ML18152A035

From kanterella
Revision as of 09:25, 25 April 2019 by StriderTol (talk | contribs) (Created page by program invented by StriderTol)
Jump to navigation Jump to search
Cycle 12 Startup Physics Test Rept. W/920731 Ltr
ML18152A035
Person / Time
Site: Surry Dominion icon.png
Issue date: 07/15/1992
From: HOFFMAN E A, LAROE C B, STEWART W L
VIRGINIA POWER (VIRGINIA ELECTRIC & POWER CO.)
To:
NRC OFFICE OF INFORMATION RESOURCES MANAGEMENT (IRM)
References
92-491, NUDOCS 9208110252
Download: ML18152A035 (59)


Text


~ ---------------------------

e e VIRGINIA ELECTRIC AND POWER COMPANY RICHMOND, VIRGINIA 23261 July 31, 1992 United States Nuclear Regulatory Commission Attention:

Document Control Desk Washington, D. C. 20555 Gentlemen:

VIRGINIA ELECTRIC AND POWER COMPANY SURRY POWER STATION Serial No. NL&P/CGL Docket No. License No. UNIT 1 CYCLE 12 STARTUP PHYSICS TEST REPORT 92-491 R1 50-280 DPR-32 As required by Surry Technical Specification 6.6.A.1, enclosed are five (5) copies of the Virginia Electric and Power Company Technical Report NE-898, entitled "Surry Unit 1, Cycle 12 Startup Physics Test Report." This report summarizes the results of the physics testing program performed after initial criticality of Cycle 12 on May 1, 1992. The results of the physics tests were within the applicable Technical Specification limits. Very truly yours, / J~. / \ 1 ' \ L / \._9* '\ W. L. Stewart Senior Vice President

-Nuclear Enclosures

-Surry Unit 1, Cycle 12 Startup Physics Test Report (5 copies) cc: U. S. Nuclear Regulatory Commission Region II 101 Marietta Street, N. W. Suite 2900 Atlanta, Georgia 30323 Mr. M. W. Branch NRC Senior Resident Inspector Surry Power Station e TECHNICAL REPORT NE-898 -Rev. 0 SURRY UNIT 1, CYCLE 12 STARTUP PHYSICS TEST REPORT NUCLEAR ANALYSIS AND FUEL NUCLEAR ENGINEERING SERVICES VIRGIN IA POWER JULY 1992 e PREPARED BY:t.~, 2-(~ E. A. Hof man REVIEWED BY: c:-:::~ J. w. APPROVED BY:~~ D. Dz~dosz QA Category:

Nuclear Safety Related Ke~words:

S1C12, Startup 7/03/q-z-Date Afi---Date 7Jsi42

e. e CLASSIFICATION/DISCLAIMER The data, techniques, information, and conclusions in this report have been prepared solely for use by Virginia Electric and Power Company (the Company), and they may not be appropriate for use in situations other than those for which they have been specifically prepared.

The Company therefore makes no claim or warranty whatsoever, express or implied, as to their accuracy, usefulness, or applicability.

In particular, THE COMPANY MAKES NO WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, NOR SHALL ANY WARRANTY BE DEEMED TO ARISE FROM COURSE OF DEALING OR USAGE OF TRADE, with respect to this report or any of the data, techniques, information, or ~onclusions in it. By making this report available, the Company does not authorize its use by others, and any such use is expressly forbidden except with the prior written approval of the Company. Any ~uch written approval shall itself be deemed to incorporate the disclaimers of liability and disclaimers of warranties provided herein. In no event shall the Company be liable, under any legal theory whatsoever (whether contract, tort, warranty,.

or strict or absolute liability), for any property damage, aental or physical injury or death, loss of use of property, or other daaage resulting from or ari~ing out of the use, authorized or unauthorized, of this report or the data, techniques, information,.or conclusions in it. "*-RQR ~,r.12 Startup Test Report Page 1 of 57 e* e TABLE OF CONTENTS PAGE Classification/Disclaimer

      • .************.***.******

,... 1 Table of Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 List of Tables. . . . . . * . * . . . * * * * * * * * * * * * * * . * * * . . * . * * * * * . .

  • 3 List of Figures.........................................

4 Preface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Section 1 Introduction and Summary...................

7 Section 2 Control Rod Drop Time Measurements.........

16 Section 3 Control Rod Bank Worth Measurements........

21 Section 4 Boron Endpoint and Worth Measurements......

26 Section 5 Temperature Coefficient Measurement........

30 Section 6 Power Distribution Measurements............

32 Section 7 References.................................

40 APPENDIX Startup Physics Tests Results and Evaluation Sheets........................

41 r N~-RQR ~,r.12 Stnrtuo Test Report Page 2 of S7 TABLE 1.1 2.1 e LIST OF TABLES TITLE Chronology of Tests *..***....*.*.**..*****..**********

Hot Rod Drop Time Summary *.*..****.****...***.**.*****

PAGE 10 18 3.1 Control Rod Bank Worth Summary........................

23 4.1 Boron Endp~ints Summary...............................

28 5.1 Isothermal Temperature Coefficient Summary............

31 6.1 Incore Flux Hap Summary...............................

35 6.2 Comparison of Measured Power Distribution Parameters With Their Technical Specification Limits.............

36 ~~-AQA ~1r.12 Startuo Test Report Page 3 of 57 FIGURE 1.1 1.2 1.3 1.4 1.5 2.1 2.2 3.1 3.2 4.1 6.1 6.2 6.3 e LIST OF FIGURES TITLE I Core Loading Map ..........................

  • . * . * . * . * * * * * *
  • Beginning of Cycle Fuel Assembly Burnups ************.****

Incore Movable Detector Locations

    • .******************.**

Burnable Poison and Source Assembly Locations

Control Rod Locations

  • .....**.***.******.********.*******

Typical Rod Drop Trace ........*.*..................*.....

Rod Drop Time -Hot Full Flow C.onditions

Bank B Integral Rod Worth -HZP **************************

Bank B Differential Rod Worth -HZP ******* **************

Boron Worth Coefficient

...*...***...*.....*..**.........*

Assemblywise Power Distribution

-28% Power *.*...........

Assemblywise Power Distribution

-69% Power ..*.........**

Assemblywise Power Distribution

-100% Power *************

PAGE 11 12 13 14 15 19 20 24 25 29 37 38 39 \ft:" -O O II Page 4 of 57 e e PREFACE This report presents the analysis and evaluation of the physics tests which were performed to verify that the Surry 1, Cycle 12 core could be operated safely, and makes an initial evaluation of the performance of the core. It is not the intent of this report to discuss the particular methods of testing or to present the detailed data taken. Standard test techniques and methods of data analysis were used. The test data, results and evaluations, together with the detailed startup procedures, *are on file at the Surry Power Station. Therefore, only' a cursory discussion of these items is included in this report. The analyses presented include a brief summary of each test, a comparison of the test results with design predictions, and an evaluation of the results. The Surry 1, Cycle 12 Startup Physics Tests Results and Evaluation Sheets are included as an appendix to provide additional information on the startup test results. Each data sheet provides the following information:

1) test identification, 2) test conditions (design), 3) tes~ conditions (actual), 4) test results, 5) acceptance criteria, and 6) comments concerning the test. These sheets provide a compact summary of the startup test results in a consistent format. The design test conditions and design values of the aeasured parameters were completed prior to the startup physics testing. The entries for the design values were based on the calculations performed by Virginia Electric and Power Company's Nuclear Analysis and Fuel Group 1* During the tests, the data sheets were used as guidelines both to verify that the proper test conditions were met and to facilitate the preliainary comparison between NF.-898 S1C12 Startup Test Report Page 5 of 57 e measured *and predicted test results, thus enabling a quick identification of possible problems occuring during the tests. NF-RgR S1C12 Startup Test Report Page 6 of 57
e. e SECTION 1 INTRODUCTION AND

SUMMARY

On February 29, 1992 Unit No. 1 of the Surry Power Station shutdown for its eleventh refueling.

During this shutdown, 65 of the 157 fuel assemblies in the core were replaced with 63 fresh fuel, and 2 once-burned assemblies.

The eleventh cycle core consists of 8 sub-batches of fuel: two fresh batches (batches 14A and 14B); four once burned batches, two from Cycle 11 (batches 13A, and 13B), one from Cycle 8 (batch 10), and one from Cycle 10 (a single batch 12B assembly);

three twice-burned batches from Cycles 10 and 11 (batches S2/12A, and 12A, and 23 batch 128 a*ssemblies).

Note that batch 12B has both once and twice burned assemblies.

The core loading pattern and the design parameters for each batch are shown in Figure 1.1. Fuel assembly burnups are given in Figure 1.2. The incore movable detector locations are ~dentified in Figure 1.3. Figure 1.4 identifies the location and number of burnable poison rods and source assemblies for Cycle 11, and Figure 1.5 identifies the Jocation and number of control rods in the Cycle 12 core. On Hay 1, 1992 at 2218, the twelfth cycle core achieved initial criticality.

Following criticality, startup physics tests were performed as outlined in Table 1.1. A sumaary of the results of these test follows: 1. The measured drop tiae of each control rod was within the 2. 4 second limit of Technical Specification 3.12.C.1.

~F-RgR ~,r.12 St~rtun Test Report Page 7 of 57 e* e 2. The reference control rod bank was measured with the dilution method, and the results were within 2.9% of the design predictions.

Individual control° rod bank worths were *easured using the rod swap technique 2 and the results ~ere within 3.9% of the design predictions.

The sum of the individual measured control rod bank worths was within 0.4% of the design prediction.

These results are within the design tolerance of +/-15% for individual bank worths (+/-10% for the rod swap reference bank worth) and the design tolerance of +/-10% for the sum of the individual control rod bank worths. 3. Measured critical boron concentrations for the two control bank configurations were within 31 ppm *of the design predictions.

These results were within the design tolerances and also met the

4. The boron worth coefficient
  • easurement was within 0.5% of the design prediction, which is within the design tolerance of +/-10%. 5. The *easured isothermal temperature coefficient (ITC) for the all-rods-out configuration was within 0.35 pc*/8 F of the design prediction. . This result is within the design tolerance of +/-3 pc*/'F. The *easured ITC was -2.16 pc*/'F. When the Doppler temperature coefficient and a 0.5 pca/'F uncertainty are accounted for in the +l.O pca/1 F KTC li*it of Technical w~-ROR ~,r.12 StBrtun Test Report Page 8 of 57
  • e e Specification 3.1.E.1, the MTG requirement is satisfied as long as the ITC is less than or equal to +0.82 pcm/°F. 6. Measured core power distributions were within established acceptance criteria based on Technical Specification limits. However j a design tolerance on core tilt was exceeded for the flux map taken at less than 30% *power. The impact of the core tilt on safety analysis physics parameters was evaluated and was found to be bounded by the results of the current analysis.

The core tilt is discussed further in Section 6. Generally, the measured core power distribution was within 3. 7% of the design predictions.

The heat flux hot channel factors, F-Q(Z), and enthalpy rise hot channel factors, F-DH(N), were within the limits of Technical Specifications Section 3.12.B.1.

In summary, all startup physics test r~sults were acceptable.

Detailed results, specific design tolerances and acceptance criteria for each measurement are presented in the following sections of this report. u~-ROR ~,r,, ~t~rtuo Test Report Page 9 of 57 e e. Table 1.1 SURRY 1 -CYCLE 12 STARTUP PHYSICS TESTS CHRONOLOGY OF TESTS Test Date Time Power Hot Rod Drop -Hot Full Flow 4/30/92 2248 HSD Zero Power Testing Range 5/02/92 0332 HZP Reactivity Computer Checkout 5/02/92 0455 HZP Boron Endpoint -ARO 5/02/92 0940 HZP Temperature Coefficient

-ARO 5/02/92 1048 HZP Bank B Worth 5/02/92 1208 HZP Boron Endpoint -Bin 5/02/92 1208 HZP Boron Worth Coefficient 5/02/92 1208 HZP Bank D Worth -Rod Swap 5/02/92 1717 HZP Bank C Worth -Rod Swap 5/02/92 1834 HZP Bank A Worth -Rod Swap 5/02/92 1901 HZP Bank SB Worth -Rod Swap 5/02/92 1919 HZP Bank SA Worth -Rod Swap 5/02/92 1947 HZP Flux Map -P 30% 5/03/92 1134 28% Flux Map -50% SP S 75% 5/05/92 0735 69% Flux Map -95% SP S 100% 5/11/92 1251 100% ur._ooo c:'H"1? ~t~-rt11n T~st Renart Page Reference Procedure 1-NPT-RX-007 1-NPT-RX-008 l-NPT-RX-008 1-NPT-RX-008 1-NPT-RX-008 1-NPT-RX-008 1-NPT-RX-008 1-NPT-RX-008 1-NPT-RX-008 1-NPT-RX-008 1-NPT-RX-008 1-NPT-RX-008 1-NPT-RX-008 1-NPT-RX-002 1-NPT-RX-002 1-NPT-RX-002 10 of 57 R p N M Figure 1.1 SURRY UNIT 1* -CYCLE 12 CORE LOADING KAP L I( J H 6 I 1211 1211 1211 I IZG6 1465 1367 I e F E _____ 1 __ 1 __ 1 __ 1......__.....,..

__ _ I 12A I 1311 I 1411 I l3B I l4B I 1311 I 12A I 1062 IZH9 15.16 ISHZ l4J9 l3H3 1162 I D __ 1 __ 1 __ 1 __ 1 ___ 1 __ 1 __ 1 __ 1 __ I 12A I 14A I 1411 I 13A I 1411 I 13A I 1411 I 14A I lZA I I 164 I 2J4 I 6J2 I 0119 I 4J7 I lHO I SJ3 I 2J6 I 067 I C ___ 1 ___ 1 ___ 1 ___ 1 ___ 1 ___ 1 ___ 1 ___ 1 ___ 1 ___ 1 __ _ I 12A I l3B I l4B I 13A I 14A I lZB I 14A I 13A I l4B I l3B I 12A I I 168 I 4H4. I 5J9 I 1H7 I 2JO I 360 I 3J2 I OHS I 5J2 I 3119 I OGII I II ~-1 ___ 1 ___ 1 ___ 1 ___ 1~_1 ___ 1 ___ 1 __ 1_*~1---1---1---

1 12A I 14A I l4B I l3B I 14A I l2B I 14A I l2B I 14A I l3B I l4B I 14A I 12A I I 069 I IJ4 I 5J5 I 3HO I 2J2 I 369 I OJ3 I 4C& I lJa I 3H4 I 4J4 I 2J8 I 264 I 1 __ 1 __ 1 __ ._1 __ 1 __ 1 __ 1 ___ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 I 1311 I l4B I 13A I 14A I 13A I 14A I 1311 I 14A I 13A I 14A I 13A I 1411 I l3B I I 4H6 I 4Jl I ZHl I OJ6 I OH3 I ZJl I ZH6 I 1J2 I lHS I lJO I OHl I 4J3 I 4HO I A __ 1_* __ 1 __ 1 __ 1 __ 1~_1 ___ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ I lZB I l4B I 13A I 14A I lZB I 14A I 13A I 1311 I 13A I 14A I l2B I 14A I 13A I l4B I lZB I I 462 I 6JO I ZHO I lJl I 460 I 3J5 I 0116 I 3H2 I 1119 I OJa I 365 I 2J9 I OH4 I 3J8 I 362 I*. 1 __ 1~_1 __ 1 __ 1 __ 1 __ 1 __ 1 ___ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 I lZB I 138 I l4B I lZB I 14A I 138 I 1311 I 10 I 1311 I 1311 I 14A I l2B I 1411 I l3B I l2B I I 368 I ZH3 I 5J7 I 461 I 3JO I 3H7 I 4H2 I lEZ I Sltl I 3Hl I 1J9 I 269 I 4JO I 4H7 I 366 I 1 __ 1 __ ._1 __ 1 __ 1 __ 1 __ 1 ___ 1 ___ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 I lZB I l4B I 13A I 14A I IZB I 14A I 13A I 1311 I 13A I 14A ISZ/lZAI 14A I 13A I l4B I lZB I I 361 I 3J6 I OHZ I 1J5 I 4G6 *I 3J3 I 11111 I 3H11 I lHl I OJI I ZUO I OJ7 I ZH2 I 5JO I Z67 I 1 __ 1_* __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 ___ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 I l3B I 1411 I 13A I 14A I 13A I 14A I 1311 I 14A I 13A I 14A I 13A I 1411 I l3B I l~l~l~l~l~l~l~l~l~l~l~l~l~I 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 ___ 1 __ 1 __ 1 __ 1 __ 1 __ 1_*_1 I lZA I 14A I 1411 I 1311 I 14A I 1211 I 14A I 1211 I 14A I l3B I 1411 I 14A I lZA I l~l~l~l~l~l~l~l~l~l~l~l~l~I 1~_1 __ 1 __ 1 __ 1 __ 1 __ 1 ___ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 I IZA I 1311 I l4B I 13A I 14A I lZII I 14A I 13A I 1411 I l3B I lZA I *1 161 I 4Hl I 6J3 I 1H3 I 1J7 I ZG11 I 1J3 I 1116 I 4J2 I 3H6 I 1G6 I 1 __ 1 __ 1 __ 1 __ 1 ___ 1 ___ 1 __ 1 __ 1 __ 1 __ 1 __ 1 I lZA I 14A I 1411 I 13A I 1411 I 13A I 1411 I 1211 I lZA I I OG6 I ZJ7 I 4J8 I lHZ I 6Jl I OH7 I 5J4 I 467 I 163 I 1 __ 1 __ 1 __ 1 __ 1 ___ 1 __ 1 __ 1 __ 1 __ 1 -1 12A I 1311 I 1411 I 1311 I 1411 I 1311 I 12A I 1065 IZHS ISJa 12H7 l3J9 14119 1263 I 1 ___ 1 ___ 1~_1 ___ 1 ___ 1 ___ 1 ___ 1 I 1211 I 1211 I 1211 I 1363 1463 IZG5 I --1--> BATCH I 1--> ASSEMBLY ID 1 ___ 1 ___ 1 ___ 1 I __ I FUEL ASSENIILY DESIGN PARAltETERS SUII-IIATCH SZ/lZA 10 lZA 1211 INITIAL EHRICHHENT 3_79 3.60 3.ao 3.99 CW/0 U-235) BURHUP AT BOC 12 211435 17757 35617 32362 CMWD/KTU)

ASSEMBLY TYPE 1SxlS 1SX1S 1SX1S 1SX1S HUMBER OF ASSEKIILIES 1 1 16 Z4 FUEL RODS PER ASSEKIIL 1 204 Z04 204 2114* * -one assallbly is reconstituted with 203 fuul rods and ona solid stainless steal rod NF.-R98 S1Cl2 Startup Test Report 13A 3.80 17977 1SX1S 24 204 1311 4.111 16922 1SX1S za Z04 -------~ 14A 3.111 I 1SX1S 3S 204 1411 4.DZ I 1SX1S za Z04 Page 11 of 57 1 2 3 4 s 6 7 8 9 10 11 12 13 14 1S R p e Figure 1.2 SURRY UNIT 1 -CYCLE 12 BEGINNING OF CYCLE FUEL ASSEMBLY BURNUPS N " L I .J H 6 F E I 266 I 465 I 3G7 I I 338521 374451 348371

  • 062 I ZH9 I 5.J6 I SH2 I 4.J9 I 3H3 I 162 I I 344211 176651 DI 164101 DI 177321 3435DI D ___ , ___ 1 ___ 1 ___ , ___ , ___ , ___ 1 ___ , __ _ I 164 I 2.J4 I 6.J2 I OH9 I 4.J7 I lHO I 5.J3 I 2.J6 I 067 I I 368271 DI DI 174501 DI 171411 DI DI 367671 C ___ 1 ___ 1 __ 1 ___ 1 ___ , ___ , ___ 1 ___ 1 ___ 1 ___ 1 __ _ I 168 I 4H4 I 5.J9 I 1H7 I 2.JO I 360 I 3.J2 I OHS I S.JZ I 3H9 I oca I I 376221 161121 DI 183081 DI 346141 DI 182361 DI 160371 370411 II ___ 1 ___ 1 ___ 1 ___ 1 ___ 1 ___ 1 ___ 1 ___ 1 ___ 1 ___ 1 ___ , ___ 1 __ ,~1~1~1~1~-*~*~1~1~1~1~1~1~1 I 340591 DI DI 159811 DI 312171 DI 307961 DI 162451 DI DI 341541 1 ___ 1 ___ 1 ___ 1 ___ 1 ___ , ___ , ___ , ___ , ___ , ___ , ___ , ___ 1 ___ 1 I 4H6 I 4.Jl I ZHl I O.J6 I DH3 I 2.Jl I 2H6 I l.J2 I lHS I l.JO I OHl I 4.J3 I 4HO I I 179511 DI 184721 DI 184421 DI 187981 DI 184641 DI 184491 DI 173101 A ___ 1 ___ 1 ___ 1 ___ 1 ___ 1 ___ , ___ 1 ___ 1 ___ 1 ___ 1 ___ , ___ , ___ 1 ___ 1 __ _ I 462 I 6JO I ZHO I l.Jl I 460 I 3.JS I OH6 I 3H2 I 1H9 I O.JB I 365 I 2.J9 I DH4 I 3.J8 I 362 I I 339381 DI 172541 DI 302111 DI 178381 156231 177571 DI 31D7DI DI 174041 DI 340721 1 __ 1 __ 1 ___ 1 ___ 1 ____ 1 ____ 1 ___ 1 ___ , ___ 1 ___ 1 ____ ,_. __ 1 ___ 1 ___ 1 ___ 1 I 368 I 2H8 I SJ7 I 461 I 3.JO I 3H7 I 4H2 I 1E2 I SH1 I 3Hl I 1.J9 I 269 I 4.JO I 4H7 I 3G6 I I 376531 162371 DI 346441 DI 179241 162991 177571 163301 184341 DI 347651 DI 157381 371601 1 ___ 1 __ 1 ____ 1 ____ 1 ___ 1 ____ 1 ___ , ____ , ____ 1 ____ , ___ 1 ____ 1 ___ 1 __ 1 ___ 1 I 361 I 3J6 I OH2 I l.J5 I 466 I 3.J3 I lH8 I 3H8 I lHl I D.Jl I zuo I O.J7 I ZH2 IS.JO I 267 I I 337411 *01 176111 DI 304871 DI 183171 164041 178161 DI 284351 OI 175821 DI 341191 1 ___ 1 ___ 1 ___ 1 ___ 1 __ ._1 ____ 1 __ , ___ 1 ___ 1 ___ , ___ , ____ 1 __ , __ , ___ 1 I 5HO I 4J6 I 1H4 I 3.Jl I 2H4 I D.J4 I 4H3 I l.J6 I OHS I D.J9 I ZH3 I 5.Jl I 4HS I I 177931 DI 180781 DI 1841141 DI 181111 DI 183451 DI 180461 DI 182901 1 ___ 1 ___ 1 ___ 1 ___ , ___ 1 ___ 1 ___ , ___ , ___ , ___ , ___ 1 ___ , __ 1 1~1~1~1~1~1~1~1~1w1~,~*~1~1 I 344371 DI DI 164531 DI 300781 DI 306661 DI 160601 DI DI 340441 1 __ , ____ , ___ 1 ___ 1 ____ 1 ___ , ____ , ____ , ____ 1 ____ 1 ___ , ____ 1 ___ 1 ,~1~1~1~1~1~1~1~1~1~1~, I 367061 159371 DI 183271 DI 343811 DI 183551 DI 163331 373801 1 ___ 1 ___ 1 ____ , ___ 1 ___ , ___ , ___ 1 ___ , ____ , ___ , ___ 1 ,~1~1~1~,~*~*~1~,~, I 367261 DI DI 174191 DI 1711621 DI 20901 372571 , ___ 1 ___ 1_* __ , ___ , ____ 1 ___ , ___ 1 ___ 1 ___ 1 I 065 I ZHS I !>.JS I 2H7 I .3J9 I 4H9 I 263 I
  • I 3391171 180271 II 161511 DI 174221 3410DI 1 ___ , ___ , ___ 1 ____ , ___ , ___ , ___ 1 I 363 I 463 I ZGS I I 336911 371031 338361 ,----1-->

ASSENIILY ID 1 ___ 1 ___ 1 ___ , I 1--> ASSENIILY IIURNUP 1 __ 1 ~------------!'.!..!'r-.:..-~

0!!0~0'.._____5,:,, ,., ? c::+~,-hm

,.P.!';t Reoort Page 12 of 57 l 2 3 4 5 6 7 8 9 10 11 12 13 14 15 R p N Figure 1.3 SURRY UNIT 1 -CYCLE 12 INCORE MOVABLE DETECTOR LOCATIONS N L I( .J H G F I I I I I I ND I I e E --,--1 __ 1 __ 1 __ 1 ____ _ I I I I I I I I I I ND I I D __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ I I I I I I I I I I INDI I INDINDI I I INDI C ~-l~-l~-1~_1~_1~_1~_1~_1~_1~_1~-

I I I I I I

  • I I
  • I I I I I I I ND I I I ND I I ND I I I I I __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ I I I I I I I I I I I I I I I INDI INDI INDI I I INDINDI INDI 1 __ 1 __ 1 __ 1~_1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 I I I I I I I I I I I I I I I I I I ND I I I ND I I ND I I I I I ,. __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ , __ 1 __ , __ , __ 1 __ 1 __ 1 __ 1 __ I I I I I I I I I I I I I I I I I I INDI I I INDI INDI I INDI INDI I , __ , __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ , __ , __ 1 __ 1 __ 1 __ 1 I I I I I I I I I I I I I I I I IHDI IHDI INDI I I I INDI I INDINDI I , __ 1 __ 1 __ 1 __ , __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ , __ 1 __ 1 __ 1 I I I I I I I I I I I I I I I I I I I I I ND I I I I ND I ND I I I I I ND I 1 __ 1_* __ 1 __ 1 __ 1 __ 1 __ 1 __ , __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 I I I I I I I I I I I I I I I IHDI I I IND! I I I INDI INDI 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ .1 I I I I I I I I I I I I I I I I I INDI I INDI INDINDI I I I , __ , __ 1 __ , __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ , I I I I I I I I I I I I INDI I I INDI I I I INDINDI . 1 __ , __ , __ , __ , __ , __ 1 __ , __ , __ , __ 1 __ 1 I I I I I I I I I I I I I I I* ND I I ND I I I
  • 1 __ 1 __ , __ , __ , __ , __ 1 __ , __ 1 __ 1 I I I I I I I I I ND I I I I ND I I I 1~_1 __ 1 __ 1 __ 1 ___ 1 __ 1 __ ._1 I I I I HD -Movable Detector Locations I ND I I I * -Locations Unavailable 1 __ 1 __ 1 __ 1_ ~~~~~--'~~~--~R._.QR

~,r.12 Startuo Test Report Page 13 of 57 l z 3 4 5 6 7 8 9 10 11 lZ 13 14 15 e e Figure 1.4 SURRY UNIT 1 -CYCLE 12 BURNABLE POISON AND SOURCE ASSEMBLY LOCATIONS R p N " L K .J H 6 F E D C B A I I I I I I I I ----'~-'--'~-'--,,--

' I I 5P I I SP I I I I I IBP144 I IBP145 I I I ~-'~-'~-'~-'~-'~-'~-'~-'~-

' I 3P I 16P I

  • I 20P I I 16P I 3P I I I IBP134 IBP165 I IBP170 I 1BP164 1BP136 I I ~-'~-'~-'~-'~-'~-'~-'~-'~-'~-'--

1 I I 20P I I 20P I I 20P I I 20P I I I I I IBP179 I 1BP182 I IBP183 I IBP181 I I SS7 I ~-'~-'~-'~-'~-'~-'~-'--'~-'~-'~-'~-'~-

' I 3P I 20P I I 17P I I 16P I I 17P I I 20P I 3P I I I IBP135 IBP180 I 1BP150 I IBP200 I IBP155 I IBP172 1BP137 I I '~-'~-'~-'~-'~-'~-'--'--'~-'~-'--'~-'~-'

I I 16P I . I 17P I I 20P I I 20P I I 17P I I 16P I I I IBP163 I IBP156 I IBP190 I IBP191 I 1BP157 I IBP162 I I --'--'--'--'--'--'--'--'--'--'--'--'--'--'--

' I 5P I I 20P I I 20P I I 12P I I 2DP I I 20P I I SP I I I IBP147 I 1BP186 I IBP194 I IBP1511 I IBP195 I IBP187 I IBP142 I SS1 I '--'--'--'--'--'--'--'--'--'--'--'--'--'--'--'

I I I 2DP I I 16P I I 12P I I 12P I I 16P I I 20P I I I I I IBPln I IBP199 I 1BP159 I 1BP161 I IBP2Dl I 1BP171 I . I I '--'--'--'--'--'--'--'--'-*--'--'--'--'--'--'--'

I I 5P I I 20P I I 20P I I 12P I I 20P I I 2DP I I SP I I I SS2 IBP146 I IBP189 I IBP197 I IBP16D I IBP196 I IBPISS I 1BP143 I I , __ 1 __ , __ , __ 1 __ , __ 1 __ 1 __ , __ , __ , __ , __ , __ , __ , __ , I I 16P I I 17P I I 2DP I I 20P I I 17P I I 16P I I I IBP16S I IBP152 I IBP193 I IBP192 I IBP153 I IBP169 I I , __ , __ , __ 1 __ 1 __ 1 __ , __ 1 __ , __ , __ , __ , __ , __ 1 I I 3P I 2DP I I 17P I I 16P I I 17P I I 2DP I 3P I

  • I I IBP141 "1BP174 I IBP151 I IBP19S I IBP154 I IBP176 1BP139 I I '~-1~-1~-1~_1

__ 1 __ ,~-'~-1~_,_._1~-'~-'~-I I I l20P I l2DP I l2DP I l20P I I *I I I IBP173 I 1BP185 I IBP1S4 I IBP175 I I I l~-l~-'~-1~_1~_1~-'~-'~-1~_, __ , __ 1 I l3Pl~I l~I l~l3PI I I IBP140 IBP167 I IBP178 I IBP166 IBP1311 I I 1 __ , __ , __ 1 __ 1 __ , __ , __ , __ , __ 1 I I I SP I I SP I I I 3P -3 BURNABLE POISON ROD CLUSTER 5P -5 BURNABLE POISON ROD CLUSTER 12P -12 BURNABLE POISON ROD CLUSTER 16P -16 BURNABLE POISON ROD CLUSTER 17P -17 BURNABLE POISON ROD CLUSTER 20P -20 BURNABLE POISON ROD CLUSTER SSx -SECONDARY SOURCE I I IBP148 I IBP149 I I I 1~_1 __ 1~_1~-*~-*--1

__ , I I I I I I I I , __ , __ I __ , I xxP or SSx 1-NUIHIER OF BP RODS or SECONDARY SOdH:E ID BPIII -BP ASSEIIBLY ID -----ut:-_ on o ~,r,? ~~~rtttn Test Reoort Page 14 of 57 1 2 3 4 s 6 1 8 9 10 11 12 13 14 15 R p N " e Figure 1.5 SURRY UNIT 1 -CYCLE 12 CONTROL ROD LOCATIONS L K J H 180° I G F e E D C. B Loop C I I I

  • I Loop B Outlet I __ I_._I __ I Inlet I I A I I D I I A I I __ 1 __ 1 __ 1 __ 1 __ 1_*_1 __ 1 __ 1 __ N-41 I I I I SA I I SA I I SP I I N-43 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ I I c I I B I I I I B I I C I I __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __
  • 1 __ 1 __ 1 __ 1 __ 1 __ 1 I SP I I SB I I SP I I I I SB I I I I 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 (Al IBI IDI ICI IDI IBI IAI A Loop C __ I __ I __ I __ I __ I __ I __ I __ I __ I __ I __ I __ I __ I __ I __ Inlet I I I SA I I I I SB I I SB I I SP I I SA I I I 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 9o 0-I I D I I I I c I I I I C I I I* I D I I 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 I I ISAI ISPI ISBI ISBI I I ISAI I I 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 IAI IBI IDI ICI IDI IBI IAI 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 I I. I ISBI I I ISPI ISBI ISPI I 1 __ 1 __ 1_*_1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 I I c I I B I I I . I B I I C I I 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 I ISPI ISAI ISAI I I I .N-44 I __ I_I __ I_I_I_I __ I __ I __ I N-42 I I A I I D I I A I I 1 __ 1 __ 1 __ 1_1_1 __ 1 __ 1 I I I I Loop A I __ I __ I __ . I Loop A Absorber Outlet Inlet Haterial I Ag-In-Cd o 0 Function Control Bank D Control Bank C Control Bank B Control Bank A Shutdown Bank SB Shutdown Bank SA SP (Spare Rod Locations)

NU11ber of Clusters 8 8 8 8 8 8 8 Loop B Outlet -270° u~-RoR ~,r1? ~t~~tnn Test Report Page 15 of 57 l 2 3 4 s 6 7 8 9 10 11 12 13 14 1S e e SECTION 2 CONTROL ROD DROP TIME MEASUREMENTS The drop time of each control rod was measured at hot full-flow reactor coolant system (RCS) conditions (Tavg above 547+/-5°F) in order to verify that the time from initiation of the rod drop to the entry of the rod into the dashpot was less than or equal to the maximum allowed by Technical Specification 3.12.C.1.

The rod drop times were measured by withdrawing a rod bank to its fully withdrawn position, and removing the movable gripper coil fuse and stationary gripper coil fuse for the particular rod of the bank to be dropped. This allowed the rod to drop into the core as it would during a plant trip. The stationary gripper coil voltage, the Individual Rod Position Indication

(!RPI) primary coil voltage signals and 60 Hz trace were recorded to determine the rod drop time. This procedure was repeated for each control rod. As shown on the sample rod drop trace in Figure 2.1, the initiation of the rod drop is indicated by the decay of the stationary gripper coil voltage when the stationary gripper coil fuse is removed. As -the rod drops, a voltage is induced in the IRPI primary coil. The magnitude of this voltage is a function of control rod velocity.

As the rod enters the dashpot region of the guide tube, its velocity slows causing a voltage decrease in the IRPI coil. This voltage reaches a minimum when the rod reaches the bottom of the dashpot. Subsequent variations in the trace are caused by rod bouncing.

w~-RQR ~,r.12 Startup Test Report Page 16 of 57 e The measured drop times for each control rod, for each test, are recorded on Figure 2.2. The slowest, fastest, and average drop times are summarized in Table 2.1. Technical Specification 3.12.C.1 specifies a maximum rod drop time from loss of stationary gripper coil, voltage to dashpot entry of 2.4 seconds with the RCS at hot,. full flow conditions.

These test results satisfied this limit. ~~N_F._.-898 S1C12 Startup Test Report Page 17 of 57

e. Table 2.1 SURRY UNIT 1 -CYCLE 12 STARTUP PHYSICS TESTS HOT ROD DROP TIME

SUMMARY

ROD DROP TIME TO DASHPOT ENTRY SLOWEST ROD FASTEST ROD AVERAGE TIME F-14 1.32 sec. E-05 1.22 sec. 1.26 sec. u~-RaR ~,r,, ~~~rtun Test Renort Page 18 of 57 Figure 2.1 SURRY UNIT 1 -CYCLE 12 STARTUP PHYSICS TESTS TYPICAL ROD DROP TRACE 8allDln Of Datmt (BegiliillQ a Fftl UpUn en rraca, I. '--------------.---

.... -----t Slatlal*Y Gn,plr i...---RodDmp11ml-----

Col YollOI Tl'ICI 80HZIAPI r,f~AJ.LAAJ.~~

P111m11,eoa YolaQITrace P11"t111~"1"t1<Wti~~,w.t,1+1-"""'rJ,+1,~""11-..,.._.,..,.""',w,1,1,W,1...,..IWl..&1.11:willlliWW.J,W.W...~

IOHZTl'ICI ROD DROP TIME MEASUREMENT Page 19 of 57 R e Figure 2.2 SURRY UNIT 1 -CYCLE 12 STARTUP PHYSICS TESTS ROD DROP TIME -HOT FULL FLOW CONDITIONS p N " L K J ti 6 F E I I I D C B ,. I I I I 1 ~----1 __ 1 __ 1 __ 1~----I I

  • I I I I I I I I 1.24 I I 1.2s I I l.Z3 I I 2 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ I I I I
  • I I I I I I I I I I 1.26 I I 1.21 I I I I 3 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1_*_1 __ 1 __ 1 __ I I I I I I I I I I I I I I 1.26 I I 1.24 I I I I 1.zs I I 1.26 I I 4 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ I I I I I I I I I I I I I I I I I I 1.23 I I I I I I 1.22 I I I I s 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 I I I. I I I . I I I I I I I I I 1.24 I I 1.26 I I 1.21 I I 1.21 I I 1.23 I I 1.25 I I 1.31 I 6 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ I I I I I I I . I I I I I I I I I I I I 1.24 I I I I 1.2a I I 1.24 I I I I 1.24 I I I 7 1 __ 1 __ 1 __ 1 __ , __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 I I I I I t I I I I I I I I I I I I 1.211 I I I I 1.25 I I I I 1.29 I I I I 1.211 I I II 1 __ 1 __ 1 __ 1 __ ._1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ , __ 1 I I I I I I I I I I I I I I I I I I I 1027 I I I I 1.25 I I 1.30 I I I I 1.26 I I I 9 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 I I I I I I I I I I I I I I I 1.24 I I 1.25 I I 1.25 I I 1.26 I
  • I 1.26 I I 1.27 I I 1.21 I 10 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 I *I I I I I I I I . I I I I
  • I I I . I I 1.23 I I I I I I l.Z3 I I I I 11 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 I I I I I I I I I I I I I I 1.23 I I 1.25 I I I I 1.26 I I 1.29 I I 12 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1_._1 __ 1 __ 1 __ 1 I I I I I I I I I I I I I I 1.25 I I 1.23 I I I I 13 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 I I I I I I I I I I 1.26 I I 1.24 I I 1.32 I I 14 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 I I I I I I I I 15 1 __ 1 __ 1 __ 1 1--1 I IC.XX 1--> ROD DROP TINE TO DASHPOT ENTRY (SEC) 1 __ 1 ~--------~"~t:'_.._._,,_ooci

~,,.,., ~t-~,-t-,,n TP.!:t RP.oort Page 20 of 57 e SECTION 3 CONTROL ROD BANK WORTH MEASUREMENTS Control rod bank worths were measured for the control and shutdown banks using the rod swap technique 2* The initial step of the rod swap method diluted the predicted most reactive control rod bank (hereafter referred to as the reference bank) into the core and measured its reactivity worth using conventional test techniques.

The reactivity changes resulting from the reference bank movements were recorded continuously by the reactivity computer and were used to determine*

the differential and *integral worth of the reference bank. For Cycle 12, Control Bank B was used as the reference bank. After the completion of the reference bank reactivity worth measurement, the reactor coolant system temperature and boron concentration were stabilized with the reactor just critical and the reference bank near full insertion.

Initial statepoint data for the rod swap maneuver were obtained by moving the reference bank to its fully inserted position and recording the core reactivity and moderator temperature.

From this point, a rod swap maneuver was performed by withdrawing the reference bank several steps and then one of the other control rod banks (i.e., a test bank) was inserted to balance the reactivity of the reference bank withdrawal.

This sequence was repeated until the test bank was fully inserted and the reference bank was positioned such that the core was just critical.

This measured critical position (HCP) of the reference bank with the test bank fully inserted was used to determine the integral reactivity worth of the test bank. "~-RQR ~1C12 Startuo*Test Report Page 21 of 57 e The core reactivity, moderator temperature, and the differential worth of the reference bank were recorded with the reference bank at the MCP. The rod swap maneuver then was repeated in reverse such that the reference bank again was near full insertion with the test bank fully withdrawn from the core. This rod swap process was then repeated for each of the other control and shutdown banks. A summary of the test results is given in Table 3.1. As shown in this table and the Startup Physics Tests Results and Evaluation Sheets given in the Appendix, the individual measured bank worths for the control* and shutdown banks were within the design tolerance

(+/-10% for the reference bank, +/-15% for test banks of worth greater than 600 pcm, and +/-100 pcm for test banks of worth less than or equal to 600 pcm). The sum of the individual measured rod bank worths was within 0.4% of the design prediction.

This is well.within the design tolerance of +/-10% for the sum of the individual control rod bank worths. The integral and differential reactivity worths of the reference bank (Control Bank B) are shown in Figures 3.1 and 3.2, respectively.

The design predictions and the measured data are plotted together in order to illustrate their agreement.

In summary, the measured rod worth values were satisfactory.

t..Tt"-11011

~,r.,, ~tArtuo Test Report Page 22 of 57 e e Table 3.1 SURRY UNIT 1 -CYCLE 12 STARTUP PHYSICS TESTS CONTROL ROD BANK WORTH

SUMMARY

MEASURED VS. PREDICTED MEASURED PREDICTED PERCENT DIFFERENCE WORTH WORTH (%) BANK (PCM) (PCM) (M-P)/P X 100 B-Reference Bank 1362.0 1324.0 2.9 D 1097.7 1104.0 -0.6 C 878.5 913.7 -3.9 A 394.8 401.6 -1. 7* SB 1181.1 1174.0 0.6 SA 938.6 960.6 -2.3 Total Worth 5852.7 5877. 9 -0.4 * -The difference is less than 100 pcm. NE-898 S1C12 Startup Test Report Page 23 of 57 I I I i I I :c .,_ a: 0 3: _, u w .,_ z -e Figure 3.1 SURRY UNIT 1 -CYCLE 12 STARTUP PHYSics* TESTS BANK B INTEGRAL ROD WORTH -HZP ALL OTHER .RODS WITHDRAWN . . . . . . . . . . . . . . 1 +. + .. x .. ... ""'!!-!'9"~'!"'-*-~i

...... *!'9"~-.. ~~~'!*----------""'!*

... !'9"~=--~

.. *!"9'~~ .. -!"* *""'! ... !'-!'*-*~"!"'"!"'~~-

1 _* :.il.'UIU;:~:=:::=::::~=~::=::=:~=::~*!".

  • ~:~!'*~

,,."' *,.~'J -.~~;/;. -."!:~:~:::~~:::~:~:~:::::~:~~:::::~:::::::~::::~~::::~~::=:~::::~:~~:;:;:~:~~:

~.,,j-1-,1i-,1,oo,1,ooo;...---

.... ... t-+~~~ ..... ... !o-ol!--~

..... r-. ........ ;... ............... ....... ...a-.... .-ii-i---~, u*** I

  • I i ! I i *iu i, ! t ; I !" i 4111 11* C . . . . ~--*! ... !-~~ ........ '1 ................ .. , .... -, ..... ! .........

,-....... i ... ~'"""* ...... ,o1, .. , ................

i,..~ , ........................... ..... *~ ............

'1, ...... , .... .................

i~i ..... , ... _~ ........... ..........

o1!~*~! ...... ,~+ .... *!-~ .... *1~* ..... 4 ..... t ... *~-~ .. ,-** ..... ..... ! ... *! *------*-,*,.*01;,i-,~;

.. , .. i~!'""too'!i?-rt-'il""'"""':.ci*;~~.:.I

,* I i ! i ! i
  • i ! *! r*i * :* f11. j f F j i f J --i ...
  • I ! ! i t i i I i i ! * ! *r*1 I f r
  • x measured ----predicted
  • *
  • I !
  • F 00 -** '='. 0 00 *111aar*ee

-:.Q*-.* **00 --.**-.*I

  • . . . . . . : : ;.v___;_..:..._:
. ------... -. ~":'-!""**Hl*.-

... *!uooil~6*

.... !--* .. lo * ..,,,.~'"'"!'"°'t1o*-.1

.... ;.. ... o1.&,...*;..~~*'!°'"'**!l-*oi-l._'6,-!

....... t,.,.iu1,,-1,.lo.

~***.***"'!._._..,,1.

  • ...;,.,...i,1,-, .... .., .... _.,.._._,~

.. *** i

  • l I * *i* i
  • t* i j l *' i ~j r<
  • i I i al j iu.:.47 ~,uu-1-1----

.... -~--!"-!'""!-~~

.....

..... --....... ~,....~~~-!"-~~~

..... --~~ ,.._,... ____________

1-t __ ..,. .... .,. _______ .,.._lrll,.._._,....,..., .... ..,.------c 0 I 11 ZI 31 41 *

  • 11
  • D. 1m 111 Ill 1a 1* t* 111 111111 t* a 211 221 BANK PDSmON (STEPS) 24 of 57 /
e. Figure 3.2 SURRY UNIT 1 -CYCLE 12 STARTUP PHYSICS TESTS BANK B DIFFERENTIAL ROD WORTH -HZP ALL OTHER RODS WITHDRAWN uu .... ...,.~~-~'!""'-~~~-.:-~-=-:~:--~~-:-~-:--:-""":'~-:-,_..
      • . "!"-.:-~~~~~-~"'!"..,...,.-~~~:--'!""'!""~
  • ~11-~~ ..............

~~~~---*~~~~-;""" .................................

...j;,-~~~~

  • -* *-X measured -~)( ~_!'l(:~~=-.;..~.;...;...;...;.'""!~;-;.-~.;.:~+~...;,~~~~~:"":""~':'"'~~-*~-,1-----------1-~~-. ; -* -predicted 0 I IS 25 a 41 II e 71 * * ,. 111 121 ,. 141 ,. ,. 1111* ,. 2D1 211 m BANK PDSmON (STEPS) 'NE-898 S1C12 Startup Test Report Page 2S of S7 e* e SECTION 4 BORON ENDPOINT AND WORTH MEASUREMENTS Boron Endpoint With the reactor critical at hot zero power, reactor coolant system (RCS) boron concentrations were measured at selected rod bank configurations to enable a direct comparison of measured boron endpoints with design predictions.

For each critical boron concentration measurement, the RCS conditions were stabilized with the control banks at or very near a selected endpoint position.

Adjustments to the measured critical boron concentration values were made to account for off-nominal control rod position and moderator temperature, if necessary.

The results of these measurements are given in Table 4.1. As shown in this table and in the Startup Physics Tests Results and Evaluation Sheets given in the Appendix, the measured critical boron endpoint values were within their respective design tolerances and met the requirements of Technical Specification Section 4.10 regarding core reactivity balance. In summary, the boron endpoint results were satisfactory.

Boron Worth Coefficient The measured boron endpoint values provide stable statepoint data from which the boron worth coefficient or differential boron worth (DBW) was determined.

By relating each endpoint concentration to the integrated rod worth present in the core at the time of the endpoint measurement, the value of the DBW over the range of boron endpoint concentrations was obtained.

~-----------!:t.r::.:i:":....:-:2R~o:!..!11~_:c::'U_I, rr_;_. J_, z? St 1trtun Test_ F ~port Page 26 of 57 l e A plot of the boron concentration versus inserted control rod worth is shown in Figure 4.1. As indicated in this figure and in the Appendix, the measured DBW was -7 .44 pcm/ppm. This is within 0.5% of the predicted value of -7.40 pcm/ppm and is well within the design tolerance of +/-10%. In summary, the measured boron worth coefficient was satisfactory.

>>~-RQR ~,r.,i Sta~tun Test Report Page 27 of 57 e Table 4.1 SURRY UNIT 1 -CYCLE 12 STARTUP PHYSICS TESTS BORON ENDPOINTS

SUMMARY

MEASURED vs. PREDICTED Measured Predicted Difference Control Rod Endpoint Endpoint M-P Configuration (ppm) (ppm) (ppm)

  • ur._ono ARO 1842 1811 31 B Bank In 1659 1663* 4 The predicted endpoint for the B Bank In configuration was adjusted for the difference between the measured and predicted values of the endpoint taken at the ARO configuration as shown in the boron endpoint Startup Physics Test Results and Evaluation Sheets in the Appendix.

~,r,? ~t~rtnn Test Reoort Page 28 of 57

"" u CL -> .:: (.) < L&J a:: e. Figure 4.1 SURRY UNIT 1 -CYCLE 12 STARTUP PHYSICS TESTS BORON WORTH COEFFICIENT 1 ,~e-r--s-*i Measured DBW = -7.44 pcm/e_p_m

_____ __ ~-= ~--=-------------------------------

.,_. : i '~ --*---~* ... !",_..,..!

-**-.. *-""4*-~*

..... -* -** ----... !----* -* --**--*--cc

1' .
... --*!-~"
  • i i I i * .........
  • .... I.. .......c 1,100 1,000 ; E :, * * : ......._,.,...---t-**-.;.-. : "-r ' ,...... *1 .. ! .. *-+~ ,: . .i i 9 800 -~-~ .. -** e,..., ,; . ; l . l : ,.,...____._:
  • ---: .... ' :, .. 700 600 -----+-----*~:~----------------0!"-----'-;2'..-----*~*-*-**---~------~---------* ' .. -------------*

--= ,~----------~

500 : ~: ,-y--**-----------------

.. *--,*-*"'f--.i*~-*

.... ----*----*C

    • I I. 111U ,. =': .. I ;. I *t 1110 17.10 nm 171D 111a BORON CONCENTRATION (PPMl Page 18Hi , .. 29 of 57 e e SECTION 5 TEMPERATURE COEFFICIENT MEASUREMENT The isothermal temperature coefficient (ITC) at the all-rods-out condition is measured by controlling the reactor coolant system (RCS) temperature with the steam dump valves to the condenser, establishing a constant heatup or cooldown rate, and monitoring the resulting reactivity changes on the reactivity computer.

cooldown followed by a heatup. This test sequence includes a Reactivity was measured ~uring the RCS cooldown of approximately

3. 0 °F and the RCS heatup of approximately*
5. 7°F. Reactivity and temperature data was taken from the reactivity computer and strip chart recorders.

Using the statepoint method, the temperature coefficient was determined by dividing the change in reactivity by the change in RCS temperature.

An X-Y plotter, which plotted reactivity versus temperature, confirmed the statepoint method in ~alculating the measured ITC. The predicted and measured isothermal temperature coefficient values are compared in Table 5.1. As can be seen from this summary and from the Startup Physics Test Results*and Evaluation Sheet given in the Appendix, the measured isothermal temperature coefficient value was within the design tolerance of +/-3 pcm/°F and met the requirements of Technical Specification 3.1.E.1. In summary, the measured result was satisfactory.

Page 30 of 57 BANK POSITION D/217 e. e Table 5.1 SURRY UNIT 1 -CYCLE 12 STARTUP PHYSICS TESTS ISOTHERMAL TEMPERATURE COEFFICIENT

SUMMARY

MEASURED vs. PREDICTED CORE CONDITIONS ISOTHERMAL TEMPERATURE COEFFICIENT (PCM/°F) TEMPERATURE BORON RANGE CONCENTRATION C/D H/U AVE. DIFFER. (OF) (ppm) MEAS. PRED. (M-P) 543.6 to 1842 -2.39 -1.92 -2.16 -:2 .51 0.35 549.3 ~~-RQR s1r.1, StRrtuo Test Report Page 31 of 57 .......

e* e SECTION 6 POWER DISTRIBUTION K~ASUREKENTS The core power distributions were measured using the movable incore detector flux mapping system. This system consists of five fission chamber detectors which traverse fuel assembly instrumentation thimbles in up to 50 core locations (see Figure 1. 3). For each traverse, the detector voltage output is continuously monitored on a strip chart recorder, and scanned for 61 discrete axial points by the PRODAC P-250 process computer.

Full core, three-dimensional power distributions are determined from this data using the Westinghouse computer program, INCORE 3* INCORE* couples the measured voltages with predetermined analytic power-to-flux ratios in order

  • to determine the power distribution for the whole core. A list of the full-core flux maps taken during the startup test program and the measured values of the important power distribution parameters is given in Table 6.1. A comparison of these measured values with their Technical Specification limits is given in Table 6.2. Flux Map 1 was taken at 28%. power to verify the radial power distribution (RPD) predictions at low power. Figure 6.1 shows the measured RPDs from this flux map. Flux maps 3 and 5 were taken at 691 and 100%. power levels with different control rod configurations.

These flux maps were taken to check at-power design predictions and to measure core power distributions at various operating conditions.

The radial power distributions for these maps are given in Figures 6.2 and 6.3. These figures show that the measured relative assembly power values were generally within 3.71 of the predicted values. Flux map 2 was taken at-481 power for I/E calibration Page 32 of 57 *.I" e and flux map 4 was taken at 95% to give the operators a new target delta flux. The measured F-Q(Z) and F-DH(N) peaking factor values for the at-power flux maps were within the limits of Technical Specifications 3 .12 .B .1. The design tolerance on core tilt (average quadrant power tilt from INCORE 3) was exceeded for the map taken at less than 30% power. This tolerance is set to ensure that the power distribution assumptions inherent in the safety analysis are met. The INCORE 3 tilt of 3.71% (compared to a design tolerance of 2.24%) was evaluated as to the impact on safety analysis key physics parameters.

The evaluation showed that a low power tilt of this magnitude would not cause any key physics parameters to ex<;:eed the corresponding safety analysis limits'. All Technical Specification in-core power distribution limits were met for flux map 01. The d*esign tolerance on core tilt was subsequently met for the higher power flux maps. Prior to the first in-core/ex-core power range detector calibration, the cor*e tilt as measured by the ex-core detectors exceeded 2%. This condition existed for a period greater than 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />. As stated previously, hot channel factors were measured at 28% power and all limits were met. In accordance with Technical Specification 3.12.B.7, a special report was submitted to the NRC 5* The report included an evaluation of the possible causes of the core tilt. The ex-core quadrant power tilt limits were met following the first in-core/ex-core power range detector calibration.

In conclusion, the power distribution measurement results were considered to be acceptable with respect to the design tolerances (excepted as noted above), the accident analysis acceptance criteria, and NE-898 S1C12 Startup Test Report Page 33 of 57 the Technical Specification limits. It is therefore anticipated that the core will continue to operate safely throughout Cycle 12.

~1C12 Startuo Test Report Page 34 of 57 HAP DESCRIPTION e TABLE 6.1 SURRY UNIT 1 -CYCLE 12 STARTUP PHYSICS TESTS INCORE FLUX KAP

SUMMARY

l BURN F-UCZJ HOT F-DHCNJ HOT CORE FCZJ HAP UP BANK CHANNEL FACTOR CHNL.FACTOR HAX HO. DATE HWD/ PWR D z CORE TILT AXIAL NO. OFF OF HTU CZl STEPS ASSY PIN AXIAL ASSY PIN F-DHCN) AXIAL FCZ> HAX LDC SET THIH POINT F-QCZ> POINT (7.) BLES P 30Z l 5-03-92 4 28 150 LOS DIC 31 Z.344 LOS DK 1.611 31 1.416 1.037 NW -5.30 I/E CALIBRATION 2 5-04-92 12 48 155 LOS DK 30 Z.14Z LOS DK l.SSZ 31 1.340 1.024 NW -4.87 50Z P 75,: 3 5-05-92 ZB 69 163 LOS DK 34 Z.0114 LOS DK 1.530 32 1.319 1.021 NW -5.94 TARGET DELTA FLUX 4 5-09-92 99 95 185 LOS DK 30 1.943 LOS DK 1.493 30 l.Z54 1.015 NW -0.89 95,: 2: P 2: 10oz 5 5-11-92 178 100 Z20 LOS DK 30 1.866 LOS DIC 1.475 30 l.Z09 1.016 NW 2.69 NOTES: HOT SPOT LOCATIONS ARE SPECIFIED BY GIVING ASSEHBLY LOCATIONS CE.G. H-8 IS THE CENTER-OF-CORE ASSEHBLY>, FOLLOWED BY THE PIN LOCATION (DENOTED BY THE "Y"' COORDINATE WITH THE SEVENTEEN ROWS OF FUEL RODS LETTERED A THROUGH RAND THE "X" COORDINATE DESIGNATED IN A SIHILAR HAHNER). IN THE "Z" DIRECTION THE CORE IS DIVIDED INTO 61 AXIAL POINTS STARTING FRON THE TOP OF THE CORE. l. F-UCZI INCLUDES A TOTAL UNCERTAINTY OF 1.08 (87.J. Z. CORE TILT -DEFINED AS THE AVERAGE QUAIJRAHT POWER TILT FROlt IHCORE. NF.-898 S1C12 Startup Test Report Page 35 of 57 48 48 48 48 46 ' '

e Table 6.2 SURRY UNIT 1 -CYCLE 12 STARTUP PHYSICS TESTS COMPARISION OF MEASURED POWER DISTRIBUTION PARAMETERS WITH THEIR TECHNICAL SPECIFICATION LIMITS PEAK F-Q(Z) HOT F-Q(Z) HOT F-DH(N) HOT CHANNEL FACTOR* CHANNEL FACTOR** CHANNEL FACTOR MAP MEAS LIMIT NODE MEAS LIMIT NODE MARGIN MEAS LIMIT MARGIN NO. 1 2 3 4 5 (%) (%) 2.344 4.640 31 2.341 4.630 30 49.4 1.611 1.885 14.5 2.142 4.630 30 2.142 4.630 30 53.7 1.552 1. 791 13.3 2.084 3.340 34 2.084 3.340 34 37.6 1.530 1.692 9.6 1.948 2.445 30 1.946 2.421 26 19.6 1.4'P 1.575 5.2 1.866 2.315 30 1.859 2.293 26 18.9 1.475 1.550 4.8

  • The Technical Specification's limit for the heat flux hot channel factor, F-Q(Z), is a* function of core height. The value for F-Q(Z) listed above is the maximum value of F-Q(Z) in the core. The Technical Specification's limit listed above is evaluated .at the plane of maximum F-Q(Z). ** The value for F-Q(Z) listed above is the value at the plane of m1n1mum margin. The minimum margin values listed above are the minimum percent difference between t~e measured values of F-Q(Z) and the Technical Specification's limit at that node for each map. The measured F-Q(Z) hot channel factors include 8% total uncertainty.

NF.-~QR S1C12 Startun Test Report Page 36 of 57 , I I I I" R p e. Figure 6.1 SURRY UNIT 1 -CYCLE 12 STARTUP PHYSICS TESTS ASSEMBLYWISE POWER DISTRIBUTION N PREDICTED

  • "EASURED " L I( 28% POWER J H C F E D
  • 0.29 0.31 0.29 C II PREDICTED
  • PCT DIFFERENCE.
  • 0.31. 0.33. 0.31.
  • 7.1. 6.8. 5.4 * * -tlEASIJRED
  • .PCT DIFFERENCE
  • o.36
  • o.-75
  • 1.10
  • 0.90
  • 1.10
  • o.76
  • o.36
  • 0.39. 0.80. 1.16. 0.95. 1.15. 0.78. 0.37.
  • 8.1. 5.9. 5.3. 5.1. 4.0. Z.9. 3.4 *
  • 0.40. 1.18. 1.29. l.Zl. 1.15. l.Zl 1.30 1.19 0.40
  • 0.43. 1.25. 1.35. 1.27. 1.18. 1.24. 1.34. 1.23. 0.4Z *
  • 7.5
  • 5.4
  • 4.6
  • 5.4
  • 3.0
  • Z.6
  • Z.9
  • 3.7
  • 4.3 * . 0.40. 0.97. 1.28. 1.31. 1.13. 0.93. 1.13 1.31 1.29 0.97 0.40 * . 0.42. l.OZ. 1.33. 1.37. 1.18. 0.97. 1.16. 1.31. 1.29. 0.98. 0.40.
  • 4.6. 5.0. 3.7. 4.5. 4.Z. 3.7. Z.4. 0.3. 0.6. 0.7. 0.9 * . o.36. 1.18. 1.28. 1.39. 1.24. 1.oz. 1.14. 1.oz. 1.24. 1.40. 1.29. 1.19. o.36 . . 0.37. l.Zl. 1.34. 1.48. 1.30. 1.05. 1.17. 1.03. l.Z5. 1.40. l.Z6. 1.18. D.36. . Z.5. Z.5. 4.4. 6.1. 4.8. 3.4. Z.6. 1.6 ** 1.0. 0.1. -z.z. -0.7. l.Z * . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -................................................. . . 0.75. 1.29. 1.31. 1.24. l.lZ 1.14 l.Z6 1.14 l.lZ l.Z4 1.31 1.29. D.75 . 0.77. 1.33. 1.37. 1.31. 1.16. 1.15. 1.27. 1.14. l.lZ. l.Z3. 1.27. l.ZS. 8.73. . Z.7. Z.7. 4.5. 5.8. 3.9. 1.3. 1.3. o.z. -0.l. -0.9. -Z.9. -3.4. -Z.6. A O.Z9. 1.10. l.ZO. 1.13. l.OZ. 1.14. 1.25. l.Zl. l.Z6. 1.14. 1.oz 1.13 l.Zl 1.10. O.Z9 1 z 3 4 5 6
  • 0.31 . 1.15. 1.24. 1.11. 1.05.1015.

1.z4. 1.zo. l.Z3. 1.12. o.98. 1.01. 1.14. 1.03. o.za. 7 . 8.2. 5.0

  • 3.0. 3.6. 3.3. 1.3. -0.9. -0.S. -1.a. -z.o. -3.Z. -5.3. -5.3. -6.l. -5.6 * . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.31 0.90 1.14. 0.93. 1.13. 1.26. 1.zo 1.19 1.zo. 1.Z6 1.14 o.93 1.14 o.9o. o.31 . o.34. o.94. 1.zo
  • o.96. 1.15. 1.21. 1.19. 1.16. 1.15. 1.zo. 1.01. o.a9. 1.09. a.as. ~.3o. a . 7.7. S.Z. 4.9. 3.3. l.S. 1.3. -1.l. -Z.5. -4.4. -4.8. -5.6. -4.9. -4.8. ~.7. -4.3. 0.29 1.10. l.Zl 1.13. l.OZ 1.14 l.Z6. 1.zo. 1.zs. 1.14. 1.01. 1.13 l.ZO 1.10 D.29 * . o.3Z. 1.11. 1.26. 1.11. 1.05. 1.15. 1.23. 1.16. 1.19. 1.06. o.95. 1.01. 1.14. 1.05. o.za. 9 . a.z. 5.9. 4.7. 3.7. 3.6. 1.3. -z.z. -3.5. -4.9. -6.6. -6.1. -5.4. -5.o. -4.3. -3.z*. 0.7S. 1.30. 1.31 1.24 1.12 1.14 l.ZS. 1.13. 1.11. 1.23 1.30 1.29 0.75 . 0.78. 1.35. 1.36. 1.29. 1.13. 1.11. l.ZZ. 1.09. 1.07. 1.18. 1.23. l.Zl. 1.71. . 4.0. 4.0. 4.Z. 4.Z. 1.0. -Z.4. -3.l. -4.1. -4.3. -4.6. -S.8. -5.9. -5.4. o.36 1.19. 1.29. 1.39. 1.24. 1.01. 1.13. 1.01 1.zz 1.~a. 1.za. 1.111. o.36 *
  • o.38. 1.zs. 1.35. 1.45. 1.24. o.99. 1.10. o.99. 1.21. 1.33 .* 1.z3. 1.13. o.34.
  • 5.6
  • 5.6
  • 5.0
  • 4.3
  • D.6 * -Z.6 * -Z.9 * *-Z.l * -1.5 * -3.6 * -3.9 * -4.0 * -4.4 *
  • o.4o. o.97. 1.2a. 1.31. 1.13. o.93. 1.12. 1.29. 1.26. o.96. o.4o * . 0.43. 1.03. 1.34. 1.31. 1.10. 0.90. 1.08. l.ZS. l.ZZ. 0.93. 0.39.
  • 7.Z. 6.0. 4.Z. O.Z. -Z.6. -Z.9. -3.1. -3.3. -3.3. -3.0. -z.z. 0.40 1.19. 1.30 l.Zl. 1.14 1.19 1.27. 1.16. D.39 *
  • 0.42
  • 1.zz
  • 1.30
  • 1.11
  • 1.10
  • 1.14
  • 1.zo
  • 1.11
  • o.311 *
  • 5.Z
  • 3.Z
  • 0.4 * -z.a * -3.4 * -4.5 * -5.l * -4.3 *. -Z.6 *
  • 0.36 D.75. 1.10. 0.89. 1.09. D.74. 0.35 *
  • 0.37. 0.76. 1.07. D.86. 1.03. 8.70. 0.33.
  • 3.Z. 1.3. -Z.4. -3.9. -5.Z. -5.Z. -5.l. STANDARD DEVIATION
  • *l.837 0.29
  • 0.31
  • 0.29 *
  • 0.29. C.30. O.Z7. * -1.8. -3.3. -5.5.
  • AVERAGE * .PCT DIFFERENCE.

D BANK AT 150 STEPS SUNHARY DATE: 05/03/92 F-QCZJ = 2.344 F-DH(NJ = 1.611 F(ZJ = 1.416 BURNUP = 4 fflfD/tfTU NF.-898 S1Cl2 Startup Test Report POWER: 281. CORE TILT CINCOREJ:

NW 1.0371 NE 0.9958 SW 1.0171 SE D.9500 A*.C. = -S.3!!1. Page 37 of 57 10 11 lZ 13 14 15 R p e* e Figure 6.2 SURRY UNIT 1 -CYCLE 12 STARTUP PHYSICS TESTS ASSEMBLYWISE POWER DISTRIBUTION N PREDICTED

  • ~ASURED " L K 69% POWER. J H G F E D
  • 0.32. 0.34. 0.32. C I PREDICTED
  • . PCT DIFFERENCE.
  • 0.33. 0.36. 0.33.
  • 5.7. 5.4. 4.0 *
  • HEASURED * .PCT DIFFERENCE
  • 0.37. 0.77. 1.12. 0.95. 1.13. 0.77. 0.37.
  • 0.38. 0.80. 1.16. 0.98. 1.15. 0.78. 0.38 *
  • 3.6. 3.9. 3.5. 3.2. 2.4. 1.5. 2.5 *
  • 0.41. 1.17. 1.27. 1.21. 1.15. 1.21. 1.27. 1.17. 0.41.
  • o.42. 1.19. 1.30. 1.25. 1.11. 1.22. 1.29. 1.21. o.43 *
  • 3.1. 1.5. 2.1. 3.4. 1.1. 0.9. 1.5. 3.0. 3.9 * . o.41. o.96. 1.25. 1.2a. 1.12. o.94. 1.12. 1.28. 1.25. o.96. o.41 *
  • 0.42. 0.98. 1.25. 1.32. 1.16. 0.97. 1.13. 1.30. 1.27. 0.98. 0.41.
  • 2.3. 2.1. 0.5. 2.7. 3.3. 2.6. 0.5. 1.6. 1.5. 1.4. 1.0. :*o:;;*:*i:i,*:*i:zs*:*i:;;.*:*i:zz*:*i:02*:*i:i;*:*i:02*:*i:zz*:*i:;;.*:*i:zs*:*i:i,*:*o:i,*:
  • o.38. 1.19. 1.2a. 1.41. 1.26. 1.06. 1.11. 1.04. 1.24. 1.38. 1.24. 1.11. o.37 *
  • 1.6. 1.6. 2.3. 3.B. 3.3. 4.2. 3.2. 1.6. 1.5. 1.3. -0.8. -0.4. 0.5 *
  • 0.11. 1.21. 1.2a. 1.22. 1.14. 1.14. 1.25. 1.14. 1.14. 1.22. 1.2a. 1.21. o.77 *
  • 0.78. l.Z9. 1.31. 1.26. 1.17. 1.16. 1.27. 1.14. 1.14. l.2Z. 1.26. 1.24. 0.75. . 1.1. 1.6. 2.1. 3.1. z.a. z.o. 1.a. o.6. 0.1. -o.o. -1.4. -z.5. -z.6
  • A
  • 0.32. 1.12. 1.20. 1.12. l.OZ. 1.13. 1-24. 1.zo. 1.25. 1.14. 1.02. 1.12. l.Zl. 1.12. 0.32
  • l 2 3 4 5 6
  • o.3z. 1.15. 1.23, 1.14. 1.03. 1.14. 1.zs. 1.20. 1.24. 1.13. 1.00. 1.oa. 1.16. 1.01. 0.30. 7 . 2.3. z.4. 1.9. 1.a. 1.z. o.6. 0.2 *. 0.3. -o.a. -o.6. -1.6. -3.6. -3.8. -5.o. -4.2 * . 0.34. 0.95. 1.15. 0.94. 1.13. 1.25. 1.19. 1.19. 1.19. 1.25. 1.13. 0.94. 1.15. 0.95. 0.34 * . o.35. o.97. 1.19. o.96. 1.13. 1.26. 1.19. 1.1a. 1.1a. 1.23. 1.11. 0.91. 1.12. o.9Z. o.33. a . 1.9. z.2. 3.1. z.o. 0.2. o.9. o.o. -0.1. -1.6. -1.6. -Z.5. -3.4. -3.3. -z.a. -z.1 *
  • 0.32. l.lZ. 1.21. 1.12. I.OZ. 1.14. 1.25. 1.19. 1.24. 1.14. l.OZ. 1.12. l.Zl. 1.12. 0.32 * . o.3Z. 1.15. 1.23. 1.14. 1.05. 1.15. 1.24. 1.1a. 1.23. 1.10. o.99. 1.10. 1.1a. 1.10. o.31. 9 . Z.3. Z.l. 1.9. Z.l. 3.4. 1.3. -1.0. -1.0. -1.5. -Z.9. -z.z. -z.z. -2.6. -Z.3. -1.5 *
  • 0.11. 1.21. 1.2a. 1.22. 1.14. 1.13. 1.zs. 1.~3. 1.14. 1.zz. 1.2a. 1.21. o.77 *
  • 0.11. 1.21. 1.31. 1.26. 1.16. 1.12. 1.24. 1.12. 1.12. 1.zo. 1.26. 1.24. o.74.
  • o.3. o.3. z.o. 3.3. 1.5. -1.0. -a.a. -1.3. -1.9. -1.1. -1.6. -2.5. -3.l *
  • o.37. 1.11. 1.zs. 1.36. 1.22. 1.02. 1.13. 1.oz. 1.21. 1.35. 1.24. 1.11. o.37. ** 0.38. 1.20. 1.za. 1.39. 1.22. 1.01. 1.12. 1.01. l.Zl. 1.33. 1.23. 1.15. 0.36.
  • Z.3. Z.3. Z.4. Z.6. 0.5. -0.9. -0.6. -o.3. -0.4. -1.a. -1.4. -1.3. -1.a *
  • 0.41. 0.96. 1.25. 1.28. 1.12. 0.94. 1.11. 1.27. 1.23. 0.96. 0.41.
  • o.43. 1.00. 1.2a. 1.2a. 1.10. o.93. 1.09. 1.24. 1.zo. o.94. o.41 *
  • 4.4. 3.7. z.5. 0.2. -1.4. -1.5. -1.9. -2.3. -z.z. -1.6. 0.2 *
  • o.41. 1.11. 1.21. 1.21. 1.15. 1.zo. 1.zs. 1.15. n.4o *
  • D.42. 1.17. 1.27. 1.18. 1.12. 1.15. 1.20. 1.11. 0.40.
  • 2.4. o.3. -o.5. -2.0. -2.6. -3.7. -4.5. -3.S. -1.0 * ............................
  • .......*...........................
  • 0.37. 0.77. 1.13. 0.95. 1.12. D.76. D.36.
  • D.37. 0.77. 1.10. 1.92. 1.07. 0.73. 0.35 *
  • 0.3. -0.5. -2.2. -3.1. -4.1. -4.3. -4.6
  • STANDARD
  • DEVIATION
  • *l.ZZ2
  • 1.32. 1.34. 0.31.
  • 0.31 .*C.33. 1.31. * -2.l. -3.1. -4.2.
  • AVERAGE * .PCT DIFFERENCE.

D BANK AT 163 STEPS SUlfflARY DATE: 05/05/92 F-Q(Z) = 2.084 F-DH(N) = 1.530 F<Z> = 1.319 POWER: 697. CORE TILT (INCORE):

NW 1.0207 NE 0.9994 SW 1.0068 SE 0.9732 BURNUP = 28.4 tND/tlTU A.O.= -S.9427. ~------------------.....;;.~,~~~-~R~o::....::R~~~~1~r-'--'-1'

~t~rtuo Test Report Page 38 of 57 10 11 lZ 13 14 15 R p -e e Figure 6.3 SURRY UNIT 1 -CYCLE 12 STARTUP PHYSICS TESTS ASSEMBLYWISE POWER DISTRIBUTION N PREDICTED

  • NEASURED " L It 100% POWER J H C F E D 0.33 0.37 0.34 C II
  • PCT DIFFERENCE. . 0.35. 0.39. 0.35.
  • 5.1. 5.0. 3.3
  • PREDICTED
  • NEASURED .PCT DIFFERENCE
  • 0.37. 0.76. 1.14. 1.04. 1.15. 0.76. 0.37
  • 0.38. 0.79. 1.18. 1.07. 1.17. 0.77. 0.311.
  • 4.6
  • 3.9
  • 3.Z -Z.9
  • 1.7
  • 0.6
  • Z.l *
  • 0.40. 1.13. l.Z3. l.ZO. 1.17. 1.zo. l.Z4. 1.13 0.40 *
  • 0.4Z. 1.15. l.Z6. l.Z4. 1.18. l.Zl. l.Z4. 1.16. 0.4Z.
  • 4.1. Z.l. Z.Z. 3.3. 0.7. 0.3. 0.6. 3.0. 4.5 *
  • 0.40. 0.93. 1.zo. l.Z5. 1.11. 0.94 1.11 l.ZS. l.ZO. 0.93. 0.40 *
  • 0.41. 0.95. l.Zl. l.Z8. 1.14. 0.96. 1.11. l.Z6. l.ZZ. 0.95. 0.41. . Z.4. Z.l. 0.6. Z.l. Z.7. z.o. 0.1. 1.1. 1.3. 1.4. 1.6 * . . . . . . . . . . . . . . . . . . *.* ....................................................................... . . 0.37. 1.13. l.ZO. 1.33. l.ZZ 1.03_. 1.13. 1.03 l.ZZ. 1.33. 1.zo. 1.13 0.37
  • 0.37. 1.14. l.ZZ. 1.37. l.Z5. 1.06. 1.16. 1.05. l.Z4. 1.34. 1.19. 1.13. 0.37. 1.0. 1.0. 1.1. z.8. z.4. 3.o. z.9. z.o. 1.z. 0.1. -1.z. o.z. 1.9.
  • 0.76. l.Z3. 1.25. 1.zz. l.Z3. 1.16 l.Z5. 1.16. l.Z3. l.ZZ. 1.25. l.Z4. 0.76 * . 0.77. l.Z4. l.Z7. 1.26. l.Z6. 1.18. l.Z8. 1.17. l.Z5. l.ZZ. l.Z3. l.Zl. 0.75.
  • 0.6. 0.6. 1.9. Z.7. Z.4. Z.l. Z.4. 1.4. 1.0. -o.l. -1.4. -z.o. -1.8. A o.33 1.14. 1.zo. 1.11. 1.03. 1.16. 1.Z6. 1.zo. 1.z6. 1.16. 1.03. 1.11. 1.zo. 1.15. o.34
  • 1 z 3 4 5 6
  • 0.34
  • 1.16
  • l.ZO ** l.lZ
  • 1.04
  • 1.17
  • l.Z6
  • l.Zl
  • l.Z7
  • 1.16
  • I.DZ
  • 1.08 . 1.16
  • 1.09
  • 0.3Z
  • 7
  • z.5. 1.3. o.4. 1.0. 1.z. o.9. 0.1. 1.1. o.4. o.3. -o.9. -Z.8. -3.8. -5.o. -4.7 * ............................**.**..*..*....*....*...*.*..**..**.*..*.*..**.**.*..**.*.......*.*..
  • ....... . 0.37 1.04. 1.17. 0.94. 1.13. 1.25. l.ZO 1.19. l.ZO. l.ZS. 1.13. 0.95. 1.17. 1.04. 0.37 * . o.38. 1.06. 1.19. o.95. 1.13. 1.z5. 1.zo. 1.19. 1.19. 1.24. 1.11. o.9Z. 1.13. 1.00. o.36.
  • Z.4. 1.6. 1.6. 0.7. -0.1. 0.1. 0.5. 0.0. -0.7. -0.6. -1.7. *3.1. -3.5. -3.6. *3.Z. o.33 1.15 1.zo 1.11 1.03. 1.16. 1.26. 1.zo. 1.26. 1.16. 1.03. 1.11. 1.zo. 1.15. o.33
  • 8 . 0.34. 1.16. l.Zl. 1.11. l.OZ. 1.16. 1.26. 1.19. l.ZS. 1.14. 1.00. 1.08. 1.16. 1.12. 0.33. 9
  • z.5. 1.5. 1.0. o.6. -0.1. -o.z. o.4. -o.5. -o.8. -z.1. -z.z. -3.3. -3.3. -2.8. -1.8. o.76 1.z4 1.z5 1.zz. 1.Z3. 1.16. 1.25. 1.16. 1.24. 1.23. 1.Z6. 1.z4. o.77 *
  • o.76. 1.z4. 1.26. 1.25. 1.26. 1.15. 1.24. 1.15. 1.2z. 1.zo. 1.zz. 1.zo. o.74. 0.1. 0.1. 0.9. z.o. 1.9. -o.6. -o.6. -o.8. -1.1. -1.8. -3.o. -3.Z. -3.o. o.37 1.13. 1.zo. 1.33. 1.zz. 1.03. 1.13. 1.03. 1.zz. 1.33. 1.zo. 1.13. o.37 *
  • o.38. 1.16. 1.z3. 1.36. 1.Z3. 1.01. 1.1z. 1.03. 1.zz. 1.32. 1.19. 1.12. o.36. . z.4. 2.4. z.z. z.o. a.6. -1.1. -0.1. -0.1. 0.1. -1.z. -1.1. -1.0. -1.4. 0.40 0.93. l.Zl. l.Z5. 1.11 0.95. 1.11. l.ZS. l.ZO. 0.93. D.4D *
  • 0.4Z. D.97. l.Z3. l.ZS. 1.09. D.93. 1.09. l.Z3. 1.18. D.93. 0.40.
  • 4.7. 3.6. z.o. -o.z. -1.1. -1.9. -1.a. -1.5. -1.1. -o.z. 1.0 *
  • 0.40. 1.13. l.Z4. l.Zl. 1.17. l.ZO. 1.23. l.lZ. 0.40 *
  • 0.4Z. 1.16. l.ZS. 1.18. 1.13. 1.16. 1.18. 1.09. 0.4U.
  • 3.8. Z.9. 0.7. -Z.5. -3.3. -3.8. -3.6. -Z.3. D.3 *
  • 0.37. 0.77. 1.15. 1.04. 1.14. 0.76. D.36 *
  • 0.311. D.77. l.lZ. 1.01. 1.10. 0.73. 0.35.
  • Z.9. 1.1. -Z.3. -3.3. ~.2. -3.9. -3.5. STANDARD
  • DEVIATION
  • =l.Z74
  • D.34. 0.37. 1.33.
  • D.33. 0.36. D.3Z. * -1.6. -Z.7. -4.4.
  • AVERAGE * .PCT DIFFERENCE.
  • 1.9 HAP NO: Sl-12-05 SUHHARY DATE: 05/11/92 CONTROL ROD POSITIONS:*

F-Q(Z) = 1.866 D BANK AT 220 STEPS F-DH(N) = 1.475 FlZJ = 1.209 BURNUP = 178 HWD/NTU POWER: 1007. CORE TILT (INCORE):

NW 1.0164 NE 0.9998 SW 1.0053 SE 0.9786 A.O. = 2.692% Page 39 of 57 10 11 lZ 13 14 15 --' I I !

e. e SECTION 7 REFERENCES
1. P. D. Banning, "Surry Unit 1, Cycle 12 Design Report", Technical Report NE-881, Revision O, Virginia Power, March, 1992. 2. T. K. Ross, W. C. Beck, "Control Rod Reactivity Worth Determination By The Rod Swap Technique," VEP-FRD-36A, December, 1980. 3. W. Leggett and L. Eisenhart, "The INCORE Code," WCAP-7149, December, 1967. 4. Surry Unit 1 and 2 Technical Specifications, Sections 3.1.E.1, 3.12.B.1, 3.12.B.7, 3.12.C.1, and 4.10. 5. "Virginia Electric and Power Company Surry Power Station Unit 1 Special Report Quadrant to Average Power Tilt Exceeds 2.0% for Greater than 24 Hours", letter from W.L. Stewart (VP) to Document Control Desk (USNRC), Serial No.92-377, dated June 3, 1992. 6. "Surry Power Station Unit 1 M/D Map Sl-12-01 Results", memo from C.B. LaRoe to J.W. Henderson, dated May 4, 1992. ----------..!'c!.!'":........o~n~o

-~<:"_!_1~r 1 '>_ S +-" .-f-11n 'T'p !": t R f'DOTt Page 40 of S7 APPENDIX STARTUP PHYSICS TESTS RESULTS AND EVALUATION SHEETS NE-898 S1Cl2 Startup Test Report e Page 41 of 57 I Reference II Test Gonditions (Design) e SURRY POWER STATION UNIT 1 CYCLE 12 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET Test

Description:

Zero Power Testing Range Determination Proc No /Section:

l-NPT-RX-008 Sequence Step No: Bank Positions (Steps) RCS Temperature

(°F): 547 Power Level(% F.P.): 0 SDA: 225 SDB: 225 CA: 225 Other (specify):

CB: 225 CC: 225 CD:* Below Nuclear Heating III Bank Positions (Steps) RCS Temperature ( °F): 54fo. 3 Test Power Level (X F.P.): 0 Conditions SDA: 225 SDB: 225 CA: 225 Other (Specify)

(Actual) CB: 225 cc: -m: l\tl;.Fd q5 Below Nuclear Heating Date/Time Test Performed:

s /'). /q;;. 03:3;;1. Reactivity Computer IV Initial Flux -~ Background Reading toi:ls X lO amps Flux Reading At llN. Point of Nuclear 1:,.0 -7 Heating sJ~;J. -3;&~ l O amps Test Results Zero Power -~ -~ Testing Range *l110Y..IQ to ID,Q )( lO amps Reference Not Applicable V FSAR/Tech Spec Not Applicable Acceptance Criteria Reference Not Applicable Design Tolerance is met** : ?YES _NO VI Acceptance Criteria is met** : _YES _NO Comments

  • At The Just Critical Position ** Design Tolerance and Acceptance Criteria are met if ZPTR is below Point of Nuclear Heating and above background.

-Prepared By: L~<.(_* Reviewed By: ~~-Rg~ s1r.12 St3rtuo Test Report Page 4Z of 51 I Reference II Test .Conditions (Design) III Test Conditions (Actual) IV Test Results V Acceptance Criteria VI Comments e. e SURRY POWER STATION UNIT 1 CYCLE 12 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET Test

Description:

Reactivity Computer Checkout Proc No /Section:

l-NPT-RX-008 Sequence Step No: Bank Positions (Steps) RCS Temperature

(°F): 547 Power Level (t F. P. )_: 0 SDA: 225 SOB: 225 CA: 225 Other (specify):

CB: 225 CC: 225 CD:

  • Below Nuclear Heating Bank Positions (Steps) RCS Temperature

(°F) :S41. I Power Level (t F.P.): 0 SDA: 225 SOB: 225 CA: 225 Other (Specify):

CB: 225 cc: m ~J,.,.<tS.

Below Nuclear Heating Date/Time Test Performed:

5/~r,~ ol..(:SS Measured Parameter Pc = Heas. Reactivity using p-compute (Description)

Pt = Predicted Reactivity Pc= + '"'~-s -44 .. 0 Measured Value Pt= ... 'ii .5 -L\'-\., tD = -d-o \ -1 .. (c Design Value %D = {(pc-Pt)/pt}

x lOOt S 4.0t Reference WCAP 7905, Rav. 1, Table 3.6 FSAR/Tech Spec Not Applicable Reference Not Applicable Design Tolerance is met : _LYES ~NO* Acceptance Criteria is 11et : ..L_YES _NO

  • At The Just Critical Position Allowable Range = :!: + '-I b. S , -l.{ .. 0 Prepared By: '1-:rQ~"C.-
  • Reviewed By: Page 43 of 57 r

...... -I Reference II Test Conditions (Design) Ill Test Conditions (Actual) rv Test Results V Acceptance Criteria VI Comments e SURRY POWER STATION UNIT 1 CYCLE 12 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET *.-. -~--.-~-.* r. **.:. --:. *. -Test

Description:

Critical Boron Concentration

-ARO Proc No /Section:

1-NPT-RX-008 Sequence Step No: Bank Positions (Steps) RCS Temperature

(°F): 547 Power Level(% F.P.): 0 SDA: 225 sos*: 225 CA: 225

  • Other (specify)
CB: 225 CC: 225 CD: 225 Below Nuclear Heating Bank Positions (Steps) RCS Temperature

(°F): s~,. 'I Power Level(% F.P.): 0 SDA: 225 SDB: 225 CA: 225 Other (Specify):

CB: 225 CC: 225 CD: 225 ~elow Nuclear Heating, Date/Time Test Performed:

s/1/'11 I O'i'lo Heas Parameter H* (Description) (Ce) ARO; Critical Boron Cone -ARO -Measured Value H (Design Cond) (Ce) ARO= li'1'2.. -Design Value (Design Cond) CB= 1811 +/- 50 PP* Reference Technical Report NE-881, Rev. 0 -FSAR/Tech Spec . D aC 8 x c 8 S 1000 pea Reference Technical Specification 4.10.A Design Tolerance is 11et . LYES _NO . Acceptance Criteria is 11et . ,/ YES _NO . ac 8 = -7.36 pcm/pp* .. D K CB= l(CB) ARO --~151; CB is design value~ Prepared By: u.,. ~----Reviewed BJ~~ ----------=u.:..i;-.::.-.:.Ao:::_R:_____.c::'--','-'-'-r,, StArtno T*est Reoort Page 44 of 57 I Reference II Test Conditions (Design)

  • III Test Conditions (Actual) IV Test Results V Acceptance Criteria VI Comments e e SURRY POWER STATION UNIT 1 CYCLE 12 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET Test

Description:

Isothermal Temperature Coefficient

-ARO Pree No /Section:

1-NPT-RX-008 Sequence Step No: Bank Positions (Steps) RCS Temperature

(°F): 547 Power Level(% F.P.): 0 SDA: 225 SDB: 225 CA: 225 Other (specify):

CB: 225 CC: 225 *CD: 225 Below Nuclear Heating Bank Positions (Steps) RCS Temperature

(°F): !9+5 Power Level(% F.P.): 0 SDA: 225 SOB: 225 CA: 225 Other (Specify):

CB: 225 CC: 225 CD: Below Nuclear Heating Date/Time Test Performed:

s /1-/,1. I I O~f Meas Parameter ISO *(Description) (a T )ARO Isothermal Temp Coeff -ARO Measured Value ISO (a T )ARO = -Z.I (0 pcJJ./°F (CB = tC'iJl. ppm) Design Value ISO (Actual Cond) (a T )ARO= -2,.c; I pcra/°F (CB = *l. ppm) ISO 3.0 pcm/°F Design Value (a T )ARO= -2.81 +/- (Design Cond) (CB = 1811 ppm) Reference

.. Technical Report NE-881, Rev. 0 ISO Dop FSAR/Tech Spec a T .s o.a2*pcm/°F a T = -1.68 pcm/°F Reference TS 3.1.E, Technical Report NE-881, Rev. 0 Design Tolerance is met * ./' YES NO *--Acceptance Criteria is met : ..lal.,YES

_NO

  • Uncertainty on aTHOD = 0.5 pcm/°F (

Reference:

memorandum from C. T. Snow to E. J. Lozito dated June 27, 1980). Prepared By: * '&, y'/. L Reviewed By: Si).~ ~,r.,, ~tartun Test Report Page 45 of 57 i .,. I *r '*-1 I '

I Reference II Test Conditions (Design) III Test Conditions (Actual) IV Test Results V Acceptance Criteria VI Comments e e SURRY POWER STATION UNIT 1 CYCLE 12 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET Test

Description:

Cntl Bank B Worth Heas.,Rod Swap Ref. Bank Proc No /Section:

l-NPT-RX-008 Sequence Step No: Bank Positions (Steps) RCS Temperature

(°F): 547 Power Level(% F.P.): 0 SDA: 225 SDB: 225 CA: 225 Other {specify)

CB:Hoving CC: 225 CD: 225 Below Nuclear Heating Bank Positions (Steps) RCS Temperature

(°F): S'fG,..3 Power Level (t F.P.): 0 SDA: 225 SDB: 225 CA: 225 Other (Specify):

CB:Hoving CC: 225 CD: 225 Below Nuclear Heating Date/Time Test Performed:

6/z./llf7-12-ot Measured Parameter REF I B ; Integral Worth of Cntl Bank B, (Description)

All Other Rods Out Measured Value REF J'3e-'Z. 0 I B = ' Design Value REF (Design Conditions)

I B = 1324 +/- 132 pcm Reference Technical Report NE-881, Rev. 0 If Design Tolerance is exceeded, SNSOC shall evaluate impact of test result FSAR/Tech Spec on safety analysis.

SNSOC may specify . that additional testing be performed

  • Reference VEP-FRD-36A Design Tolerance is met : _:!__ YES _NO Acceptance Criteria is 11et : ..i._YES _NO Reviewed By: i,J.i,: t£. W,cou,, '---------~)J'...'.:i;-....:-~R~a~R-~c::21cr 1 ? . t-rt11n Test R eoort 46 of 57 e e SURRY POWER STATION UNIT 1 CYCLE 12 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET -------.----------------------------

I Test

Description:

Critical Boron Concentration

-B Bank In Reference Pree No /Section:

l-NPT-RX-008 Sequence Step No: ------+------------------------------

II Test Conditions (Design) Bank Positions (Steps) ---------------

SilA: 225 SOB: 225 CA: 225. CB: 0 CC: 225 CD: 225 RCS Temperature

(°F): 547 Power Level(% F.P.): 0 Other (specify):

Below Nuclear Heating -------+------"'---------+--------------

III Bank Positions (Steps) -RCS Temperature

(°F): .s3',,~ Test Conditions (Actual) .__ _____________

_, SDA: 225 SDB: 225 CA: 225 CB: 0 CC: 225 CD: 225 Power Level(% F.P.): 0 Other (Specify):

Below Nuclear Heating -------+-----~--------~

IV Test Results Date/Time Test Performed:

~fi'2-/ 2./) I' Meas Parameter (Description)*

Measured Value (Design Cond) Design Value (Design Cond) Reference H (CB)B; Critical Boron Cone -B Bank In H (CB)B = /659 i'P"' Prev C 8 = 1632 + AC 8 +/- (10 + 132.4/laC 8 f)ppm CB = /b '-3 ppm : .:2 8' /?I'~ Technical Report NE-881, Rev. 0 V FSAR/Tech Spec Not Applicable Acceptance Criteria Reference Not Applicable VI Comments Design Tolerance is met Acceptance Criteria is met ac 8 = -7.40 pcm/ppm Prev H ACB = (CB)ARO -1811 : ... t:::)ES _NO : .......rfs

_NO /3~ 1.. -/ Ill .3 f ff'"' Prepared Reviewed By: ;;c 8.e..l NE-898 S1C12 Startup Test Report Page 47 of 57 -

I Reference II Test Conditions

-(Design)

III Test Conditions (Actual) IV Test Results V Acceptance Criteria VI Comments Prepared ur. -o o o e SURRY POWER STATION UNIT 1 CYCLE 12 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET Test

Description:

HZP Boron Worth Coefficent Measurement Proc No /Section:

1-NPT-RX-008 Sequence Step No: Bank Positions (Steps) RCS Tempera~~re

(°F): 547 Power Level(% F.P.): 0 SDA: 225 SDB: 225 CA: 225 Other (specify):

CB:Hoving CC: 225 CD: 225 Below Nuclear Heating Bank Positions (Steps) RCS Temperature

(°F): s.Y,, Power Level(% F.P.): 0 SDA: 225 SDB: 225 CA: 225 Other (Specify):

CB:Hoving CC: 225 CD: 225 Below Nuclear Heating Date/Time Test Performed:

s;i.A;_ / :z..o; 7 Measured Parameter (Descript~on) ac 8 , Boron Worth Coefficient Measured Value aCB = -7, <I~ fu,,.ltl'f(\

Design Value (Design Conditions) ac 8 = -7.40 +/- 0.74 pcm/ppm Reference Technicai Report NE-881, Rev. 0 FSAR/Tech Spec Not* Applicable Reference Not Applicable Design Tolerance is met : /yES _NO Acceptance Criteria is 11et : .....-YES

_NO Reviewed By: Page 48 of 57 I Reference II Test Conditions

  • (Design) III Test Conditions (Actual) IV Test Results V Acceptance Criteria VI Comments e. e. SURRY POWER STATION UNIT 1 CYCLE 12 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET Test

Description:

Cntl Bank D Worth Measurement-Rod Swap Proc No /Section:

1-NPT-RX-008 Sequence Step No: Bank Positions (Steps) RCS Temperature

(°F): 547 Power Level (t F.P.): 0 SDA: 225 SDB: 225 CA: 225 Other (specify):

CB:Moving CC: 225 CD:Moving Below Nuclear Heating Bank Positions (Steps) RCS Temperature

(°F): St'!>, ? Power Level(% F.P.): 0 SDA: 225 SDB: 225 CA: 225 Other (Specify):

CB:Moving CC: 225 CD:1foving Below Nuclear Heating Date/~e* Test Performed:

S: '2../92.-/71/'/ , / Meas Parameter RS (Description_)

In; Int Worth of Cntl Bank D-Rod Swap RS (Adj. Keas. Crit. Ref Bank Measured Value In* = /097,7 iX"'Position

J,I steps) Design Value RS (Adj. Meas. Crit. Ref Bank (Actual Cond) Io = //OY f J,'-~1ition = /l,'I steps) RS Design Value Io= 1104 +/- 166 pcm (Critical Ref Bank (Design Cond) .Position

184 steps) Reference Technical RepQrt NE-881, Rev. O, VEP-FRD-36A If Design Tolerance is exceeded, SNSOC shall evaluate impact of test result on FSAR/Tech Spec safety analysis.

SNSOC may specify that additional testing be performed. . Reference VEP-FRD-36A Design Tolerance is met : ~S_NO Acceptance Criteria is met : S ~NO Prepared By~c;U Reviewed By: We-RQR s1r.12 Startup Test Report Page 49 of 57 I Reference II Test Conditions (Design) Ill Test .Conditions (Actual) IV Test Results e* SURRY POWER STATION UNIT 1 CYCLE 12 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET Test

Description:

Cntl Bank C Worth Measurement-Rod Swap Pree No /Section:

l-NPT-RX-008 Sequence Step No: Bank Positions (Steps) RCS Temperature

(°F): *547 Power Level(% F.P.): 0 SDA: 225 SDB: 225 CA: 225 Other (specify):

CB:Hoving CC:MovingCD:

225 Below Nuclear Heating Bank Positions (Steps) RCS Temperature

(°F): sz;,., Power Level(% F.P.): 0 SDA: 225 SDB: 225 CA: 225 Other (Specify):

CB: _Hoving CC: Hov ingCD: 225 Below Nuclear Heating Date/Tt-4 Test Performed:

~;. 1--/~3</ I , Meas Parameter RS (Description)

Ic ; Int Worth of Cntl Bank C-Rod Swap RS . (Adj. Meas. Crit. Ref Bank . Measured Value le = g73, S' pe,11 Position = /.3, steps) Design Value RS (Adj. Meas. Crit. Ref Bank (Actual Cond) Ic = 91~,7 7 Position = /3, steps) -/3 RS Design Value le= 902 +/- 135 pcm (Critical Ref Bank (Design Cond) Position=

156 steps) Reference Technical Report NE-881, Rev. o, VEP-FRD-36A If Design Tolerance is exceeded, SNSOC shall evaluate impact of test result on V FSAR/Tech Spec safety analysis.

SNSOC may specify that Acceptance additional testing be performed.

Criteria Reference VEP-FRD-36A Design Tolerance is met : ~S_NO VI Acceptance Criteria is aet : _YES _NO Comments

  • Prepared By~.£?X#
  • Reviewed By: \.TC' -!!O !! ~,ri? ~-t::irt11n

'l'Pst Reuort Page SO of 57 r I Reference II Test Conditions (Design)*

III Test Conditions (Actual) IV Test Results V Acceptance Criteria VI Comments *e SURRY POWER STATION UNIT 1 CYCLE 12 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET Test

Description:

Cntl Bank A Worth Measurement-Rod Swap Proc No /Section:

1-NPT-RX-008 Sequence Step No: Bank Positions (Steps) RCS Temperature

(°F): 547 Power Level (t F.P.): 0 SDA: 225 SDB: 225 CA:Moving Other (specify):

CB :Hoving CC: 225. CD: 225 Below Nuclear Heating Bank Positions (Steps) RCS Temperature

(°F): .sY,, Power Level (t F.P.): 0 SDA: 225 SOB: 225 CA:Hoving Other (Specify):

CB:Hoving CC: 225 CD: 225 Below Nuclear Heating Date/Time Te$t Performed:

s/:L/'12--

/9()/ Meas Parameter RS (Pescription)

IA ; Int Worth of Cntl Bank A-Rod Swap RS . (Adj. Meas. Crit. Ref Bank Measured Value IA = 3'ic/. 'I f=P\ Position=

t'l--steps)

Design Value RS (Adj. Meas. Crit. Ref Bank (Actual Cond) IA = ~61l'1til,e.;,..

Position = /'l-steps)

Value RS Design IA= 419 +/- 100 pcm (Critical Ref Bank (Design Cond) Position=

96 steps) Reference Technical Report NE-881, Rev. O, VEP-FRD-36A If Design Tolerance is exceeded, SNSOC shall evaluate impact of test result on FSAR/Tech Spec safety analysis.

SNSOC may specify that additional testing be performed.

Reference VEP-FRD-36A Design Tolerance is met : ~S_NO Acceptance Criteria is met : -~-NO Prepared By , (k;/ ~, -*p .. Reviewed ~y: ~2.Pal. _W'f:'-RQR

~1Cl2_Startuo*Test Report Page 51 of 57 I Reference II Test Conditions (Design) III Test Conditions (Actual) IV Test Results V Acceptance Criteria VI Comments Prepared e. SURRY POWER STATION UNIT 1 CYCLE 12 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET Test

Description:

Shutdown Bank B Worth Meas. -Rod Swap Proc No /Section:

l-NPT-RX-008 Sequence Step No: Bank Positions (Steps) R_CS Temperature ( °F) : 547 Power Level Ct F.P.): 0 SDA: 225 SDB:HovingCA:

225 Other (specify):

CB:Hoving CC: 225 CD: 225 Below Nuclear Heating Bank Positions (Steps) RCS Temperature

(°F): s-'1$"; 7 Power Level (l F.P.): 0 SDA: 225 SDB:HovingCA:

225 Other (Specify):

CB:Hoving CC: 225 CD: 225 Below Nuclear Heating Date/Ti~Test Performed:

Si'-92-/~/9 , Meas Parameter RS (Description)" 1 SB; Int Worth of Shutdown Bank B-Rod Swap RS / / (Adj. Meas. Crit*. ~ef Bank Measured Value 1 sB = //I , Ftf\ Position = /&l..steps)

Design Value RS ~O (Adj. Hess. Crit. Ref Bank (Actual Cond) 1 sB =//7 t J'7~ ~osition = /l'~teps)

RS Design Value 1 sB = 1174 +/- 176 pcm (Critical Ref Bank (Design Cond) Position = 194 steps ) Reference Technical Report NE-881, Rev. o, VEP-FRD-36A If Design Tolerance is exceeded, SNSOC shall evaluate impact of test result on FSAR/Tech Spec. safety analysis.

SNSOC may specify that additional testing be performed.

Reference VEP-FRD-36A Design Tolerance is met : VYES _NO Acceptance Criteria is met : ~S_NO Reviewed By: '-lt:"_ QOR ~,r,? ~t-:i,-t,in Test Reoort Page 52 of 57 . '

I Reference II Test Conditions (Design) III Test Conditions (Actual) IV Test Results V Acceptance Criteria VI Comments e e SURRY POWER STATION UNIT 1 CYCLE 12 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET Test

Description:

Shutdown Bank A Worth Meas. -Rod Swap Proc No /Section:

1-NPT-RX-008 Sequence Step No: Bank Positions (Steps) RCS Temperature

(°F): 547 Power Level (1 F.P.): 0 SDA:HovingSDB:

225 CA: 225 Other (specify):

CB:Hoving CC: 225 CD: 225 Below Nuclear Heating Bank Positions (Steps) RCS Temperature

(°F): ~-YS: Power Level (1 F.P.): 0 SDA:HovingSDB:

225 CA: 225 Other (Specify):

CB:Hoving CC: 225 CD: 225 Below Nuclear Heating Date/Time Test Performed:

s;;/9J /9.Y? / / Heas Parameter RS (Description) 1 sA; Int Worth of Shutdown Bank A-Rod Swap RS (Adj. Meas. Crit. Ref Bank Measured Value 1 sA = 938,, p,-Position = /?$'steps)

  • Design Value RS (Adj. Heas. Crit. Ref Bank (Actual Cond) 1 sA = 9'";~1/Y _.., .. !osition = /YYsteps)

-, Design Value RS 1 sA = 960 "+/- 144 pcm (Critical Ref Bank (Design Cond) Position=

164 steps Reference Technical Report NE-881, Rev. 0, VEP-FRD-36A If Design Tolerance is exceeded, SNSOC shall evaluate impact of test result on FSAR/Tech Spec safety analysis.

SNSOC may specify that additional testing be performed.

Reference VEP-FRD-36A J Design Tolerance is ./ met : --:~ NO Acceptance Criteria is aet : _ ES _NO Prepared *By:~~ Reviewed By: NE-898 S1C12 Startup Test Report Page 53 of 57 ) r:

I Reference II Test Conditions

  • (Design) III Test Conditions (Actual) IV Test Results V Acceptance Criteria VI. Comments e SURRY POWER STATION UNIT 1 CYCLE 12 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET Test

Description:

Total Rod Worth -Rod Swap Pro~ No /Section:

l-NPT-RX-008 Sequence Step No: Bank Positions (Steps) RCS Temperature

(°F): 547 Power Level (t F.P.): 0 SDA:Hoving SDB:Hoving CA:Hoving Other (specify):

CB:Hoving CC:Hoving CD:Ht>ving Below Nuclear Heating Bank Positions (Steps) RCS Temperature ( °F): S"'l5'i b Power Level(% F.P.): 0 SDA:Hoving SDB:Hoving CA:Hoving Other (Specify)

CB:Hoving CC:Hoving CD:Hoving Below Nuclear Heating Da~~.st Performed:.

2-2-C:2..1.......

/ / Meas Parameter (Description) 1 Total; Int Worth of All ~anks -Rod Swap Measured Value 1 Total = gs;i., 7 ;:;~ Design Value S?77,9 t ~,e,.,_ (Actual Cond) 1 Total = Design Value 1 Total = 5883 +/- 588 pcm (Design Cond) Reference Technical Report NE-881, Rev. O, VEP-FRD-36A If Design.Tolerance is exceeded, SNSOC shall evaluate impact of test result on FSAR/Tech Spec safety analysis.

Additional t~sting must be performed.

Reference VEP-FRD-36A Design Tolerance is met : 9v;s NO Acceptance Criteria is met : _YES _NO I Prepared By:~~ Reviewed By: NF-RQR ~,r.12 Startun Test Report Page 54 of 57 r r Reference II Test Conditions (Design) e. e. SURRY POWER STATION UNIT 1 CYCLE 12 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET Tes: Descripcicn:

M/D Flux Map-At Power Pree No/ Section: l*NPT*RX-008,002 Sequence Stap No: Bank Positions (Steps) SDA: 225 SDB: 225 CA: 225 CB : 225 CC:

  • CD:
  • RCS Teaperature

(°F):TREF

+/-1 Pa11er Level (1 F.P.): <JO Other (specify):

Hust have~ 38 tbiablu**

III 1* Bank Posicions (Steps) -------------.est . RCS Teaperature( °F): SSS. 7 Power Level(: F.P.):J_~.04*

Other (Specify):

Conditions' (Actual) IV Test. Results I V Acceptance Criteria VI Coaaents SDA: 225 SDB: 225 CA: 225 CB : 225 CC : J.25 CD: i$0 Date/Time Test Perforaad:

5/3/q;;. 11: 3Y ! MAX. REL NUC EHTIIAL TOTAL HEAT KAXDRJII POS Meas Para:aeter ASSY PW1 RISE HOT FLUX HOT INCOIE (Description)

DUT CHAN FAf:r CHAN FACT QUADUIIT (H*P)/P F*dff(N) F*Q(T) POWEi TILT *(o.(.?;~t'

\oG, 11 Measured Value P: eo.q > .. ;i:344 l.0'3il .. t~.,-,_-+or ., P: .c. o.ct ' Design Value* -I Ill la P1 AO.I (Design Ccnds) I ID,-P, c l.t NA NA "*. -,.* .... S 1.0224 Referenc*

jwCAP*790S i REV.1 NONE NONE lwCAP-7905

! REV.l

  • r~a, I .... a lllJ FSAR/Tech Spec NONE raai.ssu*.xa..,, NONE R=ference NONE TS 3.12.B TS 3.12.B NONE ... . ,..:.,, Design Tolerance is mec : 7 ru .i_No Accept&Dca Cricaria is **t. : _YES -~O '* As R eq uired *"* ~ust have at lease 16 thiables for quarter care maps for multi-point calibrations.

?repared By: Reviewed ~~-RQR s1r.12 ~tartuo Test Report Page SS of 57 e* e. SUD! POWEi STATION UMIT 1 CYCLE 12 STAJtTUP PHYSICS TEST RESULTS AHD EVALUATION SHEET I j Tut Duc:ripcicm:

tt/D Flmr: ttarAt Power Rafarenca Proc No/ Sec:ciaa:

l*HPT*Rl*OOl 9 002 Saqaaaca Step Ho: II T*~ Camlictaa (Daip) I Bok Positiau (Su,a) II RCS Tuperamre (1 F):Tnr-:tl i-------------+

PaNr Lnel (% F.P.): SOISP<7S1 III Tut Conciitioaat (Actual) IV SDA: l2S SDI: 22S CA: 2%5 j Otber (specify):

CB : 2.:5 CC : 22S CD: '* I !mSC hne 31 thiabl_..

Bok Poai~iaaa (St ... ) SDA: 22.5 SDI: 2.2.S CA: 2.2S CB : 22.5 CC : 2.2S CD: / lt,,3 RCS TenpK11aan(*F): ,SG.&., o Power Laval (% F. P. ) : &'?, y 6 i: Otber (Specify):

Daca/T~T .. c Perforr1i*

' !Al. IEL WC EHTIAL torAL BEAT ll&llmlP.

POS, K-Par-car ASS! PVI RISE HOT Ftm HOT nrcmr * (Ducrip~iola)

% DDT CUN FM:T CUN FM:f QUam~ (ll*P)/P F-dl(I) F-Q(T) POllll.tTII.T -SA/. .f,.... ~:!' 0.f, I :i. ,08'1 j.020? ,,,, tt-llnll Vala /.S=>O Tac .f.£,,,,.

l'w-/ " Rualcs p,. <. (J.9 Dutp Value ..... , .... (Duip Conda) ..... , .... NA NA s 1.ana ...........

WCAP-7905 vcu-fN5 I

  • Refenaca IEV.1 ~ONE NOii m.1 V FSAI/Tacb Spec NONE 1 ..... ...,,,,,.

~,,, ... _ ... Ac:c:epuaca I Criteria Rafenac:a NCIIE TS 3.U.I TS 3.1%.1 NUIS Duiga Tolerace is**~ : ~TES _NO AccaptaD~

Criteria is **t : Lm_No VI C ma * ** I fer aulti*pcillc calibrac1cms.

Praparad By~ t;~,£/j. Rewiwed By: *£Ht-~-Page 56 of 57 ri

  • e SURRY POWER STATION UNIT 1 CYCLE 12 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET I Test

Description:

M/D Flux Hap-At Power Reference Proc No/ Section: l-NPT-RX-008,002 Sequence Step No: II Test Conditions (Design) III Test Conditions (Actual) IV Test Results V Bank Positions (Steps) SDA: 225 SDB: 225 CA: CB: 225 cc: 225 CD: Bank Positions (Steps) 225

  • RCS Teaperature

(°F):TREF

+/-1 Power L~vel (t F.P.): 95~1001 Other (specify)

Kust have~ 38 thiables**

SDA: 225 SDB: 225 CA: 225 RCS Teaperature( °F) : S-'-i "I Power Level (t F .P.): leO ")0 Other (Specify)

CB: 225 cc: 225 cD: a~o LU, +hiMb\e.~

Date/Time Test Perforaed:

S'\ MAX. REL Heas Parameter ASSY PWR (Description) 1 DIFF (K-P)/P Design Value (Design Conds) Reference FSAR/Tech Spec I 1ft ,-ft a I.I I I.ft,-ft CI.I ,,, . -, ...... WCAP-790S REV.l NONE NUC ENTHAL TOTAL HEAT HAXI!fll!I POS. RISE HOT FLUX HOT INCOIE CHAN FACT CHAN FACT QUADIANT F-dH(N) . FeQ(T) POWEJr;TitT NA NA NONE NONE :S 1.0208 WCAP-7905 REV.1 NONE . Acceptancer--------------------+--------------i--------------+-------------1---------------

Criteria Reference NONE TS 3.12.B TS 3.12.B NONE* VI Design Tolerance is aet Acceptance Criteria is met Coaaents

  • As Required : ~S_NO : _YES _NO ** Hust have at least 16 thiables for multi-point calibrations.

S1Cl2 Startup Test Report

  • Page *57 of 57