ML17326B134

From kanterella
Revision as of 09:01, 29 June 2018 by StriderTol (talk | contribs) (Created page by program invented by StriderTol)
Jump to navigation Jump to search
Nonproprietary Version of Rev 2 to DC Cook,Unit 2 Cycle 5,5%.Steam Generator Tube Plugging Limiting Break Loca/Eccs Analysis.
ML17326B134
Person / Time
Site: Cook American Electric Power icon.png
Issue date: 08/07/1984
From: CHANDLER J C, KAYSER W V, STOUT R B
SIEMENS POWER CORP. (FORMERLY SIEMENS NUCLEAR POWER
To:
Shared Package
ML17326B133 List:
References
XN-NF-84-21-(NP, XN-NF-84-21-(NP)-R02, XN-NF-84-21-(NP)-R2, NUDOCS 8408090209
Download: ML17326B134 (80)


Text

XN-NF-84-21(NP

)Revision2IssueDate:8/7/84DONALDC~COOKUNIT2CYCLE5-5/oSTEAMGENERATOR TUBEPLUGGINGLIMITINGBREAKLOCA/ECCS ANALYSISPrepared-by:W.V.ayser,ManagerPWRSafetyAnalysisConcur:.C.Caner,LeangneerReloadFuelLicensing Approve:out,ManagerLicensing

&SafetyEngineering CSrConcur:gggg.'.organ,anagrProposals 5CustomerServicesEngineering Approve:87~%/.A.oer,ManagFu1Engineering 8Technical Servicesgf,E3(CGMNU.CLEAR.COMPANY, INC.KNIMIolY-MIlIl'I'.I I.II.f.IlI)I'Y r~}~5F XN-Nf-84-21(NP)

Revision2TABLEOFCONTENTSSection~Pae

1.0INTRODUCTION

....:..................................

12.0SUMMARYo~~~~~~~~~~~~~~~~~~~~~~~~~~~o~~~~~~~~~~~~~~33.0LIMITINGBREAKLOCAANALYSIS~~~~~~~~~~~~~53.1LOCAANALYSISMODEL...........................

53.2RESULTS

74.0CONCLUSION

S

~~~~~~~~~~~~~~~~~~~~~~~~645.065REFERENCES

...............,..........................

~i~~li1~~~~~~~

XN-NF-84-21(NP)

Revision2LISTOFTABLESTableParcae2.1D.C.CookUnit2LOCA/ECCS AnalysisSummary........43.1DonaldC.CookUnit2SystemInputParameters

~~~~~~93.23.33.43.51.0OECLGBreakAnalysisParameters

................

10D.C.CookUnit21.0OECLGBreakEventTimes...~...111.0OECLGBreakFuelResponseResultsforCycle5............................................

121.0OECLGBreakFuelResponseResultswithanAllENCCore....................................

13 jN~I8~~~~~~~~~~~~~

.XN-NF-84-21(NP)

Revision2LISTOFFIGURES~FiurePacae3.1RELAP4/EM BlowdownSystemNodalization forD.C.CookUnit2....143.2Oowncomer FlowRateDuringBlowdownPeriod,1.0OECLGBreak...................................

153.33.4UpperPlenumPressureduringBlowdownPeriod,1.0DE(LGBreak.......AverageCoreInletFlowduringBlowdownPeriod,1.0OECLGBreak........16173.53.6AverageCoreOutletFlowduringBlowdownPeriod,1.0DECLGBreak.....................

TotalBreakFlowduringBlowdownPeriod,1.0OECLGBreak.............................

18193.7BreakFlowEnthalpyduringBlowdown, 1.0DECLGBreak....................................

203.8FlowfromIntactLoopAccumulator duringBlowdownPeriod,1.0OECLGBreak..................

213.9FlowfromBrokenLoopAccumulator duringBlowdownPeriod,1.0OECLGBreak..................

223.10Pressurizer Surge'ine FlowduringBlowdownPeriod,1.0OECLGBreak~~~~~~~~~~~~~~~~~~233.113.12HeatTransferCoefficient duringBlowdownPeriodatPCTNode,1.0OECLGBreak,2.0MWO/kgCase.CladSurfaceTemperature duringBlowdownPeriodatPCTNode,1.0OECLGBreak,2.0MWD/kgCase..........,.

~~~~~~~~~~~~~~~~~~24253.13~~~~~~~~~~~~~~~26DepthofMetal-Water ReactionduringBlowdownPeriodatPCTNode,1.0DECLGBreak,2.0MWD/kgCase.

ivXN-NF-84-21(NP)

Revision2LISTOFFIGURES(Cont.)~FiurePa<ac3.14,3.153.163.173.18AverageFuelTemperature duringBlowdownPeriodatPCTLocation, 1.0OECLGBreak,2.0MWD/kgCase.27HotAssemblyInletFlowduringBlowdownPeriod,1.0OECLGBreak,2.0MWD/kgCase...........

28HotAssemblyOutletFlowduringBlowdownPeriod,1.0DECLGBreak,2.0MWD/kgCase...........

29HeatTransferCoefficient duringBlowdownPeriodatPCTNode,1.0OECLGBreak,10.0MWO/kgCase...................................

30CladSurfaceTemperature duringBlowdownPeriodatPCTNode,1.0OECLGBreak,10.0MWD/kgCase...................................

313.19DepthofMetal-Water ReactionduringBlowdownPeriodatPCTNode,1.0DECLGBreak,10.0MWD/kgCase..................

323.203.213.223.233.243.25AverageFuelTemperature duringBlowdownPeriodatPCTLocation, 1.0DECLGBreak,10.0MWD/kgCase...................................

33HotAssemblyInletFlowduringBlowdownPeriod,1.0OECLGBreak,10.0MWO/kgCase..................

34HotAssemblyOutletFlowduringBlowdownPeriod,1.0OECLGBreak,10.0MWD/kgCase.......;..........

35HeatTransferCoefficient duringBlowdownPeriodatPCTNode,1.0OECLGBreak,47.0MWD/kgCase..................

.........36CladSurfaceTemperature duringBlowdownPeriodatPCTNode,1.0OECLGBreak,47.0MWO/kgCase...................................

37DepthofMetal-Water ReactionduringSlowdownPeriodatPCTNode,1.0OECLGBreak,47.0MWD/kgCase.................................

38 XN-NF-84-21(NP)Revision2LISTOFFIGURES(Cont.)~FierePa<ac3.263.273.28AverageFuelTemperature duringBlowdownPeriodatPCTLocation, 1.0OECLGBreak,47.0MWO/kgCasee~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~HotAssemblyInletFlowduringBlowdownPeriod,1.0OECLGBreak,47.0NWD/kgCase'.......

HotAssemblyOutletFlowduringBlowdownPeriod,1.0OECLGBreak,47.0HWD/kgCase..........

3940413.293.303.313.323.33Accumulator FlowduringRefillandRefloodPeriods,BrokenLoop,1.0OECLGBreak.............

42Accumulator FlowduringRefillandRefloodPeriods,IntactLoop,1.0DECLGBreak.............

43HPSI8LPSIFlowduringRefillandRefloodPeriodg,BrokenLoop,1.0OECLGBreak.............

44HPSI8LPSIFlowduringRefillandRefloodPeriods,IntactLoop,1.0DECLGBreak.............

45Containment BackPressure, 1.0DECLGBreak........463.343.353.363.37Normalized Power,1.0OECLGBreak,2.0MWO/kgCase.....Normalized Power,1.0DECLGBreak,10.0NWD/kgCase..............................

Normalized Power,1.0OECLGBreak,47.0NWD/kgCase.............

RefloodCoreMixtureLevel,1.0OECLGBreak,Cycle5Core........................

474849503.383.39RefloodDowncomer MixtureLevel,1.0DECLGBreak,Cycle5Core.....................

51RefloodUpperPlenumPressure, 1.0OECLGBreak,Cycle5Core...............................

52 viXN-NF-84-21(NP)

Revision2LISTOFFIGURES(Cont.)~Fiure~Pae3.40CoreFloodingRate,1.0OECLGBreak,Cycle5Core~~~~~~~~~e~~~~~~~533.41RefloodCoreMixtureLevel,1.0OECLGBreak,54AllENCCore......................................

3.42RefloodOowncomer MixtureLevel,1.0OECLG'reak,AllENCCore............

553.433.44RefloodUpperPlenumPressure, 1.0DECLGBreak,AllENCCore...............................

56CoreRefloodingRate,1.0OECLGBreak,A11ENCCore....................-......-....

..573.453.46TOODEE2CladdingTemperature versusTime,1.0OECLGBreak,2.MWO/kgCase,Cycle5'ore.....58TOOOEE2CladdingTemperature versusTime,1.0OECLGBreak,10.MWO/kgCase,Cycle5Core...................

~-.....593.47TOOOEE2Cladding1.0OECLGBreak,Cycle5Core...Temperature versusTime,47.MWO/kgCase,~~~~~~~~~~~~~~~~~~~~~~~603.483.49TOOOEE2CladdingTemperature versusTime,1.0OECLGBreak,2.MWO/kgCase,AllENCCore.....TOODEE2CladdingTemperature versusTime,1.0DECLGBreak,10.MWO/kgCase,AllENCCore61'23.50TOOOEE2CladdingTemperature versusTime,1:0OECLGBreak,47.MWO/kgCase,AllENCCore63 XN-NF-84-21(NP

)Revision

21.0INTRODUCTION

LargebreakLOCA/ECCS analyseswereperformed in1982(~2)tosupportoperation oftheD.C.CookUnit2reactorat3425MWtwithENCfuel.Reference 1presented analytical resultsforaspectrumofpostulated largebreakLOCAs.Thelimitingbreakwasidentified asthe1.0doubleendedcoldlineguillotine (DECLG)break.Reference 2presented resultsforthepreviously identified limitingbreakusingtheEXEM/PWR(3)

ECCSmodels,exceptGAPEXwasusedasthefuelperformance modelinplaceofRODEX2.TheRODEX2codewasnotapproved(bytheNRCforuseinECCSanalysesin1982.Therefore theNRC-approved GAPEX(4)codewasusedtocalculate fuelproperties attheinitialization oftheLOCAcalculation.

TheReference 2reportdocumented theresultsofcalculations withoneandtwoLPSIpumpsoperating.

Atequivalent corepeakinglimits,higherpeakcladdingtemperatures (PCTs)werecalculated intheLOCAanalysiswhentwoLPSIpumpswereassumedoperating.

TheReference 2analysiswithtwoLPSIpumpsoperating wasperformed forCycle4operation ofD.C.CookUnit2.Thisreportdocuments theresultsofaLOCA/ECCS analysistosupportoperation oftheD.C.CookUnit2reactorforCycle5atathermalpowerratingof3425MWt,withupto5/.ofthesteamgenerator tubesplugged,withtwoLPSIpumpsoperating, andforENCfuelexposeduptoapeakrodaverageburnupof47MWD/kg.ResultsarealsoreportedforthecaseinwhichtheentirecoreisENCfuel.Thecalculations wereperformed usingtheEXEM/PWRLOCA/ECCS XN-NF-84-21(NP

)Revision2models,including fuelproperties calculated atthestartoftheLOCAtransient withENC'sgenerically approvedRODEX2code.(5)

XN-NF-84-21(NP)

Revision22.0SUMMARYLOCA/ECCS calculations wereperformed todetermine corepeakinglimitswhichpermitoperation oftheO.C.CookUnit2reactorwithinguidelines specified by10CFR50.46andAppendixK.(6)Thecalculations assumedoperation:

1)Atathermalpowerof3425MWt;2)With5Xaveragesteamgenerator tubeplugging; 3)WiththeCycle5coreconfiguration (85/ENCfuel);and4)WiththeentirecoreENCfuel.Thecalculations wereperformed forthepreviously identified limitingbreak,the1.0OECLGbreak,withfullECCSflow.Theresultsoftheanalysisaresummarized inTable2.1.Theanalysissupportsoperation oftheO.C.CookUnit2reactorforCycle5,andfuturecycleswithENCfuel,atatotalpeaklimit(FqT)of2.04andacorresponding F<Hlimitof1.55.T XN-NF-84-21(NP)

Revision2Table2.1O.C.CookUnit2LOCA/ECCS AnalysisSummaryPeakRodAverageBurnup(MWO/kg)FTQT2.02.041.5510.02.041.5547.02.041.55ResultsfortheCycle5CoreConfiuration(85KENCFuel)PeakCladdingTemperature (oF)MaximumLocal2r-H20Reaction(X)TotalZr-H20Reaction20074.6<1.020144.7<1.019934.5<1.0ResultswithEntireCoreofENCFuelPeakCladdingTemperature (oF)MaximumLocalZr-H20Reaction(/)TotalEr-H20Reaction20224.9<1.020305.0<1.020084.7<1.0 XN-NF-84-21(NP)

Revision23.0LIMITINGBREAKLOCAANALYSISThisreportsupplements previousLOCA/ECCS analysesperformed anddocumented forD.C.CookUnit2.AspectrumofLOCAbreakswasperformed andreportedinXN-NF-82-35.(1)

ThelimitingLOCAbreakwasdetermined tobethelargedouble-ended guillotine breakofthecoldlegorreactorvesselinletpipewithadischarge coefficient of1.0(1.0DECLG).Reference 2established thatforD.C.CookUnit2itismorelimitingintheLOCAanalysistoassumenofailureofaLPSIpump.Theanalysisperformed andreportedhereinconsiders:

1)That5Xofthesteamgenerator tubesareplugged;2)That85/oftheCycle5coreiscomposedofENCfuel;3)ThatbothLPSIpumpsareoperational; and4)ThatENCfuelmaybeexposedtoapeakaverageburnupof47MWD/kg.3.1LOCAANALYSISMODELTheExxonNuclearCompanyEXEM/PWR-ECCS evaluation modelwasusedtoperformtheanalysesrequired.

Thismodel(3)consistsofthefollowing computercodes:RODEX2(5) codeforinitialstoredenergy;RELAP4-EM(")

forthesystemblowdownandhotchannelblowdowncalculations; ICECON(8) forthecomputation oftheicecondenser containment backpressure; REFLEX(3g)forcomputation ofsystemreflood;andTOODEE2(3~ID~11) forthecalculation offinalfuelrodheatup.

XN-NF-84-21(NP

)Revision2TheOonaldC.CookUnit2nuclearpowerplantisa4-1oopWestinghouse pressurized waterreactorwithicecondenser containment.

Thereactorcoolantsystemisnodalized intocontrolvolumesrepresenting reasonably homogeneous regions,interconnected byflow-paths or"junctions".

Thesystemnodalization isdepictedinFigure3.1.Theunbrokenloopswereassumedsymmetrical andmodeledasoneintactloopwithappropriately scaledinput.Pumpperformance curvescharacteristic ofaWestinghouse series93Apumpwereusedintheanalysis.

Thetransient behaviorwasdetermined fromthegoverning conservation equations formass,energy,andmomentum.

Energytransport, flowrates,andheattransferweredetermined fromappropriate correlations.

TheCycle4LOCAanalysis(2) assumedthatlXofthesteamgenerator tubeswereplugged.Inthecurrentanalysis, theplantwasmodeledassumingasymmetric steamgenerator tubeplugging:

3.33/ofthetubespluggedintheintactloops,and10.0/ofthetubespluggedinthebrokenloop.ThelargerplugginginthebrokenloopresultsinhigherPCTs.Theprimarycoolantflowatfullpowerwasreducedby1.1/fromthecurrentmeasuredflowattheplanttoaccountfortheassumedaverage5Xsteamgenerator plugging.

Additionally, thecoremodelassumedthatthecoreis85/ENCfuel,whereasthepreviousanalysisassumedtheCycle4coreconfiguration.

Calculations werealsoperformed forthecaseinwhichthecoreisallENCfuel,representative of XN-NF-84-21(NP)

Revision2Cycle6andbeyond.ENCfuelhasasmallerroddiameterthantheWestinghouse fuelitreplaces.

Tooffsettheimpactofincreased flowareaontheLOCAanalysisresults,thecorepowerwasreducedfrom3425MWtto3411NWt.Systeminputparameters aregiveninTable3.1.Thereactorcoreismodeledwithheatgeneration ratesdetermined fromreactorkineticsequations withreactivity feedbackandwithdecayheatingasrequiredbyAppendixKof10CFR50.ChoppedcosineaxialpowerprofilesareassumedwiththemaximumaxialpeakingfactorusedintheanalysisgiveninTable3.2.Theanalysisoftheloss-of-coolant accidentisperformed at102percentofratedpower.Thecorepowerandotherparameters usedintheanalysesaregiveninTable3.1.3.2RESULTSTable3.3presentsthetimingandsequenceofeventsasdetermined forthelarge'breakguillotine configuration withadischarge coefficient of1.0forfullECCSoperation.

Table3.4presentstheresultsoftheexposureanalysisforCycle5composedof85KENCfuel.Table3.5presentstheresultsoftheexposureanalysisforacorecomposedofallENCfuel.ResultsoftheanalysesaregiveninFigures3.2to3.43.Figures3.2to3.10provideplotsofkeysystemblowdownparameters versustimes.Figures3.11to3.28provideplotsofkeycoreresponses duringtheblowdownperiod.Figures3.29to3.32providetheECCSflowsinthebrokenandintactloopduringtherefillperiod.Figure3.33presentsthecontainment pressureduringtheLOCA.Figures3.34to3.36presentthenormalized powerduringtheLOCAforthethreeexposurecasesanalyzed.

Figures3.37to3.40provideresultsfromtherefloodportionofthetransient forthecaseinwhich85Kof XN-NF-84-21(NP)

Revision2thecoreisENCfuel.Figures3.41to3.44providetherefloodresultsforthecaseinwhichthecoreiscomposedentirelyofENCfuel.Finally,Figures3.45to3.50providetheresponseofthefuelduringtherefillandrefloodperiodsoftheLOCAtransient forthefuelburnupcases'investigated.

XN-NF-84-21(NP)

Revision2Table3.1'DonaldC.CookUnit2SystemInputParameters ThermalPower,MWt*Core,MWtPump,MWtPrimaryCoolantFlow,Mlbm/hrPrimaryCoolantVolume,ft3Operating

Pressure, psiaIn,letCoolantTemperature, oFReactorVesselVolume,ft3Pressurizer Volume,Total,ft3Pressurizer Volume,Liquid,ft3Accumulator Volume,Total,ft3(eachoffour)Accumulator Volume,Liquid,ft3(eachoffour)Accumulator
Pressure, psiaSteamGenerator HeatTransferArea,ft2-SG1,SG2,SG3,SG4SteamGenerator Secondary Flow,ibm/hr-S'G1,SG2,SG3,SG4SteamGenerator Secondary
Pressure, psiaReactorCoolantPumpHead,ftReactorCoolantPumpSpeed,rpmMomentofInertia,1bm-ft2ColdLegPipe,I.D.in.HotLegPipe,I.D.in.PumpSuctionPipe,I.D.in.FuelAssemblyRodDiameter, in.FuelAssemblyRodPitch,in.FuelAssemblyPitch,in.Fueled(Core)Height,in.FuelHeatTransferArea,ft2**FuelTotalFlowArea,BareRod,ft2**Refueling WaterStorageTankTemperature, oFAccumulator WaterTemperature, oF3425341114143.111,7682250542494518001080135095063611,588,3(12,446) 3.505x1063(3.764x106)799277118982,00027.529.031.00.3600.4968.466144.057,32753.70380120*PrimaryHeatOutputusedinRELAP4-fM Model=1.02x3425=*."ENCFuelParameters.

3493.5Mwt 10XN-NF-84-21(NP)

Revision2Table3.21.0OECLGBreakAnalysisParameters PeakRodAverageBurnup(MWO/kg)TotalCorePower(MWt)*TotalPeaking(F~)TFractionEnergyOeposited inFuel~FullyModerated CoreVoidedCore2.034112.040.9740.95410.034112.040.9740.95447.034112.040.9740.954Cycle5(85/ENCFuel)Peaking'AxialxEngineering

~-EnthalpyRise(F~H)T1.3161.551.3161.551.3161.55AllENCCorePeaking.AxialxEngineering

.EnthalpyRise(F~H)T1.3161.551.3161.551.3161.55*2%poweruncertainty isaddedtothisvalueintheLOCAanalysis.

XN-NF-84-21(NP)

Revision2Table3.30.C.CookUnit21.0OECLGBreakEventTimesEventTime(sec.)StartBreakInitiation SafetyInjection SignalAccumulator Injection BrokenLoopIntactLoopEndofBypassSafetyPumpInjection StartofRefloodAccumulator EmptyBrokenLoopIntactLoop0.000.050.653.215.524.3125.6540.4844.252.9 12XN-NF-84-21(NP

)Revision2Table3.41.0DECLGBreakFuelResponseResultsforCycle5.PeakRodAverageBurnup(MWD/kg)InitialPeakFuelAverageTemperature (oF)HotRodBurstTime(sec)Elevation (ft)ChannelBlockageFractionPeakCladTemperature

.Time(sec)Elevation (ft)'.Temperature (oF)Zr-SteamReaction~LocalMaximumElevation (ft)~LocalMaximum(X)*CoreMaximum2.0215169.57.0.252879.6320079.634.6<1.010.0206070.57.0.282889.6320149.634.7<1.047.0162978.57.75.472699.3819939.384.5<1.0*Values400secintoLOCAtransient.

13XN-NF-84-21(NP)

Revision2Table3.51.0OECLGBreakFuelResponseResultswithanAllENCCorePeakRodAverage.Burnup(MWO/kg)InitialPeakFuelAverageTemperature (oF)2.0215110.0206047.01629HotRodBurst.Time(sec)Elevation (ft).ChannelBlockageFraction69.17.0.2570.17.0.2878.37.75.47PeakCladTemperature

.Time(sec).Elevation (ft).Temperature (oF)Zr-SteamReaction.LocalMaximumElevation (ft).LocalMaximum(X)*.CoreMaximum2929.6320229.634.9<1.02929.6320309.625.0<1.02749.3820089.384.7<1.0*Values400secintoLOCAtransient.

0Ep5oe'6erne8K6gONorig5IH~~CI~eRI5QEK]5ogmK CI1~0DCCOOK217X17~DECLBONs57AVEPLUG,10X343~3%PLUGSQOu)S0K~3k-QKC)y4-95KO1R,16zn2.4TAHEAFTERBREAK(SEC)Fiqnre3.PDowncomer FlowRateDnringBlowdownPeriod,1.0DECLGBreak 1.0DCCOOK217X17DECLBDN5XAVE'.PLUG10/3+3-3XPLUG.122DTIHEAFTERBREAKfSEC)3aFigure3.3UpperPlenumPressureDuringOlowdownPeriod,1.0OECLGBreak alDtvUlX'.y1.0DCCOOK217X1'j~DECL8DNi5lAVE.PLUG,10K3+3.31PLUG,4JCKoKgO44JK0QoCXgI1P1C20RATAHEAFTERBREAK(SEC)Figure3.clAverageCoreInletFlowduringBlowdownPeriod,1.0DECLGBreak

~RLUV)Kgg)CI>o10OCCOOK217X17eOECLBONo5XAVEPLUGS10<'+3~3XPLUG>C)pomSQOI-DO4Jy<aDC9Cl121C202$TXMEAFTERBRFAKlSEC)2Ifiqure3.5AverageCoreOutletFlowduringBlowdownPeriod,1.0OCCLGBreak DbioKJ~8wRK10OCCOOK217X17aOECL BONt5~AVE~PLUG~10~3+3~3>PLUGSODg<oRupXDZ12162.0RATXHEAFTERORF"'K(SEC)Figure3.6TotalBreakFlowduringBlowdownPeriod,1.0DECLGBreak 10OCCOOKR1.0OECLGBON<<a8%5IjJwlpVesselSide~PumpSideTIME(SEC)Figure3.7BreakFlowEnthalpyOuringBlowdown, 1.0DECLGBreak tJ4JgCAgCK1.0DCCOOK217X17~DECLBOH.5XAVE.PlUG.10K3'+3-3XPLUGOaQOLoP-8cr.QKOg121C20t4TIHEAFTER8REAK(SEC)Figure3.0FlowfromIntactLoopAccumulator duringBlowdownPeriod,1.0DFCLGBreak tJ4J3CAw~e4Kld$CKfL10DCCOOK217X17rDECLBDNr5>AVEPLUGS1013+33XPLUGSOgK4J.ogKO1-oQOKKOgCK121C202lTXHEAFTERBREAK(SEC)a2Figure3.9F)owfromBrokenl.oopAccumulator duringBlnwdownPeriod,1.0DECLGBreak 1.0DCCOOK217X17~DECLBOND57AVE.PLUGi10l3+3-3XPLUG>lZ162024TAHEAFTERBREAK(SEC)2a32Figure3.10Pressurizer SurgeLineFlowduringBlowdownPeriod,1.0DL'CLGBreak l-0OCCOOKZ10OECLGt0tiTZ~E~SE.C)X8IZVlIOCOIFigure3.11lleatTransferCoefficientduringBlowdownPeriodatPCTNode,1.0DECLGBreak,2.0NHD/kgCase 1.0DCCOOK2.1.0OE'CLGtDZITIVEtSEC)Figure3.12CladSurfaceTemperature duringBlowdownPeriodatPCTNode,1.0DECLGBreak,2.0NWD/kgCase rJo~IMbjm4ggOX.ODCCOOKaa.ODEcLcg4nli1tNROtlTXVEtSEC)Figure3.13OepthofMetal-Water ReactionduringBlowdownPeriodatPCTNode,1.0OECLGBreak,2.0MWO/kgCase CDc4U)3OI10OCCOOKR1.0DECLG5II5oJ8BlSRDTXMElSEC)Figure3.10AverageFuelTemperature duringBlowdownPeriodatPCTLocation, 1.0OECLGBreak,P.UNWO/kgCaseR>c82:(IEAllg0COIa i.OOCCOOKZ.X-0OECLGFigure3.l5Q.ÃNU3f.TIVE(SEC)llotAssemblyInletFlowduringBlowdownPeriod,1.0DECLGBreak,2.0HWD/kgCase 1.0DcCOOK21-0DE'CLG1$t0?ITXHE(SEC)Figure3.16I<otAssemblyOutletIlowduringBlowdownPeriod,1.0DECLGBreak,2.0I'1HD/kqCaseIOR>c82.'pVlOCQIo i.oDCCOOK2.x.oDECL&R924TIME(SEC)3240XlX8ZIEA0COIUFigure3.17lleatTransferCoeffir.ientduringBlowdownPeriodatPCTNode,1.0l)ECLGBreak,10.0MWD/kgCase 1.0DCCOOKZ1.0DECLGZOZLTINE'SEC)Figure3.18CladSurfaceTemperature duringBlowdownI'eriodatPCTNode,1.0DFCLGBreak,l0.0NWD/kgCasel4R7OCIVlOCOIo 1.0OCCOOK21.0OECLGHXz4OoHI-CJCKblI4JCCi8<olYHNoghQgZ.OUTIME(SEC)Figure3.19DepthofMetal-Water ReactionduringBlowdownPeriodatPCTNode,1.0DECLGBreak,10.0HWD/kgCase(0QX8H(IlAI0COIo 1.0DCCOOK21.0DECLGFigure3.20ZOtl3tTINE(SE'C)AverageFuelTeotperature duringBlowdownPeriodatPCTLocation, 1.0DECLGBreak,10.0HWD/kgCase(0QX8IVl0COIo 10OCCOOKR1.0OECLGFigure3.21Lt1CZOR.lTIVE(SE'C))lotRssemblytnletFlawduringOlowdownPeriod,1.0OLCI.Gllreak,10.0llWO/kgCase10KlM8RIVlOCOI 1.0OCCOOK2.10DfCLGzaZ(TINE(SfC)Figure3.22tlotAssemblyOutletFlowduringBlowdownPeriod,1.0OECLGBreak,10.0NHD/kgCase3C10R>C82:ICAOCOIMiMD l-0OCCOOK2=10OECLtFigure3.231klSt0t42$TIvEtSEC)lleatTansferCoefficient duringBlowdownPeriodatPCTNode,1.0DLCLGBreak,47.0MHD/kgCaseZXlDIZVlOCOIMmU 1-0OCCOOKP.1.0QECLGLSzaKlTETE(SE'C)Figure3.24CladSurfaceTemperature duringBlowdownPeriodatPCTNode,1.0DECLGBreak,47.0Hll0/kgCase

~N~SQo~8Oo0~skg4JlZgOCI$gpOAJ1-0OCCOOk21.0DECL&R>c8KIVl)000I0lf1SEORltl"3E1TINE(SEC)Figure3.25DepthofMetal-Water ReactionDuringBlowdownPeriodatPCTNode,1.0DECLGBreak,47.0MWD/kgCase 10OCCOOK21.0OECLGFigure3.263R.'3CItLCt0UtlTIt>E(SEC1AverageFuelTemperature duringBlowdownPeriodatPCTLocation, 1.0DECLGBreak,47.0MWO/kgCasel0R>clDMIVl0COIo 10OCCOOK210DE'CLGI1tlS5lRATAHE(SEC)eeFigure3.27(lotAssemblyInletFlowduringBlowdownPeriod,1.0OECLGBreak,47.0MHD/kgCase 1.0OCCOOK2,1~0OCCLGFigure3.28lffOzltlTIvE(SEC)HotAssemblyOutletFlowduringBlowdownPeriod,1.0OECLGBreak,47.0MWD/kgCase

~8OyI.igure3.291t15tDZI3aTIMEAFTEREOBY(SEC)Accumulator FlowduringRefillandRefloodPeriods,BrokenLoop,1.0DECLGBreak 1$tD-HElTXHEAFTEREOBY(SEC)-.Figure3.30Rccumulator FlowduringRefillandRefloodPeriods,IntactLoop,1.0OECLGBreak 300250200150-10050-0050100150200Time(sec)After.Start250300350R>cEDMIVlllI0COIFigure3.31IIPSI0LPSIFlowduringRefillandRefloodPeriods,BrokenLoop,1.0OfCLGBreak CV)CQO1000800-600400POO2000050100150200Time(sec)AfterStart300350Iignre3.3?Hi'Sl5I.PSIFlowduringRefillandRefloodPeriods,IntactIoop,1.0I)ECLGllreak 2221PROO20191801615050100150200Time(sec)-After Start250Figure3.33Containment BackPressure, 1.0OECLGBreak300350g)XlDM'CIpUl000Ia CK4JO0a4Jt'4~lKLLoX~4Q(0COl$0200Z40TINE(SECONDS)SRIZVl000IoFigiire3.34Horn"li"edPokier,'.CDECLuBreak,Z.OHl'ID/kgCase ZlX8(IlhOOOIH.O160200210210TINE(SE'CONDS)3203CO100Eigure3.35Normalized Power,1.0BECLGBreak,10.0MWO/kgCase i0320isoQ.ONOZOOZEOTINED(SECONDS)I'igure3.36NormalizedPower,1.0DECLGBreak,47.0NWD/kgCase DCC2REFl000.10OECLGFULLECCSFLOVFQ=2.041553525HMT.HIXCORELESSSPCR40180Z00ZA0Z00TIHEFROMBOCREC(SEC)3ZO400R>cCDIVl0COIPOtVaI=i@ore3.3/lieflooclCoreMixlisreI.evel,1.0OECI.GBreak,Cycle5Core DCC2,REFLOODo1.0DECLGFULLECCSFLOWFQ=2.0$1.553425HWTiHIXCORELESSSPCR40801602002AO280TIHEFROHBOCREC(SEC)<00R>CID(IVlO00IUlinure3.3ARefloodfjowocoioer MixtureLevel,1.0DECLGBreak,Cycle5Core OCC2REFLOOD,1.0DECLGFULLECCSfLOWF9=2.0i1.553425HMT,HIXCORELESSSPCR40ao1602002402SOTIHEFROHBOCREC(SEC)360400R>cCDR(II/l0COIFOfOoIicjur>>3.39Hei'loodtipperPlenumPressure, 1.0OECLGBreak,Cycle5Core OCC2REFLOOD.1.0 OECLGFULLECCSFLOWFQ=2.041.553525HWTiHIXCORELESSSPCR40SO120160200RAO280TIMEFROHBOCREC(SEC)Iignre3.40CoreI-looding Rate,1.0DECI.GBreak,Cycle5Core380400R>C8R(IVl0COI~POa OCC2.REFLOODoAlLENCCORE-FOH=1-554040asozaazoozeaTXHEFROMBOCREC(SEC)3zoeaoIigure3.41lhefloori CoreHixIorel.evel,1.0DECI.GBreak,AllENCCore OCC2.REFLOOO.ALLEHCCORE-FOH=1.55LLJPAXHKoOOa40IO160200240ZIOTIMEFROM80CREC(SEC)360400Iigure3.02RefloorlOnwncomer MixtureLevel,1.0OECLGBreak,AllENCCore OCC2REFLOOOoALLENCCORE-FOH<<155MO$044X60ZaoZ.40nl0TINEFROHBOCREC(SEC)Eigure3.03liefloodUpperVier>iunPressiire, 1.0OECl.GBreak,AllENCCore'360400RX82(I~'I/I0COIa OCC2REFLOOD,ALLEHCCORE-FOH=1.553200126L605)0240TIMEFROMBOCREC(SEC)Iignore3A4CoreRefloodirlgRat.e,1.0DECI.GBreak,AllENCCore360ioo

-FQ=2.05-FOH~1.55-2HMtLg5~alIblCLDaK"KtdCL'Kid/C9z,HClQoO1.PCTHOOE(HOOE22ATS-62FT-)2.RUPTUREOHOOE(NOOE11AT7.00FT)CICI%.040.0S0.0I'igure3.45200.0320.0360.0120.0160.0200.0Z(0.0TIME-SECONDSTOOOEE2CladdingTemperature versusTime,1.0DECLGBreak,2.HllD/KgCase,Cycle5Core

-FQ=2.04-FOH~1.55-10H1-PCTNODE(NODE22AT$.62FT)2..RUPTUREDNODE(NODE11AT1-00FT-)40-0I:ignite3.0680.0ZS0.032,0.0160.0200.0240.0TIME-SECONDSTOODCE2CladdingTemperature versusTime,1.0DECI.GBreak,10.IIWD/KgCase,Cycle5Core360.040.0 N1-PCT)JODO'NODf RlAT$.31FT)(0hJhJKC9~UJ~Qc5I)LJf)'oCJ:LLlLJ0KQJCI)-5C9MClQogD0RUPTUREDHODRl'NODE1<.AT1.15FT-)ClClQ).0210.0320.0360.0120.040.080.0160.0?00'2<0.0TINE-SECONDSIigrrre3.47~l000l.:L2 Claddirrg Temperature versusTime,1.0OECLGBreak,4/.Hll0/KgCase,Cycle5Core40.0RX8RIVl00)I

-FQ~R.O{-FOB=1.55"2,HMi.PCTNODE(NODE22AT$.62FT.)2-RUPTUREDNODE(NODE).LAT1.00FT.)40.0I'igure3.0Aa0.0320.0360.0160.0200.02(0-0260.0TIHE-SECONDSTOOOLC2Cli~lrliugTemperaLure versusTime,1.0OLCl.GBreak,2.NWO/KgCase,Alll:NCCorelORO

-FQ~L.0$-FOH=155-10H1-PCTNODEtNODE22,AT5.62FT.)RUPTUREDNODEtNODE11AT1.OOFT.)40.0Iigurt3.49320.0ao.o120.0160.0200.02io.o280-0TXHE-SECONDSf00f)EE2Clarlding funperature versus1ime,1.0DECLGBreak,10.NWf)/KgCase,AllENCCore FQ<2.04-FOH3.=1-55-h7M1.PCTHQOE(HOOE21AT031FT)Z.RUPTUREDHOOf(HOOE14AT7.15FT140.0Figure3.50320.080.0120.0160.0200.0240.0280.0TIME-SECONDS100DEE2CladdingTemperature versusTime,1.0DECIGBreak,c17.HWD/KgCase,RllENCCore l

64XN-NF-84-21 (NP)Revision

24.0CONCLUSION

S Forbreaksuptoandincluding thedouble-ended severance ofareactorcoolantpipe,theDonaldC.CookUnit2Emergency CoreCoolingSystemwill.meettheAcceptance Criteriaaspresented in10CFR50.46foroperation withENC17xl/fueloperating inaccordance withtheLHGRlimitsnotedinTable2.1.Thatis:1.Thecalculated peakfuelelementcladtemperature doesnotexceedthe2200oFlimit.2.Theamountoffuelelementcladdingthatreactschemically withwaterorsteamdoesnotexceed1percentofthetotalamountofzircaloyinthereactor.3.Thecladdingtemperature transient isterminated atatimewhenthecoregeometryisstillamenabletocooling.Thehotfuelrodcladdingoxidation limitsof17/arenotexceededduringorafterquenching.

4.Thecoretemperature isreducedanddecayheatisremovedforanextendedperiodoftime,asrequiredbythelong-lived radio-activityremaining inthecore.

XN-NF-84-21(NP)

Revision

25.0REFERENCES

(2)(3)(4)(5)XN-NF-82-35, "DonaldC.CookUnit2LOCAECCSAnalysisUsingEXEM/PWRLargeBreakResults,"

ExxonNuclearCompany,Inc.,Rich-land,WA99352,April1982.XN-NF-82-35, Supplement 1,"DonaldC.CookUnit2Cycle4LimitingBreakLOCA-ECCS AnalysisUsingEXEM/PWR,"

ExxonNuclearCompany,Inc.,Richland, WA99352,November1982.XN-NF-82-20(P),

Rev.1,August1982;andSupplement 4,July1984,"ExxonNuclearCompanyEvaluation ModelEXEM/PWRECCSModelUp-dates,"ExxonNuclearCompany,Inc.,Richland, WA99352.XN-73-25, "GAPEXX:AComputerProgramforPredicting Pellet-to-CladdingHeatTransferCoefficients,"

ExxonNuclearCompany,Inc.,Richland, WA,August13,1973.XN-NF-81-58(A),

Rev.2,"RODEX2:FuelRodThermal-Mechanical Re-sponseEvaluation Model,"ExxonNuclearCompany,Inc.,Richland, WA.99352,February1983.(6)"Acceptance CriteriaforEmergency CoreCoolingSystemsforLightWaterCooledNuclearPowerReactors,"

10CFR50.46andAppendixKof10CFR50.(7)(8)(9)(10)(12)U.S.NuclearRegulatory Commission letter,T.A.Ippolito(NRC)toW.S.Nechodom(ENC),"SERforENCRELAP4-EM Update,"March1979.XN-CC-39, Rev.1,"ICECON:AComputerProgramUsedtoCalculate Containment Backpressure forLOCAAnalysis(Including IceCondenser Plants),"

ExxonNuclearCompany,Inc.,Richland, WA99352,November1977.XN-NF-78-30(A),

"ExxonNuclearCompanyWREM-Based GenericPWRECCSEvaluation ModelUpdateENCWREM-IIA,"

ExxonNuclearCompany,Inc.,Richland, WA99352.May1979.XN-NF-82-07(A),

Rev.1,"ExxonNuclearCompanyECCSCladdingSwellingandRuptureModel,"ExxonNuclearCompany,Inc.,Richland, WA99352,March1982.G.N.Lauben,NRCReportNUREG-75/057, "TOODEE2:

ATwo-Dimensional 1>>D.C.CookUnit2Technical Specification, Appendix"A"toLicenseNo.DPR-74,Amendment No.48.

66XN-NF-84-21(NP)

Revision2(13)XN-NF-82-32(P),

Supplement 2,"PlantTransient AnalysisfortheDonaldC.CookUnit2Reactorat3425MWt:Operation with5%SteamGenerator TubePlugging,"

ExxonNuclearCompany,Inc.,Richland, WA99352,February1984.,(14)XN-NF-84-21(P),

"DonaldC.CookUnit2,Cycle5,5XSteamGenerator TubePlugging, LimitingBreakLOCA/ECCS Analysis,"

ExxonNuclearCompany,Inc.,Richland, WA99352,February1984.(15)Letter,H.R.Denton(NRC)fromJ.C.Chandler(ENC),Re:Support-ingDocumentation forUnit2Technical Specification ChangesforCycle5Reload,datedMay7,1984(JCC:076:84).

(16)XN-NF-84-21(P),

Revision1,"DonaldC.CookUnit2Cycle5-5XSteamGenerator TubePlugging, LimitingBreakLOCA/ECCS Analysis,"

ExxonNuclearCompany,Inc.,Richland, WA99352,May1984.

XN-NF-8'4-21(NP

)Revision2IssueDate:8/7/84DONALDCCOOKUNIT2CYCLE5SioSTEAN,GENERATOR TUBEPLUGGINGLIMITINGBREAKLOCA/ECCS ANALYSISDistribution J.C.ChandlerW.V.KayserG.F.OwsleyH.G.ShawT.TahviliAEP/H.G.Shaw(10)USNRC/J.C.

Chandler(15)DocumentControl(3)