ML20093G717

From kanterella
Jump to navigation Jump to search
Rev 0 to PSA-B-95-18, RELAP5M3 Comparison of Model Boiler 2 MSLB from Hzp Test
ML20093G717
Person / Time
Site: Byron, Braidwood  Constellation icon.png
Issue date: 10/12/1995
From: Ramsden K
COMMONWEALTH EDISON CO.
To:
Shared Package
ML20093G689 List:
References
PSA-B-95-18, PSA-B-95-18-R, PSA-B-95-18-R00, NUDOCS 9510190209
Download: ML20093G717 (87)


Text

-t e

A RELAP5M3 Comparison of Model Boiler 2 MSLB from HZP Test Document Number PSA-B-95-18 Revision 0 Kevin B. Ramsden Nuclear Fuel Services Departmerd Downers Grow. Igros

/d//2./55' 1 /8.

_ [-

Date:

Prepared by:./

Date:

/o/n./fr d, 8k w u -a _

Approved by:

A (Date issued)

Qjo190209951023 ADOCK 05000454 p

PDR

PSA B=9518 Revision 0 h

i Statement of Disclaimer This document was prepared by the Nuclear Fuel Services Department for use internal to the Commonwealth Edison Company. It is being made available to others upon the express understanding that neither Commonwealth Edison Company nor any of its officers, directors, agents, or employees makes any warranty or representation or assumes any obligation, responsibility or liability with respect to the contents of this document or its accuracy or completeness.

11

4 PSA&9518 Revision 0 Abstract This calculation has been performed to validate the methods and models utilized with the RELAP5M3 computer code to calculate the time dependent differential pressure on the tube support plates (TSPs) during Main Steam Line Break (MSLB) events from H Zero Power (HZP) conditions. This event is the limiting event with respect to dynamic loading of the TSPs and accurate characterization of these loads is required as inp structural analyses of these structures being performed in support of the 3mv IPC submittals. This calculation utilizes a model similar to that employed in the Model D4 analysis to predict the response of the M82 test facility to a full size MSLB from H This comparison provides benchmarking support for the manner and methods employed in the generation of transient analysis of the Model D4 steam genera Byron.1 and Braidwood 1.

l iii

y.-

1 t

PSA.B-9510 Rsvision 0 Table of Contents

1. I ntr od ucti o n..................................................
2. Methodology /Model Descript on and As s u m ption s...............................

i

2.1 C o m p ute r C odo...................................................

~ 2.2 Test Facility De scription.................................................

2.3 Description of R E LAP 5M3 model................................................

2. 3.1 Initial C onditions ;.........................................................

2.3.2 Tube B undle Modeling........................................................

2.3.3 Break Flow Modeling.....................................................

3. Calculations / Acceptance Criteria /Basedeck Changes........................................... 5 3.1 B a s e C a se..............................................

3.2 Non-Equilibriu m C a se................................................

3.3 Nozzle Size Sensitivity.......................................................

'~4.Results...........................................................................................................

4.1 B a s e C a se............................................

4.2 N on-E quilibrium C a se.'................................................

4.3 N ozzle Area Sen sitivity Study....................................................................

5. C onclusions/ Discus sion........................................
6. R efe rence s.................................................

Appe ndix A - D ata S et index............................................

Appendix B - Input Data Set Protection Form............................................................. 36 Appendix C - MB2 Facility Description and Information............................................... 3 Appendix D RELAP5M3 MB2 Model input Listing..................................................... 38 P

6 I

.iv

3 PSA<B 9518 R; vision 0 J

List of Figures Figure 1 RELAP5M3 Model Diagram of MB2 Facility........................................ 4 Figure 2 Base Case Dome Pressure Response................................................... 9

......... 10 Figure 3 Base Case Break Flow Rate.........................................,..

Figure 4 B ase C a s e TS P 1 D P...............................................

Figure 5 Base Ca se TS P 2 D P..................................................................

12

........................13 Figure 6 Base Case TS P 3 D P..........................................

Fig ure 7 B a se C a se TS P 4 D P............................................

...................................15 Figure 8 Base Case TSP 5 DP........................

Fig ure 9 8 a s e C a s e TS P 6 D P......................................

Figure 10 Non-Equil. Case Dome Pressure Response................................. 17 Figure 11 Non-Equil. Case Break Flow Rate..................................................18

.............19 Figure 12 Non-Equil. Case TSP 1 DP.........................

.............................20 Figure 13 Non-Equil. Case TSP 2 DP............................

Figure 14 Non-Equil. Case TSP 3 DP.................................................... 21 Figure 15 Non-Equil. C a se TS P 4 D P.....................................

Figure 16 Non-Equil Case TSP 5 DP............................................................. 2

.........................24 Figure 1~7 Non-Equil. Case TSP 6 DP......................................101 - 13.................

Figure 18 Non-Equil. Case Temperature Response in Figure 19 Dome Pressure Response 70% Case............................................

........................27 Figure 20 Break Flow Rate 70% Case....................................................................28 Figure 21 TSP 1 DP 70% Case...................................

Figu re 22 TS P 2 D P 7 0% C a se............................................

Figure 23 TSP 3 D P 70% Case................................................

Figure 24 TS P 4 D P 7 0% C a se......................................

Fig ure 2 5 T S P 5 D P 70% C a se......................................

.............. 33 Figure 26 TSP 6 DP 70% Case..............................

i y

~ PSA B.9518 Revision 0

1. Introduction The MB2 test facility is a 0.8% power scaled, full height test facility that was built to test

' the design of the Model F steam generator. A series of tests were performed with th facility and were documented in references 1 and 2. This calculation utilizes data recovered from these tests to demonstrate the ability of RELAP5M3 to adequately and conservatively characterize the MSLB event from HZP conditions. Specifically, Test 2013, a MSLB from HZP and normal water level, was modeled to demonstrate tha appropriate input selection, RELAP5M3 will calculate representative pressure lo the TSPs.

This calculation has two primary purposes. The first is to demonstrate that RELAPSM can model the TSP loads conservatively. The second is to demonstrate that key modeling options and model configurations used in the Model D4 analyses, when employed in the Model Boiler comparison, yield appropriate results. The primary modeling option of concern is the use of the equilibrium model in the tube regions.

This is necessary to preclude pressure oscillations related to the non-equi.fibrium m interfacial heat transfer, that although small from a system perspective, cause erroneous loads to be predicted. The primary model configuration to be supported is the use of a detailed bundle nodalization, which represents a balance between optim modeling practice and the desire to obtain differential pressure information as close t the tube support plates as achievable.

4 1 of 38

PSA B 9518 Revision 0

2. Model Description and Assumptions 2,1 Computer Code The RELAP5M3 version 1.1 computer code as implemented on the Comed HP-735 workstation network was utilized for this analysis. The installation of this code was verified specifically for this analysis by direct comparison of supplied sample problems output files. This computer code employs a state of the art two fluid model to calculate thermal hydraulic behavior of complex systems. A review of the code assessment 2

problems indicates that this code has been tested and predicts well, the behavior of steam and water-filled vessels undergoing rapid depressurization.

2.2 Test Facility Description A detailed summary of the test facility geometry is provided in Appendix C.

2.3 Description of RELAPSM3 model The RELAP model nodalization diagram is provided in Figure 1. This model is a direct analogue of the Model D4 SG model developed for Byron 1 and Braidwood 1. The t i

volumes have been scaled to be representative of the test facility. A listing of the base modelis provided in Appendix D.

1 2.3.1 Initial Conditions The initial mass of the model compares favorably with that measured in the test,1260 pounds in the RELAP model vs 1211 pounds as indicated by the test data reports. T initial water level has been initialized within two inches of the 441 inch level reported in the test. The test was initiated from 27o power, to be representative of HZP conditions with some decay heat removal. The RELAPS model was initiated at a zero power condition, to yield the highest loads possible, as was modeled in the D4 analysis. The RELAP model initializes all volumes at 560 F, which results in an initial dome pressure of 1132 psia. The initial pressure in the test facility was 1090 psia.

2.3.2 Tube Bundle Modeling i

Tube bundle interphase drag modeling is based on the use of the rodded bundle correlations (EPRI). The model represents the TSPs as having the same area as the 4

bundle flow area, with the loss coefficient adjusted accordingly. This approach was utilized in the D4 model as well, and is the method recommended by the RELAPS newsletter (April-July 1995). In the tube regions (Volume 101), a series of small nodes b

i t d on either side of the TSPs in order to predict the transient

. (.2ft) have een nser e differential pressure load on the TSPs. Since MB2 is a full height test facility, this is 2 of 38

~

)

PSA B 9518 R: vision 0 directly cornparable to the Model D4 nodalization scheme. Crossflow frictional terms were calculated identically to the methods applied in the Model D4 calculation, and the data sheets are enclosed in Appendix D. In initial steady state testing, Westinghouse found it necessary to increase the effective crossflow resistance by a mean factor of 8.5 l

to obtain the appropriate pressure drop at the U-bend. This factor is also applied in this model.

l 2.3.3 Break Flow Modeling The flow restricting orifice was modeled in junction 106 at the exit of the steam 1

generator. The break is simulated in the line directly downstream of the orifice by use of an MOV model. This valve was assumed to have an opening rate of 100 msec to be typical of the air operated valve actually employed in the test. To evaluate the potential effects of increased piping resistance in the test apparatus, a series of was performed using reduced nozzle area, comparable to C/D reductions in LOCA analysis.

t 8

I l

3 of 38

T PSA B-9518 Revision 0 Figure 1 RELAPSM3 Model Diagram of MB2 Facility

[ 107 l

[ 105-2 l

105-1 l

I 124 y

l iu+

1

[

110 l

103

[---g o

n 102 101-22 101-21 101-20 101-19 112-1 101-18 112-2 TSP 6 101-17 112-3 101-16 112-4 TSP 5 101-15 101-14 112-5 101-13 101-12 112-6 TSP 4 101-11 112-7 101-10 II2-0 l

101-9 101-8 112-9 101-7 112-10 101-6 TSP 2 j

101-5 112-11 101-4 101-3 101-2 112-12

[

101-1

}

'~

4 100 RELAP5M3 Model Diagram of MB2 4 of 38

F 1

PSA B 9518 R: vision 0

3. Calculations 3.1 Base Case The base case run utilized equilibrium modeling in the tube bundle and lower downcomer regions, comparable to the D4 model. This case used the full nozzle area, based on a throat diameter of 1.3 inches.

3.2 Non-Equilibrium Case This case was identical to the base case, with the exception that the non-equilibrium models were enabled throughout the model.

3.3 Nozzle Size Sensitivity Cases were run with 70% and 80% effective flow limiting nozzle area. These cases were identical in all other respects to the base case, 5 of 38 j

L PSA B 95-18 Rsvision 0 l

i

4. Results l

4.1 Base Case E

l The model was allowed to run to a null transient for the first second to ensure an

-l initially steady state. The break was initiated at 1 second, and the effects of the -

t 97

]

.resulting transient were computed for a ten second period. Auxiliary feedwater a

)

degrees F was injected into volume 111 at a rate of.23 gpm increasing linearly to.3 gpm from 1 second to 11 seconds, as described in the test. The dome pressure l

behavior is shown in Figure 2. As can be seen, the overall pressure response is j ~

comparable to the test, but with a slightly higher rate of pressure decrease over the second period. The break flow, shown in Figure 3, is higher than that indicated by 4

steam flow measurements in the test steam line. This behavior is consis l

pressure response observed, and prompted the sensitivity study on nozzle area.

l data was recovered from microfiche for the differential pressure data on the TSPs at a

.1 second interval for the first 2 seconds of the event. The RELAP model predictions o 4

transient TSP differential pressures are plotted against the test data for all six TSPs in -

[

Figures 4 through 9. Due to the location of the test instruments relative to the node available in the RELAP nodalization, some elevation head induced bias exists as l

demonstrated in the plots. The relative pressure changes are representative however, and provide a good indication of the ability of the code to reproduce the transient L

response. Of particular interest is the TSP 5 response, since the location of the test instrumentation includes not only the TSP, but a tube section as well. This geometry demonstrates the ability of the code to predict the TSP DP plus the tube bundle friction losses. The plots of the lower support plate behavior indicate that very little reverse flow occurred in the lower bundle region, and that the RELAP model consistently reproduces this effect. From the TSP DP plots, it can be seen that the equilibrium model produces pressure increases at the TSPs that are consistent in timing and conservative in magnitude.

4.2 Non-Equilibrium Case The dome pressure and break flow rates for this case are shown in Figures 10 and 11.

There is effectively no difference in these predictions from that of the base case. The TSP differential pressures are shown in Figures 12 through 17. These plots, particularly the upper three support plate responses (TSP 4-6) serve to illustrate the effects of the pressure oscillations. The initial ree.ponse is not unreasonable, but highly oscillatory. At approximately.7 seconds into the event, the model predicts a large spike in pressure, when in fact the test data shows a declining pressure behavior.

Figure 18 provides the saturation, liquid and vapor temperatures for volume 101-13, and illustrates the metastable nature of the nonequilibrium model that is believed to be the cause of this behavior. Forcing the model to maintain consistent fluid temperatures, as in the base case, eliminates this behavior, and produces results more closely related to the test data.

6 of 38 4

l PSA i 9518 Revision 0 4.3 Nozzle Area Sensitivity Study As noted above, the base case depressurization rate and steam flow based on the flow limiting nozzle dimensions appeared high relative to the test data. To ensure that the conservative overprediction of loads by the RELAP model was not solely a function of excessive blowdown rate, calculations were performed at 70% and 80% effective nozzle area. The 80% case yielded depressurization rates and steam flow rates still somewhat higher than the test data supported. The 70% case provided steam flow rates that were closer to those measured in the test, and a depressurization rate consistent, and slightly less than that observed, as shown in Figures 19 and 20. This provides a means of enveloping the pressure response. The TSP loads for this case are provided in Figures 21 through 26, and show that at the reduced depressurization rates and steam flows, that RELAP5 provides conservative prediction of the TSP loads.

i i

l 7 of 38 l

f l

l PSAaB 9518 Revision 0

5. Conclusions As stated in the Introduction, this calculation had two purposes: to demonstrate that RELAP5M3 can be effectively used to develop conservative differential pressure loads on TSPs under MSLB conditions, and to demonstrate that the model options and nodalizations used in the D4 analysis yield appropriate responses when utilized to model applicable test data. The results obtained in this calculation demonstrate both o these points. RELAP5M3 does reproduce the test data results on the TSPs with reasonable conservatism. The model options used in the Model D4 analysis provide the best match to test data, both in timing and magnitude.

The results of the nonequilibrium case highlight the pressure oscillations caused by metastable behavior in the interfacial heat transfer models. It should be type of analysis is a special case that is severely impacted by what are in fact rela small oscillations in the macroscopic pressure behavior. This problem has been brought to the attention of the code developers for resolution. The good agreement with long term vessel pressure and TSP load suggest that this problem would have minimal effect on most applications of the code. It appears that only in fast depressurization transients where differential versus integral behavior is the focus th this problem is of concern.

8 of 38

?

PSA&9518 Revision 0 M82 Test 2013 Comparison Steam Dome Pressure Response 1200 k

1100

.\\

m

\\

1000

- P dome pue n

a M82 SG Ed P 900-N, N

800 -

700 0 00E+00 2.00E +00 4 00E+00 6.00E+00 8 00E+00 1.00E+01 1.20E +01 600 time seconds Figure 2 Base Case Dome Pressure Response i

+

1 I

9 of 38 i

PSA D 9518 Rsvision 0 MS2 Test 2013 Comparison Break Flow Rate 35

(

4 lYlM; b

AA/u m"

%f

% l;<;;;g W

25 I

N h to

-w now u c 8

a WB2 Stm Flow

. j 15 5

10 5

+m 2 M +00 4 00E*00 6 00E+00 8.00E+00 1.00E +01 1.20E +01 um. cond.

Figure 3 Base Case Break Flow Rate f

4 4

1 10 of 38

~

PSA B 95-18 Revision 0 M82 Test 2013 Compadson TSP 1 DP 100E+00 J

8 00E41 di 6 00E41

,,,,,8 8 sie n\\ s 8 a-

,8 ae i

4 00E41

-coltivar 1 tap 1 y,g a MB2 tsp idp

{

s bb "

n g

l%

2 00e41 t

cm.m sm:41 1.w:.m iw.m 2 00c.m 2.sa:.m 3.w:.m 000E.00

.t.00E41

-4 00E41 time seconds Figure 4 Base Case TSP 1 DP 4

1 11 of 38 4

PSA.C 95-18 Rivision 0 A

M82 Test 2013 Comparison TSP 2 DP 200C*00 e ll 1.50E +00 m

e *e,e ie ea

  • a e

1.00E +00

-cntrivar 2 tap 2 1

a MB2 tsp 2 dp g

6 00E41

~

1 g -

r g

i 0 00:*00 6.00E41 1.00:+00 1.50:+00 2.00:+00 2.50:+00 3 00:+00 0.00E+00 W

.s.00eas time seconds Figure 5 Base Case TSP 2 DP

'l 1

l 1

12 of 38 i

~

l

PSAcB 9518 Revision 0 MB2 Test 2013 Comparison TSP 3 DP u

eeo ea 3 50E41

  • eo e

,e, 3.00E41 ea

---e. wi 2.50E41

- cntdvar 3 tsp 3 2.00E 41

(

e M82 esp 3 dp

{

I g

1.50E41 1.00E41 k

'ha

( h AL

'w -

5.00E42 y

-~

0.00:+00 5.00E41 1.000:+00 1.50.+00 2.00D00 2.50:+00 3.00 +00 i

0.00E+ 00 5.00E42 t!me seconds 1

Figure 6 Base Case TSP 3 DP l

1 13 of 38 J

4 PSA-@ 95-18 Revision 0 1

MB2 Test 2013 Comparison TSP 4 DP s me+m 2.50e + 00 2.00e +00 m fi 8

Yae,

~ '"I # d O

a MB2 data tsp 4 l.50e+00 1

,e a e,

'8 8 sie eee1 1

3, !.'

9 g,g p

m p m x

m

$ 00e41 0.me+m s 00eoi twe.=

tsoc m 2 me +=

2.50e +=

2 0cc+m 0.00e +00 time seconds Figure 7 Base Case TSP 4 DP 14 of 38

PSA&9518 Revision 0 MB2 Test 2013 Comparison TSP 5 DP 3.00E +00 2.50E+00 l

2.00E+00 -

\\

- crdrt,ar 5 tap 5 m MB2Ma tsp 5 g 1.50E+00 of

_ _ _,s A: )

...m yIl c

..o el e a e e amt 5 00E41 6

0.00E + 00 5 moi in+m i SOE +m 2.mE+m 2.50E+m sa+m 0 00E +00 time seconds Figure 8 Base Case TSP 5 DP 15 of 38

PSA B-95-18 Rivision 0 MB2 Test 2013 Comparison TSP 8 DP 6 00E41 s

7.00E 41 s

6 00E41

~0-

$.00E41 -

-cntitvw 6 tsp 6 ae aasjs

]

e MB2dara tsp 6_

me asis 4 00E41 7

\\

3 00E41 eai.

2.00E41 1.00E41 VA 4--

0.00E.00 s 00e41 140e.m ts0E+=

2 mE+=

2*+m 85+=

0.00E,00 um..nond.

Figure 9 Base Case TSP 6 DP 16 of 38

PSA,B 9518 Revision 0 MB2 Test 2013 Comparison NE Case SG Dome Pressure Response 1200 1100 m N

1000

(

- p dome pain l

a MB2 50 Esit P 900 e

a00 700 0.00E +00 2.00E +00 4 00E+00 6.00E +00 8.00E +00 1.00E +01 1.20E +01 600 time seconds Figure 10 Non Equil. Case Dome Pressure Response 17 of 38

PSA B 9518 Revision 0 MB2 Test 2013 Comparison NE Case 35 h.

/

g h4 '/r'Sj

(

25 -

f 20

- txtfkm uisc 3

e M82 Stm Flow j

j 15

=

=

I 10 5-0.00E +00 2 00E+00 4 00E+00 6.00E +00 000E+00 1.00E +01 1.20E +01 0

time seconds Figure 11 Non Equil. Case Break Flow Rate i.

j l

4 18 of 38 1

PSA 2 9518 R vision 0 MB2 Test 2013 Comparison NE case TSP 1 DP a 00E41 o

6 00E41

-I 8

8 e,,,,, e,,

a e

l ee a,,

n-4.00E41 lf f

-crdrtyar 1 tap 1 1

~

e MB2 tsp Idp g 00E41 -

r 2

g l

j 0 00:+00 5.00E 41 1.00:+00 1.50li+X 2.0 01:+00 2,50:+00 3.00:+00 0.00E+00-2.00E41 4 00E41 time seconds Figure 12 Non Equil. Case TSP 1 DP 4

f 19 of 38

=

PSA.B 95-18 Revision 0 MB2 Test 2013 Comparison NE Model TSP 2 DP 2.50E*00 2.N + N m

1.50C+00 8 a,O 8 es

-cntrivw 2 tip 2 a M82 tap 2 dp.._

1 g

l 5.00E41

- --d 4 i n'

\\

Ih!!

\\

l D0 2.00:+00 2.50:+00 3.00.+00

~

O we..

0.00:+00 5.00E41 1.00:+00 1.50 h

-5.00E41 um. cono.

Figure 13 Non Equil. Case TSP 2 DP 20 of 38

PSA B-9518 Revision 0 M82 Test 2013 Comparison NE Model TSP 3 DP 4

I si aeat ue 3 50E41

,, 'es ie 3'

I e

a

=.~

2.50E41

- cntrtyar 3 tap 3 g

a M82 tsp 3 dp a

g 1.50E41 i

1.00E41 b-M I/

j gg y-

- - - ~ _

5.00E42

\\

o 00:.m sm:41 1.m:.m 1.sa:m 2m:.m 2.sa:.m 3.m:+m

.-.m 6.00E42 time socords Figure 14 Non Equil. Case TSP 3 DP 4

21 of 38

PSA B 9S-18 R: vision 0 M82 Test 2013 Comparison NE Model TSP 4 DP 3.50E +00 3.00E +00 2.50E +00 2.00E*00 e

o a

e\\

-*NNE i.

.ae,

1. M +00 -

= "c2 ~'~ +

k

  • ,,. m.L nn

. W h

U tp q

5.00E41 -

Om:.m Seat tw+0c sem z w +00 2.5a:+m 3.m:+m 0.00E+00

-5 00E41

.i.me+m time seconds Figure 15 Non-Equil. Case TSP 4 DP l

22 of 38

PSA,B 9518 R: vision 0 MB2 Test 2013 Comparison NE Model TSPSOP l

3.50E+00 3 00E+00 -

k 2.soe+m.

2.00E +00 il 1

e n

-cntrivs 5inp 5 1.50E+ 00 a"

i.0cc+m

-q'ij L

b

_3 q

4 re sw m,

(

l 6.00E41 1

l 0.0a:.00 s.cosci i.00c+0c 1.so:+m 20x+m 2.m:+m 3m:+m 0.00E

  • 00

.s me4i

.i.me+m time seconds Figure 16 Non Equil Case TSP 5 DP 23 of 38

.w.A PSA B-9518 Revisba 0 i

MB2 Test 2013 Comparison NE Model TSP 6 DP 9 00E41 1

. 00E41

\\

\\

7.00E41 6.00E41 -

<....s.

,i -

L, e

3 00E41 2.00E41

/

1.00E 41 V

0.00:+00 5.00I41 1.00:+0c 1.50C +00 2.00:+00 2 50:+00 3.00:+00 0.00E+00 1.00E 01 time seconds Figure 17 Non Equil. Case TSP 6 DP 24 of 38

PSA 59518 R3 vision 0 4

MB2 Test 2013 Compartson NE Case Fluid Temperatures in Vol10113

. S.69E+02 4

5.67E+02 p.

1 5.65E+02 -

- * - temp 101130000 5.63E +02 -

fempg 101130000

    • w m 10H M 1

6.61E+02-i 5.59E+02-N 4

5.57E+02-6.55E+02 O me+m 5.*E41 1.00e +=

1.5cE+m 2.00E +00 2.u.m 3.00E+m um. cono.

Figure 18 Non-Equil. Case Temperature Response in 101-13 4

2S of 38

PSA B-9518 Revision 0 MB2 Test 2013 Comparison 70% Case SG Dome Pressure Response j

1200 i

k na n

. x

)

l 1000-x,

- P dome pais 1

. us2 x E,,_

[8=

~

i 800 -

700-0 00E +00 2.00E+00 4 00E+00 6 00E +00 8.00E +00 1.00E+01 120E +01 600 time seconds Figure 19 Dome Pressure Response 70% Case 26 of 38 i

f

1 PSA B 9518 Rsvision 0 MB2 Test 2013 Comparison 70% Case Break Flow Rate 25

'd b bl

^

NIMNdM/

b, h h 20 -

g l 15

- N

-R5M3 twtdo s M82 Stm Flow f

n j

to 6

0 00E +00 2 toe +00 4.00E +00 6.00E +00 8 00E+00 1.00E +01 120E+01 0

time seconds Figure 20 Break Flow Rate 70% Case 27 of 38

PSA.:-95-18 Ravk 0 MB2 Test 2013 Comparison 70% Case TSP 1 DP 8.00E41 il 6.00E41

'8 ea sie 8

s aa l

e e

ea l

s 4 00E41 h

~-

h

- cres t

{ 2 - 41 c

0.00:+00 5 00E41 1 00:+00 1.50:+00 2 00:+00 2.5a:+00 3 00:+00 0 me.m 2.00E41

+

4mcas time seconds l.

Figure 21 TSP 1 DP 70% Case 1

28 of 38

PSAwB 9518 R: vision 0 MB2 Test 2013 Compartson 70% Case TSP 2OP 1.60E + 00 e

1.40E +00

  • s, 8

1.2W +00 e a sl e

" s_a_

1.00E+00 -

8,00E41

~

E s M82 $2 $

^

I '00E41

^f[

6 Y-Q

^

4.00E41 -

g l

2.00E 41 0.00E +00 0.00:+00 5.00E41 1.00:+00 1.5 01:42 2.00E+00 2.OOO 3.00:+00 2.00E 01

-4 00E-01 time seconds Figure 22 TSP 2 DP 70% Case 29 of 38

PSA B 95-18 Revision 0 M82 Test 2013 Comparison 70% Case TSP 3 DP 4.00E41 o

eeat 3.50E41 se ea a

3.00E41 -

a e

aie

-e-4r 2.50E41

~ 8"I" 3 e MB2 tap 3 e 1.00E41 2

f 1.50E 41

}

1.00E41 5.00E42 r

0.00E+00 5 00E41 1.00E+00 1.50E +00 2.00E+00 2.50E +00 3.00E +00 0.00E + 00 time seconds Figure 23 TSP 3 DP 70% Case 30 of 38

PGA&9518 Revision f M82 Test 2013 Comparfson 70% Case TSP 4 DP 3 00E+00 1

2.50E+00 2.00E*00 m

, 'ss'

~ "iM" 4 1

b a M82 data tep 4 1 M +00 ll

,e a aa e

e,8

. s V

g).

L y

I-7 w

i.mc.00 N

5.00E41 i

O00E+00 0 0cc.m s me.oi t00c.m in.m 2m.m 2.50c.m sme.m this seconds 1

4 i

Figure 24 TSP 4 DP 70% Case i

d 31 of 38 1

PSA-B 9518 Revision 0 MB2 Test 2013 Comparison 70% case TSP 8 DP 3 00E+00 i

2.50E +00 l

,w.o k

. um. n 5_t

--5 1,s u m

, j,9 k.

d

.L m

yc

="=oh e a eo 5.00E41 k

0.00E+00 0.00E +00 50w41 1.00E +00 1.50E+00 2.00E+00 2.50E 4 3.00E +00 time seconds Figure 25 TSP 5 DP 70% Case i

I 32 of 38

PSA=B 9518 Revision 0 M82 Test 2013 Comparison 70% Case

- TSP 6 DP 8.00E41

+=~

7.00E41 6.00E41 e

5 00E41

-cntrhar e

""me11 s

'{#

87 a M82 data tap 6 I

eee g

0 3.00E41

{,

Al

'b' v-2.00E41 -

1.00E 41

'M O00E+00 0.00E+00 5.00E41 1.00E+00 1.50E +00 2.00E +00 2.50E +00 3.00E+00 time seconds Figure 26 TSP 6 DP 70% Case 33 of 38

PSA B=9518 R: vision 0

6. References
1) NUREG CR-4751
2) NUREG CR-4752 34 of 38

PSAG-9518 Revision 0 l

Appendix A - Data Set Index Dataset Description input 7

mb2 mod base deck equilibrium case mb2modne.

base case nonequilibrium output mb2mouti base case mb2mout2 NE case mb2mout3 80% nozzle area mb2mout4 70% nozzle area 4

35 of 38 l

PSA-B-9518 Revision 0 Appendix B -input Data Set Protection Form Station: gum //,,/

Unit: f-a Cycle / Analysis: (I, pgp I

% = air na m e.* c Checksum #*

Current File Location 1 Copy)To?)

sum -

sum -p r

1. h Ahkb/rclaos-/m b2 mod

%./hIW/s/M6229Dri NF350 twos /

7 Notes: 1)

Infs/sa is not recuired. Begin each file location with use id. File name should be descriptive and include a means of k$erWytng saww computer code.

2)

Station, Unt, and CycWArWysis we defice part of the destusation location in Infs.databank/SA therefore, these are not need in the " Copy To" column.

3)

The SA Admin will place a check mark ned to the venfied checksum numbers 2 /J[1 Reviewer:

1 min:

Date:

Author:

/o/Ghf j

3 1

36 of 38

PSA<B 9518 Revision 0 Appendix C - MB2 Facility Description and Information 4

4 l

i 4

37 of 38

.J

c,n PM SGT8 h t

l 4

i Section 2 THE HB-2 TEST TACILITY 2-1.

MB-2 BACKGROUND AND HISTORY With the introduction of a new steam generator model, it is desirable to verify the various current features incorporated in the design. Although these features are generally verified in individual component tests, it may be appropriate to perform an integrated test which considers several design features to confirm that no 4

j unexpected synergistic effects exist. The Model Boiler No. 2 (N8-2) -- an approxi-l mately 0.8 percent power-scaled representation of the Model F steam generator unit

-- is the third in a series of integrated steam generator test models constructed i

Y and tested in the last 10 years by Westinghouse at its Engineering Test Facility in Tampa, Florida. The previous two test models were built to investigate the thermal l

performance of a once-through steam generator, and a preheat design (steam generater I

Nodel:04andE).

Based on the experience gained in the first two tests, it was concluded that the design objective of the WB-2 is to make it as prototypical as possible. Hence, to i

minimize uncertainties associated with scaling-down, use was made of steam generator tubes of the same material, dimensions, and tube pitch as specified for Model F.

Prototypical primary and secondary temperatures, pressures, and mass velocities wers also specified so that the performance of the modai was directly applicable to the

)

full size cnit, wherever possible. The 7-meter-(23 f t) high tube bundle, together i

with the prieary noisture separator, provided a nearly prototypical driving head fer the secondary circulation loop. Using prototypical fluid temperatures, hydraulic t 1sistances in the tube bundle, tube support plates, nrimary swirl vane separator, and downcomer regions, it was possible to achieve a representative pressure-drop distribution and secondary flow in the circulation loop.

The MB-2 was extensively used for the measurement of Model F steady-state performance and for the qualification of a number of cceputer codes used in the l

design and analysis of full-size steae generators. The use of prototypical features, where possible, has reduced the uncertainty in interpreting test results i

and applying them to the perforrance of the full-size steam generator.

1 i

i 2-1 l

l

~~

~

'sEP is '95 ~es:41PMSGThE

~

^

P 74^

^

^

2-2.

N00EL BOILER DESCRIPTION l

The Model Boiler No. 2 (WB-2) is an approximately 0.8 percent power-scaled model of the Model F steen genvator, a feedring-type unit. It is designed to be geomet-l rica11y and thermal-hdraulically similar to the Model F in important areas, and is capable of generating a maximum of 10 MWt. At 100-percent power (6.67 MWt) it j

produces dry, saturated steam at 6.9 WPa (1000 psia), the same as Model F.

A j

l schematic rendering of the model, as configured for the LOF and SGTR tests, is shown

' n figures 2-la and 2-lb, and the configuration used for the SL5 tests is shown in l

i figure 2-2.

A typical Model F steam generator is shown in figure 2-3.

1 I

Within the model, dry naturated steam is generated by the transfer of heat from high-pressure water at 15.5 MPa (2250 psia) on the primary side to a steam and water l

mixture on the secondary side. The primary water enters the inlet side of the l

channel head, flows through the U-tubes, and leaves through the exit side of the l

channel head.

l On the secondary side, feedwater or auxiliary feedwater enters the unit cell l

surrounding the primary separator, mixes with the recirculating water, flows down l

the downcomer pipes, and flows through the wrapper box cutout into the bundle just above the tubasheet. Directed by the flow distribution baffle, the flow sweeps j

across the tubesheet before turning upward through the bundle. As the fluid travels l

upward, a steam-water sixture is generated. Leaving the top of the tube bundle, the j

mixture flows through a cone into the riser. At the top and of the riser, the primary separator removes the water by centrifugal action and returns it to the i

I downcomer circuit. The steam, with entrained moisture, then enters the secondary 2

separator where the moisture is removed by a single-tier vane-type separator. The l

steam is again returned to the downcomer circuit via the disengagement tank (which j

is used to measure the flow rate of the moisture removed) in the LOF and SGTA tests I

(figure 2 la), or via a straight pipe in the SLB tests (figura 2 2). The steam, j

exiting the vessel through the outlet nozzle, is saturated and essentially dry.

4 l

22-1. Tube Bundle The M8-2 tube bundle is ccaposed of 52 tubes arranged in a rectangular array, having

]

13 tube rows and 4 tube columns, as shown in figure 2-4.

All tubes are fabricated from Inconel 600. They have the same outside dianster (1.75 cm or 11/16 in.), and t

wall thickness (1 eun or 0.040 in.) as the tubes in Model F and are configured in the same 2.49 cm (0.98 in.) square pitch array. As a result, the primary and secondary unit cell flow areas for the model and the full-size steam generator are identical.

2-2

,w

,,,,n_

r m.w f

544 aca.- m Dama

' N esseemar wron %,,,,:,,,.-

9

/g

~

4MM#W l

..,j h

.80&f l

i M

---_ - _ c pus

^

,1 6 #

-'16 78*

l m

WRgif8MP*^

" " ~ * ' " ' -l' 1 rp m

lJ l P.E

.n.

u.=,

~

l #

,,,,,,,,, _ m, - 887 J7" 8"*

=

I _ 14.00" l

%,. ~ _,

l

<!-an.38-

"3632 %7emethMA Amons i

I

  • t i

forms l

l l

I D,..

l l

}

fDee, m4

{

e.

(

~

I q

e,w,e m se a e.n.ow g nos m 88544 l

D,, m s I

l

.t l ! )

1 :-

.....,..m i

lj-

~ mp-

  • i,, j i.,,,,,,, :-

en. aman nst

~

3-mm l

R j

",g.4 w *3 4

~~

my g

n r o.suse

" c _,

e ~ ~ ~ri seas r ace-a l

u_s,vis g,y

,: m m Figure 2 la. Model Boiler No.2 Figure 2-lb NS-2 Cross Section l

Configuration for Through Tube Bundle j

LOF and SGTR Tests l

2-3

- o u.

)

i

. t. - srs w

&"USW su.or

/ mooo m m ten

==

cases yuvts j

g esmem nonwm anu.N 5

[V- / p*

=amessa

' * #5 *"'

i

-: Ax

,, n,.m.,

. _ c ; me Jkq i

m

-*st.ar_g g *""

l f

-"~m i

~

j

.1 LM = e n. w"0'* * *

~

rr-eme.

MREl5F.'lWif#

i 1

[ y lr._ ; '-jC"" """'

ur.or "

l

?%a*3= e=

l 4.N i

4 i

1 lb8 ""

T N-unesseu

= -.

' t em -

i -sn.aa

    • s e 5

l I

h==== ne aannu 1

a l

i:h..

l l

l l

i e6 mi n_sma-i i

l

{

}

4

N.u tw *
  • I

-ies i

h.

l 1

f f

_ !Dws:

)

P l 6l fb es 6

i 4

}

d..

a: 1 -.~k.ry"'

i k

AN N Nx x y---

{

y

. - **ws son

=,

~,a u.u-i l

Figure 2-2.

Nodel Scilar No. 2 Configuration for SLB Tests 2-4 m

.~.

1 DIMENSIONS IN cm (in.)

mse.e A ) [ N $ A$AYsspanarong 1#

y gjgk L h ~j7f/f y*n".

YO n

j 1 ?, ?

pgg g gygg i

F

'F ",'.

ff h

M COMER f

2062.5 12.0) a rues sowot.:

I d

j.,

2374.1

/

(541.0) i 721.1 (283.9)

U v :

l p

F(i

'g Figure 2-3.

Westinghouse Model F Steam Generator 2-5

I i

4 4

i i

i d

d 1

4 i

i l

f"comtne

[wumn anx nor a.no I

s ? / 9 5,$ 1P t 9 ? t t i f

  • T *TVf999?tF995t9w t~'0000000000000 0000000000000 4

! 40000000000000 0000000000000 1

i l

O- '-0000000000000~" OOOOOOOOOOOOO i-M-

0000000000000 0000000000000 4

  • -q O

I i

E4 (SL946 ALf. OltdHmok0 ist om did i

l Figure 2-4.

MB-2 Cross Section i

i f

i l

l i

2-6 l

l

.h i

"~~

==r x

u

~

i i

The straight length of the tube bundle is 6.69 meters (21.94 f t.), which is about l

0,5 meter (20in.)shorterthaninModelF. The radii of the U-bands and the length j

of the tubes are defined in figure 2-5.

j There are six tube supports in the MB-2 bundle. ccmpared to seven supports in Model F, and also a flow distribution baffle (see figure 2-la). The tube support l

plates utilized in NB-2 provide a full-size simulation of the tube / support plate L

junctureinarepresentativeenvironment. The plates, exclusive of the grid at the third support location, have the same thickness and make use of the same quatrefoil l

broached hole configuration used in the full-site Model F.

The support plates in i

M8-2 are partially composed of alternate broached and drilled hole designs. The axial spacing of the tube supports was selected to be identical to that which exists

~

l inModelF,1.02m(40.16in.). The flow distribution baffle is located 0.5 a (20 in.) above the top of the tubesheet, as in Model F.

It is partially configures j

with oversized del 11ed holes and an alternate 'eini-broached" quatrefoil hole design. This baffle also includes a central cutout which simulates the effect of i

the central cutout in the Model F.

I The heat transfer area of the HB-2 tube bundle is 39.75 m2 (428 ft.2). Utilizing j

this area, a scaling philosophy was adopted which maintains the same bundle average i

heat flux as exists in Model F.

The power scaling was subsequently used in sizing the flow areas for the downcomers and the primary and secondary separators to provide velocities and mass fluxes comparable to those of Model F.

This scaling approach, as f

it applies to transient testing, is described in more detail in reference (5,).

For this test program, the model was completely retubed and reinstrumented. The instrumentation layout and method of attachment is described in section 3.

1 I

2 2-2.

N8-2 Upper Shell Region l

Portions of the internals in the upper shall region were modified for the M8 2 j

Transient Test Program. Modifications were made to: the primary separator assam-bly, the deck plate drainage and venting, the downcomer, the secondary separator i

drain, and the feedwater inlet configuration. The steam shroud, located in the f

gravity-separation region between the primary and secondary separators, is the same as that used in the previous M8-2/Model F verification tests, along with the single-l tier secondary separator.

4 2-7

?- ---

}

m i

t i

l

,,g.,

ROW

,, g g,,,

l 1

3.10 ( 1.22 )

,, R

i 2

5.50 ( 2.2M)

\\

}

3 5.08 ( 3.180)

E g

a l

f 4

10.57 ( 4.100) 5 13.06 ( 5.140) l 5

15.54 ( 6.120) i ses.7 7

18.03 ( 7.100) 5 k

(263.27)*' I i

e 20.sz ( s.0e0) x 9

23.01 ( s.080) l gl*

10 25.50 (10.040) 11

'27.99 (11.020) d I 12 30.48 (12.000) f h" i

13 32.97 (12.980) j

  • MEASURED FROM TOP OF TUBESHEET
    • MAMIMUM DRAWING TOLERANCE MINIMUM l

Figure 2-5.

MB-2 U-Tube Diunsions i

1 I

k 4

2-8 4

y r

Figure 2-6 is a scheme of the revised upper shell region. This region is presented in further detail in figure 2-7.

A cross-sectional view at the deckplate is shewn l

in figure 2-8.

Detailed descriptiens of the sodified components are provided in the fo'11owing sections.

f 2-2-2-1.

Modular Primary Separater.

The modular primary separator cencept involves the use of a large number of small (17.8 cm or 7 in, diameter) pr{ mary swirl vano separator assemblies, rather than a much smaller number of large diameter

~

-- 50.8 cm (20 in.),129 cm (51 in.) or 142 cm (56 in.) -- separators. Nodular seoarators have been installed and are operating in several Westinghouse nuclear plant steam generators. It should be noted that an array of modular separators is also used in the Cembustion Engineering System 80 stese generaters.

The decision to install the modular separator in the N8-2, rather than a scaled-down Model F separator, was based on a number of considerations. Some of these were:

Since there exists such a large variety of primary separator config-o urations presently in both Westinghouse and other units, no one separator could directly represent more than a small portion of the total steam generator population, The modular separator has an advantage because it is prototypical.

o This alleviates any scaling uncertainties associated with the large-diameter field units and their scaled-down counterparts used in l

testing, at least for the Nodel F design.

The modular separator is more efficient at removing moisture, there-i o

I fore providing higner-quality steam at the exit from the steam generator. Under transient conditions the separator can be expected to produce higher-quality flow. Since this higher-quality flow l

leads to increased cooldown of the steam generator secondary, the l

W8-2 SLB test results should provide data for a relatively severe SLB transient. Hence, the more efficient modular separator should i

provide data which can be applied directly to design calculations, as well as model verification.

Iho N8-2 modular separator employs four swirl vano blades oriented at 37* from the horizontal. the same as specified in sons existing designs. The hub of the swirl vano is slightly elongated and is more streamlined than earlier units. The major design change, aside from the overall size reduction, is that the riser downstream of the hub is perforated with 0.8 cm (0.31 in.) diameter holes, evenly spaced around f

the circumference. These holes allow the liquid, which has bun forced to the periphery of the riser pipe by the contrifugal motion imparted by the blades, to exit the riser and enter the annulus formed by the riser and the riser barrel. The remaining steam / liquid mixture continues to flow upward into the orifice, which also strips off some portion of the liquid. Figure 2-9 provides a view of the steam 2-9

1 i

1 i

i st4t e.t o i

l 4

i ETEAM NOZ2LE 1

l j

UPPER SHELL i

PERPORATED DRYER VANES l

i

[

elNLET PLENUM i

OUTLET PLENUM %

i

/

1\\

i DRYER DRAIN BOX-l i

DECK PLATE-i l I

,,,,, -DRYER SHROUD unq i l

DICK (STEAM)

,,,,,--OR I FICE i

VENT eDECK DAM i

l DECK PLATEm

']L g

,,,, - goguLAR

{

PRIMARY SEPARATOR i

A a'

l p

DISENGAGEMENT

,,s g

PIPE

% RISER BARREL f

DRAIN PlPE m N

N

% RISER

=

I DISENGAGEMENT

-DECK DRAIN l

CUP PIPE 1

% UNIT CELL l

INTERMEDIATE

-i.

i DECK PLATE

/;: 2

% DOWNCOMER i

DRUM a

APIPE

% FEEDWATER FOR SECONDARY

/

INLET (2)

SEPARATOR

-- -- DOWNCOM E R MEASUREMENT j DRAIN PLOW

+

3 PUNNEL a-i DOWNCOMER d"

PIPE i

l W

.w Figure 2-6.

Revised 148-2 Upper Shell Region (LOF and SGTR Tests) i 2-10 l

i ELEVAYl0N FROM N

TUBE SHEET CM (IN.)

lf 1428.8(561 7 51 -

es l

4 1306.5(514.38) 9 I ~,) r['y t

1 1

l-1211.6(477.01) g l i 3

4 i

i i

idj-l I

I l

i i

-t

--=n 1054.1(415)--

d 'l 1019.3(401.3) t e ip-i I

6 A

(

l l'

i p-

.,gr l=

907.9(357.43) i t

E M8-2 with Hodified Upper Shell and Downecmar (LOF and SGTA Tests) 4 Figure 2-7.

2-11

l l

l i

i l

i i

a l

1 1

i l

DOWNCOMER UNIT CELL j

DRUM j

RISER SAMREL f

VENT j

Ao i 1 9

1 y

DRAIN M,

RlFICE l

_r ww RISER DRAIN l

1 i

Figure 2-8.

MS-2 Cross Section at Deck Plate (Elevation 4 U.01 in.)

2-12 2

4 Jk=

i 1

mm - -

1 -

I auto.it i

l j sveAu j

e WATER k-Wh l

i ii l

?,%Q

_f YU 61

//

l

}

p

/

i Ta[f \\ i 4

a p'.,;,,'

l 3

l l h-

~V l

/

fl L i

I l

l t

o i

I'

'r

+

i c,

[A j

o i

l

'{

a J

b t

,l i

.m f

Figure 2-9.

Flow Paths in MB-2 Upper Shell Region (LOf ana SGTR Tests) i 2-13 i

.__m i

and liquid flow paths in the upper shell region. The riser barrel extends down j

approximately 48 cm (19 in.) below the deck plats. Both the riser and riser barrel j

cylinders are concentrically located about the center of the NS-2 shell (figure 2-8).

Outside of the riser barrel, the unit cell cylinder serves to define the local cross-sectional area which is associated with a single modular separator in a full size steam generator. A unit cell partition is necessary because the cross-j sectional area enclosed within the MB-2 shell is such too large for a single modular j

separator. The unit cell also encloses the appropriate areas for 11guld drainage i

and steam venting through the deck plate. Liquid which collects on the deck plate j

is removed by drain pipes extending from the dock plate down to the intermediate deck plate. The vent area is represented by a pipe which extends 12.7 cm (5 in.)

l above the deck plate. The extension is provided to minimize the potential for I

reentrainment of any liquid which may be present on the deck plate. Additional vent area is also provided within the unit call to represent a portion of the steam vent l

area present in the annular space between the deck plate and shall in the full size steam generator. The edge of the deck plate is ringed with a 10 cm (4 in.) dam that limits the possibility of liquid reentrainment in the steam vented through the deck plate-to-downcomer-drum gap. The sizing and layout of these various components are discussed in more detail in the following paragraph.

i l

The riser and riser barrel cylinders used in the NS-2 are identical to those of the i

prototype modular separator, along with the swirl vane, hub and orifice. The selection of the appropriate cross-sectional areas within the unit cell, downcomer i

drum. liquid drain and steam vents was based on matching the areas present in a l

typical modular separator configured in a Nodel F shell. Figure 2-10 provides a schematic representation of a Nodel F upper shell region configured with 130 modular l

separators. The separators are arranged in a 26 cm (10.25 in.) square pitch array.

l The specific arrangement of separators is constrained by the available space enclosed by the feedwater distribution ring. Within the array there are 90 l

interstitial dock drains snd 25 dock vents.

In addition, there is a larger j

cylindrical drain in the center of the array. In the annular space between the edge of the deck plate and the shell there is approxiestely 4.5 m2(48ft.2)ofares l

also available for steam venting. This annular area is more accessible to the modular separators located on the periphery of the array. Separators positioned in the interior of the array would not be influenced by this free space. Hence, a variety of separator situations exist from the outside to the inside of the array.

f It was decided to assign one-half of this peripheral area (on a par-separator basis) to the region which lies within the unit cell for use in defining an average or l

typical modular separator configuration for the NB-2. This portion la therefore 2-14 l

L l

L

mm 2a r-4 i

i j

{

474104 1

i i

j l

887 (144A) DIA.

DECM PLATE k

dat tie.Sl DIA.

1 j

/

N IIS IE 3MELL j,/

j i

I

/

s s

/

/

\\

[/

\\

\\

E.1 40) CLEARANCE I

\\g$

/ /

33 (1.30) CLEARANCE

[ {

i 0000000000000 l

slme.L.a.

o k

O mR

/jI

, i,..)

Ab

\\

(

800ARE PITCH

\\

\\

O

/ /

INTRASTlflAL l

\\

n DOCK DRAINS AND s\\g,,,,,,_

PESO R M

,,,,,,..e 48000 SEPARATOR

(~130TOTAU f

Nb MODULAR SEPARATOR ECM DECK DARI DRAIN s

otCK VENT

{'

!_L

\\

ALL DIMEN810NS IN sm (la.)

o i

-ar-m

~

~

"*~

2 e-U

()

~ gMMEBMMMMMMMM-~

Figure 2-10. Modular Separators Configured in a Model F Shell 2-15 l

..,_-.,..--._.--_w...

m y

j more local to the operation of the separator. The remaining one half of the peripheral area will be contained within the downcomer drum, which, in effect, j

serves as a new shell for the single modular separator asser61y. The calculations l

in table 2-1 zummarize the derivation of the various areas in the Wodel F primry l

separator region and the corresponding areas specified for the M8-2.

The small differences between the desired areas and the actual MB-2 areas are primarily due to the use of comercially-available pipes for the various components, i

i 2-2-2-2.

Downeomer. As discussed previously, a cylindrical downcomer drum, 38.7 i

cm (15.25 in.) in diaseter, has been used to limit the upper downcomer cross-sectional area to a value which corresponds to the area associated with a single j

j modular separator configured in a Model F steam generator. The revised cross-sectional area enables the model to more closely represent the transient response of the downcomer liquid in the full-size unit. The previous large downcomer ' dead i

space", between the wrapper box and the lower shell, has been olisinated from the I

downcomer circuit for the ease reason. The lower downcomer volume therefore l

includes only the water contained within the two 7.8 cm (3.07 in.) ID pipes that feed into the hot and cold leg wrapper openings to the bundle. These pipes were scaled to represent the cross sectional area in the Model F lower downcomer annulus.

i A funnel was needed to link the upper cylindrical drum to the lower downcomer pipes (seefigure2-6). The design specified for the funnel is such that the enclosed i

water volume is minimized, again to better simulate the Model F downcomer response, l

l Table 2-2 provides a comparison of the downcomer cross-sectional areas and component i

volumes in the modified MB-2 and Model F.

The differences between desired and actual values are a result of use of commercially-available material.

i 2-2-2-3.

Secondary separator Drein. The original MB-2 configuration ine19ded a drain pipe connected to the secondary separator drain bot.

This pipe was enclosed j

within a slightly-larger-diameter guide tube. The liquid flowing in the inner drain i

pipe discharged into a much larger reservoir called the disengagement tank. The pool of water enclosed in this tank permitted any steam bubbles, which may have been

)

entrained in the secondary drain liquid, to vent to the free space above the deck l

plate.. A 2.54 cm (1 in.) diaseter J-tube was connected to the bottom outlet from the disengagement tank. The water flowing through this tube was esasured using l

three differential pressure devices (pitot tube, elbow taps, and a venturi tube).

1 2-16 l

L.

A wmwy-7 m

I Table 2-1 l

CONPAR!$0N OF MODEL F AND WB-2 AREAS NOOR f 2

14.39 m2(154.9ft)

=

Total area within shell 130

=

Nueber of modular separators 2

0.111 m2 (1.19 ft )

=

l Shell area for each separator 2

4.47 at (4g,g gg )

=

Total annular area between edge of dock plate and shell j

2 0.34 m2 (0.37 ft )

i l

Portion of total annular area

=

to assign to each separator 90 Numberofdeckdrains(3.5in.

=

l Sch. 40 pipes. 9.89 in.2 inside) t Central drain area 0.045 m2(0.49ft)

=

2 0.62 m2(6.7ft)

=

Total deck drain area 2

0.0047 m2 (0.051 ft )

=

Deck drain area for each separator 25

=

Numberofdeckvents(3.5in.

Sch. 40 pipes. 9.89 in.2 inside) l t

0.16 mI(1.71ft) f

=

Total deck vent area 2

0.00123 m2(0.0132ft) i Deck vent area for each separater

=

(desired Model F valuel MS-2 40 cm (15.75 in.

l Downcomer drum: outer diameter

=

38.7cm(15.251.)

]

=

inner diameter 34.9 cm (13.75 in.)

Unit cell outer diameter

=

33.6cm(13.25in.)

=

inner diameter l

1110 cat (172.1in.2) l Area enclosed within downcomer drum

=

l (excludingunitcellpipingmetal)

(1106 cat (171.5 in.2))

890 cet (g37,9 gn,2 Area enclosed within unit cell

=

(935 cat (144.9in.)]

= 52.9 cat (8.2in.2 Deckdrainarea(2and 21/2in.Sch.40 pipes)

(47.4cmI (7.4 in. ))

= 13.2 cm 2.04 in.2) 2 l

Deck vent area (11/2in.Sch.40 pipe)

(12.26cm (1.9in.2))

176.8 cmI (27.4 in.2)

Additional vent area included within unit cell to account.for 1/2 peripheral vent (171.6caI(26.6in*2))

i area assigned to a typical modular separator 2-17 b

u

.c

.s wui

._s-m l

I i

Table 2-2 DDWNCOMER VOLUME / AREA COMPARISON Modified N8-2 Component Configuration Model F Volumes m3(ft) a.

Upper downcomer 0.148(5.24) 19.47 (687) b.

$scondary separator dis-0.011 (0.38) engagement pipe J tube, and extension c.

Downcomer funnel 0.025(0.89) d.

Downcomer dead spa'ce e.

Downcomer pipes and ducts 0.087 (3.09) 12.89 (455) f.

Total 0.272(9.60) 32.36(1142)

Voluma Ratios 2.11 1.51 a.

Upper downcomer Lower downcomer b.

Lower downcomer 0.29 0.29 1

5econdary bundle c.

Total downcomer 0.89 0.73 5econdary bundle 2

HB-2 Cross-$ectional Areas m2(fg) a.

Upper downconer (typicel) 0.066 (0.93) b.

Lower downcomer pipes 0.009(0.10) 2 18 m.

m

-.m m

l d'

1 i

i 4,

Appendix A 1

s j

TEST N00EL DRAWINGS DINENSIONS, FLOW AREA $,

VOLUMES, AND SUPPORT PLATE LOSS COEFFICIENTS i

4 j

4 i

e i

i 7<

i l

i t.

J 4

9 1

i a

A-1 i

Table A4 MB 2 TEST SECTION GEONETRIC DATA

[

1 Wrapper box inner dimensions, length x width, in.

26.94 x 3.92 i

Wrapper wall thickness, in.

1.0 j

Tube outer diameter, in.

0.6875 i

Tube wall thickness, in.

0.040 j

Tube pitch, in.

0.98, square Wrapper opening height, in.

4.60

)

Wrapper opening crea, in.2 18.032 Vertical height of straight portion of tubes from top of tubasheet, in.

263.27 l

Height of straight portion of wrapper box, in.

343.3 i

Inner diarnster of riser, in.

7.0 3

Height of riser, in.

127.7 Downcomer inner diameter, in.

3.068 Height of downcomer pipe, in.

337.9 l

Height of lower downcomer annulus, in.

23.4 y

Height of downcomer duct, in.

7.5

}i Inner diameter of outer shell, in.

32.0 1-Flow distribution plate center cutcut areas on each side'of centerline, in.

2.69 x 3.92 l

j Flow distribution baffle thickness, in.

0.75 l

Flow distribution baffle hole diameter, in.

0.760 Elevations of flow distribution baffle and l

support plates above top of tubesheet, in.:

l Flow distribution beffle 20.0

)

Support plate 1 40.16 j

Support plato 2 80.32 l

Support plate 3 120.48 Support plate 4 160.64 Support plate 5 200,80 Support plate 6 240.96 Flow distribution hfhe conter cutout, in.2 13.85 Material area of flow distribution baffle, in.2 46.11 i

Material area of plates 1, 2, 4 and 5, in.2 39.68 Material area of plate 3, in.2 30.46 t

Natorial area of plate 6, in.2 40.08 A-2

'M

v m

~

Table A-2 W8-2 FLOW AREAS Lower downcomer annulus (elev. 0 - 23.39 in.), in.2 5.57 Downcomer ducts (elev. 23.39 - 30.89 in.), in.2 64.72 Downcomerpipes(elev. 30.89 - 368.75 in.), in.2 14.78 Downcomer funnel (elev. 368.75 - 374.75 in.), in.2 237.31 Downcomer barrel (elev. 374.75 - 477.01 in.), in.2 33g,4g Dryerdrainpipe(SLBtests) 3.56 Between tubenheet & TSP 1; betwun T$Ps; betwun TSP 6 and 263.27 in., in.2 67.00 Between top of U bends and bottom of transition cone (elev. 276.25 - 343.30 in.), in.2 105.60 I

l Riserpipe(elev.349.30to477.01in.,excludingthe swirl vane), in.2 38.48 Steamshroud(elev. 477.01 513.88 in.), in.2 182.65 Net flow area of plates 1, 2, 4 and 5 27.31 Net flow area of plate 3 36.51 Not flow area of plate 6 26,91 Not flow area of flow distribution baffle 20.88 l

i A-3

m 1

Table A 3 M8-2 SECONDARY SIDE VOLUNES 3

Lower downcomer annulus (elev. 0-23.39 in.), ft 0.172 3

Downcomer ducts (elev. 23.39-30.89in.),ft 0.266 Downcomer pipes (elev. 30.89-368.75in.),ft 2.891 I

3 3

Downcomer funnel (elev. 368.75374.75in.),ft 0.824 3

Downcomerbarrel(elev. 374.75-477.01in.),ft 8.195 3

Dryer drain pipe (SL8 tests; Elev. 374.75-513.88in.),ft 0.287 3

Tubesheet to TSP 1 (elev. 0-40.16 in.), ft 1.506 3

T$P1 to TSP 2 (elev. 40.16-80.32 in.), ft 1.514 3

TSP 2 to TSP 3 (elev. 80.32-120.48 in.), ft 1.535 3

TSP 3 to TSP 4 (elev.120.48-160.64 in.), ft 1.535 3

TSP 4 to TSP 5 (elev.160.64-200.80 in.), f t 1.514 3

TSP 5 to TSP 6 (elev. 200.80-240.96 in.), f t 1.514 3

TSP 6 to top of U-bonds (elev. 240.96-276.25in.),ft 1.387 Tcp of U bands to transition cone (elev. 276.25 -

3 343.30 in.), f t 4.098 3

Transition cone (elev. 343.30-349.30in.) ft 0.436 Riser pipe (elev. 349.30 to 477.01 in.), ft 2.813 Steamshroud(elev. 477.01 - 513.88 in.), ft 3.922 3

l Steamdome(elev. 514.25 - 551.25 in.), ft 13.370 3

\\

1 A4

..____...._J

~TREVW'u ca: WRi stag

~

I Table A 4 FLOW AREA FRACTIDW5 AND LOSS COEFFICIENTS FOR WB-2 SUPPORT PLATES Conoonent Flow Area Fraction (e)

Loss Coefficientf K)

Flow distribution baffle 0.312 11.0 Support plates 1, 2, 4 and 5 0.408 5.0 Support plate 3 0.545 0.85 Support plate 6 0.402 5.4 1

I III - component flow area /sporoach flow aree o

(2) Based on test data from an earlier M8-2 model using the same support plate 2

design. K s ape /(V /2g,), where the velocity (V) is based on the approach flow area.

A-5

y, p p g y_ _y l 7.

p i..3 4

._..a g&&

\\

~~.-

i.

I i

I e

i 3

i I _i l

C 2n-g e

i 34 d

_g a

i I

L

- g '-

V) i L*

N

]

g

{3 T

i.

4 7

4 l

u

! le E

g 2

.e _.

c g

e 15?

I A

y1 I

i I

IP rd a

-r

=

I, 3

A A-7 i

- - - - - - - - - - gr# 2@ #13 11:1969 SG7tZ

<' 4

1 J

4 8741f 11 s

\\ 3 ELEVATION CM (IN.)

727.94(286.59) opoy 637.44(250.96)

P06 599.34(235.96) --

l P55 t

Toh U

493.24(194.19)-

l j

Pop =

- PRESSURE 416.56(164.00) l

=,g p s n TAP T

1

,l p

322.12(126.82)

, pg 204.02(111.82)

-;POCj N

l OBA 8

li i

213.36(84.00)

M I

T(f=fy=l' P

= "

131.62(51.82) j P03 i

g 66.95(26.36) kk

.i l

43.18(17.00)-

' g

,[=

y

\\

a m m

MV//4fG V///j N

W/4 fi ;re 3-7.

Seconcary Side Pressure Taps Within Tuta Sancte 9

3-10 Mb

SEP 29 '95 04: 12Ft1 SGT&E 3.2/4 069':c M

Table 5-7 BOUNDARY CONDITIONS PRIOR TO SLB

$6 Primary Primary Aux.

i SLB Water System Primary Fluid Secondary Feedwater Size Test Level Pressure T

Flow Pressure Teg.

hot

(%)

Run iio.

(in.)

(psia)

(*F)

(1 bot /sec)

(psia)

(*F) 7,'

100 T-2009 491 2070 560 91 1090 103

'f h 00 b -2013 h

441

'2070 560 91 1080 100 T-2015 389 2070 560 91 1090 102 100 T-2017 389 2070 560 91 1100 99 4

.g 100 T-2021 440 2070 551 91 1100 100 100 T-2023 442 2075 560 91 1100 104

.f 50 T-2025 439 2080 562 91 1100 102 8

T-2029 437 1830 581 6.0 988 106 8

T-2031 499 1825 581 6.2 990 100 8

T-2032*

440 1825 581 6.0 1000 102 8

T-2035 440 1825 580 6.0 998 103 l

8 T-2036*

497 1825 580 6.0 998 103

  • 10-second burst tests t

0 0

0 4

5-114 l

I t

W MB-2 i

-i SLB Run 2013 w

2 t:

I a TSP #4

~

g-;

Grid #3 z

^~5-$+hA_a.

eFDB g _=.

E 3

05

^ O "~ v^

e TSP #1

^ - ^N M4 0 0 <

t v v 49-tt e I X

e g

8 1


3 a U-Bend

- um" M "M""

I""""'

+ TSP #6 o-0 m

y TSP #2

-0.5 - ---

60 60.5 61 61.5 62 Time - sec I

~

.,1 i., l ki HUMB2SLB.WK4 09/29/95 12:57 PM

MB-2 SLB Run 2013 Ch. 227 Ch.240 Ch. 244 Ch. 246 Ch.247 Ch.249 Ch. 255_ _Ch._200_

h

_0004 0405 0800 0102 0203 0607 506 308 rfg Tame-sec TSP #4 TSPSS Gnds3 FDB TSPS1 U-Bend TSP #6 TSP #2 i

60.0 1.70 1.02 0.39 0.29 0.68 0.91 0.38 1.59 E

80.1 1.84 1'.56 0.36

- 0.12 0.46 0.92 0.72 1.22

~

g 80.2 1.80 1.40 0.38 0.03 0.44 1.52 0.09 1.22 g

80.3 1.73 1.36 0.39

-0.03 0.51 1.22 __

0.58 1.48 y

-80.4 1.65 1.06 0.39 0.00 0.58 1.05 0.50 1.56 60.5 1.85 1.06_

0.39 0T00 0.58 1.05 0.50_

1.56 h

~

60.0 1.39 _

0.97 0.34 0.09 0.58 0.93 0.43 1.40

. Er 60.7 1.42 0.96 0.34 0.0_4 0.57 0.91 0.43 1.34 60.8 1.40 0.96 0.33 0.14 0.56 0.90 0.42 1.32 80.9 1.41 0.95 ~ ~~ T32 ' " ~ ~ 0.15 0.56 0.92 0.42 1.29 0

81.0 1.40 0.93 0.32 0.15 0.55 0.89 0.42 1.25 61.1 1.40 0.93 0.32 0.15 0.55 0.89 0.42 1.25 81.2 1.31 OM

_ O.29 0.16 0.52 0.84 0.39 1.17 61.3 1.28 0.88 0.30 0.16 0.50 0.84

_ 0.39 1.15 81.4 1.27 0.86 029 0.15_

0.50

_ 0.83 0.38 1.13 61.5 1.24 0.83 O_27 0j5 0.47_.

0.82 0.38 1.09 61.6 1.24 0.83 027 0.15 0.47

_0._82 0.38 ___ 1.09 61.7 1.09 0.71 0.25

_ _0.16 0.43

_ 0.69 0.30

-1.01 61.8 1.08 0.69 0.25 O_.16 0.43 0.67 0.28 1.01 61.9 1.09 0.70 0.28 0.16 0.44 0.88

_0.28 1.01 62.0 1.10 0.89 0.25 0.16 0.43 0.67 0.28 1.00 I

i Ul b

^

HUMB2SLB.WK4 09/29I95 03:32 PM i

PSA-C-9518 Rsvision 0 Appendix D RELAP5M3 MB2 Model input Listing l

4 4

)

1 I

d i

l 38 of 38

LOct 12 14:02 1995 rrunners/nfs/sa/nfskr/relap5/mb2 mod Page 1 i

=mb2 test model mslb at hot standby test 2013 l

  • hot standby nonequilibrium models used/inel guidance used on tsp models

.eeeeo**********************************************

  • thic deck is based on mb2 facility descriptions

$$*44**********************************************

this data is contained in nfskr.relap5(mb2 mod) eoe************************************************

100 new transnt 102 british british 105

  • tte*******************************************
  • ------- time step cards end dtmin dtmax opt min maj rstrt j

201 1.

1.d-7 0.005 3

2 4000 2500 1

202 3.0 1.d-7 0.0005 3

2 4000 2500 203 1000.

1.d-7 0.005 3

10 4000 2500 j

  • --------- minor edit variables variable code parameter location 301 mflowj 106000000
  • breakflow 302 p

105010000

  • p81 303 cntrlvar 1
  • dp tsp 1

)

304 cntrlvar 2

  • dp tsp 2 305 cntrlvar 3
  • dp tsp 3 306 cntrlvar 4
  • dp tsp 4 307 cntrlvar 5
  • dp tsp 5 308 cntrlvar 6
  • dp tsp 6 309 cntrlvar 7
  • dp bundle
  • 305 mflowj 112060000
  • dc flow
  • 306 mflowj 300000000
  • break flow
  • 307 velfj 101060000
  • void frac
  • 308 velfj 101070000
  • sg water mass

-*----------- trip input data

-*veriable trip cards variable param relation variable param cons latch 501

' time 0

ge null 0

11.

1 502.

time 0

ge null 0

1.001 1 503 time' O.

ge null 0

100.

1 1

  • memammmmmmmmmmmmmmmmmmmmmmmmmmmm===========================

l e

i

. trip identifier i

i d

i Oct 12 14:02 1995 rrunner:/nfs/sa/nfskr/relap5/mb2 mod Page 2 4

4 f

-501 => problem stop i

  • trip stop advancement card trp no.

600 501 l

  • --------_-- hydrodynamic components
  • _________________________________________f l*

primary side model plenums and tubes modelled explicitly i

hot leg and cold' leg represented by tdvsf i

i j

  • mmmmmmmmmmmmmmmmm=mmmmm=mummu

!.0420000 inplen tmdpvol flowa 1

vol Ezi incl dz rough hyd pvbfe l

0420101 0.0 5.2183 147.64 0.0 0.0 0.0 0.0 0.0 00000

, 0420101 0.0 5.2183 5000.

0.0 0.0 0.0 0.0 0.0 00000 ebt 0420200 3

}

time press temp

0420201 0.0 2070.00 560.000 0420202 1.0e6 2070.00 560.000

  • mmmmmmmmmmmmmmmmmmmmmmemammmu 0470000 outplen tmdpvol i

4 flowa 1

vol azi incl dz rough hyd pvbfe 0470101 0.0 5.2183 147.64 0.0 0.0 0.0 0.0 0.0 00000 0470101 0.0 5.2183 5000.

0.0 0.0 0.0 0.0 0.0 00000 1

ebt 0470200 3

time press temp 3

0470201 0.0 2026.77 560.

0470202 1.0e6 2026.77 560.

  • mmmmmmmmmmmmmmmmmmmmmmmmmmmmm 1510000 tubes pipe
  • ~

l nv 1510001 16 flowa nv

15101015 c.10467 11 6

.o-

~ length:- Jnv

~

-1510301-1.6667 1

1510302-

1.68; 12 1510303-

'3.34667 7

-1510304 L2.785 9.

'Oct'12 14:02 1995 ~rrunner:/nfs/sa/nfskr/relap5/mb2 mod Page 3-1510305

'3.34667-14

-1510306 1.68 15 1510307' 1.6667

.16 '

volume nv 1510401' O.0 16 incline angle nv 1510601 90.0 8

1510602

-90.0 16 elev cng nv

'*510701

.1.6667 1

  • 510702 1.68 2
  • 510703-3.3467 7
  • 510704' 3.5833 8
  • S10705 3.445 9
  • 510706

-3.445 10 510707

-3.5833 14

  • 510708

-1.5 19

  • 510709

-1.0 20

  • 510710

.5625 21 rough hyd dia nv

.1510801 0.0

.050625 16 pvbfe nv 1511001 00000 16 fvcahs nj 1511101 001000 15 r

flag p

t dummy dummy dummy nv 1511201-3' 2070.0 560.0 0.0 0.

O.

16

e flag =1 => (lbm/sec)
1511300-1 1 flow vflow -interfare flow nj

-1511301 91.00 0.0 0.0 15

"

  • me==mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmma L1500000

'junct.tmdpj un '

e

-v, c - -

m -

n oi from-:

toD crea 1500101 042000000 151000000

.10467'

o o:

flag-1500200

'l

.e.

flow intflow-

time'.

1 flow 1 v

'1500201 O. O' 91.0-0 '. 0 0.0 1500202-1.0e6 91.0 0.0 0.0-4m==================================================m-1590000-.junct: sngljun

from

-to area.

fjunf

' f j unr.

fvcahs LOct 12f1':02 1995 rrunner:/nfs/sa/nfskr/relap5/mb2 mod Page 4 4

15901014151010000 047000000

.10467

0. 0L 0.0 021000 e

flag lflow-.

vflow intflow

'1590201'

-1 91.0 0.0 0.0

  • m===================================================

cocondary;sideimodel i

e____

e

-*m===================================================

9020000 auxfeed tmdpvol

'6

- flowa flowl vol azi incl dz rough hyd pvbfe 9020101 0.0-31.1533 147.64 0.0 0.0 0.0 0.0 0.0 00000

'9020101 0.0 31.1533 5000, 0.0 0.0 0.0 0.0 0.0 00000

.e

'ebt 9020200 003-time press temp

'9020201 0.0' 1200.0 97.0

< 9020202: 1.0e6 -1200.0 97.0

  • ====================================================

3020000 fljun

.tmdpjun-e

  • L from-to

.ajun n3020101.902000000- 111000000 1.0

.6-flag.

'3020200 lL time.lflow vflow int flow 3020201' 0.0 0.

0.0 o0. 0 k

3020202!

10

.' O. -

'0.0 0.0

-3020203 l'.01" 0.25

.0.0-0.0.

'3020204 11.01, 0.34 0.0 0.0 3020205l 11.01:

0.0:

0.0 0.0 L3020206-1.0e6-O.

0.0 H0. 0

.#mmmmmmmmmmmmmmmmmemaammmmmmmmmmmmmmmmmmmmmmmmmmmmmma

.1000000J tubesht branch e-

[*:

nj.

-~ flag'

-1000001' 12

1

.flowa "flowl vol--

azi incl dz

. rough -hyd

'pvbfe 1000101 0.4653.1.6667 0.0 0.0

90. 1.6667.00015

.09093 00101 so.

flag-

p x

1000200 1-560.0 0.00 from to-ajun fjun 'fjunr fvcahs

.1001101 112010000 100000000 :0.03868 1.0 1.0 000000 Oct 12 14:02_1995 rrunner:/nfs/sa/nfskr/relap5/mb2 mod Page 5 1001101 112010000 '100000000 0.03868 4.12 4.12 000000

~

1002101 100010000 '101000000 0.4653 11.0 11.0 010000 i

Iflow vflow int flow

-1001201 0.0 40. 0 0.0f 1002201 0.0 0.0 0.0

  • ccfl/ junction hyd diam info hyddia floodcorr gasint slope nj 1001110'

.09093 0.

1.

1.

  • usa hyd of 112 for junc 1 since reverse flow dominates
  • 1001110

.3442 0,

1, 1.

1002110

.09093 0.

1.

1.

  • ==mmmmmmmmmmmmmmmmmmmmmmmmmma 1010000-boiler pipe e

nv l '1010001 22

=*

flowa nv 1010101

.4653 19 1010102'

.7333 21 1010103-

.2672 22

^

jarea

_nj 1010201-

.4653 18 1010202-

.7333-20 1010203-

.2672 21 length' nv

'1010301 1.68_

-1

1010302 3.3467 6'

1010303 c2.9408. 7 1010304:

5.5875 8

1010305 0.5

.9

-1010301 1.'6205 10 1010301 1.48 1

1010302 0.2 3

1010303 9467 4-

.1010304 2

6-1010305 2.9467 7

1010306 0.2-9 1010307 2.'9467 10 1010308 0 '. 2 12

~

1010309 2.9467 1010310 0.2 15

'1010311 2.9467 16 1010312 0.2-18-1010313.

2.7408 -19 1010314 5.5875 :20-

-1010315 0.5 21 1010316

'1.6205 22 volume nv 1010401.

0.0 22

.Oct 12 14:02 1995 rrunner:/nfs/sa/nfskr/relap5/mb2 mod Page 6 incline angle nv 1010601 90.0 22 elev cng nv

  • 010701 3.0 2
  • 010702 3.5833 3

rough hyd dia nv 1010801

.00015 0.09093 19 1010802

.00015 0.0 22 fjunf fjunr nj 1010901 5.0 5.0 2

1010902 0.85 0.85 3

1010903 5.0 5.0 5

1010904 5.4 5.4 6

1010905 7.23 7.23 7

  • add xflow resist here i

1010905 61.45' 61.45 7

  • add xflow resist here with w mult 1010906:
0.0 0.0 9

.1010901; 0.0 0.0 1

'1010902.

5.0 5.0 2

1010903' O.0 0.0 4

11010904 5.0 5~0 5

1010905-0,0 0.0

.7 1010906-0.85 0.85-8 f

j 1010907' O.0

'0.0' 10

.;1010908 5.0_

5.0 11

'11010909-0.0 0.0 13

-1010910-

-5. 0 5.0 14

-1010911-

0. 0-0.0 16

- :1010912 5.4 5.4 17 i~1010913 0.0 0.0 18'

.1010914 61.45' 61.45 19
  • add xflow resist here with-w mult-i 1010915.

0.0 0.0

-21

pvbfe' ny

- 1011001 00101 19

'1011002 00001.

22 L e.

fvcahs nj 4

1011101 000000 21 i

flag p-x dummy dummy dummy nv 1011201-1 560.00

.0 0.

O.

O.

1 j 1011202 1

560.00

.0 0.

O.

O.

2 1011203.

l' 560.'00-

.0 0.

O.

O.

22

' flag =0 =>. (1bm/sec)

1011300' 1

1 i-

  • Iflow vflow interface flow nj 1011301

~0.0 0.0 0.0 21

  • ccfl/ junction hyd diam info hyddia floodcorr 'gasint slope nj 1011401

.09093 0.

1.

1.

18 f

4 4

1

?l' Oct 12 14:02 1995-rrunner:/nfs/sa/nfskr/relap5/mb2 mod Page 7 4

k i 1011402 0.0 0.

1.

1.

21

~ -emmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm=

'*mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm=mmmmmmmma

, 1020000 sep separatr i

  • nj-flag 1020001 3

1 4

flowa.

flowl vol azi incl dz rough hyd pvbfe 1020101

.2672 9.0220 0.0 0.0 90.

9.0220

.00015 0.000 00010 flag' p

uf ug vg

'1020200 1 '560.00 0.

1020200 1

560.00 0.025

  • initialize to 441 in level from to ajun-f]un fjunr fvcahs vflim
  • roarrange losses

-1021101 102010000 103000000.2672 0.86 0.86 000000 1022101 102000000 111010000.1854 1.0 1.0 000000 J

1 1023101: 1010100001.102000000.2672 1.0 1.0 000000

-1023101.101010000. 102000000.2672 19.1-19.1 000000 e

Iflow-vflow int-flow

'1021201-0.0 0.0 0.0 1022201 0.0 0.0:

0.0 1023201' O.0' O.0.

0.0

  • ccfl/ junction'hyd diam info j

.hyddia-floodcorr gasint slope r.f

  • 1021110 1.625 O.

1.

1.

J

  • mummmmmmmmmmmmmmmmmmmmamassamma=====================

1030000-unit branch

)

nj flag 1030001 2

1 l

flowa flowl vol azi incl dz rough hyd pvbfe 1030101. 1.2684 1.

0.0 0.0 90.

1.

.00015 0.0 00000 i

flag p

uf ug vg 1030200 1

560.00 0.0 initialize to 441 inch level

-1030200 1

560.00 1.0 from to ajun fjun fjunr fvcahs vflim 1031101 103000000 110010000

.204 0.0 0.0 010000 1032101 103010000 104000000 1.2684 0.

O.

010000 Iflow vflow int flow I

1031201 0.0 0.0 0.0 l

1032201 0.0 0.0 0.0

  • ccfl/ junction hyd diam info hyddia floodcorr gasint slope nj
  • 1031110-3.05 0.

1.

1.

  • 1032110 4.07 0.

1.

1.

  • n===================================================

1040000 unit snglvol Oct 12 14:02 1995 rrunner:/nfs/sa/nfskr/relap5/mb2 mod Page 8 flowa flowl vol azi incl dz rough hyd pvbfe 1040101 1.2684 1.0 0.0 0.0 90.

1.0 0.00015

.00 00000 flag p

x 1040200 LOO 1 560.

1.0

  • ==========mmm=======================================

' 2500000' dryerdrn snglvol i

o.

-flowa~

flowl

.vol azi inc1 dz rough hyd pvbfe 2500101

.02472 10.522 0.0 0.0 -90.

-10.522 0.00015 0.0 00000 e

flag p

x 2500200 001

. 560..

.5

2500200 001 560.

.045

  • initialize at'441 in 1240000 dryer branch L*

nj.'

flag

'1240001 3

1 fl'owa flowl vol.

azi incl dz rough hyd pvbfe 1240101' 1.2684 1.0725 0.0 0.0 90 1.0725

.00015 0.000 00000 flag _

p uf ug vg 1240200 1

560.00 1.0 from to ajun fjun fjunr fvcahs-vflim 1241101 104010000 124000000 1.2864

.0

.0 030000 1242101'124010000 105000000 1.2864 0.

O.

030000 1243101 250000000 124000000

.02472 0.5 0.5 010000 Iflow vflow int flow 1241201 0.0 0.0 0.0

'1242201 0.0 0.0 0.0 1243201 0.0 0.0 0.0

  • ccf1/ junction hyd diam' info hyddia floodcorr gasint slope nj
  • 1241110

.0417 0.

1.

1.

  • 1242110 11.02 0.

1.

1.

  • 1243110 1.604

.0.

1.

1.

1050000 dome pipe nv 1050001 2

flowa nv 1050101 4.2933 2

jarea nj 1050201 4.2933 1

length nv 1050301 0.

2 Oct 12 14:02 1995 rrunner:/nfs/sa/nfskr/relap5/mb2 mod Page 9 volume nv 1050401 6.685 2

incline angle nv 1050601 90.0 2

trough 'hyd'dia.unv.

1050801. 00015

0. 0'

~2 e

E*

ifjunf' fjunr.

nj 1050901-

.0'

.00

.1 e

pvbfe' nv 1051001--

00000-

-2

  • test effect ofl vertical stratification:in dome L*1051001

'01000

-2

-fvcahs nj 1051101 000000 1 e-

  • ~

Iflag p

x dummy dummy dummy nv

'1051201-L1' 560.00 1.0 0.

O.

O.

'2.

flag =0 => (lbm/sec) 1051300 1

e

.lflow vflow interface flow nj 1051301

0.0 0.0 0.0 1
  • ccf1/ junction hyd diam info e'

hyddia floodcorr gasint slope nj

  • 1051401 112.83 0.

1.

1.

1 emmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmma emmmmmmmm===mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmma 1060000 nozzle sngljun e

'from to area fjunf fjunr fvcahs 1060101 105010000 107000000 0.0092175 0.0 0.0 000100

  • 1060101 105010000 107000000 0.007374 0.0 0.0 000100
  • 80% area case at noz
  • 1060101 105010000 107000000 0.00645225 0.0 0.0 000100
  • 70% area case at n flag -

Iflow

'vflow int flow 1060201' 1

0.0 0.0 0.0 eeeee**

'1070000.

nozzle snglvol e

flowa flowl vol azi incl dz rough hyd pvbfe 1070101-0.014 1.5 0.0 0.0 90.

1.5

.00015 0.0 00000 e

flag p

x 1070200 002 1106.

1.0 1070200-001-560.

1.0

  • mmammmmmmmmmmamamammmmmmmmmmmmm=====================

3000000 break valve Oct 12.14:02 1995 rrunner:/nfs/sa/nfskr/relap5/mb2 mod Page 10

i. '

m.

1

~e Lfrom?

to'

.ajun 3000101'1070100003 900000000 0.014 J0.0 0.0 ~00100

  • ^

o-

*i time lflow.

ivflow intflow 3000201?

1.

0. 0 '-

.0.0, 0.0 3000300 mtrviv.

3000301'-502 503 10.

0.0^

'*3000301 502 503

. 2.0'0.0 t*====================================================

9000000:

break-

.tmdpvol-e.-

.flowa-Lflowl vol azi incl-dz rough hyd 'fe 9000101' O.0 31.1533 147.64-0.0 0.0 0.0 0.0-0.0; 00 9000101 5.0-0.0.

19999.

0.0' O.0 0.0 0.0 0.0 00 ebt 9000200 002~

e:

time. press.

x 9000201:

0.0-14.7 1.0 9000202 1.Oe6 14.7 1.0.

.4====================================================

1110000 funnel branch nj flag 1110001 3

1-flowa flowl vol azi incl-dz rough hyd pvbfe 1110101-1.648

.50 0.0 0.0 -90..-0.50 0.00015 0.0 00000 e

flag p

x 1110200 1

560.0

'0.0 from to ajun fjun fjunr fvcahs 1111101.111010000'112000000

.10264 0.5 1.0 000000 1112101 111000000 110000000

.96167 0.0 0.0 000000 1113101 250010000 111000000

.02472 1.0 0.5 000000 Iflow vflow int flow 1111201 0.0 0.0 0.0

.1112201 0.0 0.0 0.0 ij 1113201 0.0 0.0 0.0 J

  • ccfl/ junction hyd diam info
1.
  • hyddia floodcorr gasint slope nj
  • 1111110

.~3442 0,

1.

1.

~

  • 1113110 16b4 0

1 1

.'==========.....=====.............===================

.====================================================

L

! !1100000 ude snglvol flowa' flowl vol azi incl dz rough hyd pvbfe

~1100101.

. 96167~

8.522 0.0 0.0 90.

8.522 0.0 0.0 00000 l

s 1

Oct'-12 14:02 1995 rrunner:/nfs/sa/nfskr/relap5/mb2 mod Page 11 flag-p x

1100200 001 560.

0.033

  • mammmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmma 1120000'

'1dci-3 _ pipe nv 1120001-12-flowa nv

.1120101 0.10264 10 1120102 0.44944 11 1120103 0.0368 12

.o length nv 1120301.:

2.81548 10

,1120302;

.625 11-1120303-1.9492 12 e

volume nv

'1120401 0.0 12 incline angle nv 1120601-

-90.0 12 i

l elev cng nv 1120701

-2.81548 10 l

1120702

.625 11 I

1120703

-1.9492 12 i

-o rough hyd dia nv i

1120801 0.0 0.

12 l

i pvbfe nv l

1121001 00001 12 o

fvcahs nj i

1121101 000000 11 l

1 flag p

x dummy dummy dummy nv l

1121201 1

560.00 0 ~. 0 0.

O.

O.

12

)

e flag =0 => - (lbm/sec)

!1121300 1

o i*

Iflow vflow interface flow nj fil21301

'0.0 0.0 0.0 11

o.
  • ccf1/ junction hyd diam info j

Lhyddia floodcorr gasint slope nj

  • 1121401 0.0 0.

1.

1.

.14 1 9@@@@@e***************************************************************

@@@@e&Q*******************************************w*******************

6---------

heat
structure input I

1

4 f*ganeraldata

'Oct 12 14:02 1995 rrunner:/nfs/sa/nfskr/relap5/mb2 mod Page 12 nh-np geo ss left coord.

11511000 16 11 2

1 0.0253125

  • mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmme
  • mesh flags location flg format flag 11511100 0

2

  • mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmam
  • mesh data-mesh interval int #

11511101'.00033333 10

  • m============== man======================
  • composition data comp. #'

int #

11511201 1

10

  • mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmma
  • heat distribution data-source int.#

11511301-0.0 10

  • m=======================================
  • initial temperature data temp.

int #

11511401 560.0 11 E*mamammmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm

  • left be cards bvl inc type surf cyl ht struct #

11511501 151010000 0000 1 0

13.784 1

11511502 151020000 0000 1 0

13.8943 2

11511503 151030000 10000 1 0

27.6783 7

11511504 151080000 10000 1 0

23.0325 9

11511505 151100000 10000 1 0

27.6783 14 11511506 151150000 0000 1 0

13.8943 15 11511507 151160000 0000 1 0

13.784 16 emmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmuna

  • right be cards bvr inc type surf cyl ht struct #

11511601 100010000 0

1 0

15.5992 1

i 11511602 101010000 0000 1 0

15.724 2

11511603 101040000 30000 1 0

31.3232 7

11511604 101070000 0000 1 0

26.06558 9

11511605 101160000 -30000 1 0

31.3232 14

'11511609 101010000 0000 1 0

15.724 15 11511610 100010000 0000 1 0

15.5992 16

.*mmmmmmmmmmmmmmmmmmmmmmmmmmm=================================

.

  • source < data source mult ldh rdh struct #

11511701 0

0.0

-0.0 0.0 16

  • mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm=ammmmmmmmmum
  • left--boundary--cards hdiam hlf

.hlr

-gridf gridr grdissf grdissr lbf struct #

~

11511801

'O'-

10.0:

10'.0 1.5

1. 5.

0.0 0.0

'1.

16

  • emmemmmmmmmmmmmmmmmmmuummmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmma
  • right boundary cards

. hlr gridf gridr grdlssf grdissr lbf struct =

hdiam hlf 11511901 0.

~10.0-

-10.0 1.5 1.5 0.0 0.0 1.

16

  • ----- heat structure thermal property data Oct 12 14:02 1995 rrunner:/nfs/sa/nfskr/relap5/mb2 mod-Page 13
  • composition type-and data format material type flag flag 20100100 tbl/fctn 1

1

  • inconel
  • mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmma 4....___________.__________________..___________________.___________
  • . thermal conductivity data (btu /sec-ft/deg f) and volumetric heat I capacity data-(btu /ft**3-deg f) versus temperature for above f

f

  • composition
  • mmmmmmmmmmmmmmm==ma==mma== mumm==mmmmmmmm==mmmmmmmmama
  • inconel 600-thermal conductivity data temperature-thermal conductivity 20100101 70.0 2.3843e-03 20100102 200.0 2.5232e-03 20100103 400.0 2.8009e-03 20100104 600.0 3.0787e-03 20100105 800.0 3.3565e-03 20100106 1000.0 3.6574e-03 20100107 1200.0 3.9815e-03 20100108 1400.0 4.3056e-03 20100109 1600.0 4.6296e-03
  • mmmmmmmmmamamammmmmmmmmmmmmmmmmm=====================
  • inconel 600 volumetric heat capacity data temperature heat capacity 1

20100151 70.0 55.6831 20100152 200.0 55.5227 1

20100153 400.0 55.2607 20100154 600.0 54.9895 20100155 800.0 54.7069

~20100156.

1000.0 54.3982 20100157 1200.0 54.0907

)

20100158 1400.0 53.7516 20100159 1600.0 53.4205 20100160 1800.0 53.0796 j

  • mmmm mmmmmmm m m mmmmm m m m ama==mmmm mm m m mmmmmm mmmm maa m m m m a n control system for measuring sg level

=.,. -

d

-C 16 o...__......

note: theLfollowing-control system is to work in britsh f

units :( lbm, lbf,

ft,_s, p-lbf/sgin). in relaps 1

the-quantities stored in arrays are in si units, f

..therefore,. conversions from si to british units f

must be made, f

.e.............

e'

  • ---------: control variable card type

=20500000 999-o

!^

J 12 14:02.1995 rrunner:/nfs/sa/nfskr/relap5/mb2 mod Page 14 1

Oct e
  • --------- control component cards compute pressure difference name type scale (psi /pa). ini t flag 20500100 deltpp sum 1.45003e-04 0.0 1

a0 al ve r vol a2 var vol 20500101 0.0

-1.0, p,

101030000 1.0, p, 101010000 name type scale (psi /pa) init flag 20500200 deltpn sum 1.45003e-04 0.0 1

a0 al var vol a2 var vol

'20500201 0.0

-1,0, p, 101060000 1.0, p, 101040000 name type scale (psi /pa) init flag 20500300 deltpn sum 1.45003e-04 0.0 1

a0 al var vol a2 var vol 20500301 0.0

-1,0, p, 101090000 1.0, p, 101080000 name type scale (psi /pa) init flag i

20500400 deltpn sum 1.45003e-04 0.0 1

a0 al var vol a2 var vol 20500401 0.0

-1.0, p, 101120000 1.0, p, 101090000 name type scale (psi /pa) init flag 20500500 deltpn sum 1.45003e-04 C.0 1

a0 al var vol a2 var vol 20500501' O.0

-1.0, p, 101170000 1.0, p, 101140000 4

name type scale (psi /pa) init flag 20500600' deltpn sum 1.45003e-04 0.0 1

a0 al var vol a2 var vol 20500601 0.0

-1.0, p, 101180000 1.0, p, 101170000 7E name type scale (psi /pa) init flag

..20500700 deltpn sum 1.45003e-04 0.0 1

a0 al var vol a2 var vol 20500701 0.0

-1.0, p, 101200000 1.0, p, 101010000 name type ~

scale (psi /pa) init flag m

T

                  • **<*******e*******************************************

Q end of input deck - problem end

                                                                                        • f**

1 l

i l