ML18142A217

From kanterella
Jump to navigation Jump to search
Cycle 8 Startup Physics Test Rept
ML18142A217
Person / Time
Site: Surry Dominion icon.png
Issue date: 02/28/1985
From: Brookmire T, Snow C, Stewart W
VIRGINIA POWER (VIRGINIA ELECTRIC & POWER CO.)
To: Harold Denton, Varga S
Office of Nuclear Reactor Regulation
References
85-121, VEP-NOS-16, NUDOCS 8503270431
Download: ML18142A217 (64)


Text

VEP-NOS-16 VIRGINIA POWER SURRY u*NIT 1, CYCLE 8 STARTUP PHYSICS TEST REPORT


\\

  • ---850327ABi~~ ~~8s~!so I

PDR PDR I

p NUCLEAR OPERATIONS DEPARTMENT

VEP-NOS-16 SURRY UN IT 1, CYCLE 8 STARTUP PHYSICS TESTS REPORT Reviewed By:

!;~

E. S. Hendrixson, Engineer Nuclear Fuel Operation by:

T. A. Brookmire Approved By:

C.. T. Snow, Supervisor Nuclear Fuel Operation Operations and Maintenance Support Subsection Nuclear Operations Department Virginia Power Richmond, Virginia February, 1985

CLASSIFICATION/DISCLAIMER The data, techniques, information, and conclusions in this report have been prepared solely for use by Virginia Power (the Company), and they may not be appropriate for use in situations other than those for which they were specifically prepared. The Company therefore makes no claim or warranty whatsoever, express or implied,as to their accuracy, usefulness, or applicability.

In particular, THE COMPANY MAKES NO WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, NOR SHALL Ai~Y WARRANTY BE DEEMED TO ARISE FROM COURSE OF DEALING OR USAGE OF TRADE, with respect to this report or any of the data, techniques, information, or conclusions in it. By making this report available, the Company does not authorize its use by others, and any such use is expressly forbidden except with the prior written approval of the Company. Any such written approval shal1 itself be deemed to incorporate the disclaimers of iiability and disclaimers of warranties provided herein. In no event shall the Company be liable, under any legal theory whatsoever (whether contract, tort, warranty, or strict or absolute liability), for any property damage, mental or physical injury or death, loss of use of property, or other damage resulting from or arising out of the use, authorized or unauthorized, of this report or the data, techniques, inform~tion, or conclusions in it.

i

SECTION 1

2 3

4 5

6 7

APPENDIX A APPENDIX B TABLE OF CONTENTS TITLE PAGE NO.

Classification/Disclaimer..................

i Table of Contents..........................

ii List of Tables.............................

iii List of Figures............................

iv Preface....................................

v Introduction and Summary...................

1 Control Rod Drop '1'ime Measurements.........

10 Control Rod Bank Worth Measurements........

15 Boron Endpoint and Worth Measurements......

20 Temperature Coefficient Measurement........

24 Power Distribution Measurements............

28 References............ -..... *................

36 Startup Physics Tests Results and Evaluation Sheets..........................

37 Deviation Report for the Measured All-Rods-Out Boron Endpoint................

38 ii

LIST OF TABLES TABLE TITLE PAGE NO.

1.1 Chronology of Tests................................

4 2.1 Hot Rod Drop Time Summary..........................

12 I

3.1 Control Rod Bank Worth Summary.....................

17

4. 1 Boron Endpoints Summary............................

22 5.1 Isothermal Temperature Coefficient Summary...,.....

26 6.1 Incore Flux Map Summary............................

30 6.2 Comparison of Measured Power Distribution Para-meters With Their Technical Specifications Limits...

31 iii

LIST OF FIGURES FIGURE TITLE PAGE NO.

1. 1 Core Loading Map.........................................

5 1.2 Beginning of Cycle Fuel Assembly Burnups.................

6 1.3 Inc6re Instrumentation Locations.........................

7 1.4 Burnable Poison and Source Assembly Locations............

8 1.5 Control Rod Locations....................................

9 2.1 Typical Rod Drop Trace...................................

-13 2.2 Rod Drop Time - Hot Full Flow Conditions.................

14 3.1 Bank B Integral Rod Worth - HZP..........................

18 3.2 Bank B Differential Rod Worth - HZP......................

19 4.1 Boron Worth Coefficient..................................

23 5.1 Isothermal Temperature Coefficient - HZP, ARO............

27 6.1 Assemblywise Power Distribution - ARO, 3% Power..........

32

6. 2 Assemblywise Power Distribution - 50~~ Power..............

33 6.3 Assemblywise Power Distribution -

70% Power..............

34 6.4 Assemblywise Power Distribution -

100% Power, Equilibrium Xenon........................................

35 iv

PREFACE The purpose of this report is to present the analysis and evaluation of the physics tests which were performed to verify that the Surry 1, Cycle 8 core could be operated safely, and to make an initial evaluation of the performance of the core. It is not the intent of this repor,t to discuss the particular methods of testing or to present the detailed data taken. Standard test techniques and methods of data analysis were used.

The test data, results and evaluations, together with the detailed startup procedures, are on file at the Surry Power Station. Therefore, only a cursory discussion of these items is included in this report. The analyses presented include a brief summary of each test, a comparision of the test results with design predictions, and an evaluation of the results.

The Surry 1, Cycle 8 Startup Physics Tests Results and Evaluation Sheets have been included as an appendix to provide additional information on the startup test results. Each data sheet provides the following information: r) test identification, 2) test conditions (design), 3) test conditions (actual), 4) test* results, 5) acceptance criteria, and 6) comments concerning the test. These sheets provide a compact summary of the startup test results in a consistent format.

The design test conditions and design values of the measured parameters were completed prior to startup physics testing. The entries for the design values were based on the calculations performed by Vepco' s Nuclear Engineering Group 1 :

During the tests, the data sheets were used as guidelines both to verify* that the proper test conditions were met and to facilitate the preliminary comparison between measured and predicted test results, thus enabling a quick identification of possible problems occuring during the tests.

Appendix A of this report contains the final completed and approved version of the Startup Physics Tests Results and Evaluation Sheets.

V

SECTION 1 INTRODUCTION AND

SUMMARY

On September 26, 1984, Unit No. 1 of the Surry Power Station was shutdown for its seventh refueling. During this shutdown, 56 of the 157 fuel assemblies in the core were replaced with fresh fuel assemblies. The eighth cycle core consists of 10 batches of fuel:

three once-burned batches from Cycle 7 of Unit 1 (Batches 9A, 9B, S2/9B), one twice-burned batch carried over from Cycles 4 and 5 (Batch 6C), two twice-burned batches from Cycles 6 and 7 (Batches 8A and 8B), two twice-burned batches carried over from C'.;-cles 4 and 5 of Unit 2 (Batches S2/6A and S2/6B), one thrice-burned batch carried over from Cycles 3, 4, and 5 of Unit 2 (Batch S2/5A), and one fresh batch (Batch 10). The core loading pattern and the design parameters for each batch are shown in Figure 1.1. Fuel assembly burnups are given in Figure 1.2. The incore instrumentation locations are identified in Figure 1.3. Figure 1.4 identifies the location and number of burnable poison rods and source assemblies for Cycle 8; and Figure 1.5 identifies the location and number of control rods in the Cycle 8 core.

On December 26, 1984 at 0150, the eighth cycle core achieved initial criticality. Following criticality, startup physics tests were performed as outlined in Table 1.1. A summary of the results of these tests follows:

1.

The drop time of each control rod was confirmed to be within the

1. 8 second limit of the Surry Technical Specifications 2 *
2.

Individual control rod bank worths for all control rod banks were measured using the rod swap technique 3 and were found to be within~

4.8% of the design predictions.

(The measured worth of 484 pcm 1

for Control Bank A was only 48 pcm, or 11.0% different from the predicted worth.)

The sum of the individual control rod bank worths was measured to be within 2.0% of the design prediction.

These results are within the design tolerance of +/-15% for individual bank* worths

(+/-10% for the rod swap reference bank worth) and the design tolerance of +/-10% for the sum of the individual control rod bank worths.

3.

Critical boron concentration for the B-bank in configuration was measured to be within 7 ppm of the design prediction.

However, the All-Rods-Out critical boron concentration did not meet the design tolerance of +/-50 ppm (the design value exceeded the measured value by 75 ppm).

This deviation was evaluated and determined to be acceptable as indicated by the deviation report and ertgineering evaluation included in Reference 4.

The Station Deviation Report is attached as Appendix B.

4.

The boron worth coefficient was measured to be within 6. 7~~ of the design prediction, which is within the design tolerance of +/-10%,

and met the accident analysis criterion.

5.

The isothermal temperature coefficient was measured to be within 1.7 pcm/°F of design prediction. This result is within the design tolerance of +/-3 pcm/°F and also meets the accident analysis acceptance criterion.

6.

Core power distribution for HZP and at-power conditions were all within established design tolerances.

Generally, the measured 2

measured core power distribution was within 8.5% of the predicted power distribution.

All measured parameters were within the limits of the Technical Specifications and met their respective accident analysis acceptance criteria.

In summary, all startup physics test results were deemed acceptable.

Detailed results, together with specific design tolerances and acceptance criteria for each measurement, are presented in the appropriate sections of this report.

3

Table 1. 1 SURRY 1 - CYCLE 8 STARTUP PHYSICS TESTS CHRONOLOGY OF TESTS Test Date Time Power Hot Rod Drop-Hot Full Flow 12/24/84 0000 HSD Reactivity Computer Checkout 12/26/84 1153 HZP Boron Endpoint-ARO 12/26/84 1635 HZP Temperature Coefficient-ARO 12/26/84 1743 HZP Bank B Worth 12/27/84 0848 HZP Boron Endpoint-B In 12/27/84 1516 HZP Bank D Worth - Rod Swap 12/27/84 1730 HZP Bank C Worth - Rod Swap 12/27/84 1825 HZP Bank A Worth - Rod Swap 12/27/84 1854 HZP Bank SB Worth - Rod Swap 12/27/84 1917 HZP Bank SA Worth~ Rod Swap 12/27/84 1950 HZP Flux Map-ARO 12/28/84 0320 HZP Flux Map - 50%

12/31/84 0120 50%

Flux Map - NI Calibration 01/02/85 1024 70%

Flux Map - NI Calibration 01/02/85 1751 70%

Flux Map - NI Calibration 01/03/85 0242 70%

Flux Map - HFP, Eq. Xenon 02/04/85 1027 100%

4 Reference Procedure l-PT-7 l-PT-28.11 l-PT-28.11 l-PT-28. 11 1-PT-28.11 l-PT-28. 11 1-PT-28. 11 l-PT-28. 11 1-PT-28. 11 1-PT-28. 11 l-PT-28. 11 1-0P--57, 1-PT-28.2 l-OP-57, l-PT-2-8.2 l-OP-57, l-PT-28.2 1-0P-57, l-PT-28.2 l-OP-57, l-PT-28.2 1-0P-57, 1-PT-28.2

R p

N H

L Figure 1.1 SURRY UN IT 1 - CYCLE 8 CORE LOADING MAP K

J H

G F

I *6B I 9A I *6B I

I W21 I 207 I W39 I

E I 6A I 9A I 10 I 9A I 10 I 9A I 6A I

I OB5 I 3D4 I 11E4 I 001 I 2E2 I 004 I 1B7 I

0

' *6A I 10 I 10 I BB I 10 I BB I 10 I 10 I *6A I

I V07 I 3E9 I 5[3 I 1C4 I 1E2 I OC5 I 3E6 I 5E4 I V20 I

C

' 6C I 9B I 10 I 9B I 10 I 9A I 10 I 90 I 10 I 90 I 6C I

I JOB I 408 I OE!

I 6DO I 3E1 I 2DB I 3E7 I 5D7 I OE5 I 5D5 I J16 I

B

' BA I 1 o I 1 o I 6C I 1 o I *5A I 9A I *5A I 1 o I 6C I 1 o I 1 o I BA I

I 007 I 2E6 I 4EO I J13 I 1E9 I T15 I ODB I 114 I 4E7 I J17 I 4E2 I 1E1 I 1B3 I

I *9B I 10 I 9A I 10 I *9B I 9A I Bil I 9A I *9B I 10 I 90 I 10 I *9B I

I 3R2 I 1 EB I 301' I 4E9 I 1R4 I 2D4 I 5C11 I 2D2 I 1R2 I OEB I 4D5 I 2E4 I 4RO I

A

' *6B I 10 I BB I 10 I *5A I 9A I *6A I IO I *6A I 9A I *5A I 1 O I BB I 1 O I 6C I

I W51 I 5E6 I 4C2 I OE4 I T17 I 1D9 I V21 I 1 E5 I V17 I 104 I T19 I 1E6 I 5CO I 5E1 I J07 I

I l __ l __ l __ l __ l __ l __ l __ l __ l __ l __ l __ r __ l __ l __ l l~I 9A I 10 I 9B I 9A I BB I 10 I 9B I 10 I BB I 9A I 9A I 10 I 9A I 9A I

I 1D2 I 108 I 3E2 I 308 I 1D5 I 4C5 I 3E4 I 5D9 I OE3 I 3C4 I OD7 I 303 I 3EB I OD5 I 009 I

I I __ I __ I __ I __ I __ I __ I __ I __ I __ I __ I __ I __ I __ I __ I l~I 10 I BB I 10 I *5A I 9A I *6A I 10 I *6A I 9A I *6B I 10 I BB I 10 I *6B I

I W33 I 1E4 I 4C4 I 4E5 I TlO I 2D3 I V02 I 5EO I V19 I 3DO I W47 I 2E9 I OC6 I 4E6 I W35 I

I 1_* _I __ I __ I __ I __ I ___ I __ I __ I __ I __ I __ I __ I __ I __ I

--, 9A I 10 I 90 I 10 I 9A I 9A I BB I BB I 9A I 10 I 9A I.10 I 9A I

I 103 I 3EO I 403 I 2E3 I 3D2 I 3D6 I 2C8 I 2C4 I 101 I 2E5 I 106 I 1 E3 I 2D5 I

'--'--'--'--'--'--'--'--'--'--~--'--'--'

I BA I 10 I 10 I 6C I 10 I *SA I 9A I *SA I 10 I 6C I 10 I 10 I BA I

I OBB I SES I 4E3 I J20 I OE9 I T18 I OD3 I TOl I 4E8 I J34 I 3E3 I DE7 I 1B9 I

I 6C I 9A I 10 I 9B I 10 I 9A I 10 I 9B I 10 I 9B I 6C I

I JOl I 100 I 5E2

  • I 4DI I 2E7 I 201 I 2E8 I 5D2 I OE6 I 503 I J23 I

I *6A I 10 I 1 o I BB I 1 o I BB I 1 o I IO I *6A I

I V23 I OE2 I 1 E7 I OC3 I 2EO I 3C9 I 4E1 I 2El I V06 I

I __ I __ I __ I __ I __ I __ I __ I __ I __ I I *6B I 9B I 10 I 9A I 10 I 9B I BA I

I W25 I 4D6 I 3E5 I OD6 I 1 EO I 4D2 I 1B4 I

I *6B I 9A I *6B I

I 1--> BATCH I Wl 2 I 1 D7 I Wl13 I

I 1--> ASSEMBLY ID FUEL ASSEMBLY DESIGN PARA.liETERS SUB-BATCH S2/SA S2/6A S2/6B 6C BA BB 9A 9B INITIAL ENRICHMENT (W/0 U235) 3.11 2.91 3.20 2.90 3.22 3.40 3.59 3.61 BURl','UP AT BOC 8 ( MWD/MTU) 28423 22461 26744 25597 28327 28330 12329 14986 ASSEMBLY TYPE 15X15 15X15 15X15 15X15 15X15 15X15 15Xl5 15X15 NUMBER OF ASSEMBLIES 7

8 9

9 7

13 31 13 FUEL RODS PER ASSEMBLY I

204 204 204 204 204 204 204 204 5

S2/9B 3.59 14274 15X15 4

204 10 3.60 0

15Xl5 56 204 2

3 4

5 6

7 8

9 10 12 13 15

p N

Figure 1.2 SURRY UN IT 1 - CYCLE 8 BEGINNING OF CYCLE FUEL ASSEMBLY BURNUPS M

L K

J.

H G

I W21 I 2D7 I W39 I

I 259751 87861 262031 F

E 1 __

1 __

1 __ 1 I 085 I 304 I 4E4 I 001 I 2E2 I 004 I 187 I 291301 140051 01 110161 01 140291 283091 D

__ 1 __ 1 __

1 __

1 __

1 __ 1 __

1 __

1 __

I V07 I 3E9 I 5E3 I 1C4 I 1E2 I OC5 I 3E6 I 5E4 I V20 I

I 224321 01 OI 302571 OI 30001 I 01 OI 224451 C

1 __ 1 __ 1 __ 1 __ 1 __ 1 __

1 __

1 __

1 __ 1~

I JOB I 408 I OEl I 600. I 3E1 I 208 I 3E7 I 507 I OE5 I 505 I J1o I

I 259391 154001 01 1'.;5861 01 140421 01 154001 01 151541 260131 B

1 __

1 __ 1 __

1 __

1 __

1 __

1 __ 1 __ 1 __ 1 __

1 __

1 __

I 087 I 2E6 I 4EO I J13 I 1E9 I T15 I 008 I 114 I 4E7 I J17 I 4E2 I 1E1 I 183 I

I 280431 01 01 259751 OI 283381 89351 282101 OI 259271 01 01 285201 1 __

1 __ 1 __ 1 __ 1 __ 1 __

1 __

1 __ 1 __ 1 __

1 __ 1 __ 1 __ 1 I 3R2 I 1EB I 301 I 4E9 I lll4 I 2011 I 5C4 I 202 I 1R2 I OEB I 405 I 2E4 I 4RO*

I I 13583 I o I 15323 I o I 14649 I 12589 I 28484 I 12740 I 15219 I o I 154561 o I 136421 A

1 __

1 __

1 __

1 __ 1 __ 1 __ 1 __ 1 __

1 __ 1 __ 1 __

1 __

1 __

1 __

I W51 I 5E6 I 4C2 I OE4 I 117 I 109 I V21 I 1E5 I V17 I 104 I T19 I 1E6 I 5CO I 5E1 I J07 I

I 263291*

01 300041 01 282731 135031 221651 OI 226691 129161 286061 01 306061 OI 227601 1 __

1 __

1 __

1 __

1 __

1 __ 1 __

1 ___ 1 __ 1 __, __

1 __

1 __

1 __

1 I 102 I 106 I 3E2 I 306 I 105 I 4C5 I 3E4 I 509 I OE3 I 3C4 I 007 I 303 I 3E8 I 005 I 009 I

I 87291 113541 01 144961 68271 268221 01 143291 01 293231 91111 151381 01 110911 90641 1 __ 1 __ 1 __ 1 __ 1 __ 1 __

1 ___, __, __

1 __, __ 1 __ 1 __ 1 __, __

1 I W33 I 1E4 I 4C4 I 4E5 I 110 I 203 I V02 I 5EO I V19 I 300 I W47 I 2E9 I OC6 I 4E6 I W35 I

I 261511 01 300791 OI 264531 122161 222061 OI 225061 130571 295621 OI 296681 Ol "262591 1 __ 1 __ 1 __, __

1 __ 1 __, __ 1 __

1 __ 1 __ 1 __ 1 __, __ 1 __, __

I 103 I 3 EO I 403 I 2E3 I 302 I 306 I 2C8 I 2C4 I 101 I 2E5 I 106 I 1 El I 205 I

I 136291 01 155201 01 154081 132051 289061 113171 15313 I 01 15581 I OI 139171 1 __ 1 __

, __ 1 __

1 __

1 __ 1 __, __ 1 __

1 __

1 __

1 __

1 I OB8 I 5E5 I 4E3 I J20 I OE9 I 118 I 003 I 101 I 4E8 I J34 I 3E3 I OE7 I 189 I

I 277381 OI 01 261371 01 284851 90651 285961 01 257781 01 OI 282361 1 __

, __ 1 __

1 __, __, __ 1 __ 1_-__ 1 __ 1 __ 1 __ 1 __ 1 __

1 I J01 I 100 I 5[2 I 401 I 2E7 I 201 I 2E8 I 502 I OE6 I 503 I J23 I

I 258321 153461 01 155031 01 141371 OI 155261 OI 151841 260101

, __, __ 1_-_1 __ 1 __, __

1 __ 1 __ 1 __ 1 __, __,

I V23 I OE2 I 1E7 I OC3 I 2EO I 3C9 I 4E1 I 2E1 I V06 I

I 224371 01 01 306531 DI 299701 DI DI 228061 1 __

, __, __ 1 __, __, __, __ 1 __, __ 1 I W25 I 406 I 3E5 I 006 I 1 ED I 402 I 184 I

I 282311 139791 DI 112291 OI 132621 263151 1 __, __ 1 ___ 1 __ 1 __

1 __ 1 __

1 I Wl 2 I 1 o I I w*1 J I

I**> ASSEMBLY ID I 256771 8801 I 261011 I __ I __ I __ I I

I**> ASSEMBLY BURNUP

, __ I 6

2 5

6 1

8 9

10 11 12 13 14 15

R p

N Figure 1.3 SURRY UNIT 1 - CYCLE 8 INCORE INSTRUMENTATION LOCATIONS M

L K

J H

G f

E D

I I

I I

I I

HD I

TC I

I I

1--1--1--l I

I I

I I

TC I

I TC I

HD I

I

__ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __

I HD I

I I

I MD I

I I

I HD I

I TC I

I TC I

MD I

TC I

I TC I

I TC I

C 1--1--1--:--:--:--:--:--*-:--:-.--l--1 I

TC I

I HD I

I I

HD I

I MD I

TC I

I I

B

__ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 1 __ 1 __ 1 __ 1 __

I I

I I

I I

I I

I I

MD I

I MD I

I I

HD I

I MD I

TC I

MD I

TC I

I TC I

HD I

TC I

I TC I

l--1--1--l--;;;ol--l--l--l--l--l--l--i--l--l I

I TC I

I TC I

I I

MD I

TC I HD I

I I

I I

A 1--1--1--1--1--1--1--1--1--1--1--1--1--1--1--1 I

TC I

TC I

HD I

I I

I MD I

I MD I

I TC I

MD I

I MD I

I I

I __ I __ I __ I __ I I __ I __ I __ I __ I __ I __ I __ I __ I __ I 1--1 I

HD I

I MD 1--1 I

I I

I I

I HD I

I I

I HD I

TC I

TC I

I TC I

TC I

I TC I

TC I MD I

TC I

I TC I

MD I

TC I

1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 I

I I

I I

I I

I I

I MD I

I I

I I

I I

I I

I TC I

MD I

I I

TC I

MD I

TC I

I I

I I

MD I

1--l--l--,;;ol--l--l--l~ol--l--l--l--l--l--l--;;;ol--1 I

I TC I

I I

I TC I

I I

I TC I

MD I

I TC I

1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 I

I I

I I

I I

MD I

I MD I

I I

I I

I I

I TC I

HD I

TC I

I 1 C I

I TC I

!:ID I

I I

I 1--1--1--1--1--l--,;;ol--l--l--l--l--l--,;;ol--1 I

MD I

I TC I

I TC I

I I

I TC I

MD I

TC I

1 __ 1 __ 1 __ 1 __

1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __

1 MD - Movable Detector TC - Thermocouple I

I I

I I

MD I

I MD I

I I

I I

I I

I TC I

I TC I

I I

1--l--,;;ol--l--1--1--1--1--1--1 I

TC I

I I

I MD I

I TC I

1 __ 1 __ 1--1--1--1--1 __ 1 I

MD I

TC I

TC I

1 __ 1 __ 1 __ 1 7

2 3

4 5

6 7

8

,9 1D 11 12 13 14 15

Figure 1.4 SURRY UN IT 1 - CYCLE 8 BURNABLE POISON AND SOURCE ASSEMBLY LOCATIONS R

P N

M L

K J

H G

F E

D

  • C B

A 4P 4P P* 16P 16P 16P P*

16P 16P P* 16P 16P p,': 16P 20P 4P 20P 16P P*

16P 20P 20P 16P 4P 16P SS7 16P SS2 16P 4P 16P p,*,

4P 16P 8P*16P 4P p,*, 16P 4P 16P SSl 16P 16P 4P I zop. I 1

  • I 16P 20P 16P p-** 16P!

20P 4P

  • 120P 16P p-.',

16P 16P P* 16P 16P P* 16P 16P 16P P*

4P 4P I

I I

4P 4.BURNABLE POISON ROD CLUSTER BP 8 BUR.~ABLE POISON ROD CLUSTER 16P 16-BURNABLE POISON ROD CLCSTER 20P 20 BURNABLE P,OISON ROD CLUSTER P*

16 DEPLETED BURNABLE POISON ROD CLUSTER SSx SECONDARY SOURCE 8

1 2

3 4

5 6

7 8

9 10 11 12 13 14 15

e Figure 1.5 SURRY UNIT 1 - CYCLE 8 CONTROL ROD LOCATIONS R

P N

M L

K J

H G

F E

D C

B A

IOOP C INIEl' 90~

Absorber Material Ag-In-Cd IOOP C OU'ITEI' N-41 C

A B

SA D I SA A

B C

N-44 IOOP A OUTLET 180° I

A D

SA B

SB SP D

C SP SB C

SP SB D

C SB SP B

SA A

D FUNCTION NUMBER OF CLUSTERS Control Bank D 8

Control Bank C 8

Control Bank B 8

Control Bank A 8

Shutaa..m Bank SB 8

Shutdc:Mn Bank SA 8

SP (Spare Iod locations) 8 9

IOOP B INIEl' A

V SA N-43 B

C SP SB D

B A

SB SP SA C

D SB SP SA D

B A

SP SB B

C SA N-42 A

IOOP A INLET 1

2 3

4 5

6 IOOP B 7 OUTLET IA

-2 70° 8

9 10 11 12 13 14 15


~----------------------------------~*

SECTION 2 CONTROL ROD DROP TIME MEASUREMENTS The drop time of each control rod was measured at cold and at hot RCS conditions in order to confirm satisfactory operation and to verify that the rod drop times were less than the maximum allowed by the Technical Specifications.

The hot control rod drop time measurements were run with the RCS at hot, full flow conditions (. 547 °F, 2235 psig) and are described below.

The rod drop time measurements were performed by first withdrawing a rod bank to its fully withdrawn position, and then removing the movable gripper coil fuse* and stationary gripper coil fuse for the test rod. This allows the rod to drop into the core as it would in a normal plant trip.

The data recorded during this test are the stationary gripper coil voltage_, the LVDT (Linear Variable Differential Transformer) primary coil voltage and a 60Hz timing trace which are recorded via a visicorder. The rod drop time to the dashpot entry and to the bottom of the dashpot are determined from this data. Figure 2.1 provides an example of the data that is recorded during a rod drop time measurement.

As shown in Figure 2.1, the initiation of the rod drop is indicated by the decay of the stationary gripper coil voltage when the stationary coil fuse is removed. A voltage is then induced in the LVDT primary coil as the rod drops. The magnitude of this voltage is a function of the rod velocity. When the rod enters the dashpot section of its guide tube, the velocity slows causing a voltage decrease in the LVDT coil. The LVDT voltage then reaches a minimum as the rod reaches the bottom of the dashpot.

Subsequent variations in the trace are caused by the rod 10

bouncing._This procedure was repeated for each control rod.

The measured drop times for each control rod are recorded on Figure

2. 2. The slowest; fastest, and average drop times are summarized in Table 2.1. Technical Specification 3.12.C.1 specifies a maximum rod drop time from loss of stationary gripper coil voltage to dashpot entry of 1. 8 seconds with the RCS at hot, full flow conditions. All test results met this limit.

11

Table 2. 1 SURRY UNIT 1 - CYCLE 8 STARTUP PHYSICS TESTS HOT ROD DROP TIME

SUMMARY

ROD DROP TIME TO DASHPOT ENTRY SLOWEST ROD FASTEST ROD.

A VE RAGE TIME J-3, 1.30 sec.

K-12, 1.12 sec.

1.18 sec.

M-6, 1.12 sec.

ROD DROP TIME TO BOTTOM OF DASHPOT SLOWEST ROD FASTEST ROD AVERAGE TIME J-13, 2.06 sec.

F-2, 1. 71 sec.

1.82 sec.

12

Figu 1

TYPICAL ROD DROP TRACE

  • ... **:.- -~ --.*
  • -----* ~-.. ~

1~-----.1 ___ --*-*-- *-.

0 I

~

I I

I o

I I

'1 I

0 I

I I o

'
.:.. -. -. Tu*m,.~* TR~c.E~ ~m~,)oN: 13us. FR.~Que:~.Jc~
  • R p

Figure 2.2 SURRY UN IT 1 - CYCLE 8 STARTUP PHYSICS TESTS ROD DROP TIME - HOT FULL FLOW CONDITIONS N

H L

K J

H G

F I

I I

I I

I __ I __ I __ I 1---1-1-.2=1~1 I 1.14 I 1-1-.1-9--, --1 D

C 8

A I

I 1. 97 I I 1. 72 I I 1. 71 I

I 2

I __ I I __ I __ I __ I __ I ___ I __

1--1 1--1 1.30 I I 1.20 I I

I I

I I

I I 1. 92 I I 1. 72 I I

I I

3 I

I __ I I __ I __ I __ I __ I __ I __ I __

1--1~1 l~I I

I 11.11 I

I 1.11 I I

I I 1.74 I I 1.77 I I

I 11.77 I

I 1.81 I I

4 I

I I __ I I __ I __ I __ I __ I __ I __ I __ I __

1--1--1--1 1.19 1--,

I I

I I 1.;,o I I

I I

I I

I I 1.81 I I

I I

I I 1.BO I I

I I

5 I

I I

I __ I I __ I __ I __ I __ I __ I __ I __ I __ I 1~1--1~1 l~I I 1.16 I

11. 13 I

I 1.15 I I 1.25 I I 1. 86 I I 1. 83 I I 1. 76 I I 1. 76 I I 1. 72 I

I 1. 76 I I 1. 93 I 6

  • I I

I __ I __ I __ I __ I __ I __ I __ I __ I __ I __ I __ I __

1--1--1~1 I

I I 1.20 I I 1.16 I I

I I 1.18 I I

I I

I I 1. 95 I I

I I 1. 84 I I 1.91 I I

I I 1. 84 I I

I 7 I

I I

I I

I I

I __ I __ I __ I __ I __ I __ I __ I __ I 1--1~1--1--1--1~1--I I

11.28 I

I I

I 1.16 I I

I I 1. 73 I I

I I 1. 76 I I

I

11. 87 I

I I

I 1. 73 I I 8 I

I I

I I __ I I __ I __ I __ I __ I ___ I __ I __ I __ I __ I 1--1--1--,-:w-1--I 1--1 1.18 I I 1.25 I I

I I 1.23 I I

I I

I I 1. 84 I I

I I 1. 72 I I 1. 6 7 I I

I I 2. o 1 I I

I 9 I

I I

I I

I I

I __ I __ I __ I __ I __ I __ I __ I __ I

--l~l--l--,--:-;,-l--11-:-T81--I 1. 16 I I 1.16 I I 1.11 I I 1.21 I I 1. 84 I I 1. 77 I I 1. 76 I I 1. 75 I I 1. 76 I I 1. 80 I I 1.81 L 1 O I

I I

I __ I I __ I __ I __ I __ I __ I __ I __ I __ I 1--1--1----1 1.19 1--1 I

I I

I 1.?u I I

I I

I I

I I 1. 80 I I

I I

I I 1. I 8 I I

I I

11 I

I I

I __ I I

I __ I __ I __ I __ I __ I __ I __ I

--1--1--,.--n-l 1--,:-w-1--1 I

I 1.17 I I 1. 18 I I

I I 1. 74 I I 1. 60 I I

I I 1. 77 I I 1. 80 I I

12 I

I I

I I

I __ I __ I __ I __ I __ I __ I

--l--l--l--11-:-T81 I 1.20 I I

I I

I I

I I 2. 06 I I 2. 05 I I

I I

1 3 I

I I

I I __ I __ I __ I __

I __ I

--1--1--,-:w-1--1 1.14 I 11.23 I

I I

I 1. 86 I I 1. 75 I I 1. 88 I

I 14 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 I

I I

I I

I I

I 15 I __ I __ I __ I 1--> ROD DROP TIME TO I

I Df1SllP01 ENll!Y (SEC.)

I __ I--> BOil DIWP TIM~ TO BOTTOM OF DASHPOT (SEC.)

14

SECTION 3 CONTROL ROD BANK WORTH MEASUREMENTS Control rod bank worth measurements were obtained for all control and shutdown banks using the rod swap technique. The first step in the rod swap procedure was to dilute the most reactive control rod bank (hereafter referred to as the reference bank) into the core and measure its reactivity worth using changes resulting from conventional test techniques. The reactivity the reference bank movements were recorded continuously by the reactivity computer 5 and were used to determine the differential and integral worth of the reference bank (Control Bank B).

At the completion of the reference bank reactivity worth measurement, the reactor coolant system temperature and boron concentration were stabilized such that the reac~or was critical with the reference bank near full insertion. Initial* statepoint data for *the rod swap maneuver were obtained by moving the reference bank to its fully insert.ed position and recording the core reactivity and moderator temperature. At this point, a rod swap maneuver was performed by withdrawing the reference bank while one of the other control rod banks (i.e., a test bank) was inserted. The core was kept nominally critical throughout this rod swap and the maneuver was co~tinued until the test bank was fully inserted and the reference bank was at the position at which the core was just critical. This measured critical position (MCP) of the reference bank with the test bank fully inserted is the major parameter of interest and was used to determine the integral reactivity worth of the test bank. Statepoint data (core reactivity, moderator temperature, and the differential worth of the reference bank) were recorded with the reference bank at the MCP. The 15

rod swap maneuver was then performed in reverse order such that the reference bank once again was near full insertion and the test bank was once again fully withdrawn from the core. The rod swap process was then repeated for all of the other control rod banks (control and shutdown).

A summary of the results for these tests is given in Table 3.1.

As shown by this table and the Startup Physics Tests Results and Evaluation Sheets given in Appendix A, the individual measured bank worths for all of the control and shutdown banks were within the design tolerance (+/-10% for the reference bank and +/-15%

for the test banks),

The sum of the individual rod bank worths was measured to be within 2.0% of the design pre,Hction. This is well within the design tolerance of +/-10% for the'*~um of the individual control rod bank worths.

The integral and differential reactivity worths of the reference bank (Control Bank B) are shown in Figures 3.1 and 3.2, respectively. The design predictions and the measured data are plotted together in order to

  • illustrate their agreement. In summary, all measured rod worth values were satisfactory.

16

Table 3.1 SURRY UNIT 1 - CYCLE 8 STARTUP PHYSICS TESTS CONTROL ROD BANK WORTH

SUMMARY

MEASURED PREDICTED PERCENT DIFFERENCE WORTH WORTH BANK (PCM)

. (PCM)

(M-P)/P X 100 B-Reference Bank 1407 1378 2.1%

D 1312 1274 3.0%

C 752 774

-2.8%

A 484 436 11.0%

SB 792 816

-2.9%

SA 1007 961 4.8%

Total Worth 5754 5639 2.0%

17

0 0

N 0

0 N

l:: 0 uo CL ';::

FIGURE 3.. 1 SURRY UNIT BANK BANK 1

CYCLE 8 BOL PHYSICS TEST HZP B INTEGRAL ROD WORTH B WITH ALL OTHER RODS OUT PREDICTED 11EASUREO I

l I

I I

I I

I I

i I

I I

I T

I, I I

i I

i i

I r

I I

i I

I I

I I

I I*

  • _-t-t_-+-, __

...t::J1;.;_ 1-+-t-+-+++++++++-+-H1-+-H-++-++++-H-h-HH-H-++-++++-++-H-+-1-+--+-++

I--

I I

I i

. I

~

0 1-+++++-H+-l-llll.~

... ~-1-,-,H-+-+++++-+++-+-+-H-+-+-+-+++-+-+-++~-+-1-+--H-+++++-1--l--l--l-if--

a ? H-+++-t--t-t--H---H~11rt'<.t-t-+++++-t-t-t---Hc-+-~r+-+++++-+--t-t-+-l-+-;-+-+-+++++-H-+--4-++

~~t-+++++-H-+-t-HH-r'M~~~++-H+-1-HH-H-H-++++-H+-I-HH-H-1 '+-+++++-++-H-+-

I

'\\.

I

'\\

T 1

I.

'\\.

I I 1,

  • I I\\.

I 1" I I

_J CI

~

C)

W o t-t-++-H-H-HH-H-t-+-++++-1--f*+-P-!.-+--H-+-+-++-++++-++-H-+-H-' 1+-+++++-H-l--1--l-iH-+-~

I l

I-- 1...>0-t-+++++++-+-t-+-1-+-H-rt-++++--t-'!IH-+-H-+-H--H-++++++-++-+-!-l-i..+-, +-, ++-+++-++-+-+-1--H z co H-++-t-+-+-t-HH-l-+-t-+-++++-i-+-H--R~l--k-+-+-++-+++++-+--1-iH-H-+-'++

,, ++++-++-+-l-+-1-+-l 1111 I,,

/1111 J

I I

I I I I I '

I i *

"'~ '"

I I

I I

0 1-t-++-H-H-HH-H-t-+-++-++++-++-H-+-H-+-+-+-+--!!1-~

... -H,-~:-H-+-H-++

'+++' +' +-+---L-l-l-1-l-I

' I I

I I

I 1

I I

T I

I

~++++~-.,~---~~ -*r,+++1+++++-1-HH-H-+-+,+-++-++1-++,-H-H~+-,+-+-~.+-1'!!,~~~.+-+-+-IH-l---+-~

0 40 I

I

  • I, I

' I.

I 80 120 BANK POSITION 18.

I I

I I

160 (STEPS) 200 228

0 0

'o:t C\\J 0

0 0

'""'"'N (L

w CF.Jo

,a

E:"

u<::!

(L

_I a:

-a

.._a z*

WCD 0:::

w IJ._

IJ....o

-a

0.

~

C)

C)

C) 0 FIGURE 3.2 UNIT 1 CYCLE 8 SURRY BANK B BANK BOL PHYSICS WORTH TEST HZP OUT I

I I

I I

I i

I I i i !

I I

I I

i I '

I i

I I I I

i I i

I i..

I I

~

I

~

I I

I

  • I' I

I' I '

I i I I

I '

! ~: I /

I I

I ' '

I I

I I

I :

I Ill I

/!

~~

I I

I

-1" I ' !

  • ~.v I

I

~....-,

I I

40 DIFFERENTIAL ROD B WITH ALL OTHER RODS PREDICTED ll MEASURED i

I I

I I

i I

I 11111

'-II'.

I

~

ii I I Iii I i I !

I...

I It.~

I l

'I I -

I I

I I

Ill

! I I

II

~

I I

I I

I I

I I

I

! i

, rlRlr Ill inl:J ~ (HI!

I I

I Yi

\\

i-

~

I\\

I I

l:r" i

I I :

i I

i I

I I

I I

I I

I I ! :

I I

I I

i I

80 l 20 BANK POSITION 19 I

I I

I :

I I

I I

I i

I I

I I

I I

I i I I

I l I

I I

I '

I I I

I I

I I

I I

I

! ' : I I I I

I I : !

I

-;-~

I I 1'1 I

I ' -

1* -

I -..

I I..

I I

I I '

I I

! ' I I

I

-,....J..

I I

I

--..l I

I I

I I

I i

160 (STEPS) t++-

I i

I I

I I

' I I

I i

I I

I I

i I

i I

I I

I I

I I

I I

I II

\\

i I

I I I

\\

I i :

I '

I '

I '

I Iii

\\

I I

I I

200 I

228

SECTION 4 BORON ENDPOINT AND WORTH MEASUREMENTS Boron Endpoint With the reactor critical at hot zero power, reactor coolant system boron concentrations were measured at selected rod bank configurations to enable a direct comparison of measured boron endpoints _with design predictions. For each measurement, the RCS conditions were stabilized with the control banks at or very near a selected endpoint position. The critical boron concentration was then measured.

If necessary, an adjustment to the measured critical boron concentration.was made to account for off-nominal core conditions, i.e., for rod position and moderator temperature.

The results of these measurements are given in Table 4.1. As shown in this table and in the Startup Physics Tests Resu}ts and Evaluation Sheets given in Appendix A, the measured B-bank-in critical boron endpoint value was within its respective design tolerance.

The measured ARO critical boron endpoint value did not meet the 50 ppm design tolerance.

A Deviation Report was filed (Appendix B), and an evaluation 4 conducted by the Vepco Nuclear Engineering Group determined this deviation to be acceptc;1ble.

All measured values met the accident analysis acceptance criterion. In summary, all results were satisfactory.

Boron Worth Coefficient The measured boron endpoint values provide stable statepoint data from which the boron worth coefficient was determined. A plot of the boron concentration as a function of integrated reactivity can be constructed by 20

relating each endpoint concentration to the integrated rod worth present in the core at the time of the endpoint measurement.

The value of the boron coefficient, over the range of boron endpoint concentrations, is obtained directly from this plot.

The boron worth plot is shown in Figure 4.1. As indicated in this figure and in Appendix A, the boron worth coefficient of reactivity was measured to be -8. 74 pcm/ppm. The measured boron worth coefficient is within 6.7% of the predicted value of -8.19 pcm/ppm and -is within the design tolerance of +/-10%. The measurement result also met the accident analysis acceptance criterion. In summary, this result was satisfactory.

21

ARO Table 4.1 SURRY UN IT 1 - CYCLE 8 STARTUP PHYSICS TESTS BORON ENDPOINTS

SUMMARY

Measured Predicted Difference Control Rod Endpoint Endpoint M-P Configuration (ppm)

(ppm)

(ppm) 1321 1396

-75 B Bank In 1160 1153*':

7

  • The predicted endpoint for the B Bank in configuration has been adjusted for the difference between the measured and predicted values of the endpoint taken at the ARO configuration as shown in the boron endpoint Startup Physics Test Results and Evaluation Sheets in Appendix A.

22

RE 4.1

~

SURRY UNIT 1 -

CLE 8 BOL PHYSICS TEST BORON WORTH COEFFICIENT C!J ENDPOINT MEASUREMENTS 2400 -.-~---.--.---.---;...--,----,----,.---,,--,--..----.----,--~-r----r-----.----.----.----,----,.--,~,--..----.--....----.----.--~---.----,---,

---f----**-* ~1-----t---+---+----- -* --~----._*->----- f-------- --- --- ------- ----------- ----- ---. ---- ----- ---- ---- --- --.. ***** --****. -1

. j I

-:~ I~= =:~~~-f--~- -----~=----==-----

-- -~ ~=~-*:_- ~-~ -=- :*~:_,_~-~- --~-~-

~~-~ ~:.- f--- -----~--~~~-- __ -:.~ ----- ~~:l:-~-

i I

2000 ~--~-+.i~--+-~-~--~-+---f-~--=+-f-=-----~--+=-~---~--==------_~-~~+--~~~--.---+:~~-~~---=---: ---+~f--~---~--1-f-:*-+---_----,*-~f--:~.-----+--~~~:-+-~~---~--+:*_~:.::+-~-:---~:--+* ~=~-t-_:_:--~----+--1~

-+-:*--+-J.--t:.~

---~~--------- ---f----- ------------------ ---*------------------ ------------- ______ :_.. --------------** -----------*----------- ~--- ----*******

l:: 1600 u

1--*--

--***-...... _ -------------- -- **----1--:- ----

Q__

[~ -------*--**1-------,-..--

-*------+--+-----..:.- 1----- --- I-----*--- ----t--~--+---+--


f--*-------

L"

---1. ~

---~----- >-----

--+-----+-~-->-----+---+--- -

--- --- -- --+--+---+---,____ -- --

I-I

~......... "-.

._ l 2 0 0 -+--+1--l-t--t-"""--t-r-,.....-+--+--t-_ -+--+--+----+-+--+--t--ll--t--+---t--+--t--+--+--+---+--+-+-+--t--!e-t--f

~

T ----~=,~ ~:~~"' r;~--==~ -= ---- ---+--!-----,~-+-- -- >----+------+----!--------==- -~~-: -~-----~ -~~~~==

u i

~

a:.

    • --1-------- ---- -

. -- --~ --t----l--t----+-----+--*-----+-----1--t------1---+---+---+---+---+-****** --- ------- --- --- --

w I

~~

er 800

= -8. 7 4 pcm/ppm

--=-~-~ ~~~f-:: ~~ - ----* --~~=~.. :=- ---- ---- -- ------

--1---1---- 1------- ------ ---- ~- ---- -* -- ~

1'-....r-,...._

400

- Ii I I I

~~

_J ___ ---+-- -+-- ----- -----~-- --- ---------- ------ -- -- --- __ :_ -- -- -- ---~r::::f-*-- ------ ----- ----

  • -l-- --- --r- *-f*---r---~ ---- --------- ---- ------- --- -- --->----- f----f-- ------ ---- ---- ---- --t--~~----

-+-- --r* - ------------ ---- --- ------------- ---------- ----- _______ ; _____ ---------- --~---f----~---- ----

I.

I

'I'.....

0 l 160 l 180 1200 1220

  • 1240 12~0 1280

- BORON CONCFNTRATION [PPM) 1300 1320

SECTION 5 TEMPERATURE COEFFICIENT MEASUREMENT The isothermal temperature coefficient (ITC) measurement is generally accomplished by controlling the RCS heat gains/losses with the steam dump valves to the condenser, establishing a constant and uniform and/or steam generator blowdown heatup/cooldown rate, and then monitoring the resulting reactivity changes on the reactivity computer.

However, excessive heat losses during this test prevented the plant from sustaining a controlled RCS temperature increase while maintaining flux in the zero power testing range.

As a result, nuclear heat was used to increas~ RCS temperature, and then controlled RCS temperature cooldowns were used to determine the ITC.

These measurements were performed at very low power lev~ls in order to minimize the effects of non-uniform nuclear heating, thus; the moderator and fuel were approximately at the same temperature (between 542-549 °F) during these measurements. To eliminate the boron reactivity effect of outflow from the pressurizer, the pressurizer level was maintained constant or slightly increasing during these measurements.

An isothermal temperature coefficient measurement was performed at the ARO control rod configuration. For this configuration, reactivity measurements were taken during the cooldown ramps during which the RCS temperature varied approximately 7°F.

Reactivity was determined using the reactivity computer and was plotted against the RCS temperature on an x-y recorder. The temperature coefficient was then determined from the slope of the plotted lines.

The x-y recorder plot of reactivity changes versus RCS temperature for the measurement is shown in Figure 5.1.

24

The predicted and measured isothermal temperature coefficient values are compared in Table 5.1. As can be seen from this summary and from the Startup Physics Test Results and Evaluation Sheets given in Appendix A, the measured isothermal temperature coefficient value was within the design tolerance of +/-3 pcm/°F and met the accident analysis acceptance criterion. In summary, the measured result was satisfactory.

25

BANK POSITION ALL RODS OUT Table 5.1 SURRY UN IT 1 - CYCLE 8 STARTUP PHYSICS TESTS ISOTHERMAL TEMPERATURE COEFFICIENT

SUMMARY

ISOTHERMAL TEMPERATURE COEFFICIENT TEMPERATURE BORON (PCM/°F)

RANGE CONCENTRATION (OF)

(ppm)

COOL DIFFER.

HEATUP DOWN AVER. FRED.

(M-P) 542.0

-5.14 to 1303 N/A

-4.22

-4.69 -6.34

1. 65 548.5

-4.70 26

1--

Figure 5. 1 SURRY UN IT 1 - CYCLE 8 STARTUP PHYSICS TESTS ISOTHERMAL TEMPERATURE COEFFICIENT HZP, ARO

--1-+-+-+-+-+-+-+--t-+-1-t-t-

,l-.-i-1~-::P='lo=-ol:-c:!--.::_-t_-t.._-t---_l -+-H - ~

! I [ i I 1----

--~ ------~-=-~-=-,-=--__ J_:_1

___ J1,:Lj_*

- ~"- ~ >- -

- I * -

I I f ! :

a-+

0

--+---. -.-+---+-+-,~~,---~,-t-1-:+t--+~-- - *- - - -= = -=

- : - ~~ ~ ~ ~ ~.'

' I -

I l L -- -. l i ! ! !

a-+-+--lt-t-t-t---t-1-1-t--t-t-t - -

I ll - ->- -

I :_

- - --

  • 1 ! l I i
1. ---. -,_. -I I l f -

+--+-1-r-+-t--+- - ""'"'Ii'! - ~~-:

-- - - - - I I -----

I f --

a-+-4-+-+-+-i-+-,f-+-1-+-+--t-t-t-1-1-+-l-+-l-+-l-+-~~--+-l--+-J--+-+--+-+-t-t-+-

""'~~

- -t-t

  • i- --

a-+-+-t--+-,-+-+-+-+--+-+-

-+-+-+--+-t--i--+-1t-+-t--+-+-t-+-r;-;----t--1-;-t*-,_,_ - -- -- - --.. ~ Iii-

  • -,_,-- 1--

- I. _,__.

-- - -- --+--1-+-+-+-+-+--+ -->- - - >- -

-,~ ~ -

I !

- I !

1-+-1-+--+-1--

-+-+--+-+--t-+*-+*-

- ~ - -

- "~r,~~

i I I I i :

--t--1-t-t-t-r-t-+-+-+-* -

- *-- - h,+-i-..+-++*+-l-+-+-+

-+-!__,f-+- -

'Ii t;. i

I I

I

-R :.:: _-, __. -- _

_:-=>-- :: -~ ~-~=*-~=*---+---Ho-+~+--+--+--+-~-~~ ----- -*~~~*~~.~~ --~=-- ~=~~ ~:=~:1:~li '~~;~ _' 'tl -

1--

- ~I t-- ------ *--~*-' - * - "

r*


>- -*-tt=t_:t.jjj,j1:i.::1t!=1~11d--++-H

__ -_+_ >-: ~ ~ -

~ :- - -->->- >- -

- d' -

I l

  • -+-+-+-+-+-+--I-+-+-

-11 I

H

- = :: : -~*= :

~

- - -, 111 Iii - - - -

i-I I l 2;

~Iii....

I i

~ -- -~=-~~~:~~~~--:

    • --:_ --* ~-===--=-=::*-:-.:-_-_. ~ =-*:-:-- ~ ->->- -* ~ --~:~~~;;->-_:---

~ -, 1,-

~

  • -*--~-------

---1--~--

~---f---** --*-----

..,~.--., -

L a+-+-+-+-+-t--i--+-,--+-,1--!. -

Iii,..;. -

l - -

=t-._te--:::=::-:-:-:-_:-_ -~.._ - ~ '= =~- = ~ -

. -_ ~ ~':: ~ =~ ~ ~ -,--

_+ t,~1.. \\~~.:.

  • -1, 1* I I 1-
  • -r- * *-*---+--_...-+-+

r-

.. f 1 I

~-""~::t-i-t-H-t-t--t-

- -+-i,-t--1--!-+-l-+-t--+-t-*+-+-t-+r-+-t- -

->- -- -. j ! l

! I

  • I~ '
  • *: ; ~ =~ ~~ ~ ~;: ~:~ ~ ~~.... :.~.

..,-,1-1 1 _;_;.._;_;.._;_t~t=:~,--l-+: ~-_;::-:;-_-t_--+* ~-t-:~ - ~~ ~ : -

r--,

1 1,, r 1

1 1* ~

~"' ~; ~ 'j ~ ~- -~ ~ --

! ! I : I i ! ] i !

a-+-+_,_+,_++_,-+-+_++_,_+_+_+t-+.._-+_-H-+_-+ __

-+_-+M__ -,_ ".:"~H

.. 1~..i_ - - -- - - -

I l II I

'1' ! I:

!I

'11

~,: 11.

-f--t-.... *-

HORIZOOTAL SCALE 1 °F/inch

~*~ ~:-=:~

~ __ ~~~~~~;~ = -- -- *-

1 :

1 r _,

1 1 -r-

  • 1 1

'1 1 1, 1 1 -

1 1

1 1 '1 C'l"'71.T 'C'

- 10 0 """""" 1inch ~ -: ~ ~ :_

-i--'~ ["II -l.

VERI'Ic.AL ~

1:-"--'-'V

- - -. r~

I I I 1' I j.;

II I I I t I I I 1-1'"- f I 11 I I I I I I I I f J J f I I I I I, i 1

I 1

TEMPERATURE (°F) 27

SECTION 6 POWER DISTRIBUTION MEASUREMENTS The core power distributions were measured using the incore movable detector flux mapping system. This system consists of five fission detectors which traverse fuel assembly instrumentation thimbles in 50 core locations (see Figure 1.3). For each traverse, the detector output is continuously monitored on a strip chart recorder. The output is also scanned for 61 discrete axial points by the PRODAC P-250 process computer.

Full core, three-dimensior*ql power distributions are then determined by analyzing this data usir,g the Westinghouse computer program, INCORE 6

  • INCORE couples. the measured flux map data with predetermined analytic power-to-flux ratios in order to determine the power distribution for the whole core.

A list of all the flux maps taken during the test program together with a list of the measured values of the important power distribution parameters is given in Table 6. 1.

The measured power distribution parameter values are compared with their Technical Specifications limits in Table 6.2. Flux Map 3 was taken at low (3%) power (Flux Map 1 was taken to measure gamma signals prior to criticality and Flux Map 2 was unuseable due to_poor neutron flux detector performance).

This flux map serves as the base case design check.

Figure 6.1 shows the resulting radial power distribution associated with this flux map.

This map indicated the

  • presence of a slight quadrant power tilt (2.1%) but.all measured hot channel factor values were within their Technical Specifications limits.

Flux Maps 4, 5, and 8 were taken over a wide range of power levels and control rod configurations. These flux maps were taken to check the 28

at-power design predictions and to measure core power distributions at various operating conditions.

These maps also provide incore/excore calibration data for the nuclear instrumentation system. The radial power distributions for these maps are given in Figures 6.2 through 6.4. These figures show that the measured relative assembly power values are generally within 9% of the predicted values, and that the quadrant power tilt ratio decreased significantly during power ascension.

In conclusion, all power distribution measurement results were acceptable with respect to the design tolerances, the accident analysis acceptance criteria, and the Technical Specification limits. It is therefore anticipated. that the core will continue to operate safely throughout Cycle 8.

29

w 0

MAP DESCRIPTION ARO (5,6) 50% POWER MAP 70% NI CAL. (7)

HFP, EQ. XENON I

I I

IMAP INO.

I I_

I I

3 I

I 4

I I

5 I

I 8

DATE 12-28-84 12-31-84 1-2-851 I

2-4-851 TABLE 6. 1 SURRY UNIT 1 -

CYCLE 8 STARTUP PHYSICS TESTS INCORE FLUX MAP

SUMMARY

I 1

I 2

BURNI F-Q(T) HOT I

F-DH(N) HOT UP I IBANK CHANN.EL FACTOR I

CHNL.FACTOR MWD/IPWRI D

I I

MTU I(%) I STEPS I I

I AX(AL I I

I I

I I

IASSYIPINIPOINTI F-Q(T)IASSYIPINIF-DH(N)

__ I_I __ I_I_I __ I I __ I_I I

I I

I I

I I

I I

OI 31 212 I J02 I LDI 20 I 2.543 I J02 I LDI 1. 649 I

I I

I I

I I

I I

12 I 49 I 173 I G021 DDI 32 I 2. 165 I D091 HGI 1. 584 I

I I

I I

I I

I I

301 691 187 I J02 I LDI 34 I 2.070 I J02 I LDI 1.527 I

I I

I I

I I

I I

9251100 I 228 I J02 I LDI 43 I 1.900 I J02 I LDI 1. 490 I

I CORE F(Z)

I 4

I MAX I

31 QPTR AXIAL! NO.

I F(XY) I OFF I OF AXIALI I

I SET ITHIM POINT! F(Z) I I MAX ILOC

(%) IBLES

__ I __ I __ I __ I_

I __

I I

I I

I 20 ll.48511.59011.021 I NE

26. 41i I 46 I

I I

I I

33 11. 315 I 1. 525 I 1. o 1 o I SE

-3.921 45 I

I I

I I

34 ll.27211.50411.0071 NW

-5.271 43 I

I I

I I

I 43 I 1. 20111. 443 11. 001 I NWI -4.00I 47 NOTES: HOT SPOT LOCATIONS ARE SPECIFIED BY GIVING ASSEMBLY LOCATIONS (E.G. H-8 IS THE CENTER-OF-CORE ASSEMBLY),

FOLLOWED BY THE PIN LOCATION ~DENOTED BY THE "Y" COORDINATE WITH THE SEVENTEEN ROWS OF FUEL RODS LETTERED A THROUGH RAND THE 'X" COORDINATE DESIGNATED IN A SIMILAR MANNER).

IN THE "Z" DIRECTION THE CORE IS DIVIDED INTO 61 AXIAL POINTS STARTING FROM THE TOP OF THE CORE.

1, F-Q(T) INCLUDES A TOTAL UNCERTAINTY OF ~.08.

2.

F-DH(N) INCLUDES A MEASUREMENT UNCERTAINTY OF 1.04.

3.

F(XY) IS EVALUATED AT THE MIDPLANE OF THE CORE.

4.

QPTR -

QUADRANT POWER TILT RATIO.

5.

FLUX MAP WAS THE GAMMA BACKGROUND MAP.

6.

FLUX MAP 2 WAS THE OMITTED BECAUSE OF INVALID DATA.

7.

FLUX MAPS 6 AND 7 WERE QUARTER-CORE MAPS TAKEN FOR PRELIMINARY EXCORE DETECTOR CALIBRATION.

Table 6.2 SURRY UN IT 1 - CYCLE 8 STARTUP PHYSICS TESTS COMPARISION OF MEASURED POWER DISTRIBUTION PARAMETERS WITH THEIR TECHNICAL SPECIFICATION LIMITS

+

F-Q(T) HOT F-DH(N).HOT CHANNEL FACTOR*

CHANNEL FACTOR+

MAP NO.

MEAS LIMIT MARGIN MEAS LIMIT MARGIN

(%)

(%)

4 2.17 4.36 50.3 1.58

1. 79
11. 7 5

2.07 3.16 34.4 1.53 1.69 9.5 8

1. 90 2.18 12..8 1.49 1.55 3.9 The Technical Specification's limit for the heat flux hot channel factor, F-Q(T), is a function of core height. The value for F-Q(T) listed above is the maximum value of F-Q (T) in the core. The Technical Specification's limit listed above is evaluated at the plane of maximum F-Q(T). The minimum margin values listed above are the minimum percent difference between the measured values of F-Q(T) and the Technical Specification's limit for each map. All measured F-Q(T) hot channel factors include 8% total uncertainty.

The measured values for the enthalpy rise hot channel factor, F-dH(N), include 4% measurement uncertainty.

31

II Figure 6. 1 SURRY UNIT 1 - CYCLE 8 STARTUP PHYSICS TESTS ASSEMBL YWISE POWER DISTRIBUTION II

' '. 'i>Rro i crri,.. :

MEASURED

  • PCT DIFFERENCE.

M L

k ARO, 3% POWER J

H G

  • o:ii*:*o:i;*:*o:ii*:

. 0.40. 0.72. 0.39,

. 10.5. 10.3.

7.8.

F E

  • o:ii*:*o:i4*:*i:;i*:*i:2i*:*;:;i*:*o:i4*:*o:i;*:

. 0.36. 0.81. 1.28. 1.33. 1.25. 0.77. 0.37.

1,5. 8,9. 9.7.

9.4.

7.0.

3.4.

4.8.

D C

B

  • * *
  • i>ilri>ic+ro* *:

MEASURED

, PCT DIFFERENCE,

, 0,311. 1.13. 1.20, 0.98. 1.28. 0.98. 1.20

  • 1.13, 0.38.

A 2

, 0,39, 1.18. 1.28, 1.06. 1.39. 1.04, 1.25, 1.19, 0.40, 3

1,9.

3.9.

6.5, 7.8. 8.5.

6.3.

4.3,

5,5.

6.9.

. i,: ii.:. o: as.:. i: ii,.:. i: ii.:. i: 2r :. i: 25.:. i: if :
  • i: ii.: T ii,.:. o: as':. o: ii.:

, 0.37. 0.91, 1.26. 1,33. 1.32, 1.32. 1.38, 1.38, 1.25, 0.91, 0.38.

4 2.7. 3.7. 5.6. 1.6. 1.6. 5,3. 6.5. 5.1. 4.1. 3.7. 4.6 *

, 0,35, 1.13, 1.20, 0.90, 1.20, 0.97, 1.29, 0.97, 1.20, 0.90, 1.20, 1,13, 0.35.

. 0.36

  • 1.17. 1.24, 0.93, 1.20, 0.91
  • 1.28, 0.99. 1.22
  • 0.93, 1.21. 1.17, 0.37,

5 3.6.

3.6

  • 3.7,

3.5, 0.3. -5.6. -0.5. 2.0

  • 1.6.

2.6.

1.2. 3,5,

6.1.

. i,: i4. :. i: ii,. :. i : ii. :. i : ii,. :. i : 27. :. i: 27. :. i,: 98. :. i: 27. :. i : 27. :. i : 20. :. i: ii ' : 'i : 20 '.: 'i,: iii. :

, 0.77. 1.24. 1.34, 1.22, 1.27, 1.22. 0.97. 1.25. 1.23, 1.20, 1,32, 1.22, 0.77,

6 3.7. 3.7. 2.6. 1.1. -o.6. -3.8, -0.1. -1.3. -3.1. -0.2. 0.1. 1.8. 3.7.

. o: ii.:. i: ii.:. o: 98':. i: 29.:. o: 97.:. i: 27.:. o: 98.:. i: ii,.:. i,: 98°:. i: 27.:. o: 97.:. i: 29.: 'o: 98.:. i: ii. :. i,: ii. :

. 0.37. 1.21, 1.01, 1.27, 0,93

  • 1.22. 0.98, 1.20. 0.97. 1.24, 0.94. 1.28, 0.99, 1.18, 0.37.

7 3.4.

3,5.

3,5, -1.5, -3,9. -3.9. o.o. -o.o, -0.7. -2.6 * -2.6. -1.2. 0.7.

1.4.

1.7.

. o: ii.:. i: ii.:. i: 28. :. i: 25.:. i: 28.:. o: 98':. i: 2i.: 'i: iii.:. i: 2i.:. o: 98.: 'i: 28.:. i: 25.:. i: 28.: 'i: 21.:. o: ii.:

, 0.67. 1.24. 1.32, 1.21. 1.18. 0.91, 1.10. 1.13. 1.17, 0.94. 1.22. 1.23. 1.29.. 1.23. 0.67.

II 3.2.

3.3.

3,5. -3.0. -8.4. -6.9. -9.3. -1.4, -3.5. -4.2. -4.7. -1.2.

1.2.

t.9.

3.3.

  • o:ii*:*;:ii*:*o:i8*:*;:2i*:*o:91*:*i:2i*:*o:98*:*i:20*:*o:ia*:*i:2i*:*o:91*:*i:29*:*o:98*:*i:ii':*o:ii':

, 0.37, 1.20, 1.01

  • 1.21*. 0.93, 1.20, 0,93. 1.16. 0.94, 1.17, 0.89, 1.17. 0.97, 1.21
  • 0.38.

9 3.4.

3.1.

2.8, -1.9. -4.2, -5.6. -5.4. -3.8. -3. 7. -7.9. -7.8. -9.2. -0.9.

4.1.

5.5.

....... :. o: iii.:. i: 20': 'i: ii':. i: 20.:. i: 27.:. i: 27.:. o: 98':. i: 27.:. i: 27.:. i: ii,.:. i: ii.:. i: 20.:. o: i4.:.......

. 0.76. 1.22. 1.28, 1.13. 1.20. 1.20, 0.94. 1.22. 1.24, 1.15. 1.20, 1.16, 0.77,

10 2.2.

2.1 * -2.4. -5.8. -5.9. -5.4. -4.2, -3.6. -2. 7. -3.8 * -8.1. -2.8,

4,0.

'o: ii. : 'i: ii.:. i: ii,.:. i, ji,.:. i: ii,.:. i,: 97. :. i: 29.:. o: 97.:. i: ii,. :. o: 90.:. i: ii,.:. i: i 3.:. o: 35.:

, 0,35

  • 1.14, 1.16. 0.83. 1.14. 0.94, 1.24. 0.96, 1.22. 0.91, 1.18. 1.14, 0.37,

11 0,5.

0.5, -3.4. -8.4, -5.0, -2,9. -3.6, -1.2.

1.6.

0.8. -1.1.

0.6

  • 4.4.

...... *.:. o: ii.:. o: 88.:. i :i!o.:. i: ii.:. i: 29.:. i: 25.:. i: 29.:. i: ii.:. i: ii,. :. i,: 88.:. o: ii. :.......

  • 0.36, 0.84, 1.10. 1.27, 1.30. 1.25, 1.30, 1.33. 1.21. 0,88, 0.38,

12

  • -1.2, -4.1 * -8,5, -3.0, 0.4, -0.2,

0,2,

1.2.

0.9, 0.8.

4.7,

'..... ' :. i,: 38. :. i : i i. : ' i : 20. : 'i,: 98' :. i : 28. :. i,: 98. :. i : ii,. :. i : i i. :. i,: 38. :.......

. 0.38. 1.16, 1.21, 1.00. 1.32, 1,01, 1.21, 1.14. 0.39, 13 0.4,

2.0, 1.3.

1.7, 2.8.

2.8,

1.0,

0.3,

2.1,

... '... :. o: 35.:. o: 74.:' i: ii::. i: ii.:. i: ii.:' o: 74.:. o: 35.:.......

. 0.36. 0.77, 1.23, 1.27. 1.22. 0.76. 0.35.

14 2.0. 3.9. 5,2.

4.5.

4.3.

2.7.

0,5.

.** ttAM,A~t,* ** :

DEVIATION

.............. :. b: 36. :. b: 65. :. o: 36. :.......*..... '

, O.J9. 0.69. 0.38.

=2.467 MAP NO: s1.. 8-3 CONTROL ROD POSITIONS:

D BANK AT 212 STEPS

. 6.6. 5,9. 4.9.

SUMMARY

DATE: 12/28/84 F-Q(T)

= 2.543 F-DH(N) = 1.649 F( Z)

= 1. 485 F(XY)

=~ 1. 590

* ' ** AVERAGE° ** :
  • PCT DIFFERENCE.

= 3.6 POWER:

QPTR:

NW 1.0174 I NE 1.0210


1----------

sw 0.9738 I SE 0.9878 BURNUP

=

0 MWD/MTU A.O =

26.44(%)

32 15

A p

Figure 6.2 SURRY UNIT 1 - CYCLE 8 STARTUP PHYSICS TESTS ASSEMBLYWISE POWER DISTRIBUTION 50% POWER M

L K

J H

G F

E D

C B

  • * * 'i>ticoicrco* *:
. o: j6. :. o: 63. :. o: 36. :
  • * *
  • i>ilcoii:rco* *:

MEASUIIED

,PCT DlrFEAENCE.

. 0.38. 0.65. 0.38.

4.4.

4.0.

6.3.

  • o:j1*:*o:i;*:*;:;4*:*;:;2*:*;:;4*:*o:1;*:*o:ii*:

. 0.38, 0.110. 1.19. 1.17. 1.21. 0.82, 0.39.

2.6. 5.9. 4.9. 4.2, 6.2.

9.1.

7.0.

MEASURED

, PCT DI HERENCE.

. o: 40. :. i: i;. :. i : 20. :. o: ii. :. i : 24. :. o: ii. :. i : 20. :. 1 : i;. :. o: 40. :

, 0.41, 1.17. 1.25. 1.03. 1.29. 1.01, 1.25. 1.19, 0.41,

2.4,

2.0, 4,2.

5.3.

3.6. 3.6, 4.4.

4,1

  • 3.8.
. o: ii. :. o: ii.:. i: 2i.:. i: ii.:. ; : 29.:. i: 24.:. ; : 29. :. i: ii' :. i: 2i. :. o: ii.:. o: if:

, 0.39. 0.92. 1.22. 1.34. 1.34. 1.211. 1.31. 1.31. 1.21. 0.92. 0.39.

0.9.

1.1.

1.3.

2.3.

3.5.

2.5. 1.5. -0.3

  • 0.4.

1.2.

2.5.

  • o:ii*:*;:i;*:*i:21*:*o:i2*:*i:;i*:*o:ia*:*;:2i*:*o:ia*:*;:1i*:*o:i2*:*1:2i*:*1:i;*:*o:ii.

. 0.37. 1.14. 1.21. 0.91. 1.20. 1.00. 1.30. 0.97. 1.17. 0.91. 1.21. 1.17. 0.311.

. -o.o. -0.1.

0.1. -0.3.

1.0.

2.2. 0.9. -1.2. -1.9. -1.1. -o.o.

1.9,

3.7.

. o: i;.:. i: 20. :. i :ii.:. i: ii.:. 1: ii.:. i: 27.:. i: o i. :. i: 27.: 'i: ii.:. 1: ii.:. i: ii.:. i: 20.:. o: 7;.:

, 0. 75. 1. 20. I, 30. 1. 19. 1. 21. I. 27. 0. 99. I. 2 3, 1. 15. 1, 16. 1, 29. I. 20. 0. 711

  • 0.1,

0.0. -0.2. -0.2. 0.4.

0.2. -1.7. -3.1. -4.9. -2.2. *1.4.

0.3.

3.11

  • A

. 0.36. 1.14. 0.911. 1.29. 0.911. 1.27. 1.01. 1.23. 1.01. 1.27. 0.911. 1.29. 0,911

  • 1.14. 0.36.

. 0.36. 1.14, 0.911. 1.26. 0.94. 1.22. 0.911. 1.21. 0.911. 1.23. 0.94. 1.25. 0.96. 1.15. 0.36.

1.2,

0.7, -o.o, -2.6. -3.9. -4.0. -2.1. -2.1. -2.6. -3.7. -3.11. -3;1. -1.3.

1.2.

1.0.

  • o: 6i *: *;: 12 *:
  • i: 24 * :
  • i: 24 *: * ; : 2i * :*
  • i: 01 *:
  • 1: 24 *:
  • i: is*:* i: 24 * :
  • i: oi *:
  • i: 2i *: *;: 2ii *: *;: 24 *:
  • 1: 12 *:
  • o: 63 * : *
  • 0.63. 1.12. 1.211. 1.20. 1.20. 0.95. 1.15. 1.15. 1.20. 0.97. 1.24. 1.21. 1.211
  • 1.13. 0.65.

o.9.

o.3.

o.o. -3. 1. -1.0. -6.o. -"7. 1. -2.1. -3.2. -3.8. -3.6. -3.1. -o.4.

o.8.

3.11.

  • o:i6 *: *;: i4 *:
  • o: is*:*; :2i *:
  • o: is*:*;: 2i *: *; :o; *: *;: 2i *: *;: 01 *: *;: 21 *:
  • o: is*:* i: 2i *:
  • o: is*:*;: iii*:: o: i6 *:

. 0.36. 1.15. 0.99. 1.26. 0.94. 1.21. 0.95. 1.17. 0.97. 1.23. 0.97. 1.36. 1.01. 1.111. 0.311.

I. 2.

I. 3.

1. I * *2. 3. *3. 9. *5. 2. *5. 2. *5. 1. *3. II * *3. 7.
  • I. 1.
5. 6.
3. 2 *
3. II,. 5. 5.
  • * * * * * *:
  • o: i; * : *;: 20 *: * ; : i; *: * ; : ;9 *:
  • i: 2i *: * ; : 2i': * ; : oi *: *;: 2i' : *;: 2i *: *;: ;9 *: *;: i; * : *;: 20 * :
  • o: if:*** * * * *

. 0.77. 1.22. 1.29. 1.14, 1.15.. 1.20. 0.96. 1.23. 1.19. 1.21. 1.37. 1.25. 0.711.

2.2.

2.1. *1.6. -4.5. -5.0. -5.3. -5.0. -3.1. *1.3.

1.5.

5.2.

3.9.

2.11.

  • o: 37 *: *;: ;; *: *; :21 *:
  • o: i2 *:*;:ii*:* o: is*:*; :2i *:
  • o: is*:* 1: ii*:* o: i2 *:
  • i :2i *:
  • i: i; *:
  • o: 37 *:

. 0.37. 1,16. 1.111. 0.86. 1.111. 0.911. 1.23. 0.95. 1.18. 0.93. 1.211. 1.19. 0.38.

I.I. I.I. *2.0, *5.8, *11.3. *3.7. *4.5. *2.8, -0.11.

1.7. 3.0, 3.6.

3.6.

....... :. o: ii. :. o: ii.:. i :ii.:. i: i 1.:. i: 29.:. 1: 24. :. ; : 29.:. 1 :ii.:. i: 2i.:. o: ii. :. o :ii. :.......

.. 0.39. 0.119. 1.14. 1.27. 1.27. 1.22. 1.211. 1.32. 1,22. 0.91. 0.40.

. o.o. -2.3, -6.0. *3.1. -1.4. *1,7. -0.6.

0.9.

0.8.

0.9.

4. 7.

....... :. o: 40.:. i: i;. :. i: 20. :. o: 97.:. i: 24.:. o: ii. :. i: 20. :. i: i;. :. o: 40. :.......

. 0.40. 1.17, 1.21. 0.97. 1.26. 1.00. 1.23. 1,16. 0.41.

1.1. 2.2. 0.5. -0.1. 1.0. 2.2. 2.2.

1.2.

2.1.

. 0.37. 0.75. 1.14, 1.12. 1.14. 0.75, 0.37,

, 0.311. 0.711. 1.18. 1.15. 1.111, 0.77. 0.37.

2.2.

3. 7.

3.6.

2. 7.

3.2.

2.11.

1.9.

        • tANDAilo****
  • * * * *.... *.... : *o:i6.: *o:6i': *o:i6.:.... * *........
.... AVERAcE*.. :

D[VIATIOII

.. 1.866 MAP NO: 51 4 CONTROL ROD POSITIONS:

D BANK AT 173 STEPS

0.38. 0.66. 0.37,

5.2. 4.4.

3,5.

SUMMARY

DATE: 12/31/84 F-Q(T)

= 2.165 F-DH(N) = 1.584 F(Z)

= 1.315 F(XY)

= 1.525 BURNUP

=

12 MWD/MTU 33

. PCT DI HERENCE.

C 2,7 POWER:

49%

QPTR:

NW 1.0050 I NE1.0023


1----------

sw 0.9825 I SE 1.0102 A.O =

-3.92(%)

2 3

4 5

6 7

II 9

10 11 12 13 14

R I'

Figure 6.3 SURRY UN IT 1 - CYCLE 8 STARTUP PHYSICS TESTS ASSEMBLYWISE POWER DISTRIBUTION 70% POWER N

N L

K J

H G

F E

D C

B

.... i>itci, i crci,.. :

PREDICTED MEASURED

,PCT DIFFERENCE.

  • o:ir*:*o:,6*:*i:i;*:*i:i,*:*i:;;*:*o:,6*:*o:i,*:
  • 0.37. 0.81. 1.21. 1.20, 1.19. 0.78, 0.38
  • o.o,

6.4, 5.1

  • 4.5,

3.5.

2.7,

2.5

  • MEASURED

, PCT DIFFERENCE.

  • o:,;*:*;:;i*:*j:;a*:*o:i,*:*i:ii*:*o:ir*:*;:;a*:*;:ii*:*o:,i*:
  • 0,41. 1.14 * *1.23
  • 1.03
  • 1.29. 1.00
  • 1.20, 1.14
  • 0.42,

0.2

  • 1.1,

4.8.

5.8

  • 4.9
  • 2.9 *
1. 7,

1.9

  • 2.1 *
  • o: ii*:* o: ii>*:* i: ii*:*; :ia *:
  • i :ii*:* i: ii*:*; :ir *: *; :2a *:
  • i: ii*:* o:io *:
  • o: ii*:
  • 0. 39
  • 0 *. 91
  • 1. 21, 1. 31. 1. 29
  • 1. 25
  • 1. 29. 1. 29
  • 1, 19
  • 0. 92
  • 0. 40
  • 0.4
  • 1.0
  • 2.1
  • 1.9,

2.2,

1.9

  • 2.1.

0.6

  • 1.1
  • 1.6
  • 2,0,
. o: ii':. i: ii. :. i: ii.:. o: ii.:. i: ii.:. o: ii.:. i: ii.:. o: ii.:. i: ii. : 'o: ii.:. i: ii.:. i: ii':. o: ii':

, 0.38, 1.13, 1.20. 0.94

  • 1.18. 0.96. 1.28, 0.98. 1.18. 0.92. 1.20. 1,14. 0.38,

0,8*.

0.8.

1.5.

2.0 * *0.3 * -2.6. -1.0 * -0.3, -0.4, 0.3

  • 1.7,

1,9.

1.4.

  • o: 16 *: *;:; r * :
  • i: ii* :
  • i: ii* :
  • i: 2, *:*;:ii*:*;: oi *:*;:ii*:* i: 2, *:*;:ii* :
  • i: ii*:* i: ii*:* o: 76 * :

, 0.77. 1.19

  • 1.30, 1.20, 1.23, 1.26, 1.01
  • 1.27, 1.20
  • 1.18, 1.29, 1.18. 0.77,

1.0. o.9, 1.3.

1.6. -o.4. -2.4. -1.6. -1.9. -2.8. -o.4. o.4. o.8.

1.5.

A

  • o: ii*:* i: ;, *:
  • o: ii*:*;: ii*:* o: ii*:* i: ii*:* i :oi *:
  • i: 2, *: *;: oi *:
  • i :ii*:* o: ii*:*; :21 *:
  • o:ir *: *;: ;, *:
  • o: ii*:
  • . 0.38. 1.16. 0.99
  • 1.25. 0.96
  • 1.26. 1.01. 1.22. 1.01. 1.26. 0.97
  • 1.25, 0.98, 1,16. 0.38,
  • . 0.1, 0.8, 1,4 *. -1.2, -2.5, -2.5, -1.4. -1,5, -1.9, -2.7, -2.2, -1.1, 0.3. 1.4, 1.0,
  • o: 66 *:
  • i: i, *:
  • i: ii* :
  • i: ii*:
  • i: ii*:*;: oi * :
  • i: is*:* i: is*:* i: i, * :
  • i :oi * : *;:ii* :
  • i: ii*:*;: ii*:*;:;;* :
  • o: 66 *:

, 0.66, 1.15, 1.25

  • 1.19, 1.21. 0.97. 1.16, 1.16, 1.20, 0.99. 1.25, 1.21. 1.23, 1.14. 0.67,

. -0.1

  • 0.5,

1.4 * -2.8. -6.1 * -5.3 * -6.6, -1.6. -3.3. -3.9 * -3.4 * -1.1.

0.3, -0.1.

1,5.

  • o: ii*:*;:;;*:* o: ii*:*;: 21 *:
  • o: ii*:* i: ii*:* i: oi *:
  • i '.2, *: *; :oi *:
  • i: ii*:* o: ii*:*;: 21 *:
  • o:*ir *:
  • i: is*:* o: ii*:
  • . 0.38. 1.17, 1.00. 1.25, 0.95. 1.24. 0.99. 1.20. 0.98, 1.23. 0.95. 1.24. 0.98. 1.17, 0.39, 0.1
  • 2.1,

2.9 * -1.3, -3.8, -4.4. -3.5, *3.4 : -4.7. -5.l, -3.8, -1.7,

0.5,

2.1,

3.0 *

....... :. o: 76. :. i : ii. :. i : 28. :. i : ii. : **; : 2,. :. i: ii. : ' i: 03. :. i : 29. :. i : i'. :. i : ii. :. i : 28. :. i : ii. :. o: 76. :.......

, O. 79, 1. 23

  • 1
  • 28, 1. 13
  • 1. 18. 1. 24. 0. 99, 1. 25. 1. 22. 1. 17, 1. 26
  • 1. 18. 0. 78.

4.5.

4.4 * *0,5. -4.3 * -4.2, -3.6. *3.6, -2.8, -1.5. -0.8, *1.4.

0.3,

2.6 *

  • o: ii*:* i: ii* : *;:is*:
  • o: ii*:
  • i: is*:* o: ii*:* i: ii* :
  • o: ii* : * ; : is* :
  • o: 92 * : * ; : ; a*:* i: ii* :
  • o: i1 *:

, 0.39. 1.17

  • 1.16, 0.87. 1,14, 0.97. 1.25, 0.97, 1.19. 0.93. 1.19. 1.14. 0.38,

4.4

  • 4.4 * -1.5 * -5.2 * -3.o. -2. 1 * -3.2.* -1.5.

o.a.

1.3.

o. 1
  • 1.4.

3.o.

  • .. * * * *:
  • o: ii* :
  • o: ii>*:* i: ii':* i: is*:*;: ii':*;: ii*:*;: 21 * : * ; : 2s * : *; : ; a: :
  • o: io *:
  • o: ii* : * * * * * * *

, 0.41, 0.86, 1.12

  • 1.26, 1.27, 1.23. 1.28, 1.31
  • 1.20. 0.91
  • 0.41.

4.3, -5.3 * -5.3 * -1.6. 0.6. -0.2.

0.9,

2.3.

1.5.

0.6, 3.3,

  • *.. *.. :
  • o:,; *:*;:ii*:*;: is*:* o: ii':*;: 2i *:
  • o: 91 *:*;:is*:*;: ii*:* o:,; *: * *.... *

, 0, 4 l, 1. 1.3, 1, 18, 0, 99, 1. 26. 1. 0 l, 1. 2 3, 1. 15, 0. 41,

0.6,

O. 7

  • 0.8,

1.6.

2.4.

3.6.

4. 3.

2.6.

l.5,

....... :. o: 37.:. o: 76.:. ;.: is.:. i: is. :. i: is.:. o: 76. :. o: 37.:.......

, 0.38. 0.78, 1.18. 1.18. 1.19, 0,79, 0.39, 0.7. 2.0. 3.1. 3.2. 3.9. 4.2. 4.3.

  • * *
  • st.iitoAilo *.. :

.............. :. b: 38. :. b: 66. :. b: 38. :.. '...........

.... Avi:RAc:r*.. :

DCVIATION

=1. 547 MAP NO: S1 5 CONTROL ROD POSITIONS:

D BANK AT 187 STEPS

. 0.39. 0.68. 0.40,

3.4, 3.5,

4.0,

SUMMARY

DATE:

1 / 2/85 F-Q(T)

= 2.070

= 1. 527

= 2.2 POWER:

69%

QPTR:

NW 1.0068 I NE 1. 004 1 F-DH(N)


1----------

F( Z)

= 1. 272 SW 0.9881 I SE 1. 001 0 F(XY)

= 1. 5011 BURNUP

=

30 MWD/MTU A.O

-5.27(%)

34 2

6 7

a 9

10 11 12 13 14

R Figure 6.4 SURRY UNIT 1 - CYCLE 8 STARTUP PHYSICS TESTS ASSEMBLYWISE POWER DISTRIBUTION p

N H

PREDICTED MEASURED

  • PCT DIFFERENCE.

100% POWER, EQUILIBRIUM XENON L

K J

H G

. 0.40. 0.69. 0.40.

. 0.40. 0.70. 0.40.

1.7. 1.7.

1.7.

f E

  • o: 38 *:
  • o: 16 *:
  • i: i6 *:
  • i: i9 *:
  • i: i6 *:
  • o: 76 *:
  • o: 38 *:

. 0.38. 0.79. 1.18. 1.22. 1.17. 0.77. 0.38.

2.0. 3.6. 2.4. 1.9. 1.5, 1.7.

2.4.

D C

B PREDICTED MEASURED

  • PCT DIFFERENCE.
. o: 4 i. :. i : i o. :. i : i 6. :. o: 98. :. i : 24. :. o: 98. :. i : i 6. :. i : i o. :. o: 4 i. :

A 2

. 0. 42

  • 1. 12. 1. 20. 1. 01. 1. 26. 0. 98. 1. 17. 1. 12. 0. 42.

3 2.0. 2.0. 3.0. 3.0. 1.2. 0.7. 0.9. 2.0. 3.4.

  • o: 39 *:
  • o: 89 *:
  • i:; 1 *: *; :26 *: *;: 26 *: *;: 22 *: *;: 2<> *: *;: 26 *: *;: ;:, *:
  • o: 89 *:
  • o: 39 *:

. 0.39. 0.91

  • 1.19. 1.28. 1.27. 1.22. 1.26. 1.26. 1.18. 0.91
  • 0.40.

'4

. -o. 3.

1. 2.

1. 9.
1. 4.
0. 7,
0. 3.
0. 3.
0. 1.
1. 1.

1. 7 *

2. 6 *
*o:31*:*;:;o*:*;:;1*:*o:92*:*;:;9*:*0:99*:*;:28*: *0:99*: *;:;9*:*0:92*: *;:;1*:*;:;o*:*o:i1*:

. 0.37. 1.09

  • 1. 18. 0,94. 1.20. 0.98
  • 1.27. 0.98. 1.19. 0.93. 1.17. 1.12. 0.39.

5

. -0.3. -0.3. 0.9. 1.4. 0.5. -1.4. -0.6. -0.6. -0.4. 0.6. 0.4. 2.2. 4.1.

  • o: 16 *: *;: i6 *:
  • i: 2i. *: *;: i9 *: *;: 28 *: *;: 28 *: *; :02 *: *;: 28 *: *;: 28 *: *;: ;9 *: *;: 2i. *: *;: ;;. *:
  • o: 16 *:

. o. 77. 1.18. 1.27. 1.20. 1.28. 1.27. 1.02. 1.28. 1.26

  • 1.18. 1.25*. 1.17. o. 77
  • 6 1.4. 1.4. 1.2. 0.9.

0.3. -0.9. -0.2. -0.7. -1.8. -0.7. -0.3. 0.4.

1.5.

  • o:iio*: * ;:;6*: *o:98*: *;:2i.* :*o:99*:*;:29*:*;:oi*:*;:24*:*;:oi*:*;:29*:*0:99*:*;:2;.*:*o:98*:*;:;;.*:*o:iio*:

. 0.39. 1.16. 1.00. 1.26. 0.96. 1.25. 1.02. 1.211. 1.03. 1.27. 0.97. 1.24. 0.96 *. 1.14. 0.39.

  • 7

. -1.8. 0.6. 2.5. -0.3. -2.6. -2.6. -0.1

  • 0.2. -0.1. -1.4, -2.0. -1.7. -1.6. -1.2. -1.5.
. o: 68. :. i : i 9. :. i : 24. :. i : 22. :. i : 28. :. i : 02. :. i : 24. :. i : i 1. :. i : 24. :. i : 02. :. i : 28. :. i : 22. :. i : 24. :. i : i 9. :. o: 68. :

. 0.67. 1.19. 1.24. 1.20. 1.21. 0.98. 1.17. 1.18. 1.23. 1.01. 1.25. 1.20. 1.22. 1.17. 0.69.

. -1.8. -o.3. -0.5. -1.1. -5.3. -4.0. -6.1.

0.8. -0.1 * -1.8. -2.3. -1.1. -1.8. -1.6.

o.3.

. o: 40. :. i : ii,. :. o: 98. :. i : 26. :. o: 99. :. i : 29. :. i : o i. :. i : 24. :. i : o i. :. i : 29. :. o: 99. :. i : 26. :. o: 98. :. i : i 6. :. o: 40. :

. 0.39. 1.15. 0.98. 1.2,,. 0.97. 1.25. 1.00. 1.23. 1.03. 1.26. 0.97; 1.25. 0.97. 1.17. 0.111.

. -1.8.* -0.6.

  • 0.0. -1.6. -1.6. -2. 7. -2.3. -0.1.

0.11 * -2.3. -2.2. -1.0. -o. 7.

0.9

  • 3.1.
  • * * * * * *:
  • o: 16 *:
  • i: *;i, *: *;: 26 *: *;: i9 *: *;: 2e *: *;: 28 *: *; :02 *: *; :2a *: *; :28 *: *;: ;9 *:
  • i :2;. *: *;: i6 *:
  • o: 16 *: * * * * * *
  • 8 9

. 0.77. 1.17. 1.25. 1.17. 1.25. 1.25. 1.00.. 1.28. 1.29. 1.20. 1.25. 1.16. 0.77.

10 1.1.

1.1. -0.5. -1.8. -2.0. -2.11. -1.9. -0.6.

0.6.

0.6. -o.s.

0.1. '1.11.

. 0. 37

  • 1. 10. 1. 1 7. 0. 92. 1. 19. 0. 99. 1. 28. 0. 99
  • 1. 19
  • 0. 92. 1. 17
  • 1. 10. 0. 3 7.

. 0.38. 1.12. 1.17. 0.90. 1.17. 0.97. 1.24. 0.98. 1.22. 0.95. 1.19. 1.12. 0.39.

11 1.8. 1.8. -0.2. -2.8. -1.8. -1.9. -3.1 * -0.9. 2.0.

2.8.

l.9. 2.1.

3.0.

....... :. o: 39. :. o: 89. :. i : i 1. :. i : 26. :. i : ii.. :. i : ii. :. i : 26. :. i : 26. :. i : i 1. :. o: 89. :. o: ii. :.......

. 0. 40. 0. 90. 1. 1 3. 1. 25. 1. 26. 1. 21. 1. 26. 1. 29. 1. 19. 0. 91. O

  • II 1.

1 2

2. 5.
0. 4 * -2. 8. - l. 0, -o. 1. -1. 0. -o. 0.
2. 1.
1. 9,
1. 5.
5. 0,

....... :. o: iii. :. i : i o. :. i : i;.. :. o: 98. :. i: 24. :. o: 98. :. i : i;.. :. i : i o. :. o: iii. :.......

. 0.42. 1.12. 1.17. 0.98, 1.25. 0.98. 1.18. 1.11. 0.112.

13 2.2.

1.9.

1.1.

0.2.

0.2.

0.8.

1.5.

1.1.

2.6.

. o.38. 0.16. 1.16. 1.19. 1.16. 0.16. o*.38.

, 0.38. 0.78. 1.10*. 1.21. 1.17, 0.77. 0.38.

14 1.9. 2.,,, 2.0. 1.1. 0.8.

1.2.

1.6.

STANDARD

.............. :. o: 40. :. o: 69. :. o: 40. :..............

.... AVERAGE *.. :

DEVIATION

=1.064 MAP NO: Sl 8 CONTROL ROD POSITIONS:

D BANK AT 228 STEPS

. 0.111. 0. 70. 0.40.

3.2.

2.2.

0,8.

SUMMARY

DATE:

2/ 4/85 F-Q(T)

= 1.900 F-DH(N) = 1.490 F(Z)

= 1.207 F(XY)

= 1. 443 BURNUP

=

925 MWD/MTU 35

.PCT DIFFERENCE.

=

1.5 POWER

100%

QPTR:

NW 1.0066 I NE 1.0019


1-- -------

SW 0.9885 I SE 1.0030 A.O =

-4.00(%)

15

SECTION 7 REFERENCES

1.

M. E. Paul and R. A. Hall, "Surry Unit 1, Cycle BJ Design Report, 11 NE Technical Report No. 415, Vepco, December, 1984.

2.

Surry Power Station Technical Specifications, Sections 3.12.C.1 and 3.12. B.1.

3.

T. K. Ross, W. C. Beck, "Control Rod Reactivity Worth Determination By The Rod Swap Technique," VEP-FRD-36A, December, 1980.

4.

N.

A. Smith, "Safe*ty Evaluation of Startup Physics Test Acceptance Criteria Violation for Surry Unit 1 Cycle 8," NE Technical Report No.

430, Vepco, December, 1984.

5.

"Technical Manual for Westinghouse Solid State Reactivity Computer,"

Westinghouse Electric Corporation.

6.

W.*Leggett and L. Eisenhart, "The INCORE Code," WCAP-7149, December, 1967.

36

APPENDIX A STARTUP PHYSICS TESTS RESULTS AND EVALUATION SHEETS 37

l-PT-28.11 ATTACHMENT SURRY POWER STATION UNIT 1 CYCLE 8 Page l9 of STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET I

Test Description; Reactivity Computer Checkout Reference' Pro.c No /Section: l*PT-28.11 Sequence Step No:06 II

! Bank Positions (S'teps)

RCS Temperature (°F): 547 Test Power Level Ci F.P.): 0 Conditions SDA: 228 SDB: 228 CA: 228 Other (specify):

(Design)

CB: 228 CC: 228 CD:

  • Belo. Nuclear Heating III Bank Positions (Steps)

RCS Temperature (°F): 542 Test Power Level Ci F.P.): 0 Conditions SDA: 228 SDB: 228 CA: 228 Other (Specify):

(Actual)

CB: 228 CC: 228 CD:

93 Below Nuclear Heating Date/Time Test Performed:

12/26/84

@ 1153 Measured Parameter Pc = Meas. Reactivtyusing p-computer IV (Description) pt= Inferred React from react period p =

C 22.0, -25.5, 45.0, -38.5, 62.5, Measured Value p =

t 21.6, -25.3, 45.7, -39.0, 62.6,

-44.0

-43.8 Test

D = 1.9%, 0.8%,

-1.5%, -1.3%, -0.2 %, 0.5%

Results V

Acceptance Criteria VI Comments Design Value (Actual Conditions)

~= [(pc-pt)/pt] X 100°: ~ 4.0:

Design Value (Design Condit ions)

I> = [(pc-pt)/pt) X 100: $ 4.0i Reference WCAP 7905, Rev. 1, Table 3.6 FSAR/Tech Spec Not Applicable Reference Not Applicable I Design Tolerance.is met
J::::ir.s _NO j Acceptance Criteria is met
_YES NO N/ A I
  • At Tbe Just Critical Position Allowable Range=~ +62 pcm, -44 pcm Comple.ted By: ~me:~ Evalua'ted Test Engineer Recommended for Approval By:

A.l c.J. A~

NFC Engineer

l-PT-28.11 ATTACHMENT i 19 SURRY POWER STATION UNIT 1 CYCLE 8 Page 18 of STARTUP PHYSICS TEST RESULTS ANO EVALUATION SHEET

.DEC 1.,.J!184 I

Test

Description:

Critical Boron Concentration - lsRO Reference Proc No /Section: l*PT-28.ll Sequence Step No: 07 II Bank Positions (Steps)

~:s !e=pe=ature (°F): 547 Po~er Level Ci F.P.): 0 Other (specify):

Test Conditions SDA: 228 SDB: 228 CA: 228 (Design)

CB: 228 CC: 228 CD: 228 Below Nuclear Heating III Bank Positions (S:eps)

T RCS Temperature (°F): 543 P

L 1 Cl F P) O est I

o.er eve Conditions SDA: 228 SDB: 228 CA: 228 Other (Specify):

(Actual)

CB: 228 CC: 228 CD: 228

!elOlo* Nuclear Heating Date/Time Test Performed:

12/26/84

@ 1635 Meas Parameter IV (Description)

(CB)Jo; Critical Boron Cone - ARO Measured Value (CB)J0 = 1321 ppm Test Results Design Value (Actual Cond)

CB = 1396 +/-° 50 ppm Design Value (Design Cond)

CB =1396 +/- 50 ppm Reference VEP-PSE*NFE-415 V

FSAR/Tech Spec cC x CBS 15,115 pcm B

Acceptance Criteria Reference

~TSAR Section 14.2.3

_n:s ~o lt Design Tolerance is met Acceptance Criteria is met
..J:::::n:S _NO VI Comments

=c = -8. 12 pcm/ppm fer preliminery l!llalysis B

°"Ce*= -8. 79 pcm/ppm for fianl analysis Completed By: ru,.. ~"""~

Test Engineer Evalua-:ed By:

Reco:nmenc:ec for Approval By: c~

icro Engineer

  • This deviation was evaluated and determined to be acceptable as indicated by the deviation report and engineering evaluation included in Vepco Nuclear Engineering Technical Report No, 430, December 28, 1984.

A.2

l-PT-28.11 ATTACHMENT 1 SURRY POWER STATION UNIT 1 CYCLE 8 Page 17 of l9 STARTUP PHYSICS TEST RESULTS ANO EVALUATION SHEET

  • -OEC 1-' 13&4 I

I Test

Description:

Isothermal Temperature Coefficient - ARO Reference Pree No /Section: l*PT-28.11 Sequence Step No: 08 I RCS-Temperature (°F):

II Bank Positions (Sups) 547 Te~t Po"'*er Level Ci F.P.): 0 Conditions SDA: 228 SDB: 228 CA: 228 Other. (specify):

(Design)

CB: 228 CC: 228 CD: 228 Bele1o ~ilclear Heating Ill Bank Positions (S'teps)

RCS Temperature (°F): 548.5 Test Power Level ci F.P.): 0 Conditions SDA: 228 SDB: 228 CA: 228 Other (Specify):

(Actual)

CB: 228 CC: 228 CD: 200 Below Nuclear Heating Date/Time Test Performed:

12/26/84

@ 1743 Meas Parameter IV (Description)

ISO (u T )ARO Isothermal Temp Coeff - ARO Test Measured Value (u1;o)ARO = -4.69 pcm/'F (CB '~1303 ppm)

Results Design Value (Actual Cond)

(uI;o)ARO = -6.34 pcm/'F (CB =1303 ppm)

ISO (a T )ARO= -5.22 +/- 3.0 pcm/°F

. Design Value (Design Cond)

(CB= 1396 ppm)

Reference VEP-PSE*NFE-415 V

FSAR/Tech Spec a1; 0 ~ 0.43*pcm/°F a~P = -2.07 pcm/°F Acceptance Criteria Reference TS 3.1, VEP-FRD

  • NFE-415 Design Tolerance is met v.:
~S_NO VI Acceptance Criteria is met S _NO Comments
  • Uncertainty on~

= 0.5 pcm/°F (

Reference:

memorandum MOD from C. T. Snow to E. J. Lozito dated June 27, 1980).

Completed B:;: ~

bii C ~

Evalumd By, r _),

Testtngineer Recommended Appro\\*e.l A.3

l-PT-28.11 ATTACHMENT 1 SURRY POWER STATION UNIT 1 CYCLE 8 Page 7 of 19 STARTUP PHYSICS TEST RESULTS ANO EVALUATION SHEET

-D~ 1.i 1184 I

Test

Description:

M/D Flux Map - HZP, ARO Reference Proc No/ Section: l*PT-28.2, l*OP-57 Sequence Step No:

09 II

. Banlt Positions (Steps)

I RCS Temperature (°F):TR1:F +/-l Test Power Level (1 F.P.): - 1 Conditions SDA: 228 SDB: 228 CA: 228 Other (specify)

(Design)

CB : 228 cc: 228 CD:

  • Must have~ 38 thimbles III Bank Positions (Steps)

RCS Temperature(°F): 549 Test Power Level Ci F.P.): 3%

Conditions SDA: 228 SDB: 228 CA: 228 Other (Specify):

(Actual)

CB: 228 cc : 228 CD: 212 Date/Time Test:

Performed: 12/28/84 @ 0320 MAX. REL NUC £NTHAL TOTAL HEAT QUADRAm' IV Meas Parameter ASSY PWR RISE HOT FLUX HOT POWER TILT (Des er ipt ion)

\\ DIFF CHAN FACT CHAN FACT RATIO (M*P)/P F*dH(N)

F*Q(T)

QPTR 1'7'..-7% °""' :u.. }

Measured Value "=-,. Z-8 1.649 2.543 1.0210 Test it' S lb.f; r.:rz.,

Results-p = ~- '10 Design. Value

lr. ler P1 I D.t r'

.,s1.ss11*. JCl*Pl I

,~CZ) S 4..:16 a IC%)

(Design Conds) : ~tar,, C 0.9 S 1.025

"' *....,.. l'vr. )

WCAP*Y905 WCAP-7905 Reference REV.l NONE NONE REV.l V

FSAR/Tech Spec NONE NA NA NA Acceptance Criteria Reference NONE TS 3.12 TS 3.12 TS 3.12 Design Tolerance is met

~S_NO Acceptance Criteria is met S_NO VI Comments
  • As Required
    • The design value of QPTR is the sum of the 1. 005 design prediction tilt and the 1.02 unc.ertainty identified in WCAP-7905.

Completed By: ~

t,-7 Tes ngineer Evaluated By:

Recommended for

- J'~

Approval By : _..___,_...;.~__:,~.:::;..._--

1'TO Engineer A.4

l-PT-28.11 AT'IACBMENT 1 SURRY POWER STATION UNIT 1 CYCLE 8 Page 16 of 19 STARTUP PHYSICS TEST RESULTS ANO EVALUATION SHEET D£CJ.9'..-

I I Test

Description:

Cntl Bank B Worth ~eas.,Rod Swap Ref. Bank Reference Proc No /Section: 1-PT-28.11 Sequence Step No: 10 II Bank Positions (Steps)

RCS !em:>erature (OF): 547 Test Po~er Level (: F.P.): 0 Conditions SDA: 228 SDB: 228 CA: 228 Other (specify):

(Design)

CB:Moving CC: 228 CD: 228 Belot.* Nuclear Heating III Bank Posi'tions (S'teps)

RCS Temperature (°F): 544.1 Test Power Level c: F.P.): 0 Conditions SDA: 228 SDB: 228 CA: 228 Other (Specify):

(Actual)

CB:Moving CC: 228 CD: 228 Below Nuclear Heating Date/Time Test Performed:

12/27/84

@ 0848 Measured Parameter

!~;Integral Worth of Cntl Bank B, (Description)

All Other Rods Out IV Test.

Measured Value IR!F -

B -:- 1407 pcm Results Design Value (Actual Conditions)

IR!F -

1378 + 138 pcm B -

Design Value (Design Conditions)

I~ =*1378 +/- 138 pcm Reference VEP-PSE-NFE-415 I

If Design Tolerance is exceeded, SNSOC shall evaluate impact of test result FSAR/Tecb Spec I

on safety analrsis. SNSOC may specify V

that additional testing be performed.

Acceptance Criteria Reference VEP-FRD-36!

Design Tolerance is met

Vn;s _NO VI Acceptance Criteria is met

~:::l"ES _NO Comments Complmd By: 0-k Y\\f\\ c:~

Test Engineer Evaluated Recommendec Approval A.5

l-PT-28.11 A'ITACBMENT 1 SURRY POWER STATION.UNIT 1 CYCLE 8 Page 15 of l9 STARTUP PHYSICS TEST RESULTS ANO EVALUATION SHEET DEC 1, 1184 I

I Test

Description:

Critical Boron Concentration

  • B** Bank In Reference PrQc. No /Section: l*PT-28.11 Sequence Step No: 11 II I Bank Posit ions (Steps)

RCS Temperature (°F): 547 Test Po~er Level (% F.P.): 0 Conditions SDA: 228 SDB: 228 CA: 228

~her (specify):

(Design)

CB:.1> -'.:>

CC: 228 CD: 228 Belot. Nuclear Heating III Bank Positions (Steps)

RCS Temperature (°F): 545 Test Power Level ~ F.P.): 0 Conditions SDA, 228 SDB: 228 CA: 228 Other (Specify):

(Actual)

CB:* a*.

CC: 228 CD: 2~

Bel~ Nuclear Heating Date/Time Test Performed:

12/27/84

@ 1516 Meas Parameter M.

IV (Description)

(CB)D, Critical Boron Cone* - B Bank In Measured Value (CB)ii = 1160 ppm Test Results Design Value (Actual Cond)

CB=

1153 +/- 27 ppm Design Value (Design Cond)

CB* =.1229 + Ac:rev +/-(10 + 131. s/ I a~ I )ppm Reference VEP*PSE*NFE*41S V

FSAR/Tecb Spec CIC x CBS 15,llS pcm B.

Acceptance Criteria Reference UFSAR Section 14.2.5 Design Tolerance is met

_NO Acceptance Criteria is met

_YES _NO VI Comments CIC

= *8.26 pcm/ppm for preliminary analysis B

AC:rev =

M

  • 1396 (CB)ARO

~.B - -8.79 pcm/ppm for final analysis Completed B:r: ~

W\\. < (\\: Q ~ Evalumd By~ il-1......i Test Enginee~

,4 Recommended for,. A Approval By: L..:,,/, ~

1FO Eng~eer A.6

l-PT-28.11 ATTACHMENT 1 SURRY POWER STATION UNIT 1 CYCLE 8 Page 8 of 19 STARTUP PHYSICS TEST RESULTS ANO EVALUATION SHEET DEC 1, SM I

Test

Description:

HZP Boron Worth Coefficent Measurement Reference Proc No /Section:

l*PT-28.11 Sequence Step No:N/A II Bank Positions (Steps)

RCS Temperature (°F): 547 Test Power Level (': F. p.): 0 Conditions SD.A: 228 SDB: 228 CA: 228 Ot:her (specify):

(Design)

CB:Moving CC: 228 CD: 228 Below Nuclear Heating III Bank Positions (Steps)

RCS Temperature (°F): 543 Test Power Level (S F.P.): 0 Conditions SDA: 228 SDB: 228 CA: 228 Other (Specify):

(Actual)

CB:Moving CC: 228 CD: 228 Below Nuclear Heating Date/Time Test Performed:

12/26/84

@ 1635 Measured Parameter IV (Description) a,, Boron Worth Coefficient Measured Value CXC = -8. 74 pcm/ppm B

Test Results Design Value (Actual Conditions)

CXC = -8.19 + 0.82 pcm/ppm B

Design Value (Design Conditions)

UC = *8.19 +/- 0.82 pcm/ppm B

Reference VEP*PSE*NFE-415 FSAR/Tech Spec a, X, $15,115 pcm V

Acceptance Criteria Reference UfSAR Section 14.2.5 Design Tolerance is met

v'"ns _NO VI.

Acceptance Criteria is met

.-kdES _NO Comments Completed By: ~~ Evalua~ed By;-";#//.~

Recommended for C:

l"I I Test Engineer Approval By:

  • .J. ~

NFO Engineer A. 7

l-PT-28.11 A'ITACHM!NT 1 SURRY POWER STATION UNIT 1 CYCLE B Page 14 of 19 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET t,Et:1-4*84 I

Test

Description:

Cntl Bank D ~ort:h Measurement-Rod Swap Reference Proc No /Section: l*PT-28.11 Sequence Step No: 13 II Bank Positions (Steps)

I R:S 'Te::::perature (C)F): 547

'Test Po...,*er Level Ci F.P.): 0 Conditions SDA: 228 SDB: 228 CA: 228 Other (specify):

(Design)

CB:Moving CC: 228 CD:Movin.g Belo..* Nuclear Heating III Bank Positions (Steps)

RCS Temperature (°F): 542.8 Test Po~*er Level (% F.P.): 0 Conditions SDA: 228 SDB: 228 CA: 228 Other (Specify):

(Actual)

CB:Movin.g CC: 228 CD:Hovin.g Beloc.* Nuclear Heating Date/Time Test Performed:

12/27/84

@ 1730 Meas Parameter (Description)

I~;Int Worth of C:c.tl Bank* D-Rod Swap IV (Adj. Meas. Crit. Ref Bank Test Measured Value IRS= 1312 D

pcm Position =196 steps)

Results Design Value (Adj. Meas. Crit. Ref Bank (Actual. Cond)

I~5= 1274 ~ 191 pc 111Position = 196 steps)

Design Value I~S= 1272 +/- 191 pcm (Critical Ref Bank (Desitn Cond)

Position= 196 steps)

Reference VEP*PSE*NF!-415, VEP-FRD-36.A, NFO-TI-2.ZA If Design Tolerance is exceeded, SNSOC shall evaluate impac~ of test result on V

FSAR/Tecb Spec safety analysis. S~SOC may specify that Acceptance additional testing be perfo:z:med.

Criteria Reference VEP*FRD*36A Design Tolerance is met

~S_NO-VI Acceptance Criteria is met
~S_NO Comments Completed By: ~

W\\.~

Test Engineer Evalua~ed :ly:

c:.ff~

Recom:ne::icieci for Appro*:al By :

A.8 NFO Engineer

l-PT-28.11 ATTACHMENT 1 SURRY POWER STATION UNIT 1 CYCLE 8 Page 13 of 19 STARTUP PHYSICS TEST RESULTS ANO EVALUATION SHEET D~ t..l-9M l

Test

Description:

Cntl Bank C Worth ~easurement*Rod s~ap Reference Pree No /Section: l-PT-28.11 Sequence Step No: 14 II Bank Positions (Steps)

I RCS 7empera~ure (°F): 547 Test Po.. *er Level (~ F.P.): 0 Conditions SDA: 228 SDB: 228 CA: 228 Other (specify):

(Design)

CB:Moving CC:Moving CD: 228 Below Nuclear Heating I*II Bank Positions (Steps)

RCS Temperature ( °F) :. 542.4 Test Power Level Ci F.P.): 0 Conditions SDA: 228 SDB: 228 CA: 228 Other (Specify):

(Actual)

CB:Moving CC:Moving CD: 228 Below Nuclear Heating Date/Time Test Performed:

12/2.7 /84

@ 1825 Meas Parameter (Descr*iption)

I~S; Int Wonh of Cntl Bank C-Rod s~ap IV (Adj. Meas. Crit. Ref Bank Test Measured Value IRS_

C -

752 pcm Position= 104 steps)

Results Design Value (Adj. Meas. Crit. Ref Bank (Actual Cond) 1Rs_ 774 + 116pc.lW\\ Position =104 steps)

C -

Design Value 1~5= 773 +/- 116 pcm (Critical Ref Bank (Design Cond)

Position= 122 steps)

I Reference VEP-PSE-NFE-415, vtP*FRD-36A, NFO*TI-2.2.A If Design Tolerance is exceeded, SNSOC shall evaluate impact of test result on V

FSAR/Tech Spec safety analysis. SKSOC may specify that Acceptance additional testing be performed.

Criteria Reference VEP*FRD-36A Design Tolerance is met

-2::'ES _NO VI Acceptance Criteria is met

_vfts -~D Comments Completed By: ~ "'c f.rJP Tes Enginee Evaluated By:

RecomI:endec for Approval By =--......... -=------"---".......Z l\\TO Engineer A.9

l-PT-28.11 ATTACHMENT SURRY POWER STATION UNIT 1 CYCLE 8 Page 12 of STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET I

Test

Description:

Cntl Bank A ~or;h Measurement-Rod Swap Reference Pree No /Section: l*PT-28.11 Sequence Step No: 15 II Bank Positions (Steps)

I RCS Temoerature (OF): 547 Test Power Level (':;; F.P.): 0 Conditions SDA: 228 SDB: 228 CA:Moving Other (specify):

(Design)

CB:Moving CC: 228 CD: 228 Below Nuclear Heating III Bank Positions (Steps)

RCS Temperature (OF): 542.4 Test Power Level Ci F.P.): 0 Conditions SDA: 228 SDB: 228 CA:Moving Other (Specify):

(Actual)

CB:Moving CC: 228 CD: 228 Belo..* Nuclear Heating Date/Time Test Performed:

12/27/84

@ 1854 Meas Parameter (Description) 1!5;Int Worth of Cntl Bank A - Rod Swap IV (Adj. Meas. Crit. Ref Bank Test Measured Value IRS_ 484 A-pcm Position= 77 steps)

Results Design Value (Adj. Meas. Crit. Ref Bank (Actual Cond)

RS 100 pc-M Position =

steps)

IA = 436 +

77 Design Value IRS_ 450 +/-

A -

100 pcm (Critical Ref Bank (Design Cond)

Position= 87 steps)

Reference VEP*PSE*l'u'E-415, \\7EP*FRD*36A, NFO*TI-2.2A If Design Tolerance is exceeded, SNSOC shall evaluate impact of test result on V

FSAR/Tecb Spec safety analysis. SNSOC may.specify that Acceptance additional testing be performed.

Criteria I

Reference VEP*FRD-36.A Design Tolerance is met

~_NO VI Acceptance Criteria is met S_NO Comments 1

19

  • DEC 1' 1114 Completed By, M Vl,\\_C~

Test Enginee Evalua~ed By:..,...../fP1/-~

Recoc::mended for Approval By :

A.10

c. !;J.J... *.->

?\\TO Engineer

l-PT-28.11 ATTACHMENT 1 SUR.RY POWER STATION UNIT 1 CYCLE 8 Page 11 of 19 STARTUP PHYSICS TEST R.ESUL TS ANO EVALUATION SHEET

I Test

Description:

Shutdown Bank B Worth Meas. - Rod Swap Reference Pree No /Section: l-PT-28.11 Sequence Step No: 16 II Bank Positions (Steps)

RCS Temperature (°F): 547 Test Poi;,er Level. (\\ F. p.): 0 Conditions SDA: 228 SDB:Moving CA: 228 Other (specify):

(Design)

CB:Moving CC: 228 CD: 228 Below Nuclear Heating III Bank Positions (Steps)

RCS Temperature (°F): 542.3 Test Power Level Ci F.P.): 0 Conditions SDA: 228 SDB:Moving CA: 228 Other (Specify):

(Actual)

CB:Moving CC: 228 CD: 228 Belatr: Nuclear Heating Date/Time Test Performed:

12/27/84

@ 1917 Meas Parameter (Description)

!::;Int Worth of Shutdown Bank B*Rod Swap IV (Adjr Meas. Crit. Ref Bank IRS_

Test Measured Value 792 pcm Posi~ion = 109 steps)

SB-Results Design Value (Adj. Meas. Crit. Ref Bank (Actual Cond)

IRS_ 816 + 122 pcm Position = 109 steps)

SB-Design Value I~:= 820 +/- 123 pcm (Critical Ref Bank (Design Cond)

Position= 128 steps)

Reference VEP*PSE*NFE*41S, V'EP*FRD-36A, NFO-TI-2.2A If Design Tolerence is exceeded, SNSOC shall evaluate impact of test result on V

FSAR/Tech Spec safety analysis. SNSOC may.specify that Acceptance additional testing be performed.

Criteria Reference VEP-FRD-36A Design Tolerance is met

_vfts _NO VI Acceptance Criteria is met
_vfts _NO Comments Completed By: ~

~

c.() ~. on TestEngin~F Evaluated By:---;;:; L ~

Recommended for A

0 Approval By : C, :...J. <'r,e.,..)

NFO Engineer A.11

l-PT-28.11 A'ITACHMENT 1 SURRY POWER STATION UNIT 1 CYCLE 8 Page 10 of 19 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET DEC 1, 1994 I

Test

Description:

ShutdOfo-n Bank A Worth Meas. - Rod-Swap Reference Proc No /Section: l*PT-28.11 Sequence Step No:17 II I Bank Positions (Steps)

RCS Tei:perature (°F): 547 Test Po-*er Level (: f.P.): 0 Conditions SDA:Moving SDB: 228 CA: 228 Other (specify):

(Design)

CB:Moving CC: 228 CD: 228 Below Nuclear Heating III Bank Positions (Steps)

RCS Temperature (°F): 542.2 Test Power Level (I F.P.): 0 Conditions SDA:Hoving SDB: 228 CA: 228 Other (Specify):

(Actual)

CB:Moving CC: 228 CD: 228 Below Nuclear Heating Date/Ti.me Test Performed:

12/27/84

@ 1950 Meas Parameter (Description)

.I~;Int Worth of Shutd~"n Bank A-Rod Swap IV (Adj. Meas. Crit. Ref Bank Test Measured Value IRS_l007 SA-pcm Position = 139 steps)

Results Design Value (Adj. Meas. C:rit. Ref Bank (Actual Cond)

RS IsA= 961 ~ 144 pcm Position = 139 steps)

Design Value IRS_

SA-963 +/- 144 pcm (Critical Ref Bank (Design Cond)

Position= l4B steps)

Reference VI.P-PSE*NF'E-415, VEP-FRD-36A, NFO-TI-2.2!

If Design Tolerance is exceeded, SNSOC shall evaluate impact of test result on V

FSAR./Tech Spec safety analysis. SNSOC may specify that Acceptance additional testing be performed.

Criteria I

Reference VEP*FRD-36A

. Design Tolerance is met

_vtts _*,.m.

VI Acceptance Criteria is met

-~S _.NO Comments Completed By: ~~~ Evaluated By:

Test Engineer Recom::iended for Approval By :

A.12 c.~4',~

NFO Engineer

l-PT-28.11 ATTACHMENT 1 SURRY POWER STATION UNIT 1 CYCLE 8 Page 9 of 19 STARTUP-PHYSICS TEST *RESULTS AND EVALUATION SHEET

    • D&C*l*IIM..

I Test

Description:

Total Rod ~ori:h - Rod Swap Reference Pree No /Section: l-PT-28.11 Sequence Step No:N/A II Bank Positions (Steps)

RCS Temperature (°F): 547 Test Power Level (\\ F.P.): O Conditions SDA:Moving SDB:Moving CA:Moving Other (specify):

(Design)

CB:Moving CC:Moving CD:Moving Below Nuclear Heating III Bank Positions (Steps)

RCS Temperature (°F): 542.8 Test Power Level Ci F.P.): O Conditions SDA:Moving SDB:Moving CA:Moving Other (Specify):

(Actual)

CB:Movi.ng CC:Moving CD:Moving Below Nuclear Heating Date/Time Test Performed:

12/27/84

@ 1730 Meas Parameter (Description)

ITotal;Int ~ori:h of All Banks - Rod Swap IV Test Measured Value 1Total = 5754 pcm Results Design Value (Actual Cond) 1Total = 5639 ! 564 pcm Design Value *

!Total c 5656 +/- 566 pcm (Design *cond)

Reference VEP-PSE-NFE-415, VEP-FRD-36A, NFO-TI-2.2A If Design Tolerance is exceeded, SNSOC shall evaluate impact of test result cm V

FSAR/Tech Spec safety analysis. SNSOC may specify that Acceptance additional tes~ing be performed.

Criteria I

I Reference VEP-FRD*36A Design Tolerance is met

~_NO VI Acceptance Criteria is met S_NO Commen~s Completed By:

Evaluued By:

RecoJICended for Approval By:

A.13 c2~

NFC Engineer

l-PT-28.11 ATI'ACHM!NT 1 SURRY POWER STATION UNIT 1 CYCLE 8 Page 6 of 19 STARTUP PHYSICS TEST RESULTS ANO EVALUATION SHEET DEC l,, '84 I

Test Description :M/D Flux Map*!t Pcn:er Reference Proc No/ Section: l*PT-28.2, l*OP-57 Sequence Step No: 45 II Test Conditions (Design)

III Test Conditions (Actual)

IV Test Results V

Acceptance Criteria VI Bank Positions (Steps)

RCS ':'emperature (°F) :TRD' +/-1 Po;.*er Level (I F.P.): - 50 SDA: 228 SDB: 228 CA: 228 Other (specify)

CB: 228 cc : 228 CD: *

~ust have~ 38 thimbles Bank Positions (Steps)

RCS Temperature(°F): 559 Pot.*er Level Ci F.P.): 48.7 SDA: 228 SDB: 228 CA: 228 Othe:- (Specify):

CB: 228 cc: 228 CD: 173 Date/Time Test:

Performed:12/31/84@ 0120 MAX. REL NUC E.\\-rRAL Meas Parameter ASSY PWR RISE HOT (Description) i DIFF CHAN FACT

. (M*P)/P F*dH(N)

.._ 7. 7 "7o,R,r Measured Value :TB P= /,15' 1.584

,,_.,/ %.p...,..

F'L.

P=o-B'Z.

Design Value I 1Gl fw 'i i Cl.I I 1ft far,j C 0.1 (Design *conds) c,, *,bay. '-*>

NA WCAP-7905 Reference REV.l NONE l'SAR/Tech Spec NONE jir:..s1.15(1*~(1-,)]

Reference NONE Design Tolerance is met Acceptance Criteria is met TS 3.12 TOTAL HEAT QOADJWn' FWX HOT POlr.'ER TILT CHAN FACT RATIO F*Q(T)

QPTR 2.165 1.0102 NA S 1.02 WCAP-7905 NONE REV.1

  • ,a I **
  • aGl I

Comments

  • As Required Completed By:

Evaluaud By:

Recommendec: for Appro~al By :

A.14

-;;J~

c2L NFO Engineer

f.

r,

t... PT-28.11 A1TACBMENT ~-

SURRY POWER STATION UNIT 1 CYCLE 8 Page 3 of l9_

STARTUP PHYSICS TEST RESULTS ANO EVALUATION SHEET Iii*{ t 11M-*

I Test Description :M/D Flux Map*At Power,NI Calibration Reference Proc No/ Section: l*PT*28.2, l*OP*57 Sequence Step No: 46 II Bank Positions (Steps)

RCS Temperature (°F):TREF +/-1 Test Power Level Ci F.P.): -

70 Conditions SD!: 228 SDB: 228 CA: 228 Other (specify): *

(Design)

CB: 228 cc: 228 CD: **

III Bank Positions (Steps)

RCS Temperature(°F): 566 Test Power Level (I F.P.): 69.1 Conditions SD!: 228 SDB: 228 CA: 228 Other (Specify):

(Actual)

CB: 228 cc: 228 CD: 187 Date/Time Test:

Performed: 01/02/85 @ 1024 MAX. REL NOC ll.TRAL TOTAL HEAT QUADRANT IV Meas Parameter ASSY PWR RISE HOT FLUX HOT POWER TILT

{Description)

\\ DIFF CRAN FACT CHAN FACT RATIO (H*P)/P F-dH(N)

F*Q(T)

QPTR

-6.6 %, -h.r Measured Value

-:T81 f':L/b 1.527 2.070 1.0068 Test b,;1/ % +'.,,-

Results i( 2.

P::c.. S-I t 101 tar '* t 41.1 Design Value t 1ft fw '*CD.I (Design Conds) *

  • Aaay *....,

NA NA S 1.02 WCAP-7905 WCAP-7905 Reference REV.l NGNE NONE REV.*l V

FSAR/Tech Spec NONE

~

He,.!5(1*..3(1-fl)J, ~(Z)C..,..

  • lt(r.

NA Acceptance Criteria Reference NONE TS 3.12 TS 3.12 TS 3.12 Design Tolerance is met Y-

~S_NO Acceptance Criteria is met :_S__NO VI Comments
  • Must have at least 38 thimbles for a full-core flux map, o r at least 16 thimbles for a quarter-core flux map.
    • As Required Evaluated By:--;;;:;~

Recommended for Approval By :

A.15 C.J.~

NFC Engineer

1-PT-28.11 ATrACBMERT 1 SURRY POWER STATION UNIT 1 CYCLE 8 Page 4 of 19 STARTUP PHYSICS TEST RESULTS ANO EVALUATION SHEET

°",l' 1984 I

Test Description :M/D Flux Map-At Power,NI Calibration Reference Pro*c No / Section: ~-PT-28.2, l*OP-57 Sequence Step No: 47 II Bank Positions (Steps)

RCS Temperature (°F):TREF +/-l Test Power Level(\\ F.P.): -

70 Conditions SDA: 228 SDB: 228 CA: 228 Other (specify):*

(Design)

CB: 228 cc: 228 CD: **

III Bank Positions (Steps)

RCS Temperature(°F): 566 Test Power Level Ci F.P.):69.6 Conditions SDA: 228 SDB: 228 CA: 228 Other (Specify): Quarter-cor (Actual)

CB: 228 cc: 228 182 e

CD:

flux map thus the power dis-Date/Time Test:

tribution values are not Performed: 01/02/85@ 1751 applicable MAX. REL NUC El\\'THAL TOTAL BEAT QUADRANT IV Meas Parameter ASSY PWR RISE HOT FLOX*HOT POWER TILT (Des er ipt ion)

I DIFF CHAN FACT CHAN FACT RATIO (M-P)/P F*dH(N)

F*Q(T)

QPTR Measured Value N/A N/A N/A N/A Test Results I 11a *

, 1 11 l.t Design Value I -

,.. '* C l.t (Design Conds) *.,._,_ ~.,

NA NA S 1.02 WCAP-7905 WCAP-7905 Reference REV.l.

NONE NONE REV.1 V

I FSAR/Tech Spec NONE

"!'K'1-*t1*~1-,,1 1'~CUC. IIIP

  • llCZl NA Acceptance Criteria Reference NONE TS 3.12 TS 3.12 TS 3.12 Design Tolerance is met
~S _NO Acceptance Criteria is met :_S_NO VI Comments
  • Must have at least 3~ thimbles for a full-core flux map, c r at least 16 thimbles for a quarter-core flux map.
    • As Required Completed By: Q ~

AestE gineer Evaluated By~~~

Recommended for r1 Y

Approval By : _C-=-, __ J ___

.. _~---.........;~

NFO Engineer A.16

l-PT-28.11 ATTACHMENT 1 SURRY POWER STATION UNIT 1 CYCLE 8 Page 5 of 19,,. 814 STARTUP PHYSICS TEST RESULTS ANO EVALUATION SHEET

, 9.lC,1..'4-":.

I Reference II Test Conditions (Design)

III Test Conditions (Actual)

IV Test Results.

V Acceptance Criteria VI Comments.

Test Description :M/D Flux Map-At Power,NI Calibration Proc No/ Section: l*PT-28.2, l*OP-57 Sequence Step No: 48 Bank Positions (Steps)

RCS Temperature (°F):TRtF +/-1 Power Level Ci F.P.): - 70 SDA: 228 SDB: 228 CA: 228 Other (specify):*

CB : 228 cc: 228 CD: **

Bank Positions (Steps)

RCS Temperature(9F): 566 Power Level CS F.P.):69.5 SDA: 228 SDB: 228 CB cc: 228 CA: 228 CD:

Other (Specify): Quarter-cor e flux values

228 192 map thus power distribution Date/Time Test:

are not applicable Performed: 01/03/85@ 0242 MAX. REL NUC ENTHAL TOTAL HEAT QUADRAm' Meas Parameter* ASSY P\\11R RISE HOT FLUX HOT POWER nLT (Description) i DIFF CHAN FACT CHAN FACT RATIO (M*P)/P F*dH(N)

F-Q(T)

QPTR Measured*V~lue N/A N/A N/A N/A

1~ferPilD.t Design Value (Design Conds)
1.r. far pl C 0.t NA NA

$ 1.02 CP1 * ""7-hr.J WCAP-7905

'WCAP-7905 Reference REV.1 NONE NONE REV.1 FSAR/Tech Spec NONE

~1.SS[J+.JU*PJJ :r tQCZiSa.lt/P a l(Z NA Reference NONE TS 3.12 TS 3.12 TS 3.12 Design Tolerance is met

...:::its _NO Acceptance Criteria is met
_v-fts _NO
  • Hust have at least.38 thimbles for a full-core flux map, 0 r at least 16 thimbles for a quarter-core flux map.
    • As Required Completed By: 4(f: ~

/est ngineer Evaluated By:-;;;; I~

Recommended for

"'79 Approval By : __ C:_....~

___...................,. __ ~

NFO Engineer A.17

SURRY POWER STATION UNIT 1 CYCLE 8 l-PT-28.11 ATTACI:NENT 1 Page 2 of 19 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET DEC 1 t ~

I I Test

Description:

M/D Flux ~ap - HEP, !-~O, Eq. Xe Reference Proc No/ Sec~ion: 1-?T-28.2, 1-0P-57 Se=ue~ce Step No: 49 II Test Conditions (Design)

III I

Test Condit.ions (Actual)

IV Test Results V

.Acce~l':.ance Criteria VI Com:nents a

Co::npleted B::..D.k ?os i ti.ans (S-:.eps)

I RCS Ter:.:pe:-a-=u:-e (OF) :T..,-.- ::::1 n._:._

Po-..*er Level (% F.P.):95 +/- 5 SDA: 228 SDB: 228 CA: 228 Other (specify): Eq. Xe.

CB : 228 cc : 228 CD:

  • Must have~ 38 thimbles Bank Positions (Steps)

RCS Temperature(°F): 574 PO'i,;er Level (% F.P.):100 SDA: 228 SDB: 228 CA: 228 Other (Specify):

CB : 228 cc : 228 CD: 228 -

Date/Time Test:

02/04/85 Perfo:.:,ned:

@ 1027 MAX. REL NUC E.i.rrHAL TOTAL HEAT QUADRANT Meas Parameter ASSY PWR RISE HOT FLlJX HOT POWER TILT (Des c:ription)

% DIFF CRAN FACT CHAN FACT RATIO (M-P)/P F-dH(N)

F-Q(T)

QPTR

-(;._ I %.f;.,.

Measured Value p ~ o. q (.J-B, 1.490 1.900 1.0066 s: 0 '% +,,r-P <. o. q (c-12 I Design Value

! l~ tor Pi_ 2: c.,

15~ fer P1 < 0.9 (Design Conds) (Pi
  • Any. Pvr.)

NA NA s 1.02 WCAP-7905 I

WCAP-7905 Reference REV.1 NONE NONE REV.+

FS~/Tech Spec!

,:i..sl. ~5 [ !+. 3 Cl *Pl J t~{Z)Sl.1!/P x t{Z NONE NA Reference NONE TS 3.12 TS 3.12 TS'3.12 Design Tolerance is met VYEs _NO VYES _NO Acceptance Criteria is

  • As Required met Evaluated By:

Reco~ended for b:;:,p:-oval By:

A.18

~dL~-~

C..12~-u.:.

N"'"FO Engineer


-~~- ------~

J

APPENDIX B DEVIATION REPORT FOR THE MEASURED ALL-RODS-OUT BORON ENDPOINT 38

he ~78889>4:

DEVIATION REPORT SURRY POWER STATION VIR~JNIA ELECTRIC AND POWER COMPANY 2

DA E:

.D" (It'\\,

  • s """ iv" pl,>' 11 cs

~+ +,,_

./1.c * <vu 1 tl. d I, C *" le i

-t J. c l!l&...,,..,.;

Cr dee, I hert-n.

Cs,n cc*fr:t:,:4:iab 4! d:L A II C2,1ftd cc,h

'1J,+l,,1..:,..,n 414-\\ 2S:

ppm k.s.~ +h,,,,, t~ pcc,l,,+r..L Ye,lvc C -r:J.,*, """'S-

'" DYi+itlc +A* ::,~

pb t<<~*c 5t

f::e,::...#,.,:! du':Jb, Ir r:inc 10 Q!'I:,

a f' Go ppm.

POWER(~)

10 LOAD (MWE):

11 RX. TEMP:

11 AX. PRESS:

13 0

REACTOR STATUS (SURRY ONLY)

QCRITICAL D HOT SHUTDOWN CAUSE DESCRIPTION:

PRINCIPAL PERSONNEL:

0

[J STARTUP D STEADY SHIFT SUPERVISOR -------------

ASST. SHIFT SUPERVISOR-----------

IA..

a coLD SHUTDOWN a IMMEDIATE SHUTDOWN 0 MANEUVER 0PULLING RODS 16 co,~TROL ROOM OPERATOR-----"-----------

ASST. CONTROL ROOM OPER. --------------

~*

RECOMMENDED CORRECTIVE ACTION:

,c_

19 I

--"'-E--=~---cf.-;:!-5!i.::::::a:.J...._..-...::f~~:f+£,ICl..li~ i:-11-Zc ~~it!J---l;

1. e-,;il::lai.LIJ:~ttl..L.lcl:':t,~-in,.,:.........:~=---::~;~-'J~M----1..,f'jt-~te-Z.A;.~P~+__

j I

~R:':E~PO~R~T:"':'s~u'='e~M~IT~T~E~D~B~V~: -----~-~~--.----!!----------.---D!!"!A~T!!':E!"":-,-~-----------....

IMMEDIATELY FORWARD TO SHIFT SUPERVISOR RECOMMENDED CLASSIFICATION:

0 NONREPORTABLE DEVIATION SHIFT SUPERVISOR SIGNATURE:

a 30 DAV REPORT D 2, HOUR REPORT CLASSIFICATION VERIFIED BY OPERATING SUPERVISOR:

D YIOLATION D OTHER a

tl Z3 DATE:

YES RECOMMENDED NO 10CFR21 REVIEW 26 DATE:

!CATION RECORD FOR 2C HOUR REPORTS: (NOTIFICATION TO NRC REQUIRED WITHIN 24 HOURS OF OCCURRENCE).

NRC - REGION II, C t

REPR.

DATE TIME IIV ---------

~ SUPERINTENDENT OPERATIONS DATE TIME IIY D

ASST. STATION MANAGER DATE TIME IIV D

STATION MANAGER DATE TIME BY D

VP. - NUCLEAR OPERATIONS DATE TIME IIV D

EXEC. MA.NAGER - QA r,l!ITF

"'!'t!.-'lr.

P!V Z2 I i 25 27 H