ML17334B468: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(Created page by program invented by StriderTol)
 
(3 intermediate revisions by the same user not shown)
Line 3: Line 3:
| issue date = 02/28/1993
| issue date = 02/28/1993
| title = Evaluation of PTS for DC Cook Unit 2.
| title = Evaluation of PTS for DC Cook Unit 2.
| author name = CHICOTS J M, MEYER T A
| author name = Chicots J, Meyer T
| author affiliation = WESTINGHOUSE ELECTRIC COMPANY, DIV OF CBS CORP.
| author affiliation = WESTINGHOUSE ELECTRIC COMPANY, DIV OF CBS CORP.
| addressee name =  
| addressee name =  
Line 17: Line 17:


=Text=
=Text=
{{#Wiki_filter:~vvWCAP-13517 WESTINGHOUSE PROPRIETARY CLASS3ATTAc//gEwlgEVALUATION OFPRESSURIZED THERMALSHOCKFORD.C.COOKUNIT2J.M.ChicotFebruary199AMERICANELECTRICPOWERSERVICECORPORATION APPROVEDINGENERAL0APPROVEDEXCEPTASNOTEDE3NOTAPPROVED0FORREFERENCE ONLYBYm'rikd~DATEWorkPerformed UnderShopOrderAFFP-108PreparedbyWestinghouse ElectricCorporation fortheIndianaMichiganPowerCompanyApprovedby:T.A.Meyer,ManagerStructural Reliability 8PlantLifeOptimization WESTINGHOUSE ELECTRICCORPORATION NuclearandAdvancedTechnology DivisionP.O.Box355Pittsburgh, Pennsylvania 15230-0355 41993Westinghouse ElectricCorporation AllRightsReserved TableofContentsListofTablesListofFiguresTABLEOFCONTENTS~PaeIntroduction Pressurized ThermalShockMethodsofCalculation ofRTPTSVerification ofPlant-Specific MaterialProperties NeutronFluenceValuesDetermination ofRTPTSValuesforAllBeltlineRegionMaterials Conclusions References 13 TableLISTOFTABLESTitlePacae1.D.C.CookUnit2ReactorVesselBeltlineRegionHaterialProperties 2;NeutronExposureProjections atKeyLocations intheD.C.CookUnit2PressureVesselClad/Base HetalInterface for8.65and32EFPY3.Calculation ofChemistry FactorsUsingD.C.CookUnit2Surveillance CapsuleData104.RTPTSValuesforD.C.CookUnit2for8.65EFPY5.RTPTSValuesforD.C.CookUnit2for32EFPY12~iciureLISTOFFIGURESTitle~Pae1.Identification andLocationofBeltlineRegionHaterials fortheD.C.CookUnit2ReactorVesselN2.RTPTSversusFluenceCurvesforD.C.CookUnit2LimitingHaterials
{{#Wiki_filter:~ vv WESTINGHOUSE PROPRIETARY CLASS 3 WCAP-13517 A TTA c//gEwl            g EVALUATION OF PRESSURIZED THERMAL SHOCK FOR  D. C. COOK UNIT 2 AMERICAN ELECTRIC POWER SERVICE CORPORATION APPROVED IN GENERAL J. M. Chicot  0  APPROVED EXCEPT AS NOTED E3 NOT APPROVED 0  FOR REFERENCE ONLY February 199  BY  m' r i kd ~
-Intermediate ShellPlate,C5556-213 INTRODUCTION Alimitingcondition onreactorvesselintegrity knownasPressurized ThermalShock(PTS)mayoccurduringaseveresystemtransient suchasaLoss-Of-Coolant-Accident (LOCA)orasteamlinebreak.Suchtransients maychallenge theintegrity ofareactorvesselunderthefollowing conditions:
DATE Work Performed Under Shop Order AFFP-108 Prepared by Westinghouse Electric Corporation for the Indiana Michigan Power Company Approved by:
severeovercooling oftheinsidesurfaceofthevesselwallfollowedbyhighrepressurization; significant degradation ofvesselmaterialtoughness causedbyradiation embrittlement; andthepresenceofacritical-size defectinthevesselwall.In1985theNuclearRegulatory Commission (NRC)issueda=formalrulingonPTS.Itestablished screening criteriaonpressurized waterreactor(PWR)vesselembrittlement asmeasuredbythenil-ductility reference temperature, termedRTPTS.RTPTSscreening valuesweresetfor[$1beltlineaxialwelds,forgingsorplatesandforbeltlinecircumferential weldseamsforend-of-license plantoperation.
T. A. Meyer, Manager Structural Reliability   8 Plant Life Optimization WESTINGHOUSE ELECTRIC CORPORATION Nuclear and Advanced Technology Division P.O. Box 355 Pittsburgh, Pennsylvania   15230-0355 4 1993 Westinghouse Electric Corporation All Rights Reserved
Thescreening criteriaweredetermined usingconservative fracturemechanics analysistechniques.
AllPWRvesselsintheUnitedStateshavebeenrequiredtoevaluatevesselembrittlement inaccordance withthecriteriathroughend-of-license.
TheNRChasamendeditsregulations forlightwaternuclearpowerplantstochangetheprocedure forcalculating radiation embrittlement.
TherevisedPTSRulewaspublished intheFederalRegister, May15,1991withaneffective dateofJune14,1991~~.Thisamendment makestheprocedure forcalculating RTPTSvaluesconsistent withthemethodsgiveninRegulatory Guide1.99,Revision'~
~.
Thepurposeofthisreportistodetermine theRTPTSvaluesforthe0.C.CookUnit2reactorvesseltoaddresstherevisedPTSRule.Section2discusses theRuleanditsrequirements.
Section3providesthemethodology forcalculating RTPTS.Section4providesthereactorvesselbeltlineregionmaterialproperties forthe0.C.CookUnit2reactorvessel.Theneutronfluencevaluesusedinthisanalysisarepresented inSection5.TheresultsoftheRTPTScalculations arepresented inSection6.Theconclusions andreferences forthePTSevaluation followinSections7and8,respectively.
2.PRESSURIZED THERMALSHOCKThePTSRulerequiresthatthePTSsubmittal beupdatedwhenevertherearechangesincoreloadings, surveillance measurements orotherinformation thatindicates asignificant changeinprojected RTPTSvalues.TheRuleoutlinesregulations toaddressthepotential forPTSeventsonpressurized waterreactorvesselsinnuclearpowerplantsthatareoperatedwithalicensefromtheUnitedStatesNuclearRegulatory Commission (USNRC).PTSeventshavebeenshownfromoperating experience tobetransients thatresultinarapidandseverecooldownintheprimarysystemcoincident withahighorincreasing primarysystempressure.
ThePTSconcernarisesifoneofthesetransients actsonthebeltlineregionofareactorvesselwhereareducedfractureresistance existsbecauseofneutronirradiation.
Suchaneventmayresultinthepropagation offlawspostulated toexistneartheinnerwallsurface,therebypotentially affecting theintegrity ofthevessel.TheRuleestablishes thefollowing requirements foralldomestic, operating PMRs:*Allplantsmustsubmitprojected valuesofRTpTSforreactorvesselbeltlinematerials bygivingvaluesfortimeofsubmittal, theexpiration dateoftheoperating license,andtheprojected expiration dateifachangeintheoperating licenseorrenewalhasbeenrequested.
Thisassessment mustbesubmitted withinsixmonthsaftertheeffective dateofthisRuleifthevalueofRTPTSforanymaterialisprojected toexceedthescreening criteria.
Otherwise, itmustbesubmitted withthenextupdateofthepressure-temperature limits,orthenextreactorvesselsurveillance capsulereport,orwithin5yearsfromtheeffective dateofthisRulechange,whichever comesfirst.Thesevaluesmustbecalculated basedonthemethodology specified inthisrule.Thesubmittal mustincludethefollowing:
I)thebasesfortheprojection (including anyassumptions regarding coreloadingpatterns),
and2)copperandnickelcontentandfluencevaluesusedinthecalculations foreachbeltlinematerial.
(Ifthesevaluesdifferfromthosepreviously submitted totheNRC,'justification mustbeprovided.)
*TheRTPTS(measureoffractureresistance) screening criteria'forthereactorvesselbeltlineregionis270'Ffor,plates,forgings, axialwelds;and,300Fforcircumferential weldmaterials.
*Thefollowing equations mustbeusedtocalculate theRTPTSvaluesforeachweld,.plateorforginginthereactorvesselbeltline:
EquationI:RTPTSI+H+hRTPTSEquation2:hRTPTS(CF)f(0.28-0.10 logf)*AllvaluesofRTPTSmustbeverifiedtobeboundingvaluesforthespecificreactorvessel.Indoingthiseachplantshouldconsiderplant-specific information thatcouldaffectthelevelofembrittlement.
*Plant-specific PTSsafetyanalysesarerequiredbeforeaplantiswithin3yearsofreachingthescreening
: criteria, including
.analyses'f alternatives tominimizethePTSconcern.*NRCapprovalforoperation beyondthescreening criteriaisrequired.
3~METHODFORCALCULATION OFRTPTSInthePTSRule,theNRCStaffhasselectedaconservative anduniformmethodfordetermining plant-specific valuesofRTPTSatagiventime.Forthepurposeofcomparison withthescreening
: criteria, thevalueofRTPTSforthereactorvesselmustbecalculated foreachweldandplateorforginginthe.beltline regionasfollows.RTPTS+H+~PTSwherehRTPTS(CF)f('Initialreference temperature (RTNDT)in'Foftheunirradiated materialMMargintobeaddedtocoveruncertainties inthevaluesofinitialRTNDT,copperan'dnickelcontents, fluencearidcalculational procedures.
H-66'Fforweldsand48'FforbasemetalifgenericvaluesofIareused.H=56'Fforweldsand34'FforbasemetalifmeasuredvaluesofIareused.fNeutronfluence,n/cm2(E>1HeVattheclad/base metalinterface),
dividedby10CFChemistry factorfromtables~2~
forweldsandforbasemetal(platesandforgings).
Ifplant-specific surveillance datahasbeendeemedcredibleperReg.Guide1.99,Rev.2~~,itmaybeconsidered inthecalculation ofthechemistry factor.
VERIFICATION OFPLANT-SPECIFIC HATERIALPROPERTIES Beforeperforming thepressurized thermalshockevaluation, areviewofthelatestplant-specific materialproperties wasperformed.
ThebeltlineregionisdefinedbythePTSRule~2~tobe"theregionofthereactorvessel(shellmaterialincluding welds,heataffectedzonesandplatesorforgings) thatdirectlysurrounds theeffective heightoftheactivecoreandadjacentregionsofthereactorvesselthatarepredicted toexperience sufficient neutronirradiation damagetobe'onsidered intheselection ofthemostlimitingmaterialwithregardtoradiation damage."FigureIidentifies andindicates thelocationofallbeltlineregionmaterials fortheD.C.CookUnit2reactorvessel.Haterialpropertyvalueswereobtainedfrommaterialtestcertifications fromtheoriginalfabrication aswellastheadditional materialchemistry testsperformed aspartofthesurveillance capsuleprogram~~.Theaveragecopperandnickelvalueswerecalculated foreachofthebeltlineregionmaterials usingalltheavailable materialchemistry information.
Asummaryofthepertinent chemicalandmechanical properties ofthebeltlineregionplateandweldmaterials oftheD.C.CookUnit2reactorvesselaregiveninTablel.AlloftheinitialRTNDTvalues(I-RTNDT) arealsopresented inTablel.
C5521-24JICiVJCZ!LalI27010'8010'0'5556-2 CORE0~C5540-2270'0'CC)180'5592-1 Figurel.Identification andLocationofBeltlineRegionMaterials fortheD.C.CookUnit2ReactorVessel I
TABLE1D.C.COOKUNIT2REACTORVESSELBELTLINEREGIONMATERIALPROPERTIES MaterialDescriptionCU(>)NI(%%d)I-RTNDT('F)Intermediate Shell,C5556-20.15Intermediate Shell,C5521-2*0.1250.570.585838LowerShell,C5540-2LowerShell,C5592-1Longitudinal'elds
*Circumferential Weld*0.110.140.0520.0520.640.590.9670.967-20-20-35-35*Meanvaluesofcopperandnickelasindicated belowMaterialPlate,C5521-2DataSourceOriginalHillTestReportSurveillance Program[5]MeanvalueCopper~wt.t',0.14O.ll0.125Nickel~wt.I0.580.580.58WeldOriginalMillTestReportSurveillance Program[5]Surveillance Program[5]Meanvalue0.050.0550.050.970.970.960.0520.967 5.NEUTRONFLUENCEVALUESThecalculated fastneutronfluence(E>1MeV)attheinnersurfaceoftheD.C.CookUnit2reactorvesselisshowninTable2.Thesevalueswereprojected usingtheresultsoftheCapsuleUradiation surveillance program~"~.
TABLE2NEUTRONEXPOSUREPROJECTIONS*
ATKEYLOCATIONS INTHED.C.COOKUNIT2PRESSUREVESSELCLAD/BASE METALINTERFACE FOR8.65AND32EFPY[IEFPY8.65320~0.1790.66310'.2440.90230'.3091.140.4651.71*F1uencex10n/cm(E>1.0MeV)


6.DETERMINATION OFRTPTSVALUESFORALL8ELTLINEREGIONMATERIALS Usingtheprescribed PTSRulemethodology, RTPTSvaluesweregenerated forallbeltlineregionmaterials ofthe0.C.CookUnit2reactorvesselasafunctionofpresenttime(8.65EFPYperCapsuleUanalysis) andend-of-license 32EFPY)fluencevalues.Thefluencedataweregenerated basedonthemostrecentsutveillance capsuleprogramresults~"~.
TABLE OF CONTENTS
ThePTSRulerequiresthateachplantassesstheRTPTSvaluesbasedonplantspecificsurveillance capsuledataundercertainconditions.
                                                  ~Pa  e Table of Contents List of  Tables List of Figures Introduction Pressurized Thermal Shock Methods  of Calculation of RTPTS Verification of Plant-Specific Material Properties Neutron Fluence Values Determination of  RTPTS Values for All Beltline Region Materials Conclusions                                          13 References
Theseconditions are:Plantspecificsurveillance datahasbeendeemedcredibleasdefinedinRegulatory Guide1.99,Revision2,andRTPTSvalueschangesignificantly.
 
(ChangestoRTPTSvaluesareconsidered significant ifthevaluedetermined withRTPTSequations (I)and(2),orthatusingcapsuledata,orboth,exceedthescreening criteriapriortotheexpiration oftheoperating license,including anyrenewedterm,ifapplicable, fortheplant.)ForD.C.CookUnit2,theuseofplantspecificsurveillance capsuledataarisesfortheintermediate shellplate,C5521-2andtheweldsbecauseofthefollowing reasons:I)Therehavebeenthreecapsulesremovedfromthereactorvessel,andthedataisdeemedcredibleperRegulatory Guide1.99,Revision2.2)Thesurveillance capsulematerials arerepresentative oftheactualvesselmaterials.
LIST OF TABLES Table                                  Title                          Pacae
Thechemistry factorsfortheintermediate shellplate,C5521-2andweldswerecalculated usingthesurveillance capsuledataasshowninTable3.Allotherchemistry factorvaluesfortheremaining beltlinematerials werecalculated usingtheTablesIand2fromRegulatory Guide1.99,Revision2.
: 1. D. C. Cook  Unit 2  Reactor Vessel Beltline Region Haterial Properties 2;    Neutron Exposure Projections at Key Locations in the D. C. Cook Unit 2 Pressure Vessel Clad/Base Hetal Interface for 8.65 and 32 EFPY
TABLE3CALCULATION OFCHEMISTRY FACTORSUSINGD.C.COOKUNIT2SURVEILLANCE CAPSULEDATA~~Carponent CaPsuleFLuenceFFDRTNDTFPDRTNDT(FF)"2Intermediate ShellPLateC5521-2(Long.)intermediate ShellPlateC5521-2(Trans.)0.2640.6831.061.580.2640.6831.061.580.6380.8931.0161.1260.63S0.8931.0161.126559095958010010313835.07280.37896.548107.00451.01389.309104.679155.4380.4070.7981.0331.2690.4070.7981.0331.269719.4427.012Chemistry Factor~719.442/7.012i102.61MeldMetalT0.2640.638'T0.6830.893X1.061.016U1.581.1264050707525.50744.65571.14184.4770.4070.7981.0331.269225.7793.506Chemistry Factor~225.779/3.506~64.40 Tables4and5provideasummaryoftheRTPTSvaluesforallbeltlineregionmaterials for8.65EFPYandend-of-life (32EFPY),respectively, usingthePTSRule.TABLE4RTPTSVALUESFORD.C.COOKUNIT2FOR8.65EFPYHaterialhRTgpT('F)
: 3. Calculation of Chemistry Factors Using      D. C. Cook  Unit 2  10 Surveillance Capsule Data
+InitialRTNOT+Ha>ginRTPTS(CFxFF*)('F)('F)(F)Intermediate ShellPlate,C5556-2Intermediate Shell.Plate,C5521-2LowerShellPlate,C5540-2LowerShellPlate,C5592-1Intermediate ShellLongitudinal WeldsLowerShellLongitudinal WeldsCircumferential MeldSeam108.350.78786.500.787(102.61)0.78774.600.78799.550.78770.80'0.618(64.40)0.61870.800.543(64.40)0.54370.800.787(64.40)0.787583838-20-20-35-35-35-35-35-353434343434565656565656177140(153)7392656160567772()Indicates numberswerecalculated usingsurveillance capsuledata.*Fluencefactorbaseduponpeakinnersurfaceneutron.fluenceof4.65x10n/cm[4],exceptforthelongitudinal welds.Fortheintermediate shelllongitudinal welds,thefluencefactorisbasedona,neutronfluenceof2.44x10n/cm[4]attheinnersurfaceoftheweldatthe10'ocation.
: 4. RTPTS  Values for  D. C. Cook  Unit  2 for 8.65  EFPY
Forthelowershelllongitudinal welds,thefluencefactorisbasedonaneutronfluenceof1.79x10n/cm[4]attheinnersurfaceoftheweldatthe0'ocation.
: 5. RTPTS  Values for  D. C. Cook  Unit  2 for 32 EFPY              12 LIST OF FIGURES
P0 TABLE5RTPTSVALUESfORD.C.COOKUNIT2FOR32EFPYMaterialhRTNDT('F)
~iciure                                Title                          ~Pa  e
'InitialRTNDT+(CFxFF*)('F)MarginRTPTS('F)('F)Intermediate ShellPlate,C5556-2Intermediate ShellPlate,C5521-2LowerShellPlate,C5540-2LowerShellPlate,C5592-1Intermediate.
: 1. Identification and Location of Beltline Region Haterials for the D. C. Cook Unit 2 Reactor Vessel N
ShellLongitudinal Welds108.351.14886.501.148(102.61)1.14874.601.14899.551.14870.800.971(64.40)0.971583838-20-20-35-353434345656216171(190)1001289085LowerShellLongitudinal WeldsCircumferential WeldSeam70.80(64.40)70;80(64.40)0.8850.8851.1481.148-35-35-35-3556565656847810295()Indicates numberswerecalculated usingsurveillance capsuledata.*Fluencefactorbaseduponpeakinnersurfaceneutronfluenceof1.71x10n/cm[4],exceptforthelongitudinal welds.Fortheintermediate shelllongitudinal welds,thefluencefactorisbasedonaneutronfluenceof9.02x10n/cm[4]attheinnersurfaceoftheweldatthe10location.
: 2. RTPTS  versus Fluence Curves    for D. C. Cook  Unit 2          13 Limiting Haterials    Intermediate Shell Plate, C5556-2
Forthelowershelllongitudinal welds,thefluencefactorisbasedonaneutronfluenceof6.63x10n/cm[4]attheinnersurfaceoftheweldatthe0'ocation.
 
gl7.CONCLUSIONSIAsshownsnTables4and5,alltheRTPTSvaluesremainbelowtheNRCscreening valuesforPTSusingthefluencevaluesforthepresenttime(8.65EFPY)andtheprojected fluencevaluesfortheend-of-life (32EFPY).AplotoftheRTPTSvaluesversusthefluenceisshowninFigure2forthemostlimitingmaterial, theintermediate shellplate,C5556-2intheD.C.CookUnit2reactorvesselbeltlineregion.300250200LI0M150t-CLCC100SCREENING CRITERIA~~~~~~~~~~~~~~~0~~~~~~~....k"~~~~~~~~~~~~~.0'"~~~~~~~~~~~~~~~~508.65EFPY432EFPY1E+182E+'I83E+185E+181E+192E+193E+195E+19FLUENCE(NEUTRONS
INTRODUCTION A  limiting condition  on reactor vessel integrity known as Pressurized Thermal Shock (PTS) may occur during a severe system transient such as a Loss-Of-Coolant-Accident (LOCA) or a steam line break. Such transients may challenge the integrity of a reactor vessel under the following conditions:
/CM)INTER.SHELLPIATE,C5556-21E+20Figure2.RTPTSversusFluenceCurvesforD.C.CookUnit2LimitingMaterial-Intermediate ShellPlate,C5556-2 eglJ REFERENCES
severe overcooling of the inside surface of the vessel wall followed by high repressurization; significant degradation of vessel material  toughness caused by radiation embrittlement; and the presence of  a  critical-size defect in the vessel wall.
[1]10CFRPart50,"Analysis ofPotential Pressurized ThermalShockEvents,"July23,1985.[2]10CFRPart50,"Fracture Toughness Requirements forProtection AgainstPressurized ThermalShockEvents,"May15,1991.(PTSRule)[3]Regulatory Guide1.99,Revision2,"Radiation Embrittlement ofReactorVesselMaterials,"
In 1985 the Nuclear Regulatory Commission (NRC) issued a =formal ruling on PTS. It established screening criteria on pressurized water reactor (PWR) vessel embrittlement as measured by the nil-ductility reference temperature, termed RTPTS [$ 1 . RTPTS screening values were set for beltline axial welds, forgings or plates and for beltline circumferential weld seams for end-of-license plant operation. The screening criteria were determined using conservative fracture mechanics analysis techniques. All PWR vessels in the United States have been required to evaluate vessel embrittlement in accordance with the criteria through end-of-license. The NRC has amended its regulations for light water nuclear power plants to change the procedure for calculating radiation embrittlement. The revised PTS Rule was published in the Federal Register, May 15, 1991 with an effective date of June 14, 1991~ ~. This amendment makes the procedure for calculating RTPTS values consistent with the methods given in Regulatory Guide 1.99, Revision'~ ~.
U.S.NuclearRegulatory Commission, May1988.[4]WCAP-13515, "Analysis ofCapsuleUfromtheIndianaMichiganPowerCompanyD.C.CookUnit2ReactorVesselRadiation Surveillance Program,"
 
page6-28,J.M.Chicots,etal.,October1992.(Westinghouse Proprietary Class3)[5]WCAP-8512, "American ElectricPowerCompanyDonaldC.CookUnitNo.2ReactorVesselRadiation Surveillance Program",
The purpose  of this report is to  determine the RTPTS values for the 0. C.
J.A.Davidson, etal.,November1975.[6]MT/SMART-090(89),
Cook Unit 2 reactor vessel to address the revised PTS Rule. Section 2 discusses the Rule and its requirements. Section 3 provides the methodology for calculating RTPTS. Section 4 provides the reactor vessel beltline region material properties for the 0. C. Cook Unit 2 reactor vessel. The neutron fluence values used in this analysis are presented in Section 5. The results of the RTPTS calculations are presented in Section 6. The conclusions and references for the PTS evaluation follow in Sections 7 and 8, respectively.
"D.C.CookUnit2ReactorVesselHeatupandCooldownLimitCurvesforNormalOperation",
: 2.     PRESSURIZED THERMAL SHOCK The PTS Rule  requires that the PTS submittal be updated whenever there are changes in core loadings, surveillance measurements or other information that indicates a significant change in projected RTPTS values.
N.K.Ray,April1989,Tablel.
The Rule  outlines regulations to address the potential for PTS events on pressurized water reactor vessels in nuclear power plants that are operated with a license from the United States Nuclear Regulatory Commission (USNRC).
ENCLOSURE 2TOAEP:NRC:1173C MARKUPOFPRESSURIZED THERMALSHOCKANDUPPERSHELFENERGYSUMMARYTABLES Enclosure.2 toAEP:NRCall73" SucTRaryFileforPressurized TheraalShackPLantNaaa0CCock1EOLa}0/25/2014$eltL}rident.Na-LeShell$445Mat"LeShelL$4405.2Mc-LeShelL$4'053MeetXc.ident.C3$n}0XeutfLuenceat.ER/EFPT1ehkfc&l.lOc181ehhakh0'4'FiLO'E}g~9840-F1I}OE}9XethcdofOetarein.
PTS events have been shown from operating experience to be transients that result in a rapid and severe cooldown in the primary system coincident with a high or increasing primary system pressure.     The PTS concern arises  if one of these transients acts on the beltline region of a reactor vessel where a reduced fracture resistance exists because of neutron irradiation. Such an event may result in the propagation of flaws postulated to exist near the inner wall surface, thereby potentially affecting the integrity of the vessel.
}RTXTEXS-ZXtaS-2NTH5.Zthaaiatry factorXechadofDeterge}n CFTableTabLeTable0.140.}40.460.'50.4Sint.SheLL~>>-Iint.SheLL$4'06-2int.Shell$4406-3LeverShelL$44071LoverSheLL5447.2LoverSheLL$4407.31.41E191.41E191.41E191.4}E19141E191.41E19SOP33'F40'F'2$'F-1Z'F3S'FPlantSaecificPlantScecificPlantSoecificPlantSpecificPlantSpecificPlantSpecific$1.4104,5102.9495.5TabL~Tabl~Calmlatad TableTab'LeTable0.120.150.150.140120140.520.500.490550.590.50Xa='.eSheL}.AxialVeLda1-4-2A1(.'c-'.e/int.ShelLC}rc.Velds-c'z13Z53and12OCS(T)202918.56'F1.NK15-56'Fi'0'E1$CenericCeneric206,4TableTableD,ZS0.350.7>>O.i>>tpLnttoLoverShellCirc.Veld9-4'21P35711.4}E19'-56'FCeneric219TableQ.7'n.ShelLAxialVe}d2-4'A/CLoverShellAxialVeld3-4'ZA/C13Z53120~&(T)13Z53and12OCS(T)56'FOqor=14~QZ-S&F0clcj,1RCcnericCenericZO&.4206.4TableTableQe278' SumitaryFileforPressurized TheraalShockPlantNaekeBeltlineIdent.HeatNoIdent.IONeut.FLuenceatEOLIEFPTIRTHethodofOetenafn.
The Rule  establishes  the following requirements for all domestic, operating PMRs:
IRTChosistryFactorH<<thodofOetanafn.
* All plants must submit projected values of RTpTS for reactor vessel beltline materials by giving values for time of submittal, the expiration date of the operating license, and the projected expiration date  if a  change  in the operating license or renewal has been requested. This assessment must be submitted within six months after the effective date of this Rule    if  the value of RTPTS for any material is projected to exceed the screening criteria.
CFC.C.Caak'IALLdataexceptaanotedbelowwrefreretheJulyG,1992LetterfrereE.E.Ffapatrfck:to T.E.Hurley,"OanaLdC.CookNuclearPLantUnits1and2...genericI.atter92-0t,Revfaian1,ReactarVesselgtruceuaL Integrity."
 
Information regarding chersfcaL ccapoaftfcn, initialRT,andaethodalagy ofdetemfnatfan farthelIJSEfor'hewidearefreretheNovedaer29,1993LetterfreeE.E.Ffttpatrfck toT.E.Hurley,eganaldC.CookNuclearplantUnits1ard2...ResponsetaRequestforNitfanalInfonaatian fargenerfcletter92-OtRevisicnt."NovaluefarICuafveld5-442@aspravided, therefore thedefaultvalueof0.35NasUsed.DatLd, SumaryFileforPressurized ThermalShockPlantXaaaO.C.Cook2EOL:12/23/2017Beltlfneident.int.SheLL10-1int.Shell10-2LrwerShell9-1Lo~erSheLL9-2int.ShelLAxialVeldsL~rShellAxial'MeldsCfrcus.'MeldHeatXo.ident.C5556-205521-2C55402C5592-153986S398610Xeut.FluenceatEOLIEFPY'1.71E191.71E19~~0<iViEl+9.0ZE186.63E18171E1958'F'8'F20'F20'F-35'F.35'F-35'FXethodofOeterain.
Otherwise,  it must be submitted with the next update of the pressure-temperature limits, or the next reactor vessel surveillance capsule report, or within 5 years from the effective date of this Rule change, whichever comes first. These values must be calculated based on the methodology specified in this rule. The submittal must include the following:
LRTPlantSoecificPlantSpecificPlantSpecificPlantSpecificPlantSpecificPlantSpecificPlantSoecificChemistry Factor108.910Z.6174.664.464.4methodofOeterain.
I) the  bases  for the projection (including    any assumptions regarding core loading patterns), and
CFTableCalculated TableTabl~Calculated CaLculated Calculated0.15O.LZ,S0.110.140.050.050.050.$)0.580.640.970.970.97~RAinitiaLRTandchcceicsL ccapositicn fortheplatesandarefreetheJuly13,1992letterfrommE.E...Fit~trick toT.E.Hurley,"OcnaldC.CookXuclearPlantUnits1arxl2...GenericLetter92-01,Revision1,ReactorVesselS'tructuraL integrity."
: 2) copper and nickel content and fluence values used in the calculations for each beltline material. (If these values differ from those previously submitted to the NRC,
Updatedflvences, chemicalccaposition, initialRT,andcalculated chesistry factorsarefreetheApril12,1993letterfrcceE.E.Fit-patrick toT.E:Hurley,CcnaldC.CookXu=learplantUnitZ...Updated Reference TeeperaureandPressurized The~iShockAnalyses."
            'justification must be provided.)
1>
* The RTPTS (measure      of fracture resistance) screening criteria 'for the reactor vessel beltline region is 270'F for, plates, forgings, axial welds; and, 300 F for circumferential weld materials.
~~~i)1l~~%~~C~TC',.'~eL'',I,,~~4'C',,~RtWRSl%tI8 SLfmflary FileforUpperShelfEnergyPLantNateBeltlfneident.HeatNo.Natarial1/4TUSEacEOL1/4TXeutranFluenceatEOLUnirred.USEHethadofDetermfn.
* The  following equations must be used to calculate the RTPTS values for each weld,. plate or forging in the reactor vessel beltline:
Unirrad.USE~RfoneD.C.CaakLAlldata'x&#x17d;capt asnotedbalanuerefrcatheJuly13,1992LetterfreeE.E.Flttpatrfck taT.E.Hurley,49onaldC.CookNuclearPlantUnits,'1and2...GenericLetter92-0t,Revision1,ReactorVesseLStructuraL integrity."
Equation I: RTPTS      I + H + hRTPTS Equation 2:    hRTPTS    (CF)f(0.28-0.10 log  f)
"Infarnatfon regardfng WSEandeethodalogy ofdetersinatfcn fortheLOSEfarthemfdsarefrytheXavier29,1993LetterfrcaE.E.Fit~trick toT.E.Hurley,DonaldC.CookNuclear'PlantUnits1and2...ResponsetoRequestforAhfftfcnal fnfomatfan forGcnerfcLetter92.01,Revisicn1.5O8~~used'he LJJSEvaluesfarsidst-442,2-442and3442represent theNRCstaffcalculated averageofD.C.CaakandSfstarPLantdata<NcGufre, Unit1andDiabloCanyon,Unit2)forveLdufreheatscontaining heatnas.13253andf20'.TheNSEfaruelds9-44ZfsfreeMCAP.12519, "Analysis oftheNafneYankeeReactorVesselSecondMattCapsulelocatedat253',"Narch1991.TheQJSEforzelda0-442fafreeCAP.10756, theReportforSurvefLlance Capauf~UfreeNcafreUnitt.  
* All values of RTPTS must be verified to be bounding values for the specific reactor vessel. In doing this each plant should consider plant-specific information that could affect the level of embrittlement.
~~III'CI~ItI~aI'tt:..ISII~a'L;~~S'L~RMR55~RR~'I~~~III r.".'J~e-IIPt4'}}
* Plant-specific PTS safety analyses are required before a plant is within 3 years of reaching the screening criteria, including
  .analyses'f alternatives to minimize the PTS concern.
* NRC  approval  for operation    beyond the screening  criteria is required.
 
3 ~    METHOD FOR CALCULATION OF RTP TS In the PTS Rule, the NRC Staff has selected a conservative and uniform method for determining plant-specific values of RTPTS at a given time.
For the purpose  of comparison with the screening      criteria,  the value of RTPTS for the reactor vessel must be    calculated for each weld and plate or forging in the .beltline region as follows.
RTPTS        + H + ~   PTS where hRTPTS      (CF)f( '
Initial  reference temperature      (RTNDT) in 'F of the unirradiated material M      Margin to be added to cover uncertainties        in the values of initial  RTNDT,  copper  an'd nickel contents, fluence arid calculational procedures.     H  - 66'F  for welds and 48'F for base metal  if generic values of I are used.
H = 56'F for welds and 34'F for base metal        if measured values of I are used.
f      Neutron fluence, n/cm2 (E >      1HeV  at the clad/base metal interface), divided  by 10 CF    Chemistry factor from tables~2~      for welds and for base metal (plates  and  forgings). If plant-specific surveillance data has been deemed credible per Reg. Guide 1.99, Rev. 2~ ~, it        may be considered in the calculation of the chemistry factor.
 
VERIFICATION OF PLANT-SPECIFIC HATERIAL PROPERTIES Before performing the pressurized thermal shock evaluation,  a review of the latest plant-specific material properties was performed.
The  beltline region is defined  by the PTS Rule~2~ to be  "the region of the reactor vessel (shell material including welds, heat affected zones and plates or forgings) that directly surrounds the effective height of the active core and adjacent regions of the reactor vessel that are predicted to experience sufficient neutron irradiation damage to be'onsidered in the selection of the most limiting material with regard to radiation damage."    Figure I identifies and indicates the location of all beltline region materials for the D. C. Cook Unit 2 reactor vessel.
Haterial property values were obtained from material test certifications from the original fabrication as well as the additional material chemistry tests performed as part of the surveillance capsule program~ ~. The average copper and nickel values were calculated for each of the beltline region materials using all the available material chemistry information.
A summary  of the pertinent chemical and mechanical  properties of the beltline region plate and weld materials of the D. C. Cook  Unit 2 reactor vessel are given in Table l. All of the initial RTNDT values (I-RTNDT) are also presented  in Table  l.
 
C5521-2 270 4J 10'80  10'0'5556-2 I
Ci VJ CZ!
Lal I
                                                    ~
0 CORE C5540-2 270'0'C C) 180'5592-1 Figure l. Identification and Location of Beltline Region Materials for the D. C. Cook Unit 2 Reactor Vessel
 
I TABLE 1 D. C. COOK  UNIT 2 REACTOR VESSEL BELTLINE REGION MATERIAL PROPERTIES CU      NI      I-RTNDT Materi al Descri  pti on        (>)    (%%d)      ('F)
Intermediate Shell, C5556-2      0. 15  0.57            58 Intermediate Shell, C5521-2
* 0. 125    0.58            38 Lower  Shell, C5540-2            0.11  0.64          -20 Lower  Shell, C5592-1            0.14  0.59          -20 Longitudinal'elds
* 0.052  0.967          -35 Circumferential  Weld
* 0.052  0.967          -35
* Mean  values of copper and nickel as indicated below Copper        Nickel Material              Data Source                      ~wt. t',      ~wt. I Plate, C5521-2        Original Hill Test Report            0.14        0.58 Surveillance Program [5]              O.ll        0.58 Mean  value                          0.125        0.58 Weld                  Original Mill Test Report            0.05        0.97 Surveillance Program [5]              0.055        0.97 Surveillance Program [5]              0.05        0.96 Mean  value                          0.052        0.967
: 5.     NEUTRON FLUENCE VALUES The  calculated fast neutron fluence (E>1 MeV) at the inner surface of the D.         C.
Cook Unit 2 reactor vessel is shown in Table 2. These values were projected using the results of the Capsule U radiation surveillance program~"~.
TABLE 2 NEUTRON EXPOSURE PROJECTIONS* AT KEY LOCATIONS        IN THE D. C. COOK UNIT 2 PRESSURE  VESSEL CLAD/BASE METAL INTERFACE FOR      8.65  AND    32 EFPY[ I
                                          ~
EFPY                  0 10'.244        30'.309 8.65              0.179                                  0.465 32              0.663      0.902        1.14          1.71
            *F1 uence x 10  n/cm  (E>1.0 MeV)
: 6.     DETERMINATION OF RTPTS VALUES FOR ALL 8ELTLINE REGION MATERIALS Using the prescribed    PTS Rule methodology, RTPTS  values were generated for all beltline region materials of the 0. C. Cook Unit 2 reactor vessel as a function of present time (8.65 EFPY per Capsule U analysis) and end-of-license 32 EFPY) fluence values.      The fluence data were generated based on the most recent sut veillance capsule program results~"~.
The PTS Rule    requires that each plant assess the RTPTS values based on plant specific surveillance capsule data under certain conditions. These conditions are:
Plant specific surveillance data has been deemed credible as defined in Regulatory Guide 1.99, Revision 2, and RTPTS  values change significantly. (Changes to RTPTS values are considered significant  if the value determined with RTPTS equations (I) and (2), or that using capsule data, or both, exceed the screening criteria prior to the expiration of the operating license, including any renewed term,    if applicable, for the plant.)
For D. C. Cook Unit 2, the use    of plant specific surveillance capsule data arises for the intermediate shell plate, C5521-2 and the welds because of the following reasons:
I)  There have been three capsules removed from the reactor vessel, and the data is deemed credible per Regulatory Guide 1.99, Revision 2.
: 2)  The  surveillance capsule materials are representative of the actual vessel materials.
The  chemistry factors for the intermediate shell plate, C5521-2 and welds were calculated using the surveillance capsule data as shown in Table 3. All other chemistry factor values for the remaining beltline materials were calculated using the Tables I and 2 from Regulatory Guide 1.99, Revision 2.
 
TABLE 3 CALCULATION OF CHEMISTRY FACTORS USING
                                                                          ~
D. C. COOK UNIT 2 SURVEILLANCE CAPSULE DATA~
Carponent              CaPsule  F Luence    FF      DRTNDT    FPDRTNDT  (FF)"2 Intermediate Shell                  0.264    0.638        55      35.072    0.407 PLate C5521-2 (Long.)              0.683    0.893        90      80.378    0.798 1.06    1.016        95      96.548    1.033 1.58    1.126        95    107.004    1.269 intermediate Shell                  0.264    0.63S        80      51.013    0.407 Plate C5521-2 (Trans.)             0.683    0.893        100      89.309    0.798 1.06    1.016        103    104.679    1.033 1.58    1.126        138    155.438    1.269 719.442    7.012 Chemistry Factor ~ 719.442  /   7.012  i    102.61 Meld Metal                T        0.264    0.638        40     25.507    0.407
                          'T        0.683    0.893        50     44.655    0.798 X          1.06   1.016        70      71.141    1.033 U          1.58    1.126        75      84.477    1.269 225.779    3.506 Chemistry Factor ~ 225.779  /  3.506  ~     64.40 Tables    4 and 5  provide a summary of the RTPTS values for all beltline region materials for    8.65 EFPY and end-of-life (32 EFPY), respectively, using the PTS Rule.
TABLE 4 RTPTS VALUES FOR D. C. COOK UNIT 2 FOR    8.65  EFPY hRTgpT('F) +    Initial  RTNOT +  Ha>gin      RTPTS Haterial                  (CF x FF*)          ('F)              ('F)      ( F)
Intermediate Shell        108.35  0.787          58              34        177 Plate, C5556-2 Intermediate Shell          86.50 0.787            38              34        140
.Plate, C5521-2            (102.61) 0.787          38              34        (153)
Lower Shell                74.60  0.787          -20              34          73 Plate, C5540-2 Lower Shell                99.55  0.787          -20              34          92 Plate, C5592-1 Intermediate Shell          70.80 '0.618          -35              56          65 Longitudinal Welds        (64.40) 0.618          -35              56         61 Lower Shell                70.80  0.543          -35                56        60 Longitudinal    Welds    (64.40) 0.543          -35              56          56 Circumferential            70.80 0.787          -35              56          77 Meld Seam                  (64.40) 0.787          -35                56        72
()    Indicates  numbers were  calculated using surveillance capsule data.
* Fluence factor based upon peak inner surface neutron. fluence of 4.65 x 10    n/cm [4], except for the longitudinal welds. For the intermediate shell longitudinal welds, the fluence factor is based on a
      , neutron fluence of 2.44 x 10      n/cm [4] at the inner surface of the weld at the 10'ocation.       For the lower shell longitudinal welds, the fluence factor is based on a neutron fluence of 1.79 x 10      n/cm
[4] at the inner surface of the weld at the 0'ocation.
 
P 0
 
TABLE 5 RTPTS VALUES fOR D. C. COOK UNIT 2 FOR 32 EFPY Ini ti al hRTNDT('F)                  RTNDT + Margin      RTPTS Material                (CF x FF*)            ('F)            ('F)      ('F)
Intermediate Shell      108.35  1.148              58                        216 Plate, C5556-2 Intermediate Shell        86.50 1.148              38            34          171 Plate, C5521-2          (102.61) 1.148              38            34        (190)
Lower Shell              74.60  1.148            -20            34          100 Plate, C5540-2 Lower Shell              99.55  1.148            -20                        128 Plate, C5592-1 Intermediate. Shell      70.80 0.971            -35             56          90 Longitudinal Welds      (64.40) 0.971            -35             56          85 Lower Shell              70.80 0.885            -35             56          84 Longitudinal  Welds    (64.40) 0.885            -35            56          78 Circumferential          70;80 1.148            -35            56          102 Weld Seam                (64.40) 1.148            -35            56          95
()  Indicates  numbers were  calculated using surveillance capsule data.
* Fluence  factor based upon peak    inner surface neutron fluence of 1.71 x 10    n/cm  [4], except for the longitudinal welds.     For the intermediate shell longitudinal welds, the fluence factor is based on        a neutron fluence of 9.02 x 10        n/cm [4] at the inner surface of the weld at the 10 location. For the lower shell longitudinal welds, the fluence factor is based on a neutron fluence of 6.63 x 10        n/cm
[4] at the inner surface of the weld at the 0'ocation.
gl
: 7.       CONCLUS IONS I
As shown sn Tables 4 and 5,                    all the  RTPTS          values remain below the NRC screening values for PTS using the fluence values for the present time (8.65 EFPY) and the projected fluence values for the end-of-life (32 EFPY). A plot of the RTPTS values versus the fluence is shown in Figure 2 for the most limiting material, the intermediate shell plate, C5556-2 in the D. C. Cook Unit 2 reactor vessel beltline region.
300 SCREENING CRITERIA
                                                                                                                                    ~ ~
                                                                                                                              ~ ~ ~
250                                                                                                    ~ ~ ~
                                                                                                                        ~ ~ ~
                                                                                                              ~ ~
                                                                                                        ~ ~0
                                                                                                    ~ ~~
                                                                                                ~~
                                                                                    ....k "
                                                                                              ~~
                                                                                ~~ ~
200                                                        ~ ~
                                                                          ~ ~~
                                                                  ~~ ~
                                                              ~ ~
0 LI
                                                  . 0'"
                                          ~~
                                      ~ ~~
                                  ~~
M 150        ~ ~
                        ~ ~
                            ~ ~ ~
                ~ ~
t-CL CC 100 50                                                                                                8.65 EFPY 4  32EFPY 1E+18            2E+'I8 3E+18          5E+18            1E+19          2E+19 3E+19        5E+19                1E+20 FLUENCE (NEUTRONS / CM                            )
INTER. SHELL PIATE, C5556-2 Figure 2.           RTPTS      versus Fluence Curves                for D. C. Cook  Unit      2 Limiting Material        Intermediate Shell Plate, C5556-2 eg l    J
 
REFERENCES
[1]  10 CFR  Part 50, "Analysis of Potential Pressurized Thermal Shock Events," July 23, 1985.
[2]  10 CFR  Part 50, "Fracture Toughness Requirements for Protection Against Pressurized Thermal Shock Events,"    May 15, 1991.   (PTS  Rule)
[3] Regulatory    Guide 1.99, Revision 2, "Radiation Embrittlement of Reactor Vessel Materials," U.S. Nuclear Regulatory Commission, May 1988.
[4]  WCAP-13515,  "Analysis of Capsule U from the Indiana Michigan Power Company D. C. Cook Unit 2 Reactor Vessel Radiation Surveillance Program," page 6-28, J. M. Chicots, et al.,
October 1992. (Westinghouse Proprietary Class 3)
[5]  WCAP-8512,  "American Electric  Power Company Donald C. Cook Unit  No. 2 Reactor Vessel  Radiation Surveillance Program", J.
A. Davidson, et  al., November 1975.
[6]  MT/SMART-090(89), "D. C. Cook Unit    2 Reactor Vessel Heatup and Cooldown  Limit Curves for  Normal  Operation",  N. K. Ray, April 1989, Table  l.
 
ENCLOSURE 2 TO AEP:NRC:1173C MARKUP OF PRESSURIZED THERMAL SHOCK AND UPPER SHELF ENERGY
 
==SUMMARY==
TABLES
 
Enclosure.2 to AEP:NRCall73" SucTRary      File for Pressurized Theraal    Shack PLant    $ eltL}r              Meet Xc.          }0 Xeut                Xethcd of  thaaiatry    Xechad of Naaa      ident.                ident.          fLuence at .            Oetarein. factor      Deterge}n ER/EFPT                }RT                    CF 0 C      Na-Le                                  1ehkfc&                XTEX  S-Z              Table              0.46 Cock  1  Shell
        $445                                  l.lO c    18 EOLa    Mat" L e                                1ehhakh    0'4'F        Xta    S-2              TabLe    0.14      0.'5
}0/25/  Shel L 2014    $ 4405.2 i LO'E}g Mc Shel
              -Le L
C3$ n            ~9 8          40-F    NTH 5.Z                Table    0. }4    0.4S
        $ 4'05 3                              1  I}OE}9 int. SheLL                                                                $ 1.4                  0.12      0.52
        ~>>-      I 1.41E19        SOP      Plant Saecif  ic TabL ~
int. SheLL                          1.41E19      33'F      Plant      104,5        Tabl ~    0.15      0.50
        $ 4'06-2                                                        Scecific int. Shell                          1.41E19      40'F      Plant      102.94      Calmlatad 0.15      0.49
        $ 4406-3                                                        Soecif ic Lever                                  1.4}E19      '2$ 'F    Plant                  Table    0.14      0 55 ShelL                                                          Speci  fic
        $ 4407  1 Lover                                  1  41E19      -1Z'F    P lant                  Tab'Le    0 12      0.59 SheL  L                                                        Speci  fic 5447. 2 Lover                                    1.41E19      3S'F      Plant      95.5          Table    0 14      0.50 SheLL                                                            Speci  fic
        $ 4407.3 Xa ='.e SheL }.
13Z53 and 8  .56'F    Ceneric    206,4        Table              0. 7>>
Axial                  12OCS  (T)
Ve Lda 1-4-2 A                                1.NK15                                                    D,ZS 1(.'c-'.
tp e/            20291                            -56'F    Cene ric                Table    0.35      O.i>>
int. ShelL C}rc. Veld s-c 'z                                i  '0  'E1$
Lnt to                1P 3571          1.4}E19      '-56'F    Ceneri c    219          Table              Q.
Lover Shell                                                                                                            7'n Circ. Veld 9-4 '2
            . ShelL          13Z53                              56'F    Ccneric    ZO&.4        Table      Qe27 8' Axial Ve}d                  120~&  (T) 2-4  'A/C                            O    qo r=14 Lover Shell 13Z53 and
                                                ~QZ            -S&F    Ceneric    206.4        Tabl e Axi al                12OCS  (T)
Veld 3-4'ZA/C                              0 clcj, 1R
 
Sumitary    File for Pressurized Theraal            Shock Plant      Beltl ine    Heat No      IO Neut.        IRT      Hethod of    Chos istry    H<<thod of Naeke      Ident.      Ident.      FLuence  at                Oetenafn. Factor        Oetanafn.
EOLIEFPT                  IRT                        CF C.C. Caak 'I ALL  data except aa noted below wre frere the July G, 1992 Letter frere E.E. Ffapatrfck:to T.E. Hurley, "OanaLd C. Cook Nuclear PLant Units 1 and 2... generic I.atter 92-0t, Revfaian 1, Reactar Vessel gtruceuaL Integrity."
Information regarding chersfcaL ccapoaftfcn, initial RT, and aethodalagy of detemfnatfan far the lIJSE for'he wide are frere the Novedaer 29, 1993 Letter free E.E. Ffttpatrfck to T.E. Hurley, eganald C. Cook Nuclear plant Units 1 ard 2...
Response ta Request for Nitfanal Infonaatian far generfc letter 92-Ot Revisicn t."
      @as pravided, therefore the default value of 0.35 Nas Used.
No value far I Cu af veld 5-442 Da                t                                                        Ld,
 
Sumary          File for Pressurized          Thermal Shock P lant        Bel tl fne      Heat Xo.        10 Xeut.                  Xethod  of  Chemistry  method  of Xaaa          ident.          ident.          Fluence at                  Oeterain. Factor      Oeterain.
EOLIEFPY                    LRT                      CF O. C.          int. SheLL    C5556-2        '1.71E19                    Plant        108.9      Table        0.15 Cook 2        10-1                                          58'F'8'F    Soeci fic                                            0.$  )
EOL:          int. Shell    05521-2          1.71E19                    Plant        10Z.61      Calculated                  0.58 12/23/        10-2                                                        Speci f ic 2017 O.LZ,S Lrwer          C5540 2                          20'F        Plant        74.6        Table        0.11          0.64 Shell                                                        Specific 9-1 Lo~er          C5592-1      ~~0<              20'F      Plant                      Tabl ~        0.14 SheLL                                                        Speci f ic 9-2                          i    ViEl+
int. ShelL                  9.0ZE18        -35'F        Plant          64.4        Calculated    0.05          0.97 Axial                                                        Specif ic Velds L~r            53986          6.63E18        .35'F        Plant                      CaLculated    0.05          0.97 Shell                                                      Specific Axial
              'Melds Cf rcus.        S3986              71E19      -35'F        Plant          64.4        Ca lcul at ed 0.05
              'Meld 1
0.97 Soecif ic
~RA initiaL    RT    and chcceicsL ccapositicn    for the plates and are free the July 13, 1992 letter fromm E.E...Fit~trick to T.E.
Hurley, "Ocnald C.      Cook  Xuclear Plant Units 1 arxl 2... Generic Letter 92-01, Revision 1, Reactor Vessel S'tructuraL integrity."
Updated flvences, chemical ccaposition, initial RT, and calculated chesistry factors are free the April                      letter 12, 1993 frcce E.E. Fit-patrick to T.E: Hurley, Ccnald C. Cook Xu=lear plant Unit Z...Updated Reference Teepera ure and Pressurized    The~i    Shock  Analyses."
 
1>
                ~ ~ ~
i) 1 l
          '',I,,
                                ~
        ~    %                  ~
C ~    TC',      .    '
              'C',,
    ~
~  eL                        ~ ~
4                            ~
RtWRSl%
t I
8
 
SLfmflary    File for    Upper    Shelf Energy PLant Nate          Beltlfne        Heat No.        Natarial    1/4T USE      1/4T        Unirred.        Hethad of ident.                                        ac EOL        Xeutran      USE            Determfn.
Fluence at                  Unirrad.
EOL                        USE
~Rf  one        D.C. Caak    L All data'x'capt        as noted balan uere frca the July 13, 1992 Letter free E.E. Flttpatrfck ta T.E.
Hurley, 49onald        C. Cook Nuclear Plant Units,'1 and 2... Generic Letter 92-0t,    Revision 1, Reactor VesseL StructuraL        integrity."
Infarnatfon regardfng the    Xavier WSE and eethodalogy of 29, 1993 Letter    frca E.E.
detersinatfcn for the Fit~trick to  T.E. Hurley, LOSE far the mfds are    fry Donald C. Cook Nuclear
        'Plant Units      1  and 2... Response  to Request for Ahfftfcnal  fnfomatfan for Gcnerfc Letter 92.01, Revisicn 1.                                                                                                5 O8    ~~used'he LJJSE values far sids t-442, 2-442 and 3 442 represent the NRC staff calculated average of D.C. Caak and Sfstar PLant data <NcGufre, Unit 1 and Diablo Canyon, Unit 2) for veLd ufre heats containing heat nas. 13253 and f20'.
The NSE far uelds 9-44Z fs          free MCAP.12519, "Analysis of the  Nafne Yankee Reactor Vessel Second Matt Capsule located          at 253'," Narch 1991.
The QJSE      for  zelda 0-442 fa free CAP.10756, the Report for SurvefLlance Capauf      ~ U  free Ncafre Unit    t.
 
                  ~ ~
I      II    'C I    ~  It    I  ~
  ~
a a
I 'tt:
              'L;
                        ~
I S
                          ~ S 'L  I I
                                    ~
  ~ 'I RMR55~RR
          ~          ~        ~      I I        I
 
r .".'J II ~e-P t
4'}}

Latest revision as of 00:41, 4 February 2020

Evaluation of PTS for DC Cook Unit 2.
ML17334B468
Person / Time
Site: Cook American Electric Power icon.png
Issue date: 02/28/1993
From: Chicots J, Meyer T
WESTINGHOUSE ELECTRIC COMPANY, DIV OF CBS CORP.
To:
Shared Package
ML17331A266 List:
References
WCAP-13517, NUDOCS 9304150164
Download: ML17334B468 (30)


Text

~ vv WESTINGHOUSE PROPRIETARY CLASS 3 WCAP-13517 A TTA c//gEwl g EVALUATION OF PRESSURIZED THERMAL SHOCK FOR D. C. COOK UNIT 2 AMERICAN ELECTRIC POWER SERVICE CORPORATION APPROVED IN GENERAL J. M. Chicot 0 APPROVED EXCEPT AS NOTED E3 NOT APPROVED 0 FOR REFERENCE ONLY February 199 BY m' r i kd ~

DATE Work Performed Under Shop Order AFFP-108 Prepared by Westinghouse Electric Corporation for the Indiana Michigan Power Company Approved by:

T. A. Meyer, Manager Structural Reliability 8 Plant Life Optimization WESTINGHOUSE ELECTRIC CORPORATION Nuclear and Advanced Technology Division P.O. Box 355 Pittsburgh, Pennsylvania 15230-0355 4 1993 Westinghouse Electric Corporation All Rights Reserved

TABLE OF CONTENTS

~Pa e Table of Contents List of Tables List of Figures Introduction Pressurized Thermal Shock Methods of Calculation of RTPTS Verification of Plant-Specific Material Properties Neutron Fluence Values Determination of RTPTS Values for All Beltline Region Materials Conclusions 13 References

LIST OF TABLES Table Title Pacae

1. D. C. Cook Unit 2 Reactor Vessel Beltline Region Haterial Properties 2; Neutron Exposure Projections at Key Locations in the D. C. Cook Unit 2 Pressure Vessel Clad/Base Hetal Interface for 8.65 and 32 EFPY
3. Calculation of Chemistry Factors Using D. C. Cook Unit 2 10 Surveillance Capsule Data
4. RTPTS Values for D. C. Cook Unit 2 for 8.65 EFPY
5. RTPTS Values for D. C. Cook Unit 2 for 32 EFPY 12 LIST OF FIGURES

~iciure Title ~Pa e

1. Identification and Location of Beltline Region Haterials for the D. C. Cook Unit 2 Reactor Vessel N
2. RTPTS versus Fluence Curves for D. C. Cook Unit 2 13 Limiting Haterials Intermediate Shell Plate, C5556-2

INTRODUCTION A limiting condition on reactor vessel integrity known as Pressurized Thermal Shock (PTS) may occur during a severe system transient such as a Loss-Of-Coolant-Accident (LOCA) or a steam line break. Such transients may challenge the integrity of a reactor vessel under the following conditions:

severe overcooling of the inside surface of the vessel wall followed by high repressurization; significant degradation of vessel material toughness caused by radiation embrittlement; and the presence of a critical-size defect in the vessel wall.

In 1985 the Nuclear Regulatory Commission (NRC) issued a =formal ruling on PTS. It established screening criteria on pressurized water reactor (PWR) vessel embrittlement as measured by the nil-ductility reference temperature, termed RTPTS [$ 1 . RTPTS screening values were set for beltline axial welds, forgings or plates and for beltline circumferential weld seams for end-of-license plant operation. The screening criteria were determined using conservative fracture mechanics analysis techniques. All PWR vessels in the United States have been required to evaluate vessel embrittlement in accordance with the criteria through end-of-license. The NRC has amended its regulations for light water nuclear power plants to change the procedure for calculating radiation embrittlement. The revised PTS Rule was published in the Federal Register, May 15, 1991 with an effective date of June 14, 1991~ ~. This amendment makes the procedure for calculating RTPTS values consistent with the methods given in Regulatory Guide 1.99, Revision'~ ~.

The purpose of this report is to determine the RTPTS values for the 0. C.

Cook Unit 2 reactor vessel to address the revised PTS Rule. Section 2 discusses the Rule and its requirements. Section 3 provides the methodology for calculating RTPTS. Section 4 provides the reactor vessel beltline region material properties for the 0. C. Cook Unit 2 reactor vessel. The neutron fluence values used in this analysis are presented in Section 5. The results of the RTPTS calculations are presented in Section 6. The conclusions and references for the PTS evaluation follow in Sections 7 and 8, respectively.

2. PRESSURIZED THERMAL SHOCK The PTS Rule requires that the PTS submittal be updated whenever there are changes in core loadings, surveillance measurements or other information that indicates a significant change in projected RTPTS values.

The Rule outlines regulations to address the potential for PTS events on pressurized water reactor vessels in nuclear power plants that are operated with a license from the United States Nuclear Regulatory Commission (USNRC).

PTS events have been shown from operating experience to be transients that result in a rapid and severe cooldown in the primary system coincident with a high or increasing primary system pressure. The PTS concern arises if one of these transients acts on the beltline region of a reactor vessel where a reduced fracture resistance exists because of neutron irradiation. Such an event may result in the propagation of flaws postulated to exist near the inner wall surface, thereby potentially affecting the integrity of the vessel.

The Rule establishes the following requirements for all domestic, operating PMRs:

  • All plants must submit projected values of RTpTS for reactor vessel beltline materials by giving values for time of submittal, the expiration date of the operating license, and the projected expiration date if a change in the operating license or renewal has been requested. This assessment must be submitted within six months after the effective date of this Rule if the value of RTPTS for any material is projected to exceed the screening criteria.

Otherwise, it must be submitted with the next update of the pressure-temperature limits, or the next reactor vessel surveillance capsule report, or within 5 years from the effective date of this Rule change, whichever comes first. These values must be calculated based on the methodology specified in this rule. The submittal must include the following:

I) the bases for the projection (including any assumptions regarding core loading patterns), and

2) copper and nickel content and fluence values used in the calculations for each beltline material. (If these values differ from those previously submitted to the NRC,

'justification must be provided.)

  • The RTPTS (measure of fracture resistance) screening criteria 'for the reactor vessel beltline region is 270'F for, plates, forgings, axial welds; and, 300 F for circumferential weld materials.
  • The following equations must be used to calculate the RTPTS values for each weld,. plate or forging in the reactor vessel beltline:

Equation I: RTPTS I + H + hRTPTS Equation 2: hRTPTS (CF)f(0.28-0.10 log f)

  • All values of RTPTS must be verified to be bounding values for the specific reactor vessel. In doing this each plant should consider plant-specific information that could affect the level of embrittlement.
  • Plant-specific PTS safety analyses are required before a plant is within 3 years of reaching the screening criteria, including

.analyses'f alternatives to minimize the PTS concern.

  • NRC approval for operation beyond the screening criteria is required.

3 ~ METHOD FOR CALCULATION OF RTP TS In the PTS Rule, the NRC Staff has selected a conservative and uniform method for determining plant-specific values of RTPTS at a given time.

For the purpose of comparison with the screening criteria, the value of RTPTS for the reactor vessel must be calculated for each weld and plate or forging in the .beltline region as follows.

RTPTS + H + ~ PTS where hRTPTS (CF)f( '

Initial reference temperature (RTNDT) in 'F of the unirradiated material M Margin to be added to cover uncertainties in the values of initial RTNDT, copper an'd nickel contents, fluence arid calculational procedures. H - 66'F for welds and 48'F for base metal if generic values of I are used.

H = 56'F for welds and 34'F for base metal if measured values of I are used.

f Neutron fluence, n/cm2 (E > 1HeV at the clad/base metal interface), divided by 10 CF Chemistry factor from tables~2~ for welds and for base metal (plates and forgings). If plant-specific surveillance data has been deemed credible per Reg. Guide 1.99, Rev. 2~ ~, it may be considered in the calculation of the chemistry factor.

VERIFICATION OF PLANT-SPECIFIC HATERIAL PROPERTIES Before performing the pressurized thermal shock evaluation, a review of the latest plant-specific material properties was performed.

The beltline region is defined by the PTS Rule~2~ to be "the region of the reactor vessel (shell material including welds, heat affected zones and plates or forgings) that directly surrounds the effective height of the active core and adjacent regions of the reactor vessel that are predicted to experience sufficient neutron irradiation damage to be'onsidered in the selection of the most limiting material with regard to radiation damage." Figure I identifies and indicates the location of all beltline region materials for the D. C. Cook Unit 2 reactor vessel.

Haterial property values were obtained from material test certifications from the original fabrication as well as the additional material chemistry tests performed as part of the surveillance capsule program~ ~. The average copper and nickel values were calculated for each of the beltline region materials using all the available material chemistry information.

A summary of the pertinent chemical and mechanical properties of the beltline region plate and weld materials of the D. C. Cook Unit 2 reactor vessel are given in Table l. All of the initial RTNDT values (I-RTNDT) are also presented in Table l.

C5521-2 270 4J 10'80 10'0'5556-2 I

Ci VJ CZ!

Lal I

~

0 CORE C5540-2 270'0'C C) 180'5592-1 Figure l. Identification and Location of Beltline Region Materials for the D. C. Cook Unit 2 Reactor Vessel

I TABLE 1 D. C. COOK UNIT 2 REACTOR VESSEL BELTLINE REGION MATERIAL PROPERTIES CU NI I-RTNDT Materi al Descri pti on (>) (%%d) ('F)

Intermediate Shell, C5556-2 0. 15 0.57 58 Intermediate Shell, C5521-2

  • 0. 125 0.58 38 Lower Shell, C5540-2 0.11 0.64 -20 Lower Shell, C5592-1 0.14 0.59 -20 Longitudinal'elds
  • 0.052 0.967 -35 Circumferential Weld
  • 0.052 0.967 -35
  • Mean values of copper and nickel as indicated below Copper Nickel Material Data Source ~wt. t', ~wt. I Plate, C5521-2 Original Hill Test Report 0.14 0.58 Surveillance Program [5] O.ll 0.58 Mean value 0.125 0.58 Weld Original Mill Test Report 0.05 0.97 Surveillance Program [5] 0.055 0.97 Surveillance Program [5] 0.05 0.96 Mean value 0.052 0.967
5. NEUTRON FLUENCE VALUES The calculated fast neutron fluence (E>1 MeV) at the inner surface of the D. C.

Cook Unit 2 reactor vessel is shown in Table 2. These values were projected using the results of the Capsule U radiation surveillance program~"~.

TABLE 2 NEUTRON EXPOSURE PROJECTIONS* AT KEY LOCATIONS IN THE D. C. COOK UNIT 2 PRESSURE VESSEL CLAD/BASE METAL INTERFACE FOR 8.65 AND 32 EFPY[ I

~

EFPY 0 10'.244 30'.309 8.65 0.179 0.465 32 0.663 0.902 1.14 1.71

  • F1 uence x 10 n/cm (E>1.0 MeV)
6. DETERMINATION OF RTPTS VALUES FOR ALL 8ELTLINE REGION MATERIALS Using the prescribed PTS Rule methodology, RTPTS values were generated for all beltline region materials of the 0. C. Cook Unit 2 reactor vessel as a function of present time (8.65 EFPY per Capsule U analysis) and end-of-license 32 EFPY) fluence values. The fluence data were generated based on the most recent sut veillance capsule program results~"~.

The PTS Rule requires that each plant assess the RTPTS values based on plant specific surveillance capsule data under certain conditions. These conditions are:

Plant specific surveillance data has been deemed credible as defined in Regulatory Guide 1.99, Revision 2, and RTPTS values change significantly. (Changes to RTPTS values are considered significant if the value determined with RTPTS equations (I) and (2), or that using capsule data, or both, exceed the screening criteria prior to the expiration of the operating license, including any renewed term, if applicable, for the plant.)

For D. C. Cook Unit 2, the use of plant specific surveillance capsule data arises for the intermediate shell plate, C5521-2 and the welds because of the following reasons:

I) There have been three capsules removed from the reactor vessel, and the data is deemed credible per Regulatory Guide 1.99, Revision 2.

2) The surveillance capsule materials are representative of the actual vessel materials.

The chemistry factors for the intermediate shell plate, C5521-2 and welds were calculated using the surveillance capsule data as shown in Table 3. All other chemistry factor values for the remaining beltline materials were calculated using the Tables I and 2 from Regulatory Guide 1.99, Revision 2.

TABLE 3 CALCULATION OF CHEMISTRY FACTORS USING

~

D. C. COOK UNIT 2 SURVEILLANCE CAPSULE DATA~

Carponent CaPsule F Luence FF DRTNDT FPDRTNDT (FF)"2 Intermediate Shell 0.264 0.638 55 35.072 0.407 PLate C5521-2 (Long.) 0.683 0.893 90 80.378 0.798 1.06 1.016 95 96.548 1.033 1.58 1.126 95 107.004 1.269 intermediate Shell 0.264 0.63S 80 51.013 0.407 Plate C5521-2 (Trans.) 0.683 0.893 100 89.309 0.798 1.06 1.016 103 104.679 1.033 1.58 1.126 138 155.438 1.269 719.442 7.012 Chemistry Factor ~ 719.442 / 7.012 i 102.61 Meld Metal T 0.264 0.638 40 25.507 0.407

'T 0.683 0.893 50 44.655 0.798 X 1.06 1.016 70 71.141 1.033 U 1.58 1.126 75 84.477 1.269 225.779 3.506 Chemistry Factor ~ 225.779 / 3.506 ~ 64.40 Tables 4 and 5 provide a summary of the RTPTS values for all beltline region materials for 8.65 EFPY and end-of-life (32 EFPY), respectively, using the PTS Rule.

TABLE 4 RTPTS VALUES FOR D. C. COOK UNIT 2 FOR 8.65 EFPY hRTgpT('F) + Initial RTNOT + Ha>gin RTPTS Haterial (CF x FF*) ('F) ('F) ( F)

Intermediate Shell 108.35 0.787 58 34 177 Plate, C5556-2 Intermediate Shell 86.50 0.787 38 34 140

.Plate, C5521-2 (102.61) 0.787 38 34 (153)

Lower Shell 74.60 0.787 -20 34 73 Plate, C5540-2 Lower Shell 99.55 0.787 -20 34 92 Plate, C5592-1 Intermediate Shell 70.80 '0.618 -35 56 65 Longitudinal Welds (64.40) 0.618 -35 56 61 Lower Shell 70.80 0.543 -35 56 60 Longitudinal Welds (64.40) 0.543 -35 56 56 Circumferential 70.80 0.787 -35 56 77 Meld Seam (64.40) 0.787 -35 56 72

() Indicates numbers were calculated using surveillance capsule data.

  • Fluence factor based upon peak inner surface neutron. fluence of 4.65 x 10 n/cm [4], except for the longitudinal welds. For the intermediate shell longitudinal welds, the fluence factor is based on a

, neutron fluence of 2.44 x 10 n/cm [4] at the inner surface of the weld at the 10'ocation. For the lower shell longitudinal welds, the fluence factor is based on a neutron fluence of 1.79 x 10 n/cm

[4] at the inner surface of the weld at the 0'ocation.

P 0

TABLE 5 RTPTS VALUES fOR D. C. COOK UNIT 2 FOR 32 EFPY Ini ti al hRTNDT('F) RTNDT + Margin RTPTS Material (CF x FF*) ('F) ('F) ('F)

Intermediate Shell 108.35 1.148 58 216 Plate, C5556-2 Intermediate Shell 86.50 1.148 38 34 171 Plate, C5521-2 (102.61) 1.148 38 34 (190)

Lower Shell 74.60 1.148 -20 34 100 Plate, C5540-2 Lower Shell 99.55 1.148 -20 128 Plate, C5592-1 Intermediate. Shell 70.80 0.971 -35 56 90 Longitudinal Welds (64.40) 0.971 -35 56 85 Lower Shell 70.80 0.885 -35 56 84 Longitudinal Welds (64.40) 0.885 -35 56 78 Circumferential 70;80 1.148 -35 56 102 Weld Seam (64.40) 1.148 -35 56 95

() Indicates numbers were calculated using surveillance capsule data.

  • Fluence factor based upon peak inner surface neutron fluence of 1.71 x 10 n/cm [4], except for the longitudinal welds. For the intermediate shell longitudinal welds, the fluence factor is based on a neutron fluence of 9.02 x 10 n/cm [4] at the inner surface of the weld at the 10 location. For the lower shell longitudinal welds, the fluence factor is based on a neutron fluence of 6.63 x 10 n/cm

[4] at the inner surface of the weld at the 0'ocation.

gl

7. CONCLUS IONS I

As shown sn Tables 4 and 5, all the RTPTS values remain below the NRC screening values for PTS using the fluence values for the present time (8.65 EFPY) and the projected fluence values for the end-of-life (32 EFPY). A plot of the RTPTS values versus the fluence is shown in Figure 2 for the most limiting material, the intermediate shell plate, C5556-2 in the D. C. Cook Unit 2 reactor vessel beltline region.

300 SCREENING CRITERIA

~ ~

~ ~ ~

250 ~ ~ ~

~ ~ ~

~ ~

~ ~0

~ ~~

~~

....k "

~~

~~ ~

200 ~ ~

~ ~~

~~ ~

~ ~

0 LI

. 0'"

~~

~ ~~

~~

M 150 ~ ~

~ ~

~ ~ ~

~ ~

t-CL CC 100 50 8.65 EFPY 4 32EFPY 1E+18 2E+'I8 3E+18 5E+18 1E+19 2E+19 3E+19 5E+19 1E+20 FLUENCE (NEUTRONS / CM )

INTER. SHELL PIATE, C5556-2 Figure 2. RTPTS versus Fluence Curves for D. C. Cook Unit 2 Limiting Material Intermediate Shell Plate, C5556-2 eg l J

REFERENCES

[1] 10 CFR Part 50, "Analysis of Potential Pressurized Thermal Shock Events," July 23, 1985.

[2] 10 CFR Part 50, "Fracture Toughness Requirements for Protection Against Pressurized Thermal Shock Events," May 15, 1991. (PTS Rule)

[3] Regulatory Guide 1.99, Revision 2, "Radiation Embrittlement of Reactor Vessel Materials," U.S. Nuclear Regulatory Commission, May 1988.

[4] WCAP-13515, "Analysis of Capsule U from the Indiana Michigan Power Company D. C. Cook Unit 2 Reactor Vessel Radiation Surveillance Program," page 6-28, J. M. Chicots, et al.,

October 1992. (Westinghouse Proprietary Class 3)

[5] WCAP-8512, "American Electric Power Company Donald C. Cook Unit No. 2 Reactor Vessel Radiation Surveillance Program", J.

A. Davidson, et al., November 1975.

[6] MT/SMART-090(89), "D. C. Cook Unit 2 Reactor Vessel Heatup and Cooldown Limit Curves for Normal Operation", N. K. Ray, April 1989, Table l.

ENCLOSURE 2 TO AEP:NRC:1173C MARKUP OF PRESSURIZED THERMAL SHOCK AND UPPER SHELF ENERGY

SUMMARY

TABLES

Enclosure.2 to AEP:NRCall73" SucTRary File for Pressurized Theraal Shack PLant $ eltL}r Meet Xc. }0 Xeut Xethcd of thaaiatry Xechad of Naaa ident. ident. fLuence at . Oetarein. factor Deterge}n ER/EFPT }RT CF 0 C Na-Le 1ehkfc& XTEX S-Z Table 0.46 Cock 1 Shell

$445 l.lO c 18 EOLa Mat" L e 1ehhakh 0'4'F Xta S-2 TabLe 0.14 0.'5

}0/25/ Shel L 2014 $ 4405.2 i LO'E}g Mc Shel

-Le L

C3$ n ~9 8 40-F NTH 5.Z Table 0. }4 0.4S

$ 4'05 3 1 I}OE}9 int. SheLL $ 1.4 0.12 0.52

~>>- I 1.41E19 SOP Plant Saecif ic TabL ~

int. SheLL 1.41E19 33'F Plant 104,5 Tabl ~ 0.15 0.50

$ 4'06-2 Scecific int. Shell 1.41E19 40'F Plant 102.94 Calmlatad 0.15 0.49

$ 4406-3 Soecif ic Lever 1.4}E19 '2$ 'F Plant Table 0.14 0 55 ShelL Speci fic

$ 4407 1 Lover 1 41E19 -1Z'F P lant Tab'Le 0 12 0.59 SheL L Speci fic 5447. 2 Lover 1.41E19 3S'F Plant 95.5 Table 0 14 0.50 SheLL Speci fic

$ 4407.3 Xa ='.e SheL }.

13Z53 and 8 .56'F Ceneric 206,4 Table 0. 7>>

Axial 12OCS (T)

Ve Lda 1-4-2 A 1.NK15 D,ZS 1(.'c-'.

tp e/ 20291 -56'F Cene ric Table 0.35 O.i>>

int. ShelL C}rc. Veld s-c 'z i '0 'E1$

Lnt to 1P 3571 1.4}E19 '-56'F Ceneri c 219 Table Q.

Lover Shell 7'n Circ. Veld 9-4 '2

. ShelL 13Z53 56'F Ccneric ZO&.4 Table Qe27 8' Axial Ve}d 120~& (T) 2-4 'A/C O qo r=14 Lover Shell 13Z53 and

~QZ -S&F Ceneric 206.4 Tabl e Axi al 12OCS (T)

Veld 3-4'ZA/C 0 clcj, 1R

Sumitary File for Pressurized Theraal Shock Plant Beltl ine Heat No IO Neut. IRT Hethod of Chos istry H<<thod of Naeke Ident. Ident. FLuence at Oetenafn. Factor Oetanafn.

EOLIEFPT IRT CF C.C. Caak 'I ALL data except aa noted below wre frere the July G, 1992 Letter frere E.E. Ffapatrfck:to T.E. Hurley, "OanaLd C. Cook Nuclear PLant Units 1 and 2... generic I.atter 92-0t, Revfaian 1, Reactar Vessel gtruceuaL Integrity."

Information regarding chersfcaL ccapoaftfcn, initial RT, and aethodalagy of detemfnatfan far the lIJSE for'he wide are frere the Novedaer 29, 1993 Letter free E.E. Ffttpatrfck to T.E. Hurley, eganald C. Cook Nuclear plant Units 1 ard 2...

Response ta Request for Nitfanal Infonaatian far generfc letter 92-Ot Revisicn t."

@as pravided, therefore the default value of 0.35 Nas Used.

No value far I Cu af veld 5-442 Da t Ld,

Sumary File for Pressurized Thermal Shock P lant Bel tl fne Heat Xo. 10 Xeut. Xethod of Chemistry method of Xaaa ident. ident. Fluence at Oeterain. Factor Oeterain.

EOLIEFPY LRT CF O. C. int. SheLL C5556-2 '1.71E19 Plant 108.9 Table 0.15 Cook 2 10-1 58'F'8'F Soeci fic 0.$ )

EOL: int. Shell 05521-2 1.71E19 Plant 10Z.61 Calculated 0.58 12/23/ 10-2 Speci f ic 2017 O.LZ,S Lrwer C5540 2 20'F Plant 74.6 Table 0.11 0.64 Shell Specific 9-1 Lo~er C5592-1 ~~0< 20'F Plant Tabl ~ 0.14 SheLL Speci f ic 9-2 i ViEl+

int. ShelL 9.0ZE18 -35'F Plant 64.4 Calculated 0.05 0.97 Axial Specif ic Velds L~r 53986 6.63E18 .35'F Plant CaLculated 0.05 0.97 Shell Specific Axial

'Melds Cf rcus. S3986 71E19 -35'F Plant 64.4 Ca lcul at ed 0.05

'Meld 1

0.97 Soecif ic

~RA initiaL RT and chcceicsL ccapositicn for the plates and are free the July 13, 1992 letter fromm E.E...Fit~trick to T.E.

Hurley, "Ocnald C. Cook Xuclear Plant Units 1 arxl 2... Generic Letter 92-01, Revision 1, Reactor Vessel S'tructuraL integrity."

Updated flvences, chemical ccaposition, initial RT, and calculated chesistry factors are free the April letter 12, 1993 frcce E.E. Fit-patrick to T.E: Hurley, Ccnald C. Cook Xu=lear plant Unit Z...Updated Reference Teepera ure and Pressurized The~i Shock Analyses."

1>

~ ~ ~

i) 1 l

,I,,

~

~  % ~

C ~ TC', . '

'C',,

~

~ eL ~ ~

4 ~

RtWRSl%

t I

8

SLfmflary File for Upper Shelf Energy PLant Nate Beltlfne Heat No. Natarial 1/4T USE 1/4T Unirred. Hethad of ident. ac EOL Xeutran USE Determfn.

Fluence at Unirrad.

EOL USE

~Rf one D.C. Caak L All data'x'capt as noted balan uere frca the July 13, 1992 Letter free E.E. Flttpatrfck ta T.E.

Hurley, 49onald C. Cook Nuclear Plant Units,'1 and 2... Generic Letter 92-0t, Revision 1, Reactor VesseL StructuraL integrity."

Infarnatfon regardfng the Xavier WSE and eethodalogy of 29, 1993 Letter frca E.E.

detersinatfcn for the Fit~trick to T.E. Hurley, LOSE far the mfds are fry Donald C. Cook Nuclear

'Plant Units 1 and 2... Response to Request for Ahfftfcnal fnfomatfan for Gcnerfc Letter 92.01, Revisicn 1. 5 O8 ~~used'he LJJSE values far sids t-442, 2-442 and 3 442 represent the NRC staff calculated average of D.C. Caak and Sfstar PLant data <NcGufre, Unit 1 and Diablo Canyon, Unit 2) for veLd ufre heats containing heat nas. 13253 and f20'.

The NSE far uelds 9-44Z fs free MCAP.12519, "Analysis of the Nafne Yankee Reactor Vessel Second Matt Capsule located at 253'," Narch 1991.

The QJSE for zelda 0-442 fa free CAP.10756, the Report for SurvefLlance Capauf ~ U free Ncafre Unit t.

~ ~

I II 'C I ~ It I ~

~

a a

I 'tt:

'L;

~

I S

~ S 'L I I

~

~ 'I RMR55~RR

~ ~ ~ I I I

r .".'J II ~e-P t

4'