ML20127L009

From kanterella
Jump to navigation Jump to search
Rev 0,to VIPRE/WRB-2 DNBR Thermal Limit for Westinghouse 17x17 Ofa & Vantage 5 Fuel
ML20127L009
Person / Time
Site: Byron, Braidwood  Constellation icon.png
Issue date: 09/08/1992
From: Kim H, Klasmier L
NUCLEAR FUEL SERVICES, INC.
To:
Shared Package
ML19303F218 List:
References
NFSR-0090, NFSR-0090-R00, NFSR-90, NFSR-90-R, NUDOCS 9301260307
Download: ML20127L009 (47)


Text

{{#Wiki_filter:Nuclear Fuel Services l l i VIPRE/WRB 2 DNBR THERMAL LIMIT FOR WESTINGHOUSE 17x17 OFA AND VANTAGE 5 FUEL Document Number NFSR-0090 September 8,1992 BY l Lawrence K. Klasmier I Hak Soo Kim l-Methods Development Westinghouse Proprietary Class 3 e = 8 u m a,. hommoii" wealth Edison Company

h-.. ~. 6 y A 3 It ?E * ' y.i 1 ,,s r i I y j ' 'p < us: .. p + + OS -r- .~ a v ,l J E [q" gf ' BNuclear Fue Services j;

q N y

l{ s y l'R ,a e l"=' jl c i Mt i:,j ~ l ?.,. ((- ^ jj g ,.m ~ d L s 1 4 4.- l k " 1 i . = I Y jf [I i 4 L (i VIPRE/WRB 2 DNBR THERMAL LIMIT FOR WESTINGHOUSE!- N ~ q - 17x17 OFA AND VANTAGE 5 FUEL n ? q y Document Number NFSR 0090 l-l c g .c ,- 1: - -l > -~; r [- September 8,1992 - 'c - By.. 'l L Lawrence K. Klasmier i , -j s L--.# ' - Hak-Soo Kim j(. Methods Development - N 1] y f-Westinghouse Proprietary Class 3-i :: .'( s 9301260307 930114 PDR ADOCK 05000454 F IUommoii" wealth Edison Company : $l a r:.. - : i.

L l VIPRE/WRB-2 DNBR THERMAL LIMIT FOR WESTINGHOUSE 17X17 OFA AND VANTAGE 5 FUEL Document Number NFSR 0090 September 8,1992 By Lawrence K. Klasmier Hak-Soo Kim Methods Development (Safety) Westinghouse Proprietary Class 3 o ,/[-ww [v' / Prepared by: Reviewed by: M[w / Supervisor Approved by: h Date: 'l FL v a Manag6r) Nuclear Fuel Services Nuclear Fuel Services Department Commonwealth Ed+ son Company 125 $ Chrk Sheet Room 900 Chicago,11knois 60603 o

t NFSR 0090 REY. O STATEMENT OF DISCLAIMER This report was prepared by the Nuclear Fuel Services Department in support of the safety analysis reload design licensing effort of Commonwealth Edison Company. It is being available to others upon the express understanding that neither Commonwealth Edison Company nor and of its officers, directors, agents, or employees makes any war-ranty, representation, or assumes any obligation, responsibility with respect to the con-tents of this report, its accuracy, or completeness pertaining to any usage other than the originally stated purpose. r li

L_ l NFSR-0090 REV.O PROPRIETARY NOTICE This document contains proprietary information of Commonwealth Edison Company and Westinghouse Electric Corporation and is furnished in confidence solely for the purpose or purposes stated. No other, direct or indirect, use of the document or the information it contains is authorized. The recipient shall not publish or otherwise disclose this docu-ment or information therein to others without prior written consent of the Commonwealth Edison Company and Westinghouse Electric Corporation, and shall return the document at the request of the Commonwealth Edison Company and Westinghouse Electric Corporation. e lii

o NFSR-0090 REV.O ABSTRACT The WRB-2 critical heat flux (CHF) correlation, a statistical database applicable to the Westinghouse 17X17 Optimized Fuel Assembly (OFA) and Vantage 5 Assembly designs, and the VIPRE thermal-hydraulic subchannel code were used to determine a 95/95 thermal limit applicable to 17x17 OFA and Vantage 5 fuel types. This report is intended to reproduce Westinghouse's methodology for these fuel types in which they computed a thermal limit of 1.17 with the THINC computer code. The present analysis by Commonwealth Edison Co. (CECO) yields a mean of 1.0040, a standard deviation of 0.0842, and a thermal limit of 1.17. This thermal limit value will be used by CECO in appli-cable FSAR reload transient analyses as a limit representing a 95% probability of not ex-periencing Departure from Nucleate Boiling (DNB) at a 95% confidence level. IV

L NFSR-0090 REV.o J_able of Contents SECTION 1. INTRODUCTION.... .............................1 FORM OF THE WRB-2 CORRELATION. ......3 SECTION 2. STATISTICS. ..................5 BACKGROUND.. ................5 DATABASE DEFINITION.... .6 STATISTICAL ANALYSIS METHODOLOGY. .................9 DATA PLOTS.. . 12 DESIGN CRITERlON. ......................18 SECTION 3. CONCLUSIONS.. ..... 19 REFERENCES. .......... 20 APPENDIX A. ROD BUNDLE CHF DATA

SUMMARY

...... A-1 i e V

6 -, NFSR-0090 REV.O List of Tables Table 1. Test section Geometry Summary............... .....................6 Table 2. Statistical Results of the Vantage 5 Database...... ...................11 ~_ ~ vi

w NFSR-0090 REV. O List of Illustrations Figure 1 Test Section Cosine Axial Heat Flux. Distributions....... ........................7 Figure 2 Test Section Cross-Sectional Geometries........... ......8 Figure 3 Measured versus Predicted Critical Heat Flux - WRB-2 Correlation.............13 Figure 4 Measured-to-Predicted Critical Heat Flux versus Local Quality.. ....... 14 Figure 5 Measured-to-Predicted Critical Heat Flux versus Local Mass Velocity.. . 15 Figure 6 Measured-to-Predicted Critical Heat Flux versus Pressure.. ........ 16 Vii

o NFSR-0090 REV.O SECTION 1. INTRODUCTION Many utilities, including Commonwealth Edison Company (CECO), are developing a FSAR transient analysis capability based upon the Electric Power Research Institute (EPRI) computer codes RETRAN (1) and VIPRE [2]. RETRAN is used to calculate state variables, such as pressure, enthalpy, mass flow, and power, for the transient. These variables are then used in the VIPRE thermal-hydraulic subchannel analysis code to calculate the minimum departure from nucleate boiling ratio (MDNBR). For most FSAR transients, successful mitigation of the transient is assumed if the calculated MDNBR remains greater than an established reference value. Historically, the reference MDNBR value was developed by the nuclear fuel vendor using a proprietary thermal-hydraulic subchannel analysis code and critical heat flux (CHF) correlation. CECO has opted to obtain the WRB-2 CHF correlation and related database from the correlation developer (Westinghouse). Since the thermal limit used by Westinghouse for Vantage 5 fuel was derived using the THINC subchannel code, CECO has reproduced the vendor analyses with VIPRE, which is the code CECO will be using for transient analysis. Thu WRB-2 Vantage 5 CHF database is applicable to 17X17 Optimized Fuel Assembly (OFA) and Vantage 5 fuel [3]. It consists of 684 data points from 11 different test assemblies. The WRB-2 Vantage 5 CHF database consists of CHF data for a wide range of test section geometries with square pitch rod bundles which are representative of fuel lattices found in Westinghouse PWR designs which use 17X17 OFA and Vantage 5 fuel designs The heated lengths range from 96 inches to 168 inches with uniform and nonuniform axial heat flux distributions. Operating parameter ranges for the CHF data are: pressures from 1440 to 2490 psia, local mass flux from 0.9 to 3.7 X 106 lbs/hr-ft2, and local qualities from -0.1 to 0.3. VIPRE is a reactor core thermal-hydrau!ic subchannel analysis code. The basic computational philosophy and code structure of VIPRE come from COBRA-IllC [4] and other COBRA versions. However, several new features were developed for VIPRE to make an updated, more versatile, and user friendly code. A complete discussion of the similarities and differences in COBRA and VIPRE is given in Reference 2. VIPRE predicts the three dimensional velocity, pressure, and thermal energy fields and fuel rod 1

o. NFSR-0090 REV.O temperatures for single-and two-phase flow in PWR and BWR cores. It solves finite-difference equations for conservation of mass, momentum and energy using an incompressible thermally expandable homogeneous flow. The equations are solved with no time step or channel size restrictions for stability. Although the formulation is homogeneous, non-mechanistic models are included for subcooled boiling and vapor / liquid slip in two-phase flow. The NRC has issued a Safety Evaluation Report (SER) for PWR VIPRE analyses [5]. Since the WRB-2 CHF correlation was not included within the scope of the SER, this report provides justification for the use of the VIPRE/WRB-2 combination for DNB analyses. To develop the thermal limit, CECO first obtained from Westinghouse their doc. umentation for the development of the WRB-2 correlation's thermal limit and the NRC review [3] of the Westinghouse submittals. Next, the CHF experimental tests performed by Westinghouse were modeled in VIPRE. The database used by CECO, as was previ-ously mentioned, is the same one used by Westinghouse to represent all aforemen-tioned OFA and Vantage 5 fuel designs. From the VIPRE subchannel analyses of the database, a mean, standard deviation and effective degree of freedom were calculated as outlined in the NRC review of the Westinghouse submittals [3]. These values were used to calculate the 95% probability with 95% confidence (95/95) thermal limit value, in addition to the statistical analysis of the data, scatter plots wers generated to test for biases in the correlation. The development effort for the WRB-2/VIPRE thermal limit described above is very similar to that of the WRB-1/VIPRE thermal limit, which was approved by the Nuclear Regulatory Commission in February, 1989 [6,7]. 2

NFSR-0090 REV.O FORM OF THE WRB 2 CORRELATION The WRB 2 CHF correlation is a local subchannel correlation applicable to Westinghouse 17X17 OFA and Vantage 5 fuel designs [3). The correlation, as imple-mented in VIPRE, is shown in Equation 1. The actual implementation in VIPRE also in-ciudes the standard Tong F-factor accounting for the effects of nonuniform axial power profiles. M where ~ (a c) A= 3 a ~ ~ (a c) B= 3 ~ ~ (a,c) B= 4 ~ ~ fa c) C, = ~ (a.c! C=_ 2 The constant coefficients are: / 3(a,c) ( / 3

L NFSR-0090 REV.O The parameters are defined as: D, is equivalent hydraulic diameter (in) d is the distance from the most recent unstream mixing vane grid (in) g D is equivalent heated hydraulic diameter (in) n g,p is mixing vane grid spacing (in) G oc is local mass flow (Ib /(hr ft2)) t m La is the heated length, Inlet to CHF location (ft) P is system pressure (PSIA) q" is critical heat flux (BTU /(hr-fta)) X oc is local quality (fraction) t and are valid over the following ranges: 1440 s P s 2490 psia 0.9 s s 3.7 -0.1 s X oc s 0.3 t L s 14 ft n 10 s g,p s 26 in 0.37 s d, s 0.51 in 0.46 s d s 0.59 in n 4

NFSR-0090 REV.O SECTION 2. STATISTICS BACKGROUND Each thermallimit analysis starts with a CHF database, a CHF correlation and a thermal-hydraulic subchannel code. The methodology used here is identical to that used by Westinghouse in the development of the WRB 2 correlation [3] and is the methodology recommended by the developers of VIPRE [2), namely the method of Owen [8]. In thermal limit analysis, the experimental bundle power at CHF and the measured inlet conditions are used in the subchannel thermal-hyoraulic code. The MDNBR on the heater rod which indicated CHF is then calculated. This method does not necessarily give the DNB at the same point as that measured in the experiment, however the WRB-2 CHF correlation has been shown to closely cerrelate to the measured location of DNB which gives it an improved predictive etoability over previously derived correlations (3]. VIPRE can be used in the development of a thermallimit provided proper CHF experimental tests are available. The tests should be representative of the conditions which will be analyzed in the FSAR transient analyses and of the fuel type of interest. VIPRE input is prepared for each experimental test assembly. VIPRE calculates a steady-state thermal-hydraulic solution for the specified input conditions. In the calcula- [ tion, the local rod heat flux is calculated from the input values for average power, axial flux profile and radial power factor. The local heat flux is calculated for each axial node in each channel. After the flow solution has converged, VIPRE uses the WRB-2 CHF cor-relation to calculate the predicted critical heat flux in each channel for each axial node. The predicted critical heat flux is divided by the local heat flux at each node to define the DNB ratio for that node. The figure of merit used by Westinghouse for each experiment is the minimum ratio of the predicted heat flux to the measured heat flux (P/M). This ratio, by design, identifies the most limiting location and its inverse (M/P) is used in the thermal limit analysis to represent correlation accuracy for those test conditions, t 5

NFSR-0090 REV.O DATABASE DEFINITION A summary of pertinent test characteristics for the Vantage 5 database is given below. Table 1 gives a geometrical description of each test assembly including rod length, rod outer diameter, axial heat flux profile, cross sectional configuration, and ap-propriate references. Figure 1 showc the various non-uniform axial power profiles used in the analysis. Figure 2 shows the various cross-sectional geometries used. All tests were rectangular tube bundie arrays with R-grid mixing vanes with 5X5 (representing 17X17) rod arrangements. Both typical and thimble (cold wall) geometries were tested. Rod ROD AXIAL Test Length O. D. HEAT Config. References No. (ft) (in) FLUX SX5 A-2 14 0.360 Cosine Typical 3 A-3 ' 14 0.360 Cosine Typical 3 A-4 14 0.360 Cosine Typical 3,10,13 A-5 14 ! 0.360 Cosine Thimble 3,10,13 A-6 8 0.374 Uniform Typical 3,9,10,11 A-7 14 0.374 Uniform Typical 3,9,10,11 A-8 14 0.374 Cosine Typical 3,9,10,11 A-9 14 0.374 Cosine Thimble 3,9,10,11 A-10 8 0.374 Uniform Typical 3,9,10,12 A-11 8 0.374 Uniform Thimble 3,9,10,12 A-12 14 0.374 Uniform i Typical 3,9,10,12 Taole 1. Test section Geometry Summary / 6

i NFSR-0090 REV. O r-4 (b.c) a / l Figure 1 Test Section Cosine Axial Heat Flux Distributions 7

NFSR-0000 REV.0 (h(h(h(h(h (J(J(J(J(J (h(h(h(h(h (J(J(J(J(J [h(hf\\[h[h (J(J%)( )() (h(hCh(h(h ()()(J% )() [h(h(hrh(h ()()()()(J 5 X 5 THIMBLE CELL h(h(h(h(h <J()()()() (~)(h(h(h(h (J()(J(J(J (h(h(h(h(h ()()()(J() (h(h(h(h(h ()(J()()() [h(h(h(h(h ()(J()()() 5 X 5 TYPICAL CELL Figure 2 Test Section Cross-Sectional Geometries -. _=

o NFSR-0090 REV.0 STATISTICAL ANALYSIS METHODOLOGY The method of computing the mean and standard deviation for the measured to-predicted critical heat flux is shown below. It should be noted that this method has previously been approved for CECO's use of the WRB-1 correlation with VIPRE [7]. The individual M/P's were evaluated at the point of minimum DNBR, which is defined as: DNBR = P""' (2) 9,Wasured The definitions used in the generation of the test results for the avg M/P and standard deviation (S) for the individual tests are: N, } 3,9 g N. N[ $),,,3;)2 (4) S= bP (P N,- 1 i i3 where j = Test number i = indiv; dual run number within each test N, = Total number of data points in test j. The definitions used for the individual tests are rot the same dafinitions that are used when the tests are combined. In the latter case, the NRC's recommended defini-tions {3] for the mean, standard deviation, and degrees of freedom are used. These are defined, respectively, as: N, ' avg (avgi) 9

i NFSR-0090 REV.O S=NISW2 + SA2 (6) SW2 + SAP)2 F = '(SW* (} [(SA* (FW where SW2 = variance within the test series about the mean SA2 = variance among the test series means FW = degree of freedom for the data within the test series FA = degree of freedom among the test series means N, = total number of experimentaltests The thermal limit is calculated using Owen's method. This method takes into ac-count the design cnteria used by Westinghouse for DNB not occurring at a 95% probability with a 95% confidence. The thermal limit using this method is defined as: TL = lM\\ - (K S)f (8) gl i p 0 / ava ) where Kp = 95/95 confidence limit [8] based on the degrees of freedom (Eq. 7) These multiple test definitions take into account the within and between group variances (SW2,SA2). This is necessary so that the deviation from poolability of the indi-vidual tests in the database can be taken into account. If the individual tests were per-fectly poolable, then the group definitions used would approach the standard statistical definitions used for the individual tests. Table 2 gives intermediate and final values for the aforementioned ?est grouping statistical methodology. After applying Equations 5 through 8, the thermal limit for applications using VIPRE in modeling 17X17 OFA and Vantage 5 fuel is computed to be 1.17. Appendix A gives the input conditions (system pressure, inlet temperature, and inlet mass flux), calculated local quality, measured local heat flux, VIPRE predicted critical heat flux and measured-to-predicted flux ratio (M/P) for each individual test run. 10

NFSR-Of?90 RIV. 0 Rod Rod Axial WRB-2/VIPRE Test Length O. D. Heat Config. References N No. (ft) (in) Flux 5XS M/P S A-2 14 0.360 Cosine Typical 51 0.9791 0.0713 3 A-3 14 0.360 Cosine Typical 31 1.0234 0.0640 3,10,13 A-4 14 0.360 Cosine Typica 63 0.9952 0.0967 3,10,13 A-5 14 0.360 Cosine Thimble 38 0.9897 0.0618 3,9,10,11 A-6 8 0.374 Uniform Typical 67 1.0341 0.0840 3,9,10,11 A-7 14 0.374 Uniform Typical 71 1.00P1 0.0642 3,9,10,11 A-8 14 0.374 Cosine Typica 74 0.9842 0.0817 3,9,10,11 A-9 14 0.374 Cosine Thimble 70 0.9799 0.0845 3,9,10,12 A 10 8 0.374 Uniform Typical 78 1.0302 0.0779 ,10,12 A-11 8 0.374 Uniform Thimble 68 1.0226 0.0964 3,9,10,12 A-12 14 0.374 Uniform Typical 73 0.9974 0.0812 Group Statistics (Assuming Poolability) 1.0043 0.0826 Group Statistics (Not Assuming Poolabiliiy) 1.0040 0.0834 Thermal Limit (F = 594 K = 1.753) = 1.17 p Table 2. Statistical Results of the Vantage 5 Database 11

NFSR-0090 3$- REV.0 DATA PLOTS i Figures 3 through 6 graphically show the results of applying the VIPRE/WRB-2 CHF correlation to the Vantage 5 database. In all four plots, the computed sample mean z is shown as a solid line, and the 95/95 limit line, above which 95% of data will fall with 95% confidence, is dashed. Figure 3 shows the measured critical heat flux plotted against the predicted values. Figures 4,5 and 6 show the measured-to predicted heat flux ratio (M/P) plotted against fluid parameters quality, flow, and pressure respectively. The absence of any significant trends in the data indicates that the WRB-2/VIPRE com-bination has no discernable bias to these fluid parameters. 12

l NFSR-0090 REV.O MEASURED VERSUS PREDICTED CRITICAL HEAT FLUX (WRB-2 CORRELATION) X 1.20 - D __J LL ~ o l p_ 1.00 e oh 4 e / / w ~ 8, I O.80 - o o /o o [/ J ~ k g .m EO W g tri / - U'60 e,p U Q 0.40 - o .o LLj ~ Z ~ D p (f) 0.20 - / 4 / W 3.- 0.00 iiiiii,,iiiiiiiiiiiiiiii i,,ii O 00 0.20 0.40 0.60 0.80 1.00 1.20 PREDICTED CRITICAL HEAT FLUX A HEAT % B W UNITS ARE 106 JHR-FT2 Figure 3 Measured versus Predicted Critical Heat Flux-WRB-2 Correlation 13

k NFSR-0000 REV.O MEASURED-TO-PREDICTED CRITICAL HEAT FLUX VERSUS LOCAL QUALITY (WRB-2 CORRELATION) 1.40 ; O O 1.20 k o o o o o 0 o Oo o 0 o O O 0 h $' oio oo So o o o g g o 8 9;o. o%g$d a e o a os 0 s hh So og8 o o g

  • W '

- ^ ^ >_ 1 ' 0 0 - o cP o > WF 5

  • o S

h cR o ~ o "o o ~ ~ - - - o o o o ogo o o OS O o 0.80 - o o ~ 0.60 iii iiiiiii,ir i i i iiiiiiiiiiiiiiiiiiiiiii. iii -0.10 -0.00 0.10 0.20 0.30 LOCAL QUALITY Figure 4 Measured-to-Predicted Critical Heat Flux versus Local Quality 14

NFSR-0090 REV. O MEASURED-TO-PREDICTED CRITICAL HEAT FLUX VERSUS LOCAL MASS FLUX (WRB-2 CORRELATION) 1,40 - 8 1.20 { o, ) o 1 os e o o a f f me 2 00 - og 1 c j m f h a a h- - JL - d -- --- o - 0.80 -{ oo o ~ 0.60 i ii iiiiiiiiiiii,iiiiiiiiiiiiiiiiiii 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 LOCAL MASS FLUX UNITS ARE HR 2 Figure 5 Measured-to-Predicted Critical Heat Flux versus Local Mass Velocity 15

NFSR-0090 REV.0 MEASURED-TO-PREDICTED CRITICAL HEAT FLUX VERSUS SYSTEM PRESSURE (WRB-2 CORRELATION) 1.40 - 1.20 ( fp e h ge o pO { O s Q_ \\ ~ o o ^ 1 00 o o ~ _______o e o__ 0.80 - "' O E ~ ~ 0.60 i i i ii,iiiiiiiiiiiiiii,,,,i,i,i 1400 1800 2200 2600 SYSTEM PRESSURE (PSIA) Figure 6 Measured-to-Predicted Critical Heat Flux versus Pressure 16

L NFSR-0000 REV. O DESIGN CRITERION The 95/95 design criterion for the Westinghouse reactor cores provides that DNB will not occur with a 95% probability at a 95% confidence level. This criterion is sat-isfied by calculating a limiting value of MDNBR with Owen's method. Owen has provided tables which give values of K such that at least a given proportion of the population is p greater than [(M/P),,9 - K S] with confidence (y), where (M/P),,9 and S are the sample p mean and standard deviation, respectively [8). When this method was carried out using all 684 data points, the results indicated that a reactor core with 17X17 OFA/ Vantage 5 fuel and modeled with the VIPRE/WRB 2 combination would satisfy the design criteria if no FSAR transients result in a MDNBR of less than 1.17. 17

NFSR-0090 REV.O r SECTION 3. CONCLUSIONS The WRB-2 CHF correlation, implemented in VIPRE, has been applied to 684 CHF rod bundle points defining a database that represents 17X17 OFA and Vantage 5 fuel. A MDNBR limit of 1.17 has been established to meet the 95/95 reactor design crite-rion. All analyses in support of this limit were performed in accordance with existing CECO quality assurance requiremerits. m 18

NFSR-0090 REV. 0 REFERENCES 1. "RETRAN A Program for Transient Thermal-Hydraulic Analysis of Complex Fluid Flow Systems, Volume 1: Equations and Numerics.," EPRI-NP-1850, Palo Alto, California, November 1984. 2. "VIPRE 01, A Thermal-Hydraulic Analysis Code for Reactor Core," EPRI NP-2511-CCM, Volumes 1-3, Revision 3, C. W. Stewart, et. al., August 1989 3. " Reference Core Report Vantage 5 Fuel Assembly," WCAP-10444-P-A, edited by S. L. Davidson and W. R. Kramer, September 1985. 4. " COBRA-lllC: A Digital Computer Program for Steady-State and Transient Thermal-Hydraulic Analysis of Rod Bundle Nuclear Fuel Elements," BNWL-1695, D. S. Rowe, Pacific Northwest Laboratories, March 1973. 5. " Acceptance for Referencing of Licensing Topical Report, EPRI NP-2511-CCM, VIPRE-01: A Therma!-Hydraulic Analysis Code for Reactor Cores, Volumes 1-4," letter from C. E. Rossi (NRC) to J. A. Blaisdell (UGRA), May 1,1986 Nuclear Regu-latory Commission. 6. "VIPRE/WRB-1 DNBR Thermal Limit for Westinghouse OFA Fuel," NFSR-0033, J. C. Boerger, J. L. Griffin Jr., H. S. Kim, October 14,1988. 7. "VIPRE/WRB-1 DNBR Thermal Limit for Westinghouse OFA Fuel (TAC NOS. 72242 and 72243)" Letter from C. P. Patel (NRC) to T. J. Kovach (CECO), February 13,1990. 8. " Factors for One-Sided Tolerance Limits and for Variables Sampling Plans," SCR-607, D. B. Owen. March 1963, Sandia National Laboratories. 9. "New Westinghouse Correlation WRB-1 for Predicting Critical Heat Flux in Rod Bundles with Mixing Vane Grids," WCAP-8762-P-A, F. E. Motley et al. Westing-house Electric Corporation, July 1976.

10. " Commonwealth Edison Project Byron /Braidwood Nuclear Power Technology Transfer," Letter from J. W. Swogger (West.) to M. F. Finn (CECO),88CW*-G-0024, April 29,1988.
11. " Critical Heat Flux Testing of 17x17 Fuel Assembly Geometry with 22-inch Grid Spacing," WCAP-8536, F. E. Motley, A. H. Wenzel, and F. F. Codel, May 1975.
12. "Effect of 17x17 Fuel Assembly Geometry on DNB," WCAP-8296-P-A, K. W. Hill, F. E. Motley, F. F. Cadek, and A. H. Wenzek, February 1975.
13. "DNB Test Results for New Mixing Vane Grids (R)" WCAP-7695-P-A, F. E. Motley, F. F. Cadek, January 1975.

19

= - - NFSR 0090 'REV.0-

APPENDIX'A. ROD BUNDLE CHF DATA

SUMMARY

i-in this section the specific resuits of the VIPRE subchannel' analysis are given, The . original Westinghouse run number is given for each data point. l 5 ? ? I. L (l'- l :-

NFSR-0090 REV.0 We5. tine.hotise Test Section A-2 Imc.il lleat i lux

Wyq, S utctn inlet inlet I n al MllTt!

Itun l'rc uur e !!nthalriy Maw Ilus Quahty br f t; ! Nurnbcr (l'$1 A ) (Irlit Mllg) (fraction) Measured l'redicted (M- {0,C) 3 fl~ ~4 \\ U.9371 l W2144 1.0735

W2344,

~ l W2 \\17 04Sl9 i W2ys 1.U W) '.0401 [ W;uy ~ l I I, W2350 1.0%MS l 1.0371 l W 2 v,2 ~" ~ 0.9587 j W23s3 ~ 1.0305 W2357 i W23% 0.9882

W2359 0.9s2X

~ W 2 v,o 0.97XI ljkbM W2%) ~~ OXS3S l W2%2 { W2%3 0,ht1% l 0.93(si W2%4 U.Sf#1 W23g,s ~ 0.9370 W2 gg, W23t,7 09219 W23(,s 0.9127 W2%9 1.02t f) W23 fo 1.0527 1.0lS2 W2371 ] . W2372 1,0702 l W2373 UAS04 { W2374 0.9S49 W2373 09930 " W237t, 1.0124 0,9534 W2 477 ~ 0.9t >S3 W2379 q W23su IJ W413 l ~ l W23s i 1.U N5 l W23s2 1 N43 W23s3 0.9N43 '~ W23s4 0.9161 W23s3 1.0334 l W23;;t, 0.9749 i 6 W23x7 0,92tdl l W23% l.t k dl7 l A-2

NFSR-0090 REV.0 local llcal l'lus

gyeq, 3ptcan inlet inlet local hill'Il f Run l'r c ssur c Enthal ey hiawl'his Ouality

, br Iti, l Nurnber (l'51 A) IITl f) [htilyi (fraction) hicasured l'redicted (hij s Ih,n ) \\ brit') -4 h) (bj f C ! \\y239; 1.0740 i \\v2390 ~ U.8784 0.K5XS j \\y2 v;3 [ \\v2 r> 4 0.8472 j \\v2 y;g, 0.M 454 l \\v2Vi7 U.HWi7_ i gy;vs 1.0213 \\v2 rsi UM24 \\v2402 1.(K r >0 1.0352 \\y2404

\\v2401 1.(N F)$

I FET240s 0.w49 l A-3

NFSR-0090 REV,0 Westinchotise Test Section A-3 local llcat I'lus j

wcq, Systern Inlet inlet laical (MilTlf) i i

Itun l'renure linthalpy Mass i lus Quality \\ br.lF) s Nurnbe r (l'hl A) (IITt t) (Mlby (fraction) Measured l'redicted (7/ (h,c) M) ( lb,[] ( hr-It-j 4 ( W2407 0.9173 i W24l4 0.9291 i W241ri ~ 1.0395 1.1135 W2417 ~ W241g 0.9MX9 W2419 1.0LWi9 i W2422 0.4761 f W2423 ~ lh483 ~ 1.0$24 W2424 ~ 0.9735 l W242ti ~ i W2429 0.4SXM l W24 V) 1.lK)35 i W2431 1 (kl41 W2412 1.0350 W2434 1.0561 ~\\Y24 k. 1.0627 I W2440 1.026S \\V2441 1.0875 W2444 1.0973 (1.9762 W244% i W2446 1.0621 ~ W2447 1.1698 l W2449 1.1236 W245ti 0.91S3 W2457 1.0164_ W245s 1.0259 W2459 0.4433 W24ns 1.02.% l l W2469 0.9852 i j W2472 1.i34S l l W2473 0.9413 l ..-s A-4

L NFSR-0090 REV.0 Westin191ouse Test Section A-4 local llcat I' lux West. h)* "i I"I'I Ihh I#'dl hill'ITI Ocality hr.f tJ, It un IC"ure I;otbalpy Man 11:s l(fraMion) hicasured l'redicted hi Nurnbcr (l'SI A) f~il'I t !) ( g g) (Y)j (b,c.) \\ lti,n ] (hrIt- -.t. ( j W217X 0.M 37 W2179 0.9219 W2180 0.8773 W2181 U.9529 W2152 _ 0.8729 W2183 0.9375 W2184 0.9073 W21X5 0.9622 i W21Nn 0.8330 08441 l W2187 l W218s 0.Mh2A W2100 { OMISO W2191 0.8315 l W2192 0.9239 ( W2191 0.x657 i W2194 0.h673 W2195 1.04tM W2190 1.0192 W2197 l jK)M W219s 1.0273 W 2ltr) 1.0189 W22t H) 1.0275 W2201 1.14XO W2202 IJPJ71 W2201 1.0116 j W2204 0.9817 4 l W2205 1.0ty)$ l W 22tki 1.0193 j j W2207 0.9573 W220s 13r114 W2209 0.9512 W2210 1.02SO W2211 0.9493 l W2:12 1.1115 l W2213 1.23S4 W2214 1.1067 W2215 1,0242 i W221h 0.9523 ) Ig W2217 1.1398 l A-5

NFSR 0090 REV.0 local lleat I'lus West. Sptom Inlet Inict local (Miri t b"i l Run l'ressure linihal iy Mass llut Ouality ( hr-It-) l Number (l'SI A) Irll! Mib (fraf, tion) Measured l'redicted h_f 41 s s (,D, C) Ib-- br It* -p I' s m W2218 1.1'/14 W2219 1.1254 l W2220 1.2(68 W2?:1 1.0M20 l W2222 1.039S ~ 1.1375 W2221~ 1.05 % W2224 0.9614 W2225 ~ i W222(i 0.9f >42 W2227 1.0405 0.9f'i77 W2228 ~ 031437 W222') i W2230 03 Nil 0.9738 J L W2231 0.952(i l l W2212 j W22TT 0.920$ j i ! W2234 1 w3'. l W2235 1.15TN 0.9420 l W22Vi l.04h5 W2237 j 0.hST9 W223A l f W2239 l.012S j W2240 0.8MB i W2241 1.0017 i' L A-6

NFSR-0090 REV.0 Westinchouse Test Section A-5 local 1leat flux West. System inlet inlet Local (hillTUj Run I'8 0"ur c !!nthalgiy M aw Ilux Quality ( hr f tJ) Number (l'$1A) (Iri t f) / Mlby (fraction) _M :asured l'redicted (Mj (lbm) ( hr ft') _.4 ( l') (b c,) l W2110 0.9337 W2111 0.9434 W2112 1.(Ki74 W211T 1.0296 W2il4 0.9769 W2115 1.023S W2116 1.1163 i W2117 1.0121 i W2118 0.9533 l W2119 0.K802 i W2120 0.9621 [ W2121 0.9898 i W2122 0.9133 W2121 0.9352 I W2124 0.9475 / O.9516 W2125 0.9M% W2126 W2127 0.9S67 ( W212S 1.I M)l 4 i W2159 0.93'M j W2160 1 0.9507 W2161 0.9sh3 , W2162 1.0505 W2163 1.0187 W2164 1.0979 W2165 0.9782 j W2166 0.9192 W2167 0.970S W21M 1.0137 W:169 0.S995 W2170 1.1621 W2171 1.0562 1 ) W2172 0.9712 W2173 1.070S l W2174 1.0355 W2175 0.9745 ! W2176 1.(u k t W2177 0.9225 4 ~~ A-7

L NFSR-0090 REV.0 Westin1' house Test Section A-6 local lleat I'lus W est. Sptem inlet inlet lecal (MLITlh Itun l'i c aut e tinthal iy Maw I' lux Quality ( hr ItJ) l Numlier (l'$l A ) tri t h (Mg'} (fraction) Measured l'redkled (M) I , lbm) Gr It-/ t ( l') (bj) C W1720 0.9743 Wl721 0.9905 W1722 IJU2X Wl723 1.0336 W1724 0.9923 W1725 1.0715 l Wl726 1.0.444 Wl727 1.0791 W l72x 0.9321 W1729 ] 1.0378 %'1730 ] 1.042X [ W1731 1.13 % W1732 0.9570 i W173; 1.1346 l W1734 1.1332 Wl735 i 1.1541 W 173t, 1.1614 W1737 1.0S33 i W173s 1.tN2 l l.10%7 Wl739 Wl740 1.OSS6 W1741 1.1424 I W1742 1.151S W1743 1.0745 l i i W1744 1.16s5 W1745 1.1180 W1746 1.1493 W1747 1.1173 ! W174% l.0720 l W1749 1.0557 1.0253 W1730 I W1751 1.0541 l W1752 1.0272 Wl?53 1 0.976S l W1754 1.0160 W1755 1.0079 W1756 0.9%38 i W1757 U.S520 l l W175s 0.9244 l A8

( NFSil-0090 I4EV.0 locallleatl~ lux We st. hystem Inht Inkt local (h111Ttt) 4 Itun l'rcuute lint hal iy hiau l' lux Quality ( hr fi 1 l Numt.cr (l'SI A) li'I l f h11b N (fracthm) hicasured l'redicted hi m ,Ib hf'll ) ~4 I' (kC) m WI759 0.879s l W 17f,0 0 9439 W17til 0.9256 W 17(,2 1.0441 W17M 1.0154 W l764 1.1044 0.9s07 W l 7t,5 0.7794 W l 7<,6 Wl767 0.9223 j WI70s 0.9095 0.9522 W1769 Wl770 0.9464 W1771 0.9011 W1771 A 1.1121 Wl772 1.07t F) ( W1773 0.9513 l.1205 l W1774 ~ 1.0573 l W1775 l W177t, 1.0540 W1777 1.1354 i i \\V177s 1.0965 i \\vl779 0 9165 l W 17so 1.1026 ! W 17s1 1.0785 l W1782 0.4f67 Wl7s3 0.9723 W 1784 0.98s3 l W1785 1.0498 u A9

4. NFSR-0090 REV.0 Westinehotice Teit Section A-7 local lleat I' lux,

weg, Systent inlet inlet local (MitTlf)

} Run Pressure Enthalpy Mass Flux Quality ( hr It') ' Nurnlier (l'hl A ) illtf

Mlb, (fraction)

Measured Predicted M) (b, c) F Ib,, hr-f t - r ! W l 79ti 0.922X Wl797 0M579 l W17W O.4669 { W 1799 O.9802 l.0327 ! W I800 j Wisol ~ 1.0570 I WIK02' l.1437 W 180; 0.9511 Wi94 0.9278 Wl80; I 0.M735 I W I N06 0,9291 l W IN07 0.S919 W l80s 0.9909 W l 50') 0.952X l WIMiu 0.9626 WINil 0.9439 ! Wlst2 1.0079 l WIX13 1.0054 I l Wihl4 1.0310 i l WlAls 1.0965 W 1510 1.0617 W IS17 1.0184 I W18 th 1.01(kl I WISl4 1.0169 l W lx2il 1.17125 WlS21 1.0167 WIS22 0.N64 WIM23 0.953% 0.9409 WlH24 ! WlS25 0.9527 W 1826 0.98T0 WlS27 0.9901 WIS2A 11Xhk) i WlS20 0.9SM j W1830 1.0135 WIS31 1.0711 l WIS32 1.0491 ) WIN 31 1.0 C3 l uris4 Wisu A-10

NFSR-0090 REV.0 Lotal Heat l~lus wc q, hptem Inlet inlet Local (htIr!Uj llun l'icuur c !!nthal iy hiass I' lux Quality ( hr.it7) l Nuudict (l'hl A) (IrI US ( M ib,y' (fraction) hicasured l'redicted (hij ( lb,) ( hr Iti -4 @) @j ) c n I' WIN 35 l.Osso 1.07tr) W ix v. WlM37 1.123') WlxM 1.(KN X) l W IN 19 1.1822 i W1x40 1.0437 ~" Wl841 i 1.0336 Wlx42 ~I~ 0.9640 WIS41 I~ 1.0119 N~ 0.9431 l Wlh44 ~I 1 9227 Wlxis W i s44, ~ ~ f~-' Ov>(v7 Wlx47 1.(M N ki -W 1844 0.9S37 WIS49 U.9911 Wlxs0 0.94sx i W l851 0.9913 ( WI852 1.0294 l WIX53 10157 1529 i W1854 f Wis$$ ~ 1.t k W M) l Wiss6 0.9570 l W1557 1.0304 l WlS5S 1.1404 W 1559 0.9918 W l560 0.9943 l Wl561 1.0270 W 1862 1.109s W l564 1.0574 W IS64 1.0333 Wl565 0.9744 W l566 1.0550 A 11

NFSR-0090 REV.0 Westinnhouse Test Section A-8 Local lical Hut W est. System inlet initt

11. cal (MitTU)

Run l'rewur e linthalpy M au ilus Quality ( hr It2 / t in,) (Min 3 (fraction) Measured Predkted (hfi (llTt? Nurnber (l'SI A) ( hr.n J -4 EF) (b,c) m c n W 1979 0.95s7 W1960 0 5322 W19xl O.WM W1982 0.9292 W19S T 1.0451 W l9s4 1.024X W1985 0.9044 O.932X W l9Sh _ 0.9120 Wlus7 W 19ss 1.0105 W 19s9 1.1356 W l'r>0 0.8285 l ~ W l991 0.8467 W l992 0.9245 W 1993 0.8962 W l'?)4 0.9219 W1995 OE163 j W 19'in 0.8X10 l W l'?)7 0.h641 W l'ris 0.8340 W lir 79 0.9464 W20th) 1.(M K kl ~ W2001 0.9970 l W2lk12 0.9042 W 2tn13 0.9591 W 2tR)4 0.9362 W2(h)5 0,9197 W20 tin 0.9496 W2th)7 0.0093 W2tnis 1.0970 W2tK)9 1.0492 W2010 0.9971 W2till 1.0595 l W2012 1.0497 W2013 1.0131 W2014 0.9790 W2015 0.9115 l W2016 1.0147 l l.03X7 l W2017 A 12

1 NFSR-0090 REV.0 1.otalllcatI'lus I Wt st. h) stern Inlet Inlct local (5111Tt f) l l l'rcssurc !!nthalpy hiaw I'lus Quality ( hr.ttJ) Run hilb T (fraction) hicasured l'redn ted Nurnbcr (l'51 A ) {it i t t)

h..it )

-4 (b, C) s Ib,n ) { , 20is 0.9875 W20 pi ~ 03)$43 i W2020 0.4424 i W2021 0.8466 l W2022 - 0.K625 [ W2023 1.0316 ~ W202a ~ l.0273 1.087') W2025 0.9S43

W202r, W2027 IDH1

~ i W202< 1.(F)lh j W2129 0.9157 W2hy) 1.1030 I W2011 1.16(ki i W20T2 1.0 Vll W2t H3 1,1057 W2014 0.9794 W2035 1.0567 I W 2t B h 1.0f,7t l I W2017 033705 W20 h 0.9559 0.9177 l \\\\'20 V; W2t Llo 1.052h W2t)41 1.03N9 W2042 1.0702 [ \\\\'2043 0.9654 [ j \\\\'2114 4 1.1290 W2045 1.0434 ~W2046 033424 W2047 1.0752 l W204s 1.0351 l W2049 1.0hSS W2050 0.91H9 W2051 1.06s4 i W2052 ) 1.0707 l A 13

NFSR 0090 REV.0 Westinchouse Test Section A-9 Local 11 cat l~lus

wcq, System initt inlet 1.ncal (h115Tlf)

Run l'ressure linthalpy hiass I' lux Qualit) ( hr.itJ) N umlie r (PSIA) fliTU) (Mlb } (fraction) Measured l'redicted (M) m ( lbm) ( hr It J -+ ( l') (b C.) J j Wl867 1.0025 ( W ist.s 1.0429 WINN 1.0140 Wl870 0.9917 Wl871 0.S575 Wl872 0.9673 WI873 1.00x3 W lN74 0.9156 Wl875 0.S769 l W l870 0.86fi7 W1S77 0.90t 9i_ W lN7x 1.1138 W l879 0.9933 W lSs0 0.84N6 WIKs1 1.0102 _ Wlss: 0.97(,5 W ISC l.(kil5 W lNs4 1.0434 WISx5 0.9462 l WIKsti 1.1316 l W1xx7 1.03S2 WlSss 0.9307 i W lN59 1.I433 W lX'M) 1.tkl2S W l#91 0.8992 Wl892 0.x979 Wl893 0.9922 _ W lS94 0.9971 _ Wl895 0.95S6 W lS9n 0.930i Wl897 0.992i WlS9s 0.9236 i Wl809 0.8240 W19t K) 1.0305 W 100i U.5482 W l'M12 09019 W l'X11 0.N564 l { Wl'04 l l 1.0271 j A 14

NFSR-0090 REV.0 local lleat I'lus We st. S.ot e m Inlct inlet 12x al (MitTth Itun IC "u r e Eintluliy Mau l' lux Quality ( br-It ) 2 l Number (l'SI A) IITU Mlb ~ (fraction) Measured l'redicted hi Ib If I -+ (br C) m W lixis 0.'n53 W l<x v, 0.KM33 Wl'M 17 0.9339 0.8592 W190s l WitgH 0.9719 W1910 0.7978 W1911 11Phrt ^ Wly12 U.S72M W 1913 0.8944 i Wlyl4 1.0545 l Wl915 Oml5

Wlylt, 0.87 %

1 ! W1917 0.9703 WlulK OM151 Wluly 1.0174 W1920 1JWA4 W1921 0.9493

W1922 1.1572 W1923 1.0124 W1924 1.0420 Wl925 1.02X5 W 192f.

IJkk6

W1927 0.4499 i

[ W 192s 1 0941 i W1929 ljk143 l W1930 1.1050 l W1931 0.99 % Wly32 1.0753 ( W190 1.0797 Wl934 1.0S79 W1935 0.4979 I l W 1930 1.1106 l A 15

NFSR-0090 REV.0 Westinnhouse Test Section A-10 E local lleat I lux We st. hptcin Inlet inlet laul (hillTl!) It un l'a cssur e linthalpy hiass I'lus Quality ( hr-ItJ) Number (l'51 A ) (IITlh h11b} (frattion) hicasured l'redicted hi} m ( lb hr.!1 ) -4 3/ b,c.) 2 m 1.07S4 I W $59 ~ 0.%M2 W l 5t,o i \\\\ 15(,1 0.93(Mi ( \\' f 1562 0.9491 j W 15r,T ~ 0.9193 I Wl$64 0.9485 W 1565 llKNi W l566 U.9643 W I 5(,7 0.9453 ' W15r,s 1.0463 W 15r,9 IJKiss W1570 1.059) j W1371 0.9472 [ 5 15'/2 U.9S33 l Wl573 0.9756 W1574 1.0551 W1575 1.0523 W157h 1.02(k) Wl577 11L120 W1578 1.1094 Wl579 1.0736 _ i W l 550 1.0278 l l Wl$s1 0.9023 l Wl5s2 1.0375 l Wl$S3 0.9293 W15S4 IJK:75 W1555 1.0.V ki W l556 O.S335 WlSS7 0.S729 Wl53s 1.0390 W I589 0.9563 l W19XI 1.1500 ! W l591 0.S297 Wl592 1.0259 W1593 1.0133 Wl594 1.0305 Wl595 1 A1424 W1590 llN93 W1597 lixB4 A 16

NFSR-0090 REV.0 local lleat l~ lux

West, hystem inlet inlet 12> cal (h111Tth Ilun l'ressur e finthal[>y hiassI'lus Quality

\\ br ft2) Numlier (l'slA) (llTit

hilb, (fr action) hicasured I'redicted Af

' It'm br f t2 ~4 7 hj) c W159s lJr68 W15w 1.0x13 WifdN) 1.1259 Wit:01 1.0447 W ifd)2 0.9524 W Ifdl3 0.9523 ~ W 1(d 64 1.1926 W Ifd15 1.0321 WleANi 1.022X l W ifd}7 0.4837 I WifdH 1.056S Wlfdr) 1.0312 i W l610 1.0105 l W 1611 1JK)24 W l(i12 0.9794 Wlfil3 1.010S ! Wlol4 1.0750 j Wlfil5 0.9327 W 16t h 1.0315 Wlbl7 1.096S W1618 1.OSt>7 l W 1610 1.0164 [ W1620 0%676 l W lh21 1.0377 W1621 1.07t v. Wlb24 1.1417 W!l 25 1.1714 W iti2(i 1.18S0 ! Wlb27 1.(kiX3 I Wl62X 1.0952 Wl629 1.03S4 Wlb30 1.1326 l W16TI 1.1927 Wl632 0.9699 Ills 59 i W163T 11491 l Wlb34 Wifi35 1.1444 j W 163t> 1.1417 W1637 1.14M A-17

NFSR-0090 REV.0 I Westinnhouse Test Section A-11 letallleatilux

wcq, hystern inlet inlet imcal f_N1IITlf}

Run l'rcuurc l'nt haljiy hiau l'lut Ou.ility ( hr f tJ / Nurnber (l'51 A) firitt (Nilli q (fradion) hicasured ' l'redkted (Af) \\5 \\ br.it / q-(l') (hj) n J C W lt,Ts 1.0890 W 163'l 1.0032 W lf.40 1.0169 ~ l Witial 1.00 % i W1642 1.0764 W if.4 T 1.0171 W if e44 1.0105 Wlf 4'i 1.0119 W l616 0KOl5 W lf.47 0.S$X9 f W lt,4s 0.9458 ( W 1649 0.9245 l W1650 0.N904 W iti51 0.9252 W 16$2 1.0573 ( W1653 0.9243 W 1654 1.Or >44 W1655 1.010% j W 165t> 1.1701 l W1657 1.07hM i W 165x 1.0 T42 WlfiS9 1.0242 W1660 1.D433 W1661 1.t K k 4 l Wl662 0.5633 W lfa>3 0.9346 W its>4 1.162ti W if,65 1.1151 l W 1666 1.1466 ! W 16t>7 1.04S7 W 166N 1.0287 I Wl(M 0.8519 W1(i70 0.9565 W1671 0.9277 l W1672 0.9582 ! Wl673 1.0490 l Wl674 0.9320 l Wlfi?5 0.9463 I W 1676 O.9450 A-18

NFSR 0090 REV.0 Local llcat 171us West. hyste inlet Inlct local (hillTlh Run l'icssur e Entlu!l>> hiass I lux Qualit) ( hr ItJ) Numbe r (l'hl A) f~iri t?) N11b,,i} (fraction) hicasur[d l'acdicted M (dj) %c) J \\ lb,,3 ) , br f t ) -4 W lfi77 0.92.X2 Wlfi78 0.9007 Wl679 0.8875 Wif 6ti 1.ON00 W1f,M 1 1.10S5 Wlfm2 1.0825 W j f,x.4 1.0466 WlfA4 1.0340 t l WifA5 111416 l WlfA6 1.0323 l WifA7 1.0119 l W if M l.010X WifNi 0.9116 W lfNil 1.11(M) WifN1 1 2133 Wlin2 1.1282 WliN3 1.2461 W l f,94 1.1893 WlfN5 1.1 1'76 W 1690 ljMli Wl697 1.(?NS Wlh44 0.9633 I W 16'N 0.8932 l W l7tki 0.9729 W 1701 1.1472 Wl702 1.0659 W l703 1.1349 W1704 1.2tx 2 { W 1705 0.9736 A-19

L-NFSR 0090 REV.0 Westinehouse Test Section A-12 l 12ical lleat I' lux Wc st. Systern Inlet inlet Local (MilTli) Run l'rcssure linth.ilpy M av. Ilus Qualit) (hrft2) Nurnbcr (l'$l A) (IITif) (Mlb,nj (Iraction) Mcasured l'redicted (J.fj (lbni ) (hr ft ) -4 ( l') (b,C) J W1444 1.1432 Wl445 1.1126 Wl446 0.9(67 Wl447 1.0241 i Wl44s 0.9339 i W1449 1.0131 l W1450 1AW76 W1451 1.1088 11)424 W1452 e.9321 Wl453 0.9407 Wl454 Wl455 0.9409 Wl456 { 0.9969 Wl457 1.052X Wl45S 0.1573 Wl450 0.SS60 W I460 1.0271 W 1461 1.0017 Wl462 0.9229 W l463 0.8443 W 1464 1.tk #) W1465 1.0915 W1466 1.1912 _W1467 1.0217 W I46S Ij)064 W1469 1.0791 Wl470 1Disa W1471 1.0752 ~ Wl472 (1.9852 W1473 0.9761 Wl474 0.9641 0.80S2 W1476 ! W1477 1.1051 W147S

1. LWR) l W1479 1.0928 WI4s0 1.0394 Wl4S1 1 # )22 Wl4S2 0.9309 W 14S T l

1.0323 i A-20

s. NFSR-0090 REV.0 ~ local llcal Flux West. System Inlet inlet local (MitTU) Run l'r et.su r e Enthalpy M ass ilux Oualit) ( hr-ItJ) Number (l'SI A) (131U) (Mlby, (fraction) Measured l'redicted (d)) (b,c) M (lbm) ( hr-ft-1 -4 Wl444 0.84X3 W 14st, OM10 Wl4s7 0.XX76 [ W14ss 03NI W14s9 0.9713 W]490 0.9272 W 1491 1.0162 Wl492 0.9810 W l4'13 1.0232 f W1502 0.9147 [ Wl501 0.955M { Wl504 03F)43 i W1505 1 0417 Wl $0h 0.iMN W1507 0.9hS1 l W 15t M 0.9432 l l W 1509 0.9374 i W1525 0.9329 l W1526 1.1010 1.1040 i W1527 0.N Ki3 W1531 W1532 0.9135 i W1534 1.tki25 ! W1535 1.09t h Wl540 1.0655 W1541 1.0312 W1541 0.9915 i W1544 l 1.0222 W1545 0.9243 W1546 0.9549 [ Wl552 0.9975 i W 1553 0.'nk K) i W 1554 1.0732 l l W1557 0.S767 l A-21

-me-- w. ATTACHMENT A NFSR-0090 "VIPRE/WRB 2 DNDR THERMAL LIMIT FOR WESTINGHOUSE 17x17 OFA AND VANTAGES FUEL" (Six Proprietary Copies) M ZNLD/1524/9 .}}