ML17279A625

From kanterella
Jump to navigation Jump to search
Rev 2A to Wnp 1,2 10-Mile EPZ Evacuation Time Assessment Study.
ML17279A625
Person / Time
Site: Columbia Energy Northwest icon.png
Issue date: 04/30/1987
From: Mogle R
WASHINGTON PUBLIC POWER SUPPLY SYSTEM
To:
Shared Package
ML17279A624 List:
References
NUDOCS 8712020091
Download: ML17279A625 (133)


Text

871202009i 87ii23 PDR ADOCK 05000397 P PDR WNP-1, 2 TEN MILE EPZ EVACUATIONTIME ASSESSMENT STUDY Prepared by Robert D. Mogle April 1987 Revision 2A WASHINGTON PUBLIC POWER 44 SUPPLY SYSTEM

DISTRIBUTION WNP-1, 2 Ten Mile EPZ Evacuation Time Assessment Study April 1987 Revision 2 No. of Co ies Internal 1 CM Powers - Plant Manager Copy 1 RL Corcor an - Control Room Copy 1 KD Cowan TSC Copy 1 RA Chitwood - Emerg. Ping. Copy 1 RD Mogle Author's Copy 1 DE Larson MUDAC Copy 1 GC Sorensen - Licensing 1 PL Powell Licensing 1 GD Bouchey - SSDC Copy 1 Files 93.2.5 1 Files - PSF Records Room 11 External NRC Licensing - 4 copies (via Sorensen) o 1 to Public Doc. Room o 1 to Resident Inspector o 2 to NRC Region V 1 NRC Region V - G. Good 1 FEMA Region X - R. Donovan 2 DOE-RL - J. Tokarz 2 State DEM H. Fowler 2 DSHS A. Mohseni 2 County DEM D. Somers 1 Westinghouse-RL R. Heineman 15 9 Extra 35 TOTAL

TABLE OF CONTENTS

~Pa e I. Introducti on A. Site Location and Emergency Planning Zone B. General Assumptions and Methodology C. Methodol ogy II. Demand Estimation A. Permanent Residents 10 B. Transient Population C. Special Facility Populations D. Emergency Planning Zone and Sub-Areas 14 III. Traffic Capacity A. Evacuation Roadway Network B. Roadway Segment Characteri sties C. Assistance Centers 20 D. Other Considerations 22 I V. Analysis of Evacuation Time A. Time Estimates 23 B. Adverse Weather 23 V. Supplementary Information A. Evacuati on Conf irmati on Time 25 B. Recommendations 25 C. Review of Study by State and Local Officials References

LIST OF FIGURES, TABLES, AND ATTACHMENTS Figure 1 Ten-Mile Exposure Emergency Planning Zone Figure 2 Link Node Maps Figure 3 Evacuation Routes - Access Control Points, Traffic Control Points, and Assistance Centers Figure 4 Total Population in the Ten-Mile EPZ, Broken Down into Classifications Figure 5 Distribution of Transient Population Within the Ten-Mile EPZ Figure 6 Permanent Resident Passenger Vehicles Within the Ten-flile Emergency Planning Zone Figure 7 Total Passenger Vehicles Within the Ten-Mile Emergency Planning Zone Figure 8 Percent Evacuated vs. Time for Various Populations and Condi-tions ("S Curves" for Ten-Mile Emergency Planning Zone)

Table 1 Sources Rate Inputs for I-Dynev Table 2 Permanent Population Distribution Table 3 Transient Population Distribution Table 4 Special Facility Population Distribution Table 5 Maximum Population Distribution Table 6 Roadway Characteristics Table 7 Summary of Results of Evacuation Time Analysis Example Computer Run

ACKNOWLEDGEMENTS The author expresses his appreciation to these persons for their assistance.

'irch, Gerald Technical Illustrator Donovan, Richard FEf1A, Region X RAC Feucht, Mary Word Processor Jaske, Robert T. FEMA, IEMIS Project Officer Nelson, Donald A. Argonne National Lab, IEMIS Consultant 111

EXECUTIVE

SUMMARY

This document provides the evacuation time estimates and other pertinent demographic data utilized in WNP-2's Emergency Plan (FSAR, Volume 13) and, therefore, comes under the annual review requirement as set forth in NUREG-0654,Section II, Part P., Item 4. This review requirement is

'specifically incorporated by WNP-2's Emergency Plan Implementing Procedure, Volume 13.14.9, Appendix A, Items 16 and 17.

The need for this revision was based on several factors. The primary influencing factor was the change in population values in conjunction with changes in population distribution. Along with significant roadway modifications and earlier discussions with FEMA concerning their preliminary evaluations of these changes (FEMA utilizing a new computer model found their time estimates differing widely from our original times), it is felt in the best interest of the Supply System to commit to a remodeling. The revi sion was performed on FEMA's new state-of-the-art I-DYNEV computer modeling program. FEMA provided access to this model by allowing the State, thus the Supply System, to link to the Integrated Emergency Management Information System ( IEMIS) in Washington, D. C. Therefore, pursuant to guidance given in

.NUREG-0654, Appendix 4, this document was revised.

To meet future review requirements the empirical data solicited during the, annual 25% population poll of EBS radio holders will be examined. Further revisions will primarily be based on this annual review, however, revisions are not expected to be needed any more frequently than on a fo'ut year basis.

By that time approximately 100% of the 10-Mile EPZ will have been routinely surveyed and a decision will be made as to whether a reassessment will be necessa ry.

The attached table, Summary of Results of Evacuation Times Anal sis, presents the key findings and data useful in developing protective action recommendations (PAR's).

TOTAL AREAS WITHIN 5 MILES AREAS WITHIN IO MILES DESCRIPTION WITHIN 2 MILES TOTAL TOTAL .

PERMANENT POPULATION 45 38 83 600 945 435 1,980 PERMANENT POPULATION VEHICLES 15 13 28 200 316 145 661 TRANSIENT POPULATION 1 ~ 125 992 470 2,971 1,685 2,388 8,011 12,949 TRANSIENT POPULATION VEHICLES 964 306 212 398 1,763 561 880 5,999 8,262 GENERAL POPULATION 1,125 1,037 508 644 3,054 2,285 3.333 8,446 14,929 TOTAL VEHICLES 964 321 225 398 1,791 761 1 ~ 196 6,144 8,923 NOTIFICATION TIME MINUTES 15 30 30 30 30 30 30 30 30 PERMANENT POPULATION EVAC. 1:00 1:00 1:30 1:30 1:30 1:30 TIME NORMAL CONDITIONS HOURS MINUTES GENERAL POPULATION EVAC. 1:00 1:30 1:30 1:30 1:20 2:15 2:15 TIME NORMAL CONDITIONS HOURS MINUTES PERMANENT POPULATION EVAC. 1:00 1:00 1:30 1:30 1:30 1:30 TIME ADVERSE CONDITIONS HOURS MINUTES GENERAL POPULATION EVAC. 1:30 2:00 1:30 1:30 2:30 2:30 TIME ADVERSE CONDITIONS HOURS MINUTES CONFIRMATION TIME MINUTES 30 60 60 60 60 60 60 60 60 870385.5 REV. 2 4I87

SUMMARY

OF RESULTS OF EVACUATION TIMES ANALYSIS

SECTION I - INTRODUCTION A. Site Location 8 Emer enc Plannin Zone (EPZ)

Washington Public Power Supply System leases 1089 acres of land north of Richland, Washington, on the Hanford Reservation. This land is under the control of Department of Energy (DOE). The Supply System's portion is approximately 3 miles west of the Columbia River and 12 miles north of the populated area of Richland. Figure 1 shows the Ten-Mile Plume Exposure Emer-gency Planning Zone Map. This Ten-Mile Emergency Planning Zone (EPZ) is the study area for which evacuation time estimates have been made.

The DOE is recognized as being responsible for the coordination of a Hanford site-wide evacuation. The Supply System, as company landlord for its specific area, is responsible for internal evacuation needs. This evacuation plan has been discussed with DOE and Benton/Franklin County Department of Emergency Management emergency planning representatives. A final copy will be provided to DOE. The strategy herein is provided as the optimum evacuation plan for a Supply System evacuation protective action recommendation. Future changes in this study that could impact the DOE will be brought to the agency's attention.

B. General Assum tions The evacuation analysis is based on the following assumptions:

o Initial notification times, both Supply System-to-county and county-to-populace, through the early warning system generally equals a maximum of 30 minutes total (see'V.A for discussion).

o No significant changes in population land use are expected in Franklin County over the next several years.

o No significant change in population land use is'expected on the Hanford Reservation. No permanent population will reside there.

o The unincorporated area near Horn Rapids Dam in the SSW sector is expected to be the primary growth area.

o Evacuation is based on general radial dispersion by the populace. In Franklin County personnel north of the plant viill evacuate north toward tlesa/Connell and those in the opposite direction south towards Kennewick/Pasco.

o Inner sections'ould evacuate simultaneously with the outer sections.

o Initial road vehicle population is free of traffic and set at zero.

o One hour loading period for all populations, even for site industrial workers (which would normally be much quicker).

o Occupancy loading was assumed to be 3 persons per vehicle for categories other than transient industrial, schools and the ORV Park.

o Based on the size of the average household, households will evacuate as a unit, using only one vehicle per family.

o Schools are part of the general population for purposes of evacuation time estimates.

o Buses to be used for school evacuation will be dispatched within the one-hour loading time frame.

o Vehicle occupancy of 35 persons per school bus.

P o Evacuation is occurring on a weekday with school in session, during months (April-June) when an additional 100 children of migratory agricultural workers are present.

o Evacuation is occurring during the workday for areas with high transient worker populations.

o Evacuation is occurring during the day on a weekend for areas with high numbers of transient recreationists.

o Evacuation is occurring when WNP-2 is staffed at fully operational levels and the Plant Support Facility is manned (3/87 values).

o All persons have transportation available to them.

o Adverse weather conditions reduce both free-flow speeds and roadway capacities by 30% each. (Snow conditions; roads open; side streets passable).

o Evacuation is complete when the model has concluded that vehicle trips have not changed for more than one time-interval.

o Confirmation time estimates were not calculated in the model but are estimated as a maximum of one hour (see V.A for discussion). The calcu-lated evacuation time estimate by the model starts at the time of the announcement over the EBS (Emergency. Broadcast System) to begin evacuation and runs until the evaucation is complete (last vehicle is out of the Ten-Mile EPZ or at an assembly area).

d. ~dh This assessment is a complete revision using I-DYNEV (An adaptation of TRAFLOW Level II), a computer program supplied by the Federal Emergency Management Agency (FEMA) through their Integrated Emergency Management Information System (IEMIS).
l. Traffic Assessment Model The traffic assignment program which is employed in this study is an elabroation of an existing model developed by Dr. Sang Nguyen. This did ~ihip'd programming methodology to search di hih for, and Pi h attain, a global optimum solution. The term, "optimum", implies that the solution is unique and that it minimizes a specified cost function.

This cost function, in our application, is expressed directly in terms of aggregate travel time. That is, the model formulation relates travel time to the assigned volumes on each network link according to the following formulation:

b T.=T091. 1+a 1

1 C.

where T.

1

= Travel time on link, i,sec T . = Specified free-flow (zero delay) travel time on link,i,sec 0,1 V. = Volume of traffic on a link,i, vph 1

C.

1

= Capacity of link,i, vph a,b = Specified calibration parameters The cost function, then, is formulated in terms of travel time along each path from each origin to each respective destination. Minimizing this path-specific travel time (i.e. the so-called User Optimization),

all vehicles are assured of being routed along the shortest (in travel time) possible path to their respective destinations.

The computational algorithm assigns traffic over the network in such a way as to iminimize this aggregate cost. That is, the allocation of volumes, V, to the network links, i=1,2..., N is accomplished in such a way as to:

o Satisfy all specified origin-destination demands, o Satisfy the minimum-cost (travel time) objective,

o Satisfy any specified control treatment and turn restrictions designed to:

Expedite the evacuation process Minimize radiation exposure of the vehicle occupants.

Most applications of traffic assignment employ constant, estimated, values of link capacity, C.. It is well known, however, that link capacity is a function of many factors including the (unknown) turn volumes on all links serviced by a common intersection. Consequently, the assumption of constant link capacity compromises the efficacy of the assignment results.

To resolve this problem, KLD expanded the existing TRAFFIC model to incorporate a model, named the TRAFLO CAPACITY model. This model com-putes accurate estimates of capacity, CD that are always consistent with the assigned volumes, V; on each link. This capacity model consists of three integrated components.

o A formulation which calculates the service rates for through and .

left-turning vehicles in a lane, given, among other data, the proportion of left-turners in the lane, o Another formulation for through and right-turner service rates, o A formulation which calculates the lateral deployment of traffic on an approach, yielding the proportion of through and turning vehicles in each lane.

These three components are exercised in an iterative manner to produce accurate and self-consistent estimates of service rates for approaches of general configuration and for all types of control devices.

Many tests have confi rmed that this solution procedure is rapid, accurate and unconditionally convergent.

In summary, the Traffic Assignment Model used in this project represents the latest state-of-the-art and provides accurate estimates of link volumes, stratified by turn movement at the downstream node (intersection). These turn volumes on each link are subsequently input into the Traffic Simulation Program.

Another output provided by the Traffic Assignment model is the estimated travel times on each link. These estimates are not particu-larly accurate they are usually optimi stic but they do identify the "hot spots" in the network: those links which are severely congested.

This permits the analyst to identify candidate solutions to relieve the congestions and to expedite the flow of traffic.

2. Traffic Simulation Model: I-DYNEV A model,'amed I-DYNEV, is an adaptation of the TRAFLO Level II simulation model, developed by KLD for the Federal Highway Administration (FHMA), with extensions in scope to accomnodate all types of facilities.

This model produces an extensive set of output measures of effectiveness (MOE).

The traffic stream is described in terms of a set of link-specific statistical flow histograms. These histograms describe the platoon structure of the traffic stream on each network link. The simulation logic identifies 'five types of histograms:

o The ENTRY historgram which describes the platoon flow at the upstream end of the subject link. This histogram is simply an aggregation of the appropriate OUTPUT turn-movement-specific histo-grams of all feeder links.

o The INPUT histograms which describe the platoon flow pattern arriv-ing at the stop line. These are obtained by first disaggregating the ENTRY histogram into turn-movement-specific component ENTRY historgrams. Each such component is modified to account for the platoon dispersion which results as traffic traverses the link.

The resulting INPUT histograms reflect the specified turn percent-ages for the subject link.

o The SERVICE histrogram which describe the service rates for each turn movement. These service rates reflect the type of control device servicing traffic on this approach; if it is a signal, then this histogram reflects the specified movement-specific signal phasing. A separate model was developed to estimate service rates for each turn movement, given that the control is GO.

o The QUEUE hi stograms which describe the time-varying ebb and growth of the queue formation at the stop line. These histograms are deri ved from the interaction of the respective IN hi stograms with the SERVICE histograms.

o The OUT histograms which describe the pattern of traffic discharging from the subject link. Each of the IN histograms is transformed into an OUT histogram by the control applied to the subject link.

Each of these OUT histograms is added into the (aggregate) ENTRY histogram of its receiving link.

Measures of Effectiveness output by I-DYNEV:

Measure Units Travel Vehi cl es-Mi1 es and Vehi cl e-Tri ps Moving time Vehicle-Minutes Delay time Vehi cl e-Minutes Total travel time Vehicle-Minutes Efficiency: moving time/

total travel time Percent Mean travel time per vehicle Seconds Mean delay per vehicle Seconds Mean delay per vehicle-mile Seconds/Mi 1 e Mean occupancy Vehicles Mean saturation Percent Vehicle stops Percent These data are provided for each network link and are also aggregated over the entire network.

3. S ecific A lication to the Su 1 S stem Site on DOE's Hanford Reservation This model required developing the 10-Mile EPZ road network into link-node diagrams (see Figures 2 and Table 6). These link-nodes were utilized as evaluation schemes for data handling. The 10-Mile EPZ is divided into the sixteen 22-1/2'ompass sectors around the center point located midway between Washington Nuclear Projects 81, 82, and 84 (WNP-l, -2, and -4). This center point is 2800 feet east of WNP-2 and has coordinates of longitude 119'9'18" west, latitude 46 28'19" north.

The assessment considers four approximately 90 sections around the site; the Columbia River, forming a natural boundary between Benton and Franklin Counties, was used for one division and the other di vision is almost perpendicular to the river. The south-southeast 22-1/2'ector, with populations on both sides of the Columbia River, was divided nto two separate areas by this divi sioning.

Figure 3 illustrates the evacuation routes, access control points, traffic control points, and assistance centers for the Hanford Site (see Section III, Traffic Capacity, for discussion). Some, but not all of these routes were used to develop the necessary evacuation link-node diagrams. A link-node diagram is a system for connecting road segments to an assembly point or to an exit from the EPZ. Each road link in the evacuation link-node diagram interacts only with other road links connected in that diagram. The evacuation time estimate calculated for a single link-node system may or may not determine the evacuation time estimate for an entire section. The longest evacuation time estimate for a particular section is determined by comparing the times for all the link-node systems within the section and selecting the link-node system which took the longest time to clear that section.

SECTION II - DEMAND ESTIMATION Figure 4 presents the compass sector population estimates for 1987; this same information is also presented in Tables 2 through 5. Estimates were made relative to the center of the triangle formed by the three reactors.

Initial 1980 figures were taken from the WNP-2 Environmental Report where references and basis are given. Values within the EPZ were since updated by data provided by the Benton County Department of Emergency Management from their radio survey questionnaires. Additionally, updated data was provided by the DOE or DOE contractors for contractor facilities under DOE's jurisdiction on or near the Hanford Site.

A. Permanent Residents Permanent residents included all people residing in the area, but excluded occupants of institutions (schools). The ten-mile radius around the site is shown in Figure l. In 1987 an estimated 1980 people were living within the Ten-Mile EPZ. The nearest inhabitants occupy farms which are located east of the Columbia River and are thinly spread over five compass sectors. There are no permanent residents located within three miles of the site. Only about 83 persons reside between the three-mile and the five-mile radii; these are all located east of the Columbia River.

Of the 1980 people residing in the Ten-Mile EPZ, about 1545 live in Franklin County and about 435 in Benton County. None of the residents live in incorporated cities.

There are no significant changes in land use expected in Franklin County over the next several years and, as it is currently irrigated to about the maximum amount practicable, little population increase is foreseen. No significant change in land use on the Hanford Reservation is expected, and no foreseeable population will reside there; however, the unincorporated area near the Horn Rapids Dam on the Yakima River in the SSW sector is expected to be the primary growth area within the Ten-Mile EPZ. Population growth within this area is projected to be about 6% per annum.

10

Public transportation, although not specifically identified as being needed, is available to the public in a portion of the 10-Mile EPZ. A partial survey (24 percent) of the permanent residents within the 10-Mile EPZ indicated that all of those surveyed had transportation available to them.

Transportation was via their own private vehicles, with neighbors providing an alternate means. The survey was performed by the Benton County Department of Emergency Management and validated by the Benton Franklin Government Confer- ence. In addi ti on, the publ i c information brochure pro vi des telephone numbers for points of contact for those persons needing transportation assistance during an emergency. Also, the Benton and Franklin Counties Fixed Nuclear Facilit Emer enc Res onse Plan contains a procedure whereby, through a memorandum of understanding, the school administrations will provide school buses for general and specific evacuation purposes. For purposes of this study, it is therefore assumed that all permanent residents of the 10-Mile EPZ have transportation available to them.

B. Transient Po ulation The transient population is. divided into three main subgroups: 1) industrial employees, 2) migratory agricultural workers, and 3) recreation-i sts. Figure 5 illustrates thi s population location graphically.

l. Industrial Em lo ees Industrial employees in the Ten-Mile EPZ total 7,581. These are all located in Benton County and form the main popul'ation to be evacuated in Benton County.

About 15% of the total industrial employees work at'WNP-1, WNP-2, and at the Plant Support Facility. The size of thi s work force (approximately 1,125) varies considerably with time; as many as 12,000 workers were employeed in June 1981 prior to completion of WNP-2, the preservation of WNP-1 and the termination of WNP-4. With WNP-2 opera-tional, day-shift staff employment at WNP-2 is approximate 700, with an additional 165 staff assigned to the Plant Support Facility. Typically, on back-shifts and on weekends at the site there is a maximum of about 10% of the total work force present.

Industrial employement in the Ten-Mile EPZ includes:

WNP-2 (3/87 Operational dayshift value) 700 WNP-1 (3/87 Preservation phase value) 260 Plant Suport Facility (3/87) 165 DOE 400 Area, FFTF, Fast Flux Test Facility (3/87) 644 Advanced Nuclear Fuels Inc., Horn Rapids Road (3/87) 750 DOE 300 Area (3/87) 2,427 DOE 3000 Area, Pacific Northwest Laboratory and other contractors in POB area 2 373 Supply System, Downtwon Complex (3/87) 262 TOTAL 7,581 The majority of these employees work days but there may be some shift workers in the DOE figures. Credit is not deducted from the population values due to emergency personnel remaining in place.

Therefore, the planning figure of 7,581 to be evacuated is conservatively high.

2. Mi rator A ricultural Workers There may be up to approximately 2,818 migratory farm workers in the Ten-Mile EPZ. The peak season for these workers is May and June; the next highest employment season is during the fall harvest. These workers consist of both permanent and temporary residents of the Tri-Cities area, some living within the Ten-Mile EPZ. The numbers shown on Figure 5 and Table 3 reflect their work locations in Franklin County within the Ten-Mile EPZ, not their residences. Care was taken to avoid double-counting where possible and cost-effective. The small amount of error generated by this double-counting was felt justifiable to alleviate the necessity of an expensive one-on-one poll of each individual to separate the differences. Most migrants who work in the Ten-h1ile EPZ live in Pasco. The number of migrants living in the EPZ is minimal based on surveys in the area.

12

3. Recrea tioni sts Recreationists, consisting of hunters, fishermen, boaters, and off-road sports enthusiasts, enjoy acti vities throughout various parts of the Ten-Nile EPZ. The primary fishing season is from June through November; the main hunting season being October through January. The heaviest use of the area. by recreationists is on weekends and holidays, usually in the early morning hours. On the average, 50 fisherman and 10 hunters are present in the Franklin County portion of the Ten-Mile EPZ during the weekdays. This increases to about 100 fishermen and 50 hunters on weekends and holidays. Recreationists also use the Yakima River with an estimated maximum of 50 at any time in this area. Addi-tionally, there could be about 1500 recreationists at the Horn Rapids Off-Road Vehicle Park for any given event. During peak fishing, hunting, or sports events, up to 2,550 recreationists may be located within the Ten-Nile EPZ.

The main concentration of recreationi sts fishing are located just south of the Ringold Fish. Hatchery spillway on the Franklin County side of the Columbia Ri ver. Hunting consists of both water fowl, hunted at the Wahluke. Hunting Area on the Franklin County side of the Columbia River, and upland game birds hunted inland on the farm land of Franklin County. To model this part of the transient population from a poten-tial evacuation standpoint, 400 recreationists were assigned to the sector containing the Ringold Fish Hatchery and the Wahluke Hunting Area and the rest distributed inland. Of the total recreationists, 1000 are assigned to Franklin County and 1550 to Benton County (primarily at the Off-Road Vehicle Park).

An automobile occupancy factor of 3, the same as used for permanent residents and non-industrial transients, was used for most recreation-i sts, except for the ORV Park where a factor of 2 was utilized.

13

C. S ecial Facility Po ulation There are no individuals within the Ten-Mile EPZ confined to institutions such as hospitals, nursing homes, or penal institutions. There are three schools all in section 2; the Edwin Markham Elementary School, the Cypress Gardens School, and the Country Christian Center, with a total population of approximately 455 (students and faculty). Although most of these live within the Ten-Mile EPZ, the total amount was added to the general population for this study. Care was taken to avoid double-counting where possible. This study was not looking at precise numbers in terms of absolute accuracy and fixed values. Again, due to the fluxuations in the large transient industrial and agricultural worker populations, this small amount of error by double-counting should not exceed the anticipated variation of the entire study.

Buses which would be used for the evaucation are located at the district bus lot in north Pasco.

D. Emer enc Plannin Zone and Sub-Areas Sub-areas considered in this study were:

Radius Area 0-2 miles entire circumference 0-5 miles three approximately 90 sections 0-10 miles three approximately 90 sections 0-10 miles entire EPZ The 2-mile radius was not subdivided because it contains no residential population and the only general populations are industrial transients all working in section 3, on continguous Supply System properties. Only three of the four sections were examined because the fourth section, entirely on the Hanford Reservation, contains no residential, transient nor special popula-tions. These sections are graphically shown on Figures 2 and 3. The Columbia'iver, as a natural border between Benton and Franklin Counties, was used to form the division between section 2 and section 3. Franklin County was divided, approximately in half, as it was assumed that those north of the plant location would evacuate north toward Mesa/Connell and those in the opposite direction, south towards Pasco.

14

When making time estimates for the portions of outer sections, it was modeled that the inner portions of the section were being simultaneously evacuated.

15

SECTION III - TRAFFIC CAPACITY Figure 3 illustrates the evacuation routes, barricades and assistance centers for the Hanford Site. These routes have been designated as primary, secondary and additional secondary, based on discussions with local traffic and emergency planning officials. These routes were identified as those over which the endangered population could be most expeditiously evacuated to the centers where they may be assisted.

In choosing the traffic flow direction for the computer model, as illustrated in Figures 2 and 3, populations were evacuated toward the closest primary, secondary or additional secondary road in decreasing priority that was headed radially away from the plant. The analyses were simplified due to the rural area and low population values. Permanent resident passenger vehicle numbers and total passenger vehicle numbers are shown i n Figures 6 and 7 respectively.

A. Evacuation Roadway Networks

1. Section 1 The primary evacuation route is Russell Road, east to old State Road 17, and north into Mesa. From Mesa, evacuees may continue by:

o Taking State Highway 17 north to Hendricks, then east on Hendricks Road to Connell.

o Taking U.S. Highway 395 northeast to Connell.

o Taking U.S. Highway 395 south to Pasco.

The secondary evacuation route is Route 170 east through Basin City to Mesa.

16

Additional Secondary Evacuation Routes are:

Mountain Vi sta Road/Hollingsworth Road Basin Hill Road Klamath Road Ironwood Road

2. Section 2 The primary evacuation route is Eltopia Hest Road to Glade North Road then south towards Pasco or east to Eltopia and Highway 395.

The secondary evacuation route is Taylor Flats Road south towards .

Pasco.

Additional Secondary Evacuation Routes are:

Ringold Road Elm Road Sagemoor Road Road 68

3. Section 3 - Residential Traffic .

The primary evacuation route for the residents in this section is Harrington Road and Yakima River Drive'r Grosscup Road, to Van Giesen and then south and east into Kennewick via Bombing Range Road to Highway 12, to Leslie Road, to Keene Road, to Gage Ropad, to guinault, to Columbia Center Boulevard, north on Columbia Center Boulevard to Canal Drive east on Canal Drive to Edison, south on Edison to Kamiakin High School, the assistance center.

The advantage of this route is that it provides direct movement from the Ten-Mile EPZ for residents and would avoid the traffic conges-tion created by industrial transients.

17

The secondary evacuation route is Harrington Road and Yakima River Drive, or Grosscup Road to Van Giesen, then to Benton City and the Kiona-Benton Assistance Center via Highway 224 or continue east to Kennewick via Highway 12, continuing as before to Kamiakin High School assistance center. The main advantage of this route is the same as for the primary evacuation route in that it avoids the transient traffic.

In addition, this route provides for hard surface access into Kennewick.

The disadvantage of this route is that it is much longer than the primary route.

Additional Secondary Evacuation Routes are:

Highway 240 (either towards Benton City or Richland). This route's main disadvantage is that it initially leads deeper into the Ten-Nile EPZ.

Van Giesen (in towards Richland). This route's main disadvantage is that it leads directly into Highway 240 Bypass across traffic created by industrial transients.

4. Section 3 Transient Traffic Two primary transient evacuation routes exist for this area George Washington Way and Stevens Drive.

A portion of the normal daily traffic coming from the Hanford Reservation routinely uses Stevens Drive to the Richland Bypass Highway 240, and on to Highway 240/12 into Kennewick. The other often utilized route into Kennewick is George Washington Way south to the Richland Bypass Highway 240, and to Highway 240/12. These same routes would be used during an emergency evacuation.

Additional Secondary Evacuation Routes are:

Highway 240 (toward Richland or Yakima).

Horn Rapids west to Highway 240, then southwest on Highway 240 to Richland (Advanced Nuclear Fuels Inc. recommended to evacuate this direction to optimize evacuation time. )

18

Van Giesen (towards Benton City).

North on Route 4 South via the Wye Barricade then ei ther north on Route 2 South or northwest on Route 4 south towards Yakima for WNP-1 and 2 and FFTF transients (possibly used if winds are from northeast to southwest with release immenent or occurring).

o FFTF Access Route west to Route 10 south, south on Horn Rapids to Benton City or southeast on 240 to Richland (FFTF recommended to evacuate this direction vs. east to Route 4 South to optimize evacuation time.)

B. Roadwa Se ment Characteristics Table 6 indicates link-node characteri sites for all roadway segments used in the evacuation assessment.

In the congested traffic environment which is characteristic of an evac-uation process, travel time on a roadway section is, to a large extent, determined by the capacity of that section. Roadway capacities were based upon the type of roadway considered and the presence of traffic control. The following.table presents the per-lane capacities utilized:

Roadway Per-lane

~Te Ca acit (Veh/hr)

Freeway 1800 Arterial/Rural Road 1500 Local Street 1200 This study also required a set of baseline conditions. Included in these conditions is an assumed one-hour loading period. This loading period i s consider ed to be a conservative estimate and includes prepar ation times.

At each source point, traffic is introduced to the evacuation network in accordance with the following histogram:

19

45%

V

~ R W

W b0 22~<% 22'-z/

W O c0 0

4J Ql V

Cl 10%

15 :30 :45 :60 (Min.)

, Time After Start Of Evacuation C. Assistance Centers Assistance centers have been selected by local emergency planning officers. Criteria for selection included that these locations be at least 15 miles from the plants, in the path of normal travel, having adequate facilities, and readily available.

Residents evacuated from the Ten-Nile EPZ would be sent to the centers for registration, assi stance in obtaining meals and lodging and to receive updated information.

Assistance Centers include:

1. Mesa Elementary School, Mesa This school is located on Highway 17, approximately seventeen miles from the plants. The school has adequate facilities for the number of persons in Section I but parking is limited.
2. Connell High School, Connell This facility could be used as an alternate assistance center for the northern area. The Connell High School, is approximately 28 miles from the Hanford site. Adequate facilities and parking are available.

Motels available in this direction include the M 8 M Motel and the Tumbleweed Motel, both in Connell, with a combined capacity of 70 rooms and over 250 beds.

Section 2

1. Isaac Stevens Junior High School, Pasco Isaac Stevens Junior High School, located at 1120 North 22nd, Pasco, can be used as an assistant center for evacuees.

Motels in Pasco have a combined total capacity of 804 rooms and 1,729 beds.

Section 3

1. Kamiakin High School, Kennewick This shcool is located on Edison and Metaline, approximately 21 miles from the Hanford site.

Kennewick motels have a combined capacity of 726 rooms and 1,741 beds. An addition of 400 motel beds is projected by the end of 1981 which could result in a total capacity for 2,141 evacuees.

In addition, the Kennewick School System has a potential for sheltering over 9,000 persons and the Pasco School System over 7,000, for a combined capacity of at least 15,000 persons.

If an extended evacuation was warranted, Columbia Center, a large shopping mall in Kennewick, located on Columbia Center Boulevard, could serve as a staging area. The paved parking area can hold 4,600 cars and an additional 5,000 cars could be parked in adjacent areas.

21

2. Kiona-Benton City School District No. 52, Benton City The schools in this district serving as an assistance center for evacuees are located in Benton City, approximately 16 miles from the Hanford site.

D. Other Considerations Yakima or Walla Walla could serve as host areas with ample motel and school facilities to house the entire evacuated populations. Massive use of such facilities appears highly unlikely. Past evacuations demonstrated that relatively few people use rooms provided by assistance centers, preferring instead to stay with friends or relati ves.

If employees or their vehicles at the site were contaminated, they would, radiological conditions permitting, be decontaminated prior to evacuation.

If this was not possible because of pending hazardous situations, then remote decontamination would take place at either the old Hanford town site, located in the north section of Section 4, or at the DOE contractor's bus barn located on Stevens Drive (1100 Area). These areas provide adequate space for the monitoring and decontamination of vehicles evacuated from within the 2-mile area.

22

SECTION IV ANALYSIS OF EVACUATION TIMES A. Time Estimates The Supply System has provided an early warning system capable of notifying the public within the Ten-Mile EPZ to take protecti ve measures during an emergency.. This system was designed to enable the county to notify the public within 15 minutes from the time the decision to evacuate is made by county officials. The Supply System has established procedures to notify the county officials within 15 minutes of an incident which would require protective actions by the public. After the completion of the traffic assignment, the simulation studies were begun. Two scenarios were developed for presentation here:

Case 1: Good weather, one-hour loading period.

Case 2: Adverse weather, one-hour loading period.

Other "what if," cases were looked at and are stored on the computer system for additional real situational decision making'assistance depending on variables at that time.

Evacuation time estimates for the Supply System Hanford site are shown in Table 7. The Figure 8 series illustrates "S-Curves" for various evacuation populations and conditions. Notification time generally varies from 15 minutes for Supply System facilities to 30 minutes for the general populace.

Confirmation time is estimated at 30 minutes for Supply System employees and 60 minutes for the general populace (see V.A. for discussion).

8. Adverse Meather Table 7 presents evacuation time estimates under two conditions: normal and adverse weather. Severe weather conditions such as blizzards, heavy rain storms, flooding, fog, or high winds could hamper evacuation. However, historical records indicate that severe conditions of this nature have occurred rarely in the past.

23

Because of the effect of weather on the capacity of roadway and the fact that capacity is a controlling factor in deriving evacuation times, it is necessary to adjust capacity figures to represent estimated road conditions during adverse weather. Based on limited empirical data, weather conditions such as heavy rain reduce the values of capacity for the highways util.ized as evacuation routes by approximately 20 percent. For adverse conditions during the winter months, we have estimated capacity reductions and free-flow speed reductions of 30 percent each, relative to normal weather conditions.

A wind-direction-effects computer test run was conducted. A wi nd di rec-tion and resultant plume vector were assumed which would require the use of a secondary evacuation route for the Supply System site under good weather conditions. The secondary evacuation route time for general population (2 hr:30 min) did not differ significantly from the primary evacuation route time (2 hr:15 min); therefore, it is concluded that wind direction does not adversely effect the evacuation. Meteorological data will be available to those responsible for the decision process such that secondary evacuation routes will be a viable alternative.

It was assumed that only a few of the secondary routes were utilized at any one time. Inclusion of more of these secondary routes in the computer model could lower the evacuation time estimate.

SECTION V - OTHER REQUIREMENTS A. Evacuation Confirmation Times Visual confirmation of evacuation will be made by local sheriff's departments for permanent residents. Counties estimated that, this can be accompli shed within one hour. The Supply System will be responsible for personnel accountability at Supply System facilities. It is estimated that this will take a maximum of 30 minutes.

B. Recommendations It was assumed that the road network was initially free of traffic in the areas of the evacuation. This would generally be true. If a Supply System evacuation was required during a shift change at DOE's facilities on the Hanford Site but outside the 10 Mile EPZ, this could place many additional vehicles vying for space on Route 4 south. DOE has agreed not to send transient vehicles into the 10 Mile EPZ during a Supply System evacuation situation. Vehicles could be re-directed at the Wye Barricade (or sooner).

o FFTF for optimum time cost, it is recommended that FFTF be directed to evacuate west to Route 10 South verses accessing Route 4 South.

This decreases the loading through the always conjesti ve 300 Area.

o DOE 300 Area - Traffic control strategy suggests recommending an officer be stationed at" the intersection of Route 4 South and the Main 300 Area Parking outlet onto Route 4 South to control traffic flow. DOE has been advised to balance outlet traffic volume going onto Stevens (Route 4 South) with traffic south out of the 300 Area onto George Washington Way.

o Advanced Nuclear Fuels, Inc. - To further decrease loading on Stevens, it is recommended that this facility be directed to evacuate we'st on Horn Rapids and then back into Richland by heading southeast on Highway 240 verses accessing Stevens Drive.

25

o DOE 3000 Area - Battelle and other DOE contractors between George Washington Way and Stevens Drive should be directed to evacuate using Stevens Drive. The stationing of a traffic control officer is suggested at the Battelle Boulevard and Stevens Drive intersection.

o Plans, implementing procedures, and public education documents should be revised to reflect the traffic control points as indicated in Figure 3.

C. Review of Stud b State and Local Officials The revision to this study was submitted for review to the principal state and local officials involved in emergency response for the site. Their comments were solicited and a copy of their response follows:

26

t /TAN o~,

e.

ICHARD I. THOMPSON Director C 1eee STATE OF WASHINGTON DEPARTMENT OF COMMUNITY DEVELOPMENT DIVISION OF EMERCENCY MANACEMENT 4220 E. Marlin Way, PT-l1 ~ Olympia, Washinglon 985@-8611 ~ (206) 753-5255 ~ SCAN 234-5255 Nay 21r 1987 Nr. Ronald A. Chitwoodr Nanager Emergency Planning and Environmental Programs Washington Public Power Supply System Post Office Box 968 3888 George Washington Way Richlandr Washington 99352

Dear Nr. Chitwood:

Ny staf f has reviewed the Han f'ord Si te Evaluation Time Assessment r Revision 2r draft and find the document to meet all the requirements of NUREG 8654/FENA REP l.

Thank you for the opportunity to review this document.

Sincerelyr Hugh H. Fowl er Assistant Director Division of Emergency Nanagement HHF:NAP:lf Archaeology and Historic Preservation ~ Community Services ~ Emergency Management ~ Fire Protection Services ~ Local Development and Housing ~ Local Covernment Services ~ Public Works

BENTON COUNTY DEPARTMENT OF EMERGENCY MANAGEMENT Kennewick City Hall P. O. Box 6144 Kennewick, Washington 99336-0144 BENTON COUNTY June 2, 1987 R.A. Chitwood, Manager Emergency Planning 5 Environmental Programs Washington Public- Power Supply System 3000 George Washington Way Richland, WA 99352.

Dear Mr. Chitwood:

I have reviewed the Hanford Site Evacuation Time Assessment Study, Revision 2, prepared by Robert D. Mogle.

Benton County Emergency Management concurs with the data, assumptions and methodology used. We have no comments.

Sincerely, Donna J. Somers Director DJS/clc

REFERENCES

1. Criteria for Pre aration and Evaluation of Radiolo ical Emer enc Res onse Plans and Pre aredness in Su ort of Nuclear Power Plants',

NUREG-0654, FEMA-REP-l, Rev. 1, November 1980.

2. IEMIS User's Manual, PNL, Federal Emergency Management Agency.
3. A lication of the I-DYNEV S stem, KLD Associates, Inc., and Argonne National Lab, Federal Emergency flanagement Agency REP-8, December 1984.
4. PREDYN/IDYNEV Training Guide, KLD Associates, Inc., prepared for Federal Emergency Management Agenc'y.
5. Exercise Evaluation and Simulation Facilit Evacuation Events Model, Part I, II, and III User's Manuals, KLD Associates, Inc., FEMA-REP-6 and 7 April 1984.
6. Feasibilit of Ten-Mile Emer ency Plannin Zone Evacuation, Hanford Site, Warren Hanson 8 Associates, December 1980.
7. WNP-2 Environmental Re ort 0 eratin License Sta e Amendment ¹5, July 17, 1981.

310 311 311 112 I

pg \Is T dl I oooae i g"p 4 4

I 3I ~ giles cnl

~

~I

(~ 000000 0 0

~ ~ ld>>TII I~~

'$~eq@y f'Cfs>>

I II ML ~ TLCIO>>>>O M>> Td ~ (s>>CM>>( 'g4,.) 4>> 0 0 0 0 0 0 0 0 TIO

'e R

>>n>>T IP h i 0(>>0 0 sw I

~0 0 0 st

~ S ~ (

Cr

~t BENTON

~.. COUNTY

':,. 2 0 FRANKLIAoo

( COUNTY I

'l 000>>

~ .&.~ I ..a

'((I(

0 i j

'"gj S,':id a((0 (4>>o

~00

$vt~

I

's>>c>>c(>>l 3EI~

IL004 ~ Le else(

LOR(l a>>If p* II I LS>>af f ~

l 22 P4n" T g LR8 @gal%'LANT 2 Llcal d got ~ ines>> et Ice ~T ~ ~ 0

~

~

~

~ i>>

o( ~ RO ~ 0 lo f(I S Ia

~ 4>>( I 0 ou'I

>>4."

'llv o I

,gt~WQe l AF4%0

~ 8

~ I Cl>>I ~

0004 00000

~

Cd OO CCLOIC C>>o(T>>s Ill l'(

I

~ n>>r de 0>>Ek%

0000000 CC ~ ITO(dd(

lLa

>>Swav(

inSO>>>>ic 0

I 4>>L ~

Il OL rind >>O 0 00 ~ 00 4

0 O~>>ifs EOOE s>>ROnd>>O col r(L Ro l>>clssl

~ des La(l

~ dllnslr Linc OR ca>>(sac >> IJ (TTTLY in( C 0

~ Id(>>>>d oao >>0

~

Cl 0000 0 ssfseae ~0 Ill((ERER (00 R

~4

~ La>>o>>cc Io (Iwss>> EMERGENCY C>>4(L H '

PLAN ZONE MAP

' d 3 ~ sr(i(M

'I d IO MILE I(AD(US IT Sg 4'f I ~~i

~ >>Sli TI >>IO>>i H SUPPLY SYSTPhl 343 343 3LC sr l>>l I>>M>>ne 840660 1A FIGURE 1 TEN MILE EMERGENCY PLANNING ZONE July 1984 Rtv. 4

WNP-1 2001 2008 28 27 WNP-2 61 29 2003 2009 PSF 26 31 24 FFTF 2010 52 13 300 FUEL AREA 2005 16 35 W. 300 AREA 2012 2018 1 SOUTH 300 AREA 7

38 51 6

2011 SOUTH 300 AREA PATROL ACADEMY 11 74 2018 67 44 25 12 66 W. RICHLAND 68 55 ADVANCED NUCLEAR 18 ORV 2082 105 BATTELE (3000) 2008 2015 19 38 41 49 HEHF, etc.

BATTELE 45 2014 2013 MAIN 57 46 39 71 20 7 JA JONES 2004 8006 42 72 69 70 US TEST etc.

8000 75 48 23 21 8001 8005 8002 8003 870315.1 FIGURE 2(a) BENTON COUNTY LINK-NODE DIAGRAMS

91 8013 8010 2021 NNE N

92 89 2024 NNE 81 8008 8007 93 78 77 2mO NE 78 NE 2019 87 NE.

8009 97 95 2027 8011 E

98 2029 E 8012 104 101 103 2031 SE 107 SE SSE 108 102 8015 8014 970399.e FIGURE 2(b) FRANKLIN COUNTY LINK-NODE DIAGRAMS

25 UJIL ROJO Pai WT UAI lack

~ VW4 ~ I e5 QWI W'I A<<1 wwwROssj ~ USL~

NINNCSS

~

CONNELL I ~ ~ I ~ ~ I ~ ~ ~ ~ I ~ YTTTTTTII ~ I Q

4 ~~ <<N<<REACTOR ~1 ~

I AIRTA Q CONNIV Hlola SCNOOI

~SSS F(, c,,"

TLAPIUS e e Ws

~ a TAIIUA AWK HHW UESA <<I sa) fa Tool W

If 2" I

,u ...i 8 QI WI Oee ee RIAOT RO

" g.III~ III ~ IIIIU1 5

Afk ~

~

I ~ I ~ I ~ ~ I ~ I~ SI ~

I RADIUS

'lr/)

RINSIRT a

~ ~ ee f

I~ 04 FIS r

0<'( FM T/T f IEAAAICJj/Tf PLANT FRANKLlN 2 III FIS I ~ IIV

".1I I I ~ ~~ ~ ~ II COUNTY

~ ~

~V(NP 5 J

COUNTY (:~:='ENTON All<<i

~ -~0.07. SOT:

~ ~

=-.

I~

KEY PRIMARY EVACUATION ROUTE rr

~~

CS I,.

OSSIIWATORY 3 d SECONDARY EVACUATION ROUTE IH ~ mmADDITIONALSECONDARY

\

+8 n F10 WIST 55042 Www w e

CI EVAC ROUTE BI BARRICADE; Oa TAAFFIQCONTADL

~ IBI ASSISTANCf CENT fR Sua ee

~ FT FB I~ pa A

IL e AI ee e e EMERGENCY WORKER CENTER BARACADE MANNING ee

~

e SE~ I DING R e ee Gg BENTON COUNTY SHERIF F e EAST (g FRANKLIN COUNTY SHERIFF drama ~ Algal aa e VSIEYAAO

~, a

~ a<<aae gg GAANT COUNTY SHERIFF I Npl +e Se e e DRIVE QI BENTON CI'TY QSS

.C9 RICHLAND POLICE DEPARTMENT SCHOOL paICHLATI e W II A<<I<< 4

/// ///rrr 555 N Qys ~ e aalu<<l

~~ e ia I'6 I Oa Uff 12a g4 a B2NY

- .~ K WIK fi- 2~P- rt,

~~

~~

  • I ~

I, ra MS 921224 FIGURE 3 EVACUATION ROUTES, TRAFFIC CONTROL POINTS, ACCESS CONTROL POINTS AEV. 2 4/87 AND ASSISTANCE CENTERS

9 58 N 391 0

NNW NNE 10 MILES 912

~24 NE NW gQ

~203 924 5 MILES WNW ENE 865 QQS EQ

~202 2 MILES giQ

~28 KH SH E 1O91 0 W ~20 ~203 9

~6

~13 gQ

~278

~390 ESE WSW 1354 0

ggg

~338

~gg ~65

~ee gQS SE SW 671 ~57 SSW SSE TOTAL SEGMENT POPULATION 1906 S 5519 15384 0 TO 10 MLES 807 POPULATION TOTALS-[PPERMA~ Ng POPULATION TOTALS-RING CUMULATIVE RING CUMULATIVE POPULATION TOTAL MILES POPULATION RING. MILES POPULATION TOTAL MILES POPULATION RING. MILES 0-2 0 2 0-2 1125 0 2 1125 0-5 0 5 2971 2-5 83 2 5 5 10 1897 0 10 5 10 9978 0 10 12949 POPULATION TOTALS ~PECIAl',I POPULATION TOTALS CUMULATIVE RING CUMULATIVE RING TOTAL MILES POPULATION RING MILES POPULATION TOTAL MILES POPULATION RING. MILES POPULATION 0 2 1125 0 2 1125 0-2 0 2 2 5 0 0-5 2-5 0 5 3054 0 10 5 10 0 10 5 10 87385.8 Rev. 2 FIGURE 4 TOTAL POPULATION WITHIN THE 10 MILE EPZ BROKEN DOWN INTO CLASSIFICATIONS

34 N

265 NNW NNE NW 0 0160 NE 692 Q247 865 694 WNW ENE 152 e~

10 5

~as W 10 MILES 5 MILES 2 MILES 25 1pp 35 708 E 868

< "~

WSW 0 ESE 673 75 423 A

~1530 SW 664 0 750 0294 5062 SE 478 SSW SSE 1535 S 5431 750 KEY Industrial Employees 865 Migratory Agriculturpl Workers Qsa Recreationists 870385.2 Rev.2.

418j FIGURE 5 DISTRIBUTION OF TRANSIENT POPULATION WITHIN 10 MII.E EPZ

42 NNW NNE 74 NE NW 42 10 MILES 0 76 WNW ENE 5 MILES 67 2 MILES 9 0 W E 75 93 WSW ESE 0

113 SW 124 29 SE 19 115 SSW SSE 29 124 TOTAL SEGMENT VEHCILES 0 TO 10 MILES 19 PERMANENT VEHICLES IONG CUMULATIVE 4INO MILES VEHICLES TOTAL MILES VEHICLES 0 2 0 2 2 5 28 0-5 28 5- 10 0 10 870385.4 REV. 2 4N7 FIGURE 6 PERMANENT RESIDENT PASSENGER VEHICLES WITHIN 10 MILE EMERGENCY PLANNING ZONE

19 0 N NNW NNE 305 0

19 NW 105 10 MILES 162 822 307 WNW ENE 5 MILES 2 MILES 178 0 W 49 316 E 355 24 10 398 217 WSW ESE 0 393 286 SW 886 4410 SE 407 593 296 SSW SSE 4410 886 S CK TOTAL SEGMENT VEHICLES 0 TO 10 MILES 593 TOTAL VEHICLES RING CUMULATIVE RING MILES VEHICLES TOTAL MILES VEHICLES 0 2 0 2 0-5 1791 5-10 7132 0-10 5929 870385.3 REV. 2 4/87 FIGURE 7 TOTAL VEHICLES WITHIN THE 10 MILE EMERGENCY PLANNING 2ONE

100%

o 80 70 0

60 o 50 40 o 30

~ 20 10 0

15 30 45 1hr. 30 2hr. 30 3hr.

TIME

'703854 Rev 2 ApN 1987 FIGURE S.A. PERMANENT POPULATION NORMAL CONDITIONS

100%

90 o 80 70 60

" 50 40 o 30

~ 20 10 0

15 30 45 1hr. 30 2hr. 30 3hr.

TIME 870385 4 Rev 2 April 1987 FIGURE 8.B. PERMANENT POPULATION ADVERSE CONDITIONS

100%

o 80 70 60 D

o50

~

40 o 30

~ 20 10 0

15 30 45 1hr. 30 2hr. 30 3hr.

TIME 870885.5 Rev 2 April 1987 FIGURE S.C. GENERAL POPULATION NORMAL CONDITIONS

100 o/o 90 o 80 X

70 l3 60

~ 50 40 O 30

~ 20 10 15 30 45 1hr. 30 2hr. 30 3hr.

TIME 8703r5.2 Rsv 2 April 1987 FIGURE S.D. GENERAL POPULATION ADVERSE CONDITIONS

SOURCE/SINK FLOld RATES CENTROID NUI'1BER LINK SOURCE/S INK RATE (VEH/HR) 2888 ( 58, 25) 2881 ( 61~ Z4) 57 2QQ2 ( 24 4) 99 2882 ( 27 7) 2884 ( 78, 69) 172 2885 (. Z5, 16) 188 2886 ( 41, ZS) 192 2887 ( 17~ 18) 58 2888 ( 28, 29) 188 2889 ( aQ, 29) 98 2818 ( 4 5w) 68 2811 ( 1~ 2) 273 2812 ( 64, g2) 58 2813 ( 71, Z9) 182 2814 ( 47, 46) 1~5 2815 ( 49, 48) F11 2816 ( 68, 59) 18 2817 ( 727 42) iia 2818 ( 73) Z6) 2819 ( 94, 85) 71 2828 ( 77! 78) 65

.2821 ( 89, 98) 42 2Q22 ( 92 98) 8 2827 ( '6

84) 57 2824 ( 9e, 91) 18 2Q25 ( 85, 86) 52 2826 ( 95, 96) 28 2827 ( 96, 97) 126 2828 ( 98~ 99) 18 2Q29 ( 99, 188) 87 28>8 181 ~ 182) 114 2831 183~ 184) 4 2822 185, 186)

~

283> 187, 188)

Table lA Source Rate Inputs for I-DYNEV Case: General Population Time Period 1 (1st 15 minutes)

SOURCE/SINK FLQN RATES CENTROID NUI'ABER LINK SOURCE/SINK RATE (VEH/HR) 2888 58, 25) 494 2881 61, Z4) 128 2882 24 4) 22'12 2882 27. 7) 2884 78, 69) ZBS 2885 +5 ) 16) >25 2886 41, >8) 431 2887 17, 18) 121 2888 28, 29) 225 2889 38~ 29) 2818 4r 52) 125 2811 ls 2) 614 2812 64, g2) 112 2812 71, 39) 222 2814 47, 46) 38'9.9 2815 49, 48) 2816 68, 59) 48 2817 72 42) 266 2818 73'4 ~6 ') 56Q 2819 85) '168 2828 '7.

78) 146 2821 89, 98) 95 2822 92 98)'4) 17 2823 129 2824 '6'5,
91) 2 2825 86) 116 2826 95 ~ 96) 44 2827 96, 97) 284 2828 98, 99) 22 2829 99~ 188) 195 2838 181, 182) 257 2831 182 184) 9 28y2 185, 186) 675 2833 187, 188) 137 Table 1B Source Rate Inputs for I-DYNEV Case: General Population Time Periods 2 and 4 (2nd and 4th 15 minutes)

SOURCE/SINK FLON RATES CENTROID NUMBER LINK SOURCE/SINK RATE (VEH/HR) 2888 58, 25) 988 2881 61~ 34) 256

~ 2882 24 4) 446 2883 '7

~ 7) 625 2884 78, 69) 1125 2885 35'1~

16) 458 2886 38) 862 2887 17, as) 261 2888 28'8,
29) 458 2889 29) 485 2818 52) 278 2811 1 ~ 2) 1228 2812 64~ 32) 223 2813 71, 39) 464 2814 47, 46) 687 2815 49, - 48) 1399 2816 68, 59) 79 2817 72. 42) 531 2818 73 ) 36.) 1125 2819 94, 85) 328 2828 77 7S) 292 2821 '89. 98) 189 2822 92, 98) 34 2823 76, 84) 257 2824 93, 91) 2825 85 ~ 86) 2826 95, 96) SS 2827 96 97) 569 282S 98 99) 43 2829 99 188) 391 2838 181, 182) 515 2831 183, 184) 18 2832 105 186) 1358 2833 7, '$

188) 274 Table 1C Source Rate Inputs for I-DYNEV Case: General Population Time Period 3 (3rd 15 minutes)

Mile 1 2 3 4 5 6 7 8 9 10 15 20 25 30 35 40 45 50 TOTAL Sector N 14 138 194 675 826 454 526 2904 14968 20?09 NNE 10 23 32 53 136 192 481 5278 732 2466 423 470 10304 NE 13 27 20 57 29 70 166 233 430 1585 355 295 130 796 4210 ENE 20 32 63 19 55 184 608 296 1421 90 331 100 113 33?3

-2 18 39 41 42 2? 192 269 68 83 59 69 114 127 1204 ESE 40 48 ?2 65 80 112 69 84 77 90 280 584 1667 SE 14 84 50 106 547, 3608 2762 3376 215 249 984 1100 13184 SSE 9 33 32 14 7588 41590 22902 1214 275 317 821 919 75?14 57 25922 3021 84 103 567 4113 2050 14490 5040?

SSW 249 1298 294 393 482 42 214 164 2446 5?04 SW 494 2612 875 5290 219 254 199 222 10172 WSW 396 554 732 894 4478 17393 382 427 25256 W 536 655 1660 1918 6077 12438 23284 WNW 83 102 649 750 822 920 3326 NW 18 22 187 516 383 429 1555 NNW 82 100 318 1257 251 281 2289 Total 19 64 275 305 420 73? 37141 53287 30486 21515 10377 30758 16084 50730 252358 Accumulated Total 19 83 243 518 823 1243 . 1980 39121 92408 122894 144409 154?86 185544 201628 252358 870385.7 Rev.2 4I87 TABLE 2 PERMANENT POPULATION DISTRIBUTION

Mile 1 2 3 4 5 6 7 8 9 10 15 20 25 30 35 40 45 50 TOTAL Sector N 30 NNE 75 20 10 70 89 NE 400 10 35 77 50 56 692 ENE 467 40 40 28 48 44 27 694 25 100 260 108 218 102 55 868 ESE 260 40 20 87 '6 6 12 673 SE 25 70 262 21 50 50 478 SSE 165 2627 2377 262 5431 750 750 SSW 1500 35 SW 10 10 WSW WNW 865 1779 1361 4005 NW 993 993 NNW Total 1125 1576 270 512 726 3182 4962 596 1779 2354 17082 Accumulated Total 1125 2701 2971 3483 4209 7391 12353 12949 14728 17082 870385.9 AEV. 2 4/87 TABLE 3 TRANSIENT POPULATION DISTRIBUTION

Mile TOTAL 3 10 Sector N NNE ENE ESE 390 SE 22 65 SSE SSW SW WSW W

WNW NW NNW Total 455 Accumulated Total 455 87ta85.10 AEV. 2 4/87 TABLE 4 SPECIAL FACILITYPOPULATION DISTRIBUTION

Mile 1 2 3 4 5 6 7 8 9 10 15 20 25 30 35 40 45 50 TOTAL Sector N 30 10 14 138 194 675 826 454 526 2904 14968 20743 NNE 75 28 20 24 102 142 136 192 481 5278 732 2466 423 470 10569 NE 404 23 62 97 121 79 126 166 233 430 1585 355 295 130 796 4902 ENE 475 60 72 91 67 77 82 184 608 296 1421 90 331 100 113 4067 27 118 299 149 260 129 109 192 269 68 83 59 114 127 2072 ESE 260 45 28 127 274 59 77 80 112 69 84 77 90 280 584 2730 SE 30 89 93 134 156 547 3608 2762 3376 215 249 984 1100 13732 SSE 174 2660 2402 276 7588 41590 22902 1214 275 317 821 919 81138 750 57 25922 3021 84 103 567 4113 2050 14490 51157 SSW 2 1620 284 1298 294 393 482 42 214 164 2446 7239 SW 4 13 10 494 2612 875 5290 219 254 199 222 10836 WSW 396 554 732 894 4478 17393 382 427 25256 W 536 655 1660 1918 6077 12438 23284 WNW 865 1779 1361 83 102 649 750 822 920 7331 NW 993 18 22 187 516 383 429 2548 NNW 82 100 318 1257 251 281 2289 Total 1125 . 1595 334 677 3509 5375 1333 38920 55641 30486 21515 10377 30758 16084 50730 269893 Accumulated Total 1125 2720 3054 3731 5165 8674 14049 15382 54302 109943 140429 161944 172321 203079 219163 269893 870385.8 AEV. 2 4187 TABLE 5 TOTAL POPULATION DISTRIBUTION

DYNEV LINKS PKT LENGTH PViT LOST DIG FREE LENGTH F EET FULL LANES LANE CHAN DES TINATION N ODES OPP. T I I'lE HDWY. SPD RTOR PED LINK t l'l I 188 L R LANES L R GRD 1 2 3 4 56 LEFT THRU RGllT DIAG NODE SEC SEC I'1PH CODE CODE 17, 18) 112 8 8 1 8 8 8 8 8 8 888 8 19 8 Q

-~2 8 2 St 4' 38 18, 19) 62 8 8 1 8 8 8 8 8 8 8 28 8 2 5t 4.8 38 19, 28) 62 8 8 1 Q Q 8 8 8 8 888 21 Q 2.5t 4.8 38 28>> 21) 188 8 8 1 8 8 8 8 8 8 888 8 8884 8 2.5a 4.8 38 19>> 22) 62 8 Q 1 8 8 8 8 8 8 888 8 23 Q 2.5t 4' 38 22>> 23) 186 8 8 1 8 8 8 8 8 8 Q 8883 8 2.5t 4.8 38 26, 31) 28, 29) 18 38 8

8 8

8 2

1 8

8 8

8 8

8 8

8 8

8 8

8 888 888 8

8 6

3 8 2 5t 2 St 2

2 't 2t 55 25 38, 29) 34>> 26) 26 28 8

8 8

8 1

2 8

8 8

8 8

8 8

8 8

8 8

8 888 888 3

8 31 8 8 8 2 't'g 2.5t 2.2t 2 2t 28 45 33>>

24, S) 4)

28 42 8

8 8

8 1

1 1

8 8

8 8

8 8

8 8

8 8

8 888 888 8

8 8

8 8

52 ~

2

't 2.5t 2

2 't 2t 48 25 1>>

7>>

52) 2)

26) 65 36 88 8

8 8

8 8

8 1

1 1

8 8

8 8

8 8

8 8

8 8

8 8

8 8

8 8

8 8

888 888 8

44 8

53 Q

8 8

8 31 2

2.5f 2 ~ 5t 2

2

't2t 2.2t 35 35 45 5>> 8) 18 8 8 2 2 8 8> 8 8 8 888 8 9 8 2.5t 2.2t 55 8>>

9, 9) 18) 37 51 8

8 8

8 2 1 8

8 8

8 8

8 8

8 8

8 8

888 888 8

8 18 13 8

8 2 't 2-5t 2 't't 2.2t 55 55 18, 13>>

13) 14) 158 158 8

8 8

8 2

2 8

8 8

8 8

8 8

8 8

8 8

8 888 8

8 14 16 8

8 2

2 't 5t 2 2.2t SS 55 8 14, 35>>

15, 16) 16) 38) 78 18 25 8

8 8

8 8

8 2

1 2

8 Q Q 8 8 8 8 8

8 8

8 8

8 8

8 8

8 8

888 888 8

32 8

3>>

39 8

8 8

8 2 't 2.5t 2.St 2.2t 2.2t 2 2t 55 QS 55 8

8 8

38>> 39) 38 8 8 2 4 8 8 8 8 8 8 8 2.5t 2 2t 55 8 8 41, 39, 42 3B) 42) 43) 33 25 48 8

8 8

8 8

8 1

2 2

8 8

8 8

8 8

Q Q

8 8

8 8

8 8

8 8

8 8

888 39 8 43 8 8881 8 8 8

8 8

2 5t 2.5t 2.5t 2

2

't't 2 2t 35 58 58 8

8 8

8 8

8 44, 48, 45, 48) 45) 46) n2 38 Ie 8

8 8

8 8

8 2

2 2

8 8

1 8 8

8 8

8 8

8 8

8 8

8 8

8 8

888 888 8 QOO 8

8 47 45 46

'69 8

8 8

8 8

2 't 2.5t 2.5t 2

2

't't 2.2t 58 58 50 8

8 8

8 8

47, nb) 28 8 8 1 8 8 8 8 8 8 888 69 8 8 8 2.5t 2.2t 8 8 49, 53, 58>>

48) 58) 51) 28 157 138 8

8 8

8 8

8 1

1 1

8 (')

8 8 8 8 8

8 8

8 8

8 8

8 8

8 8

888 888 8 8.8 8 45 8

51 8

54 8

8 8

8 8

8 2.5t 2 't 2.5t 2

2 't2t 2*2t JS 55 55 8

8 8

8 51>>

54, Sn) 55) 45 2S7 8

8 8

8 1

1 8 8 8 8 8

8 8

8 8

8 8

8 8 8'8 8 55 57 Q

8 8

8 2 't 2-St 2 't 2.2t 55 55 8 8

55 57>>

57) 56) 277 92 Q

8 8

8 1

1 8 8 8 8 8

8 8

8 8

8 8

8 888 888 8

8 56 8888 8

8 8

8 2 St 2.5t 2 't 2.2t S5 55 8

8 8

8 58>>

25>>

25) 59) 18 51 8

8 8

Q 1

1 8 8 8 8 8

8 8

8 8

8 8

8 888 888 59 8

8 74 8

8 Q

8 2 't't 2.5t 2 't2t 2.2t 15 58 Q

8 Q

8 68, 27 59) 7)

SQ 45 8

8 8

8 1

1 8 8 8 8 8

8 8

8 8

8 8

8 8

8 Q 74 8

Q 8

2 2.5t 2

2 't 35 25 8

8 Q

8 61, 3,

34) 63) 18 28 8

8 8

8 1

2 8 8 1 8 8

Q 8

8 8

8 8

8 8ee 888 8 26 5

8 8

Q 2 't 2.5t 2 't't 2.2f 25 55 8

8 8

8 63, 29, 6,

5) 3)

33) 152 88 148 8

8 8

8 8

8 2

1 1

8 8 8 8 8 8 8

8 8

8 8

8 8

8 8

8 8

8 888 888 8

63 Q

a 8

5 8

8 8

8 8

8 2 't 2.5t 2.Sf 2

2.2t 2.2f 55 25 55 Q

.8 8

8 8

31, 6) 22 8 8 1 8 8 8 8 8 8 888 8 8 8 2.54 2.2t 55 8 8 TABLE ROADWAY CHARACTERISTICS

DYNEV LINKS (CONT ~ )

PKT LENGTH PKT LOST DIG FREE LENGTH FE ET FULL LANES LANE C) IAN DES TINATION NODES OPP. TIME HDl)Y. SPD RTOR PED

'f 2.2f'f LINK M If188 L R LANES L R GRD 1 2 3 4 S 6 LEFT THRU RGHT DIAG NODE SEC SEC MPH CODE CODE lb, 32$

64, 32) 62) 32) 48 18 18 8

8 8

Q 1 8

8 8

8 8

8 8

8 8

8 8

8 8

8 888 888 888 8

8 62 62 37 8

8 8

8 8

8 8

8 8

2.5f 2

2.5f 2

2 'f 55 55 15 62$ 37) 28 8 8 8 8 8 8 888 8 65 8 8 2. Sf 55 37, 65$

65) 11) 38 28 8

8 2

1 8

8 8

8 8

8 8

8 888 888 Q

66 ll 67 8

8 8

8 8

8 2 ~ 5f.

2.5f 2 'f 2+2f 55 55 11$

66, 2,

66) 2)

44) 58 12 18 Q

8 Q

Q Q 8 8 8 8 8

8 8

8 8

8 8

8 8

888 888 8.8 8 44 48 8

8 Q

8 8

8 8

8 8

2 ~ 5f.

2 Sf 2 Sf

~

2 2

'f2f 2.2f 58 58 58 8

8 12$ 68) 18 8 1 1 8 8 8 888 15 Q 8 2 Sf 2 2f 55

'f2f

~ ~

68$ 15) 25 8 2 1 8 8 8 8 888 38 8 8 2 Sf 2.2f 55 11$ 67) 46 8 Q 2 8 8 8 8 8 888 12 8 8 2 Sf 2 55

'f 2.2f

~

67, 12) 5 8 8 2 1 8 8 8 8 888 68 8 F 54 2 55 52s 53) 156 8 8 1 8 8 8 8 8 888 8 8 8 2 58 4bs 69$

78, 69) 48) 69) 17 28 22 8

8 2

2 1

8 8

8 8

8 8

8 8

8 8

8 8

8 8

8 888 888 888 48 48 8882 8

8 8

8 8

8 Q 8 2.5f 2 ~ Sf 2.5f 2 'f 2 2f 2 ~ 2f 58 58 25 71, 39) 42) 28 28 8 1 8 8 8 8 8 888 888 8 8 2 'e 2 Sf 2 ~ 2f 2 ~ 2f, 25 25 8

72, 1 8 8 8 8 8 43 8 Q 8 ~ 8 36, 1) 17 8 1 8 8 8 8 8 888 8 8 2 8 8 2. Sf 2.2f 8 36, 37) 2Q 8 1 8 8 8 8 888 65 8 Q 8 8 2 Sf 2.2f 25 Q 73, 36) 12 8 1 8 8 8 8 8 888 1 8 37 8 8 >.Se 2.2f 25 8 59, 74) 353 8 1 8 8 8 8 8 888 186 Q 8 8 2.5f 2 2f 58 46, 77$

78$

47) 78) 79) 36 147 56 8

8 8

1 1

1 8

8 8

8 8

8 8

8 8

8 8

8 8

8 8

888 888 888 8 8886 79 8

8 81 8

8 8

8 88 8

2 'f 'f 2.54 2 bf 2 2f 2

s 25 48 48 8

79, 88) 488 8 1 8 8 8 8 8 888 8 8887 8 8 2 5f 2 ~ 2f 45 79$ 81) 113 381 1 8 8

8 8 8

8 8 8

888 888 8 83 8888 82 8

8 a

8 2 Sf 2 ~ Sf 2 'g 2e2f 45 45 81$ 82) Q 1 8 8 81$ 83) 235 8 1 8 8 8 8 8 888 8 8818 8 8 8 2.5f 2.2f 45 8 G4>> 78) 182 8 1 8 8 8 8 8 888 8 8 8 79 2 Sf 2.2f 45

'f

~

85, 86) 186 8 1 8 8 8 8 8 888 8 a7 8 8 2.5f 2.2f 45 8 86$

87$

87) 88) 322 198 8

8 1

1 8

8 8

8 8

8 8

8 8

8 888 8.8 8 8

8 8889 8 8 8

88 8

8 2.5f 2.5f 2

2 'f 38f 48 8

8 76, 89, 98, 84) 98) 91) 152 166 267 Q

8 8

1 1

1 8

8 8

8 8

8 8

8 8

8 8

8 8

8 8

888 888 888 78 8

8 8813 8

8 8

91 8

8 8

8 8 2 'f 2.5f 2.Sf 2 ~ 2f-2 ~ 2f 2 ~ 2f, 38f 38 45 8

8 8

8 8

92, 98) 288 8 1 8 8, 8 8 8 888 8 8 8 91 8 2. Sf 2 ~ 2f 38 8 93$ 91) 451 Q 1 8 8 8 8 8 888 8813 8 2 Sf 2 2f 38 8

'f

~

94, 85) 97 8 1 8 8 8 8 8 888 8 8 86 2 5f 2 ~ 2f 38 Q 9S, 96, 98$

96) 97) 99) 71 556 37 8 1

1 1

Q Q 8

8 8

8 8

8 8

8 8

8 888 888 888 8

8 97 8811 188 Q

8 8

8 Q

8 8

2 ~ Sf

2. Sf.

2 Sf 2

2 'f 2 2f 45 4S 38 8

8 8

8 99, 188) 632 8 1 8 8 8 8 8 888 ~ 8 8812 0 8 2 Sf

~ 2 ~ 2f 4S 8 181, 182) 478 8 1 8 8 8 8 8 888 8 8814 8 2.5e 2 2f 58 8 8 183, 184) 37 8 1 8 8 8 8 8 888 8 181 8 8 8 2 ~ Sf 2 2f 58 8 8 184, 181) 237 8 1 8 8 8 8 8 888 8 8 182 Q 8 2 ~ Sf 2 ~ 2f 58 8 8 74, 186) 163 8 1 8 8 8 8 8 888 8 75 8 Q 8 2 ~ Sf 2 ~ 2f 55 8 8 185, 186) 22 8 8 8 8 8 8 888 75 8 8 8 2. Sf 2.2f 25 8 8 2 '$

1 186s 75) 222 8 1 8 8 8 8 8 888 8 8885 8 8 8 2 ~ Sf 5S 8 8 187, 188) 116 8 1 8 8 8 8 8 888Q. 189 8 8 8 2 Sf 2.2f 5S 8 188$ 189) 152 8 1 8 8 8 8 8 8 8 8 8815 8 8 2.5f 2 ~ 2f 55 8 8

%ABLE 6. (c on t lnu ~ d)

TOTAL AREAS WITHIN 5 MILES AREAS WITHIN 10 MILES DESCRIPTION WITHIN 2 MILES TOTAL TOTAL PERMANENT POPULATION 45 83 600 945 1,980 PERMANENT POPULATION VEHICLES 15 13 28 316 145 661 TRANSIENT POPULATION 1,125 470 2,971 1,685 2,388 8,011 12,949 TRANSIENT POPUlATION VEHICLES 212 398 1,763 561 880 5,999 8,262 GENERAL POPULATION 1,125 1,037 3,054 2,285 3,333 8,446 14,929 TOTAL VEHICLES 964 321 398 1,791 761 1,196 6,144 8,923 NOTIFICATION TIME MINUTES 15 30 30 30 30 30 PERMANENT POPULATION EVAC. 1:00 1:30 1:30 TIME NORMAL CONDITIONS HOURS MINUTES GENERAL POPULATION EVAC. 1:00 1:30 1:30 1:20 2:15 2:15 TIME NORMAL CONDITIONS HOURS MINUTES PERMANENT POPULATION EVAC. 1:00 1:30 1:30 1:30 TIME ADVERSE CONDITIONS HOURS MINUTES GENERAL POPULATION EVAC. 1:30 2:00 1:30 1:30 2:30 2:30 TIME ADVERSE CONDITIONS HOURS MINUTES CONFIRMATION TIME MINUTES 30 60 60 60 60 60 60 60 60 870385.5 REV. 2 4I87 TABLE 7

SUMMARY

OF RESULTS OF EVACUATIONTIMES ANALYSIS

ATTACHMENT 1 I

This attachment is a copy of the DYNEV Computer run for General Population-Nonnal Conditions.

FEDERAL EllEROErlCV nANAOEllEllT AGCrn;Y '<FEWnl DYrlEV E.ACOATION rlODLL DEVELOPED UY l~ L D ASSOCIATES, INC.

3ld8 BROADtJAY l<uWTIWSTOW STATIOW, VY ZI7nC 444 kI44'4444444444 0 4f kkl4 0 4f 4444 l 44Tkiik4444 4 l 44 44 444 0 44444 0 0 44 t4 444 t4 l 4 k4 444444 W i44 4'l 444 F44'l4'kk l k l 0'0 4'4444 0 4444kl44 K4444 l 4444'Vi ) l4k4 START OF CASFklk'AIBA I 4 f4l 01 04k 4 f44 444'0'40 0 444'0 fkf0 44 0 0 444444I ( f0'444 l 0 l l 1 0 0 4 0 0 444444 0 l kkk l4'4l ) $ 4 E'L 4 44 4+4 4kb'4 l 4 4 4 l 0 l'fkl4444'4444444444 44'4'I k44N lf4 f 4 l 44

CARI> I- ILI". LIST NIIP 2 TRAFFIC SIt'IULATION It/ TOTAL VEHICLE POPS AI.L GU "DS AIID 8 IJOIIIWA NFArHER A)ID LOADIWS CONDITIO)IS 8 IIODIFIED BY ROID CASE 187 8 IIICI.UDES GRV I ABI(. OPT lll(tll WITH lRAFFIC CONI'fc(il. OFF ILEfsS AT 6 366 At@i 3888 AREAS. FFTF OUT RT 16SDU1'H AtlD ADVAIICED I'IUCLEAR 6 N Otl IIORI'I RAPIDS 6 VEHICLE POP BYCONlRACTOR AND FIELD I'OUNl'S 3/2//87. 8 ROBI-.RT tl(iBLE 12 12 SbNPPSS lttIP2 EP 8 I A)E 681 1 1 8815 1 81368 2 81566156815881581868 225 888S .5 J7 1868113 1 19 68488838 11 18 19 19 28 63 63 1

21

~ IQ 38 48 30 li 11 26 19 2186186 22 63 1

1 1

8684

>3 80486636 46 36 ll 11 23 186 1 8683 46 36, lJ 26 28 3188818 2906839 2

1 6

3 6655 6625 li 11 38 2986826 1 88 rQ 11 34 33 2688828 588828 2

1 1 6645 68 16 li Ji 4666n2 1 52 6825 J JJ 4 5288865 1 6835 11 1 266636 1 8835 Jl 7 2688888 1 31 8645 (I 5 888618 2 9 6655 ll 8 9 37 1 JQ 6055 6855 li l) 9 18 51 13 18 1388156 2 1>I 6655 11 13 1468158 lb 6655 Jl 14 35 16888/8 J686618 2

1 32 32 ()() 55 6825 li 11 15 3868825 2 39 6855 ll 38 3966638 2 1 ~

12 8855 l) 41 3088834 1 39 6635 Jl 4286825 n3 66:8 Ji 42 44 43886'IQ 4668843 2

2 8861 45 0658 8656 ll li 46 4588838 2 8 46 ()~)56 11 45 4686818 nj 6()56 11

~

49 1/ 4688628 4666628 1

1 1

69 4 >.>

ii625 6(4 >5 ll 11 53 5888158 1 5L 0055 Jl 56 5166139 1 Qu55 ll lJ 51 5468645 1 55 u655 5'1 55(')825 7 5/ u()55 ).1 55 5/68277 5686093 1

1 56 8666 6655 6655 ll Ji 57 1 58

'>5

'>588818 5966851 1

1

'59 74 6615 6658 ll 11 68 5988858 74 8835 11 pj 768845 1 1

rb (>v2 ll ll l2

  • 1 3468818 26 IJ625 6368828 6655 11 63 588153 366688 2

1 1

  • 3

>5 8 6655 0025 ll 11 6 3368149 1 5 8655 J,l

6"UUUl.d 3'/ Ulibb )1

6) 32 3/888>8 19 1 62 UL)15 li 62 4 p 65 e)Ub5 11 37 6588838 11 L)855 I. 1 65 1188828 1 66 61 8855 11 11 6688858 1 ) 8050 11 66 288813 GUbU 1 l.

4488818 ~

)U 8858 11

)2 6S88818 1 15 UU55 11

  • S 158e)825 1 3S e)855 ii

)1 6708846 12 8855 11 67 1288885 1 *8 e)855 11 5388156 1 58 UU58 11 46 698881S 2 )S ddbo 11 ll

~

69 4SU8829 SL)U2 8858 78 6988823 1 10 Ud"5 11 71 3988829 1 42 UU25 11 72 428082O 1 43 GU25 11 36 188817 1 8825 1 11 36 3788828 1 1 65 U825 il 73 3688812 1 GU?5 1 1) 59 7 )88354 1 8 186 U858 11 46 4788836 8886 8825 11 jj

?S 7888147 7988856 1

1 1

/9 Sl 88 )8 8840 it 11 79 S888489 1 S887 8d45 11 79 S188114 S3 82 88 )b )1 Sl Si S208381 S388235 1 SGGS  %)845 U(445 ii 1 SULU 11 S4 S5 7088183 86 186 1

1 L)7 Ge)45 8815 li 11 S6 8/

S? 322 SS 199 1

1 SGU9 Gdi)8 ll 1) 76 S9 S')88152 9888166 1 /S LQ()3('i ii 11 1

98 910826S 9888289 1

1 SU13 9) 8845 L)d38 ll 11 93 9188451 1 dd3d 11 94 95 S588897 9* 71

'1 1 9/

883()

8045 ll ll 96 9/88556 1 .8811 8045 11 9S 998883S 1 188 GL)38 11 99 18UUU633 1 SU12 Ue)4b 1) 181 182884/9 183 1848883S 1 8814 181 OU5d L)L')58 ii 1) 1 184 1818823/ 1 182 e)dbd 11

/4 18688164 1 75 8855 11 18$ 18688822 1 86.- /b88223 1

1

/5 8885 UU25 UU55 il 11 107 18S88116 1US 189881b3 1

1 189 881 5 Udb5 0855 ii 11 18 19 2U U 188 o 28 '1 U 188 19 22 8 188 L') 8 ')

22 23 8 188 1/ 1S 8 188 8 8 21 31 8 188 2S 29 8 1(18 8 e) 21 38 29 188 8 26 0 188 8 8 5 188 8 24 8 L) 188 0 21 52 8 188 1 2 188 0 8 8 '2 l 7 26 8 8 188 5 S L) 18>O 8 (') 21 8 9 8 188 9 1U 8 180 8 U Pl 18 13 8 188 13 14 8 188 8 8 21 14 16 8 188 35 16 )UG e) 8 8 21 15 3S 8 188 30 39 8 188 8 8 21 41 3S 180 8 39 42 8 188 8 8 21

~r ra e nrem

4/ 46 1UU 0UU UUU UUU y ~

53 58 8 188 8 8 58 51 8 108 (') 8 ~1 0 t) J Si 54 8 188 8 8 54 55 8 1(nU 0 55 57 8 188 8 8 57 Sb 8 188 8 8 2l 58 )E 188 UUU 888 UUU 2:i 59 UUU JUU 808 2J 68 59 UUU UUU 188 888 '27 / 8 8 UUB'UU 8 21 bl 34 8 1UU 8 3 63 8 JUU 8 8 21 63 5 8 188 8 8 29 3 188 8 8 8 6 33 8 18U 8 8 31 6 8 J(nU 8 8 21 16 32 8 188 8 8 32 62 8 14M) 0 8 21 64 32 188 8 8 ,62 37 U 188 8 8 21 37 65 8 188 8 8 65 11 39 61 8 8 2i 11 66 8 188 8 8 66 2 8 188 8 8 8 188 8 8 12 6B 8 l88 8 8 21 6B 15 8 188 8 8 11 67 8 188 8 8 21 67 ]2 8 188 8 8 52 53 188 8 8 8 2l ne 69 8 188 8 8 no 8 J()8 8 8 2) 78 69 188 8 8 8 71 39 188 0 8 8 2l 72 188 8 8 8 36 1 188 21 36 37 188 /3 36 885 888 895 21 59 74 188 nb 188 )J 77 7B 188 888 7B 79 ono 868 21

/9 sn 188 79 Bi 848 868 888 21 B1 B2 188 Bl B3 188 21 Bn 7B 188 B5 86 188 B6 B7 188 B7 BB 188 2l 76 Bn 188 B9 98 188 ~1 98 91 188 92 98 188 93 91 188 94 B5 21 95 96 188 96 97 188 21 98 9c) 188 99 188 188 21 181 182 188 183 184 188 888 888 21 184 181 7) 186 188 2i 185 186 188 186 7S 188 21 187 18B 188 JUB 189 188 3 29 35 5 63 33 35 7 27 O'5 B 35 11 65 3S 17 3(i 1B 17 35 19 1B 35 28 19 35 21 28 35 19 35 23 35 35 25 5B 35 2B 3S 29 2B 38 35 52 53 52 rb 57 35 38 26 7 34 35 31 26 3S 33 6 3S 34 bl 3ri 4 35 36 35 2 1 hb 35 B 5 35 18 9 Z

16 14 35 35 37 62 36 845 838 35 38 15 41 838 848 35 39 38 71 41 35 42 39 72 43 35

~

14 2 ne S5 46 47 835 848 'I 47 nb 35 48 69 35 49 35 58 53 35 St 58 35 54 51 35 55 54 S5

~ 57 55 35 58 35 59 25 35 68 35 27 31 61 3S 3 35 6 31 35 32 16 35 62 32 35 64 35 65 37 35 66 11 35 67

  • 8 ll 12 35 O'5 69 46 35 78 35 71 35

/2 35 12 67 35

.15 68 48 44 838 945 35 36 73 35

/3 35

/4 59 35 75 186 35 77 3S 78 /7 35

/9 78 35 88 79 3'5 Bl 79 35 82 81 35 83 81 $ 5 84 76 35 85 94 35 86 85 35 87 86 88 87 35 76 35 89 35 98 92 3S 91 93 35 92 O'5 93 35 94 35 95 35

VU 99 9a 35 188 99 35 181 184 35 182 181 35 183 35 184 35 185 35 186 7) 185 35 18/ 35 188 187 35 18'9 188 35 5 BJ 48681371 36 5 15 8158181274 36 7 1 81S9381495 36 9 1 1539 1233 36 11 1 8173388718 36 17 8189488869 36 18 1 81)8688787 3*

19 1 8112588725 36 28 1 8113188658 36 21 1 8115688563 36 22 1 8116388669 36 23 1 8116988569 36 24 8137181278 36 25 58 8161888676 36 28 ) 528 1'l/9 36 29 15 8140581468 36 52 1 8132781227 36 53 5 8117281288 36 S6 1 851 659 36 38 8158381441 36 26 81 8162281455 36 31 1 816148(438 36 33 1 81 51 )81293 36 34 1 816448 I 4/6 36

~

l 5 813/281228 36 1 817678876L 36 2 51 8176988683 36 8 1 8151381268 36 18 1 815758)196 36 13 1 8163881129 36 14 1 8173881889 36 16 15 O17370ne 'O 35 81/6388819 36 37 12 21 8173588768 36 38 12 2i 8173108597 36 39 1 8173(88565 36 41 817658BS96 36 42 81/3188548 36 43 8173188588 36

)4 1 8178488668 36 45 1 <<)178588565 36 46 12 21 8178588558 36 4/ 1 818218BS58 36 48 1 8178588583 36

~

)9 8181888595 3*

SB 1 0114781851 36 51 1 8112588913 '36 54 S 8188188988 36 55 1 8899188885 36 S7 8892588716 36 SS 8161888649 36 59 51 8155988677 36

61 81*5681407 36 63 1 01 ) 17()1357 36 6 1 8161881488 36 32 15 8173588082 36 62 1 81/3588777 36 64 1754 882 36 65 8173388735 36 66 8175988692 36 67 8173880604 36 60 8173888668 36 69 8170488532 36 78 8100/00532 36 71 817688856S 36 7i 81/5188539 36 12 1 0)73888671 36 15 1 817318863S 36 48 12 8170588595 36 36 8 81 /5888759 36 73 8)75888771 36

/4 5 8122(88784 36 75 1 8152888538 36 77 8 8).0618)9/6 36 78 15 8288881976 36 79 1 828338282/ 36 08 1  : 8244282827 36 81 18 8288482129 36 82 1 8230582129 36 83 1 8219982334 36 04 1 8288081073 36 85 2833 l797 36 06 2187 1721 36 87 8242981728 36 08 2564 1573 36 76 8(S3981869 36 09 8173382231 36 98 8173382397 30 91 2881 2397 36 92 8156/82278 36 93 8178482881 36 94 8195881746 36 95 8)9378)426 36 96 2080 1')26 36 97 8256481428 3h 98 1899 12/3 36 9'). 8193/81273 36 188 8257881273 36 181 8215581103 36 182 8215588784 36 183 8108881183 36 184 8191881 103 36 185 8136288697 36 186 8)34088608 36 187 8104088@(8 36 180 1 8105b88/(')2 36 189 1 8196888509 36 2888 50 2582282881 61 3488572882 24 488992883 27 /8139 51 2884 78 6981722885 35 1681882886 41 3081922887 17 108850 51 2888 28 2981882889 38 2988982818 4 S288682811 1 28273 Sl 2812 64 3288582813 71 3981832814 47 4681'352815 49 488311 51 2816 68 5988102817 72 4281182818 73 3682S82819 94 858871 51 2828 7/ 7888652821 89 9888422822 92 988888 '823 76 048857 51 2824 93 9188182825 85 0688522826 9S 9688282827 96 978126 51 2820 90 9988182829 99 18888S72838 181 18201142831 183 18 ) (588') 51 i832 185 18683882833 187 1888861 51 own

28('le 50 2584942881 6) 348).202882 24 482232883 27 /83) 2 51 28e4 /8 698306?885 35 1682252886 41 368)31'>ei)7 1/ 108131 5) 2880 20 298225?889 38 2982832818 4; 5281352811 28614 51 2812 64 3281122813 /1 3982322814 47/ 46838328(5 ~

l88699 51 28)6 68 5988482817 72 4282662816 73 3*85632819 94 058168 51 28'8 /7 7081462821 69 9888952822 92 9888172823 76 048129 51 2824 93 9188232825 05 0681162826 95 9688442827 96 978264 51 2820 90 9988222829 99 )8881952838 181 1828257283L 183 1048()89 51 2832 185 18686752833 187 )868137 51 8 8 178 0 1 '18 2888 50 2589S02881 61 3482562882 24 4 814h2883 )7 78625 51 2884 78 6911252885 35 1684582886 41 308S622887 17 168261 51 2880 20 2984582889 38 2984852818 4 52o2782811 1 2)220 51 2812 64 3282232813 71 3984642814 47 4686872815 49 481399 51 2816 68 5988792817 72 4285312816 73 3611252819 65()328 51 2828 77 7082922821 69 9881092822 9oe83428 3 76 648257 51 2824 9108452825 65 6682322826 95 9688002827 96 978569 51 2826 96 9988432829 99 18883912838 )81 18285152831 183 1848816 51 2832 185 18613582833 187 1808274 51 8 8 178 0 1 2)8 2888 50 2584942881 61 3481202882 24 482232883 w7 /8312 51 2884 78 6983602885 35 1682252886 41 308431288/ 17 108131 51 2880 20 2982252889 38 2982832818 5281352811 1 28614 51 2812 64 3281122813 71 3982322814 47 4683832815 49 488699 51

28) 6 68 5988482817 /2 428266281S 73 3685632819 94 658168 51 2828 7/ /681462821 09 9888952822 92 9888172823 76 648)29 51 2824 93 9188232825 65 0681162826 95 9688442827 96 9782B4 5).

2820 96 9988222829 99 18881952838 181 18282572831 183 1848889 51 2832 )85 18686752833 587 ).808137 51 8 8 178 0 1 2)N 2888 50 2588882881 61 3488882882 24 488882883 ?7 78888 51 2884 78 6988882885 35 1688882886 41 3088882887 17 108888 51 2880 20 2988882889 38 2988882818 4 5288882811 1 28888 51

28) 2 64 3288882813 71 3988882814 47 4688882815 49 488888 5) 2816 68 5988882817 72 4288882816 73 3688882819 94 05eene 51 2828 /7 7088882821 09 9888882822 92 9888882823 /6 648888 5) 2824 93 918888 >825 05 0688882826 95 968888 >827 978888 51 2820 90 9988882829 99 188888(12838 181 18288882831 183 1848888 51 2832 185 186 2833 107 1808888 51 8 178 1 218 Wl)RN)l)6 ))ESSABE N(ABER 610, Rn(n)NE rVn PARrit)El'ER(S) Pi = 0

rrnrRAt EhiFRBalcY ttnwnttEttErtT ASEricY (FEhtn)

>>Yrlrv EvncttATIow tiooa DEVELOPFD BY t: L D nssocIATEs, Iwc.

388 BROAl)ilAY itttttTIwt row STnTIO>>, tiY II7n6 h¹hfhhhh¹hf hhh'¹ ¹¹¹ h4 ¹hhh¹h¹hhfhh ¹4 ¹h ¹f hf ¹¹h¹h¹f hhfh fff f hhfhf 'h¹¹h h¹ ¹hh¹'hh¹hhhh¹hhf l ¹h hf '1 f 4 h'h 4¹¹¹hh fhh f hh¹f'hh¹hhhf 1 f '4h¹¹¹¹¹f I fff ¹ Thing START OF CASE 1 fff 4¹f 44'4¹fhf ¹4 f4¹ f ¹f ff ¹f ff hfhf fhff ¹¹¹¹f f f ¹f f fh ¹¹f ff ¹f ¹¹f ¹f f ff ffh¹fhff44¹ 4h ff f ¹h4f F¹W¹¹f f h hh ¹f f¹ f¹¹4 f h¹f ff ffff f¹fff4fhhf 4 f ¹h4f ¹f f 4

NNP 2 TRAFFIC SII'1ULATION 8/ TofnL VEllICLF- POPS ALL GUADS AND wotiIwAL NEATt<ER nwD i.onDIhis cuwDI TIows tloDIFIED BY RDil CASE 187 INCLUDES ORV PARt;. OPTII1UII llITH TRAFFIC CONTROL OFFICERS AT 388 AND 3888 AREAS. FFTF OUT RT 18SOUTH AND ADVAtlCED 1'lUCLEAR i'1 Ow HORtl RAPIDS TtkEtV SE Ohl 268 To RICHLAND.

VEHICLE POP BYcotlTRACTOR AND FIELD COUltTS 3/27/87.

l)ATE = 12/ 12/ 86 USFR ~ ROBERT NOGl.E ABENCY = ilPPSS lltlP2 EP via STATE

Rlihl CO1'lTROL DATA VALUE RUtl PARAhtETERS AflD OPTIONS RUI4 IDENTIFICATION tlUtlBFR NEXT CASE CODE = (8,1) IF AtlOTHER CASE (DOES t4OT, DOES) FOLLOl'l RUN TYPE CODE ( I, 2) IF (SIP1ULATION TRAF. ASSIGNtlf:tlT) TO BE EXECUTED

(-I, -2) IF ONLY DIAGt40STICS APE BEING PERFORNED Ot4 (SItfULATIOhf, TRAF. ASSIGtltlEhlT) DATA 1388 CLOCI( TIt1E AT START OF SIhfULAT/Ot4, H(JUGS AND 1'1ItlUTES 758i RnhtDOta NuilBER SEED 988 DURATION (SEC) OF TItiE PERIOD NO. I 988 DURATION (SEC) OF TItlF PERIOD tlO. 2 988 DURATION (SEC) OF TlllE PEftIOD tlO ~ 3 988 DURATION (SEC) OF TIt'1E PERIOD llO.

18888 DURATIOhl (SEC) OF TIllf= PFRIOD NO. 5 225 LENGTH OF A TINE ItlTFRVAL, SFCONDS tlAXIhfUtt II'llTIALIIATION Tlt'lf., NUtiBLR OF TINE IhJTERVALS tlUtlBER OF '1 IIIE ItlTFRVALS BETllEEN SUCCESSIVE STAhtDARt) OUTPUlS NUI'1BER OF TIhtE INTERVAl S BETWEEhl SUC(:ESSIVE INTEftllEDIATE OUTPUTS FOR tlACROSCOPIC NODFLS

TII1E PERIOD 1 DYNEV DATA FOR SUBtdETWOlci; I

'44.44444"4 4444 f.k 4 4 kit4 f0'444k kk4444444'0 Ri:44'1 f.$.44 i 4'0'40'i.k f,444 ti.W 4'ks p'4 0 i. f. 4 44.4 0 0 '@i.444 4 i t 4 k. i.44'444 f. f 4'k f444'K4444'A 44444 fills W i.444444.44.44414 I'

i INnrcATes DEFAul T vALues NeRE SPECIFIED l.ANE CHANNEI rzATION RTOR PenesTRIAN cones r.ones CODES 8 UNRESTRICTED 8 RTOR PERllITTfn 8 l'lo PEDESTRIANS LEF r TuRNs oNl Y RTOR l ROHIDITen I LIGHT 2 Duses ONI Y 2 llODERATE cLosen 3 HEAVY R I GHT TURNS ONl. Y 5 rAR - FOOLs 6 cAR pool s + Buses

TURrl I'IOVFIIEhl f PFRCE hjlAGES fl)Rhl I IDVEI'IEtlT pnsBISLE CAVACI fY REDUCTIat'I I Iwj( I.Er. f IIIRDUGH R I Gill I) In(lot IAL I.Er-T Tt IROU()l I 'IGHT I) I nanwnj (PFRCEhlT) 18> 19) 58 () 58 ND YES IJD YCS 8 19, 28) 8 188 8 8 No YES t'lo wa 8

>>Q 21) 8 168 8 8 Na YES hln IJO 19, 2>>) 8 168 8 I'lo YES cln No 8 22 23) 8 166 8 8 Nn YES Ha Ha 8 17, 18) 0 188 8 8 tlo YES I'lo NO 0 26, 31) 8 188 8 8 No YES I la Ho 8 28, 29) 8 188 8 lla YEB wo CIO 8 38, 29) 186 8 8 YES NO I ln NO 34 26) 8 188 8 8 Na YES Nn I jo 8 33>> 5) 188 Q 8 YES No WD No

4) 8 G) 188 8 tlo CID YES I'lo 8 4, 52) 8 166 NO YES Ho I 10 8 1, 2) 188 8 8 8 YES CJO IJO tla 8 7 n6 ) 8 8 186 8 Nn ND YES Nn 8
8) 8 168 8 8 Hn YES No rla 8 8, 9) 6 188 6 Hn YFS I jn wn 9, 18) 8 188 6 8 tin YES I'ln 110 8 1n, 13) 8 186 8 Wa YES Ha tJD 8

( 13> 14) 8 188 8 6 tla YES wn tlo 8 14, 16) 8 188 8 Nn YEB Nn wn 8

35. 1*) 168 8 8 YES Na No CJO 8 1S, 38) 8 186 8 IJD YES Nn wa 8 38, 39) 8 1n8 n 8 WO YF.S I'In wa 8 41, 38) 168 8 8 8 YES Nn Na 6 39, 42) 8 188 8 NO YFS I la I'ID 8 42, 43) 8 188 6 8 Na YES Nn Wo 8 44, 48) 6 188 8 Q HU YES IIO I'lo 8 46, 45) Q 168 Q Hn YES Nn HD 8 45> 46) 35 65 YES YES wo Wo 47, 46) 188 6 YES wa I I0 IJO 8 49> 48) 188 8 8 6 YES No No NO 8 S3, 58) Q 188 Q 8 NO YES Ha wn 8 58, 51) 8 188 8 8 Nn YES No wn 8 51, 54) Q 188 8 8 Na YES tdo I'ln 8 54, 55) 8 188 8 8 HO YES tjn rjo 8 55 57) 8 188 8 8 Ha YES Wll HD 8 57>> 56) 8 188 8 8 Ha YFS wa t'lo 8 58, >5) 168 8 Q 8 YES wn IJD Nn 8 5>> 8 188 8 NO YFS CJD tla 68> 59 ) Q 168 8 Ha l Ii) YES IJD 8 27>> 7) 188 0 8 Jla VIIS llo Ho 8 61, 34) 8 188 0 8 Nn VES IJU tlo 3>> 63) 8 188 8 Hn YLB Hn wa 6 63, 5) 186 0 tlo YES HD IIO 8 29, 3) 188 8 0 8 YES tj0 I ID Ila 8 6> 33) 188 6 tla YES No tin 6 31>> 6) 188 0 8 rln YCS Iln I'la 8 16> 32) 188 8 14) VEB wo tla 32>> 62) 0 188 8 8 rjo YES I'lo wo 6 64, 32) 168 8 8 .YES Na rjn Nn 62, 37) 8 188 8 8 No YES I'ln No 8 37, 65) 8 186 6 8 Iln YES Nn Ha Q 65, 11) 39 61 8 YFS YES HD hlO G) 11, 66) 8 186 Q 6 Na YES CJO I ID 8 66>> 2) 8 188 8 G) Na YES tlo rjo ~ 8
44) 8 168 8 tin YES I la IJO 8 12 68) 8 188 8 Q No YES tlo Ha 8 68, 15) Q 108 8 8 tla YES Clo WD 6 n >>in V>>- >> >in ~ I>>1

VOJ JIOU U I

>'I 6, 6/) 8 188 8 Iln YES Iln tin 8 6'9 ~ 40) 8 180 0 IIO YES hln I'ln 8

/8, 69) 188 8 0 YES NQ NO t'ln 71~ 39) 188 8 8 YES wn I IO ND 72, 42) 100 0 8 YES WD I IO tin 3*, 1) 8 0 188 Iln IIQ YES ND 8 36, 3/) 100 8 Yt..S I ln Nn I'ln 8 73, 36) 5 0 0 YES NO YES NO 59, 74) 108 0 0 8 YES I'ln HD Nn 46, 4'/ ) 0 188 0 8 wn YES tin wn

/7~ 70) 188 8 8 8 YES ND ND I IU 8 70, 79) 8 40 0 hln YhS Nn YES n 79, 00) 8 188 Nn YES Nn ND 79, 01) 0 48 60 Iln YES YCS NO 019 02) 8 108 0 Iln YES NO t40 8 01, 03) 8 188 0 wn YES NO NO 8 04, 70) 8 8 Nn wn NQ YES 05, 06) 8 100 0 I'ln YES wo WD 06, 07) 8 0 8 rtn I'ln NO YES 8 07~ 00) 8 108 0 Nn YES Nn NO 76, 04) 188 8 0 YES ND wn NO 09, 98) 0 8 188 wo ND YES t40 0 90, 91) 100 IIQ YES I ln NO 92~ 98) 8 8 0 188 hln wo hln YES 8 93, 91) 8 108 8 Nn YES wo wo 8 94, 05) 8 188 tin I'ln YES NO 95~ 96) 100 8 wn YES NO HO 96, 97) 8 188 0 ttu YES wn tin 90, 99) 0 180 wo YES Iln Nn 99, 180) 8 180 8 HO YCS wn wn 101~ 182) 8 188 0 Nn YES I ln Nn 103, 184) 0 100 0 hln YES wo NO 184, 181) 8 8 188 wo wn YES wo 106) 188 0 tin YES NQ tin 8 105~ 106) 100 8 YCS Nn wo ND 186, 75) 0 180 8 Nn YES wn hln 107, 180) 108 8 ltu YES IAO wn 180, 189) 8 188 8 Nn YES wn wn

IJODE COOI(DII'JME "fABLE NODE I'IODE Y NODE HODE IJQDE

( 1) 1764 768 ( 2) 1768 688 ( 3) 1484 1368 ( 4) 1372 1228 ( 5) 1588 1 >72

6) 1688 1488 ( 1) 1592 -1492 ( 8) 1512 1268 ( 9) 1536 1232 ( 18) 1572 1196

( 11) 1 /32 116 ( 12) 1728 668 ( 13) 1636 1128 ( 14) 1 /36 1888 ( 15) 1/28 636

( 16) 1736 828 568

( 17) 1892 868 ( 18) 1184 784 ( 19) iI >4 724 ( 28) 1128 648

( 21) 1156 ( 22) 1168 668 ( 23) 1168 568 ( )4) 1368 1268 ( 25) 1688 676

( 2o) 1628 1452 ( 27) 1572 1484 ( 28) 1528 14/6 ( 29) 1484 inbO ( 38) 1588 1448

31) 1612 in" 8 ( 32) 1 /32 888 ( 33) 1512 1o9 > ( 34) 1644 14/6 ( 35) 1768 816

( 36) 17 IS /56 ( 37) 1732 768 ( 38) 1728 596 ( 39) 1728 564 ( 48) 1184 592

( 41) 1764 596 ( 42) 1728 548 43) 1728 588 ( 44) 1784 668 ( 45) 1704 564

( 4o) 1784 548 ( 47) 1828 548 ( 48) 1784 588 ( 49) 1816 592 ( 5(I) 11'I4 1848

( 51) 1124 912 ( 52) 1324 1224 ( 53) 1172 1288 ( 54) 1888 908 ( 55) 988 88 I

( 56) S48 656 ( 57) 924 716 ( 58) 1688 638 ( 59) 1556 o76 ( 68) 1568 696

( 61) 1656 1 l84 ( o2) 1732 /76 ( 63) 1416 )356 ( 64) 1 "/52 888 ( 65) 1732 732

( 66) 1756 692 ( o7} 1728 o84 ( oS) 1728 668 ( 6'i) I/8 1 53+ ( 70) 1884 532

( 71) 1768 564 ( 72) 1748 536 ( 73) 1748 768 ( /4) 1228 7S4 ( /5) 1528 536

( 76) 1836 1868 ( 1/) 1868 19/6 ( 78) 2AAi8 i97o ( 79) 2832 282'I ( BC)) 2448 >8 >4

( 81) 2A84 212S ( 82) 238) 2128 ( 83) 2196 2332 ( 84) 2AAB I 8/2 ( 85) 283 > 1796

( 86) 2184 1728 ( 87) >428 1728 ( 88) o5*4 1572 ( 89) 1732 2228 ( 98) 1732 2396

( 91) 2888 239h ( 92} 1564 2268 ( 93) 178¹ 2888 ( 94) 19'I 8 1/44 ( 95) 1936 1424

( 96) 2888 14 >4 ( 9/) 256¹ 1428 ( 98) 1896 I '>/2 ( 99) 1936 ( 188) 2568 1272

( 181) 2152 1188 ( 182) 2152 784 ( 183) 1888 1188 ( 184) 1916 1188 ( 185) 1368 696

( 186) 1348 68C'I ( 18/) 1848 Bib ( 188} ie56 =/AA ( 10'j) 1968 588 (

AL(. CIIQtcDII'IfifES EXI>RESSED IH UNITS UF lllLES%188

SPI='CIFII:D FIXFD-rIIIE SifsHAL COHfAQL, Ahtn SIGtl LOIITHQI., Cnf>ES I lnDt= 1 IS llltt>LsA SIGH CONIRDL I t ll'ERVAI. DI (RAT I ON APPROACHES IAUMDER (SFC) (PCT) ( 3c'ss 1) 1 O 1O8 1 NODE 2 IS UNDER SIGN I'Ol'ITBOL I tlTERVAL DUftATIQI'I APPROACtIES NUNDEA (SEC) (PC'T) ( I, 2) ( o(s 2) 1 8 188 NODE 3 IS UWDFA SIGW COIAAIIL ItlTERVAL DURATIOtl APfrRQACHES NUMIIEA (BEC) (PCT) ( 29s 3) 1 8 186 5 NODE I IS UIIDEA SIQtl CQH1'AOL Il'ITEAVAL DURATIOI'l + APfsROACHFS NUIIDEA (SEC) (PCT) ( 24s 4) 1 8 168 5 NODE 5 IS UNDEA SIGtl CQN'fROL INTERVAL DURATION APPROACI(ES NUhtDER (SEC) (PCf) ( 63s ( 33, 5) 1 8 188 1 5 NODE 6 IS UNDER SIGI'I CntTfAOL IIITERVAL DURATION +- APPROACHES HUMDER (SEC> (Pcr) 1 8 168 1 NODE 7 IS UilDEA SIGN CnhlTROL INTERVAL DURA)'Inhl + API"ROACI IES tlUMDEA (SEC) (PCT) ( 27s 7) 1 8 168 l.

NODE 0 IS Util)Lft SIGIL CONTROL I I ITERVAL DURATION APPI<QACIIES NUI1BEA (SEC) (PCT) ( 5, 8) 1 8 188 1 NODE 9 IS UNDER SIGN COW'ft(OL INTERVAL DURATION + APf ROA(.'tlES NUMDER (SEC) (PCT) ( Ss 9) 1 8 186 1 IIQDE 16 IS UHI>EA SIGhl CntlTfkOL I WTEr<VAI DURA T ION APIsAOACIIES NUMDER (SEC) (PC1) ( 9s 16) 1 8 188 1

I tlTEtIVAL DURATION AI~PIVDACIIt=.8 NUI tt\Efc ( SEC ) ( PCT ) ( 65, 11)

I 8 188 1 NUDE 12 IS Ul'IDL'R SIGIV I:IIIVfROI It lfERVAL DURAl'IOl'I APPleOACHES NUIIIIFfk (SEC) (PC'I ) ( 67$ )2) 1 8 188 1 tlODF 13 I 8 UNDI:A SIGN CutV ffcDI.

INTERVAL DURATION t API-AOACIIES NUNfsEI< (SEC) (PCT) ( 18~ 13) 1 8 188 1 NODE 14 IS UNDFR SIGN COIVTROL INTERVAL DURATION APPROACHES NIJIVBER (SEC) (PCT) ( 13, 14) 8 188 1 NDI)E 15 IS UNDLR SIGII CON fAOL INTERVAL DURAl'ION APPIEOACHES NUIVDEA (SEC) (PCT) ( 6f), 15) 1 8 188 1 NODF 16 IS UNDFR SIGtl CON fROL INTERVAL DURATION + slPPAOACHES IVUIIBER (SEC) (PC'I ) ( 14, 16) ( 35, l6) 1 8 188 1 5 NOI)E 17 IS UNDL'A SIGt'I CONfAOL INTERVAL DUAAl'IUN API ROACHES NUt1BER (SEC) (PCT) 1 8 188 NODE 10 IS UtlDEA SIGt'I CONTROL INTERVAL DURATION APPROACHES NUIIIBEA (SEC) (PCT) ( 17% 1S) 1 8 188 1 NODE 1Y IS UIVDER SIGIV CONfrniL INTERVAL DURATION APPROACHES NUHBLR (SEC) (PC'f) ( 10, 19) 1 8 188 1 NODI-: 28 I. UWnrA SIGN CONTEND~

INTERVA DURAl I OIV APPAOACfIES NUIIBER (SEC) (PCT) ( 19, 28) 1 8 188 1 NODE 21 IS UIIDER SIGN COtlTROL INTERVAL DURATION APPROACIIES NUIVBER (SEC) (PC1) ( 20, 21) 1 8 188 1

INTERVAL DURATION Al>PAOACIIES NUHBEA (SEC) (PCT) ( 19, 22) 1 0 188 1 NODF 3 IS U!4DER SIGIJ COhlIAQL INTERVAL DURATION APPROACtll.:S NUHDER (SEC) (PCT) ( 22 23) 1 8 168 1 tlODE 24 IS UNDER SIGI4 CONTf(OL INTLAVAL DIJAATION APPAOACIIES NUtlBEA (SEC) (PCT) 1 6 188 NODE 25 IS Ut)DER SIGN CI)NTROL INTERV4L DURATIOI'I APPROACHES NUHDER (SEC) (PCT) ( 58~ 25) 1 8 166 5 tlODE 26 IS UtlDEA SIGN COhlTIEOL It'ITERVAL DURATION APPROACHES NUHBEA (SEC) (PCT) ( 7, 26) ( 3i), 26) 1 8 188 0 1 I4ODE 27 IS IIIIDER 8 IGI'I COhlTROL INTERVAL DUA4TION 4PPAOACIIES NUI1BER (SEC) (PCT) 1 8 168 NODI; 28 IS UhlDER SIGN CONTROL IIITERVAL DURATION APPAOACHES NUHDEA (SEC) (PCT) 1 8 188 t40l)E 29 IS UNDER SIGN CONTROL INTERVAL DURATION APPROACHES NUI1BER (SEC) (PCT) ( 28, 29) ( 38s 29) 1 8 188 1 5 NODE 36 IS UllDER SIGN CON'IROL INTERVAL DUR4TION Ar PROACIIES NUHBER (SEC) (PCT) 1 8 168 l4ODE 31 IS UI4I)I:Ic SIGI4 CDhlff~OL INTERVAL DURATION APPROAI.'I IES NUt4BER (SEC) (PCT) ( 2*, 31) 1 8 I88 1 NODE 32 IS UI4DEI< SIGI4 CUNfAOL INTERVAL DURAT I Otl AliPItOACIIES NUttBER (SEC) (PCT) ( 16, 32) ( 64, 32) 1 6 166 1 5

I tlTERVAL. DURA1 I Otl nppRoncfiLS JJUilBER (bt..C) (f CT ) ( 6, 33) 1 -

0 188 I WOI)E 34 IS Utff)Efc SIGN COW IRUL INTERVAL DURAT IOll AppRoncHEs NUffbER (SEC) (PCT) ( 61, 34) 1 8 188 1 NUDE 35 IS Ul'JDFR SIGIJ COIJTROL INTERVAL DURATIOtl APPROACllES tJUNBLR (SEC) (PCT) 1 8 188 I'JODE 36 IS UNDER SIGN COtJTROL INTERVAL DURATION n PRoncflES NUf>>BER (SEC) (PCT) ( 73$ 36) 1 8 188 8 NODE 37 OFFSET 8 SEC CYCLF LFNGTH 75 SEC INTERVAL DURATION nppRDAGHEs NUNBER (SEC) (PCT) ( 62, 37) ( 36, 37) 1 45 68 1 2 38 48 1 llODE 38 OFFSEl 8 SEC CYCLE LFNGTH /8 SEC INTERVAL DURATION APPROACHES t'lUtlBER (SEC) (PCT) ( 15, ( 41, 38) 1 38 42 1 2 2 48 57 1 NODE 39 IS Ul'IDER SIGN CONTROL INTERVAL DURATION nppRonctlEs NUllBER (SEC) (PCT) 38, 39) ( /1, 39) 1 8 188 1 .8 NODE 48 OFFSET 8 SEC CYCLE LEWG'ffl /5 SCC IN f ERVAI DURATION Af~PAOACJ IES NUI>>BER (SEC) (PCT) >> l, >>8) n>, 48) 1 38 48 1 2 2 45 68 1 NODE 41 IS UWf)Ef( SIGN COI>>TROL INTERVAL DURATION nf>f>aoncflES tJUllDER (SEC) (PCT) 1 8 188 tlODf: 42 IS UNDER SIGl'l COWTROI.

INT'ERVnL But<ATION APJ f'<OncflES tJUt1BER (SEC) (PCT) 4 )

1 8 188 1 8

INTERVAL DURATION + AiPPROACf IES NUIIBER (SEC) (PCT) ( 42, 43) 1 8 188 8 IIODE 44 IS UtlDLR SIGN COIITICOL ItlTERVAL DIIRATION + APPROACHES IJUhIBER (SEC) (PCT) ( 2, 44) 1 8 188 1 tlODE 45 IS UNDER SIGN CONTROL IhlTERVAL DUAATI Otl APPROACHES NUIIDEA (SEC) (PCT) ( 48, 45) 1 8 188 1 NQI)E 46 OFFSET 8 SEC CVI:I.E I.EhlGTII 75 SEC INTERVAL DIIRATION + APPIEOACI IES tlUI'IDEA (SEC) (PCT) ( 45, 46) ( 47, 46) 1 35 46 2 48 53 2 1 NODE 17 IS UIIDER SIGIJ CONTROL INTERVAL DURAT IOtJ APPROACIIES NUI'IBER (SEC) (PCT) ( 46, 47) 1 8 188 1 NODE 48 IS UIIDEA SIGN CONTROL I hJTERVAL DURATION + APPROACHES NUflBEA (SEC) (PCT) ( 6'7, 48) 1 8 188 1 NODE 49 IS UtlDER SIGH CONTAOI IhlTERVAL DURAT ION + APPROACIIES NUhIBER ('.HAEC) (PCT )

1 8 188 IJODE 58 IS Ut IDES S I Gfl COIITAOL It lTERVAL DUAATI Otl + APPAOAiCflES tlUI4BEA (SEC) (PCT) ( 53,. 58) 1 8 188 1 IJODE . 1 IS Ul'IDEA SIGH COIJTROL ItJTERVAL DURATION APPROACIIES NUIIBEA (SEC) (PCT) ( 58, 51) 1 8 180 1 NODE 52 IS UIIDER SIGII CONTROL INTERVAL DURAIION +- APPROACHfIS NUI4BER (SEC) (PCT) ( >I, 52) 1 8 188 1 NODE 53 IS UIJDEA SIGII CONTROL II'ITERVAL DURATIOt'I + AiPPROACHES

t~onE 5~ Is Ut~nf=R SIGhf cowrRol.

INTERVAL DUCAT I orl APPROACIIES hful1BEA (SEC) (f~CT) ( 51, 5if) 1 8 188 5 NODE 5'S UtlDEA SIGtl Cohl(ROL INTERVAL DURATIot4 + APf~ROACHES WlttlBER (SEC) (PCT) ( 54, 55) 1 8 188 1 NODE 5b IS Util)ER SIGtl COhlTROL ItlTERVAL DUCAT Iotl APPROAclfES NUl'1BER ( SEC ) ( PCT ) ( 57, 5b) 1 8 188 1 NODE 57 IS UIADEfk SIGN L'OWTROL INTERVAL DURATION APPROACllES NUtlBER (SEC) (PCT) ( 55, 57) 1 8 188 1 NODE 58 IS lJNDER SIGN CON1'ROL INTERVAL DufMT ION APPROACIIES Nut1BER (SEC) (PCT) 1 8 188 NODE 59 IS UhlDER SIGtl CUHTf

    >>ATIOtl + APPRQACHFS NUt1BER (SEC) (PCT) ( 11~ 67) 1 8 188 1 hlODE *8 IS UttDEfc SIGN COtlTROL INTERVAL DfJRAT1 QN + APPROACltES NuhlDEfC (SEC) (PCT) ( 12, 68) 1 8 188 1 NOI)E 69 IS UNDER SIGN CONTROL INTERVAL DURATION +- APPROACltES NUNBER (SEC) (PCT) ( 46, 69) ( 78, *9) 1 8 188 1 O NODE 78 IS (lilt)ER SIGN CONTROL INTERVAL DURATION + APPROACHES NUtlBER (SEC) (PCT) 1 8 18n NODE 71 IS (JNDER SIGll CONTROL INTERVAL DURATION + APPROACHES t4UhtBER (SEC) (PCT) 1 8 188 NODE 72 JS UJIDER SIGhl COIITROL It lTERVAL DURAT I Otl +- nt>PROACf tES I'lUNDER (SEC) (PCT) 1 8 I 88 NODE 7G IS IJHDEfi SIGN COl'lTRQI. INTERVAL DURATIOl'l + APPROACflES NUI'lBER ( SEC) ( PCT ) 1 8 188 NODE 74 IS UNDER SIGN CONTROL INTERVAL DURATION + APPROACllES NUtlDER (SEC) (PCT) ( 59, 7'1) 1 8 188 5 NODE /5 IS UtlDER SIGN COtlTROI INTERVAL DURATIOt'l APPROACftES tlof)E 76 Is l)hff~EIR SIGN Coll'fR(i! INTERVAL DURAT I of I Af~PAOACIlES I'lUl IBER (SEC) (PCT) 1 8 108 I'loDF 77 IS UtlDER SIGN CONTROI. I t ITERVAL DURATIOtl Arr ROAcf tss NUI1BER (SEC) (PCT) 1 8 188 tlODE 70 IS UhlDER SIGl'l Cot lTROL INTFRVAL DURAllotl APPROACIIES NUI1BER (SEC) (PCT) ( 77, 70) ( 04, 70) 1 8 188 1 5 NODE 79 IS UllDER SIGtl CONTROL INTERVAL DURATION Arf ROAcNrs NUHDER (SEC) (PCT) ( 70, 79) 1 0 188 1 NODE 08 Is UNDrR sIGN CONTROL INTERVAL DURATION + APf>ftOACflFS NUNBER (SEC) (PCT) ( 79, 08) 1 8 188 1 NODE 01 IS UNDf=fk SIGN CONTROL It(TERVA(i DURATIotl + APPROACf(ES hfUi1BER (SEC) (PCT) ( 79, 01) 1 8 188 1 NODE 02 IS UtlDER SIGtl CotlTROL Ih(TERVAL DURATIotl + ArPROACNES HUI1BER (SEC) (PCT) ( 01, 02) 1 8 188 1 t(ODE 03 IS Ul(DER SIGtl CONTROL INTERVAL DURATIotl APPROAC(IES NUlfBER (SEC) (PCT) ( 01, 03) 1 8 188 1 IloDL'0 IS UllDEf< 0 IGhl CotlTROL INTERVAL DURATION ArrRoAcflEs NUtlBER (SEC) (PCT) ( 7b. 01) 1 8 188 1 I'IODE 05 IS UNDER SIGN CONTRol INTERVAL DURATION Ar.f ROAcf fEs NUtfBER (SEC) (PCT) ( 94, 05) 1 0 188 8 NODE 0* IS llNDER SIGIL CONTRol. ItlTERVAL DURATIoll APPROACffES 1$ ~ IP( r% Itll I ) Ipl Tl NOI}E 87 IS Util)FR 818tl CUIITIIfll. INTERVAL DURA'r I otl h APPI<OACI If:8 NUI'IDEA (SEC) (PCT) ( 86>> 87) 1 0 188 1 tlUDE 88 IS UNI)EA SIGN CONTROL IIITEIRVAL DURAT I Otl APPROACIIES NUI1DEA ( SLC) ( PC'f ) ( 87, 88) 1 8 188 1 NODE 89 IS (INDER SIIitJ CONIROL IIITEI<VAL DURAT IOtl APPAOACIIES NUMBER (SEC) (PCT) 1 0 188 hIODE 96 IS UIIDER SIC>IJ COIJTROL INTERVAL DUAArION APPAOACIIES tJUIIBEA (SEC) (PCT) ( 89, 98) ( 92> 98) 1 8 168 1 0 NOIIE 91 IS UNDER SIGN COhlfROL INTERVAL l}URATI ON Af>PItOACIIES tdUt1DEfl (SLC) (PCT) ( 98, 91) ( 93> 91) 1 6 188 1 8 IIDDE 92 IS Util}EA SIC>lf COtlTROL INTERVAL DURATIOtl + APPROACIIES NUI4DEA (SEC) (PCT) 1 6 168 tlODE 93 IS UNDER SIGII COtlTAOL IN fERVAL DURATION APPROACI.IES NUIIDER (SIIC) (PCT) 1 8 168 NODE 94 IS Util}EA SIGN CONTROL INTERVAL DIJRATION - nrr AI}ACIIES NUMBER (SEC) (PCT) 1 8 188 IIODE 95 IS Uf IDEA SIGII COhlTftOL ltlTERVAL DURATIOII APPROACHES NUIIBER (SEC) (PCT) 1 6 186 NODE 96 IS UNDER SIGN CONTROL It lTERVAI DUAATION APPROACIIES hIUI1DER (SEC) (PCT ) ( 95, 96) 1 8 108 1 IIODE 97 IS UNDER SIGtJ COW'fAOL I I'I IEIEVAL DURAT I Ot I APPROACHES NODF. 90 10 Ull>>l.'R SIGII CUIITRQL INTERVAL DURATION APPBOACIJFG NUIII>ER (SEC) (PCT) 1 8 188 tlODE 99 IS UNDER SIGN CONTROL INTERVAL DURATiON APPROACHES NUt'IBER ( SEC ) ( PCT ) ( 98i 99) 1 8 18(f 1 NODE 188 IS Utl>>ER SIGtl COhlTROL INTERVAL DURATION + APPROACIIES hIUthBEIE (SEC) (PCT) ( 99, 188) 1 8 188 1 NODE 181 IS UtJDER SIGtJ CONTROL IhlTERVAL DURAT I Otl + APPROACHES NUhIBER (SEC) (PCT) ( 184 181) 1 8 188 8 IJODE 182 IS UIIDER SIGtl COhlTROL Il'ITFRVAL DURAT I Otl + APPROACHES NUI1BER (SEC) (PCT) ( 181, 182) ( 8 188 8 I'IODE 183 IS UIIDER SIGIJ CONTROL Il'ITERVAL DURAT IOIJ APPROACIIES NUIIBEIC (SEC) (PCI' 1 8 108 tlODE 184 IS I.INDER SIGN COIJTROI. INTERVAL DURATiON AfiPPOACHES NUhl>>EIR (SEC) (PCT) ( 183, 184) 1 8 188 1 IJODE f85 .IS UNDER SIGN COtlTROL INTERVAL DURATIUtI APPROACHES NUI10ER (SEC) (PCT) 1 8 188 NODF 186 IS UNDER SIGtl CONl ROL I t JTERVAL DURAl' Ohl APPROACHES NUIIBEf( (SEC) (PCT) ( 74, 186) ( 185, 186) 1 8 188 1 5 NO>>E 1O7 is UNDER SiGN CarJTROI INTERVAL DURATION + APPROACIIES I'IUIIBER (SEC) (PCT) 1 8 (88 NODE 18(3 IS UNDER SIGN CONTROL iNTERVAI DURATION + APPROACHES ~ sr i ~ .sng n ~ rr r i rare; ~ re% NOl)E 189 IS UNDER SIGN CONTROL INTERVAL l)URATIOl'l APPROACIIES tlUHEiER (SEC) (PCT) ( 188, 189) 1 8 188 I IWTEBPILETATIO)t OF SICtlAL CODES YIEI D LIA AhtDEA GRECN AI=D RED WITfl GREEN RIGIIT ARROLI RED LJITII GAEEhl LEFT ARROW AED LIITH GREEN DIAGONAL. ARROLI NO TLJAI'IS-GREEN TLIRU ARINW RED WITII LEFT AND RIGLIT GAFFN ARAOLJ IIO L.FFT TLJRhl-GRFEN TIIRU AIID RIGLIT TRAFFIC COI4TR(IL TABLE SIBIJS A!ID FIXED TII'IF. Slbtl >I.S C(itJTROL CODES GO = PAOTECTrD NOGO NI)T PERtlI TTED PERtl PERNITlFD NOT PROl'FCTEI) PROT ~ PROTECTED STOP sror- SIBII Yl.D YIEI I) SIBt4 tJODF I S I Btl COIITROI. PflASE DURATION APPROACIJFS ( 36~ I) LEFT THRU RITE DIAG LEFT TIJRU RITE DIAG LEFT THRU RITE DIAG LEFT THRU RITE DIAG LEFT THRU RITE DIAG GO NODE 2 SI Gl'I CONTROL PHASE DURATION npprloAcHEs ( I, 2) ( 66, 2) LEFT THRU RITE DIAG LEFT TIJRU f<ITE DIAG LEFT TIIRU RIl'E DIAG I.EFT THRU RITE DIAG LEFT THRU RITE DIAG 8 STOP GO NODE 3 SIGN CONTROL PHASE DURATION nppABACHrs ( 29, 3) LEFT THRU RITE DIAG LEFT TtfRU ICITE DIAG LEFT TIIR(f RITE DIAG LFFT TIIAII RITF DIAG LEFT TIIRU RITE DIAG 8 STOP NODE 0 S I Gtl COtJTROL PflASE DURATIOtl nrf Anncilss ( 20, 0) LEFT TtfRU RITE DIAG LEFT 1HRU RITE DIAG Li=.l=T 1IIRII RITE DIAG LEFT 'flfRU BITE DIAG LEFT THOU IIITE DIA(i STOP NODE 5 SIBt4 CONTROL PHASE DURATION APPAOACtlES ( 63, 5) ( 33, 5) LEFT TfIRU RITE DIAG LEFT THRU RITE DIAG LEFT THRU AI'fE DIAG LEF f TllfcU RI1E DIAG LEFT TIIRU RITE DIAG GO STOP IJODE 6 SIGfl CONTROL PHASE DURATION API~ROACI IES ( 31, *) LEFT TklRU AITE DIAG LEFT TIIAU RI'fL DIAG LEFT TtfRU RI1L DIAG I.EI=T THI<U RITE f)IA(i LEFT THAU AI1E DIAG nn NODE 7 S IGI'l CONTROL f~ffASE DlJRATIOt4 APPROACllES ( 27, 7) LEFT THRU RITE DIAG LEFT TllRU RITF DIAG LEFT TklRU RITE DIAG LEFT TftfkU RITF DIAG LEFT THRU RITE DIAG GO NODE 8 SI Gll COtJTROL Pl(ASE DURATION Af f ROACklES ( 5, 8) LEFT TflRU RITE DIAG LEFT TllRU RITE DIAG l.EFT THRIJ RITE DIAG LEFT THRU RITE DIAG LEFT TfiRU RITE DIAG GO NODE 9 SIGt4 CONTROL PHASE DUfCATION Al PROACklES ( 8, 'V) LEFT THRU RITE DIAG LEFT THRU RI ffI l)IAG LEFT fktitU RI'fE k)IAB f.k."Fl fkfkkJ RI ff'IAG LEFT THRU RITE DIAG GO t lODE 18 SIGN CONTROL Pf(ASE DltRAT ION APPROACHES ( 9, 18) LEFT THRU RITE DIAG LEFT TllRU RITE DIAG LEFT TklR(J RITE DIAG LEFT TllRU RITE DIAG =LEFT THRU RITE DIAG GO t4ODE 11 SIGN CONTROL PHASE DURATION APPROACHES ( 65, 11) LEF'I THRU fCITk= DIAG LEF'f lllf'll RITE DIAG LEf=l l'flRIJ RI ff. t)IAB LEF'I 1ktfCU f<l fE DIAG LEFl THR(J RITE DIAG 8 PROT GO NODE 12 SIGN COt4TROL Pl(ASE DURATIOt4 Ar I ROACflES ( 67, 12) LEFT TtlRU RITE DIAG LEFT TIIRlJ RITE DIAG LEFT T)4R(J RITE DIAG LE(='l TffftU RITF. DIAG LEFT THRU RITE DIAG GO NODE 13 SIGN CONTROL PllASE DURATION APPROACHES ( 18, 13) LEFT THRU RITE DIAG LEFT Tk(RU RITE DIAG LEFT'IIRU RITE DIAG LFF'I 1kfRU RI'fE DIAG LEFT THRU RITE DIAG GO Pl(ASE DURATION CiPPfcOACHES ( 13i 14) LEFT THRU RITE DIAG LEFT TJIRU RITE DIAG LEFT TtiRIJ RITE DIAG l.EFT Tftfilf RITE DICiG LEFT THRLJ RITE DIAG 60 NODE 15 SIGN CONTROL Pl IASE DURAT I 0t I APPROACHES ( 68, 15) LEFT THRU RITf: DIAG LEFT THRU RI'IE DIAG LEFT THRU RITE DIAG LEFT THRU RITE DIAG LEFT TllRU RITE DIAG GO NODE 16 SIGN CONTROL PHASE DURATION APPROACflES 14, 16) ( 35, 16) LEFT TflRU RITE DIAG LEFT fHRU RITE DIAG LEFT THRIJ RITE DIAG LEFT TflRU RITE DIAG LEFT THRU RITE DIAG 60 STOP NODE 1/ SIGN CONTROL HO APPROACHES TO fHIS NODE t'lODE 18 SIGN CONTROL PHASE DURATION ( 17 '8) LEFT TklRU fRITE DIAG LEFT 1llRU RITL DIAG APPROACHES LEt'T Tlll<U RITL. DIAG Ll"F'I fttR(J ZITI= DIAG l.LFT TtlRlJ RITE DIAG 60 NODE 19 S I Gtl CONTHOt. PHASE DURATION APPROACt(ES ( 18, 19) LEFT TJIRU RITE DIAG LEFT 1'HRU RITE DIAG LEFT TtlRU 1<ITE DIAG LEFT THRU RITE DIAG LEF1 THRU RITE DIAG 8 GO GO NODE 28 SIGH CONTROL PHASE DURATION CiPPROACt lES ( 19, 28) LEFT THRU RITE DIAG LEFT TIIRU RITE DIAG LEFT 1llRU RITE DICiB LEFT THRlJ RITE DIAG LEFT TflRlJ RITE DIAG 60 l lODE 1 S I GN COl lTROL PHASE DURATION APfiROACt IES ( 28, 21) LEFT THRU RITE DIAG LEFT THRU RITE DIAG LEFT Tt.tfkt) RITE DIAG LEl=T TtlRU RITE DIAG I FFT THRU RITE DIAG 60 NODE 22 SIGll CONTROL PHASE DURATION Aprr;oActas ( 19, 22) I.EFT Tttf(U RITE DIAG Lsf'T TllBll RIlE DIAG LEf-T 'ltlRU RI fE DIAG LLFr 1'llHU RITE DIAG LEFT T)IRU RITE DIAG GO NODE 23 SIGtd CONTROL PHASE DURATION APf ROACHrS ( 22) 23) LEFT TllRU RITE DIAG LEFT THRU RITE DIAG LEFT THtIU RITE DIAG LEf. T TflRU RITE DIAG LEFT THRU RITE DIAG GO NODE 24 SIGN COI'lTROL NO APPfkOACttES TO TI.IIS NODE NODE 25 SIGN CONTROL PHASE DURATION Ar r-Roncl as ( 50, 2S) LEFT TtlRU RITE DIAG LEf-T THRU RITE DIAG LEFT TllRU RITE DIAG LEF'f TtlBU RITE DIAG LEFT Tt(RU RITE DIAG STOP NODE 26 SIGN CONTROL Pl lASE DURATION APPROACtlES ( 7, 26) ( 34, 26) LEFT THRU f<ITE DIAG LCFT TflRU RITE DIAG LEFT THRU RI fE DIAG LEFT TllRU RITE DIAG LEFT TflRU RITE DIAG YLD GO NODE 27 SIGN CONTROL NO APPROACHES TO THIS NODE NODE 28 SIGN CONTROL NO APPROACHES TO 'rHIS l'lODE NODE 29 SIGN CONTROL PHASE DURATION APPl'OACHES ( 28~ 29) ( 38, 29) LEFT 1HRU RITE DIAG LEFT TtlRU RITE DIAG LEFT THRll RITE DIAG Lsf'T TtlRU RI fE DIAG LEFT TllRU RITF DIAG GO STOP NODE 38 SIGN CONTROL NO APPROACflES TO THIS NODE liUDE 31 SIGN CON'lROL PHASE DURATIOtl APPt(OACt tES ( 26, 31) LEFT TtlRU RI1E DIAG LEFT T)IRU kITE DlAB LFFT 'ftlllu tel'rE DIi'G LFl-T ftlflu RITL t>IAG LEFT THRU RITE DIAG GO t JODE 32 S I GN COl4TROL PHASF DURATIOI'l Af~Pf(OACttES ( 16, 32) ( 6A, 32) LEI=T THRU RITE DIAS LEFT TIIRU RITE DIAG LCFT 1)IRU RI1E DIAS LEF1 THHU Rl fE DIAS l.Ef'f Ttlku RITL DIAG GO STOP NODE 33 SIGN CONTROL PHASE DURATION APPROACHES ( 6, 33) LEFT TllRU tRITE DIAG I EFT THtcU RITE DIAS LEFT THRU Rl'fE DIAG LEF1 THRU RI'fF DIAS LEFT 'I'HRU RI fE DlAS BU NODE 34 SIGN CONTROL PHASE DURATIOl4 ArPROACHES 3n) LEFT THRU RITE DIAG LLFT 'ltlRU RITE DIi 6 LEF'I'ttRU RI'fE DIAG LEF'f TINU RI fL DIAG LEFT THRU RI fE DIAS GO NODE 35 SIGN CONlROL tlO APPROACtlES 10 THIS tlODE NODE 36 SIGN CONTttOL PHASE DUHA'I I OI'I At'PttUAL'HES '/3, 36) LEC1 ( rt(RU Rl'tE DIAS l.rt r Ttlku tel)'E O)AB u=l-"f ntt'u HI1a Dill't:i-f tltku HI1E DIAG Lt.Fr Tttttt) RITE DIAS 8 YLD YLD llODE 37 FIXED TIllE COt4TROL OFFSET = 8 SECOttDS CYl.LE LFNOTll ~ '7'5 &ECOllDS PHASE DURATION At'PROACI lES ( 62, 37) ( 36 ~ 37) LEFT TllRU RITE DIAG LEFf 1tlRU'RITE DIAG LEFT 'fHRU RITL DIAG LEFT TIIHU RI'IE DIAG LEf f VJIBU RI'fE DIAG 45 GO NOGO 38 I JOSO PftOT tJODE 38 FIXED TItlE CONTROL OFFSET = O SECOJJDS CYCLt='EtthTtt = /8 SLCOtlDS I t(ASE DURAT ION Al PftOACI IES ( 15, 38) ( <)1, 38) i Fry v>>n>> rr>TF ne'er. >> r.r>>in>> rctvr- ntAr-: t rcT Tttr>> rrttr nrnr. t Fry T>>rtt etTr. ntnr; t FcT Ttirit srtvF ne'er, NOGO PR(JT I IODE 39 SIGtJ COJ JTtkOL Pl JASE DURATION APPROACHES ( 38, 39) ( 71, 39) LEFT 1HRU RITE DIAG LEFT TllR(J RI t'E DIAG LEFT THftU RITE DIAG LEFT TJIRU RI'IE DIAG LEFT THRU RITE DIAG BO YLD NODE 40 FIXED TIJJE COtlTROL Qf-FSE'I ~ 8 SECONDS CYCLE LEtlBTtl /5 SECOllDS PHASL DURATION At>f ROACHES ( 44, 48) ( 49, 48) LEFT THRU RITE DIAG LEFT THRU RITE DIAG LEFT THRU RITE DIAG LEFT THRU RITE D1AG LEfiT 'f'HRU RITE DIAG 38 GO ttQGO 45 NOGO PROT NODE 4i SIGN CONTJEOL NO APf'ROACI.IFS TO TflIS tlODE NODE 42 SIGN CONTROL PHASE DURATION APl'ROACJJES ( 39, 42) ( /2, 42) LEFT THRU RI TE DIAG LEFT THRU RITE DIAG LEFT TJJRlJ RITE DIAG LEFT 'ftlRU RITF DIAG LEFT THRU RI'fE DIAG GO YLD NODE 43 SIGN CONTROL PllASE DURATION APPROACHES 43) LEFT TJJRU RITE DIAG LEFI I JJRU RITF DIAG LEFT TJ.IRU 1'1TE IJIAG LEFT TllhU RITE DIAG LEFT THRU RITF DIAG 8 YLD NODE 44 SIGN CONT~O~ PJJASE DURA'f ION At'PJJOACJJES ( 2 44) LEFT TJIRU RITE DIAG LEF'I'ttttlJ f:I'IE DIAG Lt=FT Ttll(IJ RITf= lifAG J.EF1 lllllu RI'JL DIAG LEFT Ttthu RITE DIAG 60 NODE 45, SIGN CONTROL PHASE DttfkATION Atif'AOACHES ( 48, 15) LEFT TIIRU RI JE DIAG LEFT TJJRlJ RITE DIAG LEFT THRll Rl'fE DIAG LEf-T TtlfllJ tkI't'E DIAG LEFT TttRU RITE DIAG GO ~ inw- Pl JAbh tiUICFI I t (Jt4 t~ ' ~ I4 Q ( 45> 46) ( 47, 16) LFl T TJIRU RITE DIAG LEl'1 1'llRU Rl fE DIAG LEl'l tttRU RITE l)IAG l.El' T)IRlJ lcITE DIAG I.FFT THRU RITF DIAG I ROT BO NOGO NOGO HOBO PRO'f tloDE 47 SIGN CONTROL Pl l AGE DURATION APPROACllES ( 46, 4/) LEFT TtlRU rcl'rL DIAG Lt.t.r lHRU tel rE DIAG LL't-"I'tttct) Ri lE t)IA LEt-f lHtcu tclrl. DIAG LFF f Ttlteo RIrF DIAG GO NODE 48 SIBtl CONTROL PklASE DURATION APPROACHFS ( 69, 40) LEFT THRU RITE DIAG LEFT THRU RITE DIAG LEFT THRU RITE DIAG LLFT TklRU RITE DIAG LEFT THRU RITE DIAG GO NODE 49 SIGN CONTROL No APPROACHES To THIS tloDE NODE 58 SIGN CONTROL PHASE DURATION APPlcOACHES ( 53~ 58) LEFT THRU RITE DIAG LEFl'HRU Ri fE DIAG LEFT rllRU RITE DIAG LEF l THRU RITE DIAG LEFT THrcU RI fE DIAG Bo I'JODE 51 SIGN COttTROi PIJASE DURAT Iol'I APP)COACtlES ( 58, 51) LEFT THRll RITE DIAG LEFT TltRU RITE DIAG LFFT 'fltRU RITE DIAG LEl'T THRU RITE DIAS LEFT THRU RITE DIAG Go NODE 52 SIGN Cot4TrcoL PtlASE DURATION APPfcOACllES ( 'l, 52) LEFT THRU RITE DIAG LEFT TltRU RITE DIAG LEF'I THRU fcI'I'F DIAG LEF'f THRU RI'fL DIAG LFFT THRU RITE DIAG GO NODE 53 SI G14 Col'JTROL PHASE DURATION APPROACllhS ( 5>, 53) LEFT TklRlJ RITE DIAG LEFT THRU RITE DIAG I EFT Tl(RU RITE DIAG LEFT THRU RITF DIAG LEFT THRU RITE DIAG STOP SOURCE/SINK FLOW RATES CENTROID NUNBER LINK SOURCE/SINK RATE (VEH/HR) 2888 ( 58, 25) 988 2881 ( 61~ 34) 256 2882 ( 24, 4) 446 2883 ( 7) 625 2884 ( 78~ 69) 1125 2885 ( 35 J 16) 458 2886 ( 41, 38) 862 2887 ( 17~ 18) 261 2888 ( 28, 29) 458 2889 ( .38, 29) 485 2818 ( 4~ 52) 278 2811 ( 1~ 2) 122B 2812 ( 64, 32) 223 2813 ( 71~ 39) 464 2814 ( 47~ 46) 687 2815 ( 49~ 48) 1399 2816 ( 68~ 59) 79 2817 ( 72 j 42) 531 2818 ( 73 j 36) 1125 2819 ( 94~ 85) 328 2828 ( 77, 78) 292 2821 ( 89, 98) 189 2822 ( 92~ 98) 34 2823 ( 76~ 84) 257 2824 ( 93~ 91) 45 2825 ( 85, 86) 232 2826 ( 95~ 96) 88 2827 ( 96, 97) 569 2828 ( 98> 99) 43 2829 ( 99, 188) 391 2838 ( 181, 182) 515 2831 ( 183~ 184) 18 2832 ( 185, 186) 1358 2833 ( 187, 188) 274 S f f fffff 1 Wf Xff XXX f Xfffff f f off f f 1 fffff ff Xff XXX ff fXXXXWXXfXXX XXXXff Xfff 1 offXffWf ff ff fff Wf XfifWfffffWf f Xfff1 ffXffff f1 ff fff1 ff ffWf ff'ffff TINE PERIOD 4 DgNEV DATA FOR SUBNETWORK 1 ff f 1 ff fffffffff ffff ff ffff1 ff ff f f ff 1 ffff 1 ff ff1 ffff1 fffff ff1 f fXff ff ff fffff ff ffWf f f ff f f f ff XXXffff ff fffff ffffffff f'WffXff 1 f f Xff ff fffff Wf SOURCE/SINK FLON RATES CENTROID NUHBER LINK SOURCE/SIN}h RATE (VEH/HR) 2888 58, 25) 494 2881 bl, 34) 128 2882 2'} t 4) 223 2883 7t 7) 312 2884 78, 69) 388 2885 35 s 16) 225 2886 ( 41, 38) 431 2887 ( 17>> 18) 131 2888 ( 28>> 29) 225 2889 38, 29) 283 t 2818 ( " 4, 52) 135 2811 ( ls 2) 614 2812 ( 64, 32) 112 l 2813 71>> 39) 232 2814 47, 46) 383 2815 49s 48) 699 2816 68s 59) 2817 72 s 42) 266 2818 73>> 36) 563 2819 94>> 85) 168 2828 77, 78) 146 2821 89s 98) 95 q. ) 2822 92, 98) 17 g =.i 2823 76, 84) 129 2824 93>> 91) 23 2825 85>> 86) 116 2826 95, 96) 44 2827 96, 97) 284 ~ I 2828 98>> 99) 22 sh 2829 99, 188) 195 2838 ( 181>> 182) 257 2831 ( 183, 184) 2832 ( 185, 186) 675 2833 ( 187, 188) 137 t' SOURCE/SINK fLON RATES CENTROID NUI'1BER LINK SOURCE/SINK RATE (VEH/HR) 2888 ( 58s 25) 2881 ( 61, 34) 2882 ( 24s 4) 2883 ( 27 s 7) 2884 ( 78, 69) 2885 ( 35 s 16) 2886 ( 41, 38) 2887 ( 17s 18) 2888 ( 28s 29) 2889 ( 38s 29) 2818 ( 4s 52) 2811 ( ls 2) 2812 ( 64, 32) 2813 ( 71, 39) 2814 ( 47s 46) 2815 ( 49s 48) 2816 ( 68s 59) 2817 ( 72 s 42) 2818 ( 73, 36) 2819 ( 94, 85) 2828 ( 77 s 78) 2821 89s 98) 2822 92, 98) 2823 76, 84) 2824 93s 91) 2825 BSs 86) 2826 95s 96) 2827 9bs 97) ~ 2828 98s 99) 2829 99, 188) 2838 181s 182) 2831 183s 184) 2832 185, 186) 2833 187s 188) INITIALIZATIONSTATISTICS TIME INTERVAL SUDNETWORt( PRIOR COhlTEhlT CURRENT CONTENT PERCENT DIFFERENCE NUMBER TYPE ( VEHICLES ) (VEHICLES) 1 1 8 127 18888 2 1 127 198 55 3 1 198 242 22 1 242 263 8 INITIALIZATIONTIME EXHAUSTED SII'1ULATION WILL SE PERFORMED ANYWAY CUNULATIVE DYNEV SUI>>IIETlJORK NO. 1 STATISTICS SINCE BEGINNING OF SII1ULATION PRESENT TINE IS 13 15 8>> ELAPSED SII'1ULATED T I I'1E IS 8 HOURS>> 1S HINUTES>> 8 SECONDS LINK ST4TISTICS AVG AVG AVG RVG VEH- VEH- T-TII'IE SPEED CNTNT VEH- VEH- T-TII'1E SPEED CNTNT NO. LINK I'I ILES DI SCH N/T SEC/V IIPH VfH LOS NO ~ LINK In ILES D I SCH N/T SEC/V I'1PH VEH LOS 1( 18>> 19) 9' 14 8.99 /F 1 29 ' 1 ~ 2( 19, 29 ) 4 ' 7 8 ~ 99 76.8 29.8 1. A 3( 29, 21) 7' 7 1.88 12' 38.8 1. 4( 19s 22) 4 ' 7 8 ~ 99 76.8 29.8 1. A 5( 7( 22>> 26>> 23) 31) 7.6 4.9 7 1 49 '8 1.88 127.2 38.9 6.5 55.2 1 9 ~ ~ R R 6( 8( 17s 28>> 18) )9) 8.1 4.9 14 1.68 25 1 ~ 88 135.6 55.6 38 8 25 ' ~ 8. 9 n 9( 38>> 29) 2.9 22 1.88 47 3 19.8 8. 4 18( 26) 2.9 14 1 ~ 68 16.8 45.8 8~ A 11( 33>> 5) 9.8 49 1.88 17.9 46.2 1 ~ A 12( 24, 4) 5' 25 1.88 59 ' 25.2 8.. A 13( 52) 21.3 48 1 88 67.3 34.8 2 14( 1>> 2) 13.3 71 1 86 37.3 34.8 8. l. ~ ~ ~ 15( 7, 26) 27.8 35 1.88 64 ' 45.8 2 ~ A 16( 5s 8) 97 1.88 6~5 55.1 17( 8>> 9) 35.9 97 1.88 24 F 1 S5.2 A 18( 9>> 18) 49.5 97 1.88 33.2 55.2 4 ~ 19( 18>> 13) 145.2 97 1.88 98.3 5S.9 11 ' A 28( 13, 14) 144.8 96 1.96 98.2 55.6 11. 21( 14, 16) 66.5 95 1.88 45.7 55 ' ~ A 22( 35>> 16) 1 3 25 1.08 14.3 25.2 8. 23( 15>> 38) 28 ' 114 1.88 lb.3 S5.2 2~ A 24( 38>> 39) 48 ' lbl 1 88 ~ 19.6 55.2 4~ 25( 41>> 38) 8.1 48 1.88 35.2 34.8 8. A '26 ( 39>> 42) 46.6 186 1.88 18.1 49.8 ne 27( 42, 43) 86.8 215 1.88 28.9 49.8 7~ 4 28( 48) 61.9 1.88 31.1 49.8 s. 29( 48; 45) 66.2 221 1.68 21.7 49.7 50 A 39( 46) 22.1 221 1.88 7 49.8 A~ 31( 47, 46) 3.4 34 1 ~ 88 28.5 25+2 8. A 32( 49s 48) 7.7 7/ 1.68 28.5 25 2 8~ A 33( 53>> 58) 63.8 48 1 ~ 88 183.5 55.8 5~ A 34( 58, 51) 56.2 48 8.99 91.2 54.9 4~ A 35( Sls 54) 18.2 n6 1.68 29.3 SS.2 1 ~ R 36( 54>> 55) 183.1 48 8.99 169.3 54.7 8~ 37( SS, 57) 187 ~ 2 39 8 ~ 99 182 ' 54.7 8~ A 38( 56) 34.9 38 1.88 68.7 S5.2 3~ A 39( 58, 25) 2.7 55 1.88 24.8 Is+8 6. 46( 25, S9) 28.8 55 1.88 36.9 49 8 2 A 41( 68, 59) 34) 1~1 1 ~ 1.86 98 51.8 14.3 34 8 25.2 8. 8. 4 42( 7>> 7). 63) 7.8 9.S 35 1 '8 48 1.88 64 2 13.8 25.2 55.2 l. 43( 61, 8 7 ~ 14 A 44( 3>> A 45( 63, 5) 72 ' 48 8.99 186.3 54.9 S. 4 46( 29 3) 38 F 1 48 1.68 114.2 25 2 ~ 6. A 47( 6>> 33) 73.3 49 1.86 97 F 1 SS.2 5~ A 48( 31>> 6) 16.8 49 1.88 14.3 55.2 1. R 49( 16, 32) 47 ' 128 1.68 26.1 55.2 n. 4 56( 32, 62) 13.2 132 1.88 6~5 55.1 1 A 51( 64, 32) 1' 12 1.86 ns.b 1S.6 8~ A 52( 37) 26.3 132 1.88 13.6 55.2 2~ 53( 37>> 65) 56.9 198 1.88 19.6 55.2 54( 65, 11) 37.9 189 1.88 13 8 55.2 55( 57( 11>> 66) 44) 36 ' 14 ' 73 145 1.88 1.98 36.2 7' 49.8 49.8 - 3. L..A R S6( 58( 66, 12>> 2) 68) 9' 11.4 73 114 1 '6 1.88 9.4 6.5 49.8 55.1 1. l. A n 2>> 59( 68, 15) 28 ' 114 1.86 1 b.'3 S5.2 2. A 69( 11, 67) 52.8 115 1.88 36 6 ~ 55.2 A bl( 67, 12) 5.7 115 1.68 3 3 55 ' 62( 52 53) 63.8 46 8 ~ 99 113.4 49.5 5. A 63( 46>> 69) 31.9 177 1.86 13 ' 49.8 A bn( 69>> 48) 63.8 1.66 21 ' 49.8 5. A 65( 78>> 69) 5' 43 1 ~ 88 32 ' 25 2~ 8. A 66( 71, 39) 3.8 26 1.88 41 ' 25.2 8. 4 67( 72>> 4>>) 3.8 36 1.88 28 ' 25.2 6. A 68( 36, 1) 8.5 3 1.68 24.3 25.2 8. A 69( 36>> 37) 11.8 59 1 ~ 88 28.6 25.2 2~ 78( 73>> 36) 3.7 62 1.88 17.1 25 2 8~ A 71( 59, 74) 289. 6 59 1.88 256.1 49 ' 17 4 72( 46, 47) 27 ' 77 1 ~ 89 51 ' 25. 2 4 A 73( 77, 78) 11.8 16 1.98 131.6 48.2 8. n 74( 78, 79) 17.8 38 1.88 58.1 48 2~ 2. A 75( 79, 88) 73.6 18 8 99 ~ 336.8 nn.s 7. n 76( 79, 81) 13 ' 12 1.68 91.2 45.8 1 A 77( 81, 82) 21.7 7 1.88 248.8 45 ' 2. A 78( 81s 83) LL.3 5 1.86 188 ' 45 ' 1 ~ A 79( 78) 14.8 14 1 ~ 89 82.4 45.8 A 89( as, 86) 25 7 36 1.68 84 ~ 8 45 ' 2~ A 81( 84>> 86>> 87) 97.9 38 1 88 386 4 38 6 1 13. ~ A 82( 87, 88) 68.5 38 1 '8 . 178.1 48 2 6. A '6 ~ ~ ~ ~ e a88( 76, 84) 16.9 14 1 182.4 38 6 ~ 8. R 84( 89, 96) 9.6 11 1 ~ 88 199.2 38.8 8. A 98, 91) 33.2 12 1.98 214 ' 45.8 3 ~ A 86( 98) 1.7 1 ~ 68 259.8 38.8 8. A 93, 91) S.4 1.88 541.2 38.8 6. 88( 94, 85) 8.7 18 1.66 116 ' 36 9~ 6~ A 95>> 96) 1.8 5 1.86 56.8 45.6 6~ 98( 96, 97) 117 ~ 9 37 1.88 444.8 45.8 3~ 98, 99) 5 2 1 ~ 98 45.6 38.8 6. 92( 99, 168) 83.6 24 1.96 587.1 44.9 2. A CUtlULATIVE DYNEV SUBNETNORK tIO. 1 STATISTICS SINCE BEGINI'IING OF SIMULATION PRESENT TIME IS 13 15 Gs ELAPSED SII'IULATED T II'IE IS 8 HOURS s 15 I'IINUTESs 8 SECONDS LINK STATISTICS AVG AVG AVG AVG VEH- VEH- T-TIME SPEED CNTNT VEH- VEH- T-TIME SPEED CNTNT NO. LINK MILES DISCH tl/T SEC/V MPH VEH LOS NO. LINK MILES DISCH I'I/T SEC/V MPH VEH LOS 93( 181, 182) 72 ' 38 1.88 346.5 49.8 8. A 94( 183s 184) 8.2 1 1.88 27 ' 49.8 8. A 95( 184, 181) 1.9 1.88 171 4 49.8 8. 96( 74s 186) 97 1 59 1.88 187.4 55.8 7. A 97( 99( 185s 186) 187s 188) 8.2 8' 1 74 1.88 15 F 88 31.4 75.6 25.2 55.2 8~ 8. A A A 98( 186, 75) 188( 188, 189) F 298 F 1 23.3 134 1 '8 15 8.99 145.4 188.3 55.2 54.9 22 ~
    2. A DYNEV SUBNETIVORK STATISTICS VEHICLE-I'IILES 3498. 29 VEHICLE-tlINUTES 4419.22 VEHICLE-TRIPS(EST. ) ~ 882 PCT OF VEHS THAT STOPPED ~ 8 ~ 888 tlOVING/TOTAL TRIP TII'IE ~ 8-998 AVG. SPEED(MPH) = 47-39 AVG. QUEUE CONTENT = 8.8 VEH. AVG DELAY/VEH = 8.88 SEC. TOTAL DELAY 7.9 MIN.
    DELAY/VEH-MILE ~ 8 ~ 88 MIN/V-MILE TRAVEL TItlE/VEH-MILE 1.27 MIN/V-I'IILE DYNEV SUBNET('lORK NO ~ 1 PERSON NEASURES OF EfFECTIVENESS PERSON PERSON TRVL-TINE PERSON PERSON TRVL-TINE PERSON PERSON TRVL-TINE LINK HILES TRIPS PRSON-NIN LINK I'1 ILES TRIPS PRSON-NIN LINK NILES TRIPS PRSON-NIN ( 18$ 19) 11.8 18.7 23.7 19, 28) 5.9 9.4 11.9 28, 21) 9.4 9.4 18.7 ( 19$ 22) 5.9 9.4 11.9 22>> 23) 9.9 4 19.8 17 18) 18.6 9.4 21 ' ( 26$ 31) 6.4 64 8 7' 28, 29) 6.4 16 ~ 4 15 ' 38$ 29) 3.8 14 ' 11.5 (- 34$ 26) 3.7 18.7 5.8 33 $ 5) 12. 8 64.8 19 1 24$ 4) 6.9 16 ' 16.4 ( 4 ~ 52) 27.7 42 6F 47.8 1$ 2) 17.3 48.1 29.9 7$ 26) 36.2 45 ' 48.3 ( 5$ 8) 12.6 126.4 13.8 8>> 9) 46.7 126 ' 58.8 9, 18) 64 ' 126.1 69.9 ( 18$ 13) 188.8 125.8 286.1 ( 13, 14) 187.2 124.8 284.3 14$ 16) 86.4 123.5 94 ' ( 35 j ib) 1.6 lb.4 3.9 ( .15, 38) 37.8 147.8 48.1 38$ 39) 62.7 288 ' 68.2 41>> 38) 18.5 38.9 18.1 39>> 42) 68.6 242.3 73 8 42, 43) 111.9 279 6F 134 9
    48) 88 ' 187.1 97.8 48$ 45) 86 1 287.8 183.9 45, 46) 28.7 286.9 34.6 47$ 46) 4.4 22.1 18.5 49$ 48) 18.8 58 ' 23.9 53, 58) 83.8 52 ' 98.6 58$ 51) 73.8 52.5 79.8 51>> 54) 23.6 52.5 25.7 54, 55) 134.8 52.1 147 1 55, 57) 139.4 58.3 152.8 57, 56) 45 ' 48.8 49.3 58, 25) 3.6 35.6 14 2 25$ 59) 36.3 71.2 43.8 68$ 59) 1.4 2.9 2.5 27 j 7) 18.2 22.6 24.2 61, 34) 8' 2.2 3$ 63) 12. 4 61.9 13.4 63$ 5) 94.7 61.9 183.4 29, 3) 49.5 61.9 117.7 6, 33) 95.3 64 8 183 ' 31$ 6) 14 F 1 64.8 15.3 16$ 32) 62.1 155.3 67 ' 32 $ 62) 17 F 1 171 ~ 5 18.7 64, 32) 1~5 8.1 6.1 62, 37) 34.2 178.9 37.1 37 $ 65) 74.8 2Q6 ~ 7 88 ' 65$ 11) 49.2 246 2 53.5 11, 66) 47.6 95. 2 57 ' 66, 2) 12.3 94.9 14 9 2j 44) 18.8 1B7 8 22.6 12, 68) 14 ' 148.7 16.2 68>> 15) 37.1 148.3 48 ' 11, 67) 68.7 149.2 74 6 F
    67$ 12) 7.5 149.1 8.1 52$ 53) 81.9 52 5 99.3 46$ 69) 41 ' 238.6 58 ' 69$ 48) S3.8 286.3 188 F 1 78, 69) 6.5 28.1 15 ' 71, 39) 4.9 16.9 11 ' 72 $ 42) 3.8 19.2 9.2 36$ 1) 8.6 3.6 1.5 36$ 37) 15.3 76.4 36.4 73 j 36) 4.8 48.3 11.5 59, 74) 272.5 77.8 328.4 nb, 47) 36.8 188.8 85.6 77 $ 78) 15.3 18.4 22.8 78 79) 22.1 39.5 33.8 79, 88) 95.7 23.4 129.8 79, 81) 17.8 15.6 23.7 81$ 82) 28.2 9.4 37 6 F 81$ 83) 14.7 6.2 19 F 6 84$ 78) 19 ' 18.7 25.7 85$ 86) 33 31.5 44.5 86$ 87) 127.3 39.5 254 ' a7$ 88) 78.6 39.5 117.3 76, 84) 14 ~ 2 9.4 28.5 89, 98) 11.7 7.8 23.3 98, 91) 43.2 16 F 1 57.6 92, 98) 2.2 1 ~ 8 4 ' 93, 91) 7.8 1.6 14.1 94, 85) 11.3 11.7 22.7 95$ 96) 2.4 3.4 3~ j 96$ 97) 153.2 27.6 284.3 98$ 99) F 6 1.6 1 99, 188) 188.6 17 2 145.8 ( 181, 182) 94.7 19.8 114.1 ( 183, 184) 8.2 8.5 8.2 ( 184, 181) 2.5 1 ~ 8 3.8 ( 74$ 186) 126.2 77.8 137.8 ( 185, 186) 18.6 48.4 25.3 ( 186$ 75) 387.6 173.8 421.1 ( 187, 188) 11.5 9.9 12.5 ( 188, 189) 38 ' 19 AS 33.8 ( CUIIULATIVE DYNEV SUBNETIJORK NO 1 STATISTICS SINCE BEGINNING OF SII'IULATION PRESENT TINE IS 13 38 8, ELAPSED SItnULATED TII'IE IS 8 HOURS>> 38 HINUTES, 8 SECONDS LINK STATISTICS RVG AVG AVG AVG VEH- VEH- T-TINE SPEED CNTNT VEII- VEH- T-TII1E SPEED CNTNT NO. LINK HILES DISCH SEC/V HPH VEH LOS tlO. LItIK HI LES DI SCH M/T SEC/V HPH VEH LOS 1( 18>> 19) 28.5 45 8 ~ 99 76.8 29.8 3. A 2( 19>> 28) 13 6 22 8.99 76.8 29.8 1 ~ A 3( 28>> 21) 28.5 21 1.88 128.8 38.8 2 A 4( 19>> 22) 13.6 22 8.99 76.8 29 ' 1 ~ A 5( 22>> 23) 21.7 21 F 88 127.2 38 ' 2. A 6( 17>> 18) 26 ' 47 1.88 135.6 38.8 8. A 7( 26, 31) 15.6 156 1.88 6.5 55.1 1 ~ A 8( 28>> 29) 15.9 82 1.88 55.6 25.2 8. A 9( 38>> 29) 9' 73 1.88 47.3 19.8 8. A 18( 34>> 26) 9.3 46 1.88 16.8 45.8 1 ~ A 11( 33>> 5) 26.9 134 1.88 17. 9 48.2 2. A 12( 24>> 4) 17.8 81 1.88 59.9 25 ' 8~ A 13( 52) 67.3 128 1.88 67 ' 34.8 4~ A 14( 1>> 2) 39.5 228 8.91 48.7 31.8 12. C 15( 7, 26) 87.8 118 1.88 64.8 45.8 6. A 16( 5, 8) 27.4 274 1. 88 6.5 55.1 A 17 (. 8>> 9) 188.8 278 1.88 24.1 55.2 6. A 18( 9>> 19) 135.6 266 1.88 33.2 55.2 8. R 19( 18, 13) 378 ' 253 1.88 98.1 55.8 24. A 28( 13>> 14) 359 3 248 1.88 98.1 55 ' 23 A 21( 14>> 16) 163.4 234 1.88 45 ' 55.2 18. A 22( 35>> 16) 4.1 82 1 ~ 88 14.3 25 ' 8. A 23( 15>> 38) 75.1 388 F 88 16.3 55.2 A 24( 38>> 39) 135.4 ns2 1.88 19.6 55.2 8. A 25( 41>> 38) 26 ' 156 1.88 35.2 34.8 8. 26( 42) 132.6 . 531 1.88 18.1 49 ' 8~ B 27( 42>> 43) 247.3 618 1.88 28.9 49.8 15 ~ 28( 48) 176.3 n18 1.88 31.1 49 ' 18. A 29( 48, 45) 196.6 656 1.88 21.7 49.7 12. B 38( 45>> 46) 65.3 1.88 7' 49 ' A 31( 47>> nb) 11.8 118 1.88 28.5 25.2 9~ 32( 49>> 48) 25.2 252 1.88 28.5 25.2 8. A 33( 53>> 58) 183.3 116 1.88 183.4 55.8 18. A 34( 58>> 51) 154 ' 111 1.88 91.8 55.8 9. A 35( 51>> 54) 49.2 189 1.88 29.3 55.2 3. R 36( sn, 55) 257.8 188 8. 9'9 168 ' 54.8 17 A 37( 55, 57) 249.6 98 8.99 182 ' 54.8 1/. A 38( 57>> 56) 88.9 87 1.88 68.7 55.2 5~ A 39( 58, 25) 8.9 178 1 88 24 8 15. 8 8. A 48( 25, 59) 89.4 175 1 88 36.9 n9.8 5. A
    l. 98
    ~ 41( 68>> 59) 3' 14 1.88 51.8 34.8 8. 42( 27 7) 25.4 113 64.2 25 ' 8. R 43( 61, 34) 2.3 n7 1.88 14 ' 25 ~ 2 8. R 44( 63) 29.2 146 1 ~ 88 13. 8 55.2 2~ A 45( 63, 5) 213.3 139 1.98 198.2 55 ' 12. A 46( 29>> 3) 117 5 147 1.88 114 ' 25 ' in' B 47( 6$ 33) 284.7 137 1.88 97.1 55.2 12. A ns( 31, 6) 34 1 155 1.88 14.3 55 ' ~ A 49( 16, 32) 124 ' 311 1.88 26.1 55.2 7~ A 58( 62) 35. 8 359 F 88 6' 55.2 2~ A 51( 64, 32) 3.8 48 1.88 45. 6 15.8 52( 62, 37) 69.6 348 1.88 13.8 55.2 ne A 53( 37 65) 159.8 533 1.98 19.6 55.2 9. 54( 65, 11) 185.9 538 1.88 13.8 55.2 6. A 55( 11, 66) 181 ' 283 F 88 36.2 49.8 6. A 56( 66>> 2) 26.2 282 1.88 9' 49.8 2 A 57( 44) 42.1 421 1.88 7' 49.8 2. .A Ss( 12>> 68) 38.9 389 1. 88 6.5 55.2 2~ A 59( 68, 15) 76.5 386 1.88 lb.3 55.2 A 68( 11>> 67) 146.4 .318 1 ~ 88 38.8 55.2 8. A 61( 67, 12) 15.9 318 1.88 3 3 55 ' 1 ~ A 62( 52>> .53) 198.8 122 1.88 113.3 49.5 11 A 63( 46, 69) 95.6 531 1.88 13 8 49.8 6. A 64( 69, 48) 192 8 665 1.98 21.8 49.8 . B 65( /8, 69) 16.1 148 1.88 32.8 25.2 8 A 66( 71>> 39) 12.1 84 1 88 41 ' 25 2 A 67( 72 j 42) 9.6 96 1.88 28.5 25.2 8. A 68( 36>> 1) 1.6 18 1.88 24.3 25.2 8. A 69( 36>> 37) 37 ' 198 1.88 28.6 25 ' 4 ~ A 78( 73>> 36) 12.2 282 1.88 17 1 25 ' 8. A 71( 59, 74) 596.2 168 1.88 256.1 49.8 38. 72( 46, 47) 88.'3 223 1.88 51.5 25. 2 18. C 73( 77>> 78) 38.8 53 1.88 131 ' 4' 8. A 74( 78, 79) 53.6 96 1.98 58 1 F 48.2 A 75( 79>> 88) 198.4 49 8 ~ 99 338.3 44.6 15. A 76( 79, 81) 41 ' 36 1 08 ~ 91 2 45 8 ~ 3 ~ A 77( 81>> 82) 58.4 19 F 88 248.8 r 8 A 78( 81>> 83) 31 ' 13 1 88 ~ 188 ~ 8 45.8 2 A 84>> 78) 46.4 45 1.88 82.4 45 ' 30 R 88( 85, 86) 88.7 97 1.88 84.8 45 8 ~ A 86, 87) 258.6 88 1.88 386.4 38.8 29 '. A 82( 87>> 88) 144.7 73 1.88 178.1 48.2 14. A 76, 84) 35.6 47 F 88 182.4 38 ' A 84( 89, 98) 20.2 34 1 BIB 199 ' 38.8 8~ A 98, 91) 97 ' 36 1.88 214. 4 45.8 7. R 86( 92, 98) 6.3 6 1.88 258.8 38.8 8. A 93>> 91) 17 ' 8 F 88 541.2 38.8 8 A 88( 94>> 85) 27.9 58 1.88 116.4 38 ' 8. A 95>> 96) 5.7 16 1.88 56.8 45.8 8~ R 99( 96, 97) 3*8 3 ~ 116 1-88 444.8 r 9 5~ A 98, 99) 1.4 8 F 88 45.6 38.8 8. R 92( 99, 188) 262.1 76 1.88 587.8 45.8 3 ~ A CUMULATIVE DYNEV SUBNETWORK tlO. 1 STATISTICS SINCE BEGINNING OF SIMULATION PRESENT TIME IS 13 38 8, ELAPSED SItlULATED TItlE IS 8 HOURS, 38 MINUTES 8 SECONDS LINK STATISTICS AVG AVG AVG AVG VEH- VEH- T-TIME SPEED CNTNT VEH-' VEH- T-TIME SPEED CNTNT NO ~ LINK t'1 ILES DI SCH t"I/T SEC/V I'1PH VEH LOS NO ~ LINK 1 ILES DISCH M/T SEC/V MPH VEH LOS 93( 181~ 182) 233.8 95 1.88 346.5 49.8 1. A 94( 183 184) 8.6 3 1.88 27.5 49 ' 8~ A 95( 184, 181) 6.9 3 F 88 171.4 49.8 1 ~ A 96( 74, 186) 261 6 168 1.88 187.3 55 ' 16. A 97( 185~ 186) 25.5 232 8.91 34.4 23 ' 12. E 98( 186, 75) 089.8 363 8.98 147.7 54 ' 58 B 99( 187, 188) 28.5 49 1.88 75.6 55.2 8. A 188( 188~ 189) 72.1 47 8.99 188.3 54 9 4~ A DYNEV SUBNETWORK STATISTICS VEHICLE-MILES ~ 9789. 64 VEHICLE-MINUTES 12528. 46 VEHICLE-TRIPS(EST. ) ~ 2536 PCT OF VEHS THAT STOPPED ~ 8.371 MOVING/TOTAL TRIP TIME ~ 8.997 AVG. SPEED(MPH) ~ 46 ~ 91 AVG. QUEUE COI'lTENT ~ 7.5 VEH. AVG DELAY/VEH ~ 8.16 SEC. TOTAL DELAY 43.5 MIN. DELAY/VEH-MILE ~ 8.88 MIN/V-MILE TRAVEL TIME/VEH-t'lILE ~ 1.28 MIN/V-MILE DYNEV SUBNETtlORK NO ~ 1 PERSON HERSUAES OF EFFECTIVEtlESS PERSON PERSON TRVL-TII'1E PERSON PERSON T I l'1E PERSON PERSON TRVL-TItiE LINK l'1ILES TRIPS PRSON-I'1IN LINK HILES TRIPS PRSON-HIN L INK HILES TRIPS PRSON-HIN 1B, 19) 37.8 5B.B 74 ' 28) 17.7 2B.1 35 6 F 28>> 21) 26 6F 26.6 53.3 19, 22) 17.7 2B.1 35.6 22 s 23) 2B.3 26.6 56.5 17s 1B) 34.4 38 4 68.7 26, 31) 28.3 282 5 22.8 2B, 29) 28.7 53.8 49.2 38> 29) 12.3 4/.3 37e3 34, 26) 12.1 68.3 16.1 5) 34.9 174 7 52.1 4) 22.1 52 5 52.5
    52) Bj ~ 5 134.5 158.9 1> 2) 51 4 142 7 96.9 7s 26) 114.2 142.7 152.3 5>> B) 35.6 355 7 38.7 B, 9) 138.8 351 3 141.2 9> 18) 176.2 345. 5 191.5 18> 13) 492.4 32B 3
    ~ 536.9 13>> 14) 467.8 311 589.2 14>> 16) 212 5 383 ' 231.1 35>> 16) 5.3 53 8 12.6 15$ 3B) 97 F 6 398. 4 186.8 3B>> 39) 176.1 5B6.9 191.5 41> 3B) 34 ' 181 ' 59.3 39$ 42) 172.4 6B9.66'RVL- 287.B 42, 43) 321.5 B83.7 3B7.6 44, 48) 229.1 533.8 276.2 48> 45) 255.6 B52 ~ 1 38B ~ 4 45, 46) B5.8 B49.5 182.4 47, 46) 14.2 71.2 33.9 49$ 48) 32.7 163.5 77.B 53, 58) 23B.3 158.B 259.B 58>> 51) 288 ' 144.2 218.7 51> 54) 63.9 142.1 69.5 54, 55) 334.1 138 ' 365.9 55, 57) 324 ' 117 1 355 ' 57 s 56) 185.2 113.1 114.4 5B, 25) 11.6 115 7 46.3 25 s 59) 116.2 227 ' 148.1 68 59) 4 ' F 1 7.9 27 s 7) 33 8 73.3 78.5 61> 34) 3 8 38.4 7.2 3>> 63) 3B 8 1B9.9 41.3 63, 5) 277.3 181 ' 382 6
    3) 152.B 191 ' 363.4 6, 33) 266.1 17B.6 2B9.1 31> 6) 44.3 281.2 4B 1 16> 32) 161 ' 484.6 175.B $ 62) 45.6 455.5 49.5 32) 4.9 26 8 19.B 62, 37) 98.5 452 ' 9B.3 37 $ 65) 287.B 692.6 226.8 65> 11) 137.7 6BB 3~ 149.6 11>> 66) 131 ' 263.4 158.7 66, 2) 34 1 262 2 41 1 2s 44) 54 7 546.B 65.9 12, 6B) 48.1 481.2 43.6 6B, 15) 99 ' 397.9 18B. 1 11> 67) 198. 3 413.7 286.7 67> 12) 28 6 F 412 9 22.4 52>> 53) 247.8 15B.3 299 1 ~ 46> 69) 124.3 698 ' 149.B 69, 4B) 258.7 She 5 382.3 78, 69) 21 ' 91.3 49.9 71, 39) 15 ' 54.3 37 '
    72 s 42) 12.5 62.4 29.7 36> 1) 2.1 12.3 5.8 36, 37) 49.3 246.5 117.5 /3, 36) 15.B 131.6 37.6 59> 74) 775 8 218.9 934 3 46, 47) 184.4 2B9.9 24B 6 77>> 7B) 58.5 34.3 75.3 7B> 79) 69.7 124.4 183.9 79>> B8) 257.9 63 8 347. 1 79>> B1) 53.9 47.3 71.9 Bis B2) 75. 25.2 181 2 B1, B3) 48.3 17.2 53.B B4, 7B) 68.4 58.6 B8.5 B5, B6) 9'84.9 9B.9 139.B Bb, Bj) 336.1 184.4 672 ' B7$ BB) 1BB F 1 94.5 2B8 ~ 5 76, B4) 46.2 38 4 92.5 B9s 98) 36.7 22 1 73 4 98, 91) 126.B 47.3 169.1 92, 98) B ~ 2- 3.9 16.3 93, 71) 22 ' 4.9 44.6 94, B5) 36.3 37.4 72.6 95, 96) 7.4 18 ' 9.B 96>> 97) 468.4 B4,2 624.5 9B, 99) 1.9 4.9 3.B 99, 188) 348.7 53.B 454 ' ( 181 s 182) 383.9 63.4 366.3 ( 183>> 184) 8.B F 1 1.8 184>> 181) B.9 3.B 18.B ( 74 s 186) 348 ' 287.3 378.7 ( 185 s 186) 33 F 1 158.5 86.3 186, 75) 1851 ' 471. 1168.9 ( 187> 18B) 37.1 32 ' 48 ' ( 18B, 189) 93.7 61.2 182.3 CUMULATIVE DYNEV SUBNETHORt( NO 1 STATISTICS SINCE BEGItdl41llG OF SI I'lULATIOIQ PRESENT Tlt1E IS 13 45 8j ELAPSED SIMULATED TII IE IS 8 HOURS j 45 t'IINUTES, 8 SECONDS LINt~ STATISTICS AVG RVG AVG AVG NO. L IN'EH- HILES VEH-DISCH T-TINE SPEED SEC/V tRPH CNTNT VfH LOS NO. L I t'ai VEH-t t I LES VEH-D I SCH tt/T T-7 II'tE SEC/V SPEED HPH CNTNT VEH LOS 1( 18$ 19) 68.8 188 8.99 76.8 29.8 6. 2( 19$ 28) 32 4 52 8.99 76.8 29. 8 3. A 3( 5( 28 22 21) 23) 48.1 58 ' 48 1.88 48 1.88 128 ' 127.2 38.8 38.8 4~ 5 4( 6( 19, 1/$ 22) 18) 32 ' 63.5 112 52 8 '9 1.88 76 8 135.6 29.8 38 ' 3. 8. A A ~ 7( 26, 31) 36.9 369 1 ~ 88 6.5 55.1 24 A 8( 28$ 29) 37.8 194 1.88 55. 6 25 ' 8. A 9( 38, 29) 22 ' 1/4 1.88 47.3 19.8 8. A 18( 34, 26) 21.9 118 1.88 16.8 45 ' 1. A 11( 5) 54.9 275 8 45 48.1 18.8 39. F 12( 24$ 4) 48.4 192 1.88 59 9 25.2 8. A 13( 4 52) 159 ' 288.5 383 1.88 261 1.88 67.3 64.8 34.8 45.8 8~ 11. A .14( 16( is 2) 8) 68. 59 1 334 599 8 '6 1.88 621.8 6.5 2.1 55.1 288. 3~ 15( 7j 26) A 5$ 17( 8$ 9) 218 ' 591 1.88 24.1 55 ' 18 A 18( 9$ 18) 296.6 582 1.88 33 ' 55.2 13. 19( 18, 13) 828.2 552 1.88 98.1 55 ' '8. 28( 13$ 14) 783.9 523 1.88 98.1 55 ' 39. 21( 14$ 16) 356.2 589 1 ~ 88 45 ' 55 2 18 R 22( 35 $ 16) 9.7 194 1.88 14.3 25 ' 8. A 23( 15$ 38) 155.4 621 8.99 16.5 54.6 '5. C 24( 38$ 39) 294.5 982 1.88 19.6 55.2 13. A 25( 41$ 38) 62.8 378 1 ~ 88 35.2 34-8 1 A 26( 39, 42) 279.7 1119 8.93 19 ' 46.3 44. F 27( 42>> 43) 477.5 1194 8.71 48.5 35 ' 95. 28( 44s 48) 313.7 738 8.99 31.4 49.3 28. B 29( 31( 48, 45) 46) 359 ' 26 ' 1198 262 1.88 1.88 21.8 49.6 25 0 2 14. 8 B 38( 32( 45, 49 46) 48) 117.6 47.6 1176 8 476 8.12 '2 7' 236.7 45.7 3' 23. 125. F 47, 28 5 ~ R 33( 53 j 58) 425.3 269 1.88 183.3 55.8 21. A 34( 58, 51) 354.4 255 1 88 ~ 91.8 55.8 18. n 35( 51$ 54) 112.7 251 1 ~ 88 29 ' 55.2 b. A 36( 54, 55) 577 ' p >>5 8.99 168.7 54 ' 33 ~ A 37( 55 $ 57) 548.8 198 8.99 181.8 54 ' 33. A 38( 5 56) 176 7 198 F 88 68 ' 55 ' 18. n 39( 41( 58, 68$ 25) 59)
    28. 1 8.4 483 34 8 '7 1.88 31 '
    51.8 11.6 34 ' 22 '. F A 48( 42( 25 $ 27, 59) 7) 281.9 F 68 F 6 396 1.88 269 1.88 36.9 64.2 49 ' 25 >> 9. 8. B A 43( 61, 34) 5.5 118 1.88 14.3 25.2 8~ A 44( 3j 63) 68.7 343 1.88 13.8 55.2 3. A 45( 63>> 5) 496.6 325 1.88 188.2 55.8 24. A 46( 29$ 3) 276.6 346 8.98 116 ' 24.8 29. D 47( 6>> 33) 473.5 318 1.88 97.1 55.2 24. B 48( 31$ 6) 88.7 367 1.88 14.3 55.2 3 ~ B 4'9 ( 16$ 32) 277 2 693 1.88 26.1 55.2 13. A 58( 32 $ 62) 78.6 786 1.88 6' 55 2 4. A 51( 64$ 32) 9.1 96 1.88 45.6 15 ' 8. 52( 62>> 37) 155 6F 778 1.88 13.8 55 2 18. B 53( 37 j 65) 332.2 1187 1.88 19.6 55.2 14 A 54( 65$ 11) 228.1 1181 1.88 13.8 55.2 9~ A 55( 11, 66) 218.4 421 1.88 36.2 49 ' '8. B 56( 66s 2) 54 5 419 1.88 9.4 49.8 2~ R 57( 2$ 44) 75.2 752 1.88 7' 49.8 3 ~ .A 58( 12>> 68) 64.8 648 1.88 6.5 55 ' 3~ A 59( 61( 68, 67$ 15) 12) 168.* 33.8 643 661 1.88 1.88 lb.3 3' 55.2 55 ' 7~ A
    1. n 68(
    62( il, 52, 67) 53) 384 ' 4 l4.9 662 285 1.88 1.88 38.8 113 ' 55.2 49.6 13 '3. n A 63( 46, 69) 185.3 1838 1.88 13.8 49.8 7~ B i64( 69$ 48) 356.9 1231 1.88 21.8 49.6 15. B 65( 78, 69) 24.2 211 F 83 988.9 8.8 211. F 66( 71, 39) 25.8 1/8 8.52 79.1 13 ' 22 F 67( 72 j 42) 16 4 164 F 89 312.5 2.3 65. F 68( 36, 1) 2.2 13 8.88 388.9 2.8 'l ~ E 69( 36 j 37) 67. 9 348 8.22 129.1 5.6 53. F 78( 73 $ 36) 24.9 415 8.28 86 ' 5' 69 F 71( 59, 74) 1297.5 367 8.98 261 ' 48.8 88. B 72( 46, 47) 143 ' 397 1.88 51.6 25 F 1 '8. C 73( 77$ 78) 92.3 126 1.88 131.6 48 ' 8. n 74( 78, 79) 126.5 226 1.88 58 1 48.2 8. A '988 F 75( 79s 88) 456. 1 112 8 338.1 44.6 38. n 76( 79$ 81) 97.5 86 1.88 91.2 45.8 6. A 77( 81, 82) 133.7 44 1 ~ 248 ' 45 ' 9~ A 78( 81, 83) /1.7 31 1.88 188.8 45 ' 5~ A 79( 84$ 78) 189 1 F 186 1 ~ 88 82 4 ~ 45 ' 6 ~ A 88( 85, 86) 191. / 238 1.88 84.8 45.8 8~ n 81( 86, 87) 593 1 184 l.. 88 386.4 38.8 59. B 82( 87 88) 324.8 16'3 1.88 178.1 48.2 27 ' A ~8'3 76, an> 83.9 118 1 88 ~ 182.4 38.8 8. A 84( 89$ 98) 67.7 82 1.88 199.2 38 ' ~ A g 85( 98, 91) 228.9 F 88 214.4 45.8 13. A 86( 92, 98) 14.6 14 F 88 258.8 38.8 8~ A e 87( 91) 43.3 19 F 88 541 ' 38.8 8. R 88( 94, 85) 66.7 138 F 88 116.4 38.8 8~ A 89( 95$ 96) 13.3 38 .1.88 56.8 45 ' 8~ A 98( 96>> 97) 845 ' 274'82 1.88 444.8 45.8 11. A 91( 98, 99) 3.5 18 1 ~ 88 45 ' 38.8 8. A 92( 99, 188) 628.4 1.88 586.9 45.8 6. A CUI'IULATIVE DYNEV SUBNETNORK NO ~ 1 STATISTICS SINCE BEGINNII'IG OF SIHULRTION PRESENT T I I'IE IS 13 4S 8~ ELRPSED SI I'IULATED TIME IS 8 HOURS ~ 45 MINUTES j 8 SECONDS LINK STATISTICS AVG RVG RVG AVG VEH- VEH- T-TIME SPEED CNTNT VEH- VEH- T-TIME SPEED CNTNT NO. LINK I'IILES DI SCH M/T SEC/V MPH VEH LOS NO. LINK MILES DI SCH M/T SEC/V HPH VEH LOS 93( 181, 182) 558.5 227 1.88 346.5 49 ' 2. A 94( 183> 184) 1 ' 8 1 88 27 ' 49 8 8. A 95( 184, 181) 16.4 7 1.88 171 ' 49 ' 1. A 96( 74~ 186) 568.4 347 1 88 ~ 187.3 55 8 27. B 97( 185~ 186) 39.5 359 8.85 635.6 1.2 221. F 98( 186~ 75) 1474.9 661 8.95 152.5 52.6 67. 99( 187, 188) 68.2 118 1 '8 75.6 55 ' 8. A 188( 188, 189) 178.7 112 8.99 188.3 S4.9 8. C R DYNEV SUBNETI4ORK STATISTICS VEHICLE-I'IILES ~ 21159. 58 VEHICLE-MINUTES 34836.81 VEHICLE-TRIPS(EST ~ ) ~ 5828 PCT OF VEHS THAT STOPPED ~ 5 ~ 565 MOVING/TOTRL TRIP TIME ~ 8.776 AVG., SPEED(HPH) ~ 36.44 'a AVG ~ QUEUE CONTENT ~ 223.3 VEH. AVG DELRY/VEH ~ 14.15 SEC. TOTAL DELAY ~ 7797.8 MIN DELRY/VEH-MILE ~ 8 ~ 37 I'I IN/V-I'IILE TRAVEL TIME/VEH-MILE ~ 1.6S t4IN/V-MILE DYNEV SUBNETNORK NO. 1 PERSON I'IEASURES OF EFFECTIVENFSS PERSON PERSOI'I TRVL-TI ME PERSON PERSON TRVL-TIME PERSON PERSON TRVL-TI I'IE LINK I'IILES TRIPS PRSON-MIN LINK MILES . TRIPS PRSON-MIN LINK MILES TRIPS PRSON-MIN 18, 19) 88.4 148.3 177 ' 19, 28) 42.2 66.9 84 ' j8 21) 62.5 62.5 125 F 1 19, 22) 42.2 66.9 84.8 22 s 23) 66.1 62 4F 132.3 17, 18) 82.6 73 ' 165. 1 26, 31) 48.8 488.8 52.2 28, 29) 49.2 126.1 117.8 38, 29) 29.5 113.4 89 AS 34, 26) 28.5 142.3 38.8 33 j 5) 71.4 356 ' 238.4 24, 4) 52.5 125 ~ 1 124 ' 4 52) 8) 286.7 77 ' 318.8 778.3 356.6 84 ' lj Bj 2) 9) 78.2 284.5 217.1 768 ' 2247.2 389.1 7j 9, 26) 18) 271.8 385.6 338.8 755.9 361.4 418.9 Sj 18j 13) 1876 6F 717.7 11/3.5 13, 14) 1819 F 1 679.4 1118.7 14j 16) 463.8 661.4 583 AS 35, 16) 12 ' 126.1 38+8 15, 38) 282.8 887.8 222.8 38j= 39) 382 ' 1276 1 416.4 41j 38) 81.7 248.2 141.8 39, 42) 363.6 1454 3 471.5 42j 43) 628.8 1551.9 1847.1
    48) 487.8 948 ' 495.9 48, 45) 467.1 1556.9 564.5 45, 46) 152.9 "
    1529.3 288.7 47j 46) 34.8 178.8 88.9 49, 48) 61.9 389.7 1221.7 53, 58) 552.9 358.8 682 ' 58j 51) 468.8 331.5 582.5 51, 54) 146.5 325.6 159.2 54, 55) 758.7 292.1 821 4 55 j 57) 713.4 257 ' 788.5 57 j 56) 229.7 247.8 249 8 58s 25) 26.2 261.8 136.8 25 j 59) 262.4 514.5 316.5 68, 59) 18.9 21.8 18.8 27 j 7) 78.7 175.8 187 ' 61, 34) 7' 71 ~ 8 17.1 3j 63) 89.3 446.3 97 ' 63, 5) 645.6 422 ' 784.4 29, 3) 359.5 449.4 878.8 6, 33) 615 ' 413 F 1 668 8 31, 6) 184.9 476.4 113.9 16, 32) 368.4 981.8 3'91 6 32 j 62) 182.2 1822.1 111.2 64j 32) 11.8 62 ' 47 ' 62j 37) 282.3 1811.5 228 ' 37 j 65) 431 ' 1439 ' 469.7 65s 11) 286.2 1438.9 318.9 11, 66) 273.6 547.2 338.1 66, 2) 78.8 544.8 85.3 2j 44) 97.8 977 6F 117.8 12, 68) 84.2 841.7 91.6 68, 15) 288.8 835.2 226 ' ils 67) 395.7 868.1 429.9 67j 12) 42.9 858.8 46 ' 52s 53) 578.4 378 ' 788.3 46, 69) 248.8 1338.5 298.3 69, 48) 464.8 1688 ' S61.4 78j 69) 31.5 136.9 2237.9 71j 39) 33.5 115.7 1S2.6 72 j 42) 21 ' 186.3 553 ' 36, 1) 2.8 16.6 85.7 36, 37) 88.3 441.5 949 ' 73 j 36) 32.4 269.8 388.5 59, 74) 1686.7 476.4 2875.9 4bs 47) 185.9 516.4 443.8 77 j 78) 128.8 81.6 179 ' 78j 79) 164.4 293.5 245.2 /9j 88) 592.9 144 ' /97 5 79, 81) 126.7 111.1 168.9 Blj 82) 173.8 57.7 231.7 Bls 83) 93.2 39.6 124 ' 84, s 78) 141.8 137.7 189 ' 85s 86) 249.4 235.3 332.6 Bhj 87) 771.1 239 ' 1542 ' 87, 88) 421.2 211 6 628 2 76j 84) 189.1 71.8 218.2 89, 98) 88.8 S3.8 176.1 98j 91) 297.S 111 ' 396 ' 92, 98) 19.8 9.1 38.8 93j 91) S6 12 ' 112.6 94j 85) 86 ' 89.4 173.5 95j 96) 17 ' 24 ' 23.1 96j 97) 1899.4 197 ' 1465.9 98j 99) 4.S 12.8 9.1 99j 188) 886.5 127 ' 1876.4 181j 182) 726 F 1 151.6 875 ( 183j 184) 1.9 4.9 2' 184j 181) 21.3 9.8 25.* 74, 186) 738.9 458 6 88' ( 185j 186) 51.4 233.6 2474.9 186j 75) 1917.3 859.8 2185.4 187, 188) 88 ' 76.4 96.3 ( 188j 189) 222.8 145.1 242.4 CUl'1ULATIVE DYNEV SUBNETl40RK NO ~ 1 ST4TISTICS SINCE BEGINNING OF SIHULATION PRESENT TINE IS 14 8 8, ELAPSED S Il'lULATED T l1'1E IS 1 HOURS s 8 HINUTES s 8 SECONDS L I NK STATISTICS AVG AVG AVG AVG VEH- VEH- T-TINE SPEED CNTNT VEI 1- VEH- T-TII'IE SPEED CNTNT NO. LINK NILES D I SCH N/T SEC/V HPH VEH LOS NO L INK tlILES Sled DI SCH SEC/V lnPH VEH LOS 1( 3( 18> 28> 19) 21) 98.1 69.2 143 8 '8 69 8 ~ 99 76.8 121.8 29 ' 29.7 3~ 2~ R A 2( 4( 19> 19>> 28) 22) 44.3 44 ' 8 99 ~ 8 99 ~ 76.6 76.6 29.6 29.6 1 1. ~ A 4 5( 22$ 23) 73 ' 8.99 128.2 29.8 2. A 6( 17> 18) 8 145 1.88 135.6 39.8 8. A 7( 26s 31) 48.7 487 1.88 6.5 55 ' 1 ~ R 8( 28$ 29) 48.8 258 1.88 55rb 25 ' 8~ 4 9( 38>> 29) 29.2 225 F 88 19.8 8 A 18( 34> 26) 28.5 142 1.88 16.1 44.9 1. A 11( 33 $ 5) 76.8 388 8 ~ 13 133.2 5' 41 f 12( 24> 4) 52.1 248 1.88 8.82 59.9 25 ' 8.9 8 4 13( 4 5 >) 289 F 1 397 1. 88 67 ' 34.8 '. 4 14( 1> 2) 76.6 426 1514.6 278. F 15( 7j 26) 275.4 344 8.99 64.6 44.6 4 16( 5j 8) 84.1 841 1.88 6.5 55.1 2~ A 17( 8> 9) 318.8 838 88 24.2 55 ' 6. 18( '9, 18) 425.1 833 1.88 33 ' 55 ' 8. A 19( 18>> 13) 123' 828 8 99 98 8 54 ' 24 4 28( 13> 14) 1289.4 886 8.99 98.7 54 7 24 '. A 21( 14, 16) 559.8 799 1.88 45 ' 55.8 '2. A 22( 35> 16) 12 5 258 F 88 14.3 25 ~ 2 A 23( 15, 38) 234.7 939 8.68 27.2 33.1 18. B >4 ( 38>> ~ 39) 423.2 lnil 8.71 27.5 39 ' 18 ~ A 25( 41> 38) 81.4 479 1.88 35.2 34.7 8. 4 26( 39, 42) 482.5 1618 8.69 26.3 34 ' 14. C 27( 42>> 43) 681.5 1784 8. 49 58.6 24.6 188 ~ F 28( 44 48) 458.5 1848 8.95 32 ' 47 ' 18. 4 29( 48, 45) 517.8 1726 8.98 22.2 48.6 E 38( 45, 46) 169.3 1693 8.63 11 ' 31.4 35. F 31( 47, 46) 33.7 687.8 337 1.88 8.99 28.5 184 ' 25.2 54.6 8. 18. A 32( 49, 48) 78 527.6 F 1 781 388 8 '7 8.99 482 ' 91.8 1.8 54.5 75. 9. F 33( 53$ 58) 385 A 58> 51) A 35( 51>> 54) 178.1 378 1.88 29.4 55.8 30 A 36( 54>> 55) 945.8 368 8.99 169.9 S4.5 18. A 37( 55, 57) 978 ' 353 8.99 182.7 54 ' R , 38( S7, 56) 321.9 346 1.88 68.9 55.8 9. A 39( 58>> 25) 27 ' 548 8 75 32.8 11.3 8. A 48( 25, S9) 277.8 545 9.99 37.1 49.5 5 4 41( 68>> 59) 18 ~ 8 43 1.88 51.8 34.8 9~ A 42( 27 j 7) /8.1 347 1.88 64.2 25.2 8~ A 43( 61, 34) F 1 143 1.88 14.3 25.2 8. 4 44( 3$ 63) 93.4 467 1.88 13.1 55 F 1 2~ A 45( 63, 5) 784 ' 468 9.99 181.1 54 ' 12 ~ 4 46( 29, 3) 374.2 468 8.98 116.9 24.6 14 ~ B 47( 6> 33) 632 ' 425 8.68 161.8 33 ' 55. D 48( 31s 6) 186.9 486 1.88 14.4 55.1 2 ~ 4 49( 16, 32) n17.7 1844 1.88 26.1 55.1 8. 4 58( 32>> 62) 116.7 1167 1.88 6.5 S5.1 3. A 51( 64, 32) 11.7 123 1.88 45.6 15.8 8~ 4 52( 62, 37) 232.7 llbn 1 88 13.1 55.8 5. 4 53( 37 j 65) 494.8 1647 1.88 19.6 55 ' 11. Sn( 65, 11) 328 ' 1642 1. 88 13.8 55.2 7. 4 55( 57( ll, 66) nn) 317 ' 185 ' 635 1859 F 88 1 88 36.3 7' 49 6 F 49.8 7~ 2~ A .A 56( SS( 66, 12> 2)
    • 8) 82.3 98.3 634 1.88 983 1.88
    = 9.4 6.5 49.8 S5 F 1 2~ 2~ 4 4 59( 61( 68$ 67, 15) 12) 237.9 49.7 952 994 ~ 8.86 1.88 18.9 3' 47.6 55.2 33 1 ~ D A 68( 62( il, 52 67) 53) 45/. 7 689.4 995 1.88 391 8.99 38.8 114 ' 55.1 49 ' 18. 11. R A 63( 46s 69) 268.6 1448 F 88 13.8 49.7 6. B bn( 69> 48) 492.1 1697 8 99~ 21 ' 49.5 18. B 65( 78, 69) 29.2 254 8.81 2551 8.3 265 F 66( 71, 39) 38 5~ 218 8 11 ~ 364.8 2' 47. F 67( 72$ 42) 19 5 195 8 ~ 83 1853 7 8.7 F 68( 36, 1) 2' 13 8.82 1421.6 8.4 28. F '5 '81. F 6'9 ( 36, 37) 97.9 498 8 194.'9 3.7 58. F 78( 73 36) 34.8 579 8 88 F 225.4 1 ~ 9 45. F 71( 59, 74) 2889.4 568 8 95 .278.8 47 F 1 38 ' A 72( 46, 47) 285.9 572 1.88 51.6 25.1 18 ~ C 73( 77 $ 78) 119 ' 162 1.88 131.6 48 ' ~ A 74( 78$ 79) 168. 9 382 8.99 58 ' 48.8 A c 75( 79, 88) 782 ' 172 8.98 332. 2 44.3 15 ~ 4 76( 79, 81) 135.8 118 8.99 91.9 nn.b 3 ~ A 77( 81> 82) 285 ' 68 8 ~ 99 242.7 44 ' 4 ~ A . 78( 81, 83) 187.9 46 1.88 188 ' 44 ' 2~ A 79( 84s 78) 145r3 141 8 ~ 99 83.2 4' 3. A 88( 85, 86) 253.1 383 1 88 ~ 84.8 45.8 4 ~ A 81( Bb, 87) 928.9 286 1.88 387.9 29 F 9 29. A, S2( 87, 88) 553 ' 278 8.99 179.8 48.8 14 ~ 4 e 83( 7*> Bn) 188 ~ 5 143 1.88 182.4 38.8 8. R 84( 89, 98) 87 ' 185 1.88 199 ' 38.8 8. A ~ 85( 98>> 91) 32' 128 1.88 214.7 nn.9 7. 86( 98) 19.2 18 1.89 258.8 39.8 8. A ~ 8/( 93, 91) 55.8 24 1.88 541.2 38.8 8. A ~ 88( 94> 85) 85.9 177 1.88 116.4 38.8 8. A ~ 89( 95, 96) 17.2 48 F 88 56.8 n5 9 ~ 8. A 98( 96, 97) 1132.6 361 1.88 444.8 4' 5 ~. A ~ 91( 98, 99) 4.5 24 1.88 45.6 38.8 8, 4 92( 99, 188) 827.3 239 1.88 587.3 44.9 3~ A CUMULATIVE DYI'IEV SUBNETl'JORK NO. 1 STATISTICS SINCE BEGINtlING OF SII'IULATIOI'I PRESENT TIME IS 14 8 8~ ELAPSED SIIIUL4TED TIME IS 1 HOURS~ 8 MINUTES~ 8 SECONDS LINK STATISTICS AVG AVG 4VG 4VG VEH- VEH- T-TIME SPEED CNTNT VEH- VEH- T-TII'IE SPEED CNTNT S NO ~ LINK I'IILES DISCH I'I/T SEC/V MPfl VEH LOS NO ~ LINK t4ILES DISCH M/T SEC/V MPH VEH LOS 93( 181 i 182) 729 ~ 1 2'94 l. 88 346.5 49.8 1. A g 94( 183, 184) 1.9 LQ 1.88 558 8-99 27.5 188.8 49.8 54.7 8 17. ~ A 95( 184; 181) 23.8 18 1.88 172 ' 49.5 1 A 96( 74, 186) 915.3 A 97( 185~ 186) 58.8 461 8.82 1524 F 1 8.5 289. F 98( 186, 75) 2215 ' 993 8.94 154.9 51.8 48 ' 99( 187c 188) 87.9 152 1.88 75.6 55 2 8. A 188( 188, 189) 228.6 149 8.98 181 3 54.4 4. A SS DYNEV SUBNETIIORK STATISTICS VEHICLE-MILES 38978.65 VEHICLE-MINUTES 66844.44 VEHICLE-TRIPS(EST. ) ~ 7216 CS'CT OF VEHS THAT STOPPED s= 7.886 MOVING/TOTAL TRIP TIME ~ 8.595 AVG. SPEED(MPH) ~ 28 ~ 14 AVE QUEUE CONTENT ~ 484.7 VEH. AVG DELAY/VEH ~ 33 '1 SEC. TOTAL DELAY 26717 ' I1IN. DEL4Y/VEH-MILE ~ 8 ~ 86 MIN/V-MILE TRAVEL TIME/VEH-tlILE ~ 2.13 MIN/V-MILE . c S \ ~ ,I ~c c, 'S ~ c c DYNEV SUDNETWORK NO. 1 PERSON MEASURES OF EFFECTIVENESS PERSON PERSON TRVL-TIME PERSON PERSON TRVL-TIME PERSON PERSON TRVL-TIME LINK MILES . TRIPS PRSON-MIN LINK MILES TRIPS PRSON-MIN LINK MILES TRIPS PRSON-MIN 1B, 19) 117.2 186.8 238.1 19>> 28) 57.7 91.5 116 9 28, 21) 98.8 98.8 181.4 19>> 22) 57.7 91.5 116.9 22 $ 23) 95.4 98.8 192.3 17$ 18) 186.3 94 1 F 212.7 26>> 31) 63.3 632.6 68.9 28$ 29) 63.5 162.8 1S1.8 38, 29) 38.8 146 1 11' 34>> 26) 37 8 185 ' 49.5 33 $ 5) 9B.B 494.1 1896.7 4) 67.7 161.2 161.1
    52) 271.8 418.2 469.3 1$ 2) 99.6 276.6 6983.4 7$ 26) 3SB.8 447 5 481.6 5$ B) 189.3 1893.3 119.1 B~ 9) 483 1 1889. 1 439.8 9$ 18) 552.6 1883 ' 682.2 18>> 13) 1599.6 1866.4 1755.5 13>> 14) 1572 3 1848.2 1725.1 14, 16) 726.7 1838.2 793 '
    35, 16) lb.3 162.8 38.7 15, 38) 385 F 1 1228.6 553.9 38$ 39) 558.2 1833.9 839 ' 41>> 38) 185 B 311.2 182.7 39s 42) 523.3 2893.3 919.2 42$ 43) 886.8 2214 9 2162.9 44 48) 585.6 1362.1 742.8 48>> 45) 673.1 2243.7 B38.2 45, 46) 228 1 2288 ' 428.3 47>> 46) 43 ' 219.2 184.3 49>> 48) 91.2 4S5.8 3857.8 53>> 58) 798 ' 588 ' B6B.B 58>> 51) 685.9 493.5 754.B 51>> 54) 221 ' 491.3 241.8 54s 55) 1228 ' 478,8 1353.4 55$ 57) 1271 ' 459.2 13'9B. 5 57>> 56) 418.5 458.1 456 ' 58, 25) 3S.6 35S.9 109.6 25$ S9) 361.2 788.1 437. 6 68>> 59) 14.8 28.1 24.2 27>> 7) 181.6 225.7 241.5 61, 34) 9.3 92.8 22. 1 3$ 63) 121.4 687.8 132.2 63, 5) 915 3 598.3 1887 ' 29>> 3) 486.5 688.1 1184.S 6>> 33) 822.8 5S2.2 14BB.9 31>> 6) 138.9 631.3 151 ' 16, 32) S43.8 1357.6 591.2 32 $ 62) 151.7 1516.8 165.2 64, 32) 15.2 B8.1 68.8 62>> 37) 66) 382.5 412.B 1512.7 82S.S 338.8 499.S 37 $ 65) 642.1 187.8 2148.4 823.7 699.4 129.8 65, ll) 427.8 2134.9 1376.6 464 ' 166 ' 11$ 66>> 2) 2~ 44) 137+7 12, bB) 127.8 1277.5 139.1 68>> 15) 389.3 1237.2 398.1 lis 67) 595 ' 1293.4 647.4 67, 12) 64 ' 1292.6 78.2 52>> 53) 792.2 587.8 967.7 46>> 69) 338 ' 1882.7 488.6 69, 4B) 639.B 2286.4 775.1 78>> 69) 37 ' 165.8 7814.B 71, 39) 39.6 136 ' B28.5 72 j 42) 25 ' 126.5 2221.3 36, 1) 2.B 16 F 6 394.3 36, 37) 127.3 636.5 2868+8 73, 36) 45+2 376.3 1413.B 59, 74) 2612.2 737.9 3338.2 46$ 47) 267.7 743.6 639.B 77 $ 7B) 155.2 185.6 231.5 78, 79) 219.6 392.1 329.7 79, BB) 913 5 ~ 223.3 1236.7 79, 81) 175.5 153.9 235.B 81>> 82) 267 ' BB ~ 8 359.1 Bl, B3) 148.2 59.7 187.7 B4>> 78) 1BB ~ 9 183.4 254.2 BS, 86) 329.1 318.4 438 ' Bb, 87) 1197.2 371.8 2483.4 ( , 87, BB) 719.9 361.B 1879.6 76>> B4) 141.1 92.8 282.2 B9, 98) 113.1 68.1 226.2
    91) 417 ' 155.6 556.7 92>> 98) 25.8 12.8 58.8 93, 91) 71 ' 15.9 143. 1 94, 85) 111.7 115.2 223.5 95$ 96) 22.3 31.5 29.B 96, 97) 1472 ' 264 ' 1963.3 98>> 99) 5.8 15.3 11.7 99$ 188) 1875.5 169.9 1436.7 ( 181>> 182) 947.8 197 9 1142.7
    ( 183s 184) 2.5 6.5 3.8 184>> 181) 29.9 12.6 . 36.2 ( 74, 186) 1189 B 725.5 1385.6 ( 185$ 186) 66 ' 299.9 7618.4 186$ 75) 2879.5 1291.3 3333 1 F ( 187$ 188) 114.3 98.5 124.2 ( 188$ 189) 297.1 194.2 327.8 CUI'1ULATIVE DYNEV SUBNETV)OR1'O. 1 STATISTICS SINCE BEG ItdNIhlG OF SIMULATION PRESENT Tlt1E IS 14 38 8, ELAPSED SII'1ULATED T I I'1E IS 1 klOURS, 38 MINUTES 8 SECONDS LINK STATISTICS AVG AVG AVG AVG VEkl- VEH- T-T ICE SPEED CNTNT VEH- VEH- T-T It'1E SPEED CNTNT NO. LINK 1'1 ILES DISCH M/T SEC/V MPH VEH LOS NO. LINK 1'1 ILES DISCH 1'1/T SEC/V MPH VEH LOS 1( 10, 19) 91.0 146 8.97 70 ' 29.8 Q. A 2( 19, 28) 46 ' 73 6.97 77.7 $9 ~ 2 8. j 3( 28, 21) 74.8 74 8.90 122.2 29 ' 8. A 4( 19, 22) 46.8 73 8.9/ 77.7 29.2 8. 5( 22$ 23) 70.5 74 8.90 129 ' 29.5 8. A 6( .17>> 10) 01.0 145 1.68 135.6 38.8 8~ A 7( 26, 31) 49.3 494 8.99 6.6 54.5 8. A 0( 20>> 29) 40 ' 258 1.88 55 6 25.2 F 8. A 9( 38>> 29) 29.2 22S 1 ~ 88 47.3 19.0 8. A 18( 34$ 26) 20.6 143 6.97 16 ' 43.7 8. A 11( 33 t 5) 168.9 S84 8 ~ 18 175.9 4.1 8. A 12( 24 4) 52.1 240 1.88 59 ' 25 ' 8. A 13( 52) 211 ~ 0 461 6.90 60.3 34 ' 8. 4 14( 1, 2) 167 F 1 595 8 ~ 82 2171.5 8.6 181. 15( /, 26) 279.0 358 6 ~ 97 65.0 43 ' 8. A 816( 5 0) 99.4 994 8.99 6.6 54.4 6. A 17( 0>> 9) 360.7 996 8.99 24 ' 54 6F 8. A 10( 9, 18) SO9 F 9 1868 8 ~ 99 33.6 54.7 8. A 19( 16>> 13) 1515.3 1816 8.90 99.6 54 ' 8. 4 28( 13>> 14) 1538 ' 1826 8.90 99.S 54 ' 8. A 21( 14, 16) 716.5 1824 8.99 46.1 54 6 8. A 22( 35$ 16) 12 ' 258 1 ~ 68 14 3 25.2 8~ A 23( 15, 30) 387.0 1231 8 66 24.0 36.3 Q. A 24( 30$ 39) 513.7 1712 8.75 26.1 41 ' 8. 4 25( 41>> 30) 01.4 479 1 ~ 68 3S.2 34.7 8. A 26( 39$ 42) 493.1 1973 6.71 25.4 35.4 Q~ A 27( 42$ 43) 094.0 2237 8.47 61.6 23.4 2. 4 20( 48) 591 ' 1377 6.96 32.4 47.0 3 A 29( 48, 45) 646.0 2156 8.94 23.8 46.9 2~ A 38( 45, 46) 215.7 2157 8.59 12 ' 29.6 l.~ A 47, 46) 33 7 337 1.88 20.5 25 2 6. A 32( 49 48) /7 ' 776 8 67 ~ 394.1 1.0 8~ A I/33 ( 53t 58) 640.6 411 8.90 185.3 54.8 8. A 34( 58>> 51) ~ 576.1 415 6.90 92.7 54.8 8 ~ A 35( 51, 54) 107.1 416 8.99 29.6 54.7 Q. 4 36( 54, 55) 1607.7 423 8.90 178. 0 54 ' 6 ~ 4 37( 55, 57) 1191.1 438 6.90 103.6 54.3 8. A >30( 57, 56) 481.2 nial 6.90 61.6 54.4 8. 4 39( 50, 25) 27.4 54a 6.75 32.6 11.3 6. A 46( 25 $ 59) 208. 1 556 6.97 37.9 40.4 8~ 4 41( 68>> 59) 18.0 43 1.88 51.0 34.0 8. R 42( 27 t 7) /a. 1 347 1.88 64 2 25 ' 8~ R 43( 61, 34) 7.1 143 1.88 14.3 25.2 8. 4 44( 3 t 63) 96. 4 402 8.90 13.3 54.3 8~ A 45( 63, 5) 745 ' 407 8.90 182.2 53.9 8~ 4 46( 29>> 3) 305.8 401 8.96 lla 4 24 3 Q~ A 47( 6, 33) 757.5 560 6.49 196.7 27 3 6. 4 40( 31$ 6) 160.0 494 6.99 Sled' 14 54.6 8. 4 49( 51( 16, 64, 32) 32) 511'6 1270 123 8 '9 1.88 26 ' 45.6 54.9
    15. 8 8~
    6. A 4 58( 52( 62$ 37)
    62) 148.2 208.0 1482 1464 1.88 6.99 6.5 13 1 S5 ~ 8 54.9 Q.
    8. A A ll) F 53( 37 $ 65) 68 .8 2668 8.99 19 ' 54.9 8. A 54( 65$ 468.5 2882 1.88 13.1 55.1 8. A 55( li>> 66) 391 2 702 6.99 36.5 49 ' 6~ A 56( bb, 2) 181 ' 703 1.88 9.4 49.7 8~ A 57( 2$ 44) 137.9 1379 1.88 7.2 49 ' l. 50( 12, ba) 121.9 1219 1.88 6 5 55.8 8~ 4 59( 60$ 15) $ >>5. 1228 8.03 19.6 3.3 45.9 8~ 8. 4 68( ll, 67) 563.8 633 ' 1224 6.99 38.2 115 ' 54.9 8. 8. A 61( 63( 65( 67, 46>> 76>> 12) 69) 69) 313.1 39.1 g 1224 1748 348 1.68 1.66 8 F 61 13.8 4286 0 55.2 49.7 8.2 1 17B ~ ~ A A F 62( 52, 53) 64( 69, 40) 66( 71, 39) 684.2 37.2 nO6 8 ~ 90 2804. 6.99 257 8.89 21 475.0 F 1 40 6 F 49.5 2.2 3. 8 R R 67( 72t 42) 25.0 2SB 6.62 1778.8 8 4 ~ 36. F ba( 36, 1) 2.2 13 8.81 4217 ' F 1 28 ~ 69( 36>> 37) 110.6 593 8 ~ 14 286.6 3 5 6~ A 78( 73$ 36) 37.5 624 8.87 238 1 F 1.9 8. A 71( 59$ 74) 2168.9 618 8 ~ 94 272.4 46.0 6~ R 72( 46, 47) 272 756 8.99 51 ' 25.8 2~ A 73( 77$ 70) 119 ' 162 1 ~ 68 131.6 48.2 8. A 74( 70, 79) 172 ' 360 8.90 2 39 ' 8. A t 75( 79, 08) 701.6 191 8.90 334 ' 44 ' 8~ A 76( 79, 01) 141.1 124 8.90 93 ' 44 F 1 8. A t 77( 01>> 02) 220 ' 76 6.90 244.0 44 ' 8. A ~ 70( Bi, 03) 110 ' 58 6.99 109.5 44.6 Q. A 79( 04, 70) 140.3 144 6.97 04.6 43.0 8. n 06( 05, 06) 257.1 386 8.99 05.9 6. 4 01( Bb>> 07) 1827 ~ 2 319 8.99 309 ' 29.0 8. A tat( 07, BB) 646.3 325'85 6.99 179.0 39 ' 8. A 03( 76, 04) 180.5 143 1.88 102.4 38.8 8. A 04( 09, 98) 07.8 1.88 199 ' 38.8 8. 4 05( 98>> 91) 330 ' 126 1.86 214.9 44.9 6. A 06( 92, 98) 19.2 10 1.88 258.0 38.8 8. A 1 07( 93, 91) 55.8 24 1.86 541.2 38.8 6~ A 00( 94>> 05) 05.9 177 1.88 116.4 38 ' 8. 09( 95, 96) 17.2 40 F 66 56 ' 45 ' 6. 4 96( 96, 97) 1162.1 366. ~1.88 444.9 45.8 Q. A 91( 90, 99) 4' 24 1.86 45.6 38.8 6. A 92( 99, 168) 045.7 242 1.66 560.8 44.9 8. 4 CUNULATIVE DYNEV SUBI'IETIIORK NO. 1 STATISTICS SINCE BEGINI'IING OF SIt'IULATION PRESENT TII4E IS 14 38 8 ELAPSED SINULATED TINE IS 1 HOURS 38 t4INUTES 8 SECONDS LINK STATISTICS RVG AVG AVG AVG VEH- VEH- T-TII'IE SPEED CNTNT VEH- VEH- T-TINE SPEED CNTNT NO ~ LINK HILES DISCH H/T SEC/V HPH VEH LOS NO. LINK I'IILES DI SCH H/T SEC/V HPH VEH LOS 93( 181, 182) 735.8 296 1.88 346.7 49.7 8- A 94( 183t 184) 1.9 18 1 88 ~ 27.5 49.8 8. R 95( 184, 181) 24.2 18 8.99 173.5 49.2 8. R 96( 74, 186) 1812 ' 617 8.98 189.1 54.1 8. A 97( 185> 186) 71.8 652 8.82 2887.1 8.4 97. F 98( 186, 75) 2845 F 6 12/6 8.95 153.5 52.3 16. A 99( 187, 188) 87.9 152 1.88 75.6 55.2 8. A 188( 188, 189) 234.4 153 8.97 182.8 53.6 8. A DYtlfV SUBtlETIIORV STATISTICS VEHICLE-HILES 35771. 88 VEHICLE-t'IINUTES 94588. 18 VEHICLE-TRIPS(EST. ) ~ 8799 PCT OF VEHS THAT STOPPED ~ 7 ~ 388 HOVING/TOTAL TRIP TINE ~ 8 ~ 477 RVG. SPEED(HPH) ~ 22.69 RVG. QUEUE CONTENT = 565.4 VEH. AVG DELAY/VEH = 52.89 SEC. TOTAL DELAY ~ 49489 2 NIN. DELAY/VEH-tlILE = 1.38 NIN/V-NILE TRAVEL TINE/VEH-t'IILE ~ 2.64 MIN/V-NILE DYNEV SUBttETNORt( tlO ~ 1 PERSOt< HEASURES OF EFFECTIVENESS PERSON PERSON TRVL-TIinE PERSON PERSON TRVL-TINE PERSON PERSON TRVL-T I I'IE LINt( HILES TRIPS PRSON-HIN LINt( I'1 ILES TRIPS PRSON-HIN L INt( HILES TRIPS PRSON-HIN 18$ 19) 119.4 189.5 247. ttt 19, 28) 59.8 94.9 122. 8 28>> 21) 96.2 96.2 195 ' 19, 22) 59.8 94.9 122 ~ 8 2$ 23) 1ttt2. 1 96.3 287.7 17>> 18) ltttb. 3 94 1 212 7 ~ 26, 31) 64.2 641.5 78.6 28, 29) 63 5 162.8 151.8 38, 29) 38.8 146.1 115 3 ~ 34, 26) 37 ' 185.8 51.8 33, 5) 131 F 1 655.7 1922.4 24, 4) 67.7 161.2 161.1
    52) 275.3 423.5 482.4 1, 2) 139.2 386.6 13992.3 7$ 26) 363.7 454.6 498 '
    5$ 8) 129.2 1292.1 142.4 8>> 9) 479 3 1295.2 526.7 9, 18) 662.9 1299.7 727.7 18>> 13) 1969. 9 1313.3 2188 ' 13, 14) 1989 2 1326 ' 2199.6 14, 16) 931.5 1338.7 1822.7 35 $ 16) lb.3 162 8 38.7 15, 38) 488.1 1688.3 662.8 38>> 39) 667.8 2226.1 978.2 41>> 38) 185.8 311.2 182.7 39, 42) 641 1 2564.4 1885.6 42 43) 1163.3 29(e)8. 2 2985.3 44>> 48) 769.4 1789.6 965.6 48, 45) 848.8 2882 7 1876.3 45>> 46) 288.4 2883.7 568.2 47, 46) 43.8 219.2 184.3 49, 48) 168.9 584.3 3312 ' 53 $ 58) 843.1 533 6 F 936.9 5ttt >> 51) 749.8 538.8 832.6 51>> 54) 243.2 548.5 266.9 54, 55) 1414.8 558 2 1565 9 ~ 55, 57) 1548 ' 559 ' 1718.5 57 $ 56) 521.5 568.8 575 ' 58, 25) 35 ' 355.9 189.6 25>> 59) 364.5 714.6 451.9 68, 59) 14.8 28 F 1 24.2 27$ 7) 181.6 225 7 241.5 61>> 34) 9' 92.8 22. 1 3$ 63) 125.3 626.5 138 ~ 4 63, 5) 969. ttt 633.4 1879.1 29, 3) 588 6 F 625.7 1234. 2 6, 33) 984.7 668.9 2167.8 31, 6) 141 4F 642.6 155.3 16, 32) 664.3 1668.8 725.9 32 $ 62) 182 ' 1823 ' 198 ' 64$ 32) 15.2 88. 1 68.8 62>> ll, 37) 66) 365.8 588.6 1824 1817.1 ' 398.7 618 ' 37 $ 66, 65) 2) 788. ttt 132 ' 2688.1 1817.5 852.7 159.* 65>> 2>> ll 44) ) 528.6 179.3 26ttt3. 1792.8 1 567 216.2 12>> 68) 158.4 1584 ' 172.7 68, 15) 396.6 1586.5 518.7 11>> 67) 732.8 1591 1 799.9 67>> 12) 79.6 1591.3 86.5 52 $ 53) 823.6 527.9 1817 ' 69) 487.1 2262 5 491.9 69, 48) 785 ' 2788.9 952.9 78>> 69) 58.8 228.9 15485 ' 71>> 39) 48 ' 166 ' 1323 7 72 $ 42) 33.6 168.8 4954.8 36, 1) 2.8 16 F 6 1169 ' 36>> 37) 154 ' 778.8 2653.8 73 $ 36) 48.7 485.7 1555.4 59>> 74) 2889.2 793.5 3682.3 46>> 47) 354. ttt 983.3 858.9 77 $ 78) 155.2 185 F 6 231.5 78, 79) 224.5 488.8 342 ' 79, 88) 1816 ' 248.4 1383.4 79 81) 183.5 168 ' 249.5 81$ 82) 297 ' 98.7 482 5 81, 83) 153 4 65 3 286.1 84, 78) 192.8 187 ' 264.8 85>> 86) 334.2 315.3 451.3 86$ 87) 1335.4 414.7 2689 4 87, 88) 848.2 422.2 1265.4 76>> 84) 141.1 92.8 282.2 89, 98) 113 1 68.1 226.2 98, 91) 449 ' 164 ' 588 ' 92>> 98) 25.8 12.8 58.8 93$ 91) 71.5 15.9 143.1 94, 85) 111.7 115.2 223.5 95, 96) 22.3 31.5 29.8 96, 97) 1518.7 271.7 2tttln. 5 98, 99) 5' 15 ' 11.7 99>> 188) 1899.4 173.7 1478 ' 181 182) 956.5 199.7 1153.7 ( le)3>> 184 ) 2.5 93.3 6' 423.9 3.8 184, 181) 31.4 3699.3 13.3 1658.9 38.3 4243.7 74 '86)188) 1316.3 114.3 882.6 98 ' 1458.9 124.2 ( lttt5>> 186) 14746 186>> 75) 187$ ( 188$ 189) 384.7 199 ' 341.2 CUMULATIVE DYNEV SUBNET1'IORK NO. STATISTICS SINCE BEGINNING OF SItlULATION PRESENT TII'1E IS 15 8 8, EL4PSED SIt1ULATED T It'lE IS 2 HOURS, 8 t1INUTES>> 8 SECONDS LINK STATISTICS AVG AVG AVG AVG VEH- VEH- T-T I I'IE SPEED CNTNT VFH- VEI.I- T-TII'1E SPEED CNTNT NO ~ LINK MILES D I SCH M/T SEC/V I'1PH VEH LOS NO. LINK I'1 ILES DI SCH M/T SEC/V MPH VEH LOS 1( 3( 18, 28>> 19) 21) 91.8 74.8 146 8 97 74 8.98 78 ' 122.2
    29. 8 29.5 8.
    8. 4 4 2( 4( 19>> 19>> 28) 22) 46.8 46.8 73 73 8 '7 8.97 77.7 77.7 29.2 29.2 Q. 8 A A 5( 22>> 23) 78.5 74 8.98 129 ' 29.5 8. A 6( 17, 18) 81 ' 145 1.88 135.6 38 ' Q. A 7( 26, 31) 49 3 494 8.99 6.6 54 ' 8. A 8( 28>> 29) 48.8 258 F 88 55 6 F 25.2 8. A 9( 38, 29) 29.2 225 1.88 47 ' 19.8 8. A 18( 34>> 26) 28.6 143 8.97 lb.5 43.7 8. A 11( 33 j 5) 188.9 584 8.18 175.9 4 1 8. A 12( 24>> 4) 52 F 1 248 1 ~ QQ 59.9 25.2 8. 4 13( 52) 211 ' 481 8.98 68.3 34 8. R 14( 1>> 2) 134 6 715 8.82 1877.7 8.7 8~ A 15( 17( 7j 8>> 26) 9) 279.8 368.7 358 996 8.97 8.99 65.8 24.4 43.7 54.6 8. Q. A 16( 18( S, 9, 8) 18) 99.4 589.9 994 1888 8 '9 8.99 6.6 33.6 S4.4 54.7 8. 8. A A 19( 18>> 13) 1515.3 1818 8.98 99 ' 54.2 8. 28( 13, 14) 1538.2 1828 8.98 99.5 54.3 8. A 21( 14, 16) 716 ' 1824 8.99 46.1 54.6 8~ 4 22( 35>> 16) 12 5 258 1 88 14.3 25.2 8. A 23( 15>> 38) 388.3 1233 Q.bb 24 ' 36.3 8. A 24( 38>> 39) 514.5 1715 8.75 26.1 41 ' 8 ~ A 25( 41>> 38) 8' 479 1.88 35.2 34.7 8~ R 26( 39>> 42) 493 9 1975 8. 71 25 ' 35.4 8. A ~ 27( 29( 42$ 48, 43) 45) 911.3 685.1 2278 2284 8.47 8.94 61 23.8 ' 23.6 46.9 8 Qi ~ R A 28( 38( 45 48) 46) 645.7 228.5 1582 2285 8 '6 8.61 32.5 11.9 47 ' 38.3 8. 8 ~ A A 31( 47, 46) 33.7 337 1.88 28.5 25 2 Q. A 32( 49, 48) 77.6 776 8.87 394.1 1.8 8. 4 33( 53, 648.6 411 8.98 185.3 54.8 8. R 34( 58, 51) 576. 1 415 8.98 92.7 54.8 8~ A 35( 37( 51, SS>> 54) 57) 187.1 1191.1 416 438 8 '9 8.98 29.6 183.6 54.7 54.3 8~ Q. A A 36( 38( 54>> 57 55) Sb) 1887.7 481. 2 423 431 8.98 8.98 178.8 61.6 54.2 54.4 8. 8. A A 39( 58, AS) 27 ' 548 8 75 32.8 11.3 Q. A 48( 25 $ 59) 288.4 558 8 97 37.9 48.4 8. 41( 68>> 59) 18.8 43 F 88 51.8 34.8 8~ 4 42( 7) 78.1 347 1.88 64 ' 25.2 8. 43( 61, 34) F 1 143 1.88 14.3 8~ A 44( 3j 63) 96.4 482 8.98 13.3 54.3 8. A 45( 47( 4'9 ( 63, 6, 16, 5) 33) 32) 745 ' 757 ' 511.2 487 588 1278 8.98 8.49 8.99 182.2 196.7 26.2 53.9 27 3 54.9 8. 8. 8. A A 46( 'o( 58( 29, 31>> 32 j ') 3) 62) 385.8 188.8 148.3 481 494 1483 8.96 8.99 1.88 118.4 14.5 6.5 24 ' 54.6 55.8 8. 8. 8~ A SI ( 64, 32) 11.7 123 1.88 45.* 15.8 8~ 4 S2( 62, 37) 288.9 1485 8.99 13.1 54.9 8 ~ A 53( 37 j 65) 688 ' 2881 8.99 19.7 54 ' 8. 4 54( 65, 11) 488.8 2884 1.88 13.1 55.1 8~ A 55( 11, 66) 391.6 783 8.99 36.5 49.3 8 ~ A 56( bb, 2) 181.8 784 1.88 49.7 8. A 57( 2>> 44) 158.1 1581 8.99 7.3 49 ' 8. .A 58( 12, 68) 122.8 1228 1.88 6.5 55.8 8. A 59( 68, 15) 385 ' 1222 8.83 19.6 4S.9 8. A 68( 11>> 67) 563.6 1225 8.99 38.2 54.9 8~ A 61( 67>> 12) 61.3 1225 1.88 3.3 55.2 8~ 4 62( 52 j 53) 633.5 486 8.98 115.7 48.6 8. A 63( 46, 69) 328 ' 1825 F 88 13.1 49.6 8. R 64( 69, 48) 665.9 2296 8.99 21.1 49.5 2~ 65( 67( 78, 69) 53.7 29.5 295 8 '1 8.82 3942.1 1645.8 8.2 8.4 51 '. 66( 68( 71, 36, 39) 1) 37.2 257 33 8.89 8.81 475.8 2863.8 2' 8.3 8. 8. 4 72 j 42) 5 5 4 69( 36, 37) 118.6 593 8.14 286.6 3' 8 A 78( 73>> 36) 37 ' 624 8.8/ 238.1 1.9 Q. 71( 59, 74) 2168.9 618 8.94 272.4 46.8 8. A 72( 46, 47) 289.1 883 8.99 52.8 24 ' 8. 73( 77 $ 78) 119.4 162 1.88 131.6 48.2 Q~ A 74( 78, 79) 172.7 388 8.98 51.2 39 ' 8. 4 75( 79, 88) 781 ' 191 8.98 334 ' 44.1 8. A 76( 79, 81) '141. 1 124 8.98 93.8 44.1 8. R 77( 81, 82) 228.5 76 8.98 244 ' 44.3 Q. R - 78( 81>> 83) 118.8 58 8.99 189.5 44.6 Q. 4 79( 81( 84, 86, 78) 87) 148 ' 1827.2 144 8 319 '7 8.99 84 ' 389.1 43 ' 29 ' Q. 8. A A 88( 82( 85, 87$ 86) 88) 257 ' 646.3 386 8.99 32S 8.99 85 ' 179.8 39 ' Q. 8. 4 A 83( 76, 84) 188.S 143 1.88 182 ' 38.8 8. 84( 89>> 98) 87.8 185 F 88 199.2 38 ' 8. A 85( 98$ 91) 338 ' 126 1.88 214 ' 44.9 8~ 4 86( 92, 98) 19.2 18 F 88 258.8 38.8 Q. A 87( 91) SS.Q 24 1.88 Shi. 2 38.8 8~ A 88( 94, 85) 85.9 177 1.88 116.4 38.8 8. A 89( 95, 96) 17.2 48 1.88 56.8 45.8 8. A 98( 96, 97) 1162. 1 366 1.88 444.9 45.8 8~ A 91( 98>> 99) 4.5 24 1.88 45. 6 38.8 Q~ A 92( 99, 188) 845.7 242 1.88 588.8 44.9 8~ A CUMULATIVE DYNEV SUBNETHORK tlO. 1 STATISTICS SII'ICE BEGINNING OF SIMULATION PRESENT TIME IS 15 8 8>> ELAPSED SIMULATED TIME IS 2 HOURS>> 8 MINUTESs 8 SECONDS LINK STATISTICS AVG AVG 4VG AVG VEH- VEH- T-TII'IE SPEED CNTNT VEH- VEH- T-TII'1E SPEED CNTNT NO. LINK MILES DISCH M/T SEC/V MPH VEH LOS NO. LINK tlILES DISCH I'I/T SEC/V MPH VEH LOS 93( 181, 182) 735.8 296 1.88 346.7 49.7 8. 4 94( '183>> 184) 1.9 18 1.88 27 ' 49 ' 8. A 95( 184, 181) 24.2 18 8 99 173.5 49.2 8. 4 96( 74, 186) 1812.5 617 8.98 189.1 54.1 8. 97( 185, 186) 82.5 749 8.82 1922 ' 8.4 8. 4 ~ 98( 186, 75) 3897.8 1389 8.95 153.3 52 ' 8. A 99( 187, 188) 87.9 152 1.88 75 6 F 55.2 8. A 188( 188, 189) 234 ' 153 8 97 182.8 53.6 8. A DYNEV SUBNETIIORK STATISTICS VEHICLE-MILES 36316.39 VEHICLE-MINUTES s= 188668. 51 VEHICLE-TRIPS(EST ) ~ 9214 PCT OF VEHS THAT STOPPED 7 ~ 263 IIOVING/TOTAL TRIP TIME = 8 ~ 455 AVG ~ . SPEED(MPH) 21 65 AVG. QUEUE CONTENT ~ 465.7 VEH. AVG DELAY/VEH ss 56.52 SEC TOT4L DELAY S4871.7 MIN. DELAY/VEH-MILE Ls 1 ~ S1 MIN/V-I'IILE TRAVEL TItlE/VEH-MILE 2.77 MIN/V-MILE DYNEV SUBNETIJORK NO. 1 PERSON NEASURES OF EFFECTIVENESS PERSON PERSON TRVL-TINE PERSON PERSON TRVL-TINE PERSON PERSON TRVL-TINE LINK NILES TRIPS PRSON-NIN LINK MILES TRIPS PRSON-WIN LINK NILES TRIPS PRSON-NIN 18, 19) 119 ' 189.5 247.8 ( 19, 28 ) 59.8 94 ' 122. 8 28>> 21) 96.2 96.2 195.8 19$ 22) 59.8 9n.9 122.8 ( 22 23 ) 182.1 96.3 287.7 17, 18) 186.3 94 ~ I 212.7 26, 31) 64.2 641 ' 78 6 F ( 28$ 29) 63.5 162.8 151.8 38, 29) 38 ' 146.1 115 ' 34$ 26) 37 ' 185. 8 51.8 ( 33 $ 5) 131.1 655.7 1922.4 24 ' 4) 67.7 161.2 161.1
    52) 275.3 423.5 482.4 ( 1$ 2) 175.8 486.1 15211.8 $ 26) 363.7 454.6 498.9 5$ 8) 129.2 1292 1 142.4 ( 8$ 9) 479.3 1295 2 526.7 9$ 18) 662.9 1299.7 727.7 10, 13) 1969.9 1313 3 2188 ' ( 14) 1989.2 1326. 1 2199.8 14$ 16) 931 7 1331. 1 1823.5 35, 16) 16.3 162.8 38.7 ( 15$ 38) 488.7 1682.9 662.8 38$ 39) 668.8 2229.4 971.5 41$ 38) 185.8 311.2 182.7 ( 39$ 42) 642 ' 2568.8 1886.9 42$ 43) 1184.7 2961.7 3815.4 44 48) 839.5 1952.6 1856.3 ( 48, 45) 898 ' 2968.9 1139.8 45$ 46) 2'97 1 2978.8 588.7 47, 46) 43.8 219.2 184.3 ( 49, 48) 188.9 584.3 3312.2 53$ 58) 843.1 533.6 936.9 58, 51) 749 ' 538.8 832.6 ( 51, 54) 243.2 548.5 266.9 54, 55) 1414.8 558.2 1565.9 55 57) 1548.5 559 ' 1718.5 ( 57$ 56) 521.5 568.8 575.3 58, 25) 35.6 355.9 189.6 25$ 59) 364 ' 714 6 451.9 ( 68, 59) 14+8 28.1 24.2 27 7) 181.6 225.7 241.5 61, 34) 9.3 92 ' 22.1 ( 63) 125.3 626.5 138 ' 63$ 5) 969.8 633.4 1879.1 29, 3) 588 ' 625.7 1234.2 ( 6, 33) 984.7 668.9 2167.8 31, 6) 141.4 642 6 155.3 16$ 32) 664.6 1661 ' 726.6 ( 32 $ 62) 182.4 1823.9 198 ' 64$ 32) 15 ' 88.1 68.8 62, 37) 365.2 1826.1 399.1 ( 37 $ 65) 788.5 2681 7 853 ' 65, 11) 521.8 2685 1 567.8 11$ 66) 589.1 1818.2 619.1 ( *6, 2) 132 ' 1818.7 159 8 2$ 44) 195 1 1951.4 237.2 ll, F
    12$ 68) 158.6 1586.8 172.9 ( 68$ 15) 397.2 1588.7 519.4 67) 732.7 1592.8 881 ' 67, 12) 79.7 1593.8 86.6 ( 52$ 53) 823.6 527 ' 1817.8 46$ 69) 426 ' 2372.1 516.2 69, 48) 865.6 2985.3 1849.9 ( 78, 69) 69.8 383 ' 19948 F 1 71, 39) 48.4 166.9 1323.7 72 $ 42) 38.3 191.6 5251 ~ 9 ( 36$ 1) 7.2 , 42 ' 1457.2 36$ 37) 154.2 778.8 2653.8 73 $ 36) 48.7 485.7 1555.4 ( 59$ 74) 2889.2 793.5 3682.3 46, 47) 375.9 1844 8 985.2 77 78) 155.2 185 6 F 231.5 ( 78$ 79) 224 ' 488 8 342.8 79$ 88) 1816. 1 248.4 1383.4 79$ 81) 183.5 168.9 249.5 ( 81s 82) 297.8 98.7 482 ' 81$ 83) 153 ~ 4 65.3 286.1 84, 78) 192.8 187.2 264.8 ( 85$ 86) 334.2 315 3 451.3 86, 87) 1335.4 414.7 2689 ' 87$ 88) 848.2 422.2 1265 ' ( 76, 84) 141 F 1 92.8 282 ' 89$ 98) 113 ' 68.1 226.2 98, 91) 448.8 164 ' 588.2 ( 92$ 98) 25 ' 12.8 58 ' 93, 91) 71 ~ 5 15.9 143 ' 94, 85) 111.7 115.2 223.5 ( 95, 96) 22 3 31 ' 29 ' 96, 97) 1518 7 271.7 2814 ' 98, 99) 5.8 15 ' 11.7 ( 99, 188) 1899 ' 173 7 F 1478.4 181$ 182) 956.5 199.7 1153.7 ( 183>> 184) 2' 6~5 3.8 ( 184s 181) 31 ' 13 3 38.3 74, 186) 13lbo3 882.6 1458.9 ( 185, 186) 187.2 487.1 15683.8 ( 186, 75) 4827.2 1886.8 4613.8 187$ 188) 114.3 98 ' 124.2 ( 188$ 189) 384.7 199.2 341 ' ( k CUI'IULATIVE DYNEV SUBNETIIORK NO. STATISTICS SINCE BEGINNING OF SitIULATION PRESENT TINE IS 15 38 8$ ELAPSED SItiULATED TIIIE IS 2 HOURS>> 39 tiINUTES, 8 SECONDS LINK ST4TISTICS AVG AVG RVG 4VG VEH- VEI I- T-T It'IE SI EED CNTNT VEH- VEH- SPEED CNTNT NO. LINK H I LES D I SCH H/T SEC/V tiPH VEH LOS NO. LINK tiILES DISCH 11/T SEC/V I'IPH VEH LOS 1( 18, 19) 91.8 146 8.97 78 ' 29.8 8. A 2( 19, 29) 46.8 73 8.97 77.7 29.2 8~ A 3( 28, 21) 74.8 74 8.98 122.2 29 ' Q. A 4( 19s 22) 46.8 73 8.97 77.7 29.2 8. A 5( 22 $ 23) 78.5 /4 9.90 129.4 29.5 8. 4 6( 17, 18) 81.8 145 1 ~ 88 135.6 38.8 G. A 7( 26, 31) 49.3 494 8 ~ 99 6.6 54 5 8. A 8( 28s 29) 48.8 258 1.88 55.6 25 ' 8. A 9( 38s 29) 29.2 225 1.88 47.3 19 8 8. A 18( 34 26) 28.6 143 8.97 16 ~ 5 43.7 8. A 11( 33>> 5) 188 ' 584 8.18 175.9 4.1 8. A 12( 24, 4) 52.1 248 1.88 59.9 25.2 9~ A 13( 15( 7j 52) 26) 211.8 279.8 481 358 8.98 8.97 68.3 65.8 34.2 43.7 8. 8. 4 A 14( 16( lj 5j 2) 8) 134.6 99 ' 715 994
    9. 92 8 ~ 99 1877 '
    6.6 8.7 54.4 8~ 8. 4 A 17( Bs 9) 368.7 996 8.99 8.98 24 ' 99.6 54.6 S4.2 9 A 18( 9s 18) 14) 589.9 1538 ' 1888 8 '9 182@ 8 ~ 98 33 ' 99.5 54.7 54.3 8. 8. A 19( 18$ 13) 1515.3 1818 8~ 28( 13, A 21( 14, 16) 716.7 1824 8.99 46.1 54 ' 8. 4 22( 35 $ 16) 12 ' 258 1.88 14.3 25 2 8. A 23( 15, 38) 398.3 1233 8.66 24.8 36.3 8. R 24( 38, 39) si4.s 171S 8.75 26 F 1 41.3 8~ A 25( 41, 38) 8' 479 1.88 35.2 34.7 9. 4 26( 42) 493 ' 1975 8 ~ 71 25.4 35 ' 8 ~ A 27( 43) 911 ' >>2278 8 47 F 61.1 23.6 8. A 28( 49) 645 ' 1592 8.96 32.5 47.7 G. A 29( 48, 45) 685.1 2284 9.94 23.8 46.9 8. A 38( 45, 46) 228.5 2285 8.61 11 9 38.3 8~ A 31( 47, 46) 33.7 337 1.88 28 ' 25.2 8. A 32( 49s 48) 77.6 776 8.87 394.1 1.8 Q~ A 33( 53 $ 58) 648 6F 41$ 8.98 185.3 54.8 8 A 34( 58, 51) 576.1 415 8.98 92.7 54 ' 8. A 35( 51, 54) 187.1 416 8.99 29.6 54.7 8. A 36( 54, 55) 1887.7 423 8 ~ 98 178.8 54 2 8~ A 37( ss, 57) 1191 ' 439 8 ~ 98 183 6 F 54.3 8. 4 38( S7>> 56) 481.2 431 8.98 61.6 54.4 8. A 39( 58$ 25) 27.4 548 8.75 32.8 11.3 8. A 48( 25 59) 288.4 558 8.97 37.9 48.4 8. A 41( 69$ 59) 18.8 43 F 88 51.8 34.8 9. A 42( 2/ 7) /0.1 347 1 ~ 89 64.2 25 ' 8~ 4 43( 61>> 34) 7.1 143 1.88 14.3 25.2 8. A 44( 3j 63) 96.4 482 8.98 13.3 54.3 Q. A j 45( 63, 5) /45 4 757 ' 487 588 8 '8 8.49 182.2 196 ' 53.9 27 3 8~ 8. 4 46( 48( 29, 3) 6) 385 ' 188.8 481 494 8 ~ 96 9.99 118.4 14 ' 24 3 54.6 F 8. 8. 4 A 47( 6, 33) A 31>> 49( 16>> 32) 511.2 1278 8. 9'9 26.2 54 9 8. A 58( 32>> 62) 148.3 1483 1.88 6.5 55.8 8~ A >> '>> 51( 64s 32) 11 ' 123 1 ~ 88 45.6 15.8 8. 52( 62, 3/) 288. 9 1495 9.99 13.1 54.9 8. A 53( 37 $ 65) 688 ' 2881 8.99 19.7 54.9 8. A 54( 65>> 11) 498 8 ~ 2894 1 ~ 88 13.1 5S.1 8. A 7>> 55( 11$ 66) 391.6 783 8.99 36.5 49.3 Q~ A. 56( 66$ 2) 181 ' 784 1.89 9' 49.7 G. 4 5/( 44) 158. 1 1581 8.99 7.3 49 ' 8. .A SB( 12, 68) 122 8 1228 1.89 6' 55.8 8. A 59( 68, 15) 385. 5 1222 8.83 19.6 45.9 8.. A 68( 11, 67) 563.6 1225 8.99 38.2 54.9 8. 4 61( 67s 12) 61 ' 1225 1. 88 3' 55 2 8. 4 62( 52t 53) 633.5 486 8.98 115.7 48.6 8~ A ~ >> 63( 46$ 69) 328.3 1825 1.88 13.1 49 6 F 8. 4 64( 69, 48) 681.1 2349 8.99 21.2 49.3 8. A 65( 78$ h9) 59.5 518 8.81 3616.9 Q~2 8. 4 66( /1$ 39) 3/.2 257 G.ld9 475 ' 2.2 G. A ~ ) 67( 72 $ 42) 29.5 295 G. 82 164S. 9 8.4 8~ A ~ 68( 36, 1) 5.5 33 8.81 2863.8 8.3 Q ~ R 69( 36, 37) 118.6 593 8.14 296.6 3.5 9. 4 78( 73t 36) 37 ' 624 8.87 23' 1.'9 8. A 71( 59, 74) 2168 ' 618 8.94 272.4 46.8 8. R 72( 46$ 47) 289.1 893 8.99 52.8 24.9 8~ R 73( 77 $ 78) 119.4 162 1.88 131.6 48.2 8 A 74( 78, 79) 172.7 388 8.98 51.2 39.4 8. A 75( 79>> 88) 781 6F 191 8 ~ 98 334.1 44 F 1 8. A 76( 81) 141 ~ 1 124 8.98 93 ' 44 1 8 A 77( Bl, 82) 228.5 76 9 ~ 98 244.8 44.3 8. 4 78( 81>> 83) 118.8 58 9.99 189 ' 44.6 8. A 79( 84, 78) 148.3 144 8.97 84 6F 43 ' 8. A 88( 85$ 86) 257 F 1 386 8.99 85 9~ 8 ~ A 81( 86$ 87) 1827.2 319 8.99 389. 1 29.8 8. A 82( 87$ 88) 646 ' 325 8 9 179.8 39.8 Q. A 83( 76$ 84) 188.5 143 1.88 182.4 39.8 8~ A 84( 89$ 98) 87.8 185 F 88 199.2 39.8 Q~ A 85( 98, 91) 338.5 126 1.88 214.9 44 ' G. A 86( 98) 19.2 18 1.88 258.8 38.8 8>> A '>> 87( 93, 91) 55.8 24 1.88 S41.2 38.8 Q~ A 88( 94, 85) 85.9 177 1.88 116.4 38.8 8. A '"j 89( 95, 96) 17.2 48 1.88 56.8 45.8 8. A j 98( 96, 97) 1162.1 366 1.89 444.9 4S.G 8. A l 91( 98, 99) 4' 24 1 ~ 88 45.6 38.8 Q~ A ~ 92( 99, 188) 845.7 242 1.88 580.8 44.9 8. A j CUMULATIVE DYNFV SUBt'JETWORK NO. 1 STATISTICS SINCE BEGINNING UF SIMIILATION PRESENT TIME IS 15 38 8s ELAPSED SIMULATED TItlE IS 2 HOURS, 38 MINUTESs 8 SECONDS LINk ST4TISTICS AVB AVG AVG AVG VEII- VEH- T-TIME SPEED CNTNT VEH- VEH- T-TIME SPEED Cl'ITNT NO. LINK MILES DISCH t'I/T SEC/V tiPH VEH LOS NO+ LINK I'I ILES DISCH tl/T SEC/V MPH VEH LOS / 93( 9S( 181s 182) 184s 181) 735. 8 24.2 296 1.88 18 F 8.99 346.7 173.5 49 7 49 ' 8~ 8. A 4 94( 183s 184) 96( 74s 186) 1812.5 1 9'8 1 88 617 8.98 2/.5 49.8 189 1 54.1 8. 8. A A 97( 185s 186) 99( 187, 188) 82.5 87.9 749 8 152 1.88 '2 1922.8 75.6 8.4 55.2 8. 8. 4 A 98( 18bs 75) 188( 188s 189) 3897.8 234.4 1389 8.95 153 8.'97 F 153.3 182.8 52.4 53.6 8. 8. A A DYNEV SUBNETWORK STATISTICS VEHICLE-I'IILES 36337. 46 VEHICLE-MINUTES 188954. 47 VEHICLE-TRIPS(EST ~ ) ss 9267 PCT OF VEHS THAT STOPPED ss 7.253 I'IOVING/TOTAL TRIP TIME s* 8.454 AVG., SPEED(t'IPH) ss 21 68 AVB. QUEUE CONTENT ~ 375.4 VEH. AVG DEL4Y/VEH s* 56.71 SEC. TOTAL DEL4Y = 55125 4 MIN. DELAY/VEH-MILE ~ 1.52 I'IIN/V-MILE TR4VEL TIME/VEH-MILE s* 2.78 I'IIN/V-MILE DYNEV SUBNETNORK NO. 1 PERSON I'1EASURES OF EFFECTIVENESS PERSON PERSON TRVL-TIllE PERSON PERSOI'l TRVL-TINE PERSON PERSON TRVL-l'IHF L INk( HILEB TRIPS PRSON-I'lIN L I Nl( l'lILES TRIPS PRSON-l l I l l L II4l( HILES TRIPS PRSON-l'l IN 10, 19) 119,4 109,5 247.8 19>> 28) 59 ' 94.9 12".0 28>> 21) 96 2 96.2 195. 8 19, 22) 59~0 94.9 122 ' 4 23) 182 1 96.3 28/.7 17, 10) 186.3 94.1 212. / 26, 31) 64 ' 641.5 78.6 20>> 29) 63.5 162 0 151. 8 38, '>>9 ) 30.8 146 ~ 1 115.3 34, 26) 37.2 105.0 51.8 33> 5) 131.1 655.7 1922.4 24>> 4) 6/. 7 161.2 161 1
    52) 2/5.3 423.5 402.4 1, 2) 1/5.8 406.1 15211.8 />> 26) 363./ 454.6 490.9 5j 0) 129.2 1292.1 142 ' Bj 9) 479 3 1295.2 52' 9, 18) 662.9 1299.7 727+7 18>> 13) 1969.9 1313.3 2108.8 13, 14) 1909.2 1326.1 2199.0 14>> 16) 931 7 1331.1 1823.5 35>> lb) 16.3 162.0 30.7 15, 30) 488.7 1682.9 662.0 38> 39) 668.0 2229.4 971.5 41>> 30) 185.0 311 ' 102.7 39> 42) 642.8 2560.8 1806.9 42>> 43) 1104,7 2961 ' 3815 '
    44, 48) 039.5 1952. 6 1856~3 48>> 45) 098.7 2960.9 1139.8 45>> 46) 297 F 1 2978.0 500.7 47, 46) 43.0 219.2 184 3 49>> 48) 188.9 584.3 3312 2 53>> 58) 043.1 533.6 936.9 58, 51) 749.8 530.0 032.6 51>> 54) 243.2 548.5 266.9 54>> 55) 1414.8 558.2 1565.9 55>> 57) 1540.5 559.8 1718. 5 57 j Sb) 521.5 568.0 575.3 50>> 25) 35.6 355.9 109.6 25, 59) 364.5 714 ' 451.9 68>> 59) 14.8 20 1 24.2 27 ~ 7) 181.6 225+7 241.5 61>> 34) 9.3 92.0 22.1 3>> 63) 125.3 626.5 130 4 63>> 5) 969.8 633.4 1879.1 29>> 3) 588.6 625.7 1234.2 bj 33) 984,7 668 9 2167.8 31>> 6) 141.4 642.6 155.3 16>> 32) 664 6 1661 5 726.6 32>> 62) 102. 4 1023.'9 190 ' 64>> 32) 15.2 08.1 68.0 62 37) 365.2 1026.1 399.1 37 j 65) 7a8.5 2681.7 053 4 65, 11) 521+8 2685 1 567.B
    66) 589 1 1810 ' 619.1 66, 2) 132 4 1810.7 159. B 2s 44) 195.1 1951.4 237.2 ll,
    '1, F 12>> 60) 150.6 150*.8 172.9 ha >> 15) 397.2 1500.7 519.4 *7) 732.7 1592.0 081.1 67>> 12) 79.7 1593.8 06 F 6 52 j 53) 023.6 527.9 1817 0 46, 69) 426.0 2372.1 516.2 69 ' 4B) 005.4 3853.6 1876.6 78>> 69) 77 4 336.6 28293.1 71>> 39) 40.4 166.9 1323+7 j 42) 30.3 191.6 5251 9 36>> 1) 7 2 42.4 1457 2 36>> 37) 154.2 778.0 2653.0 73 j 36) 40 ' 485 7 1555+4 59>> 74) 2089 2 793.5 3682.3 46 47) 375. 9 1844 ' /85.2 77>> 70) 155.2 185.6 231.5 70, 79) 224.5 488.0 342.8 '9>>
    08) 1816.1 240.4 1303.4 7/, 81) 103.5 168.9 249.5 01> B2) 297 ' 90 7 482+5 01>> 03) 153.4 65~3 286.1 04>> /0) 192.0 107.2 264.8 05>> 06) 334.2 315 ' 451.3 B6>> 07) 1335 ' 414 7 2609.4 07, 00) 048.2 422.2 1265.4 76, 04) 141.1 92.0 202.2 09, 98) 113.1 60 1 226.2 98, 91) 448.8 164.2 500.2 92, 98) 25.8 12 8 58.8 93>> 91) 71.5 15. 9 143.1 94>> 05) 111 ' 115.2 223.5 95, 96) 22.3 31 5 29.B 96>> 97) 1518.7 271.7 2814 5 90, 99) 5.0 15 ' 11 ' 99, 188) 1899.4 173.7 1478.4 181>> 182) 956.5 199 ' 1153.7
    ( 183>> 184) 2.5 6.5 3.8 184, 181) 31. 4 13 30.3 74, 186) 1316.3 082.6 1450.9'24 ( 185>> 186) 187.2 407 ' 15683.0 ( 186>> 75) 4827.2 1086.8 4613 0 187, 180) 114.3 90.5 2 ( 180>> 189) 384.7 199.2 341.2 ( CUI'lllLATI VE VEHICLE TRIPS l.lAVE NOT CHANGED FOR NORE THAN ONE TINE INTERVAL - RUN TERtlINATED tJODE 50 SIGI'l CONTROL PHASE l)URATIOhl APPftOACt IES ( 51~ 54) LEFT THRU RITE DIAG LEFT THRU RITE DIAG LFFT THRU RITE DIAG l.EFT fflRU RITF. DIAG LEFT THRU RITE DIAG STOP NODE 55 SIGt4 CONTROL Pl(ASE DlJRATION APt~flOAf:flES ( 54~ 55) LEFT THRU RITE DIAG LFFT Tt(RU RI'I'E DIAG LEFT 'ltlRU Rl'ff= D(AG LLt='I fHRU Rl fE DIAG LEFT THRU, RITE DIAG GO t4ODE 56 SIGN CONTROL PttASE DURATION APPROACftFS ( 57, 56) LEFT THRU RITE DIAG LEFT TftRU RITE DIAG LEFT THRU RITE DIAG LEFT THRU RITE DIAG LEFT THRU RITE, DIAG GO NODE 57 SIGN CONTROL PHASE D(IRATI ON APPROACHEc ( 55, 57) LEFT Tt(RU RITE DIA(i LEf-'T THRU RITE D1AG l EFT 'fHRU RI1E. DIAG LEFT THRU BITE l)IAG LEFT THRU RlTE DIAG GO NODE 58 SIGtl CONTROL NO APPROACHES TO THIS NODE NODE 59 SIGN CONTROL PllASE DURATION APPROCiCt lES ( 68, 59) ( 25, 59) LEFT TllRU RITE DIAG LEFT 1ttRU Rl f(I DIAG LEFT TttRU RITE DIAG LEf'T TtlRU fiITE DIAG LEFT THRU RITE DIAG S 1'OP GO t'lODE 68 SIGN CONTROL NO APPROACI.IFS TO TflIS NODF NODE 61 SIGN I'ONTROL htO APPROACtlES TO THIS NODE NODE 62 SIGN CONTROL PllASF D(JRATION APPROACtlES NODE 63 SIGN CONTROL PHASE DURATION APPROACHES ( 3s 63) LEFT THRU RITE DIAG LEFT THRU RITE DIAG LEFT THRU RITE DIAG LEFT THRU RITE DIAG LEFT THRU RITE DIAG GO NODE 64 SIGN CONTROL NO APPR04CHES TO THIS NODE NODE 65 SIGN CONTROL PH4SE DURATION APPROACHES ( 37s 65) LEfT THRU RITE DIAG LEFT THRU RITE DIAG LEFT THRU RITE DIAG LEFT THRU RITE DIAG LEFT THRU RITE DIAG GO NODE bb SIGN CONTROL PHASE DUR4TION APPROACHES ( 11s 66) LEFT THRU RITE DI4G LEFT THRU RITE DIAG LEFT THRU RITE DIAG LEfT THRU RITE DIAG LEFT THRU RITE DIAG YLD ~ 'ODE 67 SIGN CONTROL PHASE DUR4TION APPROACHES ( 11s 67) LEFT THRU RITE DIAG LEFT THRU RITE DIAG LEFT THRU RITE DIAG LEFT THRU RITE DI4G LEFT THRU RITE DIAG GO t 5 ~ NODE 68 SIGN CONTROL PHASE DUR4TION 4PPROACHES ( 12s 68) LEFT THRU RITE DIAG LEFT THRU RITE DIAG LEFT THRU RITE DIAG LEFT THRU RITE DIAG LEFT THRU RITE DIAG GO 'I ~ NODE 69 SIGN CONTROL PHASE DUR4TION APPROACHES ( !kbs 69) ( 78s 69) LEFT THRU RITE DIAG LEFT THRU RITE DIAG LEFT THRU RITE DIAG LEFT THRlJ RITE DIAG LEFT THRU RITE DIAG 8 GO YLD . Mp ls' v v~ NODE 78 SIGN CONTROL Nn ncs annrkive Tn Tvkv~ Nnnv NODE 71 SIGN CONTROL NO 4PPROACHES TO THIS NODE NODE 72 SIGN CONTROL NO APPROACHES TQ THIS NODE NODE 73 SIGN CONTROL NO APPR04CHES TO THIS NODE NODE 74 SIGN CONTROL PHASE DURATION APPROACHES ( 59, 74) LEFT THRU RITE DIAG LEFT THRU RITE DIAG LEFT THRU RITE DI4G LEFT THRU RITE DIAG LEFT THRU RITE DI4G 8 STOP NODE 75 SIGN CONTROL PHASE DURATION APPROACHES ( 186, 75) LEFT THRU RITE DIAG LEFT THRU RITE DIAG LEFT THRU RITE DIAG LEFT THRU RITE DIAG LEFT THRU RITE DIAG GO NODE 76 SIGN CONTROL NO APPROACHES TO THIS NODE NODE 77 SIGN CONTROL NO APPROACHES TO THIS NODE NODE 78 SIGN CONTROL PHASE DURATION APPR04CHES ( 77, 78) ( 84~ 78) LEFT THRU RITE DIAG LEFT THRU RITE DIAG LEFT THRU RITE DIAG LEFT THRU RITE DIAG LEFT THRU RITE DIAG 8 PROT STOP NODE 79 SIGN CONTROL PHASE DURATION APPROACHES ( 787 79) LEFT THRU RITE DIAG LEFT THRU RITE DIAG LEFT THRU RITE DIAG LEFT THRU RITE DIAG LEFT THRU RITE DIAG GO GO NODE 88 SIGN CONTROL ( 79, 88) LEFT THRU RITE DIAG LEFT THRU RITE DIAG LEFT THRU RITE DIAG LEFT fHRU Rl fE DIAG LEFT THRU RITE DIAG GO NODE 81 SIGN CONTROL PH4SE DURATION 4PPROACHES ( 797 81) LEFT THRU RITE DIAG LEFT THRU RITE DIAG LEFT THRU RITE DIAG LEFT THRU RITE DI4G LEFT THRU RITE DIAG GO GO NODE 82 SIGN CONTROL PHASE DURATION 4PPROACHES ( 81, 82) LEFT THRU RITE DIAG LEFT THRU RITE DIAG LEFT THRU RITE DIAG LEFT THRU RITE DIAG LEFT THRU RITE DIAG GO NODE 83 SIGN CONTROL PHASE DUR4T ION 4PPROACHES ( 81, 83) LEFT THRU RITE DIAG LEFT THRU RITE DIAG LEFT THRU RITE DIAG LEFT THRU RITE DIAG LEFT THRU RI'fE DIAS 8 GO NODE 84 SIGN CONTROL PHASE DURATION 4PPROACHES ( 76, 84) LEFT THRU RITE DIAG LEFT THRU RITE DIAG LEFT THRU RITE DIAG LEFT THRU RITE DIAG LEFT THRU RITE DIAG PROT NODE 85 SIGN CONTROL PH4SE DURATION 4PPROACHES ( 94, 85) LEFT THRU RITE DIAG LEFT THRU RITE DIAG LEFT THRU RITE DI4G LEFT THRU RITE DIAG LEFT THRU RITE DIAG YLD NODE 86 SIGN CONTROL PHASE DURATION APPROACHES ( 85~ 86) LEFT THRU RITE DIAG LEFT THRU RITE DIAG LEFT THRU RITE DIAG LEFT THRU RITE DIAG LEFT THRU RITE DIAG GO NODE 87 SIGN CONTROL PHASE DURATION 4PPROACHES ( 86, 87) I eeT Tl(pll pYTe nThr I ef T Tl(elf pTTe nYAI I eel 'nin< < at'rr neer i rex vsir. <<o'er nvnr, I rrv ~sir ii neer nv ~~ NODE 88 SIGN CONTROL PHASE DURATION . APPROACHES ( 87,. 88) LEFT THRU RITE DI46 LEFT THRU RITE DI4G LEFT THRU RITE DIAG LEFT THRU RITE DIAG LEFT THRU RITE DIAG GO NODE 89'IGNTHIS NO APPROACHES TO CONTROL NODE NODE 98 SIGN CONTROL PHASE DURATION APPROACHES ( 89, 98) ( 92~ 98) LEFT THRU RITE DIAG LEFT THRU RITE DIAG LEFT THRU RITE DIAG LEFT THRU RITE DIAG LEFT THRU RITE DIAG GO YLD NODE 91 SIGN CONTROL PH4SE DURATION 4PPROACHES ( 98~ 91) ( 93~ 91) LEFT THRU RITE DIAG LEFT THRU RITE DI4G LEFT THRU RIfE DIAG LEFT THRU RITE DIAG LEFT THRU RITE DIAG GO YLD NODE 92 SIGN CONTROL NO APPROACHES TO THIS NODE NODE 93 SIGN CONTROL NO APPROACHES TO THIS NODE NODE 90 SIGN CONTROL NO APPROACHES TO THIS NODE NODE 95 SIGN CONTROL NO 4PPROACHES TO THIS NODE NODE 96 SIGN CONTROL PHASE DURATION APPROACHES ( 95~ 96) LEFT THRU RITE DIAG LEFT THRU RITE DIAG LEFT THRU RITE DI48 LEFT THRU RITE DIAG LEFT THRU RITE DIAG GO iinnr. ~ n~ c. Tr'sI rninani I Hw>k. Ut< I lUN ( 96, 97) LEFT TllRU RITE DIAG LEFT THRU RITE DIAG LEFT THRU RITE DIAG LEFT THRU RITE DIAG LEFT THRU RITE DIAG GO NODE 9G SIGN CONTROL NO APPROACtlES TO THIS NODE NODE 99 SIGN CONTROL PH4SE DURATION APPROACHES ( 9G~ 99) LEFT THRU RITE DI4G LEFT THRU RITE DIAG LEFT THRU RITE DIAG LEFT THRU RITE DIAG LEFT THRU RITE DIAG GO NODE 188 SIGN CONTROL PHASE DURATION APPROACHES ( 99~ 188) LEFT THRU RITE DIAG LEFT THRU RITE DI4G LEFT THRU RITE DI4G LEFT THRU RITE DIAG LEFT THRU RITE DIAG GO NODE 181 SIGN CONTROL PHASE DUR4TION APPROACHES ( 184~ 181) LEFT THRU RITE DIAG LEFT TklRU RITE DIAG LEFT THRU RITE DIAG LEFT THRU RITE DIAG LEFT THRU RITE DIAG YLD NODE 182 SIGN CONTROL PHASE DURATION APPROACHES ( 181, 182) LEFT THRU RITE DIAG LEFT THRU RITE DIAG . LEFT THRU RITE DIAG .LEFT THRU RITE DIAG LEFT THRU RITE DIAG YLD NODE 183 SIGN CONTROL NO 4PPROACHES TO THIS NODE NODE 184 SIGN CONTROL PHASE DURATION APPROACHES ( 185, 180) LEFT THRU RITE DIAG LEfT THRU RITE DIAG LEFT THRU RITE DIAG LEFT THRU RITE DIAG LEFT THRU RITE DIAG GO NODE 185 SIGN CONTROL NO APPROACkiES TO THIS NODE NODE 186 SIGN CONTROL PHASE DURATION APPROACHES ( 74, 186) ( 185, 186) LEFT THRU 'RITE DIAG LEFT TMRU RITE DIAG LEFT THRU RITE DIAG LEFT THRU RITE DIAG LEFT THRU RITE DIAG GO STOP NODE 187 SIGN CONTROL NO APPROACHES TO THIS NODE NODE 188 SIGN CONTROL PHASE DURATION APPROACHES ( 187~ 188) LEFT THRU RITE DIAG LEFT THRU RITE DIAG LEFT THRU RITE DIAG LEFT THRU RITE DIAG LEFT THRU RITE DIAG 8 GO NODE 189 SIGN CONTROL PHASE DURATION APPROACHES ( 188~ 189) LEFT THRU RITE DIAG LEFT THRU RITE DIAG LEFT THRU RITE DIAG LEFT THRU RITE DIAG LEFT THRU RITE DIAG GO C SOURCE/SINK FLOW RATES CENTROID NUNBER LINK SOURCE/SINK RATE (VEH/HR) 58, 25) 228 2881 617 34) 57 2882 24, 4) 99 2883 27 p 7) 139 2884 78, 69) 172 2885 35, 16) 188 2886 41~ 38) 192 2887 17, 18) 58 2888 28~ A9) 188 2889 ( 38, 29) 98 2818 ( 4, 52) 68 2811 2812 (, 1, 2) 32) 273 58 2813 71>> 39) 183 2814 47~ 46) 135 2815 49, 48) 311 2816 68~ 59) 18 2817 72 $ 42) 118 2818 73 $ 36) 258 2819 94~ 85) 71 2828 77 78) 65 2821 89> 98) 42 2822 92, 98) 8 2823 76~ 84) 57 2824 93, 91) 18 2825 85~ 86) 52 2826 95~ 96) 2827 96, 97) 126 2828 98$ 99) 18 2829 9'9 ~ 188) 87 2838 ( 181, 182) 114 2831 ( 183, 184) 4 2832 ( 185, 186) 388 2833 ( 187, 188) 61 SOURCE/SINK FLON RATES CENTROID NUNDER LINK SOURCE/SINK RATE (VEtt/HR) 2888 58s 25) 494 2881 bls 34) 128 2882 4) 223 2883 27 $ 7) 312 2884 78 69) 388 ~ \ 2885 35 16) 225 2886 41, 38) 431 2887 17, 18) 131 2888 28s 29) 225 2889 38s 29) 283 2818 (. 52) 135 2811 ( ls 2) 614 2812 ( 64, 32) 112 2813 ( 71, 39) 232 2814 ( 47, 46) 383 2815 ( 49, 48) 699 2816 ( 68, 59) 48 2817 ( 72 s 42) 266 2818 ( 73s 36) 563 2819 94, 85) 168 2828 ( 77s 78) 146 2821 ( 89, 98) 95 2822 ( 92, 98) 17 2823 ( 76s 84) 129 2824 ( 93s 91) 23 2825 ( Sss 86) lib 2826 ( 95, 96) 44 2827 ( 96, 97) 284 2828 ( 98s 99) 22 ~ ~ 2829 ( 99s 188) 195 2838 181, 182) 257 2831 ( 183s 184) 9 2832 ( 185 s 186) 675 2833 ( 187s 188) 137 P