ML17320A945: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(Created page by program invented by StriderTol)
 
(One intermediate revision by the same user not shown)
Line 17: Line 17:


=Text=
=Text=
{{#Wiki_filter:}}
{{#Wiki_filter:XN-NF-83-85 Issue Date: 10/24/83 D. C. COOK UNIT    2, CYCLE 5 SAFETY ANALYSIS REPORT Written by:
P. D. Wi      , Engineer PWR  Neutronics Reviewed by:
F. B. Skogen,    Manager
                  .PWR  Neutronics
                    ~      ~  /
Prepared by:
H. E. Williamson, Manager Neutronics and Fue Management Prepared by:      -  Ps R. B. Stout, Manager Licensing and Safety Engineering Approved by:                                      (g/W4 P)
G. J. Busselman,    Manager Fuel Design Approved by:
G. A. Sofer., Manager Fuel Engineering an Technical Services Concurred by:
J. 1P Morg'an, Manager Proposals and Customer Services Engineering csk E@CZM        NUCLEAR VVMPARV,lac.
8403080220 840302 PDR ADQCK P.
050003ih PDR
 
NUCLEAR REGULATORY COMMISSION DISCLAIMER IMPORTANT NOTiCE REGARDINQ CONTENTS AND USE OF THIS DOCUMENT PLEASE READ CAREFULLY This technical report was derived through research and development programs  sponsored by Exxon Nuclear Company, Inc. It is being sub-mined by Exxon Nuclear to the USNRC as part of a technical contri-bution to facilitate safety analyses by licensees of the USNRC which utilize Exxon Nuclear fabricated reload fuel or other technical services provided by Exxon Nuclear for licht water power reactors and it is true and conect to the best of Exxon Nuclear's knowledge, information, and belief. The information contained herein may be used by the USNRC in its review of this report, and by licensees or applicants before the USNRC which are customers of Exxon Nuclear in their demonstration of compliance with the USNRC's reguladons.
Without derogating from the foregoing,    neither Exxon Nuclear nor any person acting nn its behalf:
A. Makes any warranty, express or implied, with respect to the accuracy, completeness. or usefulness of the infor-mation contained in this document, or that the use of any information, apparatus, method, or process disclosed in this document will not infringe privately owned rights; or B. Assumes any liabilities with respect to the use of, or for dan ages resulting from the use of, any information, ap.
paratus, method, or process disclosed in this document.
XN- NF- FOO, 766
 
XN-NF-83-85 TABLE OF CONTENTS Section                                                                  ~Pa  e
 
==1.0  INTRODUCTION==
2.0 
 
==SUMMARY==
.                                                      ~ ~  2 3.0  OPERATING HISTORY OF THE REFERENCE CYCLE.                        . 4 4.0  GENERAL DESCRIPTION .                                            . 7 5.0  FUEL SYSTEM DESIGN.                                              . 12 6.0  NUCLEAR CORE DESIGN .                                            ; 13 6.1  PHYSICS CHARACTERISTICS.                                        14 6.1. 1. Power Distribution Considerations    .              . 15 6.1.2  Control  Rod Reactivity Requirements  .              . 16 6.1.3  Moderator Temperature Coefficient Considerations.  .  . 17 6;2  ANALYTICAL METHODOLOGY .                                      . 17 7.0  THERMAL-HYDRAULIC DESIGN ANALYSIS .                                . 23 8.0  ACCIDENT AND TRANSIENT ANALYSES .                                  . 24
: 8. 1 PLANT TRANSIENT ANALYSIS .                                    . 24 8.2  ECCS  ANALYSIS.                                              . 24 8.3  ROD  EJECTION ANALYSIS.                                      . 24
 
==9.0  REFERENCES==
.                                                        ~  28
 
XN-NF-83-85 LIST  OF TABLES Table                                                                          ~Pa  e 4.1    0. C. Cook Unit 2, Principal Characteristics    for Nuclear Analysis of Cycle 5 Fuel .                                      ~  ~ ~  9 6.1    0. C. Cook Unit 2 Neutronics Characteristics of Cycle 5 Compared with Cycle 4 Data . . . . . . . . . . . . . . . . .        . . 18 6.2    0. C. Cook Unit 2 Control Rod Shutdown Margins and Requirements of Cycle 5 Compared to Cycle 4. . . .      . .  . . .  . . 19 8.1    0. C. Cook Unit  2 Cycle 5, Ejected Rod Analysis,    HFP .  . . .  . . 26 8.2    0. C. Cook Unit  2 Cycle 5, Ejected  Rod Analysis,  HZP .  . . .  . . 27 LIST  OF FIGURES
~Fi  are                                                                      ~Pa  e
: 3. 1    0. C. Cook Unit 2, Cycle  4 Boron Letdown Curve    .                    5 3.2      0. C. Cook Unit 2 Cycle 4, Power Distribution Comparison to Map 204-46, 1005 Power, Bank 0 9220 Steps, 7752 MWD/MT.              6 4.1      0. C. Cook Unit 2, Cycle  5  Full Core Loading Pattern    .              10 4.2      0. C. Cook Unit 2, Cycle  5  Loading Pattern and  BOC Exposure Distribution.                                                  11
: 6. 1    0. C. Cook Unit 2, Cycle  5  Boron Letdown Curve  .                    20 6.2    D. C. Cook Unit 2, Cycle 5 Relative Power    Distribution 100 MWD/MT, 1149 ppm, 3411 MWt, ARO.                                    21 6.3    D. C. Cook Unit 2, Cycle  5 Relative  Power Distribution 17,900  MWD/MT, 10 ppm, 3411 MWt, ARO .                                  22
 
h
  ,\
 
XN-NF-83-85 D. C. COOK UNIT 2 CYCLE 5 SAFETY ANALYSIS REPORT PROLOGUE This report is the fourth in    a series of five reports which address the neutronics characteristics of the Cycle      5 core and provides the safety evaluation for Cycle 5. Preliminary analyses were performed in response to the Tentative Scheduled Delivery Date      (TSDD)  notice  and were  provided in  letter report  PWR:41:82. Subsequently,  a final reload  was established in response to the Final Scheduled Delivery Date          (FSDD)  notice  and was documented    in letter report PWR:04:83. The Fuel Cycle Design Report (XN-NF-83-75(P)), which provides the Reference Design for the safety evalu-ation  was  issued in September,  1983. This Safety Analysis Report    will be followed by    a Cycle  5 Startup  and  Operations Report.
 
XN-NF-83-85
: 0. C. COOK UNIT 2 CYCLE 5 SAFETY ANALYSIS REPORT 1.0  INTROOUCTION The  results of the Safety Analysis for Cycle  5 of the 0. C. Cook Unit 2  nuclear plant are presented      in this report. The  topics addressed include operating history of, the reference      cycle, power distribution considerations,  control rod reactivity requirements,      temperature  co-efficient considerations,    and  control rod ejection accident analysis.
 
XN-NF-83-85 2.0 
 
==SUMMARY==
 
The 0. C. Cook      Unit 2  nuclear plant is scheduled to operate in Cycle 5 beginning in April of 1984 with ninety-two (92) fresh assemblies (Reload Batch XN-2) supplied by Exxon Nuclear Company (ENC).                  The  composition of the core during Cycle        5  will  be ninety-two (92) fresh        ENC  assemblies    in Region 7, seventy-two (72) once-burnt              ENC  assemblies      in Region 6,      and twenty-nine (29) twice-burnt Westinghouse assemblies                  in Region 5.        The Cycle  5  design    alsa utilizes 1,040 fresh A1203-B4C burnable absorber rods, each containing 0.026 gm/in of B-10.            The  burnable absorber rods are distributed      among  seventy-two (72) of the fresh assemblies.
The  characteristics of the fuel          and  the reloaded core are in con-formance with      existing Technical Specification limits regarding                shutdown margin provisions and thermal          limits. The  ENC  fuel design'is presented in Reference      1. The  Plant    Transient    Analysis,      the    thermal-hydraulic analysis,    and  the  LOCA-ECCS    analysis  will  be  presented    under separate cover. The    results of the Control      Rod  Ejection Analysis are provided herein    and are    derived from    a  combination of the generic parameters              and results described in Reference            2  and  specific analyses        performed    for Cycle 5.
The    neutronics characteristics        of Cycle    5  are  similar to those of Cycle 4. The minimum excess      shutdown margin above      that required for safe operation is calculated to          be 721 pcm    at EOC. A  postulated control rod ejection event        is conservatively      calculated      to result      in  an  energy deposition of less than        170  cal/gm.
 
XN-NF-83-85 N
At hot    full  power  equilibrium      xenon    conditions, the        peak  F    is calculated to    be  1.64 and occurs at      BOC  in  an assembly        supplied by    ENC.
N The peak  F
              ~
for  Westinghouse    (W)  supplied fuel is calculated to be 1.40 at hot  full power equilibrium        xenon  conditions,    and    also occurs at    BOC5.
Including  a 3X    engineering factor,        a 5X  measurement        uncertainty, K(Z) considerations,      and  an 11% POC-II      allowance    (for    a +5K    target  band on T
axial flux difference), the total peaking factor,                F    , during Cycle    5 is calculated to    be  1.97 in  ENC    supplied fuel      and    1.68 in Westinghouse N
supplied fuel.      The maximum    relative pin      power, F<H, during the cycle is calculated to    be  1.38 in  ENC    supplied fuel      and    1.16 in Westinghouse supplied fuel    and  occurs at 15,000      MWD/MT, and 500 MWD/MT,          respectively.
T Throughout the cycle, both      F      and F<H are expected          to remain within the allowable limits which      will be defined      by  transient      and  accident analyses and presented    under separate      cover.
 
                                            -4                                      XN-NF-83-85 3.0  OPERATING HISTORY OF THE REFERENCE CYCLE D. C. Cook    Unit  2  Cycle  4 has been chosen  as the    reference cycle with respect    to Cycle      5  due  to the close    resemblance      of the neutronic characteristics    between these two cycles.        The Cycle 4    operations began in January, 1983, and as of the end of September,          1983, the core has accrued about 9,000    MWD/MT    exposure. The Cycle 4 core    loading consisted of one hundred twenty one        (121) Westinghouse    assemblies      and  seventy-two    (72)
ENC  assemblies.
The measured      power peaking    factors at hot-full-power, equilibrium xenon  conditions, have remained below the Technical Specification limits T
throughout Cycle 4.          The  total peaking factor,      F    , and  the radial pin N
peaking factors, F<H, have remained below 2.04 and 1.49, respectively.                The Cycle  4  operation has typically been rod free with the            0  control rod  bank positioned    in the range of 218 to 225 steps,              228  steps    being  fully
- withdrawn. It is  anticipated that similar control rod        bank  insertions will be used  in Cycle    5  operations..
The  cri'tical  boron concentration as calculated by        ENC  for Cycle  4 has agreed to    within about      30 ppm  with the measured values (see Figure 3.1).
Also the power      distribution calculated      by  ENC  has    generally agreed to within  +5  percent of the measured values (see Figure 3.2 for              a comparison at 7,752    MWD/MT).
 
o o
o o          I I
I          I      I I      I      I I      I      I I      I            I I      I I    I          I I      I      I      I      I      I            I      I I          I I      I I
I      I      I            I I
I I      I I      I I      I            I I
I            I I      I I      I      I                            I I          I              I            I              I            I      I I              I      I      I p          I    I I
I      I      I I      I      I      I      I I
I I
~    o CD I
J    I I
I I
7
                                    ~  I I
I I
I I
I T
I I
I I
I I
I I
                                                                                              -"-"r"---
I I
Co I                            I                                  I 0
I I                  I I
I I
I      I    L                            I I                            I        GEND,'FILC I
0                    I I      I            I I                    RTQ          I I                          I            I I                            I                                  I I                          I            I      I +    NEBSUREO                    I Zo                    I I                  I      I I
I I      I                                  I Q  'op ~
I I          rI      +    I
                                                'I            I I
I T
I I
I I
l I
CD              I  I              I              I      I      I      I            I      I I  I        I    I      I      I      I      I      I            I      I CC,                  I  I      I      I              I      I      I      I            I      I I  I        I    I      I      I      I      I      I            I      I I  I        I    I      I      I      I      I      I            I      I I        I    I              I            I                    I I
I              I I            I              I                    I LJ1  o              I I      .I      I I        +    I      I I
I            I I      I C3                    I I
I I      I I      I              I                    I o              r I            I I      I            I      I      I            I      I Q o              I I    I 7
I      I      I I      I                    I I
I I
Q                I    I I          I I    I I
I I
I I                    I I
I I
I    I            I    I      I      I                    I                    I I                      I              I I              I Q                I I
I I          I      I I      I      I I
I I
I I
I I
Q 'p            I I          I              I                            I                    I I          I      I      I      I            I                            I Ko    CD I
          -- ---I--
I I
I      r I      I      I      I I
I T
I I
I                  I                                    I I        I                                                                        I I                                                      I                    I I    I  I I                                                  I                    I I                                                      I                                    OC I    I  I                                                  I I        I                                                                        I I    I I                                                  I                    I-                I I                                                      I                    I                  II CD        I        I I
I I                                                  I                    I                I o              I                                                      I                    I 0.0  1.0  2.0 3-0    S.o    5.0    6.0    7.0  B.O    9.0    10.0          11.0  12. 0 13.0 .
10.0 g CYCLE EXPOSURE          (GAD/I1T)
Figure 3.1  D.C. Cook Un) t 2, Cycle  4 Boron Letdown Curve
 
XN-NF-83-85' G                    E            0            ,C
  .856        .985        .975  1.046        .971          1.069    1.008      .901
..848          .966        .964  1.042        .983          1.086    1.019      .859
+0. 9        +2.0        +1.1    +0.4      -1.2            -1. 6              +4.9
  .982      1.079        1.218    1.071      1.218            .997  1.128        .742
  .968      1.064        1'.186  1.069      1.206          1.002    1.125      .737
+1.4        +1.4        +2 7    W.2        +1.0            -0.5    +0. 3      +0. 7
  .974      1.220        1.081    1.073      1.104          1.234  1.020        .862
  .972      1.187        1.079    1.080      1.123          1.243  1.039        .835
+0.2        +2.8        +0.2    -0.6      -1.7            -0.7    -1.8      +3 '
1.049        1.076        1.095    1.093    1.246            1.024  1.107        .554 1.041        1.065        1.072    1.099    1.249            1.058  1.126        .564
+0.8        +1.0        '+2.1    -0.5      -0.2            "312    -1.7      -1.8
  .970      1.219        1.105    1.246      .990          1.175    ;758
  .983      1.196        1.118    1.240    1.030            1.195    .766
-1.3        +1.9        -1.2    +0.5      -3.9            -1.7    -1.0
: 1. 068        .980        1.227    1.023    1.173            1.019    .396 1.059        .986        1.221    1.051    1.190            1.031    .401 W.9          -0. 6        +0. 5    2~7
                                                    '1.4
                                                              -1.2    -1.2 1.007        1.124        .999    1.102      .755            .395  Calculated  (XTGPWR) 1.010        1.109        1.030    1.105      .757            .395  Measured Assembly Power
-0.3        +1.4        -3.0    -0.3      -0.3            0.0 C-M M
x 100
  .903        .748        .857    .551
  .852        .735        .822    .558                  Calculated  Measured    X Oi  ff.
+6.0        +1.8        '+4. 3    -1.3        N 1.354        1.343      +0.8 F            1.565        1.557      +0.5 q
Figure 3.2  O.C. Cook Unit 2 Cycle 4, Power Oistribution Comparison to Map 204-46, 100K Power, Bank 0 8220 Steps, 7,752 MWO/MT
 
XN-NF-83-85 4.0  GENERAL DESCRIPTION The D. C. Cook        Unit  2  reactor consists of          one hundred    ninety three (193) assemblies,        each  having      a    17x17  fuel rod array.          Each  assembly contains two hundred sixty four (264) fuel rods, twenty-four (24)                      RCC  guide tubes,  and one    (1) instrumentation tube.            The  fuel rods consist of slightly enriched    U02  pellets inserted into zircaloy tubes.                  The RCC  guide tubes and the instrumentation tube are also                  made  of zircaloy.        Each ENC assembly contains eight zircaloy spacers with Inconel springs; seven of the spacers are located within the active fuel region.
The Cycle 5        loading pattern is          shown  in Figure 4. 1 with assemblies identified    by  their  Cycle  4  location    and  Fabrication ID.      The  fresh fuel is not assigned      a  Fabrication        ID but the burnable absorber configuration is noted. The  initial    enrichment of the various regions are                listed in  Table 4.1. The  calculated      BOC5    exposures,      based on an    EOC4  exposure of 13,400 MWD/MT,    are shown    >n a  quarter core representation            in Figure 4.2 along with the quarter core fuel shuffle simulation.                  The core    consists of ninety-two (92) fresh    ENC    assemblies      at  an    average    enrichment of 3.64 w/o U-235, seventy-two (72) once-burnt              ENC    assemblies,    and  twenty-nine (29) twice-burnt Westinghouse assemblies.                A  low  radial leakage fuel      management  plan has been developed        and  results in the scatter-loading of the fresh fuel t
throughout    the core        with the fresh assemblies                in the core      interior containing A1203-84C burnable absorber rods.                        The exposed    fuel is also scatter-loaded      in the center in        a  manner to    control the power peaking.        The
 
XN-NF-83-85 Al203  84C burnable absorber rods contain 0.026 gm/in of 8-10 and 1,040 of these rods are  distributed among seventy-two (72) fresh assemblies  loaded in the core  interior. Pertinent fuel  assembly parameters for the Cycle  5 are depicted in Table 4.1.
                                                                            'uel
 
XN-NF-83-85 Table 4. 1  O.C Cook  Unit 2, Principal Characteristics for Nuclear Analysis of Cycle    5  Fuel
                                  ~Re  ion 5      ~Re  ion  6    ~Re  ion    7 Nominal Enrichment (w/o)          3.40          3. 65          3. 64 Nominal Density (X TO)            95              94            94
                                                                      '3030 Pellet  00  (in)                  .3225          .3030 Clad  OD  (in)                    .374            . 360          . 360 Diametral    Gap  (in)            .0065          .0070          .0070 Clad Thickness    (in)            .0225          .0250          .0250 Rod  Pitch (in)                    .496            .496            .496 Spacer Material                    Inconel        Bi-Metallic    Bi-Metallic Fuel Supplier                                      ENC            ENC Fuel Stack Height Nominal (in)                    144            144            144 Number  of Assemblies            29              72              92 Regionwise Loading (MTU)                          13.286          29.077          37.154 Exposure (MWO/MT)
BOC5                            24,069          16,368          0 EOC5                            34,866          35,410          19,546 Incremental                    10,797          19,042          19,546
 
XN-NF-83-85 R  P    N      M    L      K      J      H      G      F    E    0      C    B      A M2                                          02 R47                                          R8 J7    F15          013            Jl              M13          K15    H3 R92  S03          S27            R73            S13          501    R46 N8              L2            L4    Hl      E4            E2                G7 R19              S21            S51    S06    S46            S57                R70 A10      P7          K3              J12            F3          B7          R10 S10      S45          S66            S37            532          S23          S08 P4      P5          J6            E15            L15            G6          85          B4 R78    S63          S48          R6              R65            S41          S61        R23 C12      N6          K7              G4              F7          C6          N12 519      530          S31            S52            S35          553          S17 M5          All'  d      J2      N13    G2            Rll          05        "+
S28          R37            S39    S54    S42            R89          S43 R7  R8  07            M9      C13    J15    N3      09          M7          A9 R4  S07  S72          S34      558    R54    S20. S15          S49          R9 Mll          A5            J14    C3      G14            R5          011 S65          R2            S68    S56    S69            R57          S70 C4        N10          K9              G12            F9          C10          N4 512      S25          S64            S22            S38          S33          S50 P12    P11          J10          E1              Ll            G10          B11        B12 R60    S60          S47          R33            R81            526          S62        R62 A6        P9          K13            J4              F13          B9    b    R6 502      529          S36            S71            S44          S40          S09 J9              L14          L12    H15    E12    c      E14              'B Rl              S59            S67    S24    S14            S55                R52 H13  Fl          03              G15            M3          Kl    G9 R42  S11          518            R36            S16          S04  R71 M14                                          014  Previous Core Location R49                                          R3    Fabrication  IO
                          +    Fresh  Fuel  Assembly, No    BA Pins, a    Fresh  Fuel  Assembly, 4      BA Pins b    Fresh  Fuel  Assembly, 12    BA Pins c    Fresh  Fuel  Assembly, 16    BA Pins d    Fresh  Fuel  Assembly, 20    BA Pins figure 4. 1  O.C. Cook  Unit 2, Cycle    5  Full  Core Loading Pattern
 
XN-NF-83-85 E
G15          C13        09                    09          AS 90          270                                180                    A9'3,843 24,353      16,089      17,611                17,973      12,945                    0 C13          G14                    All                    011 90                                  180 13,487      16,177                  19,856                18, 183 G12                      F.9                  C10                    C12
                                                                              '80 17,973                    17,865                17,906                  17,142 E15                    G10                    811                        812 180 19,790                  17,883    0            16,105                    23,028 G12                      F13                  89                      A10 180                                                                    180 17,611    '0            17,776                16,265                12,404 H15          E12                    E14                                CS v
12,972      18,190                15,989      0          0          28,483 G15                      013                  F15        G9 180                  180 24,023                    17,109                12,295      30,235 014        Core Location  in Previous Cycle Rotation (degrees) 23,083    Assembly .Average Exposure      (MWD/NT)
  +  Fresh  Fuel  Assembly, No BA Pins a  Fresh  Fuel  Assembly, 4 BA Pins b  Fresh  Fuel  Assembly, 12 BA Pins c  Fresh  Fuel  Assembly, 16 BA Pins d  Fresh  Fuel  Assembly, 20 BA Pins Figure 4.2    D. C. Cook Unit 2, Cycle 5, Loading    Pattern and BOC Exposure Distribution
 
XN-NF-83-85 5.0  FUEL SYSTEM OESIGN A description of the Exxon Nuclear  supplied fuel design  and design methods  is contained in Reference 1. This fuel has been  specifically designed to be compatible with the resident fuel supplied by Westinghouse.
 
XN-NF-83-85 6.0  NUCLEAR CORE DESIGN The  neutronic characteristics            of the projected Cycle          5  core are similar to those of the Cycle          4  core (see Section 6.1).
The nuclear design bases for the Cycle                5 core are as follows:
: 1. The  design shall permit operation within the Technical Specifi-cation for    D. C. Cook      Unit    2  nuclear plant.
: 2. The  length of Cycle      5  shall    be determined on the      basis of  a Cycle 4  energy of 1133.2      GWD    (13,400    MWD/MT  exposure).
: 3. The Cycle 5    loading pattern shall          be designed    to achieve power distributions    and  control rod reactivity worths according to the following constraints:
T                      N a)    The peak  F    and  the peak    F<H  shall not exceed the Technical
                                  ~
Specification limits in          any  single  ENC  fuel rod through the cycle,.under nominal        full    power operating    conditions.
b)    The scram worth        of all rods        minus the most    reactive rod shall exceed      BOC  and  EOC  shutdown requirements.
The  neutronic    design    methods      utilized to      ensure  the above    re-quirements are consistent with those described in References 3, 4, and 5.
The Cycle 5    loading contains 1,040 A1203-B4C burnable absorber rods distributed    among  seventy-two      (72) of the ninety-two (92)              fresh  ENC supplied assemblies.      In sixteen (16) of these assemblies there are twenty (20)  burnable    absorber    rods    per    assembly.        Another    thirty-six  (36)
 
                                            'N-NF-83-85 assemblies      will each contain sixteen (16) A1203-84C rods, eight (8) assemblies    will each contain twelve (12) A1203-84C rods, and twelve (12) assemblies      will each contain four (4) A1203-84C rods. The A1203 84C burnable absorber rods each contain 0.026 gm/in of 8-10.                  The  core loading pattern    has been designed      to achieve  a desirable power distribution while maximizing the benefit of assemblies with burnable absorbers to reduce the beginning of cycle        (BOC) boron    concentration.      The  BOC  worth of the 1,040 A1203-84C absorber rods        is calculated to    be  equivalent to the worth of        717 ppm  soluble boron.
6.1    PHYSICS CHARACTERISTICS The  neutronics characteristics of the Cycle            5  core are compared with those of Cycle        4 and  are presented    in Table 6.1.      The data presented in the table indicates the neutronic similarity between Cycles                      4 and  5.
The  reactivity coefficients of            the Cycle    5  core  are    bounded    by the coefficients      used  in the safety analysis.      The  safety analysis for Cycle        5 is applicable for Cycle        4 burnup  of +1,000  MWD/MT and    -1,000  MWD/MT    about the nominal burnup        of  13,400  MWO/MT.
The boron letdown      curve for Cycle    5  is  shown  in Figure 6. 1. The BOC5  xenon    free  critical  boron concentration is calculated to be 1,491 ppm.
At 100    MWO/MT,    equilibrium xenon, the critical boron concentration                  is 1,149 ppm.      The Cycle  5  length is projected to      be  17,900    MWO/MT  at  a  core power  of  3411 MWt    with  10 ppm  soluble boron remaining.
 
XN-NF-83-85
: 6. 1. 1  Power  Distribution Considerations Representative      calculated power        maps  for Cycle      5  are shown  in Figures 6.2      and  6.3  for  BOC,  (equilbrium xenon),          and  EOC    con-ditions, respectively.            The    power  distributions      were obtained        from    a three-dimensional        quarter core      XTG (6) model with moderator density                and Doppler feedback effects incorporated.                As shown      in Figure 6.2, for the design    Cycle    5  loading pattern,        the calculated        BOC,    hot-full-power, N
equilibrium    xenon nuclear power peaking        factors,    F
                                                                    ~, and F<H are    1.64,  and N
1.32, respectively.        At  EOC conditions the corresponding values of              F    and N
F<H  are 1.54 and 1.37, respectively          for the limiting first cycle fuel.              The N
BOC, HFP,    equilibrium      xenon  F    value of 1.64 is compared to the measured
                                        ~
Cycle  4 value of 1.59 in Table 6.1.
N At hot    full  power, equilibrium conditions, the peak                F during the cycle is calculated to              be  1.64. Including      a  3X.engineering factor,  a  5X  measurement    uncertainty, K(Z) considerations,                and  an  11K allowance  for PDC-II, (for      a +5%  target  band on  axial flux difference) the T                                                              N expected  total peak,    F
                              ~, is 1.97. The maximum    relative pin      power, F<H, is T          N calculated to      be 1.38  at 15,000    MWD/MT. Both  F      and F<H are expected        to
                                                                ~
remain within the allowable          limits throughout the cycle.
The control of the core power distribution is accom-plished by    following the procedures for "Exxon Nuclear Power Distribution Control for Pressurized          Water Reactors      Phase    II"(  '      . The  results reported in those documents provide the            means  for projecting the          maximum
 
XN-NF-83-85 F    (Z)  distribution          anticipated    during      operation under the PDC-II Q
procedure    taking into account          the  incore measured        equilibrium      power distribution data.        A  comparison    of this distribution with the Technical Specification limit curve assures that the Technical Specification limit will    not be exceeded        while operating with the PDC-II procedures.                  The T
PDC-II'documents describe the maximum possible variation in                    F  Q(Z) which can occur during operation when following the outlined procedures.                          The "T
bounding variation in F Q(Z) represents the maximum variation when the, axial offset is maintained within the allowable range.
6.1.2    Control      Rod  Reactivit    Re  uirements Detailed calculations of shutdown margins for Cycle                5  are compared    with Cycle      4  data in Table 6.2.        The D. C. Cook      Unit  2  nuclear plant Technical Specifications require              a minimum    required shutdown margin of  1600 pcm  at  BOC  and EOC. The Cycle 5  analysis indicates excess shutdown margin of 1,008        pcm    at  BOC  and  721  at the    EOC. The Cycle 4      analysis indicated  an excess    shutdown margin      of  722 pcm  at  BOC  and 734 pcm    at  EOC.
The  reactivity    allowance    for control rod insertion          and power, defect      at  BOC    and  EOC  conservatively      bound    the most    adverse combination of power level and rod insertion                      to the power dependent insertion limit.
The    control rod groups      and  insertion limits for Cycle        5 will remain    unchanged from Cycle 4.        With these    limits the    nominal worth    of the control bank, D-Bank, inserted to the insertion                  limits at  HFP  is  149
 
XN-NF-83-85 pcm  at  BOC  and 272 pcm    at  EOC. The  control rod shutdown requirements allow for  a HFP D-Bank    insertion equivalent to      400 pcm and 500 pcm      at  BOC  and EOC, respectively.
6.1.3    Moderator    Tem  erature Coefficient Considerations The Technical    Specifications require that the moderator temperature      coefficient    be  less than or equal to        +5 pcm/ 0 F below 70K      of 0
rated power    and  less than or equal to      0 pcm/    F  at or above    70K power. The HZP, ARO moderator        temperature    coefficient is calculated to            be +3.0+2.
pcm/  F and  meets the Technical      Specification limit below          705 power.      The moderator    temperature    coefficient at or        above    70K rated power is cal-culated to      be  less than    0 pcm/ F and      also meets the Technical Specifi-cations.
6.2  ANALYTICAL METHODOLOGY The methods    used  in the Cycle    5  core analysis are described          in References      3, 4, and 5.          In summary,      the reference      neutronic design of the reload core                performed      using  the        (6) reactor analysis                                was                                  XTG simulator code.        The  input isotopics data were based              on  quarter core depletion calculations performed for Cycle              4  using the  XTG  code. The  fuel shuffling    between cycles was accounted          for in the calculations.
N Calculated values of        F~ and    F<H  were determined      with the    XTG reactor model.        The  calculational thermal-hydraulic feedback              'and  axial exposure    distribution effects        on  power    shapes,    rod worths,      and  cycle lifetime    are  explicitly    included in the analysis.
 
XN-NF-83-85 Table 6.1    D.C. Cook Unit 2, Neutronics    Characteristics of Cycle  5 Compared With Cycle 4 Oata C  cle4                  C cle5 BOC            EOC        BOC          EOC Critical    Boron HFP, ARO, Eq. Xenon (ppm)              989(b)          ]0(b)  1  149      10 HZP, ARO, No Xenon (ppm)            1,465 ( a)    --------    1,569 Moderator Temperature Coefficient HFP, (pcm/oF)                        4 0  (b)    -27.5(b)    -2.1        -26. 3 HZP, (pcm/oF)                        -0.97(')      -21 9(  )  +3 0        -21.1 Isothermal Temperature Coefficient HFP, (pcm/oF)                        -5.4 (b)      -29.2(b).  -3.4        -27.8 HZP, (pcm/oF)                        -2.S6(a)      -23.6(b)    +1.3        -23.0 Ooppler Coefficient (pcm/oF)          -1.4          -1. 6      -1.3        -1.5 Boron Worth, (pcm/ppm)
HFP                                  -7.7 (b)      -S.7 (b)    -S.O        -9. 6 HZP                                  -S.95(a)      -1O.9(b)    -9.4        -11.7 Total Nuclear Peaking Factor N
F
      ~, HFP, Equilibrium Xenon        1.59 (a)      1.55 (b)    1.64        1.54 Oelayed Neutron Fraction              .0057          .0051      .0062        .0051 Control Rod Worth of All Rods In Minus Most Reactive Rod, HZP, (pcm)                          5,525          6,093      6,301        6,172 Excess Shutdown Margin, (pcm)(c)      722            734        1,008        721 (a)    Measured data (b)    ENC  calcul ated (c)    Shutdown margin evaluation based on the most adverse combination of power level and rod insertion
 
XN-NF-83-85 Table 6.2    D.C. Cook Unit 2, Control Rod Shutdown Margins and Requirements of Cycle 5 Compared to Cycle 4 C cle 4                    Cycle 5 BOC          EOC,          BOC          EOC Control  Rod Worth  (HZP),  cm All  Rods  Inserted (ARI)          6,348        6,888          7,065        7,279 ARI  Less Most Reactive (N-1)      5,525        6,093          6,065        6,079 N-1 Less 10K Allowance
[(N-l)*.9)]                      4,972        5,484          5,458        5,471 Reactivit    Insertion,  cm(a)
Power Oefect (Moderator+Oopplar)    400          500            400          500 Flux Redistribution                  600          600            600          600 Void                                50          50            50          50 Sum  of the Above Three              1,050        1,150          1,050        1,150 Rod  Insertion Allowance            1,600        2,000          1,800        2,000 Total Requirements                    2,650        3,150          2,850        3,150 Shutdown Margin    (N-l)*.9-Total Requirements                  2  322      2,334          2,608        2,321 Required Shutdown Margin              1600( b)      1600(b)      1600(b)      1600(b)
Excess Shutdown Margin                722          734          1,008        721 (a)  The  reactivity insertion  allowance assumes    the most adverse combination of power level and rod insertion.      The  BOC shutdown margin is increased at HFP conditions and the      EOC  shutdowm margin remains unaffected at HFP conditions.
(b)  Technical Specification  limit.
 
1600 I
l l~      Pl il                              ~ ~
                                                                                            ,.i
                                                        ~ ~ ~ I                              I'
                                                                                                ~
1400 I    ~ ~ ~
                                                  ~ ~ i            l
                                                ~
I
                                                    ~
                                                                    ~
                                                                      'l 1200 l i
                                                    ~                                      *~
                                              ~ i
                                  ~                                              P
* P I          ~ I I ~  ~
I        ~ ~
l      ~    ~
                                              *~
I" ".
o  1000                                                    I~    ~ I~  ~    I P
I~                    I                                I
                                                                                              ~
                                                          ~ I:
800 C
O O                              P 600 ill O
I I
l 400 200 I
                                                                                                  ~  I I                                              I I                                          I 0
0 2000      4000  6000            8000                  10000            12000        14000 16000 18000 Cycle Exposure (NWD/HT)
Figure 6.1 0. C. Cook Unit 2, Cycle 5, Boron Letdown Curve
 
I XN-NF-83-85 1.049      1.169      1.119    1.1'59    1.136      1.177        .955        .993 1.206      1.164                1.042      1.175      1.112      1.098        .982 1.116      1.110      1.099    1.154      1.102      1.148                    .856 1.160      1.044      1.156    1.090      1.084      1.072      1.054        .409 1.141                1.106    1.085                  1.050        .681
: 1. 177    1. 113    1.151    1.075      1.050        .886        .316
  .954      1.099    1.023      1.056        .682      .309      Assembly Relative Power
  .993      .982      .857      .410      Peak Assembly = 1.206 (H9)
Pin  F~        =  1.323 (H9)
N Peak F~        =  1.644 (G15)
Figure 6.2 0. C. Cook Unit 2, Cycle 5, Relative Power  Oistribution, 100 MWD/MT, 1149 ppm, 3411 MWt, ARO
 
XN-NF-83-85 C,          B
.904      1.002        1.075      1.233      1.072      1.035        .894,      .841 1.025      1.054        1.216      1.094      1.221      1.036      . 1.077        .850 1.073      1.217        1.119      1.259      1.108      1.190        .954        .777 1.233      1.095        1.260      1.127      1.235      1.057        .997        .434 1.075      1.222        1.110      1.235';160            I:122        .732 1.035      1.036        1.190      1.058      1.121        .955        .396
  .893      1.077          .954      .997      .732        .387      Assembly Relative Power
  .841        .850        .777      .434      Peak Assembly = 1.260    (Fll)
Pin  F~H
                                                              =  1.369  (Fll)
Peak  F        =  1.536  (fll)
Figure 6.3    D. C. Cook  Unit 2, Cycle 5, Relative Power Distribution, 17;900  MWD/MT, 10 ppm, 3411 MWD/MT, ARO,
 
XN-NF-83-85 7.0  THERMAL-HYORAULIC OESIGN ANALYSIS Thermal-hydraulic design analyses for  ENC fuel that is being placed in  O. C. Cook Unit 2 for this cycle will be provided under separate  cover.
 
XN-NF-83-85 8.0  ACCIDENT AND TRANSIENT ANALYSES 8.1    PLANT TRANSIENT ANALYSIS Plant transient analyses for the        ENC fuel that is being placed in D. C. Cook    Unit  2  this cycle will    be  provided under separate      cover.
8.2    ECCS ANALYSIS The LOCA-ECCS    analysis for    ENC  fuel at D. C. Cook    Unit 2 will be provided under separate cover.
8.3    ROD  EJECTION ANALYSIS A  Control  Rod  Ejection Accident is defined        as  the mechanical failure of      a control rod    mechanism    pressure  housing,    resulting in the ejection of    a Rod  Cluster Assembly    (RCCA) and  drive shaft. The consequence of this mechanical failure is      a  rapid reactivity insertion together with        an adverse    core power    distribution, possibly leading to localized fuel            rod damage.
The  rod ejection accident has been evaluated with the procedures developed    in the  ENC  Generic  Rod  Ejection Analysis      . The ejected rod worths and hot pellet peaking factors were calculated, using the              XTG  code.
No  credit    was  taken  for the    power  flattening effects of Doppler or moderator feedback        in the calculation of ejected rod worths or resultant peaking factors.        The  calculations    made  for Cycle  5  using  a  full  core XTGPWR  model were two-dimensional        with appropriate axial buckling cor-
 
XN-NF-83-85 T
rection. The  total peaking factor, F~,    were determined as the product    of radial peaking (as calculated using      XTG) and a  conservative axial peaking factor. The  pellet  energy deposition resulting from an ejected rod was conservatively evaluated explicitly for        BOC and  EOC  conditions. The HFP pellet  energy deposited was calculated to be 161.9 cal/gm at        BOC and 159.2 cal/gm at  EOC. The HZP pellet energy deposition    was  calculated to  be less than 55 cal/gm    for both  BOC  and EOC conditions. The rod ejection accident was  found to  result in  an  energy deposition of less than the 280 cal/gm limit as stated in    Regulatory Guide 1.77. The  significant parameters for the analyses, along with the results, are summarized in Tables 8.1 and 8.2.
 
Table 8.1  D. C. Cook  Unit 2 Cycle 5, Ejected Rod Analysis, HFP BOC                                  EOC Contribution(>) to                  Contribution(a) to Energy Deposition,                  Energy Deposition, Value            (cal/ m)          Value            cal/  m)
A. Initial  Fuel Enthaply (cal/gm)      66. 5                              68."2 B. Generic  Initial  Fuel Enthalpy (cal/gm)                          40.&                                40.8 C. Delta Initial Fuel Enthalpy (cal/gm)                          25.7              25.7              27.4              27.4 D. Maximum Control Rod Worth (pcm)      179              130              194              143 E. Doppler Coefficient (pcm/oF)          -1.0(e)          1.04(b)          -1.40(e)          0.89(b)
F. Delayed Neutron Fraction, 5            .0062            1.00(b)          .0051            1.05(b)
G. Power Peaking    Factor              2.6                                4.1 H. Power Peaking Factor Used(<)          6.0                                7.5 161.9(d)                            159.2(d)
(a)  The contribution to the total pellet energy deposition is a function of      initial  fuel enthalpy, maximum control rod worth, Doppler coefficient, and delayed neutron fraction.        The energy de-position contribution values and factors are derived from data calculated in      the "Generic Analysis of the Control Rod Ejection Transient...." document.
(b) These values are    multiplication factors applied to    (C+D).
(c) The energy    deposition due to maximum control rod worth is a function of the power peaking factor.
(d) Total pellet energy deposition (cal/gm) calculated by the equation-Total (cal/gm) = (C+D) (E) (F)
(e) For this Doppler coefficient conservative values of -1.0 and -1.40 were assumed at BOC and EOC,  respectively.
 
Table 8. 2  D. C. Cook  Unit 2 Cycle 5, Ejected Rod Analysis, HZP BOC                                EOC Contribution(a) to                Contribution(a) to Energy Deposition,                Energy Deposition, Value            (cal/ m            Value          cal/  m A. Initial  Fuel Enthalpy (cal/gm)      16. 7                              16.7 B. Generic Initial Fuel Enthalpy (cal/gm)                            16. 7                              16.7 C. Delta Initial Fuel Enthalpy (cal/gm)                            0.0              0.0              0.0            0.0 D.- Maximum -Control-Rod Worth (pcm)      427              20                667            60 E. Doppler Coefficient, (pcm/oF)        -1.0(e)          1.03(b            -1.5(e)        .73(b)
F. Delayed Neutron Fraction, B          .0062            1.00(b)          .0051          1.20(b)
G. Power Peaking Factor                  5.8                                11.4 Power Peaking Factor Used(c)          13.0                                13.0 TOTAL      20.6(d)                          52. 6(d)
(a) The contribution to    the total pellet energy deposition is a function of initial fuel enthalpy, maximum control rod  worth, Doppler coefficient, and delayed neutron fraction.. The energy de-position contribution values and factors are derived from data calculated in the "Generic Analysis of the Control Rod Ejection Transient...." document.
(b) These values are multiplication factors applied to (C+D).
(c) The energy deposition due to maximum control rod worth is a function of the power peaking factor.
(d) Total pellet energy deposition (cal/gm) calculated by the equation-Total (cal/gm) = (C+D) (E) (F)
(e) For this Doppler coefficient conservative values of -1.0 and -1.50 were assumed at BOC and EOC,  respectively.
 
XN-NF-83-85
 
==9.0 REFERENCES==
: 1. XN-NF-82-25(A), "Generic Mechanical Oesign Report, Exxon 17x17 Fuel Assembly", Exxon Nuclear Company, April 1982.
: 2. XN-NF-78-44(A), "A Generic Analysis  of The Control Rod Ejection Tran-sient for Pressurized Water Reactors", Exxon Nuclear Company, January 1979.
: 3. XN-75-27(A), "Exxon Nuclear Neutronics Oesign Methods  for Pressurized Water Reactors", Exxon Nuclear company, June 1975.
: 4. XN-75-27(A), Supplement 1, September 1976.
: 5. XN-75-27(A), Supplement 2, Oecember 1977.
: 6. XN-CC-28, Revision 5, "XTG - A Two Group Three-Oimensional Reactor Simulator Utilizing Coarse Mesh Spacing", Exxon Nuclear Company, July 1979.
: 7. XN-NF-77-57(A), "Exxon Nuclear Power Distribution Control for Pres-surized Water Reactors - Phase II", Exxon Nuclear Company, January 1978.
: 8. XN-NF-77-57(A), Supplement 1', June 1979.
: 9. XN-NF-77-57(A), Supplement 2, September 1981.
 
XN-NF-83-85 Issue Date: 10/24/8
: 0. C. COOK  UNIT 2, CYCLE 5 SAFETY ANALYSIS REPORT DISTRIBUTION GJ BUSSELMAN JC CHANDLER RA COPELAND MR  KILLGORE JN MORGAN GF OWSLEY RA PUGH HG SHAW FB SKOGEN GA SOFER RB STOUT T  TAHVILI HE WILLIAMSON PD WIMPY DOCUMENT CONTROL    (5)
AEP  (5)  / HG SHAW}}

Latest revision as of 02:39, 4 February 2020

DC Cook Unit 2,Cycle 5 Sar.
ML17320A945
Person / Time
Site: Cook American Electric Power icon.png
Issue date: 10/24/1983
From: Skogen F, Williamson H, Wimpy P
SIEMENS POWER CORP. (FORMERLY SIEMENS NUCLEAR POWER
To:
Shared Package
ML17320A942 List:
References
XN-NF-83-85, NUDOCS 8403080220
Download: ML17320A945 (38)


Text

XN-NF-83-85 Issue Date: 10/24/83 D. C. COOK UNIT 2, CYCLE 5 SAFETY ANALYSIS REPORT Written by:

P. D. Wi , Engineer PWR Neutronics Reviewed by:

F. B. Skogen, Manager

.PWR Neutronics

~ ~ /

Prepared by:

H. E. Williamson, Manager Neutronics and Fue Management Prepared by: - Ps R. B. Stout, Manager Licensing and Safety Engineering Approved by: (g/W4 P)

G. J. Busselman, Manager Fuel Design Approved by:

G. A. Sofer., Manager Fuel Engineering an Technical Services Concurred by:

J. 1P Morg'an, Manager Proposals and Customer Services Engineering csk E@CZM NUCLEAR VVMPARV,lac.

8403080220 840302 PDR ADQCK P.

050003ih PDR

NUCLEAR REGULATORY COMMISSION DISCLAIMER IMPORTANT NOTiCE REGARDINQ CONTENTS AND USE OF THIS DOCUMENT PLEASE READ CAREFULLY This technical report was derived through research and development programs sponsored by Exxon Nuclear Company, Inc. It is being sub-mined by Exxon Nuclear to the USNRC as part of a technical contri-bution to facilitate safety analyses by licensees of the USNRC which utilize Exxon Nuclear fabricated reload fuel or other technical services provided by Exxon Nuclear for licht water power reactors and it is true and conect to the best of Exxon Nuclear's knowledge, information, and belief. The information contained herein may be used by the USNRC in its review of this report, and by licensees or applicants before the USNRC which are customers of Exxon Nuclear in their demonstration of compliance with the USNRC's reguladons.

Without derogating from the foregoing, neither Exxon Nuclear nor any person acting nn its behalf:

A. Makes any warranty, express or implied, with respect to the accuracy, completeness. or usefulness of the infor-mation contained in this document, or that the use of any information, apparatus, method, or process disclosed in this document will not infringe privately owned rights; or B. Assumes any liabilities with respect to the use of, or for dan ages resulting from the use of, any information, ap.

paratus, method, or process disclosed in this document.

XN- NF- FOO, 766

XN-NF-83-85 TABLE OF CONTENTS Section ~Pa e

1.0 INTRODUCTION

2.0

SUMMARY

. ~ ~ 2 3.0 OPERATING HISTORY OF THE REFERENCE CYCLE. . 4 4.0 GENERAL DESCRIPTION . . 7 5.0 FUEL SYSTEM DESIGN. . 12 6.0 NUCLEAR CORE DESIGN .  ; 13 6.1 PHYSICS CHARACTERISTICS. 14 6.1. 1. Power Distribution Considerations . . 15 6.1.2 Control Rod Reactivity Requirements . . 16 6.1.3 Moderator Temperature Coefficient Considerations. . . 17 6;2 ANALYTICAL METHODOLOGY . . 17 7.0 THERMAL-HYDRAULIC DESIGN ANALYSIS . . 23 8.0 ACCIDENT AND TRANSIENT ANALYSES . . 24

8. 1 PLANT TRANSIENT ANALYSIS . . 24 8.2 ECCS ANALYSIS. . 24 8.3 ROD EJECTION ANALYSIS. . 24

9.0 REFERENCES

. ~ 28

XN-NF-83-85 LIST OF TABLES Table ~Pa e 4.1 0. C. Cook Unit 2, Principal Characteristics for Nuclear Analysis of Cycle 5 Fuel . ~ ~ ~ 9 6.1 0. C. Cook Unit 2 Neutronics Characteristics of Cycle 5 Compared with Cycle 4 Data . . . . . . . . . . . . . . . . . . . 18 6.2 0. C. Cook Unit 2 Control Rod Shutdown Margins and Requirements of Cycle 5 Compared to Cycle 4. . . . . . . . . . . 19 8.1 0. C. Cook Unit 2 Cycle 5, Ejected Rod Analysis, HFP . . . . . . 26 8.2 0. C. Cook Unit 2 Cycle 5, Ejected Rod Analysis, HZP . . . . . . 27 LIST OF FIGURES

~Fi are ~Pa e

3. 1 0. C. Cook Unit 2, Cycle 4 Boron Letdown Curve . 5 3.2 0. C. Cook Unit 2 Cycle 4, Power Distribution Comparison to Map 204-46, 1005 Power, Bank 0 9220 Steps, 7752 MWD/MT. 6 4.1 0. C. Cook Unit 2, Cycle 5 Full Core Loading Pattern . 10 4.2 0. C. Cook Unit 2, Cycle 5 Loading Pattern and BOC Exposure Distribution. 11
6. 1 0. C. Cook Unit 2, Cycle 5 Boron Letdown Curve . 20 6.2 D. C. Cook Unit 2, Cycle 5 Relative Power Distribution 100 MWD/MT, 1149 ppm, 3411 MWt, ARO. 21 6.3 D. C. Cook Unit 2, Cycle 5 Relative Power Distribution 17,900 MWD/MT, 10 ppm, 3411 MWt, ARO . 22

h

,\

XN-NF-83-85 D. C. COOK UNIT 2 CYCLE 5 SAFETY ANALYSIS REPORT PROLOGUE This report is the fourth in a series of five reports which address the neutronics characteristics of the Cycle 5 core and provides the safety evaluation for Cycle 5. Preliminary analyses were performed in response to the Tentative Scheduled Delivery Date (TSDD) notice and were provided in letter report PWR:41:82. Subsequently, a final reload was established in response to the Final Scheduled Delivery Date (FSDD) notice and was documented in letter report PWR:04:83. The Fuel Cycle Design Report (XN-NF-83-75(P)), which provides the Reference Design for the safety evalu-ation was issued in September, 1983. This Safety Analysis Report will be followed by a Cycle 5 Startup and Operations Report.

XN-NF-83-85

0. C. COOK UNIT 2 CYCLE 5 SAFETY ANALYSIS REPORT 1.0 INTROOUCTION The results of the Safety Analysis for Cycle 5 of the 0. C. Cook Unit 2 nuclear plant are presented in this report. The topics addressed include operating history of, the reference cycle, power distribution considerations, control rod reactivity requirements, temperature co-efficient considerations, and control rod ejection accident analysis.

XN-NF-83-85 2.0

SUMMARY

The 0. C. Cook Unit 2 nuclear plant is scheduled to operate in Cycle 5 beginning in April of 1984 with ninety-two (92) fresh assemblies (Reload Batch XN-2) supplied by Exxon Nuclear Company (ENC). The composition of the core during Cycle 5 will be ninety-two (92) fresh ENC assemblies in Region 7, seventy-two (72) once-burnt ENC assemblies in Region 6, and twenty-nine (29) twice-burnt Westinghouse assemblies in Region 5. The Cycle 5 design alsa utilizes 1,040 fresh A1203-B4C burnable absorber rods, each containing 0.026 gm/in of B-10. The burnable absorber rods are distributed among seventy-two (72) of the fresh assemblies.

The characteristics of the fuel and the reloaded core are in con-formance with existing Technical Specification limits regarding shutdown margin provisions and thermal limits. The ENC fuel design'is presented in Reference 1. The Plant Transient Analysis, the thermal-hydraulic analysis, and the LOCA-ECCS analysis will be presented under separate cover. The results of the Control Rod Ejection Analysis are provided herein and are derived from a combination of the generic parameters and results described in Reference 2 and specific analyses performed for Cycle 5.

The neutronics characteristics of Cycle 5 are similar to those of Cycle 4. The minimum excess shutdown margin above that required for safe operation is calculated to be 721 pcm at EOC. A postulated control rod ejection event is conservatively calculated to result in an energy deposition of less than 170 cal/gm.

XN-NF-83-85 N

At hot full power equilibrium xenon conditions, the peak F is calculated to be 1.64 and occurs at BOC in an assembly supplied by ENC.

N The peak F

~

for Westinghouse (W) supplied fuel is calculated to be 1.40 at hot full power equilibrium xenon conditions, and also occurs at BOC5.

Including a 3X engineering factor, a 5X measurement uncertainty, K(Z) considerations, and an 11% POC-II allowance (for a +5K target band on T

axial flux difference), the total peaking factor, F , during Cycle 5 is calculated to be 1.97 in ENC supplied fuel and 1.68 in Westinghouse N

supplied fuel. The maximum relative pin power, F<H, during the cycle is calculated to be 1.38 in ENC supplied fuel and 1.16 in Westinghouse supplied fuel and occurs at 15,000 MWD/MT, and 500 MWD/MT, respectively.

T Throughout the cycle, both F and F<H are expected to remain within the allowable limits which will be defined by transient and accident analyses and presented under separate cover.

-4 XN-NF-83-85 3.0 OPERATING HISTORY OF THE REFERENCE CYCLE D. C. Cook Unit 2 Cycle 4 has been chosen as the reference cycle with respect to Cycle 5 due to the close resemblance of the neutronic characteristics between these two cycles. The Cycle 4 operations began in January, 1983, and as of the end of September, 1983, the core has accrued about 9,000 MWD/MT exposure. The Cycle 4 core loading consisted of one hundred twenty one (121) Westinghouse assemblies and seventy-two (72)

ENC assemblies.

The measured power peaking factors at hot-full-power, equilibrium xenon conditions, have remained below the Technical Specification limits T

throughout Cycle 4. The total peaking factor, F , and the radial pin N

peaking factors, F<H, have remained below 2.04 and 1.49, respectively. The Cycle 4 operation has typically been rod free with the 0 control rod bank positioned in the range of 218 to 225 steps, 228 steps being fully

- withdrawn. It is anticipated that similar control rod bank insertions will be used in Cycle 5 operations..

The cri'tical boron concentration as calculated by ENC for Cycle 4 has agreed to within about 30 ppm with the measured values (see Figure 3.1).

Also the power distribution calculated by ENC has generally agreed to within +5 percent of the measured values (see Figure 3.2 for a comparison at 7,752 MWD/MT).

o o

o o I I

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I

I I I I I

I I I I I I I I I

I I I I I I I I I I I I I I I I I I I p I I I

I I I I I I I I I

I I

~ o CD I

J I I

I I

7

~ I I

I I

I I

I T

I I

I I

I I

I I

-"-"r"---

I I

Co I I I 0

I I I I

I I

I I L I I I GEND,'FILC I

0 I I I I I RTQ I I I I I I I I I I I + NEBSUREO I Zo I I I I I

I I I I Q 'op ~

I I rI + I

'I I I

I T

I I

I I

l I

CD I I I I I I I I I I I I I I I I I I I I CC, I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I

I I I I I I LJ1 o I I .I I I + I I I

I I I I C3 I I

I I I I I I I o r I I I I I I I I I Q o I I I 7

I I I I I I I

I I

Q I I I I I I I

I I

I I I I

I I

I I I I I I I I I I I I I Q I I

I I I I I I I I

I I

I I

I I

Q 'p I I I I I I I I I I I I I Ko CD I

-- ---I--

I I

I r I I I I I

I T

I I

I I I I I I I I I I I I I I I I I OC I I I I I I I I I I I I- I I I I II CD I I I

I I I I I o I I I 0.0 1.0 2.0 3-0 S.o 5.0 6.0 7.0 B.O 9.0 10.0 11.0 12. 0 13.0 .

10.0 g CYCLE EXPOSURE (GAD/I1T)

Figure 3.1 D.C. Cook Un) t 2, Cycle 4 Boron Letdown Curve

XN-NF-83-85' G E 0 ,C

.856 .985 .975 1.046 .971 1.069 1.008 .901

..848 .966 .964 1.042 .983 1.086 1.019 .859

+0. 9 +2.0 +1.1 +0.4 -1.2 -1. 6 +4.9

.982 1.079 1.218 1.071 1.218 .997 1.128 .742

.968 1.064 1'.186 1.069 1.206 1.002 1.125 .737

+1.4 +1.4 +2 7 W.2 +1.0 -0.5 +0. 3 +0. 7

.974 1.220 1.081 1.073 1.104 1.234 1.020 .862

.972 1.187 1.079 1.080 1.123 1.243 1.039 .835

+0.2 +2.8 +0.2 -0.6 -1.7 -0.7 -1.8 +3 '

1.049 1.076 1.095 1.093 1.246 1.024 1.107 .554 1.041 1.065 1.072 1.099 1.249 1.058 1.126 .564

+0.8 +1.0 '+2.1 -0.5 -0.2 "312 -1.7 -1.8

.970 1.219 1.105 1.246 .990 1.175 ;758

.983 1.196 1.118 1.240 1.030 1.195 .766

-1.3 +1.9 -1.2 +0.5 -3.9 -1.7 -1.0

1. 068 .980 1.227 1.023 1.173 1.019 .396 1.059 .986 1.221 1.051 1.190 1.031 .401 W.9 -0. 6 +0. 5 2~7

'1.4

-1.2 -1.2 1.007 1.124 .999 1.102 .755 .395 Calculated (XTGPWR) 1.010 1.109 1.030 1.105 .757 .395 Measured Assembly Power

-0.3 +1.4 -3.0 -0.3 -0.3 0.0 C-M M

x 100

.903 .748 .857 .551

.852 .735 .822 .558 Calculated Measured X Oi ff.

+6.0 +1.8 '+4. 3 -1.3 N 1.354 1.343 +0.8 F 1.565 1.557 +0.5 q

Figure 3.2 O.C. Cook Unit 2 Cycle 4, Power Oistribution Comparison to Map 204-46, 100K Power, Bank 0 8220 Steps, 7,752 MWO/MT

XN-NF-83-85 4.0 GENERAL DESCRIPTION The D. C. Cook Unit 2 reactor consists of one hundred ninety three (193) assemblies, each having a 17x17 fuel rod array. Each assembly contains two hundred sixty four (264) fuel rods, twenty-four (24) RCC guide tubes, and one (1) instrumentation tube. The fuel rods consist of slightly enriched U02 pellets inserted into zircaloy tubes. The RCC guide tubes and the instrumentation tube are also made of zircaloy. Each ENC assembly contains eight zircaloy spacers with Inconel springs; seven of the spacers are located within the active fuel region.

The Cycle 5 loading pattern is shown in Figure 4. 1 with assemblies identified by their Cycle 4 location and Fabrication ID. The fresh fuel is not assigned a Fabrication ID but the burnable absorber configuration is noted. The initial enrichment of the various regions are listed in Table 4.1. The calculated BOC5 exposures, based on an EOC4 exposure of 13,400 MWD/MT, are shown >n a quarter core representation in Figure 4.2 along with the quarter core fuel shuffle simulation. The core consists of ninety-two (92) fresh ENC assemblies at an average enrichment of 3.64 w/o U-235, seventy-two (72) once-burnt ENC assemblies, and twenty-nine (29) twice-burnt Westinghouse assemblies. A low radial leakage fuel management plan has been developed and results in the scatter-loading of the fresh fuel t

throughout the core with the fresh assemblies in the core interior containing A1203-84C burnable absorber rods. The exposed fuel is also scatter-loaded in the center in a manner to control the power peaking. The

XN-NF-83-85 Al203 84C burnable absorber rods contain 0.026 gm/in of 8-10 and 1,040 of these rods are distributed among seventy-two (72) fresh assemblies loaded in the core interior. Pertinent fuel assembly parameters for the Cycle 5 are depicted in Table 4.1.

'uel

XN-NF-83-85 Table 4. 1 O.C Cook Unit 2, Principal Characteristics for Nuclear Analysis of Cycle 5 Fuel

~Re ion 5 ~Re ion 6 ~Re ion 7 Nominal Enrichment (w/o) 3.40 3. 65 3. 64 Nominal Density (X TO) 95 94 94

'3030 Pellet 00 (in) .3225 .3030 Clad OD (in) .374 . 360 . 360 Diametral Gap (in) .0065 .0070 .0070 Clad Thickness (in) .0225 .0250 .0250 Rod Pitch (in) .496 .496 .496 Spacer Material Inconel Bi-Metallic Bi-Metallic Fuel Supplier ENC ENC Fuel Stack Height Nominal (in) 144 144 144 Number of Assemblies 29 72 92 Regionwise Loading (MTU) 13.286 29.077 37.154 Exposure (MWO/MT)

BOC5 24,069 16,368 0 EOC5 34,866 35,410 19,546 Incremental 10,797 19,042 19,546

XN-NF-83-85 R P N M L K J H G F E 0 C B A M2 02 R47 R8 J7 F15 013 Jl M13 K15 H3 R92 S03 S27 R73 S13 501 R46 N8 L2 L4 Hl E4 E2 G7 R19 S21 S51 S06 S46 S57 R70 A10 P7 K3 J12 F3 B7 R10 S10 S45 S66 S37 532 S23 S08 P4 P5 J6 E15 L15 G6 85 B4 R78 S63 S48 R6 R65 S41 S61 R23 C12 N6 K7 G4 F7 C6 N12 519 530 S31 S52 S35 553 S17 M5 All' d J2 N13 G2 Rll 05 "+

S28 R37 S39 S54 S42 R89 S43 R7 R8 07 M9 C13 J15 N3 09 M7 A9 R4 S07 S72 S34 558 R54 S20. S15 S49 R9 Mll A5 J14 C3 G14 R5 011 S65 R2 S68 S56 S69 R57 S70 C4 N10 K9 G12 F9 C10 N4 512 S25 S64 S22 S38 S33 S50 P12 P11 J10 E1 Ll G10 B11 B12 R60 S60 S47 R33 R81 526 S62 R62 A6 P9 K13 J4 F13 B9 b R6 502 529 S36 S71 S44 S40 S09 J9 L14 L12 H15 E12 c E14 'B Rl S59 S67 S24 S14 S55 R52 H13 Fl 03 G15 M3 Kl G9 R42 S11 518 R36 S16 S04 R71 M14 014 Previous Core Location R49 R3 Fabrication IO

+ Fresh Fuel Assembly, No BA Pins, a Fresh Fuel Assembly, 4 BA Pins b Fresh Fuel Assembly, 12 BA Pins c Fresh Fuel Assembly, 16 BA Pins d Fresh Fuel Assembly, 20 BA Pins figure 4. 1 O.C. Cook Unit 2, Cycle 5 Full Core Loading Pattern

XN-NF-83-85 E

G15 C13 09 09 AS 90 270 180 A9'3,843 24,353 16,089 17,611 17,973 12,945 0 C13 G14 All 011 90 180 13,487 16,177 19,856 18, 183 G12 F.9 C10 C12

'80 17,973 17,865 17,906 17,142 E15 G10 811 812 180 19,790 17,883 0 16,105 23,028 G12 F13 89 A10 180 180 17,611 '0 17,776 16,265 12,404 H15 E12 E14 CS v

12,972 18,190 15,989 0 0 28,483 G15 013 F15 G9 180 180 24,023 17,109 12,295 30,235 014 Core Location in Previous Cycle Rotation (degrees) 23,083 Assembly .Average Exposure (MWD/NT)

+ Fresh Fuel Assembly, No BA Pins a Fresh Fuel Assembly, 4 BA Pins b Fresh Fuel Assembly, 12 BA Pins c Fresh Fuel Assembly, 16 BA Pins d Fresh Fuel Assembly, 20 BA Pins Figure 4.2 D. C. Cook Unit 2, Cycle 5, Loading Pattern and BOC Exposure Distribution

XN-NF-83-85 5.0 FUEL SYSTEM OESIGN A description of the Exxon Nuclear supplied fuel design and design methods is contained in Reference 1. This fuel has been specifically designed to be compatible with the resident fuel supplied by Westinghouse.

XN-NF-83-85 6.0 NUCLEAR CORE DESIGN The neutronic characteristics of the projected Cycle 5 core are similar to those of the Cycle 4 core (see Section 6.1).

The nuclear design bases for the Cycle 5 core are as follows:

1. The design shall permit operation within the Technical Specifi-cation for D. C. Cook Unit 2 nuclear plant.
2. The length of Cycle 5 shall be determined on the basis of a Cycle 4 energy of 1133.2 GWD (13,400 MWD/MT exposure).
3. The Cycle 5 loading pattern shall be designed to achieve power distributions and control rod reactivity worths according to the following constraints:

T N a) The peak F and the peak F<H shall not exceed the Technical

~

Specification limits in any single ENC fuel rod through the cycle,.under nominal full power operating conditions.

b) The scram worth of all rods minus the most reactive rod shall exceed BOC and EOC shutdown requirements.

The neutronic design methods utilized to ensure the above re-quirements are consistent with those described in References 3, 4, and 5.

The Cycle 5 loading contains 1,040 A1203-B4C burnable absorber rods distributed among seventy-two (72) of the ninety-two (92) fresh ENC supplied assemblies. In sixteen (16) of these assemblies there are twenty (20) burnable absorber rods per assembly. Another thirty-six (36)

'N-NF-83-85 assemblies will each contain sixteen (16) A1203-84C rods, eight (8) assemblies will each contain twelve (12) A1203-84C rods, and twelve (12) assemblies will each contain four (4) A1203-84C rods. The A1203 84C burnable absorber rods each contain 0.026 gm/in of 8-10. The core loading pattern has been designed to achieve a desirable power distribution while maximizing the benefit of assemblies with burnable absorbers to reduce the beginning of cycle (BOC) boron concentration. The BOC worth of the 1,040 A1203-84C absorber rods is calculated to be equivalent to the worth of 717 ppm soluble boron.

6.1 PHYSICS CHARACTERISTICS The neutronics characteristics of the Cycle 5 core are compared with those of Cycle 4 and are presented in Table 6.1. The data presented in the table indicates the neutronic similarity between Cycles 4 and 5.

The reactivity coefficients of the Cycle 5 core are bounded by the coefficients used in the safety analysis. The safety analysis for Cycle 5 is applicable for Cycle 4 burnup of +1,000 MWD/MT and -1,000 MWD/MT about the nominal burnup of 13,400 MWO/MT.

The boron letdown curve for Cycle 5 is shown in Figure 6. 1. The BOC5 xenon free critical boron concentration is calculated to be 1,491 ppm.

At 100 MWO/MT, equilibrium xenon, the critical boron concentration is 1,149 ppm. The Cycle 5 length is projected to be 17,900 MWO/MT at a core power of 3411 MWt with 10 ppm soluble boron remaining.

XN-NF-83-85

6. 1. 1 Power Distribution Considerations Representative calculated power maps for Cycle 5 are shown in Figures 6.2 and 6.3 for BOC, (equilbrium xenon), and EOC con-ditions, respectively. The power distributions were obtained from a three-dimensional quarter core XTG (6) model with moderator density and Doppler feedback effects incorporated. As shown in Figure 6.2, for the design Cycle 5 loading pattern, the calculated BOC, hot-full-power, N

equilibrium xenon nuclear power peaking factors, F

~, and F<H are 1.64, and N

1.32, respectively. At EOC conditions the corresponding values of F and N

F<H are 1.54 and 1.37, respectively for the limiting first cycle fuel. The N

BOC, HFP, equilibrium xenon F value of 1.64 is compared to the measured

~

Cycle 4 value of 1.59 in Table 6.1.

N At hot full power, equilibrium conditions, the peak F during the cycle is calculated to be 1.64. Including a 3X.engineering factor, a 5X measurement uncertainty, K(Z) considerations, and an 11K allowance for PDC-II, (for a +5% target band on axial flux difference) the T N expected total peak, F

~, is 1.97. The maximum relative pin power, F<H, is T N calculated to be 1.38 at 15,000 MWD/MT. Both F and F<H are expected to

~

remain within the allowable limits throughout the cycle.

The control of the core power distribution is accom-plished by following the procedures for "Exxon Nuclear Power Distribution Control for Pressurized Water Reactors Phase II"( ' . The results reported in those documents provide the means for projecting the maximum

XN-NF-83-85 F (Z) distribution anticipated during operation under the PDC-II Q

procedure taking into account the incore measured equilibrium power distribution data. A comparison of this distribution with the Technical Specification limit curve assures that the Technical Specification limit will not be exceeded while operating with the PDC-II procedures. The T

PDC-II'documents describe the maximum possible variation in F Q(Z) which can occur during operation when following the outlined procedures. The "T

bounding variation in F Q(Z) represents the maximum variation when the, axial offset is maintained within the allowable range.

6.1.2 Control Rod Reactivit Re uirements Detailed calculations of shutdown margins for Cycle 5 are compared with Cycle 4 data in Table 6.2. The D. C. Cook Unit 2 nuclear plant Technical Specifications require a minimum required shutdown margin of 1600 pcm at BOC and EOC. The Cycle 5 analysis indicates excess shutdown margin of 1,008 pcm at BOC and 721 at the EOC. The Cycle 4 analysis indicated an excess shutdown margin of 722 pcm at BOC and 734 pcm at EOC.

The reactivity allowance for control rod insertion and power, defect at BOC and EOC conservatively bound the most adverse combination of power level and rod insertion to the power dependent insertion limit.

The control rod groups and insertion limits for Cycle 5 will remain unchanged from Cycle 4. With these limits the nominal worth of the control bank, D-Bank, inserted to the insertion limits at HFP is 149

XN-NF-83-85 pcm at BOC and 272 pcm at EOC. The control rod shutdown requirements allow for a HFP D-Bank insertion equivalent to 400 pcm and 500 pcm at BOC and EOC, respectively.

6.1.3 Moderator Tem erature Coefficient Considerations The Technical Specifications require that the moderator temperature coefficient be less than or equal to +5 pcm/ 0 F below 70K of 0

rated power and less than or equal to 0 pcm/ F at or above 70K power. The HZP, ARO moderator temperature coefficient is calculated to be +3.0+2.

pcm/ F and meets the Technical Specification limit below 705 power. The moderator temperature coefficient at or above 70K rated power is cal-culated to be less than 0 pcm/ F and also meets the Technical Specifi-cations.

6.2 ANALYTICAL METHODOLOGY The methods used in the Cycle 5 core analysis are described in References 3, 4, and 5. In summary, the reference neutronic design of the reload core performed using the (6) reactor analysis was XTG simulator code. The input isotopics data were based on quarter core depletion calculations performed for Cycle 4 using the XTG code. The fuel shuffling between cycles was accounted for in the calculations.

N Calculated values of F~ and F<H were determined with the XTG reactor model. The calculational thermal-hydraulic feedback 'and axial exposure distribution effects on power shapes, rod worths, and cycle lifetime are explicitly included in the analysis.

XN-NF-83-85 Table 6.1 D.C. Cook Unit 2, Neutronics Characteristics of Cycle 5 Compared With Cycle 4 Oata C cle4 C cle5 BOC EOC BOC EOC Critical Boron HFP, ARO, Eq. Xenon (ppm) 989(b) ]0(b) 1 149 10 HZP, ARO, No Xenon (ppm) 1,465 ( a) -------- 1,569 Moderator Temperature Coefficient HFP, (pcm/oF) 4 0 (b) -27.5(b) -2.1 -26. 3 HZP, (pcm/oF) -0.97(') -21 9( ) +3 0 -21.1 Isothermal Temperature Coefficient HFP, (pcm/oF) -5.4 (b) -29.2(b). -3.4 -27.8 HZP, (pcm/oF) -2.S6(a) -23.6(b) +1.3 -23.0 Ooppler Coefficient (pcm/oF) -1.4 -1. 6 -1.3 -1.5 Boron Worth, (pcm/ppm)

HFP -7.7 (b) -S.7 (b) -S.O -9. 6 HZP -S.95(a) -1O.9(b) -9.4 -11.7 Total Nuclear Peaking Factor N

F

~, HFP, Equilibrium Xenon 1.59 (a) 1.55 (b) 1.64 1.54 Oelayed Neutron Fraction .0057 .0051 .0062 .0051 Control Rod Worth of All Rods In Minus Most Reactive Rod, HZP, (pcm) 5,525 6,093 6,301 6,172 Excess Shutdown Margin, (pcm)(c) 722 734 1,008 721 (a) Measured data (b) ENC calcul ated (c) Shutdown margin evaluation based on the most adverse combination of power level and rod insertion

XN-NF-83-85 Table 6.2 D.C. Cook Unit 2, Control Rod Shutdown Margins and Requirements of Cycle 5 Compared to Cycle 4 C cle 4 Cycle 5 BOC EOC, BOC EOC Control Rod Worth (HZP), cm All Rods Inserted (ARI) 6,348 6,888 7,065 7,279 ARI Less Most Reactive (N-1) 5,525 6,093 6,065 6,079 N-1 Less 10K Allowance

[(N-l)*.9)] 4,972 5,484 5,458 5,471 Reactivit Insertion, cm(a)

Power Oefect (Moderator+Oopplar) 400 500 400 500 Flux Redistribution 600 600 600 600 Void 50 50 50 50 Sum of the Above Three 1,050 1,150 1,050 1,150 Rod Insertion Allowance 1,600 2,000 1,800 2,000 Total Requirements 2,650 3,150 2,850 3,150 Shutdown Margin (N-l)*.9-Total Requirements 2 322 2,334 2,608 2,321 Required Shutdown Margin 1600( b) 1600(b) 1600(b) 1600(b)

Excess Shutdown Margin 722 734 1,008 721 (a) The reactivity insertion allowance assumes the most adverse combination of power level and rod insertion. The BOC shutdown margin is increased at HFP conditions and the EOC shutdowm margin remains unaffected at HFP conditions.

(b) Technical Specification limit.

1600 I

l l~ Pl il ~ ~

,.i

~ ~ ~ I I'

~

1400 I ~ ~ ~

~ ~ i l

~

I

~

~

'l 1200 l i

~ *~

~ i

~ P

  • P I ~ I I ~ ~

I ~ ~

l ~ ~

  • ~

I" ".

o 1000 I~ ~ I~ ~ I P

I~ I I

~

~ I:

800 C

O O P 600 ill O

I I

l 400 200 I

~ I I I I I 0

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 Cycle Exposure (NWD/HT)

Figure 6.1 0. C. Cook Unit 2, Cycle 5, Boron Letdown Curve

I XN-NF-83-85 1.049 1.169 1.119 1.1'59 1.136 1.177 .955 .993 1.206 1.164 1.042 1.175 1.112 1.098 .982 1.116 1.110 1.099 1.154 1.102 1.148 .856 1.160 1.044 1.156 1.090 1.084 1.072 1.054 .409 1.141 1.106 1.085 1.050 .681

1. 177 1. 113 1.151 1.075 1.050 .886 .316

.954 1.099 1.023 1.056 .682 .309 Assembly Relative Power

.993 .982 .857 .410 Peak Assembly = 1.206 (H9)

Pin F~ = 1.323 (H9)

N Peak F~ = 1.644 (G15)

Figure 6.2 0. C. Cook Unit 2, Cycle 5, Relative Power Oistribution, 100 MWD/MT, 1149 ppm, 3411 MWt, ARO

XN-NF-83-85 C, B

.904 1.002 1.075 1.233 1.072 1.035 .894, .841 1.025 1.054 1.216 1.094 1.221 1.036 . 1.077 .850 1.073 1.217 1.119 1.259 1.108 1.190 .954 .777 1.233 1.095 1.260 1.127 1.235 1.057 .997 .434 1.075 1.222 1.110 1.235';160 I:122 .732 1.035 1.036 1.190 1.058 1.121 .955 .396

.893 1.077 .954 .997 .732 .387 Assembly Relative Power

.841 .850 .777 .434 Peak Assembly = 1.260 (Fll)

Pin F~H

= 1.369 (Fll)

Peak F = 1.536 (fll)

Figure 6.3 D. C. Cook Unit 2, Cycle 5, Relative Power Distribution, 17;900 MWD/MT, 10 ppm, 3411 MWD/MT, ARO,

XN-NF-83-85 7.0 THERMAL-HYORAULIC OESIGN ANALYSIS Thermal-hydraulic design analyses for ENC fuel that is being placed in O. C. Cook Unit 2 for this cycle will be provided under separate cover.

XN-NF-83-85 8.0 ACCIDENT AND TRANSIENT ANALYSES 8.1 PLANT TRANSIENT ANALYSIS Plant transient analyses for the ENC fuel that is being placed in D. C. Cook Unit 2 this cycle will be provided under separate cover.

8.2 ECCS ANALYSIS The LOCA-ECCS analysis for ENC fuel at D. C. Cook Unit 2 will be provided under separate cover.

8.3 ROD EJECTION ANALYSIS A Control Rod Ejection Accident is defined as the mechanical failure of a control rod mechanism pressure housing, resulting in the ejection of a Rod Cluster Assembly (RCCA) and drive shaft. The consequence of this mechanical failure is a rapid reactivity insertion together with an adverse core power distribution, possibly leading to localized fuel rod damage.

The rod ejection accident has been evaluated with the procedures developed in the ENC Generic Rod Ejection Analysis . The ejected rod worths and hot pellet peaking factors were calculated, using the XTG code.

No credit was taken for the power flattening effects of Doppler or moderator feedback in the calculation of ejected rod worths or resultant peaking factors. The calculations made for Cycle 5 using a full core XTGPWR model were two-dimensional with appropriate axial buckling cor-

XN-NF-83-85 T

rection. The total peaking factor, F~, were determined as the product of radial peaking (as calculated using XTG) and a conservative axial peaking factor. The pellet energy deposition resulting from an ejected rod was conservatively evaluated explicitly for BOC and EOC conditions. The HFP pellet energy deposited was calculated to be 161.9 cal/gm at BOC and 159.2 cal/gm at EOC. The HZP pellet energy deposition was calculated to be less than 55 cal/gm for both BOC and EOC conditions. The rod ejection accident was found to result in an energy deposition of less than the 280 cal/gm limit as stated in Regulatory Guide 1.77. The significant parameters for the analyses, along with the results, are summarized in Tables 8.1 and 8.2.

Table 8.1 D. C. Cook Unit 2 Cycle 5, Ejected Rod Analysis, HFP BOC EOC Contribution(>) to Contribution(a) to Energy Deposition, Energy Deposition, Value (cal/ m) Value cal/ m)

A. Initial Fuel Enthaply (cal/gm) 66. 5 68."2 B. Generic Initial Fuel Enthalpy (cal/gm) 40.& 40.8 C. Delta Initial Fuel Enthalpy (cal/gm) 25.7 25.7 27.4 27.4 D. Maximum Control Rod Worth (pcm) 179 130 194 143 E. Doppler Coefficient (pcm/oF) -1.0(e) 1.04(b) -1.40(e) 0.89(b)

F. Delayed Neutron Fraction, 5 .0062 1.00(b) .0051 1.05(b)

G. Power Peaking Factor 2.6 4.1 H. Power Peaking Factor Used(<) 6.0 7.5 161.9(d) 159.2(d)

(a) The contribution to the total pellet energy deposition is a function of initial fuel enthalpy, maximum control rod worth, Doppler coefficient, and delayed neutron fraction. The energy de-position contribution values and factors are derived from data calculated in the "Generic Analysis of the Control Rod Ejection Transient...." document.

(b) These values are multiplication factors applied to (C+D).

(c) The energy deposition due to maximum control rod worth is a function of the power peaking factor.

(d) Total pellet energy deposition (cal/gm) calculated by the equation-Total (cal/gm) = (C+D) (E) (F)

(e) For this Doppler coefficient conservative values of -1.0 and -1.40 were assumed at BOC and EOC, respectively.

Table 8. 2 D. C. Cook Unit 2 Cycle 5, Ejected Rod Analysis, HZP BOC EOC Contribution(a) to Contribution(a) to Energy Deposition, Energy Deposition, Value (cal/ m Value cal/ m A. Initial Fuel Enthalpy (cal/gm) 16. 7 16.7 B. Generic Initial Fuel Enthalpy (cal/gm) 16. 7 16.7 C. Delta Initial Fuel Enthalpy (cal/gm) 0.0 0.0 0.0 0.0 D.- Maximum -Control-Rod Worth (pcm) 427 20 667 60 E. Doppler Coefficient, (pcm/oF) -1.0(e) 1.03(b -1.5(e) .73(b)

F. Delayed Neutron Fraction, B .0062 1.00(b) .0051 1.20(b)

G. Power Peaking Factor 5.8 11.4 Power Peaking Factor Used(c) 13.0 13.0 TOTAL 20.6(d) 52. 6(d)

(a) The contribution to the total pellet energy deposition is a function of initial fuel enthalpy, maximum control rod worth, Doppler coefficient, and delayed neutron fraction.. The energy de-position contribution values and factors are derived from data calculated in the "Generic Analysis of the Control Rod Ejection Transient...." document.

(b) These values are multiplication factors applied to (C+D).

(c) The energy deposition due to maximum control rod worth is a function of the power peaking factor.

(d) Total pellet energy deposition (cal/gm) calculated by the equation-Total (cal/gm) = (C+D) (E) (F)

(e) For this Doppler coefficient conservative values of -1.0 and -1.50 were assumed at BOC and EOC, respectively.

XN-NF-83-85

9.0 REFERENCES

1. XN-NF-82-25(A), "Generic Mechanical Oesign Report, Exxon 17x17 Fuel Assembly", Exxon Nuclear Company, April 1982.
2. XN-NF-78-44(A), "A Generic Analysis of The Control Rod Ejection Tran-sient for Pressurized Water Reactors", Exxon Nuclear Company, January 1979.
3. XN-75-27(A), "Exxon Nuclear Neutronics Oesign Methods for Pressurized Water Reactors", Exxon Nuclear company, June 1975.
4. XN-75-27(A), Supplement 1, September 1976.
5. XN-75-27(A), Supplement 2, Oecember 1977.
6. XN-CC-28, Revision 5, "XTG - A Two Group Three-Oimensional Reactor Simulator Utilizing Coarse Mesh Spacing", Exxon Nuclear Company, July 1979.
7. XN-NF-77-57(A), "Exxon Nuclear Power Distribution Control for Pres-surized Water Reactors - Phase II", Exxon Nuclear Company, January 1978.
8. XN-NF-77-57(A), Supplement 1', June 1979.
9. XN-NF-77-57(A), Supplement 2, September 1981.

XN-NF-83-85 Issue Date: 10/24/8

0. C. COOK UNIT 2, CYCLE 5 SAFETY ANALYSIS REPORT DISTRIBUTION GJ BUSSELMAN JC CHANDLER RA COPELAND MR KILLGORE JN MORGAN GF OWSLEY RA PUGH HG SHAW FB SKOGEN GA SOFER RB STOUT T TAHVILI HE WILLIAMSON PD WIMPY DOCUMENT CONTROL (5)

AEP (5) / HG SHAW