ML20027A154

From kanterella
Jump to navigation Jump to search
Cycle 5 Startup Physics Test Rept
ML20027A154
Person / Time
Site: Surry  Dominion icon.png
Issue date: 09/30/1978
From: Kunsitis T, Leberstein J
VIRGINIA POWER (VIRGINIA ELECTRIC & POWER CO.)
To:
Shared Package
ML18113A558 List:
References
VEP-FRD-30, NUDOCS 7810180121
Download: ML20027A154 (78)


Text

.

'V

'b

~

VEP-FRD-30 SURRY UNIT 1, CYCLE 5 STARTUP PHYSICS TEST REPORT BY T. J. Kunsitis J. H. Leberstien Reviewed by:

c' D. W. Lippard, Effdineer Nuclear Fuel Operation l

Approved:

Approved:

o

).

&~

E.

Lozito,gpervisor L. M. Girvin, Manager Nu ar Fuel 8peration Group Nuclear Fuel l

l Virginia Electric & Power Company Nuclear Fuel Operation Group Richmond, Virginia Fuel Resources Department G B \\ g} l,b l h

September, 1978 l

. g'

. y TABLE OF CONTENTS SECTION TITLE PAGE NO.

List of Tables...

ii List of Figures iii Preface iv l.0 Introduction and Sunnary..

1 2.0 Control Rod Bank Worth Measurements 8

3.0 Temperature Coefficient Measurements.

21 4.0 Boron Endpoint and Worth Measurements 26 5.0 Power Distribution Measurements 30 6.0 Power Coefficient Measurement 43 7.0 References.

45 Appendix Startup Physics Test.Results and Evaluation Sheets.

A.1 Acknowledgements l

l i

L-L

(

L.

i

6 s'

a LIST OF TABLES t

TABLE TITLE PAGE NO.

3 1.1 Chronology of Tests...

10 2.1 Control Bank Worth Summary 22 3.1 Isothermal Temperature Coefficient Summary 4.1 Boron Endpoints Summary................. 28 32 5.1 Sunnary of Incore Fluy Maps.

S.2 Comparison of Measured Power Distribution Parameters With 33

'Iheir Technical Specifications Limit i

6.1 Power Coef ficient Su: mary................ 44 9'

f S

l s

I L--

5 L

1

}

ii

,O s

LIST OF FIGURES 1

l FIGURE TITLE PAGE h0.

1.1 Core Loading Map....

4 1.2 Assembly ID's and Incore Instrumentation Locations.

5 1.3 Burnable Poison and Source Assembly Locations 6

1.4 Control Rod Locations 7

2.1 Bank D Integral Rod Worth - HZP 11 2.2 Bank D Differential Rod Worth - HZP 12 2.3 Bank C Integral Rod Worth - HZP 13 e

2.4 Bank C Differential Rod Worth - HZP 14 2.5 Bank B Integral Rod Worth - HZP 15 2.6 Bank B Differential Rod Worth - HZP 16

. l 2.7 Bank A Integral Rod Worth - HZP 17 2.8 Bank'A Differential Rod Worth - HZP 18

, i 2.9 Integral Worth of Control Banks A through D In Overlap Mode.

19 r

s 2.10 Differential Worth of Control Banks A through D in Overlap Mode.

20

{

Isothermal Temperature Coefficient - HZP, ARO 23 3.1 3.2 Isothermal Temperature Coefficient - HZP, D-Bank In 24 3.3 Isothermal Temperature Coefficient - HZP, C + D Banks In 25 4.1 Boron Worth Coefficient 29 5.1 Assemblywise Power Distribution - HZP, ARO.

34 l

5.2 Assemblywise Power Distribution - HZP, D Bank In 35 5.3 Assemblywise Power Distribution - I/E Cal. - APDM Flux Map..

36 5.4 Assemblywise Power Distribution - I/E Cal. - APDM Flux Map..

37 c

l_

[

5.5 Assemblywise Power Distribution - I/E Cal. - APDM Flux }bp..

38 i

5.6 Assemblyvise Power Distribution,- I/E Cal. - APDM Flux Map.. 39 5.7 Assemblywise Power Distribution - I/E Cal. - APDM Flux Map.. 40 5.8 Assemblywise Power Distribution - I/E Cal. - APDM Flux Map 41 5.9 Assemblywise Power Distribution - HFP, EQ. Xenon....

42 111

'V

'3 PREFACE The purpose of this report is to present the analysis and evaluation of the physics tests which were performed to verify that the Surry 1, Cycle 5 1

reload core could be operated safely and to make an initial evaluation of the l

expected performance of the core. It is not the intent of this report to dis-cuss the particular methods of testing or to present the detailed data taken.

Standard test techniques and methods of data analysis were used. The test data, results and evaluations, together with the detailed startup procedures, are on file at the Surry Power Station. Therefore, only a cursory discussion of these items le included in this report. The analyses presented includes a brief summary of each test, a comparison of the test results with design predictions, and an evaluation of the results.

The Surry 1, Cycle 5 Startup Physics Test Results and Evaluation Sheets have been included as an appendix to provide additional information on the startup test results. Each data sheet provides the following information:

f

1) test identification, 2) test conditions (design), 3) test conditions (actual),
4) test results, 5) acceptance criteria, and 6) comments concerning the test.

These sheets provide a compact summary of the startup test results in a consis-tent format. The design test conditions and design values of the measured para-meters were completed prior to startup physics testing. Except where noted, the entries for the design values were based on calculations performed by Vepco's Nuclear Fuel Engineering Group.1 During the tests, the data sheets were used as guidelines both to verify that the proper test conditions were met and to serve as a preliminary comparison between measured and predicted values of measured parameters, thus enabling a quick identification of possible problems occurring during the tests. The appendix to this report contains the final completed and approved version of the Startup Physics Test Results and Evaluation Sheets.

iv

'sS tion 1 INTRODUCTION AND

SUMMARY

On April 22, 1978, Unit No. 1 of the Surry Power Station was shut down for its fourth refueling. During this shutdown, 73 of the 157 fuel assem-blies in the core were replaced with eight once-burned assemblies from Cycic 3 of Unit 1, one once-burned assembly from Cycle 2 of Unit 2, and 64 fresh fuel i

five once-The fifth cycle core consists of seven regions of fuel:

assemblies.

burned regions from Cycles 3 and 4 of Unit 1 and Cycle 2 of Unit 2 (Regions 5, I

6A, 6B, 6C, and S2/4A, respectively, and two fresh regions (Regions 7A and 7B).

The actual core loading pattern and the design parameters for each region are Each fuel assembly and its location in the core is iden-shown in Figure 1.1.

{

tified in Figure 1.2 together with the incore instrumentation locations. Figure 1.3

-(

identifies the location and number of burnable poison rods in the Cycle 5 core.

Figure 1.4 identifies the location and number of control rods in the Cycle 5 core.

On July 6,1978 at 1025, the fif th cycle core achieved initial criti-Following criticality, startup physics tests were performed as outlined cality.

j

(

in Table 1.1.

A summary of the results of these test follows:

Individual control rod bank worths _ for control banks A through D 1.

were measured to be within 5.0% of the design predictions and the total control rod bank worth was measured to be within 1.2% of i

the design prediction. These results are within the design e

tolerance of 15% for individual bank worths and i10% for the i

total of the control bank worths.

Isothermal temperature coefficients over the range of normal 2.

operating control rod bank insertions were measured to be within 2 pcm/0F of the design predictions. These results are within the le ll design tolerance of 3 pcm/ F and also met the accident analysis acceptance criterion.

Critical boron concentrations for five basic control bank con-3.

l figurations were measured to be within 19 ppm of the design 1

l

's

't predicticns. These results are within the design tolerances and met the accident analysis acceptance criterion.

4.

The boron worth coefficient was measured to be within 2.7% of the design prediction, which is within the design tolerance of 110% and met the accident analysis acceptance criterion.

5.

Core power distributions for various HZP and at-power conditions were generally within 3% of the predicted power distributions.

For all maps, the hot channel factors were measured to be within the limits of the Technical Specifications. All measurement para-meters met their respective design value tolerances and accident analysis acceptance criteria.

4 6.

The power coefficient at 95% power was measured to be within 0.1 l'

pcm/%pwr of the design prediction. This result is within the design value tolerance of 3.2 pcm/% power.

In summary, all startup phycies test results were within their design tolcrances. Detailed results together with specific design tolerances and acceptance criteria for each measurement are presented in the appropriate sec-tions of this report.

t lL h

L ke t

L L

2

~

n,--

w s

Table 1.1 s

3 SURRY UNIT 1 - BOL CYCLE 5 PHYSICS TESTS 1l' CHRONOLOGY OF TESTS i

/

J r

i Test Date Time Power Reference l

Procedure Reactivity Computer Checkout 7-6-78 1504 HZP; PT-28.11(B)

~(

Boron Endpoint-ARO 7-6-78 2012 HZP PT-28.11(C)

Temperature Coefficient - ARO 7-6-78 2100 HZP PT-28.11(D)

HZP M/D Flux Map - ARO 7-7-78 0113 HZP PT-28.2 Bank D Worth 7-7-78 0500 HZP PT-28.11(E) lI Boron Endpoint-D In 7-7-78 1015 HZP PT-28.11(C)

+ Temperature Coefficient-D In 7-7-78 1030 HZP PT-28.11(D)

  • HZP M/D Flux Map-D In 7-7-78 1804 4%

PT-28.2 Bank C Worth 7-7-78 2108 HZP PT-28.11(E)

Boron Endpoint-C In 7-8-78 0037 HZP PT-28,11(C)

Temperature Coefficient-C In 7-8-78 0210 HZP PT-28.11(D)

Bank B Worth 7-8-78 1100 HZP PT-28.11(E)

Boron Endpoint-B In 7-8-78 1515 HZP PT-28.11(C)

Bank A Worth 7-8-78 1530 HZP PT-28.11(E)

Soron Endpoint-A In 7-8-78 1900 HZP PT-28.11(C)

Banks A-> D Worth in Overlap 7-8-78 1915 HZP PT-28.11(E)

T/E Calibration-APDM Flux Map 7-9-78 1648 50%

PT-28.8 I/E Calibration-APDM Flux Map 7-9-78 1920 50%

PT-28.8

I_..

I/E Calibration-APDM Flux Map 7-10-78 0129 57%

PT-28.8 b_

I/E Calibration-APDM Flux Map 7-10-78 0940 67%

PT-28.8 I/E Calibration-APDM Flux Map 7-10-78 1846 88%

PT-28.8 j

I/E Calibration-APDM Flux Map 7-11-78 0530 98%

PT-28.8

[

HFP M/D Flux Map-Eq. Xenon 7-13-78 0911 100%

PT-28.2 Power coefficient 8-10-78 2352 100%-

PT-28.12 90%

i L

't i

.i f

A b

4 1

4 u

a_.

3 ih

k i

)

stTRRY tmIT 1 - CYCLE 5 Figure 1.1 I

CORE LOADING MAP i

l R

P N

M L

K J

11 C

F E

D C'

B A

i l

l 63 7B 65 13.92 0.0 13.96 1

l K03 F03 6A i 7B

,7B 6C 7B 78 6A

(

15.59 0.0 0.0 7.82 0.0 0.0 15.71 2

C06 C01 J06 1 OA 7B 7A 6C 6A OG 7A JL bA 15.09 0.0 0.0 8.22 15.69 8.33 0.0 0.0 15.23 3

LO2 H07 E02 705 KO5 6A 6C 78 6C 7B 6A 75 bG ib bc 6A 14.98 7.83 0.0 8.85 0.0 15.35 0.0 9.03 0.0 7.91 15.26 4

R09 E06 LO6 C15 M33 H05 D03 6A 7B 7B 6C 5

6C 6C 6C 5

6C 73 7B 6A 15.50 0.0 0.0 13.21 10.35 11.89 13.37 12.17 10.38 13.39 0.0 0.0 15.73 S

T07 W

103 T04 T14 E03 K14 F04 C05 7B 7A 6C 5

6C 7A 6C 7A 6C 5

6C 7A 7B r [-

0.0 0.0 8.85 10.3' 9.74 0.0 13.24 0.0 9.80 10.32 8.95 0.0 0.0 6

A08 D06 C04 N04 M06 E01 G02 l

63 7B 6C 7B 6C 7A 6C 7A 6C 7A 6C 7B 6C 7B fB 13.98 0.0 8.18 0.0 11.9E 0.0 13.14 0.0 13.34 0.0 n.94 0.0 8.50 0.0 14.14 7

P10 B05 C06 J02 B07 P05 B10 N06

-)

7B 6C 6A 6A 6C 6C 7A S2/4A 7A 6C 6C 6A 6A 6C 7B 0.0 7.91 13.57 15.28 13.24 13.24 0.0 11.10 0.0 13.49 13.29 15.51 15.75 8.00 0.0 8

R07 J08 LOS N05 P07 E05 B09 C11 E08 GOS A09 6B 78 6C 7B 6C 7A 6C 7A 6C 7A 6C 7B 6C 7B 6B

'[

y 14.24 0.0 8.27 0.0 12.02 0.0 13.39 0.0 13.36 0.0 11.60 0.0 8.35 0.0 14.06 c

Bil C10 P06 P09 CI4

' NIO P11 B06 7B 7A 6C 5

6C 7A 6C 7A 6C 5

6C 7A 7B

{

0.0 0.0 8.92 10.34: 9.81 0.0 13.54 0.0 9.91 10.30 S.94 0.0 0.0 10 n2 v10 R08 J14 H15 D10 C12 6A 73 75 6C 5

6C 6C 6C 5

6C 7B 7B 6A 15.48 0.0 0.0 13.40 10.34 n.67 13.70 n.57 10.33 13.22 0.0 0.0 L5.69 11 F09 K09 N11 n2 TC2 L13 E02 F12 E13 f,

6A 6C 7B 6C 7B 6A 7B 6C 7B

.6C 6A

..i 15.07 7.81 0.0 9.02 0.0 15.22 0.0 8.82 0.0 7.66 15.01 12 M13 Eli D13 J01 E10 L10 A07 6A 7B 7A 6C 6A 6C 7A 7B 6A 13 15.06 0.0 0.0 8.45 15.60 8.32 0.0 0.0 15.13 TU L14 H09 U4 nl 6A 7B 7B 6C 75 7B 6A 14 15.44 0.0 0.0 8.11 0.0 0.0 15.54 C10 J15 J10 i

$~ Region 6B 7B 6B 15 t-Burnup (103 >S;D/MTU) 14.18 0.0 14.29 d-Previous Location '

C3 F13 i-(Cycles 2,3, or 4)

TUEL ASSDtBLY DESIGN PARAMETERS 9

BatCn L~

5 6A 6B 6C 7A 7B S2/4A initial Enrichment (w/o t*235) 2.11 2.62 2.60 2.90 2.90 2,39 2.61

{

Burnup At BOC-5(MVD/MTU) 10,337 15,397 14.097 10,557 0

0 n,098 Assembly Type 15x15 15x15 15x15 15x15 15x15 15x15 15x15 I

L No. of Assemblies B

24 8

52 20 44 1

Fuel Rods per Assenbly 204 204 204 204 204 204 204 L

4

Figura 1.2 SURRY UNIT 1 - CYCLE 5 ASSEMBLY ID'S AND INCORE INSTRUMENTATION LOCATIONS R

P N

21 L

K J

M G

F E

D C'

B A

l l

K02 2A3 K04 1

e O

l H2O 3A6 3A9 J24 5A1 SA3 H02 2

O O

e B03 2A2 OA3 J38 H14 J33 OAS 6Al H10 3

9 O

e e

O' 6

H19 J15 2A8 J34 4A6 B08 4A7 J20 4A3 J09 H23' 4

O e

o e

O H04 4A4 3A5 J29 G15 J14 J31 J30 G06.

J12 3A8 2Al H15 5

e e

O e

O O

e

,. l i '

5A0 1A0 J23 G13 J21 1A6 J49 1A7 J47 G03

.J01 OA2 3A4 6

O e

O e

K05 3A0 J37 5A8 J46 2A0 J02 OA4 J32 1A3 J44 5A6 J45 4A9 K06 7

O O

e e

e O

e e

[

6A4 J52 H12 H11 J18 J35 1A4 S16 1A1 J41 J50 H09 E07 J27 4A8 8

O O

O O

e O

e e

O l~

K07 4A5 J51 5A5 J36 1A2 J22 OA7 J28 OA9 J43 2A9 J05 6A0 K01-9 O.

O e

e e

i 2A7 OA1 J16 Gil Jll 1A5 J48 OA6 J06 G10 J08 OAS 3A7 10 e-O e

H01 SA4 4A2 J04 G05 J10 J26 J40 G07 J25 SA7 5A9 H06 11 O

e O

G e

B05 J42 6A3 J17 2A4 H16 6A2 J13 2A5

'J03 H17 12 e

O O

e 13 H24 3A2 1A9 J39 H18 J19 1A8 2A6 H13 H22 3A3 4A1 J07 4A0 3Al H21-14 e

e O

K08 5A2 K03 15 e

O O

1

' Fuel Assembly I. D. Number t -

+-Indicates Location & Type of Incore Instrumentation l

0 M/D O

T/C Both M/D & T/C l.

5 l~

w s

Figure 1.3 SURRY UNIT 1 - CYCLE 5 BURNABLE POISON AND SOURCE ASSEMBLY LOCATIONS R

F N

M L

K J

H C

F E

D C'

B A

1 12 12 3

8 16 SS 16 8

I 4

16 20 20 16 5

8 16 16 8

6

[

16 16 16 16

,t 7

12 20 16 16 16 20 12 8

16 16 9

12 20 16 16 16 20 12 10

(.

16 16 16 16 11 8

16 16 8

12 16 20 20 16 8

16 SS 16 8

(

[

14 12 12 t

15 L

1 SS - Secondary source 768 Fresh Burnable Poison Rods

'i l

L f

6

i Figure 1.4 SURRY UNIT 1 - CYCLE 5 CONTROL RCD LOCATIONS P

K

'F N

H L

K J

tt C

Y E

D C

3 A

1 Q

Q Q

=

A A

O G

G O

Q

=

71 SP SP 5

[

Q Q

Q Q

O Q

Q SP

(

1 Q

O Q

O O

O Q

A

[

A V

V SP Q

Q Q

Q O

Q Q

=

c SP SP O

Q O

O O

A A

1 14 1

m L.

1 L.

(

Function Nur.ber of Clusters

}

Control Bank D 8

Control Bank C 8

Control Bank B 8

control Rank A 8

l Shutdown Bank SB 8

{'

0 Shutdown Bank SA Part Length P 5

\\

SP (Spare Rod Locations) 8

\\

7

Section 2 CONTROL ROD BANK UORTH MEASUREMENTS Differential and integral control bank worths were obtained by moni-toring rcactivity changes associated with boron /RCCA exchanges. Following the l

establishment of a canstant RCS boron dilution /boration rate, the controlling RCCA bank was periodically inserted / withdrawn in order to provide reactivity T

compensation for the changing RCS boron concentration. The reactivity changes resulting from the control bank movements were recorded continuously by the

,. 7 reactivity computer.2 The differential reactivity worth is defined as the ratio of the change in reactivity to the corresponding change in bank position about an average bank position, and the integral worth was obtained by summing F

j the individual reactivity changes between measurement endpoints.

A summary of the results for these tests is given in Table 2.1.

As shown by this table and the Startup Physics Test Results and Evaluation Sheets j

given in the Appendix, the individual measured bank worths for control banks L

D, C, B, and A were within the design tolerance of 15%. The total bank worth (non-overlap mode) for control banks A through D was measured to be within 1.2%

of the design prediction.

This is well within the design tolerance of 10% for

[

total control bank worth.

In addition, a second independent measurement of j

total bank worth (in overlap mode) was performed. This measured value was within 1.0% of the design prediction.

t The integral and differential reactivity worths for rod banks D L

through A (non-overlap mode) are shown in Figures 2.1 through Figure 2.8, respectively. The design predictions and the measured data (non-overlap mode) are plotted together in order to illustrate their agreement. The rod worth f

measurements are quite exact in defining the shape of the individual differen-tial rod worth curves, as illustrated by the distinct depressions occurring at i

f 8

i.

the assembly grid locations. The integral and differential worth for centrol banks A through D operating in the overlap code are shown in Figures 2.9 and 2.10, respectively.

In summary, all measured rod worth values were satisfactory.

[

i f'

{

s I

h

(

f.

t

(

{

i s

L 1

L 4

k s

O 9

u Table 2.1 SURRY UNIT 1 - CYCLE 5 BOL PHYSICS TESTS CONTROL BANK WORTH SLT!ARY Measured Predicted Percent Difference Worth Worth (M-P) x 100 Bank (pcm)

(pem)

P 4

j' -

D 1207 1188

+1.6 1

~+2 5 C

1082 1056 3

1999 2040

-2.0 A

1304 1242

+5.0 f

IA + D 5592 5526

+1.2 A + D In 5577 5526

+0.92 r

i Overlap Mode

(

f t

f 1

L.

C.

f L

v_

l 10 r

Figure 2.1 SURRY UNIT 1 - CYCLE 5 BOL PHYSICS TEST BANK D INTEGRAL ROD WORTH-HZP 1400 1200

_.,A

__pz 3,

$y.

%x ALL OTHER RODS OUT r

I o MEASURED 1000

\\

--PREDICTED i

'O i

i a

r, 6

800 i

n x

v i

c::

i o

X 3

i A

?

l l

600

\\

t w

'e t-e a1 i.

s, r

s

c..

1:

's 400

[

k

'x L

'i -:

%L L '

200

'i

'qs

~~T

'^

L.

I a

0 0

20 40 60 80 100 120 140 160 180 200 228 BANK D POSITION (STEPS)

L 11

Figure 2.2 SURRY UNIT 1 - CYCLE 5 BOL PHYSICS TEST BANK D DIFFERENTIAL ROD WORTH-HZP 10.0 x

yRY6%

/I(

~

ALL OTHER RODS OUT d.

D di o MEASURED r

8.0 C'

='

-PREDICTED j

i m -

\\

=

W i

I H

[

cn i:

_ 05

'h.

6.0 m

+$;

f v

, O_

['

g x:

~~ O 4m"

=

~~ q g

a L.

g

'q 4.0 er m

sa H

..I a

GRID'LOChTIONS

=

i 2.0 s-

.'Q

~

\\_t- -

~

7'

' \\

j' Q

~

's, Q

s

,/

j

'x

'x r

.5_h

'5 UX1

'N

q. f

_pi

_~1

r a

_A II i

y n

0

[.

0 20 40 60 80 100 120 140 160 180 200

'228 BANK D POSITION (STEPS) u 12

Figure 2.3 SURRY UNIT 1 - CYCLE 5 BOL PHYSICS TEST BANK C INTEGRAL ROD WORTH - HZP 1200

_ m --

a

'N

%i 1000 i

(-

~- --

D BANK IN, ALL OTHER RODS OUT C

(

o MEASURED t=

~

-- PREDICTED h

),e..

's s

800

'O 7

A

's s

I L

i I

m V

'7 ';

s:

I

\\1 go 600 y-(1\\F~

p h

SNE_

I g

mw-A-

\\'

400 s' ',

1,

~;

{

v'%

200

\\

m a

' X 1

I W

?',,.

0

= s-0 20 40 60 80 100 120 140 160 180 200 228 i

L BANK C POSITION (STEPS) 13

Figure 2.4 SURRY UNIT 1 - CYCLE 5 BOL PHYSICS TEST BANK C DIFFERENTIAL ROD WORTH-HZP 10.0

'D BANK IN, ALL OTHER RODS OUT -

/

i.,

o IEASURED

=

i PREDICTED E

8.0

~

, -Ms C

s b..

us H

's cn s:

5 Q

-s 6.0

's u

t v

T O.ic4 P

N.

e

r. ~, -

O N

i

  • s 0

J

2 M

m, f

I e

4.0 l

6 m

u2 3

N W

c.

i w

l C

?.

i GRID LOCATIONS 2.0 I I E

m 1

f K

E

/

t,'f

\\

O

's

! N 1"

z' N

z N,

d~

'I a

1r/

.1i m

I m

s y

=

u J

i-O 0

20 40 60 80 100 120 140 160 180 200 226 BANK C POSITION (STEPS) b_-

14

Figure 2.5 SURRY UNIT 1 - CYCLE 5 BOL PHYSICS TEST BANK B IITIEGRAL ROD WORTH-HZP 2200 2000 7*

- N--: N.kw W%

i /

1800

'd*

i \\

' h' _

C+D BANKS IN, ALL M R. 6 W E,,___

o MEASURED E

1600

-- PREDICTED C

t-i SA '

sN ',

d 1400 b

6

', +

,1 p

is e

1200 g

1-*

1 b:

A u

h 1000

~

wD

-Y.

goo

'A m

Q 600 m

X 4 00 12-w a

200 x

N_N w

_~_"

0 20 40 60 80 100 120 140 160 180 200 228 BANK B POSITION (STEPS) 15

Figure 2.6

~.-.

SURRY TRi!T 1 - CYCLE 5 BOL PHYSICS TEST BANK B DIFFERENTIAL ROD WORTH-H2P 22.O

_.___.eb.-

N o c=a, Z.

20.0 i /

s.

l\\

18.0 or C+D BANKS IN, ALL OTHER RODS OUT C t--

1

~-

o MEASURED

=

t

- PREDI N E

16.0 tr.3 Hm d

14.0 6m w

v. -

g 12.0 gr x

o y

_o 4

10.0 M

x 8.0 0=

y rw W

a rw-'

C M"-

h 6.0 2 ~2;-7

=.

3-i

)

l'

~'

4.0

GRID LOCATIONS.

f '

f 1

~,

J E

Mm g

/

IA N'~

N-2.0

-u.

..p.

yf r

~

N, N

f:

-1

-? i 1-if' i

1 0

-I1 i-0 20

- 40 60 80 100 120 140 160 160 200 228 BANK B POSITION (STEPS) 16

Figure 2.7 SURRY UNIT 1 - CYCLE 5 bbl PHYSICS TESh

~

BANK A INTEGRAL ROL WORTH-HZP 1400 e :-

&;~-k

.___1.___m.

,...___.a_

s n....

O L--~1_ _- %

. B+C+D BANKS IN, ALL OTHER RODS OUT

[2 D_0'

~ ' +h o MEASURED z.x -

-- PREDICTED,

' N,s.

s.r-:

. y 2_

bo c '

_4

/

=-

1000 A

.x -

, 3 1.g L

~~+

g-4

-p n

m 800 w-+

l XajL h

'1Di.

5 i-u k-O I

3

X- _

s g_-

y

'N

-l s

e 600 s

T., -~ i i

=

lb-g i

H s1 3

k*

L*

'w.

400

-w-,

'1 s -

r'.

L

?

200 4-

~~

^

-.A._

~

+

.-. i

-Q-w N

0

-- - T --

T-W 0

20 40 60 80 100 120 140 160 180 200 228 BANK A POSITION (STEPS) 17

Figure 2.8 5sURRY UNIT 1 - CYCLE 5 BOL k)HYSICS TEST BANK T. DIFFERENTIAL ROD WORTH-HZP 14.0 B+C+D BANKS IN, ALL OTHER RODS OUT o MEASURED

-- PREDICTED 12.0 01_

EV 0

(

s a

g

-f-10.0 lB
h#

E T

^

b Ok' t

N m

1 c.

5 m

8.0 c

3_

v 6

\\

G DW:

s M

o3 C

',;L 0

A Qwy h

M 6.0 e

n' TI C

l.

m 5

O_A 9

r-4'-

"c.

g

\\

l 1

l 4.0 l

O dT f

(

.A v.

C

! GRID LOCATIONS' 2.0

.,- g-

..X~

\\

lf

\\, _

~'~

"-f ~

_j

~

gy g

\\ N.

'm m.1

~

(

i

!m p__a

=r,,

O rif-I 0

20 40 60 80 100 120 140 160 180 200 228

~

BANK A POSITION (STEPS) l 1

18 l

l l

.1gure 2.9 SURRY UNIT 1 - CYCLE 5 BOL PHYSICS TEST INTEGRAL WORTH OF CO!! TROL BANYS A THROUGH D IN OVERLAP MODE 6000 t

g 5000

- F ~p SHUTDOW BANKS OUT "-

p_g o xE.uuBrD 4

--- PEDICTED l.

i 4---

N +---

z 4000

-I@.

u n

5 xy_

HQ' g,,,

mt v

p

%\\ :

e w

3000


b r

L M

g S

t:

N A

.v-- -

l

..Mc 2000

-+_

-kuW w

NT I

1000

'9 4

!~*(,

3-w

'h-0

+

I I

I I

I il I O

40 80 A Bank 0

40 80 B Bank 0

40 80 C Bank 0

40 80 120 160 200 228 D Bank BANK POSITION (STEPS) 19

Figure 2.10 SURRY UNIT 1 - CYCLE 5 BOL PHYSICS TEST DIFFERENTIAL WORTH OF CONTROL BANKS A THROUGH D IN OVERLAP MODE I

26.01 l

24.0

a

-.-.-.4 o

22.0 SHUTDOWN BANKS OUT f- '

46 O MEASURED' W J ":

--- PREDICTED 20.0 u

^

r A

i s

18.0 vs N

r o

)

6 16.0 a

(

P CC f-14.0 e

a<

v:

e-4 t;'

12.0 "l

c w

x

=-

-=.

g

- J b

=

"h w

7 10.0

c

't r;.

_.s o

s.

u.

8.0 E. 0,'

j 7

-n

(

~xm; i

6.0 c

}

4.0 z

i T

i

[

I l

'm!

2.0. =. =,

i3 W

iT

~c

~

I#

'T

'T I

p I

I-'i-1

(

0_

l l

l l

ll l

l 0 40 80 l

A Bank l

0 40 80 B Bank o

40 go i

C Bank 0

40 80 120 160 200 228 1

D Bank 1

BANK POSITION (STEPS) i

(

20

\\

l

, Stetion 3 TDf?ERATURE COEFFICIENT MEASUPIMENIS The isothermal temperature coefficient measurements were accomplished by controlling the RCS heat gains / losses with the steam dump valves to the condenser, establishing a constant and uniform heatup/cooldown rate, and then monitoring the resulting reactivity changes on the reactivity computer. These measurements were performed at very low powe.r levels in order to minimize the effects of non-unifom nuclear heating, thus, the moderator and fuel were approxi-s r,

mately at the same temperature (between 540-5500F) during these measurements.

To eliminate the boron reactivity effect of outflow from the pressurizer, the f

pressurizer level was maintained constant or slightly increasing during these

.(

measurements.

Isothermal temperature coefficient measurements were performed at various control rod configurations. For each rod configuration, reactivity measurements were taken during both RCS heatup and cooldown ramps during which j

the RCS terperature varied approximately 30F.

Reactivity was detemined using

(

the reactivity computer and was plotted against the RCS temperature on an x-y f

recorder. The temperature coefficient was then detemined from the slope of the plotted lines. The x-y recorder plots of reactivity change vs. RCS tempera-I ture for each measurement are shown in Figures 3.1 through 3.3.

j The predicted and measured isothermal temperature coefficient values s

are compared in Table 3.1.

As can be seen from this summary and from the Start-up Thysics Test Results and Evaluation Sheets given in the Appendix, all cea-sured isothermal temperature coeflicient values were within the design tolerance i

of 13 pcm/ F and met the accident analysis acceptance criterion.

In summary, all measured results were satisfactory.

e 21

r -'

r-r-

3

~.

Table 3.1 SURRY UNIT 1 - CYCLE 5 BOL PIIYSICS TESIS ISOTilERMAL TD!PERATURE COEFFICIENT

SUMMARY

Bank Position Temperature Boron Isothermal Temperature Coefficient (steps)

Range Concentration (pcm/oF)

(OF)

(ppm)

Heatup Cooldown Average Predicted Difference B

C D

(M-P) 228 228 223 544-547 1311

-2.7

-2.7

-2.7

-3.7

+1.0 M

228 222 0

544-546 1173

-5.8

-6.0

-5.9

-6.9

+1.0 213 0

0 544-547 1052

-9.0

-9.0

-9.0

-10.4

+1.4 I

Figure 3.1 SURRY UNIT 1 - CYCLE 5 BOL PHYSICS TEST ISOTHERMAL TEMPERATURE COEFFICIENT HZP, ARO ii i i i i 1 i

i i,I l

?

i i

I i

i

+,i 4

7.

i i

,,ii i

lt-i

,i i

i

,i i

,.. F-H A

, r.,

i i. i ii i

i i

, i i

i 4 i

l'!

!li l Lit-Mb i

y I

r-I ii, i

i!

! t/

I t I i l7 i

t i

i i i 5

r--

i

.*m4e S

m..,__,

6 i

i

{

i i

i e

i g g %a i

i

+

~

t>.

i i

ii i

i i

i lh' s

l l

l iii %

i 4

4 w

i i

l l

- -%q g

i_-p :

'a g

.-+_

.__,u

. _9

_ t-i.-

  • "Wwk.

r l

~

-lllllllll,lli l!

lll h

%1s l

N Z:

VERTICAL SCALE 10.0 pcm/ inch f T l

I:

i

_Q__

i 0

y.

HORIZONTAL SCALE 1 F/ inch i

l r'

p T, i t i r i t, H v i i. i i i i, i i i. i i. i, i i,. i i i. i. i i.

44---

i ii.

TEMPERATURE (OF) i

(

r b

23 i

Figure 3.2 SURRY UNIT 1 - CYCLE 5 BOL PHYSICS TEST ISOTHERMAL TEMPERATURE COEFFICIENT HZP, D-BANK IN

---H-i !

t i i ;

i s

i i

i

,i i,

i I

6 6 i 6

I i

i - s 4

9 1 8

! l \\

t 4.

l t

i, i,

[

,4, 1

i! i 4

N,,

i l!

I ii i6 I i

i i

i ii i

(

L 6

i e i

..i l

1 1 !3 ' i1 i 4tS- -.'L-1,

. I i

I e a

i e p

k i

w i

4L

_I t

iT i

i 7 h i

. _LL a i

i

. r

:. +. +

- +

.i j

5

i
;F -H i

~

---+ -Tr--

i i

c-i p

y i,

i, r

i, 6

H x,i.

r---

.i i

.. i s

g i

i s

i e

i i

a--

l6 l

l l

0 l

l

-H ' r e

g

_p_ _. ;. _i_. ;..ju_i.,-H-l-q_[_iF l;;

._i_

ii r

r,-

, o r

i 6

,t;i

,, crl-t,-

e i

r--' - --r r

ii i

i i

r -r

. 6

[

l

! i d, -hd-o b__ '

i l

1 i.e

. i i t

J !

t it

!ii iIii i

i I.

C..

.ie i

..ii e

ii i

i i

i e

j

[Z.

i w.

VERTICAL SCALE 10.0 pcm/ inch i

N i

10 / inch

-~Y F

I HORIZONTAL SCALE l.

I ?

  • If I l

l l

l l ]

! ~ I' I

l. 6 i t I

e i i I

. I

, ! i !1 i

I i

4 s

-, i ii i

1 ir s ti i e i

i.

i ii

. i,

i r Fi i i 1

l TEMPERATURE (OF)

L 24

Figurc 3.3 SURRY UNIT 1 - CYCLE 5 BOL PHYSICS TEST ISOTHERMAL TEMPERATURE COEFTICIENT HZP, C+D BANYS IN

..y.

S q.

. g.

~

i 3-5,

_ _l.6 7,__

_.q

{ ~(

t.

t

( '

4l.._

-[ 4 9

6 i

L i

N t

1, y

r l

l, l l

fll, Y

,l TI'$

i l,

T.W

=

i is i

ii

! n--6.

}-

D

!. i t.

it TT ! !

t i

e a

le i.

Ii

! e V i i

i t i i

i i

i I

e eI !

. i 1 e i i

i i i i t

e i 6 i i e 1 6 i.

6 e

i M.

.ki_

t t

En ii i

. ii i

H i

! L g

y I

i F i

t i

e t

6 t

i Tvt+T l,

i,-

i t

i t

M U

m.. l-

..i i i,,V.IL i

i

.N i

i t

i x

i i

i i,

4

,e t i e t

t

% i

-1Ii

, t 9

N, i a

A 6 I t

. I e i t i

~~~

I i t t t

Ni e

t t I t !

6

\\

I i f,

t i i m, !l.

j i i t i 6 i I N,

. iii i ! l.

i

. i 6 i

4 i i

s i

..+

e ii 7tmi

! i e i e.

l I

I 1

I t i %

t i

(

_L.

      • '! 1 i t

i M'

l' i

i I

_ 1 i. Ii 1

e i

i t

6

... i i

i

, e f. t 6

iu It 1 1 l !.

t

... 1 li!. I i

ei I l I t ' I t !

t i i f i i i !

i i #

n

} 1..

VERTICAL SCALE 10.0 pern/ inch t

T.

' i t

i t r

.x i.

1 F/ inch l'l

'l\\

l'

[

-Y HORIZONTAL SCALE 0

i

~T

.i t

6 i, i

l.ie i i! !. i i i i t i i tt iI i i e iiieiii !

Iii i

t t19 Wir i i. i. i s..i

. i6...

r.i..i...i

. i t.

L TEMPERATURE (DF) e k

w 25

I Srction 4 i

BORON ENDPOI!TT AND WORTH MEASUREMENTS I

l Boron Endpoints I

1 With the reactor critical at hot zero oower, reactor coolant system j

boron concentrations were measured at selected rod bank configurations to enable a direct comparison of measured boron endpoints with design predictions.

1 For each measurement, the RCS conditions were stabilized with the control bank at or very near a selected endpoint position. The critical boron concentration was then measured.

If necessary, an adjustment to the measured critical boron l

concentration value was made to account for off-nominal core conditions, i.e.,

Y~(

\\

(

for rod position and moderator temperature.

r The results of these measurements are given in Table 4.1.

As shown 1

in this table and in the Startup Physics Test Results and Evaluation Sheets I

given in the Appendix, all measured critical boron endpoint values were within i

19 ppm of their design prediction which is within the design tolerances. All measured values met the accident analysis acceptance criterion.

In summary, all results were satisfactory.

Boron Worth Coefficient r-I

)

Concurrent with the control bank reactivity worth measurements, samples of RCS water were obtained for boron analysis. Frequent sampling (taken I

[

at approximately 15 minute intervals) is necessary during the dilution and boron phases of the rod worth measurement program in order to provide adequate statis-l tics for the determination of the boron worth coefficient.

I Relevant data logged during this measurement were the control bank L-position (and hence integrated reactivity) as a function of time and the RCS

{

[

boron concentration as a function of time.

This second item contains a small correction factor (5 minutes) to account for the transit time of the RCS sarple I

L from the RCS coolant loop to the sample sink tap.

With these data, a plot of boron concentration as a function of integrated reactivity can be constructed,

,L since the core is kept nominally critical. The value of the boron worth 26

confficient ovar this rangs of boron concsntration is obtain:d directly from this plot.

The boron worth plot is shown in Figure 4.1.

As indicated in this figure and in the Appendix, the boron worth coefficient of reactivity was measured to be -8.94 pcm/ ppm.

The measured boron worth coefficient is within 2.8% of the predicted value of -9.19 pcm/ ppm. The measurement result falls well within the design tolerance of 10%. Also, the measurement result cet. the accident analysis acceptance criterion.

.r In summary, this result was satisfactory.

as r -~

1

(

r l.

1

}

L u

lL t

i 1

a 2

l 27

Table 4.1 SURRY UNIT 1 - CYCLE 5 BOL PHYSICS TESTS _

BORON ENDPOINTS

SUMMARY

Measured Predicted Difference Control Rod Endpoint Endpoint M-P Configuration (ppm)

(ppm) *

(ppm) r I ('

\\

ARO 1304 1321

-17 i

D Bank In 1184 1165

+19

{

D+C Banks In 1067 1075

+8 D+C+B Banks In 836 846

-10 D+<+B+A Banks In 693 700

-7

  • Predicted endpoints have been adjusted for the difference between

{

j the measured and predicted values of the previous endpoint as shown in the boron endpoint Startup Physics Test Results and Evaluation Sheets in the Appendix.

I k

k L

l t

L 28

t 00 3

l N

M E

,R'i, 1

ST S

l[

S N

T T

E N

E E

M t

M R

E E

U R

0 R

S U

U A

S S

E A

,m~

l 0

2 Q

1 A

M E

E M

_h M

L

_I A

N T

W O

N A

I O

D R

lA; I

R T

)'

- m P

i E

t l

0 T

D T

S S

N I

N k

0

.:.E 1

E E

W I

.],

1 T

s A

B le, S

F C

)

I S

T r,,

M P

Y N

y.

P l

E

(

P I

,Y 0

C 0N L

I 0O O

F

,f E

q I

1I 1

B F

T A

4 5

O i

R C

N e

E T

l r

L I

iC O

LP,_.W u

C T

E I

C g

Y R

N F

W 0O 4!!

0C 9

5 M

KJ 1

O N

r R

3 m

RO T

O

{,

I B

l p

O N

p B

/

_p U

me YR m

P R

0

!pk 4

0 US 9

8 sT 8

i

=

B

$ ~'

C S/

0 p

p 0

7 6

7 g^

^

0 0

~

6 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

6 5

4 3

2 1

-$~

gsNUyN 0

o.

Section 5 POWER DISTRIBUTION MEASUREMENTS The core power distributions were measured using the incore movable detector flux mapping system. This system consists of five fission detectors 4

which traverse fuel assembly instrumentation thimbles in 50 core locations (see Figure 1.2).

For each traverse, the detector output is continuously n

monitored on a strip chart recorder. The output is also scanned for 61 dis-crate axial points by the PRODAC P-250 process computer. Full core, three-i dimensional power distributions are then determined by analyzing this data F-(

(

using the Westinghouse computer program, INCORE.3 INCORE couples the measured flux map data with predetermined analytic power-to-flux ratios in order to determine the power distribution for the whole core.

A list of all the flux maps taken during the test program together with a list of the measured values of the important power distribution para-meters is given in Table 5.1.

Flux maps 1 and 3 were taken at approximately zero power. These flux maps serve as base case design checks and verify that the core was loaded properly. Figures 5.1 and 5.2 show the resulting radial power distributions associated with these flux maps. As seen by Figures 5.1 and 5.2, the measured relative assembly power values are generally within 4% of the predicted values. Flux maps 4 through 10 were taken over a wide range of power levels and control rod configurations. These flux maps were taken to check the at-power design predictions and to measure core power distributions q

at various operating conditions. These maps also provide incore/excore cali-bration data for the nuclear instrumentation system as well as base data for axial power distribution surveillance. The radial power distributions for i L.

these maps are given in Figures 5.3 through 5.9.

As seen by Figures 5.3 I

[

through 5.9, the measured relative assembly power values are generally within 3% of the predicted values.

f L

1 30

.~ -

.a '-

f I

/

I The measured power distribution parameters are compared with their Technical Specifications limits in Table 5-2.

The power distribution parameters 1

far' all fl, ux maps met their da. sign and accident analysis acceptance criteria and Techtical Specifications limits (see Appendix).

In conclusienA all power distribution measurement results were con-j it 4;,

li sidered acceptable with respect to the design tolerance, accident analysis l r;.

acceptance criteria and Technical Specifications limits. It is therefore a

t

't anticipated that the core will continue to operate safely throughout Cycle 5.

(

g..

f~

!L' 1

m f

L il

'I

]k.

1 l"

I

!L I

31 s

__.-m

q q

__. q p -~ ~

p-p-

g 7

~~

Table 5.1

{

=

SURRY tINIT 1 - CYCLE 5 BOL PHYSICS TESTS SIMIART OF INCORE FIEX MAPS F

Hot F{H HOT CORE ig

.1AP PWR BANK POSITION CHANNEL FACTOR

  • CIIANNEL FACTOR **

MAX MAP DESCRIPTION No.

(2)

(STEPS)

+

F QPTk*

AXIAL No ay AXIA1.

AXIAL OFFSET or

(

Ff POINT Fg (2) 11tiMBI.E S AbST.

PIN C

D ASST.

FIN POINT Ze.

over M/D 1

  • O 228 218 K14 IR 20 2.40 K14 IM 1 55 20 1.50 1.52 1.014

+27.36 40 Map - ARO Zero Power M/D 3RX

% 4 219 0

E04 CH 21 2.57 N05 HG 1.6F 21 1.46 1.64 1.013 422.68 43 Map - D in 1/E Calibration 4

  • 50 228 200 P10 HL 23 1.99 P10 ML 1.44 23 1.324 1.44 1.002

+6.30 43 APDM Flux Hap I/E Calibration 5

% SO 228 185 P10 Mt.

33 2.04 P10 ML 1,43 33 1.32 1.41 1.004

-2.01 43 AFDM Flux Map

[

I/E Calibration 6

% $7 228 162 K14 IJf 36 2.16 K14 KL 1.47 36 1.39 1.42 1.007

-16.95 43 w"

APDH' Flux Map I/E Calibratioe 7

% 67 228 196 P10 IK 23 1.90 P10 LK 1.43 23 1.27 1.41 1.004

+3.45 40 A8'let Flux Hap I,E Calibration 8

% 88 228 218 P10 IK 32 1.80 P10 IK 1.41 23 1.2L 1.39 1.007

+4.04 41 i

APDM Flux Map I/E Calibration 9

% 98 228 224 K14 KL 34 7.84 K14 KL 1.42 35 1.22 1.39 1.007

-2.90 40 APDM Flux Hap Full Power May 10

%100 228 221 K14 KL 34 1.84 K14 KL 1.42 34 1.22 1.38 1.007

-1.48 42 Eq. Xenon NOTES: Hot spot locations are specified by giving assembly lor.:sfo-te (e.g. H-8 is the center-of-ccre assembly location), followed by the pin location (denoted by the "Y" coordinate with the fif teen rows of fuel rode lettered A through R. and the "K" coordinate designated in a similar manner).

Ir the "Z" direction the core is divided into 61 axial points start $ng from the top of the core.

  • F{ includes a total uncertainty of 1.08.4
  • fjg including a measurement uncertainty of 1.04, 4 Fay is evaluated at the midplane of the core.

KQPTR - Quadrant Power Tilt Ratio.

    • Mar 2 was aborted.

i

~

.i Table 5.2 SURRT UNIT 1 - CYCLE 5 BOL FHTSICS TESTS COMPARISON OF MEASURED POWER DISTRIBUTION FARAMETERS WITH 1 HEIR TEC1tNICAL SPECIFICATIONS LIMIT Ilot Channel Facto!

F Hot Channel Factorb Quadrant Power T

N

/

IECA Hot Channel Facto! F H F

Ilot Channel Factora AH AU ASST ROD 9

Tilt Ratio Minimum Margin Margin Margin Margin Nominale-Map Measured Limit

(%)

Measured Limit

(%)

Measured Limit (2)

Nessured Limit (2)

Measured Limit 1

1.55 1.75 11.4 1.33

>$0.00

>97.3 1.56

>50.00

>96.9 2.40 3.77 36.3 1.014 1.020 3d 1.68 1.74 3.4 1.51 34,50 95.6 1.69 36,25 95.3 2. 53 7 3.78 32.0 1.013 1.020 4

1.44 1.61 10.6 1.31 2.76 52.5 1.46 2.90 49.7

<1.99 3.80 47.6 1.002 1.020 5

1.43 1.61 11.2 1.31 2.76

$2.5 1.44 2.90 50.3 2.04 3.88 47.4 1.004 1.020 6

1.47 1.58 7.0 1.31 2.42 45.9 1.47 2.54.

42.1 2.16 3.40 36.5 1.007 1.020 f

7 1.43 1.56 8.3 1.30 2,06 36.9 1.44 2.16 33.3 1.90 2.84 33.1 1.004 1.020 4

i 8

1.41 1.49 5.4 1.29 1.57 17.8 1.43 1.65 13.3 1.80 2.21 18.6 1.007 1.020 9

1.42 1.47 3.4 1.30 1.41 7.8 1.43 1.48 3.4 1.84 1.98 7.1 1.007 1.020 19 1.42 1.46 2.7 1.29 1,39 7.2 1.43 1.46 2.1 1.84 1.95 5.6 1.007 1.020 i

i H-

, an

, include 41 measurement uncertainty.

ane measured values for the enthalpy rise hot channel factors' $H nelimitonFyg includes the maxiana penalty associated with the inter: m Sieble ce!1 rod bow penalty which is 6%,

We Technical Specifications limit for the heat flux hot channel fector Tactor Fh, is a function of core height.

The value h

j forThlistedaboveisthemaximumvalueofF3inthecore. H e Technical Specifications limit listed above is evaluated at a

the plane of maximum Ff. The minimum margin 7alues listed above are the minimum percent dif ference between the measured valuca of F Z) and the Technical Specifications limit for each map. AllmeasuredF{hotchannelfactorsinclude8% total uncertainty.

c%ie is the full-power operating limit for norant operation. H e limit does not apply during phyales testing.

dMap 2 was aborted.

I v

e

Figure 5.1 SURRY UNIT 1 - CYCLE 5 BOL PHYSICS TEST ASSEMBLYWISE POWER DISTRIBUTION HZP, ARO k

P N

F1 4

F.

s n

e r

6 w

i.

F2!::07E3 0.+3 C.83 0.43.

F?T*!!?t3 M*Atrf!3

. 0.41. 0.77. 0.41.

r.* c.? t 3

.707 11FP t2 tCf.

- 3. 3

-3.3.

  • .9

.P 7 C!?FEPD TE..

1 0.40. 1.C3. 1.14 1.15. 1.14. 1.00. 0.40.

C.4 3. 0.99.1.1:. 1.1:. 1.11. 0.93. 0.39.

. -1.2. -C.8

-1.8. -2. 3. - 2. 7. *. 3. - 2. 3.

. 3.41. 1.C:. 1.12 1.37. 1.C3. 1 27. 1.1:

1.C:. 0.41.

. 0.40. 1.01. 1.11. 1.06. 1.05. 1.06. 1.13. 1.03. 0.41.

3

. -1. 2. -1. 2.

-0. 9. -C.7. -0.1.

1.C.

-1. 8. -1 3. -0. 7.

. 3.41. C. 92. 1.

  • C. 1. 26. 1.16. 1. G6. 1.13. 3.26. 1.t;. 0.92 0.61.

C. 60. 0.91. 1.19. 1. :7. 1. 2 0. 1.C3. 1.1S. 1.24.1.19. 0.91. 0.4:

4

-1.9. -0.3. -0.6.

1.0.

1.4.

0.8. -C.6

-1.1

-1.0

-0.8.

0.6 r--

0.43. 1.C2. 1.20. 1.14. 0.99. 1.16. 1.15. 1.16. 0.99. 1.14. 1.02. 1.C2 0.40

(

0.39. 1.00 1.21 1.17 1.C1. 1.*0. 1.13. 1.16. 0.93. 1.13. 1.19 1.C3 C,42.

5

-1.9. -1.9.

3.4

.1.

2.3.

3.7.

2.1.

0.2. -0.7. -0.3

-0.7.

2.6.

5.9 1.00. 1.12 1.06. 3.99 1.17, 1.10. 1.12. 1.10. 1.17. 0.99 1.26. 1.12. 1.00.

l

. 0.99 1.11. 1. : 7. 1.01. 1.20. 1.1:. 1.14. 1.11. 1.18. 0.t3. 1.05. 1.14 1.03 6

l

-1.3. -1.3.

0.7.

2.2.

2.6.

2.5.

1.8.

1.4 4.3. -0.6. -0.8 1.9 3.2.

0. 4 3. 1.14. 1. 27. 1.13. 1.16. 1.10. 1. C 3. 1. C 4 1.CS. 1.10, 1.16 1.13. 1.27. 1.14. 0.43.

C. 41. 1.12. 1. 2 6. 1.10. 1.13. 1.1:. 1.13. 1.C6. 1.10. 1.13. 1.15. 1.19. 1.:6. 1.14 C.4*

7

-6.2. -1.8. -0.8. -0.0.

2.1.

1.8.

1.6.

1. 9.

2.1.

0.7. -0.3.

0.6. -0.9 0.0. -0.9.

0.23. 1.15. 1.C5. 1.e4. 1.15. 1.1

. 1.C4 1.C3. 1.04. 1.12. 1.15. 1. C 4. 1. *5. 1.15. 0. :

C.76. 1.13. 1. 2 4. 1.C 3. 1.15. 1.13. 2. C3. 1.C 3. 1.C4 1.11. 1.14. 1.c4 1.23. 1.1:. 0.73.

4

-2.2. -1.0. =0.6 C.3.

1.0.

1.7. C.:

0.2. -0.6. -1.4. -0.1. -1.7.

  • .6

. -1.7.

0.43. 1.14. 1.27. 1.13. 1.16 1.10. 1.25 1.e4 1.04. 1.10. 1.16 1.13. 1.27. 1.14. 0.43 0.41 1.12. 1.07. 1.13. 1.16. 1.10. 1.10. 1.04 1.06. 1.07. 1.14 1 18. 1.05. 1.11. 0.42.

9

-4. 2.

-1. 5. -0.1.

3.1 0.3.

0.3.

1.7.

0.8. -1.8. -2.2. -1.3. -0.1. -1.3. -2.6. -0.6.

1,C3. 1.1:

1. 26. C. $ 9. 1.17. 1.10. 1.1:. 1.10. 1.17 C.49. 1.06 1.1:

1.C3.

1. C1. 1.13. 1.2 7. 1. C 0. 1.19. 1.11. 1.13. 1. 0 9. 1.15. 0. f 3. 1. 04. 1.11. C. 9 3.

1C 0.8.

0.8.

1.0. 1.1.

1.1 0.8.

3.8

-0.3. -1.8. -3.9

-0.2. -1.:

-2.2.

. 0.40. 1.02. 1.23 1.14 0.99 1.16. 1.15. 1.16. 0.99 1.14. 1.*3. 1.C2. C.40.

C.41. 1.C4. 1. :. 1.17. 0.99. 1.15. 1.16. 1.17. 0.98. 1.13. 1.01. 1.04. 0.41.

11 1.8 1.3.

1.3.

2.0.

0.4

-0.6.

0.6.

C.8. -0.8. -0.4 0.5.

1.5.

1.4

. 0.41. 0.92. 1.22. 1.:6. 1.18. 1.04. 1.18. 1.06. 1.2J 0.92. 0.41.

. 0.42. C.94. 1.

. 1.25. 1.16. 1.33. 1.16. 1.::. 1.17. 0.91. 0.43.

1:

2.7.

2.6

2. 0. -0.4.

-1. 7. -i.1. -:.1.

-3. 2.

-2. 2. -0. 6 5.7 0.41. 1.0:. 1.12. 1.:7. 1.05. 1.07. 1.12. 1.02. 0.41.

0.43. 1.11. 1.16. 1.24. 1.C

. 1.21. 1.07. C.9S. 0.4:

1:

.. 5. 5..... 8. 3..... 3. 2.,... 2. 1.... 2. 5....4. 3....e. 9. - 3. 6............ 1.

6....

. 0.40. 1.C0. 1.14 1.15. 1.14. 1.00. 0.43.

f

. 0.43. 1.C3. 1.17. 1.13. 1.C3. 0.95. 0.33.

14 8.3.

7.3.

2.6. -1.6. -3.4. -5.3. -4.7.

iL_

$7ANOA93 0.43. 0.C3. 0.43.

AVI:AG!

C;VIA71:N C.45. C.31. 0.43.

.P 7 :1?.*E* ICE.

1:

80.C*1 5.8.

1.2. -5.8.

8 1.8 1

L i

MAP NO:

S1-5-1 DATE: 7/7/78 POWJR = 0%

N CONTROL ROD FOSITIONS:

Fag - 1.545 QPTR:

m T

D BANK AT 218 STEPS F = 2.400 NW - 1.001

, i Q

i-C BANK AT 228 STEPS F = 1.497 NE - 1.002 t

z 1

A.0 = 27.357 SW - 1.014 BURNUP = 0 5'D/MTU SE - 0.983 I

t 34

Figure 5.2 SURRY UNIT 1 - CYCLE 5 BOL PHYSICS TEST ASSEMBLYWIFE POWER DISTRIBUTION HZP, D-BANK IN e

n n

n s

n L

F2E: 07:3

. 0.32. 0.49. 0.3*.

F7!:I:7E2 MIALT E3

. 0.32. 0.50. 0.37.

rIA ;SID

.P:7 CIFFERIN:E.

2.0 2.0.

0.9.

.P 7 QIFFE80.:E.

0.47. 1.06. 0.95. 0.50. 0.95. 1.06. 0.47.

0.48. 1.C3. 0.97. 0.51. C.95. 1.06. 0.45.

2.5.

1.4. 1.7.

1.8.

0.3. -0.6.

1.1.

0.52. 1.23. 1.26. 1.06. 0.94 1.26. 1.26. 1.23. 0.5

. 0.53. 1.25. 1.26. 1 :S. 0.95. 1.27. 1.26 1.26. 0.5e.

1 2.2.

1.0.

0.6.

1.3.

1.0.

0.2.

0.1.

1.7.

3.8.

0.5:

1.14 1.43. 1.42. 1.26. 1.09. 1.26 1.4

. 1.43 1.14. 0.52.

0.52. 1.15. 1.43 1.43. 1.27. 1.10. 1.27. 1.43. 1.*4. 1.15. 0.52.

0.1.

0.6. -0.0.

0.5.

C.7.

0.6 0.8.

1.0.

0.9

0. 7.

1.4 0.47. 1. 3. 1.43. 1.23. 0.93. 1.16. 1.20. 1.16. 0.95. 1.05. 1.43. 1.23, 0.47.

\\

0.*6 1.*2 1.44 1.*7. 0.97. 1.17. 1.21. 1.19. 0.93. 1.27. 1.40. 1.24. 5.49.

5

-1.4

-1.4 0.8.

1.7.

1.3 0.3.

0. 7.

2.1.

2.6 1.2. -2.4 0.2 3.4

{

1.06. 1.26 1.4 0.*3. 0.60. 0.93. 1.12. 0.93. 0.60. 0.93. 1,42. 1.06. 1.*6 1.06. 1. 5. 1.44

1. 0. 0.62 0.9). 1.13. 1. 01. 0.6 3. 0.97. 1.40. 1.*6. '. c 5.

6 f

-0.8 0.8.

1.6.

4.3.

2.4 1.1.

1.4 3.2.

4.8.

1.9. -1.3

-0.0 1.5.

0.32. 0.95. 1.06

1. 6

?.16 0.95. 1. 0 6. 1. C5. 1.c4. C. 93 1.16. 1.26. 1.26. J.93. 0.3:.

C.31. 0.55 1.:6. 1.2s

..:. 1.01. 1. 06. 1.0 7. 1.C 6. 1.0 0. 1.19. 1.06. 1.:7. 0. 93 0.32.

7

-0.5. ~4.:

0.2.

1.3.

4.8.

3.1 1.9 0

.6 2.6.

0.5. -0.5 0.2. -0.0 0.

C.49. 0.50. C.94 1.09. 1.*0. 1.12

1. 03. 1. C 4. 1. C 5. 1.12. 1.*3. 1.C 9. 0.94. 0.50. 0.49 0.43. 0.5 0. 0.94. 1.09. 1.19.1.13. 1.07, 1.C6. 1.06. 1.12. 1.21. 1.C6. 0.95. C.51. 0.3 0.

8

- 0. 5. ~ 0. 2.

4.2. -0.2. -0.7.

0.6.

1.9 2.3.

1.3.

0.2.

0.4. -3.3.

0.5.

1.4

.5.

[~

l 0.32. 0.95. 1.06. 1.06. 1.16. 0.9&. 1.04 1.05. 1.04. 0.93. 1.16. 1.*6. 1.*6. 0.85. 0.32.

[

C. 31. 0. 93. 1.2 7. 1.06. 1.16. 0.97. 1.C6. 1.02. 1.03. C.9 9. 1.16. 1.:. 1.24 0.94. 0.33.

9

-0.3.

0.1.

0.4

  • 0.1. - 0. 7. - 0. 7.

1.9. -2.3.

0.6.

1.*

. -0.4. -3.3. -1.5 1.5.

4.e.

1.06 1.16. 1.42. 0.95. 0.60. 0.93. 1.12. 0.93. 0.60 0.93. 1.42. 1.:6. 1.C6.

l

. 1.07. 1.06. 1.41. 0.94. 0.60 0.96 1 09, 0.97. 0.60. 0.94. ". 37. 1.::. 1.C5.

10 0.5 0.5. -0.6

-1.4

-1.4

-0.3.

+2. 3. -0.4. +0.2. -2.0.

3.2. +:.9. -1.7.

0.47. 1.23. 1.43. 1.:5. 0.93. 1.16 1.00. 1.36, 0.95. 1.25. 1.43. 1.03. 0.47.

0.47. 1. 4. 1.43. 1.23. 0.94. 1.15 1.15. 1.14 0.93. 1.::

1.6*. 1.*1 R.46.

1:

0.9.

0.9. -0.4 a.0. -1.4

-1.6. -0.1. -2.3. -2.9. -3,0.

  • .5

. -1.3

-1.3.

. 0.52. 1.14. 1.43. 1.42. 1.26. 1.C 9. 1.26 1.42. 1.43. 1.14. 0.!!.

. 0.52. 1.14 1.40. 1.40. 1.25. 1.07. 1.23. 1.33. 1.39. 1.11. 0.52.

1:

1.2. -0.1. -2.0

-1.4

-1.3. +0.2. -2.4

.:.:. -F. 7. -2. 7.

-0. 0

. 0.5*. 1.13. 1.26. 1.26. 0.94. 1.26 1.26. 1.23. 0.5:

0.52 1.06. 1.06. 1.04. 0.91. 1.:3. 1.03. 1.21. 0.51.

11

-. 1. 8... 2. 4...r. s. 7.... 2. 1.... 3. 1.... 2. 8....1. 9.. 2. 3...

.1. 7...

0

. 0.47.1.C6. 0.95. 0.50. 0.9 5.1.06. 0.47.

0.43. 1. 0 9. 0.95. C.49. 0. 9 *, 1.04. 0.46.

l' 2.4 2.4 0.2

-2. 0. - 3.3. - 2.6.

-1. 7.

STAN:123 0.32

0. 4 9. 0.1*.

AV!21:3 DIV;A7:"N

. 0.32 0.49. C.31.

.PO7 0:FFE* NCE.

1r 7

s0.019 2.4 9.1. -3.5.

s 1.5 m_

MAP NO:

Sl-5-3 DATE: 7/7/78 POWER = 4%

N L_

CONTROL ROD POSITIONS:

FAH = 1.684 QPTR:

F{=2.570 NW - 1.013 j

D BANK AT 0 STEPS i

C BANK AT 219 STEPS

{ = 1.463 NE - 1.008 l

A.O. = 22.681 SW - 1.000 L_

BURNUP = 0 MWD /MTU SE - 0.979 f

I i

35

Figure 5.3 SURRY UNIT 1 - CYCLE 5 BOL PHYSICS TEST ASSEMBLYWISE POWER DISTRIBUTION I/E CALIBRATION - APDM FLUX MAP k

r.

n s

s a

n 6

r L

D G

k.

A FPID: Tt3

. L.44 0.79 0.44 Fr!:1 T!3

  • t*1Lt3

. 0.42. C.77. 0.43.

.7*T LIFF1%ZZ E.

-3.7

-3.7. -2.0 ft* A!TI3

.707 O!Fft2*M01.

. 0.42. 0.99. 1.1 1.11. 1.12. 0. 99. C.42.

. 0.42 0.53. 1.09. 1.C3. 1.11. 1.C0 0.42.

0.6 al.4. -2.3

-0.8. -1.1.

0.4 1.0.

0.43 1.03. 1.11. 1.:4 1.0*

1.06. 1.11. 1.03. 0.43 0.43. 1.03. 1.10. 1. :

1.C2. 1.:3. 1.10. 1.33. C.44 3

. 0.5.

0.4

-0.7. -1.5. -2.C.

-C.*

0.2.

C.7 -

1.9 0.43. 0.93 1.23 1.24. 1.18 1.05. 1.18. 1.24. 1.03. 0.93. 0.43.

. 0.43. 0.93. 1.03. 1.24 1.16. 1.::

1.16. 1.21. 1.00 0.94. 0.6, 4

0.4.

0.2.

C.4. -0.2

-1.5. -2.2. -1.6. -0.9

-3.0.

0.7 1.9.

0.4:, 1. C 3. 1. 2 0. 1.15. 1. C 3. 1.17 1.17. 1.17. 1. C 0 1.15. 1.20. 1.03 C.42.

0.41. 1. C;. 1. 2 3. 1.16. 1. 0 3. 1.16. 1.15. 1.16. 1. 0 3. 1.14. 1. 0 0

1. 4. C.43.

5

-1.3. +1.C.

0.5.

C.9

0. 6. - 3. 7.

-1. C. -0.6. -0. 3

-0.6 0.4.

1.9.

3.3 0.99 1.11. 1.24 1.C:. 1.16. 1.11. 1.13. 1.11. 1.16. 1.03. 1. 4. 1.11 0.99 l

0.95. 1.09. 1.*5. 1.02. 1.17. 1.11. 1.13. 1.12. 1.16 1.C3. 1.*4. 1.1:. 1.C1.

6

. -C.9

-C.9. C.5.

2.0.

0.8. -0.0. c.1.

0.8.

0.1.

0.1.

0.0. 1.5 2.3.

0.44 1.12

1. 4 1.18. 1.17. 1.11. 1.13. 1.06 1.10. 1.11. 1.17. 1.13. 1.26. 1.1

. 0.64 0.43. 1.13. 1.23. 1.17. 1.19. 1.12. 1.11. 1.37. 1.11. 1.31. 1.16 1.19. 1.*3. 1.1:. C.43.

7

-1.9

-1.4. -1.0

-0.2 2.2.

1.3.

0.7.

0.9 1.3.

0.

-0.5 0.7

-0.7. C.:

-0.7 t

0.79. 1.11. 1.0*. 1.05. 1.17. 1.13. 1.34. 1.03. 1.06. 1.13. 1.17. 1.C3 1.04 1.11 0.79 3.76

1. 0 9. 1. C 3. 1. 34. 1.16. 1.13. 1.07. 1.C5 1.07. 1.1 1.16. 1.C3. 1.C3. 1.C1

.79.

8

-1.9

~1.6. -1.5

-1.

. -C.7 0.1 C.8.

1.4

0. 5. - 1.1. -0. 3.

-1. 5. -1.4. -. 3. -0.1.

0.44. 1.12. 1.24 1.18. 1.17. 1.11. 1.13. 1. C6. 1.10. 1.11. 1.17. 1.18. 1 :=. 1.1

. 0.44 0.43. 1.1:. 1.05. 1.18. 1.16. 1.13 1.11. 1.c4. 1.10'. 1.12. 1.16. 1.16. 1.03. 1.1:. 0.44 9

-1.9. -C.2.

0.6 0.0. =0.7. -0.7 0.8

-0.0.

0.5.

1.

. -0.1. -1.5. -0.8.

0.6.

1.9 0.99. 1.11. 1.24. 1.CC. 1.16. 1.11. 1.13. 1.11. 1.16 1.:3 1.04. 1.11. C.99

. 1.*2. 1.14. 1.23 C.99 1.15 1.08. 1.11. 1.11 1.17. 0.52. 1. 2. 1.11. 1.51.

10

  • 8 2.3.

0.7. +0.8

+0.8. -2.1. -2.0. -0.0.

0. 7. -C. 5.

-1. 5. C.:.

2.0.

0.42. 1.C3. 1.23 1.15. 1.C3. 1.17. 1.17. 1.17. 1.00. 1.15. 1.00 1.03. 3.42.

. 0.42. 1.c4. 1.0c. 1.14. 1.C3. 1.16. 1.15. 1.14. 0.91 1.14. 1.15. 1.C:. 0.4;.

11 1.3.

1.3.

0. 3. -1.1.

-0. 3. - 0.5. -1. 7.

-2. 0.

-1. 0. -1. C. -0. 9. -C. :

1.0.

. 0.43 C.93. 1.20. 1.24 1.13. 1.*5. 1.18. 1.04. 1.20. 0.93. 0.43

. 0.43. 3.T2. 1.18 1.15. 1.15. 1.C 3. 1.17. 1.26. 1.10. 0. 9 2. 0.4 3.

1:

. -C.2. -0.5. -1.1. C.:.

0.3. -1.4. -0.9.

1.1

-3.0. -0.6

+0.5.

1 l

0.43. 1.33. 1.11. 1.;4

1. C 4. 1.04. 1.11. 1. 0 3 0.43.

)

. 0.44. 1.C5. 1.13. 1.23. 1.C2 1.:3. 1.13. 1.04. 0.43.

11

. 1. 3..... 2. 8..

-1. 1...2. 7..

-0. 8..... 2. 0... 1. 2. -0. 6..

1.9

. 0.42. C.99. 1.12. 1.11. 1.1:. 0.99 0.42 i

C.4 3.1.C 1.12. 1.09. 1.10. 1.00. 0.43.

14 2.8.

2.5. -C.2.

-1.=

. -1.4 0.4.

2.4.

STAQAT3 CIVIAT10'4

. 0.64. C.79. C.44 AVE *fS*

0.44 C.C3. 0.43.

.P07 ::FFISICE.

15 80.013 1.8.

0.4. -1.6.

1.1 m

MAP NO:

S1-5-4 DATE:

7/9/78 POWER = 50%

N 1.442 QPTR:

CONTROL ROD POSITIONS:

F

=

LH T

1.994 NW - 0.998 D BANK T 200 STEPS F

=

Q k..

C BA*iK AT 228 STEPS F,= 1.315 NE - 1.001 A.O. = 6.301 SW - 1.002

+

BURNUP = 0 MWD /MTU SE - 0.999 36

Figure 5.4 SURRY UNIT 1 - CYCLE 5 BOL PHYSICS TEST ASSEMBLYWISE PO'JER DISTRIBUTION I/E CALIBRATION - APDM FLUX MAP e

e n

r, s

s.

e n

e r

i~

a a

r.

A F*!0!:T!3 C.43. 0.*8. 0.43.

FFI;!:?ID P'I A!'.*!3 O.4

. 0.77. 0.42.

t'! A!?!c

.P07 CIFF19tG E.

-1.3. -1.4. -1.5

.FOT DIFF!RIN 1.

. 0.41. 1.00 1.12. 1.09 1.12. 1.C0. 0.41.

. 0.*2. 1.C0. 1.11. 1.0S. 1.10. 0.93. 0.42.

2. 7. -0.5.

-0. 8. -1. 0

-1.6.

1.9 0.6 i

0.43. 1.:3 1.12. 1.25. 1.C.

1.:5. 1.1:

1.C3. C.43.

O.44. 1.C4. 1.11. 1.24 1.04 1.04. 1.11. 1.C5. 0.44 3

0.4 1.0

-0.4. -0.4 0.2. -0.4. -1.1.

1.4 4.6.

i 0.4 3. 0.9 3. 1. 2 0. 1.25. 1.15. 1.C 5. 1.16. 1.25. 1.0 0 0.93. 0.43.

0.43. 0.94. 1. 21. 1.I5. 1.15. 1. C3. 1.19. 1.* 6. 1.:3. 0. 9 5. 0.44 1.3. 1.3.

3.3. -0.0

-0.4 0.6.

0.4. c.1.

1.7.

2.4 3.0.

g 0.41. 1.03. 1.20. 1.15. 0.99. 1.16. 1.16. 1.16. 0.99 1.15. 1.00. 1.C3. 0.41.

1 t

0.41 1.C4

1. 2 2. 1.17. 1. 0 0. 1.15. 1.16. 1.16. 1. C 0. 1.17. 1. 01. 1. C 5. 0.4 3.

5 0.5.

0.5. 1.1. :.0.

0.5. -1.2. -0.0. -0.2.

0.0 1.3.

0.4 2.2.

4.4.

1.00. 1.1:. 1.23. 0.99. 1.14. 1.10. 1.13. 1.10. 1.14. C.99. 1.25. 1.1

. 1.00.

'l

1. 01. 1.12. 1. 2 7. 1. C 1. 1.15. 1.10. 1.14. 1.10. 1.11. 1. 00. 1. 7. 1.13. 1. 0:

6

(

0.3.

O.3.

1.2.

1.7.

0.8. -0.0.

0.4.

0.4. -.1.

0.3. 1.1.

1.1.

1.6.

0.43. 1.1

. 1.25. 1.13. 1.16. 1.10. 1.0 9. 1.C6. 1.0 9 1.10. 1.16. 1.15. 1.:5. 1.12. 0.43.

0.42. 1.1:

1.:5. 1.19. 1.18. 1.12. 1.11. 1.06. 1.10. 1.09 1.15. 1.16. 1.24. 1.11. 0.4 7

-1.9. -0.1.

0.3.

0.9.

1.6 1.3.

1.1.

0.8.

O.3. -0.5.

0.9.

1.4. - 0. 8.

-1. 2. - 0. 9.

t

0. 73. 1. 0 9. 1. 04. 1. 05. 1.16. 1.13. 1. C 6. 1. 0 3. 1. 0 6. 1.13. 1.16. ' 1. C 3. 1. 04. 1.29. 0.73.
0. 77. 1.0 9. 1.C5. 1.C 5. 1.16. 1.13. 1.C 7. 1. 0 4 1.C6. 1.13. 1.17. 1. C 3. 1.e 4. 1. C 9. 0.7 9 4

-2.0. -0.2.

1.1.

0.4.-0.7.

0.3.

1.3.

1.0 0.4. 0.:.

0.3. -1.5. -0.6. -0.3. 1.3.

f 0.43. 1.1:. 1.25. 1.13. 1.16. 1.10. 1.09. 1.06. 1.09. 1.10. 1.16 1.18. 1.25. 1.12. 0.43.

0.42. 1.12. 1.06. 1.19. 1.16. 1.:9. 1.11. 1.C4 1.10. 1.10. 1.16. 1.16 1.*4. 1.13. 0.44 9

-1.9. 0.:

1.:

0.4. -0.7. *0.8.

1.2. -1.5.

0.4 0.4.

0.2. -1.5. -0.8.

1.3.

3.9 1.00 1.1:. 1.:5. 0.99. 1.14. 1.1:. 1.13. 1.10 1.14. 0.99. 1.25. 1.1

. 1.C*.

1.01. 1.13. 1.*6. 0.91. 1.13. 1.05. 1.11. 1.09. 1.14. 0.*9. 1.14. 1.10. 1.00.

10 1.0.

1.0.

0.0. *0.4. -1.0. -1.7. -1.e

-0.6.

0.2. -0.5. -1.4

-1.4.

0.5.

0.41. 1.03. 1.00. 1.15. 0.99 1.16. 1.16. 1.16 0.99. 1.15. 1.* 0. 1. C 3. 0.41.

. 0.42. 1.C6. 1.22. 1.14. 0.99. 1.16. 1.15. 1.15. 0.97. 1.15. 1.01. 1.c4. 0.42.

11 2.8. 2.8.

1. 2. - 0. 9. -0.1. -0.3. -1.3. -1.6. -0. 0.

-0. 3.

0.1.

0.7.

1.0.

0.43. 0.93. 1.00. 1. *5. 1.13. 1. C5. 1.1S. 1. 05. 1.2 0. 0.93. 0.43.

t 0.4*

0.95. 1.19 1.06. 1.19. 1.34 1.17. 1.:3. 1. 0 0.93. 0.44 1

4.6. 0.5. -0.9.

0.3.

0.5. -0.9. -1.3. -0.2. -0.5. *0.2.

3.3.

0.43. 1.03. 1.1 1.25. 1.04. 1.25. 1.1 1.23. 0.43.

0.44. 1.C5. 1.13. 1.04. 1.C:

1. 3. 1.11. 1.C3. 0.43.

1

..........-0.6...1.

8. -1. 2... -0. 4. -0. 6..... 1. 2...

.. 3. 2.....

1 3... 1. 4

. 0.41. 1.C 0. 1.12. 1.C 9. 1.12. 1. 6 0. 0.41.

. 0.42. 1. 02. 1.13. 1.C 5. 1.10. 0.99. 0.61.

l' l'

1.3.

2.2 0.7. -0.7. -1.3. -0.8

-C.3.

g 57U'W 0.43. 0.78. 0.43.

AV!2A t t!V 171:N 0.44. 0.79. 0.42.

.FC7 DIFF1'I!CI.

If 2.6 1.1. -1 3.

1.1 80.01:

MAP NO:

S1-5-5 DATE1 7/9/78 POWER = 50%

L CONTROL ROD POSITIONS:

FN 1.434 QPTR:

=

hH D BANK AT 185 STEPS FT = 2.037 NW 1.002 t

Q w

1.321 NE - 1.001 C BANK AT 228 STEPS F

=

2 i

A.O. = -2.006 SW 1.004 m

BURNUP = 0 MWD /lfrU SE - 0.993 t

3,/

Figure 5.5 SURRY UNIT 1 - CYCLE 5 BOL PHYSICS TEST ASSEMBLYWISE POWER DISTRIBUTION I/E CALIBRATION - APDM FLUX MAP se P

N f1 b

A n

w r

L L

w FS!:::T!3 3.42 0.77. 0.42.

72 01CTED MEAI *i 3 0.42. C.76. 0.42 ME!!G13 1

.F T CIFFIEU:01.

. -1.2. -1.2. -1.2

.P:7 C:FF12D:01.

. 0.4 1.C1. 1.11. 1.06. 1.11. 1.31. 0.41.

. 3.44. 0.9S. 1.C9. 1.04. 1.is. 0.99 0.42.

5.0

-0.6. -2.3. -1.8. -1.2. -1.3.

1.6

. 3.43 1.:4. 1.13 1.05 1.c4. 1.25. 1.13 1.04. 0.43.

. 2.45. 1.06 1.1C 1.**

. 1.02 1.23. 1.11. 1.C.

0.43.

1 4.4

  • c. -1.9. :.4. -1.8.

-1.*

. -1.3.

2.0 6.3.

0.43 0.44 1.::. 1.06. 1.19 1.C5. 1.19. 1. 6. 1.22. 0. 94. 0.43.

. C.44. 0.9 5. 1. 01. 1.25. 1.17. 1.c4. 1.17. 1. "5. 1.13. 0. 9 6. C.45.

4 1.1.

1.1

-0.2

  • -C.9. -1.5. -1.1. -1.1. -1.0.

0.9.

  • 3.

4.0.

j J

3.

1.c4. 1.2*. 1.16 3.99. 1.17 1.17. 1.17. 0.99. 1.16. 1.:'. 1.04. 0.4*

2.41. 1.*3.

1.**

. 1.16. 0.99. 1.16 1.16. 1.16. C.99, 1.16 1.21. 1.37. C.44 3

-1.3. -1.3. c.1.

4.3.

0.3. -0.3. -0.5. +0.6. -0.5.

0.1. -0.:.

3.C.

6.2.

a *1 1.13. 1.06. 0.99. 1.11 1.09. 1.13. 1.09. 1.11. 0.99. 1.26. 1.13. 1.01.

1.C0. 1.11. 1.27. 1.C1. 1.12. 1.10. 1.14 1.10. 1.10. 0.99. 1.26. 1.14. 1.03.

6

-1.1

-1.1.

0.4 2.0.

0.8.

0.1.

0.4.

0.3.

-1. 0. +0.1.

-0. 0.

1.6.

2.3.

0.4*

1.11. 1.25 1.19. 1.17. 1. 0 9. 1. 0 9. 1. 06. 1. c 9. 1. C 9. 1.17, 1.19. 1. 2 5. 1.11 C.42.

0.42. 1.13. 1.04 1.19. 1.19. 1.11. 1.1 1.07. 1.10 1.09. 1.15. 1.17. 1.23. 1.05 0.41 7

l

-J.9. -0.9.

0.9

-0.1.

2.2.

1.5.

1.1.

1.0.

1.0

-0.3. -1.0. -1.4.

-1.7

-1.5. -1.3

(

O.77. 1.0e. 1.04. 1.C5. 1.17. 1.13. 1.C 6. 1.C 3. 1. 06. 1.13 1.17. 1.C5. 1.04. 1. 06. 3. 77 0.76. 1.C4 1.03. 1.C4. 1.16. 1.13. 1.C7. 1.C4. 1.06. 1.12. 1.16 1.03. 1.C*. 1.*4. 0.77.

2

-1.0. -1.0. -1.1. -1.0. -0.3.

0.2.

1.2.

1.4.

0.3. -0.9. -0.4. -1.6. -1.9

-1.3 1.2.

0.4*. 1.11. 1.25. 1.19. 1.17. 1.09. 1.09 1.06. 1.09. 1.09. 1.17. 1.19 1.25. 1.11. 0.42.

0.42. 1.11. 1.25. 1.15. 1.16 1.39. 1.10. 1.C4 1.09. 1.10. 1.16. 1.17. 1.*4. 1.13. 0.44 9

-0.9, -0.2.

0.0. -0.3

-0.3. -0.8.

1.1. -1.5 0.1.

0.8. -0.4. -1.6. -1.0 1.7.

5.3.

1. 01. 1.13. 1. *6. C. 9 9 1.11. 1.01 1.13. 1.09. 1.11. 0.99 1.*6 1.11. 1.C T

. 1.C0. 1.14. 1.26 0.93 1.10. 1. C S. 1.11. 1. C 9. 1.11. 0. 99. 1. 4. 1.1*. 1.C*.

1 1.2 1.1. -C.0. -0.9

-1.0. -1.s

-1.5. -0.2 0.3

-0.6. -1.5. -0.5.

1.*

0.42. 1.C4. 1. '. 1.16 0.99 1.17 1.17. 1.17. 0.99. 1.16. 1.22. 1.04. C.4 11 0.43. 1.CS. 1.23. 1.14. 0.99 1.16. 1.15. 1.15. 0.91. 1.15. 1.*:. 1.06. 0.43.

[.

3.3.

3.3.

1.4. -1.1. - 0. 4. - 0. 5.

-1. 3.

-1. 5. -0. 7. - C. 7.

0.3.

1.4.

2.1.

l t

. 0.44. C.94. 1.22. 1.*i. 1.19. 1.C5. 1.19 1.~ 6. 1.22. 0.94. 0.4 3.

C.45. 0.97. 1.::

1.26. 1.19. 1.C4. 1.17. 1.25. 1.21. 0.05. C.45.

12 5.4.

2.9. -1.1

-0.1. -0.0. -1.3. -1.7. -0.8. -0.3 1.1.

4.0.

. 0.43. 1.c4. 1.13 1.:5. 1.04. 1. 3. 1.13. 1.c4. 0.43.

. 0.45. 1.13 1.16. 1. 0 3. 1. 01. 1.0 2. 1.11. 1. C +. 3. 4..

11

.. 5. 4..... 5. 5... 3. 0..

-1. 2.

. 2. 6.... 2. q,..1. 0... - 0. 3.... 0. 2...

. 0.42. 1.01. 1.11. 1.06. 1.11. 1.C1. 0.42.

. 2.44. 1.06. 1.13. 1.03. 1.08. C.99. 0.41.

5.5 5.3.

1.6. -1.0. -2.3

-1.6. -0.9.

STA'3ARD 0.42. 0.77. 0.42.

AV2Ft.3!

1!.

Civ14 TION

. 3.44 0.78. 0.41.

.PC7 DIFFC E C.

  • 0.C16 4.5.

1.8. -

.4 e 1.5 MAP NO:

S1-5-6 DATE: 7/10/78 POWER = 57%

N 1.465 QPTR:

CONTROL ROD POSITIONS:

F

=

LE T

Q = 2.163 NW - 0.992 D BANK AT 162 STEPS F

m 1.385 NE - 1.007 C BANK AT 228 STEPS F

=

z A.O. = -16.953 SW - 1.004 BURNUP = 0 MWD /MTU SE - 0.997 38 e

Figure 5.6 SURRY UNIT 1 - CYCLE 5 BOL PHYSICS TEST ASSEMBLYWISE POWER DISTRIBUTION I/E CALIBRATION - APDM FLUX MAP s

n F2!*!:?13 0.44 0.79. 0.=4 FP;;*:TE3 P! AT.'" E0.

0.43. C.76. 0.43 FC E*7*D

. PCT IFFE*E*PE.

-2. 2.

-0. 3. -1. 2.

.FOT DIFF K!fCI.

0.40. 0.97 1.09 1.10. 1.C9 0.87. C.42.

C.42. 0.97. 1.CS. 1.03. 1.09. C.93. C.4

1. 7.

-0. 6.

-1. 2. -1.6. -0. 7 0.2.

1.3 0.41. 1.0 3. 1.C 3. 1. 2 3 1.C5. 1.23 1.C3 1.0C. 0.43.

C.44. 1.03 1.C9. 1.22 1.04. 1.02. 1.C3. 1.C

. 0.45.

1 1.8.

2.3 0.4

-0.6

-C.6. -0.1. -0.1.

1.3.

3.1.

3.43 0.9 1.17 1.24. 1.17. 1.C6. 1.17. 1.2+. 1.17. C.92 C.*3.

. 0.44 C.94 1.:. 1.24. 1.15 1.04 1.16. 1.23. 1.16. 0.94. C.45.

6 1.3.

1.9. :.6 0.6. -1.6

-1.6. -0.4. -0.4 C.8.

1.7.

3.3.

0.42. 1.0:

1.17. 1.16. 1.03. 1.19 1.19. 1.19 1.C3. 1.16. 1.17. 1.C0. 0.42.

g 0.4*. 1.01. 1.19. 1.17. 1.03. 1.16 1.16. 1.17. 1.01. 1.15 1.16. 1.e5 C.'5.

5 1.2.

1.1.

1.4.

1.4.

0.3. -1.2

-0.4

-1.C. -1.5. -0.1.

1.1.

  • .2 7.

C.

  • 7. 1. C 5, 1.:4. 1. C 3, 1.19 1.13. 1.16. 1.13. 1.19. 1. C 3. 1. 04. 1.00 0.97.

l C.95. 1. 2 9. 1.05. 1. e 4 1.19. 1.1 1.17. 1.12. 1.13. 1.e*. 1.05. 1.11. 1.01.

6

(

C.*

0. 9.

0.6.

0.7. -0.2. -0.6.

1.1. -0.6. -3.4. -1.3.

0.8.

  • 9.

3.6.

0.44 1.09 1.23. 1.17. 1.19 1.13. 1.13. 1.03. 1.13. 1.13. 1.19 1.17. 1.*3 1.C9 0.44 C.43 1.:9. 1.03. 1.17. 1.19. 1.1:. 1.12. 1.09 1.13. 1.11. 1.13 1.17. 1.*3. 1.10. 0.44 7

-0.9. -c.3.

0.4.

0.1.

0.5. -0.:

-0.4 0.7.

0.3

-1.8. -3.1 0.3.

C.3.

0. 3. 0.:

s C.79 1.10 1.C5 1.06. 1.19. 1.16. 1.CS. 1.06. 1.C3. 1.16. 1.19. 1.06. 1. 3. 1.10 0.79.

C.79. 1.09. 1.04 1.C5. 1.16. 1.13. 1.07, 1.06. 1.05. 1.14 1.13. 1.C4. 1.05. 1.11. C.81.

t

-1. 0. -C. 7.

-0. 6. -0.5. -0.4

-0.8

-0.7.

0.1.

O.1. -1.2

-0.4. -1.6 0.3.

C.9.

1.4.

0.64. 1. 0 9. 1. 3. 1.17. 1.19. 1.13. 1.13. 1. C8. 1.13. 1.13. 1.19. 1.17. 1.23

1. C 9. 0.44 0.43. 1.1:. 1.05. 1.17. 1.13. 1.12. 1.12. 1.C5 1.13. 1.14 1.13. 1.15. 1. :

1.11. C.43.

-0.9 0.9

1. 7.

C.6. -0.9

-0.9. -0.7.

-3.0.

0.4.

1.3

-0.*

. -1.6. -C.5 1.6 2.2.

0. 9 7. 1. C S. 1. 24. 1.03 1.19. 1.13. 1.16. 1.13. 1.19. 1.C 3. 1.24. 1.C0. 0.97 1.C:. 1.13. 1.03. 1.C1. 1.17. 1.Cv. 1.1 1.1:. 1.00. 1.03. 1.*2 1.C3. 0.5 5 1

4.5 4.5 1.1. -1.5

-1.6. -3.1. -3.0

-0.6.

0.9. -0.5

-1.6

-0.5 c.9

. e. 4 2. 1. e 3. 1.17 1.16 1.03. 1.19. 1.19. 1.19. 1.c3 1.16 1.17, i.et. 0.4:

0.44. 1.C4. 1.19 1.13. 1.03. 1.19. 1.16 1.13. 1.0*. 1.15. 1.17 1.C1. 0.*2.

11 4.2.

4.2.

1.4. -:.:

-3.1.

0.1. -2.4

-3.0. -0.6. -0.C. -0.3.

C.4.

1.1 t

. 0.43 0.9 1.17 1.04 1.17. 1. C6. 1.17. 1.24 1.17. 0.92. C.43.

. O.43. 0.94. 1.14. 1.25. 1.19. 1.05. 1.15. 1.25. 1.18. 0.93. 0.44.

11 4.0.

1.5. -2.2.

1.1.

2.0. -1.1. -1.3.

1.3.

0.5.

0.5.

15.

0.43. 1. 00. 1. C S. 1.23. 1.C5. 1.23.1.Ct. 1.C0. 4.43.

0.45. 1.C2. 1.11. 1.::. 1.02. 1. 2. 1.11. 1.C2. C.44.

1:

... 7.

-0.2.

9... -0.4... 2. 6... 1. 7....C 9.

3 0..

0 2

... 2.

0.42. 0.97. 1.09 1.10. 1.09. 0.97. 0.42.

0.43. 0.99 1.09. 1.0$. 1.09. 1.C0. C.43 1=

{

2.2.

  • 1. -0.3

-1.6. -0.4 2.7.

0.6.

37AC'#O 0.44. 0.79. C.44 A'.'IP A:!

1:

C.*5. 0.01. C.45.

.F*T D*F M E:01.

Ctv1ATICM.

80.016 1.8.

1.7.

1.3.

1.4 1

MAP NO:

Sl-5-7 DATE: 7/10/78 POWER = 67%

t Fh.1.430 QPTR:

l CONTROL ROD POSITIONS:

L~

T D BANK AT 196 STEPS FQ = 1.901 NW - 0.999

.t

[

C BANK AT 228 STEPS F

1.270 NE - 1.003

=

l 2

A.O. = 3.451 SW - 1.004 i

L.

BURNUP = 0 MWD /MTU SE - 0.994

\\

.\\

L 39 j

Figure 5.7 SURRY UNIT 1 - CYCLE 5 BOL PHYSICS TEST ASSEMBLYWISE POWER DISTRIBUTION I/E CALIBRATION - APDM FLUX MAP 4

P N

M L

K J

n w

P t

w 6

m

..........e....

..............e.

P2!:1:T!3

. 0.44. 0.03. 0.44.

F7:3::T13 P1!'.'t:

C.44. 0.79. 0.44 t*! a G**

  • 1

.PC7 DIFFIRif01.

-1.6

-1.6. -3.S.

J:7 C11Fl*Z'"l1.

. 0.42. C.97. 1.10. 1.1 1.10 c.17 C.40

. 0.43. 0.96

1. C 3. 1.10. 1. C 9 0.'S 3.4*

2 2.5. *1.7

-1.7. -1.6. *0.4.

C.3.

1.5.

l

. 0.43. 1.00. 1.CS. 1.*3 1.C3. 1.23 1.C3. 1.03. 0.43.

. 0.44. 1.*1. 1.06. 1.20

1. 0 3. 1. 21. 1. C 7. 1. 41. 0. 4 5.

3 2.2 1.2. *1.1

-1. 7. -1. C. -1. 2.

0. 9 0.9 3.2.

. 0.43. 0.92 1.16. 1.03. 1.16. 1.*6 1.16. 1.03. 1.16. 0.9:. 0.4 3.

. C.43. C.9

. 1.16. 1.23. 1.15. 1.04. 1.14.1.1.1.16.C.93.C.44 4

0.8.

0.7.

3.1. -C.6

-1.4. -1.7. -2.0. -2.0.

0.0 1.5.

2.6

  • * 'I I

0.4:. 1.00. 1.16. 1.15. 1.03. 1.19. 1.1S. 1.19. 1.03. 1.15. 1.16. 1.C3. 0.4:

C.41. 0.99. 1.16. 1.16. 1.03. 1.18. 1.17. 1.17. 1.C:

1.15. 1.17. 1.C:

0. f.3.

(

- C. 3.

  • 0. 3.

0.1 0.2

-0.0. -0.8. -1.0. -1.5

-1.4

-0.7.

1.0. :.3 3.3 0.97. 1.C3. 1.23. 1.33. 1.:1. 1.13. 1.16 1.13. 1. 21. 1. C 3. 1. 0 3. 1. C S 0.97 0.97. 1.37. 1.03. 1. 4 1.02. 1.1:. 1.15. 1.13 1.*:. 1.03. 1.04 1.13. 0.99 6

-0.5. -0.5.

0.1.

0.3.

0.*

-C.7

-0.5

-0.3. *1.1. -0.4 0.5.

1.8.

.1.

0.44 1.10. 1.23. 1.16. 1.19 1.13. 1.13. 1.03. 1.13 1.13 1.19. 1.16 1.23. 1.10. C.44.

7 0.44 1.09. 1.:2. 1.16. 1.*:. 1.14. 1.1:. 1.C3. 1.13. 1.13. 1.17. 1.17. 1.0 2. 1.10. 0.44

-1.1. -1.0

-C.S. -0.4 0.9 0.9. -0.6.

0.2.

C.6. -0.1. -1.2.

0.6. -C.5.

C.3. -0.6.

C.33. 1.1:. 1.35. 1.*6. 1.18. 1.16 1.CS. 1.C6. 1.03 1.16. 1.13. 1.C S. 1.0 5 1.1:

C.!3.

g 0.83 1.11. 1.04. 1.C'.

1.16. 1.14 1.C9 1.07. 1.1C. 1.13. 1. 1. 1.c4. 1.04 1.10. C 3 2

-1.1

-1.1

-1.2. -1. 2.

-1. 6.

1.6.

1.0.

1.0.

1.5.

1.4

.3. -1.0

-1.3.

1.6.

1.*

g I

0.44 1.10. 1.23. 1.16. 1.19. 1.13. 1.13 1.03. 1.13. 1.13. 1.19. 1.16 1.:3. 1.13. 0.44 1

0.44. 1.13. 1. 4. 3.16. 1.17. 1.11. 1.11. 1. C 6 1.15. 1.15. 1. 3. 1.15. 1. 01. 1.11. C.4 6.

9 5 -

-1.1.

0.3.

3.9

-0.2. -1.6. -1.6

-1.6. -1.7.

2.3. :.3.

1.3. -1.0. -1.3.

C.7.

3.7

0. 9 7. 1. C 3. 1. 0 3. 1. 0 3. 1. 21. 1.13. 1.16. 1.13. 1. 01. 1. C 3. 1.
  • 3. 1. C 3. 0. 9 7 1.03 1.11. 1.:4. 1.C:

1.10. 1.11. 1.14. 1.13 1.03. 1.33. 1.00 1.C7 C.t?.

1 3.1.

3.1.

2.6

-1. 3. -1. 3. -1. 7.

-1. 7 C.3.

1.1.

0.1. -1.C.

0. 7 0.0 0.42. 1.00. 1.16. 1.15. 1.03. 1.19 - 1.16. 1.19 1.C3. 1.13. 1.16. 1.00. 0.42.

0.43. 1.C2. 1.17. 1.14. 1.C3 1.19. 1.17. 1.17. 1.C 1.14. 1.16. 1. :. C.42.

11 2.6

.6 1.0

-1.0

-0. 0.

-0. 0. -1. 3

-1. 7. -0. 8. - 0. 9. - 0. 5.

0.0.

C.4.

. 3.43. 0.92. 1.16 1.3 3. 1.16. 1.C6. 1.16. 1. 0 3. 1.16. 0. 92. 0.4 3.

. 0.44 C.9 1.15

1. =. 1.17 1.C4. 1.14 1.03. 1.15. 0.91. C.44.

1 2.1 0.3. -1.0.

0.6.

0.9

-1.2. -1.2. -0.4

-2.8

-0.7 1.2

[

0.43. 1. 0 0. 1. 03. 1. 3. 1. C 5. 1.23. 1.t S. 1. 0 3. 0.4 3 l

. 0.44

1. 3 3. 1.10. 1.01. 1. C :

1.20. 1.07. 3.49. 0.43.

13 2.6 3.0. :. 3. -C. 9. -0.8. -1.7.

-0. 3. -0. 5.

-0. 0.

s

..r..........................................................

~

. 3.42. 0.97 1.10. 1.1*. 1.13. 0. 9 7. C.4 0.43. 1.C2. 1.10. 1.11 1.05 0.96. 0.41 14 1

3.0.

3.1.

C.5

+1.1. -1.4

-0.6

-0.2.

j*

ST A A*'3 0.44 0.20. C.44

..P 7 O!FFE C CE.

15 MUI E 01Vla71 M 0.46. C.81. 0.44.

8C.013 3.1.

1.4. -1.3 8

1.*

}

L.

MAP NO:

Sl-5-8 DATE: 7/10/78 POWER = 88%

N l

CONTROL ROD POSITIONS:

F'AH = 1.408 QPTR:

1.798 NW - 0.996 D BANK AT 218 STEPS F

=

m 1.213 NE - 1.000 C BANK AT 228 STEPS F

=

2 e

i A.O. = 4.043 SW - 1.007 L

BURNUP = 0 MWDhfrU SE - 0.997 k'

40

Figure 5.8 SURRY UNIT 1 - CYCLE 5 BOL PHYSICS TEST ASSEBLYWISE POWER DISTRIBUTION d

I/E CALIBRATION - APDM FLUX MAP a

e i.

1 1.

K J

n 4

r

...............e PT!!I:TED 0.44 C.31. 0.44 F*!!'CTE3 r*!A!Jt:

. 0.44. 0.79. 0.44.

rIC."*:

1

.FOT C1FFERIN 1.

. -1.6. -1.6. -1.3.

.P 7 C*?F*:ENCE.

. 0.41. 0.97. 1.10 1.12. 1.10. C.97. C.41.

. 0.42. 0.96. 1.C9 1.11. 1.09. C.94. 0.42.

. 2.2. -.8. -1.1. -1.3

-1,1. -:.S 1.1 3.43. 1.00. 1.*1 1.23 1.05

1. 0 3. 1. C 3. 1. 0 3. C. 4 3.

i 0.44. 1. 01. 1. 0 7. 1. *:. 1.C5 1.21. 1.c4. 1.*1. 0.45 2.0.

1.2.

    • .4. -0.8

-0.8. -0.9

-1.0.

1.1.

3.9 0.43. -.91. 1.24. 1.*3 1.16. 1.C6 1 16. 1.*3. 1.16. C.91. 0.43.

c.44. 0 c:. 1.17 1.23. 1.15. 1.05. 1.15. 1.22. 1.17. 0.93. 0.44 4

2.2.

1.0.

0.4. -0.4

-1.1. -0.S. -1.0. -1.1 0.4 1.4 2.6.

'/

. 0.41. 1.C0 1.1.

1.15 1.C3. 1.19 1.13. 1.19. 1. C 3. 1.15. 1.16. 1. * *. C. 61.

(

0.41. 1.C3. 1.17. 1.16. 1.C3. 1.17. 1.17 1.17. 1.C 3. 1.15. 1.16. 1.;*. C.4 3.

. -0.7.

0.4 0.4 C.4

-0.2

-1.6. -1.2. -0.9. -3.7. -0.1.

-0.

2.2 ae.7.

C. 97. 1.C S. 1. 2 3. 1. C 3. 1.0 2. 1.13. 1.16. 1.13. 1.02. 1. C 3. 1.0 3. 1.C 3. ".97.

l

. 0.93. 1. 0 7. 1. 23

1. C 4. 1. 22. 1.11. 1.15. 1.13. 1. :1. 1. 0 3. 1.0 3. 1. C 9 0.9%.

6

-0.7. -0.7.

0.2.

0.7. -0.0

-1.7. -0.3 0.1. -0.6

-0.3. -0.1.

1.3

  • 1.

t C.44 1.10 1.23. 1.16. 1.19. 1.13. 1.13. 1.08. 1.13. 1.13. 1.19. 1.16. 1.03. 1.10. 0.44 C.44. 1.C9. 1.:2. 1.16. 1.19 1.14. 1.14. 1.09. 1.13. 1.13. 1.17. 1.16 1.01 1.39. 3.d 7

C.1. -0.3. -0.7. -0.3.

C.*

0.7 1.C.

1.0.

0.6. -C.4. -1.1. -0.5. -1.1

-C.7

-1.1.

0.81. 1.1*. 1.05 1.04. 1.18. 1.16. 1.CS 1.C6. 1.C3. 1.16. 1.18 1.C6 1.*5 1.12. 0.!1.

0.81. 1.1:. 1.C 3. 1.C 5. 1.17. 1.14. 1.09. 1. 0 7. 1.C 3. 1.15. 1.16. 1. 04. 1.C 4. 1.11. 0.f i.

6 0.1, -0.4

-0.6

-C.6. -1.0. -1.C.

1.0 1.0.

0.3. -c.7. -C.1. -1.3. -1.4. -1.

0.3 0,44 1.10. 1.23. 1.16. 1.19. 1.13. 1.13

1. C S. 1.13. 1.13. 1.19. 1.1G. 1. 0 3 1.10. 4.44.

C 4 1.11. 1. 3. 1.17. 1.17. 1.12. 1.11. 1.*3. 1.13 1.15. 1.19. 1.14. 1.:1. 1.11 C.46 9

0.1 0.9 1.2.

0. 3.

-1. 0. -1. 0

-1.0

- 0. 3.

C.7 1.5. -0.0. -1.8. -1.0.

1.1.

3.6.

0.97. 1.C4 1.23. 1.03. 1.22. 1.13. 1.16. 1.13. 1. :. 1.03. 1.23. 1.CS. C.97,

1.C0. 1.11. 1.04. 1.C2 1.00. 1.10. 1.13. 1.13. 1.*2. 1.C2. 1.01. 1.07 3.91.

10 3.1 3.1.

0.6

-1.3. -1.3

  • .3

-2.3

-C.:.

0.o 0.3. -1.7. -4.5 1.2.

0.41. 1.C3

1. !c. 1.15. 1. 0 3. 1.19. 1.13. 1.19. 1. 0 3. 1.15. 1.16. 1.CC
.41.

0.43 1.*2 1.17. 1.13. 1.03 1.13. 1.16. 1.16. 1.00 1.14 1.16. 1.31. *.40.

11 j

3.0.

3.0 1.0

-1.6

-0.5. -3.5. -2.0. **.3. -1.5. -1.4

-C.1. 1.;.

2.1.

{

. C.43. 0.91 1.16 1.23 1.16. 1.0 1.16. 1.:3. 1.16. 0.91. C.43.

. 0.44. 0.9

. 1.14. 1.03. 1.17. 1.04. 1.15. 1.04 1.1G. 0.92. C.45.

1 2.8. 1.1

-1.6.

0.1.

0.5

-1.4. -1.1 0.3.

0.2 0.6.

3.4.

0.43. 1.C0. 1. 3. 1.*3. 1.C5. 1.23. 1.C6. 1.03. 0.43.

f 0.44. 1.03. 1.10. 1.:1 1.:3. 1.2:. 1.10. 1.01. C.44.

13

3. 1..... 3. 4.. 2.3...-1.0...

.2. 6... -0.7...... 2. 0..... 1. 7... 1. 9..

1.10. 1.12. 1.10. 0.97. 0.41 0.41. 0.97

. C.43.1.01 1.11. 1.1*. 1.C9. 0.93. 3.4*

b 3.4 3.6 1.1

-0.7

-1.0 0.6.

2.4

(

STMN3

. C.44 0.81. 0.44 nPA:t

!VIAT*N

. 0.46. 0.C*. C.44

. POT 01.*?D M;t.

  • 0.813 3.9 1.0. -1.2.
1.:

L-MAP NO:

S1-5-9 DATE: 7/11/78 POWER = 98%

f L

CONTROL ROD POSITIONS:

FEH = 1.415 QPTR:

Ff = 1,841 NU - 0.998 D BANK AT 224 STEPS L-NE - 0.998 C BANK AT 228 STEPS S = 1.220 e

PTHRESHOLD = 98%

A.O. - -2.899 SW 1.007

,u BURNUP = 0 MWD /MTU SE 0.997 41

~.

Figure 5.9 SURRY UNIT 1 - CYCLE 5 BOL FHYSICS TEST ASSEMBLYWISE POWER DISTRIBUTION HFP, EQ. XENON l

a e

n n

w a

n t

4 i.

rrt:::7ts

. 0.44 0.c3. 0.44 r ic::T o r'11.S'.** E S 0.43. 0.78. 0.43.

t*U 'M:3

.P07 21FF28 DOI.

. -3.0

-3.1

  • .7

. PCT I,ITFCtMC2.

C.42. 0.97. 1.10. 1.1

. 1.10. 0.97. 0.42.

0.4 3. 0. 9 7. 1. C 5. 1.10. 1. 0 7. 0. 9 5. 0.4 2.

2.9

-0.6. -1.5

=2.1. -0.5. -2.1.

0.6 0.43. 1.00. 1.06. 1.:3 1.C5 1.23. 1.08. 1.00. C.43.

. C.44 1.01. 1.07. 1.2*

1.C5. 1.2

. 1.06. 1.C1. 0.45.

'J 2.6.

1.5. -0.3

-0.5. -0.1

-0.7

-1.3.

1.4 4.3.

0.43. 0.90. 1.16. 1.23. 1.16 1.06. 1.16. *.23 1.16. 0.92. 0.43.

0.'4. C.92. 1.17 1.23. 1.16. 1.06 1.16 1.23. 1.17. 0.93. C.44

~

1.1.

1.0.

0.4. -0.2

-C.4.

0.2 0.0. -0.3.

0. 9.

1.8.

2.6.

f.

0.42. 1.00. 1.16. 1.15 1.03. 1.19. 1.16. 1.19. 1.c3. 1.15. 1.16. 1.00. 0.42.

0.42. 1.00. 1.17. 1.16 1.03. 1.18 1.15. 1.19. 1.c3. 1.15 1.16 1.01. 0.43.

I

=0.0. =0.0.

0.4 0.5 0.0. -C.9

-0.2. -0.1 0.0.

0.4. -0.4 1.5.

4.1.

O.97 1.CS. 1.23. 1.03. 1.01. 1.13. 1.16. 1.13 1.21. 1.03. 1.23. 1.C3. 0.97.

. C.*6. 1.*7. 1. 3. 1.04

1. :. 1.12. 1.16 1.13. 1. 21. 1. C 3. 1. 3. 1.10. 1.0 3.

4

-0.9. - 0. 9 0.1 1.1.

0.3

-0.5. -0.0. -0.2. -0.4 0.0. -0.0 1.7.

0.9 0.44. 1.10. 1.*3. 1.16. 1.19. 1.13 1.13. 1.03. 1.13. 1.13 1.19. 1.16 1.23. 1.10. 0.44 0.44.1.C9.1.01.1.16 1.00. 1.14 1.13. 1.C3. 1.12. 1.13 1.13. 1.10. 1.23. 1.11. 0.44 7

-0.9. -1.1. -1.5. -0.6.

1.2 1.2 0.1.

0.1

-0.:. -C.4. -0.4.

1.6.

0.5.

1.2.

C.5.

j l

t 0.50. 1.12. 1.C5. 1.06. 1.18 1.16. 1.00. 1.C6. 1.CS. 1.16. 1.18. 1.06. 1.C5 1.1:. C. f. 0.

0.00. 1.11. 1.05. 1.C5. 1.17. 1.15

1. C 3. 1. 06. 1. 0 5. 1.16. 1.19 1.c4 1.05. 1.12 3.C*.

t

-C. 9. -0. 9

-0.6. - 0. 9

- C. 9.

-0. 9.

0.2.

0.2.

0.2. -0.1 0.5. -1.0

-0.1

-C.4 1.6 0.*4 1.10. 1.:3. 1.16. 1.19 1.13. 1.13. 1.06 1.13. 1.13. 1.19 1.16. 1.23 1.10. 0.44 C.44 1.10. 1.23. 1.16. 1.19. 1.12. 1.12. 1.06. 1.14 1.15. 1.19. 1.14. 1.21. 1.11. C.44.

S

-0.9. c.1.

0.6

-0.1. -0.9. -0.9

-0.9. -1.9 1.0.

1.6 0.:. -1.C. -1.1 1.0.

3.5.

0.97 1.CS. 1.23. 1.33. 1.21 1.13. 1.16 1.13. 1.21. 1.03. 1.t3 1.CS 0.97.

7

. 0.99. 1.09. 1. 3. 1.C1. 1.20. 1.11. 1.1

. 1.13. 1.0

. 1.03. 1.21. 1.07. 0.97.

It J

1.6.

1.6.

0.1. -1.0. -1.0

-1.9. -1.9.

C.0.

0.9

-0.5. -1. 7. -1.1. c.2.

\\

3.*2. 1.0*. 1.16. 1.15. 1.C3 1.19 1.13. 1.19. 1.03 1.15. 1.16. 1.CC. C.42.

. o.42

1. '. 1.17. 1.14. 1.C3. 1.19 1.17. 1.16. 1.C:. 1.14 1.16 1.00. C.4*

11 2.3.

2. 3.

0.8. -1.2.

0.0.

0. 0.

-1. 5. -1. 9. - 0. 8.

-0. 9. - 0. 3.

0.7.

1.5.

. 0.43. C.9 2. 1.16. 1.2 3. 1.16. 1.06. 1.16. 1.2 3. 1.16. 0. 9. 0.43.

4.4*

0.93. 1.15. 1.24. 1.18. 1.05. 1.13. 1.04. 1.ls. 0.91. 0.45.

1; 3.1.

1.4. -1.2.

0.7.

1.2. -0.7. -1.:

0.4

-0.5. -0.5.

3.4

{

0.43. 1.C 0. 1. C 3. 1.2 3. 1.C3. 1.2 3. 1.C3 1.00. 0.43.

f C.4*. 1. C 3. 1.10 1.2:

1.03. 1.01. 1.C9

1. C 0. 3.4 3.

1:

..t. t....... 1..I.4. 6..

. m 2.... 3. 2.... 2. 6...

.0. 1.....1. 8..

.0. 9 3

0 c.

0.'

s

. 0.42. 0. 97. 1.10. 1.12. 1.10. 0. 97. C.42.

r

. 0.43. 1. 01. 1.1*. 1.12. 1. C4. 0.97. c.4:

IC 3.2 3.7.

1.8. -0.4. -1.4. *0.2.

1.1.

i' STA'c M3 0.44. 0.60. 0.44 AYCFE2 C2v1ATION 3.46. C.42. 0.44.

.FOT CITFC2DC2.

15 4.3.

2.0. -1.5 a

1.1 so.01:

l L

MAD NO: S1-5-10 DATE: 7/13/78 POWER = 100%

N 1.416 QPTR:

i CONTROL ROD POSITIONS:

F

=

bH T

Q = 1.838 NW 1.000 D BANK AT 221 STEPS F

C BANK AT 228 STEPS F = 1. 218 NE 1.001 A.O. - -1.477 SW 1.007 L

BURNUP = 150 WD/MIU SE 0.992 49

Section 6 POWER COEFFICIENT MEASUPIMENT The power coefficient measurement was performed by reducing / increasing reactor thermal power using the turbine control system to establish a coastant rampdown/rampup rate of one percent power per minute. Positive / negative reac-tivity changes were compensated for via control bank D insertion / withdrawal in order to keep the RCS temperature within 0.50F of the programmed reference RCS temperature (Tref vs. % power). The worth of control bank D for each individual D bank movenent was determined from the reactivity computer output traces, taking l[(

into consideration the dampening effect on the indicated value of reactivity due to doppler feedback.

The power coefficient measurement was performed over approximately a 10% power change starting at 100% power. The measurement was repeated during the ramp back up.

An estimate of the change in reactivity due to the changing l and a small concentration of xenon was made based on design calculations

.1 correction term was applied to the measured reactivity values. The power coeffi-

. i'

(

cient was determined by dividing the xenon corrected reactivity change by the percent reactor thermal power change as determined from calculations based on calorimetric, NIS, and reactor coolant system data.

j The predicted and measured values of the coefficient are compared in t.

Table 6-1.

As can be seen from this table and the Startup Physics Test Results s

and Evaluation Sheets in the Appendix, the measured value of the power coeffi-

L cient was within 0.1 pcm/%pwr of the design value which is well within the i

L design tolerance of 3.2 pem/%pwr.

In summary, this result was satisfactory.

J L.

t L.

. s_

43 c.

p-7---

p-

,c - _

.)

~

Table 6-1 SURRY UNIT 1-CYCLE 5 BOL PilYSICS TEST POWER COEFFICIENT

SUMMARY

Power Coef ficient (pcm/% pur)

Power Bank D Measured Xenon Level Position Rod Worth Correction A pcm A % pwr Measured Predicted

  • Difference

(%)

(steps)

(pcm)

(pcm)

(M-P) 100.0-90.1 220-187

+86

+5.8

+91.8

-9.9

-9.3

-10.6

+1.3 90.6-98.9 187-225

-101

+4.2

-96.8

+8.3

-11.7

-10.6

-1.1 Ave. 3p/ 3p = -10.5

-10.6 40 1 1

S

  • Based on design values contained in WCAP-9322.5 i

i 4

Section 7 1

.i r REFERDICES

'f 1.

J. G. Miller, S. A. Ahmed, R. T. Robins, and H. H. Barker, "Surry Unit No.1, Cycle 5, Predictions for Startup and Core Follow", VEP-FRD-NTE-74, May, 1978.

[

2.

" Westinghouse Reactivity Measurements System for the Surry Unit 1 Nuclear Power Station Utilizing a PC-12 Reactivity Computer", MSD Plant Data Files, Shop Order VPA-810.

r

{

3.

W. Leggett, and L. Eisenhart, "The INCORE Code", WCAP-7149, December, 1967.

4.

Surry Power Station Technical Specifications, Section 3.12.

( \\

5.

J. W. Miller and P. G. Isaac, "The Nuclear Design and Core Management of the Surry Unit 1 Nuclear Power Statien Cycle 5", WCAP-9322, June,1978.

jr 7kk l'

I b'

i l i

I

.L

l it

?\\

L lL i L.

45

0 9

9

, c.

((

r I

(

4, APPENDIX

' I STARTUP PHYSICS TEST RESULTS b

AND FVALUATION SHEETS

- [.

1 i

' k.

L

(

- I L.

1 i

i e

a.

i

+.

SuiJ.Y PO'~En S!AT20:; C:;171 CYCLE i ST.uTUT STARTUP PlftSICS TECTS RESULTS A::D EVALUATICS SHE.7 FINAL RESULTS I

Test Descriptient Reactivity Ceeputer Checkout Referencu Procedure Number / Section: PT23.11/Apr. E Sequence Step Nu:ber:

{~

II lanh'Positiens (steps)

RCS Te:perature (OT): 547*2 10A: 228 SDE: 228 CA: 228 7ever Level ( T.P.): 0 Other (specify):

Conditices C3 : 228 CC *223 CD: *

(Design)

Below !;uclear Heating P/L :228 RCCA: NA

  • At ah-aut* c-f e d_ e si r-trian III Eank Positions (steps)

FCS Te=perature (CF): 54./ - S y s' Power Level (: T.P.): o Test i

Conditices SDA: 21T SDB: 71I CA: 224 Other (specify):

(Actual)

CE: 2.1(i CC: 2 s 7-2.17.

CD: g cf-r/'/

f fw Nvcuru // e4T/v(-

(i P/L: A;l,(,

RCCA: y/4 Date/Ti=e Test 7/ 6 /7 T -

f Perfor=ed: j y 39,,, g Measured Para =eter o. Measured Reactivity using p,-co=puter g

f (description) og = Inferred Reactivity frc= reactor period gy A = /4.0

c. v. Y v /,. 0 Esasured Value A,

,9, p 2q,3

.r'7. 5-o *C. - 3 a 4

- 0. 9

- s. i.t=

l-Test Lesign Valua Results (Actual Ccnditions)

  1. e ~#:

<.04

~

et Design Value

  1. C~#

(Design Ccnditicus) t 1 04 st

{

f Reference f

Accident Analysis 7

Yalut NA Acceptance Criteria l[

7.cierence gg l

Lesign Tolerance is met

O YES O No i

yy l

Acceptance Criteria is cet: O YESO :;o v/js Co==ents Mrva. - Ana,J/.

Re sha. ty da y : h <f6 p e.

r f(L f

(42.u'va

/ J_4 fd/

Evaluated Ey L

Perfetted E;- SGrry Ied inc icer 1.10 startu; eL a cr

)

Feco-vended for C $ 4.~,

b 'f rCVill ' (c &'},/ / ' S'.?~~

Approval by j

?jj's".?4 f~ uro l }

u rf. c; s.;r..:v.:. w i.:..- = s.T :;..

l._

A.1

. =.

e r

+ SUiJ,Y PC'~ER ST/. TION t' NIT 1 CYCLE 3, SIARWP STARTUP PL'TSICS TESTS RESULTS A'.Q EVALUATICit SIIEET FINAL' RESULTS I

Test Oescription: Boron Endpoint Hessurement - ARO Reference Procedure Number / Section: PT28.11/ APP.C Sequence Step Number:

f,

~

11 Bank Positions (steps)

RCS Te=perature (CF): 547t?..

SDA: 228 SDB: 228 CA: 228 Power Level (

F.P. ) : 0 Test i

"onditions CB

  • 228 CD: 228+0 Other (specify):

r/L: 228 RCCk:N/A

-15 Below Nuclear Heating (Desi'.)

'III 3ank Positions (steps)

RCS Te=perature (CT): 5 '/ 7.3 Power Level (" T.P.): o Test Conditions SDA2tT SDB:1%f CA: 225' Cther (specify):

! Actual)

CB: 117 CC: 11 f CD: 11if jssou1%sessM M&ATsN4 P/L: 2.16 RCCA: M/A

(

Date/ Time Test 7/4/77 Performed: f900 gp;g j

1 Measured Parameter (C ) ARO, Critical Baron Concentration - ARO L

(description)

W i

C=

/ 3 0 Y j7/ n; Measured Value 3

i*

Test Design Value

[

(Actual Ccuditions)

C=

f32j; 077,.,

3 Results ir

,l Design Value C = 1321 ? 50 ppo (D/228,547.0'F)

L (Design Ccuditions) 3 s

Reference VEF-TRD-NTE 74 Accident Analysis Y

value

[ 6 0,,,

xC3.g_ 15.115 pen Acceptance

\\6C3 Criteria Reference TSAR Section 14.2.5

.. 1

,.1. r.. is....

..=S a,0 1{

Acceptance Criteria is met: E YESO NO Co m es

L.

. g = - e. 9 y ;>c,,jte n (menvuo) m lI iL.

l M%%

Evaluated By [/b,'W l

Performed Ly MWScartup ingineer Sutry Test'ingi? er lL.

Reconnended for

/

c,

/

0 (!)..

j n

[f r/VC$ i WlYl Approvat by l

s NTO 5u;.ttviscr EA'd SMt. J"M4f /***4'4.T J S1%o'.f.

[

Jv/

l{

1 L

A.2

SURRY PO*.TR STATION WII 1 CYCLE J, STARTUP STARTUP PHYSICS TECTS RESULTS AND EVALUATION SHEET FINAL RES_ULTS I

Test Leacription: Isothermal Temperature Coefficient - ARO Reference Procedure fiu: ber / Secticn PT28.11/ APP D

. Sequence Step Number: 7 II Esnk Posittens (steps)

RCS Temperature ('T): f441I SDA: 228 SDB: 228 CA: 228 Power Level (: r.P.): O 7"t CB : 228 cc : 228 CD: 228+0 other (specify):

Conditions Below Kuclear Heating (Design)

P/L** 228 RCCA:NA

%..,. wm,. 4

..-men RCS Te=perature ('F): f 4LT-3 w..f III Bank Positions (steps).

Power Level (* T.P.): O Test Conditions SDA: 12 s SDB: st'/

CA: L 7. f other (specify):

(Actual)

CB:

2, 2 $

CC: 2A(

CD:%r.1/W Susu // d4 r#N(-

g g

P/L: z z g RCCA: pjg

.(

(

Date/ Time Test 7/6/7(I Performed: 10 0 0 -. W 6 r

(6,gIso Heasured Parameter Isothermal Tenperature Coefficient - ARO t

(description) oT ARO IV

,p ISO

- 2,, 7 g c,,y / c p Heasured Value ISO Test Design Value

[ ge \\

Results (Actual Conditions)

(iT/

~3a 7 I: 3 8'*/#/=

~

(c = / 31/pp m) a

(

Design Value ao TISO

-3.6 2 3.0 pcm/*7

=

{-

(Design Conditions) 37 /

(D/228,1321 ppm, 547.00T)

F Reference VIP-FRD-N7E 74

[_6,3,T pem 30(So/6t)=. MOD (6c/8t) + DCPPLER *-

Accident Analysis Iso Y

Value Criteria

-(6 0 /6 7) DOPPLER (6 p /6 t) = -2.0Q.e=,

0.96 r

- I-Acceptance

\\6T/

Reference TS 3.1, VEP-TRr-NTE 74 Design Tolerance is met

E TES O HO y7 Acceptance Criteria is met: E YESO NO Comments L

i L

[./'[ ~ w i l

Perfor=ed By AA A'M(4%.)

Evaluated By la0 Startup L:g meer f

' Sdtryjef. int neer Recommended for j

f

/f[/m,g:

p j f,.g Approval by 19 (tl. w,ww4

~

L*N4 Set's..fuclV Awt 3G;71cN.

ffhTOSne:vicor L

l-A.3

___m-_

l SURRY PC'.tER STATION UNIT 1, CYCLE 5, STARTUP STARTLT PHYSICS TESTS *t.ISULTS AND EVALL'ATION SHIET FINAL RESULTS I

Test

Description:

M/D Flux Map - HIP, ARO

$ /

  • T"-/

Reference Procedure Nu=ber / Section: PT28.2, OP-57 Sequence Step Nu=ber: ef II Bank Positions (steps)

RCS Te=perature ('T): 547+8 Power 1.evel G T.P.):

0 ~"

SDA: 228 SDB: 228 CA: 228 CB : 223 CC : 228 CD: 2281f 5 Other (specify):

C itions (Design)

P/L :228 RCCA:N/A Must have y,I.0 thi=bles RCS Te=perature (CT): s 54 7 III Bank Positions (steps)

Power Level G T.P.): o i

Test Conditions SDA: 2,2 i SDB: T2 V CA: 22 t' Other (specify):

(Actual)

CB: 2.2 <f CC: -2. L 'd CD: 2,/ ej

,y o 7*,,,,.,,p. sy r-P/1.3 2 7,,g, RCCA: pg lg Date/ Tine Te.~t

7) 7/ 7 $

Performed:

g j j g,, g 77 i

Measured Parameter 1.AI. RIL. ASSy T/g, NU N T{,TOTALEIAT QUADRANT (description)

PL*R.pDITT.

T;;THALPY RISE HOT TLUX HOT PO W R TIL" h

CHANNEL FACTOR CEANNEL FACTCR RATIO (QPTI IY Z Dorr = 9. 5 1.S45*

2.400

!.0/9 3 Measured Value Pa.,, = 1. II A'-'so i rs K-!'t 1 r1 f

Test Design Value

[.

Results (Actual Conditions)

NA NA NA 1 1.02 888 '*' 't1 -

h DesiSn Value

[

(Desi:;n Conditions) ast r rg..t NA NA 1 1.02 i

(F e Assy. Pww.)

g WCAP-7905

{

Rev. 1 NONE NCNE NONI Reference Accident Analysis rja.sso+.an-t>>arini) r'*u). 3.ss.ra) i 1.02 y

Valut None h

f Acceptance Criteria Reference None TS 3.12 TS 3.12 TS 3.12 l

f ('

I Design Tolerance is =e

E TI'SO NO 77 Acceptance Criteria is cet: E YES O No Coments s m.

<,r,.n t-. rs.

' L p jACD " y o p " "ss"Y ~ue

.r,- r

,c.< reen.<> t b5 bM To on do.t* FoA Ta o, n AP s.'* *) T4xfd s!4 o"* A b'I* Ft.**1 naft'sve TKlo* **4'WC 0 65 ta-n30 sfg$,.7s cy"7,,3 a <u* /**hoA '**dLY s4 Lras.'.'o*

794 sgegcos stasLY PsA V,a A T WC4Y e

sa n.,,r.

,,,,, a,a e a em o e, r,.-..su.s ~ s.rr,,.

,,,s

,,,,a f

s i Afs*/Ws= rdLa,po g yg$

nf L-St.'A M.e s e f J*$ /1A* *D M* 40 Gr> oM =* C ow df W14 0Ve d" C. ) $,v

,1

..f) g Evaluated By

.[

Performed B _

m p ny

> ccygec* 'g ou, O m s _u, t.

j 1

. Agn.us :

ax,-

,, a n.

.-u.. a, ra,a.

.. y a e s e n s.=

=

i (

4 h

k.

A.4

SURRY TO'.;ER STAA0:4 UNIT J, CYCLE 1 STARTUP

~

STARTUP PUTSI'CS TESTS RISL"$75 A:*D EVALUATIO!i SHIET FINAL RESULTS I

Test

Description:

Rod Worth Measurement - D Bank keference Procedure Nu=ber / Section: PT28.ll/ App. E Sequence Step Nu=ber jg)

II P,ank Positions (steps)

RCS Tenperature ('T): 5473 Power Level (: T.P.): 0 SDA: 228 SDB: 228 CA: 228 C3 : 228 CC : 228 CD: Moving Other (specify):

Co'nditier.s Below Nuclear Eeating (Design)

P/L : 228 RCCA: NA 111 Bank Positions (steps)

RCS Te=perature (*T) : A 5 47 Power Level (

F.P.). <>

Conditions SDA: 2. Z V SDB: 2 2 T CA: 12 if Other (specify):

Test (Actual)

C3: 7. 2 (

CC: 17.f CD: n 4,w6-g'y 4 ggu y g4 7 g6 P/L: 27.6 RCCA:

- j i Date/ Time Test 7/7/75 Perfor:ed:

05'00- 0629"

, {

2' (

Measured Parameter (description)

I ; Integral V rth of Control Bank - D Bank

r ty D

Measured value f2,O7 gc,m

. 1-

'f-(Actual Conditions) j j g g g / 7 (p c, fry Test Design Value Results

, r-Design Value

[

(Design Conditions) 1188 : 178 pcm Reference YEP.-TKD-NTE 74 Accident Analysis If Design Acceptance Criterion is e=ceeded, then assure adequate shutdov:1 cargin and/cr evaluate other accidents,

. [

v

^1"*

(^

Acceptance as necessary.

Criteria Letter f rom C. M. Stallings (Vepco) to E. G. C.ase (NRC)

- f Reference dated Mav II. 1978 (Serial No. 270)

[.

Design Tolerance is met

EiTES O NO Ets

^***Pt*"*" Crit *ri' 15 *** 3 'IS U "

Co-

- i

' L

~

~..

Performed By JA[A M Evaluated By [/ '//.

NF04tartup ingance.:

b-

~5utry Iest/:.ngt? 4er Recon:nended for

(,

".[A' N ?

/

Approval by N

Me f

//rfvtd I [7 L

sen p.m sect..recer R.vn* stamw.

,fe./ SEO Sal **L' L

A.5

l SURRY PC'.li.R STATION LHIT 1, CYCLE g h GIUP STARTL7 PHTSIC$ TESTS RI *JI.TS AND EVALUATION SEEET FINAL RESULTS I

Test

Description:

Baron Endpoint Hensurement - D Bank In i

Reference Procedure Nu ber / Section: POS.11/ APP.C Sequence Step Nu=b"er:

//

II Bank Positions (steps)

RCS Tenperature (0F):547+J.

SDA: 228 SDB: 228 CA: 22B Power Level

(*. T.P.): 0 onditions CB :228 CC : 228 _+[3 Dj5 other (specify):

CD:

(Design)

P/L: 228 RCCAN/A Below Nuclear Heating III Bank Positions (steps)

RCS Te=perature (OF): :T 47. 0 Power Level (: T.F.): 0 Test Coniitions SDA: 7. 7 T SDB: 21T CA: 2 2. S'

.0ther (specify):

[-

(Actual)

CB: 2 "A T CC: 7. 7. 2 CD: o g,gs Mmed #serwe-P/L: 2.26 RCCA: N/4

{

Date/ Time Test

//7/75 Performed: o 99 gg

{~

Measured Para =eter (C ),

, Critical Boron Ccncentration - D Bank In 3

(description)

N C=

//$'/ // m Measured value 3

Test Design value

.C = //6 f c 2.f gg m Results (Actual Conditions) 3 Design Value C =1182 + [(C )ARO - 1321] t (0.0'10 x (Cg)M + 118.8/(3p/3Cy,

(Design Ccaditiona) 3 3

(.

Reference VIP-FRD-NTE 74 Accident Analysis value (30 \\ x CB ~< 15.115 pcs Y

Acceptance q)

Criteria Reference TSAR Section 14.2.5 L

Design Tolerance is met

ID.!IS O No 77 Acceptance Criteria is =et: 2 YES O No Cc==ests i

~ 8.} LJ p cin j,,pm (11gg s eg go)

$C6 I

L M/ @

Evaluated By b l Performed B M0 StarrW 6. W h Sdrry Tesfingi ect p/ 7' Recory: ended for ktprpygd* h f*v,'.$1l%

Approval by _C $

w' 1 ~ NFO Supervisor

/

If W

p.,.,A g ry gggg, fpC M /"s%2T JO:GlW.

i fL A.6

SUFJJ PCLTR STATION U;;IT 1, CTCLE $,, STAKUTP STARTUP PIITSICS TESTS RESULTS N;D IVALUATICH ST.EET FINAL RESill TS 1

Test

Description:

Isother=al Temperature Coefficient - D Bank In Reference Procedure Humber /.Section: PT28.11/ APP D Sequene.c Step Number: f 1, r

II Esnk Positicus (steps)

RCS Temperature (OT): 544!

CA: 248 Power Level (* T.P.): 0 F

Test SDA: 228 SLB: 228 +0 CB : 228 CC : 228 CDs 0,15 other (specify):

Conditions *

-15

-0 te. low Fuclear Heating (Design)

P/L 228 RCCA:NA nw..

p..... 4...- eec $$

IIL Bank Positions (steps)

RCS Temperature (CP): a 4*f.z-fv4. z.

~

. Power Level (I T.P.): o Test Conditiocs SDA: 7. '2. V SDB: 1 l 'I CA: 2.2. f Other (specify):

~

(Actual)

CE:

~L.$

CC: 1 T.T.

CD: O ggro

)Vasssatt l-is A rwd-P/L: 2. 7. 6 RCCA: g/4 Date/ Time Test 7/7/7 $

Performed:

f a 3 g., jjj g Measured Parameter Iso, Isothermal Te=perature Coefficient - D Bank In (description)

D 38 a g:

Measured Value g

Design Value

[ 3o ) ISO Results (Actual Conditions)

( ayj

-[, e f I 3 jn >'r /#/r Test (C6 = //73/'A')

Design Value ISO 7

(Design Cenditions) 3r (D/0, C/223,1182 ppo. 547.0*P)

~

Reference VIP-PRD-NIT 74 s

~ - -

Accidert Analysis

[ 6,,e,)150 o e,m, ISO (6p/6t>= MOD (6o/6t) + 00PPLER Y

Value Acceptance

\\6r/

- 0.96',T (6p/6t) DOPPLER (6p/6 t) = -2.01.@!3 F-Criteria Reference TS 3.1, VEP-TPO-NTE 74 Design Tolerance is =et

E YES C NO y7 Acceptance Criteria is ces: 2 TESO ::0 Comments

. !A@

Evaluated 3y O U.), ' v' +e-Performed B, hfD 5tartu7 L: pseer Test 4ngtme:r

/'

Reco m nded ior

~

k./m/gwd :

t;p H b_

Approval by F

,) & -< o Sg/s i.~d4 ftCf..:ht'.f V fat'. '[ 31~1GCAf.

. & hTO SupervLsor u

A.7 j

i I

i 1

Sur.RY 27.TR STATION UNIT 1 CYCLE 5 STARTUP STARTUP Pl!YSICS TESTS RESULTS AND EVALUATICN SHEET J

FINAL RESlH TR I

Test

Description:

M/D Tiux Map - HIP, D-Eank In 6 8" f*3 f

i Reference Procedure 11 umber / Section: PT28.2. 07-57 Sequence Step Nunbers f 3 II Eank Positions (steps)

RCS Tet=perature (OT): 347+0 J,

Power Level ( T.P.): 0

-6 SDA: 228 SDB: 228 CA: 228 CB 2228 CC : 228!I5 CD: C+35 other (specify):

Conditions (Design)

P/L:228 RCCA N/A Must have > t.0 thimbles i,

RCS Terperature (CT): 5* 98 7 III Bank Positions (steps) j, Tower tevel (

T.P.) g &f Conditions SDA: 2 2.5 SDB: 3 2 S CA: 2 2 7 Other (specify):

Test (Actual)

CB: 2.2 y CC: 2/9 CD: o g7 g P/L: 7.2 4 RCCA: y/M i

Date/ Time Test 7/7/ 7f i

Performed: p g o s,p a 79,4 i

c Measured Parameter MAX. REL. ASSY kH, NUCLEAR T, TOTAL EEAT QUADRA*.:T (description)

P%*R. DITT.

ENTHALPY RISE EDT TLUI HOT FO*TR TILI CHANNEL FACTOR CHANNEL TACTOR RATIO (CPTR IV

  • 4 0tff = % %

f, & $ c/

2.. ( 7 0

/.0/2f Heasured Value 07

  • l* I'E tA. T (nc-)

f-Vl.LM)

}

Test

. Design Value 1 1.C2 Results (Actual Conditions)

NA NA NA 85 8" Ps !. 8

~'

Design Value (Design Ccoditions) aus f.e es..:

NA NA

.1. 1,02 (r

4..,. F.e.)

Reference Rev. 1 NONE NONE NONE A

Accisent Analysis 7

r ut. s.es sc 3 1.02 a ut None r,a y.sso+.an-ri).m>

o Acceptance l

Criteria i

Reference None TS 3.12 TS 3.12 TS 3.12 j

Design Tolerance is met

EI YES O HO Acceptance Criteris is met: E YES O NO g,

i Fu&L.ech hue Q y, usexs wo raix r trair Tacauses.s. Stee.oria.or ex, W

p s, ce s Litt (fb.

r a

m-7 5 23 LULb%

Evaluated By Performed Byt NFO Startup Lngineer ry)crtd.ngit er e

{p I $.. r. s.'-

j'f!:'Vf$ ' C7'?

fl S01

.Wh EM4 SVl'S..f4f/Y l'**N4*E )1X71cN.

/: ~)

NF0 Superv1sor i

A.8 2

m

_ _ _. = _ - _ - _ _.

~.

  • o

]

SUT.RY PC'4ER ST3fION UNIT J, CTCLE j, STARTUP STARTUP PHYSICS T"STS RESULTS AND EVALUATION S7!IET FINAL RESULTS 1

Test

Description:

Rod Worth Measurement - c Bank Re fe retice Procedure Number / Sections P!28.11/ App. E Sequence Step Numbers sa/

11 Bank Positions" (steps)

RCS Tenperature (07): 5t.73 SDA 228 SDB: 228 Ct.: 228 Power Level (* F.P.): 0 Conditions CB 228 CC : Moving CD: 0 Other (specify):

(Design)

P/L 2*3 RCCA: NA Below Nuclear Heating III Bank Positions (steps)

RCS Temperature (CT): N Pf 7 Power Lesel C T.P.) : o Test Conditions SDA: 7.2 f SDB: 2.2 ji CA: % 2. 'i Other (specify):

(Actual)

CB: 2. t y CC: Mo n/o-CDs o g,, pyg.,,g g jjggig6 3

P/L: 22s RCCA: gg Date/ Time Test 7/7/7tf F-Perfor.ed:

z,,, _ z u,

1 Measured Parameter I ;1stegral Worth of Centrol Bank - C Bank C

r IV Measured value

/ 0 5 2. gc. m j

Test Design Value Results (Actual Conditions)

/ 0 5'4 L / f 5'[6 M r

Design Value (Design Conditions) 1056+158 pcm i

Reference VEP-FED-NTE 74 Accident Analysis If Design Acceptance Criterion is exceeded, then assure

  • y V*lu*

adequate shutdev:: margin and/or evaluate other accidents, Acceptance as necessary.

Criteria latter frca C. M. Stallings (Vepco) to E. G. Case (NRO)

Reference dated May 11, 1979 (serial No. 272)

Design Tolerance is tatt. : SITES O NO yg Acceptance Criteria is met: G TES O 1;0 Commuts m

(.

f

[u W

Evaluated By [ / Y.1/7~~

Performed By

~ry Iost knginec -

suo 4cartup Z.ngineer

~

Recosa nded for i,

kymtd

  • h;9t_

y(81,->,m I

Approval by

~

f ach O.% Saff. J*G N V A*.W 2 3Gi h A!.

LiEO Supt VLsor l

- L A.9 l

l

e

.SUP.RY PC'.7R STATION US1T 1,c1Cd' 3,sIAaIur STARTUP PCISICS TESTS RESUI.TS AND EVALUATION SP.IIT

~

FINAL RESULTS I

Test tescription Baron Endpoint Measurer.ent - D, C Banks In (cference Procedure N cher / Section: PT28.11/ APP.C Sequence Step N ebert /g" II Bank Positions '(steps)

RCS Temperature (OT): 547t!

SDA: 228 SDB:22 CA: 228 Power Level (*. T.P.) 0 onditions 228-]5 CC :0; 5 CD: 0 other (specify)*

228 CB :

(Design)

Below Nuclear Heating RCCA:N A P/L:

Bank Positions (steps)

RCS Te=perature (DF): 5 4 (.. f III Power Level (* P.P.): 0 Test i

Canditicas SDA: 27 I SDB: T 21I CA: 2.7 f Other (specify):

/ Actual)

CB: 2 H, CC:

O CD: o DEW M/c68M M M T'

  • P/L 214 RCCA: gjg

\\

Date/ Time Test 7/7/7'4 - 7/ff/7'l Perfor=eds g7,go37 r-Measured Parameter (C )DC, Critical Boron Concentration - D.C Banks In 3

(description) 3 IV C=

/O 67 ff M i

Measured value 3

'f Test Design Value 3

/ O 75" g 2,2,, g/ m C=

t Results (Actual Ccuditions) l Design value (Design Conditions)

C -1073 + [(C ) - 1182] t [0.c10 z' (C ) C + 105.6 / (Pa/3Cg)]

3 B

3 r

Reference VEP-TRD-N'iE 74 Accident Analysis xC3115.1.15 pcm value Acce cance Criteria Reference TSAR Section 14.2.5 Design Tolerance is met

3.!ES O NO 77 Acceptance Criteria is met: S YES O NO g,

,,g,

'b Q -B.99p'~Jnm O'"""0) i

,L t

11/L,h%

Evaluated By [ / b.. 4 i

Performed B)

.Sbtry Wst f.n-neer fim startup 1::g=ect Reco== ended for M

/ fj' /I Approval by O M) b W N h'Vtd I hr//Tg de ff

  • =

j xij;,,z sea.. roc.w r.w x m m.

f.e/,ms'?*=

4 t'

m A.10 i

SURRY PC'a*ER STATION UNIT 1 CYCLE 5, STARTUP STARTUP PEISICS TESTS RESUI.TS AND EVALUATICN SF.EE!

FINAL RESULTS 1

Test

Description:

Isothertal Temperature Coefficient - D,C Banks In Reference Procedure Nu=ber /,Section: PT28.ll/ APP D

. Sequence Step Nu=ber: jg II lank Positiens (steps)

RCS Te=perature ( 7): 544+{

SDA: 228 SDB: 228 CA: 228 Power Level (*. 7.P.): 0 CD: 0 other (specify):

Conditions 228j5 CC : D j5 CB :

(Design)

Below Nuclear Heating P/L: 228 RCCA:NA nw..-..,. o.... 4 3-e,,

f III Bank Positions (iteps)

RCS Temperature (CF): f'/./.3-f'r 2 0 Power Level (" T.P.): r,)

Test Conditions SDA: 214 SDB: 7.7. T CA: % 2. S' other (specify):

(Actual)

C3: 1/3 CC: o CD: o g,u,s Ar getgg /f sa ree/t.-

P/L: 2. s 6 RCCA: g/A 7j/r/7(

Date/ Time Test t

r Performed:

o1jo g3oo Measured Parameter ISO (description)

DC, Isode Te=perature CoeNest - D.C Banks In (ao f80. cy, O p c,,,, /cp Measured Value

=

Test Desip Value f 3p jISO

-/C y t 3 pcr.j'd/:'

Results (Actual Conditions) g

=

(Cg=10I.1./Pon e

ISO Desip Value

/ 3, g

{

(Decip Conditions)

(gg

=-10.1 2 3.0 pc=l*F 0

(D.C/0, E/228, 1073 pp=, 547.0 F)

N Reference VEP-FED-NFE 74 Accident Analysis Igo IS0(6p/6t)= MOD (6o/6t) + DOP?LER

(

Value

( 6 0, V

oc=

Acceptance

\\67

-0.96T (6c/6t) DOPPLER (6p/6 t) = 2.04.@P -

l Criteria 1

Reference TS 3.1, VIP-U.D-NFE 74 Desip Tolerance is cet

G.YES O N0 7,

Acceptance Criteria is cet:la YES O NO Co es

!L l

I

/ /)L 4M(m Evaluated By

,8 N.

'Y

/

fI Perforned B py,7*.6t f.n-neer h!O/Startup 1.:gineer

[

(

p'Q(r)0Suntwor

i. V i k 'f nfVf$ '

ju p,

j u

.wi cia ms. re.cw n.w:~.wr,ca.

l f

lL A.11 1

l

SLT.RY T0*.*ER 57ATICS Cil! 1 CYCLE 5 ST.AP.!UP STARTUP PHISICS TESTS RESULTS NTD EVALUATION SHIET FINAL RESULTS -

I Test

Description:

Rod Wo'rth Measurement - E Bank Reference Procedure Nu=ber / Section: PT28.11/ App. E Sequence Step Fu=ber: / -7 II Eank Positions (steps)

RCS Te:perature (SF): 5471P.

Power Level (I F.P.): 0 SDA: 228 SDB: 228 CA: 228 Conditions C3 : Moving CC : O CD s 0 Other (specify):

(Design)

Below Nuclear Heating P/L : 228 RCCA: NA RCS Temperature (CTI: f v 4. 2 III Bank Positions (steps)^

Power Level (

F.P.) : O Test Conditicus SDA:

2. 2. *6 SDB: 7. L 'l CA: 221I Other (specify):

(Actual)

C3: ria n s N

  • CC: o CD: o Bas Mu'a ud h a
  • re w-P/L:
2. g RCCA: v/A.

Date/ Time Test y /<f/7 jf Performed:

e gg

,9 g I

Measured Paraceter I ; Integral Worth of Control Bank - 3 Bank IV 3

Measured Value

/9479 g c, m Test Design Value Results,

(Actual Conditions) g gpofg g 3 0 6g c.m r

l Design value

l (Design Conditions) 2040 2 306 pcm e

Reference VIP-M D-hTE 74 i

t Accident Analysis If Design Acceptance Criterion is exceeded, then assure V

Y*IUS edequate shutdow:1 margin and/or evaluate other accidents, Acceptance Criteria as necessary.

Letter from C. M. Stallings (Vepco) to E. C. Case (NRC)

Reference dated May 11. 1978 (Serial No. 272)

Design Tolerance is mec

S i!IS O 'NO

,7 Acceptance Criteria is cet: E YES C No Com=ents t <

i l

l L

i Performed By s.

JA A Evaluated By d

b NFO Startup nns=2ee,.,

Sy Igsung n

f Recor. mended for y

/g,mgg/ :

'TC s.* 49 Approval by C.I A" 5 3sy gj S;gr. JWJV fs*<LA 3:2W-f MO $4mM

~

l i

L A.12 i

I

f.,

  • \\.,

i SLTJ.Y PO*~ER STATi::N UNIT 2, CYCLE 3,SIAaTCP STARTUP PETSICS TESTS RESULTS AND EVALUATION SRIET FINAL RFRili T9 I

Test

Description:

baron P$dpoint Measurement - D.C,B Banks In

-r ite fe rence Procedure Nu=ber / Section: PT28.ll/ APP.C Sequence Step Nu=ber:

/T Il Bank Positions (steps)

RCS Temperature (CT): 547tl SDA: 228 ODB: 223 CA: 228

~

5 Conditions CB : 01,9 CC : O CD 0 Other (specify):

Below Nuclear Heating (Design)

P/L: 22e RCCA:N/A a;j III Bank Positicus (steps)

RCS Temperature (CF): 546.o Power Level (: T.P.): O 1

Test C:=ditions SDA: 2. 2 '6 SD B : '2.7. T CA: J.2 7 Other (specify):

factual)

CB: o CC: o CD: o g,u, pge tm #a4 rip

~'

P/L: 2Af RCCA: gg s

Dato/ Time Test 7/ ti'/7 T Perfor=ed:

f9qp g

Measured Parameter (C )DC3, Critical Baron Concentration - D.C.B Banks In 3

(description)

IV C=

$ 3 6 ff m Measured Value, 3

Test Design Value

.Results (Actual Conditions)

Cg= 644 % 3/ gj m a

Design Value

[o.010 x (C )fCB + 204/(Bo/3C )I C -852 + [(C )NC - 1073] 2 (Design Conditions) 3 B

3 B

s i.

7..ffs Reference VIP =TRD-NTE 74 Accidest Analysis B 1 U*W W a ue f f ~'

Acce tance Criteria l'

Reference FSAR Section 14.2.5

i,-.

Design Tolerance is met

IB.YES O NO t >'

y Accepta.nce Criteria is meerIE YES O No g, & -e.ne-r >uwco) l) 4 ! ! 'll 1 ( /t . Evaluated By (M. Performed By MO Startup E:r;;incer Sutry Tesyingt er Reconmended for ? dL UNU APPi***1 bY. bff Vi$ ; (7 & "'* '"P' * *

  • O.'s nu..ren Nwt' mmw.

.sw 'L A.13

e SURRY PC'7.R SIATION UNIT 1 CYCLE 1 STARIUP STARTUP PETSICS TISTS RISULTS AND LTALUATION SEIIT FINAL RESULTS I' Test

Description:

Rod Vorth Measurement ~ A Bank Reference Procedure Nur.ber / Sectiort: PT28.11/ App. E Sequence Step Number: jf I ( II Bank Positions" (steps) RCS Tenperature ( F): 5471P. Power Level (*. F.P.): 0 SDA: 228 SDB: 223 CA: Moving Conditions CB : O CC : O CD: o other (specify): (Design) Below Nuclear Heating P/L : 228 RCCA: NA III Eank Positions (steps) RCS Te=perature (cT) : ~ s 47 Power Level (~ T.P.): o Test Conditions SDA: 7.2. 4 SDBt 22.1r CA: M e n us-Other (specify): (Actual) CS O CC: o CDs O ge w Nsissa n }} 6ertWC-P/L: ns RCCA: y/A. Date/ Time Test 7/Y/7Y Perfor=ed: / S 5 o - f y, g-r l Measur'ed Parameter (description) I ; Integral Vorth of Control Bank - A Bank r I Measured Value j3 p p Test Design Value 'f ' Results (Actual Conditions) /2 4/"2. C / f 4 [6 m f Design Value f (Design Conditions) 1242 2 186 pcm Reference VIT-FED-hTE 74 x Accident Analysis If Design Acceptance Critarion is exceeded, then assure Yalu* adequate shutdot.t margin and/or evaluate other accidents, y Acceptance as necessary. Criteria Reference Letter f ro= C. M. Stallings (Vepco) to I. G. Case (NRC) g dated May 11. 107A fre-ini *:a. 77n I t Design Tolerance is cet

ETIS O No Acceptance Criteria is met: UI YES O No g,.,

g, ~. M I m M M Evaluated By b/A./ he I Perforned E - dery,leytingle er hro startur iosineer { Reco mended for i 7' L// f - 'N' Approval by C- &w / c. ((W ///' f

wjf fN4 fety. J*v u f A*. W 2' # 4 7ec.'.f.

,bTO Supervisor l A.14 I

SURRY POWER STAI NN L31T 1 CYCLE i S3 RIUP STARTUP PETSICS TESTS RESULTS A:.*D EVALUATION SHIIT FINAL RESULTS I Test

Description:

Boron Endpoint Mcasurerent - D.C.B. A Banks In Reference Procedura Nteber / Section: PT28.11/ APP.C Sequence Step Nu=b'er:

2. C II Eank Positions (steps)

RCS Te=perature (*F):54 d Te8C gpg. '28 SDB: 223 *15 CA: 0 +0 Power Level (~ F.P.):0 15 Conditions Other (specify): CB 0 CC - 0 CD: 0 pfL: 228 RCCk:N/A Below Nuclear Heating (Design) III Bank Positions (steps) RCS Te=perature (CF): f 4 4. O Power Level (~ T.P.): o Test Conditions SDA: 2.25 SDB:2.2 7 CA: O .0ther (specify): ! Actual) CB: O CC: O CD: O ggt l e Wuc.spaA NMI& P/L: 2.2. 6 RCCA: A/g Date/Ti=e Test 7/ Y/ 7 T Performed: /730 -/90o .c Measured Para =ecer (C )DCBA, Critical Boron Concentration D.C.B. A Banks in 3 IV '(description) C= /,, T 3 ff m Measured Value 3 Design Value Test C - 7 C O I '2. / // n7 Results (Actual Conditions) 3 F Design value C =716 + [(C ) CB - 852] [0.010x(C)hCBA+124.2/(So/3Cf (Design Conditions) 3 B 3 r Reference VEP TED-NTE 74 Accident Analysis I f Acce cance Criteria Reference TSAR Section 14.2.5

t Design Tolerance is met.

S. TIS O NO Acceptance Criteria is net: E YESO NO t, q g, - l ~ -8.9y Py L nessass) = a l L_ .V Itrbod Evaluated By M /3) M l{ Performed By ~ S'urry Tc.sf r.n ineer Nto Scar:up'in;;1neer ii c,[/ f / Recoe= ended for lh IgaNvfd! cf,7[M, J~ Approval by C. 8 d. e j $s r& D/4 Sycs. JkArV A'a'c7.*.12'Tr af.~ fi v tiiO SupervLsor A

L.

3

L A.15

j SUPM PC'.;ER ST.ATION UNii 1 CYCLE 5 STARWP STARTUP PHYSICS TESTS RESULTS A';D E?ALUATICN STtEET FINAL RESULTS I Test

Description:

Rod Worth Measurement - D, C. B, A In Overlap l Reference Procedure Number /*Section: PT28.ll/ App. E Sequence Stcp Nu=ber: dl2, / II Bank Positions" (steps) RCS Te:perature ('F): 54d Test I**** L***1 SDA: 228 SDB: 223 CA: Moving other (specify): CD: Moving C3 : Moving CC : Moving -(Design) Below Nuclear Heating P/L: 228 RCCA: NA ( 9 III Bank Positions (steps) RCS Te=perature (cT):s fY6 Power Level (: T.P.) : o Test Conditions SDA: Z 7. 7 SDB: 2. 2 (( CA: New e No-Other (specify): go, & ga HuriW6-r (Actual) CE: no w,wc-CC: no vows-CD: novons-P/L: 7.16 RCCA: gjg i Date/Ti=e Test 7/ g/7 Y - 7/f/7 f Perfor=ed: f y f g _ o g o g-l Measured Parameter pg33 ; Integral Worth of Control Bank - D.C,B,A In overlap I IV Measured Value g77 Test Design Value Results (Actual Conditions) g 3 yp3 m 4 Design value romAat0 steps) ( (Design Conditions) 5526 i 553 pc= to D at 228 steps / Referance VIP-FRD-hTE 74 t Accident Analysis If Design Acceptance Criterion is exceeded, then assure V Y81U* adequate shutdow:1 =argin and/or evaluate other accidents. Acceptance as necessary. Criteria Letter from C. M. Stallings (Vepco) to E. G. Case (NRC) Reference { dated May 11, 1978 (Serial No. 272 Design Tolerance is est

STIS O ~ NO y7 Acceptance Criteria is cet: E TIS O NO g,

Evaluated By [// '/'[ /.. f Performed By Sdery Icst-T.ngin ~ RFo startup ics:.neer f ? Recommended for ( /* M2.b WA u N[/r:'V(d I h/ f/# ~ Approval by 1 !. N O Supirvisor i EA'4 SF(f. M'C*I N'A7* J UJI'#t'- .54's*4 f I s A.16

SURRY PO'.'ER STAfl0N UiIT,1 CYCLE i STARTL*P STARTUP PL'YSICS TESTS PISULTS AND EVALUATICN SEEET FINAL RESULTS L I Test

Description:

HZP Boron Worth Coefficient Reference Procedure Number / Section: NA Sequence Step Number: NA 5 II Rank Positions (steps) RCS Te=perature (OT): 547 "" SDA: 228 SD3: 228 CA: Moving Power Level ( F.P.): 0 other (specify): Conditions CB : Moving CC :}bving CD Moving (Design) P/1.- 223 RCCA: NA Below Nuclear Heating RCS Te=perature (cy): %597 111 Bank Positions (steps) 1 Power Level (*. T.P.): O i( ' Test Conditier.s SDA: A 7. $' SDB:2.21( CA: Ti m e other (specify): g g go, p g, gg )) g,y 7:ve.- (Actual) CS: n,,,, uu CC:r1ovwv-CD: n o vow P/L: 22, g RCCA: v/A. Date/Ti=e Test 7/4 /71 - 7/ S'/71l Perferned: ( Measured Parameter do (description) (G),BoronWorthCoefficient IV Measured value ). - 8,cf 4f p c,fppm t' Test Design Value o Results (Actual Ccuditions) Q)* ~ 7./72O*Y2 8'"/## Design Value (Design Conditions) = -9.19 : 0.92 2E'- C3 ppm >+ VEP-.FRD-NFE 74 Reference q Accident Analysis y Y"1"* [$.P } z C3 < 1"5,115 pcm Acceptance \\(C ' L Criteria B 1 Reference FSAR Section 14.2.5 Design Tolerance is set

E TES O N0 CCeptance Criteria is net: 3 YES O NO Comments t

t L Perforced By Ml4 Evaluated By [,8 k4,. T lifo/Startup.ngineer Surry Icst I'ngzneer 4,,ma : (gyps;&L:n> D

  • c

",' ' '; a.,. g:.. o ,aI 5?O Suv vL30t e [f,rg fg cr..sk.uf' fra;22* JM;7ecN. j m ( Ie A.17

r SURRY P0m SIATION UNIT 1 CYCLE 5, SIARTL*P STARTUP Pl!YSICS TE3TS RESULTS AND EVALUAT10N SHEET FINAL RESULTS I Test

Description:

M/D T1ux Map - At Power, NI Calib., K Data Map b i -8"- Y Reference Procedure Nu=ber / Section: PT28.2, OP-57 Sequence Step Nu=ber: 14 II Bank Positions (steps) RCS Te=perature (*F): Oper. Te=p. Power Level (I T.P.): 40 SDA: 228 SD3: 228 CA: 228 itions G : 228 CC : 228 c: Above Other M ec @ (Design) P/L:22S RCCA: N/A Insertion Limits Must have > 40 thinbles RCS Te=perature (oF): Opu. knp, III Bank Positions (steps) Power Level (*. T.P.): 5"O Test "4nditions SDA: 12. (/ SDB: 2. 2. T, CA: 2.2.T Other (specify): (Actual) C1: /., 2. { CC: 2. 2 5 CD: 7 oO y.'5 7'n,M ;.ss P/L: 2. 2. 6 RCCA:p% Date/ Tina Test 7/7/7T Perferned: /6 W-/Td3 l Measured Para =eter MAX. REL. ASST Ibi, NUCLEAR F, TOTAL EEAT QUADRANT (description) PWR. DI7T. E;THALPT RISE EOT FLUX EDT PCWER TILT hj CHANNEL FACTOR CHANNEL FACTCR RATIO (QF E IV % Den = -L 7 /, y 4 2. /. '/ '/ 4 /.o022. Haasured Value P,, = 0. 7 7 p-io (np p-io m Test Design Talue NA NA NA Results (Actual Conditions) 1 1.C2 Design value " 81 8 " 's 1 ' NA ,f (Design Conditions) est :n rg..s M 1 1.02 g tr. uer. m.) a CAP-7905 NONE NONE NONE ( Reference Rev. 1 Accident Analysis y Value None rf,.t.ss ct+.s ti-en ecu) rm 1/i=sm i 1.02 ~ lf Acceptance lL Criteria Reference None TS 3.12 TS 3.12 TS 3.12 Ii Design T lerance is met

S.YES O NO VI Acceptance Criteria is net: IS YESO 1:0 h ents

/*b* pp Ape f wBM wirw rugod TEcwicu $pcmesum y Lcca i y t.cca 'L & pssy t.s n a r $ f' 7k .N ( Performed By -( / Evaluated By RF0 startup Engmeer "sdrry 3cs v ngiocer g

  1. [' p b (d-N((W4d z.4as'M a,.,wu. a -.c.

1,b,4 Nr0 enarr.:s.r L

i t

,l "' A.18

m l SLT.hY POWIR ST/.IION UNIT 1 CYCLE 5.5TA7.!"JP ST/ATUP PE! SICS TES~S RITLTS N;D ITALDATION SHEE! l FINAL RESULTS I Test Descriptics: M/D T1ux Msp - At Power, NI Calib., R Data Map 6/-P f Reference Procedure Nu=ber / Section: PT28.2, OP-57 Sequence Step Number: T-5~ II 3ank Positions (steps) RCS Temperature (OF): Oper. Temp. Power Level (: T.P.): % 50 Test SDA: 228 SD3: 228 CA: 223 Conditions Other (specify): CB : 228 CC : 228 CD: Adoy. (Design) P/L:22S RCCA:N/A Insertion Li=its Must have > 40 thinbles III Bank Positions (steps) RCS Temperature (oF): O/s4, /s~,,p. Power Level ( T.P.): g-o Test Conditions SDA: 7.7. 8 SDB:2 7. */ CA: 22( Other (specify): (Actual) CE: "A2.T CC: 2.2 */ CD: / y f D # "#M4 P/L: 2.2.4 RCCA: p//fg. ~ Date/ Tine Test 7/fl79' Performed: /920- 1026 I Heasured Pareseter MAI. REL. ASST b, NUCLEAR F, TOTAL EEAT QUADRANT j (des cription) PWR DIFF. INTEAlif RISE EOI FLUI EDT F0WER TIL'; (pf CP.ANNEL 7 ACTOR CHANNEL FACTOR EATIO(Q?~7 IV '7, p,pr = 3. 2- /.434 2.o37 /,0043 Measured Value f^4 = 0. s/ C" PIO [ML\\ P/c Gs4 [^ Test . Design Telue i 1.02 Results (Actual Conditions) NA NA NA l I 8283 8 Pa1' Design Value ( (Design Conditions) sist t., r,..e NA NA 1 1.02 { (r,. 4..y. e 3 - f WCAP-7905 Reference Rev. 1 NONE NONE NONE f (- l Accident Analysis ,f,3, p, g,3 7 V11u8 None g,.g,33ci ci..p, gm

  • g 1 1.02 1

Acceptance l Criteria t Reference None TS 3.12 'TS 3.12 TS 3.12 I I b Design Tolerance is met

E TIS O NO 77 Acceptance Criteria is net: E TES O NO l

Co ts fa 'b *'a1 F, vcA r5 mo o 7 " o W T* 6/A le~ t.osa o ss L Yf4sco c a fw'S c c.e L ec s '{ [ 1 Lo M IT S, l t t C. I b M]wA Ivaluated By 7erfor=ed By NEO Startup i=;;;r.ecr ( ' Sur Iene' ingt. er [ Recc= mended for /M N * <cQ - i L-c. + ilN# ((4WN I r.ac; w. nur n.sr wr,a.r. Approval by/ UFO Suva nsor p x, t A.19

9 l SURRY poser STATION UNIT l_ CYCLE 5 STARIU? ~ STARTUP PHYSICS TISTS RESULTS AND EVALUATION SHIET FINAL RESULTS I Test

Description:

M/D Flux Map - At Power, NI Calib., R Data Map b l-f"6 Reference Procedure Nu=ber / Section: FI28.2, 0P-57 Sequence Step Number: g g-11 Bank Positions (steps) RCS Te=perature (CF): Oper. Tenp. Power Level (I F.P.): N. 60 SDA: 228 SDB: 228 CA: 228 Coul.iM ons other (specify): CB :228 CC : 228 CD: Above (Desigt., P/L:228 RCCA:N/A Insertion Linits Must have > 40 thinbles III Bank Positions (steps) RCS Te=perature (OT): Oper Te -p

l Power Level (7. F.P.):., 7 Test Conditions SDA: 7.11(

SDB: 12Y CA: 2,2. 7 Other (specify): .[ (Actual) CB: 2.1 T CC: 2. 2. if CD: s (,//t 6 g, g3 3 j,3 P/L: z A 4, RCCA: f//A .l Date/ Time Ter.t 7 // 0 /7 (/ Performed: 012 4 -- O E W .{ A Measured Para =eter MAX. REL. ASSY b, NUCLEAR F, TOTAL EEAT QUADRA:iT (description) FWR.

  • DIFF.

ENIEALPY RISE EDT FLUX EOT F0;iER TIL" C2ANNEL FACTOR CHANNEL FACTOR RATIO (QPTE IV % dd4 = 4. cl I. '1 c., 5-2.. t i 5 j, co c,,5-Measured Value fp, =. O. % g,,,(,uy q.qq (u. ) 6 li Test Lesign Value i 1.02 1[l Results (Actual Conditions) NA NA NA ,t $281 '" 's 1 ' Design Value 'l (Design conditions) sist ter vs..e NA NA 1 1.02 (r

  • Assy. Pvt.)

g Reference Rev.,1 NONE NONE .NONE Accident Analysis rgt.ss'ti+.ac2-rnsmo) r{rti. Y = ttzt 1.02 If Value None a Acce cance l-Criteria ,( Reference None TS 3.12' TS 3.12 TS 3.12 L Design Tolerance is met

5 YES O NO Acceptance Criteria is met: S YESO NO

'I Cm ts ( a lu n a rs d f 'usc a Y t e cia werL w* t h on c /r e s) ]~e s /n o,u t s l S f e t o fo l 2 O w s f L n,, h o m i t %. t fL Evaluated By - Sd f Performed By NFO Startup Lu pnect dyry,1 cst <ingin' 'r L Recomended for v- - -- [ /Mgg [: Y' - [Ng/Np ., s Approval by u' . f:q uTO Supervisor .g .sen EN6 S:U. ft'uV /~smT 31"A7eck.

p e

A.20

-.g SURRY PO:tER ST.\\ TID'i CIIT 1, CYCLE 5, STARTUP SIARTUP PHYSICS TESTS RESULTS A!.D EVALUATION SHEET FINAL RESULTS I Test Descrip; ion: M/D Flux Map - At Power, NI Calib., R Data Map 6 I-f-7 r Reference Procedure Nunber / Section: PT28.2, OP-57 Sequence Step Nunber: ~2 7 II Eank Positions (steps) RCS Tenperature (O ): OPer. Tez::p. T Power Level (* F.P.): N70 c SDA: 228 SDB: 228 CA: 228 C3 : 228 CC : 228 CD: Above' Cther (specify): Conditions (Design) F/L:228 RCCA:N/A Insertion Linits Must have f_ 40 thinbles T RCS Tenperature (CF): Op,rt, J~f,yg III Bank Positions (steps). i Power Level (*. F.P.): g i Test Conditions SDA: 226 SDB: 23T CA: 4 2 f Other (specify): ~ (Actual) CB: 22T CC:"L% Y CD: / f(, yo 7--o AES { P/L: J. 2 d, RCCA: gjA Date/Tise Test 7//#/7 7 Perforned: O 9 V O -- p o l Measur'ed Paraceter MAX. REL. ASST b., NUCLEAR F, TOTAL HEAT QTADE/.N! (description) FWR.

  • DIFF.

ENTHALPT RISE ECT FLUX HOT P01.TR TILT CHANNEL FACTCR CHANNEL FACTOR RATIO (Q?"T. IV r l '7,DiFr = 7.2. I.450 /. f a / j.ooy3 Measured Value P=06 p-is tzx)

p.,o q,.3 g

l~ Test Design Value NA NA NA 1 1.02 'f Results (Actual Conditions) 81** ' 's 1 i( Design Value 1 1.02 l (Design Conditions) assz r.,rg NA NA cr, - u r. rwr.: WCAP-7905 ( Reference Rev. 1 NONE NONE NONE Accident Analysis ue .None af, t.ssn+.an-r>>.mo) rp:3. @. us 02 Acce cance

b Criteria Reference

$one TS 3.12 TS 3.12 TS 3.12 ,{ iL g - Design Tolerance is met

S.YES O No Acceptance Criteria is cet: S YES O No g,g, w TMau rir d/A ['2 C.H un u t. $/ ace LoLA s u nc'S

. f*\\ A yd f" 40' ~ s wgsg s b' Arc l L IM IIS, 1 L. C.I2% /// /Avth Evaluated By I Perforned 3 NFO btartup i=;; neer ,Yr7, Tyt in Recoe.:nended for ,^ neer N.{- j /gggd: d,hl%; Approval by 5 .5 eV [N4 S:tS. .G.'4*.C V A*.L's1.' a fe;71M. g, y NF0 5upervLsor / ll M lL. A.21

~* q SURRY POWER STA!'10N C;IT 1, CYCLE j,, STARTUP STARTUP PEISICS TESTS RESULTS AND EVALUATION SKEET FINAL RESULTS I Test

Description:

M/D Flux Map - At Power, NI Calib., R Data Map $/~T'-I Reference Procedure Nu=ber / Section: PT28.2, OP-57 Sequecce Step Nunber; z7 e II Bank Positions (steps) RCS Te=perature (OT): Oper. Temp. Power Level ( F.P.) :. 6 0 SDA: 228 SDB: 228 CA: 228 Conditions other (specify): CB :223 CC : 228 CD: Above j' (Design) P/L:228 RCCA:N/A Insertion Limits Must have > 40 thimbles ,r RCS Te=perature (CF): Op/A /gnp III bank Positions (steps) Power Level (* F.P.): gg i Test Conditions SDA: 2.16 SDB:2.%T CA:27 <f Other (specify): (Actual) C3: 22S CC: %1S CD: 1/{ gjj 7 # stf dLES r-RCCA: g/4 P/L: L26 Date/ Time Test 7//0/7T-Performed: j gqg 210 % p-Measured Parameter MAX. RC.. ASSY h.E NUCLEAR F, TOTAL HEAT QUADRAN* k ~ (description) PkR. ' DIFF. C;TEALPY RISE HOT HUI EDT POWER TILT ^ IV CHANNEL FACTOR CEANNEL FACTOR RATIO (QPTR [ 'To Do re s 3. t.

1. L/ O 'f to 799 1,0o75 Measured Value P; o.4s p-io(ig) p.,o ( m Test Lesign Talue

' [ Results (Actual Conditions) NA NA NA 1 1.02 j Design Value "88 8** 's 1 ' a.s 1* l (Design Conditions) aus re eg NA NA cr, Assy. PwT.) ' CAP-7905 Reference Rev. 1 NONE NONE NONE [ Accident Anr. lysis Valut None q,.t.ss ti+.s ts.enst cm r[m. Y = <(* 1 1.02 Acce tance b Criteria Reference None TS 3.12 TS 3.12 TS 3.12 l ' l~ Design Tolerance is met

C-YES O NO e

l Acceptance Criteria is net: 3 YES O NO g, f fsochA "O /~og f,sesn wBit wo ro* oW r n,g Tussass o u Speco,*o es troys V _y sy ~ P> e li-;,,a, P,,,,, = 72% t' f L o r: I T S' L M I Performed B -(. fl,WM , Evaluated By _hFO startup L:gineer i ' '-ry Icsvan '- -cr k[/ncygt} : ht:94 R*C0~. pended for (. ,, 4 "(, V / Approval by fej y i?A!6 Srcf. JWs*V A a ~2 a fh7scN. s NTO Supc vLsor u A.22

O r .5URRY POVER STATi3N CsIT 1 CYCLI,5_ STARTUP STAR"t*P PHYSICS TF,STS PISULTS AND EVALUATION SEEET FINAL RESULTS s s-r y 1 Test

Description:

M/D T1ux Map - At Power. NI Calib I Data, Prhres. Deter. Map Reference Procedure Nu=ber / Section: PT28.2, 0?-57 Seg:c=re Step Number: g II Eank Positiens (steps) RCS Te=perature (OF): Oper. Tenp. C cditions SDA:228 SDB: 228 CA: 228 Power Level (2 T.P.):s90 (Design) CB : 228 CC : 220 CD: Above Other (specif7): P/L:228 RCCA: N/A Insertion Limits Must have > 40 thimbles ~ I III 3ank Positions (steps) RCS Te=perature (CF): d/M.s sad Power Level (: F.P.): 9y Test Conditions SDA: 2 L Y SDB: 22.7 CA: 2 2 7 Other (specify): (Actual) CE: 2 2,T CC: 2. 2. T CD: 22V g 7" j,,7 ggy e P/L: 2,2. 6 RCCA: yjg Date/ Time Test 7////7 I-Performcd: oggo_.O747 Measured Parame:*. MAX. REL. ASST b, NUCLEAR F, TOTAL REAT QUADPXi! (description) PWR.

  • DIFF.

CITHALPT RISE EDT n.UX ECT POWER TILT (' CEAN:iEL FACTCR CHANNEL FACTOR RATIC(QP~R' IV (, To O' M " 't 7 . I, 'i 15~

1. % 'l1 1.0061 Measured Value 0i h'-l4 (f(Lh K-t4 A &

/ { Test . Lesign Tdue E { Results (Actual Conditions) 1 1.02 i I Design Value

  • 181 '" 't. '

I (Design Conditions) aus su r.., 1.02 NA NA cr, - a..r. rw.) WCAP-7905 * ' {,\\ Reference g,y, y NONE NONE NONE l Accident Analysis 7 't a ue None 7." .m +.atz-enarmi rh2). Y us) 1 1.C2 Acceptance h c iteria r Reference None TS 3.12 TS 3.12 TS 3.12 g I L Design Tolerance is cet

El.YIS O No g

Acceptance Criteria is =et: 1E YES O :;0 g g, h n kJ ov 6/?2 avlTWIW I* i+ t3 ott l~2e a wo Los L $ N C lFK@d$ y seca w sceA. L Rod AssY Linit$ { YY [,_ rfrteA rtt% D /ffs.!4M Evaluated By , e "I Performed By l Sdery IcsV1.ng:c.ucr i NFO btar tup t.ngmucr ^ Recommended for r/d (/ l' h Approval by L' ' ' I * *- 3-f fik[wys I,k f/ NFO Supm sor 2 A.23

Q ~ SUT.RY PC'.iER S *. TION UNIT 1, CYCLE 5, STARWP STARTUP PHISICS TESTS RESULTS AND Evid.UATION SEEET FINAL RESULTS S l~ b /d I Test

Description:

M/D Flux Map - HTP. ARC, Eq. Xe. Map Reference Procedure Number / Section: TT28.2, OP-57 Sequence Step Number: yy II Eank Positions (steps) RCS Te=perature (CF): 56Q2*F Power Level ( F.P.) : 100 SDA: 228 SDB: 228 CA: 223 Conditions Other (specify): Equil. Xenon CB : 228 CC : 228 CD: Above (Design) P/L:228 RCCA:N/A Insertion L1=its Must have > 40 thimbles i ~ e III Bank Positions (steps) RCS Te=perature (DF): 6#E4. / ene' Power Level (: F.P.): </ 9, ~ Test 6, )( gy,v Conditions SDA: '2. "24 SDB:2 2. 'i CA: ~2.2. T Other (specify): 4 (Actual) C3: 7. J. '/ CC: 2. 2 T CD: 2.1/ 42-

  1. "U P/L: 21 (,

RCCA: v/A. Date/ Time Tect 7// 3 /v</ Performed: 6 7// - #U ! MAX. REL. ASSY Ib* NUCEAR D.TOTALEEAT QUADTJST Measured Para =eter U' M T RISE EDT FLUX EDT FCt!ER TILT FliR.f_)DIF* (description) (!!- CHA' GEL FACTOR CRANNEL FACTOR TJ.TIO(qPTp, IY P 0##" /*4/0 /, (f 3 'j gg-Measured Value M

  • O' K-I4 X L.,

K-14 WL. { Test Design Talue NA NA NA 1 1.02 Results (Actual Cenditions) { 8188 '*' 't * f Design Value NA NA 1.02 f (Design Conditions) aus e.: r.., liCAP-7905 {s NONE NONE Reference g,y, 1 Accident Analpis pT 33 ct+.ac2.rjistens r%. Y Em i 1.02 7 Value None Acceptance b Criteria Reference None TS 3.12 TS 3.12 TS 3.12 j L Desip Tolerance is met

E YES O NO VI Acceptance Criteria is cet: 3 YES O No Com=ents ri,esir reeseica s G rec >rienmn soca

.o ss t Fe A ~o Fy v u e wornie L. u /*s1 e ** nst L irf l*f S. L Evaluated By I / 'l'.,. flA A% f Performed E _ Sdtry Tes f u gL. der hfC Startup Engmect [ Fecommended for ,j hy/gg N Approval by bth /$.g /fs/ !;FC Supervisor L o f A.24

e.. a suox wan :aA12ri:s it:n.!. Cru.n :. rai.tru:. nIuu nir:ar!. um. m.!.u.r tw m.wA72W Tmn FINAL RESULTS e I 7ect tes.criptions leiucr (..ciflof ret i:cuuurerent refcycnce _ IEProcedote 14otbcr / T.ectica: P7 fi;.12 Sequence Step Eur.bert 32 U tank Pcoltions. (stopo) RCS 7ceperature (O ): Onet. Te-=p. T !Mt 22G SD3: 2 71 C/.I 27;; Powcr Level (I T.P.):*v r:4. c,,,ygggy,g C 1 2'/M CC 1 22C CD: P.ovtu p Other (etps: city)s T.ful). hnt, t (,c,.3 7,,y PfL 2/8 RCCI.t UA 4 At*cvc insertiun Lit.tsa ECO 7e: perature (67) Oper. Tenp. III knk Peattion> (steps) Powcr Lcvol (I T.P.): 100.0-90.1 yes Coriditic.no T,t!.: 228 ODL: 223 CM 22g Cther (crecify) CD:167 225 Eurnup=1075 F.u'D/HrU CC: 228 (Actutil) CE: 22p, P/L: 22N MCC/. 1;A ~ S/10/78 2312-2352 11ct uured Pmar.eter (descrittion) (&p/l.P). Dif fe tential Power Coefficimt IV tenwed Value -10.5 2 3.2 N P -[ dest D: sign Valuu y -{ Ker.ults (Actual Conditics:) -10.6 f g (CB = 805 p;n, P=?5%) Decir.n vs.)un

j (benico unditions)

-10.3 {.Er g (.3 x (r,,fp)M) (Cf > rr=. P= 95*3 t2 ,( letter f ron R. 7. !:cyor (t& st inthouse) to it. E. ItottetJer ECI"'CDCC dated !!srch 3f1 1975 (TP-W-573) and WJ.M.47). ~ 1.tcident M&lyA1:a Y blue itA A:ceptence Criteria 7:eference 1:A Leairn 7i.3erence is r:et i C Yr;C ::o l g,7 Acccatanc e Cniter$a it rett M YESO E3 ,{ , f c s l

  • l Perion a e q. A,y.. iu..M /; p yt e. V tvniosteany./_tg_f.x.A.h

) l V :.:.r

..u e

..~ i..I# S j /. 3:U-C 4 Rcrareen.t.4 for / lP b{L . /.i t.Q9 fth (f' fj' y ..gyrm nt s.y ( (y :~1 y.n i\\ d.wynn.~y,j,;9,, .(- ( 8 u w A.25 W

r i ACKNOWLEDGEMENTS T 1 The authors would like to acknowledge the cooperation of the Surry Power Station personnel in performing the tests documented in this report. Special thanks is due Messrs. L. A. Johnson,,L. J. Curfman, J. I. Kelly, P. L. Davis, III, and R. H. Blount. t The authors would like also to express gratitude to Mr. D..W.

Lippard,

'l Dr. E. J. Lozito, and Mr. L. M. Girvin for their aid and guidance in preparing / ( this report. We would like to thank Ms. C. E. Bullock for her patience and I accurate typing of the entire report. F t e. e. M m b ..}}