ML20210J503

From kanterella
Jump to navigation Jump to search
Rev 0 to NE-1132, Surry Unit 1,Cycle 15 Startup Physics Tests Rept
ML20210J503
Person / Time
Site: Surry Dominion icon.png
Issue date: 07/31/1997
From: Anderson G, Nicholson A, Paul M
VIRGINIA POWER (VIRGINIA ELECTRIC & POWER CO.)
To:
Shared Package
ML18151A608 List:
References
NE-1132, NE-1132-R, NE-1132-R00, NUDOCS 9708180114
Download: ML20210J503 (58)


Text

{{#Wiki_filter:. s, .f .l, " L,},. S',', *f'.. ...f,','.[ j', g $, " L ' c y ; e 4 61,

  • jy t. d', b.

(, i : 'l I [l..s r. , ' l41 - y., \\ 'G ', ] ' ' -. r,1 '., *,[',..f, ', ' ', - l '.D, t' *g g i 'N ". ; is' J 'j'. ,f. + ,N . : + !h, '!. '* [4.p -].- .[' ' ' i - .s:-

,4* *( j n -..% -,

bei k.l{ ' l $ ' \\".',, i c ,O'. n s l. .,_.r,, ./'T. s. '?.,g', - y e - e 'i',' i. /,,,? - .C ' },p ,:t, ',l., ,'.8l,+

  • \\

= 4h e1 '..n..,,e, g. f ,.,j.- ' +, i,, -:s, f, r ...f, 6 s 4 . ! g.- ; i,.*'gl' / j,/.. .l. ,i.,_g 4. y f,

  • j '.,,,,,.,,,,,..,.$,'

s ,\\ s. J ,,yf,..', '..,.,4.- 4 ". ....,i -. ' -' > + a

  • g

., -. i

  • l..

g 4 .e i. '. o ....,l' l .. i. (. - .,,'a'p#', Q. * *,,,

  • N,,. :' ' '.,.., -' -., - s a
  • ~,'n'

_s. - (, 4 4

, +

( -.... 4y*: i+. ,,- iy i f 4 o ".k+N. , s 4 l .c 3 -, -l.,. %:,. s {t,.s.- t s ' * ',..} 2 ', '. [. (,' *,;, l'. a., f d. p v ? 2 ? . + _. .s.,; s,. $, .I . '.i +t y 8 ,.'s .,,Q ,d i. 3 ,8 ., 'd, g s j M. :l41 s. ? % ' ' ],' ( ,g3,. e e +, '., e, 4 i.,,;, .e, Id, ir

  • g'

'.e-

,'. P

.d,.. .,s,'p's ',. o ',T. 't 2,[ ai. d g ' % y.k i,,. p, i,(. h 4,, , il g e t. s. .3 d* e i,. ; E 8 64 ,*6 I 7 .g... 4 .4.'

  • }.t i., ', J

-, ;, ',,., s '

  • a,,.3, f), 'i,a

,a ,,c. -.c; v s*., .i *,,' ' ',' 4 - -.....

i.?

,.

  • 3 ;.. y. s..... :' ' y,..1

d ...4. f. i ' ;' ,. ;,,. 9. g, n.., i ** i.% r, '

  • A t

p :. o 4

a-p,
/;g."

c;. ..7 <1.'~,;w .., + f : ' y* ', >l .~.. p

,j ',.,..,.
c :t P '?..[g..,.

a ... d,. ; - y 4 U g,. '"lj' f..- ,.s e,.;. - a. , M,' * * .g.g*/ a'.....,,- .-s .I

  • e s.

8 . -1 ft .4 ". f.,l s ,r. - - 'a

  • e i.',,

f;t..,,.?' -,,.,t; ...A-4'a ',.%. v r. ' &' \\ ,a ,a <g ., A e/, ., '..,...,i w ,O

  • l-

< r ,-l .f. ..i - .t,, j.e, %... c., .s ....., c. w .r id,. p ' e .a 3 4 9 \\ ? %,?., 'y}'. '".'r:*,., . ' * -'I'* ',,, l%l '. 4 f: s *' : f,*#*.np% l' /* ' 'i "~_.~.<.;,/;,'.. l. 'l f b.

  • . : *',s^3 Sf

'o ' t '. 4.; a bl*. " lk ' C Y '. 'ls. ;c 6 l',, ,l .,J. W' ., 3 a,' ', ' '*j'*,a'. n ', 't 'h l ts- _,1 '{ ',' ';3, ', f el. f z4,.4 '%.: j' ;lp !' ' 'N.". ;'n i _ A;, b,,,,p., 't, (, ' ',,*u." e..,,;.,, s, a k' cf.r). . '"; ' * - 6 a8 , ' 0.} * k. '. Q .ll .';f '.t.q g s'. 4" ' 'bA' 4 t

  • 1 i

F. " i .. ' in s l,.g. c7,.*'.'*'i

    • !'.,"h'.M *r' c,,

' a' g i "'.s; t. f,' , U l[, g,..'7, . t.. ' y,q.I,f,-'. 3 i f.*- tv. y', fe", .,i. ?, . '. s" t.,* ar,-.,.'.. '. $a i. , -+ y,', ~. -.' J,V v ec; '. '. g a ..<.t 5 4' 4.. ,. i 2, '.'.'4'.>Y '. is... - J. 9- .t,. . = ). h ;.,,' *..' -. '., s, ~,

  • h. t

/. ". '. '.,'e,,.-.' ' : < : 7- ',','s.? . e,f., /..,..', s., i.c *' > ', ' or g t f 4 -3*. '- ,3 1 - y*g ;r,.;.K., * *-lsl f'.[;t s,' f j [.. ,[ * : + 3. r a e .e e . 4 .2 s, ,- r e .=

  • zs '

Q[ .:? ','m:, . ys } ,f j

  • y 1 -

a

  • ;.f,

l'.. -,. ; ,, ..x-

, *t*

j 4 7,.* '. ;., ;y..,

  • i,'.. ' f.

l t ,.l" .,,,,.. :. b, J. 5. -l,,; '4 ..'*'.,',..:,f Q p 3..g::>;. 'e ; sc p*,s v i 'd i .ni

  • ' a,,..

..s8 -. y ,c,... ', *,,, *-. ..,,.4 p. J ,d ..'i. te. .g / 8 As,,r,~

  • -,...i.....k-y

.i '.e. i..-

  • s.

t l - J.. e -f _ _: \\ y. - 'j ' ',:. : $. p ;,[.., t '._ ; *, y. y. g..,,, ' ; ;. l l ' *:., w _ s_ .: _ ';,;l '. (._.: ' ;., '.. L' 8, i p ;,.,.r;, Y l 4 :, ", 4 ',,,., .t< a .,b ,.(e. g,.,,., p - g g.. ,,4 e , ' ;_.,p., 3 _, t. y),,,. 4 . t s' .*, te, ~l- .,t-J.

  • ,c.'-

h{,5..,..- ' A.,g,,. '. "..,3' o*',

  • s ) Lp$. s,,,....... '. '. cpt -.

.t e . M.. t.d.i lq, e.,, #P.,_,i. a; -6 r 8 - r. ,i. '. = n'i .r.v. - '. * - i.-.. 3 i r g; /,,i. nc".,. pd'. p. :...s. - 4,, 5 <g 3 ?' 4 - ~t..- ..[ I.. '

t s.,(
.l.h..* p'rGk*h,.i,' ;

p'.,lg g . i.,. Y.. :, N tN. ' * ":.:' l - lh. \\. ' l'. '. ). ;'... ',(f. ',*, N,

..N

^

  • f..

.. ' '[.v- .s o. e y o.. ( ",$,fj,f. ; " ' '.. ' ' I-J[. . +f W,c h Y k.}'..h./+ '.' h, ['.q*'.';I M, ,..,1. .w:, ,,,=;* ^ ' l, r/.' ' .I 7.:., :'.,,<, ? s s . w, J,1 a..,s,,: y\\ a a, :. j'U ), %..?.< < 'Yth p $,,4,,D,' .,d.,J'-..,'.';. e . ?I.,, s', s-f- /'d }/ b ' Vh W.

  • ',.1

' '.. '.1/( s. f '., ' a'?g ' I Ip,J I; 8.1 io

d..).[a E

'i o ,.'..'i.,,' e,,. '.' $. \\ f.'.,..

... ' .F

?.. s. : ( (, ',...... " . i'. v . r. r > , s.- A m. 9. :r +. ,s, :e s.: - a r ). '. 4,. r...,. ng. ". a ..9.,,

.. , y.'. M..

.i .m nc.< 1..,n,. - e:.... ' '- ..;.,. a. c q r ,l.,...

1.... ".,4... h, v.....w~ g' )A b

.i.'.e a (,. v, q ,ay p s,..-. - A:. <.,q. s. n f [y;v.~. %;..g '.a_:g ? ' > g, .'a

  • vs H. p, ' $?;i q..y 0...,..,l26 P. -d 4%g 4 V l.

b;ty,1 6ls;,;*,gl(l {,i :

s ',; y y

9.. v. 6 '.;'.,.. f, ; :.. _ ;. 3lMIa. 9 '. i4.. ,,.., < a j e. - l, 7 .p f.' p.,. '., c - (,, i ; / "r;. <:.4.&.r / :ty!! pf,, xl@fC W M }i6. ' Q'@..f l *:!qYR ** 'ti n. A,l/ ?. '.. " ' ' ci/ N. 6 i.h. ' 'll" "..[.c.y% ; y' p), g,lg,. ',.'. j. O i , ) 'd ' &' k%. y-f[';[p'py(7 YW'.-..I - >M gm.:, :.. h;. g. " g V ,',7,. / ( ji J.jld'I:!' Y.'. [/. .sg,Ql ..F v '::.:n. 4.y;. :., v. 'j. y . m f. 7 .v.. y . :.,;>, c... ;,y : ~*.s: y m m; s., pf74 : hi[.$/M. ? ' ?, *g.Mt.; + og,s .. :- n.. 9";. ". c <.. v. ',:,. 7 w.. Qg, ',9 v,.;'. A :...*+-; s. - '.. - ~s %.'-.. 5.*@.p. h

  • g. w.d.;.. %.:u: 4 M ;,b :.,;, d:*:.

K* n .W.. .:...a s.

:;. w',~

u 2 '8 ?

e y.s.

s6tj 4, lg. E hf n J.1., T,,.'. 'r! N.- -'S ' '.* ' 48 D' a h u.k.%w;. ; y# - ;... %,. a. m..:. %m,. x %,.k w :d wd.n$ Y hf.pa%nu.e:?5 i'hbm 'f. ' Y. ? w.c e.g?:.tm.m m.n. wg m.m.s m.x k tx eyx Wh&y &y'M[:/'.k y? :p f :.$:hy e

  • w' s,,,.l :Y', )l.),5q&.. w ;D *':

ksQt ? f:P s.swe:. :[k:r a.g m.n%w'k. h.f *

  • V' b!
6e i **
QW. ':N. &

l !-[. T- .:. ' l.;'; :. y:.@hW%%M%w l.%A omy Wl%&@.< >

{fjf A nQ'. f @

.wnc f

O V m%. M@.

.pyWwn; gD %. M qt h.:,,p3 m~. W m, m..m:s. x p. vk.w.....w 2:.g. : w w,g:pp..r c.3 t n m. N M u n~ b.. A...t..a. iw 4, M-w,h;pp.g x n%.::g:;:w., a 'e m w w ca.m 4 M %,"n'w m.hkhhh 6A.v..,9;. y 3Q.,.@[ UL 3ph;:%g. s $Q cf.b,;f.: g s yf,f g y:2^W;:m.

Qf.ph,

.. 9 .S.w. o.3. .y.. :y;,Qff:. m: e g4 9 k h,' h e $$: L. W ;?$,a.y M,+:,w.;,...m. y g*;e,. w; w s.,+ pv n ;r w .e e z...w\\ :p n Y]k& $ %@h. aM@jp s h b g @W%,{j?; p.,Q:b M:. f $lk[ dt&j&,4 M , p%, .m t: kb6,OkWh@&p ghtni,0 m& AMWg.Yf O qmwmem@.m$m@p@wwwd@yemypw%Qh '. iMA:WN MMW PNhfE agmW: am u_ m%m a m ww W M M 4 M C : ?.J Q F V q. M PDR ADOCK 03000280 &p 4.>.l# m M.w::Mg: ::NM%A. M e eDn a

x s ' s g -yj x, [: v'e \\; -(. 1 _k. .\\, \\~ \\ s l \\ I\\. -Y \\_ ' g

  • I \\

'g ' [ s. (. " 5. \\.i x \\ -, .) -- -y

\\;

+ x s-s y s ,h \\! g k4 - i. ' \\ g .1 i g., s s' .s 3.- 1 1 s \\

g..

\\ i-. s 4 's 4_-' N. r 3 v-4 .\\- ..,. i- . 'y c 'i. _g i 1 i -\\ W \\ ~ 1 fg k.\\.'$ ~h 3 1 '(.-_ + ...\\- '\\ - k[, \\ . \\' t 'N ' k, \\ [3 -\\ J

k.

S. \\ s s. s s, s - ~s - k \\- .kT '.g [\\ \\, \\ ' q qq l g. -T. x ,s 5 .( g. 3.--- r ') _ y\\ A\\\\g ~ N. .\\; ; 1 .\\

4. 3

%, 'q. \\1 s;, s a -g 1 6, 4 _\\ \\\\ N.,1 3 .s 1 s 3. N.s .s\\ N-g 1 s K L q\\ 4 % 'g s o w g m w m\\s. -s y y , s. ss s sh ss w1 a Surry l Unit 1 Cycle 15 Startup Physics: i Tests Report 3 Nuclear Analysis and Fuel Nuclear Engineering & Services July,1997 d l-W 4 i -{ ~ VIRGINIA POWER 4 .) : p ' ! a: i i

TECHNICAL REPORT NE-1132 - Rev. 0 SURRY UNIT 1, CYCLE 15 STARTUP PHYSICS TESTS REPORT NUCLEAR AWALYSIS AND FUEL NUCLEAR ENGINEERING & SERVICES VIRGINIA POWER JULY-1997-kh hp PREPARED BY: _ G. P. Anderson Date LONik Thk7 REVIEWED BY: A. H. Nicholson Date 1/f/f7 REVIEWED BY: 1 M.(E. Pdul Date 7 APPROVED BY: 7 D. Dziadosz [/ Date QA Category: Nuclear Safety Related Keywords: SPS1, SIC 15, Startup ) e m e

. --.~. ~ I i-CLASSIFICATION / DISCLAIMER The data, techniques, Information,- and conclusions in this report have- - been prepared solely for use by Virginia _ Electric and Power Company (the ~ Company), and they may not be appropriate for use in situations other than those for which they have been specifically prepared. The Company therefore makes no clain or warranty whatsoever, express or. Implied, as to their accuracy, usefulness,. or applicability. In particular. THE COMPANY MAKES NO WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, NOR SHALL ANY WARRANTY BE DEEMED TO ARISE FROM COURSE OF DEALING OR USAGE OF TRADE, with respect to this report or any of the data, techniques, information. or conclusions in it By making this> report

available, the Company does not authorize its use by others, and any such use is expressly forbidden except with the prior written approval of the i*-

Company. Any such written approval shall itself be deemed to incorporate the disclaimers of liability and disclaimers of warranties provided herein. In no event shall-the Conpany be liable, under any legal theory whatsoever (whether contract, tort, warranty, or strict or absolute

11 ability), for any property damage, mental or physical injury or death, loss of use of property, or other damage resulting from or arising out of the use,' authorized - or - unauthorized, of this report or the data, techniques, information, or conclusions in it.

i f) ;- -' M => ~ NE_1132 SIC 15 Startup Physics. Tests-Report Page of 57 y .e- +wi-g 3we -6 um ts----- w-

I-I TABLE OF CONTENTS I PAGE Classification / Disclaimer............................... 1 Table of Contents....................................... 2 List of Tab 1es.......................................... 3 List of Figures......................................... 4 Preface................................................. 5 Section 1 In t rod u ct ion a nd Summa ry................... 7 Section 2 Control Rod Drop Time Measurements......... 16 Section 3 Control Rod Bank Worth Heasurements........ 21 Section 4 Boron Endpoint and Worth Heasurements...... 26 Section 5 Temperature Coefficient Hessurement........ 30 Section 6 Power Distribution Measurements............ 32 Section 7 References................................. 39 APPENDIX Startup Physics Test Results and Evaluation Sheets........................ 40 I I I I I I I sE m 32 sic 15 Startu, es, sics Tests me,o m ease 2 of s,

. ~ LIST OF TABLES-TABLE' TITLE PAGE 1.1' Chronology of Te6ts................................... 10-2.1_ Hot Rod-Drop Time Summary............................. 18 .3.1-Control Rod-Bank Worth Summary....;.................... 23 '4.1 Boron Endpoints Summary............................... 28 '5.1 -Isothermal Temperature coefficient Summary............ 31 6.1 Incore Flux Map Summary............................... 34 6.2 Comparison of Measured Power Distribution Parameters With Their Core Operating Limits...................... 35 4 4 J lNE-1132 SIC 15'StartupPhysics-TestsReport Page: 3; of 57 f

I I LIST OF FIGURES I FIGURE TITLE PAGE 1.1 Core Loading Hap................................ 11 1.2 Beginning of Cycle Fuel Assembly Burnups................. 12 1.3 Incore Thimble Locat1or.r.................................. 13 1.4 Burnable Poison and Flux Suppression Insert Locations... 14 1.5 Control Rod Locations.................................... 15 19 2.1 Typical Rod Drop Trace................................... 2.2 Rod Drop Time - flot Full Flow Conditions................. 20 3.1 Ba nk B I nt eg ra l Rod Wor th - 11ZP.......................... 24 3.2 Bank B Differential Rod Worth - Il2P...................... 25 4.1 Doron Worth Coefficient.................................. 29 6.1 Assemblywise Power Distribution - 29% Power.............. 36 6.2 Assemblywise Power Distribution - 68% Power.............. 37 6.3 Assemblywise Power Distribution -1007. Power.............. 38 I I I I I I NE-1132 SIC 15 Startup Physics Tests Report Page 4 of 57 g

PREFACE I This report presents the analysis and evaluation of the physics tests which were performed to verify that the Surry 1, Cycle 15 core could be operated-safely, and takes an initial evaluation of the performance-of the core. It is not the intent of this - report to discuss the particular methods of testing or to present the detailed data taken.- Standard 1 - testing techniques and methods of data analysis were used. The test data, results and evaluations, coupled with the detailed startup procedures, I are on file at the Surry - Power Station. Therefore, only a cursory discussion of these items is included in this report. The analyses presented -include a brief summary of each test, a comparison of the test results with design predictions, and an evaluation of the results. The Surry 1, Cycle 15 Startup Physics Test Results 'and Evaluation Sheets are included as an appendix to provide additional information on the startup tent results. Each data sheet provides the following information: 1) test identification, 2) test conditions (design), 3) test conditions -- (actual), 4) test results, 5) acceptance criteria, and 6) comments concerning:the test. These sheets provide a compact summary of - the startup test results in a consistent format. The design tost conditions and design values at these design conditions for the measured-parameters were -completed - prior to the startup physics testing. The entries for the design values were based on the calculations performed-by-Virginia Electric and Power Company's Nuclear Analysis and Fuel Group. During the tests, the data sheets were used as guidelines both 1 to verify that the proper test conditions were met and to facilitate the NE-1132 SIC 15:Startup Physics Tests Report ~Page 5.of 57 sme-, w w p e' e -

I. preliminary comparison between measured and predicted test results, thus enabling a quick identification of possible problems occuring during the tests. I i I I E I 1 I I I I I I I I xs-1 m s,cis st. m.p re,s m 1ests...m e.ge e e s,

SECTION 1 INTRODUCTION AND SUNNARY On March 7,1997 Surry Unit i shut down for its fourteenth refueling. During this shutdown, 62 of the 157 fuel assemblies in the core were replaced with 60 fresh assemblies and 2 once-burned assemblies. The Cycle 15 core consists of seven sub-batches of fuel: two fresh batches (batches '17A and 178); three once-burned batches, two from Cycle 14 (batches 16A and 16B) and one from Cycle 13 (batch 15A); two twice-burned batches from Surry 1 Cycles 13 and 14 (batches 15A and ISB); and one thrice-burned batch from Surry 1 Cycles 12,13, and 14 (batch 14B). The fresh fuel is of a similar design to the S1/16 fuel (fresh fuel in Cycle 14), and the burnable poison rod assemblies and flux suppression inserts are the same design used in the previous cycle. Note that SIC 15 is the first Surry 1 core loaded without secondary sources. The core loading pattern and the design parameters for each sub-batch - are shown in Figure 1.1. Beginning-of-cycle (BOC) fuel assembly burnups are given in Figure 1.2. The incore thimble locations available during s ta rtup -- physics testing are identified in Figure 1.3. Figure 1.4-I identifies' the location and number of-burnable poison rods and flux suppression insert locations for Cycle 15, while Figure 1.5 identifies the control rod locations. The Cycle 15 core achieved initial criticality at 1224 on April 28, 1997. Prior to and following criticality, startup ' physics tests were NE-1132 SIC 15 Startup Physics Tests Report Page 7 of 57

I l ( I performed as outlined in Table 1.1. A summary of the physics test results follows. 1. The measured drop time of each control rod was within the 2.4 second limit of Technical Specification 3.12.C.1. 2. The reference control rod bank was measured with the dilution method, and the result was within -0.8% of the design prediction. Individual control rod bank worths were measured using the rod swap technique '8 and all results were within -13.1% of the design 8 predictions. The sum of the irdividual measured control rod bank worths was within -4.8% of the design prediction. All results were within the design tolerance of 115% for individual bank I worths (110% for the rod swap reference bank worth) and the design tolerance of 110% for the sum of the individual control rod bank worths. I 3. Measured critical boron concentrations for two control bank configurations were within 14 ppm of the design predictions. The all-rods-out ( ARO) result was within the 50 ppm design tolerance, and met the Technical Specification 4.10. A criterion that the overall core reactivity balance shall be within 1% Ak/k of the design prediction. The reference bank in c.itical boron concentration was within its design tolerance. 4 The boron worth coefficient measurement was within 0.3% of the design prediction, which is within the design tolerance of i101. 3! --us2 sic 1, stam, rh, sics rests xepos enge e e s,

b 5. The measured isothermal temperature coefficient (lTC) for the all-rods-out configuration was within 0.53 pcm/'T of the design prediction. This result is within the design tolerance of 13 pen /'F. The measured ITC was. -0.85 pcm/'F. When the Doppler temperature coefficient (-1.69 pen /'F) and a 0.5 pcm/'F uncertainty are accounted for in the +6.0 pcm/'F MTC limit of Core -Operating Limits Report (COLR) Section 2.1, the MTC acceptance criteria is satisfied as long as the ITC is less positive than 1 3.81 pcm/'F. 6. _Hessured core power distributions were within established acceptance criteria. and COLR limits. The average relative assembly power distribution measured / predicted percent difference was 2.4% or less for the three initial power ascension flux asps. The heat flux hot channel factors, F-Q(Z), and enthalpy rise hot channel-factors, F-DH(N), were within the limits of COLR Sections 2.3 and 2.4, respectively. In - summary, all startup physics test results were acceptable. Detailed results, specific design tolerances and acceptance criteria for each measurement are presented in the following sections of this report, i NE-1132 SIC 15 Startup Physics Tests Report Page 9 of 57

I I Table 1.1 SURRY 1 - CYC1.E 15 STARTUP PilYSICS TESTS CllRON01,0GY OF TESTS I Reference Test Date Time Power Procedure llot Rod Drop - llot Full Flow... 4/27/97 1256 IISD 1-NPT-RX-014 Zero Power Testing Range....... 4/28/97 1'50 llZP l-NPT-RX-008 Reactivity Computer Checkout... 4/28/97 1445 IlZP 1-NPT-RX-008 Boron Endpoint - AR0........... 4/28/97 1710 HZP l-NPT-RX-008 Boron Worth Coef ficient - ARO.. 4/28/97 1710 llZP l-NPT-RX-008 Temperature Coef ficient - ARO., 4/28/97 1822 Il2P l-NPT-RX-008 Ba nk B Wo r th................... 4/28/97 1927 Il2P l-NPT-RX-008 Boron Endpoint - B in.......... 4/28/97 2250 llZP 1-NPT-RX-008 Reactivity Computer Checkout... 5/01/97 1115 ll2P l-NPT-RX-008 (ke-verification) Bank SA Worth - Rod Swap....... 5/01/97 1445 llZP 1-NPT-RX-008 Bank SB Worth - Rod Swap....... 5/01/97 1516 IlZP 1-NPT-RX-008 Bank A Worth - Rod Swap........ 5/01/97 1554 IlZP 1-NPT-RX-008 Bank C Worth - Rod Swap........ $/01/97 1644 IlZP 1-NPT-RX-008 Bank D Worth - Rod Swap........ 5/01/97 1738 IlZP 1-NPT-RX-008 Flux Hap - 29% Power........... 5/02/97 2302 28.5% l-NPT-RX-002 Peaking Factor Verification 1-NPT-RX-005 3 & Power Range Calibration 1-NPT-RX-008 3 Flux Ma p - 68% Powe r........... 5/08/97 0950 68.5% 1-NPT-RX-002 Peaking Factor Verification 1-NPT-RX-005 & Power Range Calibration 1-NPT-RX-008 Flux Map - 100% Power.......... 5/16/97 1442 100.0% l-NPT-RX-002 Peaking Factor Verification 1-NPT-RX-005 1-NPT-RX-008 Note: Due to problems with the rod control system, startup physics testing was suspended during the initia, start of rod swap bank worth measurements. After the rod control system was fixed, 3 startup physics testing war. resumed beginning with a g re-verification of the reactivity computer checkout. I I I hs-m2 Sic 15emmupPh,sim 1cstsR,os Pase 10 e 5,

Figure 1.1 SURRY UNIT 1 - CYCLE 15 CORE LOADING MAP R P N N L a J H s F ( 9 C a 4 I tes I tse 1 36s I l 5;s l *av 1 .............................i.sa i.............. I ass i 16s I tra l 16s I tra 1 36s I tsa l ......... 1 6ea......i.su l r ...............i 4 54.......I.sse......I. sea i ns l un 1 ats I tra i tra i 16s I tra 1 36s I tra i tra 1 au l ltu itu s ...............I. assI....... .............I.s u......I.ses......I su i sas ...............i.ein l ses ass I ass I a re 1 36s I tra i tu i tra i 16s I tre I ass I ass i ........I.es e ............1....... 16 7 4 ......I.u s i.srs...........1 664.....1.ets......i. sea......i..6s.....I.su......I.saa......i.u 6 ass I tra l Its I nu I in i nu a su i tu i tra itu l t ra i tra I ass I .I.see......I.r es.....1 44s......i.e ra......i sts.......I.sta.....i.sta.......i.r64.......tra. ............ i.ea r i i ess s l I 16e i tra i 16s I tra i tu Ian Itu a in isu i tra 1 16s I tra i 16s l .............i e rs.......i.19a.....i.tsa......i.su......i.6es......I.o u......I....... i e64 6 lAu l *sa ............i. e n ...............i.59s.....1 6:a......i..r6s I sta i its i 16s Iin i 16a i tra i 164 I tu i tu i tra itu 4in i 16e I tra 1 tsa 1 .............i.las.....1 6:a......i.ses......i.u s......I 7 .1.ria......i.rsa......i.arsI sta i tra i era .i.sJe .............i osa.......i..t se.....i tra 1 45s I tss I ass I tra isu l nu i tu itu i 154 l au itu i tu i tu i tra i 16s 1 iss ~1 l us a .............I .............i..e + a......i.r$a......i sea.......i..t ra.....i.sa s......i..l i a.....i.ssa......I.w..a....i..t u.....I.4 .i..M 6.....1 64a i us I 15s I tre i 16s a tra i 36a i tra Itu i 16a itu Iin i 164 l tra i 16e I tra i ass I i tar l 19e .............i.sta......i.su......I.s;6 l 9 ....................i.e94 i ras .............I. i n......i. ens......I..t ea.....i.tra lris ........I.srs......i.su l est I 86s I tra i 16s I tra i tu l tra i tu i tra Itu i tra i 16s I tre 1 16s i ..............I.sta......i.oss......I.osa......i.ses......I.ssa .............I.su i to i 354 .............i.sta......i.ris......I ou i ass i tra .I.su Iin I are inu i tra itu l tu i tu lin Itu i tra i tra 1 tsa I I*tse .....................I. sat I at l4s I res ...................Iru i tu l res ..............1 46s......I..a sa.....i r9s.......I.e sa......i..t e a ss i eas I tsa I ass I tra i 16s 1 374 1 164 I in i 16s I tra I tss I sts I l 54s i nas I ur nr ...........................i .............i..l es.....I.su i rea ............I tra.......i.tse i ses .I.se e......I..u t I tu l tra i tra i 16s I tra i 16s l Its tra I ass i .i.sa a......i.les......i.4 9s......I.s u......I.ses......I.s u......I.ses........ra.....i.u s......i e is I tts-l 16s 1 tra 1tu l tra l !6s I tse i l 29 l tra i 34s 14 ..............,.......i.se a......I.tra......i tra......1 4s 6.....4 I tes i 15s l 14s l ........i sae 1 4J9 l Is l SJ6 I ,..a salCH

=--***. *..*

l

    • > asM MsLY to I

rwt atstMsLV st$1CN Patautitirs sus salCH sta 154 tse 16a 16s tra tre antiint simit.= Mi ...a s.or 3.,9 s.si ..ei s.si W/0 U tss) - sue.w at soc is usu usw. aus ris6r tour e e iMuG/nful aSSENsLY tVPC 15:15 1s345 isX s 45X15 Islas isX:s 15E:s MUMatR OF asstMsLits 6. s rs 35 ra sr is run noos can assenstY ru ne re. -ru re* re+ re. NE-1132 SIC 15 Startup Physics Tests Report Page 11 of 57

1 I! ll Figure 1.2 SURRY UNIT 1 - CYCI.E 15 BEGINNING OF CYCLE FUEL ASSEMBLY BURNUPS a P a n i s J M t r g a c a a 1 I sJe 14 9 I ue i ...............i.19.111 36.sil 37.arl I 3r4 i esa i sss I saa i ssa 1 6ea i ens l e.ee 2 ..................l.i t.191 4 e. 3 61 ...............rt.391..e.sel.rt.r61 l 4e.tel I us i ens I sis 1 49a l Saa 1 59a i oss I iss I tas I e eet e ee 3 ....................l 4e.Fri ........i.41.nl..e ee l.e. ee l.17.241........... .............l.17.531 e.ee I 4:e i sus I sie 1 56a i ses I ua i 16s 1 46a i saa i sr6 1 4< 7 l ..................................................t..e. eel.it.tsi

s. eel st.7sl.41.r61 l 44.641 sr. eel e eel re.7sl
e. eel tr.es 4

I sat i res 4 44s 1 era i sis 1 sta i sia i r64 I tra i rea 1 56s I esa i tar i

s. eel
e. eel tr. eel e ee e.ee e.sel no.tsi 6

...................................l.is.est.tr.ral ar. ort...... ....................l.tr.tri..s. eel .I 4e. sri I 4s4 I ses I sia i r6s I raa i ess I esa i era i sta i ess I sea 1 6es I sea ; i rt.sti e.se

e. set re.arl
e. eel gl.tel 6

......................l.28.ori..s. eel.tr.tel.e.est is.tsi..s. eel.22.251 I sa 1 ess 1 esa i ass I tra i tra i era i ria i rsa 1 3rs i 314 I tas 16a i see I us I ........l..e.sel 17.441..e eel 16.831..e.se t ts.rsl.tr.6el 23.111.e.sel 16.974..e.sel.17.451........................1 se.ee

e. eel sa.97 7

I sas 1 644 l us i e4a i rea i sea i tra i sa9 I tia i sta 1 364 I asa i 47s i 45a i sus 1 ...............l..e.es t tr.6FI 22.741 tr.941.tr.761.tr.ori.tr.sel 23.161 tr. set tr.7sl...................................... ..................................l it.rst u.sil 1 16.rst it.sa e.ee a I ett I srs I saa i ris I tra i ans I tea i ria i tur i its i e94 l tas I sta i ssa i sa l s.sel is.191 22.79

e. eel 38.551 9

................................1.ar.411.e.sel IF.tel.s. eel 17.49) ..............l.17.511..e. col 86.711 .I sa.891 e.te I sea 1 tre I sia 1 ris I esa i tse i sta i ses I esa i ses I ssa i ssa i ssa l

e. eel 21.e48 e.ee e.sel rt.szl te

................................l.tr.sel.e.sel it.r61 ......................t...e.col tr.asi I al. ell e. eel re.as I era i ens 1 46s i Isa i r9e I su i 144 I 154 I ras I rsa 14:s I res I pr l

e. eel tr.tsi e.se e.sel

. sal

e. eel
e. eel no.sti tt

..........................l.17. 3 51 tr. 741. t r. e e l ........t..e. eel l 46.or I ss e I ut 1 4es i era i tsa i rea i les 16u I 54s I aus I su r i .......1 31.491..s. eel re.971..e. col tr.ori

s. eel re.791 e eel 31.69) 41.441 Ir i se.99............................._....................................

I un I tes i 49s I sia i saa i 57a i see I ers I sua l e.ee is ..................l...e. s a l.41. o r g .I 41.Fel.e. eel..e. eel.17.4e1..e.sel.37.611 I sn, I tra i see I sea 1 tra i era i46 1 .......1.ft.rti..e. col 21.421 e.se t re.74139.731 14 1 4e.r5 I sa 1 ue 1 4 >9 l l sa,951 56.371 sa.sil as l I l.-> asstnaty se i 1.o assansty sUMUP (CWOMful l l 1 I I I 1 I I NE-1132 SIC 15 Startup Physics Tests Report Page 12 of' 57 1

i Maure 1,3 SURRY UNIT 1 - CYCLE 15 INCORE THIMBLE LOCATIONS P W n L E J N C F C 9 C E A e 1 If I 1 l l 'l it t l ll I 1I-I. 1 l If I I II l If f I f 11 18 3 1 I l_.) .i i _.,11 j e 'l 1 i a 1 II l II 1 li l 4 I l i l l 1) ), I = 1 l It i II l 1 If I If It 11 1 1: i l __ .l_ i l l 11 -1 11 1 1 l l l l It di I l li l l 6 l l l..a I. I I l 8 l I i 11 1 I l' I 31 11 1 It 1 i 11 l 7 l l 1 l l l lJ l I I l l l l r It l If i l II 11 I II i 11 l IT l 8 1 l l 11 1 i I i i 1 I i o 1 ) I i i l l l 31 l I l l 11 1 9 l l l_l l l l 1 l l l l I J il 1 1 It i l I IT It i 1 11 le 'l I I 1 i i i H I I i i i l 1 1 ll If i 1 l It l l l If 1 i l i 11 i l l l' I 1 l l I l I l l l JJ l l I I I I i 4 I !! l I 11 I It i li l 12 i !! I i i i l i il i 11 l l l l l 1 -1 i h l I I 11 1 I I la l

I i

l l It l' l 11,,, _1 I i l I i a i l i 1 .l l I Il 1 1 11 1 1 14 1 1 I i 1 1 l i i i I li l l 31 .If Incore thiebte - temoinente secouen I _ l _._ i l l NE-1132 SIC 15 Startup Physics Tests Report Page 13 of 57

I I Figure 1.4 SURRY UNIT 1 - CYCLE 15 BURNABLE POISON AND FLUX SUPPRESSION INSERT LOCAT10HS I a P N M L E J M S F C D C S A 0 ists 3 1 'rsoo4 SP 1 SP . SP5ta I ' SP53e top, Ill FSit i l Psit AP top 13P~1 i i i Ifsel) LePitF 1 BPS 58 I I er%)e l' ' SPS57 lo.st91:fsent 1 3 I .1 I _il ll l l l l # sit i I top top 11

1. top

( top 1 L #514 i lesell l l tP$% SP5t6 i ' BP$t$ ISP)$5 1 Ifsele 1 4 I i 1 _l i I l i sP 1 top 11 top I l I teP 1 I rep sp i i $PS23 l 18P555 SP55 l l 5 I isPut I $P%% ' 'ISP%t4 I l l l-1 l l l t I g- \\ \\ top ~ teP 1 11 sep rep l l teP i i il top I sP5s! I sPS!! l&Pis9 l l SPSet 1SPitt i 18#5%l l l 6 1 l I I i l I l SP l I top I tw I l I w . teP .,tw I i \\ i $PSt$ EP5ef I lSPie6 [LP519 1 1BP$$$ i 7 l lsPS4] i i I 1 1 1 1 1 tsis i I rep 1 I i top i ests ; l l l l 18P504 IFsest 8 tseel i l $P5e$ i i I 1 1 1 i L i teP i SP5o! I SP517 I ISP534 :l l 9 top l l w -1 I w I top _ top i f BP54e.I lSP518 i ISPSel 'i I i 1; i l l l l top l 1, top c Isw I l teP l l top i ,i ter 1 sP51f,1 I EPsel i sesso h BPSl$ 1 lsP%49 I I le . 6Pste 1 ,,_l__,_ i l 1 i l l i l I i toe l-l l tep I l top I 3P l I 3P l to l l sPsst isPkt itP%l4 i i l& PSI) 1 ISP547 16P551 1 1 I I i 1 c I J l ,l isnt i I tee 4__ 1 top 1 I top i l rep i i tsit I trsees I leP546 1 llP582 1 lSP511 l llPS4% 1 IFse64 1 i I l __ _l _ I_ .I l_ L i l 4 i l I islt 6 w I top i i tw. I top l 3P i esit i itsesF llW534 ISP544 l lEP499 I lbP543 ' SP5% IFsel41 13 I l i l_ _1 _1 ( l I i i so 11 3P 1 l l l ISPS37 ISP$35 1 1 I

4 1

1 1 1 1 1 1 i tsls 1 I se - 3 supuantt Poison eco ctustre i trsees l I 15 ter to suunantt Polsou noo caostle i 1 1 1 istL

  • flun SL4MEsslutt luMRI ILOHCl ists - FtuX sutvWtsSION IMMRI lsHORil g

..P e.... _ pense,rtese

  • SP AsstMetY 10. FluM EUPPutssIUM INWRI 10 I

E; I! Il, NE-1132 SIC 15 Startup Physics Tests Report Page 14 of 57

Figure 1.5 .i -SURRY UNIT 1 - CYCLE 15 CONTROL ROD LOCATIONS R P N N L K J H G F E D C s A las' I I I 11 1 1 1 1 I i iA I Io 1 IA I i 2 I I I l _l 1 I 1 M*41 l l l l sA i l sA l l l l N 43 3 1 1 1 1 1 1 I I I 1 1 Ic l Is i l I is l lc I I 4 1 1., I 1 I I I 1 1 1 1 1 1 1 1 I se i 1 1 1 1 I se 1 1 i 1 5 1 I i 1I i 1 I l_ .I 1 _t 1 I IA 1 1a l-1o l Ic 1 1o 1 Ie 1 IA 1 6 I I I I I I I I I I I I I l 1 1 i sA I I i 1 sa 1 i se 1 i 1 i SA i 1 1 7 I I Ii 1 1 1 I I I I I I I I I to'- l lo 1 1 1 1C i i l ic i 1 i io i 1 - 27e* a l i I I I I I I I I I l_ I I I I I I i sA i l i i se l I ss l I I I sA I I l 9 l l 1 .I I i i i I I I I I l i I IA 1 1e I io l lc I lo i Ie i IA 1 le I i II i i i I I I I I I I i i 1 I so l l l l l 1 ss 1 I I i 11 1 1 1 1 1 1 1 1 1 1 I i 1 1 I Ic I Is 1 I I ie i Ic I i 12 I I I I I I I I I I I I I I I I sA I I sA 1 I l l 15 N 44 1 l l 1 1 I I I l i N-42 l lA I Io I lA I i le i I I 1I I I I I i 1 1 15 1 1 1 1 Absorber Meterlal l As In Cd s* Func t ic n Number of Clusters Control sank D s Control sank C a Control sank a e Control Bank A a shutdown sank se a shutdown sank sA a NE-1132 SICIS Startup Physics Tests Report Page 15 of 57

I: I SECTION 2 CONTROL ROD DROP TIME MEASUREMENTS The drop time of each control rod was measured at hot full-flow reactor coolant system (RCS) conditions (Tavg of 54715'F) in order to verify that the time from initiation of the rod drop to the entry of the rod into the dashpot was less than or equal to the maximum allowed by Technical Specification 3.12.C.I. This test was performed at approximstely 2217 psig. The rod drop times were me,asured by withdrawing a bank to its fully withdrawn position and tripping all eight control rods within the bank by opening the reactor trip breakers. This allowed the rods to drop into the core as they would during a plant trip. The stationary gripper coil I voltage and the Individual Rod Position Indication (IRPI) primary coil voltage signals were recorded for each rod in the bank to determine each rod's drop time. This procedure was repeated for each bank. As shown on the sample rod drop trace in Figure 2.1, the initiation of the rod drop is indicated by the decay of the stationary gripper coil voltage when the stationary gripper coil fuse is removed. As the rod drops, a voltage is induced in the IRPI primary coll. The magnitude of this voltage is a function of control rod velocity. As the rod enters I the dashpot region of the guide tube, its velocity slows causing a voltage decrease in the IRPI coll. This voltage reaches a minimum when the rod reaches the bottom of the dashpot. Subsequent variations in the trace are caused by rod bouncing. I m.1132 Slcls tamupPhysms1msRepm Page 1e o, s,

I - The measured drop times for each control rod are recorded on Figure 2.2. The slowest, fastest, and average drop times are summarized in Tabic 2.1. Technical. Specification 3.12.C.1 specifies a maximum rod drop time from loss of stationary gripper coil voltage to dashpot entry of 2.4 seconds with the RCS at hot, full flow conditions. The test results satisfy this limit. NE-1132-SIC 15 3tartup Physics Tests Report Page 17 ' of 57

I I Table 2.1 SURRY UNIT 1 - CYCLE 15 STARTUP PilYSICS TESTS 110T ROD DROP TIME

SUMMARY

I ROD DROP TIME TO DASHPOT ENTRY I SIAWEST ROD FASTEST RODS AVERAGE TIME F-08 1.37 sec, li-02/P-10 1.25 sec. 1.29 sec. I I I I J I I I I I NE-1132 SIC 15 Startup Physics Tests Report Page 18 of 57

Figure 2.1 SURRY UNIT 1 - CYCII 15 STARTUP PllYSICS TESTS TYPICAL ROD DROP TRACE Beginning O'f Dashpot Bottesa Of Dashpot Initiation Of Rod (Beginning Of First. (Beginning of First Drop Evant Mark Downturn in Trace) Upturn in Trace) / \\ / Y.Yi.,. Y.7,7,'. Utationary Gripper t_ _ Coil Voltage Trace Rod Drop Tbne ? AAAAAAAAAA A VWWWVVVV FM bey 60Hz IRPI 8 Primary Coil iAAAAAA# 444 Voltage Trace VVyyyyy.( yyyyy iAAAAAA f A A A A A A r* A A A A A A A A A A A A A A AAAAAftAAAAAAAA VVyVyyyvyy yyvvvyyyyyyyyyyyyy qvvvvv v v v v v v v vi60Hz Trace (If Uset ROD DROP TIME MEASUREMENT NE-1132 S1C15 Startup Physics Tests Report Page 19 of 57

I I Figure 2.2 SURRY UNIT 1 - CYCLE 15 STARTUP PilYSICS TESTS ROD DROP TIME - Il0T FULL FLOW CONDITIONS I 8 P N R L E J M 4 F ( B C B A I i.ta I-1.25 I 1.rt 1 2 l I i i 1. I I I I 1.5e l I,79 1 1 3 I l' l l l l l i I i I i 1.78 1 1.27 11 I l.28 1.3r 1 1 4 1 I ll 1 1 1 1 I l ,1 I i l' I l l i i 1.re ll l 1.ra i! l l 1 l l' ll ll l' I l l l l l l l 1.26 l l 1.ta 1 1,79 i 1.34 1.30, l-1.ta l l 1.33 6 l l l l 1 l l 1.t9 1 1.32 l 1.5e i l i 1.ra i I 't 5 l l 1 I i I I l.24 l' l.29 1.37 I 1.31 1 4 _. I I I I I i I I l l lose lose I 1.35 1 1.28 1 9 I L 1 1 I I I l 1 1 1 I I I i i i I l.t* 1 1.tv i 1.31 11 lose 1 1 1.r9 i le i 1.25 I I! l.76 ii 1 1 1 1 1 I I I l' 1 i i 1 1 1 1 11 1 1: i 1 i 1.t? I 11 l l 1.29 1 1 1 Il l l l l I l i i 11 1 l l i I I I 1 I i i 1 1.7F i i 1.t9 I I l.r* l l I.31 1 I tr i l t i 1 1 I I I l i I I i i I, I I 11 1 1 1.38 1.31 i l l 13 i i i i i 1 1 1 1 1 1 1 'I l.34 1 1 l4 1 1 1 1 lose i 1.rt I, 1 i i I i l 1 1 1 I I 15 1 l I l x.xx l-.> poo imoe lier to easel ruin men 1 i I I I I I NE-1132 SIC 15 Startup Physics Tests Report Page 20 of 57 l

SECTION 3 CONTROL ROD BANK WORTH MEASUREMENTS Control rod bank worths were measured for the control and shutdown 8 banks using the rod swap technique . The initial step of the rod swap method diluted the predicted most reactive control rod bank (hereaf ter referred to as the reference bank) into the core and - measured its reactivity. worth using conventional test techniques. The reactivity changes resulting from the reference bank movements were recorded continuously by the reactivity computer and were used to determine the differential and integral worth of the reference bank. For Cycle 15, Control Bank B was used as the reference bank. After the completion of the reference bank reactivity worth measurement, the reactor coolant system temperature and boron concentration were stabilized with the reactor near critical and the reference bank,near full insertion. Initial statepoint data for the rod swap maneuver were obtained by moving the reference bank to its fully inserted position with all-other banks fully withdrawn and recording the core reactivity and moderator temperature. From this point, a rod swap maneuver was performed by withdrawing the reference bank several steps and = then one of the-other control rod banks (i.e. a test bank) was inserted to balauce the reactivity of the reference bank withdrawal. This sequence was repeated until tl.e test bank was fully inserted and the reference bank was positioned such that the core was just critical or near the initial statepoint reactivity. This measured critical position (MCP) of the reference bank with the test - bank fully inserted was-used to NE-ll32 SIC 15 Startup Physics Tests Report Page 21 of 57

I I determine the integral reactivity worth of the test bank. The core reactivity, moderator temperature, and the differential worth of the reference bank were recorded with the reference bank at the tiCP. The rod swap maneuver then was repeated in reverse such that the reference bank again was fully inserted with the test bank fully withdrawn from the core. This rod swap process was then repeated for each of the other control and shutdown banks. A summary of the test results is given in Table 3.1. As shown in this tab 1e and the Starcup Physics Test Results and Eva1uation Sheets given in the Appendix, all of the individua, measured bank worths for the contro, and shutdown banks were within the design tolerance (110% for the reference bank, ils% for test banks worth greater than 600 pcm, and 1100 pcm for test banks worth less than or equal to 600 pcm). The sum of the individua, measured rod bank worths was within 4.8% of the design prediction. This is weil within the design tolerance of 110% for the sum of the individual control rod bank worths. The integra, and dif ferentia, reactivity worths of the reference bank (Contro, Bank B) are shown in Figures 3.1 a nd 3. 2, respectively. The design predictions and the measured data are plotted together in order to 111ustrate mei, ag,ee..nt. in. _ ar,, e o mea _ e re _ e va1..s were satisfactory. I E I I I xs m 32 Sic 1s Sta mep Ph, sics 1.sts xepo m eage 22 e s,

Table 3.1 .SURRY UNIT 1 - CYCLE 15 STARTUP PHYSICS TESTS CONTROL ROD BANK WORTH

SUMMARY

MEASURED PREDICTED PERCENT DIFFERENCE WORTH WORTH (%) BANK (PCM) (PCM) (M-P)/P X 100 ~ B-Reference Bank 1392.5 1404.0 -0.8 D 1002.4 1080.0 -7.2 C 595.5 684.9 -13.1 A 372.7 378.8 -1.6* SB 862.2 957.7 -10.0 ~ SA 1169.8 1163.9 0.5 Total Worth 5395.1 5669.3 -4.8

  • Difference is less than 100 pcm.

h 4 i NE-1132 S1C15 Startup Physics Tests Report Page 23 of 57

l 3: I Figure 3.1 SURRY UNIT 1 - CYCLE 15 STARTUP PHYSICS TESTS BANK B INTEGRAL ROD WORTH - HZP ALL OTHER RODS VITHDRAVN -PREDICTED 1400,[___m_ a MEASURED g a 1200 - 's ag e t 5 1 1 i I g 1000 - \\ E I e \\ B = I e 800 s- \\ t \\ O n ( 3 s i g 600 _jg 0 \\ m h \\ g \\ 400 ---_ .t s ui-g b J' \\ 200 xg____ 0 5 0 40 80 120 160 200 B-BANK POSITION (5 STEPS /DMSION) NE-1132 SIC 15 Startup Physics Tests Report Page 24 of 57

i Figure 3.2 SURRY UNIT 1 - CYCLE 15 STARTUP PHYSICS TESTS BANK B DIFFERENTIAL ROD WORTH - HIP ALL OTHER R,ODS WITHDRAWN 12 un n 0 -PREDICTED nN\\ f \\ I ' \\ 10 m MEASURED 7 ( .. -s l u 1 \\ h 8 1 m. is g X si l \\ x g 'Q_ 1 n E ..an 6 i, g II il B \\ II I in t _ \\ - \\ 6 4 'l i w I f l I f I 2 I r l _us. ~~~ L \\ / (? 0 :'I 3 0 40 80 120 160 200 B4ANK POSITION (5 STEPSIDMSION) NE-1132 SIC 15 Startup Physics Tests Report Page 25 of 57

I I SECTION 4 BORON ENDPOINT AND WORTil NEASUREMENTS Horon Erdpoint ? With the reactor critical at hot zero power, reactor coolant system (RCS) boron concentrations were measured at selected rod bank configurations to enable a direct comparison of measured boron endpoints with design predictions. For each critical boron concentration measurement, the RCS conditions were stabilized with the control banks at or very near a selected endpoint position. Adjustments to the measured critical boron conventration values were made to account for off-nominal control rod position and moderator temperature, if necessary. The results of these measurements are given in Table 4.1. As shown in this table and in the Startup Physics Test kesults and Evaluation Sheets given in the Appendix, the measured critical boron endpoint values were withiu their respective design tolerances. The all-rods-out (ARO) endpoint comparison to the predicted value met the requirements of Technical Specification 4.10. A regarding core reactivity balance. In summary, the boron endpoint results were satisfactory. I Boron Worth Coefficient The measured boron endpoint values provide stable statepoint data from which the boron worth coef ficient or dif ferential boron worth (DBW) was determined. By relating each endpoint concentration to the integrated I rod worth present in the core at the time of the endpoint measurement, NE-1132 SIC 15 Startup Physics Tests Report Page 26 of $7

i l the value of the DBW over the range of boron endpoint concentrations was obtained. A plot of the boron concentration versus inserted control rod worth is shown in Figure 4.1. As indicated in this figure and-in the Appendix, j the measured DBW was -7.22 pen /ppe. - This is within 0.3% of the predicted value of 7.20 pen /ppe and is well within the design tolerance of 110%. In summary,the measured boron worth coefficient was satisfactory. t t ? l l l r p t i NE-1.132 S1015 Startup Physics Tests Report-Page~ -27 of 57 ~

.--., -...-., -. -...,..-,.--.,~.-.;-...-.,-......-,

I I Table 4.1 SURRY UNIT 1 - CYCLE 15 STARTUP PilYSICS TESTS BORON ENDPOINTS

SUMMARY

I Measured Predicted D1iference Control Rod Endpoint Endpoint HP Configuration (ppa) (ppm) (ppm) ARO 1960 1974 -14 B flank in 1767 1765* 2

  • The predicted endpotnt for the B Bank in configuration was adjusted for the dif ference between the measured and predicted values of the endpoint taken at the ARO configuration as shown in the boron endpoint Startup Physics Test Results and Evaluation Sheet in the Appendix.

I I I I I I I I I I NE-ll32 SICl$ Startup Physics Tests Report Page 28 of $7 i

Figure 4.1 SURRY UNIT 1 - CYC1.E 15 STARTUF PHYSICS TESTS BORON WORTH COEFFICIENT Measured DBW = 7.22 PCMIPPM 1400 m 9 1200 s 1000 800 1 g 600 400 200 s \\ 0 J 1760 1780 1800 1820 1840 1860 1880 1900 1920 1940 1960-BORON CONCENTRATION (PPM) NE 1132 S1C15 Startup Physics Tests Report Page 29 of $7 c.

I I SECTION 5 TEMPERATURE COEFFICIENT MEASUREMENT The isothermal temperature coefficient (lTC) at the all-rods out condition is measured by controlling the reactor coolant system (RCS) temperature through varying the steam generator blowdown

flow, establishing a constant heatup or couldown rate, and monitoring the resulting reactivity changes on the reactivity computer.

This ' test sequence includes a cooldown followed by a heatup. Reactivity was measured during an RCS cooldown of 3.2'T and an RCS heatup of 3.4'F. Reactivity and temperature data was taken from the reactivity computer and strip chart recorders. Using the statepoint method, the temperature coef ficient was determined by dividing the change in reactivity by the chango in RCS temperr.ture. An X-Y plotter, which plotted reactivity versus temperature, confirmed the statepoint method in calculating the measured ITC. The predicted and measured isothermal temperature coef ficitsnt values are compared in Table 5.1. As can be seen f rom this summary and from the Startup Physics Test Results and Evaluation Sheet given in the Appendix, the measured isothormal temperature coefficient value was within the design tolerance of 13 pcm/'F. Accounting for the Doppler temperature coefficient (-1,69 pcm/'F) and a 0.5 pcm/'F uncertainty, the moderator temperature coefficient was 1.34 pcm/'F, which meets the requirement of Core Operating 1.imits Report Section 2.1. In summary, the measured result was satisfactory. I NE-ll32 SIC 15 Startup Physics Tests Report Page 30 of 57

Table 5.1 SURRY UNIT 1 CYCLE 15 STARTUP PilYSICS TESTS ISOTilERHAL TEMPERATURE COEFFICIENT

SUMMARY

CORE CONDITIONS ISOTHERHAL TEMPERATURE COEFFICIENT (PCH/'F) BANK TEMPERATURE BORON POSITION RANGE CONCENTRATION C/D H/U AVE. DIFFER. (S1EPS) ('F) (ppm) HEAS. PRED. (M-P) 544.2 D/208 to 1955 -1.25 -0.44 0.85 -1.38 0.53 547.6 k NE-1132 SIC 15 Startup Physics Tests Report Page 31 of 57

I I SECTION 6 POWER DISTRIW710N ME/5UREMENTS E The core power distributions were measured using the movable incore detector flux mapping system. This system consists of five fission chamber detectors which traverse fuel assembly instrumentation thimbles I depicted in Figure 1.3. For each traverse, the detector voltage output is continuously monitored on a strip chart recorder, and scanned for 61 discrete axial points by the PRODAC P-250 process computer. Full core, three-dimensional power distributions are determined from this data using the CECOR code'. CECOR couples the measured voltages with predetermined analytic signal-to power conversions, pin-to-box factors, and average coupling coef ficients in order to determine the power distribution for the whole core. A list of the full-core flux maps taken during the startup test program and the measured values of the important power distribution paramotors are given in Table 6.1. A comparison of these measured values with their Technical Specification limits is given in Table 6.2. Flux map 2 was taken at approximately 29% power to verify the radial power distribution (RPD) predictions at low power. Figure 6.1 shows the measured RPDs from this flux map. Flux maps 4 and 5 were taken near 68% and 100% power, respectively, with dif ferent control ro configurations. These flux maps were taken to check at power design predictions and to measure core power distributions at various operating conditions. The radial power distributions for these maps are given in Figures 6.2 and 6.3. These figures show that the average relative assembly power I distribution measured / predicted percent dif ference was 2.4% or less for NE-ll32 SIC 15 Startup i'hysics Tests Report Page 32 of 57

the three maps. The measured F-Q(Z) and F-DH(N) peaking factor values for all flux maps were within the limits of the core Operating Limits Report (Reference 6 Appendix A) Sections 2.3 and 2.4, respectively. Flux maps 2 and 4 were used to recalibrate the power range excore detectors. A larger than typical localized percent power _ dif ference in an interior core location was observed in flux map 2. Although the measured to predicted percent difference was within the design tolerance, the power depression warranted further investigation due to its magnitude. In addition, flux map 2 exhibited a core tilt which exceeded the value ~ assumed in the 'sa f ety evaluation. _After examining all plausible explanations, it was determined that none of the modelled scenarios appropriately corresponded to the measured results seen in flux map 2 (Reference 11). An additional analysis was performed which verified that the results and conclusions of the safety evaluation were still bounding for the core tilt measured in flux map 2 (Reference 10). Also, an extra flux map (map 3) was analyzed during the power ascension to verify that both the power depression and the core tilt were decreasing. By full power the core tilt had decreased such that it fell within the typical variations seen in a full power map. The power depression stayed relatively constant at -5.5% between 68% and 100% power which is atypical for an intet for core location,however all peaking factors were well within the bounds of the safety evaluation and the Technical Specifications. In -conclusion, the power distribution measurement results. were considered to be acceptable with respect to the design tolerances, the accident analysis acceptance criteria, and the 'COLR limits. It is therefore anticipated that the" core will continue to operate as designed throughout Cycle 15. -NF.-Il32 SlC15 Startup Physics Tests Report _ page 33 of 57

I I TAB 1.E 6.1 SURRY UNIT 1 - CYCLE 15 STARTUP PilYSICS TESTS INCORE l' LUX HAP

SUMMARY

I I 5 Sui *N f Of f t eml f.twuul Hof (DNt alg) MMal e M&P M&P UP, &&ME (HANNil f all0N f>ML.f et f te RAE f l( t afl&L 00 0, f4 &C#1Pf f' led em. D&lf tht0/ PWW D Of f of MlW III lit PS 441V &ajal &&$V f + lNH N ) efl&& fl#8.'h&R ( DC %I I IHlN PolNI f 9lli PDINI (28 $t t $ 'IIlt feen 16x Pwa~ T V6M 4 19 til N66 30 7.664 Mo6 3.664 T l.ift 17036 He

  • 0.64-48 alwW 6%X AND FtX 41 66497 46 64 197 Mel Se l. Su Not I 1.4 44 S6 4.198 4.016 esv
  • 0.68 46

&#f fHAN 948 PWN 6 16*97 f34 800 ff6 W64 48 8 766 I N06 8.455 30 8.140 4.084 tow

  • l.6%

44 1 1 Molt ti Hof &#98 (DC&fitudt &H SM(if tt0 SV ClVissG attiMelf 10Catt08tl it.C. H6818 f te (tNitt Of *(or( &l%8 N6LVI, AND (t*f 641(.H1 (IN Itf 't" DitlCllDN Itt (Okt ll $1VilW D INIO 68 &Il&L POINil Stamflee f ruN tes. top W (W ltt (Dkt 8.

3. F Off) INCLOM S & lDf6L LtiffWlelNff Of 1.64
f. Mmst e 1llf
  • M fINI D &$ 191 $VIRACf GUADRANt MM N IllI $DDN (f(0W, l.1&(H MAP W&l Utf D to M pf 0NN & Pl &alNG f A(tow vlDif f( AllDN.

flUW MAPL l 4ND 4 WIPE USID 10 M Wf tetM & MM8 Dasetd f a(opt M il(ION ( All4W&llDN.

4. Plus m&P 1 W&l f &tf M 4f APf90IlM&lliV SGI P(MIR, 6UI 1RE 10

((Mtf $N%l&$llljf,191 AMAL V$ll (W IDE DAI4 WAS 9005 N Nf tWrft( D. fluf MAP $ W&l 14tlN &l 4P6905tN& lily 442 P(M S AND ULID 10 VIpli V 1hal IMI etM N lit f Hi &bl#8f D WIIN f LUE MAP f WAS D'.(WI &$188G efilH f*(M # 44(I Nilued, I I I I I I I I El NE-1132 SIC 15 Startup Physics Tests Report Page 34 of 57

j l Table 6.2 SURRY UNIT 1 CYCLE 15 STARTUP PHYSICS TESTS COMPARISON OF MEASURED POWER DISTRIBUTION PARAMETERS WITH THEIR CORE OPERATING LIMITS PEAK F-Q(Z) HOT F-Q(Z) 1107 T-DH(N) HOT CHANNEL FACTOR

  • CHANNEL FACTOR **

CHANNEL FACTOR (AT NODE OF HINIMUM MARGIN) HAP HEAS. LIMIT NODE HEAS. LIH1T NODE HARGIN HEAS. LIMIT MARGIN NO. (%) (%) 2 2.060 4.628 30 2.057 4.582 26 55.1 1.508 1.895 20.4 4 1.866 3.381 30 1.853 3.305 21 43.9 1.454 1.708 14.9 5 1.765 2.321 41 1.726 2.269 22-23.9 1.433 1.560 8.1

  • The Technical Specification's limit for the heat flux hot channel factor, F-Q(Z), is a function of core hofght and power level.

The values for F-Q(Z) listed are the maximum value of F-Q(Z) in the core. The Technical Specification's limit listed above is evaluated at the plano of maximus F-Q(Z).

    • The value for F-Q(Z) listed above is the value at the plane of minimum margin. The minimum margin values listed are the minimum percent difference between the measured values of F-Q(7) and the Technical Specification's limit at that node for each map.

The measured F-Q(Z) hot channel factors include 8% total uncertainty. NE 1132 SIC 15 Startup Physics Tests Report Page 35 of 57

I I Mgure 6.I SURRY UNIT I - CYC1.E 15 STARTUP PHYSICS TESTS ASSEMBLYWISE POWElt DISTRIBUTION 29% POWER R P W N t E J N C f f D C B 6 PW plC f f 8 . 0.26 F. 0.769. 9.FM. PFl plCllD. l . 0.168. 0.766. 4.FM. N ASWE D. Mt &%WI D. 0.4.

  • l.$.
  • $.).

.N1 D!f flPINCE. . PCT Dif flpt NC(. ...................................................e . 6. 304. 0.694. l. 8 8 6. 0.98 6. 8.116. 0.691. 4. lu. 0.179. 0. Fit. l.879. 0.89%. 1.819. 0.703. 0.383. f.

1. F.

f.6. l.8.

  • t.3. 9.1.

l.6. f.t. . 8.tk%. l.914. 3.t94. l.3in. 1.118. 3.ll!. 1.F9%. l.017. 4.f47. . 4.tal. 4.040. 3.154. 3.1 M. 3.179 3 176. 3.187. 1.057. 9.tFl. 5 10.4. 4.0. 3.8. F.i.

  • 8.F.

1.0. 1.F. f.h, 9.6. . 0.fS4. 0.618. 1.fle. 1.517. l.Ste. l.t67. l.nle. 3.384. l.717. 0.6tf. 9.itt. . 0.775. 0.MF. l.FF4. 3 345. l.350. 3.17F. 4.354. l.338. 3.f48. 0.610. 9.261. 4 F.7. 6.4. 1.8. 3.7. F.S. l.6. l.6. 1.6.

1. 5.

0.6.

  • 0.4

. 0. 50 7. 1. 014. 4. fil. l. 7 0 F. l. 76 7. 1. f 84. 8.199. 3. 7 01 l. 764. 1.F06. 8.fli. 8.011. 6.10 7. . 9.179. 3.117. l. ll l. 8. t90. l.101. l. li t. B. tt f. 1. F99. 1. F F9. l.704 l.204. 8.013. 0.542. 7.0. 8.0. 6.3. 6.9. F.9. f.9. l9. 1.1. l.8.

  • 0.1.
  • t.6.
  • 0.9.

l.6. . 0.691. 1.t96. 1. 3 4 8. l. f 67. 3.167. l. f te. 1.178. 1. f te. 4. lu. 1. F66. l.109. l. t94. 0.692. . 9.Fif. 3.161. 3.164.l.797. 1.440. l.it?. l.lu. l.it3. l.lFh. 1.F60. 1.F96. 8.t M. 0.69%. 6 4.9. 6.7. 4.4. f.S.

  • l.6.

0.6. f.!. 6.t. 0.7.

  • 0.4. al.l.
  • 0.6.

0.5. . 0.FM.l.Ill. l.384. 1.519.8. ten. 1.ift. l.64. 4.tli. l.067.1.871. l.785. 1.518. l.385. 3.185. 4.f4. . 9. t FF. l. lti. l.14 8. 1. 5M. 1.f 98. 3. tib. l. 050. 0.997. 1,018. 3.190. l.759. 8.t96. l.50 0. 3.174. 0.76%. 7 1.8. 8.t. S.6 f.4. l.9.

  • t.4.
  • l.6.

al.4.

  • 4.6.
  • f.5.

al.9

  • l.F.
  • l.0.

4.0.

  • 0.1.

. 0. F64. 0.916. l. 3 57. l. t6 7. l. f t l. 3.111. 8. 0 8 0. 0.95 7. 4. 0 8 7. 3.127. 8. t90. l.t56. l.311. 0. 914. 0. t64 . 9. t99. 6.9 8 6. l.166. l.7 79. 1.164. 3.18 7. 0.991. 0.931. 0.96F. l.059

l. Int. 8.ffe. 1.297. 9.875. 9.ft9 4

F.6. 0.0. f.F. 1.7. al.1.

  • 0.9.

al.F.

  • t.6.
  • 4.4
  • t.F.
  • $.4
  • F.i.
  • F.6
  • 4.5.
  • 3i.

. 8.166. l.114. l.184 l.18 9. l. f 4%. 1. tti. l. 06 F. 4. 0 81. l. 064 1.tr#. 8.tal. l.319. l.584. 3.186. 0.f66 . 0.FFF. I.lli. 4.11%. 1.114. l. 3 01. 3. 2 0 5. 1. 04 0. 0. 9 78. 8. 00 F. 1.18 4. 1. f t F. 8. t9 8. 1. F94. l.108. 9. f6 3. 9 f.5. l.6. l.6. 3.4. 3.5. al.6.

  • f.6.
  • S.S.
  • b.4
  • 4.6.
  • f.t.
  • l.t.
  • 0.6.

al.3. ...........................................................................'9.7 . 9.697.1.t9%. l.lil. l.767. l.16F. 4.f t!. 4.lti. 8.fl4. 3.167. l.767. l.Sil. l.896. 0.695. . 0.791. l.501. l.189. l.inF. l.Ill. l.173. 4.04%. 1.178. l.08%. l.789. 3.794. l.300. 0. Fil. le l.3. 0.6. 0.6.

  • 0.4.
  • 4.8.

4.0.

  • 3.5.
  • 4.1.
  • F.0.
  • 3.4.

al.t. 0.4 4.3. 4.347. 8.014 l. fil. 1. f 0 7. l. 767. l. t04. l. 70 0. 1. t44. 1. F6 7. l. te ?. l. 2 31. 3. 014. 0. 50 7. . 8.llt, 8.06l. l.759. 4.190.1.74 8. I.tSt. 3.170. l.760.1.768.1.16%.1. tar. 8.04 7. 0. Sin. Il 1.7. 1.F. 0.6. al.4.

  • t.4.

t.t.

  • f.%.
  • l.9.
  • 0.4.
  • 1.5.
  • 0.1.

4.1. f.F. 3 . 0.7%4. 0.618. l.f 59. 1.385. l.571. 3.th9. l.5il. 1.311 l.759. 0.616. 0.254. . 0.f40. 0.659. l.t M. 3.10%. 1.309 8.f48. l.Ste. l.305. l.254 0.M%. 0.t76. If 10.5. 3.1.

  • 0.8.
  • 0.6.
  • 0.9.
  • 0.8.
  • t.9.
  • t.6.

0.4. 6.6. 4.6. . 0.7%. l.059 1.t99 l. 5 8 7. 3. 517. 1.18 7. 1. F99. l. 014. 9. 2%. . 0.754. l.94f. l.297. l.317. l.311. 4.50%. 4.tr9. 1.013. 9.tn9 IS 4.0 0.3.

  • 0.8.
  • 0.3.

0.0.

  • 0.9.
  • l.6.
  • 0.6.

1.7. 9.104. 0.695.1.18 7. 0.914. I. lle. 0.696. 9.104. 8.llt. 8.694 3.10s. 0.666. l.402. 0.6 M. e.506. 14 l.4. 0.0.

  • 0.9.

3.6.

  • l.6.
  • l.t.

6.4. St&N0a#O . 0.767. 0.769. 9.t6F. AVI#act M Vi&180N .0.76F.0.767.S.767. ..PCI plf f(R(NCE. 16 af.tti 0.4.

  • f.6.
  • l.9.

. t.4 $UNNARY MAP N01 $1 15*02 DATEI $/02/97 POWERI 28.5% CONTROL R0D PO$1110NSI F*012) a 2.060 QPIRI D BANK A1 173 $1tPS F DHtN) s 1.108 NW 3.0258 NE 0.9*60 ft21 a 1.271 sW 0.9965 l s*. o.9817 P'*NUP a 4.0 NWD/NTU A.O.* +0.804X NE-1132 SICIS Startup Physics Tests Report Page 36 of 57

FISure 6.2 SURRY UNIT 1 - CYCLE !$ STARTUP PHYSICS TESTS ASSEMBLYWISE POWER DISTRIBUTION 68% POWER e e a a t 6 J n o i e e c 4 6 PWitltitt. . 9.ftl. 4.26F. 8.tel. PWilltfl0. I MI 66uut e. . 4.itt. 6. ten. 9.itt. Mt stuut D.

  • 0. 8.
  • l.3.

0.6. . PCT tif flplMtt. .PCI elfilWIMts. e............................................................ . 9.116. 0.768. l.lti. 0.94l. 1.lte. 0.748. 0.817. . 4.178. 0. Fit. l.ith. 0.911. 1.lli. 0.739. 0.St9. f l.6. 3.1. e.3.

  • I.9.

l.t. 6.6. 4.1. . 0.761. I. elf. l.PF#. l.797. l.518. 3.t96. l.767. l.0F6. 8.f 46. . 4.f te, l.049. l.ite. 3.511.1.t F9. l.16 5.1.F99. l.0 6%. 9.2 76. 3

9. 5.

l.6. l.3. l.8.

  • f.4 0.F.

8.6. f.9. 8.1. 0.768. 0.619. 4.fl6. 8.fe9. l.797. 4.746. l.796. 4.te?. 8.fli. 0.616. 4.t6 8. 9.f 74. 9.644. 4.flF. l.566. 4 186. l.rb4. l.381. 4.364.1.f at. 0.619. 4.t19 4 4.6. f.9 4.8. 4.5. 4.4. 0.6. 1.3. f.I. 8.7. 0.6.

  • 0.7.

. 0.880. l.6te. 3. tit.1.166. l.f th. l.it!. l.itt. l.tel. l.tbe. l.191. l.fle. l.076. 0.517. . 6.118. l. ten. l.7%n. 4.t!4. l.876. l.58F. l.ife. 3.164. 1.t87 5.tti. l.164. 1. tit. 0.583. 4.4 6.6. 8.6. 5.t. l.6. 3.6. l.7. 3.7. f.7. 0.0.

  • t.t.
  • l.t.
  • l.3.

. 0.707. l.f Ft. 8.it9. l.ib6. l.lti. l.237. l.448. l.tSt.1.197. l.264. l.787. l.t67. 0.704. 0.789. 8.lte. l. lit. 1.879. 8.189. 8.f 46. 4.lbe. 3.f t9.1.239. 4.768. l.ite.1.th9. 0.F00. 6 f.6 f.0. 4.6. l.8.

  • t.8.

l.0. l.6. 1.4. 4.0. 1.8. =0.6.

  • 0.6.

9.4. . 0.868.l.119.4.t95. l.t17. 8.ttt.l.75%.l.097.1.044.l.096.l.716. l.281.l.F9%.l.796. l.lle. 8.fte. . 4. t4 7 l. l16. 1.364. l.16 6. 1.142. l. 74 8. 1.9 94. l.041. l.9 78. l.239. l.itt. l.747. l e tt%. l. lt6

8. tte.

F e t.0. l.4 1.0. l.6. l.4. 0.6.

  • 0.3.
  • 0.5.
  • t.4 9.1.
  • 0.8.
  • l.4.
  • 0.8.

0.7.

  • 0.8.

4.t66. 0.941. l. 318. l. t46. l. t t i. l.14 5. l. 04 7. l.0 60. l. 046. l.144. 4. t06. l.74%. 8. ll t. 0. De t. 4. t66 . 8.14 #. 0. 941. l. 8 54. l. 764. l. 72 7. 4. lte. l. 04 3. 0.968. 1. s tl. 3.139. l.194. 8.t38. 1.781. 0.976. 9 tti. 6 6.6. 4.0. 3.7. l.4. l.6. 0.4

  • t.4. + l.8.
  • t.t.
  • l.t.
  • l.4. al.1.
  • t.l.

.t.1.

  • l.0.

0.788.1.189. l.29%.1.t97. l.F64. l.85%. 4.096. l.044. 3.09%. 3.21%. l.764. l.F97. 4.t96. l.lte. 0.tel. . 0.t04. l.171. l.300. 1.104. 8.f tl. 8.f tl. 8. ten. l.076. l.04%. l.lbe. 4.t%F.1.F94. l.t98. 3.118. 9.tFF. 9 4.8. 0.4 04. 4.1.

  • 0.t.
  • 0.6.
  • l.3.
    • .8
  • 4.6.
  • n.4. af l.
  • t.h.
  • 0.4
  • 0.4.

+4.3. . 0.761 l.769. l.tt9 l.f te. l.197.1.256. 4.4 48.1. tin. l.It!. l.tne.1.t49. 8.f 69. 0.791. . 0.699 8.tl5. l.itt. l.744.1.167. 4.fl1. l.Itt.1.F02. l.141. 4.73%.1.564 l.it!. O.FIF, it ' t.1.

  • l.t.
  • P.6.

+4.0.

  • t.9 al.F.
  • 1.7.
  • t.F.
  • 4.4. al.F.

l.7. l.1. f.S. 0.5l7.1.0f t. l.f t t.1.466. l.fl%. l.781.1.F66. l.tel, l.tSt. 3.196.1.!!!. l.ett. 0.516. . 4.167. l.027. l.767. 8.len. 4.t31. l.tb8. l.49%. l.764. l.t56. l.16F. l.fl9.1.646. 0.174. Il +0.1.

  • 0.1.
  • t.4.
  • l.4.
  • l.0.
  • f.9.
  • 0.0.
  • l.f.
  • t.n.

t.l. 0.6. 1.7. f.s. . 9.f 6#. 0.619. l.78 7. l.fte. l.798. 8.74F. 4.t96.1.F90. 8.tli. 0.639. 6.267. . 0.f 76. 0.659. l.204. l.76%. l.7%3. 4.f t1. l.764. 4.it!.1.211 0.648. 9.f t%. If l.3.

  • t.l.
  • l.1.
  • l.9
  • 1.5.
  • l.F.
  • l.!.
  • t.4.
  • 0.5.

f.9. 4.5. .4.t61. 8.t!!.l.273.1.F98.4.111.8.t96. 4.tF3. l.017.0.761. . 9.t62. l.475. l.762.1.t69. l.t68.1.itt. l.764. l.ett. 0.76%. IS

  • 0.6.
  • t.9.
  • l.6.
  • t.t.
  • l.6. al.1.
  • 0.7.
  • t.4.

0.7. . 0.518. 0.761. 8.lti. 0.941. 4.181. 6.Fel. 0.516. . 9.322. 0.691. l.096. 0.999.1. let. 0.666. 0.18 7. 14 1.t.

  • l.4.
  • f.1.
  • 1.4. al.F.
  • l.0.
  • 0.5.

$16MDa#9 9.itt. 4.287. 0.t62. SvfSAGE DtyttilpN . 9.tF9. 4.tF9. 6.FF6. .PCI bliflREMCE. 16

  • l.l.
  • f.9
  • f.I.
  • 1.F
  • l.554

SUMMARY

MAP NQ4 $1 15 04 DATFS $/98/97 POWERI 48.45% CONTROL R00 P011TIONSI F*Qll) a 1.866 QPIRS D BANK At 192 $1(P$ F'DHlN) e 1.454 NW 1.0152 l NC 1.0056 I FlZ) e 1.191 SW 0.9915 l $E 0.9899 DURNVP a 88 MWD /MTU A.O. * +0.676% ND 113E SIC 15 Startup Physics Tests Report Page 37 of 57

1 Il 1 i Figure 6.3 SURRY UNIT 1 CYCLE 15 STARTUP PilYSICS TESTS ASSEMBLYWISE POWER DISTRIBUTION 100% POWER P N M l i J H 5 t t t t 0 4 1*l Dit tle. 6.t47. 6.F96. 0.787 f*tDitttt. i Ml eMWl t 0.790. 0.797 0.F90 N aturt e e l.3. 0.4. 8.0. .PCI OffMNIKf. .8't f Gif f l M M((. ............................................e........................... 0.170. 0.704. 1.111. 0.967. l.888. 0.699. 6.119. . 4.lt!. 0.744. 3.177. 0.965. l.trl. 0.715. 0.170. F

0. 7.

l.1. l.3. 4.1. l.1. 4.9. 1.0. 8.tu.4.048.l.f48.8.ff9.1.798.4.f77.l.f41. 8.009. 0.7%4. . 0.709. 1.048. l 768. l. net. l.777.1.760 l.760 l.0f 8. 0.788. l 9.4. 0.6. l.1. f.f. F.0. 4.#. 4.4. l.9. 0.9. . 0.764. 0.H 0. 4.199. l. 7 74. 8.t86. 4.f 4 0. l. Fel. 1. f FF. 1.194. 0.617. 0.761. . 0.f 71. 6.H9 1.lf t, l.f f9. 4.t99. 8.f 41. 4.th 4.f f t.1.198. 0.6%. 0.259 4 1.6. 1.6. af.f. 4.4. l.8. 0.8. 6.f. 0.4

0. 5.

=0.f. al.4 0.570. 4.018.1.197 1 897. l.769.1.f 4%.1.f t f 4.in.1.flF. 3.190.1.194. 8.010. 9.149. . 6.115. 4.06). 4.tli. l.fil.1.f Fe. 4.38 7.1.f te. l.f 4 7.1.FH. 3.100. l.In. 0.990. 6.176. 4.8. 6.t. 1.0. 1.1. l.6. 1.0. 0.9. 0.8.

  • 0.f.
  • 0.4.
  • f.4.

al.F. f.0. 0.699. 1.747 l.fft. 1.f48. l.tSt. 8.f D. l.1 4. l.763. 1.F57. 1.744. 1.f71. l.itt. 0.699. .. 0.F80. l.fot. l.796.1.t69. 8.t4%. l.767. l.144 l.ftl. 1.714. 4.f4f. 1.ibt. l. Fit. 0.708. 6 f.6. f.6. l.9. 0.9. 40. l8. l.7. 0.8.

  • 0.F.
  • l.1. al.0.
  • l.3.

0.4 6.tet. l.188. 8.tF9

8. ten. l.766 4.tM,1.lf f. l.0&P.1.154.1.FM.1.f 66. 4.t4%. 8.f ft.1.lle. 9.f 67.
4. t9 7. 3.1 %. 1. t97. l.100. 1. t96. 4. f t9. 4. l te. 1. 0 00. l. I t !. l. f t e. 4. tu. 1. FM. l. 764. l.178. 0. t9 8.

t 1.5. f.I. l.4. 1.3. 0.7. 4.4 0.8. 0.2.

  • l.7.

al.1. al.6. f.4. l.t. l.6. l.1. ...............................................................................................b.... . 0. 796. 0.961. 4. t94. l. f 4I. l. fil. 1.164. 8. 040. l.014. l.04 5. 8. lu l. 7 8 6. 8. tel. l.F94. 0.96 8. 0.F96. 0.54 9. 0.942. l. lil. l.761. 4.fil.1.16%. 4.0 76. 8 0ft l.064.1.169 l.196. l.tle. l.766. 0.966. 0.79F. 4 F.9. f.#. l.9. 0.9. 8.f. 0.0. -0.4. 0. t.. l.4. 0.6. 1.6.

  • l.9.

f.6. 0.6. 0.6. . 9.f 47. l.lle. 3.f t9. l.74%.1.F66. l.F%4. l.8 79. l.087. 4.lf 6. 8.f t6.1.F97. l. ten. B.f f9.1.11l. 0.747 4.lte. B.f 85. 8.te F, l.f69 I. int. 4.170. l.664. l.097. 4.846 1.f 67. 3.fft. 4.ift. 4.lft. 8.t90. 9 . 0.F94. f.!. 0.9. 8.1. 9.f. 0.7. +0.5.

  • 0.4.

.l.3. t.6. +5.6. af 4. 1.8.

  • 0.4.

0.9. 3.1. 0.699. l.f47 l.f71. l.744. 1.tif. l.itt. 4.l66. 1.F%%. 4.fll. l.760. 4.f71. l.f44. 0.700. . 0.69%. 4.fr4 1.t66. 1.ftl. 8.t#5. 8.fle. 4.lif. 1 &#. l.tel. 4. int. l..f74. 1.f64 0.Fil. 10 0.5. al.9. 0.6. 0.4.

  • 0.7.
  • l.f.

l.#. I.4. f.6. l.1. 0.4. 1.8. 1.7. . 9.170. 1. 0 8 8. 1.19 7. l.192. l. 760. 1.f 4%. l.Fl4. l.766. 1. fot. 1.19%. 1.197. 4.014. 4.170. . 4.114. 4.009. 3.191. 4. 466. 4.t4 F. 3.f 67. B.fl0. l.f f t. l.744. 1.181. 4.fle. 4.018. 8.!?S. Il 0.4.

  • 0.8.

0.1. 0.4

  • l.3.
  • l.4.
0. 5.
  • l.2.

l.1.

  • 0.9.

1.1. 7.1. f.P. . 0. 764. 0.640. 3.199. l. f 74. l.74%. 8.tti. l.F8%. l.f74. l.F00. 0.640. 8.t64. 8.tM. 8.Hf. l.490. l.tM. l.745. l. fit. l.t69. 4.F60 4,499. 9.us. 9.tti If 8.0. 8.t. 0.7. al.6. 1.8. 4.0. el.f. 1.8.

  • 0.1.

4.1. 10.4 . 0. 74. l.0 81.1.t44. 4 f f9. l. t94. l. t F9. 1.744. l.lil. 4.tn. . 0.764. 1.006. 1.818. 4.tM. 1.F64. 1.f69 8.ft6. 1.007. 0.76F. Il 0.5.

0. 6.
  • l.1.

F.0. =f.t. 0.4 l.F.

  • 0.6.

0.8. . 9.170. 0. Fel. l. 411. 0.967. l.111. 0. 70 8. 0.!!0. . 6 lff. 0.69%. 4.10f. 0.949. 1.l4f. 0.F0#. 4.189. 14 f.I. 0.7 =0.9

  • 0. 5.

f.6. 0.2. 0.4. $14@680 0.766. 4.f96. 4.fta. Avl e&CI M VI All0N . 0.790. 0.797. 0.F91. .PCI Dif fikINtl. 16 4.698 4.0. 6.1. f,0 I.6 = M?lNABY HAP HOI 51 15 05 DATE: 5/16/97 POWt#I 99.96% CONTROL ROD to$1 TION 51 F-Qlli e 1.76$ QPIRI D BANK AT 725 Sitr$ F DHINI e 1.433 NW 1.0136 NE 0.9966 flZI e 1,1g8 SW 0.9951 l St 0.9948 BURHUP 218 ffWD/HiU A.D. e 1.647X NE-1132 51C15 Startup Physics Tests Report Page 38 of 57

SECTION 7 REFERENCES

1. P. D. Itanning, "Surry Unit 1. Cycle 15 Design Report".

Tecimical Report NE lll9, Revision 0, April,1997.

2. T. K. Ross, W. C. Ilock, " Control Rod Reactivity Worth Determination liy The Rod Swap Technique," VEP rRD 36A, December,1980.
3. I.etter f rom W.

I,. Stewart (Virginia l'ower) to the U.S.N.R.C. "Sur ry Power Station Units 1 and 2. North Anna l'ower Station Units 1 and 2: Modification of Startup Physics Test Program - Inspector l'ollowup Item 280, 281/88 29 01", Serial No. 89 541, December 8, 1989.

4. T. W. Sch1nicher, " Reactor l'ower Distribution Analysis Using a Hoveable In Core Detector System and the TIP/CECOR Computer Code Package", vel'-NAF 2, November,1991.
5. Surry Unit I and 2 Technical Specifications, Sections 3.1.E.1, 3.12.11.1, 3.12.C.1, 4.10. A, and 5. 3. A.6.b.
6. S.S. Kere, " Reload Saf ety Evaluation Surry 1 Cycle 15 Pattern I.T",

Technical Report NE 1104, Revision 0, March, 1997.

7. R. A. Itall, et al, "Surry 1. Cycle 15 Flux Hap Analysis", PH 705, Revision 0, Addenda A. O, and D. Hay, 1997.

M. C.11 I.nRoe, "Surry 1 Cycle 15 TOTE Calculations", l'H-703, Revision 0, April, 1997,

9. C ll. 1.aRoc. "Surry 1, Cycle 15 Design Report Calculations",

PH 697, Revision 0, Addendum D Hay, 1997.

10. C.ll, l.nkoo, "Surry 1. Cycle 15 RSAC Calculations", PH-683, Revision 0, Addend t A and II, March,1997 and May,1997,
11. Enginnering Transmittal NAF-970129, Rev. O " Preliminary Evaluation of Surry 1 Cycle 15 Startup Plux Hop Anomalles", f rom R. A. Itall to J.W. llenderson, dated May 12, 1997.

NE-1132 SIC 15 Startup Physics Tests Report Page 39 of 57

5 l I. i I i I 1 l APPENDIX STARTUP PilYSICS TEST RESUI.TS AND EVAL,UATION SilEETS J i l i i I + i I: l I i I I. E' I, I I! Il I I, NE 1132 SIC 15 Startup Physics Tests Report Page 40 of 57

' ~ SURRY POWER STATION UNIT 1 CYCLE 15 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET l Test

Description:

Zero Power Testing Range Determination Reference Proc No / Section: 1 NPT-RX-008 Sequence Step No: ll Cank Positions (Steps) RCS Temperature ( F): 547 Test Power Level (% F.P.): O Conditions SDA 227 SDB: 227 CA 227 Other (specify): (Design) CB: 227 CC: CD: Below Nuclear Heating Ill Bank Positions (Steps) RCS Temperature ( F): 54%0 Test Power Level (% F.P.): O Conditions SDA-227 SDB: 227 CA 227 Other (specify): (Actual) CD: 227 CC: E17 CD: /60 Below Nuclear Heating Date/Timp Test Performed: H/4/f7 ISf0 Reactivity Computer inillal 4 Flux Background Reading I. W X/# amps IV Test Results Flux Reading At Point Of Nuclear Heating 38F# amps ( Zero Power Testing Range l X /0 to /07/0 amps ~# Reference Not Applicable V FSAR/ Tech Spec Not Applicable Acceptance Criteria Reference Not Applicable Desigr Tolerance is met" : / YES NO Acceptance Criteria is met" : / YES NO VI

  • At The Just Critical Position Comments

" Design Tolerance and Acceptance Criteria are met if ZPTR is below the Point of Nuclear Heating and above background. A s Prepared By: s/ Reviewed By: 7 v NE.-1132 SIC 15 Startup Physics Tests Report Page 41 of 57

I g SURRY POWER STATION UNIT 1 CYCLE 15 l STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET l Test

Description:

Reactivity Computer Checkout R Reference Proc No / Section: 1 NPERX-008 Sequence Step No: g ll Bank Positions (Steps) RCS Temperature (PF):547 Test Power Level (% F.P.): O Conditions SDA' 227 SDB: 227 CA' 227 Other (specify): (Design) CB: 227 CC: CD: Below Nuclear Heating l lil Bank Posgions (Steps) RCS Temperature ( F): 545n Tes! Power Level (% F.P.): O Conditions SDA' 227 SDB: 227 CA: 227 Other (specify): 3 (Actual) CB: 227 CC: 7D CD: l% Below Nuclear Heating 5 Date/T]me Test. Performed:

  1. f/29/f7

/W7 Measured Parameter pc= Measured Reactivity using p-computer (Description) p = Predicted Reactivity l IV ~ 'i R uits Measured Value p= ,.o.. - u s ,D, Design Value %D= ((p pi)/pt) x 100% s 4.0 % 8 Reference WCAP 7905, Rev.1 Table 3.6 V FSAR/ Tech Spec Not Applicable Acceptance Criteria Reference Not Applicable Design Tolerance is met YES NO g Acceptance Criteria is met : / YES NO 5 VI

  • At The Just Critical Position Comments The allowable range will be set based on the above results, as well as results from the benchmark test.

m Alloppble Range = / Reviewed By: d 84aA - Prepared By: j~ I NE-1132 SIC 15 Startup Physics Tests Report Page 42 of 57

SbRRY POW $R STATION UNIT 1 CYCLE 15 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET I Test

Description:

Critical Boron Concentration ARO Seouence Step No: Reference Proc No / Section: 1 NPT RX-008 11 Bank Positions (Steps) RCS Temperature ("F): 547 Test Power Level (% F.P.): O Conditions SDA' 227 SDB: 227 CA-227 Other (specify): (Design) CB: 227 CC: 227 CD: 227 Below Nuclear Heating Ill Bank Positions (Steps) RCS Temperature ( F): 54 % 5 Test Power Level (% F.P.): O Conditions SDA: 227 SDB: 227 CA-227 Other (specify): (Actual) CD: 227 CC: 227 CD: 227 Below Nuclear Heating Date/ Time Test Performed: 4/3VN'l IHl0 Measured Parameter (Ce)"mo; Critical Boron Concentration ARO (Description) IV Test Results Measured Value (Cn)"mo= fcka0 ppm (Design Conditions) t Design Value Ce= 1974 e 50 ppm (Design Conditions) Reference Technical Report NE 1110 Rev. O V FSAR/ Tech Spec lace x Ce j s 1000 pcm Acceptance Criteria Reference Technical Specification 4.10.A V YES NO Design Tolerance is met YES NO Acceptance Criteria is met - VI Comments aC = 7.15 pcm/ ppm Ce = l(Ce)"mo-Cel: Ce is design value D Prepared Byibt0, 7) /r Reviewed By:j%~J. Ad NE-1132 SICIS Startup Physics Tests Report Page 43 of 57

I SURRY POWER STATION UNIT 1 CYCLE 15 g STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET l Test

Description:

HZP Boron Worth Coefficient Measurement l Reference Proc No / Section: 1 NPT-RX-008 Sequence Step No: 11 Dank Positions (Steps) RCS Temperature ( F): 547 g Test Power Level (% F.P.): 0 3 Conditions SDA-227 SDD: 227 CA' 227 Other (specify): (Design) CB: moving CC: 227 CD: 227 Below Nuclear Heating lli Bank Positions (Steps) RCS Temperature ( F): 7%a. Test Power Level (% F.P.): O Conditions SDA: 227 SDD: 227 CA: 227 Other (specify): (Actual) CB: moving CC: 227 CD: 227 Below Nuclear Heating Date/ Time Test Performed: 5 4/05/M l1 60 E g Measured Parameter ac : Boron Worth Coefficient e (Description) IV Test Results Measured Value ace =**7.GG pcm/ ppm I g Design Value aCo= 7.20 2 0.72 pcm/ ppm (Design Conditions) Reference Technical Report NE-1119, Rev. O V FSAR/ Tech Spec Not Applicable Acceptance Criteria Reference Not Applicable Design Tolerance is met v' YES NO Acceptance Criteria is met - V' YES NO Vi g Comments 3 I Prepared Byhd 9/hO Reviewed By: v O. l I -- m 2 sicis s e m,es,,m. 1..e,,m r... u., s,

SURRY POWER STATION UNIT 1 CYdLE 15 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET l Test

Description:

IsothermalTemperature Coefficient ARO Reference Proc No / Section: 1 NPT RX 008 Sequence Step No: ll Bank Positions (Steps) RCS Temperature ( F): 547 Test Power Level (% F.P.): 0

Conditions SDA: 227 SDB: 227 CA-227 Other (specify):

(Design) CB: 227 CC: 227 CD: 227 Below Nuclear Heating ill Bank Positions (Steps) RCS Temperature (*F): p y,q Test Power Level (% F.P.): O Conditions SDA: 227 SDB: 227 CA: 227 Other (specify): (Actual) CB: 227 CC: 227 CD: nob Below Nuclear Heating Date/ Time Test Performed: 4t/M i Itht M Measured Parameter (at)mo; Isothermal Temperature (Description) Coefficient ARO IV iso) o = -0.05 pcmFF Test Measured Value (ar Results (C = 1%5 ppm) Design Value (Actual Conditions) (ages )ao = -1.58 i3.0 pcm8F (Cs= A55 ppm) Design Value is)ao= -1.20:3.0 pcm8F (Design Conditions) (av (Ce= 1974 ppm) Reference Technical Report NE-1119. Rev. O V FSAR/COLR at 3.81* pcm/ F D "= 1.69 pcmFF Acceptance ar Criteria Reference COLR 2.1.1 Technical Report NE 1119 Rev. O Design Tolerance is met V YES NO Acceptance Criteria is met : V YES NO VI Comments ' Uncertainty on aTuoo = 0.5 pcm8F (

Reference:

memorandum from C,T. Snow to E.J. Lozito dated June 27,1980.) Prepared By.kd O,b Reviewed By: s NE-1132 S1015 Startup Physics Tests Report Page 45 of 57

I l i SURRY POWER STATION UNIT 1 CYCLE 15 h; STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET I Test

Description:

Control Bank B Worth Measurement, Rod Swap Ref. Bank g' Reference Proc No / Section: 1 NPT.RX-008 Sequence Step No: 5 ll Bank Positions (Steps) RCS Temperature ( F): 547 Power Level (% F.P.): 0 g Test Conditions SDA* 227 SDB: 227 CA* 227 Other (specify): (Design) CB: moving CC: 227 CD: 227 Below Nuclear Heating Ill Bank Positions (Steps) RCS Ternperature ( F): fMf 7 7 Power Level (% F.P.): O Test Conditions SDA: 227 SDB: 227 CA' 227 Other (specify): g (Actual) CD: moving CC: 227 CD: 227 Below Nuclear Heating a Date/ Time Test Performed: 4/2 sI97, Ict 2 7 l Measured Parameter is""; integralWorth Of Control Bank B. (Description) All Other Rods Out IV Test Measured Value le " = /M2. 6 pcm R i Results Design Value i (Design Conditions) 1 ""= 1404 a 140 pcm l 8 Reference Technical Report NE-1119 Rev. O If Design Tolerance is exceeded, SNSOC shall V FSAR/ Tech Spec evaluate impact of test result on safety analysis. Acceptance SNSOC may specify that additional testing Criteria be performed. Reference VEP FRD 36A Design Tolerance is met V YES NO g Acceptance Criteria is met ' [YES NO 5 VI Comments Reviewed By:N JA b Prepared By: _ 4 Nf:-1132 SIC 15 Startup Physics Tests Report Page 46 of 57

' ~ SURRY POWER 5iT,ATION UNIT 1 CYCLE 15 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET I Test

Description:

Critical Boron Concentration B Bank in Reference Proc No / Section: 1 NPT RX-008 Sequence Step No: il Bank Positions (Steps) RCS Temperature ( F): 547 Test Power Level (% F.P.): O Conditions SDA' 227 SDB: 227 CA-227 Other (specify): (Design) CD: O CC: 227 CD: 227 Below Nuclear Heat _ing lil Bank Positions (Steps) RCS Temperature ( F): syg 8 Test Power Level (% F.P.): O Conditions SDA: 227 SDB: 227 CA: 227 Other (specify): (Actual) CB: O CC: 227 CD: 227 Below Nuclear Heating Date/ Time Test Performed: 4/ ash 7

Q:50 Measured Parameter (Ce)"e; Critical Boron Concentration, (Description)

B Bank in IV Test Results Measured Value (Ce)"e= 17(/l ppm q (Design Conditions) Prev Design Value Ce= 1779+6Ce i (10 + 140.4/laCel) ppm (Design Condillons) Ce= ITo5 i 30 ppm Reference Technical Report NE 1119. Rev. O V FSARTTech Spec Not Applicable Acceptance Criteria Reference Not Applicable Design Tolerance is met v' YES NO Acceptance Criteria is met : V' YES NO VI Comments ace = -7.20 pcm/ ppm A C " = N " w 1974 A 8 Prepared By: A T/fe Reviewed By: v 9 NE-1132 SIC 15 Startup Physics Tests Report Page 47 of 57

I s.c.e, o e h+. l e SURR? POWER' STATION UNIT 1 CYCLE.15 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET l l Test

Description:

Reactivity Computer Checkout g Reference Proc No / Section: 1 NPT.RX 008 Sequence Step No: g Il Bank Positions (Steps) RCS Temperature ( F): 547 Test Power Level (% F.P.): O Conditions SDA 227 SDB: 227 CA-227 Other (specify): (Design) CB: '227 CC: CD: Below Nuclear Heating 111 Dank Positions (Steps) RCS Temperature ( F):.yt/f,f l Test Power Level (% F.P.): O Conditions SDA 227 SDB: 227 CA-227 Other (specify): g (Actual) CB: 227 CC: CD: Below Nuclear Heating 3 Date/T)mp Test Performed: [f tl9i Ills EE [ Reviewed By: I I a m smss_,s,m,1m 2,_ ,,s, s , s,

f SURRY POWER STATION UNIT 1 CYCLE 15 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEE 1 Test

Description:

M/D Fivx Map - At Power Reference Proc No / Section: 1-NPT-RX-008.002 Sequence Step No: RCS Temperature ("F): Tur a 1 11 Bank Positions (Steps) Power Level (% F.P.): s 30 Test Conditions SDA: 227 SDB: 227 CA 227 Other (specify): i (Design) CB: 227 CC: CD: Must have a 38 thimbles ** Ill Bank Positions (Steps) RCS Temperature ( F): Taur Power Level (% F.P.): as.5*4 Test Conditions SCA: 227 SDB: 227 CA: 227 Other (specify): (Actual) CB: 227 CC: SM CD: 11 3 4 g g (cs Date/ Time Test Performed: s}3.fo)7 3503 Muimum Relative Nuclear Enthalpy Total Heat Maximum Measured Assembly Rise Hot Flux Hot Positive incore Parameter Power %DIFF Channel Factor Channe! Quadrant IV (Description) (M P)/P FAH(N) Factor Fo(Z) Power Titt

,oass

-9.11., P t e. l I'M GON (2,5s 7.) Test Measured +io.5% P4.0.9 Results value Design Value 310% for Pi a 0.9 (Design

15% for P,<0.9 N/A N/A s 1.0205 Conditions)

(P e assy power) Reference WCAP 7905, Rev.1 None None WCAP.7905, Rev.1 V FSAR/COLR None F AH(N)s t.56(1+0.3(1-P)) Fo(Z)s4.64*K(Z) None Acceptance Criteria Reference None COLR 2.4 COLR 2.3 None / YES NO Design Tolerance is met / YES NO Acceptance Criterials met : VI

  • As req ired

" Must have at least 16 thlmbles for quarter core maps for multi-point calibrations Comments Prepared By:'bd M Reviewed By: / /b NE-1132 SIC 15 Startup Physics Tests Report Page 55 of 57

( -SURRY POWER STATION UNIT 1 CYCLE 15 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET I Test

Description:

M/D Flux Map - At Power Reference - Proc No / Section: 1 NPT-RX 008,002 Sequence Step No: ll Bank Positions (Steps) RCS Temperature ("F): Tner 1 1 Test - Power Level (% F.P.):95 s P s 100 Conditions SDA: 227 SDB: 227 CA 227 Other (specify): (Design) - CB: 227 CC: 227 CD: Must have a 38 thimbles" - Ill Bank Positions (Steps) RCS Temperature ( F): 5 73 Test 22f Pwer Level (% F.P.): 4ifG Conditions SDN 227 SDB: 227 CA 227 Other (specify): (Actual) CB: 227 CC: 227 CD: 11 S Date/ Time Test Performed: ep c A./<v iEi41 Maximum Relative ' Nuclear Enthalpy Total Heat Maximum Measured - Assembly Rise Hot Flux Hot Positive incore Parameter Power %DIFF Channel Factor Channel Quadrant IV (Description) (M P)/P FAH(N) Factor Fo(Z) Power Tilt Test Measured -K8 W.O 1, o tw / Results vetue /o.V (<.d /. VJ3 / 7(,s . heme hjd Design Value 10% for P, a0.9 (Design 15% for P,<0.9 N/A_ N/A s 1.0205 Conditions) (P,= assy power) Reference WCAP 7905, Rev 1 None -None WCAP 7905, Rev.1 V FSAR/COLR None FAH(N)s1.56(1+0.3(1 P)) Fo(Z)s2.32/P*K(Z) None Acceptance Criteria Reference None COLR 2.4 COLR 2.3 None Design Tolerance is met / YES NO Acceptance Criteria is met : /YES NO VI -

  • As requirnd Comments

" Must have at least 16 thimbles for quarter core maps for multi-point calibrations Prepared By: A/ Reviewed . b3. (~' \\ NE-1132.S1C15 Startup Physics Tests Report Page

57. of 57 I

. - -......}}