ML17213B033: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(Created page by program invented by StriderTol)
Line 17: Line 17:


=Text=
=Text=
{{#Wiki_filter:hThisPageIntentionaIlyLeftBlank,ST.LUCli:-ll:lIT13/42-5.ssosisooosssosos<<'PDRADOCK05000335'O'.PDR  
{{#Wiki_filter:hThisPageIntentionaI lyLeftBlank,ST.LUCli:-ll:lIT13/42-5.ssosisooos ssosos<<'PDRADOCK05000335'O'.PDR  
/
/
POWERDISTRIBUTIONLIMITSSURVEILLANCEREQUIREMENTScontinuedc.VerifyingthattheAXIALSHAPEINDEXismaintainedwithintheallowablelimitsofFigure3.2-2,where100percentofmaximumallowablepowerrepresentsthemaximumTHERMALPOWERallowedbythefollowingexpression:MxNwhere:1.MisthemaximumallowableTHERMALPOWERlevelfortheexistingReactorCoolantPumpcombination.2.NisthemaximumallowablefractionofRATEDTHERMALPOWERasdeterminedbytheFxcurveofFigure3.2-3..4.2.1.4IncoreDetectorMonitoringSystems-TheincoredetectormonitorsystemmaybeusedformonitoringthecorepowerdistributionbyverifyingthattheincoredetectorLocalPowerDensityalarms:a.Areadjustedtosatisfytherequirementsofthecorepowerdistributionmapwhichshallbeupdatedatleastonceper31daysofaccumulatedoperationinMODE1.b.HavetheiralarmsetpointadjustedtolessthanorequaltothelimitsshownonFigure3.2-1whenthefollowingfactorsareappropriatelyincludedinthesettingofthesealarms:.1.Ameasurementcalculationaluncertaintyfactorof1.07*,2.Anengineeringuncertaintyfactorof1.03,3.Alinearheatrateuncertaintyfactorof1.01duetoaxialfueldensificationandthermalexpansion,and4.ATHERMALPOWERmeasurementuncertaintyfactorof1.02.*Anuncertaintyfactorof1.10applieswheninLOADFOLLOWOPERATION.gIfthecoresystembecomesinoperable,reducepowertoMxNwithin4hoursandmonitorlinearheatrateinaccordancewithSpecification4.2.1.ST.LUCIE-UNIT13/42-2AmendmentNo.  
POWERDISTRIBUTION LIMITSSURVEILLANCE REQUIREMENTS continued c.Verifying thattheAXIALSHAPEINDEXismaintained withintheallowable limitsofFigure3.2-2,where100percentofmaximumallowable powerrepresents themaximumTHERMALPOWERallowedbythefollowing expression:
/~~~'3/4.2:~PONER0ISTRIBUTIONLINITSBASES3/4.2.1LINEARHEATRATEThelimitationoflinearheatrateensuresthatintheeventofaLOCA,thepeaktemperatureofthefuelcladdingwillnotexceed2200'F.Eitherofthetwocorepowerdistributionmonitoringsystems,theExcoreDetectorMonitoringSystemandtheIncoreDetectorthonitoringSystem,provideadequatemonitoringofthecorepowerdistributionandarecapableofverifyingthatthelinearheatratedoesnotexceeditslimits.TheExcoreDetectorMonitoringSystemperformsthisfunctionbycontinuouslymonitoringtheAXIALSHAPEINDEXwiththeOPERABLEquadrantsymmetricexcoreneutron.fluxdetectorsandverifyingthattheAXIALSHAPEINDEXismaintainedwithintheallowablelimitsofFigure3.2-2.InconjuctionwiththeuseoftheexcoremonitoringsystemandinestablishingtheAXIALSHAPEINDEXlimits,thefollowingassumptionsaremade:1)theCEAinsertionlimitsofSpecifications3.1.3.5and3.1.3.6aresatisfied,2)theAZIMUTHALPOllERTILTrestrictionsofSpecification3.2.4aresatisfied,and3)theTOTALPLANARRADIALPEAKINGFACTORdoesnotexceedthelimitsofSpecification3.2.2.TheIncoreDetectortlonitoringSystemcontinuouslyprovidesadirectmeasureofthepeakingfactorsandthealarmswhichnavebeenestablishedfortheindividualincoredetectorsegmentsensurethatthepeaklinearheatrateswillb.maintainedwithintheallowablelimitsofFigure3.2-1.Thesetpointsforthesea'farmsincludeallowances,setintheconservativedirections,for1)ameasurement-calculationaluncertaintyfactorof1.07*,2)anengineeringunceit.aintyfactorof1.03,3)anallowanceof1.01foraxialfueldensificationandthermalexpansion,and4)aTHERMALPOWERmeasurementuncertaintyfactorof1.02.3/4.2.2,3/4.2.3and3/4.2.4TOTALPLANARANDINTEGRATEDRADIALPEAKINGFACTORSFyANDFrANDAZIMUTHALPOWERTILTTqThelimitationonFTandTareprovidedtoensurethattneassumptionsusedintheanalysisforBtablisflingtheLinearHeatRateandLocalPowerDensity-HighLCOsandLSSSsetpointsremainvalidduringoperationatthevariousallowableCEAgroupinsertionlimits.ThelimitationsonFTrandTqareprovidedtoensurethattheassumptions~Anuncertaintyfactorof1.10applieswheninLOADFOLLOWOPERATION.ST.LUCIE-UNIT183/42-1 O.
MxNwhere:1.Misthemaximumallowable THERMALPOWERlevelfortheexistingReactorCoolantPumpcombination.
2.1SAFETYLIMITSBASES2.1.1REACTORCORETherestrictionsofthissafetylimitpreventoverheatingofthefuelcladdingandpossiblecladdingperforationwhichwouldresultinthereleaseoffissionproductstothereactorcoolant.Overheatingofthefuelispreventedbymaintainingthesteadystatepeaklinearheatratebelowthelevelatwhichcenterlinefuelmeltingwilloccur.Overheatingofthefuelcladdingispreventedbyrestrictingfueloperationtowithi'nthenucleateboilingregimewheretheheattransfercoefficientislargeandthecladdingsurfacetemperatureisslightlyabovethecoolantsaturationtemperature.Operationabovetheupperboundaryofthenucleateboilingregimecouldresultinexcessivecladdingtemperaturesbecauseoftheonsetofdeparturefrcmnucleateboiling(DNB)andtheresultantsharpreductioninheattransfercoefficient.DNBisnotadirectlymeasurableparameterduringoperationandthereforeTHERMALPOWERandReactorCoolantTemperatureandPressurehavebeenrelatedtoDNBthroughtheExxonXNBcorrelation.TheXNBDNBcorrelationhasbeendevelopedtopredicttheDNBfluxandthelocationofDNBforaxiallyuniformandnon-uniformheatfluxdistributions.ThelocalDNBheatfluxration,DNBR,definedastheratiooftheheatfluxthatwouldcauseDNBataparticularcorelocationtothelocalheatflux,isindicativeofthemargintoDNB.TheminimumvalueoftheDNBRduringsteadystateoperation,normaloperationaltransients,andanticipatedtransientsislimitedto1.22usingtheXNBDNBRcorrelation.Thisvaluecorrespondstoa95percentprobabilityata95percentconfidencelevelthatDNBwillnotoccurandischosenasanappropriatemargintoDNBforalloperatingconditions.ThecurvesofFigure2.1-1showthelociofpointsofTHERMALPOWER,ReactorCoolantSystempressureandmaximumcoldlegtemperature'ithfourReactorCoolantPumpsoperatingforwhichtheminimumDNBRisnolessthantheDNBRlimitforthefamilyofaxialshapesandcorrespondingradialpeaksshowninFigureB2.1-1.ThelimitsinFigure2.1-1werecalculatedforreactorcoolantinlettemperatureslessthanorequalto580'F.Thedashedlineof580'Fcoolantinlettemperatureisnotasafetylimit;however,operationabove580'Fisnotpossiblebecauseoftheactuationofthemainsteamlinesafetyvalveswhichlimitthemaximumvalueofreactorinlettemprature.ReactoroperationatTHERMALPOWERlevelshigherthan112$ofRATEDTHERMALPOWERisprohibitedbythehighpowerleveltripsetpointspecifiedinTable2.1-1.Theareaofsafeoperationisbelowandtotheleftoftheselines.ST.LUCIEUNIT1B2-1 SAFETYLIMITSBASESTheconditionsfortheThermalMargi'nSafetyLimitcurvesinFigure2.1-1tobevalidareshownonthefigure.ThereactorprotectivesysteminccmbinationwiththeLimitingConditionsforOperation,isdesignedtopreventanyanticipatedcombinationoftransientconditionsforreactorcoolantsystemtemperature,pressure,andthermalpowerlevelthatwouldresultinaDNBRoflessthantheDNBRlimitandprecludethe)existenceofflowinstabilities.2.1.2REACTORCOOLANTSYSTEMPRESSURETherestrictionofthisSafetyLimitprotectstheintegrityoftheReactorCoolantSystemforoverpressurizationandtherebypreventsthereleaseofradionuclidescontainedinthereactorcoolantfromreachingthecontainmentatmosphere.ThereactorpressurevesselandpressurizeraredesignedtoSectionIIIoftheASMECodeforNuclearPowerPlantcomponentswhichpermitsamaximumtransientpressureof11(g(2750psia)ofdesignpressure.TheReactorCoolantSystempiping,valvesandfittings,aredesignedtoANSIB31.7,ClassIwhichpermitsamaximumtransientpressureoflit@(2750psia)ofccmponentdesignpressure.TheSafetyLimitof2750psiaisthereforeconsistentwiththedesigncriteriaandassociatedcoderequiranents.TheentireReactorCool.antSystemishydrotestedat3125psiatodemonstrateintegritypriortoinitialoperation.ST.LUCIE-UNIT1B2-3AmendmentNo.
2.Nisthemaximumallowable fractionofRATEDTHERMALPOWERasdetermined bytheFxcurveofFigure3.2-3..4.2.1.4IncoreDetectorMonitoring Systems-Theincoredetectormonitorsystemmaybeusedformonitoring thecorepowerdistribution byverifyingthattheincoredetectorLocalPowerDensityalarms:a.Areadjustedtosatisfytherequirements ofthecorepowerdistribution mapwhichshallbeupdatedatleastonceper31daysofaccumulated operation inMODE1.b.HavetheiralarmsetpointadjustedtolessthanorequaltothelimitsshownonFigure3.2-1whenthefollowing factorsareappropriately includedinthesettingofthesealarms:.1.Ameasurement calculational uncertainty factorof1.07*,2.Anengineering uncertainty factorof1.03,3.Alinearheatrateuncertainty factorof1.01duetoaxialfueldensification andthermalexpansion, and4.ATHERMALPOWERmeasurement uncertainty factorof1.02.*Anuncertainty factorof1.10applieswheninLOADFOLLOWOPERATION.
2.2LIMITINGSAFETYSYSTEMSETTINGSBASESReactorCoolantFlow-Low(Continued)reactorcoolantpumpsaretakenoutofservice.Thelow-flowtripsetpointsandAllowableValuesforthevariousreactorcoolantpumpcombinationshavebeenderivedinconsiderationofinstrumenterrorsandresponsetimesofequipmentinvolvedtomaintaintheDNBRabovetheDNBRlimitundernormaloperationandexpectedtransients.Forreactoroperationwithonlytwoorthreereactorcoolantpumpsoperating,theReactorCoolantFlow-Lowtripsetpoints,thePowerLevel-Hightripsetpoints,andtheThermalMargin/LowPressuretripsetpointsareautomaticallychangedwhenthepumpconditionselectorswitchismanuallysettothedesiredtwo-orthree-pumpposition.Changingthesetripsetpointsduringtwoandthreepumpoperationpreventstheminimum.valueofDNBRfrcmgoingbelowtheDNBRlimitduringnormaloperationaltransientsandanticipatedtransientswhenonlytwoorthreereactorcoolantpumpsareoperating.PressurizerPressure-HighThePressurizerPressure-Hightrip,backedupbythepressurizercodesafetyvalvesandmainsteamlinesafetyvalves,providesreactorcoolantsystemprotectionagainstoverpressurizationintheeventoflossofloadwithoutreactortrip.Thistrip~'ssetpointis100psibelowthenaninalliftsetting(2500psia)ofthepressurizercodesafetyvalvesanditsconcurrentoperationwiththepower-operatedreliefvalvesavoidstheundesirableoperationofthepressurizercodesafetyvalves.ContairmentPressure-HighTheContairmentPressure-Hightripprovidesassurancethatareactortripisinitiatedconcurrentlywithasafetyinjection.SteamGeneratorPressure-LowTheSteamGeneratorPressure-Lowtripprovidesprotectionagainstanexcessiverateofheatextractionfromthesteamgeneratorsandsubsequentcooldownofthereactorcoolant.Thesettingof600psiaissufficientlybelowthefull-loadoperatingpointof800psigsoasnotST.LUCIE-,UNIT1B2-.5AnendmentNo.
gIfthecoresystembecomesinoperable, reducepowertoMxNwithin4hoursandmonitorlinearheatrateinaccordance withSpecification 4.2.1.ST.LUCIE-UNIT13/42-2Amendment No.  
LIMITINGSAFETYSYSTEMSETTINGSBASESThermalMarin/LowPressureTheThermalMargin/LowPressuretripisprovidedtopreventoperationwhentheDNBRislessthantheDNBRlimit.Thetripisinitiatedwheneverthereactorcoolantsystempressuresignaldropsbeloweither1887psiaoraccmputedvalueasdescribedbelow,whicheveris'igher.TheccmputedvalueisafunctionofthehigherofhTpowerorneutronpower,reactorinlettemperature,thenumberofreactorcoolantpumpsoperatingandtheAXIALSHAPEINDEX.Theminimumvalueofreactorcoolantflowrate,themaximumAXIMUTHALPOWERTILTandthemaximumCEAdeviationpermittedforcontinuousoperationareassumedinthegenerationofthistripfunction.'naddition,CEAgroupsequencinginaccordancewithSpecifications3.1.3.5and3.1.3.6isassumed.Finally,themaximuminsertionofCEAbankswhichcanoccurduringanyanticipatedoperationaloccurrencepriortoaPowerLevel-Hightripisassumed.TheThermalMargin/LowPressuretripsetpointsincludeappropriateallowancesforequipmentresponsetime,calculationalandmeasurementuncertainties,andprocessingerror.Afurtherallowanceof30psiaisincludedtocompensateforthetimedelayassociatedwithprovidingeffectiveterminationoftheoccurrencethatexhib1tsthemostrapiddecreaseinmargintotheDNBRlimit.AsymmetricSteamGeneratorTransientProtectiveTripFunctionASGTPTFTheASGTPTFconsistsofSteamGeneratorpressureinputstotheTM/LPcalculator,whichcausesareactortripwhenthedifferenceinpressurebetweenthetwosteamgeneratorsexceedsthetripsetpoint.TheASGTPTFisdesignedtoprovideareactortripforthoseeventsassociatedwithsecondarysystanmalfunctionswhichresultinasymmetricprimaryloopcoolanttemperatures.Themostlimitingeventisthelossofloadtoonesteamgeneratorcausedbyasinglemainsteamisolationvalveclosure.Theequipmenttripsetpointandallowablevaluesarecalculatedtoaccountforinstrumentuncertainties,andwillensureatripatorbeforereachingtheanalysissetpoint.ST.LUCIE-UNIT1B2-7  
/~~~'3/4.2:~PONER0ISTRIBUTIONLINITSBASES3/4.2.1LINEARHEATRATEThelimitation oflinearheatrateensuresthatintheeventofaLOCA,thepeaktemperature ofthefuelcladdingwillnotexceed2200'F.Eitherofthetwocorepowerdistribution monitoring systems,theExcoreDetectorMonitoring SystemandtheIncoreDetectorthonitoring System,provideadequatemonitoring ofthecorepowerdistribution andarecapableofverifying thatthelinearheatratedoesnotexceeditslimits.TheExcoreDetectorMonitoring Systemperformsthisfunctionbycontinuously monitoring theAXIALSHAPEINDEXwiththeOPERABLEquadrantsymmetric excoreneutron.fluxdetectors andverifying thattheAXIALSHAPEINDEXismaintained withintheallowable limitsofFigure3.2-2.Inconjuction withtheuseoftheexcoremonitoring systemandinestablishing theAXIALSHAPEINDEXlimits,thefollowing assumptions aremade:1)theCEAinsertion limitsofSpecifications 3.1.3.5and3.1.3.6aresatisfied, 2)theAZIMUTHAL POllERTILTrestrictions ofSpecification3.2.4aresatisfied, and3)theTOTALPLANARRADIALPEAKINGFACTORdoesnotexceedthelimitsofSpecification 3.2.2.TheIncoreDetectortlonitoring Systemcontinuously providesadirectmeasureofthepeakingfactorsandthealarmswhichnavebeenestablished fortheindividual incoredetectorsegmentsensurethatthepeaklinearheatrateswillb.maintained withintheallowable limitsofFigure3.2-1.Thesetpoints forthesea'farmsincludeallowances, setintheconservative directions, for1)ameasurement-cal culational uncertainty factorof1.07*,2)anengineering unceit.aintyfactorof1.03,3)anallowance of1.01foraxialfueldensification andthermalexpansion, and4)aTHERMALPOWERmeasurement uncertainty factorof1.02.3/4.2.2,3/4.2.3and3/4.2.4TOTALPLANARANDINTEGRATED RADIALPEAKINGFACTORSFyANDFrANDAZIMUTHAL POWERTILTTqThelimitation onFTandTareprovidedtoensurethattneassumptions usedintheanalysisforBtablisfling theLinearHeatRateandLocalPowerDensity-HighLCOsandLSSSsetpoints remainvalidduringoperation atthevariousallowable CEAgroupinsertion limits.Thelimitations onFTrandTqareprovidedtoensurethattheassumptions
~Anuncertainty factorof1.10applieswheninLOADFOLLOWOPERATION.
ST.LUCIE-UNIT183/42-1 O.
2.1SAFETYLIMITSBASES2.1.1REACTORCORETherestrictions ofthissafetylimitpreventoverheating ofthefuelcladdingandpossiblecladdingperforation whichwouldresultinthereleaseoffissionproductstothereactorcoolant.Overheating ofthefuelisprevented bymaintaining thesteadystatepeaklinearheatratebelowthelevelatwhichcenterline fuelmeltingwilloccur.Overheating ofthefuelcladdingisprevented byrestricting fueloperation towithi'nthenucleateboilingregimewheretheheattransfercoefficient islargeandthecladdingsurfacetemperature isslightlyabovethecoolantsaturation temperature.
Operation abovetheupperboundaryofthenucleateboilingregimecouldresultinexcessive claddingtemperatures becauseoftheonsetofdeparture frcmnucleateboiling(DNB)andtheresultant sharpreduction inheattransfercoefficient.
DNBisnotadirectlymeasurableparameter duringoperation andtherefore THERMALPOWERandReactorCoolantTemperatur eandPressurehavebeenrelatedtoDNBthroughtheExxonXNBcorrelation.
TheXNBDNBcorrelation hasbeendeveloped topredicttheDNBfluxandthelocationofDNBforaxiallyuniformandnon-uniform heatfluxdistributions.
ThelocalDNBheatfluxration,DNBR,definedastheratiooftheheatfluxthatwouldcauseDNBataparticular corelocationtothelocalheatflux,isindicative ofthemargintoDNB.TheminimumvalueoftheDNBRduringsteadystateoperation, normaloperational transients, andanticipated transients islimitedto1.22usingtheXNBDNBRcorrelation.
Thisvaluecorresponds toa95percentprobability ata95percentconfidence levelthatDNBwillnotoccurandischosenasanappropriate margintoDNBforalloperating conditions.
ThecurvesofFigure2.1-1showthelociofpointsofTHERMALPOWER,ReactorCoolantSystempressureandmaximumcoldlegtemperatur e'ithfourReactorCoolantPumpsoperating forwhichtheminimumDNBRisnolessthantheDNBRlimitforthefamilyofaxialshapesandcorresponding radialpeaksshowninFigureB2.1-1.ThelimitsinFigure2.1-1werecalculated forreactorcoolantinlettemperatures lessthanorequalto580'F.Thedashedlineof580'Fcoolantinlettemperature isnotasafetylimit;however,operation above580'Fisnotpossiblebecauseoftheactuation ofthemainsteamlinesafetyvalveswhichlimitthemaximumvalueofreactorinlettempratur e.Reactoroperation atTHERMALPOWERlevelshigherthan112$ofRATEDTHERMALPOWERisprohibited bythehighpowerleveltripsetpointspecified inTable2.1-1.Theareaofsafeoperation isbelowandtotheleftoftheselines.ST.LUCIEUNIT1B2-1 SAFETYLIMITSBASESTheconditions fortheThermalMargi'nSafetyLimitcurvesinFigure2.1-1tobevalidareshownonthefigure.Thereactorprotective systeminccmbination withtheLimitingConditions forOperation, isdesignedtopreventanyanticipated combination oftransient conditions forreactorcoolantsystemtemperature,
: pressure, andthermalpowerlevelthatwouldresultinaDNBRoflessthantheDNBRlimitandprecludethe)existenceofflowinstabilities.
2.1.2REACTORCOOLANTSYSTEMPRESSURETherestriction ofthisSafetyLimitprotectstheintegrity oftheReactorCoolantSystemforoverpressurization andtherebypreventsthereleaseofradionuclides contained inthereactorcoolantfromreachingthecontainment atmosphere.
Thereactorpressurevesselandpressurizer aredesignedtoSectionIIIoftheASMECodeforNuclearPowerPlantcomponents whichpermitsamaximumtransient pressureof11(g(2750psia)ofdesignpressure.
TheReactorCoolantSystempiping,valvesandfittings, aredesignedtoANSIB31.7,ClassIwhichpermitsamaximumtransient pressureoflit@(2750psia)ofccmponent designpressure.
TheSafetyLimitof2750psiaistherefore consistent withthedesigncriteriaandassociated coderequiranents.
TheentireReactorCool.antSystemishydrotested at3125psiatodemonstrate integrity priortoinitialoperation.
ST.LUCIE-UNIT1B2-3Amendment No.
2.2LIMITINGSAFETYSYSTEMSETTINGSBASESReactorCoolantFlow-Low(Continued) reactorcoolantpumpsaretakenoutofservice.Thelow-flowtripsetpoints andAllowable Valuesforthevariousreactorcoolantpumpcombinations havebeenderivedinconsideration ofinstrument errorsandresponsetimesofequipment involvedtomaintaintheDNBRabovetheDNBRlimitundernormaloperation andexpectedtransients.
Forreactoroperation withonlytwoorthreereactorcoolantpumpsoperating, theReactorCoolantFlow-Lowtripsetpoints, thePowerLevel-High tripsetpoints, andtheThermalMargin/Low Pressuretripsetpoints areautomatically changedwhenthepumpcondition selectorswitchismanuallysettothedesiredtwo-orthree-pump position.
Changingthesetripsetpoints duringtwoandthreepumpoperation preventstheminimum.valueofDNBRfrcmgoingbelowtheDNBRlimitduringnormaloperational transients andanticipated transients whenonlytwoorthreereactorcoolantpumpsareoperating.
PressurizerPressure-High ThePressurizer Pressure-High trip,backedupbythepressurizer codesafetyvalvesandmainsteamlinesafetyvalves,providesreactorcoolantsystemprotection againstoverpressurization intheeventoflossofloadwithoutreactortrip.Thistrip~'ssetpointis100psibelowthenaninalliftsetting(2500psia)ofthepressurizer codesafetyvalvesanditsconcurrent operation withthepower-operated reliefvalvesavoidstheundesirable operation ofthepressurizer codesafetyvalves.Contairment Pressure-High TheContairment Pressure-High tripprovidesassurance thatareactortripisinitiated concurrently withasafetyinjection.
SteamGenerator Pressure-Low TheSteamGenerator Pressure-Low tripprovidesprotection againstanexcessive rateofheatextraction fromthesteamgenerators andsubsequent cooldownofthereactorcoolant.Thesettingof600psiaissufficiently belowthefull-load operating pointof800psigsoasnotST.LUCIE-,UNIT1B2-.5Anendment No.
LIMITINGSAFETYSYSTEMSETTINGSBASESThermalMarin/LowPressureTheThermalMargin/LowPressuretripisprovidedtopreventoperation whentheDNBRislessthantheDNBRlimit.Thetripisinitiated wheneverthereactorcoolantsystempressuresignaldropsbeloweither1887psiaoraccmputedvalueasdescribed below,whichever is'igher.
TheccmputedvalueisafunctionofthehigherofhTpowerorneutronpower,reactorinlettemperature, thenumberofreactorcoolantpumpsoperating andtheAXIALSHAPEINDEX.Theminimumvalueofreactorcoolantflowrate,themaximumAXIMUTHAL POWERTILTandthemaximumCEAdeviation permitted forcontinuous operation areassumedinthegeneration ofthistripfunction.'n
: addition, CEAgroupsequencing inaccordance withSpecifications 3.1.3.5and3.1.3.6isassumed.Finally,themaximuminsertion ofCEAbankswhichcanoccurduringanyanticipated operational occurrence priortoaPowerLevel-High tripisassumed.TheThermalMargin/Low Pressuretripsetpoints includeappropriateallowances forequipment responsetime,calculational andmeasurement uncertainties, andprocessing error.Afurtherallowance of30psiaisincludedtocompensate forthetimedelayassociated withproviding effective termination oftheoccurrencethatexhib1tsthemostrapiddecreaseinmargintotheDNBRlimit.Asymmetric SteamGenerator TransientProtective TripFunctionASGTPTFTheASGTPTFconsistsofSteamGenerator pressureinputstotheTM/LPcalculator, whichcausesareactortripwhenthedifference inpressurebetweenthetwosteamgenerators exceedsthetripsetpoint.
TheASGTPTFisdesignedtoprovideareactortripforthoseeventsassociated withsecondary systanmalfunctions whichresultinasymmetric primaryloopcoolanttemperatures.
Themostlimitingeventisthelossofloadtoonesteamgenerator causedbyasinglemainsteamisolation valveclosure.Theequipment tripsetpointandallowable valuesarecalculated toaccountforinstrument uncertainties, andwillensureatripatorbeforereachingtheanalysissetpoint.
ST.LUCIE-UNIT1B2-7  


POWERDISTRIBUTIONLIMITSBASESusedintheanalysisestablishingtheDNBMarginLCO,andThermalMargin/LowPressureLSSSsetpointsremainvalidduringoperationatthevariousal1owableCEAgroupinsertionLimits.IfF,ForTexceedxy'theirbasiclimitations,operationmaycontinueundertheadditionalrestrictionsimposedbytheACTIONstatementssincetheseadditionalrestrictionsprovideadequateprovisionstoassurethattheassumptionsusedinestablishingtheLinearHeatRate,ThermalMargin/LowPressureandLocalPowerDensity-HighLCOsandLSSSsetpointsremainvalid.AnAZIMUTHALPO'WERTILT)0.10isnotexpectedandifitshouldoccur,subsequentoperationwouldberestrictedtoonlythoseoperationsrequiredtoidentifythecauseofthisunexpectedtilt.ThevalueofTthatmustbeusedintheequationF=F(1+T)qandF=F(1,+T)isthemeasuredtilt.rr'ThesurveillancerequirementsforverifyingthatF,FandTTTarewithintheirlimitsprovideassurancethattheactualvaluesofF,Fxy'.randTdonotexceedtheassumedvalues.YerifyingFandFafterqxyreachfuelloadingpriortoexceeding75$ofRATEDTHERMALPOWERprovidesadditionalassurancethatthecorewasproperlyloaded.3/4.2.5DNBPARAMETERSThelimitsontheDNBrelatedparametersassurethateachoftheparametersaremaintainedwithinthenormalsteadystateenvelopeofoperationassumedinthetransientandaccidentanalyses.ThelimitsareconsistentwiththesafetyanalysesassumptionsandhavebeenanalyticallydemonstratedadequatetomaintainaminimunDNBRof>1.22throughouteachanalyzedtransient.The12hourperiodicsurveillanceoftheseparametersthroughinstrumentreadoutissufficienttoensurethattheparametersarerestoredwithintheirlimitsfollowingloadchangesandotherexpectedtransientoperation.The18monthperiodicmeasurementoftheRCStotalflowrateisadequatetodetectflow'egradationandensurecorrelationoftheflowindicationchannelswithmeasuredflowsuchthattheindicatedpercentflowwillprovidesufficientverificationofflowrateona12hourbasis.ST.LUCIE-UNIT1B3/4Z-ZAmendmentNo.  
POWERDISTRIBUTIONLIMITSBASESusedintheanalysisestablishing theDNBMarginLCO,andThermalMargin/Low PressureLSSSsetpoints remainvalidduringoperation atthevariousal1owableCEAgroupinsertion Limits.IfF,ForTexceedxy'theirbasiclimitations, operation maycontinueundertheadditional restrictions imposedbytheACTIONstatements sincetheseadditional restrictions provideadequateprovisions toassurethattheassumptions usedinestablishing theLinearHeatRate,ThermalMargin/Low PressureandLocalPowerDensity-HighLCOsandLSSSsetpoints remainvalid.AnAZIMUTHAL PO'WERTILT)0.10isnotexpectedandifitshouldoccur,subsequent operationwouldberestricted toonlythoseoperations requiredtoidentifythecauseofthisunexpected tilt.ThevalueofTthatmustbeusedintheequationF=F(1+T)qandF=F(1,+T)isthemeasuredtilt.rr'Thesurveillance requirements forverifying thatF,FandTTTarewithintheirlimitsprovideassurance thattheactualvaluesofF,Fxy'.randTdonotexceedtheassumedvalues.YerifyingFandFafterqxyreachfuelloadingpriortoexceeding 75$ofRATEDTHERMALPOWERprovidesadditional assurance thatthecorewasproperlyloaded.3/4.2.5DNBPARAMETERS ThelimitsontheDNBrelatedparameters assurethateachoftheparameters aremaintained withinthenormalsteadystateenvelopeofoperation assumedinthetransient andaccidentanalyses.
Thelimitsareconsistent withthesafetyanalysesassumptions andhavebeenanalytically demonstrated adequatetomaintainaminimunDNBRof>1.22throughout eachanalyzedtransient.
The12hourperiodicsurveillance oftheseparameters throughinstrument readoutissufficient toensurethattheparameters arerestoredwithintheirlimitsfollowing loadchangesandotherexpectedtransient operation.
The18monthperiodicmeasurement oftheRCStotalflowrateisadequatetodetectflow'egradation andensurecorrelationoftheflowindicationchannelswithmeasuredflowsuchthattheindicated percentflowwillprovidesufficient verification offlowrateona12hourbasis.ST.LUCIE-UNIT1B3/4Z-ZAmendment No.  
+~  
+~  
~~3/4.4REACTORCOOLANTSYSTEMBASES3/4.4.1REACTORCOOLANTLOOPSANDCOOLANTCIRCULATIONTheplantisdesignedtooperatewithbothreactorcoolantloopsandassociatedreactorcoolantpumpsinoperation,andmaintainDNBRabovetheDNBRlimitduringallnormaloperationsandanticipatedtransients.InNODES1and2withonereactorcoolantloopnotinoperation,thisspecificationrequiresthattheplantbeinatleastHOTSTANDBYwithin1hour.InMODE3,asinglereactorcoolantloopprovidessufficientheatremovalcapabilityforremovingdecayheat;however,singlefailureconsiderationsrequirethattwoloopsbeOPERABLE.InNODE4,andinMODE5withreactorcoolantloopsfilled,asinglereactorcoolantlooporshutdowncoolingloopprovidessufficientheatremovalcapabilityforremovingdecayheat;butsinglefailureconsiderationsrequirethatatleasttwoloops(eithershutdowncoolingorRCS)beOPERABLE.InNODE5withreactorcoolantloopsnotfilled,asingleshutdowncoolingloopprovidessufficientheatremovalcapabilityforremovingdecayheat;butsinglefailureconsiderationsandtheunavailabilityofthesteamgeneratorsasaneatremovingcomponent,requirethatatleasttwoshutdowncoolingloopsbeOPERABLE.rTheoperationofoneReactorCoolantPumporoneshutdowncoolingpumpprovidesadequateflowtoensuremixing,preventstratificationandproducegradualreactivitychangesduringboronconcentrationreductions1ntheReactorCoolantSystem.Thereactivitychangerateassociatedwithboronreductionswill,,therefore,bewithinthecapabilityofoperatorrecognitionandcontrol.TherestrictionsonstartingaReactorCoolantPumpinMODE5withoneormoreRCScoldlegslessthanorequalto165'FareprovidedtopreventRCSpressuretransients,causedbyenergyadditionsfromthesecondarysystem,whichcouldexceedthelimitsofAppendixGto10CFR50.TheRCSwillbeprotectedagainstoverpressuretransientsandwillnotexceedthelimitsofAppendixGbyeither1)restrictingthewatervolumeinthepressurizerandtherebyprovidingavolumefortheprimarycoolanttoexpandinto,or2)byrestrictingstartingoftheReactorCoolantPumpstowhenthe-secondarywatertemperatureofeachsteamgeneratorislessthan45'FaboveeachoftheReactorCoolantSystemcoldlegtemperatures.3/4.4.2and3/4.4.3SAFETYVALVESThepressurizercodesafetyvalvesoperatetopreventtheRCSfrcmbeingpressurizedabgveitsSafetyLimitof2750psia.Eachsafetyvalveisdesignedtorelieve2x10~lbs.perhourofsaturatedsteamatthevalvesetpoint.Thereliefcapacityofasinglesafetyvalveisadequatetorelieveanyoverpressurecondition'whichcouldoccurduringshutdown.IntheeventthatnosafetyvalvesareOPERABLE,anoperatingshutdowncoolingloop,connectedtotheRCS,providesoverpressurereliefcapabilityandwillpreventRCSoverpressurization.ST.LUCIE-UNIT1B3/44-1AmendmentNo.
~~3/4.4REACTORCOOLANTSYSTEMBASES3/4.4.1REACTORCOOLANTLOOPSANDCOOLANTCIRCULATION Theplantisdesignedtooperatewithbothreactorcoolantloopsandassociated reactorcoolantpumpsinoperation, andmaintainDNBRabovetheDNBRlimitduringallnormaloperations andanticipated transients.
SAFETYEVALUATIONRE:St.LucieUnit1DocketNo.50-335ProposedLicenseAmendmentLinearHeatRateTechnicalSecification-FluxPeakinAumentationFactorsI.IntroductionPastpracticeforECCSanalysishasbeentopostulatethataxialgapscanoccurinthefuelrodpellet.stack.Such.gapscouldtheoreticallyoccurbecauseoffuelcolumndensificationincombinationwithanincreaseinthecladdingovality.Withseverecreepovality,thepelletstackcouldbegrippedbythecladdingbeforedensificationis'ompletesuchthatagapwouldformbetweenpelletsasfurtherdensificationoccurs.Thisgapwouldlowerthefueldensityinahorizontalplane,resultinginanincreaseinthermalneutronfluxandhigherlocalrodpowers.Thispossiblepowerincreaseisusedinestablishingpeakingfactorlimits.II.EvaluationExxonNuclear(ENC)andFloridaPower6Light(FPL)havemadeacarefulevaluationoftheconditionsthatarenecessarytoformsuchgapsandhaveconcludedthatforENC-designedfuel,suchgapswillnotoccur.Thejustifi-cationforthispositionhasbeensubmittedtotheUSNRCinsupportofarevisedcladcollapseprocedureinReferencel.Thereasonsare:1.DensificationiscompleteafterafewthousandMWD/MTexposure.2.Ovalitydoesnotproceedtothepointthatpelletsaregrippedbythecladdinguntilafterfueldensifi-cationiscomplete.ThisconclusionisverifiedbythecalculationofovalityandcreepdownwiththeCOLAPXandRODEX2fuelperformancecodes.3.Theupperplenumspringactstokeepapositivepressureonthepelletstoovercomeresistanceofthepelletstacktodownwardmotion.ThespringisfabricatedofcreepresistantInconelX-750toavoidearlyloadrelaxationandisdesignedtoprovidepositivedownwardpressureovertherangeofpotentialdensification.
InNODES1and2withonereactorcoolantloopnotinoperation, thisspecification requiresthattheplantbeinatleastHOTSTANDBYwithin1hour.InMODE3,asinglereactorcoolantloopprovidessufficient heatremovalcapability forremovingdecayheat;however,singlefailureconsiderations requirethattwoloopsbeOPERABLE.
Toverifytheconclusionthatsignificantgapsarenot,formed,ENChasmadeanumberofscansofirradiatedrodsandconfirmedthataxialgapsdonotexistedBecauseoftheseresultsnofluxpeakingaugmentationfactorsarerequiredforENCdesignedfuel.ENChasperformedneutronicscalculationsforCombustionEngineeringdesignedfuelwhichshowthat,thepeakrodpowerforCEfuelisatleast10%lessthanthepeakpowerforENCfuelduringCycle6.Becausethemaximumvalueofflux.peakingaugmentationfactorsissignifi-cantlylessthan10%,noaugmentationfactorneedbeappliedtoCEfuel.Therefore,FloridaPower8LightCompanyhasconcludedthatafluxpeakingaugmentationfactorcurveneednotbecontainedj.nSt.LucieUnit1TechnicalSpecificat.ions.III.ConclusionBasedontheconsiderationsdescribedabove,(1)theproposedchangedoesnotincreasetheprobabilityorconsequencesqfaccidentsormalfunctionsofequipment,importanttosafetyanddoesnotreducethemarginofsafetyasdefinedinthebasisforanytechnicalspecification,therefore,thechangedoesnotinvolveasignificanthazardsconsideration,(2)thereisreason-ableassurancethatthehealthandsafetyofthepublicwillnotbeendangeredbyoperationintheproposedmanner,and(3)suchactivitieswil'1beconductedincompliancewiththeCommission'sregulationsandtheissuanceofthisamendmentwillnotbeinimicaltothecommondefenseandsecurityortothehealthandsafetyof'hepublic.
InNODE4,andinMODE5withreactorcoolantloopsfilled,asinglereactorcoolantlooporshutdowncoolingloopprovidessufficient heatremovalcapability forremovingdecayheat;butsinglefailureconsiderations requirethatatleasttwoloops(eithershutdowncoolingorRCS)beOPERABLE.
InNODE5withreactorcoolantloopsnotfilled,asingleshutdowncoolingloopprovidessufficient heatremovalcapability forremovingdecayheat;butsinglefailureconsiderations andtheunavailability ofthesteamgenerators asaneatremovingcomponent, requirethatatleasttwoshutdowncoolingloopsbeOPERABLE.
rTheoperation ofoneReactorCoolantPumporoneshutdowncoolingpumpprovidesadequateflowtoensuremixing,preventstratification andproducegradualreactivity changesduringboronconcentration reductions 1ntheReactorCoolantSystem.Thereactivity changerateassociated withboronreductions will,,therefore, bewithinthecapability ofoperatorrecognition andcontrol.Therestrictions onstartingaReactorCoolantPumpinMODE5withoneormoreRCScoldlegslessthanorequalto165'FareprovidedtopreventRCSpressuretransients, causedbyenergyadditions fromthesecondary system,whichcouldexceedthelimitsofAppendixGto10CFR50.TheRCSwillbeprotected againstoverpressure transients andwillnotexceedthelimitsofAppendixGbyeither1)restricting thewatervolumeinthepressurizer andtherebyproviding avolumefortheprimarycoolanttoexpandinto,or2)byrestricting startingoftheReactorCoolantPumpstowhenthe-secondary watertemperature ofeachsteamgenerator islessthan45'FaboveeachoftheReactorCoolantSystemcoldlegtemperatures.
3/4.4.2and3/4.4.3SAFETYVALVESThepressurizer codesafetyvalvesoperatetopreventtheRCSfrcmbeingpressurized abgveitsSafetyLimitof2750psia.Eachsafetyvalveisdesignedtorelieve2x10~lbs.perhourofsaturated steamatthevalvesetpoint.
Thereliefcapacityofasinglesafetyvalveisadequatetorelieveanyoverpressure condition'which couldoccurduringshutdown.
IntheeventthatnosafetyvalvesareOPERABLE, anoperating shutdowncoolingloop,connected totheRCS,providesoverpressure reliefcapability andwillpreventRCSoverpressurization.
ST.LUCIE-UNIT1B3/44-1Amendment No.
SAFETYEVALUATION RE:St.LucieUnit1DocketNo.50-335ProposedLicenseAmendment LinearHeatRateTechnical Secification
-FluxPeakinAumentation FactorsI.Introduction PastpracticeforECCSanalysishasbeentopostulate thataxialgapscanoccurinthefuelrodpellet.stack.Such.gapscouldtheoretically occurbecauseoffuelcolumndensification incombination withanincreaseinthecladdingovality.Withseverecreepovality,thepelletstackcouldbegrippedbythecladdingbeforedensification is'omplete suchthatagapwouldformbetweenpelletsasfurtherdensification occurs.Thisgapwouldlowerthefueldensityinahorizontal plane,resulting inanincreaseinthermalneutronfluxandhigherlocalrodpowers.Thispossiblepowerincreaseisusedinestablishing peakingfactorlimits.II.Evaluation ExxonNuclear(ENC)andFloridaPower6Light(FPL)havemadeacarefulevaluation oftheconditions thatarenecessary toformsuchgapsandhaveconcluded thatforENC-designed fuel,suchgapswillnotoccur.Thejustifi-cationforthispositionhasbeensubmitted totheUSNRCinsupportofarevisedcladcollapseprocedure inReference l.Thereasonsare:1.Densification iscompleteafterafewthousandMWD/MTexposure.
2.Ovalitydoesnotproceedtothepointthatpelletsaregrippedbythecladdinguntilafterfueldensifi-cationiscomplete.
Thisconclusion isverifiedbythecalculation ofovalityandcreepdown withtheCOLAPXandRODEX2fuelperformance codes.3.Theupperplenumspringactstokeepapositivepressureonthepelletstoovercomeresistance ofthepelletstacktodownwardmotion.Thespringisfabricated ofcreepresistant InconelX-750toavoidearlyloadrelaxation andisdesignedtoprovidepositivedownwardpressureovertherangeofpotential densification.
Toverifytheconclusion thatsignificant gapsarenot,formed,ENChasmadeanumberofscansofirradiated rodsandconfirmed thataxialgapsdonotexistedBecauseoftheseresultsnofluxpeakingaugmentation factorsarerequiredforENCdesignedfuel.ENChasperformed neutronics calculations forCombustion Engineering designedfuelwhichshowthat,thepeakrodpowerforCEfuelisatleast10%lessthanthepeakpowerforENCfuelduringCycle6.Becausethemaximumvalueofflux.peakingaugmentation factorsissignifi-cantlylessthan10%,noaugmentation factorneedbeappliedtoCEfuel.Therefore, FloridaPower8LightCompanyhasconcluded thatafluxpeakingaugmentation factorcurveneednotbecontained j.nSt.LucieUnit1Technical Specificat.ions.
III.Conclusion Basedontheconsiderations described above,(1)theproposedchangedoesnotincreasetheprobability orconsequences qfaccidents ormalfunctions ofequipment, important tosafetyanddoesnotreducethemarginofsafetyasdefinedinthebasisforanytechnical specification, therefore, thechangedoesnotinvolveasignificant hazardsconsideration, (2)thereisreason-ableassurance thatthehealthandsafetyofthepublicwillnotbeendangered byoperation intheproposedmanner,and(3)suchactivities wil'1beconducted incompliance withtheCommission's regulations andtheissuanceofthisamendment willnotbeinimicaltothecommondefenseandsecurityortothehealthandsafetyof'hepublic.


==Reference:==
==Reference:==
(1)XN-NF-82-06,'"Qualificationof'ExxonNuclearFuelforExtendedBurnup",June1982.
 
STATEOFFLORiDA)))stRobertE.Uhribeingfirst.dulysworn,deposesandsays:ThatheisYicePresidentofFloridaPoweraLight,Company,theL>censeeherein;Thathehasexecutedtheforegoingdocument,;that,thestate-mentsmadeinthissaid.documentaretrueandcorrecttothebestofhisknowledge,information,andbelief,andthatheisauthorizedtoexecutethedocumentonbehalfofsaidRobertE.UhrigSubscribedandsworntobeforemethisdayof19>10TARYPUBLiC,inandfortheCountyofDade,StateofFloridaNycommissionexpires:}}
(1)XN-NF-82-06,
'"Qualification of'ExxonNuclearFuelforExtendedBurnup",June1982.
STATEOFFLORiDA)))stRobertE.Uhribeingfirst.dulysworn,deposesandsays:ThatheisYicePresident ofFloridaPoweraLight,Company,theL>censeeherein;Thathehasexecutedtheforegoing document,;
that,thestate-mentsmadeinthissaid.documentaretrueandcorrecttothebestofhisknowledge, information, andbelief,andthatheisauthorized toexecutethedocumentonbehalfofsaidRobertE.UhrigSubscribed andsworntobeforemethisdayof19>10TARYPUBLiC,inandfortheCountyofDade,StateofFloridaNycommission expires:}}

Revision as of 17:36, 29 June 2018

Proposed Tech Spec Revising Linear Heat Rate Prior to Unit Restart Following Upcoming Refueling Outage
ML17213B033
Person / Time
Site: Saint Lucie NextEra Energy icon.png
Issue date: 02/08/1983
From:
FLORIDA POWER & LIGHT CO.
To:
Shared Package
ML17213B032 List:
References
NUDOCS 8302150008
Download: ML17213B033 (17)


Text

hThisPageIntentionaI lyLeftBlank,ST.LUCli:-ll:lIT13/42-5.ssosisooos ssosos<<'PDRADOCK05000335'O'.PDR

/

POWERDISTRIBUTION LIMITSSURVEILLANCE REQUIREMENTS continued c.Verifying thattheAXIALSHAPEINDEXismaintained withintheallowable limitsofFigure3.2-2,where100percentofmaximumallowable powerrepresents themaximumTHERMALPOWERallowedbythefollowing expression:

MxNwhere:1.Misthemaximumallowable THERMALPOWERlevelfortheexistingReactorCoolantPumpcombination.

2.Nisthemaximumallowable fractionofRATEDTHERMALPOWERasdetermined bytheFxcurveofFigure3.2-3..4.2.1.4IncoreDetectorMonitoring Systems-Theincoredetectormonitorsystemmaybeusedformonitoring thecorepowerdistribution byverifyingthattheincoredetectorLocalPowerDensityalarms:a.Areadjustedtosatisfytherequirements ofthecorepowerdistribution mapwhichshallbeupdatedatleastonceper31daysofaccumulated operation inMODE1.b.HavetheiralarmsetpointadjustedtolessthanorequaltothelimitsshownonFigure3.2-1whenthefollowing factorsareappropriately includedinthesettingofthesealarms:.1.Ameasurement calculational uncertainty factorof1.07*,2.Anengineering uncertainty factorof1.03,3.Alinearheatrateuncertainty factorof1.01duetoaxialfueldensification andthermalexpansion, and4.ATHERMALPOWERmeasurement uncertainty factorof1.02.*Anuncertainty factorof1.10applieswheninLOADFOLLOWOPERATION.

gIfthecoresystembecomesinoperable, reducepowertoMxNwithin4hoursandmonitorlinearheatrateinaccordance withSpecification 4.2.1.ST.LUCIE-UNIT13/42-2Amendment No.

/~~~'3/4.2:~PONER0ISTRIBUTIONLINITSBASES3/4.2.1LINEARHEATRATEThelimitation oflinearheatrateensuresthatintheeventofaLOCA,thepeaktemperature ofthefuelcladdingwillnotexceed2200'F.Eitherofthetwocorepowerdistribution monitoring systems,theExcoreDetectorMonitoring SystemandtheIncoreDetectorthonitoring System,provideadequatemonitoring ofthecorepowerdistribution andarecapableofverifying thatthelinearheatratedoesnotexceeditslimits.TheExcoreDetectorMonitoring Systemperformsthisfunctionbycontinuously monitoring theAXIALSHAPEINDEXwiththeOPERABLEquadrantsymmetric excoreneutron.fluxdetectors andverifying thattheAXIALSHAPEINDEXismaintained withintheallowable limitsofFigure3.2-2.Inconjuction withtheuseoftheexcoremonitoring systemandinestablishing theAXIALSHAPEINDEXlimits,thefollowing assumptions aremade:1)theCEAinsertion limitsofSpecifications 3.1.3.5and3.1.3.6aresatisfied, 2)theAZIMUTHAL POllERTILTrestrictions ofSpecification3.2.4aresatisfied, and3)theTOTALPLANARRADIALPEAKINGFACTORdoesnotexceedthelimitsofSpecification 3.2.2.TheIncoreDetectortlonitoring Systemcontinuously providesadirectmeasureofthepeakingfactorsandthealarmswhichnavebeenestablished fortheindividual incoredetectorsegmentsensurethatthepeaklinearheatrateswillb.maintained withintheallowable limitsofFigure3.2-1.Thesetpoints forthesea'farmsincludeallowances, setintheconservative directions, for1)ameasurement-cal culational uncertainty factorof1.07*,2)anengineering unceit.aintyfactorof1.03,3)anallowance of1.01foraxialfueldensification andthermalexpansion, and4)aTHERMALPOWERmeasurement uncertainty factorof1.02.3/4.2.2,3/4.2.3and3/4.2.4TOTALPLANARANDINTEGRATED RADIALPEAKINGFACTORSFyANDFrANDAZIMUTHAL POWERTILTTqThelimitation onFTandTareprovidedtoensurethattneassumptions usedintheanalysisforBtablisfling theLinearHeatRateandLocalPowerDensity-HighLCOsandLSSSsetpoints remainvalidduringoperation atthevariousallowable CEAgroupinsertion limits.Thelimitations onFTrandTqareprovidedtoensurethattheassumptions

~Anuncertainty factorof1.10applieswheninLOADFOLLOWOPERATION.

ST.LUCIE-UNIT183/42-1 O.

2.1SAFETYLIMITSBASES2.1.1REACTORCORETherestrictions ofthissafetylimitpreventoverheating ofthefuelcladdingandpossiblecladdingperforation whichwouldresultinthereleaseoffissionproductstothereactorcoolant.Overheating ofthefuelisprevented bymaintaining thesteadystatepeaklinearheatratebelowthelevelatwhichcenterline fuelmeltingwilloccur.Overheating ofthefuelcladdingisprevented byrestricting fueloperation towithi'nthenucleateboilingregimewheretheheattransfercoefficient islargeandthecladdingsurfacetemperature isslightlyabovethecoolantsaturation temperature.

Operation abovetheupperboundaryofthenucleateboilingregimecouldresultinexcessive claddingtemperatures becauseoftheonsetofdeparture frcmnucleateboiling(DNB)andtheresultant sharpreduction inheattransfercoefficient.

DNBisnotadirectlymeasurableparameter duringoperation andtherefore THERMALPOWERandReactorCoolantTemperatur eandPressurehavebeenrelatedtoDNBthroughtheExxonXNBcorrelation.

TheXNBDNBcorrelation hasbeendeveloped topredicttheDNBfluxandthelocationofDNBforaxiallyuniformandnon-uniform heatfluxdistributions.

ThelocalDNBheatfluxration,DNBR,definedastheratiooftheheatfluxthatwouldcauseDNBataparticular corelocationtothelocalheatflux,isindicative ofthemargintoDNB.TheminimumvalueoftheDNBRduringsteadystateoperation, normaloperational transients, andanticipated transients islimitedto1.22usingtheXNBDNBRcorrelation.

Thisvaluecorresponds toa95percentprobability ata95percentconfidence levelthatDNBwillnotoccurandischosenasanappropriate margintoDNBforalloperating conditions.

ThecurvesofFigure2.1-1showthelociofpointsofTHERMALPOWER,ReactorCoolantSystempressureandmaximumcoldlegtemperatur e'ithfourReactorCoolantPumpsoperating forwhichtheminimumDNBRisnolessthantheDNBRlimitforthefamilyofaxialshapesandcorresponding radialpeaksshowninFigureB2.1-1.ThelimitsinFigure2.1-1werecalculated forreactorcoolantinlettemperatures lessthanorequalto580'F.Thedashedlineof580'Fcoolantinlettemperature isnotasafetylimit;however,operation above580'Fisnotpossiblebecauseoftheactuation ofthemainsteamlinesafetyvalveswhichlimitthemaximumvalueofreactorinlettempratur e.Reactoroperation atTHERMALPOWERlevelshigherthan112$ofRATEDTHERMALPOWERisprohibited bythehighpowerleveltripsetpointspecified inTable2.1-1.Theareaofsafeoperation isbelowandtotheleftoftheselines.ST.LUCIEUNIT1B2-1 SAFETYLIMITSBASESTheconditions fortheThermalMargi'nSafetyLimitcurvesinFigure2.1-1tobevalidareshownonthefigure.Thereactorprotective systeminccmbination withtheLimitingConditions forOperation, isdesignedtopreventanyanticipated combination oftransient conditions forreactorcoolantsystemtemperature,

pressure, andthermalpowerlevelthatwouldresultinaDNBRoflessthantheDNBRlimitandprecludethe)existenceofflowinstabilities.

2.1.2REACTORCOOLANTSYSTEMPRESSURETherestriction ofthisSafetyLimitprotectstheintegrity oftheReactorCoolantSystemforoverpressurization andtherebypreventsthereleaseofradionuclides contained inthereactorcoolantfromreachingthecontainment atmosphere.

Thereactorpressurevesselandpressurizer aredesignedtoSectionIIIoftheASMECodeforNuclearPowerPlantcomponents whichpermitsamaximumtransient pressureof11(g(2750psia)ofdesignpressure.

TheReactorCoolantSystempiping,valvesandfittings, aredesignedtoANSIB31.7,ClassIwhichpermitsamaximumtransient pressureoflit@(2750psia)ofccmponent designpressure.

TheSafetyLimitof2750psiaistherefore consistent withthedesigncriteriaandassociated coderequiranents.

TheentireReactorCool.antSystemishydrotested at3125psiatodemonstrate integrity priortoinitialoperation.

ST.LUCIE-UNIT1B2-3Amendment No.

2.2LIMITINGSAFETYSYSTEMSETTINGSBASESReactorCoolantFlow-Low(Continued) reactorcoolantpumpsaretakenoutofservice.Thelow-flowtripsetpoints andAllowable Valuesforthevariousreactorcoolantpumpcombinations havebeenderivedinconsideration ofinstrument errorsandresponsetimesofequipment involvedtomaintaintheDNBRabovetheDNBRlimitundernormaloperation andexpectedtransients.

Forreactoroperation withonlytwoorthreereactorcoolantpumpsoperating, theReactorCoolantFlow-Lowtripsetpoints, thePowerLevel-High tripsetpoints, andtheThermalMargin/Low Pressuretripsetpoints areautomatically changedwhenthepumpcondition selectorswitchismanuallysettothedesiredtwo-orthree-pump position.

Changingthesetripsetpoints duringtwoandthreepumpoperation preventstheminimum.valueofDNBRfrcmgoingbelowtheDNBRlimitduringnormaloperational transients andanticipated transients whenonlytwoorthreereactorcoolantpumpsareoperating.

PressurizerPressure-High ThePressurizer Pressure-High trip,backedupbythepressurizer codesafetyvalvesandmainsteamlinesafetyvalves,providesreactorcoolantsystemprotection againstoverpressurization intheeventoflossofloadwithoutreactortrip.Thistrip~'ssetpointis100psibelowthenaninalliftsetting(2500psia)ofthepressurizer codesafetyvalvesanditsconcurrent operation withthepower-operated reliefvalvesavoidstheundesirable operation ofthepressurizer codesafetyvalves.Contairment Pressure-High TheContairment Pressure-High tripprovidesassurance thatareactortripisinitiated concurrently withasafetyinjection.

SteamGenerator Pressure-Low TheSteamGenerator Pressure-Low tripprovidesprotection againstanexcessive rateofheatextraction fromthesteamgenerators andsubsequent cooldownofthereactorcoolant.Thesettingof600psiaissufficiently belowthefull-load operating pointof800psigsoasnotST.LUCIE-,UNIT1B2-.5Anendment No.

LIMITINGSAFETYSYSTEMSETTINGSBASESThermalMarin/LowPressureTheThermalMargin/LowPressuretripisprovidedtopreventoperation whentheDNBRislessthantheDNBRlimit.Thetripisinitiated wheneverthereactorcoolantsystempressuresignaldropsbeloweither1887psiaoraccmputedvalueasdescribed below,whichever is'igher.

TheccmputedvalueisafunctionofthehigherofhTpowerorneutronpower,reactorinlettemperature, thenumberofreactorcoolantpumpsoperating andtheAXIALSHAPEINDEX.Theminimumvalueofreactorcoolantflowrate,themaximumAXIMUTHAL POWERTILTandthemaximumCEAdeviation permitted forcontinuous operation areassumedinthegeneration ofthistripfunction.'n

addition, CEAgroupsequencing inaccordance withSpecifications 3.1.3.5and3.1.3.6isassumed.Finally,themaximuminsertion ofCEAbankswhichcanoccurduringanyanticipated operational occurrence priortoaPowerLevel-High tripisassumed.TheThermalMargin/Low Pressuretripsetpoints includeappropriateallowances forequipment responsetime,calculational andmeasurement uncertainties, andprocessing error.Afurtherallowance of30psiaisincludedtocompensate forthetimedelayassociated withproviding effective termination oftheoccurrencethatexhib1tsthemostrapiddecreaseinmargintotheDNBRlimit.Asymmetric SteamGenerator TransientProtective TripFunctionASGTPTFTheASGTPTFconsistsofSteamGenerator pressureinputstotheTM/LPcalculator, whichcausesareactortripwhenthedifference inpressurebetweenthetwosteamgenerators exceedsthetripsetpoint.

TheASGTPTFisdesignedtoprovideareactortripforthoseeventsassociated withsecondary systanmalfunctions whichresultinasymmetric primaryloopcoolanttemperatures.

Themostlimitingeventisthelossofloadtoonesteamgenerator causedbyasinglemainsteamisolation valveclosure.Theequipment tripsetpointandallowable valuesarecalculated toaccountforinstrument uncertainties, andwillensureatripatorbeforereachingtheanalysissetpoint.

ST.LUCIE-UNIT1B2-7

POWERDISTRIBUTIONLIMITSBASESusedintheanalysisestablishing theDNBMarginLCO,andThermalMargin/Low PressureLSSSsetpoints remainvalidduringoperation atthevariousal1owableCEAgroupinsertion Limits.IfF,ForTexceedxy'theirbasiclimitations, operation maycontinueundertheadditional restrictions imposedbytheACTIONstatements sincetheseadditional restrictions provideadequateprovisions toassurethattheassumptions usedinestablishing theLinearHeatRate,ThermalMargin/Low PressureandLocalPowerDensity-HighLCOsandLSSSsetpoints remainvalid.AnAZIMUTHAL PO'WERTILT)0.10isnotexpectedandifitshouldoccur,subsequent operationwouldberestricted toonlythoseoperations requiredtoidentifythecauseofthisunexpected tilt.ThevalueofTthatmustbeusedintheequationF=F(1+T)qandF=F(1,+T)isthemeasuredtilt.rr'Thesurveillance requirements forverifying thatF,FandTTTarewithintheirlimitsprovideassurance thattheactualvaluesofF,Fxy'.randTdonotexceedtheassumedvalues.YerifyingFandFafterqxyreachfuelloadingpriortoexceeding 75$ofRATEDTHERMALPOWERprovidesadditional assurance thatthecorewasproperlyloaded.3/4.2.5DNBPARAMETERS ThelimitsontheDNBrelatedparameters assurethateachoftheparameters aremaintained withinthenormalsteadystateenvelopeofoperation assumedinthetransient andaccidentanalyses.

Thelimitsareconsistent withthesafetyanalysesassumptions andhavebeenanalytically demonstrated adequatetomaintainaminimunDNBRof>1.22throughout eachanalyzedtransient.

The12hourperiodicsurveillance oftheseparameters throughinstrument readoutissufficient toensurethattheparameters arerestoredwithintheirlimitsfollowing loadchangesandotherexpectedtransient operation.

The18monthperiodicmeasurement oftheRCStotalflowrateisadequatetodetectflow'egradation andensurecorrelationoftheflowindicationchannelswithmeasuredflowsuchthattheindicated percentflowwillprovidesufficient verification offlowrateona12hourbasis.ST.LUCIE-UNIT1B3/4Z-ZAmendment No.

+~

~~3/4.4REACTORCOOLANTSYSTEMBASES3/4.4.1REACTORCOOLANTLOOPSANDCOOLANTCIRCULATION Theplantisdesignedtooperatewithbothreactorcoolantloopsandassociated reactorcoolantpumpsinoperation, andmaintainDNBRabovetheDNBRlimitduringallnormaloperations andanticipated transients.

InNODES1and2withonereactorcoolantloopnotinoperation, thisspecification requiresthattheplantbeinatleastHOTSTANDBYwithin1hour.InMODE3,asinglereactorcoolantloopprovidessufficient heatremovalcapability forremovingdecayheat;however,singlefailureconsiderations requirethattwoloopsbeOPERABLE.

InNODE4,andinMODE5withreactorcoolantloopsfilled,asinglereactorcoolantlooporshutdowncoolingloopprovidessufficient heatremovalcapability forremovingdecayheat;butsinglefailureconsiderations requirethatatleasttwoloops(eithershutdowncoolingorRCS)beOPERABLE.

InNODE5withreactorcoolantloopsnotfilled,asingleshutdowncoolingloopprovidessufficient heatremovalcapability forremovingdecayheat;butsinglefailureconsiderations andtheunavailability ofthesteamgenerators asaneatremovingcomponent, requirethatatleasttwoshutdowncoolingloopsbeOPERABLE.

rTheoperation ofoneReactorCoolantPumporoneshutdowncoolingpumpprovidesadequateflowtoensuremixing,preventstratification andproducegradualreactivity changesduringboronconcentration reductions 1ntheReactorCoolantSystem.Thereactivity changerateassociated withboronreductions will,,therefore, bewithinthecapability ofoperatorrecognition andcontrol.Therestrictions onstartingaReactorCoolantPumpinMODE5withoneormoreRCScoldlegslessthanorequalto165'FareprovidedtopreventRCSpressuretransients, causedbyenergyadditions fromthesecondary system,whichcouldexceedthelimitsofAppendixGto10CFR50.TheRCSwillbeprotected againstoverpressure transients andwillnotexceedthelimitsofAppendixGbyeither1)restricting thewatervolumeinthepressurizer andtherebyproviding avolumefortheprimarycoolanttoexpandinto,or2)byrestricting startingoftheReactorCoolantPumpstowhenthe-secondary watertemperature ofeachsteamgenerator islessthan45'FaboveeachoftheReactorCoolantSystemcoldlegtemperatures.

3/4.4.2and3/4.4.3SAFETYVALVESThepressurizer codesafetyvalvesoperatetopreventtheRCSfrcmbeingpressurized abgveitsSafetyLimitof2750psia.Eachsafetyvalveisdesignedtorelieve2x10~lbs.perhourofsaturated steamatthevalvesetpoint.

Thereliefcapacityofasinglesafetyvalveisadequatetorelieveanyoverpressure condition'which couldoccurduringshutdown.

IntheeventthatnosafetyvalvesareOPERABLE, anoperating shutdowncoolingloop,connected totheRCS,providesoverpressure reliefcapability andwillpreventRCSoverpressurization.

ST.LUCIE-UNIT1B3/44-1Amendment No.

SAFETYEVALUATION RE:St.LucieUnit1DocketNo.50-335ProposedLicenseAmendment LinearHeatRateTechnical Secification

-FluxPeakinAumentation FactorsI.Introduction PastpracticeforECCSanalysishasbeentopostulate thataxialgapscanoccurinthefuelrodpellet.stack.Such.gapscouldtheoretically occurbecauseoffuelcolumndensification incombination withanincreaseinthecladdingovality.Withseverecreepovality,thepelletstackcouldbegrippedbythecladdingbeforedensification is'omplete suchthatagapwouldformbetweenpelletsasfurtherdensification occurs.Thisgapwouldlowerthefueldensityinahorizontal plane,resulting inanincreaseinthermalneutronfluxandhigherlocalrodpowers.Thispossiblepowerincreaseisusedinestablishing peakingfactorlimits.II.Evaluation ExxonNuclear(ENC)andFloridaPower6Light(FPL)havemadeacarefulevaluation oftheconditions thatarenecessary toformsuchgapsandhaveconcluded thatforENC-designed fuel,suchgapswillnotoccur.Thejustifi-cationforthispositionhasbeensubmitted totheUSNRCinsupportofarevisedcladcollapseprocedure inReference l.Thereasonsare:1.Densification iscompleteafterafewthousandMWD/MTexposure.

2.Ovalitydoesnotproceedtothepointthatpelletsaregrippedbythecladdinguntilafterfueldensifi-cationiscomplete.

Thisconclusion isverifiedbythecalculation ofovalityandcreepdown withtheCOLAPXandRODEX2fuelperformance codes.3.Theupperplenumspringactstokeepapositivepressureonthepelletstoovercomeresistance ofthepelletstacktodownwardmotion.Thespringisfabricated ofcreepresistant InconelX-750toavoidearlyloadrelaxation andisdesignedtoprovidepositivedownwardpressureovertherangeofpotential densification.

Toverifytheconclusion thatsignificant gapsarenot,formed,ENChasmadeanumberofscansofirradiated rodsandconfirmed thataxialgapsdonotexistedBecauseoftheseresultsnofluxpeakingaugmentation factorsarerequiredforENCdesignedfuel.ENChasperformed neutronics calculations forCombustion Engineering designedfuelwhichshowthat,thepeakrodpowerforCEfuelisatleast10%lessthanthepeakpowerforENCfuelduringCycle6.Becausethemaximumvalueofflux.peakingaugmentation factorsissignifi-cantlylessthan10%,noaugmentation factorneedbeappliedtoCEfuel.Therefore, FloridaPower8LightCompanyhasconcluded thatafluxpeakingaugmentation factorcurveneednotbecontained j.nSt.LucieUnit1Technical Specificat.ions.

III.Conclusion Basedontheconsiderations described above,(1)theproposedchangedoesnotincreasetheprobability orconsequences qfaccidents ormalfunctions ofequipment, important tosafetyanddoesnotreducethemarginofsafetyasdefinedinthebasisforanytechnical specification, therefore, thechangedoesnotinvolveasignificant hazardsconsideration, (2)thereisreason-ableassurance thatthehealthandsafetyofthepublicwillnotbeendangered byoperation intheproposedmanner,and(3)suchactivities wil'1beconducted incompliance withtheCommission's regulations andtheissuanceofthisamendment willnotbeinimicaltothecommondefenseandsecurityortothehealthandsafetyof'hepublic.

Reference:

(1)XN-NF-82-06,

'"Qualification of'ExxonNuclearFuelforExtendedBurnup",June1982.

STATEOFFLORiDA)))stRobertE.Uhribeingfirst.dulysworn,deposesandsays:ThatheisYicePresident ofFloridaPoweraLight,Company,theL>censeeherein;Thathehasexecutedtheforegoing document,;

that,thestate-mentsmadeinthissaid.documentaretrueandcorrecttothebestofhisknowledge, information, andbelief,andthatheisauthorized toexecutethedocumentonbehalfofsaidRobertE.UhrigSubscribed andsworntobeforemethisdayof19>10TARYPUBLiC,inandfortheCountyofDade,StateofFloridaNycommission expires: