ML20093G882

From kanterella
Jump to navigation Jump to search
Rev 0 to PSA-B-95-17, Calculation of Byron 1/Braidwood 1 D4 SG Tube Support Plate Loads w/RELAP5M3
ML20093G882
Person / Time
Site: Byron, Braidwood  Constellation icon.png
Issue date: 10/11/1995
From: Ramsden K
COMMONWEALTH EDISON CO.
To:
Shared Package
ML20093G877 List:
References
PSA-B-95-17, PSA-B-95-17-R, PSA-B-95-17-R00, NUDOCS 9510190274
Download: ML20093G882 (70)


Text

_

l Calculation of Byron 1/ Braidwood 1 D4 Steam Generator l Tube Support Plate Loads with RELAP5M3 i

Document Number PSA-B-95-17 Revision 0 Kevin B. Ramsden 1

Nuclear Fuel Services Department Downers Grove,litinois

- Prepared by: [ d -_

Date: /b ////9,r' d.// > - Date: /e/n/ff Reviewed by: ~

f Approved by: e 2,MF/ [% (

Date: /o/a/ff (Date issued) 9510190274 951012 PDR ADOCK 05000454 P PDR

PSA&9517 R: vision 0 Statement of Disclaimer This document was prepared by the Nuclear Fuel Services Department for use internal to the Commonwealth Edison Company. It is being made available to others upon the express understanding that neither Commonwealth Edison Company nor any of its officers, directors, agents, or employees makes any warranty or representation or

assumes any obligation, responsibility or liability with respect to the contents of this document or its accuracy or completeness, other than the originally stated purpose.

h

$ F 4

e h

i J

l il v-

PSA.C 9517 R: vision 0 l

Abstract This report documents a series of calculations performed to develop differential pressure loading time histories for the principal tube support plates in the Model D4 steam generators under Main Steam Line Break (MSLB) conditions from Hot Zero

' Power. These loads when multiplied by an appropriate factor, are intended to form the  !

input for detailed structural evaluations. This work is being performed in support of the )

3 mv IPC submittal.  !

I l

l 1

1 l

l J

l

\

lil 1

1

PSA-3.9517 Rzvlsion 0 a

1 Table of Contents I  !

. 1. i nt rod u ct ion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2. Methodology /Model Description and Assumptions.................. ................. ................ 2 i
2.1 C ompu te r C ode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

e 2.2 RELAP5M3 Model of D4 Steam Generator .................................. ................ 2

! 2. 3 I nitia l C o n dition s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .)

F 2. 4 B re ak M od e l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.5 Tube Support Plate Differential Pressure Calculation................................... 3 l' 2.6 Special Modeling C onsiderations . . . ......... . .. . .. .... ...... ...... .. . . . ... . . . . . . .. . . .. . ..... .. . ...

2.6.1 N on-equilibrium Model s . . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .

i 2.6.2 Tube Bundle Interface Drag Modeling ...................................... ...... 4 2.6.3 C rossflow Resistance Modeling ...... ........................... .......... ............ 4 l 2.6.4 Vertical Stratification Modeling in the Dome Regions...................... 4 3 . C a l cu l a t i on s .' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.1 B a se C a s e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.2 Sen sitivity C alculations . . . . . . . . . . . . . . . . . . . . . . . . . ... . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . i 3.2.1. Separator Performance .. . . .. ... . . .. .. . ... . . . . . . . . . . .. . .. . . ..... .. . .. . . . . . . . . . . .. . ..l l 3.2.2 T S P Lo s s C oefficie nt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.2.3 Variation in Flow Limiting Nozzle' Area / Critical Flow Performance.. 7 l 3.2.4 N odalization Sensitivity . . . .. . . . . ... . ... . .. . . .. . .... .... .. .. . . ... ... . .. ... . .. .. . ......... 7 3.2.5 Variation in Initial Water Level ........................... .......... ................. 7

3. 2.6 Ti me S te p S ize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.Results..................................................................................................................9

' 4 .1 B a s e' C a s e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.2 Re sult s of Sensitivity C ases . .. . . . . . . . . . . . . . . . .. . .. . . . . . . . . . . . . . .. . . .. . . . ... . .. . ... .. ... . ... ......

4.2.1 Separator Model Sensitivity ..... ....... .......... ....... .............. ............. 9 4.2.2 Effects of TSP Loss Coefficient .......................... .................. .......10 -

4.2.3 Variation in Nozzle Area / Critical Flow Uncertainty ........................10 4.2.4 N odalization Sensitivity . . . . . . . . . .... . .. .. ... .. . .. . .. . . .. . . . . . . . . .. ....... . . .... . . . ... 1 1 4.2.5 Variation in initial Water Level ...................... ................................ 12 4.2.6 Effects of Time Step Size . . . . . .. . . .. . . . . . . . .. . . . . . . . .. . . .. . . ... . . .. ... . ..... ..... .... 12

' 4. 3 D e si g n M argin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5. C oncl u sion s/Di scu s sion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6. R ef e r e n ce s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . .

Append ix A - F ile I ndex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i l

Appendix B - Input Data Set Protection Form ....... ................... ...... ........................... 27

. Appendix C - Checks of Frictional Losses and Inertial Terms......... ............................ 28 Appendix D Base Model Listing .. . . ...... .. . . .. . ... .... .. . . .... .. . .. . . . . . . . . .. . . . . . . . . . . . . . . . . .. . . . . . ..

i iv

PSAO9517 R: vision 0 List of Tables Table i Results of Separator Parametric Sensitivity.... ............ .................................10 Table 2 Sensitivity to TSP Loss Coefficient ..................................... ...........................10 Table 3 Effect of Nozzle Area / Critical Flow Uncertainty.... .......................................11 Table 4 Nodalization Sensitivity Study Results .............. ................................ ............11 Table 5 Effect of Initial Wate r Level .. ..... .. . ... . . . . . . . . . . . .. ...... ... .... . . .. . . . . ... . . .

Table 6 Effect of Time Step Size . . . .. .. ....... . .. . . . . . . .. . .. . . . . .. .. . .. ... .. . . .. . . . . ....... .... . . . .. . . . .. . ...

1 2

Y a

=

V

PSAO9517 Revision 0 List of Figures Figure 1 R E LAP 5 Mod el Di a g ra m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8 l Figure 2 Renodalization of Model without dp slabs........................................................

Figure 3 Base Case Dome Pressure Response.................................. ........................14 l

Fig ure 4 B a se C a se B re a k Flow R a to . . . . . . . . .. . . . . . .. . . . . . . . . . .. . . . . . . . . .. .. . .. . . .

Figure 5 Base Case Liquid Void Fraction at P TSP ............................ ........................16 Figure 6 Base Case Differential Pressure on P, N, M TSPs ......................... ..............17 Figure 7 Base Case Differential Pressure at F, J, L TSPs ............................ ..............18 Figure 8 Base Case Differential Pressure at A, C TSPs .............................. .

.............19 Figure 9 Nodalization Sensitivity Velocity at F TSP .................................. .................. 20 Figure 10 Nodalization Sensitivity Velocity at TSP M .................................................. 21 Figure 11 Nodalization Sensitivity Velocity at TSP P .................................. ................ 22 i

l vi i

PSA B-9517 Rzvision 0 j

1. Introduction i l

During a main steam line break event, the rapid blowdown of the faulted steam l

generator can lead to significant loads on the tube support plates. Transient thermal '

hydraulic calculations on the Byron 1/Braidwood 1 Model D4 steam generators have been performed in support of structural calculations regarding the extent of tube support plate deformation. The geometrical properties of the D4 generators are derived from previous thermal hydraulic analyses performed by Westinghouse. This information is applied in the RELAP5M3 computer code to obtain loads based on the most current computer code available. In the course of this work, a problem was noted in the non-equilibrium modeling of RELAP5M3. Methods were developed to circumvent this problem and cbtain conservative, appropriate loads. This report documents the models created for this purpose and details the results obtained.

1 of 29

r PSA B-9617 Rsvision 0

_i 1 .. .

2.- Methodology /Model Description.and Assumptions i

c 2.1 ComputerCode

'1 The RELAP5M3 Version 1.1 computer code as implemented on the Comed HP 735 workstation network was employed for this calculation. This code is installed in the i

i NFS test library. The sample problems cupplied were run and reviewed to ensure 1

> proper installation and operation of the code, in addition, the MB2 test was modeled j

  • with this code using similar nodalizations to further assess the ability of the code and i modeling methods to properly predict the transient differential pressures on the tube support plates during MSLB events.

This computer code has the ability to model full non-equilibrium conditions, and employs a clx equation / two fluid model. The developmental assessment problems w6re reviewed to verify that the code has an appropriate basis for the performance of this calculation. The GE "One-foot" and "Four-foot" blowdown tests are most

' representative of this problem, and demonstrate that the code will conservatively and 4

j appropriately model saturated steam blowdowns with level swell. In addition, this code i has been extensively tested in LOCA type calculations, and has been used for 1 licensing applications by vendors and utilities.

2.2 RELAP5M3 Model of D4 Steam Generator I The model developed for use in this calculation is depicted in Figure 1. This model is

. based heavily on the TRANFLO input description provided by Westinghouse. The
primary side of the model used a nodalization essentially identical to that used by l

Westinghouse. Key secondary side flowpaths have been checked to ensure that l

appropriate values of inertia and pressure drop information are being consistently l

applied. Calculations of fluid path inertia and loss coefficients of the principal flow paths for the TRANFLO model and the corresponding RELAP input are provided in

Appendix C. As can be seen, the RELAP model uses consistent, and slightly  :

conservative values. This model was developed using RELAP5M2 in a prior i' calculation (Reference 1) and was converted to RELAPSM3 for this application.

2c3 initial Conditions Prior vendor calculations (Reference 2) indicate that the limiting case occurs at hot zero power conditions with water levels at normal values. The water level is at 487" ,

just below the swirl vanes in the separators. The temperature of the water and steam are uniform at 557 F, and saturation conditions are assumed. The primary system is at equilibrium conditions with the steam generator. The primary system is modeled with time dependent boundary conditions that specify the hot leg temperature to be constant at 557 F. It should be noted that setting initial conditions for the partially voided g

volumes required some effort, since RELAP requires specification of fluid quality, but  !

l 2 oi29

.- - - - . . - - - . - . = . - - - - . . . . - - _ - . - . ~ - ~ . ~ -.

t PSA B 9517

Rsvision 0 the value needed is. void fraction. - Inspections of resultant void fractions, and total SG
mass were helpful in adjusting the model to start at the correct liquid levels.

This calculation concerns the HZP case, since this is the limiting condition with respect

[

to TSP pressure loads. This condition leads to high TSP loads as a result of the ,

1 acceleration of a nearly solid column of fluid past the TSPs early in the event. Full power conditions are less limiting since the tube bundle is heavily voided, with much

' less overall inventory in the SG. This leads to a more " cushioned" effect and lower i resultant loads on the TSPs as indicated by prior vendor analysis.

[ ,

,! 2.4 Break Model The break is modeled using a motor valve component with an opening rate of

{

1 1 millisecond. The generator nozzle is specifically modeled to provide appropriate

treatment of fluid inertia and flow limitation. The break is assumed to occur directly

. 'outside the nozzle.

,i 2.5 Tube Support Plate Differential Pressure Calculation 7

i The calculation of tube support plate differential pressures was accomplished by 1 subdividing the tube sections of the steam generator to include thin (.2 ft) volumes on either side of the support plates (A-P). The pressure difference between these L volumes was then calculated via a control variable to provide the time dependent differential pressure. This method was applied on all the support plates with the i exception of the preheater sections. With this approach, it is desirable to use the smallest volumes possible, since the control system calculation includes a l

4 conservative bias related to the elevation head. Since this approach leads to a l

combination of small nodes adjacent to significantly larger nodes, a sensitivity study was performed to demonstrate that the loads are not significantly affected by the choice

[

j of nodalization.

l i

! 2.6 Special Modeling Considerations 2.6.1 Non-equilibrium Models During the course of this work, it was noted that using the full non-equilibrium model selection led to the generation of non-physical spiking in the tube bundle region. An j investigation of this behavior found that the spiking could be traced to the interfacial i heat transfer behavior, allowing excessive amounts of liquid superheat to exist in the bundle region and then instantly resolving the discrepancy. (Reference 3) To avoid the non-physical behavior, the volume control words in the tube bundle and lower downcomer were set to e=1. This forces a high heat transfer coefficient to exist between phases, and effectively precludes the instability. Full nonequilibrium behavior 3 of 29 I____________. - _ - -,

PSA 99517 Revision 0_'

L is modeled throughout the rest of the model. This approach was demonstrated to render.more physical and appropriate response by performing comparison stuales to

- the MB2 steam blowdown tests.

2.6.2 Tube Bundle Interface Drag Modeling The modeling of the tube bundle region was performed in accordance with the latest -

- guidance available in the April-June 1995 RELAP5 Newsletter. The TSP areas are set -

to be equal to the i!ow area of the bundle, and the loss coefficients are adjusted to provide the equivalen? K-value.' This change allows for more appropriate application of

. the EPRI bundle interface drag correlations.

2.6.3 Crossflow Resistance Modeling -

A review of the Westinghouse input / output for TRANFLO indicated that a crossflow -

resistance across the tube bundle was accounted for. An independent approach for calculating the crossflow resistance was developed based on the Zukauskus correlation as presented in Reference 4. The results of this correlation were compared to Westinghouse at the .57 second output edit, and showed comparable pressure drops. The pressure drop information calculated in this way was then converted into K-values to be added as crossflow corrections at selected junctions. This approach was used for the upper tube region ( 135-5) , downcomer entrance (100), and preheater

- (133) areas.

2.6.4 Vertical Stratification Modeling in the Dome Regions Based on review of initial calculations, it was noted that the dome region volumes were deentraining fluid and preventing the two phase mixture from reaching the break. The vertical stratification models were switched off in the upper SG regions (103 and 104) in the final case. This has no effect on the load calculations, since the peak occurs well before any carryover effects are observed. This change was made to provide more appropriate long term mass / energy balance predictions in the model.

4 of 29 i

i

PSA B 9517 Revision 0

$ Figure 1 RELAPS Model Diagram i

l 107 l l [ 105-l 105-1 l .

< 124 >

1U4 103 --> 110 102 E N

I 135-10 ,

P-TSP 135-9 J 35-8 til h-

. .l35-7 4

135-6 N-TSP 135-5

..35-4

35-0
M-TSP  : 35-2 _ __ 112-1 fl 35-1 i l 134 L-TSP 101-10 101-9 133-5 101-8 112-2

+

J-TSP 193_7 133-4 101-6 133-3 112-3 I '~

F-TSP I01-4 133-2 133-1 _

101-3 7 i

101-2 112-4

! C-TSP 132 101-1

+ i 122 112-5 131 121 #

A-TSP + i ~

100 4 REIAP5M3 D4 Steam Generator Model f

< 5 of 29

PSAC-95-17 Revision 0

3. Calculations 3.1 Base Case The base case performed is the full MSLB from Hot Zero Power Conditions. The water level is assumed to be at normal levels (487"). The time dependent differential pressures on the tube support plates, along with the tube sheet transient differential pressure, are the primary output of interest. In addition, the average density adjacent to the TSPs is generated fr use in the structural analysis. The base model employs equilibrium models in the tube region and lower downcomer volumes (volume control word e=1), with full nonequilibrium selected elsewhere. The default separator performance curves are applied.

3.2 Sensitivity Calculations Several additional cases were run to assess the sensitivity of the base case model to variance in input parameters.

l 3.2.1 Separator Performance l The first set of sensitivity runs looked at the RELAPS separator modeling of carryover /carryunder fractions. The base case used the default separator performance values (Vover=.5, Vunder=.15). Values of Vover ranging from 0.25 to 1.0 were input with default Vunder. Then Vunder was varied from the default value of 0.15 to 0.45, while holding Vover at its 0.5 default value.

3.2.2 TSP Loss Coefficient in order to assess the appropriateness of the differential pressure modeling of the l upper support plate, the loss coefficient for the P TSP were varied plus and minus 10 This allows the determination of whether the pressure drop is due to two-phase effects, or just the plate frictional losses by comparing the relative change in the differential pressures from the base case.

6 of 29

PSA-9 9517 Rsvision 0 1

3.2.3 Variation in Flow Limiting Nozzle Area / Critical Flow Performance The nozzle area is increased by 10% and 20% to determine the impact of variations in nozzle area. While the nozzle area is in fact well quantified, these cases provide an assessment of the effects of greater than expected break flow rates. While the uncertainty in critical flow rate is expected to be low, based on code assessment performance, this sensitivity is a good way to bound uncertainties in the overall code thermal hydraulic predictions. Only the high flow cases (area ratio >1) will be run, since reduced break flows will translate directly into reduced pressure drop at the TSPs.

3.2.4 Nodalization Sensitivity As discussed in section 2.5, it is necessary to demonstrate that the small nodes used to obtain the differential pressures across the TSPs do not adversely affect the results generated by the model. To verify this, a " clean" model, with no thin slabs in the tube regions was created. This model is shown in Figure 2. Liquid velocities at TSP F, M, and P were generated for comparison with the base model. Since the differential pressure is directly related to the square of the fluid velocity, this provides a good test of the effects of the thin slab nodalization.

)

3.2.5 Variation in initial Water Level t

)

The base case is run at normal water level conditions. This case is run at the low water level condition, corresponding to the initiation setpoint of the auxiliary feedwater system. This provides a lower bound value for the initial water level, although it is recognized as a very unlikely' point for any extended time while at HZP conditions.

3.2.6 Time Step Size The base case is run with a selection of time steps to demonstrate that adequate convergence exists in the final solution presented.

7 of 29

PSA B 9517 Revision 0 Figure 2 Renodalization of Model without dp slabs l

1 l 107 l

[ 105-l 105-1 l l 124 l D m l 104 l 110 ,

i 103 l-b @ l m

l 102 135-3 l 111

(-  ;

l 135-2 135-1 112-1 134 i t 101-3 133-5 112-2 133-4 101-2 133-3 112-3

133-2 l 133-1 ,

101-1 112-4 132 )

t t 112-5 i 121

  • 131 l

i 100 4 RELAP5M3 Nodalization Sensitivity Model I

l

l. \

1 i

S of 29  !

i I

l____

PSA&9517 Rsvision 0

4. Results 4.1 Base Case

. The base case was evaluated out to 4 seconds into the blowdown to ensure that the key load causing aspects of the MSLB were included. The base case resulted in a peak pressure of 1.916 psi across the P-TSP. The results of the base case are

. depicted in Figures 3 through 8. The dome pressure is shown in Figure 3. As can be seen, the pressure drops rapidly initially and then moderates to rates of approximately 100 psi /sec or less within .2 seconds. Break mass flow rate is shown in Figure 4.

Break flow is initially all steam, with entrained liquid reaching the break at approximately 1.5 seconds, causing an increase in the mass flow rate. This is approximately twice as long as was seen in prior RELAP5M2 calculations, and is expected based on the code differences. Liquid void fraction in the volume adjacent to the inlet to TSP P is shown in Figure 5. The liquid void fraction remains relatively high throughout the peak dynamic load period, and review of the flow regimes predicted indicates bubbly flow persists until after the peak load occurs. The differential pressures across the P, N, and M TSPs are shown in Figure 6. This shows a peak occurs about 0.3 seconds followed by a rapid decay to near steady-state conditions.

liquid void fraction is shown in Figure 6. Figure 7 provides the differential pressures predicted for the F, J and L TSPs, located in the middle of the tube bundle. The lower support plates A and C differential pressure response is shown in Figure 8.

4.2 Results of Sensitivity Cases 4.2.1 Separator Model Sensitivity The values of separator carryover and carryunder fractions were varied over a range of ,

I values to determine what impact the separator model has on the results. The values utilized and the corresponding results are displayed in Table 1. As can be seen, there is very little sensitivity to separator model inputs. This is most likely a result of early flooding of the separator, causing the separator model to shift to "same in/same out" behavior. The carryunder fraction is most likely insensitive due to flow reversal effects.

I 1

9 of 29

PSA B 9517 Revision 0 Vunder Max DP at P-TSP psi Percent Case Vover Change Output ,

File l

.15 1.9161 0 Base .5

.15 1.9143 .0678 wsens4 .75

.15 1.9866 3.6793 wsens5 1.0

.15 1.9802 3.3453 wsens6 .25

.3 1.9161 0 wsens8 .5

.45 1.9161 0 wsens7 .5 i

Table 1 Results of Separator Parametric Sensitivity 4.2.2 Effects of TSP Loss Coefficient The loss coefficients for the P-TSP were varied by plus and minus 10%. The results are shown in Table 2. The results are as one would expect, with almost linear behavior of pressure drop with respect to loss coefficient.

RELAP Input K-Equivalent Max DP at P TSP psi Percent Case change Output at Bundle at Actual TSP ,

File Flow Area Area 1.19 2.0877 8.9557 wsens9 12.5488 l

.972 1.7424 -9.0653 wsens10 10.2672 1.08 1.9161 0 Base 11.408 l i

Table 2 Sensitivity to TSP Loss Coefficient l 4.2.3 Variation in Nozzle Area / Critical Flow Uncertainty These cases were run to determine the effects of increased steam flow through the l

break. This is comparable to the Coefficient of Discharge sensitivities run on LOCA calculations, but in this case, the more deleterious effect occurs if the break flow increases. Therefore the areas of the nozzle and break were increased as shown below. As can be seen, the break flow has a dominant effect on the calculated result.

This is consistent with expectation, since the break flow area directly affects the vessel depressurization rate, which provides the driving force for the initial fluid surge. It should be noted that the flow restricting nozzle is well quantified and little uncertainty exists in its geometry. In addition, the code assessment problems demonstrate that RELAP5M3 characterizes the critical flow and depressurization rate of vessels very 10 of 29

PSA-39517 Revision 0 d

well. However, this sensitivity case provides a good way of defining margin for thermal hydraulic prediction uncertainties.

Max DP at P-TSP Percent Change Case Output File Nozzle Area ft2

. (% of actual) 2.1688 13.1882 wsensi 1.5268(110 %)

2.4083 25.6876 wsens2 1.6656 (120 %)

1.9161 0 Base 1.388(100 %)

j Table 3 Effect of Nozzle Area / Critical Flow Uncertainty I

4.2.4 Nodalization Sensitivity As noted in the previous section, this sensitivity is performed to assure that the use of thin slab nodes to facilitate TSP differential pressure prediction are not adversely affecting the hydraulic solution. A renodalization of the base model, shown in Figure 2, was run. Junction fluid velocities at F, M, and P TSPs were extracted for direct comparison with the base model case, and are shown in Table 4 below. As noted previously, the base model differential pressures conservatively include the elevation head. This is equivalent to about .06 psi (at the initial density of 45.5 lb/ft3), or about 3.1% of the peak load. As can be seen, the maximum effect on TSP loads attributable to the nodalization is comparable to the effects of including the density head into the computed load. Plots of the velocities at the three locations are provided in Figures 9, 10, and 11. These graphically demonstrate that the inclusion of the thin slabs in the base model does not significantly compromise the solution accuracy.

Velocity at F TSP Velocity at M TSP at point Velocity at P TSP at point Case at point of peak of peak dp m/sec of peak dp m/sec Output File dp m/sec 1.24 1.80 wm3 nod .621 1.22 1.79 Base .612 3.305 1.12

% effect 2.96 on dp Table 4 Nodalization Sensitivity Study Results 11 of 29

PSA.2 95-17 Rsvision 0 4.2.5 Variation in Initial Water Level Previous studies indicated that the initial water level could have a significant effect on the TSP loads. To evaluate this effect, the water level was reduced in the base model-to the entrance of the separator riser. (Volumes 102,110, iii, and 250 had initial quality set equal to 1.0) This initial water level corresponds to a level above the tube sheet of approximately 380 inches, versus the 487 inch level in the base case. This level is well below the low-low water level point (40.7%), just slightly below the safety analysis limit used in the plant transient analysis (23.7%) for loss of normal feedwater calculations. This represents a conservative lower bound for the initial water level, since the AFW system would initiate prior to this point to restore the level to the normal range.

As expected, this case resulted in the most significant impact on the differential pressure loads at the TSPs. The results are shown below.

Maximum dp at L TSP psi Maximum dp at P TSP psi Case initial Water Output Level File inches 1.7476 2.4375 wsens3 380 1.3540 1.9161 Base 487 29 27.2

% effect on dp Table 5 Effect of Initial Water Level 4.2.6 Effects of Time Step Size A series of cases were run to determine the sensitivity of the solution to the time step size. The time steps used and the effect on the peak dp at P TSP is shown in Table 6.

These results demonstrate good convergence of the solution, with the variation in time step size affecting the peak by only 1.1% for a factor of 10 in time step size. The 0.0001 time step was applied to the base case and all sensitivity studies for the first second of the transient to ensure consistent, conservative results.

l l

12 of 29 1

PSAC 9517 Ravision 0

, Case Time step Max DP at P-TSP psi Output size in first File second of event wsens11 0.001 1.8945 wsens12 0.0005 1.9055 wsens13 0.0001 1.9161 Table 6 Effect of Time Step Size

' 4.3 Design Margin Since the RELAPSM3 computer code is considered to be a best estimate prediction tool, it is appropriate to consider additional factors to be applied to the loads generated to assure adequate design margin. Based on the sensitivity studies, a factor can be i developed to assure that the structural design adequately bounds all anticipated loads.

lt can be seen that none of the sensitivity effects is greater than 30%. The results of the uncertainty calculation can be combined using square root sum of the squares methods (SRSS) to establish a maximum probable load. Combining the results from the sensitivity studies in this manner gives a load factor of 1.4. This is a highly conservative value since it combines the unlikely low water level with a 20% larger nozzle area. This factor provides assurance that uncertainties in thermal hydraulic prediction as well as anticipated ranges of plant conditions are bounded.

l l

l 4

13 of 29

PSA~C 95-17 Revision 0 Base Case Dome Pressure Response 1120 1100-l 1000 -

1000-1040-l-p 105020000j 1020-1000-900 -

900 -

940 -

920 2.50E+00 3 00E +00 1.00E +00 1.50E +00 2.00E+00 0.00E +00 5.00E41 time seconds

- Figure 3 Base Case Dome Pressure Response i

l l

l l

l l

14 of 29 2

4

1 PSA&9517 )

Rsvision 0 (

a Base Case Break Flow Response l

l 50m

m. I 3000 -

l-mfW tweak Fkm}

2000-t 1000 s

0 3.00:+00 1.50E+00 2.00E +00 2.50E +00 0.00!+00 5.00E41 1.00E+00 l

5000 time seconds 1

4 W

Figure 4 Base Case Break Flow Rate l

l a

l l

15 of 29

.}

PSA B-9517 R2 vision 0 Base Case Vold Fraction Response Liquid Vold Fraction at P. TSP 1.20E+00 1.00E+00 -

. 8.00E41 -

1 6.00E41 -

l- voidf 1360700] -

4.00E41 -

2.00E41 -

0.00E+00 2.5cE+00 3.00E +00 1.00E +00 1.50E+00 2.00E+00 0.00E +00 5.00E41 time seconds l

Figure 5 Base Case Liquid Vold Fraction at P TSP 4

d 16 of 29

.- _ ~^ " ~~" ' ---___ , _ , _

i PSA&9517 R; vision 0 MSLB from HZP RELAP5M3 DP on M N and P TSP 2.00E+00 9

150E+00 - - * * - cntrivar 7 TSP M N * * *

  • cntrivar 8 TSP N

' ' entrivar 9 TSP P 5.00E41 l

0. J 0.00:+ 0 5.00E41 1.00E +00 1.50E +00 2.00E +00 2.50E +00 3.00:+00 i

-5.00E41 -

  • 1.00E+00 tirne seconds Figure 6 Base Case Differential Pressure on P, N, M TSPs I

l 17 of 29

i PSA-Tr95-17 R: vision 0 1 1

MSLB from HZP RELAP5M3 DP on F. J and L TSP f l

1.40E +00 1.20E+00 - (

cntrivar 4 TSP F 1.00E +00

. - entrtvar 5 TSP J

. . . . . .cntrtvar 6 TSP L 4.00E41 -

600E41 -

4.00E41 -

2.00E41 - f l

m -- _ _ _

l Z t ----ffz '-xs: _ _ 2--_ _ _ _ _______

0.00E+00- 3.00.+00 0.00: h 5.00E41 1.00E +00 1.50E +00 2.00E+00 2.50E+00 2.00E41 time seconds Figure 7 Base Case Differential Pressure at F, J, L TSPs 4

18 of 29

! PSA&9517 Raision 0

- MSBL from H2P RELAP5M3 DP on A and C TSP 2.50E41 2.00E41 -

1 1.50E41 pj

. {e 2

1.00E41 4,f/yiiY/

5.00E42 - f C . .. _ . . . _ . _ . _ . _ . _ _ _ , , _ , ___

0.00E+00- 2.00E +00 2.50E+00 3 009 00 41 1.00E +00 1.50E +00 0.00:5 0 ,

5.00E42 - 'h-lf entrtver2 TSP A:

cntrtver 3 TSP C'

  • 1 M 41~ A 1.s0E.01 tirne seconds Figure 8 Base Case Differential Pressure at A, C TSPs l

1 l

l 1

l l

l l

l l

1 l

19 of 29 i

PSA B"9517 1

R9 vision 0 i

Nodalization Sensitivity Fluid Velocity at TSP F  !

7.00E41 6.00E41 -

5.00E41 -

4 00E41 -

l 3.00E41 - ye#] fun nxx$el TSP F aa ver} no slab TSP F 2.00E41 -

l 1.00E41 -

0.00E+00 - ~/,. . -j b ".'7?.4 '_E " -

2.50E +00 3.00E +00 3,50:+00 0.00 <

5 IE41 1. 50E+ 2.

I 1.cDeat .

2.00E41 time seconds Figure 9 Nodalization Sensitivity Velocity at F TSP 20 of 29

4 -- d. J w J -- .aJ PSA & 9517 R; vision 0 l

Nodalization Sensitivity Study l

Fluid Velocity at M TSP l 1.40E +00 1 EE+00-J 1.00E+00 -

8.00E41 -

l 1 vet) fur ntadel TSP M 6.00E41 -


vg M TSP M 4.00E41 2.00E41 -

0.00E*00 h 3.30 +00 1.60E+00 2.00E+00 2.50E+00 3.00E +00 0,00. 00 5.00E41 1.00E +00 2.00E41 ,

time seconde 1

l Figure 10 Nodalization Sensitivity Velocity at TSP M l

l I

l I

l 1

l l

21 of 29

PSA.B 9517 Revision 0 Nodalization Sensitivity Study l Fluid Velocity at P TSP 2.00E +00 I

1.80E+00 -

1_00E+00-1.40E+00 -

1.20E*00 '

' ' ~

ver) fun rnodel TSP P

. . . . . ves) no als6 TSP P 8.00E41 -

6.00E41 -

4.00E41 2.00E41 -

j I 0.00E+00 0.00 00 6.00E41 1.00E +00 1.50E +00 2.00E+00 2.50E +00 3.00E +00 3 50:+00 2.00E 01 tirne seconds Figure 11 Nodalization Sensitivity Velocity at TSP P 22 of 29

PSAC-95-17 l Revision 0 I

l

5. Conclusions / Discussion l A detailed calculation of the time dependent differential pressure loadings on the tube support plates in a D4 steam generator under MSLB conditions from hot zero power has been completed. This calculation demonstrates that the loads are principally due '

to the initial fluid surge following initiation of the break. A series of sensitivity studies have been performed to demonstrate appropriate modeling methods have been  ;

applied, and to quantify an appropriate level of margin to be applied in subsequent i structural analyses. The results calculated here compare favorably with loads calculated previously with other methods. Therefore, the loads, in combination with the design margin factor developed provide an adequate design basis for TSP displacement analysis.

1 l

l 1

l 1

1 1

1 l

l l

23 of 29

PSA4-9517 R; vision 0

6. References
1) " Calculation of Byron D4 SG Tube Support Plate Differential Pressures during MSLB with RELAP5M2", PSA-B-95-11. K. Ramsden , September 4,1995,
2) " Technical Support for Alternate Plugging Criteria with Tube Expansion at TSP Intersections for Braidwood 1 and Byron 1 Model D4 Steam Generators",

WCAP-14273,1995.

3) " Additional Information Regarding the increase in the Interim Plugging Criteria for Byron Unit 1 and Braidwood Unit 1" D. Saccomando to Office of Nuclear Reactor Regulation, dated October 3,1995.
4) " Nuclear Systems I", N. Todreas and M. Kazimi,1990.

24 of 29

PSA&9517 ,

y R; vision 0 Appendix A - File index File name Description input Files Location Infs/sa/nfskr/btspload westm3 hem Base model westm31wl Low water level model wm3 nodal Nodalization sensitivity model- no thin strips

)

Output Files Location Infs/sa/nfskr/btspload i j

saldat3/srst3 . base case output file / restart file wsensi nozzle area +10%

.wsens2 nozzle area +20%

wsens3 low water level output wsens4 separator sensitivity vover=.75 wsens5 separator sensitivity vover=1.0 wsens6 separator sensitivity vover=.25 wsens/ separator sensitivity vunder=.45 wsens8 separator sensitivity vunder=.30 wsens9 P TSP K=+10%

wsens10 P TSP K=-10%

wsens11 time step =.001s wsens12 time step =.0005 wsens13 time step =.0001 wsennode nodal sensitivity 25 of 29

PSA B 9517 R: vision 0 Data Files Location /nfs/sa/nfskr/btspload dpdat

  • tsp load file (tubesht, A, C) dpdati
  • tsp load file (F, J, L) dpdat2
  • tsp load file (M,N,P) dendat
  • density data (tubesht, A, C) dendati
  • density data (F, J, L) dendat2
  • density data (M,N,P) veldat velocity data for base case veldati velocity data for renodalization
  • = Data sets transmitted to Westinghouse on 9/30/95 via rftp connection 26 of 29

PSA-B-95-17 nevision o

- Appendix B - Input Data Set Protection Form Station: 4/8 Unit: / Cycle / Analysis:~#/ J/ /Ag<j C /w /. A w ,

Checksum #'

^ ~

> = = - o* i ;s sum - sum -p

~

Current File Location Copy To2 - -

isa ' .

ex. r

/h6 /6sp loacb}GesfM3 hes /

/niswr/ hEsplosof /wesM3 hee mnsS

~

1. 3>12ngs49 s
2. , ~

Notes: 1) Infs/sa is not required. Begin each file location with user id. File name should be desenpbve and include a means of identifying associated computer code.

2} Station. Und, and Cycle /Anatysis wiR defce part of the destinaban locahon in Infs.databank/SA therefore, these are not need in the " Copy To" column.

3) The SA Admin wiB place a check mark next to the venfsed checksum numbers.

Author: [/1 ./ Reviewer: - dll [d min: ~

M b/ Date: /,/w/ g

/ /

i l

l 27 of 29

PSA C 9517 Revision 0 ,

Appendix C - Checks of Frictional Losses and inertial Terms l

l I

i l

l l

l l

1 l

28 of 29 l l

Sheeti l

f I

i Summary of Principal Path Nozzle to TSP Parameters for TRANFLO D4 Model l

Length K UA K/A2 Hyd dia calc hyd Junction Segment Area 01 0.013732122 0 12.83 12.83369 23: 1 129.35 1.77625 01 1.080691643 01 0.5025 1.329423 2 1.388 1.5 0.1 Oi 2.45 2.52321 3 5 0.51 01 t

I i

I 01 0.049695757 01 11.02 9.76844 24 1 -

74.94 3.72421 01 0.013732122 01 12.83 12.83369 l 2 129.351 1.776251 i i I 0.0417 15.1199 l(5 1 179.54I 0.37 401 0.002060822 0.001240902 11.02 8.99127 2 63.491 3.725 0.5I 0.058670657 0.000124039 l

i l 0.5 0.052650177 9.98889E-05 3.92 9.491429 28 1 70.75 3.725 0.002060822 01 0.0417 15.1199 2 179.54 0.37 0 I

l 0j0.007300714 0 14.04 13.94265 29 1 152.67 1.1146 l 01 4.07 9.949257

' 2 77.74 3.78I 01 0.048623617 i i I (

I 0.025528325 Oi 1.625 5.629643 30 1 24.89 0.6354l 0.00651416l 1.1042 3.824973 2 11.49 0.251 0 86i 0.02175805

~j0.007300714

) 01 14.04 13.94265 3 152.67 1.1146I l

l 01 1.625 5.629643 371 1 24.89 6.2148 OI0.249690639:

1.0729 5.293932 l 2 22.01 0.25 13.9) 0.011358473I 0.028692918l Oi0.0280393731 01 1.625 5.629643 l 3 24.89 0.6979  ;

?

1 0j0.039007381 0 10.82 10.83101 38 1 92.13 3.59375 OI0.249690639 0 1.625 5.629643 4 2 24.89 6.2148 I

1.08i 0.0036765571 0.0037372 0.0417 4.652514 39 2 16.9996 0.0625 I 01 0.1167903271 Oi 0.1234 6.807057 3 36.391 4.251 l

l l

1 l l

Totals l l 2.182058931 0.040409108l l l I l l l

c l

f Page1

Sheet 2 Summary of Principal Path Nozzle to TSP Parameter for RELAP5M2 Model l

Length K UA K/A2 hyd Volume Area 1.5 0 1.080692 0 0.5025 107 1.388 1.45 0 0.117341 0 11.02 1051 63.49 3.55 0 0.035935 0 12.83 1052 98.79 0.708 0 0.004131 0 0.0417 124 171.4 70.75 0.5 9.99E-05 124 104 63.49 5.502 0.001365 124 105 7.45 0 0.1053 0 104 70.75  :

0 0.01553 0 14.04 103 151.32 2.35 11.49 0 0.86 0 0.006514 J102-103 0 77.74 0 103-104 0 1.625 25.8121 14.1567 0 0.548452 102 22.01 0 13.9 0 0.028693 J135-102 8 1566 0 0.147631 0 135 55.25 55.251 0 11.408 0 0.003737 E35 tsp l

2.055012 0.040409 Totals i

Page 2

SheGt3 Summary of Dryer Drain Path Parameters for TRANFLO D4 Model Length K UA K/A2 Hyd dia calc hyd Junction Segment Area 0 0.013732 01 12.83 12.83369 l 23 1 129.35 1.77625 l 1.5 0 1.080692 01 0.5025 1.329423 2 1.388 0 0.1 O! 2.45 2.52321 3 5 0.5

'T ~~

i Di 0.049696 Oi 11.02 9.76844 24 1 74.94 3.7242 g t'. .i'3732 01 12.83 12.83369 2 129.35 1.77625 40 0.002061 E0012411 0.0417 15.1199

-25 1 179.54 0.37' 0.5 0.058671 0.000124 11.02 8.99127 l 2 63.49 3.720 3.7242 0 0.182917 0 0.6767 5.091635 26 1 20.36 8.1925 0.5 4.053486 0.122404 1.6042 1.604214 2 2.0211 0.5 4.053486 0.122404 1.6042 1.604214 27 1 2.0211 8.1925 0 0.031334 0 4.51 12.69102 2 126.49 3.9635 3.935 0 0.031107 0 4.51 12.69152 64/34 1 126.5 0 2.756904 0 0.3442 2.702451 2 5.7356 15.8125 15.8125 0.5 2.756904 0.015199 0.3442 2.702451 36/35 1 5.7356 1.1068 0 0.354926 0 0.1234 1.992665 2 3.1184 15.53965 0.261371 Totals i

f Page 3

Sheet 6 Summary of Dryer Drain Path Parameters for RELAPSM2 Model Length K UA K/A2 hyd Volume Area 1.5 0 1.080692 Oi 0.5025 107 1.388

_ l 0 0.117341 01 11.02 1051 63.49 7.45 0 0.035935 Ol 12.83 1052 98.79 3.55 i

0 0.004131 01 0.0417 124 171.4 0.708 2.0211 0.5 0.122404)

, 124-250 63.49 5.502 0.0013651 124 105 l 0 8.188515 01 250 2.02 16.5408 1

0 0.001983 01 0 111 111.07 0.2202 2.02 0 0.5 0 0.1225371 j250-111 01 5.7356 0 111 112 1 0 0.490295 01 0.3442 1121 5.74 2.814292 0 0.17439 01 0.3442 1122 5.74 1.001 0 1.144623 01 0.3442 1123 5.74 6.570134 0 1.809134 01 0.3442 1124 5.74 10.38443 0 1.809134 01 0.3442 1125 5.74 10.38443 I

i 56.45 0.5 0 0.008857 01 100 5.7356 0 0.5 0 0.015199 112-100

~

l i

i l

l l

14.86503 0.261504l Totals i

I Note: K for 112 does not include crossflow resistance term Page 6

Sh31t4 Summary of Deck plate drain Path Parameters forTRANFLO D4 Model Length K UA K/A2 Hyd dia calc hyd Junction Segment Area 1.77625 0 0.013732 0 12.83 12.83369 23 1 129.35 1.5 0 1.080692 0 0.5025 1.329423 2 1.388 5 0.5 0 0.1 0 2.45 2.52321 3

0 0.049696 0 11.02 9.76844 24 1 74.94 3.7242 0 0.013732- 0 12.83 12.83369 2 129.35 1.77625 40 0.002061 0.001241 0.0417 15.1199 25 1 179.54 0.37 0.5 0.058671 0.000124 11.02 8.99127 2 63.49 3.725 3.725 0.5 0.05265 9.99E-05 3.92 9.491429 28 1 70.75 0 0.002061 0 0.0417 15.1199 2 179.54 0.37 1.1146 0 0.007301 0 14.04 13.94265_

29 1 152.67 0 0.048624 0 4.07 9.949257 2 77.74 3.78 0 0.007709- 0 14.04 13.94265 62 1 152.67 1.177 1.7 0.008573 0.031988 0.1667 3.046717 2 7.29 0.0625 2.9167 0 0.028026 0 3.1026 11.51148 3 104.07 2.9167 0 0.028026 0 3.1026 11.51148 33 1 104.07 1.28 0.002239 0.001643 0.8333 5 9614 2 27.91 0.0625 3.9635 0 0.031334 0 4.51 12.69102 3 126.49 0 0.031107 0 4.51 12.69152 64/34 1 126.5 3.935 15.8125 0 2.756904 0 0.3442 2.702451 2 5.7356 15.8125 0.5 2.756904 0.015105 0.3442 2.702451 36/35 1 5.7356 1.1068 0 0.354926 0 0.1234 1.992665 2 3.1184 Totals 7.434969) 0.050295 a

J Page 4

.,.44 Shnt7 Summary of Deck plate Drain Parameters for RELAPSM2 Model Length K UA K/A2 hyd Volume Area 1.5 0 1.080692 0 0.5025 107 1.388 7.45 0 0.117341 01 11.02 1051 63.49 3.55 0 0.035935 0l 12.83 1052 98.79 1

0.708 0 0.004131 01 0.0417 124 171.4 70.75 0.5 9.99E-05 124-104 63.49 5.502 0.001365 124-105 7.45 0 0.1053 0 104 70.75 2.35 0 0.01553 0 14 34 103 151.32 11.49 7.29 '. 7 7 0.634465 0.013407 J103-110 0 77.74 0 103-104 0 0 127457 0 0 110 111.07 14.1567 4

0 0.001983 0 0 111 111.07 0.2202 0 0 0 0 J110-111 111.07 0 0

?

111-112 5.7356 0 0.490295 0 0.3442 1121 5.74 2.814292 3

1.001 0 0.17439 0 0.3442 1122 5.74 6.570134 0 1.144623 0 0.3442 1 1123 5.74 0 1.809134 0 0.3442 1124 5.74 10.38443 0 1.809134 0 0.3442 1125 5.74 10.38443 0.5 0 0.008857 0 100 56.45 5.7356 0 0.5 0 0.015199 112 100 Totals 7.559267 0.030071 Page 7

Sheet 5 Summary of Separator drain Path Parameters for TRANFLO D4 Model Length K L/A- K/A2 Hyd dia calc hyd Juncticn Segment Area 0 0.013732 0 12.83 12.83369 23 1 129.35 1.77625 0 1.080692 0 0.5025 1.329423 2 1.388 1.5 0 0.1 0 2.45 2.52321

-3 5 0.5 0 0.049696 0 11.02 9.76644  ;

24 1 74.04 3.7242 0 0.013732 0 12.83 12.83369 2 12).35 1.77625 40 0.002061 0.001241 0.0417 15.1199 25 1 179.54 0.37 0.5 0.058671 0.000124 11.02 8.99127 2 63.49 3.725 3.725 0.5 0.05265 9.99E 05 3.92 9.491429 28 .1 70.75

-0 0.002061 0 0.0417 15.1199 2 179.54 0.37 0 0.007301 0 14.04 13.94265 29 1 152.67 1.1146 0 0.048624 0 4.07 9.949257 2 77.74 3.78 ,

0.025528 0 1.625 5.629643 30 1 24.89 0.6354 0.25 0.86 0.021758 0.006514 1.1042 3.824973 2 11.49 1.1146 0 0.007301 0 14.04 13.94265 3 152.67 0.028039 0 1.625 5.629643 31 1 24.89 0.6979 2.9167 0.5 0.147457 0.001278 0.5417 5.018588 2 19.78 0.5 0.147457 0.001278 0.5417 5.018588 32 1 19.78 2.9167 0 0.028026 0 3.1026 11.51148 2 104.07 2.9167 0 0.028026 0 3.1026 11.51148 33 1 104.07 2.9167 1.28 0.002239 0.001643 0.8333 5.9614 2 27.91 0.0625 0 0.031334 0 4.51 12.69102 3 126.49 3.9635 0 0.031107 0 4.51 12.69152 64/34 1 126.5 3.935 0 2.756904 0 0.3442 2.702451 2 5.7356 15.8125 15.8125 0.5 2.756904 0.015199 0.3442 2.702451 36/35 1 5.7356 1.1068 0 0.354926 0 0.1234 1.992665 2 3.1184 7.796226 0.027377 Totals i

l l

l 1

Page5

_. _._m._ e .-., , e.. .- . . - = , - - . , . -. --.e .. m -- 4=- , , - - - .

m

Sheet 8 Summary of Separator Drain path Parameter for RELAP5M2 Model Area Length K UA K/A2 hyd Volume 1.388 1.5 0 1.080692 01 0.5025 107 i

7.45 Oi 0.117341 Oi 11.02 1051 63.49 3.55 01 0.035935 Ol 12.83 1052 98.79 I i 171.4 0.708 oi 0.004131 ol 0.0417 124 70.75 0.51 9.99E-051 124 104 63.49 5.502 0.0013651 124-105 7.45 0 0.1053 0 104 70.75 2.35 0 0.01553 0j 14.04 103 151.32 11.49 0 0.86 0 0.0065141 J102103 01 77.74 l 0 103 104 1.625 102 25.8121 14.15671 0 0.548452 01 19.78 01 1 0 0.002556l J111-102 1 0' O.001983 0I O 111 111.07 0.2202 111.07 0 0 0 0l

=

J110-111 Ol 5.7356 0 111-112 i

Oi 0.490295 0j 0.3442 1121 5.74 2.814292 5.74 1.001 01 0.17439 0' O.3442 1122 5.74 6.570134 0 1.144623 0 0.3442 1123 5.74 10.38443 0 1.809134 0 0.3442 1124 5.74 10.38443 0 1.809134 0 0.3442 1125 56.45 0.5 0 0.008857 0 100 5.7356 01 0.5 0 0.0151991 112 100 1

4 I

I I i

I I

Totals I 7.345797) 0.025734 I I I I

l l

Page 8

i Sheet 9 4

Summary of Principal Path through tube sheets for TRANFLO D4 Model Length K UA K/A2 Hyd dia calc hyd Junction Segment Area 0.25 j 01 0.008857396 Oi 0.1234 5.994947 46 1 28.225l j 1.251 0.009691726 0.0300574541 0.0093 2.865549 2 6.44881 0.06251 01 0.043682796 01 0.1234 5.960332 j

3 27.9i 1.21875 I

i 6

i 01 0.043682796 Oi 0.1234 5.960332 45 1 27.91 1.218751 1

1.11 0.0077654221 0.016980981i 0.0417 3.201296 j 2 8.0485) 0.0625 01 0.052643369i 0 0.1234 5.960332 3 27.91 1.46875 i f 01 0.052643369 0 0.1234 5.960332 44 1 27.91 1.468751 1.11 0.007765422 0.016980981 0.0417 3.201296 j 2 8.0485! 0.0625) 27.9j 1.46875 Oi 0.052643369 0 0.1234 5.%0332 j 3 I i 01 0.052643369 0 0.1234 5.960332 43 1 27.9) 1.46875 3.16594 1.131 0.007939835 0.018236495 0.0417 2 7.8717) 0.0625) 0.1234 5.960332 Ol 0.063096774 0I 3 27.91 1.7604i 1

01 0.063096774 0 0.1234 5.960332 42 1 27.9 1.7604 1.21 0.008878093 0.024213669 0.0417 2.993978 2 7.03981 0.0625) l Oi 0.062315044 0 0.1234 5.997601 3 28.25l 1.7604I i i I 01 0.03118512 0 0.1234 8.478135 41 1 56.45) 1.7604) 1.08l 0.003694967 0.003774721 0.0417 4.640909 2 16.91491 0.06251 01 0.03118512 0 0.1234 8.478135 I 3 56.451 1.7604l I

I 01 0.03118512 0 0.1234 8.478135 40 1 56.45) 1.7604 1.081 0.003676557 0.0037372 0.0417 4.652514 2 16.99961 0.0625 0l 0.03118512 0 0.1234 8.478135 3 56.45 1.7604 l

01 0.03118512 0 0.1234 8.478135 39 1 56.45 1.7604 1.081 0.003676557I 0.0037372 0.0417 4.652514 2 16.9996 0.0625 Ol 0.116790327 0 0.1234 6.807057 3 36.39 4.25 I I I

f I

l I l I

l Totals j I i0.821109561l0.117718703i l l l

} l l Page 9 d

-. m - - -

Sh2et10 Summary of Tube Sheet Path Parameters for RELAP5M3 Model Length K UA K/A2 hyd Volume Area 0.5 0 0.008857 0 0.1234 100 56.45 0 23.39 0 0.030048 0 J 100-121 27.9 1

0.4 0 0.014337 0 0.1234 121 27.9 0

121-122 27.9 1.837 0.065842 0.1234 122 27.9 0 l 0 J123 27.9 0.2 0 0.007168 0 0.1234 1011 27.9 0.2 0 0.007168 0 0.1234 1012 27.9 l 2.6 0 0.09319 0 0.1234 1013 27.9 0.2 0 0.0071681 0 0.1234 1014 27.9 '!

0.2 0 0.007168 0 0.1234 1015 27.9 27,9 2.6 0 0.09319 0 0.1234 1016 0 0.1234 27.9 0.2 0 0.007168 1017 0.1234 l 0.2 0 0.007168 0 1018 27.9 1 0 0.114097 0 0.1234 1019 27.9 3.1833 27,9 0.2 0 0.007168 0 0.1234 l 10110 0 13.218 0 0.016981 0.1234 27.9 J1 0 13.218 0 0.016981 0.1234 27.9 14 0 14.2 0 0.018242 0.1234 27.9 J7 0.2 0 0.003543 0 0.1234 134 56.45 27.9 0 18.85 0 0.024216 J101-134 0 55.25 0 134 135 3.12 0 0.05527 0 0.1234 1351 56.45 0.2 0 0.003543 0 0.1234 1352 56.45 0.2 0 0.003543 0 0.1234 1353 56.45 3.1833 0 0.056382 0 0.1234 1354 56.46 0.2 0 0.003543 0 0.1234 1355 56.45 0.2 0 0.003543 0 0.1234 1356 56.45 0 0.052671 0 0.1234 1357 56.45 2.9733 0.21 0 0.00372 0 0.1234 1358 56.45 0.21 0 0.003801 0 0.1234 1359 55.25 8.1566 0 0.147631 0 0.1234 13510 55.25 0 11.909 0 0.003737 0.1234 J2 56.45 0 11.909 0 0.003737 0.1234 JS 56.45 0 11.408 0 0.003737 0.1234 JB 55.25 0.776882) 0.11768 Totals l l l

Page 10

1 Cilcul; tion cf Crossflow Resistanc3 Tstm  ;

The crossflow resistance of the ' tube bundia needs t) be acccunted f:r, particularly at the U-bend portion of the tubes. This will be handled by calculating a K valus to be added t) the separat:r inlet loss coefficient, using a correlation t'y Zukauskas obtained from p390 of " Nuclear Systems l'

' Kaziml/Todreas. The values for crossflow length and area are taken from the TRANFLO output previously provided.-

g := 32.2 p := 45.5 Density of fluid 4 viscosity of satliq at 1000 psi p := 19.710 g D := .1234 hydraulic dia from TRANFLO INPUT O:= Mass flux from TRANFLO Output at .57 sec 36.39 S = 1.416 Tube lattice aspect pitch over dia S := .08

(-

(12; Reynolds number needed to obtain f Re:=OE Re = 5.88 10 5

H f := 0.24 f-factor from figure l

Z := 1 square lattice, no Z correction 4 number of rows of tubes, estimate by crossflowjunction length / pitch N 1 25

.0885 2

DP := f 0 Z DP at estimated flow 2 pl44 g DP = 2.4%

At a flow of 11000 lb/see the expected dp is about 2.5 psi. This compares with the TRANFLO generated dp of 2.84 at .57 seconds. Now need to convert this dp into a K value to be added to the separator inlet.

A9 := 22.01 2

DP.A g 144 g 2 p W2 K = 4.216 This is added to the losses associated with the junction between 102 and 135-5.

n

1 Similarly f r the cntranca 12 the tube bundia g := 32.2 p : = 45.5 I

P := 19.7 10' 7.g ,

l D := .1234 0 = 2@

1.S$9 8

Re := O E Re = 3.244 10 P

885 S = 1.416 S := ,f.751 2i f := 0.24 l I

Z := 1 i N:=1.107

.0885 O2 j

I DP := -Z 2p 144 g DP = 19.788 l

At a flow of 2600 lb/see the expected dp is about 19.7 psi. This compares with the TRANFLO generated dp of 18 at .57 seconds. Now need to convert this dp into a K value to be added to the downcomerinlet.

l e5,7356 Ain i

W .= 2600 DP Ain 144 g 2 p  !

1 K := -

K = 40.633

..This is being added to the junction between the downcomer and the entrance regions to the tube region 112 5 to 100.

Similarly f:t connictor 52 g := 32.2 p := 45.5 4

p :: 19.7 10. g D ::.1234 80 0::

4.2478 i

8 Re::0E Re = 3.801 10 8

r S: .0885 S = 1.416

!.75i 1- l (12j 4

(:= 0.24 4.0729 N':

.0835 Z :: 1 DP := '#0 -Z 2 p l44.g DP =0.999 At a tiow of 830 lb/see the expected dp is about 1 psi. This compares with the TRANFLO generated dp of 1.038 at .57 seconds. Now need to convert this dp into a K value to be added to the preheater junctions.

A n t 42478 W ,=830' DP Ain'I44'8'2'P K := - .

W' K = ll.045 This value will be used for connector 56 as well as connector 54/58 due to similarity.In the RELAP model these junctions are in volume 133 and the entrance to 133.

PSAO9517 Revision 0 Appendix D Base Model Listing l

l l

l 29 of 29

Oct 11 16:15 1995 rrunnert/nfs/sa/nfskr/btspload/westm3 hem Page 1 metend alone steam generator model for d4 sg

  • hot standby equilibrium models used/inel guidance used on tsp models
    • c@A**********************************************
  • thic deck is based on westinghouse tranflow d4 *
  • modal used for tube support plate dp calculation *

< 600c***********************************************

  • this model contains more detail in dome area

.eeee************************************************

o

  • this data is contained in
  • nfskr.relap5.westm3 hem *
  • includes two more small nodes at all tsps 1
  • models upper dome with explicit w volumes *
  • includes .2 ft slabs for tsp dp calc *
  • includes crossflow resistances j deece***a******************************************

100 new transnt ,

l e

102 british british 105

@@$494*****************************************

  • ------- time step cards e
  • end dtmin dtmax opt min maj rstrt 201 1.0 1.d-7 0.0001 3 5 4000 2500 202 2.0 1.d-7 0.0005 3 2 4000 2500 203 10.5 1.d-7 0.001 3 5 4000 2500 e
  • --------- minor edit variables e

4

  • variable code parameter location 301 cntrivar 2 *a 302 cntrlvar 3*c 303 cntrlvar 4 *f 304 cntrlvar 5 *j 305 cntrlvar 6* 1 306 cntrlvar 7*m 307 cntrlvar 8*n 308 cntrlvar 9 *p
    • @ee***************************************

8----------- trip input data e

  • veriable trip cards
  • variable param relation variable param cons latch 501 time 0 ge null 0 1. 1 502 time 0 ge null 0 .01 1 0 ge null 0 100. 1 503 time Cm==============================mammmmmmmmmmmmmmmannan======

Oct 11 16:15 1995 rrunner:/nfs/sa/nfskr/btspload/westm3 hem Page 2

  • trip identifier I
  • f
  • 501 => problem stop I
  • trip stop advancement card
  • trp no.

600 501

  • ----------- hydrodynamic components
  • primary side model f
  • plenums and tubes modelled explicitly f
  • hot leg and cold leg represented by tdvsf
  • m============================

0420000 inplen tmdpvol ,

  • 3
  • flowa 1 vol azi incl dz rough hyd pvbfe 5.2183 147.64 0.0 0.0 0.0 0.0 0.0 00000 0420101 0.0 00000 0420101 0.0 5.2183 5000. 0.0 0.0 0.0 0.0 0.0 l
  • ebt 0420200 3
  • time press temp 0420201 0.0 2250.00 557.000 0420202 1.0e6 2250.00 557.000
  • m============================

0470000 outplen tmdpvol

  • flowa 1 vol azi incl dz rough hyd pvbfe 0470101 0.0 5.2183 147.64 0.0 0.0 0.0 0.0 0.0 00000 0470101 0.0 5.2183 5000. 0.0 0.0 0.0 0.0 0.0 00000
  • ebt 0470200 3 l
  • time press temp 0470201 0.0 2206.77 557.

0470202 1.0e6 2206.77 557.

  • m============================

1510000 tubes pipe

  • i ny-l 1510001 21

e flown nv 1510101 11'.0088 21 p.

L*/ length nv 1510301 .5625 1-a1510302 2.5 2 1510303 13.0 3 Oct"11 16:15 1995. rrunner:/nfs/sa/nfskr/btspload/westm3 hem Page 3 1510304 3.5833 8 1510305 -3.445 10 1510306. 3.5833 14-1510307' 1.5 19.

1510308 1.0 20' 1510309 .5625 21

  • volume nv 11510401 0.0 21
  • incline angle nv 1510601 90.0 8 1510602 90.0 9 10

)

1510603 -90.0 I 1510604 -90.0 21 I

  • - elev cng nv
  • 510701 1.7525 1
  • 510702 2.5 2

-*510703 3.0 3

  • 510704 3.5833 8

-*510705 3.445 9

'*5107062 -3.445 10  :

  • 510707 -3.5833 14 1 . *510708 -1.5 19 i *510709' -1.0 20
  • 5107101 .5625 21
  • rough hyd dia nv
1510801 0.0 .0553333 21 ,

t

  • pvbfe nv l 1511001 00000 21 j
  • i
  • ' . fvcahs nj 1511101 001000 9 1511102 '001000 10 1511103 001000 20
  • -flag p t dummy dummy dummy nv i 21 1511201 3 2250.0 557.0 0.0 0. O. i op l
  • flag =1.=>1(lbm/sec)-

~1511300 1 6

o lflow- vflow interface flow nj

1511301- 9763.12 0.0 0.0 20 0m===================================================

1500000- junct tmdpjun 6 1

-* from to area 1500101'042000000 151000000 1.0 e

e. flag 1500200' 1.

4 Oct 113 16:15 1995 rrunner:/nfs/sa/nfskr/btspload/westm3 hem Page 4

  • time lflow vflow intflow 1500201 10 . 0 9763.12. 0.0 0.0

-1500202 '1.0e6 9763.12- 0.0 0.0

  • m===================================================

1590000 junct sngljun

  • from to area fjunf fjunr fvcahs 1590101 151010000 047000000 9.823515 0.0 0.0 021000 e
  • flag iflow vflow intflow

-1590201 1 9763.12 0.0 0.0

  • m=======================m===========================

9 9.

'l e

e._________________________ ._______________  ;

  • cscondary side model i ,
  • 190% - 10% feed flow split f
  • - bound ends represented by time dependenti
  • junctions and tme dependent volumes f l 6..._______.______.._______________________.

O-l 6e===================================================

9020000 mnfeed tmdpvol-o-

  • - flowa flowl vol azi- inc1 dz rough hyd pvbfe 9020101: 0.0 31.1533 147.64 0.0 0.0 0.0 0.0 0.0 00000

--9020101 0.0 31.1533 5000. 0.0 0.0 0.0 0.0 0.0 00000

  • - ebt-
9020200 003 e:

e time press temp "9020201 0.01 1200.0' 435.0 9020202 1.0e6 1200.0 435.0

'C==================mmmmm=============================

3020000 fljun; tmdpjun C. '

O. Lfrom . . to .

ajun  !

30201011902000000 132000000 1.0

.o-

.' flag;

[*020200 3 1

-. o

'* ' time lflow vflow int flow 3020201 o0 . 0 0. 0.0 0.0

3020202 1.0e6 0. 0.0 0.0

@m============================mmm====================

1000000 l riser branch

  • nj flag 1000001 3 1

.o

  • .flowa flowl vol azi incl dz rough hyd pvbfe

'1000101 56.45 0.0 28.22 .0.0 90. .4999 .00015 .1234 00101 Oct 11 1<6:15 1995 rrunner:/nfs/sa/nfskr/btspload/westm3 hem Page 5 e

flag p x 1000200 2 1119.15 0.00 1000200 1 557.0 0.00

  • - from to ajun fjun fjunr fvcahs 1001101 112010000 100000000 5.7356 .50 .50 000000
  • cdd crossflow resistance 000000 1001101 112010000 100000000 5.7356 41.1 41.1 1002101 100010000 121000000 6.4488 1.25 1.25 010000 1003101 100010000 131000000 6.1798 1.28 1.28 010000 1002101 100010000 121000000 27.9 23.39 23.39 010000 1003101 100010000 131000000 28.225 26.7 26.7 010000

-e

  • Iflow vflow int flow 1001201 0.0- 0.0 0.0 i l

1002201 0.0 0.0 0.0 1003201 0.0 0.0 0.0

  • ccfl/ junction hyd diam info
  • - hyddia floodcorr gasint slope nj 1001110 .1234 0. 1. 1.
  • usa hyd of 112 for junc.1 since reverse flow dominates 1001110 .3442 0, 1. 1.

1002110 .1234 0, 1. 1.

1003110 .1234 0. 1, 1.

.o-1220000 slab snglvol e

' An flowa flowl- vol azi incl dz rough hyd pvbfe 1220101- 27.9 1.837 0.0- 0.0 90. 1.837 0.00015 0.1234 00101

'*- flag. p x i

~1220200. 001 '557. O.

coeeceeece 1230000' conn sngljun-e.

  • ' from to area 'fjunf fjunr 'fvcahs 0.0 010000 1230101 122010000 101000000 27.9 0.0 o
  • flag lflow- vflow int flow 1230201 1 0.0 0.0 0.0 o

hyddia- floodcorr gasint slope nj

.1230110 .1234 0. - 1. 1.

eeee**

1210000 riser 1 branch o

  • = nj Lflag 1210001 2 1 e
  • flowa- flowl vol azi-incl dz rough hyd pvbfe 68.01 0.0 90. 2.437 .00015 .1234 00101 1210101 27.9. 0.0 00101 1210101- 27.9 2.237 0.0 0.0 90. 2.237 .00015 .1234 1210101 27.9 .4 0.0 0.0 90. .4 .00015 .1234 00101 e
  • flag p- x-1210200 2 1118.67 . 0.00 l

{

l Oct 11 16:15 1995 rrunner:/nfs/sa/nfskr/btspload/westm3 hem Page 6 1210200 1 557.0 0.00 so-

  • from to ajun fjun fjunr fvcahs 1212101 121010000 101000000 8.0485 1.1 1.1 010000

'1212101 121010000 101000000 27.9 13.218 13.218 010000 11212101 121010000 122000000 27.9 0.0 0.0 010000 1211101 131000000 121000000 2.7297 .38 0.34 010000

.e.

  • Iflow vflow int flow 1211201- 0.0 0.0 0.0 1212201 _ _ 0. 0 0.0 0.0 f .-'*'*ccfl/ junction hyd diam hyddia info floodcorr gasint slope nj 1211110 .1234 0. 1. 1.

1212110 .1234' O. 1. 1.

e 1310000 riser 2 branch e-

=* nj flag; 1310001 0 1- i

er

'*- flowa flowl vol azi incl dz rough hyd pvbfe c1310101- 28.225 0.0 26.46 0.0 90. 0.937 .00015 0.1234 00101 i I

e

  • - ' flag ;p- x

.1310200 2 1118.67 0.00

-1310200 1 .557.00 0.00 0

  • from to ajun fjun fjunr fveahs o

e' Iflow vflow int flow

  • ccf1/ junction hyd diam info

-* hyddia floodcorr gasint slope nj

  • 1311110 .1234 0. 1. 1.

em============================

1320000 riser 3 branch e

  • - nj flag 1320001 2 1
  • flowa flowl vol azi incl dz rough hyd- pvbfe 1320101 27.9 0.0 40.11 0.0 90. 1.437 .00015 0.1234 00101 0

'* flag p ac 1320200 2 1118.67 0.00

.1320200 l' 557.00 0.00 from to ajun fjun fjunr fvcahs 0.7975 010000

~1321101"132000000 131010000 1.80 1.80

'1322101-132010000 133000000 4.42 6.18 6.18 010000 1322101-132010000 133000000 26.3462 219.6 219.6 01000 e

  • Iflow vflow int flow 1321201 0.0 0.0 0.0 1322201 0.0 0.0 0.0
  • ccfl/ junction hyd diam inf-Oct 11 16:15 1995 rrunner:/nfs/sa/nfskr/btspload/westm3 hem Page 7

~* hyddia floodcorr gasint slope nj

, 1321110 .00175 O. 1. 1.

-1322110 .1234 0. 1. 1.

0mmmmmmmmmmmmmmmmmmmmmmmmmmmmm

  • m============================-

.1340000 uprsr branch 9

  • nj flag 1340001 3 1
  • . flowa flowl vol azi incl dz rough hyd pvbfe 1340101: ^56.45 0.0 0.0 0.0 90. 3.52 .00015 0.1234 00101 1340101 -56.45 0.2 0.0 0.0 90. .2 .00015 0.1234 00101

.c flag- p x 1340200 2 .1114.68- 0.00-1340200 1 557.00 0.00 e

16 from to ajun fjun fjunr fvcahs

, _ . ._ . _ . ~ _ _ . . __._ .. _ _ -. _ _. . ._

)

1341101 101010000 134000000 7.0398 1.20 1.20 010000 1342101 133010000 134000000 7.0398 1.2 1.2 010000 1343101 134010000 135000000 16.9149 1.08 1.08 010000

-1341101 101010000 134000000 27.9 18.85 18.85' 010000 1342101 133010000 134000000 27.9 18.85 18.85 010000 1343101 134010000: 135000000 55.25 11.408 11.408 010000

'1343101 134010000 135000000 55.25 0. 0.0 010000 e.

  • . Iflow- vflow intiflow 1341201 0 .' O 0.0 0.0

.1342201 0.0 0.0 0.0 1343201- '0.0 . 0. 0 0.0

  • ccfl/ junction hyd diam info nj
  • . hyddia .floodcorr gasint slope 1341110 .1234 0. 1. 1.
1342110 .1234 0. 1. 1.

1343110 .1234 0, 1. 1.

  • m============================-

'1010000- boil 2-5 pipe

-6

  • nv

.1010001: 10

  • flowa nv-1010101 27.9 10
  • jarea nj 1010201 8.0485 1 1010202 7.8717 2 1010201 27.9 1 1010202 27.9 9 l
  • length nv l 1010's01- 3.0 2 l 1010302 3.5833 3

)

L1010301 .2 2 Oct : 11 :16 :15 ' 1995 rrunner:/nfs/sa/nfskr/btspload/westm3 hem Page 8 1010302~ 2.6 3

'1010303 .2 5 1010304 .2. 6 6 1010305 .2- 8

'1010306 3.1833 9 1010307- .2- 10 6

o -

volume nv-1010401 0.0- 10 incline angle' nv

.1010601- '90.O, .10 e.

4l. .

OlGv.cng nv

  • 1010701 3.0- 2 01010702 .3.5833 3 6
  • rough hyd dia nv 1010801 .00015 0.1234 10
  • . fjunf fjunr nj 1010901- 13.218 13'218

. 1-

-1010902 0, 0.- 3 1010903 '13.218 13.218 4

<1010904 -0.. O. -6 1010905 14.2 14.2 7 '

1010906~ 0. -0.' 9' e.

  • -pvbfe nv 1011001 00101- 10
  • 'fvcahs nj 1011101 000000 9-flag p x dummy dummy dummy nv 1011201 2 1117.80 .0 0. O. O. 1 1011202 2 1116.85 .0 0. O. O. 2 1011203 2 1115.81 .0 0. O. O. 3 1011201 1 557.00 .0- 0. O. O. 1 1011202 1- 557.00 .0 0. O. O. 2 1011203 1 557.00 .0 0. O. O. 10
  • flagmo => (lbm/sec)

-1011300. 1-

  • Iflow vflow interface flow nj 1011301 0.0 0.0 0.0 9 e
  • ccf1/ junction hyd diam info
  • hyddia floodcorr gasint slope nj 1011401 .1234 0. 1. 1. 9

-@mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmma emmmmmmmmmmmmmmmmmmmmmmmmmmmma 1330000 prheat pipe

~*

Oct 11 16:15 1995 rrunner:/nfs/sa/nfskr/btspl'oad/westm3 hem Page 9 L*- nv J1330001' 5

o.
  • ' 'flowa nv
.1330101- 26.3462
3 J1330101- 27.9 5

.e:

o .

jera: nj; 1330201- 14.2478 1

1330202
4.2478 2 1330203 4.2478l 3 1330204- 7.0398- 4 ,

1330204 27.9 4 ocdd bypass area to flow path

  • 1330201 >l 4.9938:
  • 1330202-- 4.9938 2
  • 1330203 4.9938~ 3 01330204 7.0398 4 6: . length _ nv 1330301 :1.5 '4 1330302 13.5833 5 1330302- -3.6463 5 e
  • - volume nv.

1330401 0.0 5

e.

6 .

inclinelangle nv.

1330601- =90.0 5 o

  • .. elev cng . nv .-

1330701 .1.5- 4

-1330702 3.5833 5 1330702 3.6463 5

-o rough hyd dia nv 1330801 .00015 0.1234 5 j

  • fjunf fjunr nj 1330901 '9.16 9.16 1

'1330902 5.92 5.92 2 1330903 5.48 5.48 3 1330904 1.2 1.2 4 ,

~*cdd crossflow resistance of 11 to first 3 junctions 1330901 20.16 20.16 1 l 2 l 1330902 16.92 16.92 1330903 16.48 16.48 3 1330904 18.85 18.85 4

  • ' pvbfe nv 1331001: 00101 5
  • fvcahs'nj 1 1331101 000000 4 l 9~
  • = flag p' x dummy dummy dummy nv Oct 11 16':15 1995 rrunner:/nfs/sa/nfskr/btspload/westm3 hem Page 10 ,

?1331201 '2 ~1118.04 .0 0. O. O. 1

.1331202 2 1117.56 .0 0. .0. O. 2-1331203 2. 1117.09 .0 0. O. O. 3 .

I 1331204 2 1116.62- .0 .0. O. O. 4 1331205 -2 1115.81 .0 0 '. O. O. 5 1 1331201 1 -557.00 .0 0. O. O. 1 l1331202 1 557.00 .0 0. O. 0.. 2 l

.0.

1

~1331203

.1 557.00- .0 0. O. 3 I

1331204 1 557.00 .0 0. -0. O. 4 1331205 1 557.00 .0 0.. O. O. 5 l e '

flag =0 => (1bm/sec) 1331300 1.

  • - I
  • ' . Iflow. vflow . interface flow nj  ;

'1331301 0.0 0.0 0.0 4

  • ccf1/ junction hyd diam info
  • hyddia floodcorr gasint. slope. nj -

1331401 .1234 0. 1. 1. 4

  • m===================================================

1350000 upriser-pipe 6

  • nv 1350001_: 10- l e  !
  • flowa nv ,

1350101 546 . 4 5 -8 j 1350102- -55.25 10 e H

  • . jarea nj 1350201 16.9996 1

'1350201 56.45 7 1350202 55.25 9

'*1350202 55.25 2

-81350203 16.9996 3

  • 1350204 '55.25 4

.o

  • length nv (1330301 3.12 1 1350302 .2 2 1350303 .2 3

, 1350304 3.1833 4 1350305 .2 6

-1350306 2.9733 7 1 1350307 .21 9

  • 1350302 2.9733 2
  • 1350303 .31 4
1350308 .8.1566 10

-e.

  • volume- nv 1350401. 0.0 10-e o incline angle nv 4 1350601 90.0 10

.0-I f

I h

___I_____.____e_im. _ _ _ _ - sr

Oct 11 16':15-1995 rrunner:/nfs/sa/nfskr/btspload/westm3 hem Page 11 elev cng nv

  • 1350701 3.5833 2

~*1350702 8.1666 3

, e-L* . rough hyd dia nv 1350801 .00015 0.1234 10 4

e-

  • . f j unf . fjunr nj 1350901 0.0 0.0 1 1350902' 11.408 11.408 2-

<- 1350902 11.909 11.909 2 1350903 .0 .0 4 1350904 11.408 11.408 5 ]

1350904- 11.909- 11.909 5 1350905 .0 .0 7 1350906- 11.408 11.408 8 ,

1350907 .0 .0 9

  • toct sensitivity of loss coeff at P TSP ,
*1350906 12.5488- 12.5488 8 *10% high l
  • 1350906 10.2672 10.2672 8 *10% low  ;

I r 1 pvbfe nv 1351001 00101 10 e i fvcahs nj 1351101 000000 1 1351102 .000000.2 1

, -1351103 000000 3 l 1351104 000000 9 1 e l

  • ' flag p x dummy dummy dummy nv 1113.55 .0 0. O. O. 1 1351201 2 1351202 2 1112.42 .0 0. O. O. 2 1351203 2 1110.59 .0 0. O. O. 3 ,

1351203 2 1110.59 1.0 0. O. O. 3 l 1351201 1 557.00 .0 0. O. O. 1

~

1351202 1 557.00 .0 0. O. O. 2 1351203- 1 557.00 .0 0. O. O. 10 1*1351203 1 557.00 1.0 0. O. O. 3

  • flag =0 => (1bm/sec) 1351300 1 I lflow vflow interface flow nj j 1351301 0.0 0.0 0.0 9
  • ccfl/ junction hyd diam info hyddia - floodcorr gasint slope ~ nj 1351401 .1234 0. 1. 1. 9
  • m===================================================

1020000 sep separatr ,

  • nj flag 1020001 3 1 e

-. . - ~

flown' flowl- .vol azi incl- dz rough hyd pvbfe

-Oct 11 16: 15 1995 .rrunner:/nfs/sa/nfskr/btspload/westm3 hem Page 12

'1020101 0.0 14.1567 365.4148 0.0 90. 14.1567 .00015 1.625 00010

-o:

  • flag p _ uf- ug vg 1020200 2 1107.31 .227 1020200- 2 1107.31 1.0 1020200- 1 557.00 1.0
  • 1020200 1 557.00 .3494 1020200 1 557.00 .03
  • 1020200 1- 557.00 .015
  • from to ajun fjun fjunr fvcahs vflim 1021101 102010000 103000000 22.01 13.9 13.90 000000 1022101L102000000 111000000 19.78 0.5 0.5 000000 1023101 135010000 102000000 24.8873 0.5 1.0 000000
  • recrrange losses 1021101 102010000 103000000 11.49 0.86 0.86 000000
1022101 102000000 111000000 19.78 1.0 1.0 000000

~1023101 135010000 102000000 22.01 13.9 13.9 000000

  • add-crossflow resistance term 000000 1023101 135010000 102000000 22.01 18.12 18.12
  • concitivity values of vover/vunder
  • 1021101 102010000 103000000 11.49 0.86 0.86 000000 0.5
  • 1022101'102000000 111000000 19,78 1.0 1.0 000000 .45
  • Iflow vflow int flow
1021201- 0.0 0.0 0.0 1022201 0.0 0.0 0.0 1023201. 0.0 0.0 0.0
  • ccfl/ junction hyd diam info
  • ' hyddia floodcorr gasint slope nj

'*10:1110 1.625 O. 1, 1.

-

  • m m aa m m m m m m m m m m m u n a m m m m m m m m m mm m m a = = = = = = = = = = = = = = = = = = = =

', 1030000 dome branch

  • - nj flag i 1030001 2 1 l
  • flowa flowl vol azi incl dz rough hyd pvbfe l 1030101 123.051 5. 0.0 0.0 90. 5. .00015 1.625 00000
1030101,_123.051 5. 0.0 0.0 90. 5. .00015 0.0 00000 1030101 151.32 0. 356.23 0.0 90. 2.35415 .00015 14.04 01000 Le flag p uf ug vg

.1030200. '2 1107.31 1.0 1030200 1 557.00 1.0

  • from to ajun fjun fjunr fvcahs vflim i 010000 10311011103000000- 110010000 7.29 1.77 1.77 J' 1032101 103010000 -104000000 77.74 0. O. 010000

E01033101 103000000 110010000 19.78 0.5 0.5 010000

o ,

o lflow vflow int flow

-1031201 0.0 0.0 0.0 1032201 0.0 0. 0- 0.0

'*1033201- 0.0 0.0 0.0'

'*ccfl/ junction hyd diam info l

l Oct 11'16:15 1995 rrunner:/nfs/sa/nfskr/btspload/westm3 hem Page 13 nj

  • hyddia .floodcorr gasint slope 1031110 3.05. O. 1. 1.

.1032110 4.07 0. 1. 1.

0mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmma 1040000' udc snglvol o

  • flowa flowl vol azi.inc1 dz rough hyd pvbfe 1040101 70.75 0.0 527.08 0.0 0. ~0.0 0.00015 4.07 01000 e
  • flag p x

.1040200 '001 557. 1.0 1 enemmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmme=====

2500000 dryerdrn snglvol e-o flowa flowl vol azi incl dz rough hyd pvbfe 16.5108 0.0 0.0 -90. -16.5108 0.00015 0.0 00000 2500101 2.02 to

  • flag p x z2500200 001- 557. .025 eooo********

1240000 dryer branch e

  • nj flag 1240001 3 1
  • flowa flowl vol azi incl dz rough hyd pvbfe

'1240101 171.4 0. 121.41 0.0 00. 0.0 .00015 .0417 01000 e

  • - flag p uf ug vg 1240200- 1 557.00 1.0

.e.

  • - from to ajun fjun fjunr fvcahs vflim

-1241101:104010000 124000000 70.75 .5 .5 030000

'1242101 124010000 105000000 63.49 5.502 5.502 030000 12431011250000000 124000000' 2.0211 0.5 0.5 010000

'* 'lflow vflow int flow 12412011 0.0 0.0 0.0

,1242201 0 '. 0 0.0 0.0 12432011 . 0. 0 0.0 0.0 1*ccfl/ junction hyd' diam info

  • c .

'hyddia floodcorr- gasint slope nj 1241110' .0417 0.- 1, 1.

l

a m .. .. . . . . . . . .. - .. ...

r! -

~

.1242110. 11.02' O. 1. 1.

1243110- 1.604 0. 1. 1.

oeone***************************

c 1050000 dome pipe

  • nv i

1050001 2 a

j e flowa nv 1050101- 63.49 1 1050102 98.79 2 t

  • L jarea nj i

i 0ct 11 16:15 1995 rrunner:/nfs/sa/nfskr/btspload/westm3 hem Page 14 i

1050201L 74.94 1

~

! *' length- nv

.10503.' O. 2

  • . volume nv
1050401 473.0 1 1050402 350.7- 2 e
  • incline angle nv

~ 1050601 00.0 1 1050602 90.0 2 2 A

  • rough hyd dia nv 10'J u801 .00015 11.02 1 l 10'30802 .00015 12.83 2
  • fjunf fjunr nj 1050901 .0 .00 1
  • pvbfe nv  ;

1051001 00006 2

  • tect effect of vertical stratification in dome 1051001 01000 2 j
  • fvcahs nj

-1051101 000000 1 flag p. x dummy dummy dummy nv l 1051201 'l 557.00 11 . 0 0. O. O. 2 e.

  • ! flag =0 => (lbm/sec) 1051300. 1 e.
  • - -lflow vflow- interface flow nj 1 . . ....

0.0J 0.0 11

-105i301 0.0-

' le-o ccfl/ junction hyd. diam info e ', hyddia floodcorr gasint slope nj 1051401' 12.83 0.. 1. 1. 1

@m===================================================

~@====================================================

600e******

1060000 nozzle sngljun 8- from to area fjunf fjunr .fvcahs

1060101 105010000 107000000 1.388 0.0 0.0 010100

'*1960101 105010000 107000000 1.5268 0.0 0.0- 010100

  • 10% increase i- *1060101'105010000 107000000 1.6656 0.0' O.0 010100
  • 20% increase
  • flag- 1 flow vflow int flow 1060201 1 0.0 0.0- 0.0

-**eoo**

1070000 nozzle.snglvol 4

7 i f0ct 11.16:15 1995 rrunner:/nfs/sa/nfskr/btspload/westm3 hem Page 15

  • ' _flowa flowl vol azi incl dz rough-hyd pvbfe 1070101 1.388 1.5 0.0 0.0 90. 1.5 .00015 0.5025- 00000

' hange flow area of flow limiter to chech effects ci choked flow increase A070101 1.5268 1.5 0.0 0.0 90. 1.5 .00015 0.5025 00000 *10%

  • 1070101 1.6656 1.5 0.0 0.0 90. 1.5 .00015 0.5025 00000 *20% j
  • ~ ilag p x 1070200 002 1106. 1.0  ;

1070200 001 557. 1.0

  1. =======================================.uue=========

'3000000 break valve e

'* from to ajun l 3000101 107010000 900000000 1.388 0.0 0.0 00100

  • increase in flow limiter size for brk flow

.3000101.107010000

  • 900000000 1.5268 0.0 0.0 00100 *10%

'*3000101 107010000 900000000 1.6656 0.0 0.0 00100 *20%

e -
  • ' time lflow vflow intflow 3000201 l' O.0 0.0 e 0.0 3000300 mtrylv-

-3000301 502. 503 '1000. 0.0 83000301 502 503 2.0 0.0

@====e.m==============================================

9000s00 l break tmdpvol o' 1 ,

  • flowa ~flowl vol azi inc1 dz. rough hyd fe

'9000101L 0. 0- 31.1533 147.64 0.0 0.0 0.0. 0.0 0.0 00 9000101- 5.0 0.0- 9993. 0.0 0.0 0.0 0.0 0.0 00 o' i

Jo cbt 9000200 ' 002

~

.o  !

time ~ press .x- l 1.0-  !

z9000201- .0.0 14.7:

-l

.9000202: 1.0e6 1.4 7 1.0

'*m===================================================

11110000 udcl. branch e i nj flag-i 1110001 3 11 3

'*- flowa flowl vol azi incl. da rough hyd pvbfe  ;

L1110101'111.07 13.76 0.0 0.0 -90. -13.76 0.00015 0.0 00000

.2192 0.0 -90. .2192 0.00015 0.0 00000 1110101.111.07 0.0 00000 I 1110101 111'.07 .2202 0.0 0.0 -90. .2202 0.00015 0.0 o

  • flag p x 1110200' 2 1107.0 0.0 1110200' 1 557.0 1.0 ,

1110200 1 557.0 0.0 l

6.

  • from to ajun fjun fjunr fvcahs 1111101 111010000=112000000 5.7356' 1.15 1.28 000000 3 1111101 111010000 112000000 5.7356 0.0 0.00 000000 l

'Oct.11'16:15 1995 rrunner:/nfs/sa/nfskr/btspload/westm3 hem Page 16 1112101 111000000 110000000 5.7356 0.0 0.0 000000 1112101 - 111000000 110000000 111.07 0.0 0.0 000000 1113101 250010000 112000000 2.02 0.5 0.5 000000

o
  • ) 1 flow vflow int flow l i 1111201 0.0- 0.0 0.0 1112201 0.0 0.0 0.0 1113201 0.0 0.0 0.0 I *ccfl/ junction hyd diam info hyddia floodcorr gasint slope nj 1111110' .3442 0. 1. 1.

1112110 11.89 0. 1. 1.

1113110 1.604 0. 1. 1.

. =====================================================

. *====================================================  ;

1100000 udc- snglvol J

.;o 0 -flowa- flowl' vol 9. inc1 dz rough hyd pvbfe  ;

1100101 111.07 13.5408- 0.0 0.0 90. 13.5408 0.0 0.0 00000 1100101 111.07' -14.1567 0.0 0.0 90. 14.1567 0.0 0.0 00000 o-

flag p x

, 1100200 002- 1106. 0.22 1100200 l001 557.. 1.0-V

. . .. - .. . .. - - ~ . . ~ _ . -

0.3494

~

01106200^: 601 557.-

/ .-1100200 0011 '557.- 0.03-201100200 001 557. 0.015

' l Dammmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm

-1120000: Idci-3 ~ pipe a

HL nv

,1120001 5 Lo

  • J flowa- nv

-1120101- 6.99203 5

,1120101 5.74- 5 c

l0 length ._nv 1120301 2.814292 1 1120302 1.0 2

.'11:0302' :1.001 2 1120303- 6.570134 3

, 1120304 10.384433 5'

- o.

'o '

volume nv-

, 1120401. 0.0 5 o-

  • j incline' angle nv 1120601  :-90.0 5 --

o e' elev cng nv 1120701 -2.814292 1 1120702' -1.0 2 1120703- -6.570134 3

.1120704 -10.384433 5

-Oct 11'16:15 1995 rrunner:/nfs/sa/nfskr/btspload/westm3 hem Page 17 o-

  • rough hyd dia nv

'1120801 0.0 .4067 5 1120801 0.00015 .3442 5 4:

  • pvbfe nv 1121001' 00001 5 o

lfvcahs nj 1121101' 000000 4 o,

to .

flag- p .x -dumey dummy dummy nv 1121201 "1. 557.00 1.0 0. O. 0. 2

  1. 1121202 l' 557.00 .629. O. O. O. 3 1121202 11 557.00 .07 0. O. O. 3 1121203 1 557.00 0.0 O. O. O. 5 1121201' ' l- 557.00 0.0 0. O. O. 2 1121202 1 '557.00 0.0
0. O. O. 3
1121203 557.00. 0.0- O. O. O. 5

1 I

0; o _

flag =0 : => -(lbm/cac)  !

1121300 - 1: l c.

  • T Iflow vflow interface flow- nj 1121301 0.0 ~0.0 0.0 -4 o

'*ccfl/ junction-hyd diam info l

  • hyddia. floodcorr gasint slope nj l

.3442 1. 4 1121401 0. 1. 1 eeeee***************************************************************** l

  • ---------- heat structure input-
  • genaral data
  • nh np' geo ss left coord.

-11511000 21 11 2 1 0.02766665

  • m=======================================
  • mesh flags
  • location flg' format flag 11511100 0- 2
  • m=======================================
  • m:ch data
  • mesh interval int #

11511101 .000358335 10

  1. m=======================================
  • composition. data-
  • comp. # int #

11511201 1 10 em mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmma chsat distribution data

  • . source int # 1 11511301 0.0 10
  • m=======================================

'* initial temperature data

  • temp. int #

11511401 '557.0 11

  • m===========================================================

Oct 11 16:15 1995 rrunner:/nfs/sa/nfskr/btspload/westm3 hem Page 18 l

  • left bc cards
  • bv1' inc type surf cyl ht struct #

11511501 151010000 0000 1 0 447.65 1 11511502 151020000 0000 1 0 1989.54 2 11511503 151030000 10000-1 0' 2387.45 4 11511504151050000 10000 1 0 2851.67 8 11511505 151090000 10000 1 0 2741.59 10 11511506 151110000 10000 1 0 2851.67 14 i 11511507 151150000 10000 1- 0 1193.72 19 l 11511508 151200000 0000 1 0 795.82 20 l 11511509' 151210000- 0000 1 0 447.65 21 l i

6===============================amm===ammmmmm==mmmm==mu======

oright F cards l

l

m+n n 5 _ -e m ,p 'a,

,.  % ..a1 a as,

  • - byr inc type surf cyl ht struct #

'11511601 100010000 0 1 0 505.62 1 122010000 0 2247.22 2 11511602 0000 1 11511603 101030000 0000 1 0 2696.66 3 11511604 101060000 0000 1 0 2696.66 4 11511605 101090000 0000 1 0 3221.02 5 11511606 135010000 0000 1 0 3221.02 6 11511607 135040000 0000 1 0 3221.02 7 11511608 135070000 0000 1 0 3221.02 8 11511609 135100000 0000 1 0 3096.67 10 11511610 135070000 0000 1 0 3221.02 11 11511611 135040000 0000 1 0 3221.02 12 11511612 135010000 0000 1 0 3221.02 13  !

11511613 133050000 0000 1 0 3221.02 14 l 11511614 133040000 -10000 1 0 1348.33 18 l 11511615 132010000 0000 1 0 1348.33 19 11511616 131010000 0 -1 0 898.89 20 11511617 100010000 0 1 0 50S.62 21

  • ........................................=-............=.....
  • cource data
  • source mult ldh rdh struct #

11511701 0 0.0 0.0 0.0 21

  • ..........................................-- ...===....=....
  • left boundary cards
  • hdiam hlf hlr gridf gridr grdlssf grdissr lbf struct #

1.5 1.5 0.0 0.0 1. 21 11511801 0. 10.0 10.0 ,

  • .......................m............====== .==============.
  • right boundary cards
  • hdiam hlf hlr gridf gridr grdissf grdissr lbf struct #

11511901 0. 10.0 10.0 1.5 1.5 0.0 0.0 1. 21

  • ----- heat structure thermal property data
  • composition type and data format
  • material type flag flag
  • inconel 20100100 tbl/fctn 1 1
  • ....m .m==m =====================================-m==
  • thermal conductivity data (btu /sec-ft/deg f) and volumetric heat i
  • capacity data (btu /ft**3-deg f) versus temperature for above f f

a

  • composition Oct 11 16:15 1995 rrunner:/nfs/sa/nfskr/btspload/westm3 hem Page 19
  • m=======================m-m==========================
  • inconel~600 thermal conductivity data
  • - temperature thermal conductivity i

i

= > , - _ _ - - - - - - - - - .--

20100101 70.0 2.3843e-03 20100102 200.0 2.5232e-03 20100103 400.0 2.8009e-03 20100104 '600.0 3.0787e-03 20100105 800.0 3.3565e-03 20100106 1000.0 3.6574e-03 20100107 1200.0 3.9815e-03 20100108 1400.0 4.3056e-03 20100109 1600.0 4.6296e-03

  • mmmmmmmmmmmmmmmmmmmmmmaammmmmmmm=====================
  • inconel 600 volumetric heat capacity data
  • temperattere heat capacity 20100151 70.0 55.6831 20100152 200.0 55.5227 20100153 400.0 55.2607 20100154 600.0 54.9895 20100155 800.0 54.7069 20100156 1000.0 54.3982 20100157 1200.0 54.0907 20100158 1400.0 53.7516 20100159 1600.0 53.4205

-20100160 1800.0 53.0796

  • m=m===n==============================================
  • --------- control system for measuring sg level
  • l
  • note: the following control system is to work in britsh i  ;
  • -units ( lbm, lbf , ft, s, p=lbf/sgin). in relap5 i  !
  • the quantities stored in arrays are in si units, i
  • therefore, conversions from si to british units i
  • must be made, f
  • --------- control variable card type 20500000 999 ,
  • l
  • --------- control component cards
  • compute pressure difference
  • name type scale (psi /pa) init flag 20500100 deltpp sum 1.4S003e-G4 0.0 1
  • a0 al var vol a2 var vol 20500101 0.0 1.0, p, 042010000 -1.0, p, 100010000 1

1 LOct 11 16:15 1995 rrunner:/nfs/sa/nfskr/btspload/westm3 hem Page 20

  • ' name type scale (psi /pa) init flag

-s <- -n v . , , . . , , . - . . . - , - ~ . - , . . . - - . -

daltpn cum 1.450030-04 0.0 1 20500200 o' 1c0 al var vol- c2 ~ var vol 20500201 0 ~. 0 -1,0, p, 121010000 1.0,-p, 100010000 o

o name type scale (psi /pa) init flag 20500300 . deltpn sum 1.45003e-04 0.0 1

  • .a0 al var vol' a2 var vol 20500301 0.0 -1.0, p, 101020000 1.0, p, 101010000 flag
  • name type' scale (psi /pa) init
  • 'name type scale (psi /pa) init flag sum 1.45003e-04 0.0 1 20500400 deltpp
  • a0 al var vol a2 var vol 20500401 0.0 -1.0, p, 101050000 1.0, p, 101040000
  • name type scale (psi /pa) init flag sum 1.45003e-04 0.0 1 20500500 deltpp
  • a0 al var vol a2 var vol 20500501 0.0 -1.0, p, 101080000 1.0, p, 101070000-
  • name type scale (psi /pa) init flag sum 1.45003e-04 0.0 1 20500600 deltpp
  • a0 al var vol a2 var vol '

20500601 0.0 -1.0, p, 134010000 1.0, p, 101100000 o

  • name type scale (psi /pa) init flag sum 1.45003e-04 0.0 1 20500700 deltpp
  • - a0 al var vol a2 var vol 20500701 0.0 -1.0, p, 135030000 1.0, p, 135020000 e
  • name type scale (psi /pa) init flag sum 1.45003e-04 0.0 1 20500000 deltpp
  • a0 al var vol a2 var vol 20500801 0.0 -1.0, p, 135060000 1.0, p, 135050000
  • name type scale (psi /pa) init flag 20500900 deltpp sum 1.45003e-04 0.0 1
  • - a0 al var vol a2 var vol 20500901 0.0 -1.0, p, 135090000 1.0, p, 135080000 eeeece**********************************************************
      • 0e@*********************************************************

'669446*********************************************************

@@e********************************************

  • cnd of input deck - problem end *

. _ , .