. .
e A ,. ,. i . ., oir j . . . . . +.
.4 e' . f f t_, . ,. .t a s . . a .. . 3 _
c 7 - 4} . .l,
. _. - _.. o n i s g : pi,, ! , . .> . . . . -
g,' O , g c , t . . e, 9 r nn ). . . . . . , , . .,l
! ,. . a.
oo . . . 3 ,.
. fT,wp, . ._ . _i_.me _ . co . . . .-..5 . . ..
Q . o.c . .
. . p .
m mob .m,Hu. 9 . . . . . . 8
'1I - . . . _ ,_ aA 7T 8_i r 7 .
n."..,- . .i. u
. . . , .! aL . - .s . i . ~ {-- ' 1 o as . .,.; 1,_gtf.
_. f ..= . i ! l~ w j5 2
. .w , '*
- 1#
.j i
E
...i ...
Il
. . ,.T Iu . ..pt,24. m,L t t T . .. . 5 2.s 't .. qn,:. .. . .
2 .
. n1 . ,_+ . & i,p,11 . . . . . , . .
7 . .. . .
.~ . . 4I4 t-m..
- 7. 3 ., f q ,, . . ,_ .,
."%hr i , 1
- t. . . ,. ,- .
D ... g
.a a _ f _. '.- . ;. 4 . _
i.... T gt
- ar N , .
. 91 } ..
r..
. * .l.l .m,,es eM,,,._m._
c 1 , . . w n- _ . m ..~~ y ., F . _tye_ (r ..i cm , ,. p g t g gN , . . [ , . .
- . s tg e . .- =. t g..:. ... .
nec
/ .
o .
. u Keo f.. .-
cvw m.M o .
._. ;.$ L .. 14 .j... = 2 , i' smTSC s m ,,,. . ..
i . ,. __ .___a,., .- 4,_ - t _ d. ,,;
$ DS . .- . ; - ..,t * . rC . . . . .
e f
., U ' wk r.
ur. u g .. ... ,.. r- .- __ ,_ 2...
. . .t. . "H..y- . . . . s .. . . . . . . . . _ .,(. - .. __;J - . .C ... .. ., , -- ^-* _ _._ i. ..m . . I-A * ... . .i.. .
1, . _ . . O - .. . _ __ .s. .. _
. s . .-.
S L.M
.4 . sb.... .. . .. y ,;.I I[
g' l 9 7 s. , S 9 3 1 5 , ,. .
,[t(,. , ,g, '1 }
J
,y
- c. DJ. u 4 j ,
gt . ~ s . T ., $lw., .
\p, g ~ - .e 4h.., g.s
$* ,.~' . W p. b *
.dh .,; ) I, s.r s :s N r t '
w ... 3 gM : ;. W ,.yhi a*
N i 5.. 2103-1.2 R$)f9 TABLE 1 ETER LEVEL VS. RCS VELSE EACTOR COOLANT SYSTEM KEY ELEVATIORS VS ETER INVENT 0RT MtESENT IR RCS l Elevetion Existine BCS Volume (Gal) Volume to Fill
- 281 (Reference) 19,254 55,296 314.5 42,880 41.580 El 53.896 30,562 345 80.124 4.436
- Required to fill to 220' in press.,rizer (84,560 gals.) 9120'F 56.0
i' 2103-1.2 Revision 3 TMLE 2 03/03/78 Calculated Volmse vs. Liquid Level heclaimed Boric Acid Tank Level 701 Level Vol Ift) (Gal) (ft) (Gal)
- 0.0 1225 5.75 5255 0.25 1400 5.00 5440 0.50 1575 5.25 5520 O.75 1750 5.50 5795 1.00 1930 5.75 5970 1.25 2105 7.00 $145 (Low Level Alers) 1.50 2290 7.25 4320 1.75 N55 7.50 6495 2.00 M30 7.75 6570 2.25 IS05 S.00 # 45 2.50 2900 8.25 7025 2.75 3150 S.50 7200 3.00 3335 8.75 7375 3.25 3510 9.00 7550 3.50 3685 9.25 7725 3.75 3060 9.50 7900(R1hLeniAlors) 9 4.00 4035 9.75 8075 4.25 4210 10.00 8255 4.50 4390 10.25 8430 4.75 4565 10.50 3605 5.00 4740 10.75 8780 5.25 4915 11.00 8955 5.50 5090 (full) 10170 ICTE
- Zero level assumed at centerline of tettes lowl nozzle. Lee level alarn assesd at tne feet above bottes tar:p:mt, and High level alam assumed at tow feet hele:s top taegent.
- _ _ _ _ _ _ _ _ _ _ _ _ _ - 1
*- Towon un cmcr . SICr* 1 AP 1001 Three Mile Island Nuclear Ststion Temporary Change Notice (TCN) TCN NO. } ~/ -C 76 l 'cigure 1001 5 ...e- 1c . toc nce. ~o n .n.......en,a,e......ne..n Aoiooi Linit No 7-must ce f ossowe. wnen compeet.no j ,n.s .o.m Date S, j / e j _', .d ~2Ol' 3 / [ M% , h l
- 1. Proce dure ,.,,, a:
- 2. Ce 9 ue i,nci.., os,e n..nocsm,a..aen nemoe.s. ano e. a ,
o,o.n, or cnas, , () g ;
; m oA adQ .
0
- 3. Reeson f or Chan:e pg @ h, CG.ctsut '
DA44-4Y $U NN'y ' cebb.4) c.~. ]h [w.L. ko b-. .
- a. Ascommenced by .~17 } & n L 3/a hs s. 3E J%A. 2 /~ht
- La:e
' Sacervisor s Segnature fDate/
D. ratien of T Cy No ionoc inaa n.nei, oavi e,om e++.ci.ve asie ei Ten o< as .n (as or to beiow wnicnen, occu<s e,rr 6. (a) rocedure revision issued es a result of a Procedure Chance Re:uest to ta ~ TCN will be cancelledi by af'8 O ; 'C t.-- - (Submit PCR as sosn as possitte) % submitted by l /- Swee v so, Suom.n.ns T cN ' (t) TCN is not valid af ter tiesi en circumstances waien wo. reswe t in TCN oe.rg cancesee. l'
- d. (a) is the procedure on the Nuclear Safety Related Procedure List? (See AP 1001 - Aeoenei. si If "Yes", complete Nuclear Saf ety Evaluation. is.o. 2 of sn.i Fo mi Yes gm No g ;
(b) is the procedure on the EnvironmentalImpact Procedure List? tsee A* toot - Appenom si
- If "Yes", comotete Environment! Evaluation. (s.oe 2 of this Fo mi Yes j j No g (c) Does the change ef fect the intent of the original procedure? Yes y No ,j g It ouestion Ic) is anewe'ee "yes",ine c w nse i;
NCTE et an answers are "no" the change may be empeoved by tre Sh.f t Supermor. must be ervicaec ey the PORo and soo ooi by the ;tation/Unrt Evoe'intencent prior to smolementation. If tne sas.w' to owesnon (cl es "no" tbe change may be sop <oved tv tw menores of tN piant management sta+f at inst eme ef
- nom holos e senior ructor operators facense on me un<t atfect,ra m acconcance with paragrapa 3.6 4.2 of AP 1001.
- 8. Review and Accrova.! .
hr Qrvd 1 SA De te
~ / Da te '
Revsewe"'/ ' ,V)- [knite ,1mSupe'visoepteman
- k. ~3l,1ly7 D fscense'f C' '
~'n 18 " -// 4 *' p'"Dv J
{ K P k -- y.
. '/ - ~ M* D ? // /7?
[ l Me .bers h t b __ i h')R
.?
C hlA) S w k W/V'b'7 Revsewed i cna., I neiecc ca i. j 8/# bnta:tedI_ N Mf f' . Dale . Approved Unit $weefinidngent Date N '_((, (/ PORG Mrmoe's #* Approved 2. - Y @ Un<t Swoe* inie noe mt Da te f O NC'E The Otuck It) "Yes" vev.ew ar c soprova rgna.n may be fono.wco at a nytime d " 9 A:orova I 0 L Date Manage', Generation Quality A:surance e No E v G 0 A ano<ovai eeov.<ee o 4n scia.n Aom.n stIa/.ve P'ocew.res a.siec .a E nciosw e 7 of AP 1coi I I M. S.// M7 0 I
- 10. TCN is Cancetied . . . . , ... .... ... . .. ., c , ,,
_j
1 i
..r.v u . n n o s - .
SIDE 7 P 1001 Three Mile Island Nuclear Station re 1001 A huclear SafetyiEnvironmentat Impact E vaiuation 8 bb
~
MA.%- di
. Procedure 2 3b /'3 h ..... .....+..~.i...- !
s
+ l
') Nuclea4f ety Esaluatmn [ Does the attached procedure thange '
* (a) increase the probability of occuf rence or the conse:1uences of an accident or malf equipment important to safety? . . . ... *(b) create the possibility f or an accident or malf unction of..a.... diff erent type than any evaluated.
previously in the saf ety analys:s report ?. . . ....
* (c) reduce the margin of saf ety as defined in the basis for any technicalspeciflCJtion? . ., . .....,.....-.i........_...t .
Dm is ci Ev,,uaison i,.............................. i M C w:c[ k hhL M<N / m p1t-u '
# ~~ ' ' ,Y h n (/ 4.. */ n h /[ $ N T C-q /
(,J ,.e.)( e w j % <:. C \ L%~ e d-9 j ,A.~,y" me A y f
/ Evaluation By c N . -- . - D ate / 6 . '? 'p
' Envi.onmentai impact Evalcation ' Does the attachec procedure change yes D n: C (a) possibly involve a signifi: ant environmental impa:1? . . (if 3(a) is "yes", anrwer questions (b) and (c) and.... fill in " Details of yes Evaluation C no C below. , II"no", state why by filling in the " Details of Evajuption" below) ' yesC n:C !
* (b) have a signtiitant adverse eff ect crithe environment'. ...................... /- /. j ' *(c) involve a significant environmental matter or entfuated by the N.R.C.. ..
g ertio'n not previously reviewed and. . .. . ..l . .
/. . ./ .
D etails of E va!uatio n =i. . .... .... .. ..si
\
i
/ .---
I Evaluation By Dete l r 4 Uni oerintendent re:uests PORC review i l Check if YES. 5 Apptola! . i Evaluation Accompan n TC 4, Evatiacon A:co, panying PCR App, ova, .
/ -_
- r. ' "" Y "'"
N \ v .i s~ $ ..* l' o', Reviewed b
,i si. o. - *s J we . ri Approval Il D. .e ; up,Ap-inienceatJ
Table '. Liquid 0 500 1467.13) 8000 ( 5J4.15 ) j pg g( d u M d, 6 p (t sat) 6 . . h e . . n e . . 6 e
.i Sa t. .019748 447.70 449.53 .64904 AltS91 538.39 542.38 .74320 . 07. 000c) S15994 .00 149 .00000 $$967 .03 2.99 S0303 Tr.i t' I 32 .cl60 $0 .016a:e 01 is os la 04 .01607 21599', 18 02 19.50 .03599 43 F,72 11.99 20.94 .03!92 82 67.70 70 6h .12 4 (7
100 .0t6/10 64 0J 6 0J . flee > .016105 .0163!867.57111,6669 1893687.12932
.2td57 93 l l1.38 12040 .21:10 9 - 160 .08634) 4I7 93 II 1.9 J .2IJ04 .Dt 540 161.26 170.32 .29261 200 .0l#6JJ #68 03 id# 0J .19402 .0166( $ 167.65 169.19 .29341 6 250 .0/7003 ts.J1 J/sJ1 .3#277 .016972 217.99 219.56 .36702 .016941 217.47 220 61 .35525 3u0 .0t74JJ l696i 26e 6 # 43?> .017416 .'68.92 270.53 4364I .017379 263.2J 27IJ6 43552 350 .psivuo J11.!' J:s.39 .J0JJs .0i?954 3.0 71 322.37 .50249 .017909 Ji9.83 323.15 .50340 400 .014^6# J 7J .J J J 74.73 Jefeo .018601 374 68 375.40 .5660J E18550 372.55 375.98 .56472 .. 4 50 .019J01 419 to d19 96 J6?0 Ol9J20 428 JO 430 Ic .62796 .019340 426.89 43047 .62t32 500 D2060 483 I 488 I .i9ts .07049 183 9 487I .6sG6 .02036 453 8 457.5 .6**:
h 10:1 .020t0 49!.6 499J .6 W
$10 .01CS? 3003 300 3 7046 .0201) 491.9 499.8 ltd .0:116 Jt: 7 !a? ? .71') 0? > o." Jstu 31: n .7sn .020s6 507 6 511.5 ,712t W. $20 .2J0) 0:IJs J 2 .6 324 J .7:21 .0211a $ 19.9 523.8 1245 t $30 .01ses 3:!J 323 3 73'? .0218: 338 6 334 6 .1434 .0 '4: J JJ .3 317.3 14C: .02'4a $3?J SH 3 540 JJ0J 7)J: .02177 343.1 J o s .) ,2 ss $50 .0:: I J!2 I 3 J2.1 .1J 6 9 .n2Its Jet t .7701 3 37 J42 0 364 0 .1066 .C :11 331 3 Je? 4 .76J0 $60 .0226! J6s I J64 I 570 .0:113 340 ? JBC J .71J1 22:$1 376 0 3 71 I 780s .0::!) J 118 J'6t' .7 7t > $b0 .0?>J: 39v 4 39: 9 .1 Goo .02:0! Js? e S GO. I 1ses .0:p: ecs e .0:Jae sno e s0s e .spsi 1 590 60s.4 .80 G 6 .cysne efs. g;0 4 .sifo k '
600 6l0 2:43 6J e 6.U .3 .! Jet h-p a Sail 1500 (59e.391 200u (636 00) 2500 (6f 5 31)
- w h e = w h S
;g i e w h 6 s , San .023461 604 97 611.4 h .50h24 .025649 662 40 671 69 .86227 .028605 181 66 730 19 .913M 4 47 .00027 .015912 .06 5.95 .00005 .015555 .0 b 14) .0M9 r' 32 .015930 .05
- 50 .01594e 17 95 22 35 035>4 .0!$920 17.91 23.b l .035'S .015195 6*.20 17 AS 25.23 .0W 74 61 .12 M i
.. 100 .0160$$ 67.53 71.99 .!2e70 .016034 6737 7330 .12539 .016030 150 .016265 !!7.10 121.62 .21364 .0162J4 116 83 1221W .213th .016220 116.56 124.07 .212*?
w 200 .016554 166.57 171 46 .29221 .016527 16649 172 60 .29162 .016501 166.11 17J.75 .29!W 3 250 .016910 216 96 221.65 .36544 016680 216 46 222 70 .36412 416551 215 96 22375 .36JIO J.' 300 .017343 267.58 272.39 434(3 .01730s 266 93 27333 .43376 .01727J 266.20 274.25 432 4
. 350 417865 318 98 323.94 .50034 .087822 315.15 324.74 .49929 .017750 317.33 325 56 .49F2e 400 .018493 311 45 376.59 .56343 .01F439 37038 377.21 .56216 .018*i36 36934 377$4 .56C C 450 2192 t>4 42544 430 79 .62470 .019191 424.04 43114 .623f3 .019120 422 66 431.52 .62160 $00 .02024 481.8 437 4 .6353 .02014 479.5 4873 .6832 .0200J 47.t 0 4873 .6513 510 .02045 493 4 499.1 .6974 .00036 4914 495.9 .6953 .02025 439 J 498 8 .6e32 520 .02072 5053 511.0 .7096 .02060 503.1 510 7 .1073 .02048 501.0 510 4 .7051 530 42099 5173 523.1 7219 .02085 514.9 522 6 1195 .02072 512 6 522.2 1171 5 80 .02127 529 6 333.5 .7343 .02112 527.0 534.8 .7317 42075 524.5 534.2 7292 $50 A215B 542 1 548 1 1469 .02146 539.2 547.2 1440 .02125 53e 6 5464 7413 +
560 22191 554 9 561 0 .7596 .02172 551.8 559 8 .7565 .0215J 545 9 556.8 7536 570 2222b 565 0 574.2 .7725 .0220e 564 6 572.8 1691 .02166 561 4 571.5 76W 580 .022t9 581 6 587.9 .7851 .022J3 577.8 586 I 7620 A2221 57J.3 584.5 .7 W
.02255 567.4 597.9 .7913 ,* 590 .0'384 595 7 602 I .1991 .0221:4 5913 599.b 7951 42300 601.0 618.6 .804) ",,.31 600 .02166 dio s e/# 9 .sijs 02330 6054 614 0 .8056- .8177 -?
610 .01416 e f f .s sJJ e J/3/ A2312 620 0 625 8 .8225 .02346 6150' 6259
.h 620 .01498 641) #49 4 .ss>f 42J43 6354 fr4 4.5 .5371 jc2399 629.6 640 7 .53:5 } 630 .0/J90 e 6 0.8 e 6 3.0 .a r.09 .02Sid 651 9 661.2 .8525 424!9 64J 9 6563 .845*
640 .0.'e us sov e eiv d .d e G t ' #2530 661.2 672.9 .8610
%2616 675 7 6908 .8**3 l
650 .0ff/s a to J 100 4 .33as
,02729 60 J 711 0 19 U ,
660 .9 4 : 670 .0tsv> 1;; I 74 J .J \
=
l bem, =- y I
): %.
.- t
/ M A /v n u. 8 /A
_..vu So ura 3, ..+ af s y,A .a car u.a A ,, .- .t M e M m /-1 ce, /032)3 _ hc.ed & C'b f
/ ..
l "D - M
., W ; -[ hd L3, u uD un q' isja.., ne %44 1. .hb Y < * ' e. _.. .fm -. . C $1' SD ' l .ptwn l .c i b /06 ic: 'F . olb 13c-3 CaLJA LA,fac.. n s+7 La T: ' \. M:- 0 .
... / w-) e ilh. L} } ,c U .h L fC J-r . k, & sy d> 2cy d&~. 1&J lu). RA x YbA'"' W ?"0 W l" u . .fC c ,- ~1~ ,A
% /d =
n, i
';. i
-.LJc . . PA. L ..
'd..... . .. _._ .
fd4 //). w4.
% bd fel p,. ]f, ff*u:1;uL..JRL. M && (
ni Ca k
%lA (sal /Esl r<u.A k _ ' 30 't ~. % 64 Nui 2&h& A d l a s /& ko km f,, .
a 5 p ,,.11
. .. ..}}