ML17277B220: Difference between revisions
StriderTol (talk | contribs) (Created page by program invented by StriderTol) |
StriderTol (talk | contribs) (StriderTol Bot change) |
||
(2 intermediate revisions by the same user not shown) | |||
Line 17: | Line 17: | ||
=Text= | =Text= | ||
{{#Wiki_filter:REGULA TO 1%&ORNATION DISTRIBUTION | {{#Wiki_filter:REGULA TO 1%&ORNATION DISTRIBUTION >i (RIDE) | ||
>i (RIDE)ACCESSION NBR:8312300157 DOC~DATE: 83/12/11 NOTARIZED: | ACCESSION NBR:8312300157 DOC ~ DATE: 83/12/11 NOTARIZED: NO DOCKET FACIL'0 397 WPPSS Nuclear Projects Unit 2E Washington Public Powe 05000397 AUTH. NAME 'AUTHOR AFFII IATION MEYEREM ~ Cygna Energy Services SCOTTpM, Cygna Energy Services ARMSTRONGiD, Cygna Energy Services RECIP ~ NAME RECIPIENT AFFILIATION | ||
NO DOCKET FACIL'0 397 WPPSS Nuclear Projects Unit 2E Washington Public Powe 05000397 AUTH.NAME'AUTHOR AFFII IATION MEYEREM~Cygna Energy Services SCOTTpM, Cygna Energy Services ARMSTRONGiD, Cygna Energy Services RECIP~NAME RECIPIENT AFFILIATION | |||
==SUBJECT:== | ==SUBJECT:== | ||
"Qualification of Purge L Vent Valves at WPPSS<<2E" Vols 1 L 2." | |||
DISTRIBUTION CODE: S001S TITLE: Licensing COPIES RECEIVED:LTR IC ENCL Submittal: PSAR/FSAR Amdts L Related g~ SIZE:(~g2 Correspondence g~g L ePVle gEPg 'OTES: | |||
'OTES: | RECIPIENT COPIES RECIPIENT COPIES ID CODE/NAME LTTR ENCL ID CODE/NAME LTTR ENCL NRR/DL/ADL 1 0 NRR LB2 BC 1 0 NRR LB2 LA 1 0 AULUCKER, 01 1 ELD/HDS2 1 IE FILE 1 1'NTERNAL: | ||
IE/DEPER/EPB 36 3 IE/DEPER/IRB 35 1 IE/DEQA/QAB 2$ NRR/DE/AEAB NRR/DE/CEB NRR/DE/EQB ii 13 1 | |||
1 2 | |||
NRR/DE/EHEB NRR/DE/GB 28 1 | |||
1 2 | |||
NRR/DE/MEB 18 1 NRR/DE/MTEB 17 1 NRR/DE/SAB 24 1 NRR/DE/SGEB 25 NRR/DHFS/HFEB40 1 NRR/DHFS/LQB 32 1 NRR/DHFS/PSRB 1 NRR/DL/SSPB 1 NRR/DS I/AEB 26 1 NRR/DS I/ASB 1 NRR/DS I/CPB 10 1 NRR/DSI/CSB 09 1 i-NRR/DSI/I CSB 16 '1 NRR/DS I/METB 12 1 ]a NRR/DSI/PSB 19 1 N /RAB 22 1 0 NRR/DSI/RSB 2K REG F IL 04 1 1 c RGN5 3 /MIB 1 0 EXTERNAL: ACRS 41 BNL(AMDTS ONLY) | |||
DMB/DSS (AMDTS) FEMA-REP DIV 39 1 LPDR 03 NRC PDR 02 1 NSIC 05 NTIS 1 TOTAL NUMBER OF COPIES REQUIRED: LTTR 53 ENCL 46 | |||
4 t,> | |||
5 t% | |||
I il | |||
>> II li II l I | |||
'1 VOLUME I ATTACHMENT A QJALIFICATION OF PURGE AND VENT VALVES PREPARED FOR: | |||
WASHINGTON PUBLIC POWER SUPPLY SYSTEM WNP-2 SITE VALVE SIZES: 24" AND 30" VALVE MANUFACTURER: BIF A UNIT OF GENERAL SIGNAL OPERATOR MANUFACTURER: MILLER AIR PRODUCTS REPORT DATE: DECEMBER 11, 1983 PREPARED BY: | |||
ilon Meyer and Mark Scott REVIEWED BY: | |||
Dennis Armstron APPROVED BY: | |||
3.E. Rhoads 8+f+300157 050 00gg7 PDP @DOCK PDR A | |||
==Dear Mr.Schwencer:== | TABLE OF CONTENTS | ||
~Pa e VOLUME I | |||
: l. Introduction | |||
: 2. Synopsis | |||
: 3. Functional Description and Application | |||
: 4. Limiting Condition for Operation | |||
: 5. Response to NRC Concerns (Summary) 5.1 Installation Information 5.2 Dynamic Torques for Worse Case Geometry 5.3 Valve Pressure Ratings 5.4 Discussion of LOCA Curves | |||
: 6. Discussion of Operability 21 | |||
: 7. Summary of Structural Analysis 21 | |||
: 8. Summary of Flow Calculations 28 | |||
: 9. Qualification Summary 28 | |||
: 10. References 29 VOLUME II Additional Attachments Attachment 8 Draft Copy of WNP-2, SER, Outstanding Issue No. 26 Attachment C Limiting Condition for Operation (LCO) | |||
Attachment D - WPPSS Letter to NRC Attachment E Supplemental Calculations Including Final As-Built Review VOLUME III Attachment F Structural Analysis of 30" Valves QID 361104 VOLUME IV Attachment G Structural Analysis of 24" Valves QID 361106 VOLUME V Attachment H In-Situ Test Results Attachment I- WPPSS Flow Calculations | |||
TABLE OF CONTENTS (Contd.) | |||
Attachment J Vendor (BIF) Flow Test and Results l) Torque Load Tests For Straight Pipe | |||
: 2) Torque Load Tests With Connected Elbow Attachment K Field Modifications, PED h Startup Work Requests Attachment L Drawings l) Debris Screen Photograph | |||
: 2) Flow Diagram M543 | |||
: 3) Piping Isometrics | |||
: 4) Valve Drawings | |||
: 5) Operator Drawings | |||
: 6) Valve Data Sheets | |||
QJAI IFICATION OF PURGE AND VENT VALVES AT WNP-2 1.0 Introduction The Nuclear Regulatory Commission is concerned about operability of the WNP-2 purge and vent valves when subjected to a postulated LOCA in combination with seismic plus hydrodynamic conditions. Specifically, their concern is the ability of these valves to close in the time re-quired to prevent discharge of radioactive gases to the outside environ-ment. The valves identified as the containment isolation valves in the purge and vent system are as follows: | |||
Valve Number Valve Size (in) Use Location CSP-V-1 30 Supply Outside Containment CSP-V-2 30 Supply Outside Containment CSP-V-3 24 Supply Outside Containment CSP-V-4 24 Supply Outside Containment CEP-V-1A 30 Exhaust Outside Containment CEP-V-2A 30 Exhaust Outside Containment CEP-V-3A 24 Exhaust Outside Containment CEP-V-4A 24 Exhaust Outside Containment 2.0 ~Sno sis Qualification of WNP-2 purge and vent valves for a postulated LOCA condition superimposed with a seismic/hydrodynamic event is exhibited by analysis utilizing dynamic flow calculations, detailed structural integrity studies, dynamic flow tests and investigation of actual on site configurations. | |||
Operability was addressed by in-situ testing (equivalent static load) of the operator, dynamic flow testing of a similar valve (12") and subsequent calculations to account for dynamic air/steam flow conditions. | |||
Final As-built qualification has been demonstrated on the WNP-2 purge and vent valves by the use of appropriate dynamic torque coefficients for associated installation configurations coupled with a restricted valve opening angle to 70 degress. | |||
3.0 Functional Descri tion and A lication The containment purge and vent valves are butterfly valves manufactured by BIF, a unit of General Signal Corporation and are identified as model numbers A-206765 (24") and model number A-206763 (30"). Both sizes use Miller Air Products air cylinder operators (air to open and spring to close in the fail-safe mode). | |||
CSP-V-l CSP-V-2 are 30" butterfly valves which are normally closed, and are open only for drywell purge, and drywell inerting. During drywell purge air is supplied by the reactor building ventilation system through these valves into containment. During drywell inerting, nitrogen from the containment inerting system is introduced to the drywell through these valves. Valves fail closed on loss of air or power and close on F,A,Z signal regardless of operating switch position. Figure l provides a schematic flow diagram for all eight valves. Also, Attachment L Sec-tion 3 provides Flow Diagram M543 with the valve locations identified. | |||
CEP-V-lA CEP-V-2A are 30" butterfly valves which are normally closed, and are operated only for drywell purge and drywell inerting. During drywell purge or inerting operations, the exhaust gas exits containment through these valves and is routed to either the elevated exhaust stack or to the Standby Gas Treatment System. Used in conjunction with CSP-V-l and CSP-V-2 these valves fail closed on loss of air or power and close on F,A,Z signal regardless of operating position. | |||
CSP-V-3 CSP-V-4 are 24" butterfly valves which are normally closed, and are opened only for wetwell purge, or wetwell inerting. During wetwell purge, air is supplied by the reactor ventilation system through these valves to the wetwell volume. During wetwell inerting, nitrogen from the containment inerting system is introduced through these valves. Valves used in conjunction with CEP-V-3A and CEP-V-4A fail closed on loss of air or power and close on F,A,Z signal regardless of the operating switch position. | |||
CEP-V-3A CEP-V-4A are 24" butterfly valves which are normally closed, and are opened only for wetwell purge and wetwell inerting. During wet-well purge or inerting operations, the exhaust gas exits containment through these valves and is routed to either the elevated exhaust stack or to the Standby Gas Treatment System. Used in conjunction with CSP-V-3 and CSP-V-4, these valves fail closed on loss of air or power and close on F,A,Z signal regardless of the operating position. | |||
The purge system is desicped to purge either the drywell or the wetwell. | |||
Only one entrance and one exhaust line will be open at any given time. | |||
I SCHEMATIC FLOW DIAGRAM FOR PURGE AND VELDT VALVES fO cKVAYs'p | |||
~RAN t CCi | |||
%<5M% | |||
ho AO CONTAINMENT VESSEL cKP-Q I g CGP-V ZA 30'e(w-LS cap-v-zs 2,'<PASs | |||
@tlat!5 h<R | |||
+a~ | |||
~~u~i l. A<ictttt3 FRO& Ctd DRYWELL | |||
~a~ | |||
csp-v-z cd v. l 0 | |||
~KG..QP csP v.~ | |||
CA ~Ver<~ Act VACUA~ | |||
asL. | |||
ALL YAC~ | |||
ZS LlE.F e m-aP l4 CQ &(@KB PIGUQE 1 | |||
g L/~ERAL'I V | |||
COMTPIMN"=MT ISOLN30N | |||
'0": I. CEP-V- IA | |||
: 2. CEP-Y-2A. | |||
: 3. GSF'-V-I | |||
'I. C.'P-V-Z --- | |||
I. UP~II I | |||
REF. Dh/& 2/O. EOb7~o 7 70 OP F. | |||
Flow"for 'ESTRIC ION Flow for CSP Valves CEP Valves due to LOCA , due to LOCA Normal Flow for both CEP and CSP Valves FIGURE 2 | |||
4.0 Limitin Condition for 0 eration The Purge and Vent System at WNP-2 for normal operation, is controlled with 2" bypass lines (two pairs) for inerting, de-inerting and pressure control. The large 24" and 30" purge and vent valves will be used only during off-power operation in accordance with the limiting conditions for operation (LCO) as shown below. | |||
Each 24" and 30" purge and exhaust isolation valve shall be normally closed during the time period: | |||
: 1. Within 24 hours after Thermal Power is greater than 15% of Rated Thermal Power, following start-up to within 24 hours prior to reducing Thermal Power to less than 15K of Rated Thermal Power, preliminary to a scheduled reactor shutdown. | |||
: 2. The valve opening angle will be limited to 70 degrees and will be implemented prior to 5X Rated Thermal Power. | |||
Each 2" purge valve may be open for purge system operation for in-erting, de-inerting and pressure control. | |||
A complete copy of this LCO is provided in Attachment C. | |||
I r'g | |||
5.0 Res onse to NRC Concerns (Summar ) | |||
5.1 NRC Concern No. 1 Valve Installations Detailed valve installation information was not provided for each valve such as: | |||
Item 1. Direction of flow. | |||
Item 2. Disc closure direction. | |||
Item 3. Curved side of disc, upstream or downstream (asymmetric discs). | |||
Item 4. Orientation and distance of elbows, tees, bends, etc. | |||
within 20 pipe diameters of valve. | |||
Item 5. Shaft orientation. | |||
Item 6. Distance between valves. | |||
Su 1 S stem Res onse - Valve Installations Complete details of the valve installations are provided. | |||
Figure 3 CEP-V-1A and CEP-V-2A Figure 4 CEP-V-3A and CEP-V-4A Figure 5 CSP-V-1 and CSP-V-2 Figure 6 CSP-V-3 and CSP-V-4 Item 1 Direction of Flow For normal flow considerations at WNP-2, the valves are installed in the manufacturer's preferred orientation. Therefore, the exhaust valves (CEP) are installed in the preferred direction of flow for both venting containment and flow which is a result of LOCA. | |||
However, the supply valves (CSP) are installed for preferred flow toward containment and will be subjected to non-preferred flow direction during postulated LOCA condition (see figure 2). | |||
These CSP valves are potentially subject to reversed torque due to flow out of containment. To assure that only positive closure torque occurs, all valve openings will be limited to 70'nd therefore precluding the negative flow induced torque. | |||
Item 2 Disc Closure Direction Disc closure directions are provided in Figures 1 through 4. For installations downstream from an elbow, LOCA induced flow tends to help close the valve. | |||
Item 3 Curved Side of Disc Installation The BIF valves used at WNP-2 do not have a curved side and the air foil lifting characteristics associated with this type of configura-tion will not exist on WNP-2 valves. The location of the seal ring is shown in figures 3 thru 6. | |||
Item 4 Orientation and Distance of Elbows Tees Bends Etc. | |||
Detailed valve installation information for piping configuration is provided in Figures 3 through 6. | |||
Item 5 Shaft Orientation Detailed valve installation information for shaft orientations is provided in Figures 3 through 6. | |||
Item 6 Distance Between Valves Detailed valve installation information for the distance between valves is provided in Figures 3 through 6. | |||
5.2 NRC Concern No. 2 - Flow Torque vs Seating Torque The worst case geometry at large angles of valve openings can pro-duce very high torques that would be considerably larger than seat-ing torque. These dynamic torques should be used in the structural analysis instead of seating torques. | |||
Su 1 S stem Res onse No. 2 The qualification analysis used the larger of either seating torque or flow induced dynamic torques. | |||
5.3 NRC Concern No. 3 Valve Pressure Ratings Valve pressure ratings and a static pressure analysis are not ad-dressed in the submittals. The applicant is to provide this infor-mation for each of the valves. | |||
Su 1 S stem Res onse No. 3 Valve pressure rating of 150 lbs is provided by the Vendor Data Sheets (Attachment L Section 6). Analysis for pressure loading is provided by BIF vendor calculations: | |||
24" Valves Attachment G, Section 7.0 Sheet B-61 30" Valves Attachment F, Section 7.4 Sheet 7.4.61 5.4 NRC Concern No. 4 - LOCA Curves Included were plots of flow rate versus time from LOCA initiation for the 24 inch and 30 inch valves maintained in a full open closure from 90'o 0'hich should be deleted. However, the analysis is not affected. | |||
Su 1 S stem Res onse No. 4 The LOCA curves present have two abscissa labels. Supply System agrees that the valve angle information should be deleted and that the analysis is not affected. | |||
I. CE'P-V-IA Z. CEP -V-2A PIPE OW. 30 BIF BU ITER.F LY VALVES oV>" | |||
v< ~ ~(p I | |||
~ 8 EEl AIL 1 | |||
~pit> | |||
~gptll>>>(~S II iC 0 4 IL | |||
~l~l~+T~l) | |||
SUWZt".WlTR I lCTllREK I | |||
T o~ul REF: I50 CEP-&R.'5-IO sun CEP- (25 - II. Ih | |||
t'NSHINGTGN PlELIC PQ'lER SOPPLY SYSTPl 1'lNP-2 RJl@E NG YBlT YIPES o ~ 0 op 4 | |||
oo~oo-.~4 Oyoy | |||
@0 60y by | |||
',J PICTLIK i'6, 1 PICTURE NO, 2 CEP-'~ | |||
ELEVs VIB( LKGe EAST LKGs UP SHUTS CCW TO OPEN SHUT> CCW TO OPEN | |||
~ ~ S ~ | |||
CONTAMMCNT v 0 VALVE 0 6 ll. | |||
ROC.TbR. | |||
I I I | |||
'to | |||
( I V | |||
~~0 .~O, I ~ELQbL AlCtAICr 1 D 0 | |||
CSP- V- I + rcPig f 3'-ZPrib' cruz N b. WCK CCPJ Th CIPC 0 0' | |||
~ | |||
1NSHINGTON RELIC PSIER SUPPLY SYStPI l't."tP-2 PURGE Al'8 VENT VAI VES | |||
~((t i l I | |||
II | |||
( | |||
r <0 | |||
~ ~ (~ | |||
ff qG | |||
'ad | |||
~ | |||
PICTURE NO, 1 PICItjRE I, 2 CSEHU. ESP=VX SHUTS CCW TO OPEN SHUTS CCH TO OPEN | |||
t'tASHINGTON PLSLIC POI'KR SUPPLY SYQPI l'Pi>P-2 PURGE M) VBtT VALVES f. | |||
J v | |||
O Ij p | |||
P J ~ | |||
j/,q 97$ | |||
PICTtK NO, 5 PICTURE tN. ~ | |||
-V- ~(SP-'!- | |||
LOOKING UP AT 46 FROM FLOOR | |||
COMTAthIME T ISO IRTIOM VALVE5 jI.CEP-Y-DA | |||
~p y ) pp | |||
~ | |||
BIF 5LJPEPJ LV VALVES PEPE blA.= Z.LI REF. ISQ*CEP- SZK- l.2 CEP- Co25 -3.'I 0 6 LZ 3 c<'P )A (g~)r C. | |||
(ti 4 i<& | |||
7-I io | |||
) 'l(g lo 0 // | |||
gL | |||
~<<~ ~ | |||
Cg> | |||
(q CCW 70oPEN Ll~ | |||
P1 CT "R~i, i UCG. 0 Cy> | |||
V ) | |||
SEQ: A-A CAO5''EC1 LKfr.SDUTI4 (TYP) | |||
j'SS)1!l'lGToih PUBLIC PEKR SUPPLY SYSTH'l NP-2 PURGE Af'tD VH'IT VALVES 0'I l lI I | |||
I PICTURE tm, 1 CEP-V-3A ie 4A | |||
.I rh CONTI N SO TION VALVES I. QP-V-3' | |||
~P V-q BIF 1MITERFLV NLVES | |||
: 3. MP-V-5 II. CSP- V- l LHCUC. V/ILVC VhCuurl GRCAK~ | |||
qO< | |||
IE REF. 150 l SP- 807-5.7 (C | |||
C5P - 80"I- S.IO Pl TO PICru C VIE I | |||
I | |||
'/ 0 | |||
~ | |||
a | |||
~ 0 | |||
~r5 ( II~ | |||
Qy 'r,IT rrhr COMTAINMEAfr | |||
~N~ ' | |||
PICT C~L p 90'.R.ELL | |||
~p "I: r CS .an.S PCOu 6UaIM6. | |||
// | |||
CSp- V-5 | |||
~lhhl"h A | |||
)I JPI BREAICEIK FLOhl P gJ C~ TODPEN SECT'A-A h | |||
-18 h h | |||
'h | |||
WASHINGTON PUBLIC PNKR SUPPLY SYSTEN lNP-2 PURGE NS VBlT VALVES F | |||
PICTURE m, 1 cN To.opw PICTURE NO. 3 C5LYM | |||
HASHIf'JGTON PUBLIC POi'KR SUPPLY SYSTPI MlP-2 PURGE AfS VBH VALYES A | |||
o j | |||
PICll!8E ~6, 5 | |||
-20 | |||
6.0 Discussion of 0 erabilit Operator operability was demonstrated by a stress integrity calculation and a static deflection test. The static deflection test consisted of applying a load at the outboard end of the air/spring cylinder equivalent to the SRSS actuator assembly CG acceleration loads. Determined from the piping analysis, in the two axes of the cylinder this load would cause the most adverse operability effect. This acceleration level times the cylinder weight, acting at the cylinder CG, was equated by an equal mo-ments approach to an equivalent force acting at the outboard end of the cylinder assembly. Flith the load applied, the air supply was removed and the spring loaded cylinder was allowed to move to its fail-safe (de-ener-gized) position. Acceptable operation of the air cylinder was its abil-ity to move from its energized position to the fail-safe position with the load applied at the outboard end. | |||
This static load method of demonstrating operability is deemed very conservative because of the following reasons: | |||
: 1) Time duration of a peak seismic/hydrodynamic acceleration is very small compared to a steady (static) load. | |||
: 2) Static friction is greater than dynamic friction. | |||
: 3) Square root sum of squares of two orthogonal directional accelera-tions is conservatively applied to the worst case direction. | |||
Conditions and results for the valve stroke tests with and without statically applied loads is provided in Attachment 3. | |||
An enveloping test was successfully performed on both the 10" bore cylinder (part of the 30" butterfly valve assembly) and the 8" bore cylinder (part of the 24" butterfly valve assembly). | |||
Summar of Structural Anal sis Detailed structural analysis was performed on the valve and air/spring actuator. The following is a summary of the analysis performed. | |||
Com anent Descri tion QID No. Attachment NPPSS Supplemental Calculations (Review of As-built conditions) 30" BIF Butterfly Valves 361104 24" BIF Butterfly Valves 361106 30" Valve Vendor (BIF) Calcuations 361104 F Section 7.4 24" Valve Vendor (BIF) Calcuations 361106 G Section 7.0 ll 0 | |||
A summary of critical valve components is provided in Table ZIfor 24" size and Table I for 30" size. | |||
To assure a very high confidence level, normal condition allowables (including 0.4 Sy for shear) were used as criterion for the combined postulated LOCA and seismic/hydrodynamic conditions. Since the valve opening angle will be limited, the operational torques (LOCA) were used in-lue-of the design seating torques, thereby, providing a higher margin of safety on loading deemed less predictable while still maintaining standard margins of safety on design seating loads. | |||
~JUNC.f'CR~ Vf- Lgt ~ | |||
5 0 SIF ZkJiTFRFLY Co}JWIdWgW I VALVE BEATIFIC TOg.auS + JOVE LOCK FiowVoazuE + | |||
GTPESS Au OvVP.GLE | |||
~~6'ALC'D cALc '10 STRESS hlOKhh AL l=AVE:TED STR.E~S 'FAOLT ED Vp Lvh/Dm~zm 7 i TEhlSIQ , C Fr MlC6 1d .SF'&Pi '4eciu T' 'TEhlS I ,CR S ~ sHE'AF oF or 5 iSAEAR. | |||
Carne-oI-I~~ B=QEPgl}lq .% Fv SAF +igg~llJ( oF'AFE~ | |||
i/5 | |||
.4'RUhldiOQ MIHS g I95 IZ>OO g,g (GOOO g.Z, 2 I 7dOQ 5.4 I 8 ooo 8.Z | |||
~A~REW 'Rgs I 8'OO I. I (bgGd I.7 7O3'9 93'OO I. S IgggO Z.o | |||
~IY~ L~p.~ I I O9Z z. Z g@OCg Zgdoo ZC U >O~ | |||
MAIQ SHP,PT 2o527 /4z@7 /9000 /. 5 2 OOOO DR.IVG Ra+ gC OOO I,,"( WOOL I. C 'g&ocQ I,I l.7 e'er-e(S) e oog (s EAM BOLTS e vs4 (v) p~eas 4) c}g}8 (T) <OS~ g, t LRVEW M~AY /4 OoQ >lobe z.e 79ZQ (S OOO +,O ZQOOD 3,0 I 25'67 I BOOC) I.4. I Z.~7 I800d l.4 VALm E~ MEO0 I 5 277 y 9oaQ I,-'4. iz~%7 I8ooo I.4 | |||
VALVE %AVIAN t a~auC + DUE LOCA- FLom Tor AVE <- WUK CALC'D QLOv4 A>LE CAI C' STF-'E5S Al GOWAGLE STRESS 'PAVL-'TKW S~ms FAVL.VEP VAt vh/c7m~~or | |||
+~ ' , CrFc . 'hhhCAid , .9%v ~g.col T ~ 7LhtSI g c5$ CA oF | |||
~scag COMP Dhl~ .'9''Fc Sm 6Ã , fnF~ | |||
~vert %~5GHZlij 54$ UY ~fY T'RUDRA>0~) Piels g/04 /2000 .2;g. /OOOO 4/o4 /ZOOO g,9. /8000 | |||
~A~ezo T(WS DOQ4 /5 9+0 ./,7 99OO /,7 /395O 2.5 | |||
~ | |||
~IYK Lp'i/BQ ~ooo gazoo r | |||
2+OO )8 5t-oooQ g.7 bhAla St<P,~ /7O44 /ZSZZ /coco / g ZvQoo zg DwlvG Rcpt& 9'~ 3(oObO I | |||
Wgooo j l Bz9oV Q~o&o / / +good tS rrr > (<) I 5552 EAw BoLTS Z.78') Z'7370 | |||
/v-4(v) r = | |||
/C 74-3 r T'Y I t5&Z //nodo z4ooo Z, I '78 l4 /k om z.o z4oOO GHaww& wax 9&57 /gonzo S 5 Vms E~ W~i~ /0+&9 /Boy% /.7 /o589 (8 os | |||
0 Summar of D namic Tor ues and Available S rin Closure Tor ues The purge system valves (CSP-V-1 thru CSP-V-4) are installed with the flat side of the disc upstream. When these valves are in the full open position (90 degrees), the dynamic torque coefficient becomes negative (tends to open the valve). Based on the test results provided in the BIF report (Attachment J Report No. 2) the worst case negative torque coefficient (CT = .34) is less than the bounding torque coefficient (Cy = + .56) used in the BIF calculations. For comparison purposes both the full open valve dynamic torques and the 70'pen dynamic torques are compared to the available air operator spring closure torque. | |||
Butterf1 Valve with Disc U stream Flow at 1 sec. and disc angle 90' Full Open Dynamic (1) Actuator Spring Margin of Valve Size Tor ue (0 enin ) Tor ue Available (Closure) Safet 24" 6,830 In. Lb. 11,900 In. Lb. 1.7 30 II 13,640 In. Lb. 23,470 In. Lb. 1.7 Flow at 1 sec. and disc angle 70'pen Dynamic Actuator Spring I Margin of Valve Size Tor ue (Closure) Tor ue Available (Closure) I Safet Not 24" 1,200 In. Lb. 18,600 In. Lb. 1 Applicable IBoth Loads 30 ll 2,400 In. Lb. 33,700 In. Lb. IProvide I Closure I | |||
Figures 7 and -8 show torques for both valve sizes at all angular positions. | |||
(1) Torques conservatively include 1.3 factor for an elbow located directly upstream. | |||
FIGURE // 7 3~~: j6Pg=FS> -QNfii =.LBTilR | |||
~ ~ | |||
4~>t I tCEP2J,O.RQ, . | |||
I | |||
.D&~owA~aFPM3 'Ri'CD~B1+KPT=N(g2, gw= | |||
:Z 1 ~ t ~ | |||
~-- ~ | |||
.mt ' | |||
.-S-, | |||
g~t | |||
=OF% | |||
.raew .0 EAU '-~ | |||
0'5~= | |||
)EA'LV.E 0 | |||
- 26 j | |||
xt'I@I Ii Ii) 5' | |||
/i j | |||
.)Ol I~ | |||
(lf il.i | |||
~ ~ | |||
~ | |||
!!! tll | |||
~ | |||
gl | |||
!(i.'i':: | |||
lq: 'i'I | |||
!ji 1: ~ | |||
I); | |||
fiji itj | |||
~ ~ | |||
~ | |||
s~i! | |||
::I! | |||
~ Il | |||
~ | |||
(! I set sit) | |||
!':i !!" | |||
I ~I I,~ | |||
I a!!j I!!I | |||
!g9 tjji | |||
~ | |||
~ ~ | |||
ti)'el) ij!1 | |||
:lil e | |||
~ ili t)t: | |||
~ | |||
I!!i.lii!!II I | |||
l j'@@ | |||
fiji sI s I s | |||
>>'It s }if a;si 1! | |||
lilt fljl I! .i II Uf it | |||
'A t | |||
I~ i.I I | |||
~ It | |||
)J I | |||
li | |||
} | |||
ltl1 | |||
~ | |||
(I 1 | |||
~ | |||
I~ | |||
tI | |||
!ljj | |||
~ | |||
I~ ~ | |||
II | |||
!I!I | |||
~ ~ | |||
I II i!4I iii! | |||
~ | |||
It!i i' | |||
I i! I ">>' | |||
I I!i i itt tie | |||
'V. | |||
i~if | |||
~ | |||
j'iij I | |||
>>ii I) ft (11( )tee It ii!i iii! | |||
III) | |||
It) I iet I | |||
'I 1 | |||
~ | |||
~ | |||
~ | |||
I if(1 tts ~ | |||
1 qt( | |||
}TI} .'jj',: | |||
ll.j 1 | |||
I( | |||
~ | |||
~!I I | |||
~ ~ | |||
'fi I | |||
I | |||
~ | |||
Ii | |||
'1 | |||
~ | |||
~ | |||
11 | |||
~ | |||
>>)I I!) | |||
j I | |||
a!I It I!,1 I(gt'f if" | |||
:(ii it i | |||
~ | |||
!i i | |||
) | |||
.I | |||
~ I I | |||
~ | |||
t | |||
\ | |||
'.i! l It'( jsett f447. Is ijl.: i!1 It( | |||
(te+ ii tii: Ts ~ s 1!I! ~:!! | |||
Il!I ,'i: fi,! | |||
)sit I; j!( s ~at} !I!i I! Il I ~ I~ I j!ij jtij jit; !!!I set t ~ et 'ttt I ~ | |||
jli ~ Irl il s | |||
ljif I!!I f It!I 1st I~ | |||
~ I si f ~ ~ I I~ Ij}}}:,'jH ll I s,)it;1 >>>> tete i!i. }It ~ | |||
~ | |||
1 I I::ji jij | |||
>>(I | |||
!1)1 js | |||
.I 1 | |||
~ I | |||
!I!i 1!! ~ | |||
jjjj ct) I It} | |||
~ fels>> ~ | |||
lii. l | |||
~ )I !g | |||
)ill IIIll!ll II ~ | |||
I! )II ttj(I I li I | |||
~!i flij !!ij Iiii:.!.j 3 I D } | |||
iii 'l!I g2'44 I SS iE Iff | |||
~ | |||
I | |||
:U. | |||
~ | |||
1, te K~ ~ ~ I!a It | |||
~ | |||
~ ii I!1 el ::II I!l I !i! | |||
zl ( | |||
1 | |||
'I i)"l i/0 VV jil | |||
)I lt'I I I ii! I I,I EEI'! | |||
'! II I) I (I t I>>! )at I!I (eft ji! iii I'I I i++)! I lii! 'i | |||
! ~ | |||
I I'tis L. 5 iD ,E '.), I~ sl | |||
~ | |||
!if! | |||
I .I>> "li Liii iii ~ ii 4 'li: liII lilt | |||
"!I t j('t oj;II I' ilj( I!j; j!'I I:!i | |||
~ aa II Iji Qii'ILt I,'I jil ~ I lll! tl II | |||
~ | |||
I!i if!i it)li iifi tf'I iifi lj iti i!I! ji! jj I I | |||
ili! jfi i) ll!! i!I! | |||
z<'! IIII I ittj lit ~ 'I!,':iii jj il! f~f !(jj!,!If it,i I)11 | |||
%~K~~~ | |||
PISC I!11 I) t I ) | |||
X!1 ':3 1 | |||
j tfi I; ~, | |||
~ | |||
~ ~ I | |||
~ ii: iii! I:II I, II1! (ttlematam) lj ul,t ti! Ili !!lf IL) !i'!I!i''. | |||
T&W( | |||
jjii I, jji;: lil! ~ | |||
yi]jj I 1 | |||
))- tt'j ',1st | |||
:t(i I! ,ii! | |||
~ ~ | |||
I oii !111 tisi | |||
!'I' | |||
: 0. !.0 I(( | |||
P. A f(i( I II )I ~ | |||
tf ~tt.!ll | |||
~ ~ | |||
I>> | |||
~ | |||
I!I: )j,i I!I Sj i:;i jij i! 1 | |||
!j Ljlt e! 1 LLti Il il if i ~ | |||
I "" (Its I,' ijj j!I 'I I ! IIII I I il | |||
~ | |||
II i(j't (Iit I( I P(SC | |||
!I I ~ ('>> ti i Ul sTlccw | |||
:I >>" !! tf:. | |||
iii'l'!I!!!! !l(j l | |||
~ ~ | |||
tl ~ Ie fi ji):: | |||
is i! ~ ~ ~ II | |||
~ | |||
~ | |||
,1 Ij Q>>I ii':I I!(i Ljl( I ijil j!',gf'it | |||
~jim | |||
!i 'lit jiff !iii I I | |||
8.0 Summar of Flow Calculations The shortest purge line with the lowest flow resistance was analyzed to determine the Mach number of the fluid flowing through the butterfly iso-lation valve as a function of valve opening angle. Based on this analy-sis, it was determined that valve angle positions of 70'r less will assure that the Mach number through both the inner and outer isolation valve remains below Mach number 0.3 following a postulated LOCA. | |||
The containment pressure and temperature used as a forcing function for this analysis were obtained from the WNP-2 FSAR (figures 6.2.2 and 6.2.3) for a postulated DBA. Containment pressure obtained from these figures was based on the assumption that there was no fluid leaving containment. | |||
If the purge valves were open the containment pressure would be slightly less than that used in this analysis. | |||
Flow calculations are provided in Attachment K. | |||
: 9. 0 Qualification Summar 9.1 The 30" and 24" diameter purge and supply valves are closed for normal plant operation since the small 2" lines will be used for inerting, de-inerting and pressure make-up. | |||
9.2 NRC has recommended the disc opening be limited. Prior to 5X power, WNP-2 will install a mechanical device which limits the opening to 70 degrees. This restriction on valve opening coupled with appropriate dynamic torque coefficients resolves safety and qualification concerns for LOCA conditions. | |||
9.3 Due to the pipe length and associated line loss coefficients; the maximum flow velocity for full open valves was calculated to be 0.33 Mach number, thereby assuring that correlation methods used with compressible fluid calculations as previously presented is valid. | |||
With a restriction on valve opening, the Mach number will be less than 0.3 for all conditions. | |||
Additional conservation is introduced because the LOCA pressure and temperature curves did not take credit for flow through these valves during closure time. Also, the pressure excursion assumes a very conservative double ended pipe break. | |||
9.4 As-built configuration of the valves (especially with the 70 degree angle restriction) precludes the possibility of flow induced opening torque. Therefore, the air operator spring and flow will combine to assure valve closure in less than the required 5.0 seconds. | |||
9.5 Structural integrity of these purge and vent valves has been at-tained by combining two faulted conditions (SSE/Hydrodynamic plus LOCA) using normal allowables. This includes shear allowables of 0.6 Sm for pressure boundary ASME components and 0.4 Sy for AISC components. A table which summarizes the calculated stresses and allowables is provided in Attachment I. | |||
NOTE Field modifications to strengthen the support brackets and replacement of bolts have been performed. Documentation is provided in Attachment K. | |||
9.6 Since the valves are normally closed, there is a low probability that LOCA conditions will occur with the valves open. Furthermore, a very low probability of all three conditions (valves open, LOCA and seismic/hydrodynamic) will occur simultaneously. Therefore, this very conservative approach of combining all three unlikely con-ditions and comparing to Normal/Upset condition allowables exhibit large confidence levels. | |||
9.7 Operability was demonstrated by analysis and in-situ (static load) testing. | |||
9.8 In conclusion the purge and vent valves satisfy all the Equipment Qualification criteria implemented at WNP-2 for'even 90'full open) valves. Limiting the disc angle to 70'rovides additional margin to address the following NRC concerns. Therefore, our WNP-2 design: | |||
: 1) Assures dynamic torque due LOCA conditions will always be a positive closure torque. | |||
: 2) Assures Mach Number will be less than 0.3, and | |||
: 3) Limits magnitude of dynamic flow induced torque. | |||
10.0 References 10.1 NUREG-0892, WNP-2 SER Outstanding Issue No. 26, "Operability of Purge Valves" 10.2 NRC Standard Review Plan 6.2.4, "Containment Isolation System" Containment Systems Branch (CSB) 10.3 Branch Technical Position CSB 6-4, "Containment Purging During Normal Plant Operations" Supplement to SRP Section 6.2.4 10.4 Letter, A. Schwencer (hRC) to R.L. Ferguson (SS), "Request for Addi-tional Information", dated September 16, 1982, Docket No. 50-39 10.5 WPPSS Letter, February 24, 1983, G.D. Bouchey to A. Schwencer (hRC) with Attachments 10.6 WPPSS Letter, June 22, 1983, G.D. Bouchey to A. Schwencer (hRC) with Attachments VOLE% II 1'PPSS OF PURGE ANO YENT VALVES AT | |||
'JALIFICATION lOP-2 ATtAC8'HA' - DRAFT COFY OF lOP-2, SER, OUTSTANDING ISSUE NO. 26 ATTACHMENT C LINITII'6 CONOITIPS FOP, OPERATION (LCO) | |||
A1TAHBIT D , I'FPSS UTIER TO NRC | |||
" ATTAQK'6 E SUPPLEMENTAL CALCULATION INCLUDING FINAL AS-BUILT REVIBt | |||
tiOP P, ', | |||
g~HIi";Os 'NUCLEC.R PROJECT 2 DOCXET NO. 50-397 0~NSTRATION OF CONTAINMENT PURGE ANO VENT VALVE OPERABILITY/ | |||
1.0 Requirement D~nstratfon of operability of the contafanent purge and vent valves, par-ticularly the ability of these valves to close during a design basis accident, is necessary to assure contairnent isolatfon. This d~nstration of operabfl-fty is required by BTP CSB 6-4 and SRP,3.IO for containrant purge and vent yalves ~fch are not sealed closed during ooeratfCCWcondftfons I, 2. 3, and 2.0 Descrf tion of Purge and Vent Valves The valves fdentfffed as the contafnrent isolation valves in the purge and vent system are, as follms: | |||
Yal ve Nunber inches Use Location CSP-VA 30 Vent. Supply Outside Contafrgqent CSP-Y-2 30 Vent. Supply Outside Contafnrznt CSP-Y-3 24 Yent. Supply Outside Contafrnent CSP-Y-4 24 Vent. Supply Outside Containrent CEP-Y-IA 30 Vent. Exhaust Outside Contafrwent CEP-Y-2A 30 Vent Exhaust Outs ide Conta f nnant CEP-Y 3A 24 Vent Exhaust Outside Contairaent CEP-Y-4A 24 Vent. ~ Exhaust Outside Conta'fnrent 1 | |||
.The conta$ rnent purge and vent valves are butterfly valves manufactured by 8IF, a mft of General Signal Corporation and are listed as BIF Model Hurdler A 2M765 (24" valves} and 8IF Hodel Nunber A-206763 (30 valves}. %lier Air Products Corporation Model A-83 cylinders (afr open - spring closed) are used for valve actuation The 24-inch valves use 8" cylinders and the 30'alves use 10'ylinders. | |||
3.'0 Geaanstratf on of erabil it . p )gal 3.I Vhshfnqton Pub'lic Pomr Supply System (MPPSS) has provided operability d~nstratfon fnformatfon for the containment purge and vent system isolation valves used at their Mashington Nuclear Prospect 2 (MHP 2) in the following. | |||
sutmf ttal s: | |||
Reference A MppSS letter, F'ebruary 24, 1983, G. G. Bouchey to A. Sch~encer (NRC). | |||
2 FA c | |||
Reference 8 p>1 jt[ | |||
t'-'ihhC Ee. t VPPSS letter, June 22, )983, G. D. Bouchey to A. Schxencer (%C). | |||
3,2 ~termination of dynamic torques durfno valve closure against the bufldup of containment pressure during a LKA is based on dynamic torque coefffcfents CT obtained fry BlF tests performed using different types of disc geometry and disc and shaft orientation xith respect to direction of flow. The test | |||
~i~ | |||
t ons fifth fs mter and no air. testing xas performed. One of the test conffgura-inc included a directly connected short radius elbox upstream to study the qffect of flox non-uniformity on dynamic torque. r a 1 so per-Several tests xere fo~ the valve shaft vertical and horfzontal, counter clockxise opening and clockxfse opening, xith flatside upstream and flatsfde doxnstream. Frcn these tests, the most severe case xas determined.to be a vertical shaft orfen-tatfon ($ .e. perpendicular to the plane of the elbow) with the flatsfde of the disc d~stream and xfth a clockxise rotation of the disc. Thfs orfentatfon results in an approximately 30K increase in maximum dynamic torque coefffcfent over the straight pipe inlet configuration. Torque coefficients used to de-temfne dynanfc loads for VÃP-2 purge and vent valves are based on this.xorst case configuration. | |||
The dfffereetial pressure 5 p across the valve is calculated fron the data on vol ~trf c flox rate under LOCA conditions, and using the equat io P)2 - PZ2 g 963 Cv xhere g ~ 6as f1ox in $ CFH P | |||
P) Valve upstrean pressure (psfa) | |||
P2 Valve downstream pressure (psfa) 6 ~ Specffic gravfty T) ~ Upstream temperature in oRankine 29.9 D2 CY Ye1ve coefficient Xv. | |||
D Valve Port diameter ()n.) | |||
Kz -"Coefficfent of floor go load closure tfme for the valves ranged from ) 1/2 to 4 seconds based on tests performed at BIF The maximum no load closure tine af 4 seconds fs used for the analysis xith a one second instrumentation tive delay for a total of 5 | |||
3 | |||
'lijli r g | |||
":I ~- L3 econds frcxn LOCA fnftfation-to-valve closure.. As an addi tional conservatisn, the d~ll pressure vol ves. | |||
and temperature rise during a LOCA is used for a11 Dynmfc torques are calculated for both saturated stean and air as the flow | |||
~fa. The calculations are summarized and shorn belo~ in Tables I, 2, 3, and 4 (Reference 8) for both the 24-inch and 30-inch vaIves and for steam and air flec. | |||
The peak dynadnfc torqaes during closure and the seating and bearing friction torques at oo are ccapared to the design torques usedD~he~ei~eic analy-sis rcport and indicate posftive margins; SUHHARY OF RESULTS Table 1. 30-inch Valve, Airflow, (TNET 2217i in-lb) | |||
Dynam) c | |||
- Angl e s deg, Torque in-lb. | |||
1.0 90 {Full Open) II020 Qg JEST 1.5 78. 75 2309S 2.0 , 67.50 X813S 2.5 56. 25 14747 3.0 45. 00 12428 3,5 33 75 10780 4.0 22. 50 8014 4.5 11 25 3972 5.0 9.0 (Full c1osed) 0.0<< | |||
'~ | |||
<<At full closed position, the dynamic torque is zero and the net torque is due to seating and bearing friction. | |||
v~ | |||
g Note: The design torque used in the seismic analysis report No. | |||
Ill-74-B in-lb.. | |||
byM~A t 1 t 27m | |||
$ ~ | |||
SueSRT 0-. RESULTS gable 2. 30-Inch Valve, Stean fl~, (TgET 22l74 in-lb} | |||
Dynamic Tithe Angle Torque deg~ in-lb. | |||
E.o 90 {Full Open) 11032 1.5 78. 75 23175 2.0 67. 50 18142 2.5 56. 25 14668 3.0 45-00 l2424 ~"~"-c g;~ | |||
3 5 33. 75 i'0580 4 0 22. 50 7809 4 5 11. 25 3867 5.0 9.0 (Full closed) 0'.0+ | |||
"At full closed position, the dynariic torque is zero and the net torque is due to seating and bearing friction. | |||
SUNDRY OF RESULTS Table 3. 24-ln'ch Valve, Airflx, (TgET 13808 $ n-lb) | |||
Dynamic Angle a Torque deg. in lb'.0 90 (Full Open) 5525 1.5 78; 75 11692 2.0 67.50 2.5 56. 25 | |||
'.0 45 OD 3.5 33 75 5430 4.0 22. 50 4043 4.5 11 25 2020 5.0 9.0 (Full closed) 0 pe At full closed position, the dynamic torque ts zero and the net torque is due to seating and bearing friction. | |||
ate: The design torque used in the seismic analysis report No. | |||
TR-74-8 by HcPherson-Assoc!atesDo~this valve is }7000 | |||
f"ran(f" | |||
: i. j(/i/ / | |||
SU~RY OF RESULTS Table 4- 24-Inch Valve, Steamflo~, (TgET. 1380B in-lb) | |||
Dynamic Ti)2)e Angle o Torque (s) dege in-lb. | |||
l.0 90 (Ful> Open) 5425 1 5 78.75 11394 p. | |||
R.Q 6?. 50 B92l Z.5 56.25 3.0 45,00 6109 3.5 33.75 5202 4.0 22. SD 3S42 4.5 Il.25 '902 5.0 9.0 (Full closed) 0.0 + | |||
+At full c1osed position, the dynamic torque is zero and-the.. | |||
net torque is due to seating and bearing friction. | |||
3.3 D~nstration of actuator torque margin is based on the mini(((~ spring force developed which 5s equal to the spring pre-load. | |||
24-inch valve 8 c linder) | |||
>6,890 fn-lhs (preload) > 13,80S '.n-lbs (seating torque). | |||
30-fnch Valve 10-inch c finder) 32,422 in-1bs (preIoad) > 22.174 in-1bs (seating torque) g///.d4 3.4 gppSS provides a structural analysis for the puraewnd vent valves and their operators in Reference B. This consists of ((3) Seismic/Hydrodynamic Requalification Reports for the 30-inch valves, 24-inch valves, and the operators. The requalification certificates far both the 24 and 30 valves are contingent upon ear bolt modifications and the addition of shear plates. | |||
Acceptance criteria for the structural analysis are taken fro()) Section III of the ASHE Boiler and Pressure Vessel Code or the AISC Constructin Hanual, whict)ever $ s applicable. Load used in the analysis are the valve operating load crab-;ned eth the dynamic loads vhich would result frcm seismic and h+rodyna=ic events as det.eminc=- by the piping analys',s for the plant. | |||
h | |||
~ p onalysfs ms set uj tn a caepUter prop ea for each valve assembly fn Ao SR$ S fts specfffc orfenAt'fed@ The SOS fs ~en'at the maxfain stress lese) to sefsirfc, 9-)oadfng. Qperatfag. loads de to seatfng torque force and de-d | |||
~ | |||
~fight are cceMaed H& the sefsefc stress by absolute sm. | |||
. Ba~ on tte results of the structural analysfs. the valves 41) reefs fac- | |||
't)oaal through f'orth'ears af postulated hydrodyn~c events, ffve operating basf s earthquakesand one safe shuteye .earthcpake. | |||
4.D -Kva1oatfon 4.l The detemfnatfoa of dynaafc torques Kr. MPPSS pe'ge'and vent valves ader I.XA condftfons fs tesed on the testfng by the valve supp)e'er (SIF) of I aodel valve using mter as the test medfum. Tests conducted Hth a short el-dfrectly upstream, valve shatt at %P to the p)aine of the e)bee, and i | |||
flatsfde of dfsc deestre~ fndfcitid 3'. fncrease fe maxfmw, dyneafc tor-que coefffcfeC for tMs erst case geaaetry. Vsfng data froo Node) tests performed by other valve aanufacturers wftb afr as the test aedfea, tMs erst case geometry prodtmes 0 3'ncrease fn aaxfmm dynarnfc torque coefffrfent The -large'.dffference (3'. }ater versus 300j'. afr) fn aaxfeen dynaefc torque | |||
. coefffcfent f s due to the hfgher (above %ch-.3j velocftfes at large angles of openfng %ere the cbmwfc torque coefffcfents peak; Oyaanfc torque frit Nocfel tests usfng fnc~xmsfhle flufds correlate reasonably cell coefff-'fests Hth data free tests usfsg afr f f the vHocftfes are helm a Kacb nveber of 0.3). | |||
Ccesfderfng the.ana1ysf's results tabulated fn Table 1 of Reference A, the peak 4ynaafc torq~ for the K-fnch valve occurred at ?8.75'M was 23,098 | |||
'fa-)bs. The desfw torque fs 2'7,800 fn-)bs ns noted fn the same table. | |||
Qp'lying a 30gf. increase to the 23098 fn-Ebs peak dynesfc torque &feb al reefy has a'3% erst case conffguratfon factor; the peak dynaxfc torque usfag the factor froa afr tests mrks mt to 48,505 fn-lbs, wll @bere the 27,NO fn-lhs des fgo torque Aa acceptable approach to the staff fnstead of. the coeservatfm erst case conffguratfoa used Q the lfcensee seal@ be the use at'pproprfate ~enfc closurefor each valves fnsta3)atfoa cosffguratfen coupled Qth torque coefffcfeats a restrfctfoa oa valve openfeg Deaf i!$ | |||
'.laf valve fnstallatfen fnfoeratfon ms not provfdeci Nrectfoa of flm. | |||
: 2. Nsc dfrectfon. | |||
for each valve shah | |||
: 3. Curved sfde of 4fsc, upstr'earn or 4oenstrean (asya~etrfc dfscs). | |||
: 4. Orfentatfoo and df stance ot elboee, tees, beefs, etc Hthfe RO pfpe df aNIRters of viilve. | |||
S. Shaft orfentatfon. | |||
: 6. Nstance bet~ val ver. | |||
~ ~ I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ - ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | |||
~E | |||
'"..-". '.4.2 As deaestrated $ n 4,1 of this report, the terst case geanetry at lative a~'les of va'l~ opes1ags can price wry h0gh torques that ~)d be con-sidf rab>y larger than the seating to~..5~se dynamic torques shogld be | |||
. used fn.the structvral analysis (Ref'erence 8) insteH K the seat'5ng torques. | |||
4.3 Y'alve'presses e rat$ rgs ed- a static press'-e analysis are'et addressed | |||
. $ n the suberttta'ls. | |||
provide this $ nfonat$ aa for each of the va1ves<< | |||
4.4 Reference R fncludus plots of floe rata versus tine fran LX.A initiation for the 24-fnch 3n-inch valves veintainod fn a full open po'sition .The I-*- | |||
be deleted and abscissa incorrect)y includes vail c1asure f'rm Hecever, the analysis fs tet affected- | |||
~ to Oo, Rich Auld 5.0 Suwarg Nh trave caarpleted our rerum of the infnmat$ ie submttid'ta date, concerning the operabfli of the H-$ nch ed 30-inch valves used fa the carrbtiemnt ptn'ge and vent cyst~ for Qhshiagtan nuclear PH)act 2'. lk find ttet the informatics'sube)t~ for tha 24-inch and 30-inch valves cHd not deaenstrata that these valves have the ab$ 7fty to clos4. against the M1dup crf press~ <n the eh'erat of a 9BQLXh fron the ful1 apeh position. Paragraphs 4.2, 4.2, and are the bases for these findings. For this reasce, the 24-inch and 30-inch va1ves sold'be sea1ed c$ asaf in accordance Htb SRP Sectfce 6.2.4 and 2 | |||
TlI~ 5.f. FMrthe~re, these valves should be verified to be closet at 'teist ofhce cvog' da)$ + | |||
v | |||
CONTAINMENT SYSTEMS DRYWELL AND SUPPRESSION CHAMBER PURGE SYSTEM LIMITING CONDITION FOR OPERATION 3.6.1.8 The drywell and suppression chamber 2-inch exhaust isolation valves shall be OPERABLE and: | |||
Each 24- and 30-inch purge supply and-exhauae-iaaiaaien-vabre-shall be closed during the time period: | |||
: 1. Within 24 hours after THERMAL POWER is grehter than 15~ | |||
of RATED THERMAL POWER, following startup, to | |||
: 2. Within 24 hours prior to r educing THERMAL POWER to less than 15'f RATED THERMAL POWER, preliminary to a scheduled reactor shutdown. | |||
: b. Each 2-inch purge valve may be open for purge system operation for inerting, deinerting and pressure control. | |||
: c. Each 24- and 30-inch purge supply and exhaust isolation valve shall be limited to open no more than 70 degrees. | |||
APPLICABILITY: OPERATIONAL CONDITIONS 1, 2, and 3. | |||
ACTION: | |||
: a. With a 24- and/or 30-inch drywell and suppression chamber purge supply and/or exhaust islation valve(s) not closed, close and/or seal the 24- and 30-inch valve(s) or otherwise isolate the pene- | |||
. tration within 4 hours or be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours except as provided for in 3.6.1.8.a. | |||
: b. With a 2-inch drywell and suppression chamber exhaust isolation ralve inoperable or open for other than inerting, deinerting, or pressure control, close the, open 2-inch valve(s) or otherwise isolate the penetration(s) within 4 hours or be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours. | |||
c'ith a drywell and suppression chamber purge supply and/or exhaust isolation valve(s) with resilient material seals having a measured leakage rate exceeding the limit of Surveillance Requirements 4.5. 1.8.2, restore the inoperable valve(s) to OPERABLE status within 24 hours or be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours. | |||
WASHINGTON NUCLEAR - UNIT 2 3/4 6-11 | |||
CONTAINMENT SYSTEMS 4.6. 1.8. 1 Each 24 and 30-inch drywell and suppresion chamber purge supply, and exhaust isolation valve shall be verified to be closed at least once per 31 days.** | |||
4.6. 1.8.2 At least once per 92 days each group shown below of drywell and suppression chamber purge supply and exhaust isolation valve with resilient material seals shall be demonstrated OPERABLE by verifying that the measured leakage rate is less than or equal to .05 .a L when pressurized to P . | |||
a Valve Grou Maximum Leaka e Rate | |||
: a. CEP-V-1A and 1B .05 L | |||
* CEP-V-2A and 2B | |||
: b. CEP-V-3A and 3B ;05 L | |||
* a CEP-V-4A and 4B | |||
: c. CSP-V-1 ..05 L* | |||
CSP-V-2 | |||
: d. CSP-V-3 CSP-V-4 4.6.1.8.3 Each 24- and 30-inch purge supply and exhaust isolation valve 70 degree open limiting device shall be functionally tested at least once every 18 months. | |||
* These valves are tested in parallel with the maximum leakage allowed for a single valve applied to the group. | |||
** Valve operation as provided for in 3.6.1.8.a shall be under administrative con rol only. | |||
Internal Distribution T Harrold - 982A Docket Fi1 e - 956B bcc: WG Conn B&R RO Martin - 927M kt/file - 994E NS Reynolds - D&L Powell - 956B PL2/LB - 956B PK Shen (JMY) - 580 JDM/LB - 927M SI Stevens - 956B GCS/LB - 340 WW Waddel - 9670 sf (2) | |||
JE Rhoads - 9670 WNP-2 Files December 8, 1983 Docket No. 50-397 G02-83-1129 Director of Nuclear Reactor Regulation Attention: Mr. A. Schwencer, Chief Licensing Branch No. 2 Division of Licensing U.S. Nuclear Regulatory Commission Washington, D.C. 20555 | |||
==Dear Mr. Schwencer:== | |||
==Subject:== | ==Subject:== | ||
NUCLEAR PROJECT NO. 2 QUALIFICATION AND OPERATION OF WNP-2 CONTAINMENT VENT & PURGE VALVES | |||
==References:== | ==References:== | ||
a) Letter, A. Schwencer (NRC) to R. L'. Ferguson (SS), | |||
"Request for Additional Information", dated September 16, 1982 b) NUREG-0892, WNP-2 Safety Evaluation Report, Out-standing Issue No. 26, "Operability of Purge Valves" c) Letter, G02-83-170, G. D. Bouch'ey (SS) to A. Schwencer (NRC), "Vent 8 Purge Valves", dated February 24, 1983 d) Letter,'02-83-550, G. D. Bouchey (SS) to A. Schwencer ~ | |||
(NRC), "gualification of WNP-2 Containment Vent and Purge Valves", dated June 22, 1983 References a and b contain NRC .requests .for information regarding the WNP-2 containment vent and purge valves and References c and d are the Supply System's responses.'to the requests. ",:These concerns have resulted in a proposed Technical Specification Limiting Condition for Operation (LCO), | |||
for WNP-2 (Attachment A)., This LCO would seriously impact the WNP-2 plant's ability to properly carry out initial power ascension testing and operation. | |||
The purpose of this letter is to bring to the NRC's attention, additional infor-mation concerning the Supply Systems action to resolve this issue and to propose an alternate Technical Specification LCO (Attachment B). This LCO'is consistent with the LCO that provides for the drywell and suppression chamber atmosphere inerting (Reference Technical Specification 3.6.6.2) and will allow compliance capability. | |||
AUTHOR: FOR SIGNATURE OF: | |||
SECTION FOR APPROVAL OF ' d APPROVED /P DATE | |||
A. Schwencer Page Two December 8, 1983 QUALIFICATION AND OPERATION OF WNP-2 CONTAINMENT VENT 8 PURGE VALVES The Supply System is aware of NRC concerns which resulted from the staff's review of references c and d. These concerns have been discussed with the Equipment gualification Branch and their consultant. The result of these discussions is the Supply Systems commitment to limit the valve opening angle to a point that provides a maximum air velocity equal to or below a Mach number of .3. This corresponds to a maximum valve opening of no more than 70 degrees (with full open equal to 90 degrees). | |||
Appropriate valve limiting devices will be installed prior to exceeding 5'A power. A revised package detailing the field modification to limit valve opening and demonstrate that the information provided in references c and d is appropriate with this valve opening limit will be provided by December 16, 1983. | |||
Based on the Supply System commitment to limit valve opening, it is understood that the LCO which now requires that they be 1'ocked sealed closed may be relaxed. Provided in Attachm nt B is the Supply System recomnendation to a revised LCO that would allow Safe Operation of WNP-2 with the subject valves appropriately modified. | |||
The Supply System's planned December 16 submittal will provide the appropriate data to address the concerns now in place. Should you have any further questions, please contact Mr. P. L. Powell, Manager, WNP-2 Licensing. | |||
Very truly yours, G. C. Sorensen, Manager | |||
-Regulatory Programs JER/tmh | |||
,. Attachments-4 cc: R Auluck - -NRC WS Chin - BPA AD Toth - NRC Site R Wright - NRC D Hoffman - NRC F Eltawila - NRC | |||
ATTACHMENT A CC Cu.rri.OV CGNTA<.'i.'.<chT SYST=MS "hh ~y. | |||
s"fiU~Jf'r PPg'ir.'f!j ~a~.I DRYWELL ">O SU'7PRE":: ./ CHi4~/BE& 7"RGE LIHITIHQ CONDITION FOR OPERATION 3.6.1.8 The drywell and suppression chamber 2-inch purge supply and"exnaus:"---- | |||
isolaticn valves shai'. be OPERABLE and: | |||
: a. Each 24- and 30-inch purge supply and exhaust isola icn valve snail be sealed closed. | |||
Each 2-inch purge valve may be open for ourge sys em coerat.on for inerting, deirer ing zna pressure con rol. | |||
APPLICABILITY: OPERATIONAL CCNOITICHS 1, 2, and 3. | |||
ACTION: | |||
: a. With a 24- and/or 30-inch dr~e11 and suppression chamber purge supply and/or exhaust isolation valve(s) open or not seaIed closed, close and/or seal the 24- and 30-inch valve(s) or otherwise isolate tPe penetration within 4 hcurs or be in at leas HOT SHIJTOQ'i'd% within the next 12 hours and in COLO SHUTOBr'H within the fol cw ng 24 ho rs. | |||
With a 2-inch drywell and suppression chamber purge suppTy and/or exhaust isolation valve(s) inoperable or open or other than inerting, aeinerting, or pressure control, close the open 2-inch valve(s) or otherwise '.solz-e the penetration(s) within 4 hours or be in a least HOT SHUTDOWN 'wi Din the nex. ~D hours and in COLD SHUTDO'~H wi nin the following 24 hours. | |||
: c. Nth a drywe11 and suppr ss',on chamber purge supply and/or exhaus isolation valve(s) wi h resilient material seals having a measured leakage rate exceedir g the iimit of Surveillance Requirements 4.6.1.8.3 and/or 4.6.1.&.4, restore +he inoperable valve(s) to OP&ABLE status within 24. hours or be in at least HOT SHROOM within. Ne next 12 hours and in COLO SHUTDOlA wi Din the .ollcwing 24 hours. | |||
t SURVEILLANCE RE UIR~EHTS 4.6.1.8.1 Each 24- and 30-inch drywell and suppression chamber purge supply and exhaust isolation valve shall be veri ied m be sealed closed at least once per 31 days. | |||
4.6.1.8.2 At leas. "nce per 6 months on z STAGGEREO TEST BASIS each sealed closea 2~- and 30-incn dwell and suppression chamber purge supply anc exhaust isolation valve with r silient mater '.al seals shall be demonstrated OPERABI ~ | |||
by veri ying .hat the measured leakaoe ram is less than or equal w 0.05 L when pressurized to P . | |||
'rlASH !ia<i"N NUC~+R - IJNIT 2 ~/4 6" ' | |||
C NTAINMEHT SYSTBtS JRVEIL&NCE REQUIRED".EHTS Continued) 4.6.1.8.3 At least once per 92 days each 2"inch ~r..~el'--ana s'-ppv ssion chanber purge su"ply and -exhaust iso'a ion valve witn resilien- m .er al s al shall be demonstrated GPERABI c by ver.'fying tha- -he "easured leax ge rate is less han or eaual to 0.01 La linen pressuri ed to P . | |||
.~ | |||
'7=,. Vyl+ ~- ~8 "k ~ | |||
~'ASHINGTON NUCLEAR " UNIT 2 3/4 6-32 | |||
'l ~ ~ | |||
ATTACHMENT B "DRAFT LCO" CONTAINMENT SYSTEMS DRYWELL AND SUPPRESSION CHAMBER PURGE SYSTEM LIMITING CONDITION FOR OPERATION | |||
~~ | |||
3.6.1.8 The drywell and suppression chamber 2-inch exhaust isolation valves shall be OPERABLE and: | |||
: a. Each 24- and 30-inch purge supply and exhaust isolation valve shall be closed dyring the time period: | |||
~ > | |||
l. | |||
g ~~ | |||
Within 24 hours after THERMAL POWER is greater than 15> | |||
of RATED THERMAL POWER, following startup, to. | |||
: 2. Within 24 hours. prior to reducing THERMAL POWER to less than 15% of RATED THERMAL POWER, preliminary to a scheduled reactor shutdown. | |||
: b. Each 2-inch purge valve may be open for purge system operation for inerting, deinerting and pressure, control; | |||
: c. Each 24- and 30-inch purge supply and exhaust isolation valve shall be limited.to open no more. than 70 degrees. | |||
APPLICABILITY:,OPERATIONAL;CONDITIONS,l,2, and 3. | |||
ACTION: | |||
: a. With a 24- and/or 30-inch drywell and suppression chamber purge supply and/or exhaust islation valve(s) not closed, close and/or '. | |||
seal the 24- and 30-inch valve(s) or otherwise isolate the pene-tration within 4 hours or be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours-except as provided for in '3.6.1.8.a; C~ | |||
: b. With a'2-inch -drywell and suppression chamber exhaust isolation | |||
,. valve inoperable or. open. for .other than inerting, deinerting, or'pressure control,"'close the open 2-inch valve(s) or otherwise isolate the penetrati'on(s) within 4 hours or be in at least HOT- | |||
, .SHUTDOWN within the next 12.hours and in COLD SHUTDOWN within the fo11owing 24 hours. | |||
4 C~ With a drywell and suppression chamber purge supply and/or exhaust | |||
~ | |||
FO o ~ | |||
'solation valve(s) with resilient material seals having a measured leakage rate exceeding the limit of Surveillance Requirements 4.5.1.8.2, restore the inoperable valve(s) to OPERABLE status within 24 hours or be in at least HOT SHUTDOWN within the next l2 hours and in COLD SHUTDOWN within the following.24 hours. | |||
WASHINGTON NUCLEAR - UNIT 2 3/4 6-11 | |||
CONTAINMENT SYSTEMS SURYEIl LANCE RE UIREMENTS 4.6.1.8.1 Each 24- and 30-inch drywell and suppresion chamber purge supply and exhaust isolation valve shall be verified to be closed at least once per 3l days.~ | |||
4.6.1.8.2 At least once per 92 days each group shown below of drywell and suppression chamber purge supply and exhaust isolation valve with resilient material seals shall be demonstrated OPERABLE by verifying that the measured leakage rate is less than or equal to .05 L when pressurized to P . | |||
Valve Grou Maximum Leaka e Rate | |||
: a. CEP-V-1A and 1B .05 L | |||
* CEP-Y-2A and 2B | |||
: b. CEP-Y-3A and 3B .05 L | |||
* CEP-Y-4A and 4B a | |||
: c. CSP-V-I .05 L " | |||
CSP-Y-2 | |||
: d. CSP-V-3 .05 L + | |||
CSP-V-4 4.6.1.8.3 Each 24- and 30-inch purge supply and exhaust isolation valve 70 degree ope'n limiting device shall be functionally tested at least once every-18 months. | |||
t. | |||
* These valves are tested in parallel with the maximum leakage allowed for a single valve applied to the group. | |||
Valve operation as provided for in 3.6.l.8.a shall be under administrative control only. | |||
4A r7ASIG'iGTON PUBIC PO4 ER SUPPLY SYS'I 'd lit g)I' t 7 T~ ~ ~1+5 ( | |||
~ | |||
'~P ~ | |||
/ID 361104 fONEHT HO, CSP-V-l CSP-V-2 CEP-V-lA, CEP-V-2A COMPONENT DESCRIPTIOXi 30" Cylinder Operated Butterfly Valves t | |||
BIF MODEL NO1 A-206763 MANUFACTURER EGUIPMEHT CLA~SIFIC*TION1 Q ACTIVE UPAS IVF. | |||
SEISMIC QUALIFICATIONREPORT REFERENCE1 | |||
: 1. Ci na Ener v Services Re ort No. 0 .01.F "30" Cvlinder 0 crated Butterfl Valves", | |||
Rev. 2 dated 6/15/83. | |||
: 2. 'WPPSS Su lemental'alculations, EO-02-83-11 "Final As-built Review of Pur e and Vent Valves (BIF)" | |||
EN V I RON M KNTALClUALIFI CATION REPORT REFEREN CKz Certificate of qualification is. for seismic/hydrodynamic and postulated LOCA conditions. | |||
THE ABOVE SEISMIC AND ENVIRONMENTALQUALIFICATIOHREPORTS HAVE BEEN REEVALUATED IN ACCORDANCE WITH TNE CURRENT HRC SEIS'MIC AND ENVIRONMENTALCRITERIA1 | |||
-~l I EEE STANDARDS S44 (I S7S). | |||
USNRC REGULATORY GUIDES l>Z, 7.100 STANDARD REVIEW PLA 5DNt S lOt ell 4 NURKG<SSS THE ABOVE COMPONENT HAS BEEN FOUHD ACCEPTABLE FOR PERFORMING ITS INTENDED SAFETY RELATED FUNCTION WH- H SUK 'EC i ED TO THE PLANT SPECIFIC-VjBRATORY AND ENVIRON)4ENTAL LOADS, Hark Scott 12/14/83 REVIEWED BY | |||
* 12/14/83 Dennis Armstrong c"T'2/14/83 | |||
~0 I ~jf ~~ ~ | |||
KASHL4GTON PUBLIC FO>> r R SUPI LY ST PiI:QC:(LIr lC.'. I i0 C".'. TJHC .:: | |||
C: D 361106 CSP-V-3 CSP-V-4 CSP-V-5 t CSP-V-6, CSP-V-9, CEP-V-3A, GEP-V-4A COMPONENT Hot COMPONENT DESCRIFTIONt 24" Cylinder Operated Butterfly Valves | |||
)(DDEL NO, A-206765 I.IANUFACTURER'QUIPMENT CLASSIFICATIONt Q ACTIVC Q tASSIVC SEISMIC QtfALIFICATIbNREPORT RKFKRENCdt | |||
: 1. C na Ener Services Re ort No. OT;01".F, "24" Cylinder Operated"Butterf3P'a3wes",- | |||
Rev. 4, dated 11/'ll/83. | |||
: 2. MPPSS Supplemental Calculations EQ-02-83-11, "Final As-built Revie" of Purge and Vent Valves (BIF)" | |||
ENVIRONMENTALQUALIFICATIONREPORT REFKRENCKt ated LOCA-THE ABOVE SEISMIC AHD ENVIRONMENTALQUALIFICATIONREPORTS HAVE BEEN REEVALUATED IN ACCORDANCE WITH THE CURRENT NRC SEISMIC AND ENVIRONMENTAl CRITERIAt | |||
~1. IEEE STANDARDS 544 (ISTS) | |||
~Z. USNRC REGULATORY GUIDES 1A2, 1 100 S. STANDARD REVIEW PLAN SD>, S.la S.11 4 NUREGASSS THE ABOVE COMPONENT HAS BEEN FOUND ACCEPTABLE FOR PERFORMING ITS INTENDED SAFETY RELATED FUhCTION | |||
'HEN SUBJECTED TO THE PLANT SPECI F IC VIBRATORYAHD ENVIRONMENTAL LOADS PREPARED BY Mark Scott X~rf | |||
*" i2(i~ist | |||
'I I | |||
REVIEWED BY Milon Mever p r, i 12/14/83 Af'PROVED BY Dennis Armstrong I 12/14/83 | |||
WASHINGTON PUBLIC POWER SUPPLY SYSTEM CALCULATIONCOVER SIIEET SHEET OF PROJECT DISCIPLINE CALC. NO. | |||
CONTRACT MCOI W~Y'3dA.L.>miC.AmO< EQ-oz-a3-t I SPECIFICATION QUALITYCLASS STEM NO 2&o8 -8 EQ IP E P EC CKP ~ C5'P CBP-'V-/A,ZA)>~)~) +&V'- I- I) 2) 3,4)%,6)QI SUB C CO<i~) 0 V5KhJ II P E<W R~ I zvv P <w Su&nAmw p Fi Aa~ ASm OIL.~ LO+X 'RWI tM ACTION REQUIRED | |||
@SAR CHA~GE Q SPEC. CHANGE @OTHER tIDENTIFY BELOW) | |||
-e ~ mam k)R'c. m adI~. | |||
.M~V R)cc 4=. UBMl AM~ | |||
ATTACHMENTS | |||
@COMPUTER PRINTOUT CIVERIFICATION HE KLIST O HER N VERIFICATION NO REASON APPROV EDIDATE REQUIREMENT TYPE OF CALCULATION REMARKS UPERSEDES 0 PRELIMINARY SUPERSEDED BY g FINAL REV. NO. RFVISION DESCRIPTION CALCULATIONBY DATE CHECKED DATE APPROVED D TE Hlzlc (M~ | |||
WP SOS R4 | |||
0 Calculation Sheet Project Prepared By: Date Subject Checked By: Date gr~ ) ~-Ib-g System File No. | |||
Wa-r3 1 | |||
~-ow-a-Analysis No. | |||
-I l Rev. No. Sheet No. | |||
// yt Q4;LC BLAT-l~S 8tp 730TrERa( Y V~deK l Mm or- Ccc~~s | |||
~~i ES f P Zmz~~s At Lou3P'B~ K~KSGE'~ | |||
ptO 1005.00 | |||
l Calculation Sheet | |||
/ | |||
Project Date (a | |||
a- 4~P T7dd~ixz~c Checked By: | |||
JQ ) g Date I + | |||
Syste Job No. File No. | |||
otic ~ l/ceufs" Analysis No. Rev. No. Sheet No. | |||
-n>-a~ -Il | |||
~He Co~~<4M~~ U~w pc~ Pdgrm | |||
/ | |||
5MQa | |||
~a~oR~ (Z~ l 7) | |||
~l ~~ Pc)K'~i+ | |||
GOAL < i~oATlo4 ) p Co~7 L I~CE | |||
~~ ~ w~( wM~~, d~T TC cRQ~F AHm ~O ~ 04s Ag~&4 gP t d~. ~QG ~"rjaaS~ ~L<dt.A~DWZ u3~w &~ Rvlc=-u 8-nJ'to Ncaa tw(~ tA -H4w ~L.~u3jw P WP 4 Y'g tS | |||
~At OA~ | |||
~I | |||
-5owc-L REMA< ~KSS CoWSGZUATl5fA W(PAt ~ BQ(L-i ~A~lpJr'CCEL~- | |||
AmnAs. ~he'u~~/44 awe%~ u)i ~ ~-W t oIQWAR~ W tM ~E REQQLRE~ gRC At-Mu3At50, C+GQC.L'cP5 l od | |||
~~ | |||
~ULwlWc> | |||
kt> | |||
~~S~ | |||
~.g.~dEs Pros Xod~ | |||
Dl5E | |||
~ ~~~ 4/ALVB TR~ A~MW&~ ~E ~ ~B~ ~it ~d~~ | |||
~Un lmarJS. ~pe- K~Qt ~rJ4 ~Zc Ga~ YOU~ | |||
LOC.A. ~w j O'Dd c~ | |||
~was AL t CAS~ SWz.S Cod'D (~o<5 AS i&'po'SKAG, Eg | |||
~e ~a Qog.Mr ME'J+C L | |||
~w! | |||
Calculation Sheet | |||
' project td)QP-Z | |||
\ | |||
""I Ii /sr Subject t | |||
'6~i.a-- ~-r.JI ~~~Q~Cent3-Checked By: | |||
~,~ "" ~-)s-~ | |||
) | |||
Syst m I j Job No. File No, | |||
'jSoLmma3 '4aM~ C,Fp~ CSp Analysis No. Rev. No. Sheet No. | |||
QQ 7 -9. -I( 0 rI Ki~~. LM)4 ~ AAzo ~~Mt+. ~WE. C'RtS, t-Y t I WFR 'P'M AN~ "BQTTPK- | |||
'P4"( V A,i-ttS Are M MS I) 5 f R, EfF | |||
~-v+-7 ) | |||
WW4e~ap A~&W r !~~S,.) (~C., | |||
rl PY<A~t.C ~DR.a Jr.- CAI C QL-amber ~P | |||
~l | |||
<<V af JC, t-I-'f fYf-~WC | |||
~~ -Z 72-3W K,DI a. | |||
~ fbi F P(2 -Z 7235,WM~>eA P8 I- Il WSOI Va~ ~+V rC Ma P<<~~ON<<'fJy~ff, PBZPOA~)F I r AV704 a7= M II CY'D(4~ ~;; ~ | |||
,I r,. I rf ' | |||
. GRAN>"-A~a 130'T..rl~R Y,. fJ~ | |||
t~ T=sR, C5P-'fI-3I4I5,Co ~'q ~IJr r EF-'V-3I-t 4Af ~ | |||
~7",o(,F, 4I+ <pc /IQQ ) | |||
<<c<+ | |||
FQeV-C'r 5~WV IC E:-S'. | |||
%)WA~ A~a >it w Ace.~~W~od'S iaIJ H.G OP'F I ~W E~ 7 | |||
~j F l EST'~t-T ~V IJ~tC (,Oa4dci LOSS ~~ ~G nW MaW l~ | |||
vw= %~=re'Psc | |||
~~L,)IJZ 6 | |||
~gc9evzsusW>~tc~~ . | |||
Wc''ft-~~~ S -ZII-BZ klo. f ~ octo-+3 AY~'DYIJIIMIC hA'0 ~mt | |||
~rf~w OSS %68T cd 12'- )5o~ EmM.ec t'A~Qt=-. u) vH Dt z~ett=r 6 DrJV~~ HWPl- PHD) LK ELF~bA &S~~. | |||
r 1000 00 | |||
Calculation Sheet project Prepared By: | |||
~ / Date k- vdwmo~ ~6~ M Subject Checked By: ~,'~ Date | |||
)a-js-tz System Jo No. File No. | |||
n o )6M%> c csV Analysis No. | |||
e'e ~z mr-< f Rev. No. Sheet No. | |||
a I/ | |||
',,Aw<c a ~6 ~sMm M~rsQ ~l= | |||
LY 4 Op | |||
~W ~GPSS q %~1K ) | |||
W lP oc Y ~MR'=74 7 W~p'p/~~M 4 ~o ~ iver~, lac.. | |||
r l K3J iP'I-(~~i GELshL (c ~6 t410I2010'c<~ic | |||
~~(3~ lt t~~j")~ ~T QO ~Y t thJUN~ | |||
~~ opreRo ~Qqtalc~v'6~85 C.>P-M- l .',z W> CPP-V'- I A ~ zA | |||
'Fa m W~r DS,C(.F, Q lg BC / l04,C<sa~ | |||
r | |||
+QE5KC Y Q~dl~~. 1t 1 | |||
4 t | |||
1000.00 | |||
Z/F Zu7TERFL Y Co~rA ~R'6.E /g~ VAc >J~S C | |||
CJ 0 LOCK FLow 7ot-c,u~ + ate' CCI C | |||
CO 0 0 VA,LVE SE ATlhlb Vo<GQE'= 4- DOE CAt C'0 CAtC D mPmS P g~OVJABl E 5TRESS FAVL Tt:-'P 5TR.~S FAVL.-r EP | |||
,4W MgC'l T tt=~~t+ 4~ | |||
VP Lve/Ore~ | |||
COMT-~ ~~T' S | |||
./ | ~ rBdst | ||
~ SHE'fCtC; | |||
.9&'Fv Pea,Cd O'P | |||
,9T=v | |||
,&Fv gyr g cSQQP+, | |||
C | ~ | ||
cCI | |||
+ 5'Pl'AkteC oF OF C C t 6 | |||
B~DzWQc Sm ShFEP( Qc-.f5+PQZtfl g( g~ l 5 | |||
TRU)40lal 1 Min4g 4I04 S'2 000 /OOOO .4 4 4IO4 IZOOO 2.9 ) 8OOO +d. | |||
~A~Exo 7(gs 98oo I.Z /3950 /,7 9Ãoo /.7 I 595O Z.5 C I Z 0 | |||
~lYa LP~ ~ooo 2 p7 shoo 40 &5 (9 zWOo >oooo g 7 MAtt4 SHAFT'7' 5 OOO geom 'l.t'28' 15 g7OOO Z.g DRwG Ron '35Z3O 3:&ooD Wgooo 32907 ~gooO ] t | |||
(~(oeCs) ) W35'2 M O EAw 50Ds Z78ce 27370 nW(v) 74-3 | |||
/.t'4900 | |||
/C t gZ T'C Z | |||
0 QIP a CCC Lp.~ M~AY ) (9&Z I(oooo z. t va)4 OdO 2.0 z4ooo s, / | |||
tD C | |||
0 | |||
+Hppw& Weoo 9 &37 | |||
/8Ex'.7 (Q QOO Cc n | |||
VAt va'~<pao /oem'8DDO /O~ (8 QGG CCC Z | |||
0 0 | |||
CCC CCC M | |||
C t | |||
C ~ | |||
5 A>5C BotT ~ 5)M A~ay,ELK ~5'-I.9'44~sz ~@ P zZc | |||
<<<<h ~ h.C Ctah<<t.tCCth<<<<h, .~CC~ht~Ch' Ct) D t5tF WJTT~FL C CorJ~It IM~~~i PORC" E'CI <~m 't/P ggt-- C 0'tt 0 | |||
VALVE SEAT'Id& 'TOWauS W EVE'OCK STOIC~S FLow<orc:ewe ~ weE'0 0 0 CALC'D It LOggg CAI C' e-TRESS ALt OVVABt E S YEAS WORNI>XL F'AVLTD FAN.TED VALvE/C7rc~tca 5 | |||
~ '- bhaa.td OF Ice RCtd T'Q4StQ S ~Spy% | |||
Nl>N<< t<<I hk CCC'I 0 | |||
'l sDF CO%7 ORAT' g~PCChtg OF'FCM | |||
'B~ BEAR t ttC CDF'hee~ | |||
~ | |||
~~Y gtC.F'iZUQACOA 6 | |||
Mt&S Z I'95 IZ<DO /Goods ~.z Z.I55 I ZOoO /9 ooo 8. z l C . | |||
~A~BW TIROS a44S e roO 7D39 C | |||
/59%O 9POO I. S IQ )QO 2'.O Z | |||
0 | |||
~IYK'RVHc' I I O'9Z Wi>~ z. z 3t OCO s.z g4ODO z.c '3c oem s.9 MAtH 5HAFl 205Z7 /8OQO .e8 2.7OOO ( 90oo g '7ooQ ).9 Delve Acro >a84~ gt'hio Jock. 3z S&o > &.ping +4ocG /.7 | |||
~ ~ | |||
e3C 8(S) 8003(5 EDm Boas see<(4 .9/~M 4I ggi8 (~) <oem'.( Cit 0 | |||
Z st. | |||
0 LEvER. WKLY 9504 CD | |||
/ ooo (et 1.7 24ocG z,6 /&ooo g g 74OOD B. 0 CD SHrom 4 WaZ IZS'e7 /Bo~ (2~7 /aooo cC- | |||
% EPR VALE I $ 277 /gdZ3 /9277 /oooo /,C4 Z | |||
0 0 0 C | |||
Calculation Sheet Prepared By: Date U3p~>- I z J>3/9 > | |||
Subject Checked By: Date A.~AMDT ~Q<GOE: ~~,~ ~~ ~ | |||
l Job No. File No. | |||
l e) mme kt /-t dim ~'P czP Syste~ / | |||
Ua U~t tJ <Amer~ | |||
Analysis No. Rev. No. Sheet No. | |||
ea -oz-83-ft R AR u oa>R>R S Q~aaiaL. ,Sm~~S~s COW~N~%'S MAXt '.Su .4s .gS | |||
~~At-tto0 R$ 4$ 'A-27$ 75000 /zpoa ( 8 ooo g7 QOQ | |||
(>'!4-27(o, 350 Pic% 2:j,) 8)7/0 lN<~ lg&OZ (CilZ-g C+) | |||
~ | ~~-~) (ay,g>>~O) (@7 QOQ) (p zoo) (gogzs) | ||
(:c 27'k k"~>> Qo)os go,os (4, Goo zgooo g t>> OOO Q4ttQ SAAW-~ So+79 :g O> cy-)O tzcee (g ohio> Z7~O R.T (gy,'~so) (r'~~ ) (~3~) (/gsso) (z~z~) g zoo'F | |||
: 90) 0oa 1 | |||
(/ OR~ 3t>>ooo Qpooo &lOao lt I | |||
A,-Ng g/ OOO /og i | |||
ooo 5'Rfdo 48mo 72900 A= +Q) O~ 4 OpO /0.ooO oooo QQOOO i ,B Fv Wiles~~ Nlu.C 6'"C ox>c Qg Ooo /oooo i/<~~~ Z~.MB~ &OOOa >>'$ OOO | |||
:OJ'Of<<Eo<<CCIO+j | :OJ'Of<<Eo<<CCIO+j | ||
+ | +I CI l | ||
'9 4 | |||
h 0 \~ Ott M' | |||
I 'At 1!I Itff rZ HH Ff "-'..H IHI:":-!!iPiHH | |||
~ tt HH iPII HP: jm!I hjj Vtt Wtt \ <<44 ti<< | |||
~>>4 | tt ~ 444~ I ffft ttff 8 HPt jtw!IH AP 8 Vd 00 | ||
~ ~ | |||
1 | |||
~ rC W4 4+ | |||
~ 44 | |||
~W | |||
+04 14 | |||
~1 ~ | |||
0~ \ | |||
~ ~ WW tt4 fg $ | |||
!f ~ I ft | |||
!Bf ~ 4>> Ki HP '.Q H! !Pi, HH HB mj B "B. | |||
~ | |||
<'B I fl tto !It! p+i tI4 ASS 4+ Nf I I PH jiff ! !IP V 010 Q <<t 0<< | |||
V+P ttt ipj Vtf. | |||
Wt ~ \t4 Hif A.'- .A'~Tl 't4 H'TO Q CLQs @dan A ~ Wt | |||
:Vy. + | |||
\ Sit ~ 04 | |||
!B>> | |||
'I mj tt I>> R 041 ~ | |||
~ | |||
g'ji.""di'fil'-.-SI+fg Hft isH Iff Bi H." | |||
I | |||
~ | |||
~ 4 | |||
~ | |||
~0 .- ?Td + I ~ !IIH ~ I?! I BH tl t ~ " '="ii f:."i!jr'.". 44 | |||
~4 4 4 W! ifB jm HH I <<4 !sjj Ph RPSH 44 it<< I'->> ~ ~ | |||
4 1<< + f 0+I I ~ ~ ~ OS '11 C :;!: ?ji'4V | |||
+14 4 | |||
Bi! !It! HH f4-41 ~ i <<I | |||
~ ~ | |||
~ HH SV+i | |||
'ij f25 ,*"I;>>J-11 PH HH '!iP !IH $1 tt !P! !IH Hi<<! jm jjij IPI P!I sf IIII I $ $$ . | |||
01!0 ',ALWV .'SE'V !t<< hH jm IN !Pj I 4- ~- | |||
,4 IJ> Hf< | |||
Of Pt B" i!H I | |||
S$ 0B tf."", | |||
6":i itt O", t | |||
~ | |||
~ ~~ ~ | |||
4~ | |||
~ ~ I Ir-'I ~4 1 | |||
~ | |||
fito tfri i:";. Ii~ 41 HH 4 0400 Hsj! | |||
~lo ~ | |||
H!I j!H | |||
~ 4 I~ | |||
!IH iii! | |||
tf If<< | |||
!:.t t.ff fhjj jjit !I!! I';Ij l'1 i!if ~ II | |||
~ ~ | |||
'" ~ | |||
iitj il | |||
! i!H .DU, 9 t'".Q, O,RQUE- t)tsc. hff+ ltio 1 tiff i;L'Pf.;. W+ | |||
ISW Jt<<~ ~ | |||
V.l 8,-;FL OW (Sl .Ti l4b 2%234) Q t:B t'.;t i!Bit z: | |||
ftf'p 4 .. io t I i 4 | |||
: 4<<t t tt tttti trio 1 ~ 44t Itt ~W Hh jm p!I tm jfgo IV+I roti ~ t4 ~ | |||
OS! fttt It'>>I. 0$ | |||
'wt ssv ' $ 11 | |||
?Bf 14!Hvi ihi Im | |||
~ >> 4 | |||
@t <<tf -f???Sf . Itro wis f $$ f St!4 I~ $ 4 4 I + | |||
I << :!i~*?!HP.!N | |||
~ | |||
W gt | |||
~ Qt ~ ~ | |||
toff Iz! Vf HS W ~ fii ~~ | |||
4 | |||
+' +t ijH HH h; ffjf!::0 BH !jfjjffB 0 4t 4+ I+ ~ . | |||
twt Ctt >>44 | |||
*t4~ !% jt<< t~ | |||
f- . '~s IZi BH!I HP. f~ I I'I OtfI Hh | |||
~ | |||
44t | |||
~ | |||
' ~ Pj! ~ Jf 411 f 041 ~ ftt ff+ | |||
i ~.'if} m! I!!? jh? Hjj N $ | |||
FLOIAt~l DtJQ Ebfj,QR 0 H1HO R I A E iB 0 | |||
~ If Boff K~ !9 I ! HB | |||
+ | |||
~ >>1 ~ ~ 14 | |||
~ ~ | |||
~4 !IB ?HB t | |||
~ I HH!f ii '. Ip. !A 4tt Sf 8Ll: 'l mi KI I::ZiPIH V-;.'f!j tiH i ~~ ?HS! | |||
~ | |||
OIL f ~ ~4 !!H o !Hj "SB | |||
~ ~ | |||
~4 ~ | |||
Sit: 04 'P ~ 1>>4 (6 | |||
litt!If!i1ttt PH!",;-I I !Isf fit f,i'ttt :'lj'imi | |||
't 4~ | |||
LOSERS uf Si gti tot I | |||
tWO \ + | |||
f I+P | |||
$1 | |||
~4 44 Bw ti ttwtti p=t}B HH!fHf! I HH | |||
~IS rfif Srtf ~ ~ | |||
?HI H jbt Hh I~ | |||
~ << | |||
~4 | |||
~>> | |||
~ | |||
I 4>>>>~ ~ ~ | |||
WI 4 4 44 I to W~ | |||
N I!HI?%III~I | |||
+ 4 4 I>> | |||
~ IIr | |||
~ | |||
ft'I ~ I+i HHH IHH HH Ij !HI | |||
~W <<W ~ tt t>> ~ 44 | |||
-':.!'XP f | |||
+4 i ff trot it!i PoB ~ t 4 tttf Vw<< | |||
444 otto mj HH CHh Hj!4 HH !B! ht Pf H HP, | |||
~ | |||
\ | |||
h' Ottt gt ttt | |||
~4 ~ +4 ~ I>> ~ 4>> 0&IV Sf ttt 4 Bpt r'"..~:As'H tW SVO It>> | |||
Vi I IIjI? | |||
? | |||
l QJ <<pt ~ | |||
fff DlSC ?Hs t tOt+ | |||
t+ | |||
~+ | |||
IB hit | |||
~ | |||
BtH ?8 hB ~~~4 tt | |||
~+ | |||
~ 4$ | |||
tw | |||
~ 44 toit 4+ | |||
~ | |||
OowK5~< F 0 t+B | |||
'H Ht 1.H tt It ~ | |||
SBI v=-!IH i!H jm mj jm HP fm jm jm jjH HH HH HH 14 <<t+ | |||
pti Hf (Ptf:E'~K~) 1 tf g.A mj | |||
>>tt PO>> tw | |||
~~ .~ Ptt PH t?tt | |||
~ | |||
>>44 | |||
~ 44 N'011 T:5 ~ ~ | |||
fjif !Hi!I 8 ih! | |||
11 ~0 HH I*. p!i HP;!IH P.S I'' 'Vi O>>4 OI ~4 | |||
~tt ~ | |||
+ | |||
trio 14 4 w tfBt to%0 ffN VVO g | |||
~ tt f 'ti..tt! <<B ?H' pj | |||
'B II | |||
;:H HH FH t4<<+ 414 ffgf Pi Ptt IPj PP LH | |||
' PtH i?BS tt | |||
+4 PLSC fHiHi | |||
~4 tt Wtt Wtt ~ tit 0 P'KTRchH | |||
~ | |||
~ Vt | |||
~ Wi it to | |||
~ ~~ iiHi HH hH fto I ~ | |||
I?H NNN!Hj jj?3 Ptff Hj! Hjj i!B fB tot! tioit ,'?B Ht! IH Ht .N . | |||
110 ttH !IH Itt'H >> | |||
mf jtfj ptt' ~ | |||
wrt | |||
+ | |||
ttt | |||
~ | |||
'j'i Iq7 i!H I!H ijh | |||
t r | |||
JPJPIOJJ4 4 I 2.188 | |||
>> t t~ t ekh ~ 4 W>> ~t | |||
=HH | |||
~ | |||
rf | |||
~ | |||
!LE'44 SS<<4 Ht IB!4 | |||
~ PB CP,< gk~Z-83 -ll CAB 44 P~AC O''-5 | |||
+4 HB CQO I "0 0+9 S. SV MPBQ ssgt Vef I+If "@~8"psT P$ VQG>>RBTUR !j IB Hg t>>4 | |||
<<tt tet Wt\ ~ t tfBf1 tit I ti<< | |||
SfP4 | |||
~ 44 ~ +4>> I Jt>> | |||
44+ Hif 41 4 | |||
>> >>t4 I I | |||
~W | |||
+~~ | |||
BB | |||
~ | |||
-'= PB 44 | |||
~ | |||
1~ | |||
~~ | |||
W 4 et!1 Bsj !HE 4>>t 4tit f!P jjw 1 | |||
ti ~ jj>>j=j ss>> | |||
tB,PI t 411 | |||
~. | |||
wt | |||
'VALY Sz X ~Z~i O.E | |||
'j '78OOS jg LI5t%- | |||
iB R Sot HH IBE ~~ 'B est 44>> | |||
PI IB! MM tt+ fm@ Q !L f PB jm | |||
~ | |||
~ | |||
PW ttt4 | |||
~4 jji " | |||
I ~4 S. | |||
L,.g ri ~ 11 SS<< ~ | |||
-'B gt," TI.O.R j Q;, f HH | |||
<<~4 44>> | |||
,dDNg((B$ Ht TARRY?$+ =7. | |||
~ | |||
'tff CCC JISM | |||
<<4 Itt t>> | |||
>>44 WW ~+ It Stre 4>>4 44 ~ 4th | |||
+ W k I'.I p=j~ ~gp~r !P ff ~ | |||
+tet B ij>> IB Hto ~t | |||
<<4 Sfrt p i ~ >>4 444t 4 ~ ~ | |||
+ 44 H | |||
~ | |||
I+ re | |||
'tt<! Z ' | |||
~ | |||
+ t | |||
~ IIP | |||
.~t~ -. 'g ~ 4 jdj pi | |||
~ Ht4 | |||
~ | |||
1 t+t+ | |||
WW tt 4 | |||
Jq | |||
~ | |||
Wt 4 | |||
>>4 44 ~ | |||
I WH+ 4 tt I R pji r Ij>> =6'I I 4 | |||
. t" << Nj isrt ijB tt <<4 4 fH t 4 \4 St 44 ~HO ~I rw iB. | |||
~ 11 PI ~ -ikt ~ f 1tr | |||
~ PJ | |||
~4 I 1~ | |||
Wt+ | |||
1 ~tt 0-;, | |||
!HB | |||
-* rj * & 1 Potf '-.':it~ tts >>SS Bi e | |||
+ef | |||
~ Bsf i<<SS<< | |||
~ | |||
J W pB ~+ 4 0 4&4 ~ r toft + | |||
0 ~ | |||
Qtt O ~ t>> ;It | |||
:-2 =-3 + W S>>t ~ | |||
:5 PB. | |||
Ij | |||
~ | |||
Br'ot HH Jht | |||
~4 BB IB! P% Ft E EIB ii) jH! fjB BB | |||
~ +>> jNDUCED, TOE QUE,~ | |||
<<k ~ Pji 4 fSw t>>4 OP SVasal4. ttB Pt jB!.C Pets T.=BRF EiY mj HH | |||
! P jsjH /gal <<HIptg ml SIHilIS BB Il !St! ijH K PfB>> | |||
<< | -2P t ' | ||
SC | |||
., ftHj w | |||
. | jHj > | ||
Sist!I!Stets! tgtt fffISIS jgf H 9 .'c LOS.FDp 0 .St ft>> | |||
jBj,": gj ~ 44 4tef jm HH W << tt i<< | |||
~ | |||
1+ ~ | |||
ttt ft | |||
'~ ~4 ti Sfsi t(B joj '>>B BB !<< 4SC | |||
~ 4<< Sth<<4 .! BP 414 4 h | |||
fftt to<< | |||
4 4 :,= jN it="=H 4>>t Si>> ++f1 Jt i~i | |||
~ ~ ~ 1 wii W ~ >> tent << tt Hji E!BW>> BB 1>> >>g Hti | |||
~ | |||
tl 4<< ~ 4i1>> << 4 tt it4 I..'F; | |||
~I ~ +W +\ | |||
\ tt+ tw <<1 Jti 4~ | |||
j'p | |||
~P ~ ~ | |||
~ \ | |||
~ Wff | |||
~ o<<ff I+tt 4 W>> +>>t Stf trh 1 | |||
'tHt I ~ ~W WI tent ~ .<<. r-\et t j:>> | |||
I H Sffs ~ <<4 ~+ | |||
i!B jH, 5d ETB | |||
~ t44 Btj piro | |||
~ tt | |||
~ t Ht>> ~ JHto +4<<+ 44 t+~ 4%4 mi HH."SH!I | |||
~ | |||
-+tt | |||
+f io tt tt 14 S jj".! R ~ +1 p | |||
11 t4 | |||
~ | |||
WSS 4444 K-W B" jiB Sf Pt Bs jB! BB | |||
~I I 4 aft | |||
~>k!Z 41 ~ r+-i ~ I>> +tB re>>4 | |||
' Povcnf STREAM ~ ~4 4 | |||
'I 1 !'B | |||
"~4 144 Btf A'iH (~~~) | |||
~ | |||
~ 1 P -' | |||
+t | |||
"~ Hjj! I pt I | |||
!HI Bj rj;.iiB P 41 + | |||
f! 14 1 St* ~ +I HH <<I~ Pjj 4 | |||
t~h ISIS hi."1 Sh W | |||
4 ASS | |||
.0ATLGPl O.RQ J>>J test +1 ~ | |||
~ ~ | |||
>>4 t | |||
t jjjs PH I f<<ttt 1 | |||
4414 | |||
~4 H | |||
tt tt4 tt4 'I | |||
.S;:. 4 P~P | |||
~ | |||
;r,, | |||
Wt 68: Ps'f te | |||
~4 ~ ~ | |||
I Hs hB 41 Hj jjH im S. Hjs BB 4 | |||
~4 Wif I I Sttt4 !OPEN- VP;j ~ | |||
Pjij iti! I jjjj 'tt4 | |||
~ | |||
~ I | |||
~ I tref | |||
\~ +~ ~ wI Lfw ceto | |||
~ | |||
te SBE 4+1 1 ~ Si 1>> ~ tt t Hii jiiiPi riff ftd ttB <<tf 4PPPI EBi +IS! ~4 | |||
~ | |||
fi jiftt I" 1\4 Bij I' I tto j'" | |||
ht<< tftt | |||
~ ~ | |||
t~ | |||
Pt ~4 ~ ~ | |||
>>44 !Bt jp jN B~j'i! | |||
+I ~ | |||
Hg PiSC !set HH tti St>> 1! f I t! ~~~ | |||
tsr 4i rip | |||
!!If 'tNI ts!' | |||
i II>>I p H<<~ ~ | |||
..I i!B | |||
~ pj O~V aeANf ~ << | |||
tf +Htf ' | |||
~ttt. ttttH ttH | |||
<<+1 14! | |||
~ | |||
~ H4 | |||
~ eeet ft<<4tt 1144 4 | |||
~ | |||
>>t Htt I1 t4! eeet | |||
~ | |||
414 >>t | |||
~ | |||
B<<jj SB4 ~1 j~ | |||
~4 1 | |||
!H! Hi jLI HB ..j Hij 44<< | |||
~t tt fit I +if! tl fttt i' fttj t41t | |||
~ | |||
~ tp ~ tt4 tt>>t ~>>' | |||
1~ | |||
t<<J ~~ 444 ~ | |||
!.il fBI IBI ~4 fttt tg t ~4 ~ I N! j-j'H Hjj | |||
~ 4 iiB tfft otto its !B Is!i HH gt Btt 10 httlllmeters to the Ccntlmcter | |||
' I | |||
Project | Calculation Sheet Project~ Prepared By: ~ /J . / Date Ja 8 | ||
) Lu.e -C'a~ 4- i SnaS~~ 'f-fB~- | |||
Syste Fife No. | |||
0 asm.~nU VAc.hid CrP ~C P Analysis No. | |||
F=-a - o z-am-I I Rev. No. Sheet No. | |||
earn~ v'c was c~w~uMws mm ~~~~~ +s | |||
~a<cmOP Ou 9( f 4~ ~mAm~~h,~ ~PeQG . | |||
HE'ReS~ W~ c-Ac C.QC A~> 7=&(t-- ~-f A~/Z >O VAC.VCZ W <md ~+fa- ~aL.1 C>&1h.k l c A~ C8~ tV (D(JS. h t as~ C'o<z(v oa,..* / | |||
~-nwc ~oZggZ. W Z5E Long (rJq grl QO | |||
~GA-T7hjci / TQQQ (g.~p g7MO (W-t.e | |||
( oCQOE (r~ ~) h L. OA-'ZO CanJZ (WOW Z | |||
~u3 /A'~c~ loeeJe ~TDBE.~&as J4.. | |||
~t'Z | |||
-(R~ ~~ | |||
rl 1t | |||
~ '......,.....,.. H4-<~ ....r...../I. (A-~, .... NB/76 (d~ | |||
~o r2MS (fZavZ) 2) | |||
~/Vw m~~Uc ~ 'RE OLFE(JL (-8d M'~58 "T&30 L G<m DAsf=-G ~r ME584~Q | |||
% 8 g f EQ 4~ | |||
I (W A QO ~~~ | |||
SuWMABY'1e&L= | |||
~hS7ft ff-~~7 ~7T tl~ A~ CdA a( ~, | |||
t5 f F l5~~~+m~ 'hj~u~ | |||
I( | |||
STRESS C~ M~rtOtds gt | |||
~'nh.ham O4 'P~C. EZhh) hh hh 100B 00 | |||
Calculation Sheet | Calculation Sheet Prepared By: Jn Date PP55 /P. /~~ | ||
~~~ | Subject ( | ||
U M Co Mp~~~ %~~St. | |||
Checked By: | |||
y,~ Date | |||
~ + | |||
System I Job No. File No. | |||
lM ~nW | |||
* Se= CEPeCSP Rev. No. Sheet No. | |||
Analysis No. | |||
8Q. -D2.->S-I I 0 E -I I l | |||
~Y | |||
~ ~AD( ~Mc&c'ccl%"c5~~ ccc&E ~tc'p~cc A~ A~L l~ ~g.<E MOM(I44 43cA ca~(~~. | |||
Ch( t t | |||
ALA-"7M | |||
~~ | |||
~Wibc J. | |||
w~~w~W S~e s=-t. ~c-lWQddtog ~tdS | |||
~tet= | |||
d7 | |||
~~ | |||
Au Bo~ ~%4~~ | |||
Oe -OHW W> RMQ OWt usa~ ~pa | |||
~r | |||
~ | |||
c&L. | |||
h,cc.m | |||
(~~ | |||
~ | |||
mc.~rA=OOAS Fg t=g l3 I HW -7V-PK- PQ~ Lo/t'~ aD j4.4(o R jz.~S z )+ ~~~, Z | |||
. /i | |||
~ = (<.is~ ~.eF; .si=.)~ (-r~~.) | |||
f | |||
\ | |||
gl ~T144 ~etc. Q3b Cg7 gbC/'KO4~C CA~~~>~> | |||
ZO WHC + WterC r(bd Qo,X<<r Ze< W/ PCCr . | |||
~~ 7((urJ+rb&. /~L/~ | |||
DU F~ | |||
Q(IZEC,~7onJ ~ | |||
u)tu W~ oQw ~ ~r/~~ | |||
Ud j(~rzcr M l g~A(E-Z 7 M 77< c, | |||
~m~S'. | |||
cc c c | |||
1 Calculation Sheet Project Prepared By: Date 5 fc /3 Subject COQ ~pdM Checked By: | |||
C | 'iH>> IYie~~. Date l ~-i> -'Q Syst Job No. File No. | ||
. <<-r~>m Isa~& ( | |||
~ | \/~les C'~~~~~ | ||
Analysis No. Rev. No. Sheet No. | |||
~ | ~A ~z. -ar-jj 1:--f Z | ||
~ = u)~ (I/yg ~<~ / = | |||
sqq i /g.n~> =~/oy (r /) | |||
~go/ ~r | |||
/= 27/7 p z | |||
Calculation Sheet | Calculation Sheet | ||
"" A'PSs Subject Syst~ | |||
C V At.V~= | |||
o~~4rM~ | |||
Analysis No. | |||
Qd'P-2 Goiw~w | |||
-oz-Zz - j | |||
/,/ | |||
'~w-v7oU V~V(~ | |||
J Rev. No. | |||
O | |||
~ | ~~~ CSP I | ||
Prepared By: | |||
Checked By: | |||
JobNo. | |||
Sheet No. | |||
K l5 tg/ jwa4 g | |||
'it').~ He., | |||
File No. | |||
Date Date | |||
) / ~/I j ~-) r-u | |||
/ HP 'iv/~<~>M ~o H~ ~UP ~ ~k s~7 iW ca ~ | |||
* M AC-* | |||
~Y~~/C.&xi~ | |||
~A@ o-DC~ WW>Me + | |||
ZO PDr C~ | |||
-RMEA~C~L ~~ ~48 PWtS DE Ms MPI4~ | |||
~u'a~, | |||
I | |||
~ = nooo II. 7r i+7>> FI (zlsr'~s:R | |||
= aye (g.@) | |||
~.sv'070 | |||
/~ N~~~~nJ4 ~~pgg CPg grJ< ~g ~~mMOD | |||
~~+i9F77~ ~W P~. gQ ~F R E"P KAeJsrur S | |||
i Ar . ~ 1 ~ ~ | |||
Calculation Sheet | |||
~ | ~ | ||
~r ~W Prepared By: | |||
~ | Checked By: M t Date 9$ | ||
Subject Date | |||
~i r'll )Oh | |||
~ | |||
I ~Jager ]~ | |||
Sys~to C | |||
(.CPM | |||
<<5~i~WhA~ ISQr 6'Tfd J JA Rev. No. | |||
Ve: < Ct p'c C5p'ife Jpb No. | |||
Sheet No. | |||
No. | |||
Analysis No. | |||
VCh oZ-a5-jl 0 E-l+ | |||
Calculation Sheet | |||
'"""comms Prepared By: Date r w/J Subject U~ Co~~~ ( | |||
Checked By: | |||
'i'le~ lV)eg., Date | |||
)0- l5'-Q | |||
/ No File No. | |||
Syste t n I Vc. 4=m C~~J9b Rev. No. Sheet No. | |||
CSP'nalysis No. | |||
-oz -SZ-( l M -(S | |||
~4 N- CulmCS ~br AV~Ac~ SA/s STAN~~ | |||
LS M~CdWm=-a ~g Wg~ gez ~O J oF | |||
~ | /I'Ri cF @c TIE s4+K Ha~, ~~ ~A'/V~ Lc;V~ | ||
CbJz MH/w u~u'u aA-e7 tw''0 do z /5 /// | |||
~&&77'4 ~~WI&4 ~77K ESZ US'/A/c v~~~ ~~~M<. ~@.~ F~/ | |||
/NlJ.C 3373< i | |||
/ ~ etc-c-BAAe~ z~~rUw 5~c~s YIKE uJQ(cg /5 'OO | |||
~~~ | ~ | ||
~ | |||
- | |||
Calculation Sheet | |||
~~ | ~i s uDBV'-Z ~re Prepared By: I>> Date / | ||
/ A /p> | |||
Subject Checked By: Date R!+ r Md. I g,) ) 2-t>-6 Syg~n Job No. File No. | |||
(ca~ d J ~ J: ~<~ t .~P Analysis No. | |||
pa.-oz. I( | |||
Rev. No. | |||
~~ | O Sheet No, 6'- I 4 | ||
+AS~ &W WOE PA~t ~+~ F~~ lMVtcb Ti~c~8Ã Ol- t l + 9 Z pJ LS-(RC7'= Z) | |||
- | -Pg = 3> (go /I'Fez zU 19B | ||
/ rC)&D l/g~ Z //C vz va14 ~] | |||
/ oooo II k | |||
j- = /./Z5 3 = | |||
z <D Z,<(C/ | |||
/7'>On-e.~1~@( | |||
/44-7 + Z9.7c 83 / q-r | |||
-3. 97( | |||
Calculation Sheet Project | |||
~ Prepared By: ~ / ) ~ Date Checked By: Date Subject | |||
~~PJ'S ~ 77K~ ~ fRJ )on JY/ /$ 4' ~-tz-~p ~ | |||
System I I IJobNo File No. I lamell& t VQ Q=~~ C.gP Sheet No. | |||
Analysis No. | |||
8'C -oz-8S- ll Rev. No t=- l7 I ~ ~blD4 ~~5s ~~ 0 | |||
~~C-~QW~ ~~~t ~+~ Q | |||
~ 0'< | |||
~ PJ P~o 4a kW o> ~~~.~c~ f XY~i u 4 .(I447 + zmD') (4 oo .lo.si 4;"," - | |||
/0 . a/< | |||
~, 776 = '-/'Z&3'7 >a-c.g | |||
;.I.l,~ I / | |||
Pal a=/ b= Ir,= l lzlr a= (.7~ 'X ) | |||
= (4>ol ') | |||
: 5) 7(oZ, Pc= - llzl/ IIz lf 4(l ) 6B 46,5"-Tr z z(l) z | |||
Calculation Sheet Project o3jP-2 Prepared By: | |||
~ ~Q Date J~ /v a~ | |||
Co J JMT +rZr ~~ | |||
Checked By: Date Subject | |||
+, )Q. Io~g System I Job No File No. | |||
c ~ w AA - j~~l.s Ce& c p Analysis No. | |||
a -o -I Rev. No. Sheet No. | |||
E- j8 I ~ ~dc'rr&s, S~ = = B~5'- -/godY tsv~/ - | |||
~~ | |||
viz.<o A~~ WpZsSS Q~~( TY Wc' rznA~ | |||
~~ QG,. Q ~HOW P~~~~~ - | |||
I | |||
/8Qoo Fax' rtd~i~ | |||
, (p5p | |||
~< i&daiam Lo ~ter. ~~ ~MQ~cc=- KVKs&s (g(gc ) = z f<<>~> | |||
I ~LW c~U 25s | |||
~Qg Co&S~<~~ | |||
8 7FAD | |||
~a IrJ~~ | |||
m~ l~~~~~ | |||
~~~at Ae.cRC~~c' E | |||
cga =/AT) w gg q~~ (cw'p 6 3 e ~~ ~~ gc ~-0->) | |||
Calculation Sheet . | |||
project~ Date oJ(W- | |||
/ | |||
Subject VAC 4 ~Cl~~OU~ Q~~( I Checked By: | |||
+ ~ )2-tg-U System Job No. File No. | |||
Go~77oU llew it~ | |||
~ | |||
y~ | |||
Analysis No. Rev. No. Sheet No. | |||
EQ-c2 -Br-j t L "I'9 jATOJ ~CE~~ | |||
~= 9z iu-czar s | |||
(" | |||
L~grJ~ OQ aF- ~q ~ | |||
Calculation Sheet, Project Prepared By: Date | |||
/= | |||
j Checked By: , | |||
Subject Y J m W ~i R77ZEKS I "Ii jo ~ ) Tl gt <> | |||
Date | |||
) ~-)s.-tg Syste ISdc.M~ ~~ | |||
~T(Job No. File No. | |||
Analysis No. | |||
-o 2 l I Rev. No. | |||
o Sheet No. | |||
'-~a DIJ p~~ ~g,f g~ | |||
ts | |||
=WpV.gb g<svs = (829$//5d) | |||
= a~a+ | |||
~~iO<~ ~~AS ~--S 7z = I r ///'/Z /./Z5) 5z26 vsX | |||
: z. w/c / | |||
~.~M~ eJB 4b H ~C, ~ sZ~ 5 M~8F ~/ | |||
/c .4( ~ gg~ 4.'7D ~z | |||
: g. g7G/ | |||
( ~ ~,~a~/ ~~its o~ ~i~; M~7 Is z ~g f//gl "wgo9*j | |||
. /.".oos /o.sl L- zC. | |||
815'O vz,i/ | |||
/ //85 | |||
Calculation Sheet Qt'7K' Ji JW Prepared By: Date lz rz Subject Checked By: Date g,~ v-IS-g System Ce W rrr~ ~i ISo~mrpeJ ( f UA u4% O'SF'ile Jcjb No. | |||
JQ No. | |||
) | |||
ia -o2.-ez - j I Rev. No. a Analysis No. Sheet No. | |||
'~ u Wm dC w War C'~m (+let> ~)~c. S5 g]g(c ~ay | |||
= '7)&r'0, W& | |||
z(i) | |||
Calculation Sheet | |||
'"'"'u3 mE vJd~-~ Prepared By: Date Subject, Checked By: Date t | |||
V r-< h~ C~m~atJ~r JT ~~~., - . -, ~ +,I ) ~-j s-tz System / I Job No. File No. | |||
NatJihrrJtA~i (Sdt.AT75nJ %Pre Je 0 CWPw CZP Analysis No. Rev. No. Sheet No. | |||
E'Q -o -&3-I( | |||
'Focal c(.o~~ ~~ l~>+~ LQi i<IIl -pko WNpcc. | |||
CIAW A - A . | |||
~ 778CS nW /7QC)O | |||
~ 'B~n ~a ~ | |||
(pJ ~ | |||
~i-(pyr-7 Y~= (447 F<<> -.: /7~( ~ W c ~ 5~Po ~a+ | |||
lr-j~tzlC Qc+g t 7704 | |||
<.r~= /447'~>V- z~ | |||
/7doo (I. tzC wM/ | |||
~.</c t | |||
+ pg7sl | |||
~z<Z (g,o~,o yp, y(W =P<z8v ~ | |||
/, //Bs | |||
>C() | |||
= -7c z8 "- / f&t' | |||
- 470$ | |||
- .4wov-(tzm)= y woke pox. | |||
l 00s.00 | |||
Calculation Sheet Project Prepared By: Date (z- x Subject Checked By: Date I/~e CoM~&~lr c577 eK-~~ +,~ c,< IV)eg~ | |||
> )5~)5 -Q | |||
&~iHWMm.h Analysis No. | |||
( . | |||
Rev. No. | |||
~ IJ Sheet No. | |||
File No. | |||
mQ -oz- S -)1 | |||
~AwFK~i&8 | |||
<<ex> | |||
~ac.~ | |||
~ ~~ m~W WR~ ~~~~.r~)M~ | |||
eat 4 +gal-A~K s'~~K sT pM~b lW ~K | |||
.-(s ized, | |||
~&48K 6') //OOQ g]J "4-~ | |||
~ Ed'Dd C. 8K A MQs /nC G.f728'.. | |||
/7000 ><<>> ~g@g ~> | |||
: l. qz7) | |||
Calculation kTt t Sheet IIIIIIIIIIIIIIIIIIIIIIIIIIIIII e' Prepared By: Date mPF55 u3~P-Z y,~l 64 ~+ C9)~r j> > | |||
ghee Subject Checked By: Date Co~a)U~Y er~ MM (Job No File No System C ~~M Ma~~ | |||
Rev. No. | |||
Oc- - I Analysis No. | |||
dc, -o~ -es-I/ o Hr pX ~go Y.os I | |||
I '4 >~0>MLS U | |||
;8) tees.00 j | |||
Calculation Sheet Prepared By: Date Projec't y,~ + ~~ j>- ~~ | |||
~ | |||
~ Subject PaMmh j<Wt" Checked By: | |||
~~/..'~~ Date | |||
/ W oi Job No. Fiie No. | |||
Systen) | |||
~~4th=)~i l ~<~rj Urtrt-&~. HI 'e~W Analysis No. Rev. No. Sheet No. | |||
ea-oz-zs- t Q W-25 by QQI Qakh.ih sr.t'. Pl ~S I | |||
o j | |||
APpltakr< fat'4)'-.AX 53ktr y)WX. >s r ~WI Ii I II Ii 'I y~e5i o.o.! P-~e o>g 5} ($- Qs LO&ol ss,fh Is | |||
'.l-z I ),gag z \/~> | |||
, 39Ct. | |||
or,L. da>> v I 1o~j! Je Th o~D 2 ag II rtXooVft. 4t.~Jo | |||
.r.~.- u"s~.~~') W4, oja sI.'R 3'~)~'t-~.)~ | |||
1 SAr.v c.kV ~~I O'OOOOtO!I~MJ t | |||
0 .o!Ilail.to'if <ol Ioriool,i f | |||
Q, 0* @be Rt. or ~! | |||
REM WEIGHT COMPONENTS for J=i to 3 wa(j)=wao+cos(av(j>) | REM WEIGHT COMPONENTS for J=i to 3 wa(j)=wao+cos(av(j>) | ||
wb(j)=wbr+cos(av(j)) | wb(j)=wbr+cos(av(j)) | ||
next ph i=ph i+2.+3.1 416/360. | next ph i =ph i +2. +3. 1 416/360 . | ||
f s t2 t3f=wa(3)+wb(3) mi f=-(wa(2)+wb(2)+ | a=i ave 1 | ||
f | c i 12=c i/i2 c i 21=cd i 1 ae ar= 1 1 +1 2 REM CALCULATE EAR FORCES USE B8cR LOADS AS OPT I ON LATER REM FIXED COMPONENTS ARE ALWAYS THERE I br= 1 r od+ 1 c g watr i=1 br+wa(1)J'1 r od si f=wb(1)+watr 1 w to t=wao+wbr s2f=wb(2)+wa(2)+ f s t2 t3f =wa(3)+wb(3) mi f=-(wa(2)+wb(2)+ s f t2) +e5-wa(3) +(e3+1 cg) -wb(3) +e4 | ||
) | |||
) ~e5-wa(3) we2-wb(3> +e 1 tt3f=watri+e3+(wa(2)+fst2>+e2+wb(i)+e4+ wb(2) +e 1 f cdr f=l cg+wa(1)/i rod f +(1 rod-13.5) maf=f cdr'2f=(watr1+wb(1) mbf =f cdr f +7. 125 sdr af=f st2/aa+abs(maf +ca/i a) sdr bf=fst2/ab+abs(mbf +cb/i b) fcof=lcgo+wa(i)/lrodo pbushf=f cof +( dr+d>/(d+abush) 1 REM STRESSES FROM FIXED COMPONENTS dear=(d1+di+d2+d2) ++. 5 set3f=abs(t3f/(4+aear)) | |||
+ | semi f=abs(m1f/(2+d2+aear >> | ||
sem2f=abs(m2f/(2+di+aear)) | |||
fcear f=tt3f/(2wdear) fr f=x+fcearf f 11 f=-( f cear f +s i n(ph i ) -fr f icos(ph i ) ) | |||
f22f=fcear f+cos(phi )+frf+sin(phi ) | |||
st t3f=abs( f f +1 a+c i 12)+abs( f 22f +1 a+c i 2 1 1 sesi f=abs(si f wc i 12+1 a/4. ) | |||
ses2f=abs(s2f +c i 21+1 a/4. ) | |||
sr f=se t3f+semi f+sem2f+sesi f+ses2f+st t3f REM EAR SHEAR taui f=abs(si f/(4+aear ) )+abs( f 11 f/aear ) | |||
1 tau22f=abs(s2f/(4+aear) )+abs( f 22f/aear) taur f=( taui f + taui f+ tau22f ~ tau22f ) ++ 5 1 1 ~ | |||
+ | taubf=taurf+aear/abl t REM EARBOLT TENSION btf=(se t3f+semi f+sem2f ) +aear/abl t pr int pr int"" OPERATING DRIVE ROD STRESS AT A $ 5dl af print OPERATING DRIVE ROD STRESS AT B ; sdr bf print" OPERATING CYLINDER BRG PRESSURE ;pbushf pr int" OPERATING VALVE EAR TENSILE STR ;srf pr int "OPERATING VALVE EAR SHEAR STRES ;taurf pr i n t" OPERATING EAR BOLT SHEAR STRESS ; taubf print"OPERATING EAR BOLT TENSILE STR )btf print print f="; si f print "si print "s2f="; s2f pr i n t "t3f=";t3f pr int "ml f=";mi f pr i n t "m2f=";m2f print "tt3f=";tt3f print REM REM CALCULATE VARIABLE COMPONENTS REM dsr=0. | ||
dtaur=0 | |||
))sem2=abs(m2/'(2+di+aear)) | dtaub=0 | ||
'bten=0 | |||
)-fracas(phi | 'sa=O. | ||
))f22=fcear+cos(phi | dsb=O. | ||
)+fr+sin(phi)st t3=abs(f 11+1 a+c i 12)+abs(f 22+1 a+c i 21>sesi=abs(si+c i 12+1 af'4.)ses2=abs(s2+ci21+la/4.) | dp ID=0 ~ | ||
sr=set3+semi+sem2+sesi+ses2+stt3 REiR EAR SHEAR taui l=abs(si/'(4 | f si=0. | ||
f s2=0. | |||
f t3=0. | |||
tauear+tauear dtaub=dtaub+taubitwtaublt e | f ml=0 . | ||
dbten=dbten+btens+btens f si=f si+si+si f s2=f s2+s2+s2 f t3=f t3+t3~t3 | fm2=0. | ||
)~dpb=dpb+abs(pbush f)dsr=dsr+abs(sr f)dtaur=dtaur+abs(taurf)dt*ub=dtaub+abs(taubf)dbten=dbten+abs(btf) f si=f si+abs(si f) | ftt3=0. | ||
for j=i to 3 f co=i cgowwao+ol c (1, j ) 11 r odo pbush=fco+(idr+d)/(d+abush) ftr i=lbr+wao+glc(i,j)t'lrod si=f tri+wbr+glc(i,j) s2=wtot+glc(2)j) t3=wtot+glc(3,j) mi=-wtot+glc(2,j)+e5-wao+glc(3,j)+(e3 +leg)-wbr+glc(3,J)+e4 m2=( f tri+wbr +gl c(1, j) ) +e5-(wao+e2+wbr +el)+glc(3,J> | |||
sUBJecT>-E ui.e" mic H drod namic Re ua..-C na.Ener Services 1200 Jadwin Suite 565 Richland MA THE FOLLOWING PUBLICATIONS/ | t t3=f tr 1+e3+wbr +gi c(1, j ) +e4+gl c(2,J ) + (wao+e2+wbr+ei) f cdr =1 cg+wao+g1 c ( 1, j >11 r od ma=fcdr +(l rod-i3.5) mb=f cdr +7. 125 s I ga=ma+c al I a s I gb=mb+c bl b I | ||
a"~~~~ | REM CALCULATE EAR TENS1 QN se t 3= abs ( t 3/'( 4 +ac ar ) ) | ||
/1 R COMMENTS: IUSE | semi=abs(mi/(2+d2+aear ) ) | ||
sem2=abs(m2/'(2+di+aear)) | |||
fc ear= t t 3/(2+de ar ) | |||
f r=x+fcear f11=-(fcear+sin(phi )-fracas(phi )) | |||
f22=fcear+cos(phi )+fr +sin(phi ) | |||
st t3=abs( f 11+1 a+c i 12)+abs( f 22+1 a+c i 21> | |||
sesi=abs( si +c i 12+1 af'4. ) | |||
ses2=abs(s2+ci21+la/4.) | |||
sr=set3+semi+sem2+sesi+ses2+stt3 REiR EAR SHEAR taui l=abs(si/'(4 +aear) )+abs(f 11/'aear ) | |||
~ | |||
tau22=abs( s2/(4. +aear ) ) +abs( f 22/aear ) | |||
tauear=(tauii+tauii+tau22+tau22)++ 5 ~ | |||
taublt=tauear+aearr'ablt REN EARBOLT TENSION btens=(set3+semi+sem2)+aear/ablt dsa=dsa+siga+siga dsb=dsb+sigb+sigb dpb=dpb+pbush+pbush dsr=dsr +sr+sr dtaur=dtaur+ tauear+tauear dtaub=dtaub+taubitwtaublt | |||
e dbten=dbten+btens+btens f si=f si+si +si f s2=f s2+s2+s2 f t3=f t3+ t3~t3 fmi = fmi+ml +mi fm2=fm2+m2+m2 f t t3=f t t3+ t t3+t t3 next j REM COMBINE STRESSES dsa=dsa++e5 dsb=dsb++.5 dpb=dpb~+.5 dsr =dsr++. 5 dtaur=dtaur++.5 dtaub=dtaub++.5 dbten=dbten++.5 f si=f si ++ 5~ | |||
f s2=f s2++. 5 f t3=f t3++.5 fml=fml++.5 fm2= fm2++ 5 ~ | |||
f t t3=f t t3++.5 print t e x t 0, 8c DYNAMI C COMPONENTS 5 print print "DRIVE ROD TENSILE STRESS AT A"sdsa print "DRIVE ROD TENSILE STRESS AT B")dsb | |||
" 'dpb print "BUSHING PRESSURE print "VALUE EAR TENSILE STRESS 'sr print "VALUE EAR SHEAR STRESS ";dtaur print "EAR BOLT SHEAR STRESS ";dtaub print "EAR BOLT TENSILE STRESS ";dbten print print "sid=";fsi pr i n t "s2d="; f s2 pr int "t3d="; f t3 pr in t "mid=";fml print "m2d=";fm2 print "tt3d=";ftt3 pr int dsa=dsa+abs( sdr af ) | |||
dsb=dsb+abs(sdrbf ) ~ | |||
dpb=dpb+abs( pbush f) dsr=dsr+abs(sr f ) | |||
dtaur=dtaur+abs( taurf) dt*ub=dtaub+abs( taubf ) | |||
dbten=dbten+abs(btf) f si=f si+abs(si f ) | |||
f s2=f s2+abs( s2f ) | |||
f t3=f t3+abs( t3f ) | |||
fml = fmi+ abs(mi f ) | |||
fm2=fm2+abs(m2f ) | |||
f t t3=f t t3+abs( t t3f ) | |||
print text 0,8c FiiYED PLUS DYNAMIC COMPONENTS 8c print print "DRIVE ROD TENSILE STRESS AT A";dsa print "DRIVE ROD TENSILE STRESS AT B";dsb print "PUSHING PRESSURE ";dpb print "VALVE EAR TENSILE STRESS ";dsr E'rint print "VALVE EAR SHEAR STRESS ";dtaur print "EAR BOLT SHEAR STRESS "; dtaub print "EAR BOLT TENSILE STRESS ";dbten pr int "si t=" fsi print "s2t=" 't s2 print "t3t-" 'f t3 print "mi t=" 'fml 7 | |||
print "m2t=" fm2 print "t t3t=" f tt3 | |||
) | |||
pr int end | |||
R~P~ V O'ASIIINCTON PUBI.IC POWER SUPPLY SYSTEM SUPPI,IER TRANSIIIITTAI,FORM (AREA WITHIN HEAVY BORDER TO BE COMPLETED BY SUPPLIER) | |||
TO THE ATTENTION OFa 30pp 0 pF I>A"lg PUgCHASp gGEItg YEpgotfTf+ATdADMIN.) | |||
PAGE ~ OF 3 sUBJecT> - E ui . e" mic H drod namic Re ua Q NEW Q RE SUBMITTAL | |||
..-C na .Ener Services 1200 Jadwin Suite 565 Richland MA R EQ VESTED DATE THE FOLLOWING PUBLICATIONS/DRAWINGSARE SUBMITTED FOR: OF RETURN: | |||
+APPROVAL Q REVIEW INFDRMATION DISTRIBUTION | |||
'ACH CONTRACT NO: C NO. OF PRINTS OF EACH NO. DF REPRODUCIBLES OF PO NO: | |||
~UBMIT~ED,By Fawaz Khaaa chez WORK ORDER NO: | |||
Pro ect Mana SPEC. NO: | |||
a "~ | |||
SUBVENDOR. | |||
~ ~ ~ | |||
SPEC SECT NO: | |||
ITEM PUBLICATION OR REV WPPSS NO DRAWING NO NO, PUBLICATION OR DRAWING TITLE MANUFACTURER ACTION ll | |||
~ 36'.1 104 2 ''Revised s. for ID T-714RB C na Transmittal / 1 R COMMENTS: IUSE ADDITIONALSHEET, IF REQUIRED) TO BE REVIEWED BY ECEIVED BY: IPURCHASING ONLY) TRANSMITTED BYs IPURCHASING ONLY) | |||
AME APP D BYc ITLK E | |||
// Z-ACTION LEGEND' | |||
~ APPROVED FOR PUBLICATION I % INFORMATION ONLY AN % APPROVED AS NOTED FOR FABRICATION NA % NOT APPROVED WP 170 RI}} |
Latest revision as of 05:23, 24 February 2020
ML17277B220 | |
Person / Time | |
---|---|
Site: | Columbia |
Issue date: | 12/11/1983 |
From: | Armstrong D, Matthew Meyer, Michael Scott CYGNA ENERGY SERVICES |
To: | |
Shared Package | |
ML17277B221 | List: |
References | |
NUDOCS 8312300157 | |
Download: ML17277B220 (167) | |
Text
REGULA TO 1%&ORNATION DISTRIBUTION >i (RIDE)
ACCESSION NBR:8312300157 DOC ~ DATE: 83/12/11 NOTARIZED: NO DOCKET FACIL'0 397 WPPSS Nuclear Projects Unit 2E Washington Public Powe 05000397 AUTH. NAME 'AUTHOR AFFII IATION MEYEREM ~ Cygna Energy Services SCOTTpM, Cygna Energy Services ARMSTRONGiD, Cygna Energy Services RECIP ~ NAME RECIPIENT AFFILIATION
SUBJECT:
"Qualification of Purge L Vent Valves at WPPSS<<2E" Vols 1 L 2."
DISTRIBUTION CODE: S001S TITLE: Licensing COPIES RECEIVED:LTR IC ENCL Submittal: PSAR/FSAR Amdts L Related g~ SIZE:(~g2 Correspondence g~g L ePVle gEPg 'OTES:
RECIPIENT COPIES RECIPIENT COPIES ID CODE/NAME LTTR ENCL ID CODE/NAME LTTR ENCL NRR/DL/ADL 1 0 NRR LB2 BC 1 0 NRR LB2 LA 1 0 AULUCKER, 01 1 ELD/HDS2 1 IE FILE 1 1'NTERNAL:
IE/DEPER/EPB 36 3 IE/DEPER/IRB 35 1 IE/DEQA/QAB 2$ NRR/DE/AEAB NRR/DE/CEB NRR/DE/EQB ii 13 1
1 2
NRR/DE/EHEB NRR/DE/GB 28 1
1 2
NRR/DE/MEB 18 1 NRR/DE/MTEB 17 1 NRR/DE/SAB 24 1 NRR/DE/SGEB 25 NRR/DHFS/HFEB40 1 NRR/DHFS/LQB 32 1 NRR/DHFS/PSRB 1 NRR/DL/SSPB 1 NRR/DS I/AEB 26 1 NRR/DS I/ASB 1 NRR/DS I/CPB 10 1 NRR/DSI/CSB 09 1 i-NRR/DSI/I CSB 16 '1 NRR/DS I/METB 12 1 ]a NRR/DSI/PSB 19 1 N /RAB 22 1 0 NRR/DSI/RSB 2K REG F IL 04 1 1 c RGN5 3 /MIB 1 0 EXTERNAL: ACRS 41 BNL(AMDTS ONLY)
DMB/DSS (AMDTS) FEMA-REP DIV 39 1 LPDR 03 NRC PDR 02 1 NSIC 05 NTIS 1 TOTAL NUMBER OF COPIES REQUIRED: LTTR 53 ENCL 46
4 t,>
5 t%
I il
>> II li II l I
'1 VOLUME I ATTACHMENT A QJALIFICATION OF PURGE AND VENT VALVES PREPARED FOR:
WASHINGTON PUBLIC POWER SUPPLY SYSTEM WNP-2 SITE VALVE SIZES: 24" AND 30" VALVE MANUFACTURER: BIF A UNIT OF GENERAL SIGNAL OPERATOR MANUFACTURER: MILLER AIR PRODUCTS REPORT DATE: DECEMBER 11, 1983 PREPARED BY:
ilon Meyer and Mark Scott REVIEWED BY:
Dennis Armstron APPROVED BY:
3.E. Rhoads 8+f+300157 050 00gg7 PDP @DOCK PDR A
TABLE OF CONTENTS
~Pa e VOLUME I
- l. Introduction
- 2. Synopsis
- 3. Functional Description and Application
- 4. Limiting Condition for Operation
- 5. Response to NRC Concerns (Summary) 5.1 Installation Information 5.2 Dynamic Torques for Worse Case Geometry 5.3 Valve Pressure Ratings 5.4 Discussion of LOCA Curves
- 6. Discussion of Operability 21
- 7. Summary of Structural Analysis 21
- 8. Summary of Flow Calculations 28
- 9. Qualification Summary 28
- 10. References 29 VOLUME II Additional Attachments Attachment 8 Draft Copy of WNP-2, SER, Outstanding Issue No. 26 Attachment C Limiting Condition for Operation (LCO)
Attachment D - WPPSS Letter to NRC Attachment E Supplemental Calculations Including Final As-Built Review VOLUME III Attachment F Structural Analysis of 30" Valves QID 361104 VOLUME IV Attachment G Structural Analysis of 24" Valves QID 361106 VOLUME V Attachment H In-Situ Test Results Attachment I- WPPSS Flow Calculations
TABLE OF CONTENTS (Contd.)
Attachment J Vendor (BIF) Flow Test and Results l) Torque Load Tests For Straight Pipe
- 2) Torque Load Tests With Connected Elbow Attachment K Field Modifications, PED h Startup Work Requests Attachment L Drawings l) Debris Screen Photograph
- 2) Flow Diagram M543
- 3) Piping Isometrics
- 4) Valve Drawings
- 5) Operator Drawings
- 6) Valve Data Sheets
QJAI IFICATION OF PURGE AND VENT VALVES AT WNP-2 1.0 Introduction The Nuclear Regulatory Commission is concerned about operability of the WNP-2 purge and vent valves when subjected to a postulated LOCA in combination with seismic plus hydrodynamic conditions. Specifically, their concern is the ability of these valves to close in the time re-quired to prevent discharge of radioactive gases to the outside environ-ment. The valves identified as the containment isolation valves in the purge and vent system are as follows:
Valve Number Valve Size (in) Use Location CSP-V-1 30 Supply Outside Containment CSP-V-2 30 Supply Outside Containment CSP-V-3 24 Supply Outside Containment CSP-V-4 24 Supply Outside Containment CEP-V-1A 30 Exhaust Outside Containment CEP-V-2A 30 Exhaust Outside Containment CEP-V-3A 24 Exhaust Outside Containment CEP-V-4A 24 Exhaust Outside Containment 2.0 ~Sno sis Qualification of WNP-2 purge and vent valves for a postulated LOCA condition superimposed with a seismic/hydrodynamic event is exhibited by analysis utilizing dynamic flow calculations, detailed structural integrity studies, dynamic flow tests and investigation of actual on site configurations.
Operability was addressed by in-situ testing (equivalent static load) of the operator, dynamic flow testing of a similar valve (12") and subsequent calculations to account for dynamic air/steam flow conditions.
Final As-built qualification has been demonstrated on the WNP-2 purge and vent valves by the use of appropriate dynamic torque coefficients for associated installation configurations coupled with a restricted valve opening angle to 70 degress.
3.0 Functional Descri tion and A lication The containment purge and vent valves are butterfly valves manufactured by BIF, a unit of General Signal Corporation and are identified as model numbers A-206765 (24") and model number A-206763 (30"). Both sizes use Miller Air Products air cylinder operators (air to open and spring to close in the fail-safe mode).
CSP-V-l CSP-V-2 are 30" butterfly valves which are normally closed, and are open only for drywell purge, and drywell inerting. During drywell purge air is supplied by the reactor building ventilation system through these valves into containment. During drywell inerting, nitrogen from the containment inerting system is introduced to the drywell through these valves. Valves fail closed on loss of air or power and close on F,A,Z signal regardless of operating switch position. Figure l provides a schematic flow diagram for all eight valves. Also, Attachment L Sec-tion 3 provides Flow Diagram M543 with the valve locations identified.
CEP-V-lA CEP-V-2A are 30" butterfly valves which are normally closed, and are operated only for drywell purge and drywell inerting. During drywell purge or inerting operations, the exhaust gas exits containment through these valves and is routed to either the elevated exhaust stack or to the Standby Gas Treatment System. Used in conjunction with CSP-V-l and CSP-V-2 these valves fail closed on loss of air or power and close on F,A,Z signal regardless of operating position.
CSP-V-3 CSP-V-4 are 24" butterfly valves which are normally closed, and are opened only for wetwell purge, or wetwell inerting. During wetwell purge, air is supplied by the reactor ventilation system through these valves to the wetwell volume. During wetwell inerting, nitrogen from the containment inerting system is introduced through these valves. Valves used in conjunction with CEP-V-3A and CEP-V-4A fail closed on loss of air or power and close on F,A,Z signal regardless of the operating switch position.
CEP-V-3A CEP-V-4A are 24" butterfly valves which are normally closed, and are opened only for wetwell purge and wetwell inerting. During wet-well purge or inerting operations, the exhaust gas exits containment through these valves and is routed to either the elevated exhaust stack or to the Standby Gas Treatment System. Used in conjunction with CSP-V-3 and CSP-V-4, these valves fail closed on loss of air or power and close on F,A,Z signal regardless of the operating position.
The purge system is desicped to purge either the drywell or the wetwell.
Only one entrance and one exhaust line will be open at any given time.
I SCHEMATIC FLOW DIAGRAM FOR PURGE AND VELDT VALVES fO cKVAYs'p
~RAN t CCi
%<5M%
ho AO CONTAINMENT VESSEL cKP-Q I g CGP-V ZA 30'e(w-LS cap-v-zs 2,'<PASs
@tlat!5 h<R
+a~
~~u~i l. A<ictttt3 FRO& Ctd DRYWELL
~a~
csp-v-z cd v. l 0
~KG..QP csP v.~
CA ~Ver<~ Act VACUA~
asL.
ALL YAC~
ZS LlE.F e m-aP l4 CQ &(@KB PIGUQE 1
g L/~ERAL'I V
COMTPIMN"=MT ISOLN30N
'0": I. CEP-V- IA
- 2. CEP-Y-2A.
- 3. GSF'-V-I
'I. C.'P-V-Z ---
I. UP~II I
REF. Dh/& 2/O. EOb7~o 7 70 OP F.
Flow"for 'ESTRIC ION Flow for CSP Valves CEP Valves due to LOCA , due to LOCA Normal Flow for both CEP and CSP Valves FIGURE 2
4.0 Limitin Condition for 0 eration The Purge and Vent System at WNP-2 for normal operation, is controlled with 2" bypass lines (two pairs) for inerting, de-inerting and pressure control. The large 24" and 30" purge and vent valves will be used only during off-power operation in accordance with the limiting conditions for operation (LCO) as shown below.
Each 24" and 30" purge and exhaust isolation valve shall be normally closed during the time period:
- 1. Within 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> after Thermal Power is greater than 15% of Rated Thermal Power, following start-up to within 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> prior to reducing Thermal Power to less than 15K of Rated Thermal Power, preliminary to a scheduled reactor shutdown.
- 2. The valve opening angle will be limited to 70 degrees and will be implemented prior to 5X Rated Thermal Power.
Each 2" purge valve may be open for purge system operation for in-erting, de-inerting and pressure control.
A complete copy of this LCO is provided in Attachment C.
I r'g
5.0 Res onse to NRC Concerns (Summar )
5.1 NRC Concern No. 1 Valve Installations Detailed valve installation information was not provided for each valve such as:
Item 1. Direction of flow.
Item 2. Disc closure direction.
Item 3. Curved side of disc, upstream or downstream (asymmetric discs).
Item 4. Orientation and distance of elbows, tees, bends, etc.
within 20 pipe diameters of valve.
Item 5. Shaft orientation.
Item 6. Distance between valves.
Su 1 S stem Res onse - Valve Installations Complete details of the valve installations are provided.
Figure 3 CEP-V-1A and CEP-V-2A Figure 4 CEP-V-3A and CEP-V-4A Figure 5 CSP-V-1 and CSP-V-2 Figure 6 CSP-V-3 and CSP-V-4 Item 1 Direction of Flow For normal flow considerations at WNP-2, the valves are installed in the manufacturer's preferred orientation. Therefore, the exhaust valves (CEP) are installed in the preferred direction of flow for both venting containment and flow which is a result of LOCA.
However, the supply valves (CSP) are installed for preferred flow toward containment and will be subjected to non-preferred flow direction during postulated LOCA condition (see figure 2).
These CSP valves are potentially subject to reversed torque due to flow out of containment. To assure that only positive closure torque occurs, all valve openings will be limited to 70'nd therefore precluding the negative flow induced torque.
Item 2 Disc Closure Direction Disc closure directions are provided in Figures 1 through 4. For installations downstream from an elbow, LOCA induced flow tends to help close the valve.
Item 3 Curved Side of Disc Installation The BIF valves used at WNP-2 do not have a curved side and the air foil lifting characteristics associated with this type of configura-tion will not exist on WNP-2 valves. The location of the seal ring is shown in figures 3 thru 6.
Item 4 Orientation and Distance of Elbows Tees Bends Etc.
Detailed valve installation information for piping configuration is provided in Figures 3 through 6.
Item 5 Shaft Orientation Detailed valve installation information for shaft orientations is provided in Figures 3 through 6.
Item 6 Distance Between Valves Detailed valve installation information for the distance between valves is provided in Figures 3 through 6.
5.2 NRC Concern No. 2 - Flow Torque vs Seating Torque The worst case geometry at large angles of valve openings can pro-duce very high torques that would be considerably larger than seat-ing torque. These dynamic torques should be used in the structural analysis instead of seating torques.
Su 1 S stem Res onse No. 2 The qualification analysis used the larger of either seating torque or flow induced dynamic torques.
5.3 NRC Concern No. 3 Valve Pressure Ratings Valve pressure ratings and a static pressure analysis are not ad-dressed in the submittals. The applicant is to provide this infor-mation for each of the valves.
Su 1 S stem Res onse No. 3 Valve pressure rating of 150 lbs is provided by the Vendor Data Sheets (Attachment L Section 6). Analysis for pressure loading is provided by BIF vendor calculations:
24" Valves Attachment G, Section 7.0 Sheet B-61 30" Valves Attachment F, Section 7.4 Sheet 7.4.61 5.4 NRC Concern No. 4 - LOCA Curves Included were plots of flow rate versus time from LOCA initiation for the 24 inch and 30 inch valves maintained in a full open closure from 90'o 0'hich should be deleted. However, the analysis is not affected.
Su 1 S stem Res onse No. 4 The LOCA curves present have two abscissa labels. Supply System agrees that the valve angle information should be deleted and that the analysis is not affected.
I. CE'P-V-IA Z. CEP -V-2A PIPE OW. 30 BIF BU ITER.F LY VALVES oV>"
v< ~ ~(p I
~ 8 EEl AIL 1
~pit>
~gptll>>>(~S II iC 0 4 IL
~l~l~+T~l)
SUWZt".WlTR I lCTllREK I
T o~ul REF: I50 CEP-&R.'5-IO sun CEP- (25 - II. Ih
t'NSHINGTGN PlELIC PQ'lER SOPPLY SYSTPl 1'lNP-2 RJl@E NG YBlT YIPES o ~ 0 op 4
oo~oo-.~4 Oyoy
@0 60y by
',J PICTLIK i'6, 1 PICTURE NO, 2 CEP-'~
ELEVs VIB( LKGe EAST LKGs UP SHUTS CCW TO OPEN SHUT> CCW TO OPEN
~ ~ S ~
CONTAMMCNT v 0 VALVE 0 6 ll.
ROC.TbR.
I I I
'to
( I V
~~0 .~O, I ~ELQbL AlCtAICr 1 D 0
CSP- V- I + rcPig f 3'-ZPrib' cruz N b. WCK CCPJ Th CIPC 0 0'
~
1NSHINGTON RELIC PSIER SUPPLY SYStPI l't."tP-2 PURGE Al'8 VENT VAI VES
~((t i l I
II
(
r <0
~ ~ (~
ff qG
'ad
~
PICTURE NO, 1 PICItjRE I, 2 CSEHU. ESP=VX SHUTS CCW TO OPEN SHUTS CCH TO OPEN
t'tASHINGTON PLSLIC POI'KR SUPPLY SYQPI l'Pi>P-2 PURGE M) VBtT VALVES f.
J v
O Ij p
P J ~
j/,q 97$
PICTtK NO, 5 PICTURE tN. ~
-V- ~(SP-'!-
LOOKING UP AT 46 FROM FLOOR
COMTAthIME T ISO IRTIOM VALVE5 jI.CEP-Y-DA
~p y ) pp
~
BIF 5LJPEPJ LV VALVES PEPE blA.= Z.LI REF. ISQ*CEP- SZK- l.2 CEP- Co25 -3.'I 0 6 LZ 3 c<'P )A (g~)r C.
(ti 4 i<&
7-I io
) 'l(g lo 0 //
gL
~<<~ ~
Cg>
(q CCW 70oPEN Ll~
P1 CT "R~i, i UCG. 0 Cy>
V )
SEQ: A-A CAO5EC1 LKfr.SDUTI4 (TYP)
j'SS)1!l'lGToih PUBLIC PEKR SUPPLY SYSTH'l NP-2 PURGE Af'tD VH'IT VALVES 0'I l lI I
I PICTURE tm, 1 CEP-V-3A ie 4A
.I rh CONTI N SO TION VALVES I. QP-V-3'
~P V-q BIF 1MITERFLV NLVES
- 3. MP-V-5 II. CSP- V- l LHCUC. V/ILVC VhCuurl GRCAK~
qO<
IE REF. 150 l SP- 807-5.7 (C
C5P - 80"I- S.IO Pl TO PICru C VIE I
I
'/ 0
~
a
~ 0
~r5 ( II~
Qy 'r,IT rrhr COMTAINMEAfr
~N~ '
PICT C~L p 90'.R.ELL
~p "I: r CS .an.S PCOu 6UaIM6.
//
CSp- V-5
~lhhl"h A
)I JPI BREAICEIK FLOhl P gJ C~ TODPEN SECT'A-A h
-18 h h
'h
WASHINGTON PUBLIC PNKR SUPPLY SYSTEN lNP-2 PURGE NS VBlT VALVES F
PICTURE m, 1 cN To.opw PICTURE NO. 3 C5LYM
HASHIf'JGTON PUBLIC POi'KR SUPPLY SYSTPI MlP-2 PURGE AfS VBH VALYES A
o j
PICll!8E ~6, 5
-20
6.0 Discussion of 0 erabilit Operator operability was demonstrated by a stress integrity calculation and a static deflection test. The static deflection test consisted of applying a load at the outboard end of the air/spring cylinder equivalent to the SRSS actuator assembly CG acceleration loads. Determined from the piping analysis, in the two axes of the cylinder this load would cause the most adverse operability effect. This acceleration level times the cylinder weight, acting at the cylinder CG, was equated by an equal mo-ments approach to an equivalent force acting at the outboard end of the cylinder assembly. Flith the load applied, the air supply was removed and the spring loaded cylinder was allowed to move to its fail-safe (de-ener-gized) position. Acceptable operation of the air cylinder was its abil-ity to move from its energized position to the fail-safe position with the load applied at the outboard end.
This static load method of demonstrating operability is deemed very conservative because of the following reasons:
- 1) Time duration of a peak seismic/hydrodynamic acceleration is very small compared to a steady (static) load.
- 2) Static friction is greater than dynamic friction.
- 3) Square root sum of squares of two orthogonal directional accelera-tions is conservatively applied to the worst case direction.
Conditions and results for the valve stroke tests with and without statically applied loads is provided in Attachment 3.
An enveloping test was successfully performed on both the 10" bore cylinder (part of the 30" butterfly valve assembly) and the 8" bore cylinder (part of the 24" butterfly valve assembly).
Summar of Structural Anal sis Detailed structural analysis was performed on the valve and air/spring actuator. The following is a summary of the analysis performed.
Com anent Descri tion QID No. Attachment NPPSS Supplemental Calculations (Review of As-built conditions) 30" BIF Butterfly Valves 361104 24" BIF Butterfly Valves 361106 30" Valve Vendor (BIF) Calcuations 361104 F Section 7.4 24" Valve Vendor (BIF) Calcuations 361106 G Section 7.0 ll 0
A summary of critical valve components is provided in Table ZIfor 24" size and Table I for 30" size.
To assure a very high confidence level, normal condition allowables (including 0.4 Sy for shear) were used as criterion for the combined postulated LOCA and seismic/hydrodynamic conditions. Since the valve opening angle will be limited, the operational torques (LOCA) were used in-lue-of the design seating torques, thereby, providing a higher margin of safety on loading deemed less predictable while still maintaining standard margins of safety on design seating loads.
~JUNC.f'CR~ Vf- Lgt ~
5 0 SIF ZkJiTFRFLY Co}JWIdWgW I VALVE BEATIFIC TOg.auS + JOVE LOCK FiowVoazuE +
GTPESS Au OvVP.GLE
~~6'ALC'D cALc '10 STRESS hlOKhh AL l=AVE:TED STR.E~S 'FAOLT ED Vp Lvh/Dm~zm 7 i TEhlSIQ , C Fr MlC6 1d .SF'&Pi '4eciu T' 'TEhlS I ,CR S ~ sHE'AF oF or 5 iSAEAR.
Carne-oI-I~~ B=QEPgl}lq .% Fv SAF +igg~llJ( oF'AFE~
i/5
.4'RUhldiOQ MIHS g I95 IZ>OO g,g (GOOO g.Z, 2 I 7dOQ 5.4 I 8 ooo 8.Z
~A~REW 'Rgs I 8'OO I. I (bgGd I.7 7O3'9 93'OO I. S IgggO Z.o
~IY~ L~p.~ I I O9Z z. Z g@OCg Zgdoo ZC U >O~
MAIQ SHP,PT 2o527 /4z@7 /9000 /. 5 2 OOOO DR.IVG Ra+ gC OOO I,,"( WOOL I. C 'g&ocQ I,I l.7 e'er-e(S) e oog (s EAM BOLTS e vs4 (v) p~eas 4) c}g}8 (T) <OS~ g, t LRVEW M~AY /4 OoQ >lobe z.e 79ZQ (S OOO +,O ZQOOD 3,0 I 25'67 I BOOC) I.4. I Z.~7 I800d l.4 VALm E~ MEO0 I 5 277 y 9oaQ I,-'4. iz~%7 I8ooo I.4
VALVE %AVIAN t a~auC + DUE LOCA- FLom Tor AVE <- WUK CALC'D QLOv4 A>LE CAI C' STF-'E5S Al GOWAGLE STRESS 'PAVL-'TKW S~ms FAVL.VEP VAt vh/c7m~~or
+~ ' , CrFc . 'hhhCAid , .9%v ~g.col T ~ 7LhtSI g c5$ CA oF
~scag COMP Dhl~ .'9Fc Sm 6Ã , fnF~
~vert %~5GHZlij 54$ UY ~fY T'RUDRA>0~) Piels g/04 /2000 .2;g. /OOOO 4/o4 /ZOOO g,9. /8000
~A~ezo T(WS DOQ4 /5 9+0 ./,7 99OO /,7 /395O 2.5
~
~IYK Lp'i/BQ ~ooo gazoo r
2+OO )8 5t-oooQ g.7 bhAla St<P,~ /7O44 /ZSZZ /coco / g ZvQoo zg DwlvG Rcpt& 9'~ 3(oObO I
Wgooo j l Bz9oV Q~o&o / / +good tS rrr > (<) I 5552 EAw BoLTS Z.78') Z'7370
/v-4(v) r =
/C 74-3 r T'Y I t5&Z //nodo z4ooo Z, I '78 l4 /k om z.o z4oOO GHaww& wax 9&57 /gonzo S 5 Vms E~ W~i~ /0+&9 /Boy% /.7 /o589 (8 os
0 Summar of D namic Tor ues and Available S rin Closure Tor ues The purge system valves (CSP-V-1 thru CSP-V-4) are installed with the flat side of the disc upstream. When these valves are in the full open position (90 degrees), the dynamic torque coefficient becomes negative (tends to open the valve). Based on the test results provided in the BIF report (Attachment J Report No. 2) the worst case negative torque coefficient (CT = .34) is less than the bounding torque coefficient (Cy = + .56) used in the BIF calculations. For comparison purposes both the full open valve dynamic torques and the 70'pen dynamic torques are compared to the available air operator spring closure torque.
Butterf1 Valve with Disc U stream Flow at 1 sec. and disc angle 90' Full Open Dynamic (1) Actuator Spring Margin of Valve Size Tor ue (0 enin ) Tor ue Available (Closure) Safet 24" 6,830 In. Lb. 11,900 In. Lb. 1.7 30 II 13,640 In. Lb. 23,470 In. Lb. 1.7 Flow at 1 sec. and disc angle 70'pen Dynamic Actuator Spring I Margin of Valve Size Tor ue (Closure) Tor ue Available (Closure) I Safet Not 24" 1,200 In. Lb. 18,600 In. Lb. 1 Applicable IBoth Loads 30 ll 2,400 In. Lb. 33,700 In. Lb. IProvide I Closure I
Figures 7 and -8 show torques for both valve sizes at all angular positions.
(1) Torques conservatively include 1.3 factor for an elbow located directly upstream.
FIGURE // 7 3~~: j6Pg=FS> -QNfii =.LBTilR
~ ~
4~>t I tCEP2J,O.RQ, .
I
.D&~owA~aFPM3 'Ri'CD~B1+KPT=N(g2, gw=
- Z 1 ~ t ~
~-- ~
.mt '
.-S-,
g~t
=OF%
.raew .0 EAU '-~
0'5~=
)EA'LV.E 0
- 26 j
xt'I@I Ii Ii) 5'
/i j
.)Ol I~
(lf il.i
~ ~
~
!!! tll
~
gl
!(i.'i'::
lq: 'i'I
!ji 1: ~
I);
fiji itj
~ ~
~
s~i!
- I!
~ Il
~
(! I set sit)
!':i !!"
I ~I I,~
I a!!j I!!I
!g9 tjji
~
~ ~
ti)'el) ij!1
- lil e
~ ili t)t:
~
I!!i.lii!!II I
l j'@@
fiji sI s I s
>>'It s }if a;si 1!
lilt fljl I! .i II Uf it
'A t
I~ i.I I
~ It
)J I
li
}
ltl1
~
(I 1
~
I~
tI
!ljj
~
I~ ~
II
!I!I
~ ~
I II i!4I iii!
~
It!i i'
I i! I ">>'
I I!i i itt tie
'V.
i~if
~
j'iij I
>>ii I) ft (11( )tee It ii!i iii!
III)
It) I iet I
'I 1
~
~
~
I if(1 tts ~
1 qt(
}TI} .'jj',:
ll.j 1
I(
~
~!I I
~ ~
'fi I
I
~
Ii
'1
~
~
11
~
>>)I I!)
j I
a!I It I!,1 I(gt'f if"
- (ii it i
~
!i i
)
.I
~ I I
~
t
\
'.i! l It'( jsett f447. Is ijl.: i!1 It(
(te+ ii tii: Ts ~ s 1!I! ~:!!
Il!I ,'i: fi,!
)sit I; j!( s ~at} !I!i I! Il I ~ I~ I j!ij jtij jit; !!!I set t ~ et 'ttt I ~
jli ~ Irl il s
ljif I!!I f It!I 1st I~
~ I si f ~ ~ I I~ Ij}:,'jH ll I s,)it;1 >>>> tete i!i. }It ~
~
1 I I::ji jij
>>(I !1)1 js .I 1 ~ I !I!i 1!! ~
jjjj ct) I It}
~ fels>> ~
lii. l
~ )I !g )ill IIIll!ll II ~
I! )II ttj(I I li I
~!i flij !!ij Iiii:.!.j 3 I D }
iii 'l!I g2'44 I SS iE Iff
~
I
- U.
~
1, te K~ ~ ~ I!a It
~ ~ ii I!1 el ::II I!l I !i!
zl ( 1
'I i)"l i/0 VV jil )I lt'I I I ii! I I,I EEI'! '! II I) I (I t I>>! )at I!I (eft ji! iii I'I I i++)! I lii! 'i ! ~
I I'tis L. 5 iD ,E '.), I~ sl
~ !if!
I .I>> "li Liii iii ~ ii 4 'li: liII lilt
"!I t j('t oj;II I' ilj( I!j; j!'I I:!i ~ aa II Iji Qii'ILt I,'I jil ~ I lll! tl II ~
I!i if!i it)li iifi tf'I iifi lj iti i!I! ji! jj I I ili! jfi i) ll!! i!I! z<'! IIII I ittj lit ~ 'I!,':iii jj il! f~f !(jj!,!If it,i I)11
%~K~~~
PISC I!11 I) t I ) X!1 ':3 1 j tfi I; ~,
~ ~ ~ I ~ ii: iii! I:II I, II1! (ttlematam) lj ul,t ti! Ili !!lf IL) !i'!I!i.
T&W( jjii I, jji;: lil! ~ yi]jj I 1
))- tt'j ',1st
- t(i I! ,ii!
~ ~
I oii !111 tisi
!'I'
- 0. !.0 I((
P. A f(i( I II )I ~ tf ~tt.!ll
~ ~
I>>
~
I!I: )j,i I!I Sj i:;i jij i! 1
!j Ljlt e! 1 LLti Il il if i ~
I "" (Its I,' ijj j!I 'I I ! IIII I I il
~
II i(j't (Iit I( I P(SC
!I I ~ ('>> ti i Ul sTlccw
- I >>" !! tf:.
iii'l'!I!!!! !l(j l
~ ~
tl ~ Ie fi ji):: is i! ~ ~ ~ II
~ ~ ,1 Ij Q>>I ii':I I!(i Ljl( I ijil j!',gf'it ~jim !i 'lit jiff !iii I I
8.0 Summar of Flow Calculations The shortest purge line with the lowest flow resistance was analyzed to determine the Mach number of the fluid flowing through the butterfly iso-lation valve as a function of valve opening angle. Based on this analy-sis, it was determined that valve angle positions of 70'r less will assure that the Mach number through both the inner and outer isolation valve remains below Mach number 0.3 following a postulated LOCA. The containment pressure and temperature used as a forcing function for this analysis were obtained from the WNP-2 FSAR (figures 6.2.2 and 6.2.3) for a postulated DBA. Containment pressure obtained from these figures was based on the assumption that there was no fluid leaving containment. If the purge valves were open the containment pressure would be slightly less than that used in this analysis. Flow calculations are provided in Attachment K.
- 9. 0 Qualification Summar 9.1 The 30" and 24" diameter purge and supply valves are closed for normal plant operation since the small 2" lines will be used for inerting, de-inerting and pressure make-up.
9.2 NRC has recommended the disc opening be limited. Prior to 5X power, WNP-2 will install a mechanical device which limits the opening to 70 degrees. This restriction on valve opening coupled with appropriate dynamic torque coefficients resolves safety and qualification concerns for LOCA conditions. 9.3 Due to the pipe length and associated line loss coefficients; the maximum flow velocity for full open valves was calculated to be 0.33 Mach number, thereby assuring that correlation methods used with compressible fluid calculations as previously presented is valid. With a restriction on valve opening, the Mach number will be less than 0.3 for all conditions. Additional conservation is introduced because the LOCA pressure and temperature curves did not take credit for flow through these valves during closure time. Also, the pressure excursion assumes a very conservative double ended pipe break. 9.4 As-built configuration of the valves (especially with the 70 degree angle restriction) precludes the possibility of flow induced opening torque. Therefore, the air operator spring and flow will combine to assure valve closure in less than the required 5.0 seconds. 9.5 Structural integrity of these purge and vent valves has been at-tained by combining two faulted conditions (SSE/Hydrodynamic plus LOCA) using normal allowables. This includes shear allowables of 0.6 Sm for pressure boundary ASME components and 0.4 Sy for AISC components. A table which summarizes the calculated stresses and allowables is provided in Attachment I. NOTE Field modifications to strengthen the support brackets and replacement of bolts have been performed. Documentation is provided in Attachment K. 9.6 Since the valves are normally closed, there is a low probability that LOCA conditions will occur with the valves open. Furthermore, a very low probability of all three conditions (valves open, LOCA and seismic/hydrodynamic) will occur simultaneously. Therefore, this very conservative approach of combining all three unlikely con-ditions and comparing to Normal/Upset condition allowables exhibit large confidence levels. 9.7 Operability was demonstrated by analysis and in-situ (static load) testing. 9.8 In conclusion the purge and vent valves satisfy all the Equipment Qualification criteria implemented at WNP-2 for'even 90'full open) valves. Limiting the disc angle to 70'rovides additional margin to address the following NRC concerns. Therefore, our WNP-2 design:
- 1) Assures dynamic torque due LOCA conditions will always be a positive closure torque.
- 2) Assures Mach Number will be less than 0.3, and
- 3) Limits magnitude of dynamic flow induced torque.
10.0 References 10.1 NUREG-0892, WNP-2 SER Outstanding Issue No. 26, "Operability of Purge Valves" 10.2 NRC Standard Review Plan 6.2.4, "Containment Isolation System" Containment Systems Branch (CSB) 10.3 Branch Technical Position CSB 6-4, "Containment Purging During Normal Plant Operations" Supplement to SRP Section 6.2.4 10.4 Letter, A. Schwencer (hRC) to R.L. Ferguson (SS), "Request for Addi-tional Information", dated September 16, 1982, Docket No. 50-39 10.5 WPPSS Letter, February 24, 1983, G.D. Bouchey to A. Schwencer (hRC) with Attachments 10.6 WPPSS Letter, June 22, 1983, G.D. Bouchey to A. Schwencer (hRC) with Attachments VOLE% II 1'PPSS OF PURGE ANO YENT VALVES AT
'JALIFICATION lOP-2 ATtAC8'HA' - DRAFT COFY OF lOP-2, SER, OUTSTANDING ISSUE NO. 26 ATTACHMENT C LINITII'6 CONOITIPS FOP, OPERATION (LCO)
A1TAHBIT D , I'FPSS UTIER TO NRC " ATTAQK'6 E SUPPLEMENTAL CALCULATION INCLUDING FINAL AS-BUILT REVIBt
tiOP P, ', g~HIi";Os 'NUCLEC.R PROJECT 2 DOCXET NO. 50-397 0~NSTRATION OF CONTAINMENT PURGE ANO VENT VALVE OPERABILITY/ 1.0 Requirement D~nstratfon of operability of the contafanent purge and vent valves, par-ticularly the ability of these valves to close during a design basis accident, is necessary to assure contairnent isolatfon. This d~nstration of operabfl-fty is required by BTP CSB 6-4 and SRP,3.IO for containrant purge and vent yalves ~fch are not sealed closed during ooeratfCCWcondftfons I, 2. 3, and 2.0 Descrf tion of Purge and Vent Valves The valves fdentfffed as the contafnrent isolation valves in the purge and vent system are, as follms: Yal ve Nunber inches Use Location CSP-VA 30 Vent. Supply Outside Contafrgqent CSP-Y-2 30 Vent. Supply Outside Contafnrznt CSP-Y-3 24 Yent. Supply Outside Contafrnent CSP-Y-4 24 Vent. Supply Outside Containrent CEP-Y-IA 30 Vent. Exhaust Outside Contafrwent CEP-Y-2A 30 Vent Exhaust Outs ide Conta f nnant CEP-Y 3A 24 Vent Exhaust Outside Contairaent CEP-Y-4A 24 Vent. ~ Exhaust Outside Conta'fnrent 1 .The conta$ rnent purge and vent valves are butterfly valves manufactured by 8IF, a mft of General Signal Corporation and are listed as BIF Model Hurdler A 2M765 (24" valves} and 8IF Hodel Nunber A-206763 (30 valves}. %lier Air Products Corporation Model A-83 cylinders (afr open - spring closed) are used for valve actuation The 24-inch valves use 8" cylinders and the 30'alves use 10'ylinders. 3.'0 Geaanstratf on of erabil it . p )gal 3.I Vhshfnqton Pub'lic Pomr Supply System (MPPSS) has provided operability d~nstratfon fnformatfon for the containment purge and vent system isolation valves used at their Mashington Nuclear Prospect 2 (MHP 2) in the following. sutmf ttal s: Reference A MppSS letter, F'ebruary 24, 1983, G. G. Bouchey to A. Sch~encer (NRC).
2 FA c Reference 8 p>1 jt[ t'-'ihhC Ee. t VPPSS letter, June 22, )983, G. D. Bouchey to A. Schxencer (%C). 3,2 ~termination of dynamic torques durfno valve closure against the bufldup of containment pressure during a LKA is based on dynamic torque coefffcfents CT obtained fry BlF tests performed using different types of disc geometry and disc and shaft orientation xith respect to direction of flow. The test
~i~
t ons fifth fs mter and no air. testing xas performed. One of the test conffgura-inc included a directly connected short radius elbox upstream to study the qffect of flox non-uniformity on dynamic torque. r a 1 so per-Several tests xere fo~ the valve shaft vertical and horfzontal, counter clockxise opening and clockxfse opening, xith flatside upstream and flatsfde doxnstream. Frcn these tests, the most severe case xas determined.to be a vertical shaft orfen-tatfon ($ .e. perpendicular to the plane of the elbow) with the flatsfde of the disc d~stream and xfth a clockxise rotation of the disc. Thfs orfentatfon results in an approximately 30K increase in maximum dynamic torque coefffcfent over the straight pipe inlet configuration. Torque coefficients used to de-temfne dynanfc loads for VÃP-2 purge and vent valves are based on this.xorst case configuration. The dfffereetial pressure 5 p across the valve is calculated fron the data on vol ~trf c flox rate under LOCA conditions, and using the equat io P)2 - PZ2 g 963 Cv xhere g ~ 6as f1ox in $ CFH P P) Valve upstrean pressure (psfa) P2 Valve downstream pressure (psfa) 6 ~ Specffic gravfty T) ~ Upstream temperature in oRankine 29.9 D2 CY Ye1ve coefficient Xv. D Valve Port diameter ()n.) Kz -"Coefficfent of floor go load closure tfme for the valves ranged from ) 1/2 to 4 seconds based on tests performed at BIF The maximum no load closure tine af 4 seconds fs used for the analysis xith a one second instrumentation tive delay for a total of 5
3
'lijli r g ":I ~- L3 econds frcxn LOCA fnftfation-to-valve closure.. As an addi tional conservatisn, the d~ll pressure vol ves.
and temperature rise during a LOCA is used for a11 Dynmfc torques are calculated for both saturated stean and air as the flow
~fa. The calculations are summarized and shorn belo~ in Tables I, 2, 3, and 4 (Reference 8) for both the 24-inch and 30-inch vaIves and for steam and air flec.
The peak dynadnfc torqaes during closure and the seating and bearing friction torques at oo are ccapared to the design torques usedD~he~ei~eic analy-sis rcport and indicate posftive margins; SUHHARY OF RESULTS Table 1. 30-inch Valve, Airflow, (TNET 2217i in-lb) Dynam) c - Angl e s deg, Torque in-lb. 1.0 90 {Full Open) II020 Qg JEST 1.5 78. 75 2309S 2.0 , 67.50 X813S 2.5 56. 25 14747 3.0 45. 00 12428 3,5 33 75 10780 4.0 22. 50 8014 4.5 11 25 3972 5.0 9.0 (Full c1osed) 0.0<<
'~ <<At full closed position, the dynamic torque is zero and the net torque is due to seating and bearing friction.
v~ g Note: The design torque used in the seismic analysis report No. Ill-74-B in-lb.. byM~A t 1 t 27m
$ ~
SueSRT 0-. RESULTS gable 2. 30-Inch Valve, Stean fl~, (TgET 22l74 in-lb} Dynamic Tithe Angle Torque deg~ in-lb. E.o 90 {Full Open) 11032 1.5 78. 75 23175 2.0 67. 50 18142 2.5 56. 25 14668 3.0 45-00 l2424 ~"~"-c g;~ 3 5 33. 75 i'0580 4 0 22. 50 7809 4 5 11. 25 3867 5.0 9.0 (Full closed) 0'.0+
"At full closed position, the dynariic torque is zero and the net torque is due to seating and bearing friction.
SUNDRY OF RESULTS Table 3. 24-ln'ch Valve, Airflx, (TgET 13808 $ n-lb) Dynamic Angle a Torque deg. in lb'.0 90 (Full Open) 5525 1.5 78; 75 11692 2.0 67.50 2.5 56. 25
'.0 45 OD 3.5 33 75 5430 4.0 22. 50 4043 4.5 11 25 2020 5.0 9.0 (Full closed) 0 pe At full closed position, the dynamic torque ts zero and the net torque is due to seating and bearing friction.
ate: The design torque used in the seismic analysis report No. TR-74-8 by HcPherson-Assoc!atesDo~this valve is }7000
f"ran(f"
- i. j(/i/ /
SU~RY OF RESULTS Table 4- 24-Inch Valve, Steamflo~, (TgET. 1380B in-lb) Dynamic Ti)2)e Angle o Torque (s) dege in-lb. l.0 90 (Ful> Open) 5425 1 5 78.75 11394 p. R.Q 6?. 50 B92l Z.5 56.25 3.0 45,00 6109 3.5 33.75 5202 4.0 22. SD 3S42 4.5 Il.25 '902 5.0 9.0 (Full closed) 0.0 +
+At full c1osed position, the dynamic torque is zero and-the..
net torque is due to seating and bearing friction. 3.3 D~nstration of actuator torque margin is based on the mini(((~ spring force developed which 5s equal to the spring pre-load. 24-inch valve 8 c linder)
>6,890 fn-lhs (preload) > 13,80S '.n-lbs (seating torque).
30-fnch Valve 10-inch c finder) 32,422 in-1bs (preIoad) > 22.174 in-1bs (seating torque) g///.d4 3.4 gppSS provides a structural analysis for the puraewnd vent valves and their operators in Reference B. This consists of ((3) Seismic/Hydrodynamic Requalification Reports for the 30-inch valves, 24-inch valves, and the operators. The requalification certificates far both the 24 and 30 valves are contingent upon ear bolt modifications and the addition of shear plates. Acceptance criteria for the structural analysis are taken fro()) Section III of the ASHE Boiler and Pressure Vessel Code or the AISC Constructin Hanual, whict)ever $ s applicable. Load used in the analysis are the valve operating load crab-;ned eth the dynamic loads vhich would result frcm seismic and h+rodyna=ic events as det.eminc=- by the piping analys',s for the plant.
h
~ p onalysfs ms set uj tn a caepUter prop ea for each valve assembly fn Ao SR$ S fts specfffc orfenAt'fed@ The SOS fs ~en'at the maxfain stress lese) to sefsirfc, 9-)oadfng. Qperatfag. loads de to seatfng torque force and de-d ~ ~fight are cceMaed H& the sefsefc stress by absolute sm.
. Ba~ on tte results of the structural analysfs. the valves 41) reefs fac-
't)oaal through f'orth'ears af postulated hydrodyn~c events, ffve operating basf s earthquakesand one safe shuteye .earthcpake.
4.D -Kva1oatfon 4.l The detemfnatfoa of dynaafc torques Kr. MPPSS pe'ge'and vent valves ader I.XA condftfons fs tesed on the testfng by the valve supp)e'er (SIF) of I aodel valve using mter as the test medfum. Tests conducted Hth a short el-dfrectly upstream, valve shatt at %P to the p)aine of the e)bee, and i flatsfde of dfsc deestre~ fndfcitid 3'. fncrease fe maxfmw, dyneafc tor-que coefffcfeC for tMs erst case geaaetry. Vsfng data froo Node) tests performed by other valve aanufacturers wftb afr as the test aedfea, tMs erst case geometry prodtmes 0 3'ncrease fn aaxfmm dynarnfc torque coefffrfent The -large'.dffference (3'. }ater versus 300j'. afr) fn aaxfeen dynaefc torque
. coefffcfent f s due to the hfgher (above %ch-.3j velocftfes at large angles of openfng %ere the cbmwfc torque coefffcfents peak; Oyaanfc torque frit Nocfel tests usfng fnc~xmsfhle flufds correlate reasonably cell coefff-'fests Hth data free tests usfsg afr f f the vHocftfes are helm a Kacb nveber of 0.3).
Ccesfderfng the.ana1ysf's results tabulated fn Table 1 of Reference A, the peak 4ynaafc torq~ for the K-fnch valve occurred at ?8.75'M was 23,098
'fa-)bs. The desfw torque fs 2'7,800 fn-)bs ns noted fn the same table.
Qp'lying a 30gf. increase to the 23098 fn-Ebs peak dynesfc torque &feb al reefy has a'3% erst case conffguratfon factor; the peak dynaxfc torque usfag the factor froa afr tests mrks mt to 48,505 fn-lbs, wll @bere the 27,NO fn-lhs des fgo torque Aa acceptable approach to the staff fnstead of. the coeservatfm erst case conffguratfoa used Q the lfcensee seal@ be the use at'pproprfate ~enfc closurefor each valves fnsta3)atfoa cosffguratfen coupled Qth torque coefffcfeats a restrfctfoa oa valve openfeg Deaf i!$
'.laf valve fnstallatfen fnfoeratfon ms not provfdeci Nrectfoa of flm.
- 2. Nsc dfrectfon.
for each valve shah
- 3. Curved sfde of 4fsc, upstr'earn or 4oenstrean (asya~etrfc dfscs).
- 4. Orfentatfoo and df stance ot elboee, tees, beefs, etc Hthfe RO pfpe df aNIRters of viilve.
S. Shaft orfentatfon.
- 6. Nstance bet~ val ver.
~ ~ I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ - ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
~E '"..-". '.4.2 As deaestrated $ n 4,1 of this report, the terst case geanetry at lative a~'les of va'l~ opes1ags can price wry h0gh torques that ~)d be con-sidf rab>y larger than the seating to~..5~se dynamic torques shogld be . used fn.the structvral analysis (Ref'erence 8) insteH K the seat'5ng torques.
4.3 Y'alve'presses e rat$ rgs ed- a static press'-e analysis are'et addressed
. $ n the suberttta'ls.
provide this $ nfonat$ aa for each of the va1ves<< 4.4 Reference R fncludus plots of floe rata versus tine fran LX.A initiation for the 24-fnch 3n-inch valves veintainod fn a full open po'sition .The I-*- be deleted and abscissa incorrect)y includes vail c1asure f'rm Hecever, the analysis fs tet affected-
~ to Oo, Rich Auld 5.0 Suwarg Nh trave caarpleted our rerum of the infnmat$ ie submttid'ta date, concerning the operabfli of the H-$ nch ed 30-inch valves used fa the carrbtiemnt ptn'ge and vent cyst~ for Qhshiagtan nuclear PH)act 2'. lk find ttet the informatics'sube)t~ for tha 24-inch and 30-inch valves cHd not deaenstrata that these valves have the ab$ 7fty to clos4. against the M1dup crf press~ <n the eh'erat of a 9BQLXh fron the ful1 apeh position. Paragraphs 4.2, 4.2, and are the bases for these findings. For this reasce, the 24-inch and 30-inch va1ves sold'be sea1ed c$ asaf in accordance Htb SRP Sectfce 6.2.4 and 2
TlI~ 5.f. FMrthe~re, these valves should be verified to be closet at 'teist ofhce cvog' da)$ + v
CONTAINMENT SYSTEMS DRYWELL AND SUPPRESSION CHAMBER PURGE SYSTEM LIMITING CONDITION FOR OPERATION 3.6.1.8 The drywell and suppression chamber 2-inch exhaust isolation valves shall be OPERABLE and: Each 24- and 30-inch purge supply and-exhauae-iaaiaaien-vabre-shall be closed during the time period:
- 1. Within 24 hours after THERMAL POWER is grehter than 15~
of RATED THERMAL POWER, following startup, to
- 2. Within 24 hours prior to r educing THERMAL POWER to less than 15'f RATED THERMAL POWER, preliminary to a scheduled reactor shutdown.
- b. Each 2-inch purge valve may be open for purge system operation for inerting, deinerting and pressure control.
- c. Each 24- and 30-inch purge supply and exhaust isolation valve shall be limited to open no more than 70 degrees.
APPLICABILITY: OPERATIONAL CONDITIONS 1, 2, and 3. ACTION:
- a. With a 24- and/or 30-inch drywell and suppression chamber purge supply and/or exhaust islation valve(s) not closed, close and/or seal the 24- and 30-inch valve(s) or otherwise isolate the pene-
. tration within 4 hours or be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours except as provided for in 3.6.1.8.a.
- b. With a 2-inch drywell and suppression chamber exhaust isolation ralve inoperable or open for other than inerting, deinerting, or pressure control, close the, open 2-inch valve(s) or otherwise isolate the penetration(s) within 4 hours or be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours.
c'ith a drywell and suppression chamber purge supply and/or exhaust isolation valve(s) with resilient material seals having a measured leakage rate exceeding the limit of Surveillance Requirements 4.5. 1.8.2, restore the inoperable valve(s) to OPERABLE status within 24 hours or be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours. WASHINGTON NUCLEAR - UNIT 2 3/4 6-11
CONTAINMENT SYSTEMS 4.6. 1.8. 1 Each 24 and 30-inch drywell and suppresion chamber purge supply, and exhaust isolation valve shall be verified to be closed at least once per 31 days.** 4.6. 1.8.2 At least once per 92 days each group shown below of drywell and suppression chamber purge supply and exhaust isolation valve with resilient material seals shall be demonstrated OPERABLE by verifying that the measured leakage rate is less than or equal to .05 .a L when pressurized to P . a Valve Grou Maximum Leaka e Rate
- a. CEP-V-1A and 1B .05 L
- CEP-V-2A and 2B
- b. CEP-V-3A and 3B ;05 L
- a CEP-V-4A and 4B
- c. CSP-V-1 ..05 L*
CSP-V-2
- d. CSP-V-3 CSP-V-4 4.6.1.8.3 Each 24- and 30-inch purge supply and exhaust isolation valve 70 degree open limiting device shall be functionally tested at least once every 18 months.
- These valves are tested in parallel with the maximum leakage allowed for a single valve applied to the group.
** Valve operation as provided for in 3.6.1.8.a shall be under administrative con rol only.
Internal Distribution T Harrold - 982A Docket Fi1 e - 956B bcc: WG Conn B&R RO Martin - 927M kt/file - 994E NS Reynolds - D&L Powell - 956B PL2/LB - 956B PK Shen (JMY) - 580 JDM/LB - 927M SI Stevens - 956B GCS/LB - 340 WW Waddel - 9670 sf (2) JE Rhoads - 9670 WNP-2 Files December 8, 1983 Docket No. 50-397 G02-83-1129 Director of Nuclear Reactor Regulation Attention: Mr. A. Schwencer, Chief Licensing Branch No. 2 Division of Licensing U.S. Nuclear Regulatory Commission Washington, D.C. 20555
Dear Mr. Schwencer:
Subject:
NUCLEAR PROJECT NO. 2 QUALIFICATION AND OPERATION OF WNP-2 CONTAINMENT VENT & PURGE VALVES
References:
a) Letter, A. Schwencer (NRC) to R. L'. Ferguson (SS),
"Request for Additional Information", dated September 16, 1982 b) NUREG-0892, WNP-2 Safety Evaluation Report, Out-standing Issue No. 26, "Operability of Purge Valves" c) Letter, G02-83-170, G. D. Bouch'ey (SS) to A. Schwencer (NRC), "Vent 8 Purge Valves", dated February 24, 1983 d) Letter,'02-83-550, G. D. Bouchey (SS) to A. Schwencer ~
(NRC), "gualification of WNP-2 Containment Vent and Purge Valves", dated June 22, 1983 References a and b contain NRC .requests .for information regarding the WNP-2 containment vent and purge valves and References c and d are the Supply System's responses.'to the requests. ",:These concerns have resulted in a proposed Technical Specification Limiting Condition for Operation (LCO), for WNP-2 (Attachment A)., This LCO would seriously impact the WNP-2 plant's ability to properly carry out initial power ascension testing and operation. The purpose of this letter is to bring to the NRC's attention, additional infor-mation concerning the Supply Systems action to resolve this issue and to propose an alternate Technical Specification LCO (Attachment B). This LCO'is consistent with the LCO that provides for the drywell and suppression chamber atmosphere inerting (Reference Technical Specification 3.6.6.2) and will allow compliance capability. AUTHOR: FOR SIGNATURE OF: SECTION FOR APPROVAL OF ' d APPROVED /P DATE
A. Schwencer Page Two December 8, 1983 QUALIFICATION AND OPERATION OF WNP-2 CONTAINMENT VENT 8 PURGE VALVES The Supply System is aware of NRC concerns which resulted from the staff's review of references c and d. These concerns have been discussed with the Equipment gualification Branch and their consultant. The result of these discussions is the Supply Systems commitment to limit the valve opening angle to a point that provides a maximum air velocity equal to or below a Mach number of .3. This corresponds to a maximum valve opening of no more than 70 degrees (with full open equal to 90 degrees). Appropriate valve limiting devices will be installed prior to exceeding 5'A power. A revised package detailing the field modification to limit valve opening and demonstrate that the information provided in references c and d is appropriate with this valve opening limit will be provided by December 16, 1983. Based on the Supply System commitment to limit valve opening, it is understood that the LCO which now requires that they be 1'ocked sealed closed may be relaxed. Provided in Attachm nt B is the Supply System recomnendation to a revised LCO that would allow Safe Operation of WNP-2 with the subject valves appropriately modified. The Supply System's planned December 16 submittal will provide the appropriate data to address the concerns now in place. Should you have any further questions, please contact Mr. P. L. Powell, Manager, WNP-2 Licensing. Very truly yours, G. C. Sorensen, Manager
-Regulatory Programs JER/tmh ,. Attachments-4 cc: R Auluck - -NRC WS Chin - BPA AD Toth - NRC Site R Wright - NRC D Hoffman - NRC F Eltawila - NRC
ATTACHMENT A CC Cu.rri.OV CGNTA<.'i.'.<chT SYST=MS "hh ~y. s"fiU~Jf'r PPg'ir.'f!j ~a~.I DRYWELL ">O SU'7PRE":: ./ CHi4~/BE& 7"RGE LIHITIHQ CONDITION FOR OPERATION 3.6.1.8 The drywell and suppression chamber 2-inch purge supply and"exnaus:"---- isolaticn valves shai'. be OPERABLE and:
- a. Each 24- and 30-inch purge supply and exhaust isola icn valve snail be sealed closed.
Each 2-inch purge valve may be open for ourge sys em coerat.on for inerting, deirer ing zna pressure con rol. APPLICABILITY: OPERATIONAL CCNOITICHS 1, 2, and 3. ACTION:
- a. With a 24- and/or 30-inch dr~e11 and suppression chamber purge supply and/or exhaust isolation valve(s) open or not seaIed closed, close and/or seal the 24- and 30-inch valve(s) or otherwise isolate tPe penetration within 4 hcurs or be in at leas HOT SHIJTOQ'i'd% within the next 12 hours and in COLO SHUTOBr'H within the fol cw ng 24 ho rs.
With a 2-inch drywell and suppression chamber purge suppTy and/or exhaust isolation valve(s) inoperable or open or other than inerting, aeinerting, or pressure control, close the open 2-inch valve(s) or otherwise '.solz-e the penetration(s) within 4 hours or be in a least HOT SHUTDOWN 'wi Din the nex. ~D hours and in COLD SHUTDO'~H wi nin the following 24 hours.
- c. Nth a drywe11 and suppr ss',on chamber purge supply and/or exhaus isolation valve(s) wi h resilient material seals having a measured leakage rate exceedir g the iimit of Surveillance Requirements 4.6.1.8.3 and/or 4.6.1.&.4, restore +he inoperable valve(s) to OP&ABLE status within 24. hours or be in at least HOT SHROOM within. Ne next 12 hours and in COLO SHUTDOlA wi Din the .ollcwing 24 hours.
t SURVEILLANCE RE UIR~EHTS 4.6.1.8.1 Each 24- and 30-inch drywell and suppression chamber purge supply and exhaust isolation valve shall be veri ied m be sealed closed at least once per 31 days. 4.6.1.8.2 At leas. "nce per 6 months on z STAGGEREO TEST BASIS each sealed closea 2~- and 30-incn dwell and suppression chamber purge supply anc exhaust isolation valve with r silient mater '.al seals shall be demonstrated OPERABI ~ by veri ying .hat the measured leakaoe ram is less than or equal w 0.05 L when pressurized to P . 'rlASH !ia<i"N NUC~+R - IJNIT 2 ~/4 6" '
C NTAINMEHT SYSTBtS JRVEIL&NCE REQUIRED".EHTS Continued) 4.6.1.8.3 At least once per 92 days each 2"inch ~r..~el'--ana s'-ppv ssion chanber purge su"ply and -exhaust iso'a ion valve witn resilien- m .er al s al shall be demonstrated GPERABI c by ver.'fying tha- -he "easured leax ge rate is less han or eaual to 0.01 La linen pressuri ed to P .
.~ '7=,. Vyl+ ~- ~8 "k ~ ~'ASHINGTON NUCLEAR " UNIT 2 3/4 6-32
'l ~ ~
ATTACHMENT B "DRAFT LCO" CONTAINMENT SYSTEMS DRYWELL AND SUPPRESSION CHAMBER PURGE SYSTEM LIMITING CONDITION FOR OPERATION
~~
3.6.1.8 The drywell and suppression chamber 2-inch exhaust isolation valves shall be OPERABLE and:
- a. Each 24- and 30-inch purge supply and exhaust isolation valve shall be closed dyring the time period:
~ >
l. g ~~ Within 24 hours after THERMAL POWER is greater than 15> of RATED THERMAL POWER, following startup, to.
- 2. Within 24 hours. prior to reducing THERMAL POWER to less than 15% of RATED THERMAL POWER, preliminary to a scheduled reactor shutdown.
- b. Each 2-inch purge valve may be open for purge system operation for inerting, deinerting and pressure, control;
- c. Each 24- and 30-inch purge supply and exhaust isolation valve shall be limited.to open no more. than 70 degrees.
APPLICABILITY:,OPERATIONAL;CONDITIONS,l,2, and 3. ACTION:
- a. With a 24- and/or 30-inch drywell and suppression chamber purge supply and/or exhaust islation valve(s) not closed, close and/or '.
seal the 24- and 30-inch valve(s) or otherwise isolate the pene-tration within 4 hours or be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours-except as provided for in '3.6.1.8.a; C~
- b. With a'2-inch -drywell and suppression chamber exhaust isolation
,. valve inoperable or. open. for .other than inerting, deinerting, or'pressure control,"'close the open 2-inch valve(s) or otherwise isolate the penetrati'on(s) within 4 hours or be in at least HOT- , .SHUTDOWN within the next 12.hours and in COLD SHUTDOWN within the fo11owing 24 hours.
4 C~ With a drywell and suppression chamber purge supply and/or exhaust ~ FO o ~
'solation valve(s) with resilient material seals having a measured leakage rate exceeding the limit of Surveillance Requirements 4.5.1.8.2, restore the inoperable valve(s) to OPERABLE status within 24 hours or be in at least HOT SHUTDOWN within the next l2 hours and in COLD SHUTDOWN within the following.24 hours.
WASHINGTON NUCLEAR - UNIT 2 3/4 6-11
CONTAINMENT SYSTEMS SURYEIl LANCE RE UIREMENTS 4.6.1.8.1 Each 24- and 30-inch drywell and suppresion chamber purge supply and exhaust isolation valve shall be verified to be closed at least once per 3l days.~ 4.6.1.8.2 At least once per 92 days each group shown below of drywell and suppression chamber purge supply and exhaust isolation valve with resilient material seals shall be demonstrated OPERABLE by verifying that the measured leakage rate is less than or equal to .05 L when pressurized to P . Valve Grou Maximum Leaka e Rate
- a. CEP-V-1A and 1B .05 L
- CEP-Y-2A and 2B
- b. CEP-Y-3A and 3B .05 L
- CEP-Y-4A and 4B a
- c. CSP-V-I .05 L "
CSP-Y-2
- d. CSP-V-3 .05 L +
CSP-V-4 4.6.1.8.3 Each 24- and 30-inch purge supply and exhaust isolation valve 70 degree ope'n limiting device shall be functionally tested at least once every-18 months. t.
- These valves are tested in parallel with the maximum leakage allowed for a single valve applied to the group.
Valve operation as provided for in 3.6.l.8.a shall be under administrative control only.
4A r7ASIG'iGTON PUBIC PO4 ER SUPPLY SYS'I 'd lit g)I' t 7 T~ ~ ~1+5 (
~ '~P ~ /ID 361104 fONEHT HO, CSP-V-l CSP-V-2 CEP-V-lA, CEP-V-2A COMPONENT DESCRIPTIOXi 30" Cylinder Operated Butterfly Valves t
BIF MODEL NO1 A-206763 MANUFACTURER EGUIPMEHT CLA~SIFIC*TION1 Q ACTIVE UPAS IVF. SEISMIC QUALIFICATIONREPORT REFERENCE1
- 1. Ci na Ener v Services Re ort No. 0 .01.F "30" Cvlinder 0 crated Butterfl Valves",
Rev. 2 dated 6/15/83.
- 2. 'WPPSS Su lemental'alculations, EO-02-83-11 "Final As-built Review of Pur e and Vent Valves (BIF)"
EN V I RON M KNTALClUALIFI CATION REPORT REFEREN CKz Certificate of qualification is. for seismic/hydrodynamic and postulated LOCA conditions. THE ABOVE SEISMIC AND ENVIRONMENTALQUALIFICATIOHREPORTS HAVE BEEN REEVALUATED IN ACCORDANCE WITH TNE CURRENT HRC SEIS'MIC AND ENVIRONMENTALCRITERIA1
-~l I EEE STANDARDS S44 (I S7S).
USNRC REGULATORY GUIDES l>Z, 7.100 STANDARD REVIEW PLA 5DNt S lOt ell 4 NURKG<SSS THE ABOVE COMPONENT HAS BEEN FOUHD ACCEPTABLE FOR PERFORMING ITS INTENDED SAFETY RELATED FUNCTION WH- H SUK 'EC i ED TO THE PLANT SPECIFIC-VjBRATORY AND ENVIRON)4ENTAL LOADS, Hark Scott 12/14/83 REVIEWED BY
- 12/14/83 Dennis Armstrong c"T'2/14/83
~0 I ~jf ~~ ~ KASHL4GTON PUBLIC FO>> r R SUPI LY ST PiI:QC:(LIr lC.'. I i0 C".'. TJHC .:: C: D 361106 CSP-V-3 CSP-V-4 CSP-V-5 t CSP-V-6, CSP-V-9, CEP-V-3A, GEP-V-4A COMPONENT Hot COMPONENT DESCRIFTIONt 24" Cylinder Operated Butterfly Valves
)(DDEL NO, A-206765 I.IANUFACTURER'QUIPMENT CLASSIFICATIONt Q ACTIVC Q tASSIVC SEISMIC QtfALIFICATIbNREPORT RKFKRENCdt
- 1. C na Ener Services Re ort No. OT;01".F, "24" Cylinder Operated"Butterf3P'a3wes",-
Rev. 4, dated 11/'ll/83.
- 2. MPPSS Supplemental Calculations EQ-02-83-11, "Final As-built Revie" of Purge and Vent Valves (BIF)"
ENVIRONMENTALQUALIFICATIONREPORT REFKRENCKt ated LOCA-THE ABOVE SEISMIC AHD ENVIRONMENTALQUALIFICATIONREPORTS HAVE BEEN REEVALUATED IN ACCORDANCE WITH THE CURRENT NRC SEISMIC AND ENVIRONMENTAl CRITERIAt
~1. IEEE STANDARDS 544 (ISTS) ~Z. USNRC REGULATORY GUIDES 1A2, 1 100 S. STANDARD REVIEW PLAN SD>, S.la S.11 4 NUREGASSS THE ABOVE COMPONENT HAS BEEN FOUND ACCEPTABLE FOR PERFORMING ITS INTENDED SAFETY RELATED FUhCTION 'HEN SUBJECTED TO THE PLANT SPECI F IC VIBRATORYAHD ENVIRONMENTAL LOADS PREPARED BY Mark Scott X~rf *" i2(i~ist 'I I
REVIEWED BY Milon Mever p r, i 12/14/83 Af'PROVED BY Dennis Armstrong I 12/14/83
WASHINGTON PUBLIC POWER SUPPLY SYSTEM CALCULATIONCOVER SIIEET SHEET OF PROJECT DISCIPLINE CALC. NO. CONTRACT MCOI W~Y'3dA.L.>miC.AmO< EQ-oz-a3-t I SPECIFICATION QUALITYCLASS STEM NO 2&o8 -8 EQ IP E P EC CKP ~ C5'P CBP-'V-/A,ZA)>~)~) +&V'- I- I) 2) 3,4)%,6)QI SUB C CO<i~) 0 V5KhJ II P E<W R~ I zvv P <w Su&nAmw p Fi Aa~ ASm OIL.~ LO+X 'RWI tM ACTION REQUIRED
@SAR CHA~GE Q SPEC. CHANGE @OTHER tIDENTIFY BELOW) -e ~ mam k)R'c. m adI~. .M~V R)cc 4=. UBMl AM~
ATTACHMENTS
@COMPUTER PRINTOUT CIVERIFICATION HE KLIST O HER N VERIFICATION NO REASON APPROV EDIDATE REQUIREMENT TYPE OF CALCULATION REMARKS UPERSEDES 0 PRELIMINARY SUPERSEDED BY g FINAL REV. NO. RFVISION DESCRIPTION CALCULATIONBY DATE CHECKED DATE APPROVED D TE Hlzlc (M~
WP SOS R4
0 Calculation Sheet Project Prepared By: Date Subject Checked By: Date gr~ ) ~-Ib-g System File No. Wa-r3 1
~-ow-a-Analysis No. -I l Rev. No. Sheet No. // yt Q4;LC BLAT-l~S 8tp 730TrERa( Y V~deK l Mm or- Ccc~~s ~~i ES f P Zmz~~s At Lou3P'B~ K~KSGE'~
ptO 1005.00
l Calculation Sheet
/
Project Date (a a- 4~P T7dd~ixz~c Checked By: JQ ) g Date I + Syste Job No. File No. otic ~ l/ceufs" Analysis No. Rev. No. Sheet No.
-n>-a~ -Il ~He Co~~<4M~~ U~w pc~ Pdgrm /
5MQa
~a~oR~ (Z~ l 7) ~l ~~ Pc)K'~i+
GOAL < i~oATlo4 ) p Co~7 L I~CE
~~ ~ w~( wM~~, d~T TC cRQ~F AHm ~O ~ 04s Ag~&4 gP t d~. ~QG ~"rjaaS~ ~L<dt.A~DWZ u3~w &~ Rvlc=-u 8-nJ'to Ncaa tw(~ tA -H4w ~L.~u3jw P WP 4 Y'g tS ~At OA~ ~I -5owc-L REMA< ~KSS CoWSGZUATl5fA W(PAt ~ BQ(L-i ~A~lpJr'CCEL~-
AmnAs. ~he'u~~/44 awe%~ u)i ~ ~-W t oIQWAR~ W tM ~E REQQLRE~ gRC At-Mu3At50, C+GQC.L'cP5 l od
~~ ~ULwlWc>
kt>
~~S~ ~.g.~dEs Pros Xod~
Dl5E
~ ~~~ 4/ALVB TR~ A~MW&~ ~E ~ ~B~ ~it ~d~~ ~Un lmarJS. ~pe- K~Qt ~rJ4 ~Zc Ga~ YOU~
LOC.A. ~w j O'Dd c~
~was AL t CAS~ SWz.S Cod'D (~o<5 AS i&'po'SKAG, Eg ~e ~a Qog.Mr ME'J+C L
~w! Calculation Sheet
' project td)QP-Z \ ""I Ii /sr Subject t '6~i.a-- ~-r.JI ~~~Q~Cent3-Checked By: ~,~ "" ~-)s-~ )
Syst m I j Job No. File No,
'jSoLmma3 '4aM~ C,Fp~ CSp Analysis No. Rev. No. Sheet No.
QQ 7 -9. -I( 0 rI Ki~~. LM)4 ~ AAzo ~~Mt+. ~WE. C'RtS, t-Y t I WFR 'P'M AN~ "BQTTPK-
'P4"( V A,i-ttS Are M MS I) 5 f R, EfF ~-v+-7 )
WW4e~ap A~&W r !~~S,.) (~C., rl PY<A~t.C ~DR.a Jr.- CAI C QL-amber ~P
~l <<V af JC, t-I-'f fYf-~WC ~~ -Z 72-3W K,DI a. ~ fbi F P(2 -Z 7235,WM~>eA P8 I- Il WSOI Va~ ~+V rC Ma P<<~~ON<<'fJy~ff, PBZPOA~)F I r AV704 a7= M II CY'D(4~ ~;; ~ ,I r,. I rf ' . GRAN>"-A~a 130'T..rl~R Y,. fJ~
t~ T=sR, C5P-'fI-3I4I5,Co ~'q ~IJr r EF-'V-3I-t 4Af ~
~7",o(,F, 4I+ <pc /IQQ ) <<c<+
FQeV-C'r 5~WV IC E:-S'.
%)WA~ A~a >it w Ace.~~W~od'S iaIJ H.G OP'F I ~W E~ 7 ~j F l EST'~t-T ~V IJ~tC (,Oa4dci LOSS ~~ ~G nW MaW l~
vw= %~=re'Psc
~~L,)IJZ 6 ~gc9evzsusW>~tc~~ .
Wcft-~~~ S -ZII-BZ klo. f ~ octo-+3 AY~'DYIJIIMIC hA'0 ~mt
~rf~w OSS %68T cd 12'- )5o~ EmM.ec t'A~Qt=-. u) vH Dt z~ett=r 6 DrJV~~ HWPl- PHD) LK ELF~bA &S~~.
r 1000 00
Calculation Sheet project Prepared By:
~ / Date k- vdwmo~ ~6~ M Subject Checked By: ~,'~ Date )a-js-tz System Jo No. File No.
n o )6M%> c csV Analysis No. e'e ~z mr-< f Rev. No. Sheet No. a I/
',,Aw<c a ~6 ~sMm M~rsQ ~l=
LY 4 Op
~W ~GPSS q %~1K )
W lP oc Y ~MR'=74 7 W~p'p/~~M 4 ~o ~ iver~, lac.. r l K3J iP'I-(~~i GELshL (c ~6 t410I2010'c<~ic
~~(3~ lt t~~j")~ ~T QO ~Y t thJUN~ ~~ opreRo ~Qqtalc~v'6~85 C.>P-M- l .',z W> CPP-V'- I A ~ zA 'Fa m W~r DS,C(.F, Q lg BC / l04,C<sa~
r
+QE5KC Y Q~dl~~. 1t 1
4 t 1000.00
Z/F Zu7TERFL Y Co~rA ~R'6.E /g~ VAc >J~S C CJ 0 LOCK FLow 7ot-c,u~ + ate' CCI C CO 0 0 VA,LVE SE ATlhlb Vo<GQE'= 4- DOE CAt C'0 CAtC D mPmS P g~OVJABl E 5TRESS FAVL Tt:-'P 5TR.~S FAVL.-r EP
,4W MgC'l T tt=~~t+ 4~
VP Lve/Ore~ COMT-~ ~~T' S
~ rBdst ~ SHE'fCtC; .9&'Fv Pea,Cd O'P ,9T=v ,&Fv gyr g cSQQP+, ~
cCI
+ 5'Pl'AkteC oF OF C C t 6
B~DzWQc Sm ShFEP( Qc-.f5+PQZtfl g( g~ l 5 TRU)40lal 1 Min4g 4I04 S'2 000 /OOOO .4 4 4IO4 IZOOO 2.9 ) 8OOO +d. ~A~Exo 7(gs 98oo I.Z /3950 /,7 9Ãoo /.7 I 595O Z.5 C I Z 0 ~lYa LP~ ~ooo 2 p7 shoo 40 &5 (9 zWOo >oooo g 7 MAtt4 SHAFT'7' 5 OOO geom 'l.t'28' 15 g7OOO Z.g DRwG Ron '35Z3O 3:&ooD Wgooo 32907 ~gooO ] t (~(oeCs) ) W35'2 M O EAw 50Ds Z78ce 27370 nW(v) 74-3
/.t'4900 /C t gZ T'C Z
0 QIP a CCC Lp.~ M~AY ) (9&Z I(oooo z. t va)4 OdO 2.0 z4ooo s, / tD C 0
+Hppw& Weoo 9 &37 /8Ex'.7 (Q QOO Cc n
VAt va'~<pao /oem'8DDO /O~ (8 QGG CCC Z 0 0 CCC CCC M C t C ~ 5 A>5C BotT ~ 5)M A~ay,ELK ~5'-I.9'44~sz ~@ P zZc
<<<<h ~ h.C Ctah<<t.tCCth<<<<h, .~CC~ht~Ch' Ct) D t5tF WJTT~FL C CorJ~It IM~~~i PORC" E'CI <~m 't/P ggt-- C 0'tt 0
VALVE SEAT'Id& 'TOWauS W EVE'OCK STOIC~S FLow<orc:ewe ~ weE'0 0 0 CALC'D It LOggg CAI C' e-TRESS ALt OVVABt E S YEAS WORNI>XL F'AVLTD FAN.TED VALvE/C7rc~tca 5
~ '- bhaa.td OF Ice RCtd T'Q4StQ S ~Spy%
Nl>N<< t<<I hk CCC'I 0
'l sDF CO%7 ORAT' g~PCChtg OF'FCM 'B~ BEAR t ttC CDF'hee~ ~ ~~Y gtC.F'iZUQACOA 6
Mt&S Z I'95 IZ<DO /Goods ~.z Z.I55 I ZOoO /9 ooo 8. z l C .
~A~BW TIROS a44S e roO 7D39 C /59%O 9POO I. S IQ )QO 2'.O Z
0
~IYK'RVHc' I I O'9Z Wi>~ z. z 3t OCO s.z g4ODO z.c '3c oem s.9 MAtH 5HAFl 205Z7 /8OQO .e8 2.7OOO ( 90oo g '7ooQ ).9 Delve Acro >a84~ gt'hio Jock. 3z S&o > &.ping +4ocG /.7
~ ~ e3C 8(S) 8003(5 EDm Boas see<(4 .9/~M 4I ggi8 (~) <oem'.( Cit 0 Z st. 0 LEvER. WKLY 9504 CD
/ ooo (et 1.7 24ocG z,6 /&ooo g g 74OOD B. 0 CD SHrom 4 WaZ IZS'e7 /Bo~ (2~7 /aooo cC- % EPR VALE I $ 277 /gdZ3 /9277 /oooo /,C4 Z
0 0 0 C
Calculation Sheet Prepared By: Date U3p~>- I z J>3/9 > Subject Checked By: Date A.~AMDT ~Q<GOE: ~~,~ ~~ ~ l Job No. File No. l e) mme kt /-t dim ~'P czP Syste~ / Ua U~t tJ <Amer~ Analysis No. Rev. No. Sheet No. ea -oz-83-ft R AR u oa>R>R S Q~aaiaL. ,Sm~~S~s COW~N~%'S MAXt '.Su .4s .gS
~~At-tto0 R$ 4$ 'A-27$ 75000 /zpoa ( 8 ooo g7 QOQ
(>'!4-27(o, 350 Pic% 2:j,) 8)7/0 lN<~ lg&OZ (CilZ-g C+)
~~-~) (ay,g>>~O) (@7 QOQ) (p zoo) (gogzs)
(:c 27'k k"~>> Qo)os go,os (4, Goo zgooo g t>> OOO Q4ttQ SAAW-~ So+79 :g O> cy-)O tzcee (g ohio> Z7~O R.T (gy,'~so) (r'~~ ) (~3~) (/gsso) (z~z~) g zoo'F
- 90) 0oa 1
(/ OR~ 3t>>ooo Qpooo &lOao lt I A,-Ng g/ OOO /og i ooo 5'Rfdo 48mo 72900 A= +Q) O~ 4 OpO /0.ooO oooo QQOOO i ,B Fv Wiles~~ Nlu.C 6'"C ox>c Qg Ooo /oooo i/<~~~ Z~.MB~ &OOOa >>'$ OOO
- OJ'Of<<Eo<<CCIO+j
+I CI l '9 4
h 0 \~ Ott M' I 'At 1!I Itff rZ HH Ff "-'..H IHI:":-!!iPiHH
~ tt HH iPII HP: jm!I hjj Vtt Wtt \ <<44 ti<<
tt ~ 444~ I ffft ttff 8 HPt jtw!IH AP 8 Vd 00
~ ~
1
~ rC W4 4+ ~ 44 ~W +04 14 ~1 ~
0~ \
~ ~ WW tt4 fg $ !f ~ I ft !Bf ~ 4>> Ki HP '.Q H! !Pi, HH HB mj B "B. ~ <'B I fl tto !It! p+i tI4 ASS 4+ Nf I I PH jiff ! !IP V 010 Q <<t 0<<
V+P ttt ipj Vtf. Wt ~ \t4 Hif A.'- .A'~Tl 't4 H'TO Q CLQs @dan A ~ Wt
- Vy. +
\ Sit ~ 04 !B>> 'I mj tt I>> R 041 ~ ~
g'ji.""di'fil'-.-SI+fg Hft isH Iff Bi H." I
~ ~ 4 ~ ~0 .- ?Td + I ~ !IIH ~ I?! I BH tl t ~ " '="ii f:."i!jr'.". 44 ~4 4 4 W! ifB jm HH I <<4 !sjj Ph RPSH 44 it<< I'->> ~ ~
4 1<< + f 0+I I ~ ~ ~ OS '11 C :;!: ?ji'4V
+14 4
Bi! !It! HH f4-41 ~ i <>J-11 PH HH '!iP !IH $1 tt !P! !IH Hi<<! jm jjij IPI P!I sf IIII I $ $$ . 01!0 ',ALWV .'SE'V !t<< hH jm IN !Pj I 4- ~-
,4 IJ> Hf<
Of Pt B" i!H I S$ 0B tf."", 6":i itt O", t
~ ~ ~~ ~
4~
~ ~ I Ir-'I ~4 1 ~
fito tfri i:";. Ii~ 41 HH 4 0400 Hsj!
~lo ~
H!I j!H
~ 4 I~ !IH iii!
tf If<<
!:.t t.ff fhjj jjit !I!! I';Ij l'1 i!if ~ II ~ ~ '" ~
iitj il
! i!H .DU, 9 t'".Q, O,RQUE- t)tsc. hff+ ltio 1 tiff i;L'Pf.;. W+
ISW Jt<<~ ~ V.l 8,-;FL OW (Sl .Ti l4b 2%234) Q t:B t'.;t i!Bit z: ftf'p 4 .. io t I i 4
- 4<<t t tt tttti trio 1 ~ 44t Itt ~W Hh jm p!I tm jfgo IV+I roti ~ t4 ~
OS! fttt It'>>I. 0$
'wt ssv ' $ 11 ?Bf 14!Hvi ihi Im ~ >> 4 @t <<tf -f???Sf . Itro wis f $$ f St!4 I~ $ 4 4 I +
I << :!i~*?!HP.!N
~
W gt
~ Qt ~ ~
toff Iz! Vf HS W ~ fii ~~ 4
+' +t ijH HH h; ffjf!::0 BH !jfjjffB 0 4t 4+ I+ ~ .
twt Ctt >>44
*t4~ !% jt<< t~
f- . '~s IZi BH!I HP. f~ I I'I OtfI Hh
~
44t
~ ' ~ Pj! ~ Jf 411 f 041 ~ ftt ff+
i ~.'if} m! I!!? jh? Hjj N $ FLOIAt~l DtJQ Ebfj,QR 0 H1HO R I A E iB 0
~ If Boff K~ !9 I ! HB + ~ >>1 ~ ~ 14 ~ ~ ~4 !IB ?HB t ~ I HH!f ii '. Ip. !A 4tt Sf 8Ll: 'l mi KI I::ZiPIH V-;.'f!j tiH i ~~ ?HS! ~
OIL f ~ ~4 !!H o !Hj "SB
~ ~ ~4 ~
Sit: 04 'P ~ 1>>4 (6 litt!If!i1ttt PH!",;-I I !Isf fit f,i'ttt :'lj'imi
't 4~
LOSERS uf Si gti tot I tWO \ + f I+P
$1 ~4 44 Bw ti ttwtti p=t}B HH!fHf! I HH ~IS rfif Srtf ~ ~ ?HI H jbt Hh I~ ~ << ~4 ~>> ~
I 4>>>>~ ~ ~ WI 4 4 44 I to W~ N I!HI?%III~I
+ 4 4 I>> ~ IIr ~
ft'I ~ I+i HHH IHH HH Ij !HI
~W <<W ~ tt t>> ~ 44 -':.!'XP f +4 i ff trot it!i PoB ~ t 4 tttf Vw<<
444 otto mj HH CHh Hj!4 HH !B! ht Pf H HP,
~ \
h' Ottt gt ttt
~4 ~ +4 ~ I>> ~ 4>> 0&IV Sf ttt 4 Bpt r'"..~:As'H tW SVO It>>
Vi I IIjI?
?
l QJ <<pt ~ fff DlSC ?Hs t tOt+ t+
~+
IB hit
~
BtH ?8 hB ~~~4 tt
~+ ~ 4$
tw
~ 44 toit 4+ ~
OowK5~< F 0 t+B
'H Ht 1.H tt It ~
SBI v=-!IH i!H jm mj jm HP fm jm jm jjH HH HH HH 14 <<t+ pti Hf (Ptf:E'~K~) 1 tf g.A mj
>>tt PO>> tw ~~ .~ Ptt PH t?tt ~ >>44 ~ 44 N'011 T:5 ~ ~
fjif !Hi!I 8 ih! 11 ~0 HH I*. p!i HP;!IH P.S I 'Vi O>>4 OI ~4
~tt ~ +
trio 14 4 w tfBt to%0 ffN VVO g
~ tt f 'ti..tt! <<B ?H' pj 'B II ;:H HH FH t4<<+ 414 ffgf Pi Ptt IPj PP LH ' PtH i?BS tt +4 PLSC fHiHi ~4 tt Wtt Wtt ~ tit 0 P'KTRchH ~ ~ Vt ~ Wi it to ~ ~~ iiHi HH hH fto I ~
I?H NNN!Hj jj?3 Ptff Hj! Hjj i!B fB tot! tioit ,'?B Ht! IH Ht .N . 110 ttH !IH Itt'H >> mf jtfj ptt' ~ wrt
+
ttt
~ 'j'i Iq7 i!H I!H ijh
t r JPJPIOJJ4 4 I 2.188 >> t t~ t ekh ~ 4 W>> ~t
=HH ~
rf
~ !LE'44 SS<<4 Ht IB!4 ~ PB CP,< gk~Z-83 -ll CAB 44 P~AC O-5 +4 HB CQO I "0 0+9 S. SV MPBQ ssgt Vef I+If "@~8"psT P$ VQG>>RBTUR !j IB Hg t>>4 <<tt tet Wt\ ~ t tfBf1 tit I ti<<
SfP4
~ 44 ~ +4>> I Jt>>
44+ Hif 41 4
>> >>t4 I I ~W +~~
BB
~ -'= PB 44 ~
1~
~~
W 4 et!1 Bsj !HE 4>>t 4tit f!P jjw 1 ti ~ jj>>j=j ss>> tB,PI t 411
~.
wt
'VALY Sz X ~Z~i O.E 'j '78OOS jg LI5t%-
iB R Sot HH IBE ~~ 'B est 44>> PI IB! MM tt+ fm@ Q !L f PB jm
~ ~
PW ttt4
~4 jji "
I ~4 S. L,.g ri ~ 11 SS<< ~
-'B gt," TI.O.R j Q;, f HH <<~4 44>> ,dDNg((B$ Ht TARRY?$+ =7. ~ 'tff CCC JISM <<4 Itt t>> >>44 WW ~+ It Stre 4>>4 44 ~ 4th + W k I'.I p=j~ ~gp~r !P ff ~ +tet B ij>> IB Hto ~t <<4 Sfrt p i ~ >>4 444t 4 ~ ~ + 44 H ~
I+ re
'tt<! Z ' ~ + t ~ IIP .~t~ -. 'g ~ 4 jdj pi ~ Ht4 ~
1 t+t+ WW tt 4 Jq
~
Wt 4
>>4 44 ~
I WH+ 4 tt I R pji r Ij>> =6'I I 4
. t" << Nj isrt ijB tt <<4 4 fH t 4 \4 St 44 ~HO ~I rw iB. ~ 11 PI ~ -ikt ~ f 1tr ~ PJ ~4 I 1~
Wt+ 1 ~tt 0-;,
!HB -* rj * & 1 Potf '-.':it~ tts >>SS Bi e +ef ~ Bsf i<<SS<< ~
J W pB ~+ 4 0 4&4 ~ r toft + 0 ~ Qtt O ~ t>> ;It
- -2 =-3 + W S>>t ~
- 5 PB.
Ij
~
Br'ot HH Jht
~4 BB IB! P% Ft E EIB ii) jH! fjB BB ~ +>> jNDUCED, TOE QUE,~ <<k ~ Pji 4 fSw t>>4 OP SVasal4. ttB Pt jB!.C Pets T.=BRF EiY mj HH ! P jsjH /gal <<HIptg ml SIHilIS BB Il !St! ijH K PfB>> -2P t '
SC
., ftHj w
jHj > Sist!I!Stets! tgtt fffISIS jgf H 9 .'c LOS.FDp 0 .St ft>> jBj,": gj ~ 44 4tef jm HH W << tt i<<
~
1+ ~ ttt ft
'~ ~4 ti Sfsi t(B joj '>>B BB !<< 4SC ~ 4<< Sth<<4 .! BP 414 4 h
fftt to<< 4 4 :,= jN it="=H 4>>t Si>> ++f1 Jt i~i
~ ~ ~ 1 wii W ~ >> tent << tt Hji E!BW>> BB 1>> >>g Hti ~
tl 4<< ~ 4i1>> << 4 tt it4 I..'F;
~I ~ +W +\ \ tt+ tw <<1 Jti 4~
j'p
~P ~ ~ ~ \ ~ Wff ~ o<<ff I+tt 4 W>> +>>t Stf trh 1 'tHt I ~ ~W WI tent ~ .<<. r-\et t j:>>
I H Sffs ~ <<4 ~+ i!B jH, 5d ETB
~ t44 Btj piro ~ tt ~ t Ht>> ~ JHto +4<<+ 44 t+~ 4%4 mi HH."SH!I ~ -+tt +f io tt tt 14 S jj".! R ~ +1 p
11 t4
~
WSS 4444 K-W B" jiB Sf Pt Bs jB! BB
~I I 4 aft ~>k!Z 41 ~ r+-i ~ I>> +tB re>>4 ' Povcnf STREAM ~ ~4 4 'I 1 !'B "~4 144 Btf A'iH (~~~) ~ ~ 1 P -' +t "~ Hjj! I pt I !HI Bj rj;.iiB P 41 +
f! 14 1 St* ~ +I HH <<I~ Pjj 4 t~h ISIS hi."1 Sh W 4 ASS
.0ATLGPl O.RQ J>>J test +1 ~ ~ ~ >>4 t
t jjjs PH I f<<ttt 1 4414
~4 H
tt tt4 tt4 'I
.S;:. 4 P~P ~ ;r,,
Wt 68: Ps'f te
~4 ~ ~
I Hs hB 41 Hj jjH im S. Hjs BB 4
~4 Wif I I Sttt4 !OPEN- VP;j ~
Pjij iti! I jjjj 'tt4
~ ~ I ~ I tref \~ +~ ~ wI Lfw ceto ~
te SBE 4+1 1 ~ Si 1>> ~ tt t Hii jiiiPi riff ftd ttB <<tf 4PPPI EBi +IS! ~4
~
fi jiftt I" 1\4 Bij I' I tto j'" ht<< tftt
~ ~
t~ Pt ~4 ~ ~
>>44 !Bt jp jN B~j'i! +I ~
Hg PiSC !set HH tti St>> 1! f I t! ~~~ tsr 4i rip
!!If 'tNI ts!'
i II>>I p H<<~ ~
..I i!B ~ pj O~V aeANf ~ <<
tf +Htf '
~ttt. ttttH ttH <<+1 14! ~ ~ H4 ~ eeet ft<<4tt 1144 4 ~ >>t Htt I1 t4! eeet ~
414 >>t
~
B<<jj SB4 ~1 j~
~4 1 !H! Hi jLI HB ..j Hij 44<< ~t tt fit I +if! tl fttt i' fttj t41t ~ ~ tp ~ tt4 tt>>t ~>>'
1~ t<<J ~~ 444 ~
!.il fBI IBI ~4 fttt tg t ~4 ~ I N! j-j'H Hjj ~ 4 iiB tfft otto its !B Is!i HH gt Btt 10 httlllmeters to the Ccntlmcter ' I
Calculation Sheet Project~ Prepared By: ~ /J . / Date Ja 8
) Lu.e -C'a~ 4- i SnaS~~ 'f-fB~-
Syste Fife No. 0 asm.~nU VAc.hid CrP ~C P Analysis No. F=-a - o z-am-I I Rev. No. Sheet No. earn~ v'c was c~w~uMws mm ~~~~~ +s
~a<cmOP Ou 9( f 4~ ~mAm~~h,~ ~PeQG .
HE'ReS~ W~ c-Ac C.QC A~> 7=&(t-- ~-f A~/Z >O VAC.VCZ W <md ~+fa- ~aL.1 C>&1h.k l c A~ C8~ tV (D(JS. h t as~ C'o<z(v oa,..* /
~-nwc ~oZggZ. W Z5E Long (rJq grl QO ~GA-T7hjci / TQQQ (g.~p g7MO (W-t.e
( oCQOE (r~ ~) h L. OA-'ZO CanJZ (WOW Z
~u3 /A'~c~ loeeJe ~TDBE.~&as J4.. ~t'Z -(R~ ~~
rl 1t ~ '......,.....,.. H4-<~ ....r...../I. (A-~, .... NB/76 (d~
~o r2MS (fZavZ) 2) ~/Vw m~~Uc ~ 'RE OLFE(JL (-8d M'~58 "T&30 L G<m DAsf=-G ~r ME584~Q % 8 g f EQ 4~
I (W A QO ~~~ SuWMABY'1e&L=
~hS7ft ff-~~7 ~7T tl~ A~ CdA a( ~,
t5 f F l5~~~+m~ 'hj~u~ I( STRESS C~ M~rtOtds gt
~'nh.ham O4 'P~C. EZhh) hh hh 100B 00
Calculation Sheet Prepared By: Jn Date PP55 /P. /~~ Subject ( U M Co Mp~~~ %~~St. Checked By: y,~ Date
~ +
System I Job No. File No. lM ~nW
- Se= CEPeCSP Rev. No. Sheet No.
Analysis No. 8Q. -D2.->S-I I 0 E -I I l
~Y ~ ~AD( ~Mc&c'ccl%"c5~~ ccc&E ~tc'p~cc A~ A~L l~ ~g.<E MOM(I44 43cA ca~(~~.
Ch( t t ALA-"7M
~~ ~Wibc J.
w~~w~W S~e s=-t. ~c-lWQddtog ~tdS
~tet=
d7
~~
Au Bo~ ~%4~~ Oe -OHW W> RMQ OWt usa~ ~pa
~r ~
c&L. h,cc.m (~~
~
mc.~rA=OOAS Fg t=g l3 I HW -7V-PK- PQ~ Lo/t'~ aD j4.4(o R jz.~S z )+ ~~~, Z
. /i ~ = (<.is~ ~.eF; .si=.)~ (-r~~.)
f
\
gl ~T144 ~etc. Q3b Cg7 gbC/'KO4~C CA~~~>~> ZO WHC + WterC r(bd Qo,X<<r Ze< W/ PCCr .
~~ 7((urJ+rb&. /~L/~
DU F~ Q(IZEC,~7onJ ~ u)tu W~ oQw ~ ~r/~~ Ud j(~rzcr M l g~A(E-Z 7 M 77< c,
~m~S'.
cc c c
1 Calculation Sheet Project Prepared By: Date 5 fc /3 Subject COQ ~pdM Checked By:
'iH>> IYie~~. Date l ~-i> -'Q Syst Job No. File No. . <<-r~>m Isa~& ( \/~les C'~~~~~
Analysis No. Rev. No. Sheet No.
~A ~z. -ar-jj 1:--f Z ~ = u)~ (I/yg ~<~ / =
sqq i /g.n~> =~/oy (r /)
~go/ ~r /= 27/7 p z
Calculation Sheet
"" A'PSs Subject Syst~
C V At.V~= o~~4rM~ Analysis No. Qd'P-2 Goiw~w
-oz-Zz - j /,/ '~w-v7oU V~V(~
J Rev. No. O
~~~ CSP I
Prepared By: Checked By: JobNo. Sheet No. K l5 tg/ jwa4 g
'it').~ He.,
File No. Date Date
) / ~/I j ~-) r-u / HP 'iv/~<~>M ~o H~ ~UP ~ ~k s~7 iW ca ~
- M AC-*
~Y~~/C.&xi~ ~A@ o-DC~ WW>Me +
ZO PDr C~
-RMEA~C~L ~~ ~48 PWtS DE Ms MPI4~ ~u'a~,
I
~ = nooo II. 7r i+7>> FI (zlsr'~s:R = aye (g.@) ~.sv'070 /~ N~~~~nJ4 ~~pgg CPg grJ< ~g ~~mMOD ~~+i9F77~ ~W P~. gQ ~F R E"P KAeJsrur S
i Ar . ~ 1 ~ ~
Calculation Sheet
~ ~r ~W Prepared By:
Checked By: M t Date 9$ Subject Date
~i r'll )Oh ~
I ~Jager ]~ Sys~to C (.CPM
<<5~i~WhA~ ISQr 6'Tfd J JA Rev. No.
Ve: < Ct p'c C5p'ife Jpb No. Sheet No. No. Analysis No. VCh oZ-a5-jl 0 E-l+
Calculation Sheet '"""comms Prepared By: Date r w/J Subject U~ Co~~~ ( Checked By:
'i'le~ lV)eg., Date )0- l5'-Q / No File No.
Syste t n I Vc. 4=m C~~J9b Rev. No. Sheet No. CSP'nalysis No.
-oz -SZ-( l M -(S ~4 N- CulmCS ~br AV~Ac~ SA/s STAN~~
LS M~CdWm=-a ~g Wg~ gez ~O J oF
/I'Ri cF @c TIE s4+K Ha~, ~~ ~A'/V~ Lc;V~
CbJz MH/w u~u'u aA-e7 tw0 do z /5 ///
~&&77'4 ~~WI&4 ~77K ESZ US'/A/c v~~~ ~~~M<. ~@.~ F~/ /NlJ.C 3373< i / ~ etc-c-BAAe~ z~~rUw 5~c~s YIKE uJQ(cg /5 'OO ~
Calculation Sheet
~i s uDBV'-Z ~re Prepared By: I>> Date / / A /p>
Subject Checked By: Date R!+ r Md. I g,) ) 2-t>-6 Syg~n Job No. File No. (ca~ d J ~ J: ~<~ t .~P Analysis No. pa.-oz. I( Rev. No. O Sheet No, 6'- I 4
+AS~ &W WOE PA~t ~+~ F~~ lMVtcb Ti~c~8Ã Ol- t l + 9 Z pJ LS-(RC7'= Z) -Pg = 3> (go /I'Fez zU 19B / rC)&D l/g~ Z //C vz va14 ~] / oooo II k
j- = /./Z5 3 = z <D Z,<(C/
/7'>On-e.~1~@( /44-7 + Z9.7c 83 / q-r -3. 97(
Calculation Sheet Project
~ Prepared By: ~ / ) ~ Date Checked By: Date Subject ~~PJ'S ~ 77K~ ~ fRJ )on JY/ /$ 4' ~-tz-~p ~
System I I IJobNo File No. I lamell& t VQ Q=~~ C.gP Sheet No. Analysis No. 8'C -oz-8S- ll Rev. No t=- l7 I ~ ~blD4 ~~5s ~~ 0
~~C-~QW~ ~~~t ~+~ Q ~ 0'< ~ PJ P~o 4a kW o> ~~~.~c~ f XY~i u 4 .(I447 + zmD') (4 oo .lo.si 4;"," - /0 . a/< ~, 776 = '-/'Z&3'7 >a-c.g ;.I.l,~ I /
Pal a=/ b= Ir,= l lzlr a= (.7~ 'X )
= (4>ol ')
- 5) 7(oZ, Pc= - llzl/ IIz lf 4(l ) 6B 46,5"-Tr z z(l) z
Calculation Sheet Project o3jP-2 Prepared By:
~ ~Q Date J~ /v a~
Co J JMT +rZr ~~ Checked By: Date Subject
+, )Q. Io~g System I Job No File No.
c ~ w AA - j~~l.s Ce& c p Analysis No. a -o -I Rev. No. Sheet No. E- j8 I ~ ~dc'rr&s, S~ = = B~5'- -/godY tsv~/ -
~~
viz.<o A~~ WpZsSS Q~~( TY Wc' rznA~
~~ QG,. Q ~HOW P~~~~~ -
I
/8Qoo Fax' rtd~i~ , (p5p ~< i&daiam Lo ~ter. ~~ ~MQ~cc=- KVKs&s (g(gc ) = z f<<>~>
I ~LW c~U 25s
~Qg Co&S~<~~
8 7FAD
~a IrJ~~
m~ l~~~~~
~~~at Ae.cRC~~c' E
cga =/AT) w gg q~~ (cw'p 6 3 e ~~ ~~ gc ~-0->)
Calculation Sheet . project~ Date oJ(W-
/
Subject VAC 4 ~Cl~~OU~ Q~~( I Checked By:
+ ~ )2-tg-U System Job No. File No.
Go~77oU llew it~
~
y~ Analysis No. Rev. No. Sheet No. EQ-c2 -Br-j t L "I'9 jATOJ ~CE~~
~= 9z iu-czar s
(" L~grJ~ OQ aF- ~q ~
Calculation Sheet, Project Prepared By: Date
/=
j Checked By: , Subject Y J m W ~i R77ZEKS I "Ii jo ~ ) Tl gt <> Date
) ~-)s.-tg Syste ISdc.M~ ~~ ~T(Job No. File No.
Analysis No.
-o 2 l I Rev. No.
o Sheet No.
'-~a DIJ p~~ ~g,f g~
ts
=WpV.gb g<svs = (829$//5d) = a~a+ ~~iO<~ ~~AS ~--S 7z = I r ///'/Z /./Z5) 5z26 vsX
- z. w/c /
~.~M~ eJB 4b H ~C, ~ sZ~ 5 M~8F ~/ /c .4( ~ gg~ 4.'7D ~z
- g. g7G/
( ~ ~,~a~/ ~~its o~ ~i~; M~7 Is z ~g f//gl "wgo9*j
. /.".oos /o.sl L- zC.
815'O vz,i/
/ //85
Calculation Sheet Qt'7K' Ji JW Prepared By: Date lz rz Subject Checked By: Date g,~ v-IS-g System Ce W rrr~ ~i ISo~mrpeJ ( f UA u4% O'SF'ile Jcjb No. JQ No.
)
ia -o2.-ez - j I Rev. No. a Analysis No. Sheet No.
'~ u Wm dC w War C'~m (+let> ~)~c. S5 g]g(c ~ay = '7)&r'0, W&
z(i)
Calculation Sheet '"'"'u3 mE vJd~-~ Prepared By: Date Subject, Checked By: Date t V r-< h~ C~m~atJ~r JT ~~~., - . -, ~ +,I ) ~-j s-tz System / I Job No. File No. NatJihrrJtA~i (Sdt.AT75nJ %Pre Je 0 CWPw CZP Analysis No. Rev. No. Sheet No. E'Q -o -&3-I(
'Focal c(.o~~ ~~ l~>+~ LQi i<IIl -pko WNpcc.
CIAW A - A .
~ 778CS nW /7QC)O ~ 'B~n ~a ~
(pJ ~
~i-(pyr-7 Y~= (447 F<<> -.: /7~( ~ W c ~ 5~Po ~a+
lr-j~tzlC Qc+g t 7704
<.r~= /447'~>V- z~ /7doo (I. tzC wM/ ~.</c t + pg7sl ~z<Z (g,o~,o yp, y(W =P<z8v ~ /, //Bs >C() = -7c z8 "- / f&t' - 470$ - .4wov-(tzm)= y woke pox.
l 00s.00
Calculation Sheet Project Prepared By: Date (z- x Subject Checked By: Date I/~e CoM~&~lr c577 eK-~~ +,~ c,< IV)eg~
> )5~)5 -Q &~iHWMm.h Analysis No.
( . Rev. No.
~ IJ Sheet No.
File No. mQ -oz- S -)1
~AwFK~i&8 <<ex> ~ac.~ ~ ~~ m~W WR~ ~~~~.r~)M~
eat 4 +gal-A~K s'~~K sT pM~b lW ~K
.-(s ized, ~&48K 6') //OOQ g]J "4-~ ~ Ed'Dd C. 8K A MQs /nC G.f728'.. /7000 ><<>> ~g@g ~>
- l. qz7)
Calculation kTt t Sheet IIIIIIIIIIIIIIIIIIIIIIIIIIIIII e' Prepared By: Date mPF55 u3~P-Z y,~l 64 ~+ C9)~r j> > ghee Subject Checked By: Date Co~a)U~Y er~ MM (Job No File No System C ~~M Ma~~ Rev. No. Oc- - I Analysis No. dc, -o~ -es-I/ o Hr pX ~go Y.os I I '4 >~0>MLS U
;8) tees.00 j
Calculation Sheet Prepared By: Date Projec't y,~ + ~~ j>- ~~
~
~ Subject PaMmh j<Wt" Checked By:
~~/..'~~ Date / W oi Job No. Fiie No.
Systen)
~~4th=)~i l ~<~rj Urtrt-&~. HI 'e~W Analysis No. Rev. No. Sheet No.
ea-oz-zs- t Q W-25 by QQI Qakh.ih sr.t'. Pl ~S I o j APpltakr< fat'4)'-.AX 53ktr y)WX. >s r ~WI Ii I II Ii 'I y~e5i o.o.! P-~e o>g 5} ($- Qs LO&ol ss,fh Is
'.l-z I ),gag z \/~> , 39Ct.
or,L. da>> v I 1o~j! Je Th o~D 2 ag II rtXooVft. 4t.~Jo
.r.~.- u"s~.~~') W4, oja sI.'R 3'~)~'t-~.)~
1 SAr.v c.kV ~~I O'OOOOtO!I~MJ t
0 .o!Ilail.to'if
- I 1000.00 ~ '.'j
I': 'j gf. Jt~yg~&eg'g>>+ A~Ã>>. '+>>>>VI";;<<ftt,. -,'kNW O'F OL D S ) A l, I N
':.;."; .'.,.;;,'.".'<<4ATAl.;QQ,A+~;,.'.',j;.',"-,",
',",gNglgh6fjlgeipii id~YgON~.',".' '.
1 IY ;'C,,vftfl~ "'R~T. trvac tV K zI<>>> II ~ '
S<<'L'
'tl at
<<L ~ I IP,','"',;,
I I I V 1. I I I J I
-',ll -'rf >>
C. VI
,K.-
~ Pr It
'I fjP QI,'
I'<<
~
>>I t I Il I +- I.g
- W r.'
- 1 I ',g,( 1 400, C 48-52 "3300 ,2200 1W,', <<lAI1$ A54 AmC)3l 4,75
- 5. '2, '/32 2.)66 64.77 1.993 Wf.
- THRUST LOAD,,
- iiL. ';,Sr.. 'Ii3fgL=~.3C.;"lf
- g. / V' Subject. g Checked By: Date I/4( 4c. GMmaiJ~ C~i ~,~ ~~ ~
- r. t
- g. 0]Q
- .::.: I'.-:.'.: I ;ta! I'
- O'O- I~
- alj
- -':I::
- 0'55- I
- I
- .:.i: I
- .::'i
- I",' ~ ~ ~
- 0'30 ~ - ~
- I I I ~
- 0. 25 s e ~ s e ~ s s
- -::I'" I I I ~ ~ a ~ ~ ~ ~ ~ t ~ ~
- .I. ~ ~ ~ ~
- !I'::
- t
- I I ~ t ~ I I~ ~ .i!I 1 ~ ~ ~
- i'e
- t ~
- , ',;," t3f=-3. 48663E-3 mi f=-22319. 9 m2f =-1. 64417E-2 tt3f= 23436.6
> ' ft<<* ft, >> <<<<"W t <<tI 'r"',.IIISll5TRIAl,;.Rkl'AININC,RINe'Coal'ANY' gf ~ << Ar&rgO/gueNy' I)CORDlEASTRKKY,'i",".!fi'AQGYONI"fl8t)KNRV'07$ll., jP TELEN)JIR!.QH)N~NNAI'P I I <<I'tv r ' I I I<<> << I -~ <<<<J P. <<It<<-.~~>'~l', 43TSQOQ~DUS~R ,JIJJVi, m <.. ~ J-.t A W<<JA~,.I(.,<<f<<i((((<<JJ R f I ~WW<<J<<(((l<<<<~+<<~~- NG"'NG "":: ~ OC d0' <<Jtr', '-~ 1<<<<~.~ '.0'~ .eC4'A':II(((I(f-'.<<- '6 '~l<<4<<t- ftJ(l(<<I((, '*') 0 O ll I OROOVR DEVIL ~lmum Qottotm+dllt'.; ' ,00b !or 2000'l2 through.48 ..; ',:: -;, ',C i010 tot 2000 46 through i100 (( , Ql5 for 2000+ 1 2 thr ou ~la 200 ~-oz.-8Z-I ( t ( W~r-s -z7 I I' ~ I It 11 ,'THRuSr t.OAD<< / I( APPROX ROCKWELl'" {Lee,) I"gOGE" RING" GROOVE DIMENSIONS '<<" (," IVEIGHl'ER HARDNESS SbarII Corntr Abutmeiit CLEAR ,,-, , Jl OF, 'ANCEii I NIAFIGIA llIIOQSTlllAL tOM, FIING 'ROOYE) 11 11 L "RtMO.MO, RINGS RING'Seedard ll (lbs.I INaterlal) Safoty Factor DlAMETER WlDTH 85' ,4 2 0 'OL W 'fOL.' ', .03 '5M 88.0-18&.D 40 ".18'.22 ' .106 +.002, .'020' '4~1 '.N 16N 86.0 88.0: '110 65 :13- 4.0016 ,018 ACO', 21'09ON'" .D7 16N 86.0-88.0, 130'60,<< 70 f26 '65 ~ .018 " .022 ~~~NO, .13 . 3QN 68.6 ~ 72.0 10D ,29 ;029 ,'026 II I 1 1 .16 3QN '8.6- 72.0 280 116 ,31 1.029'= ',028 <<('vv 4 .16 3QN 68.6-'72.0 '9S 130 ~ 33 263'220 .020, '030 ~ 20 3QN 68.5<<72.0 330 170 , .36 M7 'P,CQ2 ',.029 ' ,034 NH 3QN 68,6-72,0 370 200, ' ',39 <<278 '020, 436 1 ll .30 30N 68.6-72.0 440 266 .47' I >,029 wb , 46 3QN 68.6- 72.0 '80. ,'300 .60 I .029 .042, 3QN '68.6- 72,0 . 616 340 .63 t 044 ,68 3QM I 67.6- 71.0 "f ,, 826 '40, .60" ,i '( AGO AI20"'".CQ ( '"0~'t I \75 3QM 67.6 930,, 560 .87 ',',607 "ASS a~o5 .'94 67.5,- 71.0, 7l,O'QM 1030 1, 690,<< , .74, :;563 ',039;( I 'I AN2 s XC%Q 3QN 67.6' 71.D ',,1700, 'W9, ',840; 1 ) A%I; aNOCl, ,','85 '.60 3QN 67.6 71,0 1850;,'I 1..678 AN&':, AI74 gjgw%', 1.75 2,00 3QN C 67.6-71.0 48 ~ 62 . ',, 2010; '2165, ',1'150 ,'320' ':A4,; 1.01 p ;.789', 1 ~ I -'NO: .4%01',003'.000 ,AMS ' 'AOO" 'Oil II ;( 2.50 2,75 C 48 ~ 52, C 48.62 2320 .'?ASO, ',1560 ',',)770 .1.08 '.1,15 .843, 11 'AW. 6 'r 1 , 1'AÃ0', "484:. ~'100 ', ~4k" ', I ('26,' ,C;4& 52*' 3500 128001 " 2700 'AS ~1AN7 ,IAIO ', '&0., I 52" III ' ,C 48 ~ '.3600 l.128 k I OW .C14& 52 '000 . '33' lA4,'le& &37, ",A50',"'AI55>> '+AN4 ~1$ 4,'-'550 seegy . I t ~ 'I 7.75 C 48 52 ,, 4400 4000 t,73- 8C%$ 13.00 C 40.,52-.. 5400 -5300 2AI2.'SO, AKS 1. <<874,','00 15,75 C I ',(7300, 7000 ' Fw @N8 i I 11 II ( 1 1 <<t I<< I P, ~ ( <<, A, t t( ' l' "g-" I,, gaW >hg I t I I ff I'h V-;.,';,"..- ..*..- W I' 0 I,,8 ,h K, I I ~ \ RING DIMENSIONS (((< , 'HAFT DIAMETER ~hY.5W I h LARGE ,. HOLE' C ~3C3.', FREE GIN"IETEB TIIICKIIESSt SMALL'ECTION ~ 'LUG,, SECTIOI4, DIAMETER FRAC. DEC. il ~<<~MC3 '<<~%i~ <jt.'~~ZC3, 1,, ')/) 6 1.000 1.023 ).062 26,40 28.00 26$ 9 +OH 'XE TOL. i+Aes 0 F042 .'042 .ON TOL L 116 .122 "TOI.. hs g 006 ,086 P006 .039 TOL. ~ ")68 U ,187, .)8) , TOL AI?S .078 ".078 TOL". ,, C3 ~9)2 1 '/8 1.126 28.68 ).M) .'Ml .128 '.071 ,182 ".0?8 I G)M1'IQ 3/16 ).)88 30.16 )AGQ .CSO 4,002 .')32 .072 .)82 .078 h 1/4 )h260 3).76 ).) GQ AGO .NO .0?6 .183 .078, . ',:~(P~9Q0 6/18 )h3)2 33,34 )AN .060 ,146 .ON 183 .078 I hl '4$ C3'RP 1 3/8 1.376 34.93 )I.272 ..060 'il62 ANP. ";184 :0?e. (I t '49 J vcMNCS 1, 7/16 1A38 38.61 ,)80 .086 ',184 .078 I ..a~ "<<CMCQ )/2 ).600 38.10 OSQ .168 .091 444 .')20 'I ZiM')C3. 9/16 1.682 39.69 ),4@6 .082 .'I72 i.00" .093, 4.008 WS ".126", , Q~C&)CS," 1 ) '6/S 1.626 41.28 1.603 m 180 .097 h ,WB .)2b '. "SK94c3" 1)/18 1.687 42.86 )$60 .184 '.236 ,'77 )25 , 1 , AYQ Ih .099 RWN, > 3//I, ),760 44,46 "1.818'.'1.837 .082 Il( .1SS ',.10) .)25 RC5)77', I 1.772 46.00 .082 I ;190 ,.102 ',55) 8)', 1 13/18 1.812 '48.04 1.6?6 I~ .062 I ;.192 .102'104 888 ,.'f26.'25')26; 'I 4,0) Et ',3)+%7 1 '7/8 1.876 '7.63 '1.736 h.N2 .198 I I 9 -',002 ',X~MN 1 31/32 1.869 60.00 1.819 .062 4 .108 6 ,.I26 I ,4) @GO," 2 ', '."' 2h000 60.80 .082 204 9 ~',+)N&3; '/16 2h062 62.39 )ANS, .078 WS I ~ h 111 << I p2S6 ;)2$ ; h h, Jh . Cfefi)k 2( 1/8 2.) 26 63,98 1AIG4 APS A)2 .))3 'f
t .078 N)2 <<'l) 3 I .125,'.)26 ,',@69@5. 2 "1/4, F260 67.16 2.08) ,+AI)5 ,078 ,.220 '116 ( ',j',I II ,467 J' 26/18 2N)2 68.74 2,139 >>.025 ..'078h .1)S 'j(j , @87( h j f( I 2 -3/8, , a3?6 60.33 2.19?'. '.078 .119 ~487 ~ 125 2 7/18 2,438 81 91 <<L266 .'078 WS *,007 .120 F007 468 5$ %4$ 1 2 )/2' 2.600 63.60 2.3)3 .078 Ih 'Isa <<')22 <<)25. C)C>ÃA, 2.669 66AO "NO "Msh '126 '.125 h as'A28 2 6/8 88.68 .078 1442 .127 lh '.125 2 1'f/18 6826 2ACS +.020 .078 ~)29 ,125 2 '3/4 69.86 2.643 .030 .093 .131 0 .)25 2 7/8 73.03 2.~ .C33 )33 ,)25 'e "Jtbt':.2:Cnhahsp'~arts 4AE)C30)0(;3) Q~~ )I~~,dk~l04f~~~~- I~h I>> h Il 6 <~deaf ~ .)pW cb~~ >~t EM '-~MM~Wr":~ fczB"BC4L . Q~%,M~ pnme l:~C:yMf-rf."."~rh-tf ~a ,0 Jt '~E /Bc.:Mf./~~a l F, 5 i>> C, >>'ltOOV8 ',Maximum Sodom Riufllr .005 tot 8100 100'., I 1 I r I I ,tih. I f I l 7. I R I I' I ~ '.010 tot 8100102t}rtcep :2 8 71 ae-oz-sp-tt I~ Qo ' 0 0 0 I 1 AFPROX. '" I
'lLba.) lf NGIQHT PER t000 'F RING ROCKWELL'ARDNFSS Coroar AIaitrnmt .,'tuiqi 'INQ CLEAR. AIRSICK' GROOVE DIINENSIONN "",'. " I "pooh;, f"..K4fffgL 'I rjtARQ Ilil A>>f,"QAQ,' RII>>IQ QROOVR RIVQ8 {Standard 5P+terlaI} Safety Factor , D)AMETER WIDTH YOL ,E 3.65 C 49-63 63' 48QD 21CD t.41 +,003 .048 ,+AO3 ,090, Stp4N 3.78 C 49 ~ SQQD*, 22M 1A3 .048 <<.OQD ',093 Sz~~<92 4.85 48-52 , ~rD 2400 1AS ','CC3 CG pwtcs'CQQ2 6.12 C 48-62 GAO ., %CD 1.68 1.039 ,.099 6.65 C 48-52 88QD 2 QD 1.82 '.118 .0~3 .105 Gtc,A73 8.10 C 48-52 730D 32CD 'I.69 t,t78 AQD 8.65 C 48-62 7700 3700 'I.76 MSR .120 8@2-t@f 7.15 C 48-62 SCQD 4CQD 1.81 ABC'CZQ '128 <<iKifl( @7 f ~ 7.CG C 48-52 8400 44CD 1.88 1450 'CiQ ~ IN V>P.=3 8.81. C 48-52 SSCO 4900 '.00 1.403 AGQ st41 MHi'523 11.9 ,C'48 62 11400 6'IM 2.10 '@9 + .004 .141 13.0 C 48;62 , SSOD 2.17 1.629 .088 r ".OQD it44 .'3$ PMUR' I 118CD'2000, '4.1. C 48-62 SSCD '.23 1.K3 , .147 sfieiN'uosva t4.9 C 48-52 12700 81DO L31 1.860 i ,,088 .15D 'AOS, 'I h 16.1 C'48-52 12900, " 83M ,,2,34',, , 1.86$ '03,>> . 3$ DO'177 1$.7 , C .48-62 '3200 1. 66M I 2.38, '1.703, '.CQ8 ;153',,ASS, h M~tlj, 18.6 C 48.62 13600 7000 2A4 " 1.763 ,N8, "169; 1st ' '78 *C '48-52 14300 77CD 2.55 tA$7 'NS 'WOO 8(QO'1 18.6 24.0' C '48 ~ 62 , 1460D SQDO 2,67 tAISS .Om .168'de @4~ C (48 62 tGSM 8400 , "2.63 ' I I hl I, lt 26.0 C 48-62 185CD ,, 9100 2721 2.003 "AC3 '>>i'183 "AX@I2, 25.6 C 48-S2 198M ', 9400 2:l5 2.032 'AGC f '; <188', 8$ 50@S, 20.6 C 48-62 20600 '0300 2,88, '2.120 i >> <<, i, I '>>185, 'OfC@ I:I 27.6 ," C 48-62 '" '1300 10800 2.95 'X178 'e!9 l4,' ,'4fNCOf'," '8$ II C 48-62 21600 11400 3.01 I'ASS 404". NCO2$ i, , 29.0 30.0 .,C 48 52 C 48 ~ 62 22400 22SOD; ~ 1'ISM 12300 3.07 3.13; RRS9'2C3, ~ ,4ANd 'AKB' A}63 ,I+ASS "~A60 W7; &0 0'lw>~ lfPX43, 32,8, , C,48-52 2350D 126OD "3 18" 2A10 "AC3', I 'ta'we %Dt}N% I 34,0 C 48-62 241M 13300 ai'8'82 2481'841 35.0 ' C 48-62 24700 '1380 D '.103 i'Nf0, 46.0 48-62 30100 14300 @47 '.CD2 47.0 C 48-62 31400, 1SGCD 3,59 2721, .103 1 25 82 ~aC ~ AIRg ter - c!~ av.'Zft,~t~ eQcr~"~w t >>~ ring 8 ~I~Hot'ar L~AM'oa ..- eefwpe . I-.W <L .est.'~~II-."u~ Je3tlapc~< zoiL'~y>>.!Qa~c..A,g~w -"$ c'.z~>>"tfMt~~wes I ~m s@~-~-"-'"g- ~ l~Q Me'-I~ f=. IIItog~~
"':2l":-~a~>>,.; I'" " h.'0l'Yt ".NI, .<mCQC3&lf>l=qt:.I~ C',",'at '-." 3l. 'I Fit', I'a( UC.. X-': "'r,; .)L3L-.~L' "'.:Side::-- "2 g . Calculation Sheet Project Prepared By: Subject Checked By: /A~a) J~l Q ~c~ System Job No. File No. ( cx. od Uk A~ Analysis No. Rev. No. Sheet No. c2. -&3'-Ij O'-Za C~dt p~-noQS Calculation Sheet Project QJd~t-7 Prepared By: Checked By: hAI1 oate Date) /> a/s Subject I hh > ~p= Co<AWc 3~F4 t mc Q~~~ System f Job No. File No. 4 i~~cW i i, J~ eEP~CSP Analysis No. Rev. No. Sheet No. 8a, -co~-85-I I o -5 l +tC'OI I aubIdC. C<Wl <W>"K /IgE S7RCKSe b. t t-[K ~L (~ ~p auw -zoQtt ~Pa LQcA m~Q5 caW<~ads. ~As- wmuj ~A %mess=- <h~~ ~LA~~ ~%~4 WO Cc=<gmW ~ l~ugt l toQ ~its /h;t t Qp 'goin( ~~ ~t Q t~~ lgh3fEt- ~PA'TiOQ( ~C-C. ~tet= ~~ u3oesm ~q g ~~c 4c-c.~~motD ~. Q p EO-rH ~QAC~ Pro C~C. (~~ ~~~a% /a ~g A x = ~/ps> Y= 3.CV~ 4c~v. K = /.;Vd p II ~ 4 L OA";SO NQ ~5 Ttr-'~t~diO+ [W a/.<C '6 W 'P /.M~Z5F3)). F z Yz <5-58 z z 'J a3'.5'> Z 2 ~ yz F= = (/@/<i + 5F-; +.51-) ~ (/.g/ F,) i .)\ Bi ~<i/J4 WgC') 0 <S~ AcceLeEAmM c"oM2pr Dowed WO -A/C +g W i er r r /04 MA>O&rzest -rfia. Vc)<c.C-O/J ~I~ ~a<~/Ou. T>da O/t /~~mr~ cW'~Z ~c.az.~Mna> M~rmr<~ ~ ~>vecW ~g-W c'g< cN ~ I/J tris 'W> ~m~77a J Calculation Sheet ~~ ~~~ ~ ling-2 Prepared By: &Pc/Mr.i-Date J8 ZB Subject Co ~ ~a t 3t;s 3i Checked By: 'Jh> J'ge.)+, Date j a-I> -~ Syst ~P~<Wc=.~n. ISo~In& ,/ / Job No. File No. VC t.leS C."er-~%SF Analysis No. Rev. No. Sheet No. ~Q ~2 -&3-II L4s. W = Mr ('/'/3' /.fo / = &98(+.,7/g = //o7 F =(g./7>+l>) u3~=4./-7(s~s /=s7/%%u ZV&DD Z5C6 r.> (<~7) (/.vs /~M~Wi~d~ a~W ~~~ IS VIA U m/%5; mr CLaVfS /+0 gp Pi& ~~~ Qg~ + (S ~i+acd~~w da~gK& 77<i@ opJ pA48 QQ//0/ 4s zg US+~. g= 27/7 @gal ~d& ~~e~ M ~Lcd c>'nl ~~ ~<ls ~a& d ~end@- +WW ~c77od C, ~W ~4(l/ g~ ~ ~YA~/C MWWZnk OF-1008 00 WW r .t/- du~-W. 1 Calculation Sheet Ad'p--2 Subject U bl e~. Cnn.a ~~nJ .J i Z~e".~-.~ Checked By: nx,x I "I t loy jyjig<, Date j ~-) r-g Systpq / i I I Job No. Ag tl(= Q~~, ('g p Fiie No. 4o<~~ dtA~-.Wi '~~i v) 77ot-> No. Rev. No. G-oz-z'K-jl 'nalysis Q I /0 Q'hgcyMd~ c,o /zo +wl~ 4~ 77k zozl M / wM. ~QY Par c ~ +~-chccy tPcl a<~.L-Lx;0'a~, ~~ ~~ p ~( N ~p ~~ ~~<V P p~ =~2MB -.gs&k F<1 (Rcc /4/) /97 5'$3~(2(.50 I l.we ... ZB-Sg /~< <~c ~T7>< ~-ASS uS(4( mr+- Z6-+nod Mwl ++775K <<f~w Pcs. >~+ DF g"wp 7 ~Srss- = W~ ~ z <<C~ (t.czw g S TSB A. 28 +.875 = /O5SO, +~~Z = //OVZ ~sr <4z ~ A gQ7g 1005 00 f 4 Calculation Sheet Project Prepared By: Date (33PPs b. t W-Z vs/SS Subject Checked By: Date ~,~ ~t At lK +Nivl~JF I ~t ~ Syst~ I f Jpb No. File No. l~~r.&-rMJ 6 ni~iPnWnA~ VAc dc:"~ CEPe CUP Analysis No. Rev. No. Sheet No. EC a z-a3-j I 0 F-9+ QCA Wu ~C +u2 td~Or aW ~W~ ~ g9 /75'. i 4-L8 Fw =2M++ l5 = /'/7z //. Fj[ = Z.7%5 (R2n/~ops ws,c w) aB /Ve / CZ5 .p: ~aT a 2 4 .W.~~ -.'.4'a>5 = 8778 +Q&z ='r34p ~r tooe oo Calculation Sheet Prepared By: Date Subject I U~ 6aM ~~De ~~ SEE Checked By: +, Oate )a- )5'-Q Syste~ j ( ~ )t d I / VA 'tow EwerJPC5P'ile No 4heet No. No. Analysis No. en-a> -8S-(l Rev. No. U'-35 ~AYS MM AV~~G'/-jj~ STR8$ $ LS ~c.d~raa ~g ~g>> ~az.mad oF ~omen/, ~gg- ~gt ~ ~~ ~yp-Md </~~r ZF~~~~ ~W WA'/Ve LDV~ ArJzo MBIw lf+~cl& ~/4-~7 /s ' pB0DO (Z Z'g~Q ~tt 8 /~~6 77~< ~M4Wl~~ W77Z 8SS IJ8f h/6 I/'w~zmz ~<am Pg, a@ o~ g~/ rZZ . @75 / gs ~c-BA/+&Le-= z r,"~ecnk 576zr<0 /a v/e~ > @JAN(~/-/ /~: /y -"+OOO /~ /5 " R~<~MA~ +v'arepwa s hoax'"r8'c~s zzz g w~gf 100s 00 L Calculation Sheet Project iUdp. z Prepared By: p Date J P~//~ Subject Checked By: Date Fcr~d AGAN JT ~Kc)~ g () ) 2-t5'(3 Sys~ C..n~i~rd Analysis No. ~i MrtLA~d/J If ivr~~ C<-1~~ ~ Job No. C 'P Sheet No. File No. ~-oz,-ap- j [ Rev. No.'O cW MRK" ~A~t~g~ F~~ l~d&b TCOCCG}dBc'&l- X5'/'7S ]V L-E (~@7= Z) 32.944 Z 9/75 g74(7 g/ Z7NQ '/504 Z 76 Zw800 7'VZ5 ~i A(rJ &At~ ~o~Ui/J/- ~k- ~f'wAr oH 8~ S -Pr4F Vs-g~, ~0G- ~ffe~K W~~ ~& ~~ c~~mIJC ~re.cue- ) S: r = /ZS .. 6 t~.c.'r, &+Si) 3 = z +> - 9',&~Q c4 = ~~ace /.~) .Voc,/ est .g.H5% ~MS- KA~ ~~eS~ muC ~ ~. ~/.c"cf V-aP-NP/if'u VSP 6>>/ ~s7 8' /IJ '7 = vy7 1008 00 I Calculation Sheet "'"'PAN) -2 5'repared By;, j M Date / r'~/t3'RS (.>JAN ) 4. -Pir. ~J Subject Checked By: w~,> Date . 4c: (ervt vndevt i &72~>c. 1'rhla< /Vl gi)ev i>- l3-gP System ~n (~i'&~mrs VA I t / M A'~ C.SP I/ob No File No. Analysis No. WQ -o2-BE- I l Rev. No. Sheet No. b-37 Ihs ~>i~~ ~n"aSS ~~o~nw<'oc t o~< ~M M~c ~mt= ~~mt.w4~ lo o4 ga r49 c>r <~m~~ca .r. n;5, l Qd ~dL.T7M4 ~~Mg$ y+~ a=/ Calculation Sheet Project Prepared By: Date /a Subject Checked By: Date +,~ )5- lb Q Job No File No. art~ fj~~L~n,Q System C rJ c /<~ Cpp ~f Csv Aoalysis No. ..a -o .-a -(I Rev. No. Sheet No. F-w )A~Ms]7Y-gDSZT ~~ 4 ip Calculation Sheet I, / j) Date
System t - d @WE- (~~t h77od j I Job No. File No. Analysis No. Rev. No. Sheet No. EQ -n2, -8~-j I e L="39 /~i nA 0 ul ~~ (~~~ @5~42 (p 70 ~= paooo t dd5 4 I ZOOC5-4 /7gZ SZ ~~44mrlm i(.7r' /~~ L~~~ ~a~ pe ~M ~/~fc A<CM~ Wi CQW 7 P.-<A c. ~~ -rn 0 ~12 Vt- I P~~C.& t~(C U~ -t-u ~+6-. ~ -. ~2> ~Ma, ~v Ac ~A /ANVa~ ('" 4 4 Cl OSE20 L,= ~l-~ Wl 10 pe j-~orJWo< l ~ j-7o &444 = =as-55 = g C.Z.l CL (VI4)~LC PA45 OF- Wt% ~ F~Q L-u~4a- 4. L ~gC ~c'~Qc ~~Q~( c $ ( hJ DQ~ <Xt/z Q 4'74 [) 4 I 77 ) .SPV Z/.yO Bc.Zl /7~3 ~Or. ~Me <~~ C~~C&~~W OP ~gg ~)CCK ~ Wt~ 'MCl . IPJC.e~ee- ~~ P?C~S~Pt..'~W~~~ ~<C< ~5 ~gt" ~ ~ON ~PQOt- ~eZ~Se O P.~Q 14 C<t-l,TOW~~~ ~ A-P~<~~L 4 ~4h ~~ ~(5'F ~ Q4 lOOe.OO 1 Calculation Sheet SS (d~- > Prepared By: r ~ Date /my Subject Checked By: , Date /JA~ ~-is.-~z Syste Analysis No. I J 9 mme Me~l 1 J~d! A-"/ l/. Rev. No. 5778eSSc.. SP'ile (Job No. k Sheet No. / "I / 14 g ) Tl gk, C7 No. ) t=-n -or-aS-tI o F'.+0 0/J ~~~ ~Q(gw~ =WlrJ 4/ Fykk/S = (,777)/77$ ~~~~M(tJ~ 77/w ~8'siowiki L M+Ikriii,R MTEMs / i Z<<oQ /'.~H .,0'5/9 m 3 >.B'5% I Mer~/MC, ~77k'e-5 DiJ ~i%. WhA-r 7 IS <Z + '583 z //./8) L- I'7, %, = /895), d -.c.s'8K >85+ - <27Zi ~r /%K 9g v k 1000 00 Calculation Sheet h / Prepared By: Date la's Subject Checked By: Date c +,~ ) 9-l5'-U System I I Jog No. File No. e< r ~MW~i ISo~mrnW ter 1 used 8 CSP Analysis No. Rev. No. Sheet No. EQ -02 "85" II 0 M wUL~Qr'u~~tr4~ ~~~/ ~P QA~ ~ C WI Alt ~~~ 77&7 RG'P~~~ 7, b - <7i = 5<<Z rsV a = (- V ~) = -~l's -'~ -4z &77 I '7< -9 7Z'=zpz, +zc97 (7o 7 1 a (1. --O'JvZ + l4z'8>7 . 2 <f> = Qz~zv =- /0 OZg ~ ~S ~Qh; f2m=d Cl+>> &~M l>>J~JS h~h ~+a- QeaAAZ~ ~-~~Sam ~lu~ cd C9h. ~~ ~Tda'T Chem 1005 00 h Calculation Sheet 4- i' Subject . / Checked By: +,~ Date v& dg Co nA~-eJw~i <<5r7a~w ) Q.~IS'-"Q Vi~~Av& M~ I/ w cK'-1'& Sheet No. File No. me -oz-es - j1 Analysis No. Rev. No. ~~1~8 ~5~ ~w W~W AC@.~ ~'- M (~>~ OW WZ I ~ @VMS. t= S45<~ KV Web IW aw 'F8F I-" Pic% ~j= ~IN. ~t +- = / 517 i4 As ~~4mjJc. ~KOBE / H-'W r edz Bees ./i Mi(set 4 6'j G17285S ! POCC3 grJ L-@ aa Z taboo /Z F ius I.z~ ('s. si7) /gm ARMwc ~oH~~ ~4~i4~ a ~~ r ' ~'ws dQ( = O'goo a~I gg7G +g70 F -90$ TN ~LCM> llw< >&3<~ /gy'WO mr, 100d 00 Calculation Sheet I ) Prepared By; Date MV'FATS cd O'P-2 /A iS a< Date Subject ~p TtcrJ~~Q e~ Checked By: g>~ File No. Syste~ f Sob No. J -c 0 jC'SV'nalysis ~No. -az.-a -it Rev.' No. Sheet No. Vpwc~o<>c- (aeao~ 'JA A~ I Ae PCWCOA(W< ~P ~c.. W~Q ~e Q At cQ t &%%645 ~ C "x>8. TKPW (4 6 4 I Tt+M m ~P ~io4h.c mn t=a ~a~ *t~ ~~0~ Ac~m~o& W~Cc.E ~e M~K.~t~c. ~Uc.Q Woe.c a- ~+g VA;EJECT..Al TtIS MLOu3 %o> ld- ~~QQp'K c)bL M~ VAJA~ ~LE- ~O C (o< ME CS FI/A'we,5) C&IA..CA@-YBX'lg7/CS go7- cch c.use~~ ~Y V/F i< Wev< ~~~i~s ~+~Vs~. 4 1000 00 Calculation Sheet 'Pt'ss udP-z Prepared By: Checked By: Date Subject pt tI 4WC-i b(J j 0C'CGA ) ~-le-S System (job No. File No. Jr I A A.rgb (Act= O'SP'heet / F,-62 "8 Analysis No. Rev. No. Ne. +4 Cht F KtrTtYzrc&t ~r t ffrht erc (9F~mtNs/. ~oeavc ere grlcge ~rtwtmo~ ~rhr AT"- <~c. l / o . = 4. /rheo svoNS- ~o o~NNhoth wteot- (~to~s) a (( oi=, AnuAvo( (a+M P 9A5(~ ~~Pi g Z - T7(~z~cE. ~gcrsA (oT 'Tcs I f Qct~ gcf'4lhToia. PtwTtcsg lh)l Cip t A~~A~~ r(N(J4t K 0 = Oir(r ir. = g) AC~ = ~~&Dr@(s. ~ ~( P,cw<~a /4J4 ~ ~ (~C.I2C~~ = tt,(JG,~ cF GPL.AATdc..&g( gpss-~o @Lo~ ~8 P'= lhr ntl~hPtsnatNh.h RA~ t~~ C<t t(J~~ ~ ~c.~ I, Lx = L = Cy~t~~/~ lU ~~ =...,W*ur %~a~ a-cct4zham Wr sstP'j Msh MWr,LhrT7rtr tr,cTo p~tc ~rsca(Fr 5TK.G ~pi-ic'F'~b aJ IN I Ct A.a U(sl( s(C~ U ~et(.'<<(J~ J h tr (stet Gt) 5'~ ~Vs ArC'Chehht ~rO~a Q~~hlg lie 100d.00 l Calculation Sheet project Prepared By: Subject 'J~d - WitJ~nd MdEru, ~ Checked By: gt~ "" )~-I<-u go~ System Analysis No., - oz-@ (~i t~wu~ i Vw( <. -(t Rev. No. o 1 Job C8Fi'c'sl" Sheet No. P~ File No. ~av . ~wc.~ oa Ch~ M~vloW t(it i)~ 5'z 1-2 iq% 53 ga,4 mc( 4 ng g'Ytww& (. =v) 5k 6SV / jc!C LI yT Wc.L, I >8 9 Rcc o + 4o /o 5j-o z // TsC wz /z PSC y'x '~ZCL 5 ~( WC /5't'o 4,t. ... + aPs Qo5 QQ 7 /g egg QcG, 2 CoS 7 s/ ~( wz 'P5 E'ct +c( 4- I ZS ~J em,z wh ML5 27 WsE'7 CPS 5F 58 ~470 D +4-Y~ 4 L.SL. l zy f2'. Z >b ~cL .1 o r I ~0. 4 Nwn, I tz 1005 00 i J Calculation Sheet Prepared By: Date F ~> (AMP"Z 1z I .g~ Subject kl tAL km~)s~s<~Oee> Checked By: ~ lj ~ Date Syste~ Job No. File No. i=at +~~M 4 mar"~ CB'P r CSP Analysis No. Rev. No. Sheet No. m-o2 -S -t/ O I gW p F ( th~~M~F=L;< ~otcei3k 'l4. 'sjssasr~Wo 5('T7o J VA,tAG'pt"+~st< -~I/@ 'i ~A 4 ~ gp 5 49<~ = -/0 f"= @75 'P~ =oooo Og = bZ' /OO gent /gl ( t Q s 8 t'2 Ss.~z,<s'o.6k I/E5 QD,CgZ a4 so zan/ /QSZ 'Zt'+ gO,(a FZ,bo gz.~S ZF/k zoo( zBsz2 9'd Z zg,$ > gzA- 9o.85 El',7& ~dO 23+de Zo -8 zc.48 .gy / 14.7Z. ~8 9z ~op4. I gz '0 IO s4.W dW3 zc.gz /8o9 Ivol z, (ogg ~. -za 2z.&o -5.95 z4s7 !+08 i+W5 /8 7N OF'& go (pz. 9839 7o. /< 98. 4oZo -ZOAO -dB J -Bo9T Bo 5'z -~IIZ $ 60 -//z8z. 7o -z~i~ /s< j I+694 bo gg - zs4r -/8354 go -z48~ -/8'7Z -gzz 3g -g zan& -zc zan sc) z8~4 -ZSG/ ~3ogz7 -gozQ -zv/5 -pizza /co ~+zs 7 -3zo& -~7<-~/ gg,7 -5 2 -y4sz <ozs4 Calculation Sheet Subject< Wm~ ~ M)3F-z ~ Ac.~~i c & ~mCCM< Prepared By: Checked By: ~ 'ate iz /99 J >-}b-U Job No. File No. System dm~ (~ m'J~~z. Rev. No. 'P Sheet No. Analysis No. 8 -o -t O y = i/.V6 8 =55;N c - -/0 4 ~ +goo = -/z@.~7 'P = zoo v'78%4 T'70 37 1'y /O.o2. &r,4 WS.55 d.o Aaoo ~'7 98 z~Cv4 3C.4S iZ.7+ 48. IS ev.4( o 0 Pt 77 zoo pg 94,vz ~,7S -rc,zI CP,O Wzc %56 b6 b.'oi Wr. (4 I7 74 Sq!az @,0 W/7S 37ZB7 $ o. /g,0S m. 5z g$ . Z$ - Q.O r3a4 gy75 7 4o zy. 22 Z(.SZ Z7.zl p(. O O Mz oui'og po, av /8 ~g. ~l /8'. 7o A'7. 3'@PE 7$ PZ <<i4(~ z<.IC z <.xz 9.7/ Co/ S49'& 7787 g4,c 9 Sing 8Q 70 ,Of N<,$ 7 0'lT f '5 /7/ z/,M S+Z7 g0. 4 g g,5'5 zg/g g+7 Z F7135'yy4z mA P7.<g /O. OZ se.se -P (77 - 95z8 - P7o& -4~v -44(8 -go. ~4 tooe oo Calculation Sheet Project Prepared By: hA 4 0'ate Checked By: SXF Ski c~A) 'Yy,)y~ 1s 5~ System Job No. File No. C'o&~rJI~M Mt Wma0 VP LveS Cs.-P'~ CS7 ~ Analysis No. -o .-a~-i( Rev. No. Sheet No. t=- 458 j -I ll h j,~c~j;-~~jr 'c,v~ aS. 1 3;,4 'W'J 'WXp=. bg . *h VA3.Y~ '4~e~ 0.J,dr.sg l he, C S. P~Y0.170. i+do IJIIt"h>W 3,LfW4i~< s lf /per'f u.d.lqI ) Ihe. >>t'g>q ..YO-!<<O'.PCS) Iht V< .j i rJ:eVcrSeJ , Jo,~, dtAfibg .Cx p05 1'th]trh4 LO~A, &Yes., Tp~ tIg~y~(g..'.gg<it~~g , l' 'S I II II I oshshh! /ELM hl FI'Bx'lh~ d,rhr lhss I'...'I .IIshhl v(~".,
,IS.Ist. ~f~rhrlsh~t IT smj'. li I Il <'cs IsI ds,IL i sa~~4I I >u~~chhrwss worsted). 'bhs~7% > 8 r.=ps I p<V s . Ml~w~~l~dsl Is~s. 1> Bzr~rIIsr~ C.RB 23 h 'll I j I I Nrb .t. '7g~fo~teSTS >~3 I I; .c.. l 5'I brinell:=4 bg BZF I l .srsI'vs I,' yrar~ )~gfaft arI. o Lw'i hisvnkh<, i4 'f0/ tb h l caI h C(i+9 Mgtn l~ramoM~ >piro~ s scil.blir~,Iow. fl (<73 Ilqslvs sQorsI c r&h< m D>s fsI Io.v Wih1 s .~The.. pZF. ~ Yp)Va',.09. Vl>lP.:< g-ge. 4tbu'n g . 5 gsJj )gets ~ r t I i h;.'000.00 r'OWft SIuVr f'ran J ~ ()NO hKAi ef" hfdf lrSt. Ch5fir4> Ot 6 0< VC res Cr ~) I- $,b Calculation Sheet Project Prepared By: nwu Date F- v,t tvlwl QReI4fo( I >4, /yllloh . t s.> I >-)3-'Q Subject Checked By: Date Put<s. u>Q Ys.ei Yy.lv~ j /x Job No. File No. CE.P /CSP ~ Analysis No. -C)7. -B -lt I Rev. No. Sheet No. w L I yl(WnIC- laCtlI.~ II i i',I' ~)~l )~ ta l.a, . i I l -l',%3o, " Q5 lo OigO, 2IQ ' gq >r, t.o6 0. '),P( +T.a5 13$ +..Iz ',5;,'03 0 dhc Ip t ..076 ,B', >St + o.l ) D,Qa!]. ol W OO~ .-),ohio IQ b~gc>foA . P)S,C,.... W t ~l Mary I 0)cl 'Ia.w)w I -=7' W I I L Calculation Sheet Project V,nIt f r i'I 4h r Prepared By: y ~ Q Subject Checked By: Date ~+rb~ ~>tI V<'c ) Vo)Vt I is!~ J'ystem Job No. File No. CFX PCS p Analysis No. Rev. No. Sheet No. -m-BS-Il D ) ~~;c Tio~~~ar Zr"Dale~ AR,.A.w II --DiSC Irjot i).G-QO(i~t c ... 0Y'(.tr.% r Vpslt cpm 8hsjl.c I N LO (r Tj ,0 , 9o .) j,03 "t .97S -,. 39'- i tfl ,.jo WO'=4-I Za .. 2.0 '7,5H rJR=W . + 06, + 3,]to,, ,4Q +.l 'X '+go, g(,g Q T >. t)1( + t J~ i+9Q'1 33,i Pt o + 034 ~+. pi Zr )~ 050'($
~t ) ~t OOQ .; 1,9l 'tQ IQ wa L. STO, J~e> ~ L> I'Sl I LoLSv tttaoe ~ 11 I'/os'Lta hsoL ~ has.>v L,L>. 20 20 INCH Ia>seO>y IN U, S. Ae C X PCR '+i I~ I It)Z i+tv ~v I I~ I I I ' ~I ~ o t I ~ ~ ~ I ~ I 'i litt ~ y ~ t 'I ~ ~ ~ ~ ~ = I~ ~ ~ r.t.t L ~ ~ ~ ~" .'.!.t.'I':I ~ II ~ '. I 'I ~ ~ ~ I~ I
~ FLOW TEST RESULTS i ~ ~ I ~ I l ~ ri T
~ I ~ la I 'o la Ill ~ I l2" ~ ~ ~ ~ ~ ~ t...' BUTTERFLY VALVES ~ ~ ~ ~ I j::: ~
~ I s ~ I ~ ~ ~ 'li . ~ ~ I I FLATSIDE DOWNSTREAM II ~ ~ ~ ~ ~ ~ I ':".;I! t.::t-
~ ~ ") ~ ~ ~ )- )' ~ I ~ ' ~ ~ ~
~ ~ ' ~ ~ ~ I el ! IJ I I ( ~ .'i'.a>a>a.sea ~ ~ ~ ~ ~ ~ ~ ~ ~ I s'I t I I o " '" I ' ~ ~ ~ s ~ e ~ t I ~ I,s, ~ ~ ~ ~ I~ ' I ~ '!! ' I ~ ~ ~ ~ ~ "'I .:j!I:::: ~ ~ ~; I ~ ~ si( ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I ~ ~ I ~ ~ ~ ~ ~ ~ ~ ~ SI ~ I I~ s
~ ~ 0 50 L ~ ~ I t I.e:: e ~ .='>> / II' o I i o ~
~ I ~ ~ I i ~ ~ ~ ~ ~ I ~ ~ ~ v 'al ' ~ ~ I ~ I a ~ e I~ ~ I ~ ~ ~ ~ ~ ~ ~ ~ ~ I ~ ~ ~ ~ I ~ ~ ~ ~ ~ ~ ~ ) ~, .'t':i: ~ ~ ~ ~ I I ~ l~ ~ I ~,q I' I ~ l e ~ ~ ~ ~ ~ - ~ e ~ ~ ~ I I t ~ ~ 'I 1 * ~ ) ~ ~ a I ~ ~ L ~ ~ ~ ~ ~ ~ etiI~ ~ s!tji.:::t t ~ ~ ~ ~ I Ol;O I, ~ ~ y ~ a,'.at e ~ ~ ) ~ ~ ~ ~ J I ~ at I ~ ~ ~ I o ~ ~ ) ~ ~ ~ ~ s ~ ~ I sl ~ ~ ~ t ~ ~: ~ ~ ~ e ~ t u".) ~ I I ~ ~ ~ ~ ~ '.t:e It ~ i":!'.:.:!.'-.:.; . I.; = I ~ ~ a ~ I III ~
.t. ..s .. . .. , ~ .. . . s...t ~ ~ ~ ~ i::t ~ ~ I' ~ ~ ~ I ~la~ I ~ ~ I ~ ~ ~ ~ o '!'j! ~ -'::.' ~ ~ o I I~ I~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ i-' ~ ~ ~ ~ ~ s ~ ~ a ~ ~ I ~ ~ ~ ~ ~ ~ I~ ~ II ~ ~ ~ ~ a I\ s LL'- ~ des I 'I ~ ~ I !at. 0~:. ~ ~ ~ ~ ~ ~ ~ s ~ Is ~ as o .'::I t.: ~ ~ II I o ~ I~ I 0;-30'- ~ ~ ~ + ~ ~ ~ ~ ~ ~ ~ ~ \~ I ~ h I I~II ~ ~ ' ~ ~ ~ ~ ~ I ah o I ~ I ~ I I ~ .! )-. P~ ~ ~ ~ 'I I ~ ~ I ~ ~ ~ ~ I ~ ~ o i ~ ~ t ~ ~ ~ ~ ~ .. t te ~ I~ ~ o ~ ~ so t: s!' a a ~ ~ I l~ ~ ) ~ o ~ ~ I to ls '.T t tj I IIj~ I~ sl I 'i .":j I ~ ~ ~ I ~ ~ ~ I~ a 1 ~ ~ ~ I~ ~ ~ I~ ~ ~ ~ ~ ~ ~ t ~ ~ s ~ ~ ~ ~ . ~ I~ ~ I~ ~~ ~ ~ ~ I I~I ~ ~ ~ ~ ~ I ~ ~ ~ ~ ~ - I I ~ ty t r-' S I~ I I I ~ ~ I I ~l ~ ~ kk I ~ ~ ~ ,1 s ~ ~ ~ ~ 'I ~ ~ ~ s ~ ~ I ~ ~ ~ 'i ~ ~ ~ ~ I I ~ ~ ~ ~ ~ ~ ~ ~ I ~s ~ 'It':el I I t Oa 20 Le I ~ ~ ~ s ~ ~ ~ ~ ~ ~ ~ ~ ~ I ~ ~ ~ ~ ~ ~ ~ I ~ ~ !;:j s ~ ~ ~ ~ ~ ~ ~ II ~ ~ ~ tat I ~ ~ ~ ~ ~ ~ I t I 'I ~ ~ I~ I~ ~ ~ ~ ~ e t.s ~ o ~ ~ ~ oy li I~ ~ I I 1~ ~ I:' I ~ ~ ~ s ~ ~ ~ ~ ~ ~ o ~ ') I ~ -}-5-t y ~ 'I 'I ~ Ill' ~ ~ l. e ~ I ~ ~ ~ ~ ~ ~ ~ ~ i!::I.", e sl I I)' ~ ~ ~ ~ I ;'I! :t:: ' ' ~ ~ I~ s ~ ~ ~ ~ ~ s ~ ~ ~ ~ ~ II I ~ ~ ~ ~ II [',l: ~s i ~ ~ I "'I" I l~I ~ ~ ~ ~ ~ ~ ~ e ~ 1 ~ ~ I j !:,i I.::"::. ~ I I e! ~ s ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I~ ~ I~ ~ I~ ~ ~ ~ I ,0; I 0-~ ~ "I IP ~ ' ll ' I ' ~ ~ ~ I... L' ~ ~ ~ ~ ~ I 'eo e ~ ~ ~ t. ~ e ~ ~ I e ~ ~ y I ~ ~ ~ ~ I ' ' I~ g Iat ~ s ~ ~ ~ ~ ~ el ~ ~ ~ s I ~ I ~ ~ ~ ~ \ ~ ~ ~ I~ ~ ~ ~ o ~ ~ ~ ~ ~ v ~ ..:: ~ >M s ~ o ~ ~ ~ ~ o ~ ~ ~ ~ ~ ! I . Og., ~ I I- ~ to ~ ~ e !I ~ I ~ I~ ~ I Iso )"I"j ~ ~ I~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I ~ ~ ~ I I ~ ~ ~ ~ ~ e e I I ~ ~ ~ I e I ~ ~ I ~ ~ ~ li sl ' s . e! t! ~ ~ ~ e ~ ~ ~ s o ~ ~ e ~ ~ el I ~ i -I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I I .- ' 'e ~ ~ ~, ~ ~ ~ '! ~ ~ ~
~ ~ ~ ~ ~ ~ I I ) e ~ I I ~ ~ (o .0: ~ ~ ~ o ~ ~ I I I ~ I 10 .! 20 lIQ s \'LV Oh I -~NGLE OF.'OPEN I))G .-.: ~ ~ L AA Je ea ee NO. 340 20 DIET GKN GRAPH PAPER EUGENE DIKTXGEN CO, 20 X 20 PER INCH SSAOC IN Ue S. A, ~ } . ~ ~ ~ ~ ~ ~ Ie ~ i I:",)III.I. s T! I ~ ~ J ~ ~ ~ ttL ~ ~ I ~ 1 ILL Le ~ ~ ~ ~ I ~ ~ ~ Lt e I~ t> ! ~ tLe I ~ Ii.s I FLOM TEST RESULTS ~ ~ I~ ~ ~ ~ / ~ ~ ~ ' I e o'-35 \e ~ ~ ;la t t ~ ~ ~ l~ ~ ~ 12" BUTTERFLY VALVE ~ ~ ~ ~ ~ s ~ ~ l I ~ ~ ~ s ~ .I I- ~ ~ ~ ~ ~ ~ ~ li I ~ ~ r'I< II ~ I I ~ ~ FLATSIDE UPSTREAM s ~ I ~ I ~ ~ ~ ~ I~ il III a ~ ~
~ a ~ s ~ I I ~ I ~ -I ~ ~ ~ ~ ~ t ~ ~ I~ I \~ l I~ e ~ S ~ I .:::I::.'. 't'i ~ ,IL s, ~ ~ 'I ~ ~ ~ ~ ~ le ~ ~ . ~ ~ ""I ~ ' ~ ' ~ ~ tel ~ ~ ~ ~ ~ I ~ e ~ I ' ~ ~ ~ ~
~ ~ e ~ ~ I , I s ~ ~ ~ ~ ~ ~ I ~ s
~ ~ ~ l ~ I I ~ e:::1 I ~ s ~ e ~ ~ ~ s ~ ~ ~ ~ a, ~ sj e e ~ ~ 1 ~ ~ ~ ~ ~ ~ ~ l ~ ~ I ~ ~ ~ I 'I sl ~ ~ ~ ~ s
'tL ~ ~ ~ I ~ ~ ~ ~ J J ~ ~ Le ~ s J ~ i , I ~ e ~ ~ s ~ fl ~ ~ ~ ~ ~ ~ a ~ ~ I ~ ~ sl ~ ~ ~ ~ s ~ ~ ~ ~ ~ ~ ~ ~ e e ~ ~ s ~ ~ ~ ~ ~ s ~ -. iI ~ s I ~ I
I t s ~ ~ ~ a 1 I ~ I I ~ ~ ~ \ ~ ~ ~ ~ ~ ~ I~ ~ ~ ~ ~ I I~ I ~ ~ ~ I ~~ ~ ~ ~ I~ ' I s- ~ ~ I ~ ~ ~ ~ ~ ~ 'I ~ s ~ e ~ ~ S l ~ ~ ~ ~ ~ LQ '.ll"! ~ ~ ~ ~ I ~ ~ I ~ I I a ~ I s ~ I I ll'! e ~ iI ~ i ~ 1 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ s ~ ~ I Il I ~ ~ ~ ~ ~ ~ ~ ~ 0-'1 5 s e ~ ~ ~ ~ ~ ~ s ~ i ~ ~ s ~ ~ ~ ~ ~ ~ ~ ~ e . Ir. I! I e ~ ~ I ~ ~ ~ ~ ~ ~ I~ l~ ~ I.:a ~ ~ e ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I I~ ~ ~ ~ ~ ~ I ~ ~ tts ~ ~ s ~ ~ I ~ ~ ~ I I' ' tl ~ ~ ~ I ~ I~i FAIL ~ t ~ ~ ls I -'-". ~ ~ ~ I I = ~ its ~ ~ ~ $ ~ ~ ~ ~ e ~ ~ ~ I ~ I ~ ~ ~ ~ ~ I~ ~ ~ I ~J I ~ ~ ~ L~ ~ ~ ~ ~ I' ~ ~ ~ I' I ~ I ~ ~ I- ~ a ~ ~ e ) I ~ I! I ~ ~ I I ~ ~ ~ ~ ~ ~ ~ ~ ~ e ~ I te ~ I I .;:;:.I li ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ! ~ ' -~ ~ at IIt ::. I:. '. s..-.... ~ ~ ~ ~ ~ ~ '~ tat ~ ~ ~ ~ ~ !::: Il:i ill S I I~ des e e ~ ~ ~ s ~ I~ ~ ~ l,s ~ ~ ~ e ~ I ~ s I~ ~ ~ ~ ~ ~ ~ ~ 1 ~ ~ '.a I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 'a ~ ~ ~ ~ ~ 1::il ~ I ~ ~ i ~ ~ ~ ~ I ~" i::.0 ~ ~ ~ ~ I \ ~ s ~, ~ ~ \ .':"5 t ~ e .:):7O i ".'=.-80:. ~ I ~ ~ ~ ~ ~ lI I ~ ~ ~ ~ ~ ~ I',i! ~ ~ I e~ I ~ ~ ;'ll e ~ ~ I~ ~ ;i. I:::: ~ ~ e ~ ~ I e ~ I ~ ~ ~ I' 0;05 s ~ ~ s ~ ~ I ~ ~ ~ ~ ~ I
~ te t~ ~ L "LW ~ des i ~ ~ ::: ~ ~ ~ ~ ~ ~ ~ I~ ~ I ~ I ~ ~ st ~: . Al<G~E'F OP CC G.l ~ ~ ~ ~ i ~ ~ ~ ~ I ~ I~ ~ ~ ~ ~ s il I ~ !sJ I ~ ~ I ~ ~ I s::I ~ ~ ~ ~ ~ ~ s ~ ~ ~ I~ I~ 1 -01 I 0 ~ ~ '% ~ t ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ t~ ~ ~ I ~ ~ I~ I~ ~ 1 ~ ~ ~ 'I ~ ~ ~ ~ ~ I i ~ ~ s ~ ~ ~ ~ ~ I ~ ~ ~ ~ s ~ I' ~ ~ e ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I ~e ~ I ~ t l.a.'ii I I ~ ~ I ~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~ ~ .I:; I ~ ~ ~ I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ le I ~ ~ ~ ~ ~ ~ Is I ~ ~ ~ i I ~ a ~ ~ ~ I ~ ~ II s:.; s ~ i'::s.I I ~ i .0'15 I I~ I ~ ~ ~ ~ I i I ~ ~ ~ ~ ~ ~ ~ ~ I., ~ ~ ~ ~" i I .IIII : IIs!! ~ ~ ~ ~ s ~ ~ ~ ~ s/ l I ~ ~ ~ ~ ~ I ~ ~ s ~ ~. e ~ ~ ~ e ~ ~ 'ts' ~ I ~ ~ t s ~ ~ ~ ~ e" a ~ ~ ~ ~ I~ ~ s ~ I ~ s s.l I ~ ~ ~ s ~ >>is ~ ~ a ~ ~ ~ ~ ~ ~ ~ e ~ ~ ~ -s s.i I itic I ~ ~ ~ ~ lt~ ~ ~ ~ I ~ ~ ~ ~ ~ ~ ;~t ,I ~ ~ ~ ~ ~ ~ ~ ~ .-20 ~ ~ . I I ~ ~ I ~ ~ ~ ~ I~ I !..r: ~ ~ ~ "' ~ ~ ai ~ ~ ~ ~ e ~ ~ ::;;I!!::, ~ ~ ~ a ~ II~ fL ~ ~ ~ ~ e ~ ~ I II: Ii,: ~ ~ ~ ~ e I I i' ~ la' sa, ~ ~ '.;:.I e ~ ~ ~ ~ I ~ " 'I a ~ 1 ~ ~ ~ ~ ~ e ~ I , ! .I . 'I e ~ e , ... . l ~ ~
~ ~ I ~ -'i .0-25 ~ ~ ~ ~ I =- e a 'i ~ ~ I 1 ~ ~ .l e .--" I~ I I I ~ I I
~ a I ~ ~ e a l I s 'i ~ ~ ~ ~ ~ ~ ~ I' ~ ~ l ~ ~ ~ ~ I~ ~ I ~ ~ ~ ~ ~ I ~ I ~ ~ ~ t ' I ~ ~ ~ ~ ~ ~ ~ 4l ~ ~ I 44I ~ 'I J ~~ 4 ~ ' f ~ ~ t ~ LL ~ ~ ~ I .~ + rf f a ~ r ~ I ~ ~ ~ I I ~ ~ r ~ ~ l"" I ~ ~ ~ ~ ) ' Ir ~ l ~ ~ C V/MM ~\ 4 -r-- l ~ ~ I 4IJ ~ 'T . ~ ~ ~ ~ ~ >> I )z0 . )): 4 ) a. ~ I I ' ~ 0 I N ~ ~ ~ ~ ~ )X ~ I O I~ ,n ) ~ ) ~ ~ g~g~ t ~ I al 4 ~ ~ ~ I ~ ~ ~ { I ~ ~ ~ ~ t 'f I I ~ . ~ r ~ ~ ~ ~ l ~ l ad@ Rc. ~ ~ I ~ <<~ ~ I~ ~ ~ ~ ~ ~ I ~ ~ ~ I ~ ~ ~ ~ 0 ~ ~ I ~ ~ ~ ~ ~ ~ ~ ~ ~ f ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 4 ~ ~ ~ ~ lI ' ~. ~~ ~ ~ ~ I ~ I ~ ~ ~ t ~ ~' ~ i ~ ~ t ~ ~ ~ ~ t' ~ ~ ~ ~
~ ~ ~ tI ~ ~ ~ ~ t ~ T ~ ~ ~ f ff t r ~ ~ ~ ~ r L ~ ~ l. ~ ~ ~ I L~ ~ ~ ~ ~.~ 1 ~ I \~ ~ rL a 1 L ~ ~ ~ ~ ~ ~ ~ ~ I ~ ~ ~ ~ ~ I ~ II~ ~ ~ L ~ ~ ~ I L '9~t L ~ 5'o'vs':.hate. ~ ~ I ~ I a ~' ~. ~ ~ ~ ~ ~ ~ I ~ ~. ~ ~ r ~ ~ ~ t ~ I ~ ~ ~ ~ I a' ~ ~ t ~ } ~ ~ t 4 ~ I ~ ~ ~' ~ I ~ ~ 1 ~ I k ~ ~ ~ ~ ~ ~ I~ ~ ~ a ~ I ~ I~ 1 ~ ( ~ ~ ~ ~ t ~ ~ ~ ~ ~ ~ ~ ~ ~ 1 ~ a I ~ g I ~ I:~ ~ t ~ ~ ~ ~ at ~ I~ ~ ~ ~ ~ a ~ ~ ~ ~ ~ I ~ ~ ra ~' ~ ~ ~ ~ 1 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ r ~ ~ ~ ~ ~ ~ ~ I * ~ I ~ ~ I ~ L~ t ~ 0 la lo 5o '5D GO, 7O .8a. 9n Qr, ',I;t,k I ~ k k I Calculation Sheet "'"'lcc ws Qd P-2 Prepared By: Date W 93 Subject Checked By; AZ88 CO CvJ>~ )~->b-Q / File No. Systtset d~eJ l/ z ah~ C8pI/ Job No. en-c z-BS-I / No. Rev. No. Sheet No. CSp'nalysis ~- H5 ~0~~ t&t'uMw~~ ~ltJ7 D>v'~ ~c R VA~<<OQS V~tj~ mm~ ~~~WW~ iamb'~ v3 <~ ~M Otu Wl7 >rJ8, ~C.~mme< orJS. W46 a@r'tQAL, CC WPd~t- H&~VSt~ ~~ ~%Or. ~O~~ ~E -ZO~PIA~ ~c.a-~ <", ~, ~14=- ( ~wade'eccSS. ~~ Wo Io <W(~ ~ A.cc.~W IOl PT-~~3 CDP't~MI KCSUL.i <4< Vf~m a~iaHmw ~~PcM~ 4 C~CUC ~~ idun~ ~~~a~ ~<~ v L'usI-f'AP5E t o~ I&0M i Pa S~~t ~rJC~ ~n ~~~dva~ u3 t m-I ~N Qt3d'tZr W ~GUS,~QB. ~ W-P, i is~ia~ ~<~ ~m eo~ii=i~ eP~ces OIJ~~t (w~ Is'a~MlW@ 4w V~( Dds vA-L.v E ~g. ill Q8~, i 1005 00 t CEP3A CEP-V/AO-3A WITH TORQUE MODIFICATION REVI SED 12-10-83 MASJ'TBGMr'CYGNA INPUT GLOBAL ACCELERATIONS '? 4 '7, 1 ~ 26, 0.90 INPUT DATA INPUT OPERATOR FORCE (TORQUE) ~LoA ~i&OE '? 995. GLOBAL G-LEVELS 4.57 1 ~ 26 .9 NORTH VECTOR ANGLES = 90 90 0 VERTICAL VECTOR ANGLES= 90 0 90 EAST VECTOR ANGLES = 180 90 90 WEIGHT VECTOR ANGLES = 90 180 90 LOCAL G-LEVELS -1.74332E-5 -4.80652E-6 .9 -1.74332E-5 1.26 -3 '3323E-6 4 '7 -4.80652E-6 -3.43323E-6 DRIVE ROD STRESS AT A 412.882 t OPERATING OPERATING DRIVE ROD STRESS AT B 710.744 OPERATING CYLINDER BRG PRESSURE -3 '5613E-4 OPERATING VALVE EAR TENSILE STR 1240.79 OPERATING VALVE EAR SHEAR STRES 63.5285 OPERATING EAR BOLT SHEAR STRESS EAR BOLT TENSILE STR 768 '9 353.72 OPERATING sif=-3.4591E-3 ,s2f= 319 t3f=-2.5?873E-3 mi f=-2193. 04 m2f=-5.29623E-3 tt3f= 3611.67 9)g l DYNAMIC CONPONENTS DRIVE DRIVE ROD ROD TENSILE STRESS AT A 4543 BUSHING PRESSURE VALVE EAR TENSILE STRESS VALVE EAR SHEAR STRESS EAR BOLT SHEAR STRESS EAR BOLT TENSILE STRESS 7118 3588 '1 TENSILE STRESS AT B 65'45' 04 88 '181 '3 25'6.639 '7 23002.1 si d= 816. 102 s2d= 851 . 76 t 3d= 3085'. 31 mid= 9745'8 ' '2d= 22844 ' tt3d= 20809.2 FIXED PLUS DYNANIC CONPONENTS DRIVE ROD TENSILE STRESS AT A 4956.39 DRIVE ROD TENSILE STRESS AT B 7655'.78 PUSHING PRESSURE 88 '185 VALVE EAR TENSILE STRESS 8359 01F VALVE EAR SHEAR STRESS 360.167 EAR BOLT SHEAR STRESS 4356.86 EAR BOLT TENSILE STRESS 23355.8 si t= 816. 106 s2t= 1170.76 t3t= 3085'.32 mit= 5'965'1.6 m2t= 22844 ' tt3t= 24420 ' CEP3A CEP-V/AO-3A WITH TORQUE MODIFICATION REVI SED 12-10-83 MAS/TBGM/'CYGNA INPUT GLOBAL ACCELERATIONS '? 4 57) 1 26, 0. 90 ~ ~ INPUT DATA INPUT OPERATOR FORCE (TORQUE) D~ M~~WC ~(~QC ? 1447. GLOBAL G-LEVELS 4.57 1.26 .9 NORTH VECTOR ANGLES = 90 90 0 VERTICAL VECTOR ANGLES= 90 0 90 EAST VECTOR ANGLES = 180 90 90 WEIGHT VECTOR ANGLES = 90 180 90 LOCAL G-LEVELS -1.74332E-5 -4 '0652E-6 9~ -1.74332E-5 1.26 -3 '3323E-6 4.57 -4.80652E-6 -3.43323E-6 OPERATING DRIVE ROD STRESS AT A 600.434 OPERATING DRIVE ROD STRESS AT B 1033.6 OPERATING CYLINDER BRG PRESSUPE -3 '5613E-4 OPERATING VALVE EAR TENSILE STR 2670.32 OPERATING VALVE EAR SHEAR STRES 138.312 OPERATING EAR BOLT SHEAR STRESS 1673.13 OPERATING EAR BOLT TENSILE STR 854 '29 si f=-3. 4591E-3 ., s2f= 771 ':; t3f=-2 57873E-3 ~ mi f=-5300. 54 m2f=-5.29623E-3 t t3f= 7453.67 DYNAMIC COMPONENTS D RIVE ROD TENSILE STRESS AT A 4543.51 DRIVE ROD TENSILE STRESS AT B 6949.04 BUSHING PRESSURE 88.6181 VALVE EAR TENSILE STRESS 7118 '3 296.639 VALVE EAR SHEAR STRESS EAR BOLT SHEAR STRESS 3588.37 EAR BOLT TENSILE STRESS 23002.1 si d= 816. 102 s2d= 851.76 t3d= 3089.31 mid= 97498.6 m2d= 22844.9 tt3d= 20809.2 F irYED PLUS DYNAMI C COMPONENTS DRIVE ROD TENSILE STRESS AT A 5143.94 DRIVE ROD TENSILE STRESS AT B 7982.64 PUSHING PRESSURE 88.6185 VALVE EAR TENSILE STRESS 9788.55 VALVE EAR SHEAR STRESS 434.951 t EAR BOLT SHEAR STRESS EAR BOLT TENSILE STRESS si t= s2t= t3 t= mit= 816. 106 1622. 76 3089 32 ~ 1.02799E+5 m2t= 22844 ' 5261.5 23857.1 tt3t= 28262.9 CEP4A CEP-VPAO-4A WITH TORQUE MODIFICATION c REVISED 12-1 0-83 MASj'TBGM/CYGNA P CpO INPUT GLOBAL ACCELERATIONS 3 71 s 1 34, 0 89 ~ ~ ~ INPUT OPERATOR FORCE (TORQUE) ~M ~NGLVC 'P 995. I NPUT DATA GLOBAL G-LEVELS = 3 '1 1.34 -38 . 89'2 NORTH VECTOR ANGLES 90 VERTICAL VECTOR ANGLES= 90 52 .1 42 EAST VECTOR ANGLES = 180 90 90 WEIGHT VECTOR ANGLES = 90 -1 28 -38 LOCAL G-LEVELS 1.41525E-5 -5.11169E-6 89 ~ 2.92352 .824984 -3.39508E-6 2.2841 -1 05594 ~ -3.39508E-6 OPERATING DRIVE ROD STRESS AT A 412.882 OPERATING DRIVE ROD STRESS AT B 710 '44 OPERATING CYLINDER BRG PRESSURE -3.75613E-4 OPERATING VALVE EAR TENSILE STR 2300.51 OPERATING VALVE EAR SHEAR STRES 102 '84 OPERATING EAR BOLT SHEAR STRESS 1238.52 OPERATING EAR BOLT TENSILE STR 4599.3 si f=-3 4591E-3 ~ s2f = 578. 81 '"" t3f= 532 695 ~ mif=-20760 ' m2f=-3818.52 tt3f= 5474.06 t DYNAMIC COMPONENTS DRIVE DRIVE ROD ROD TENSILE STRESS AT A 4493.02 TENSILE STRESS AT B 6871.83 BUSHING PRESSURE VALVE EAR TENSILE STRESS VALVE EAR SHEAR STRESS EAR BOLT SHEAR STRESS 87 '336 9303.24 405.714 4907.83 EAR BOLT TENSILE STRESS 14492.5 si d= 807. 034 s2d= 2053.47 t3d= 1701 mid= 64964 ' '6 m2d= 13396.7 tt3d= 24569.7 FIXED PLUS DYNAMIC COMPONENTS DRIVE ROD TENSILE STRESS AT A 4905 ~ 9'T DRIVE ROD TENSILE STRESS B 7582.57 PUSHING PRESSURE 87 '339 VALVE EAR TENSILE STRESS 11603.7 508. 099 t VALVE EAR SHEAR STRESS EAR BOLT SHEAR STRESS 6146. 36 EAR BOLT TENSILE STRESS 19091 . 8 si t= 807 038 ~ s2t= 2632.28 t3t= 2233.76 mit= 85725.4 m2t= 17215.2 tt3t= 30043.7 CEP4A CEP-Vf'AO-4A WITH TORQUE MODIFICATION REV I SED 12-10-83 MAS/'TBGM/CYGNA c ? INPUT GLOBAL ACCELERATIONS 3.71, 1.34, 0.89 INPUT OPERATOR FORCE (TORQUE) O~ wC'A~>44 ~~~~ ? 1447. INPUT DATA GLOBAL G-LEVELS 3.71 1.34 ~ 89 NORTH VECTOR ANGLES = 90 -38 52 VERTICAL VECTOR ANGLES= 90 52 142 EAST VECTOR ANGLES = 180 90 90 WEIGHT VECTOR ANGLES = 90 -1 28 -38 LOCAL G-LEVELS -1 .41525E-5 -5.11169E-6 .89 2.92352 ~ 824984 -3.39508E-6 2.2841 -1 . 05594 -3.39508E-6 OPERATING DRIVE ROD STRESS AT A 600.434 OPERATING DRIVE ROD STRESS AT B 1033.6 OPERATING CYLINDER BRG PRESSURE -3.75613E-4 OPERATING VALVE EAR TENSILE STR 3730.04 OPERATING OPERATING VALVE EAR SHEAR STRES EAR BOLT SHEAR STRESS 177 2143 '8'1 OPERATING EAR BOLT TENSILE STR 5100 '1 sif=-3.4591E-3 ",, s2f= 1030 81 ~ t3f= 532 '95 mif=-23868.3 m2f=-3818. 52 tt3f= 9316.05 cEP4P. >44a DYNAMI C COMPONENTS GCa~ DRIVE ROD TENSILE STRESS AT A 4493.02 DRIVE ROD TENSILE STRESS AT B 6871.83 BUSHING PRESSURE 87.6336 VALVE EAR TENSILE STRESS 9303,24 VALVE EAR SHEAR STRESS 405.714 EAR BOLT SHEAR STRESS 4907.83 EAR BOLT TENSILE STRESS 14492 ' si d= 807. 034 s2d= 2053 47 ~ t3d= 1701 . 06 mid= 64964.6 m2d= 13396.7 tt3d= 24569.7 FIXED PLUS DYNAMIC COMPONENTS DRIVE TENSILE STRESS AT A 5093.46 DRIVE ROD ROD TENSILE STRESS AT B 7905 PUSHING PRESSURE '3 87.6339 VALVE EAR TENSILE STRESS 13033.3 VALVE EAR SHEAR STRESS 582.894 EAR BOLT SHEAR STRESS 7051 19593 '4 EAR BOLT TENSILE STRESS s 1 t= 807. 038 ~ s2t= 3084.29 ~ t3t= 2233.76 mit= 88833 m2t= 17215.2 tt3t= 33885.7 t ? ? CSP14 CSP-V/AO-1/4P WITH TORQUE MOD I F I GATI ON REV I SED 12-10-83 1 .46, 3 67, 2 MASr'TBGMj'CYGNA INPUT GLOBAL ACCELERATIONS '3 INPUT OPERATOR FORCE (TORQUE) 1966. P~Q ~PPJC" INPUT DATA GLOBAL G-LEVELS = 1.46 135 3 90 '7 2.13 135 NORTH VECTOR ANGLES VERTICAL VECTOR ANGLES= 90 180 90 EAST VECTOR ANGLES = 45 90 135 OP WEIGHT VECTOR ANGLES = 90 0 90 LOCAL G-LEVELS -1.03238 -1.39999E-5 1 ~ 50613 -5.56945E-6 -3.67 -8.1253E-6 -1.03238 1.39999E-5 -1.50614 815.81 t OPERATING DRIVE ROD STRESS AT A OPERATING DRIVE ROD STRESS AT B 1404.35 OPERATING CYLINDER BRG PRESSURE -7.15824E-4 ERAT I NG VALVE EAR TENSILE STR 4206.68 OPERATING VALVE EAR SHEAR STRES 306.895 OPERATING EAR BOLT SHEAR STRESS 2569.7 OPERATING EAR BOLT TENSILE STR 1695 '4 s1 f=-5. 43205E-3 's2f= 2880 ," t3f=-3.48663E-3 mi f=-22319. 9 m2f =-1 64417E-2 ~ tt3f= 23436.6 DYNAMIC COMPONENTS DRIVE ROD TENSILE STRESS AT A 20370.4 DRIVE ROD TENSILE STRESS AT B 31155.3 BUSHING PRESSURE 342 '45 VALVE EAR TENSILE STRESS 11484 ' VALVE EAR SHEAR STRESS 648.873 EAR BOLT SHEAR STRESS 5433 '4 7823.03 EAR BOLT TENSILE STRESS s 1 d= 2600 . 18 s2d= 3354.38 t3d= 1668.96 mid= 68091.2 m2d= 27118.9 tt3d= 70644.8 FIXED PLUS DYNAMIC COMPONENTS DRIVE ROD TENSILE STRESS AT A 21186. 2 DRIVE ROD TENSILE STRESS AT B 32559.7 PUSHING PRESSURE 342.646 VALVE EAR TENSILE STRESS 15691 VALVE EAR SHEAR STRESS 955.768 EAR BOLT SHEAR STRESS 8002.83 EAR BOLT TENSILE STRESS 9518.17 si t= 2600.18 s2t= 6234.38 t3t= 1668.97 Ri t= 90411 ~ 1 m2t= 27119 tt3t= 94081.4 CSP14 CSP-V/AO-1t'4 WITH TORQUE MODI FI CATI ON REVISED 12-10-83 MASr'TBGM/CYGNA INPUT GLOBAL ACCELERATIONS ? 1 ~ 46t 3 '7< 2.13 ~ ~ INPUT OPERATOR FORCE (TORQUE) ? 2366 'NPUT DATA GLOBAL G-LEVELS 1.46 3.67 2.13 NORTH VECTOR ANGLES = 135 90 135 VERTICAL VECTOR ANGLES= 90 180 90 EAST VECTOR ANGLES = 45 90 135 WEIGHT VECTOR ANGLES = 90 0 90 LOCAL G-LEVELS -1.03238 1.39999E-5 .50613 -5.56945E-6 1 .03238 -3 '7 1.39999E-5 1 -8.1253E-6 -1 . 50614 OPERATING DRIVE ROD STRESS AT A 981.785 t OPERATING OPERATING OPERATING OPERATING OPERATING OPERATING DRIVE ROD STRESS AT B CYLINDER BRG PRESSURE VALVE EAR TENSILE STR VALVE EAR SHEAR STRES EAR BOLT SHEAR STRESS EAR BOLT TENSILE STR 1690.06 -7.15824E-4 4807 350 '8 '89 2935.55 1930.58 , si f=-5.43205E-3 ,"s2f= 3280 "t3f=-3.48663E-3 mi f=-25419. 9 m2f=-1 6441 7E-2 ~ t t3f= 26836.6 CgV 1 z~ DYNAMIC COMPONENTS Q DRIVE ROD TENSILE STRESS AT A 20370 ' DRIVE ROD TENSILE STRESS AT B 31155.3 BUSHING PRESSURE 342.645 VALVE EAR TENSILE STRESS 11484.3 VALVE EAR SHEAR STRESS 648.873 EAR BOLT SHEAR STRESS 5433.14 EAR BOLT TENSILE STRESS 7823 '3 s1 d= 2600 . 18 s2d= 3354.38 t3d= 1668.96 mid= 68091 ' m2d= 27118.9 tt3d= 70644 ' FIXED PLUS DYNAMIC COMPONENTS DRIVE ROD TENSILE STRESS AT A 21352. 2 DRIVE ROD TENSILE STRESS AT B 32845.4 PUSHING PRESSURE 342.646 VALVE EAR TENSILE STRESS 16291.8 VALVE EAR SHEAR STRESS 999.462 EAR BOLT SHEAR STRESS 8368.69 EAR BOLT TENSILE STRESS 9753.61 si t= 2600 '8 s2t= 6634.38 t3t= 1668.97 mi t= 93511 . 1 m2 t= 27119 tt3t= 97481.4 ~ ' 0 t CSR52 CSP-V/AOW/2 WITH TORQUE tRODIFI CATION REVISED 12-10-83 HAS/TBGl"I/CYGNA INPUT GLOBAL ACCELERATIONS ? 1.44, 3.57, 1 90 ~ INPUT OPERATOR FORCE (TORQUE) '? 1966 'NPUT DATA GLOBAL G-LEVELS = 1.44 135 3 90 '7 1 ~ 135 9 NORTH VECTOR ANGLES VERTI CAL VECTOR ANGLES= 90 180 90 EAST VECTOR ANGLES = 45 90 f35 WEIGHT VECTOR ANGLES = 90 90 LOCAL G-LEVELS -1.01824 -1.36185E-5 1.3435 -5.49316E-6 -3.57 -7.24792E-6 -1 01824 ~ -1.36185E-5 -1.34351 OPERATING DRIVE ROD STRESS AT A 815.81 t OPERATING DRIVE ROD STRESS AT B 1404.35 OPERATING CYLINDER BRG PRESSURE -7.15824E-4 OPERATING VALVE EAR TENSILE STR 4206.68 OPERATING VALVE EAR SHEAR STRES 306 95 OPERATING EAR BOLT SHEAR STRESS 2569.7 OPERATING EAR BOLT TENSILE STR 1695.14 'if=-5.43205E-3 s2f= 2880
est'z DYNAMIC COMPONENTS DRIVE ROD TENSILE STRESS AT A 18806 DRIVE ROD TENSILE STRESS AT B 28762.8 BUSHING PRESSURE 316 '32 VALVE EAR TENSILE STRESS 10686.5 VALVE EAR SHEAR STRESS 607.944 EAR BOLT SHEAR STRESS 5090.43 EAR BOLT TENSILE STRESS 7168.94 s1 d= 2400 . 49 s2d= 3262.98 t3d= 1540 mid= 63365 '9 m2d= 24262.9 tt3d= 65656.8 FIXED PLUS DYNAMIC COMPONENTS DRIVE ROD TENSILE STRESS AT A 19621.9 DRIVE ROD TENSILE STRESS AT B 30167.1 PUSHING PRESSURE 316 '33 VALVE EAR TENSILE STRESS 14893 1 F VALVE EAR SHEAR STRESS 914.838 t EAR BOLT SHEAR STRESS EAR BOLT TENSILE STRESS si t= 2400,5 s2t= 6142.98 t3t= 1540.8 m1t= 85684.9 m2t= 24263 7660.13 8864 '8 tt3t= 89093.4 CSP4 2 CSP-V/'AO+l'2 WITH TORQUE MODIFICATION REVISED 12-10-83 MAS/'TBGM/'CYGNA INPUT GLOBAL ACCELERATI ONS 1 ~ 44r 3 '7r ~ 1 ~ 90 INPUT OPERATOR FORCE (TORQUE> '? 2366 'NPUT DATA GLOBAL G-LEVELS 1.44 3.57 1.9 NORTH VECTOR ANGLES = 135 90 135 VERT I CAL VECTOR ANGLES= 90 180 90 'AST VECTOR ANGLES = 45 90 135 WEIGHT VECTOR ANGLES = 90 0 90 LOCAL G-LEVELS -1 01824 -1.36185E-5 1.3435 ~ -5.49316E-6 -1.01824 -3 '7 1.36185E-5 -7.24792E-6 -1.34351 DRIVE ROD STRESS AT A 981.785 t OPERATING OPERATING OPERATING DRIVE ROD STRESS AT B CYLINDER BRG PRESSURE 1690 '6 -7.15824E-4 OPEPATING VALVE EAR TENSILE STR 4807 '8 OPERATING VALVE EAR SHEAR STRES 350 '89 OPERATING EAR BOLT SHEAR STRESS 2935.55 OPERATING EAR BOLT TENSILE STR 1930 '8 sif=-5.43205E-3 ~ l, s2f= 3280 t3f=-3.48663E-3 mi f=-25419. 9 m2f=-1 64417E-2 ~ t t3f = 26836. 6 DYNANIC CONPONENTS DRIVE ROD TENSILE STRESS AT A 1 8806 DRIVE ROD TENSILE STRESS AT B 28762.8 BUSHING PRESSURE 316 '32 VALVE EAR TENSILE STRESS 10686.5 VALVE EAR SHEAR STRESS 607.944 EAR BOLT SHEAR STRESS 5090.43 EAR BOLT TENSILE STRESS 7168.94 sid= 2400.49 s2d= 3262.98 t3d= 1540.79 mid= 63365 m2d= 24262.9 tt3d= 65656.8 FIXED PLUS DYNANIC COMPONENTS DRIVE ROD TENSILE STRESS AT A 19787 ' DRIVE ROD TENSILE STRESS AT B 30452.8 PUSHING PRESSURE 316.333 VALVE EAR TENSILE STRESS 15493.9 VALVE EAR SHEAR STRESS 958.532 EAR BOLT SHEAR STRESS 8025.98 EAR BOLT TENSILE STRESS 9099.52 si t= 2400.5 s2t= 6542.98 t3t= 1540.8 mit= 88784 ' m2t= 24263 tt3t= 92493.4 CSP39 CSP-Vr AO-3/N WITH TORQUE t"IODIFICATI ON REV I SED 1 2-1 0-83 HAS/'TBGNr'CYGNA / INPUT GLOBAL ACCELERATIONS 2.66, 3.17, 3.76 ~ ~ ~ INPUT OPERATOR FORCE < TORQUE) FLO< > oR6)UE '? 5'9'S ~ INPUT DATA GLOBAL G-LEVELS = 90 2 '6 3. 17 90 NORTH VECTOR ANGLES VERTICAL VECTOR ANGLES= 0 5'0 5'0 EAST VECTOR ANGLES = 90 180 WEIGHT VECTOR ANGLES = 180 5'0 LOCAL G-LEVELS ~ -1 .01471E-5 3. 17 -1.43433E-5 1.01471E-5 -1.205'26E-5 -3.76 -2.66 -1.20926E-5 -1.43433E-5 OPERATING DRIVE ROD STRESS AT A 5461.21 OPERATING DRIVE ROD STRESS AT B 8431.86 OPERATING CYLINDER BRG PRESSURE -5'8.4646 OPERATING VALVE EAR TENSILE STR 5930.22 OPERATING VALVE EAR SHEAR STRES 251 .91 OPERATING EAR BOLT SHEAR STRESS 3047.3 OPERATING EAR BOLT TENSILE STR 2443 8 si f=-906.782 <<'s2f= 5'5'4 ~ 997 t3f=-2.S7873E-3 mi f=-6840 52 ~ m2f=-6234. 1 t t3f=-13646.3 CSV'3 t DYNAMIC COMPONENTS DRIVE DRIVE ROD ROD TENSILE STRESS BUSHING PRESSURE VALVE EAR TENSILE STRESS VALVE EAR SHEAR STRESS EAR BOLT SHEAR STRESS A 16003 2 TENSILE STRESS AT B 24476 312 23765'.1 1017.24 12305.3 '33 ~ r +73 EAR BOLT TENSILE STRESS 14299.1 s 1 d= 2874. 2541.7645'2d= 72395'T t3d= 175'8.16 mid= 59281.6 m2d= 2355'4.3 tt3d= FIXED PLUS DYNAMIC COMPONENTS DRIVE ROD TENSILE STRESS AT A 21464.4 DRIVE ROD TENSILE STRESS AT B 325'07.5'10.597 PUSHING PRESSURE VALVE EAR TENSILE STRESS 25'699.3 1265'.15 t VALVE EAR SHEAR STRESS EAR BOLT SHEAR STRESS 15352 ' EAR BOLT TENSILE STRESS 16743 ' 51 t= 3781 . 28 s2t= 3536.76 t3t= 1798.16 mi t= 66122. 1 m2 t= 25'828. 4 tt3t= 86045.3 CSP34 CSP-ViAO-3i4 WITH TORQUE t"tODI FI CATION REV I SED 12-10-83 I"tASiTBGNiCYGNA INPUT GLOBAL ACCELERATIONS 'P 2.66'.17< ~ ~ 3 '6 ~ INPUT OPERATOR FORCE (TORQUE) O>~ ? 1447. I NP UT DATA GLOBAL G-LEVELS 2.66 3 17 ~ 3.76 NORTH VECTOR ANGLES = 90 90 180 VERTICAL VECTOR ANGLES= 0 90 90 EAST VECTOR ANGLES = 90 180 90 MEIGHT VECTOR ANGLES = 180 90 90 LOCAL G-LEVELS -1.01471E-5 3.1? -1.43433E-5 -1.01471E-5 -1 '0926E-5 -3.76 -2.66 -1.20926E-5 -1.43433E-5 OPERATING DRIVE ROD STRESS AT A 5648.76 OPERATI tilG DRIVE ROD STRESS AT B 8754.72 OPERATItilG CYLINDER BRG PRESSURE -98 '646 OPERATING VALVE EAR TENSI I E STR VALVE EAR SHEAR STRES 5380 '5 231.813 OPERATING OPERATING EAR BOLT SHEAR STRESS 2804.19 OPERATING EAR BOLT TENSILE STR 2945 '9 &if=-906.782 s2f= 1447 43f=-2.57873E-3 mi f=-9948. 02 m2f=-6234. 1 t t3f=-9804.29 DYNAMIC COMPO JENTS DRIVE ROD TENSILE STRESS AT A 16003. 2 DRIVE ROD TENSILE STRESS AT B 24476 BUSHING PRESSURE 312.133 VALVE EAR TENSILE STRESS 23765'.1 VALVE EAR SHEAR STRESS 1017.24 EAR BOLT SHEAR STRESS 12305.3 EAR BOLT TENSILE STRESS 1425'5'. 1 si d= 2874 ~ 2541.7645'2d= t3d= 1798 mid= 59281.6 '6 m2d= 23594.3 tt3d= 72399 FIXED PLUS DYt lAMIC COMPONENTS DRIVE ROD TENSILE STRESS AT A 21652 DRIVE ROD TENSILE STRESS AT B 33230.7 PUSHING PRESSURE 410.597 VALVE EAR TENSILE STRESS 25'149.4 1249.05 t VALVE EAR SHEAR STRESS EAR BOLT SHEAR STRESS 15109.5 EAR BOLT TENSILE STRESS 17244 ' 'ai t= 3781 28 ~ s2t= 3988.76 t3t= 1798 m1t= 69229 ' '6 m2t= 25'828.4 tt3t= 82203 ' CSP54 CSP-VPAO~t'4 WITH TORQUE MODIFICATION ,REV I SED 12-1 0-83 I"iAS/TBGNr'CYGNA INPUT GLOBAL ACCELERATIONS 3 '5r '4r '9 ~ 2 ~ 4 ~ INPUT OPERATOR FORCE <TORQUE) Whorl ~WAQc= ? 995. INPUT DATA GLOBAL G-LEVELS = 3 25 ~ 2.94 4 '9 180 NORTH VECTOR ANGLES 90 90 VERTICAL VECTOR ANGLES= 0 90 90 EAST VECTOR ANGLES = 90 180 00 WEIGHT VECTOR ANGLES = 180 90 90 LOCAL G-LEVELS -1.23978E-5 2.94 -1.59836E-5 -1.23978E-5 -1.12152E-5 -4. 19 3 25 ~ -1.12152E-5 -1.59836E-5 OPERATING DRIVE ROD STRESS AT A 5461.21 OPERATING DRIVE ROD STRESS AT B CYLINDER BRG PRESSURE 8431 '6 -98.4646 OPERATING OPERATING VALVE EAR TENSILE STR 5930 '2 OPERATING VALVE EAR SHEAR STRES 251.91 OPERATING EAR BOLT SHEAR STRESS 3047 ' OPERATING EAR BOLT TENSILE STR 2443.98 si f=-906 782~ ;s2f= 994.997 t3f=-2.57873E-3 f ml =-6840 . 52 , m2f=-6234.1 t t3f=-13646 ~ 3 c.sue t DYNAMIC COMPONENTS DRIVE DRIVE ROD ROD TENSILE STRESS AT A 14842.1 TENSILE STRESS AT B 22700.2 BUSHING PRESSURE VALVE EAR TENSILE STRESS VALVE EAR SHEAR STRESS EAR BOLT SHEAR STRESS 289.486 22501.9 972 '61 11761.2 EAR BOLT TENSILE STRESS 17082.2 si d= 2665.94 s2d= 2832.44 t3d= 2197 mid= 71899.2 m2d= 24165 tt3d= 68083 FIXED PLUS DYNAMIC COMPONENTS DRIVE ROD TENSILE STRESS AT A 20303. 3 DRIVE ROD TENSILE STRESS AT B 311 32 PUSHING PRESSURE 387.951 VALVE EAR TENSILE STRESS 28432.1 VALVE EAR SHEAR STRESS 1224 '7 t EAR BOLT SHEAR STRESS EAR BOLT TENSILE STRESS s1 t= 3572 72 s2t= 3827 t3 t= 21 97 mit= 78739.7 02 t= 30399. '4 ~ 1 14808.5 19526.2 ~ tt3t= 81729.3 g A I CSP84 CSP-V/AOM/4 WITH TORQUE HODI FI CATION REVI SED 12-10-83 HAS/'TBGN/CYGNA INPUT GLOBAL ACCELERATIONS ? 3 '5, ~ 2.94, 4.19 ~ ~ INPUT OPERATOR FORCE (TORQUE) DL~ ~~Tlwl4 YnNQQE'P 1 447, I NP UT DATA GLOBAL G-LEVELS 3.25 2.94 4.19 NORTH VECTOR ANGLES = 90 90 180 VERTICAL VECTOR ANGLES= 0 90 90 EAST VECTOR ANGLES = 90 180 90 WEIGHT VECTOR ANGLES = 180 90 90 LOCAL G-LEVELS 1 ~ 23978E-5 2.94 -1.59836E-5 -1.23978E-5 -1.12152E-5 -4.19 -3 '5 1.12152E-5 1 ~ 59836E-5 OPERATING DRIVE ROD STRESS AT A 5648.76 OPERATING DRIVE ROD STRESS AT B 8754.72 OPERATING CYLINDER BRG PRESSURE -98.4646 OPERATING VALVE EAR TENSILE STR 5380.35 OPERATING VALVE EAR SHEAR STRES 231 .813 OPERATING EAR BOLT SHEAR STRESS 2804.19 OPERATING EAR BOLT TENSILE STR 2945.19 si f=-906. 782 , . s2f= 1447 ,'t3f=-2.57873E-3 mi f=-9948. 02 m2f =-6234. 1 t t3f=-9804.29 DYNAt"II C COMPONENTS 1 DRIVE DRIVE ROD ROD TENSILE STRESS AT A 1 4842. 1 TENSILE STRESS AT B 22700.2 BUSHING PRESSURE VALVE EAR TENSILE STRESS 289.486 22501.9 VALVE EAR SHEAR STRESS 972.261 EAR BOLT SHEAR STRESS 11761 ' EAR BOLT TENSILE STRESS 17082 ' s 1 d= 2665. 94 s2d= 2832.44 t3d= 21 97 mid= 71899.2 m2d= 24165 tt3d= 68083 FIXED PLUS DYNAMIC COMPONENTS DRIVE ROD TENSILE STRESS AT A 20490.9 DRIVE ROD TENSILE STRESS AT B 31454 ' PUSHING PRESSURE 387.951 VALVE EAR TENSILE STRESS 27882.2 VALVE EAR SHEAR STRESS 1204.07 EAR BOLT SHEAR STRESS 14565.4 EAR BOLT TENSILE STRESS 20027.4 si t= 3572.72 s2t= 4279.44 t3t= 2197 mit= 81847.2 m2t= 30399.1 tt3t= 77887.2 CSP5 CSP-W'AO-5 MITM TORQUE NODIFICATION REVISED 12-10-83 HASr'TBGMi'CYGNA INPUT GLOBAL ACCELERATIONS '? 2 '6, '2) ~ 3 ~ 5.42 INPUT OPERATOR FORCE (TORQUE) Gj-W ~~~~tQ< m~adR'P 1 447. I NP UT DATA GLOBAL G-LEVELS 2.96 3. 52 5.42 NORTH VECTOR ANGLES 42 ' 47.5 90 VERTICAL VECTOR ANGLES= 90 90 0 EAST VECTOR ANGLES 47.5 137. 5 90 WEIGHT VECTOR ANGLES 180 90 90 LOCAL G-LEVELS 2 '8234 -1 34277E-5 ~ 3.66169 1.99974 -1 34277E-5 ~ -3.99606 -1 1291 5E-5 ~ 3 52 ~ -2 '6756E-5 5648.76 t OPERATING DRIVE ROD STRESS AT A OPERATING DRIVE ROD STRESS AT B 8754.72 OPERATING CYLINDER BRG PRESSUPE -98 '646 OPERATING VALVE EAR TENSILE STR 5380.35 OPERATING VALVE EAR SHEAR STRES 231.813 OPERATING OPERATING EAR BOLT SHEAR STRESS EAR BOLT TENSILE STR 2804 '9 2945. 19 sif=-906.782 -, s2f= 1447 t3f=-2.57873E-3 mi f=-9948. 02 m2f =-6234 ~ 1 t t3f=-9804.29 <SV'6' 44 1 t DYNAMIC COMPONENTS DRIVE DRIVE ROD ROD TENSILE STRESS AT A 21519.6 TENSILE STRESS AT B 32912.8 BUSHING PRESSURE VALVE EAR TENSILE STRESS VALVE EAR SHEAR STRESS EAR BOLT SHEAR STRESS 419.724 30726.9 1312.91 15882 EAR BOLT TENSILE STRESS 19863.7 sid= 3865 s2d= 3020.7 '4 t3d= 2379.52 mid= 77785.5 m2d= 31577.4 tt3d= 84539.5 FIXED PLUS DYNAMIC COMPONENTS DRIVE ROD TENSILE STRESS AT A 27168.3 DRIVE ROD TENSILE STRESS AT B 41667.5 PUSHING PRESSURE 518 '89 VALVE EAR TENSILE STRESS 36107.2 VALVE EAR SHEAR STRESS 1544.73 t EAR BOLT SHEAR STRESS 18686.2 EAR BOLT TENSILE STRESS 22808 ' sit= 4772.12 s2t= 4467.7 t3t= 2379.52 mit= 87733.5 m2t= 37811 ' tt3t= 94343.8 t CSP6 P '? REVISED 2 I NPUT '8~ CSP-Vr'AO-6 WITH TORQUE MODIFICATION 3 12-10-83 DATA GLOBAL G-LEVELS NORTH VECTOR ANGLES 5 MAS/'TBGM/'CYGNA INPUT GLOBAL ACCELERATIONS '5r '3r '5 INPUT OPERATOR FORCE (TORQUE) 1447 VERTICAL VECTOR ANGLES= 0 EAST VECTOR ANGLES = 90 = 90 2 55 ~ 90 ot w ~~~the, ~wa~E 0 3 33 90 90 ~ 0 5.85 90 LOCAL G-LEVELS -9.72747E-6 -9.72747E-6 3 '3 -1.27029E-5 -2.2316E-5 5.85 2.55 -1.27029E-5 -2.2316E-5 OPERATING DRIVE ROD STRESS AT A 5648.76 8754.72 t OPERATING DRIVE ROD STRESS AT B OPERATING CYLINDER BRG PRESSURE -98.4646 OPERATING VALVE EAR TENSILE STR 5380.35 OPERATING VALVE EAR SHEAR STRES 231.813 OPERATING EAR BOLT SHEAR STRESS 2804.19 OPERATING EAR BOLT TENSILE STR 2945.19 sif=-906 '82 s2f= 1447 ',,t 3f =-2. 57873E-3 mif=-9948.02 m2f =-6234. 1 t t3f=-9804.29 ~sv4- t&l DYNAMIC COMPONENTS DRIVE ROD TENSILE STRESS AT A 16811 DRIVE ROD TENSILE STRESS AT B 25711.4 BUSHING PRESSURE 327.887 VALVE EAR TENSILE STRESS 26284.3 VALVE EAR SHEAR STRESS 1154.32 EAR BOLT SHEAR STRESS 13963.6 EAR BOLT TENSILE STRESS 14253 ' Bid= 3019.58 s2d= 3954.6 t3d= 1723.8 IAid= 60730.3 m2d= 24158.8 tt3d= 78875.3 FIXED PLUS DYNAMIC COMPONENTS DRIVE ROD TENSILE STRESS AT A 22459.8 DRIVE ROD TENSILE STRESS AT B 34466 1 F PUSHING PRESSURE 426.352 VALVE EAR TENSILE STRESS 31664.6 1386.13 t VALVE EAR SHEAR STRESS EAR BOLT SHEAR STRESS 16767.8 EAR BOLT TENSILE STRESS 17198.7 sit= s2t= 3926 '6 5401 ' t3t= 1723 ' IAit= 70678.3 m2t= 30393 tt3t= 88679.5 t cS7 co CSP-V/AO-6 WITH TORQUE MODIFICATION REV I SED 12-10-83 MAS/TBGMj'CYGNA INPUT GLOBAL ACCELERATIONS '? 11.39, 3 '3, 5.85 INPUT OPERATOR FORCE (TORQUE) 1447. ~ ~~P~H4 >oeaQZ'? I NP UT DATA GLOBAL G-LEVELS = 90 11.39 3.33 90 0 5 '5 NORTH VECTOR ANGLES VERTICAL VECTOR ANGLES= 0 90 90 EAST VECTOR ANGLES = 90 90 LOCAL G-LEVELS -4.34494E-5 3.33 -2.2316E-5 -4.34494E-5 11.39 -1.27029E-5 -1 27029E-5 ~ 5 '5 -2.2316E-S OPERATING DRIVE ROD STRESS AT A 5648.76 DRIVE ROD STRESS AT B 8754 '2 t OPERATING OPERATING CYLINDER BRG PRESSURE -98.4646 OPERATING VALVE EAR TENSILE STR 5380.35 OPERATING VALVE EAR SHEAR STRES 231. 813 OPERATING EAR BOLT SHEAR STRESS 2804.19 OPERATING EAR BOLT TENSILE STR 2945.19' 1 f=-906. 782 s2f= 1447 ,. t3f=-2 57873E-3 ~ mi f=-9948. 02 m2f=-6234. 1 t t3f=-9804.29 DYNAMI C COMPONENTS DRIVE ROD TENSILE STRESS AT A 16811 DRIVE ROD TENSILE STRESS AT B 25711.4 BUSHING PRESSUPE 327.887 VALVE EAR TENSILE STRESS 26685 ' VALVE EAR SHEAR STRESS 1154.32 EAR BOLT SHEAR STRESS 13963 ' EAR BOLT TENSILE STRESS 57543 sld= 3019.58 s2d= 3954.6 t3d= 7699.63 mid= 2.44083E+5 m2d= 58968 ' tt3d= 78875.3 FIXED PLUS DYNAMIC COMPONENTS DRIVE ROD TENSI LE STRESS AT A 22459.8 DRIVE ROD TENSILE STRESS AT B 34466.1 PUSHING PRESSURE 426.352 VALVE EAR TENSILE STRESS 32065.7 1386.13 t VALVE EAR SHEAR STRESS EAR BOLT SHEAR STRESS 16767.8 EAR BOLT TENSILE STRESS 60488.2 sit= s2t= 3926 '6 5401 ' t3t= 7699.64 mit= 2.54031E+5 m2t= 65202.4 tt3t= 88679.5 REM+++++ BIF VALVE AND AIR OPERATOR SEISMIC STRESS REM+++++ CEP-V/AO-3A WITH TORQUE MODIFI CATI ON REM+++++ REVISED 12-10-83 MA SCOTT 1 TBG MARVIN 1 CYGNA REM var i, j sk = integer var lr od, cg,x,phi, lave,abl t,11,12,ei,e2,e3,e4,e5 = r eal 1 var f st2, ca, i a,cb, ib,aa,ab,dl,d2,ci, i i,c2, i 2=real var 1 rodo, cgo, dr sd, abush, pbush=real 1 I var fcof, fco, ma,mb, siga, sigb, fcdr, fcdrf,maf, mbf=real var dear, f cear, f r, f 11, f 22, a, c i 12, c i 21, st t3, semi=real 1 var sem2,set3,sesl,ses2,sr, taui 1, tau22, tauear,aear=real var btens, taubl t, set3f,semif,sem2f,fcearf, frf,fiif=real var f22f, st t3f, sesi f, ses2f, sr f, taui f, tau2f, taur f=real var taubf,btf, dsr,dtaur,dtaub,dbten,dsa,dsb,dpb=real var sdr af,sdrbf,pbushf, taul if, tau22f=real var wao,wbr, f tri,watr i,si,sl f,s2,s2f,mi,mi f,m2=real var m2f, t3, t3f, t t3, t t3f, br,wtot=r eal 1 var bsi,bs2,bt3,bmi,bm2,bt t3=r eal var f sl f s2s f t3s fml fm2s f t t3s sids s2ds t3d s s =real var mid,m2d,tt3d,sit,s2t,t3t,ml't',m2t,tt3t =real dim r ea,l av(3) dim r eal wa(3) dim real wb(3) REM REM ~++ BURNS 7 ROE EAR FORCES ARE bsi etc TURN ON WITH K=1+++ REM REM dim real a(3,3) dim r eal b(3) dim real glc(3,3) 1 2 data data 7 's 10s 25si4.46s ~ ~ 75, 1.5'5, 1.25, 53is53 s5 5s ~ ~ 7 3isi 5s2.5 ~ 3 data 1150 , 875,.46, 648,.138,2.41,1.4 ~ 4 data 399s277,5.25,8 ',28.5,15.,6.875 5 6 7 data data data REM DATA 5'0 180 6h7 '90 FOR ~ ~ 't 40.,10.9'6,26.5,30.5,2.075 '90~ sts90 s5'0 '180 s5'0 s5'0 ~ ~ ,5'0 ~ VALVMGLOBAL-G ORIENTATIONS AND WEIGHT VECTOR restor e read di,d2,ci,ii,c2,i2 restore 2 read lrod,lcg,x,phi,lave,ablt,11,12 r estor e 3 read fst2,ca,ia,cb,ib,aa,ab restore read wao,wbr,ei,e2,e3,e4,e5 restor e 5 read lrodo, ego, dr,d,abush 1 1 r estore 6 read a(l 1) sa(2s 1) sa(3s 1) sa(i s s2) sa(2s2) sa(3s2) restore 7 read a(1,3), a(2,3), a(3,3), av(1), av(2), av(3) text 0,8c "* 12-10-83 REVISED MAS/TBGM/CYGNA 8c print text 0,8c INPUT GLOBAL ACCELERATIONS 8c input b(l),b(2),b(3) print text 0,h INPUT DATA h pr int text 0 h INPUT OPERATOR FORCE (TORQUE) 8c print print "GLOBAL G-LEVELS "Ib(i)sb(2)sb(3) pr nt NORTH VECTOR ANGLES I ya( 1 g 1 ) pa(2g ) pa(3) ) 1 1 print "VERTICAL VECTOR ANGLES== I a(i 2> a(2~2> a(3~2) s ~ s pr int "EAST VECTOR ANGLES ";a(1,3>,a(2,3),a(3,3> pr int "WEIGHT VECTOR ANGLES = ";av(i),av(2),av(3) print for i=i to 3 for j=i to 3 a( j, i ) =a( J, i ) +2. +3. 1416/360. next gl c( j, i )=b( i ) icos(a( J, i )) next i for j=i to 3 j av ( j ) =av ( ) +2. +3. 1416/360 . next J print text 0,h LOCAL G-LEVELS h print print glc( 1, i),glc( 1,2),glc(1,3) print glc(2,1),glc(2,2),glc(2,3) print glc(3,1),glc(3,2),glc(3,3) REM WEIGHT COMPONENTS for J=i to 3 wa(j)=wao+cos(av(j>) wb(j)=wbr+cos(av(j)) next ph i =ph i +2. +3. 1 416/360 . a=i ave 1 c i 12=c i/i2 c i 21=cd i 1 ae ar= 1 1 +1 2 REM CALCULATE EAR FORCES USE B8cR LOADS AS OPT I ON LATER REM FIXED COMPONENTS ARE ALWAYS THERE I br= 1 r od+ 1 c g watr i=1 br+wa(1)J'1 r od si f=wb(1)+watr 1 w to t=wao+wbr s2f=wb(2)+wa(2)+ f s t2 t3f =wa(3)+wb(3) mi f=-(wa(2)+wb(2)+ s f t2) +e5-wa(3) +(e3+1 cg) -wb(3) +e4 ) ~e5-wa(3) we2-wb(3> +e 1 tt3f=watri+e3+(wa(2)+fst2>+e2+wb(i)+e4+ wb(2) +e 1 f cdr f=l cg+wa(1)/i rod f +(1 rod-13.5) maf=f cdr'2f=(watr1+wb(1) mbf =f cdr f +7. 125 sdr af=f st2/aa+abs(maf +ca/i a) sdr bf=fst2/ab+abs(mbf +cb/i b) fcof=lcgo+wa(i)/lrodo pbushf=f cof +( dr+d>/(d+abush) 1 REM STRESSES FROM FIXED COMPONENTS dear=(d1+di+d2+d2) ++. 5 set3f=abs(t3f/(4+aear)) semi f=abs(m1f/(2+d2+aear >> sem2f=abs(m2f/(2+di+aear)) fcear f=tt3f/(2wdear) fr f=x+fcearf f 11 f=-( f cear f +s i n(ph i ) -fr f icos(ph i ) ) f22f=fcear f+cos(phi )+frf+sin(phi ) st t3f=abs( f f +1 a+c i 12)+abs( f 22f +1 a+c i 2 1 1 sesi f=abs(si f wc i 12+1 a/4. ) ses2f=abs(s2f +c i 21+1 a/4. ) sr f=se t3f+semi f+sem2f+sesi f+ses2f+st t3f REM EAR SHEAR taui f=abs(si f/(4+aear ) )+abs( f 11 f/aear ) 1 tau22f=abs(s2f/(4+aear) )+abs( f 22f/aear) taur f=( taui f + taui f+ tau22f ~ tau22f ) ++ 5 1 1 ~ taubf=taurf+aear/abl t REM EARBOLT TENSION btf=(se t3f+semi f+sem2f ) +aear/abl t pr int pr int"" OPERATING DRIVE ROD STRESS AT A $ 5dl af print OPERATING DRIVE ROD STRESS AT B ; sdr bf print" OPERATING CYLINDER BRG PRESSURE ;pbushf pr int" OPERATING VALVE EAR TENSILE STR ;srf pr int "OPERATING VALVE EAR SHEAR STRES ;taurf pr i n t" OPERATING EAR BOLT SHEAR STRESS ; taubf print"OPERATING EAR BOLT TENSILE STR )btf print print f="; si f print "si print "s2f="; s2f pr i n t "t3f=";t3f pr int "ml f=";mi f pr i n t "m2f=";m2f print "tt3f=";tt3f print REM REM CALCULATE VARIABLE COMPONENTS REM dsr=0. dtaur=0 dtaub=0 'bten=0 'sa=O. dsb=O. dp ID=0 ~ f si=0. f s2=0. f t3=0. f ml=0 . fm2=0. ftt3=0. for j=i to 3 f co=i cgowwao+ol c (1, j ) 11 r odo pbush=fco+(idr+d)/(d+abush) ftr i=lbr+wao+glc(i,j)t'lrod si=f tri+wbr+glc(i,j) s2=wtot+glc(2)j) t3=wtot+glc(3,j) mi=-wtot+glc(2,j)+e5-wao+glc(3,j)+(e3 +leg)-wbr+glc(3,J)+e4 m2=( f tri+wbr +gl c(1, j) ) +e5-(wao+e2+wbr +el)+glc(3,J> t t3=f tr 1+e3+wbr +gi c(1, j ) +e4+gl c(2,J ) + (wao+e2+wbr+ei) f cdr =1 cg+wao+g1 c ( 1, j >11 r od ma=fcdr +(l rod-i3.5) mb=f cdr +7. 125 s I ga=ma+c al I a s I gb=mb+c bl b I REM CALCULATE EAR TENS1 QN se t 3= abs ( t 3/'( 4 +ac ar ) ) semi=abs(mi/(2+d2+aear ) ) sem2=abs(m2/'(2+di+aear)) fc ear= t t 3/(2+de ar ) f r=x+fcear f11=-(fcear+sin(phi )-fracas(phi )) f22=fcear+cos(phi )+fr +sin(phi ) st t3=abs( f 11+1 a+c i 12)+abs( f 22+1 a+c i 21> sesi=abs( si +c i 12+1 af'4. ) ses2=abs(s2+ci21+la/4.) sr=set3+semi+sem2+sesi+ses2+stt3 REiR EAR SHEAR taui l=abs(si/'(4 +aear) )+abs(f 11/'aear ) ~ tau22=abs( s2/(4. +aear ) ) +abs( f 22/aear ) tauear=(tauii+tauii+tau22+tau22)++ 5 ~ taublt=tauear+aearr'ablt REN EARBOLT TENSION btens=(set3+semi+sem2)+aear/ablt dsa=dsa+siga+siga dsb=dsb+sigb+sigb dpb=dpb+pbush+pbush dsr=dsr +sr+sr dtaur=dtaur+ tauear+tauear dtaub=dtaub+taubitwtaublt e dbten=dbten+btens+btens f si=f si+si +si f s2=f s2+s2+s2 f t3=f t3+ t3~t3 fmi = fmi+ml +mi fm2=fm2+m2+m2 f t t3=f t t3+ t t3+t t3 next j REM COMBINE STRESSES dsa=dsa++e5 dsb=dsb++.5 dpb=dpb~+.5 dsr =dsr++. 5 dtaur=dtaur++.5 dtaub=dtaub++.5 dbten=dbten++.5 f si=f si ++ 5~ f s2=f s2++. 5 f t3=f t3++.5 fml=fml++.5 fm2= fm2++ 5 ~ f t t3=f t t3++.5 print t e x t 0, 8c DYNAMI C COMPONENTS 5 print print "DRIVE ROD TENSILE STRESS AT A"sdsa print "DRIVE ROD TENSILE STRESS AT B")dsb " 'dpb print "BUSHING PRESSURE print "VALUE EAR TENSILE STRESS 'sr print "VALUE EAR SHEAR STRESS ";dtaur print "EAR BOLT SHEAR STRESS ";dtaub print "EAR BOLT TENSILE STRESS ";dbten print print "sid=";fsi pr i n t "s2d="; f s2 pr int "t3d="; f t3 pr in t "mid=";fml print "m2d=";fm2 print "tt3d=";ftt3 pr int dsa=dsa+abs( sdr af ) dsb=dsb+abs(sdrbf ) ~ dpb=dpb+abs( pbush f) dsr=dsr+abs(sr f ) dtaur=dtaur+abs( taurf) dt*ub=dtaub+abs( taubf ) dbten=dbten+abs(btf) f si=f si+abs(si f ) f s2=f s2+abs( s2f ) f t3=f t3+abs( t3f ) fml = fmi+ abs(mi f ) fm2=fm2+abs(m2f ) f t t3=f t t3+abs( t t3f ) print text 0,8c FiiYED PLUS DYNAMIC COMPONENTS 8c print print "DRIVE ROD TENSILE STRESS AT A";dsa print "DRIVE ROD TENSILE STRESS AT B";dsb print "PUSHING PRESSURE ";dpb print "VALVE EAR TENSILE STRESS ";dsr E'rint print "VALVE EAR SHEAR STRESS ";dtaur print "EAR BOLT SHEAR STRESS "; dtaub print "EAR BOLT TENSILE STRESS ";dbten pr int "si t=" fsi print "s2t=" 't s2 print "t3t-" 'f t3 print "mi t=" 'fml 7 print "m2t=" fm2 print "t t3t=" f tt3 ) pr int end R~P~ V O'ASIIINCTON PUBI.IC POWER SUPPLY SYSTEM SUPPI,IER TRANSIIIITTAI,FORM (AREA WITHIN HEAVY BORDER TO BE COMPLETED BY SUPPLIER) TO THE ATTENTION OFa 30pp 0 pF I>A"lg PUgCHASp gGEItg YEpgotfTf+ATdADMIN.) PAGE ~ OF 3 sUBJecT> - E ui . e" mic H drod namic Re ua Q NEW Q RE SUBMITTAL ..-C na .Ener Services 1200 Jadwin Suite 565 Richland MA R EQ VESTED DATE THE FOLLOWING PUBLICATIONS/DRAWINGSARE SUBMITTED FOR: OF RETURN: +APPROVAL Q REVIEW INFDRMATION DISTRIBUTION 'ACH CONTRACT NO: C NO. OF PRINTS OF EACH NO. DF REPRODUCIBLES OF PO NO: ~UBMIT~ED,By Fawaz Khaaa chez WORK ORDER NO: Pro ect Mana SPEC. NO: a "~ SUBVENDOR. ~ ~ ~ SPEC SECT NO: ITEM PUBLICATION OR REV WPPSS NO DRAWING NO NO, PUBLICATION OR DRAWING TITLE MANUFACTURER ACTION ll ~ 36'.1 104 2 Revised s. for ID T-714RB C na Transmittal / 1 R COMMENTS: IUSE ADDITIONALSHEET, IF REQUIRED) TO BE REVIEWED BY ECEIVED BY: IPURCHASING ONLY) TRANSMITTED BYs IPURCHASING ONLY) AME APP D BYc ITLK E // Z-ACTION LEGEND' ~ APPROVED FOR PUBLICATION I % INFORMATION ONLY AN % APPROVED AS NOTED FOR FABRICATION NA % NOT APPROVED WP 170 RI}}