ML18151A689
| ML18151A689 | |
| Person / Time | |
|---|---|
| Site: | Surry |
| Issue date: | 09/30/1988 |
| From: | Brookmire T, Dziadosz D VIRGINIA POWER (VIRGINIA ELECTRIC & POWER CO.) |
| To: | NRC OFFICE OF ADMINISTRATION & RESOURCES MANAGEMENT (ARM) |
| References | |
| 88-649, VP-NOS-41, NUDOCS 8811090084 | |
| Download: ML18151A689 (64) | |
Text
. 50-280 SURRY 1 CYCLE 10 STARTUP TESTS REPORT LTR.DTD. 9/30/88 8811090084
.-NOTICE-THE A TT ACHED FILES ARE OFFICIAL. RE-CORDS OF THE RECORDS & REPORTS MANAGEMENT BRANCH. THEY HAVE BEEN CHARGED TQ YOU FOR A LIMITED TIME PERIOD AND MUST BE RETURNED TO 1HE RECORDS & ARCHIVES SERVICES SECTION P1-122. WHITE FLINT.
PLEASE DO NOT SEND DOCUMENTS CHARGED OUT THROUGH THE MAIL.
REMOVAL OF ANY PAGE(S) FROM DOCUMENT. FOR REPRO-DUCTION MUST BE REFERRED TO FILE PERSONNEL.
-NOTICE-
Reviewed By:
T. A. Brookmire; Engineer VP-NOS-41 SURRY UNIT 1, CYCLE 10 STARTUP PHYSICS TESTS REPORT by M. K. Farley*
?:?V-;:~
D. Dziaqosz,
- supervisor
_Nuclear Analysis and Fuel Power Engineering Services Virginia Power Richmond, Virginia September 1988
J
~i CLASSIFICATION/DISCLAIMER The data, techniques, information, and conclusions in this report have been prepared solely for use by Virginia Electric and Power Company (the Company), and they may not be appropriate for use in situations other than those for which they were specifically prepared.
The Company.
therefore makes no claim or warranty whatsoever, express or implied, as to their accuracy, usefulness, or applicability.
In particular, THE COMPANY MAKES NO WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, NOR SHALL ANY WARRANTY BE DEEMED TO ARISE FROM COURSE OF DEALING OR USAGE OF TRADE, with respect to this report or any of the data, techniques, information, or conclusions in it.
By making this report available, the Company does not authorize its use by others, and any such use is expressly forbidden except with the prior written approval of the Company.
Any such written approval shall itself be deemed to incorporate the disclaimers of liability and disclai~v~5 of warranties provided herein.
In no event shall the Company be liable, under any legal theory whatsoever (whether contract, tort, warranty, or strict or absolute liability), for any property damage, mental or physical injury or death, loss of use of property, or other damage resulting from or arising out of the use, authorized or unauthorized, of this report or the data, techniques, information, or conclusions in it.
i
j 1
SECTION 1
2 3
4 5
6 7
APPENDIX TABLE OF CONTENTS TITLE PAGE NO.
Classification/Disclaimer.....................
i List of Tables................................
iii List of Figures...............................
iv Preface................ ;.......................
v Introduction and Summary......................
Control Rod Drop Time Measurements............
Control Rod Bank Worth Measurements...........
Boron Endpoint and Worth Measurements.........
Temperature Coefficient Measurement...........
Power Distribution Measurements...............
References....................................
Startup Physics Tests Resu~~~ and Evaluation Sheets.............................
ii 1
10 15 20 24 27 34 A-1
-~ -
- J
- r ij J
- 1 J
.~,,
]
TABLE 1.1 2.1 3.1 4.1 5.1 6.1 6.2 LIST OF TABLES TITLE Chronology of Tests~..................................
Hot Rod Drop Time Summary.............................
Control Rod Bank Worth Summary........................
Boron Endpoints Summary...............................
Isothermal Temperature Coefficient Summary............
Incore Flux Map Summary...............................
Comparison of Measured Power Distribution Para-PAGE NO.
4 12 17 22 26 29 meters With Their Technical Specifications Limits......
30
'\\
\\.,.,'
iii
LIST OF FIGURES FIGURE TITLE PAGE NO.
- 1. 1
- 1. 2
- 1. 3 1.4
- 1. 5 2.1 2.2 3.1
- ,. 2 4.1 6.1 6.2 6.3 Core Loading Map............................................
Beginning of Cycle Fuel Assembly Burnups.... *................
Incore Instrumentation Locations............................
Burnable Poison and Source Assembly Locations...............
Control Rod Locations.......................................
Typical Rod Drop,Trace......................................
Rod Drop Time - Hot Full Flow Conditions............,.......
Bank B Integral Rod Worth - HZP.............................
Bank B Differential Rod Worth - HZP.........................
Boron Worth Coefficient.....................................
Assemblywise Power Distribution - 29% Power.................
Assemblywise Power Distribution -
V Power.................
Assemblywise Power Distribution HFP, Eq. Xenon............
iv 5
6 7
8 9
13 14 18 19 23 31 32 33
I**.
~
PREFACE The purpose of this report is to present the analysis and evaluation of the physics tests which were performed to verify that the Surry 1, Cycle 10 core could be operated safely, and to make an initial evaluation of the performance of the.core.
It is not the intent of this report to discuss the particular methods of testing or to present the detailed data taken.
Standard test techniques and methods of data analysis were used.
The test data, results and evaluations, together with the detailed startup procedures, are on file at the.Surry Power Station.
Therefore, only a cursory discussion of these items is included in this report.
The analyses presented include a brief summary of each test, a comparison of the test results with design predictions, and an evaluation of the results.
The Surry 1, Cycle 10 Startup Physics Tests Results and Evaluation Sheets have been included as an appendix to provide additional information on the startup test results.
Each dat... o;;heet provides the following information: 1) test identification, 2) test conditions (design), 3) test conditions (actual), 4) test results, 5) acceptance criteria, and 6) commen_ts concerning the test.
These sheets provide a compact summary of the startup test results in a consistent format.
The design test conditions and design values of the measured parameters were completed prior to the startup p~ysics testing.
The entries for the design values were based on the calculations performed by Virginia Electric and Power Co.mpany' s Nuclear Analysis and Fuel Group 1
- During the tests, the data sheets were used as guidelines both to verify that the proper test conditions were met and-to facilitate the preliminary comparison between measured and predicted test results, thus enabling a quick identification V
~----
of possible problems bccuring during the tests.
The Appendix to this report contains the final completed and approved version of the Startup Physics Tests Results and Evaluation Sheets.
vi
SECTION 1 INTRODUCTION AND
SUMMARY
On April 9, 1988 Unit No. 1 of the Surry Power Station was shutdown for its ninth refueling.
- During this shutdown, 48 of the 157 fuel assemblies in the core were replaced with fresh fuel assemblies.
The tenth cycle core consists of 18 sub-batches-of fuel:
eight once-burned batches, one from Cycle 6 (batch 8B7), three from Cycle 7 (batches 9A5, 9B5, and 9B7), and four from Cycle 9 (batches llAl, 11A2, 11B2 and 11B3),
four twice-burned batches, two from Cycles 7 and 9 (batches 9A4 and 9B4),
one from cycles 6 and 7 (batch 8B3) and one from Cycles 8 and 9 (batch 10A3), four thrice-burned batches, three from Cycles 7,8, and 9 (batches 9A3, 9B3, and S2/9B), and one from Cycles 6, 8, and 9 (batch 8B4), and two fresh batches (batches 12A and 12B).
The core loading pattern and the design parameters for each batch are shown in Figure 1. 1.
Fuel assembly burnups are given in Figure 1. *~.
locations are identified in Figure 1. 3.
The incore instrumentation Figure 1. 4 identifies the location and number of burnable poison rods and source assemblies for Cycle 10, and Figure 1.5 identifies the location and number of control rods in the Cycle 10 core.
On July 14, 1988 at 0825, the tenth cycle core achieved initial criticality. Following criticality, startup physics tests were performed as outlined in Table 1.1.
follows:
A summary of the results of these tests
- 1.
The drop time of each control rod was confirmed to be within the 2.4 second limit of the Surry Technical Specifications 2
- 1
- l
_,., g
~
- 2.
- 3.
- 4.
- 5.
- 6.
Individual control rod bank worths for the control rod banks were measured using the rod swap technique 3 and were found to be within
- 15. 3% of the design predictions.
- The sum of the individual control rod bank worths was measured to be within 6.1% of the design prediction. These results are within the design tolerance of +/-15% or 100 pcm, whichever is greater, for individual bank worths (+/-10% for the rod swap reference bank worth) and the design tolerance of +/-10% for the sum of the individual control rod bank worths.
Critical boron concentrations for two control bank configurations
.were measured to be within 43 ppm of the design predictions.
These results were within the design tolerances and also met the accident analysis acceptance criterion.
The boron worth coefficient was measured to be within 2.5% of the design prediction, which is within the design tolerance of +/-10%
and met the acci.dent analysis criterion.
The isothermal temperature coefficient for the all-rods-out configuration was measured to be within 0.8 pcm/°F of the design prediction.
This result. is within the design tolerance of +/-3 pcm/°F and also meets the accident analysis acceptance criterion.-
Core power distributions for at-power conditions were within established design tolerances.
Generally, the measured core 2
(t l
-1 :i 1
power distribution was within 4. 4% of the predicted power distribution.
The measured parameters were within the limits of the Technical Specifications and met their respective accident analysis acceptance criteria.
In summary, the startup physics test results were acceptable.
Detailed results, together with specific design tolerances and acceptance criteria for each measurement, are presented in the appropriate sections of this report.
- ~
3
Table 1.1 SURRY 1 - CYCLE 10 STARTUP PHYSICS TESTS CHRONOLOGY OF TESTS Test Date Time* Power
.Hot Rod Drop Timing Test 07/13/88 2200 HSD Zero Power Testing Range 07/14/88 1230 HZP Reactivity Computer Checkout 07/14/88 1304 HZP Boron Endpoint-ARO 07/15/88 0445 HZP Temperature Coefficient-ARO 07/15/88 0549
- HZP Rod Worth 07/15/88 0725 HZP Boron Endpoint-B In 07/15/88 1315 HZP Bank D Worth - Rod Swap 07/15/88 1425 HZP Bank C Worth - Rod Swap 07/15/88 1507 HZP Bank A Worth - Rod Swap 07 /15/88 1639 HZP Bank SB Worth - Rod Swap 07 /15/88 1710 HZP Bank SA Worth - Rod Swap 07/15/88 1749 HZP Flux Map - Power Distribution 01;1;.,,~8 0637 29%
Verification Flux Map - Hot Channel Factor 07/18/88 2219 42%-
Verification Flux Map - I/E Calibration 07/20/88 0112 69%
Flux Map - I/E Calibration 07/20/88 0309 68%
Flux Map - I/E Calibration 07/20/88 0509 68%
Flux Map - HFP, Eq. Xenon 07/29/88 1630 100%
4 Reference Procedure 1-PT-7.2 1-PT-28.11 1-.PT-28; 11 1-PT-28.11 1-PT-28.11 1-PT-28. H 1-PT-28.li 1-PT-28.11 1-PT-28.11 1-PT-28. 11 1-PT-28.11 1-PT-28.11 1-0P-57, 1-PT-28.2 1-0P-57, 1-PT-28.2 1-0P-57, 1-PT-28.2 1-op.;.57, 1-PT-28.2 1-0P-57, 1-PT-28.2 1-0P-57, 1-PT-28.2
e ERRATA Page 11 of the Surry Unit 1, Cycle 10 Startup Physics Tests Report incorrectly states that the Technical Specifications limit on rod drop time is 1.8 seconds.
The correct Technical Specifications limit for rod_ drop time is 2.4 seconds.
This error does not affect the conclusion in the report that all r_od drop times were acceptable.
- J
- \\
FIGURE 1.1 R
p N
H L
SURRY UNIT 1 - CYCLE 10 CORE LOADING MAP K
J H
6 I 9A I lDl I 9l I
I ~DZ I 2E2 I 2D4 I
F E
_____ 1 __ 1 __ 1 __ 1....,.,,_..,....,e'"!"e"_
I lDl I 88 I 128 I UB I l2B I BB I lDA I
I 2El I OC9 I ZGS I '+Fl I 3G3 I 2Cl I DEZ I
D C
__, ___, ___, ___, ___ 1 ___ 1 ___ 1 ___ 1 ___
I 9B I 12A I 128 I lll I llB I lll I 128 I 12A I 99 I
I 402 I 061 I t+G8 I lFD I 2F9 I 2F6 I 369 I 169 I 406 I
___, ___ 1 ___, ___, ___ 1 ___ 1 ___ 1 ___ 1 ___ 1 ___, __ _
I 9l I 88 I l2B I lll I 12l I llB I 12l I llA I 128 I BB I 9l I
I 205 I DC'+
I 366 I 1F6 I 163 I t+FS I 066 I ZFS I 465 I t+C3 I 1D3 I
8
__, __ 1 ___, ___ 1 ___ 1 ___ 1 ___ 1_1_1 ___ 1 ___ 1 ___ 1 __ _
I lDA I 12l I l2B I llB I lll I llB I 9B I llB I llA I 111 I ltB I 12A I lOA I
I OE7 I 2G3 I 461 I '+F7 I OF3 I 3F5 I 309 I 3F3 I lFl I 5F3 I 3GO I OGS I SES I
1 ___ 1 __, ___ 1 ___, ___, ___, ___, ___ 1 ___, __ 1 ___, ___, ___,
I 88 I l2B I lll I lll I 9l I 12A I lll I 12A I 9B I llA I llA I 128 I 88 I
I DC2 I t+G6 I OF'+
I 1F2 I ODZ I OG3 I 2F7 I 165 I 3D7 I OF7 I 2F3 I 467 I 3CO I
___, __, ___, ___, ___ 1 ___ 1 ___ 1 ___ 1_._1_1 ___ 1 ___ 1 ___ 1 ___ 1 __ _
I 9A I l2B I lll I 12A I llB I lZl I 9B I llB I 98 I 12A I 9A I 12A I llA I 128 I 88 I
I 2D3 I 2G7 I 1F9 I lG6 I 3F8 I 2GO I SD'+
I SFS I SDO I ZGZ I 2D6 I lGl I lFt+
I 3Gl I '+CO I*
, __ 1 __, __, __ 1 __, __
. _1 __, ___, ___ 1 ___ 1 ___ 1 __ 1 ___ 1 ___ 1_1 I lOl I llB I llB I 118 I 9B I llA I 118 I 9B I 118 I llA I 9B I 118 I 118 I 118 I lDA I
I lEt+
I 5F6 I 5FO I SF'+.
I 506 I 2Fl I 3F2 I t+D7 I t+F9 I 2F8 I 404 I 3Fl I '+F3 I 3F7 I SEl I
1 __ 1 __, __ 1 __ 1 __, ___ 1 ___ 1 ___ 1 ___ 1_* _1_1_, ___ 1 __ 1 ___ 1 I 9A I l2B I lll I U:l I 118 I lZA I 9A I llB I 9l I 12A I 118 I 12l I llA I 128 I 9A I
I 109 I 3G2 I OFZ I OG8 I 3F'+
I lGO I 2DD I 5F2 I 209 I 2Gl I 3F6 I 1G8 I OFS I 462 I 104 I
, __, ___, __, __ 1 __ 1 ___, ___ 1 ___ 1 __ 1 ___ 1 __ 1 __ 1 ___ 1 __ 1 __ 1 I BB I l2B I lll I llA I 911 I 12A I lll I 12l I 9B I llA I llA I 128 I 8B I
I 3C2 I '+GO I ZF'+
I 1F3 I 400 I 1G7 I OFl I 064 I 508 I DF6 I lFS I 365 I oca I
, __, ___, __, __, __ 1 ___ 1 ___ 1 __ 1 ___ 1 __ 1 __ 1 ___ 1 __ 1 I lDA I lZl I 128 I 118 I llA I 118 I 9B I llB I lll I llB I 128 I 12A I lDA I
I lEl I 1G2 I 2G8 I '+Ft+
I OFII I 3F9 I t+D9 I t+FZ I 1F7 I 3FO I 269 I OGZ I 2E6 I
1 __, ___ 1 __ 1_1 ___ 1 ___ 1 ___ 1 __ 1_1_1 __
-_1 ___ 1 __ 1 I S2/9BI 8B I 128 I llA I 12A I llB I 12l I llA I 128 I BB I S2/9BI I '+RO I ZCO I 463 I 2F2 I 067 I t+F6 I 164 I lFB I 3GB I 3C7 I 3R2 I
, ___ 1 __, ___ 1 ___ 1 ___ 1 __ 1 __ 1 ___ 1 __ 1_1 ___ 1 I 9A I 12A I 128 I lll I llB I lll I 128 I 12A I 9A I
I 004 I 264 I 364 I ZFO I t+FD I OF9 I 4G4 I DG9 I 3D4 I
, __ 1 __ 1_1 __, ___ 1 ___ 1 __, ___ 1 __ 1 I lDl I 88 I 128 I llB I 128 I BB I lOA I
I SE'+
I 1C3 I 3G7 I t+FII I 266 I zcs I 3E9 I
'--*, ___ 1 __ 1_1 __ 1 ___ 1 ___ 1 I BB I lOl I 9l I
I ZC'+
I 3E5 I 3D6 I
1--1--> BATCH 1 ___ 1 ___ 1 __ 1 I
1--> lSSEHBLY ID FUEL ASSEMBLY DESIGN PARAMETERS SUB-BATCH 8B 9A 9B S2/9B lOA llA llB 12A 12B INITIAL ENRICHMENT 3.40 3.59 3.61 3.59 3.60 3.60 3.80 3.80 3,99 (W/0 U-235)
BURNUP AT BOC 10 19454 31169 20502 34030 33055 19560 18887 0
0
( MWD /M'I'U)
ASSEMBLY TYPE 15X15 15X15 15X15 15X15 15X15 15X15 15X15 15X15 15X15 NUMBER OF ASSEMBLIES 14 14 12 2
12 28 27 24 24 FUEL RODS PER ASSEMBLY 204 204 204 204 204 204 204 204 204 5
1 2
3 t+
5 6
7 11 9
lD 11 12 13 14 15
~.
~.
ii
- 1 ';
i R
FIGURE 1.2 SURRY UNIT 1 - CYCLE 10 p
N BEGINNING OF CYCLE FUEL ASSEMBLY BURNUPS H
L K
J H
6 F
E D
I 2D2 2E2 2D4 I 344331 304651 344051
---,---1 __ 1 __ 1 __ 1 __
I 2El I OC9 I 265 I 4Fl I 363 I 2Cl I OE2 I*
- I 342641 160451 o
I 197561 o
I 165021 347541
__ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __
I 4D2 I 061 I 4G8 I lFO I 2F9 I 2F6 I 369. I 169 I 4D6 I
I 336531 o
I o
I 206771 166201 208611 o
I o
I 348591 C
~-l~-1~_1 __ 1 __ 1 __ 1 __ 1~-l~-l~-l~-
I 2D5 I OC4 I 366 I 1F6 I 163 I 4F5 I 066 I 2F5 I 465 I 4C3 I 1D3 I
I 346581 189311 0
I 207311 O
I 195071 0
I 206601 0
I 195601 341851 B
__ 1~-l~-1~_1 __ 1 __ 1 __ 1 __ 1~_1 __ 1~_1~_1~-
I OE7 I 2G3 I 461 I 4F7 I OF3 I 3F5 I 3D9 I 3F3 I lFl I 5F3 I 360 I OGS I SES I
I 346431 o
I o
I 199561 168651 199901 142981 202421 166471 199641 o
I o
I 344201 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1_._1 __ 1 __ 1 I oc2 I 4G6 I OF4 I 1F2 I OD2 I OG3 I 2F7 I 165 I 3D7 I OF7 I 2F3 I 467 I 3CO I
I 158101 o
I 205931 162941 154261 o
I 207831 o
I 152281 169901 208581 o
I 157021 A
__ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1_*_1 __ 1 __ 1 __ 1 __ 1 __ 1 __
I 2D3 I 267 I 1F9 I 166 I 3F8 I 2GO I 504 I SFS I 5DO I 262 I 2D6 I 161 I 1F4 I 3Gl I 4CO I
I 337471 o
I 204261 o
I 202911 o
I 294201 166521 295851 o
I 154941 o
I 209421 ol 323331 1 __ 1 __ 1 __ 1 __._1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 I 1E4 I 5F6 I SFO I 5F4 I 5D6 I 2F1 I 3F2 I 4D7 I 4F9 I 2F8 I 4D4 I 3Fl I 4F3 I 3F7 I SEl I
I 303821 188291 163431 194981 143511 214291 166211 1s1021 164921 208121 137011 197191 162021 193891 302671 l~-1~_1~_1~_1~_1 __ 1 __ 1 __ 1 __ 1~_1 __ 1~-1~_1~_1~_1 I 1D9 I 3G2 I OF2 I 068 I 3F4 I _lGO I 2DO I 5F2 I 209 I 261 I 3F6 I 168 I OFS I 462 I 1D4 I
I 351181 o
I 203291 o
I 203501 o
I 298531 163321.298461 o
I 204921 o
I 204401 ol 348881 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1_-_1 __ 1 I 3C2 I 460 I 2F4 I 1F3 I 400 I 1G7 I OFl I OG4 I 5D8 I OF6 I lFS' I 365 I OC8 I
I 161111 0
I 209191 168831 156551 O
I 204811 0
I 150431 167711 207381 O
I 165591 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 I lEl I lGZ I ZG8 I 4F4 I OF8 I 3F9 I 4D9 I 4F2 I 1F7 I 3FO I 269 I 062 I 2E6 I
I 344681 o
I o
I 200461 167561 205061 145911 201581 166441 202571 o
I o
I 339761 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1~_1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 I 4RO I 2co I 4G3 I 2F2 I OG7 I 4F6 I 1G4 I 1F8 I 368 I 3C7 I 3R2 I
I 338961 197641 o
I 209481 o
I 188431 o
I 202851 o
1-190031 341641 l~-l~-l~-1~_1 __ 1~_1 __ 1~_1 __ 1~-1~_1 I OD4 I 2G4 I 3G4 I 2FO I 4FO I OF9 I 464 I OG9 I 3D4 I
I 348241 o
I o
I 203os1 172971 205751 o
I o
I 345471 1 __ 1 __ 1~_1 __ 1~_1 __ 1 __ 1 __ 1 __ 1 I 5E4 I 1C3 I 3G7 I 4F8 I 2G6 I 2C5 I 3E9 I
I 339681 164781 o
I 196081 o
I 163121 341891 l~-1~_1 __ 1~_1~-l~-1~_1 1--1--> ASSEtsLY ID I 2C4 I 3E5 I 306 I
I 332521 308761 348521 1 __ 1 __ 1 __ 1 I
1--> ASSEtsLY BURNUP I __ I 6
l 2
3 4
5 6
7 8
9 10 1,1 12 13 14 15
.*,,... i R
p N
SURRY UNIT 1 - CYCLE 10 INCORE INSTRUMENTATION LOCATIONS H
L
.- K J
H 6
F E
I HD I
I FIGURE 1.3 D
C B
A I
I TC I
I l
____ 1 ___ 1 ___ 1 ___ 1 ___ _
1.
I I
I I HD I
I I
I **
I I
I I
TC I
I 2
___ 1 ___ 1 ___ 1 ___ 1 ___ 1 ___ 1 ___ 1 ___ 1 __ _
IHDI I
IHDIHDI I
I IHDI ITCI I
ITCITCI I
I ITCI 3
___ 1 ___ 1 __ 1 __ 1 ___ 1 ___ 1 ___ 1 ___ 1 ___ 1 ___ 1 __ _
I I
I HD I
I I HD I
I I
I I
I I
I ITCI I
ITCI IHDI I
I I
4
___ 1 ___ 1 ___ 1 __, ___ 1 ___ 1 __, ___ 1 ___ 1 ___ 1 ___, ___ 1 __ _
I IHDI IHDI I
I I
I
'IHDIHDI IHDI I
ITCI ITCI IHDI I
I ITCITCI ITCI 5
, ___, ___ 1 ___ 1_-__ 1 ___, ___ 1 ___ 1 ___ 1 ___
. 1 ___ 1 ___ 1 ___ 1 ___ 1 I
I I
IHDI I
IHDI IHDI I
I I
I I
I I
ITCI I
ITCI ITCI I
I I
I 6
___ 1 ___, ___, ___,_. __ 1 ___, ___ 1 ___ 1 ___ 1 ___ 1 ___ 1 ___ 1 ___ 1 ___ 1 __ _
I I
IHDI I
I IHDI IHDI I
IHDI IHDI I
I I
ITCI I
I ITCI ITCI I
ITC.I ITCI I
7
, ___, ___, ___ 1 ___ 1 ___ 1 ___, ___ 1 ___ 1 ___ 1 ___ 1 ___ 1 ___ 1_1_1_1 IHDI IHDI IHDI I
I I
IHDI I
IHDIHDI I
ITCI ITCI ITCl I
I I
ITCI I
ITCITCI I
8
, ___, ___, ___ 1 ___ 1 ___ 1 ___, ___ 1 ___ 1_1_1 ___ 1 ___ 1 ___ 1 ___ 1_,
I
-I I* I I HD I
I I
I HD I HD I
- 1 I
I I
ttD I
I I
I I
I TC I
I I
I
- I I
I TC I
9
, ___, ___ 1 ___ 1 ___ 1 __ 1 ___ 1 ___ 1..___1 ___ 1 ___ 1 ___ 1 ___ 1 ___ 1 ___ 1 ___ 1 I
IHDI I
I IHDI I
I I
IHDI IHDI I
I TC I
I I
I TC I
I I
I I
TC I
I TC I
10 1 ___ 1 ___ 1 ___ 1 ___ 1 ___ 1 ___ 1 ___, ___ 1 ___, ___ 1 ___ 1 ___ 1 ___ 1 I
I I
IHDI I
IHDI IHDIHDI I
I I
I I
I I TC I
I I TC I
I I
I 11 1 ___ 1 ___ 1 __ 1 __ 1 ___ 1 ___ 1 ___ 1 ___ 1 ___ 1 ___ 1 ___ 1 ___ 1 ___ 1 IHDI I
I IHDI I
I I
IHDIHDI ITCI I
I ITCI I
I I
ITCITCI 1Z I __ I_* _I __ I ___ I ___ I_I ___ I ___ I ___ I ___ I ___ I I
I I
I I
I I
HD I
I I
I I
I I
IHDI ITCI I
- I 13 1 ___ 1 ___ 1 ___ 1 ___ 1 ___ 1 ___ 1 __ 1 ___ 1 ___ 1 I' HD I
I I
I HD I
I I
I TC I
. I I
I TC I
I I
14 1 ___ 1 ___ 1 ___ 1 ___ 1 ___ 1 ___ 1 ___ 1 MD - Movable Detector TC - Thennocouple I HD I
I I
I TC I
I I
15 1 ___ 1 ___ 1 ___ 1 7
k*
" 0 R
FIGURE 1.4 SURRY UNIT 1 - CYCLE 10 BURNABLE POISON AND SOU_RCE ASSEMBLY LOCATIONS p
N H
L K
J H
G f
E D
C B
I I
I I
A I
I I
I 1
~--,---l __ l __, __,_~~-
1 I
I I
I I
I I
I I
3P I
I 3P I
I I
2
___ 1 ___ 1 ___ 1 ___ 1_* __ 1 ___ 1 ___ 1 ___ 1 __ _
I I
I I
I I
I I
I I
I I
4P I
16P I I SS1 I I
26P I 4P I
I 3
1 __,_-__ 1 __
- _1 ___, ___ 1 __
, ___ 1 ___, __
1 __
I I
I I
I I
I I
I I
I I
I I
I 16P I I
20P I I
20P I I 16P I
I I
4 1 __
1 __
1 __
1 __
1 __
1 ___ 1 __
1 ___ 1 ___, __
1 __
1 __
I I
I I
I I
I I
I I
I I
I I
I I
4P I
16P I
_ _ I 4P I
I 4P I
I 4P I
I 16P I
4P I
I 5
1 __
1 __
1 __
1 __
1 ___ 1 ___ 1 ___ 1 __
, ___ 1 __
1 __
I I
I I
I I
I I
I I
I I
I I
I I
16P I I
4P I
I 20P I
I 20P I
I 4P I
I 16P I
I 6
I I
I I
I I
I I
I I
I I
I I
I I
I 3P I
I 20P I I
20P I I
I I 20P I 20P* I 20P I
I 3P I
I 7 1 __
1 __
1 __
1 __
1 __
1 ___ 1 ___ 1 ___ 1 __
, ___ 1 __
, ___ 1 __
1 __
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I 4P I
I SS7 I
I I
I 4P I
I I
I I a 1 ___ 1 ___ 1 ___ 1 ___ 1 ___ 1 ___ 1 ___ 1 ___ 1 ___ 1 ___ 1 ___ 1 ___ 1 ___, ___, ___,
I I
. I I
I I
I I
I I
I I
I I -
I I
I I
3P I
I 20P I
I 20P I
I I
I 20P I
I 20P I
I 3P I
I 9 1 __
1 __
1 __
1 __
1 __
1 __
, ___ 1 __
1 ___ 1 __
1 __
I I
I I
I I
I I
I I
I I
I I
I I 16P I
I 4P I
I 20P I
I 20P I
I 4P I
I 16P I
I
- 10 1 __ 1 __ 1 __ 1 ___, ___, __
1 ___ 1 __
1 __
1 I
I I
I I
I I
I I
I I
I I
I I
I 4P I 16P I
I 4P I
I 4P I
I 4P I
I 16P I
4P I
- I 11 1 __
1 __
1 __
1 ___, __
1 ___ 1 __
1 ___ 1 __
1 __
1 __
1 __
1 I
I I
I I
.I I
I I
I I
I I
I I 16P I
I 20P I
I 20P I
I 16P I
I I
12 1 ___ 1 ___ 1 ___, ___ 1 ___ 1 ___ 1 ___ 1 __
- _1 ___, ___, ___ 1 I
I I
I I
I I
I I
I I
I 4P I 16P I
I SS2 I
I 16P I
4P I
I 13 1 ___ 1 ___ 1 ___ 1 ___ 1 ___ 1 ___, ___, ___, ___,
I I
I I
I I
I I
I I
I 3P I
I 3P I
I I
14 3P -- 3 BURNABLE POISON ROD CLUSTER 4P -- 4 BURNABLE POISON ROD CLUSTER 16P -- 16 BURNABLE POISON ROD CLUSTER 20P -- 20 BURNABLE POISON ROD CLUSTER I
I I
I I
I I
I 15 20P* -- 20 DEPLETED BURNABLE POISON ROD CLUSTER SSX -- SECONDARY SOURCE 8
~
~.,
j",
. -~
R SURRY UNIT 1 - CYCLE 10 CONTROL ROD LOCATIONS FIGURE 1.5 p
N L
K J
H G
F E
D C
a A
180° L
C I
Loop B cop I 1 t Outlet I
I I
I n e 1_1_1_1
/
"'I I A I
ID I I A I
I
_1_1_1_1_1_1_1_1_
N-41 I
I I
I SA.1 I. sA* I I
I I
N-43
_1_1_1_*1_1_1_1_1_1_1_
I I c I
I B I
I I
I B I
I c I I
_1_1_1_1_1_1_1_1_1_1_1_1_
I I
I ISBI ISPI ISPI IS81 I
I I
L C
I_I_I_I_I_I_I_I_I_I_I_I_I_I Loop B oop
- I A I I B I I D I I c I I D I I B I I A I Outlet Inlet'-..
_l_l_l_l_l_l_l.;...._I_I_I_I_I_I_I_._ /
"I I
I SA I I SP I I S8 I I S8 I I SP I I SA I I
I
. " 1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1 90 -
I ID I I
I I c I
I I
I c I
I I
ID I I - 270° 1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1 I
I I SA I I SP I I SB I I SB I I SP I I SA I I
I 1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1 Absorber Material Ag-In-Cd
- Function Control Bank D Contro I Bank C Control Bank B Control Bank A Shutdown Bank SB Shutdown Bank SA IAI IBI IDI ICI IDI IBI Ill 1_1_1_1_1_1_1_1_1_1_1_1_1_1 I
I I
IS81 ISPI ISPI IS81 I
I
- I l_l_l_l_"l_._1_1_1_1_1_1_1_1_1 I
I c I
I B I
I I
I B I
I c I
I 1_1_1_1_1_1_1_1_1_1_1_1 I
I I
I I
N-44 I_I_I_I_I_I_I_I_I_I N-42 I
I A I I D I I A I
I r
l 1_1_1_1_1_1_1 I
I I
I
\\
1_1_1_1 Loop A Loop A Outlet I
Inlet oo Number of Clusters SP (Spare Rod Locations) 8 8
8 8
8 8
8 9
1 2
3 5-6 7
10 11 1Z 13 lit 15
',1 SECTION 2 CONTROL ROD DROP TIME MEASUREMENTS The drop time of each control rod was measured at hot full-flow RCS conditions in order to confirm satisfactory operation and to verify that the rod drop times were less than the maximum allowed by the Technical Specifications.
The hot control rod drop time measurements were run with the RCS at hot, full flow conditions (547°F, 2235 psig) and ar.e described below.
The rod drop time measurements were performed by first withdrawing a rod bank to its fully withdrawn position, and then removing the movable gripper coil fuse and stationary gripper coil fuse for the test rod. This allows the rod to drop into the core as i~ ~ould in a normal plant trip.
The data recorded during this test are the stationary gripper coil voltage, the LVDT (Linear Variable Differential Transformer) primary coil voltage, and a 60 Hz timing trace which are recorded via a visicorder.
The rod drop time to the dashpot entry and to the bottom of the dashpot are determined from this data. Figure 2.1 provides an example of the data that is recorded during a rod drop time measurement.
As shown in Figure 2.1, the initiation of the rod drop is indicated by the decay of the stationary gripper coil voltage when the stationary coil fuse is removed.
A voltage is then induced in the LVDT primary coil as the rod drops.
The magnitude of this voltage is a function of the rod velocity.
When the rod enters the dashpot section of its guide tube, the 10
velocity slows causing a voltage decrease in the LVDT coil.
The LVDT voltage then reaches a minimum as the rod reaches the bottom of the dashpot.
Subsequent variations in the trace are caused by the rod bouncing.
This procedure was repeated for each control rod.
The measured drop times for each control rod are recorded on Figure 2.2.
The slowest, fastest, and average drop times are summarized in Table 2.1.
Technical Speciflcation 3.!2.C.1 specifies a maximum rod drop time from loss of stationary gripper coil voltage to dashpot entry of 1. 8 seconds with the RCS at hot, full flow conditions.
The test results met this limit.
11
Table 2.1 SURRY UNIT 1 - CYCLE 10 HOT ROD DROP TIME
SUMMARY
ROD DROP TIME TO DASHPOT ENTRY SLOWEST ROD FASTEST ROD AVERAGE TIME F-14 1.24 sec.*
G-7 1.16 sec.
- 1. 20 sec.
ROD DROP TIME TO BOTTOM OF DASHPOT SLOWEST ROD FASTEST ROD AVERAGE TIME B-6 1.86 sec.
L-11,M-4
- 1. 73 sec.
- 1. 79 sec.
12
~0- *-**. *.
.:.~.,._.... ;..:.
- 1.*-:.-;::,,*
.,, -~ *.,;,*.:.
BOTTOM rJ; bA~" 10T l
- .,:-.1-l;l;.,
FIGURE 2.1 TYPICAL ROD DROP TRACE EMlR'< INTO t>H;II l'OT 4
- .'!,'1*:.,;:,.
SlATIONI\\RY GRIPPER COIL \\/0.... T.:..:...:,,,'---"'
FIGURE 2.2 SURRY UNIT 1 - CYCLE 10 ROD DROP TIMES - HOT FULL FLOW CONDITIONS R
p N
H L
K J
H G
F E
D C
8 l
I I
I 1
I I
I I
l I 1.20 I I 1.19 I I 1,19 I I
2 I
I 1. 78 I I 1. 78 I I 1. 79 I I
2 I
I I
- 1 1.22 I I 1.20 I I
I I
3 I
I I
I 1.80 I I 1, 77 I I
I I
3
__, __, __ 1_-_, __, __, __, __, __, __, __
I I 1.19 I I 1.18 I I
I I 1.21 I I 1.21 I I
4 I
I 1,-73 I I 1. 78 I I
I I 1. 81 I I 1, 76 I I
4
__, __ 1 __ 1 __, __, __, __, __, __, __, __, __, __
I I
I I 1.18 I I
I I
I I 1, 23 I I
I I
5 I
I I
I 1. 78 I I
I
- I I
I 1,83 I I
I I
5 I 1.18 I I 1.20 I I 1.20 I I 1.11 I I 1.20 I I 1.19 I I 1.22 I 6
11,771 11,801 11,781 11,771 11,831
- 11.791 11,861 6
__, __ 1 __, __, __, __, __, __ 1 __, __,_, __,_, __,_
I I
I 1.19 I I
I
- 1 1.20.I I 1.16 I I
I I 1.21 I I --
I 7 I I
I 1. 77 I
. I I
I 1. 79 I I 1. 76 I I
I I 1,81 I I
I 7 1 __ 1 __ 1 __ 1 __ 1 __, __ 1 __ 1 __, __
I I 1. 20 I I
I I 1.19 I I
I I l, 19 I I
I I 1. 23 I I
8 I I 1.80 I I
I I 1.eo I I
I I 1.11 I I
I I 1.83 I I 8 1 __, __, __ 1 __, __, __, __, __, __, __, __, __,_,_, __,
I I
I 1.21 I I
I I 1.20 I I 1.21 I I
I I 1.19 I I.
I 9 I I
I 1. 81 I I
I I 1. 76 I I 1. 81 I I
I I 1, 74 I I
. I 9 I __ I __ I __ I __ I __ I __ I __ I __ I __ I_I __ I __ I __ I __ I __ I I 1.19 I I 1.20 I I 1.20 I I 1.21 I I 1.22 I
- I 1,19 I I 1.20 I 10 I 1.15 I l'l,80 I I 1,81 I I 1.80 I I 1.83 I I 1,82 I I 1,84 I 10 I
I I
I l. 18.I I
I I
I I 1. 20 I I
I I
11 I
I I
I 1. 73 I I
I I
I I 1. 77 I I
I I
11 1 __ 1 __ 1 __, __ 1 __
I I 1.18 I I 1.19 I I
I I 1.20 I I 1.23 I I
12 I
I 1. 77 I I 1. 79 I I
I I 1, 77 I I 1. 79 I I
12
, ___, __, __, __, __ 1 __, __, __ 1 __ 1 __, __ 1 I
I I
I 1.21 I I 1.21 I I
I I
13 I
I I
I 1. 75 I I 1. 78 I I
I I
13
, __ 1 __ 1 __ 1 __, __, __ 1 __ 1_,_,
I I 1. 22 I I 1.-20 I I 1.2ft I I
14 I
I 1.80 I I 1,81 I I 1.83 I I
14 1 __, __ 1 __ 1 __, __, __, __,
I I
I I
15 I
I I
I 15 RP NHL K
J HG FED C
8 l
,--1--ROD DROP TIHE TO I
I DASHPOT ENTRYISEC, l I __ I--ROD DROP TIHE TO BOTTOM OF DASHPOTISEC, l 14
~
" ' r SECTION 3 CONTROL ROD BANK WORTH MEASUREMENTS Control rod bank worth measurements were obtained for the control and shutdown banks using the rod swap technique.
The first step in the rod swap procedure was to dilute the most reactive control rod bank (hereafter referred to as the reference bank) into the core and measure its reactivity worth using conventional test techniques.
The reactivity changes resulting from the reference bank movements were recorded continuously by the reactivity computer 4 and were used to determine the differential and integral worth of the reference bank (Control Bank B).
At the completion of the
- reference bank reactivity worth measurement,*
the reactor coolant s~1
- t:em temperature and boron concentration were stabilized such that the reactor was critical with the reference bank near full insertion.
Initial statepoint data for the rod swap maneuver were obtained by moving the reference bank to its fully inserted position and recording the core reactivity and moderator temperature.
At this point, a rod swap maneuver was performed by withdrawing the reference bank while one of the other control rod banks (i.e., a test bank) was inserted.
The core was kept nominally critical throughout this rod swap and the maneuver was continued until the test bank was_ fully inserted and the reference bank was at the position at which the core was just critical.
This measured critical position (MCP) of the reference 1{ :k with the test bank fully inserted is the major 15 -
... i
'-.1 **
parameter of interest and was used to determine the integral reactivity worth of the test bank.
Statepoint data (core reactivity, moderator temperature, and the differential worth of the reference bank) were recorded with the reference bank at the MCP.
The rod swap maneuver was then performed in reverse order such that the reference bank once again was near full insertion and the test bank was once again fully withdrawn from the core. The rod swap pro~ess was then repeated for all of the other control rod banks (control and shutdown).
A summary of the results for these tests is given in Table 3.1.
As shown by this table and the Startup Physics Tests Results and Evaluation Sheets given in the Appendix, the individual measured bank worths for the control and shutdown banks were within the design tolerance (+/-10% for the reference bank and +/-15% or 100 pcm, whichever is greater,. for the test banks).
The sum of the individual rod bank worths was measured to be within 6.1% of the design prediction.
This is well within the design tolerance of +/-10% for the sum of the individual control rod bank worths.
The integral and differential reactivity worths of the reference bank (C.ontrol Bank B) are shown in Figures 3.1 and 3.2, respectively.
The design predictions and the measured data are plotted together in order to illustrate their agreement.
In summary, the measured rod worth values were satisfactory.
16
BANK B-Reference D
C A
Table 3.1 SURRY UNIT 1 - CYCLE 10
-CONTROL ROD BANK WORTH
SUMMARY
MEASURED PREDICTED PERCE°NT DIFFERENCE WORTH WORTH
(%)
(PCM)
(PCM)
(M-P)/P X 100 Bank 1134 1242
-8.7 1077 1118
-3.7 824 824 0.0 299 353
-15. 3 979 990
-1. 1 879 1002
-12.3 5192 5529
-6.1 L
r
......J a:
a:::
0 w 1-z -
0 0...
C\\I 0
0 C\\I 0
0 0
0 -.. ~ -
0 CX) 0
\\..1
'q'
~
0 F J GURE
- 3. l SURRY UNIT 1 -
CYCLE 10 B BANK INTEGRAL ROD WORTH -
HZP B BANK WITH ALL OTHER ROOS OUT PREDICTED llE 11ERSURED 1,
I' I"'
11 ~
~-
"" ~.
I 40 60 120 160 200 BANK POSITION (STEPS) 18
"' 226
I.
C)
C).
N C) 0 C)
I 1-o
~C) 0~
- 3:
_J a:
-o 1-0 z*
w~
~
w LL LLo
-.a o*
N C)
C)
C) 0 r,
11'1.'
FIGURE 3.2 SURRY UNIT 1 -
CYCLE 10 B BANK DIFFERENTIAL ROD WORTH -
HZP B BANK WITH ALL OTHER Roos* OUT PREDJCTED MEASURED
,~
~
I I\\
I ii! " ~.
~
l
.I:
r,,.
I 1*
~
1111 II! ll
~
I II I" l
r-'
- p,.,
Ill 111 I'.
\\
l I
I I
~.... ~
\\
~-
I 40 80 120 160 200 BANK POSITION (STEPS) 19 1
\\
le I
228
J ;;.
1
- j
.I SECTION 4 BORON ENDPOINT AND WORTH MEASUREMENTS Boron Endpoint With the reactor critical at hot zero power, reactor coolant sys~em boron concentrations were measured at selected rod bank configurations to enable a direct comparison of measured boron endpoints with design predictions.
For each measurement, the RCS conditions were stabilized with the control banks at or very near a selected endpoint position.
The critical boron concentration was then measured.
If necessary, an adjustment to the measured critical boron concentration was made to account for off-nominal core conditions; that is, for rod position and moderator temperature.
The results of these measurements are given in Table 4.1.
As shown in this table and in the Startup Physics Tests Results and Evaluation Sheets given in the Appendix, the measured critical boron endpoint values were within their respective design tolerances.
The measured values met the accident analysis acceptance criterion.
endpoint results were satisfactory.
Boron Worth Coefficient In summary, the boron The measured boron endpoint values provide stable statepoint data from which the boron worth coefficient was determined.
A plot of the boron concentration as a function of integrated reactivity can be 20
- .1
- ~
t; II I constructed by relating each endpoint concentration to the integrated rod worth present in the core at the time of the endpoint measurement.'
The value of the boron coefficient, over the range of boron endpoint concentrations, is obtained directly from this plot.
The boron worth plot is shown in Figure 4.1.
As indicated in this figure and in the Appendix, the boron worth coefficient of reactivity was measured to be -7.61 pcm/ppm.
The measured boron worth coefficient is within 2.5% of the predicted value of -7.80 pcm/ppm and is well within the design tolerance of +/-10%.
The measurement result also met the accident analysis acceptance criterion.
In summary, the measured boron worth was satisfactory.
21
Control Rod Configuration ARO Table 4.1 SURRY UNIT 1 - CYCLE 10 BORON ENDPOINTS
SUMMARY
Measured Predicted Endpoint Endpoint (ppm)
(ppm) 1567 1610 Difference M-P (ppm)
-43 B Bank In 1418 1408*
10
- The predicted endpoint for the B Bank in configuration has been adjusted for the difference between the measured and predicted values of the endpoint taken at the ARO configuration as shown in,the boron endpoint Startup Physics Test Results and Evaluation Sheets in the Appendix.
22
2000
,.-._ 1600
- s u
~
'-' 1200
~
E--1
>----4 >
~ 800 u
~
~
~ 400 0
......... *....... r-....
SURRY UNIT 1,. CYCLE 10 BORON WORTH COEFFICIENT
§2_ = -7.61 oc B
~I',.....
~I',.....
I',....... *~,....
" I'-... --
I I
pcm/ppm -
FIGURE 4.1 ENDPOINT MEASUREMENTS 1400 1420 1440 1460 1480 1500 1520 1540 1560 1580 1600 BORON CONCENTRATION (PPM)
I SECTION 5 TEMPERATURE COEFFICIENT MEASUREMENTS The isothermal temperature coefficient measurement was accomplished by controlling the RCS heat gains/losses with the steam dump valves to the condenser, and/or steam generator blowdown establishing a constant and uniform heatup/cooldown rate, and then monitoring the resulting reactivity changes on the reactivity computer_.
This measurement was performed at a very low power level in order to minimize the effects of non-uniform nuclear
- heating, thus, the moderator and fuel were approximately at the same temperature (between 542-547 °F) during the measurement.
To eliminate the boron reactivity effect of outflow from the pressurizer, the pressurizer level was maintained constant or slightly increasing during the measurem~Dr An isothermal temperature coefficient measurement was performed at the all-rods-out configuration.
Reactivity measurements were taken during both RCS heatup and cooldown ramps during which the RCS temperature varied approximately 3°F. Reactivity was determined using the reactivity computer and was plotted against the RCS temperature on an x~y recorder.
The temperature coefficient was then determined from the slope of the plotted lines.
The predicted and measured isothermal temperature coefficient values are compared in Table 5.1.
As can be seen from this summary and from the Startup Physics Test Results and Evaluation Sheets given in the Appendix, the measured isothermal temperature coefficient value was within the 24
design tolerance of +/-3 pcm/°F and met the accident analysis acceptance criterion.
In
- summary, the measured temperature coefficient was satisfactory.
25
~-
- i
)..
- t.
BANK -
POSITION ARO ARO Table 5.1 SURRY UNIT 1 - CYCLE 10 ISOTHERMAL TEMPERATURE COEFFICIENT
SUMMARY
lSOTI:IERMAL TEMPERATURE COEFFICIENT TEMPERATURE BORON (PCM/°F)
RANGE CONCENTRATION (OF)
(ppm)
COOL DIFFER.
HEATUP DOWN AVER. PRED.
(M-P) 546.3 to 1566
-3.67
-4.01 0.34 543.3 545.5 to 1566
-2.77
-3.22.,;4.01
- 1. 24 542.4
- This is the average of the two cooldowns used in the Isothermal Temperature Coefficient calculations.
26
g a.
SECTION 6 POWER DISTRIBUTION MEASUREMENTS The core power distrib~tions were measured using the incore movable detector flux mapping system.
This system consists of five fission detectors which traverse fuel assembly instrumentation thimbles in 50 core locations (see Figure 1.3).
For each traverse, the detector output is continuously monitored on a strip chart recorder.
The output is also scanned for 61 discrete axial points by the PRODAC P-250 process computer.
Full core, three-dimensional power distributions are then determined by analyzing this data using the Westinghouse computer program, INCORE 5
- INCORE couples the measured flux map data with predetermined analytic power-to-flux ratios in*order to determine the power distribution for the whole core.
A list of the full-core flux maps caken during the test prog:r:am together with a list of the measured values of the important power distribution parameters is given in Table 6. 1.
The measured power distribution parameter values are compared with their Technical Specifications limits in Table 6.2. Flux Map 1 was taken at slightly less than 30% power to verify radial power symmetry according to the American National Standards Institute standard on power reactor startup physics testing (ANSI/ANS-19.6.1-1985).
Figure 6.1 shows the resulting radial power distribution associated with this flux map.
Flux maps 2 through 6 were taken over a wide range of power levels and control rod configurations.
These flux maps were taken to check the at-power design pr;dictions and to measure core power distributions at 27
_{.
'1_*. 'i
~;
1 various operating conditions.
These maps al.so provide a
cross -
calibration between the incore and excore nuclear instrumentation systems.
The radial power distributions for maps 2 and 6 are given in Figures 6.2 and 6.3.
These figures show that the measured relative assembly power values are generally within 4.4% of the predicted values.
In conclusion, the power distribution measurement results were considered to be acceptable with respect to the design tolerances, the accident analysis acceptance criteria, and the Technical Specification limits.
It is therefore anticipated that the core will continue to
- operat~ as designed throughout Cycle 10.
28
N
\\.0 TABLE 6.1 SURRY UNIT 1 - ~YCLE 10 STARTUP PHYSICS TESTS INCORE FLUX HAP
SUMMARY
I I
I I
1 2
I I
I I
I I
BURl'III I
F-Q(TJ HOT F-DHIN J HOT I CORE F(ZJ I 4
I I
I I
I UP I
!BANK CHA~EL FACTOR CHNL. FACTOR I
MAX I
- 31 QPTR AXIAL.I NO. I I
HAP IHAPI DATE HHD/IPHRI D I I
IF<XVJI OFF I OF I I
DESCRIPTION IND, I HTU l1%JISTEPS1 I
IAXIALI IAXIALI I
I SET ITHIHI I
I I
I I
I IASSYIPINIPOINTI F-Q(T J IASSY IPINIF-DH(NJ I POINT I FIZJ I I MAX !LOCI
(%) IBLESI I
I I
I I
I I
I I
I I
I I
I I'
I I
I I
I I
I IPOHER DISTRIBUTION!
11 7-18-881 101 2~1 158 I K061 DE I 32 I 2.152 I H051 DEi *1.498 I 32 ll.40311.42211.0071 NHl-5.3991 42 I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
.I I
!HOT CHANNEL FACTOR!
21 7-18-881 121 421 171 I Jl4I Kll 31 I 2.036 I H051 DEi 1.484 I 30 ll.308ll.443ll.0071 SEl-0.1191 42 I I VERIFICATION I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
IHFP (5) I 61 7-29-881 23811001 225'1 H081 HGI 32 I 1.822 I H081 HGI 1.488 I 34 ll.18911.42111.0061 SEl-0.1941 45 I I
NOTES: HOT SPOT LOCATIONS ARE SPECIFIED BY GIVING ASSEMBLY LOCATIONS (E.G. H-8 IS THE CENTER-OF-CORE ASSEMBLY),
FOLLOHED BY THE PIN LOCATION !DENOTED BY THE "Y" COORDINATE HITH THE FIFTEEN ROHS OF FUEL RODS LETTERED A THROUGH RAND THE "X" COORDINATE DESIGl'IIATED IN A SIMILAR HANNER).
IN THE "Z" DIRECTION THE CORE IS DIVIDED IN TO 61 AXIAL POINTS STARTil'IIG FROM THE TOP OF THE CORE.
- 1.
F-QITJ INCLUDES*A TOTAL Ul'IICERTAINTV OF 1.08
- 2.
F-DH(N) INCLUDES A MEASUREMENT UNCERTAINTY OF 1.04
- 3.
FIXVJ IS EVALUATED AT THE MIDPLANE OF THE CORE.
- 4.
QPTR - QUADRANT POHER TILT RATIO.
- 5.
HAPS 3, 4 AND 5 HERE QUARTER-CORE HAPS.TAKEN FOR INCORE/EXCORE DETECTOR CALIBRATION AT 69% POHER.
1,.
Table 6.2 SURRY UNIT 1 - CYCLE 10 COMPARISION OF MEASURED POWER DISTRIBUTION PARAMETERS WITH THEIR TECHNICAL SPECIFICATIONS LIMITS F-Q(T) HOT F-DH(N) HOT CHANNEL FACTOR*
CHANNEL FACTOR+
MAP NO.
MEAS LIMIT MARGIN MEAS LIMIT MARGIN
(%)
(%)
1 2.152 4.64 53.6. 1.498 1.880 20.3 2
2.036 4.64 56.1 1.484 1.820 18.5 6
1.822 2.32 20.7 1.488 1.550 4.0
- The Technical Specification's limit for the heat flux hot channel factor, F-Q(T), is a function of core height.
The value for F-Q(T) listed above is the maximum value of F-Q(T) in the core.
The Technical Specification's limit listed above is evaluated* at the plane of maximum F-Q(T).
The minimum margin values listed above are the minimum percent difference between the measured values of F-Q(T) and the Technical Specification's limit for each map.
The measured F-Q(T) hot channel factors include 8% total uncertainty.
+ The measured values for the enthalpy rise hot channel factor, F-dH(N), include 4% measurement uncertainty*.
30
~* '.
R FIGURE 6.1 p
N SURRY UNIT 1 - CYCLE 10 ASSEMBLYWISE POWER DISTRIBUTION 29% POWER H
K J
H G
F E
D PREDICTED
- D.26. D.31
- 0.26.
C 8
PREDICTED HEASURED
.PCT DIFFERENCE.
- 0.26
- 0:30
- 0.26.
- -o.3 * -o.4. -o.8
- HEASUIIED
.PCT DIFFERENCE *
- 0.33
- D.64. l.D9. D.118. l.lD. D.65. D.33.
- 0.33
- 0.63. l.D7. D.86
- 1.08. 0.64. 0.32.
2.D * *1.1 * -1.9 * *2.1 * -2.0 * *-1.6 * -D.3 *
- D.35
- 1.09. 1.22. 1.19. 1.25. 1.20. 1,22. 1.09. 0.34 *
- 0.35. 1.10
- 1.20
- 1.17. 1.20. 1.16. 1.20. 1.D9. 0.35.
1:6
- 0.4. -1.1. -1.6 * -4.0. -3.4. -1.6. 0.4. 1.6 *
. D.35
- 0.79. 1.25. 1.22. 1.27. 1.32. 1,26. 1.21. 1.23. 0.76. 0.34 *
- 0.36
- 0.79
- 1.24. 1.21. 1.24. 1.28
- 1.20. 1.16. 1.21. 0.76. 0.34
- z.o
- o.4 * -o.9. -1.1. -z.5. -3.2 * -'+.6 * -4.2. -1.8. -1.0. -0;1 *
. o.33. 1.11. 1.25
- 1.n. 1.20
- 1.30
- 1.28
- 1.29
- 1.18
- 1.21
- 1.n
- 1.09
- o.n *
. 0.34. 1.13, 1.26
- 1.22. 1.20. 1.34. 1.22. 1,32
- 1.17. 1.17. 1.21. 1.08. 0.33
- Z.O
- 2.0.
0.4. -0.7. -0.2. 3.1. *4.6. 2.3. *l.O. *3.2. -1.9. *0.9. *0.2 *
- o.66
- 1.23. 1.23
- 1.20. 1.20. 1.zo. 1.20. 1.19. 1.19. 1.18. 1.21. 1.22. o.65 *
- o.66
- 1.23
- 1.23. 1.22. 1.21. 1.23
- 1.26. 1.23. 1.20. 1.11. 1.19. 1.21. o.64.
. -0.2. -o.3.
0.2
- 1.4. 1.3. 3.0. 4.6. 4.1. 1.4. -o.6. -1.2. -o.5. -o.7 *
.A
- 0.26
- 1.11. 1.21
- 1.28. 1.30
- 1.20
- 1.01
- 1.23
- 1.00
- 1.18
- 1.22
- i.25
- 1.20
- 1.10
- 0.26 *
. 0.27
- 1.11. 1.18. 1.28
- 1.32. 1.22
- 1.04
- 1.29. 1.05. 1.22. 1.24. 1.26. 1.19. 1.09. 0.25.
2.1. -0.2 * -2.1. -o.o
- 1.4
- 2.1
- 3.1
- 4.6
- 5.7
- 4.1
- 1.5
- o.8. -o.5 * -1.2 * -1.2 *
- 0.11
- o.89
- 1.26. 1.34. 1.29. 1.21. 1.23
- 1.21. 1.21. 1.1,. 1.28. 1.12. 1.25. o.ee. 0.11*
- l 2
3 5
6 7
- o.31
- o.89
- 1.21. 1.34
- 1.30. 1.22
- 1.21. 1.29. 1.29. 1.25. 1.31. 1.12. 1.24. o.ee. 0.11.
a 1.9
- 0.6
- 0.6
- 0.2. 1.0
- 1.4. 3.1. 4.7 *** 9. 4.5. 2.3. -o.o. -1.0. -0.1. 1.5,
, 0.26. 1.11. 1.21
- 1.27. i.3D
- 1.19. 1.DD. 1.23. l.Dl. 1.19. 1.29. 1.26; 1.20. 1.10. 0.26 *
- 0.21. 1.12. 1.21
- 1.28. 1.30
- 1.20
- 1.01
- 1.21. 1.05. 1.21
- 1.11. 1.25. 1.19. 1.11. 0.21.
2.1
- o.7. -o.z
- 0.2
- 0.2
- o.3
- o.4
- 3.0
- 4.5
- 3.5
- 1., * -o.7. -o.8.
o.7
- z.8.
. 0.66
- 1.23
- 1.22
- 1.20
- 1.19. 1.19. 1.21. 1.20
- 1.19
- 1.1,. 1.22. 1.23. 0.65 *
. 0.65. 1.21
- 1.21. 1.19. 1.18. 1.20. 1.23. 1.23
- 1.22
- 1.20. 1.22. 1.22. 0.65.
. *1.6. -1.7. -1.l * -0.7. -0.7
- 0.3. 1.5. 2.9. z.z
- D.7. -0.5. -0.6 * -0.2 *
. D.33. 1.10. 1.24. l.ZZ. 1.19. 1.30. 1.29. 1.31. 1.20. 1.23. l.ZS. 1.10. 0.33 *
. 0.33
- 1.10
- 1.24. 1.20
- 1.18. 1.30
- 1.30. 1.32
- 1.22. 1.23. 1.24. 1.09. 0.33 *
. -0.1 * -0.1 * -o.6. -1.4. -o.9. -0.1
- o.4. 1.4. 1.1. -0.1. -o.7. -0.1. -0.1 *
. o.35. 0.11. 1.24. 1.22
- 1.21. 1.11. 1.28. 1.23
- 1.26. 0.80. o.35 *
. 0.35. 0.77, 1.22. l.Zl
- 1.26
- 1.33. 1.28. 1.23. 1.25. 0.79. 0.35.
1.6
- o.4. -1.4 * -1.2 * -o.9 * -0.1
- 0.1 * -o.3 * -o.5 * -o.a. -o.8.
- 0.34. 1.09. 1.22
- 1.21. 1.27. 1.21. 1.24. 1.11. 0.35.
- o.35. 1.09. 1.22
- 1.20
- 1.22. 1.16
- 1.20. 1.0,. o.35 *
- 1.1. o.6 * -0.2 * -1.1 * -3.7. -4.4. -2.9. -1.8. -o.8 *
- 0.32. 0.65
- 1.12
- 0.89. 1,11. D.66. 0.33.
- 0.32. 0.66
- 1.14. 0.86. 1.04. 0.63. 0.32
- 0.1
- 1.1
- 1.5 * -1.1 * -5.9 * -4.4 * -2.5 *
.............. 1 ************************************
STANDARD
- 0.26
- 0.31. 0.26
- AVERAGE DEVIATION El,405 HAP NO: Sl-10-01 CONTROL ROD POSITIONS:
D BANK AT 158 STEPS
- 0.21
- o.n
- 0.24 *
- 1.5 * -1.6 * -6.3
- SlH1ARY DATE: 7/18/88 F-GIT>
= 2.152 F-DHINl = 1,498 F(Z)
= 1.403 F(XY)
= 1,422 BURMJP
= 10 tMD/HTU 31
- PCT DIFFERENCE *.
E 1 0 6 POHER: 29X GPTR:
ti'! 1.007 I NE 0,991
1----------
SH 0,998 I SE 1.005 A,D = -5.3!*11X) 10 11 1_2 13 14 15
- .j
- -J
'i
,J l (-\\
l I.
R FIGURE 6.2 p
N PREDICTED SURRY UNIT 1 - CYCLE 10 ASSEMBLYWISE POWER DISTRIBUTION 42% POWER H
L K
J H
G F
E D
C B
HEASURED
.PCT DIFFERENCE.
- 0.26, 0,31. 0.26,
, 0,27, 0,32, 0,27, 3.0,
2.9
- 2.2,
PREDICTED IEASURED
,PCT DIFFERENCE,
, 0.33, 0.64, 1.10, 0,90, 1,11, 0,66
- 0.33,
. 0.34, 0.64, 1,10, 0,90, 1,11
- 0,66
- D,33,
4,Z. 0,3. *0,2, *0,4, *0,1, D,8, 1,4.
, 0,35, 1,08. 1.21, 1,19. 1,25, 1,19, 1.21. 1,08, 0.3",
- 0,36, l,lD, 1,20. 1.18, 1,20. 1,16. 1,22. l,lD, 0,35.
- 3.6. 1,4. *0,4 * *0,4. *3,9. *2,5, 0.8. 1,8. 2.4 *
- 0,35
- 0.78, 1.24
- 1,21, 1,Z6
- 1,32
- 1*,25
- 1,20
- 1,ZZ
- 0,76, 0,34,
- 0.37, 0,79, 1.23, 1,20. 1.24, 1,28. 1,19, 1,17, 1,22, 0.76
- 0.35, 4,2
- 0.6 * *1,0. *1,0, *1,6 * *2.7, -4.7. *2.5. *0,7, *O,l, 0.8.
. o.33
- 1.1D
- 1.24. 1.23
- 1.20
- 1.30
- 1.28
- 1.29
- 1.19
- 1.21 ** 1.22
- 1.08
- o.33 *
. 0.33, 1,08. 1,23
- 1.21, 1,19. 1.33, 1,22. 1,31. 1,18, 1,18. 1,21. 1.08. 0.33.
- -2.D * -1.a * -o.9. -1.3. -o.e. 2.4. -4.7. 1.5. -o.4. -1.9. -1.1. 0.1
- 1.1 *
- o.66
- 1.zz
- 1.22. 1.20. 1.22. 1.20. 1.21. 1.19. 1.20. 1.1e. 1.20. 1.21. o.65 *
. 0,65, 1.20
- 1.21
- 1.21. 1.23
- 1,23, 1.25. 1.23. 1.22. 1.18. 1,19. 1.20. 0.65.
. *2,0. *2,0 * *0,7
- D,5
- 0.5,
2,2,
3,9
- 3.4,
1,D * *0,4 * *1,D, *0,4 * *0,4
- A
, 0,27. 1.11, 1,20, 1,27. 1.30. 1.20. 1,02, 1,24. 1,00
- 1,18. 1,22. 1,24, 1,19, 1,11. D,26 *
, D,27
- 1.11
- 1.18
- 1.26
- 1.30
- 1,22
- 1.04 *. 1,28
- 1,06
- 1.23
- 1,24
- 1.24
- 1,18, 1.09
- 0,26
- 2,7, -0.3. -1.9, -0.7. 0.4, 1,1.
2.3. 3.9. 5,1,
3,9. 1.7. -0.4. -1.4, -1.7. *1,6 *
- 0;32
- 0.91 ** 1,27
- 1.33
- 1.29, 1.21. 1,24. 1,24, 1,23. 1.20. 1.28. 1,31, 1.25. 0.90
- 0,32
- 1 2
3 5
6 7
, 0,33
- 0.91, 1,25
- 1,32
- 1,28
- 1,21, 1 *. 27
- 1,29, 1,29
- 1,25
- 1',31
- 1,30
- 1.23
- 0.90. 0,32
- 8 2.5
- D,1, *1,1, *0,9, -0.2
- 0.3. 2,4. 3.9. 4.2, 4.5. 2.6, *1.1. *1,9. *0.3. Z,2 *
- 0.21
- 1.12
- 1.21
- 1.26
- 1.30
- 1.20
- 1.01
- 1.24
- 1.oz
- 1.1,
- 1.n
- 1.25. 1.19
- 1.11
- 0.26 *
- 0,27
- 1.12
- 1,19. 1.25
- 1,29. 1,19. 1.02. 1,27, 1,05. 1,22. 1,31
- 1.25. 1,18. 1,12
- 0.27.
2.1
- 0.2 * -1.2 * -o.9 * -o.8 * -o.3
- o.8
- 2.1
- 3.6
- 2.2
- 2.1 * -0.1 * -1.1
- o.9
- 4.1 *
- D.66, 1.22
- 1.22, 1,20, 1.22. 1,20, 1.21, 1.zo. 1.22, 1,20. l.Zl, 1.22, 0.65 *
- o.65
- 1.20. 1.zo
- 1.18
- 1.21
- 1.21
- 1.z3
- 1.23
- 1,23
- 1.20
- 1.21
- 1.21
- o.65 *
. *l.5, *l,6 * *1,4, *1,4, *-0,9, D,7, 1.7. 2;1, 1,2. 0.4. 0,0.*-o.4, *0,4 *
. 0.33
- 1.09. 1.23
- 1,22. 1,20. 1,29. 1,29, 1,30, 1,20, 1,23. 1,24. 1.D9. 0,33 *
, 0.33, 1.10, 1,23
- 1.20. 1.18, 1,29. 1,30, 1,32, 1,22. 1,22. 1.24. 1.09. 0.33.
o.9
- o.9 * -0.2 * -1.1 * -1.2 * -0.1
- o.e. 1.2
- 1.0 * -o.4 * -0.2 * -0.2 * -1.0 *
. 0.35. 0.77, 1.23. 1.21
- 1.26. 1,33, 1,27. 1.22. 1.25. 0.79. 0.35.
, 0,36
- 0.78, 1.21. 1.19. 1.24. 1,32, 1,27. 1,22. 1,24, 0.79. 0.35.
- 3.4. 1,4. -1.6. -2.il. -1.9. -o.,. -o.o. -0.1. -o.4. 0.1. o.z *
- 0,34, 1.08. 1,21. 1.21, 1,27, 1.20. 1,23. 1.10, 0.35 *
- 0.35. 1.10. 1.21. 1.18. 1,23. 1,17. 1,19. 1.08, 0,35, 2,7. 2.1, -o.o. *2,3. -3.0, *3,1. -2,7, *1,5, 0,2.
, 0,32. 0.66. 1,13, 0,91, 1.12, 0.66, 0.33,
- 0.33, 0.67, 1,16, 0.,0, 1.08. 0.64, 0,32, 2,1, 2,7, 3.3, -1.1, *3,6, *3,1 * -2.6,
.... si-iimiiiii. '. :
- 0.27. D,32, 0,27.
, 0,28, 0,32, 0.26,
3.3,
0.5, -3.8
- AVERAGE DEVIATION
=1.241 HAP NO: Sl-10-02 CONTROL ROD POSITIONS:
D BANK AT 171 STEPS SlH1ARY DATE: 7/18/88 F-QITI = 2.036 F-DH!Nl = 1.484 FIZ)
= 1.308 FIXY)
= 1;443 BURHJP = 12 ~D/HTU 32
- , PCT DIFFERENCE.
= 1,6 POHER: 42%
QPTR:
Nit 1,000 I NE 0.989
1----------
SH 1,005 I SE 1.007 A.O = -0.1191%)
9 lD 11 12 13 14 15
- [
FIGURE 6.3 R
p N
SURRY UNIT 1 - CYCLE 10 ASSEMBLYWISE POWER DISTRIBUTION*
HFP H
L K
J H
G F
E D
C II PREDICTED HEASURED
,PCT DIFFERENCE, D,30 D,36 0.30
- 0.30 ~ 0.37, 0.30, 1.3
- 1,3, -0.1,
PREDICTED HEASURED
,PCT DIFFERENCE.
0.34 0.66 1.13 0.99 1.14 0,68 0.34
, D.34, 0.66, 1.12, 0,98, l,12, 0,66, 0.34,
0.1. -o.4 * -o.9 * -1.1. -1.e. -2.4. -1.4.
0.36 1.06 1.17 1.18 1.26 1.18 1.18 1.06 0.36
. 0.36, 1.05, l.15, 1.17, 1.21. l.14, 1.15
- 1.05, 0.36,
o.3. -1.1. -1.4. -o.9. -3.4 * -3.3. -2.4. -o.e. 0,2
- 0.36 0.78 1.20 1.18 l,22 1.28 1.22 l.lB 1.19 0.77 0.36
- 0.36
- 0.78, 1.17, l,17, 1.20, l,25. 1,17, 1.16. 1.17, 0.76, 0.36,
.* -o.5. -o.8. -2.2. -1.3. -1.e. -2.5. -3.9. -1.9. -1.3 * *-1.1. -o.e.
0.35 1.06 1.19 1.21 1.21 l,ZB 1.26 1.27 1.20 1.20 1.19 1.06 0,34
. 0.34. 1.05. -1.19, 1.21, 1.20
- 1.32. 1.21
- 1.28. 1.19. 1.18, 1.16, 1.04, 0,34,
. -1.2. -1.2. -0.5
- O.l. -0.2
- 3.1 * -3.9
- 0.8 * -0.5, -1.7 * -1.9 * -1.2 * -0.6.
0,68 1.18 l,18 l,ZD 1.30 1.21, l,Zl, l,21, l,29, 1.19 1,17 1.17 0,67
. o.67. 1.16. 1.18. 1.22
- 1.32. 1.25. 1.26
- 1.24
- 1.30
- 1.1e. 1.16
- 1.15. o.66 *
. -1.4. -1.4.
0.0.
1.5. 1.7. 3.1. 4,3.
3.1. l.O. -0.8. -1.4, -1.6. -2.0
- A 0.30 1.14 1.18 1.22', 1.28 1.21 1.05 1.26 l.04 1.20 l.21 1.21 1.18 1.14 0.30
. 0.30. 1.13. l.17. 1.22, 1.29, l.24, l.OB, l,31, l.09, 1,24
- l.23, 1,20, 1.16, l,10, o*.29,
l.5. -o.4. -1.5. -0.1.
1.2.
2.0
- 3.1. 4.3. 4.9. 3,5. 1.1. -o.8. -2.1 * -3.1. -2.e
- 0.36 0,99 1,26 1,29 1.26 1.21 1.26 1,26 1.26 1,20 1.27 l.2B 1.26 0.99 0,36 l
2 3
4 5
6 7
, 0,37. 0.99. 1.25
- 1.29, 1.27, 1.23, 1.29. 1.33
- 1.31
- 1.25. 1.29, 1.26., 1.23. D,97, 0.36,
B 1.5.
o.o. -o.5 * -0.1
- 0.1.
1.4
- 3.1.
4,9.
4,7
- 4.1
- 2.2 * -1.5 * -2.2. -1.e. -o.e.
0,30 1.14 1.19 1.22 1;2e 1.21 1.04 1.26 1,05 1.21 1.27 1.22 l.1B 1.13 0,30
- 0.30. 1.13
- 1.17. 1.22, 1,29. 1.22. 1.06. 1.31. 1.10
- 1,24, 1.30
- 1.21. 1.16, 1.13
- 0.30.
1.5. -o.5. -l.5. -0.2.
o.e.
1.0.
1.6
- 4,4
- s.5.
2.e.
2.0 * -o.9. -1.4 * -o. 7.
1.4
- 0.68 l.lB l,lB 1.20 1.29 1.21 l,21 1.21 1.29 1.20 l,lB l.lB 0.67
. o.66. 1.15. 1.11. 1.20. 1.30. 1.23. 1.2s. 1.2s. 1.33. 1.21
- 1.1e. 1.11. o.67.
. -2.6. -2.6. -1.2. -0.1.
o.6. 1.1. 3.o.
3.~.
2.5. o.9. -o.o. -o.6. -o.e.
0.34 1.06 1.19 1.20 1.20 1.27 l,26 1.28 1.20 1.20 1.19 1.06 D,34
, 0.35, 1,06. l.1B. 1.18, 1,20, 1.29, 1,29. 1.31, 1.23. 1.21, 1.20, 1.06, 0,34,
0.4.
0.4. -0.2. -1,1, -0.l.
1.2,
2,1.
2,2,
1.8. 0.4.
0.3, O.l. -D.3.
0.36 0.77 1.18 1.18 1.22 1,29 l,22 l,1B 1.20 0,79 0.36
, 0.37. 0.78. 1.17, 1,17. 1.22. 1.30. 1.23. l.1B. l,20
- 0.79, 0.37,
3.4
- 1.7. -1.l, -0.6. -o.o,
1.0. 0.5, -0.3 * -0.1, 0.2. 0.8,
o.36 1.os 1.11 1.19 1.26 1.1e 1.18 1.01 o.37
. 0.36. 1.04. 1.16
- 1.18. l,24. 1.14. 1.14. 1.05. 0.37, 1.3. -0.9. -0.6. -0.3. -1.8. -3.2. -3.1. -1.8. 0.4, 0.34 0.67 1.15 0,99 1.14 0.67 0.35
. 0.34, 0,67. 1.17
- 0,9B. l,10, 0.65. 0.34,
. -0.9. 0.1,
1,6 * -1.4. -3,3. -3,2. -3.1,
STANDARD DEVIATION
=l. 215 HAP NO: Sl-10-06 CONTROL ROD POSITIONS:
D BANK AT 225 STEPS 0.30 0.37 D.30
. 0.31. D,36. 0.29.
1.6 * -D,4, -3.4
- Sl.ff1ARY DATE: 7/29/88 F-Q(T)
= 1.822 F-DHINJ = 1.488 FIZJ
= 1.189 FIXYJ
= 1.421 BURNUP
= 238 tl'ID/HTU 33 AVERAGE
,PCT DIFFERENCE.
1.6 POHER
100%
QPTR:
!llol 1.002 I NE 0.990
1----------
SH 1.002 I SE 1.006 A.O = -0.194(%1 9
10 11 12 13 14 15
'{
-J SECTION 7 REFERENCES
- 1.
C. B. Laroe, A. H. Nicholson, "Surry Unit 1, Cycle 10 Design Report,"
NE Technical Report No. 633, Virginia Power, May 1988.
- 2.
Surry Power Station Technical Specifications, Sections 3.12.C.1 and l
3.12.B.1.
- J
- 1
- 3.
T. K. Ross, W. C. Beck, "Control Rod Reactivity Worth Determination By The Rod Swap Technique," VEP-FRD-36A, December, 1980.
- 4.
"Te"chnical Manual for Westinghouse Solid State Reactivity Computer,"
I Westinghouse Electric Corporation.
- 5.
W. Leggett and L. Eisenhart, "The INCORE Code," WCAP-7149, December, 1967.
34
'j '
l
- § APPENDIX STARTUP PHYSICS TESTS RESULTS AND EVALUATION SHEETS A-1
.f '!
il "
J
- l
- i ;
I Reference II Test Conditions (Design)
III Test Conditions (Actual)
IV Test Results V
Acceptance Criteria VI Comments l-PT-28.11 ATTACHMENT 1 PAGE.l of 19 SURRY POWER STATION UNIT 1 CYCLE 10 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET JIil I Ill Test
Description:
Reactivity Computer Checkout
~ Proc No /Section: l*PT-28.11 Sequence Step No: 3 Bank Positions (Steps)
RCS *Temperature ( 1F): 547 Power Level_ (I F. P.): 0 SDA: 225 SDB: 225 CA: 225 Other (specify):
CB: 225 CC: 225 CD:*
Below Nuclear Heating Bank Po~itions (Steps)
RCS Temperature ( 1F):.51/J/.
Power Level (I F.P.): 0 SDA: 225 SDB: 225 CA: 225 Other (Specify):
CB: 225 CC: 225 CD: "
Below Nuclear Heating
- Date/Time Test Performed:
7/1¥ /'fr @.
I 3 o'{
Measured Parameter Pc= Meas. Reactivty using p*computer (Description)
Pt= Inferred React from react period Pc=
-,-,L/ ~
fCl'I'\\
- #OfC,...
Measured Value Pt=
~~~ r~-
.#IC) t' i!I~
W=
0,0 '?o e),(!) /0 Design Value (Actual Conditions)
%.I>= {(pc*Pt)fpt} x 100\\ S 4.0\\
Design Value (Design Conditions)
ID= {(pc*Pt)fpt} X 100\\ S 4.0\\
. Reference WCAP 7905, Rev. 1, Table 3.6 FSAR/Tech Spec Not Applicable Reference Not Applicable Design Tolerance is met
- t/yis _NO Acceptance Criteria is met
- ~S _NO
- At The Just Critical Position Allowable Range=+/- #Op:-""-
Completed By:(\\u,~W-
/rest Engineer Eva.luated By:--r;;;;,;4-.~
Recamnendad for ~~
Approval. By :
NFO Engineer A-2
I Reference.
II Test Conditions (Design)
III Test Conditions (Actual)
IV Test Results V
Acceptance Criteria VI Comments l-PT-28.ll ATTACHMENT 1 PAGE 2 of 19 JUL 4 \\9H
- SURRY POWER STATION UNIT 1 CYCLE 10 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET Test
Description:
Critical Boron Concentration - ARO Proc No /Section: l-PT-28.11 Sequence Step No: 4 Bank Positions (Steps)
RCS Temperature ( 1F): 547 Power Level (I F.P.): 0 SDA: 225 SOB: 225 CA: 225 Other (specify):
CB: 225 CC: 225 CD: 225 Below Nuclear Heating Bank Positions (Steps)
RCS Temperature ( 1F):.S-~6.()
Power Level (I F.P.): 0 SDA: 225 SOB: 225 CA: 225 Other (Specify):.
CB: 225 CC: 225 CD: 225 Below Nuclear Heating Date/Time Test Performed:
7 I l5/3rt
(}f/'f5 Heas Parameter H
(Description)
(CB) ARO; Critical Boron Cone - ARO Measured Value (CB)
M IS~ 7 -,P/0 ARO=
Design Value (Actual Cond)
CB =
16 !CJ.+/- so p;:>nt Design Value
{Design Cond)
CB =1610 +/- 50 ppm Reference NE Technical Report No. 633 FSAR/Tech Spec aCB x CB~ 15,115 pcm
/
Reference UFSAR Section 14.2.5 Design Tolerance is met
- ~S_NO Acceptance Criteria is met
- ~S_NO ac8 = -7.80 pcm/ppm for preliminary analysis oe C13 ~ - 7. " I ?c.w, 1->f'~.f' c r./', 'n.:1 / tr ntflf s, '.s Completed By: ~J. Jj T~tEiigineei'"
Evaluated By: qe"""./~&et" ~
A-3 Recommended for ~.,,,~-~*
Approval By :..;;._
P'"__..~""'*~-~...;;;.:;~~
NFO Engineer
I Reference II Test Conditions (Design)
III Test Conditions (Actual)
IV Test Results 1
-~
V Acceptance.
Criteria VI Comments 1-PT-28.11 ATTACHMENT 3 of 19 SURRY POWER STATION UNIT 1 CYCLE 10 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET
~ Test
Description:
Isothermal Temperature Coefficien~ - ARO Proc No /Section: l-PT-28.11 Sequence Step No: 5
~
Bank Positions (Steps)
RCS Temperature ( 1F): 547 Power Level(% F.P.): 0 SDA: 225 SDB: 225 CA: 225 Other (sp.ecify):
CB: 225 CC: 225 CD: 225 Below Nuclear Heating Bank Positions (Steps)
RCS Temperatur*e ( 1F):.Cl/6. 3 Power Level(% F.P.): 0 SDA: 225 SDB: 225 CA: 225 Other (Specify):
CB: 225 cc*: 225 CD:~
Below Nuclear Heating Date/Time Te~erformed:
1-15 -88
- od"'"/Cf Meas Para.miter ISO (Description)
(a T )ARO Isothermal Temp Coeff - ARO ISO
- 3. 'Z. 'Z.
pcm/ 1F (CB = /r" ppm)
Measured Value (a T )ARO=
Design Value ISO 1
(Actual Cond)
(a T )ARO = -'{.01 +/-J.o pcm/ F c Cs =,a, P?D)
ISO (a T )ARO= -3.57 +/- 3;0 pcm/ 1F Design Value (Design Cond)
(Cs= 1610 ppm)
Reference NE Technical Report No. 633 ISO Dop FSAR/Tech Spec Ii T :s 0.80 pcm/ 1F a T = -*1. 70 pcm/ 1F Reference TS 3.1, NE Technical Report No. 633 Design Tolerance is met
- _""'n:S _NO Acceptance Criteria is met
- ~S _NO
- Uncertainty on aTHOP = 0.5 pcm/iF (
Reference:
memorandum from C. T. Snow to E. J. Lozito dated June 27, 1980).
.A-4 Evaluated By:--}-;;;,4../5~
Recommended for Approval By : (°(2~
NFO Engineer
- l.
- l i I
Reference II Test Conditions (Design)
III Test Conditions (Actual)
IV Test Results V
Acceptance Criteria VI Comments.
l-PT-28.11 ATTACHMENT 1 PAGE 4 of 19 4 lffl SURRY POWER STATION UNIT 1 CYCLE 10 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET Test
Description:
Cntl Bank B Worth Heas.,Rod Swap Ref. Bank P~oc No /Section: l-PT-28.11 Sequence Step No:6 Bank Positions (Steps)
RCS Temperature ( 1F): 547 Power Level (I F.P.): 0 SDA: 225 SDB: 225 CA: 225 Other (specify):
CB:Hoving CC: 225 CD: 225 Below Nuclear Heating Bank Positions (Steps)
RCS Temperature ( 1F): S'f S:
Power Level (I F.P.): 0
.SDA: 225 SDB: 225 CA: 225 Other (Specify):
CB:Moving CC: 225 CD: 225 Below Nuclear Heating Date/Time Test Performed:
7/Jr;/gg' t72S Measured Parameter REF Integral Worth of Cntl I B ;
Banlt B, (Description)
All Other Rods Out Measured Value REF I B = /13'-f.'-f,PCJ?7 Design Value REF Ii Cf-;;_ ::t.. l2'f re.I??
(Actual Conditions)
I B =
Design Value REF (Design Conditions)
I B = 1242 +/- 124 pcm Reference NE Technical Report No. 633 If Design Tolerance is exceeded, SNSOC shall evaluate impact of test result FSAR/Tech Spec
.on safety analysis. SNSOC may specify that additional testing be performed.
Reference VEP-FRD-36A Design Tolerance is met
- --i!s _NO Acceptance Criteria is met :.a::::::::n:s _NO Completed By:
Evaluated By:
Recommended for~
Approval By:
~
NFO Engineer A-5
1i '*
i
~
a.,
I Reference -
II Test Conditions (Design)
III Test Conditions (Actual).
IV Test Results V
Acceptance Criteria VI Comments l-PT-28.11 ATTACHMENT 1 PAGE 5 of 19 a 4 ffll SURRY POWER STATION UNIT 1 CYCLE 10 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET Test
Description:
Critical Boron Concentration* B Bank In Proc No./Section: l*PT-28.11 Sequence Ste1:1 No:7 Bank Positions (Steps)
RCS Tempe~ature ( 1F): 547 Power Level(% F.P.): O SDA: 225 SDB: 225 CA: 225 Other (specify):
CB:
0 CC: 225 CD: 225 Below Nuclear Heating Banlt Posittons (Steps)
RCS Temperature ( 1F) : S'I S. ']
Power Level(% F.P.): 0 SD~: 225 SDB: 225 CA: 225 Other (Specify):
CB:
0 CC: 225 CD: 225 Below Nucl9.ar Heatin_g Date/Time Test Performed:
7//5/&'8_
13 I~
Meas Parameter M
(Description) ccs>n; Critical Boron Cone
- B Bank In Measured Value
. M (CB)D = l'-1/8' P/'h?
Design Value I l/08 :t._ '2 9,P,,PI??
(Actual Cond)
CB=
Design Value Prev (Design Cond)
Cs= 1451 + ACB_
+/- (10 + 145.1/laCsl)ppm Reference NE Technical Report No. 633 FSAR/Tech Spec aCB x CBS 15,115 pcm
-Reference UFSAR Section 14.2.5 Design Tolerance is met
- ~S_NO Acceptance Criteria is met
- _YES _NO ac1 = *7.80 pcm/ppm for preliminary analysis A Prev M
CB
= (CB)ARO
- 1610 ct:C8 : -7.~/ ~~m
,/'e,~ tin#/ ~no7$','s Completed By:
Evaluated By: ~~
Recommended for ~~.,,
Approval By:, __
.a--C}IZ/--~--------.,,.
NFO Engineer A-6.
!l l l I I
Reference II Test Conditions (Design)
III Test Conditions (Act.ual)
IV Test Results V
Acceptance Criteria VI Comments l-PT-28.11 ATTACHMENT l PAGE 6 of 19 JUL 4 1981 SURRY POWER STATION UNIT 1 CYCLE 10 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET Test
Description:
HZP Boron Worth Coefficent Measurement Pree No /Section:
1-PT-28.11 Sequence Step.No:?
Bank Positions (Steps)
RCS Temperature ( 1F): 547 Power Level (% r-. P. ) : 0 SDA: 225 SDB: 225 CA: 225 Other (specify):
CB:Moving CC: 225 CD: 225 Below Nuclear Heating Bank Positions (Steps)
RCS Temperature ( 1F): S"f.S-: 3 Power Level(% F.P.): 0 SDA: 225 SOB: 225 CA: 225 Other (Specify):.
CB:Hoving CC: 225 CD: 225 Below Nuclear Heating Date/Time Test Performed:
7 /JS/og
/ 3 '-1-5 Measured Parameter (Description) czCB, Boron Worth Coefficient Measured Value czCB = - 7. G, /,?Ch? /J::,/h?
Design Value
- ?. g't) ':! ~. ?g' ? cnr~?~
(Actual Conditions) czCB =
Design Value (Design Conditions) czCB = -7.80 +/- 0.78 pcm/ppm Reference NE Technical Report No. 633 FSAR/Tech Spec czCB x CBS 15,115 pcm Reference UFSAR Section 14.2.S Design Tolerance is met
. ~S_NO Acceptance Criteria is met
.......-'!E""S _NO tJ.i J J~i Completed By:
Evaluated By: ~...../~
~t.,.
Test Engineer Recommended for Approval By:
A-7
~
NFO Engineer
).
i I
Reference II Test Conditions (Design)
III Test Conditions (Actual)
IV Test Results V
Acceptance Criteria VI Comments
.... ~
l-PT-28.11 ATTACHMENT 1 PAGE 7 of 19 ta 4
- SURRY POWER STATION UNIT 1 CYCLE 10 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET
-Test
Description:
Cntl Bank D Worth Measurement-Rod Swap Proc No /Section: 1-PT-28.11
. *
- Sequence Step No:9 Bank Positions (Steps)
RCS Temperature ('F): 547 Power Level CS F.P.): 0 SDA: 225 SDB: 225 CA: 225 Other (specify):
CB:Moving CC: 225 CO:Hoving Below Nuclear Heating Bank Positions (Steps)
RCS Temperature ( 1F): SY-5.
Power Level CS F.P.): O SOA: 225 SDB: 225 CA: 225 Other (Specify):
CB: Hoving CC: 225 CO:Moving Below Nuclear Heating Date/Time Test Performed:
7/;5/g)?
/'125 Meas Parameter RS (Description) 10 ; Int Worth of Cntl Bank D*Rod Swap RS (Adj. 'Meas. Crit. Ref Bank Measured Value Io = /077 Position = 20'! steps)
Design Value RS (Adj. Meas. Crit. Ref Bank (Actual Cond)
Io = /// ~
Position = /&/'f steps)
RS pcm (Critical Ref Bank Design Value Io = 1120 +/- 168 (Design Cond)
Position= 194 steps)
Reference NE Technical Report No. 633, VEP-FRD-36A, NFO-TI-2.2A If Design Tolerance is exceeded, SNSOC shall evaluate impact of test *result on FSAR/Tech Spec safety analysis. SNSOC may specify that additional testing be performed.
Reference VEP-FRD-36A Design Tolerance is met
- ~S_NO Acceptance Criteria is met
- :2n:s _NO 3
/J~~~-
Completed By:
- y-Evaluated By: qK../;:::;z:?_~
~
s Te t Engineer A-8 Recommended for ~~
Approval By:~
NFO Engineer
< i.
I R.efe~ence II Test Conditions (Design)
III Test Conditions (Actual)
IV Test Results V
Acceptance Criteria VI Comments l-PT-28.11 ATTACHMENT 1 PAGE 8 of 19 J\\ll 4 \\981 SURRY POWER STATION UNIT 1 CYCLE 10 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET
~ Test
Description:
Cntl Bank C Worth Measurement*R~ Swap Pree No /Section: l*PT-28.11
~*. *. Sequence Step.No:10 Bank Positions (Steps)
RCS Temperature ( 1F): 547 Power Level(% F.P.): 0 SDA: 225 SDB: 225 CA: 225 Other (specify):
CB:Moving,CC:Moving CD: 225 Below Nuclear Heating.
Bank Positions (Steps)
RCS Temperature ( 1F): Slf't: C Power Level (I F.P.): 0 SDA: 225 SDB: 225 CA: 225 Other (Specify):
CB:Moving CC:Moving CD: 225 Below Nuclear Heating Date/Time Test Performed:
7 /15/88 /507 Meas Parameter RS (Description)
Ic; Int Worth of Cntl Bank C*Rod Swap RS (Adj. Meas. Crit. Ref Bank Measured Value Ic = 'B2 't Position = IS't steps)
Design Value RS 82't (Adj. Meas. Crit. Ref Bank (Actual Cond)
Ic =
Position = /1./ 3 steps)
RS Design Value*
Ic = 831 +/- 125 pcm (Critical Ref Bank *
(Design Cond)
Position= 143 steps)
- Reference NE Technical Report No. 633, VEP*FRD*36A, NFO-TI*2.2A If Design Tolerance is exceeded, SNSOC shall evaluate impact of test result on FSAR/Tech Spec safety analysis. SNSOC may specify that additional testing be performed.
Reference VEP-FRD*36A Design Tolerance is met
. =9v;s _NO Acceptance Criteria is met.. _YES _NO Completed By:
{).._ ~
Teitingeer Evaluated By: ae-.L'~c...
A-9 Recommended for Approval By: ~
NFO Engineer
.I Reference II Test Conditions (Design)
III Test Conditions (Actual)
IV Test Results V
Acceptance Criteria VI Comments
~
l-PT-28.11 ATTACHMNET 1 PAGE 9 of 19
- ,a 4 '981 SURRY POWER STATION UNIT 1 CYCLE 10 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET Test
Description:
Cntl Bank A Worth Measurement-Rod Swap Pree No /Section: 1-PT-28.11 Sequence Step No: 11 Bank Positions (Steps)
RCS Temperature ( 1F): 547 Power Level(% F.P.): 0 SDA: 225 SDB: 225 CA:Hoving Other (specify):
CB:Moving CC: 225 CD: 225 Below Nuclear Heating Bank Positions (Steps)
RCS Temperature ( 1F):.S Y&,.1/
Power Level(% F.P.): 0 SDA: 225 SDB: 225 CA:Moving Other (Specify):
CB:Moving CC: 225 CD: 225 Below Nuclear Heating Date/Time Test Performed:
7/1fi/8S }~3'1 Meas Parameter RS (Description)
IA; Int Worth of Cntl Bank A - Rod Swap RS 2CfC/
(Adj. Meas. Crit. Ref Bank Measured Value IA
=
Position = 79 steps)
Design Value RS (Adj. Meas. Crit. Ref Bank (Actual Cond)
= 35'3 Position = KO steps)
RS
+/- 100 pcm (Critical Ref Bank Design Value IA
= 352 (Design Cond)
Position= 80 steps)
Reference NE Technical Report No. 633, VEP-FRD-36!,
NFO*TI-2.2A If Design Tolerance is exceeded, SNSOC shall evaluate impact of test.result on FSAR/Tech Spec safety analysis. SNSOC may specify that additional testing be performed.
Reference VEP-FRD-36!
Design Tolerance is met
. --'fEs _NO Acceptance Criteria is met..---YES ~NO Completed By, 0~
/Test ngineer A-10 Recommended for Approval By: ~
NFO Engineer
- i *1
- .1 ']
I Reference II Test Conditions (Design)
Ill Test Conditions (Actual)
IV Test Results V
Acceptance Criteria VI Comments Completed 1-PT-28.11 ATTACHMENT 1 PAGE 10 of 19 SURRY POWER STATION UNIT 1 CYCLE 10 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET
-,._ 4 -*
Test
Description:
Shutdown Bank B Worth Meas. - Rod Swap Pree No /Section: l-PT-28.11 Sequence Step No: 12 Bank Positions (Steps)
R~S Temperature ('F): 547 Power Level (S F.P.): 0 SDA: 225 SDB:Hoving CA: 225 Other (specify):
CB:Hoving CC: 225 CD: 225 Below Nuclear Heating Bank Posit ions (Steps)
RCS Temperature ( 1F): S'f.S...S Power Level (S F.P.): 0 SDA: 225 SDB:Hoving CA: 225 Other (Specify):.
CB:Hoving CC: 225 CD: 225 8elow Nuclear Heating Date/Time Test Performed:
7//5/!rt 17/0 Heas Parameter RS (Description) 1sB; Int Worth of Shutdown Bank B-Rod Swap RS (Adj. Keas. Crit. Ref Banlt Measured Value IsB
= 971/
Position = l!'f steps)
Design Value RS (Adj. Meas. Cri t. Ref Banlt (Actual Cond) 1sB
= 91/0 Position = 170 steps)
RS Design Value 1SB
= 988 +/- 148 pcm (Critical Ref Bank (Design Cond)
Position= 170 steps)
Reference NE Technical Report No. 633, VEP-FRD-36A, NFO-TI-2.2A If Design Tolerance is exceeded, SNSOC sh~ll evaluate impact of test result on FSAR/Tech Spec safety analysis. SNSOC may specify that
- additional testing be petformed.
Reference VEP-FRD-36A Design Tolerance is met
.....-fES _NO Acceptance Criteria is met By:£~
/est Engineer A-11
- ~S_NO Recommended for Approval By:
NFO Engineer
.:i.i*
- "' *i
- .j
- 1
- ~
I Reference II Test Conditions (Design)
III Test Conditions (Actual)
IV Test Results V
Acceptance Criteria VI Comments l-PT-28.11 ATTACHMENT 1 PAGE 11 of 19
'Jul
.t,~
SURRY POWER STATION UNIT 1 CYCLE 10 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET Test
Description:
Shutdown Bank A Worth Heas. - Rod Swap Proc No /Section: 1-PT-28.11 Sequence Step No: 13 Bank Positions (Steps)
RCS Temperature ( 1F): 547 Power Level(% F.P.): 0 SDA:Hoving SDB: 225 CA: 225 Other (specify):
CB:Moving CC: 225 CD: 225 Below Nuclear Heating Bank Positions (Steps)
RCS Temperature ( 1F): SYS.
Power Level (I F.P.): 0 SDA:Moving SDB: 225 CA: 225 Other (Specify):
CB:Moving CC: 225 CD: 225 Below Nuclear Heating Date/Time Test Performed:
7 /1,/E'S 174 9 Meas Parameter RS (Description)
IsA; Int Worth of Shutdown Bank A-Rod Swap RS (Adj. Meas. Crit. Ref Bank Measured Value IsA = 87Cf Position = /~ ysteps)
Design Value RS
/C)CJ2 (Adj. Meas. Crit. Ref Bank (Actual Cond)
IsA =
Position = 172 steps)
RS Design Value IsA = 999 +/- 150 pcm (Critical Ref Bank (Design Cond)
Position= 172 steps)
Reference NE Technical Report No. 633, VEP-FRD-36!,
NFO-TI-2.2A If Design Tolerance is exceeded, SNSOC shall evaluate impact of test ~esult on FSAR/Tech Spec safety analysis. SNSOC may specify that additional testing be performed.
Reference VEP-FRD-36A Design Tolerance is met
. ~S_NO Acceptance Criteria is met. ~S_NO Completed By:
()_ h/
Ke;t Engineer Evaluated By: ~~
Recommended for ~-
Approval By : _JfY_..;:~:;....;;=.;;.._.;;....; ~=-
NFO Engineer A-12
-I Reference II Test Conditions (Design)
III Test Conditions (Actual)
IV Test Results V
Acceptance Criteria VI Comments*
l-PT-28.11 ATTACHMENT 1 PAGE 12 of 19 JUL 4 ~gef SURRY POWER STATION UNIT 1 CYCLE 10 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET Test
Description:
Total Rod Worth - Rod Swap Proc No /Section: l-PT-28. 11 Sequence Step No:
Bank Positions (Steps)_
RCS Temperature ( 1F): 547 Power Level (1 F.P.): 0 SDA:Hoving SDB:Moving CA:Hoving Other (specify):
CB:Hoving CC: Hoving CD: Hoving Below Nuclear Heating 13 Bank Positions (Steps)
RCS Temperature ( 1F): 5't'S.
Power Level (1 F.P.): 0 SDA:Hoving SDB:Hoving CA:Moving Other (Specify):
CB:Hoving CC:Moving CD:Hoving Below Nuclear He.ating Date/Time Test Performed:,v~ ~/It 0 7 /1.5" l'!J?
£/-?~(./01]
(
Meas Parameter (Description).
1Total; Int Worth of All Banks - Rod Swap Measured Value 1Total = 519Z Design Value (Actual Cond) 1Total = *S§2f Design Value
!Total= 5532 +/- 553 pcm (Design Cond)
Reference NE Technical Report No. 633, VEP-FRD-36A, NFO-TI-2.2A If Design Tolerance i~ exceeded, SNSOC shall evaluate impact of test result on FSAR/Tech Spec safety analysis. SNSOC may specify that additional testing be performed.
Reference VEP*FRD-36A Design Tolerance is met
. '-"'YES _NO Acceptance Criteria is met
- _....-ffS _NO Completed By:
~~ Evaluated By:
T(ittng~
~~-4!!
Recommended for Approval By: ~
NFO Engineer A-13
I Reference II Test Conditions (Design)
III Test Conditions (Actual)
IV Test Results V
Acceptance Criteria VI Comments l-PT-28.11 ATTACHMENT 1 PAGE 'i3 of 19 "Jlt 4 *.
SURRY POWER STATION UNIT 1 CYCLE 10 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET Test
Description:
H/D Flux Hap - Low power Proc No/ Section: l-_PT-28.2, 1-0P-57 ~equence Step No: 41 Bank Positions (Steps)
RCS Temperature ('F):T~F +/-1 Power Level(% F.P.): < 0 SDA: 225 SOB: 225 CA: 225 Other (specify)
CB: 225 cc: 225 CD:
- Must have~ 38 th:lables Bank Positions (Steps)
RCS Temperature( 1F): S"S2 Power Level(% F.P.): 'Z-'{ %
SDA: 225 -SDB: 225 CA:* 225 Other (Specify):
225 CB:
cc: 225 CD: /5Y ~P.~~
Date/Time Test:
, /,t /w Performed:
(? 6(,:31 MAX. REL NOC ENTIIAL TO'l'AL BEAT QUADRANT_
Meas Parameter ASSY PWR RISE HOT FLUX HOT POWER. TILT.
(Des1:ription)
% DIFF CHAN FACT CHAN FACT RATIO (H-P)/P F-d.H(N)
F-Q(T)
'S'. q 7o,;... Le.
Measured Value fi - IJ(.Q:r p,c;A 'I /. t/9F
, /. tJO._, I
.. 43.,., ~
J,c...
J. /S-2.
16,-1.S""~-r P
... " /1 Design Value t J.Ul for 111
~ a.,
s 1S"L for, 1 < a.,
(Design Conds)
(111 s. &ny. 1111-.>
NA NA S 1.024 **
WCAP-7905 WCAP-7905 Reference REV.l NONE NONE REV.1 rtis1.SS( l+. l(l*P))
T FSAR/Tech Spec NONE
,,,z, s *~"
- l(Z)
NA Reference NONE TS 3.12 TS 3.12 TS 3.12 Design Tolerance is met
- V""YEs _NO Acceptance Criteria is met. ~S_NO
- As Required
Recommended for Approval By : <<e/~;s,..,
NFO Engineer A-14
),
1 I
Reference II Test
- Condit ions (Design)
III Test*
Conditions (Actual)
IV Test Results V
Acceptance Cri.teria VI Comments l-PT-28.11 ATTACHMENT 1 PAGE 14 of 19 JUl 4 1'88 SURRY POWER STATION UNIT 1 CYCLE 10 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET Test
Description:
H/D Flux Map-At Power
.. Pree No/ Section: l-PT-28.2, l-OP-57 Sequence Step No: 43 Bank Positions (Steps)
RCS Temperature ( 1F):T!EJ +/-1 Power Level (I F.P.): -
0 SDA: 225.
SOB: 225.CA: 225 Other (specify)
CB: 225 cc: 225 CD:
- Hust have~ 38 thimbles Bank Positions (Steps)
RCS Temperature( 1F): 55'-
0 Power Leve 1 ( I F. P. ) : ~ :I. 'lo SDA: 225 SOB: 225 CA: 225 Other (Spec~fy):
CB: 225 cc: 225 CD: 17 I
~.2-r~~
Date/Time Test:
? I Ill I ft'(
Performed:
@ Z.'Z-1~
KAX. REL NUC ENTHAL TOTAL HEAT QUADRANT Meas Parameter ASSY PWR RISE HOT FWX HOT POWER TILT (Description)
I DIFF CHAN FACT CHAN FACT RATIO (H-P)/P F-dH(N)
F-Q(T)
QPTR 6'.. / % ~... f',...2 Measured Value
- 0. 'l '2 /.,,,Z.,, 6 7 w.i i ic--f,;~
/. J/f f J.o3fc,
/. oo(:.G
- o. Cft,Jk~ 1.:2.
. Design Value t MR fw 1111 ! 0.9
- 15Z,.. ~1 < o.,
(Design Conds)
<*1. u:ry.,.._,
NA NA
~ 1.02 WCAP-7905
. WCAP-7905 Reference REV.1 NONE NONE REV.l rLsi.ssu+.,o-*>>
F1cZ> ! *.M
- ICZ>
.... s o.s FSAR/Tech Spec NONE F1cz> S Z.SZJP
- IU>
NA
,.-p >1,1 Reference NONE TS 3.12 TS 3.12 TS 3.12 Design Tolerance is met
- ~S_NO Acceptance Criteria is met
- ,....-ns _NO
- As Required Completed By:
Recommended for -e}~
Approval By:
NFO Engineer A-15
I Reference II Test Conditions (Design)
III Test Conditions (Actual)
IV Test Results V
Acceptance Criteria VI Comments Completed l-PT-28.11 ATTACHMENT 1 PAGE 15 of 19 SURRY POWER STATION UNIT 1 CYCLE 10 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET
.lUl 4 \\989
- Test Descri6tion: M/D Flux Map-At Power,NI Calibration*
Proc No/ Section: 1-PT-28.2, l~OP-57 Sequence Step No: 44 Bank Positions (Steps)
RCS Temperature ( 1F):TRE} +/-1 Power Level (1 F.P.): -
0 SDA: 225 SOB: 225 CA: 225 Other (specify):*
CB : 225 cc: 225 CD: **
Bank Positions (Steps)
RCS Temperature( 1F): S"t5 ° Power Level (1 F. P. ) :, 8. 6 SDA: 225 SOB: 225 CA: 225 Other (Specify):
CB : 225 cc: 225 CD: /i'i r
Y-'1-~~ -2.,r 7/2,D/w Date/Time Test:
Performed:
~ 0112..
MAX. REL NUC ENTiiAL TOTAL HEAT QUADRANT Meas Parameter ASSY PWR RISE HOT FLUX HOT* POWER TILT (Description) 1 DIFF CHAN FACT CHAN FACT RATIO (M-P)/P F-dH(N)
F-Q(T)
QPTR Measured Value JJ/A JJ/A tJ/A
- J/A Design Value t J.Q
- l for, 1 ? a.t tlSl.for,1,a.t (Design Conds) "1
- Any, -.,
NA NA S: 1. 02 WCAP-7905 WCAP-7905 Reference REV.1 NONE NONE REV.1 FSAR/Tech Spec NONE rLs1..s.so+.lC1-P)) 'P s l.!IZJP
- ICZ)
NA Reference NONE TS 3.12
. TS 3.12 TS 3.12 Design Tolerance is met
- _"'nS _NO Acceptance Criteria is met
~S_NO
- Must have at least 38 thimbles for a full-core flux map, or at least 16 thimbles for a quarter-core flux map.
- As Required By:('.l \\\\, \\l...J
/
Evaluated By: -/;;; L Test Engineer Recommended for Ll_ /) ~
/
Approval By :
(~ l../ ~
NFO Engineer A-16
- I,
a.
- .cl I
I Reference
.II Test Conditions (Design)
III Test Conditions (Actual)
IV Test Results V
Acceptance Criteria VI Comments Completed l-PT-28.11 ATTACHMENT 1 PAGE 16 of 1_9 SURRY POWER STATION UNIT 1 CYCLE 10 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET JUL Test
Description:
M/D Flux Map-At Power,NI Calibration Proc No/ Section: 1-PT-28.2, 1-0P-57 Sequence Step ~o: 45 Bank Positions (Steps)
RCS Temperature ( 1F):TREF +/-1 Power Level(% F.P.): -
70 SDA: 225 SDB: 225 CA: 225 Other (specify):*
CB: 225 cc: 225 CD: **
Bank Positions (Steps)
RCS Teaperature( 'F):.S-~5 ° F Power Level (% F. P * ) : 6 ~- f ~
SDA: 225 SDB: 225 CA: 225 Other (Specify):
CB: 225 cc: 225 CD: /';'O II 0
'/f-~~
7/u/~-
Date/Ti.me Test:
Performed:
@ 03D1 MAX. REL NUC ENTHAL TOTAL HEAT QUADRANT Meas Parameter ASSY P\\rlR RISE HOT FWX HOT POWER TILT (Description) 1 DIFF CHAN FACT CHAN FACT RATIO (M-P)/P F-dH(N)
F-Q(T)
QPTR Measured Value JJ)A-jJ/,4 JJ)fl
,Kl /f Design Value t 1m,.,., 1 ? a.,
(Design Conds) t lSZ',rr,1 < o.,
NA NA
- 1.02
1
- Any.,.., >
WCAP-7905 W'CAP-7905 Reference REV.1 NONE NONE REV.1 N
FSAR/Tech Spec NONE 14BS1..S.S( l+, l( l*P) J,~ S 2.SVI'.,u, NA Reference NONE TS 3.12 TS 3.12 TS 3.12 Design Tolerance is met
. ~
. _YES _r<<>
Acceptance Criteria is met
- ~s _r<<>
- Must have at least 38 thimbles for a full-core flux aap, or at least 16 thimbles
- As Required By,~\\,\\.{6,,,1,,
est Engineer for a quarter-core flux map.
Evaluated By:--;;;;; JL ~~
Recommended for,'! C? :;z;-J Approval By : --------
NFO Engineer A-17
I Reference II Test Conditions i
(Design)
III Test Conditions (Actual)
- C
- ~:
IV Test Results
- 1 V
Acceptance Criteria VI Comments Completed l-PT-28.11 ATTACHMENT 1 PAGE 17 of 19 JIJl 4 1988 SURRY POWER STATION UNIT 1 CYCLE 10 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET
_ Test
Description:
H/D Flux Map-At Power,NI Calibration*
Pree No/ Section: l-PT-28.2, 1-0P-57 Sequence Step No: 46 Bank Positions (Steps)
RCS Temperature ( 1F):TREF +/-1 Power Level(% F.P.): -
70 SDA: 225 SDB: 225 CA: 225 Other (specify):*
CB: 225 cc: 225 CD: **
Bank Positions (Steps)
RCS Temperature( 1F):..S-6.S-Power Level(% F.P.): 68'-1 SDA: 225 SDB: 225 CA: 225 Othe't' (Specify):
CB.: 225' cc: 225 CD: ~08'
'/1-~~ - zo-r:.
Date/Time Test: 7/u,)W Performed:
G. osoq MAX. REL NUC Em'H.AL TOTAL HEAT QUADRANT Meas Parameter ASSY PWR RISE HOT FLUX HOT POWER TILT (Description)
% DIFF CHAN FACT CHAN FACT RATIO (M-P)/P F-dH(N)
F-Q(T)
QPTR Measured Value JJ/A-tJ/f
,.;/A p)f Design Value 1 Lal,.., 1 ? a.,
(Design Conds) t J.SI'.,.. ", < a.,
NA NA
~ 1.02 "1. m,. -*>
WCAP-7905 WCAP-7905 Reference REV.1 NONE NONE REV.1 rLsi. 55(1+. l(l*P)}
T FSAR/Tech Spec NONE
',<Z> ! I.RIP * &cZ>
NA Reference NONE TS 3.12 TS 3.12 TS 3.12 Design Toler~ce is met
- _kfu _NO Acceptance Criteria is met
- vfts _NO
- Must have at least 38 thimbles for a full-core flux map, or at least 16 thimbles for a quarter-core flux map.
- As Required By( '.t \\ \\ \\~Al-.,t'L l (\\~
Evaluated By: 1~d __
iTest Engineer Recommended for f? ('}~
Approval By : __,_~ __
NFO Engineer A-18
1
- f.
- ' j I
Reference II Test Conditions (Design)
III Test Conditions (Actual)
IV Test Results V
Acceptance Criteria
- VI Comments l-PT-28.11 ATTACH.'1ENT 1 PAGE 18 of 19
- Jut 4 19es SURRY POWER STATION UNIT 1 CYCLE 10 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET Test
Description:
M/D Flux Map - HFP, ARO, Eq. Xe
.- Proc No/ Section: 1-PT-28.2, 1-0P-57 Sequence Step No: 47 Bank Positions (Steps)
RCS Temperature ( 1F):TRE{ +/-1 Power Level (I F.P.):95 5
SDA: 225 SDB: 225 CA: 225 Other (specify): Eq. Xe.
CB : 225 cc : 225 CD:
- Hust have~ 38 thimbles Bank Positions (Steps)
RCS Temperature( 1F): S7"/"
Power Level (I F.P.): /DO o/o SDA: 225 SDB: 225 CA: 225 Other (Specify):
CB : 225 cc : 225 CD: ~/1.5' 1.s-1Pk Date/Time Test: 07/Z$1/st-@
Performed:
/6: 30 MAX. REL NUC ENTIIAL TOTAL HEAT QUADRANT Meas Parameter ASSY PWR RISE HOT FLUX HOT PCNER TILT (Description)
% DIFF CHAN FACT CHAN FACT RATIO (M-P)/P F-dH(N)
F-Q(T)
QPTR S',S % ~ P.:io.G
..;...1.";:t~ d.,
/,, 1grt' Measured Value - - -~ - -
(. ~ 2 2.
- j. 0060
~. <{ ~&.,_ f,_ ~O.'
.A* J.-# t:.,_ "/2..
Design Value t 11Xl,.,. '1 !: o.,
(Design Conds)
! 151,er,1
~ o.t NA NA
~ 1.02 c,1 z Any, Pr.>
'*CAP-7905 Reference REV.1 NONE NONE REV.1 F~l.55(1+. l(l*P))
T FSAR/Tech Spec NONE
,,ct> S l,!IZJI>
- rtZ>
NA Reference NONE TS 3.12 TS 3.12 TS 3.12 Design Tolerance is met
- -~S_NO Acceptance Criteria is met
- _v'YES _NO
- As Required Completed By:
.t \\ \\. t~. ~ (?.l Evaluated By:;:::-12 ~.)£.
L Test Engineer Recommended for Approval By:
A-19
~
NFO Engineer
,I ),,,
~
VIRGL~IA ELECTRIC AND POWER COMPANY RICHMOND, VIRGINIA 23261 October 28, 1988 U. S. Nuclear Regulatory Commission Attn:
Document Control Desk Washington, D.C.
20555 Gentlemen:
VIRGINIA ELECTRIC AND POWER COMPANY SURRY POWER STATION UNITS 1 AND 2 SURRY UNIT 1, CYCLE 10 STARTUP PHYSICS TESTS REPORT Serial No.
NO/BDM:vlh Docket Nos.
License Nos.88-649 Rl 50-280 50-281 DPR-32 DPR-37 For your information, enclosed are five copies of the Virginia Electric and Pm'ler Company Topic2l Report VP-NOS-41, 11Surry Unit 1, Cycle 10 Startup Physics Tests Report 11 with an erra.ta sheet. This report was due October 12, 1988, per Technical Specification 6.6.
As discussed with the NRC Project Manager, we inadvertently missed the date due to an administrative oversight in the tracking process.
This oversight has been corrected by discussing the reporting requirements of this type report with the affected personnel.
W. R. Cartwright Vice President - Nuclear Attachments cc:
U. S. Nuclear Regulatory Commission Region II 101 Marietta Street, N.W.
Suite 2900 Atlanta, Georgia 30323 Mr. W. E. Holland NRC Senior Resident Inspector Surry Power Station Mr. Chandu P. Patel NRC Surry Project Manager Project Directorate II-2 Division of Reactor Projects - I/II*
.. ;,,-, _r ATTACHMENT 1