ML17292A809

From kanterella
Jump to navigation Jump to search
Sheet 1 to Reactor Protection Sys
ML17292A809
Person / Time
Site: Columbia Energy Northwest icon.png
Issue date: 09/20/1983
From: Mata M
GENERAL ELECTRIC CO.
To:
Shared Package
ML17292A808 List:
References
23A1877AA, 23A1877AA-R02, 23A1877AA-R2, NUDOCS 9704220009
Download: ML17292A809 (30)


Text

E 0

y V

NU"'L~< ENER+>

"GER ERAL "

ELEL'TRi t,'USINESS OPERATtONS 23 A1877AA SH MO.

1 RBV SYS. l4) I l REVISION SX'ATUS SHEET DOCUMENT TITLE IREACTOR PROTECTION SYSTEM y

LEG~ OR DESCRIPTION OF GROUPS TYPE I DESIGN SPECIFICATION DATA SHEETS

-Denotes Change THE SUPPLY SYSTEN IS RESPONSIBLE FOR

~ ~ORD a TIESIGN CHANGE CONTROL OF THIS DOCUNENTM~ ~g qo

~2 4P1P Doctnaent Contxol Tsansfex'ex'WA 3608KK DMC-2414 PPfo~ c eu)t REVISIONS

) c Q~

(

Owlet. Transferred To Supttly System Control As Per Work Order 4SOO EMR-g-ggg Revision BURNS AND ROE Bysns %Roe Is Reetycesibte Only For That Information It Hae Added To This Orawing ln Accordance With Syyptyty System Oirsctlon By The Above Revisions.

BURNS 8 ROE FILE tIO.

Q /f. /7+P St>PI T SYSTKM 02-0Z.C')Z MSy CVI Mwryber CVI Sheet 2.

Sheet 366A 740RS 754MR 432QH 722D b

RA SIEUR ling NED SAN JOSE tt AB ROQK

/

Nco $ 07A IRcv to/st )

9704220009'70415, PDR ADQCK 05000397 P

PDR m zxzyn~~% 4'iR CONT ON SHEET 2

SH NO.

1 I-~23

I(

4 0

0

SP5 R~~ ta a

IRCLEAR EMERSY 6 EN ERAL9 FLE CTH [ c 23A1877AA SHNO.

1$

BUSINESS OPERATIONS REV 2

4.1.12 Reactor Protection System Tri Reactor Vessel Hi h Pressure

~

~

4.1.12.I Punction >> Limit positive prcssure effect on reactor parer.

(Note 11)

(Seo Paragzaph 4.1.18 for Notes and Definitions) 4.1.12.2 Trip Channel Sensor Identities (Note 11)

AI 322-N023A A2 B22;N023C Bl B2?-N023B B2 B22-N023D.

4.1.12.3 Normal Rsngo 4.1.12.4 Channel Znstrument Accuracy 4.1.12.5 Channol Calibrational Accuracy 4 1.12.6 Channol Instrument Drift (Design) 920-1005 psig 4.1.12.7 Analytical Limit 4.1.12.8 Tochnical Specif ication Limit 4.1.12.9 Nominal Trip Sotpoint 4.1.12.10 Alazm Setting 4 1.12 Il Tzansiont 4.I.12.12 Trip Channel Sensor

Response

Time 140 psi/second 0.5 seconds 4.1.12.13 Trip System Trip Logic See Reference 2.1.2.g for these requirements.

e See Refcronce 2.I.2.r for this requirement.

NEO NOVA (RCV 'lO/$1)

- ~

e

~

4 sucamR waRsr GEM ERAL ELECTRIC BUSINESS OPERATIONS 23'Al877AA sH No.

9 RFV 2

4.1.5 R'eactor Protection System Tri Reactor Vessel Lo>> Vates Level 4.1.$.1 Pnnction Rednce possibility of uncovering reactor coxe (Note 11)

(See Paragxaph 4.1 18 fox'otes and Definitions) 4.1.5.2 Trip Channel Sensor Identities

{Note 11)

A1 B22-N024A A2 B22-N024C Bl B22-N024B B2 B22-N024D 4.1.5.3 Normal Range 559 to 568 inches above vessel zero 4.1.5.4 Channel Instrmnent Accnracy 4.1.5.$

Channel Calibrational Accuracy 4.1.5.6 Channel Znstzmsent Drift (Design) 4.1.5.7 Analytical Limit 4.1.5.8 Technical Specification Limit 4.1.5.9 Nominal Trip Setpoint

~

~

~

4.1.5.10 Alarm Setting 4.1.$.11 Transient 4.1.5.12 Trip Channel Sensox

Response

Time

- 7 inches/second 1 second 4.1.5.13 Trip System Tzip Logic 1:2 See Reference 2.1.2.g for these requirements.

~.

See Refe ence 2.1.2 ~ r foz these requirements.

0 lolAIltev

$ o/l$ I

WNP-2 AMENDMENT NO.

50 August 1995 TABLE 7.2-5 RPS

RESPONSE

TIME (DESIGN)

FUNCTION SENSOR

RESPONSE

TIME

CHANNEL, ACTUATOR, AND LOGIC

RESPONSE

TIME MAXIMUM OVERALL

RESPONSE

TIME APRM*

Flow Biased Simulated Thermal Power-Upscale Fixed Neutron Flux-Upscale Reactor Vessel High Pressure Reactor Vessel Low Water Level 0.06 Seconds 0.06 Seconds 0.5 Seconds 1.0 Seconds 0.05 Seconds**

0.05 Seconds 0.05 Seconds 0.05 Seconds

0. 09 Seconds**
0. 09 Seconds 0.55 Seconds 1.05 Seconds MSLIV Closure 0.01 Seconds 0.05 Seconds 0.06 Seconds Turbine Stop Valve Closure 0.01 Seconds 0.05 Seconds 0.06 Seconds Turbine Control Valve 0.03 Fast Closure Seconds 0.05 Seconds 0.08 Secondsg Neutron detectors are exempt from response time testing.

Response

time shall be measured from the detector output or from the input of the first electronic component in the channel.

Total response time of 6

+ 1 seconds including simulated thermal power time constant.

Measured from start of turbine control valve fast closure.

7 ~ 2 32

I I

r J

jp

~

~

/

/

/ t j-r r

r r r r

EI I'

a p

o j

r

l 0

D 1.=

.685

.78

.5

.432

.675

.605

.53

.554 NlS-LIS-61A B C D Sensor One sided u er tolerance bounds

(~ 4

<g in ~~4~)

.465 D g

.'=

Da>:=stack(D i,D g)

.44 By: WLLDate: 4/1 4/97 CHietail>

Establish mean and standard deviation using standard Mathcad functions:

Notation as follows:

n = number of data points Mean = mean ofthe data s = standard deviation n '.= rows(Data) n = 10 Mean.'=mean(Data)

Mean =0.5666 s. = stdev(Data) n n-1 s =0.117 The following analysis establishes the 95%/95% one sided upper tolerance interval. The tolerance interval is obtained from the matrix Tolas using MathCad's linterp function.

Tol 95:=

4 5.14 5

4.2 6

3.71 7

3.4 8

3.19 9

3.03 10 2.91 12 2.74 15 2.57 20 2.4 25 2.29 30 2.22 40 2.13 60 2.02 TF:= linterp Tol95, Tol95,n TF = 2.91 (I)

<2)

File: LS61.MCD Page:

1

~ h 0

'P

~P Sy: WLLDate: 4/14/97 9s fPgyy-One-sided upper tolerance bound T up

.'=Mean+ s TF Tup~

0 907 Establish normali lot:

Residuals Residuals '.=Data Mean Standard Res.duais

'.=

esl s

'rdRes:=

csorr(Slsndsrd R;d~, 1) cRowOR:= 1.. mws(ordRes) cRowOR-I cRowOR 2

OrdRes '.= augment(OrdRes, Prob) rows(OrdRes) x:=0 z:=mor(normal(0, 1.x) Pmb, x) m.'= l intercept:=0 line~~

.'=m OrdRes~ ~

+ intercept

  • cRowOR t

0 cRewOR 1.5 I

0.5 0

0.5

~R~~R,I I.5 File: LS61.MCD Page: 2

0

D 1.'=

.072

.22

.04 04

.181

.05 Establish mean and Notation as follows:

By: WLLDate: 4/14/97 c~b ~ 8/csf<9

.04

.06

.07

.08 g ~.o&G ~

Data:=atack(D t,D k) 5

~Q c)ot f I

5

.oc D 2.'=

t7 standard deviation using standard Mathcad functions:

. eSC Z-g ~ tQ MS-PS-23A B C D Sensor One sided u er tolerance bounds (Qlq 'C) g

(

~k('ar~ '.

n = number ofdata points Mean = mean ofthe data s = standard deviation n '= rows(Data) s '.= stdev(Data) n n-1 n = 11 Mean.'= mean(Data)

Mean = 0.0833 n

s = 0.0602 S:=

Data, Mean i=1 P

g(,( g o4 AG~~

(1Y'~~fli~is <+ ~o.l c'<

Lt~( Q clgt" Pc+~~,

S = 0.0362 The following analysis establishes the 95%/95% one sided upper tolerance interval. The tolerance inteival is obtained from the matrix Tolas using MathCad's linterp function.

Tol 95

.'=

4 514 5

4.2 6

3.71 7

3.4 8

3.19 9

3.03 10 2.91 12 2.74 15 2.57 20 2.4 25 2.29 30 2.22 40 2.13 60 2.02 TF:= linterp Tol95, Tol95,n TF =2.825 File: PS23.MCD Page:

1

By: WLLDate: 4/1 4/97 efaJz+

One-sided upper tolerance bound T upp~.'=Mean+ s TF T upper 0 2533 Establish normali lot:

Residuals Residuals

.'= Data Mean Standard Residu OrdRes.'= esott(Standard Rmtdmts, tj oRowOR:= 1.. mws(OrdRcs) 1 cRowOR-cRowOR '

OrdRes.'= augment(OrdRes,Prob) rows(OrdRes) x:=0 z:= mot (normal(0, t,x) Prob, x) m '.= l intercept:=0 cRowOR 'O~~cRowOR,L cRo)bOR cRotttOR 1

O.S 09 1

cRowOR,1 LS 2

2.S File: PS23.MCD Page: 2

k

MS-PS-23A B C D Sensor One sided u er tolerance bounds By: WLLDate: 4/1 4/97

~

g/ieger

.072

.04 D 1

.'=.063

.04

.05

.04 D2.'=

.07

.08 Data.'= stack D 1,D 2 Establish mean and standard deviation using standard Mathcad functions:

Notation as follows:

n.'= rows(Data) n=9 s '.= stdev(Data) n n-1 n = number of data points Mean = mean ofthe data s = standard deviation Mean.'= mean(Data)

Mean = 0.0572 n

s =0.0153 S:=

Data, Mean i= 1 S =0.0019 The following analysis establishes the 95%/95% one sided upper tolerance interval. The tolerance interval is obtained from the matrix Tolas using MathCad's linterp function.

Tol 95.'=

4 5.14 5

4.2 6

3.71 7

3.4 8

3.19 9

3.03 10 2.91 12 2.74 15 2.57 20 2.4 25 2.29 30 2.22 40 2.13 60 2.02 TF:=linterp Tol95, Tol95,n TF =3.03 File: PS23.MCD Page:1

j

~

t, 0

1

By: WLLDate: 4/1 4/97

+s QPXbF One-sided upper tolerance bound T uppm.'=Mean+ s TF T up~

0 1037 Establish normali lot:

Residuals Residuals.'= Data Mean Standard Residuals:=

s OrdRes:= esort(Standatd Rmtd~s, 1 )

eRowOR:=

1.. mws(OrdRes) cRowOR-1 cR NOR 2

OrdRes:= augment(OrdRes,Prob) rows(OrdRes) x:=0 zm~n.'=met(normal(0, l,x)- Prob ~~n.x) m.'=1 intercept:=0 line ~

'.=m OrdRes ~

+ intercept cRowOR 0

'R LS cRott)OR, 1 0.$

File: PS23.MCD Page: 2

RPS Low Levei One sided u er toierance bounds By: WLLDate: 4/14/97 cveeb y+ q/jgw (T>4~

(n N~ i D1:=

520 523 485 420 320 465 460 400 455 430 357 542 542 540 470 497 358 D2:=

468 400 559 495 381 476 470 377 Data.'= stack(D1,D2)

File: SRPSL.MCD Page:

1

Establish mean and standard deviation using standard Mathcad functions:

Notation as follows:

Sy: WLLDate: 4/14/97 n = number of data points Mean = mean ofthe data s = standard deviation n '.= rows(Data) n = 25 Mean '.= mean(Data)

Mean = 456.4 s '= stdev(Data) s = 65.8679 n-1 The following analysis establishes the 95/o/95/o one sided upper tolerance interval. The tolerance interval is obtained from the matrix Tolss using MathCad's linterp function.

Tol 95

'.=

4 5.14 5

42 6

3.71 7

3.4 8

3.19 9

3.03 10 2.91 12 2.74 15 2.57 20 2.4 25 2.29 30 2.22 40 2.13 60 2.02 TF:= linterp Tol95, Tol95,n TF =2.29 One-sided upper tolerance bound T uppm'.=Mean+ s TF T uppm 607'2375 File: SRPSL.MCD Page: 2

'v

'I I

~

oa Establish normali lot:

By: WLLDate: 4/14/97 4I14t~

Residuals Restdoats:=Da Moan Stan OrdRas:=asort(StalldaldRmjd~s 1}

oRowOR:=l..taws(OrdRas) l cRowOR-Prob 2

wOR rows(OrdRes)

OrdRes:= augment(OIdRes, Prob) x:=0 z ~

'.=rant(normal(0,1,x) Pmts n ~n,x}

m;= I intercept:= 0 line~wOR.'= m OrdRescR wo It intercept cRowOR, I cRowOR 0

cRowOR Xf M

1.5 I

&.5 0

0.5 I

1.5 2

cRowOR, I File: SRPSL.MCD Page: 3

I

D 1

.'=

30 20 30 25 25 10 20 20 17 14 30 20 26 24 12 Data:= stack(D t,D 2)

D 2.'=

By: WLLDate: 4/14/97 CeaA>> ~

dl@'~P MS-LIS-61A 8 C D and MS-DPIS-8A 8 C D Lo ic One sided u er tolerance bounds sat sa!c)

Establish mean and standard deviation using standard Mathcad functions:

Notation as follows:

n = number ofdata points Mean = mean ofthe data s = standard deviation n '.= rows(Data) n=15 Mean '.= mean(Data)

Mean=21.5333 s.'=stdev(Data) s 6.4128 n-1 The following analysis establishes the 95%/95% one sided upper tolerance intetval. The tolerance interval is obtained from the matrix Tolss using MatCad's linterp function.

Tol 95 4

5.14 5

4.2 6

3.71 7

3.4 8

3.19 9

3.03 10 2.91 12 2.74 15 2.57 20 2.4 25 2.29 TF:=linterp Tol95, Tol95,n TF =2.57 file: SORBRTN.MCD page:1

By: WLLDate: 4/14/97

</aPP One-sided upper tolerance bound T up~'.=Mean+ s TF T upper 38 0142 Establish normali lot:

Residuals Residuals.'=Data-Mean Standard Residuals '

OrdRes:=esort(dtandardhtd~ts,l) oRowOR:=I..rows(ordRes)

I cRowOR-Probe:=

2 OrdRes.'= augment(OrdRes, Prob)

R rows(OrdRes) x:=0 z~x.'=root(normal(0,t,x)-Prob~

,x) m.'= l intercept:=0 line~~

.'=m OrdRes ~< + intercept

  • cRowOR 0

dbnzOR 2

1.5 1

0.5 0

cRotttORs 1 0.5 1

L5 file: SORBRTN.MCD page: 2

D 1.'=

33 30 35 30 21 32 30 25 30 40 15 25 30 30 Data '.=staak(D ~.D ~)

D2'=

By: WLLDate: 4/14/97

~4B> g5

/pe/g+

MS-PS 23A B C D and MS-LlS-24A B C 0 Lo6ic.

One sided u er tolerance bounds (T)Q a+ ~)

Establish mean and standard deviation using standard Mathcad functions:

Notation as follows:

n = number ofdata points Mean = mean ofthe data s = standard deviation n:= rows(Data) n = 14 Mean.'= mean(Data)

Mean = 29 s.= stdev(Data) s = 6.0764 n-1 The following analysis establishes the 95%/95% one sided upper tolerance interval. The tolerance interval is obtained from the matrix Tolss using MathCad's linterp function.

Tol 95:=

4 5.14 5

4.2 6

3.71 7

3.4 8

3.19 9

3.03 10 2.91 12 2.74 15 2.57 20 2.4 25 2.29 TF:= linterp Tol95, Tol95,n TF = 2.6267 File: 2324.MCD Page:

1

By: WLLDate: 4/1 4/97

</i~fg~

One-sided upper tolerance bound T uppm'.=Mean+ s TF Establish normali lot:

Tup~

44.9608 Residuals Residuals:=Dam Mass SlandstdRtojdnats.--

OrdRas:=cert(StsndsrdRmtd~s,l) cRowOR:= l..rows(OrdRcs) 1 cRowOR-cRO)NOR 2

OrdRes '.= augment(OtdRess Prob) rows(OrdRes) x:=0 zm,

.'=mat(normal(0, l,x)- Pmb~~n,x) m.'= I intercept:=0 line ~

.'=m OrdRes~

< + intercept'

'RotsOR t'~~~R 1

3 L5 2

1.5 1

0.5 0

0.5 1

cRotsOR, 1 15 2

File: 2324.MCD Page: 2

GE Nuclear Energy OG97-'121-964 February 12, 1997

  • Genera1 gecsnc Campany 175 Cunner Avenue. San Jose. CA 95125

~ TO:

BWR Owners'roup Response Time Testing (RTT) Committee

SUBJECT:

Response

Time Testing Committee Neeting Notice forNarch 12 1997 as

<<8

~ ~

~<<r Ai C

S+

~

~~'4 C

4~

<<J'"

ci.0

,~ <<

"+Y~'$ '

I Attachments:

(1)

Draft NEDO-32291 Supplement 1, BWR Owners'roup Licensing Topical Report - - System Analyses forthe Simplification of Selected Response Time Testing Requirements", dated February 1997

.. (2)

Washington, DC subway map (3)

Driving directions to meeting location v

')~'<<'P,'

BWR Owners'Group Response Time Testing (RTT).Committee meeting willbe held on Wednesday

.March,12;,=.1997'in. Washington,,DC. The purpose ofthis meeting is to discuss the draft NEDO-32291 S'upplement 1 (see Attachment1). 'Appropriate comments willbe, incorporated and the Committee. wilt be asked.to approve the revised document.

This

- documentsupplements NEDO-32291-A, "System Analyses forthe Elimination of. Selected.

Response Time Testing-Requirements" by providing technical justification forthe further simplNcation ofresponse time testing requirements of selected Reactor Protection System (RPS) and. (2) Isolation Actuation System (IAS) instrumentation loops. The technical justification methods. utilized include Failure Modes and Effects Analysis (FMEA),,failure experience. reviews, and identification offunctional surveillance testing other than response time testing, thatadequately confirms the ability ofthe selected instrumentation loops to meet'

'esponse time requirements

.'TT'Commiffee member are. requested to carefully review the affached draft Licensing Topical. Report and provide. your comments to fhe undersigned no later than Wednesday,'.

March 5; 199T The reportis complete except forfhe FMEAinformafionforthe GE CR120A relays= Thatis expected to be available before the meeting; As we discussedin'.

conference. calls last fall'he fast response RTTs are notincluded. In addition, main.

,,sfeam Ifne radiation loop forMS/Vclosure is notincluded because ithas been addressed by other BWROG action. Four radiation monitoring loops,. each applying to a'single p/ant;. are: notincluded'because itappeared unlikelythat fhe FMEA could provide adequate jusfifrcafron (due to complexity). Finally, one Drywe// High Pressure (RPS) loop fora single p/antis-notincluded because there are other ways.to address that one with greaterlikelihood ofsuccess..

The Response Time Testing Committee willmeet in the morning atthe Embassy Suites Hotel at Friendship Heights,. and then willtravel to NRC lieadquarters in Rockville to discuss the reportconclusions, the schedule for Licensing Topical Report submittal, and the review/approval cycle. Following the meeting with the NRC we willreturn to the Embassy Suites Hotel to closeout open issues ifrequired.

s rk

~'g

~, V'