ML20065D660

From kanterella
Revision as of 19:47, 21 March 2020 by StriderTol (talk | contribs) (StriderTol Bot insert)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
Heatup & Cooldown Limit Curves for Normal Operation Braidwood Unit 2 (Capsule U).
ML20065D660
Person / Time
Site: Braidwood  Constellation icon.png
Issue date: 02/28/1991
From: Meyer T
WESTINGHOUSE ELECTRIC COMPANY, DIV OF CBS CORP.
To:
Shared Package
ML20065D639 List:
References
NUDOCS 9404070173
Download: ML20065D660 (25)


Text

t m- ,

n ;u

% xm- ,

m

.- ;c

' g.,.j .H;-;p ,

.y ,

l"' .

HEATUP AND 000LOOWN L'IMIT CURVES-FOR. NORMAL'0PERATION. ,

a, -

-1 : : i .*

y

' -BRAIDWOOD UNIT 2-(CAPSULE U) 1

[.:q-N'..K. Ray ,

-J. M..Chicots- ,s 1

t- if u

February 1991. ,

n Work Performed Under Shop Order BMVP-106 g Prepared by Westinghouse ElectricLCorporation.-

for the Comonwealth!Edisori Company 4

Approved by:

bk T.A.IMeyer Manager ,

(

Structural Reliability and. Life Optimization q l . l

WESTINGHOUSE ELECTRIC CORPORATION 2 e ..

(

$ Nuclear and; Advanced TechnologyLDivision :

P.O. Box:2728" v '

Pittsburgh', Pennsylvania. 15230-2728) ..

p .

W <-

o 1991 Westinghouse Electric' Corp...

x

.['-

& g 9404070173 940330 j:  :

l w; r .

M

- -~

, , , ug -

h&%

gm, ,

{% _

m

-f a4 a

x

. .n z Ws;r.? 2

. , . 7 .

, _'_ .[

u . y.9 ... ,

lj ( , "

! fifj[ '

TABLE 0F CONTENTSL

^ ' '

p ,

' ' ~

i r

ip w

/ t

- Section. TitJ,g "

4

> M(

1

// ,

i 2

.( Y p ,

" l' - ' INTR 000CTION~ c,

') (".- .#

g /, . ' '

il wo ,

a.

l 2 . FRACTURE TOUGHNESS PROPERTIES.;  : "

- .v 12 . --

3' CRITERIA"FOR ALLOWABLE PRESSURE-TEMPERATURE. RELATIO y.

t E

HEATUPLANDjCOOLDOWN LIMIT CURVES ,

5N -

4

,6 5- ' ADJUSTED REFERENCE TEMPERATURE

);:S If *

. _13 1; 6 6' REFERENC S h '

L.- 1 B.

N y "e. e E

P

h T c -

4 6 , <

, .y -

e r t i 7 y _ ,

a:' \ I 7

._j-

  • 3 ,_a

>~

1 .

I)f\

h .-

F.

I E

]y

'PU

{ v' .

  • '/;i n- ) . . .

kQ , 'l' b'; '

p., r , ~

.4 -

,- ~

[:'i, t .s 4 ,

P ~

m.- ,-

. ~ . . ,

! ., , U g;, %, ha,- ' . + , '

u g;

in .(

~

J' ,

- ' \

pyi;;p +3 8

+ 4

' LIST OF ILLUSTilATIONSL fu ':

l lll;

  • ln Nf: .

Eggg ca Fiaure JJith

!h:].

' Braidwood Unit 2 Reactor Coolant' System Heatup:. 11' 1

M ' Limitations (Heat"up rate up to 100*F/hr): Applicable.-

for the First 16 EFPY (Without' Margins!For!!nstrumentatiioit .x

~

Errors) '3 <

e' 1::) *

'2 rates 'up'to 100*F/hr): Limitations Applicable. for' the- ,

"c% . -

3,J First 16 EFPY'(Without Margins:For-Instrumentation: Errors)-

~

k

.1

> 4 <4

.'f '.

1 I '_

l 4 ,

LIST OF TABLES 4

'Q.

EAS.t Table Ilth :U:r .

O

. j,.

[8s 4 '

': - 1 Braidwood Unit 2-Reactor Vessel Tough' ness; Table.

L

-(Unitradiated);

J9; 2 Sumary' ofeAdjusted Reference)Temperatura y(ART).~atfl/4T

, and.3/4T Location- ....

---t, 210 0 3

' Calculation.of Adjusted Reference Temperaturesifor m m

~

g Limiting .Braidwood Unit 2 Reactor Vessel l Material' ,

se

~

.CircumferentiallWeld , ~ a' :

,4 5

. ty nr

~

ey f, ,

ii < ,

p ly p 9

_+ ' yy c , .,

s

[pg _ $ i hs ' >

- ,  ; ?u .

&AW ,

~-

!,ja y q

( ,

HEATUP AND C00LDOWN LIMIT CUR'.

% i. FOR NORMAL OPEllATION 4

1. INTRODUCTION ,

Heatup and cooldown limit curves are calculated using the most limiting value of RTNDT (reference nil-ductility temperature) for the. reactor vessel. The most limiting RTNDT of the material in the core region of the reactor vessel is determined by using the preservice reactor. vessel

+

. material fracture toughness properties and estimating the is designated as:the' higher of radiation-induced ARTNDT. RTHDT either the drop weight nil-ductility transition temperature.(NDTT) or:the temperature at which the material exhibits at-least 50 ft-lb of impact energy and 35-mil lateral expansion (normal to the major working direction) minus 60*F.

~

increases as the material is exposed to fast-neutron radiation.

RTNDT Therefore, to find the most limiting RTNDT at any time period,in the reactor's life, ARTNDT due to the radiation exposure associated with' that time period must be added to the original unirradiated RTNDT. The extent of,the shift in RTNDT is enhanced by certain chemical elements The. Nuclear' (such as copper and nickel) present in reactor vessel steels.

Regulatory Commission (NRC) has published a method for predicting radiation embrittlement in Regulatory Guide 1.99 Rev.-2 (Radiation Embrittlement of Reactor Vessel Materials)Ill. Regulatory Guide.l.99,-

Revision 2 is used for the calculation of RTNDT values at 1/4T andi3 locations (T is the thickness of the vessel at the' beltline' region).

2. FRACTURE TOUGHNESS PROPERTIES, The fracture-toughness properties of the.ferritic material,in'the reactor coolant pressure boundary are' determined in accordance"with the NRC. '

-Regulatory Standard Review Plani 23. The pre'-irradiation fracture-toughness' properties of the Braidwood. Unit 2 reactor vessel are presented in Table 1.

1 i

N. . .

3. CRITERIA FOR Au.0WABLE PRES 5URE-TEMPER,ATURE REL.10NSHIPS .

The ASME _ approach for calculating the allowable limit curves for various heatup and cooldown rates specifies that the total stress intensity factor, Kg, for.

L the combined thermal and pressure stresses.at any time during heatup or cooldown cannot be greater than the reference stress intensity factor, KIR' for the metal temperature at that time. KIR is obtained from the reference -

The fracture toughness curve, defined in Appendix G to the ASME CodeI33.

K IR curve is given by the fol:owing equation:

(1)?

Ki g = 26.78 + 1.223 exp [0.0145 (T-RTNDT + 160)]

where K IR = reference stress intensity factor as a function of-the metal temperature T and the metal reference nil-ductility temperature-RTNDT Therefore, the governing equation for the heatup-cooldown analysis is defined in Appendix G of the ASME CodeI33 as follows:

(2)'

C Kgg + KIT 5 KIR where Ki g - stress intensity factor caused by. membrane (pressure) stress K IT - stress intensity factor caused by the thermal: gradients -

K IR = function of temperature relative'to the RTNDT of the material

r. 2.0 for Level A and Level.B service' limits C

1.5 for hydrostatic and leak test conditions during whichLthe

" reactor core'is not critical t.

2

KIR l 5 QN" ' "" w

  • r.

At any time durins .ie.heatup or'cooldown transien i c 4. .

metal' temperature at the tip of the post'ulated flaw, the appropriate value.

The thermal stresses t RT NDT, and_the reference fracture toughness curve.

resulting from the temperature gradients' through the vessel wall are and then the corresponding (thermal) stress intensity factors, KIT, for the reference flaw are computed.- . From equation 2, the pressure' stress inten f actors are obtained' and, from these, the allowable pressures are calcul For the calculation of the allowable pressure versus coolant temperature cooldown, the reference flaw of- Appendix G to the ASME Code is assu at the inside of the vessel wall. During cooldown,'the controlling locatio the flaw is always at the inside of the wall because the-thermal gradients produce tensile stresses at the inside, which-increase with increasin rates. Allowable pressure-temperature relations .are ~ generated for. both From these relations, steady-state and finite cooldown rate situations.

composite limit curves are constructed for each cooldown rate of interes The use of the composite curve in the cooldown analysis .is necessary beca control of the cooldown procedure is based on the measurement of. reactor coolant temperature,.whereas the limiting pressure is actually depend material temperature at the tip of the assumed flaw.

During cooldown, the 1/4 T vessel location is at a higher temperature This condition, of course, is not true for fluid adjacent to the vessel 10.

It follows that, at any. given reactor coolant the steady-state situation.

temperature, the AT developed during cooldown reruits in a higher v K IR at the 1/4 T location for finirte cooldown rates than for steady operation. Furthermore, if conditions exist'so that the increase in K IR exceeds K IT, the calculated allowable pressure during cooldown will .

greater than the steady-state value.

The above procedures are needed because there is no direct control on-temperature at the 1/4 7 location and, therefore, allowable. pressures may unknowingly be violated if the rate of cooling is decreased at various'.

3

n, / ..

intervals along a ;oldown'. ramp. The use of the cs ,,osite curve eliminates

'this.problemandensuresconservativeopelationofthesystemfortheentirel cooldown period.

Three separate calculations are required to determine the limit curves for.

L finite heatup rates. As is done in the cooldown analysis,. allowable pressure-temperature relationships are developed for steady-state' conditions as well'as finite heatup rate conditions assuming the_ presence of a 1/4 T defect at.the inside of the wall that alleviate the tensile stresses produced by internal pressure. The metal temperature at the crack tip lags the coolant temperature;.

therefore, the KIR for the 1/4 T crack during heatup is 16wer than the KIR h

for the 1/4 T crack during steady-state conditions at the same coolant temperature. During heatup, especially at the end of the transient, conditions' may exist so that the effects of compressive thermal stresses-and lower KIR'S do not offset each other, and the pressure- temperature curve based on steady-state conditions no longer represents a lower bound of all similar curves for finite heatup rates when the 1/4 T flaw is considered. Therefore, both cases have to be analyzed in order to ensure that at any coolant temperature the lower value of the allowable pressure calculated for steady-state and finite heatup rates is obtained.

The second portion of the heatup analysis concerns the calculation of the pressure-temperature limitations for the case in which a 1/4 T deep-outside surface flaw is assumed. Unlike the situation at the vessel inside _ surface,-

the thermal gradients established at the outside surfa'ce during'heatup produce 9 stresses which are tensile in nature and-therefore tend to reinforce any pressure stresses present. These ~ thermal stresses are dependent on both the' rate of heatup'and the time (or coolant temperature) along the heatup. ramp.

Since the thermal stresses at the outside are tensile and increase with increasing heatup rates, each heatup rate must be analyzed on an. individual .

basis.

Following the generation of pressure-temperature curves'for both the steady state and finite heatup rate situations, the final-limit curves are produced by.

constructing a composite-curve based on a point-by-point comparison of-the steady-state and finite heatup rate data. At any given temperature, the 4

i

" allowable . pressure. is taken to be the' lesser of ths .hree values taken from the -

The use of the composite curve is.necessary to' et curves under consideration.

[ conservative heatup limitations because it is possible for conditions to exist wherein, over the course of the heatup ramp, the controlling condition switches from the.inside tc the.outside, and the pressure limit must at all times be based on analysis of the most critical criterion. .

Finally, the 1983 Amendment to 10CFR50 I43 has a rule which addressee the This metal temperature of the closure head flange and vessel flange regions.

rule states that the metal temperature of the closure flange regions must by at least 120*F for normal operation when the exceed the material RTNDT pressure exceeds 20 percent of'the preservice hydrostatic test pressure.

Table 1 indicates that the initial RTNDT of 20*F occurs in both the

' vessel flange and the closure head flange of Braidwood Unit 2, so the minimum-allowable' temperature of this region is 140*F. These limits are shown in Figures-1 and 2 whenever applicable.

4. HEATUP AND COOLDOWN LIMIT CURVES Limit curves for normal heatup and cooldown of the primary Reactor Coolant Figure 1 System have been calculated using the methods discussed in Section 3.

is the heatup curve up to 100*F/hr and applicable for the first 16 EFPY Figure 2 is the cooldown without margins for possible instrumentation errors.

curve up to 100*F/hr and applicable for the first 16 EFPY without margins for possible instrumentation error's.

Allowable combinations of temperature and pressure for specific temperature change rates-are below and to the-right of the limit lines shown in Figure and 2. This is in addition to other criteria which must be: met before reactor is made critical.

The leak limit curve shown in Figure 1 represents minimum temperature requirements.at'the 1cak test pressure specified by applicable 5

z

q, ,

by methods of X ,- ~ codes (2,3).- The t 4 test limit curve was determi.

T

  • References'2 and 4.

Figures 1 and' 2 define. limits for ensuring prevention of nonductile fail'ure for _.

the Braidwood Unit 2 reactor vessel.

5. ADJUSTED REFERENCE TEMPERATURE From Regulatory Guide 1.99 Rev. 2[Il the adjusted -reference temperature:-(ART) for each material in the beltline is given.by the following- expression:

ART = Initial RTNDT + ARTNDT + Margin ~(3) is the reference temperature for the unirradiated material as=

Initial RTNDT defined in paragraph NB-2331 of Section III of the ASME Boiler and Pressure-Vessel Code. If measured values of initial-RTNDT for the material in question are not available, generic mean values for that class of material may, be used'if there are sufficient test results to establish a'mean and standard.

deviation for the class.

is the mean value of the adjustment in reference temperature ARTNDT caused by irradiation and should be calculated as follows:

.(4)

ART NDT - (CF]f(0.28-0,10 log f)

To calculate ARTNDT at any depth (e.g., at;1/4T or 3/4T),'the following-formula must first be used to attenuate the fluence at the specific depth.

~

-(5)-

f(depth X) " fsurface(e .24x) where x (in inches) is the depth into the vessel wall measured from the vessel-clad / base metal interface.- The resultant fluence.is-then put'into equation _(4) to calculate ARTNDT at the specific depth.

e 6 .

?

w ~ - -

ug 3 < ,, y- ,

1 s

~

a r -

V$ - .- .. . . .. . 3 ' S, 2.,.

p@::I;2?) -. 4, LCFj.(*F) isithe ch "stry factor,'Lobtained from_Ref- incell.: Fall materials .

x p a. ..3

},,  : materiall RT'NDT at! :1/4T fand' 3/4f are- summarizsd j in' Table. 2._ . From1Tabl~el2,: _

N M it can de"seen that the' limiting:materialLis.the'circumferentialsweldifor- , , ,

r ,

heatup an'di c'ooldown:cdrves applicable:.up to!!6.EFPY, _ A': sample: calculation- forg

..e .

,c -

m- ' -

, .. RTNDT.is shown(in Table 3..

[

. . ;1 b'__

I t p- - _, .. i? - ,.I t / s t g

?

E'

.,.;f l '

4 J.h 9

i E .e 1

9 d

e e

i g

.' h

{ A 'k-' _ '

y 4

'4^*

o h

c t-I. 1 I di- '

.]

t t a l_

,.. .j i

?

l 1 + L-' i

>g.j' ;; kl Lp;~-a=,

7 - -- ,

cN a- TABL,E,1 '

BRAIDWOOD UNIT 2 REACTOR VESSEL TOUGHNESS TABLE (Unirrad (a) -

Heat No. Cu (%) Ni (%) ('F)

Comoonent

- - 20 Closure head flange (b) 2031-V-1

- - 20 Vessel flange (b) 124P455

.03 .71 Upper Shell 490963/

49C904 1-1

.06 .75

-30 Lower Shell 500102/

50C97 1-1

.04 .67 40 WF562 Circumferential Weld (c)

a. The initial RTNDT (1) values for the forgings a'nd weld .are measured :

values,

b. To be used for considering flange requirements for heatup/cooldown curvesI4}
c. These values from Weld Ce'rtification Test . Report WF562'are higher-tha'n'-

the values of 0.03% Cu and 0.67% Hi used in the' PTS submittal [5),

8

'?

${

8 i

a j

e. .

TABLE 2

SUMMARY

OF ADJUSTED REFERENCE TEMPERATijRE (ART) AT 1/4T a 16'EFPY AT

'RTNDT r

1/4T (*F1 3/4T (*F1- ,

Comoonent 9 -2i p ' Upper Shell, 490963/49C904 1-1 40 21 Lower Shell, 500102/50C97 1-1 145* -115*

Circumferential Weld

  • These RT NDT numbers used to generate heatup and cooldown curves applicable up to'.16 EFPY_

T e

9

E - '

3 1

i d;

jU s K,f. , ,;

. TABLE 3 s .

+

-CALCULATION OF ADJUSTED REFERENCE TEMPERATURES FOR LIMIT

. ,: e .

^

=BRAIDWOOD UNIT 2 REACTOR VESSEL-MATERIAL - CIRCUMFEREN u

Reaulatory Guide1.99 " Revision-2:

f 16 EFPY

  • 1/4 T 3/4 T-Parameter c 54.00. J 54'. 00 Chemistry Factor, CF-(*F) 0.907 0.327~ [,

Fluence, f (10 19 n/cm2 )(a) 0.693 0.973 ,

Fluence Factor, ff ,

1 52.5^ 37.4 :- +

ARTNDT - CF x ff'(*F) 40.0 '40.0' Initial RTN07,.I ('F) 4

~

52.5 . 37.4 -

Margin, M (*F) (b)

                                                                                                                                                              • ? ,

Revision 2 to Regulatory Guide 1.99 145' ?115 ' ,

Adjusted Reference Temperature, <

L ART - Initial;RTNDT + A'RTNDT +. Margin '

                • 1
          • 4*****************************************************

l9 2 Fluence, f, is based upon.fsurf.(10 .n/cm ,.E>1LMev)i--1.51:at 16 ,

[

(a) H *'

EFPY I73'. The .Braidwood Unit 2 freactor vessel wall thickness itk8.

inches at the beltline region [6),  :

/

(b) Margin is calculated as,l.M - 2 (01 2g, a 2p.5

!Thi g '

standard deviation for the initial RTNDT; margin. term ((ag)lis;

. +

assumed toibe O'F since the initialmRTNDT isfaimeasured1value.FThe) -

standard deviation for ART NDT (8A )yis128'F forLthe weld,p '

-.except that<aA:nud not exceed 0.50' times the mean value of' ARTNOT*-

10 p.

h y '

  • r

? l-

m g . . , , .-

MATERIAL. PROPERTY e4SI$. .. g CONTROLLING MATERIAL: CIRCUMFERENTIAL WELD

40*F INITIAL RTNOT:

. ART AFTER-16 EFPY:

1/4T,145'F.

3/4T,115'F 2500 E mm a

. . i/) i .

r

... 1LEAX TEST LIMIT fvi ii I

. /, ' l lll ,- l I

Iss: - '# l '. ,

l

g. y, i

i q j! >6 g , , #

i

! ll t i - .g. /!

e s

la '

' 1

. .fi 3.-*4 3 . ,i , f.

  • Fi  !

', , i p . 4 , .

,, .f, i , . ,3. .

e i i if i 6 . /.

' 50 f< ' - 1 J UMACCEPTABlE -! ' ' A * ' ' ' ' ' '

- OPERATION

  • 16 . it.

. , ,i ,

. .i ,

/ 1 !

G '.5::

~

~

? /1

'l t ACCEPTABLE J' --

. *' / } OPERATION
s. vi p; ::;- ,,,

s s

,A J.

, ,j , ,

/q e .

e 4 / n 6 4 i i I a '

[ '/t '/i

, , i i

  • 6 s . .. - / . . f.

3 - '+ -/r HEATUP RATES' e -- UP to 100*F/HR .e l // , ,

, , , ,. + , , .

/ ,,,,,

0-

./ . - CRITICALITY LIMIT BASED ON-

'E ' ': - INSERVICE HYDROSTATIC -TEST O

'f . ll .i TEMPERATURE (278'F) FOR THE

,_ $ERVICE PER100 UP TO_.,,

, 16 EFPY--

,,, - . . . . . . i . . , ,,,,

-- p
  • *
  • i h

p is

- 1 300 350 400 45
' 5
.'

150 - 200 250

'i 50 .00 IN01CafC0 TCuPCRATURE (DEC.F)

Figure 1. Braidwood Unit 2 Reactor Coolant System Heatup Limitations:(Heat u rate up to 100*F/hr) Applicable for the First 16 EFPY (Without Margins For Instrumentation Errors) 11

-p o

i ~ et ' .-

MATERIAL PROPERTY BASIS '$

CONTROLLING MATERIAL: CIRCUMFERENTIAL WELO 40*F INITIAL RTNDT:

ART AFTER 16 EFPY: 1/4T,-145'F 3/4T, ll5'F r:  :

15 0 0 a r r _ ,3 , ,

',. 3 ,I!

, ,,,,i.

IE50' . r I- , ,

,,,.i i 4 i*e  ;/i . .

I",0 0 - . , , .

, , , ! f; i ,.

i e i if.

. . s {.

i; ,,

i e i/ , . ,

if . 4 8

i ,

, . . f

' . 3 , ,

  • I U _ UNACCEPTABLE /-

h ' OPERATION r nI ', '. ,

f e

  • m

_ /. . --

./ .se e , 4 i , ,

  • I -- ACCEPTABLE j i OPERATION ,

1 . .

E ...

.g 4 i , ,

L . .

s. .

a m .

<,w

/A7]

b

=*

    • ,,,,,,,.C00LDOWN RATES /N!!

y

- *r/HR 0 f f///

M..//N/

/s1 . >

.. 20 vf/ f

- 40

///' '

60 '

100 / ,

25:

350 300 150 :400 450 50*.

3 50 100 '50 200 INDICafC0 fCwPERAfuRC (CEO.r)

Figure 2. Braidwood Unit 2 Reactor Coolant System Cooldown (Cooldownl rates up.to 100*F/hr) Limitations Applicable for the First 16 EFPY' (Without Margins For Instrumentation Errors) 12

I~

n l

wg * - ,- . 6. REFERENCES  :%

o

[1] Regulatory Guide 1.99, Revision 2, " Radiation Embrittlement of Reactor

' Vessel Materials.,1.S.

Nuclear Regulatory Commission,' May,J 1988.

" Fracture Toughness Requirements," Branch Technical Position MTEB S-2,

[2]

Chapter 5.3.2'in Standard Review ~ Plan for'the_ Review of Safety Analys Reports for Nuclear Power Plants : LWR Edition, NUREG-0800,1981.

ASME Boiler and Pressure Vessel Code,Section III,' Division 1 -

[3]

Appendixes, " Rules for Construction of_ Nuclear Power Plant Components, Appendix G, Protection Against Nonductile Failure," pp. 558-563,71986L Edition, American Society of Mechanical- Engineers,. New York,1986.

[4] Code of Federal Regulations, 10CFR50, Appendix G, " Fracture Toughn Requirements," U.S. Nuclear Regulatory Commission, Washington,' O.C.,

Federal Register, Vol. 48 No.104,' Hay 27,1983. T PTS Submittal for Braidwood Unit 1 Reactor Vessel. (Section:5.3, Braidwo

[5]

FSAR, Amendment 47, Commonwealth Edison Company, . April 1986).

MT-SHART-078(89), " Byron Unit 2 ond Braidwood Unit 2: Reactor Vessel He

[6]

and Cooldown Limit Curves for Normal Operation", N. K. Ray, February 198 WCAP-12845, " Analysis _ of Capsule U from the Commonwealth Edison Compa

[7]

Braidwood Unit 2 Reactor Vessel Radiation Surveillance Program",. E.- Te et. al . , February 1991.

e 4

13

& 1

c: '

_ j.

  1. .,.;*.. ATTACHMENT 1- ., .

DATA POINTS FOR HEATUP AND COOLDOWN CURVES (Without Margins for Instrumentation Errors) s a

'l {

E ee *

  • e d

e f

)'

l~

A-1 9

?

i f

. t' .

9

-+ '.

?

7 g

'y e

d

/.

5 ,f 9

/

l l

/

l O

w i

r 3 P

f )

E .

N I 0 I S 0 B M 5 9 l 0 II 4

l 61 f. K R.

8 0 6 g M G SQ 9 (

1 E S 8 A

l t D S 1 .

( I f

E 8 S R E P t

l U R  % 7 2 (

N l I U 2 I.

A A A I A

N I R S-A S E R S M O P E E f M P R 6

0 E M I O  : I E Sl 2 8

/

~ t I i 4 6

'W i 1 tS I 2 5 pP l G J t 2

t E

1 u(

5' 2

V i 5

w t 9

W W K E A i R

9, 1

$ E S P N L P

  • > (

I L 0 5 l

E 0 8 L C 0 4 4 .

I R I H V U 2 2 D I R S E I

R E S R)

U S E uI 0 5 G O R 0 8 N $S ID I P SP 0 4 E( 2 2 G l l M R t

N A U P L

I M

- 1 U

= V C N I

c R L M

U A C C

- P L u

l R

E 4 A W t

H A g g

1 R 4

., H D

[' /

5 G

- N, G I i W O

D. t t

0 l 7

{ tt D

( l e

ItN t- p O

'w

~ i .

f

[O l~ '

E ,

9 r

'g ) q' 4

, .9 '  %

g, b.

7 w

e e

s e

1. 5 g

C ww MN@w-vmew-w=NNO* ~0

-ma w w , m e. m N. e o, m o. d e m m. W.

43 . .

UAe N4Nmeeww=mNWOOsc

'NommcNOm>WWWmON@

=et Sww gu OO==Newv4Womm=Nm

-e======e----nnn 7 o -4

- w 03 U.O

=

-ww cao M04050N0e05040h0 c@@mmmmemOO-~NNm 3- 21= NNNNNNNNNmmmmmmm '

w Q =

h.. .

O w c@ memo *Newc@ memo mammmTV4994wMiv4 Q

w -i

?

2 w

~ w Q'

2 4

4 3' ww coOOeNamme=m>@NON emeec=ww@momm,mmN=

K -3= _

43=

1 ve+ wmNe@@nO@NNmennmm

3 ~+s mwWem=n@e=wmoweNe s

3'

=

4 c=w 22 coAc@@@@@mmmememm w

  • e  ; *4

> m 2 O2 N

U30- coco 40cococ0 aww

= w

. gao 0400 meme MOO--NNemwwe

      • ===NNNNNNNNNNN l

. - *3w

=w O

-0+ =

?' y 2 a

2' 4

a >

,w emO-Newe@

    • NNNNNNNNNNhmmmm memo-New 2 O

= - 4

  • 3 4
  • g w

~ .

2 3 3 O O u ..

@ ww mQ0eNmemmem==Owee

  • Ma N. w. T M N, @ g @
  • N e. d e M O - @

[.

.1 O ==.

w = 4p

< < . 4 .

uem , e w m T M = eW @m em edenn.

' 3.- - 2 -Ma N=Omme>&mmmemmO-N a=

.4 w

=

O' 3 Sww 25-

@@@9TTW4wTTT9944@

  • ' w 00 Og =&'

.h =_

.g w u-

>-we w

.* m.& 02 l ug C:

.Q.

w ==

~4 -ww 4000 040cceOcocce

~~MNmmewec@@

O =-.-4 p ma w .04Q

.ggw memomomeneememenee O. ww

  • - Q .. Q43
  • J

.W'. 's a Q'.3d 34

.- Q =w u; O '= N m M h e m e m O. =. N. m. w. o. @. m.

A-3' e. . .

g .'5 Y. . - !N'

, L .L.:, a A

~

, y  !. -i q S:

,, c: - _e rg . *,

I' l-l D

I -

L.

s O

C Ame@@@Owenche@

ww

- m C.4 O,@ c.w ce.c o n v -

w-wOneOenn-~ON

, 4pa .

u e c,. nmenewonnnwce-

-e@

~2 w -

ga nnowwcomemO-Nw

==--------nnnn

=a w

Om T

ba und . V

-ww 40cOconocococo nwweCa@Nheemm0  %

  • O o

OGQ 23

-w nnnnnnonnnnnnn ,,

ed u - *J**

4 w  %

~

  • -nnveWeemO-Nn*

e nnnnonnnn9*ar**

V 0

e w

. se #

A (y D at e e m e n n N O e c m e J ar

- ww

-u- enewmnwennwenon 2

43=

OO--eennw.menOO ved nwWeOnWendenene

-44 Q

.J -

nnnnemeemmmOO-= --- 4 2

4 s Qa-

-r 3 s

- V p

3 w )

, 2 Os

- 2 3 3 umQ J@m*ememOO--nNn 040cceccocoooco N 8 s

--w 340 m - ------nnnnnan. (I

> Q =

w Q e -

", W 8 , Q m a w Wmemo-nnecWme@O -3 m O =


nnnunnnnnnn

- .A

.O w w

~

-) he. -

g

- - *s .d *4 O .

, Odd ,

[ 3 wnneece--ow e-O w- we onlwinnn ,S O w -ma

-. 4 3 .e , M.ONmNnwo--

i

-w m -w a ueo enOMWewcWi>Ciomen..

w e @ d e e e O -i= *'4eeO (*

3 : # == **

0ww e A @@A@eoo@W$WtwWWm #-

w 4 '02 Zu

> == 0 == == 4 3 4 == 3 N 3 O E0 we. -w

  • u g: 4 02 3 ' [

.UaC O O,

s O

s

==

  • a -ww 40conoccoccocco emmOO--nnnnewee 4-b

.Q

.O

.a s w

-Q 04o ZIw --*-*---*--*

O -w u O e3 e,e +

. w a4 1 O 3,w 9-a

- y , , - N n =r a @ W e m------

O-Nng4 A-4

. i. '.a ,

s

.a A

Djq, = .4r y_,_.;

,cr.o ' ,

"^ ^- , , . 7... - . - . ,_.. n_u

g .7 , . m. -

, - -~

J.s ,

...u.-

, i

L - ,

1 , , p.y. m . . ;- .p.n r & -:: g

.z yc -

  • ' '~

f4'j - W>:

..:- - - +

  • i.s n - ,

,. _ y_ y;c ;

~

%_-tn'

. . - ~ - -

^ - -. . .

- ;-Q

,.y& -  %.

f

^

_c

< j'y -

~

a

[W. +. - ~ _

s , -e}~ -

w r=- s.

Ot/tlI98 .$ _,

m

.' ClMl COOLDOWN CURvi5 R1G teUIDE 8 sts Ht v 2. wl16ulu t M A Rt.I N -

n

~

~

PLOlllD IOR COOLOUWH PWUtil1.2- 120 DLG i / ttR COOLDOWN- 8 .

l 16tt . f DELOWING DAI A wtRE s , f t te 000-EfP--vtaus

' .IRRA01AllON PtulOD

'f&AW OtPIH.*1AOWIN I c_

m INDICASED -INDICATED INDICAIED' IN0iCalED - INDICAIED .'INDICAltD I( sePE St A 1 URE PRES 5URE IEMPERAluRt. -PRt55unt itseetRAluut- ' PRtS5uut (DEG.f3 .(PSI)

~

(DEG.T) (PSI).

- (DE G. F. ) . (PSI) '

603.64 28, 185,000 '881.47 85,000 ' 504.08 11' tM:OOO- 22' L190.OOO -848 73

.' 8 .

12 140 000 688 28 974 5'3

-' 2- :90.000. <518.05 145,000 -634 07- 23 195 000 ~

95.000 1518.58- 13  ;

200.000 '909.61

  • -3 04 ISO 000: 650.90 24:

~947,30 '

4 '900.000. 2 526.65" .

669;19 25 205,000.

' 655 000' 105.000 ~535.42- 85 210 000: _ 987.8 '-

5 -160 000 G88 82 26 6 ' i880 000

.544~SI' -16

. 165.000 709,86 . 27 285.000 1038.39 *-

7 11S;O00- -554.86- 17' 28- 220.000 1078.22 18 . 570 000 732 59 1828.60 8 820.000- '565i14 '

175.000 756.95 .29 225.000 125 000 '577.50' 19 M.- - 9_ '20 . 180 000 783 g & ..

130 000 590;14 10 , -

b 4

4 e

,M.

N-

. AP

.a

{ , d4 L

I-, e L

s-I

, "P-' p,_

t ,, . - - ,

, . y -[:; - 1 . . .

.~

7.

g

e. .e
e , .,.

4 .,

n #

., . f y O  %.

.? '; ,

4

> . _y;' , , u

9 c-

^

.~.

..t.. ..s...

' ,7 R .9,

- - , y & C. , t

_q,,.,,

!_[-

%_'-' . n a _ , ,

'; ' Pr ; ,,-mC'.'

g i.,..

~ ' .T ; y.

4 >

_a -3 ug

}, , , _ # ' jg. .: J E.

->ws, . _ m2.o ,:u ,; C. = ., f , . ,- .

g.. .7 ,y ., ; .

- - -- * ~

~ ~ ~ '

.-.,4-.

. .:-p.* Md

..< , ' - '2 i

^

0..1 h Yd; t

w 09/#t/98 4.01. C OOL DOwN CUWwt S H E U ' tallDt t 99.Ri v 2 WilluMsl MAWGIN i

. 4 J0 Di G l ' / t tR COOL DOW4 Ptol LED 4 0R C00LuowM 9*Wut ti t. .- 3 le tE ~tOLLOwlteG DalA wtRE

= B6.000 EfP VEARS

lRRADIAllON PERIOD FLAW DEPfH s'ADWIN $

SNDICATED INDICAIED INDIC& FED INDICAi(D IEMPERAluRE PNE$$UnE INDICATED 'INulCAIED IIMPfRA1bRf PRL$$uME (DEG.i) (P5tl

T E sept R AluRE PRE $$URE (DEG.i). IPSII-(DEG.F),

(PSEI- 180.000 758.61 135,000 566.38 20 788 90 461 .' 03 ft 588.98 29 185 000 1 85.000 468.33 12 140 000 22 190 000 828.69

,2 ~90 000' 13 545 000 ' 598:70 23 'l95 000- 856 82 95.000 476.24 150 000 616 82 894,56 3

100.000 464.75 14 636.36 24 200 000 4'

493.97 .45 155 000 25 205 000- 935 2I

-5 805.000 16 560 000 657 27 250.000 979,08

  • 1SO 000. 503 80 165'.000 679.95 26 1026.15

-6 t15;O00 514.53. 17 '

704 19 27' 215.000

.7-526 07 18 .370 000 28 220.000 1076.55 8~ 120 000 19 175 000 -730.49 9 -126.000 538.55 10 .130.OOOJ 553.87 1

T-e t

s m--,w-j - . <,.

r . .

.~ _ m - - - . .

e.ny:::-

lh$f +y W lk * +=

' ':Li

~

< - . ^

^ \ ^ i$'L';]_l'

., ,=  ?)[{&* (?,, r3 &&,

s , - - +- s lk.ql:s;+ Sh -

-Q p

. : ~, qq f Y

?W:. ' .'M

-f.p_ _;

g-1

.i.

u n.

~0

+

=

.,$v Q
$ P + .p.,

1m m-w;.? ;A ._: < ,

' t? J.%Et

g

~'h.

p.g?p;.n  ;,= W 9

W -

4

.: .v.; y

'_.,x e

a.  ; ; - y N+

~

s s 1,. _, . .

r W s oef i s/9 3

'%_.~

-Gulull 1 : w9,et v J wi seums t ' esast(.th  ;:g s t t.Dt ': ConLDowN CURvi s kE G 8.;--

, g :" -

lbo Ol G 5 / teH CUOLDOWN 1

..' A

-IttE160LLOWING Data WENL PLOlltu 60H COUtDUwN PRut81L 4 s w=

~

  • ^

'IRRADIAllON PER800 *': 46 000 EfP-vlARS.

F

  • AW DEPitt a ADWIN I
S INDICAllO INDICAILO
  • ' 'BNDICAILD i .4H01CAftD' -INGICAItD . INDICA 510 It tePE R A lure . PRE 550RE

- f lesPE R AlpRL .: :RE 55URE - IttsP(RAIURE. PRi$5URf. (DEG.F) IPSil' tutG.T l'- -IPSII

- { DE G . F ) -- E PS18 -

  • 529.00 20 - .'180.000 735 44 135.000
.7 1 -- 85.000 : 487.94- t4 545 57e 21 185.000 768 15 '

90.000~ 424 82 '82 540 000 .22 990.000 803.3t

2-13 .445,000- '563.59 13-  !

95.0001 :433.86. .f50 000 .583 00: 23' 195-000. 848.20

'(00 000y 442,15: -f4 24 200.000 882.14

.4'. 85 855.000 _603.84 926 .-

Se m106'.000. 455.83: '626 41 25 '205.000 iH 462.34- 16' -160 000 200.000 .973.45: .

' 6 :- ..'s 10 000 I F ;; 165.000 - 650.6J 26

'1024'31-W

-7: I15.00 (- 413.73 la 170 000 676.87 27 215.000 1078.84

'~ -

8'. 120 000. 486.09 705:01 28 220.000

" " 'm. -126,000I .499,29 19 '975.000 '

9' -

.:930 0007  :-593 52;-

'90  %

.t.

s k.

3

.M. . _ , ,

i c ,

1 M

7.q. g , t - ~

_- - _ ;_, 'n?

' % .- - ~

w

,+

8

  • , +, .,6' ~  %

,mr t- ,

,y i ,

q

- .~.:a l- .a ~ '- ,_ * ' s v .

- J, - ~~ '

K

. .x' ' -

3 1' >

. v

~'

L..; a ) %, r, t

W u 9,jp?M

< ~q -

y . - , , ,

. i ., . . d.2 . w. n  ;;; ^ L 4 - n. -Q jk; x.2;

~ '

^ , .x ,,, ,,q %;,;Y - l.).y; ;,; , . L ; ,;.,[;g. ; ,

'. , .f ,

f-e . ,. - y

  • W*.q,'~ ,, ,, ,

s * ' * *- * , ,

.C7 T D"

h...,

49i.

'C,?

m P.SU. ,, 2' Q

q

,97

," U ~ a y

~ - - -

'~

g .

, ef c

. _ j

+

1 8 :m

p'
Q5.f , .  ;% ;4 ;<.myg  ;.,.. w

. %__ ,* Q^gqjg,v 4

  • T;y  %: ,

4~7 y er s

O.y , ..

e "

- s ,1.,

. :- r '~ - n.W.

. py 4

y 7y g
b. ,

< - . .w . .

k

  • * ?is l *.W *

+

~ ihM;va

..g QRW,'y.Q

%, .% f%N y u'-

s - ,

.01/1t/91 _fTt -W-y ,

~ r

'COf COGtDOwN CURVES REG GUIDE . t 99.REv 2 Wilisuut s4AQ6f N .

i 100 t/1G P/HR COOLDOWN . l

-TH1_f0LLDwlHG DATA WERE PLOffED FOR COOLDOWN PRDI111 5 4;: --

q-5 ? [

.lRRADIAtlON PERIDO - 16 000 EFP.vtARS

%- ItAW DEPIM = AOWIN.I INDICAIED ,'

- -_ INURCAlLD INDICAliD .

O

~

INDICAIED- INDIChiLO If 88PE R AluRE PRES 5URE c:p

- Itdi t C A I E D ~ I E tePE R a t uRE .. PRES $URE (DLG.i ) -(PSil- *

!(PSil _G

-11 E teP E R AluRE _ PRESSURE (PSI)  :- tOEG.f L m

(DEG.F)-

19 - 975.000- 658.64 . . -

10 130.000_ 436.38 20 ?080,000' 694 07 t -) 85.0001 -326[72 '135 000: 454 12 885 000- 732.4s

. 901000; .335.32 1 473.34 2f 773 75 l2' 344.70' 92 140,000- 22 .190:000 818.25' 95 000 t845.000 ~ 4 94 -. s t =

" ~ 3'

--354385- -13 586.54 23 195.000 866;I7

~

.a

.'4- J100.000- 141 -150.000 24. 200'000 2-5- a105.000 365.89 45 {155 000: .540.86 205.000 987.80' * '-

- 4"7['

377.78 '566.97 2S - M

'6 ?I10.000 16 - 160.000 26- 280.000- 973.42'

. .gr -

7 't15.000 390.76: .17 165 000. 595: 89 -

27 215.000 1033;86 .

M- '404,78 E25;76

~8 120 000 Is 170.000 .,'

"C

~

.; 9 1125,000: 419.94 ., j i

4

. ~.

. 4 4

W o.,.

,m- ,

Y..

. , ~ -

,  % $-4

-I

_\ m

  • ,.1, ~

\ ~

u: .  ; y -.

's J.

- @9 y.;p ,

M ..;

=.4

..,_;W

<,@.t a , -

r '**- {

_ __ g W

- ,. i ,a

. ,e..

A

.
  • L. ,._.

s

,T s.3_7

, -R,,.'.-

Aik' m * '

+ ~

^

' . ' .

  • _, , f ,_ *[.,E'. _

~

~ j . $, --

. ~. -

A

' . _, .c. s_"

  • ' ~

_ _- ' 1: ' ' ?- y _ .

  • ~ -'

.w. * ~

' 5 3 , r -

~ t g ; . ,

A .f + sl'l , ,

' ~

a , L Y u

_-;Y ~' '

a -

K __ ,

r

% ( 7,

+mm* a ; gy-

& r

  • + , - m.  :;-:. .2 ..

's -u r,3 ;*  : f(C r .

sm, -

a

~

r

-;x 52':

. 2.n . n ,Q

~

' - _ y

,_ . :w ~"_

N '

,1  ;

{ -

<..i.',,-

. . _ , , , ._, 7 +

. n: .

,w , , , .

=2i .  ; r. , , ,. , . -:a n -a. . , .- . +.r- -+ .m > . + w

LWyyc 7'

, e5 W

+- -

~k ' -

m y f- '  !

16~ - -

us

';;:f's l *

6.0 REFERENCES

~

3

1. Regulatory: Guide 1.99, " Radiation' Embrittlement 'of Reactor Vessel  ;

Materials," Revision 2, May .1988. ,

2. - NUREG-0800,' " Pressure-Temperature. Limits," Standard _ Review Plan, ", '

.Section 5.3.2. '

Letter from A. R; Checca (CECO)L o T.!E. Murley (USNRC),i

Subject:

~

t

.3. f men d nt to' Facility;

.Braidwood Station, Units1 1 and 2,'Applicati on or A me '

ij Operating License NPF-72 and NPF-77,-NRC Docket No. 50-456 and!50-457,f '

December 19, 1990._

4. - WCAP-11651, " Analysis ofl Capsule U'from:the Commonwealth Edison! Company >

Byron Unit 1 Reactor Vessel Radiation Surveillance Program," Novemberf 1987.

5. WCAP-12685, " Analysis of Caosule U'f rom the- Commonwealth = Edison CompanyJ .

Braidwood Unit 1, Reactor Vessel Radiation Surveillance' Program,". August! Tic

-1990. +..

y;

'6. . WCAP-12845, " Analysis- of Capsule U f rom tiie' Connonwealth Edison. Company , -

Braidwood Unit 2, Reactor Vessel Radiation Surveillance Program," March--

1991.

t, I

l;{

5 9

4 E

f a

P  %

[

s S

f f

.'j -

t g ]

s i r

h