ML17157A337
ML17157A337 | |
Person / Time | |
---|---|
Site: | Susquehanna |
Issue date: | 09/24/1990 |
From: | PENNSYLVANIA POWER & LIGHT CO. |
To: | |
Shared Package | |
ML17157A336 | List: |
References | |
NUDOCS 9010010143 | |
Download: ML17157A337 (57) | |
Text
{{#Wiki_filter:~SUSQUEHANNASESUNIT2CYCLE5TECHNICALSPECIFICATIONCHANGESSEPTEMBER1990PENNSYLVANIAPOWER5.LIGHTCOMPANY~~~49010010143900924PDRADOCK05000388 INDEXDEFINITIONSSECTIONOEFINITIONS(Continued)1.26OPERABLE-OPERABILITY.....................................PAGE1-41.27OPERATIONALCONDITION-CONDITION..........................1-41.28PHYSICSTESTS.....1-51.29PRESSUREBOUNDARYLEAKAGE..................................1-51.30PRIMARYCONTAINMENTINTEGRITY..............................1-51.31PROCESSCONTROLPROGRAM....................................1-5lo32PURGE-PURGINGo~~~~~~~~~~~o~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~1-51.33RATEDTHERMALPOWER...1.34REACTORPROTECTIONSYSTEM'RESPONSETIME....................1-61-61.35REPORTABLEEVENT...~-.....-..........~~.~..~...........~...1-61.36RODDENSITY..................;.......~scsawsussex/<~crtal.37SECONDARYCONTAIlNENTINTEGRITY......~~~~~~~~~~~~~~~~o~~~~~1-61-6'.38SHUTDOWNMARGIN......................~~~~~~~~~~~~~~~~~~~~~~1-71.39SITEBOUNOARY...........;..................................1-71.40SOLIDIFICATION................~...-.~........~~~.~~~.~.~~~~1-7141SOURCECHECKo~~~~~~~~~~~~~~~o~o~o~~~~o~~~~o~~~oo~~~~~~~~~~1-71.42STAGGEREDTESTBASIS.......................................1-7F43THERMALOERo~~~~~~~~~~~~~~~o~~~~~~~~~~~~~~~~~~~~~~~o~~~~11-71.44TURBINEBYPASSSYSTEMRESPONSETIME........................1-71.45UNIDENTIFIEDLEAKAGE..................1-71.46UNRESTRICTEDAREA............................-.1-81.47VENTILATIONDHAUSTTREATMENT.SYSTEM.......................1-8~48VENTINGo~~~~~~~~~~~~~~~o~~~~~~~~~~~~~~~~~~~~~~~~~~~o~~~~~~~11-8SUSQUEHANNA-UNIT2 LISTOFTABLESINOEX-TABLE1.2PAGESURVEILLANCEFREQUENCYNOTATION...................1-9OPERATIONALCONOITIONS........................1-102.2.1-1paQ3.3.1"1REACTORPROTECTIONSYSTEHINSTRUMENTATIONSETPOINTS~~~~~~~~~~~~~~~~~~~5CghaSPE'CDFRACWWCPVeRS~SPVERRaeg<RP~~Z>eSREACTORPROTECTIONSYSTEMINSTRUMENTATION.........2-4g/0Z-Ch3/43-23.3.1-24.3.1.1-13.3.2-13.3.2-23.3.2-.34.3.2.1-13.3.3-13.34323.3.3-34.3.3.1-13.3.4.1-1REACTORPROTECTIONSYSTEMRESPONSETIHES..........'/43-6REACTORPROTECTIONSYSTEMINSTRUMENTATIONSURVEILLANCEREQUIREMENTS............'.............3/43-7ISOLATIONACTUATIONINSTRUHENTATION...............3/43-11ISOLATIONACTUATIONINSTRUMENTATIONSETPOINTS.....3/43-17ISOLATIONSYSTEMINSTRUMENTATIONRESPONSETIME.....3/43-21ISOLATIONACTUATIONINSTRUMENTATIONSURVEILLANCERE(UIREMENTS.....................................3/43-23EHERGENCYCORECOOLINGSYSTEM'CTUATIONINSTRUMENTATION...................................3/43-28EMERGENCYCORECOOLINGSYSTEMACTUATIONINSTRUMENTATIONSETPOINTS................3/43-31EMERGENCYCORECOOLINGSYSTEMRESPONSETIMES......3/43-33EMERGENCYCORECOOLINGSYSTEMACTUATIONINSTRUMENTATIONSURVEILLANCEREQUIREHENTS;........3/43-34ATWSRECIRCULATIONPUMPTRIPSYSTEMINSTRUMENTATION...................................3/43"373.3.4.1-2ATWSRECIRCULATIONPUMPTRIPSYSTEMINSTRUMENTATIONSETPOINTS3/43-384.3.4.1-13.3.4.2-13.3.4.2-2ATWSRECIRCULATIONPUMPTRIPACTUATIONINSTRUMENTATIONSURVEILLANCEREQUIREMENTS.........3/43-39ENO-OF-CYCLER'ECIRCULATIONPUMPTRIPSYSTEMINSTRUMENTATION...................................3/43-42ENO-OF-CYCLERECIRCULATIONPUMPTRIPSETPOINTS....3/43-433.3.4.2-3~~ENO-OF-CYCLERECIRCULATIONPUHPTRIPSYSTEMRESPONSETIME..................................SUSQUEHANNA-UNIT2xxfv3/43"44AaendaentNo.31 LISTOFFIGURESINOEXFIGVRE3.1.5"13.1.5-23.2.1-13.2.2"13.2.3-13.2.3-23.2.4-1SODIUMPENTABORATESOLUTIONTEMPERATURE/CONCENTRATIONREQUIREMENTS.SODIUMPENTABORATESOLUTIONCONCENTRATION.....PAGE3/41-213/41-22MAXIMUMAVERAGEPLANARLINEARHEATGENERATIONRATE(MAPLHGR)VS.AVERAGEPLANAREXPOSURE,ANF9X9FUEL.......~...............~3/42-2LINEARHEATGENERATIONRATEFORAPRMSETPOINTSVERSUSAVERAGEPLANAREXPOSURE,ANFFUEL....~~....3/42-5FLOWDEPENDENTMCPROPERATINGLIMIT....3/42-7REDUCEDPOWERMCPROPERATINGLIMIT(~...~P.."~....3/42-8~ukeiu<'8i'PA~S'pggps~r)LINEARHEATGENERATIONRATE(LHGR)LIMITVERSUSAVERAGEPLANAREXPOSURE,ANF9X9FUEL............3/42-103.4.1.1.1-13.2.6.1-14.7.4-183/43-183/4.4.6-15.1.1-15.1.2-15.1.3-la5.'.3-1bTHERMALPOWERRESTRICTIONS...............,.........MINIMUMREACTORVESSELMETALTEMPERATUREVS.REACTORVESSELPRESSURE~.SAMPLEPLAN2)FORSNUBBERFUNCTIONALTEST.........REACTORVESSELWATERLEVEL.FASTNEUTRONFLUENCE(E)1MeV)AT1/4TASAFUNCTIONOfSERVICELIFE.EXCLUSIONAREA.LOWPOPULATIONEONE.MAPDEFININGUNRESTRICTEDAREASFORRADIOACTIVEGASEOUSANOLIQUIDEFFLUENTSMAPDEFININGUNRESTRICTEDAREASFORRADIOACTIVEGASEOUSANDLIQUIDEFFLUENTS..3/44-jb3/44-i33/47-1583/43-8'3/44"75-25-35-45-5g.Q.3gggoucEDPoeERMcPROPERIITrP6-aI~z7(nk~uS/0g-fe.TvRSx,u<SYpAs5~uoPERASc.e)geouceoeoete<<R~~<g(e.oc-RP>'3/0~-F4wgoPeRAB~e)SUSQUEHANNA-UNIT2XX11AmendmentNo.6O 1lDEFINITIONSRATEDTHERMALONER1.33RATEDTHERMALPANNERshallbeatotalreactorcoreheattransferratetothereactorcoolantof3293HIT.REACTORPROTECTIONSYSTEMRESPONSETIME1.34REACTORPROTECTIONSYSTEMRESPONSETIMEshallbethetimefntervaiframwhenthemonitoredparameterexceedsftstripsetpofntatthechannelsensoruntf1deenergfzatfonofthescrampilotvalvesolenofds.Theresponsetfaeaaybemeasuredbyanyseriesofsequential,overlappingortotalstepssuchthattheentireresponsetfmefsmeasured.REPORTABLEEVEHT1.35AREPORTABLEEVENTshal'ibeanyofthoseconditionsspecifiedinSectfon50.73to10CFRPart50.ROOOENSITY1.36ROOOENSITYshallbethenumberofcontrolrodnotchesinsertedasafractionofthetotalnumberofcontrolrodnotches.Allrodsfullyinsertedfs.equivalentto100ROOOEHSITY.SECONDARYCONTAINMEHTINTEGRITY1.37SECONOARYCOHTAINEHTINTEGRITYshallexistwhen:a.Allsecondarycantafnmentpenetratfonsrequiredtobeclosedduringaccfdentcondftfonsareefther:1.CapableofbeingclosedbyanOPERABLEsecondarycontainmentautoaatfc'fsolatfonsystem,or2.Closedbyatleastonemanualvalve,blindflange,or.deactivatedautomaticdampersecuredfnftsclosedposition,exceptasprovidedfnTable3.6.5.2-1ofSpecification3.6.5.2.b.AllsecondarycontainmenthatchesandblowoutpanelsarecloEadandsealed.c.ThestandbygastreatmentsysteafsOPERABLEpursuanttaSpecificatfon3.6.5.3.d.Atleastonedoorfneachaccesstathesecondarycontainmentisclosed.eThesealingmechanfsaassociatedwitheachsecondarycontainmentpenetration,e.g.,welds,bellows,resilientmaterialseals,orO-rings,fsOPERABLE.ThepressurewithinthesecondarycontainmentfslessthanorequaltothevaluerequiredbySpecification4.6.5.1a.SUSquEHANNA-UNIT21-6 2.0SAFETYLIMITSANDLIMITINGSAFETYSYSTEMSETTINGS2.1SAFETYLIMITSTHERMALPOWERLowPressureorLow'low2.1.1THERMALPOWERshallnotexceed2RLofRATEDTHERMALPOWERwiththereactorvesselsteladomepressurelessthan785psigorcoreflowlessthan1'fratedflow.APPLICABILITY:OPERATIONALCONDITIONS1and2.ACTION:WithTHERMALPOWERexceeding2'fRATEDTHERMALPOWERandthereactorvesselsteamdomepressurelessthan785psigorcoreflowlessthan10Kofratedflow,beinatleastHOTSHUTDOWNwithin2hoursandcomplywiththerequirementsofSpecification6.7.1.THERMALPOWERHihPressureandHihFlow2.1.2IW1ththereactorvesselsteamdomepressuregreaterthan785psigandcoreflowgreaterthanlGZofratedflow.APPLICABILITY:OPERATIONALCONDITIONS1and2.4M3Wft(hQ@1essthan+8@andthereactorvesseIsteamdomepressuregreaterthan785psigandcoreflowgreaterthan1'fratedflow,beinatleastHOTSHUTDOWNwithin2hoursandcomplywiththerequirementsofSpecification6.7.1.REACTORCOOLANTSYSTEMPRESSURE2.1.3Thereactorcoolantsystempressure,asmeasuredinthereactorvesselsteamdome,shallnotexceed1325psig.APPLICABILITY:OPERATIONALCONDITIONS1,2,3and4.ACTION:Withthereactorcoolantsystempressure,asmeasuredinthereactorvesselsteamdome,aboveL325psig,beinatleastHOTSHUTDOWNwithreactorcoolantsystempressurelessthanorequalto1325psigwithin2hoursandcomplywiththerequirementsofSpecification6.7.1.SUSQUEHANNA-UNIT22-1AmendmentNo.26
2.1SAFETYLIMITSBASES
2.0INTRODUCTION
Thefuelcladding,reactorpressurevesselandprimarysystempipingaregg)principalbarrierstothereleaseofradioactivematerialstotheenvirons.SafetyLimitsareestablishedtoprotecttheintegrityofthesebarriersduringnormalplantoperationsandanticipatedtransients.ThefuelcladdingintegritySafetyLimitissetsuchthatnofueldamaeiscalculatedtooccurifthelimitisnotviolated.ausedamaistdirtlyorvle,atep-aapprchissetoeslishafetLimisuchateRisotlethaneiitscifielnSpe'fioat'2.forFfu.Mgrearthathescifdlimreprentsaonserativearlatitothcondionsruirtomntainelclddin'nterheuecladdingisoneofthephysicalbarrierswhicseparatetheradioactivematerialsfromtheenvirons.Theintegrityofthiscladdingbarrierisrelatedtoitsrelativefreedomfromperforationsorcracking.Althoughsomecorrosionoruserelatedcrackingmayoccurduringthelifeofthecladding,fissionproductmigrationfromthissourceisincrementallycumulativeandcontinuouslymeasurable.Fuelcladdingperforations,however,canresultfromthermalstresseswhichoccurfromreactoroperationsignificantlyabovedesignconditionsandtheLimitingSafetySystemSettings.Whilefissionproductmigrationfromclad-dingperforationisjustasmeasurableasthatfromuserelatedcracking,thethermallycausedcladdingperforationssignalathresholdbeyondwhichstillgreaterthermalstressesmacauserossratherthanincrementalcladdingdeteri-oratioerreheeladdgSet>>eeiaminiowh'doduonsotrsit'iliPR1.TiesrepresenasignificantdearturefromtheconditionintendedyesignforplannedoperationeMfeladdgiegrieyimiursingrmaopeat'add'ngantiipatdorat'alccuencteas99.9ofef1rs'ntcoednotxpeentrsi'onblinef.-.NF24(Resio1)2.1.1THERMALPOWERLowPressureorLowFlowTheuseoftheXN"3correlationisvalidforcriticalpowercalculationsatpressuresgreaterthan580psigandbundlemassfluxesgreaterthan0.25x106lbs/hr-ft~.Foroperationatlowpressuresorlowflows,thefuelcladdingintegritySafetyLimitisestablishedbyalimitingconditiononcoreTHERMALPOWERwiththefollowingbasis:Providedthatthewaterlevelinthevesseldowncomerismaintainedabovethetopoftheactivefuel,naturalcirculationissufficienttoassureamini-mumbundleflowforallfuelassemblieswhichhavearelativelyhighpowerandpotentialljcanapproachacriticalheatfluxcondition.FortheANF9x9fueldesign,theminimumbundleflowisgreaterthan30,000lbs/hr.Forthisdesign,thecoolantminimumflowandmaximumflowareaissuchthatthemassfluxisalwaysgreaterthan0.25x106lbs/hr-ft<.Fullscalecriticalpowerteststakenatpressuresdownto14.7psiaindicatethatthefuelassemblycriticalpowerat0.25x10lbs/hr-ftis3.35Mwtorgreater.At25Kthermalpowerabundlepowerof3.35Mwtcorrespondstoabundleradialpeakingfactorofgreaterthan3.0whichissignificantlyhigherthantheexpectedpeakingthus,aTHERMALPOWERlimitof25KofRATEDTHERMALPOWERforreactorpressuresbelow785psigisconservative.SUSQUEHANNA-UNIT282-1AmendmentNo.58 SAFETYLIMITSBASES2.1.2THERMALPOWERHihPressureandHihFlow0ApeOnsetoftransitionboilingresultsinadecreaseinheattransferfromthecladand,therefore,elevatedcladtemperatureandthepossibilityofcladfailure.However,theexistenceofcriticalpower,orboilingtransition,isnotadirectlyobservableparameterinanoperatingreactor.Therefore,themargintoboilingtransitioniscalculatedfromplantoperatingparameterssuchascorepower,coreflow,,feedwatertemperature,andcorepowerdistribution.Themarginforeachfuelassemblyischaracterizedbythecriticalpowerratio(CPR),whichistheratioofthebundlepowerwhichwouldproduceonsetoftran-sitionboilingdividedbythe.actualbundlepower.Theminimumvalueofthisratioforanybundlein-thecoreistheminimumcriticalpo~erratio(MCPR).hSafy'mitPRassuressufficientconservatismintheoperatinRimihainteeventoananticipaeoperaionaloccurrencefromthelimitingconiionforoperation,atleast99.9XothefuelrodsinthecorewouldbeexpectedtoavoidboilintransitioTemgineen~lcate+b,ianio.0athafim'iageda~aitatisicaprocedureconsidersteuncertaintiesinmonioringreoperatingstate.OnepecificuncertaintyincludedinthesafetylimitistheuncertaintyinherentintheXN-3criticalpowercorrelation.XN-NF-524~~~(ARevision1describesthemethodologyusedindeterminingtheI'i.-dF-fd-oog~,~M7.TheXN-3criticalpowercorrelationisbasedonasignificantbodyofprac-ticaltestdata,providingahighdegreeofassurancethatthecriticalpowerasevaluatedbythecorrelationiswithinasmallpercentageoftheactualcriti-'alpowerbeingestimated.Aslongasthecorepressureand'flowarewithintherangeofvalidityoftheXN-3correlation(refertoSection82.1.1),theassumedreactorconditionsusedinesaetylimitintroduceconser-vatismintoth'ecauseboundinghighradialpowerfactorsandboundingflatlocalpeakingdistributionsare'sedtoestimatethenumberofrodsinboilingtransition.StillfurtherconservatismisinducedbythetendencyoftheXN"3correlationtooverpredictthenumberofrodsinboilingtransition.TheseconservatismsandtheinherentaccuracyoftheXN-3correlationrovideareasonabledereeofassurancethatinsaierioaafitrou~tsioo'nne'.fboilingtransi-ionwereoccur,sreasonoeievethattheintegrityofthefuelwouldnotnecessarilybecompromised.SignificanttestdataaccumulatedbytheU.S.NuclearRegulatoryCommissionandprivateorganizationsindicatethattheuseofaboilingtransitionlimitationtoprotectagainstcladdingfailureisaveryconservativeapproach.MuchofthedataindicatesthatLWRfuelcansur-viveforanextendedperiodoftimeinanenvironmentofboilingtransition.SUSQUEHANNA-UNIT2B2-2AmendmentNo.5B POWERDISTRIBUTION>HITS32.3MINIMUMCRITICALPOWERRATIOLIMITICONOITIONFOROPERATION3.2.3TheNIMUMCRITICALPOWERRATIO(MCPR)shallbereaterthanorequaltothegreateofthetwovaluesdeterminedfromFigur3.2.3-1andFigure3.2.3"2.APPLICABIIITY:'PERTIONALCONDITION1,whenTERMALPOWERisgreaterthanorqWqIIAKDIIERIIALPOKlt.ACTION:WithMCPRlessthantheappl'cableMCPlimitdeterminedabove,initiatecorrec-tiveactionwithin15minutesndrtoreMCPRtowithintherequiredlimit;with-in2hoursorreduceTHERMALPOERolessthan25KofRATEDTHERMALPOWERwithinthenext4hours.SURVEILLANCEREUIREMENTS4.2.3.1MCPRshallbedeterminedtobeeaterthanorequaltotheapplicableMCPRlimitdeterminefromFigure3.2.3-1dFigure3.2.3-2:a.Atleaonceper24hours,b.Wit~n12hoursaftercompletionofaERMALPOWERincreaseofat1st15KofRATEDTHERMALPOWER,andc.Initiallyandatleastonceper12hourswhthereactorisoperatingwithaLIMITINGCONTROLRODPATTERNforMCPR.d.'TheprovisionsofSpecification4.0.4arenotaplicable.R+p>~~+uJx'THTHE/dccput~<6THReWp++~~SUS(UEHANNA"UNIT23l42-6AmendmentNo.58 3/4.2.3MINIMUMCRITICALPOWERRATIOLIMITINGCONDITIONFOROPERATION3.2.3TheMINIMUMCRITICALPOWERRATIO(MCPR)shallbegreaterthanorequal~~tothegreaterof:a)TheFlow-DependentMCPRvaluedeterminedfromFigure3.2.3-1,andb)ThePower-DependentHCPRvaluedeterminedfromthefollowingequation:HCPR=HCPR,+(MCPR-HCPR,)xSCRAMSPEEDFRACTIONwhere:HCPRandHCPR,aredeterminedfromcurveAandcurveBofoneofthekollowingfigures,asappropriate:ilFigure3.2.3-2:EOC-RPT,andHainTurbineBypassOperableFigure3.2.3-3:HainTurbineBypassInoperableFigure3.2.3-4:EOC-RPTInoperableSCRAMSPEEDFRACTIONisanumberbetween0.0and1.0(inclusive)basedonmeasuredcoreaveragescramspeed.ThisfractionisusedtointerpolatebetweenCurveBHCPRvaluescorrespondingtoanaveragescramspeedof4.2feet/secondandCurveAHCPRvaluescorrespondingtothemaximumallowedcoreaveragescraminsertiontimesgiveninSpecification3.1.3.3.,TheSCRAMSPEEDFRACTIONisobtainedfromTable3.2.3-1.APPLICABILITY:OPERATIONALCONDITION1,whenTHERMALPOWERisgreaterthanorequalto25%ofRATEDTHERMALPOWER.ACTION:WithMCPRlessthantheapplicableHCPRlimitdeterminedabove,initiatecorrectiveactionwithin15minutesandrestoreMCPRtowithintherequiredlimitwithin,2hoursorreduceTHERMALPOWERtolessthan25%ofRATEDTHERMALPOWERwithinthenext4hours. 0 SURVEILLANCEREUIREME~~4.2.3HCPR,witha)SCRAMSPEEDFRACTION=1.0priortotheperformanceoftheinitialscramtimemeasurementforthecycleinaccordancewithSpecification4.1.3.2(a),orb)SCRAMSPEEDFRACTIONasdeterminedfromTable3.2.3-1usedtodeterminethelimitwithin72hoursoftheconclusionofeachscramtimesurveillancetestrequired,bySpecification4.1.3.2shallbedeterminedtobegreaterthanorequaltotheapplicableHCPRlimitdeterminedfromFigure3.2.3-1andtheapplicablefigureselectedfromFigures3.2.3-2through3.2.3-4:1)Atleastonceper24hours,2)Within12hoursaftercompletionofaTHERMALPOWERincreaseofatleast15%ofRATEDTHERMALPOWER,and3)Initiallyandatleastonceper12hourswhenthereactorisoperatingwithaLIMITINGCONTROLRODPATTERNforHCPR.4)TheprovisionsofSpecification4.0.4arenotapplicable.0
TABLE3.2.3-1SCRAMSPEEDFRACTION.VERSUSAVERAGESCRAMTIMESRodPositionsMAXIMUMTIMESTOROD'OSITIONSSeconds453925SCRAMSPEEDFRACTION.38.741.572.760.0.39.761.632.880.2.40.791.703.010.4.41.821.783.160.6.42.85'1.873.320.8.43.861.933.491.0NOTE:DetermineSCRAMSPEEDFRACTIONfromfarthestleft-handcolumnwhoselistedvaluesareallgreaterthanmeasuredaveragescramtimesusingmostrecentmeasurementforeachrod. I' ADfll2.0i8{30,$.9laCURVEA:EOC-BPTInoperable;MainTurbineBypasserableCURVEB:MainTurbineByssInoperable;EOC-BPTOpere~CURVEC:EOC-BPTdMainTurbine8asserableuOtlHl.3O)C~>>4J40LaQ.p1.6CLHo.).SO)-{6o.s.<2i1.64.l.colI60.n.w---l68.93,i.33BC1.411.401.33304050aoIoSoTotalCoreFlow(%OFRATED)FLQWDEPENDENTMCPROPERATINGLIMIT.FIGURE3.2.3-180100 1.91.8(30,1.83)1.7(37,1.69)(45,1.57)(60,1.43)1.3(74.9,1.32)(100,1.32)1.2304050607080TotalCoreFlow(%OFRATED)FLOWDEPENDENTMCPROPERATINGLIMITFIGURE3.2.3-190100 1.7{26.1.64)0.162)CURVEA:EOC-APTInoperable:MainTurbineBypassOperableCURVE8:MainTurbineBypassInoperable<EOC-APT.OperableCURVEC:EOC-RPTandMainTurbineBypassOperableCal-n~'abJpIQ)tOE~~1.5UlC~~CL01.4CLC3-{26.1.62){25,1.44){40.1{40.150)42)-{ds,I.4Q){56.1.47){a6.1.{80.1.47){so.1.46){QoQ141)a1.411.40{80.1.37)C1.33{QO.Q.1.33).O1.22030eo4060ao70CorePower(%OFRATED)REDUCEDPOWERMCPROPERhTINQLIMITFIGURE3.2.9-280100 l 2.01.91.8(25,1.90)LegendCURVEA:SCRAMSPEEDCORRESPONDINGTOT.S.3.1.3.3CURVEB:SCRAMSPEED4.2ft/secE17U)C1.8O.0IZ1.51.41.3(25,1.65)(40,1.55)(40,1.73)(65,1.41)(65,1.50)(6e.4,1.47)84,1.32)(100,1.47)(100,1.32)203040eOBO7OCorePower(%RATED)8090100REDUCEDPOWERMCPROPERATINGLIMITEOC-RPTANDMAINTURBINEBYPASSOPERABLEFIGURE3.2.3-2 2.01.9(25,2.0)(40,1.91)A.1.8(25,1.70)(65,1.77)(40,1.63)(65,1.54)(84,1.64)(100,1.56)1.41.3LegendCURVEA:SCRAMSPEEDCORRESPONDINGTOT.S.3.1.3.3CURVE8:SCRAMSPEED~4.2ft/sec(84,1.43)(100,1.38)1.2203040eoeo7oCorePower(%RATED)8090100REDUCEDPOWERMCPROPERATINGLIMITMAINTURBINEBYPASSINOPERABLEFIGURE3.2.3-3 2.0(25,1.95)1.9LegendCURVEA:SCRAMSPEEDCORRESPONDINGTOT.S.3.1.3.31.8E1.7U)C1.6O.0CC1.5(25,1.70)(40,1.57)(40,1.76)'ACURVEB:SCRAMSPEED=4.2ft/sec(64.1,1.54)-A-(100,1.54)1.41.3(65,142)(77.1,1.35)(100,1.35)1.22030506070CorePower(%RATED)80SO100REDUCEDPOWERMCPROPERATINGLIMITEOC-RPTINOPERABLEFIGURE3.2.3-4 100I=lgure8.4.1.1.t-hTHERMALPOWERRESTCTtONS40lan70g0030-02040et~r~sag/:,"IIio-"'~So'Il~I~3d4540ddCoreFlow(%RATED)40ddr078ESa.e.ammu&tI1p~~SUS(UEHANNA-UNIT23/44-lbAmendmentN0.60 Figure3.4.1.1.1-1THERMALPOWERRESTRICTIONS100QoII~'80I7050IDo50",:',ii."""~pop.~~1i~~~~~Llgi~PDPg>~B~QI~l5EIPL30~~20O~~110rIIP~~~r~~~303640'660565055CoreFlow(%RATED)70 REACTORCOOLANTSYSTEMRECIRCULATIONLOOPS-SINGLELOOPOPERATIONLIMITINGCONOITIONFOROPERATION3.4.1.1.2Onereactorcoolantrecirculationloopshallbeinoperationwiththepumpspeed<80KoftheratedpumpspeedandthereactorataTHERMALPOWER/coreflowconditionoutsideofRegionsIandIIofFigure3.4.1.1.1-1,anda.thefoilowingrevisedspecificationlimitsshallbefollowed:Table2.2.1-1:theAPRMFlow-BiasedScramTripSetpointsshallbeasfollows:TriSetointAllowableValue+Specification3.2.2:,theAPRMSetpointsshallbeasfollows:TriSetointAllowableValue'4M)T~K)SRB<(0.58M+45K)TSRB<(0.58W+48%)TSpecification3.2.3:TheMINIMUHCRITICALPOWERRATIO(MCPR)shallbegreaterthanorequaltothelargestofthefollowingvalues:a.theMCPRdeterminedfr1andxduII'30~3oRxsuRcrIpaxArejb.theMCPRdetermined..-usTable3:3.6-2:theRBM/APRMControlRodBlockSetpointsshallbeasfollows:a.RBM-UpscaleTriSetoint+b.APRM-FlowBiasedTriSetoint~+AllowableValueAllowableValue+ioAPPLICABILiTY:OPERATIONALCONDITIONS1*and2"+,exceptduringtwoloopoperation.PACTION:InOPERATIONALCONOITION1:1.Witha)noreactorcoolantsystemrecirculationloopsinoperation,orb)RegionIofFigure3.4.1.1.1-1entered,orc)RegionIIofFigure3.4.1.l.1-1enteredandcorethermalhydraulicinstabilityoccurringasevidencedby:SUSQUEHANNA-UNIT23/44-1cAmendmentNo.60 I REACTORCOOLANTSYSTEMLIMITINGCONOITIONFOROPERATIONContinuedf.WithanypumpdischargebypassvalvenotOPERABLEclosethevalveandverifyclosedatleastonceper31days.SURVEILLANCEREUIREMENTS4.4.1.1.2.14.4.1.1.2.24.4.1.l.2.34.4.1.l.2.44.4.1.1.2.54.4.1.l.2.6Uponenteringsingleloopoperationandatleastonceper24haursthereafter,verifythatthepumpspeedintheoperatingloopis<80Koftheratedpumpspeed.At,least50Koftherequi~edLPRMupscalealarmsshallbedeterminedOPERABLEbyperformanceofthefollowingoneachLPRMupscalealarm.1)CHANNELFUNCTIONALTESTatleastanceper92days,and2)CHANNELCALIBRATIONatleastonceper184days.Within15minutesprior'.oeitherTHERMALPOWERincreaseresultingframacontrolrodwithdrawalorrecirculationloopflowincrease,verifythatthefollowingdifferentialtemperaturerequirementsaremetifTHERMALPOWERis<30K""""ofRATEO'HERMALPOWERortherecirculationloopfTowintheoperatingrecirculationloopis<50K"""ofratedloopflow:a.<145'FbetweenreactorvesselsteamspacecoolantandBottomheaddrainlinecoolant,,b.¹¹<50'Fbetweenthereactorcoolantwithintheloopnotinoperationandthecoolantinthereactorpressurevessel,andc.¹¹<504Fbetweenthereactorcoalantwithintheloopnotinoperationandoperatingloop.ThepumpdischargevalveandbypassvalveinbothloopsshalllbedemonstratedOPERABLEbycyclingeachvalvethroughatleastonecompletecycleoffulltraveldu~ingeachstartup""priortoTHERMALPOWERexceeding25%ofRAT'EDTHERMALPOWER.ThepumpMGsetscooptubeelectricalandmechanicalstopshallbedemonstratedOPERABLEwithoverspeedsetpointslessthanorequalto102.5Xand105K,respectively,ofratedcoreflow,atleastonceper18months.mvoPaRhSLEOuringsinglerecirculationoopoperation,alljetpumps,includingthoseinthelaop,shallbedemonstratedOPERABLEatleastonceper24hoursbyverifyingthatnotwoofthefollowingconditionsoccur:¹¹¹a.Theindicatedrecirculationloopflowintheoperatingloopdiffersbymorethan10Kfromtheestablishedsinglerecirculationpumpspeed-loopflowcharacteristics.SUS(UEHANNA-UNIT23P44-leAmendmentNo.60 REACTORCOOL'ANTSYSTEMSURVEILLANCEREUIREHENTS(Continued4.4.1.1.2.7c.Theindicateddiffuser-to-lowerplenumdifferentialpressureofanyindividualjetpumpdiffersfromestab-lishedsinglerecirculationlooppatternsbymorethan10%TheSURVEILLANCEREQUIREMENTSassociatedwiththespecificationsreferencedin3.4.1.1.2ashallbefollowed.SeeSpecialTestException3.10.4.Ifnotperformedwithintheprevious31days.Initialvalue.-Finalvaluetobedeterminedbasedonstartuptesting.AnyrequiredchangetothisvalueshallbesubmittedtotheCommissionwithin90daysoftestcompletion.SeeSpecification3.4.1.1.1~ortwoloopoperationrequirements.Thisrequirementdoesnotapplywhentheloopnotinoperationisisolatedfromthereactorpressurevessel.Ouringstartuptestingfollowingeachrefuelingoutage,datashallberecordedfortheparameterslistedtoprovideabasisforestablishingthespecifiedrelationships.Comparisonsoftheac.uaidatain'accordancewiththecriterialistedshallcommenceupontheperformanceofsubsequentrequiredsurveillances.+TheLPRMupscalealarmsarenotrequiredtobeOPERASLEtomeetthisspecificationinOPERATIONALCONOITION2.b.Theindicatedtotalcoreflowdiffersbymorethan10Kfromtheestablishedtotalcoreflowvaluefromsinglerecirculationloopflowmeasurements.SUSQUEHANNA-UNIT23/44-.1f'mendmentNo.60 l\I0 REACTIVITYCONTROLSYSTEMSBASESREACTIVITYANOMALIES(Continued)Sincethecomparisonsareeasilydone,frequentchecksarenotanimposi-tiononnormaloperation.AlXdeviationinreactivityfromthatofthepre-dictedislargerthanexpectedfornormaloperation,andthereforeshouldbethoroughlyevaluated.AdeviationaslargeaslXwouldnotexceedthedesignconditionsofthereactor.3/4.1.3CONTROLRODSThespecificationofthissectionensurethat(1)theminimumSHUTDOWNMARGINismaintained,(2)thecontrolrodinsertiontimesare.consistentwiththoseusedintheaccidentanalysis,and(3)limit,thepotentialeffectsoftheroddropaccident.TheACTIONstatementspermitvariationsfromthebasicre-quirimentsbutatthesametimeimposemorerestrictivecriteriaforcontinuedoperation.Alimitationoninoperablerodsissetsuchthattheresultanteffectontotalrodworthandscramshapewillbekepttoaminimum.There-quirementsfotthevariousscramtimemeasurementsensurethatanyindicationofsystematicproblemswithroddriveswillbeinvestigatedonatimelybasis.Damagewithinthecontrolroddrivemechanismcouldbeagenericproblem,thereforewithacontrolrodiaeovablebecauseofexcessivefrictionormechan-icalinterference,operationofthereactorislimitedtoatimeperiodwhichisreasonabletodeterminethecauseoftheinoperabilityandatthesametimepreventoperationwithalargenumberofinoperablecontrolrods.,0Controlrodsthatareinoperableforotherreasonsarepermittedtobetakenoutofserviceprovidedthatthoseinthenonfully-insertedpositionareconsistentwiththeSHUTINMMARGINrequirements.Thenumberofcontrolrodspermittedtobeinoperablecouldbemorethantheeightallowedbythespecification,buttheoccurrenceofeightinopdrablerodscouldbeindicativeofagenericproblemandthereactormustbeshutdownforinvestigationandresolutionoftheproblem.ThecontrolrodsystemisdesinedtobrintactorsubcriticalataratefastenoughtoprenHCPromecomglethahe1itseci-fo2.1.2urinherewetrsientanalydinhecyecifitraientalysrept.isanysisshowshatenetivacvitytesesultgfthecramithtavegereonsofthdresagiveintspecicatis,ovideeuiredrottioandPRemairearththemitecifidinon.1..eoccurrenceoscramtmesongerthenthosespecfedshouldbevieweasanindicationofasystematicproblemwiththeroddrivesandthereforethesurveillanceinter-valfsreducedinordertopreventoperationofthereactorforlongperiodsoftimewithapotentiallyseriousproblem.ThescramdischargevolumeisrequiredtobeOPERABLEsothatitwillbeavailablewhenneededtoacceptdischargowaterfromthecontrolrodsduringaSUSQUEHANNA-UNIT2B3(41-2AmendmentNo.31 1 REACTIVITYCONTROLSYSTBlSBASESCONTROLRODPROGSNCONTROLS(Continued)TheRSCSandRWprovideautomaticsupervisiontoassurethatout-of-sequencerodswillnotbewithdrawnorinserted.ParametricControlRodDropAccidentanalyseshaveshownthatforawiderangeofkeyreactorparameters(wh'ichenvelopetheoperatingrangesofthesevariables),thefuelenthalpyriseduringapostulatedcontrolroddropacci-dentremainsconsiderablylowerthanthe280cal/gmlimit.Foreachoperatingcycle,cycle-specificparameterssuchasmaximumcontrolrodworth,Dopplercoefficient,effectivedelayedneutronfraction,andmaximumfourbundlelocalpeakingfactorarecomparedwiththeinputstotheparametricanalysestode-terminethepeakfuelrodenthalpyrise.ThisvalueisthenComparedagainstthe280cal/gmdesignlimittodemonstratecomplianceforeachoperatingcycle.Ifcycle-specificvaluesoftheaboveparametersareoutsidetherangeassumedintheparametricanalyses,anextension.oftheanalysisoracycle-specificanalysismayberequired.Conservatismpresentintheanalysis,resultsoftheparametricstudies,andadetaileddescriptionofthemethodologyforperformingtheControlRodDropAccidentanalysisareprovidedinXN-NF-80-19Volumel.PL,NF-po-00g.<+0TheRBNisdesignedtoautomaticallypreventfueldamageintheeventoferroneousrodwithdrawalfromlocationsofhighpowerdensityduringhighpoweroperation.Twochannelsareprovided.Trippingoneofthechannelswillblockerroneousrodwithdrawalsoonenoughtopreventfueldamage.Thissystembacksupthewrittensequenceusedbytheoperatorforwithdrawalofcontrolrods.3/4.1.5STAND8YLIUIDCONTROLSYSTEMThestandbyliquidcontrolsystemprovidesabackupcapabilityforbringingthereactorfromfullpowertoacold,Xenon-freeshutdown,assumingthatnoneofthewithdrawncontrolrodscanbeinserted.Tomeetthisobjectiveitisnecessarytoinjectaquantityofboronwhichproducesaconcentrationof660ppminthereactorcoreinapproximately90to120minutes.Aminimumquantityof4587gallonsofsodiumpentaboratesolutioncontainingaminimumof5500lbs.ofsodiumpentaborateisrequiredtomeetthisshutdownrequire-ment.Thereisanadditionalallowanceof165ppminthereactorcore'toaccountforimperfectmixing.ThetimerequirementwasselectedtooverridethereactivityinsertionrateduetocooldownfollowingtheXenonpoisonpeakandtherequiredpumpingrateis41.2gpm.Theminimumstoragevolumeofthesolutionisestablishedtoallowfortheportionbelowthepump'uctionthatcannotbeinsertedand'thefillingofotherpipingsystemsconnectedtothereactorvessel.Thetemperaturerequirementforthesodiumpenetratesolutionisnecessarytoensurethatthesodiumpenetaborateremainsinsolution.Nthredundantpumpsandexplosiveinjectionvalvesandwithahighlyreliablecontrolrodscramsystem,operationofthereactorispermittedtocontinueforshortperiodsoftimewiththesysteminoperableorforlongerperiodsoftimewithoneoftheredundantcomponentsinoperable.SUSQUEHANNA-UNIT283/41"+AmendmentHo.31 3/4.2POWEROISTRIBUTIONLIMITSBASESspec'tionsthissec'ssurettheacladgternrtefoowingepstuleddsignsisloss--cooantccidnt11otexce22'imiecifiedinCFR0.4.3/4.2.1AVERAGEPLANARLINEARHEATGENERATIONRATEThisspecificationassuresthatthepeakcladdingtemperaturefollowingthepostulateddesignbasisloss-of-coolantaccidentwillnotexceedthelimitspec-ifiedin10CFR50.46.The'peakcladdingtemperature(PCT)followingapostulatedloss-of-coolantaccidentisprimarilyafunctionoftheaveragehe=tgenerationrateofalltherodsofafuelassemblyatanyaxiallocationandisdependentonlysecondarilyontherodtorodpowerdistributionwithinanassembly.TheTechnicalSpecificationAPLHGRforANFfuelisspecifiedtoassurethePCTfollowingapostulatedLOCAwi11notexceedthe2200'Flimit.ThelimitingvalueforAPLHGRisshowninFigure-3.2.1-1.ThecalculationalprocedureusedtoestablishtheAPLHGRshownonFigure3.2.1-1isbasedonaloss-of-coolantaccidentanalysis.TheanalysiswasperformedusingcalculationalmodelswhichareconsistentwiththerequirementsofAppendixKto10CFR50.ThesemodelsaredescribedinXN-NF-80-19,Volumes2,2A,2Band2C..,3/4.2.2APRMSETPOINTSTheflowbiasedsimulatedthermalpower-upscalescramsettingandflowbiasedsimulatedthermalpower-upscalecontrolrodblockfunctionsoftheAPRMinstrumentslimitplantoperationstotheregioncoveredbythetransientandaccidentanalyses.Inaddition,theAPRMsetpointsmustbeadjustedtoensurethat>1%plasticstrainandfuelcenterlinemeltingdonotoccurduringtheworstanticipatedoperational.occurrence(AOO),incl.udingtransientsinitiatedfrompartialpoweroperation.ForANFfueltheTfactorusedtoadjusttheAPRMsetpointsisbasedontheFLPOcalculatedbydividingtheactualLHGRbytheLHGRobtainedfromFigure3.2.2-i.TheLHGRversusexposurecurveinFigure3.2.2-1isbasedonANF'sProtectionAgainstFuelFailure(PAFF)lineshowninFigure3.4ofXN-NF-85-67(A),Revision1..Figure3.2.2-1correspondstotheratioofPAFF/1.2underwhichcladdingandfueiintegrityisprotectedduringAOO's.SUSQUEHANNA"UNIT2B3/42-aAmendmentNo.58 'OWEROISTRIBUTIONLIMITSeBASES3/4.2.3HINIMUHCRITICALPOWERRATIOTherequiredoperatinglimitMCPRsatsteadystateoeratinconditionsasspeci-ifiedinSecification3.2.3arederivedfromanaly'fabnormaloperationaltransients.Foranabnormaltransientanalys~swiththeinitialcon-ditionofthereacoreinatthesteadystateoerainlimititieuiredthattheresultingoneaswSaylMaIllgean'enassuminginsrumenripseinggiveninpec>>ca-tionSTaurehatef1cldingntegr'Sfetyimiisnexededurinnyant'padabrmaoperaonalrans'ent,hest1'titrientsheenalyztoeter'new'chrult'hct'inTICAOWRA0(C).etypeoftransientsevaluatedweielossofflow,increaseinpressureanower,positivereactivityinsertion,andcoolantterneraturedecrease.1>>ntrsienieergeseltaCPR.WheaddeotatyimiCP,threqredm'mumperanglitHofpec'cat'.2.isbt'ddpsentdinure3.2.1an.2.Thealuionfa'ntisientgins'thtsysteinitiparamersswn'hcyclepecifitransintanasisrportatarinputanAoreynacbeiortrnsientomputprogm.Toutpsofsproamalgw'thinitiHCPRfmthe'nputrfureranysesthetrmallimi'ngbule.Tecodesndmeodolotoevuateressuzatioandno-prsuriionentsardescridin-NF-791anN-NF 105.Theplnci-1reltofisevaation'heductiinMCcaudbetraent.Figure3.2.3-1definescoreflowdependentHCPRoperatinglimitswhichassurethatduringaflowincreasetran-sienreuingromamotor-generatorspeedcontrolfailure.Theflowdepend-entMCPRisonlycalculatedforthemanualflowcontrolmode.Thereforeautomaticflowcontroloeranisnotermitted'.Fgure..efestperdepdentPRorat'lim'hiassesateSaty1'tMi1nobeviatedntevenofeedwerntrolerilur,RodW'drwalEor,oLo.RejeWioutMnTbineypaoperleitip(edroarededoercditiPCyclespecificanalysesareperformedforthemostlimitinglocalcorewidetran-sientstodetermine'thermalmargin.AdditionalanalysesareperformedtodeterminetheMCPRoperatinglimitwitheithertheHainTurbineBypassinoperableortheEOC-RPTinoperable.AnalysestodeterminethermalmarginwithboththeEOC-RPTinoperableandHainTurbineBypassinoperablehavenotbeenperformed.Therefore,operationinthisconditionisnotpermitted.SUS(UEHANNA-UNIT2.B3/42-2AmendmentNo.58 POWERDISTRIBUTIONLIMITSBASESMINIMUMCRITICALPOWERRATIO(Continued)AtTHERMALPOWERlevelslessthanorequalto25KofRATEDTHERMALPOWER,thereactorwillbeoperatingatminimumrecirculationpumpspeedandthemoderatorvoidcontentwi',1beverysmall.Foralldesignatedcontrolrodpatternswhichmaybeemployedatthispoint,operatingplantexperienceindicatesthatthere-s'ultingMCPRvalueisinexcessofrequirementsbyaconsiderablemarin.Duringinitialstart-uptestingoftheplant,aHCPRevaluationmadeat25K,oRATEDTHERMALPOWERlevelwithminimumrecirculationpumpspeed.TheMCPRmargindemonstratedsuchthatfutureHCPRevaluationbelowthispowerlevelunnecessary.ThedailyrequirementforcalculatingHCPRwhenTHERMALPOWER1sgreaterthanorequalto25KofRATEDTHERMALPOWERissufficientsincepowerdistributionshiftsareveryslowwhentherehavenotbeensignificantpowerorcontrolrodchanges.TherequirementforcalculatingMCPRwhenalimitingcontrolrodpatternisapproachedensuresthatMCPRwillbeknownfollowingachangeinTHERMALPOWERorpowershape,regardlessofmagnitude,thatcouldplaceoperationatathermallimit.3/4.2.4LINEARHEATGENERATIONRATEThisspecificationassuresthattheLinearHeatGenerationRate(LHGR)inanyrodislessthanthedesignlinearheatgenerationeveniffuelpelletdensificationispostulated.SUS(UEHANNA-UNIT2B3/42-3,AmendmentNo.58 I1t 3/4.4REACTORCOOLANTSYSTEMBASES3/4.4.1RECIRCULATIONSYSTEMOperationwithonereactorrecirculationloopinoperablehasbeenevaluatedandfoundacceptable,providedthattheunitisoperatedinaccordancewithSpecification3.4.1.1.2.LOCAanalysesfortwoloopoperatingconditions,whichresultinPeakCladdingTemperatures(PCTs)below2200~F,boundsingleloopoperatingconditions.SingleloopoperationLOCAanalysesusingtwo-loopMAPLHGR1imitsresultinlowerPCTs.Therefore,theuseoftwo-loopMAPLHGRlimitsduringsingleloopoperionassurtthePCTdurinaLOCAeventremainsbelow2200F.7ftE'RHAL4ME'R,TheMINIMUMCRITICALPOWERRATIOM~mitsforsingleloopoperationassurethatthSaetyLimitisnotexceededr'oranyAnticipatedOperationalOccurrence(AOO).Forsingleloopoperation,theRBMandAPRMsetpointsareadjustedbya8.5%decreaseinrecircuTationdriveflowtoaccountfortheactiveloopdrivefiowthatbypassesthecore.andgoesupthroughtheinactiveloopjetpumps.Surveillanceonthepumpspeedoftheoperatingrecirculationloopisimposedtoexcludethepossibilityofexcessiver'eactorvesselinternalsvibration.SurveillanceondifferentialtemperaturesbelowthethresholdlimitsofTHERMALPOWERorrecirculationloopflowmitigatesunduethermalstressonvesselnozzles,recirculationpumpsandthevesselbottomheadduringextendedope.a-tioninthesingleloopmode.Thethresholdlimitsarethosevalueswhichwillsweepupthecoldwaterfrom.thevesselbottomhead.Specificationshavebeenprovidedtoprevent.,detect,andmitigatecorethermalhydraulicinstabilityevents.ThesespecificationsareprescribednaccordancewithNRCBulletin88-07,Supplement1,"PowerOscillationsinBoilingWaterReactors(BWRs),"datedOecember30,1988.Theboundariesnftheregionsin.Figure3.4,1.1.1-1areaeterminedusingANFdecayratiocalculationsandsupportedbySusquehannaSESstabilitytesting.LPRMupscalealarmsarerequiredtodetectreactorcorethermalhydraulicinstabilityevents.ThecriteriafordeterminingwhichLPRMupscalealarmsarerequiredisbasedonassignmentofthesealarmstodesignatedcorezones.Thesecor'e:onesconsistofthelevelA,8andCalarmsin4or5adjacentLPRMstr.ings.ThenumberandlocationofLPRMstringsineachzoneassurethatwith5Normoreoftheassoci.atedLPRMupscalealarmsOPERABLEsufficientmonitoringcapabilityisavailaoletodetectcorewideandregiona:oscillations.OperatingplantinstabilitydataisusedtodeterminethespecificLPRMstringsassignedtoeachzone.Thecorezonesandrequired'RYupscalealarmsineachzonearespecifiedinappropriateprocedures.Aninoperaolejetpumpisnot,initself,asufficientreasontodeclareare-circulationloopinoperable,butitdoes,incaseofadesignbasisaccident,increasetheblowdownareaandreducethecapabilityofrefloodingthecore;thus,therequirementforshutdownofthefacilitywithajetpumpinoperable.Jetpumpfailurecanbedetectedbymonitoringjetpumpperformanceonaprescribedscheduleforsignificantdegradation.SUSqUEHANNA-UNIT283/44-1AmendmentNo.60 DESIGNFEATURES5.3REACTORCOREFUELASSEMBLIES5.3.1Thereactorcoreshallcontain764fuelassemblies.79fuelrodsandtwowaterrods.Eachfuelrodshallhaveanominalactivefuellengthof150inches.Reloadfuelshallhaveamaximumaveraeenrichmentof4.0weightpercentU-235.CTRROASSBL5.32eractororehallonta'85ontrrodsselieseaccsiinofaucifrmarayofstainessseelbesonta'ng43'hefbroncarbi,B,powersuoundbycruc'rmhapst'nlestshth5.4REACTORCOOLANTSYSTEMDESIGNPRESSUREANDTEMPERATURE5.4.1Thereactorcoolantsystemisdesignedandshallbemaintained:a.InaccordancewiththecoderequirementsspecifiedinSection5.2oftheFSAR,withallowancef'rnormaldegradationpursuanttotheapplicableSurveillanceRequirements,b.Forapressureof:1.1250psigonthesuctionsideoftherecirculationpumps2.1500psigfromtherecirculationpumpdischargetothejetpumps.c.Foratemperatureof5?5F.VOLUME5.4.2Thetotalwaterandsteamvolumeofthereactorvesselandrecirculationsystemisapproximately22,400cubicfeetatanominalTof528F.aveSUS(UEHANHA"UNIT25-6AmendmentNo.58 4I1 INSERTSInsertISCRAMSPEEDFRACTIONisanumberbetween0.0and1.0(inclusive)basedonmeasuredcoreaveragescramspeed.TheSCRAMSPEEDFRACTIONisusedtodeterminethePower-DependentHCPRvalueinSpecification3.2.3andcanbeobtainedfromTable3.2.3-1.Insert2,THERMALPOWERwillbelimitedsuchthatatleast99.9%ofthefuelrodsarenotexpectedtoexperienceboilingtransition.Insert399.9%ofthefuelrodsexpected'oavoidboilingtransitionInsert4TheTHERMALPOWER,HighPressureHighFlow,SafetyLimitisdefinedtobeacoreconditionsuchthatatleast99.9%ofthefuelrodsarenotexpectedtoexperienceboilingtransition,whichrepresentsaconservativemarginrelativetotheconditionsrequiredtomaintainfuelcladdingintegrity.Insert5TheHCPRoperatinglimitsassurethat,duringnormaloperationandduringanticipatedoperationaloccurrencestheSafetyLimitwillnotbeviolated.Inotherwords,atleast99.9%ofthefuelrodsinthecorewouldnotbeexpectedtoexperienceboilingtransition.ThemethodologyusedtoestablishtheHCPRoperatinglimitsisdescribedinPL-NF-90-00l.Insert6TheHCPRoperatinglimitassuressufficientconservatisminplantoperationsuchthat,Insert7fractionoffuelrodsinboilingtransitionforvariousHCPRvalues.Insert8duringananticipatedoperationaloccurrenceatleast99.9%ofthefuelrodswouldnotbeexpectedtoexperienceboilingtransition.Insert90ANFfuelismonitoredusingtheXN-3CriticalPowerCorrelation.ANFhasdeterminedthatthiscorrelationprovidessufficientconservatismtoprecludetheneedforanypenaltyduetochannelbow.TheconservatismhasbeenevaluatedbyANFtobegreaterthanthemaximumexpectedhCPR(0.02)duetochannelbowinC-latticeplantsusingchannelsforonlyonebundlelifetime.SinceSusquehannaSESUnit2isaC-latticeplantanduseschannelsforonlyonebundlelifetime,monitoringoftheHCPRlimitwiththeXN-3CriticalPowerCorrelationisconservativewithrespecttochannelbowandaddressestheconcernsofNRCBulletinNo.90-02entitled"LossofThermalMarginCausedbyChannelBoxBow." j%IplI1 Insert10assurethatatleast99.9%ofthefuelrodsarenot'expectedtoexperienceboilingtransition.TheHCPRoperatinglimitsareadjustedbasedonmeasuredscramtimedatainSpecification3.2.3toassurethevalidityofthetransientanalyses.Insert11degradationinthermalmarginbesuchthatatleast99.9%ofthefuelrodsinthecorearenotexpectedtoexperienceboilingtransition,Insert12Toassurethatatleast99.9%ofthefuelrodsarenotexpectedtoexperienceboilingtransitionduringanyanticipatedoperationaloccurrence,themostlimitingtransientshavebeenanalyzed.Insert13ThelimitingtransientyieldsthelargestrequiredHCPRoperatinglimit.TherequiredHCPRoperatinglimitsasfunctionsofcorepower,coreflow,andplantequipmentavailabilityconditionarepresentedinFigures3.2.3-1through3.2.3-4.Insert14The,transientanalysestodeterminetheHCPRoperatinglimitsareperformed'singmethodsdescribedinPL-NF-90-001.CertainofthepressurizationtransientsareanalyzedstatisticallyassumingascraminsertionversustimecurvewhichisfasterthantheTechnicalSpecification3.1.3.3,limits.TheHCPRoperatinglimitsareadjustedbasedonmeasuredscramtimedata.Insert15atleast99.9%ofthefuelrodsarenotexpectedtoexperienceboilingtransitionInsert16Figures3.2.3-2,3.2.3-3,and3.2.3-4definethepowerdependentHCPRoperatinglimitswhichassurethatatleast99.9%ofthefuelrodsarenotexpectedtoexperienceboilingtransitionduringthelimitingevent'(i.e.,FeedwaterController'Failure,RodWithdrawalError,orLoadRejectionWithoutHainTurbineBypassoperable)initiatedfromareducedpowercondition..Insert17Inaddition,theHCPRlimitsforsingle-loopoperationprote'ctagainsttheeffectsoftheRecirculationPumpSeizureAccident.Thatis,foroperationinsingle-loopwithanoperatingHCPRlimit>1.30,theradiologicalconsequencesofapumpseizureaccidentfromsingle-loopoperatingconditionsarebutasmallfractionof10CFR100guidelines.Insert18Onefuelassemblyshallcontain78fuelrods,oneinertrod,and2waterrods.Allotherfuelassembliesshallcontain Insert19'1'ONTROLRODASSEMBLIES5.3.2Thereactorcoreshallcontain185controlrodassembliesconsistingoftwodifferentdesigns.The"originalequipment"designconsistsofacruciformarrayofstainlesssteeltubescontaining143inchesofboroncarbide(B4C)powdersurroundedbyastainlesssteelsheath.The"replacement"controlbladedesignconsistsofacruciformarrayofstainlesssteeltubescontaining143inchesofboroncarbide(B4C)powdernearthecenterofthecruciform,and143inchlongsolidhafniumrodsattheedgesofthecruciform,allsurroundedbyastainlesssteelsheath.
NOSIGNIFICANTHAZARDSCONSIDERATIONS~~ThefollowingthreequestionsareaddressedforeachoftheproposedTechnicalSpecificationchanges:1.Doestheproposedchangeinvolveasignificantincreaseintheprobabilityorconsequencesofanaccidentpreviouslyevaluated?2.Doestheproposedchangecreatethepossibilityofanewordifferentkindofaccidentfromanyaccidentpreviouslyevaluated?3.Doestheproposedchangeinvolveasignificantreductioninamarginofsafety?Secifications1.0-Def'nitionsand34.2.3MinimumCriticalPowerRatioThechangestothesespecificationssupportnewHCPRoperatinglimitsbasedonthePP&LreactoranalysismethodsdescribedinReloadSummaryReportReference3.ThelimitscalculatedforU2C5willbeafunctionofscramspeed.Therefore,theformatforSpecification3/4.2.3haschangedsignificantlyandthenewdefinitionisrequired.1.No.TheHCPRoperatinglimitsforU2C5weregeneratedwiththePP&LreactoranalysismethodsdescribedinPL-NF-90-001(SeeReloadSummaryReportReference3).TheU2C5NCPRoperatinglimitsarepresentedasNCPRversusPercentofRatedCoreFlowandNCPRversusPercentCoreThermalPower.Theselimitscovertheallowedoperatingrangeofpowerandflow.AsspecifiedinPL-NF-90-001,sixmajoreventswereanalyzed.Theseeventscanbedividedintotwocategories:core-widetransientsandlocaltransients.Thecore-widetransienteventsanalyzedwere:1)GeneratorLoadRejectionWithoutBypass(GLRWOB),2)FeedwaterControllerFailure(FWCF),3)RecirculationFlowControllerFailure-IncreasingFlow(RFCF),and4)LossofFeedwaterHeating(LOFWH)AsdiscussedinPL-NF-90-001,theothercore-widetransientsarenon-limiting(i.e.,wouldproducelowercalculated~CPRsthanoneofthefoureventsanalyzed).Thelocaltransienteventsanalyzedwere:1)RodWithdrawalError(RWE),and2)FuelLoadingError(FLE).Thefuelloadingerrorevaluationincludesanalysisofbothrotatedandmislocatedfuelbundles.Page1of8 SufficientanalyseswereperformedtodefinetheHCPRoperatinglimitsasafunctionofcorepowerandcoreflow.Analyseswerealsope}formedtodetermineHCPRoperatinglimitsforthreeplantequipmentavailabilityconditions:1)TurbineBypassandEOC-RPToperable,2)TurbineBypassinoperable,and3)EOC-RPTinoperable.Core-WideTransientsThePP&LRETRAN'odelandmethodsdescribedinPL-NF-89-005andPL-NF-90-001(SeeReloadSummaryReportReferences2and3)wereusedtoanalyzetheGLRWOB,FWCF,andRFCFevents.The~CPRswereevaluatedusingtheXN-3CriticalPowerCorrelation(SeeReloadSummaryReportReference26)andthemethodologydescribedinPL-NF-90-001(SeeReloadSummaryReportReference3).TheGLRWOBandFWCFeventswereanalyzedintwodifferentways(asdescribedinPL-NF-90-001):1)Deterministic'analysesusingthe.TechnicalSpecificationscramspeed.(minimum',allowed);2)StatisticalCombinationofUncertainty(SCU)analysesatanaveragescramspeedof4.2feet/second.Thus,theTechnicalSpecificationHCPRoperatinglimitscalculatedforU2C5willbeafunctionofscramspeed.TheLOFWHeventwasconservativelyanalyzedbyPP&LusingthesteadystatecorephysicsmethodsandprocessdescribedinReloadSummaryReportReferences1and3,andtheLOFWHeventresultswerefoundtobeboundedbyresultsoftheotherthreecore-widetransients.TheminimumHCPRoperatinglimitrequiredfortheU2C5LOFWHeventis1.17.ResultsoftheGLRWOB,FWCF,andRFCFeventsarepresentedinReloadSummaryReportTables3,4,and5,respectively.LocalTransientsThefuelloadingerror(rotatedandmislocatedbundle)andtheRodWithdrawalError(RWE)wereanalyzedusingthemethodologydescribedinPL-NF-90-001.Theresultsoftheseanalysesapplytoallthreeplantequipmentavailabilityconditionspreviouslydescribed,andtheresultsareindependentofscramspeed.TheRWEanalysissupportstheuseofboththeDuralife160CcontrolbladesandaRodBlockHonitorsetpointof108X.TheHCPRoperatinglimitsthatresultfromtheanalysesoftheseeventsarepresentedinReloadSummaryReportTable6.Theseeventsarenon-limitingforU2C5.Basedontheabove,themethodologyusedtodevelopthenewHCPRoperatinglimitsfortheTechnicalSpecificationsdoesnotinvolveasignificantincreaseintheprobabilityorconsequencesofanaccidentpreviouslyevaluated.Page2of8 2.No.Themethodologyandresultsdescribedabovecanonlybeevaluatedfortheireffectontheconsequencesofanalyzedevents;theycannotcreatenewones.Theconsequencesofanalyzedeventswereevaluatedinl.above.3.No.Basedonl.above,themethodologyusedtogeneratetheHCPRoperatinglimitsforU2C5isbothsufficientandconservative.Furthermore,althoughthemethodology(PL-NF-90-001)isstillundergoingNRCreview,PP&Lbelievesitmeetsallpertinentregulatorycriteriaforuseinthisapplication.Therefore,itsusewillnotresultinasignificantdecreaseinanymarginofsafety.Secification2.1.2-ThermalPowerHihPressureandHihFlow1.No.ThePP&LStatisticalCombinationofUncertainties(SCU)methodsaredescribedinReloadSummaryReportReference3.WhenusingtheSCUmethodology,thetransientaCPRandtraditionalHCPRsafetylimitanalysesarecombinedthroughasingleunifiedanalysis.Asaresult,theThermalPower,HighPressureandHighFlowsafetylimitisnotrepresentedasasingleHCPRvalue,butratherasaconditionsuchthatatleast99.9Xofthefuelrodsinthecoreareexpectedtoavoidboilingtransition.AsdescribedinAppendixBofReloadSummaryReportReference3,thiscombinedanalysisandcompliancewiththeresultingsafetylimitconditionaresupportedby"HCPRSafetyLimittype"calculations.The"HCPRSafetyLimittype"calculationswereperformedbyANFusingthesamemethodsandassumptionsasthetraditionalHCPRSafetyLimitanalysis.AsshowninReloadSummaryReportTable1,aHCPRvalueof1.06intwoloopoperationassuresthatlessthan0.1Xofthefuelrodsareexpectedtoexperienceboilingtransition.Themethodologyandgenericuncertaintiesusedinthe"HCPRSafetyLimittype"calculationsareprovidedinXN-NF-80-19(P)(A),Volume4Revision1(ReloadSummaryReportReference6).TheuncertaintiesusedfortheSSESU2C5"HCPRSafetyLimittype"calculationsarethesameasforU2C4andarepresentedinReloadSummaryReportReference18.TheresultsarepresentedinReloadSummaryReportTablel.DuringU2C5,asinthepreviouscycle,theANF9x9fuelwillbemonitoredusingtheXN-3criticalpowercorrelation.ANFhasdeterminedthatthiscorrelationprovidessufficientconservatismtoprecludetheneedforanypenaltyduetochannelbow'duringU2C5.SusquehannaSESisaC-latticeplantanduseschannelsforonlyonefuelbundlelifetime.TheconservatismhasbeenevaluatedbyANFtobegreaterthanthemaximumexpected~CPR(0.02)duetochannelbowinC-latticeplantsusingchannelsforonlyonefuelbundlelifetime.Therefore,themonitoringoftheHCPRlimitisconservativewithrespecttochannelbowandaddressestheconcernsofNRCBulletinNo.90-02.ThedetailsoftheevaluationperformedbyANFhavebeenreportedgenericallytotheNRC(ReloadSummaryReportReference17).Page3of8 Il~11PI1 2.No.Basedontheabove,themethodologyusedtodevelopthenewsafetylimitconditionfortheTechnicalSpecificationdoesnotinvolveasignificantincreaseintheprobabilityorconsequencesofanaccidentpreviouslyevaluated.Themethodologyandresultsdescribedabove.canonlybeevaluatedfortheireffectontheconsequencesofanalyzedevents;theycannotcreatenewones.'Theconsequencesofanalyzedeventswereevaluatedinl.above.3.No.Basedonl.above,themethodology'sed,to'eneratetheThermal,Power,HighPressureandHighFlowsafetylimitconditionforU2C5isbothsufficientandconservative.Furthermore,althoughthemethodology(PL-NF-90-001)isstillundergoingNRCreview,PP&Lbelievesitmeetsallpertinentregulatorycriteriaforuseinthisapplication.Therefore,itsusewillnotresultinasignificantdecreaseinanymarginofsafety.Secification34.4.1RecirculationSstem-TwoLoo0erationThechangestothisspecification(i.e.,Figure3/4.1.1.1-1)reflectcycle-specificstabilityanalyses.1.No.COTRANcorestabilitycalculationswereperformedforUnit2Cycle5todeterminethedecayratiosatpredeterminedpower/flowconditions.TheresultingdecayratioswereusedtodefineoperatingregionswhichcomplywiththeinterimrequirementsofNRCBulletinNo.88-07,Supplement1"PowerOscillationsinBoilingWaterReactors".Asinthepreviouscycle,RegionsBandCoftheNRCBulletinhavebeencombinedintoasingleregion(i.e.,RegionII),andRegionAoftheNRCBulletincorrespondstoRegionI.RegionIhasbeendefinedsuchthatthedecayratioforallallowablepower/flowconditionsoutsideoftheregionislessthan0.90.Tomitigateorprevent.theconsequencesofinstability,entryintothisregionrequiresamanualreactorscram.RegionIforUnit2Cycle5isslightlydifferentthanRegionIforthepreviouscycle.RegionIIhasbeendefinedsuchthatthedecayratioforallallowablepower/flowconditionsoutsideoftheregion(excludingRegionI)islessthan0.75.ForUnit2Cycle5,RegionIImustbeimmediatelyexitedifitisinadvertentlyentered.SimilartoRegionI,RegionIIisslightlydifferentthaninthepreviouscycle.Inadditiontotheregiondefinitions,PP&LhasperformedstabilitytestsinSSESUnit2duringinitialstartupofCycles2,3and4todemonstratestablereactoroperationwithANF9x9fuel.ThetestresultsforU2C2(SeeReloadSummaryReportReference20)showverylowdecayratioswithacorecontaining324ANF9x9fuelassemblies.Page4of8 2.No.3.No.Figure3/4.1.1.1-1isalsoreferencedbySpecification3/4.4.1.1.2,whichgovernsSingleLoopOperation(SLO).TheevaluationaboveappliesunderSLOconditionsaswell.Basedontheabove,operationwithinthelimitsspecifiedbytheproposedchangeswillensurethattheprobabilityandconsequencesofunstableoperationwillnotsignificantlyincrease.Themethodologydescribedabovecanonlybeevaluatedforitseffectontheconsequencesofunstableoperation;itcannotcreatenewevents.Theconsequenceswereevaluatedin1.above.PP8LbelievesthattheuseofTechnicalSpecificationsthatcomplywithNRCBulletin88-07,Supplement1,andthetestsandanalysesdescribedabove,willprovideassurancethatSSESUnit2Cycle5willcomplywithGeneralDesignCriteria12,SuppressionofReactorPowerOscillations.ThisapproachisconsistentwiththeSSESUnit2Cycle4methodforaddressingcorestability(SeeReloadSummaryReportReferences4and5).Secification34.4.1RecirculationSstem-SinleLoo0erationThechangestothisspecificationareeitherevaluatedaboveorareeditorialinnature.ThereferencetoSpecification2.1.2isdeletedbecausethenewlimit(seeEvaluationofSpecification2.1.2above)willnotchangeforSingleLoopOperation.TheadditionalfiguresreferencedfromSpecification3.2.3aretheresultoftheHCPRoperatinglimitanalysesevaluatedabove.TheothertwochangestoSurveillanceRequirements4.4.1.1.2.6,correctinadvertenttypographicalerrorsthatoccurredduringtheissuanceofAmendment60totheUnit2TechnicalSpecifications.1.No.ThechangesareeitherevaluatedelsewhereinthisNoSignificantHazardsConsiderationsevaluation,orareentirelyeditorialinnature.2.No.Seel.above.3.No.Seel.above.Secification5.3.1-FuelAssembliesThissectionhasbeenchangedtodescribetheactualcoreconfigurationforU2C5,whichincludesoneinert(i.e.,solidzircaloy-2)rod.I<1.No.TheinertrodwasusedtorepairafuelassemblythatfailedduringU2C2.ThisrepairedassemblywasanalyzedandfoundtobeacceptableinsupportofU2C4operation,whichwasapprovedbytheNRC(SeeReloadSummaryReportReference5).Basedontheabove,useoftherepairedassemblydoesnotinvolveasignificantincreaseintheprobabilityorconsequencesofanaccidentpreviouslyevaluated.Page5of8 ~iie2.No.SeeIabove.3.No.SeeIabove.Secification5.3.2-ControlRodAssembliesThechangestothisspecificationareprovidedinordertorecognizethereplacementcontrolbladedesignbeingutilizedinU2C5.1.No.ThemaindifferencesbetweenthereplacementDuralife160Ccontrolbladesandtheoriginalequipmentcontrolbladesare:1a)theDuralife160Ccontrolbladesutilizethree'solidhafniumrodsateachedgeofthecruciformtoreplacethethreeB~Crodsthataremostsusceptibletocrackingandtoincreasecontrolbladelife;1>b)theDuralife160CcontrolbladesutilizeimprovedB~Ctubematerial(i.e.highpuritystainlesssteelvs.commercialpuritystainlesssteel)toeliminatecrackingintheremainingB4Crodsduringthelifetimeofthecontrolblade;c)theDuralife160CcontrolbladesutilizeGE'screvice-freestructuredesign,whichincludesadditionalBCtubesinplaceofthestiffeners,anincreasedsheaththickness,afulllengthweldtoattachthehandleandvelocitylimiter,andadditionalcoolantholesatthetopandbottomofthesheath;d)theDuralife160Ccontrolbladesutilizelowcobalt-bearingpinandrollermaterialsinplaceofstellitewhichwaspreviouslyutilized;e)theOuralife160Ccontrolbladehandlesarelongerbyapproximately3.1inchesinordertofacilitatefuelmoveswithinthereactorvesselduringrefuelingoutagesatSusquehannaSES;andf)theDuralife160Ccontrolbladesareapproximately16poundsheavierasaresultofthedesignchangesdescribedabove.TheOuralife160Ccontrolbladehasbeenevaluatedtoassureithasadequatestructuralmarginunderloadingduetohandling,andnormal,emergency,andfaultedoperatingmodes.Theloadsevaluatedincludethoseduetonormaloperatingtransients(scramandjogging),pressuredifferentials,thermalgradients,seismicdeflection,irradiationgrowth,andallotherlateralandverticalloadsexpectedforeachcondition.TheDuralife160Ccontrolbladestresses,strains,andcumulativefatiguehavebeenevaluatedandresultinanacceptablemargintosafety.ThecontrolbladeinsertioncapabilityhasbeenevaluatedandfoundtobeacceptableduringallmodesofplantoperationwithinthePage6of8 ~~ limitsofplantanalyses.TheDuralife160Ccontrolbladecouplingmechanismisequivalenttotheoriginalequipmentcouplingmechanism,andisthereforefullycompatiblewiththeexistingcontrolroddrivesintheplant.Inaddition,thematerialsusedintheDuralife160Carecompatiblewiththereactorenvironment.Theimpactoftheincreasedweightofthecontrolbladesontheseismicandhydrodynamicloadevaluationofthereactorvesselandinternalshasbeenevaluatedandfoundtobenegligible.Withtheexceptionofthecrevice-freestructureandtheextendedhandle,theDuralife160CbladesareequivalenttotheNRCapprovedHybridIControlBladeAssembly(SeeReloadSummaryReportReference9).Themechanicalaspectsofthecrevice-freestructurewereapprovedbytheNRCforallcontrolbladedesignsinReloadSummaryReportReference10.Aneutronicsevaluationofthecrevice-freestructurefortheDuralife160CdesignwasperformedbyGEusingthesamemethodologyaswasusedfortheHybridIcontrolbladesinReloadSummaryReportReference9.ThesecalculationswereperformedfortheoriginalequipmentcontrolbladesandtheDuralife160CcontrolbladesdescribedaboveassuminganinfinitearrayofANF9x9fuel.TheDuralife160Ccontrolbladehasaslightlyhigherworththantheoriginalequipmentdesign,buttheincreaseinworthiswithinthecriterionfornuclearinterchangeability.TheincreaseinbladeworthhasbeentakenintoaccountintheappropriateU2C5analyses.However,asstatedinReloadSummaryReportReference9,thecurrentpracticeinthelatticephysicsmethodsistomodeltheoriginalequipmentall6Ccontrolbladeasnon-depleted.TheeffectsofcontrolbladedepIetiononcoreneutronicsduringacyclearesmallandareinherentlytakenintoaccountbythegenerationofatargetk-effectiveforeachcycle.Asdiscussedabove,theneutronicscalculationsofthecrevice-freestructure,showthatthenon-depletedDuralife160Ccontrolbladehasdirectnuclearinterchangeabilitywiththenon-depletedoriginalequipmentallBCdesign.TheDuralife160Calsohasthesameend-of-lifereactivityworthreductionlimitastheallB~Cdesign.Therefore,theDuralife160Ccanbeusedwithoutchangingthecurrentlatticephysicsmodelaspreviouslyap'provedfortheHybridIcontrolblades(ReloadSummaryReportReference9).Theextendedhandleandthecrevice-freestructurefeaturesoftheDuralife160CcontrolbladesresultinaonepoundincreaseinthecontrolbladeweightoverthatoftheHybridIblades,andasixteenpoundincreaseovertheSusquehannaSESoriginalequipmentcontrolblades.InReloadSummaryReportReference9,theNRCapprovedtheHybridIcontrolbladewhichweighsless(bymorethanonepound)thantheDlatticecontrolblade.ThebasisoftheControlRodDropAccidentanalysiscontinuestobeconservativewithrespecttocontrolroddropspeedsincetheDuralife160CcontrolbladeweighslessthantheDlatticecontrolblades,andtheheavierDlatticecontrolbladespeedisusedinPage7of8 yetJ'urtII4 theanalysis.Inaddition,GEperformedscramtimeanalysesanddeterminedthattheDuralife160Ccontrolbladescramtimesarenotsignificantlydifferentthantheoriginalequipmentcontrolbladescramtimes.ThecurrentSusquehannaSESmeasuredscramtimesalsohaveconsiderablemargintotheTechnicalSpecificationlimits.SincetheincreaseinweightoftheDuralife160CcontrolbladesdoesnotsignificantlyincreasethemeasuredscramspeedsandthesafetyanalyseswhichinvolvereactorscramsutilizeeithertheTechnicalSpecificationlimitscramtimesorarangeofscramtimesuptoandincludingtheTechnicalSpecificationscramtimes,theoperatinglimitsareapplicabletoU2C5withDuralife"160Ccontrolblades.SincetheDuralife160CcontrolbladescontainsolidhafniumrodsinlocationswheretheBCtubeshave'ailed,andtheremainingB<Crodsaremanufacturalwithanimprovedtubingmaterial(highpuritystainlesssteelvscommercialpuritystainlesssteel),boronlossduetocrackingisnotexpected.Therefore,therequirementsofIEBulletin79-26,Revision1donotapplytotheDuralife160Ccontrolblades.However,PP&Lplanstocontinuetrackingthedepletionofeachcontrolbladeanddischargeanycontrolbladepriortoatenpercentlossinreactivityworth.Basedonthediscussionabove,thenewcontrolbladesproposedtobeutilizedinU2C5donotinvolveasignificantincreaseintheprobabilityorconsequencesofanaccidentpreviouslyevaluated.Thereplacementbladescanonlybeevaluatedfortheireffectivenessaspartoftheoverallreactivitycontrolsystem,whichisevaluatedintermsofanalyticalconsequencesin1.above.Sincetheydonotcauseanysignificantchangeinsystemoperationorfunction,noneweventsarecreated.Theanalysesdescribedinl.aboveindicatethatthereplacementbladesmeetallpertinentregulatorycriteriaforuseinthisapplication,andareexpectedtoeliminatetheboronlossconcernsexpressedinIEBulletin79-26,Revision1.Therefore,theproposedchangedoesnotresultinasignificantdecreaseinanymarginofsafety.Page8of8 4011tte }}