ML17157A421: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(Created page by program invented by StriderTol)
Line 17: Line 17:


=Text=
=Text=
{{#Wiki_filter:ThomosM.Laronge,In(-.10439N.E.FOURTHPLAINROA0~P.O.BOX4448~VANCOUVER,WA98662~(206)254-1213~FAX(206)896-2106September10,1990ORIINALENTBYFEDERALEXPRESPENNSYLVANIAPOWER&LIGHTCOMPANYTwoNorthNinthStreetAllentown,PA18101-1179Attention:Mr.RaymondS.Tombaugh,ProjectEngineer
{{#Wiki_filter:ThomosM.Laronge,In(-.10439N.E.FOURTHPLAINROA0~P.O.BOX4448~VANCOUVER, WA98662~(206)254-1213~FAX(206)896-2106September 10,1990ORIINALENTBYFEDERALEXPRESPENNSYLVANIA POWER&LIGHTCOMPANYTwoNorthNinthStreetAllentown, PA18101-1179 Attention:
Mr.RaymondS.Tombaugh, ProjectEngineer


==SUBJECT:==
==SUBJECT:==
REQUESTEDREVISIONSTOFINALREPORTONESWRHRLUBEOILCOOLERFAILUREANALYSIST.M.L.197-90-002
REQUESTED REVISIONS TOFINALREPORTONESWRHRLUBEOILCOOLERFAILUREANALYSIST.M.L.197-90-002


==DearMr.Tombaugh,==
==DearMr.Tombaugh,==
WearepleasedtoprovidetheattachedreplacementpagesforourreportT.M.L.197-90-002,containingtheeditorialcorrectionsandsuggestionsprovidedbyyouandyourco-workersduringourmeetingonSeptember7,1990.Bestregards,.~c.c<ArthurJ.Freedman,~ExecutiveVicePresident(ThomasM.Laronge,PresidentAJF/TML:dhEnc:A/S9011190331PDRADOCKP901i1205000337PDC4Quo,lityforIndustryWeappreciateyourinputandhopethatthereport,ascorrected,willbesatisfactory.Pleasedonothesitatetocallifyouhaveanyfurtherquestions.
ThomasM.Laronge,Inc.AKNWLEDEMENTTheworkdescribedinthisreport,particularlytheworkon-siteandatPP&L's.HazletonLaboratoryandAllentownofQces,couldnothavebeenaccomplishedwithoutthewholeheartedsupportandcooperationofPP@Lpersonnel.Thewriterswishtoexpresstheirappreciationforthetime,effortandcourtesiesextendedtousduringthisproj'ect.Wealsowishtoexpressourspecialthankstothefollowingindividuals,listedinalphabeticalorder,fortheirextrahelpbeyondthecallofduty:D.P.DunnD.J.MorganT.J.PensockW.J.RhoadesR.S.TombaughL.E.WillertzPagei ThomosM.Laronge,Inc.TABLEFNTEAcknowledgementTableofContentsIntroductionConclusionsResultsofInspectionsListofInspectedEquipmentInspectionMethodsPhysicalMeasurementsandObservationsRHRLubeOilCoolersRCICPumpRoomUnitCoolersESWSupplyLinetoRCIClE-228BOtherInspectionsDiscussionofMeasurementsandInspectionsAnalysesofDepositsandMetalSurfacesAnalyticalMethodsICAPandChemicalAnalysesofDepositsSEM/EDSAnalysesofDepositsMicrobiologicalAnalysesDiscussionofAnalyticalResultsESWSystemChemistryandOperationsESWChemistryESWandRHRPumpOperationsSystemOperationsTheESWSprayPondESWandRHRPumpRunTimesRHRLubeOilCoolingWaterFlowVelocities666881214141517171820232527272828293032Pageii


ThomasM.Laronge,Inc.RootCauseFailureAnalysisSummaryPitInitiationPitPropagationEffectsofSulfur,IronandManganeseinDepositsComparisonofRHRCoolers(Copper)andRCICCoolers(Cupronickel)AppendixBibliographyListofTablesListofFiguresListofPhotographsPreliminaryReport3535363738404243456192Pageiii
Wearepleasedtoprovidetheattachedreplacement pagesforourreportT.M.L.197-90-002, containing theeditorial corrections andsuggestions providedbyyouandyourco-workers duringourmeetingonSeptember 7,1990.Bestregards,.~c.c<ArthurJ.Freedman,
~Executive VicePresident (ThomasM.Laronge,President AJF/TML:dh Enc:A/S9011190331 PDRADOCKP901i1205000337PDC4Quo,lityforIndustryWeappreciate yourinputandhopethatthereport,ascorrected, willbesatisfactory.
Pleasedonothesitatetocallifyouhaveanyfurtherquestions.
ThomasM.Laronge,Inc.AKNWLEDEMENTTheworkdescribed inthisreport,particularly theworkon-siteandatPP&L's.HazletonLaboratory andAllentown ofQces,couldnothavebeenaccomplished withoutthewholehearted supportandcooperation ofPP@Lpersonnel.
Thewriterswishtoexpresstheirappreciation forthetime,effortandcourtesies extendedtousduringthisproj'ect.
Wealsowishtoexpressourspecialthankstothefollowing individuals, listedinalphabetical order,fortheirextrahelpbeyondthecallofduty:D.P.DunnD.J.MorganT.J.PensockW.J.RhoadesR.S.TombaughL.E.WillertzPagei ThomosM.Laronge,Inc.TABLEFNTEAcknowledgement TableofContentsIntroduction Conclusions ResultsofInspections ListofInspected Equipment Inspection MethodsPhysicalMeasurements andObservations RHRLubeOilCoolersRCICPumpRoomUnitCoolersESWSupplyLinetoRCIClE-228BOtherInspections Discussion ofMeasurements andInspections AnalysesofDepositsandMetalSurfacesAnalytical MethodsICAPandChemicalAnalysesofDepositsSEM/EDSAnalysesofDepositsMicrobiological AnalysesDiscussion ofAnalytical ResultsESWSystemChemistry andOperations ESWChemistry ESWandRHRPumpOperations SystemOperations TheESWSprayPondESWandRHRPumpRunTimesRHRLubeOilCoolingWaterFlowVelocities 666881214141517171820232527272828293032Pageii


ThomosM.Loronge,Inc.INTRDTINOnMay28,1990,aleakoccurredintheRHR2E-217CMotorOilCooleratthePennsylvaniaPowerandLight(PP&L)SusquehannaSteamElectricStation(SSES).ThisleakforcedashutdownofUnit1andadelayinstartupofUnit2untilallRHRmotoroilcoolingcoilscouldbereplaced,othercriticalheatexchangersusingemergencyservicewater(ESW)forcoolingcouldbeinspected,therootcauseoftheproblem.determinedandthepotentialforsimilarfailuresinrelatedequipmentevaluated.ThomasM.Laronge,Inc.wascontractedbyPP&LtoidentifytherootcauseoftheRHR2E-217CmotoroilcoolerfailureandtoinspectequipmentatotherlocationsintheplantcooledbytheESWsystem.Weworkedon-siteandinPP&L'sHazleton,PennsylvaniaLaboratoryandAllentown,PennsylvaniaofficesfromFriday,June8throughTuesday,June12,1990inclusive.Duringthistime,weinspectedthefailedcooler,severalotherRHRmotoroilcoolercoils,andothercoolers,heatexchangersandaccessiblepipingservicedbytheESWsystem.Weranon-sitemicrobiologicalassaysatsixlocationsforthepresenceofsulfate-reducingbacteria(SRB)andacid-producingbacteria(APB)thatcancausemicrobiologicallyinfluencedcorrosion(MIC),andwetooksamplesofheatexchangertubes,wateranddepositsforlateranalysis.WeworkedcloselywithPP&L'smetallurgistsandotherstaffmembers.Wejointlyinspectedfailures,pits,metalsurfacesanddepositsunderthelightmicroscopeandscanningelectronmicroscope(SEM)inthe'HazletonLaboratory.Wereviewedplantandcorporateengineeringofficerecords,includingtechnicalspecifications,procedures,heatexchangerinspectionreports,ESWwaterchemistryandoperatingconditions,andotherrelatedinformation.PP&Lprovidedaccesstoallrecordsandinformationpertinenttothisprojecttoassistusinourwork.Page1 ThomasM.Laronge,Inc.~~~~OnJune12,1990,intheAllentownoffice,wecompletedapreliminaryreportofourfindings.Subsequently,wecarriedoutthefollowingwork:~We,carefullyinspectedsectionsofRHRlubeoilcoolercoilsandRCICpumproomunitcoolerheatexchangertubesremovedduringoursitevisit.~Weanalyzedwaterandde'positsamplesandranscanningelectronmicroscope(SEM),electrondiffractionspectroscopy(EDS)andX-raydiffraction(XRD)analysesondepositsfromspecificlocations,i.e.,insidepits,onselectedtubespecimens.~Weranfurthermicrobiologicalstudiesonselectedtubestoassistincharacterizingthenatureofthecorrosion.~WestudiedplantESWsystemoperatingrecordsandotherpertinentplantrecordsindetail.~Wereviewedourownextensivefilesandcarriedoutaliteraturereviewoncausesofwatersidepittingcorrosionofcopperandcopperalloyheatexchangertubes.ThisAnalreportincludesallessentialinformationfromourJune12,1990preliminaryreport,allnewdataobtainedsinceJune12,1990andourconclusions.OurpreliminaryreportisincludedintheAppendixandshouldbeconsideredaspartofthiscompletereport.Page2 ThomosM.Laronge,Inc.NLINTheRHRlubeoilcoolersandtheRCICpumproomunitcoolersfailedbyacombinationofmicrobiologicallyinducedcorrosion(MIC)andconventionalchemicalpittingcorrosionmechanisms.2.TheESW,asmeasuredattheinlettoRCIClE-228B,ismicrobiologicallyveryactiveandcontainshighlevelsofsulfatereducingbacteria(SRB)andacidproducingbacteria(APB).3.TheESWAandBloopshavebeenstagnant(notrunning)between65and75percentofthetimesince1987.Duringthesestagnantperiods,depositsformedontheinternal(waterside)surfacesoftheRHRandRCICcoolercoilsandtubes.AnaerobicconditionsunderthesedepositsallowedSRBtogeneratesulfidesthatdestroyedtheprotective,passiveQlmonthecopper(RHR)coilsandattackedthe90:10cupronickel(RCIC)tubes.4.MICdidnotcontinueatahighrateunderthesedepositsbecauseofthetoxiceffectsofcopper,ions.Instead,conventionalunder-depositoxygenconcentrationcellcorrosionbecamethedrivingforceforcontinuingpittingattack.5.SulQdesprobablycontinuedtoplayaroleinthecorrosionprocess,evenafterpitinitiation.ContinuingpresenceofSRBinthesystemallowedsulfidestoformawayfromthecorrodingcoppersurfaces.Thesesulfidesthendiffusedwiththewaterandwereabletoattackpassivefilmsonthemetal.Bothdeep.sharp-edgedpitscharacteristicofconcentrationcellcorrosionandshallower,roundedpitscharacteristicofsulQdeattack,werefoundintheRHRlubeoilcoolingcoils(seePhotographs).SEM/EDSelementmapsshowsulfurpresentinallpits,butatvariouslocations,usuallynotnexttothemetalsurface.6.Manganeseplayedadualroleinthecorrosionprocess.InthemostseverelycorrodedRHRlubeoilcoolercoils,e.g.,thefailedcooler,2E-217C,nocontinuousprotectivedepositswereobserved.Rather,thedepositappearstohaveformedasaseriesofdiscretelayers,perhapsassociatedwithperiodsofflowandnoflow,waterchemistrychanges,etc.CoolerRHR1E-217Bshowedsimilardeposits.Thesedepositscontainedonlysmallamountsofmanganese.Manganeseprobablyactedasanelectrontransferagentinthesedepositstocatalyzethecorrosionreactions.Page3
ThomasM.Laronge,Inc.RootCauseFailureAnalysisSummaryPitInitiation PitPropagation EffectsofSulfur,IronandManganese inDepositsComparison ofRHRCoolers(Copper)andRCICCoolers(Cupronickel)
'v Thomos7.M.Laronge,Inc.TheRHRlubeoilcoolersintheworstcondition(2E-217Cand1E-217B)takewaterfromtheESWBloopandthecoolersinthebestcondition(lE-217A,2E-217AandlE-217D)areallontheAloop.Thereasonsforthiscannotbepositivelydefinedfromtheavailabledata,butsomefactsareclear.PriortoJune1989theESWAloopranmorefrequentlyandcarriedmorewaterthantheBloop,butata20percentlowerflowvelocitythroughtheRHRcoils.SubstantiallyhigherlevelsofmanganesewerefoundintheAloopcoils,comparedtotheBloop.ThedifferentflowpatternsintheAloopmayhaveallowedmoremanganesetodepositinthesecoilsandtoformcontinuousfilmsratherthandiscrete',porousdepositsasdescribedinConclusion7.TheveryhighlevelsofmanganesefoundinconnectingelbowsfromcoilslE-217Aand2E-217B(oneoneachloop)remainunexplained.Theseelbowswerenot-corrodedinanyway.8.TwoRHRlubeoilcoolercoils,2E-217B(examinedinourlaboratories)andlE-217B(examinedbyDr.WillertzofPP&L)showedheavierdepositsandpittinginthetop(wateroutlet)layersofcoilsthaninthebottom(waterinlet)layers.Othercoilsmayalsoshowthiseffectbutwerenotexaminedinthisway.Theseobservationssuggestatemperatureeffect,butthetemperatureriseacrosstheRHRlubeoilcoolers(8'F)doesnotseemtobesufficienttoproducethesedifferences.Also,theRHRpumpsonlyoperatedbetween5and10'percentofthetimeeachyear,sothatverylittleheatwasavailablefromthissource.9.OtherthantheRHRlubeoilcoolers,mostofthecoolingequipmentintheESWsystemcontains90:10cupronickeltubes.TheRCICpumproomunitcoolersarecorrodedatleastasseriously,astheRHRroomcoolers.Wefoundone90percentthrough-wallpitinRCIC1E-228Bandone60percentthrough-waQin1E-228A.Weexaminedsectionsfromonlyonetubefromeachcooler.Thesetubesshowedlowmanganeselevelsandheavy,scalydepositssimQartothosefoundinRHR2E-217C,thefailedRHRlubeoilcoolercoil.RCIClE-228Bshowedthehighestlevelofmicrobiologicalcontaminationofallcoolerstestedduringthisstudy.10.Copperand90:10cupronickelarebothhighlyresistanttocorrosionincleanfiowingwater,butinbiologicallyactivesystems90:10cupronickelissometimesmoresusceptibletobiofoulingandMIC.Duringouron-siteinspections,weexaminedseveral90:10cupronickelcoolersinthedieselgeneratorsystemandfoundlittleornopitting.Wealsoexaminedthe2E-297AGRDXcondenserbutcouldnot'eterminetheconditionofthemetalinthesetubesbecauseofthelargeamountofdepositpresent.Page4 ThomasM.Laronge,Inc.11.ESWwaterchemistxydatashowaconsistentdownwardtrendinconductivityandcalciumlevelsduring1989and1990.LangelierIndexvaluesareoftenabove,+0.5andoccasio'nallyapproach+1.0.Somecalcium,presumablyascalciumcarbonate,wasfoundinmostoftheRHRandRCICcoolerdeposits.Page5
AppendixBibliography ListofTablesListofFiguresListofPhotographs Preliminary Report3535363738404243456192Pageiii


ThomasM.Laronge,Inc.RELFINPENLitfIneEuimnDuringourworkon-siteandinourlaboratory,weinspectedheatexchangertubesand/orESWpipingfromthefollowingunits:2.4,5.6.7.8.9.10.12.13.lE-217AlE-217B1E-217C2E-217A2E-217B2E-217C2E-217D1E-228A1E-228B2E-297AOE-505E1,2DOE-507DOE-533DRHRlubeoQcoolercoil.RHRlubeoilcoolercoil.RHRlubeoQcoolercoil.RHRlubeoilcoolercoil.RHRlubeoQcoolercoil.RHRlubeoilcoolercoil.RHRlubeoQcoolercoil.RCICpumproomunitcooler.RCICpumproomunitcooler.ESWGRDXsystemcondenser.Dieselgeneratorintercooler.Dieselgeneratorjacketwatercooler.Dieselgovernorcooler.InsInMthoIndoingouron-siteinspections,weusedthefollowingmethods:~Visualinspectionoftubesanddepositsaswesawtheminplaceorastheywerepresentedtous.~Videoprobeinspectionsoftubesinplace.~Visualinspectionswitha15Xmagnifyinglensoftheinteriorsurfaces'fcoolingcoilsandtubesthathadbeensplitlongitudinally.Page6 ThomasM.Laronge,Inc.~Microscopicexamination.ofselectedspecimensinthePALHazletonLaboratory.~Microbiologicalculturesofdepositsfromcoilsandtubes,usingmediaspecificforsulfate-reducingandacid-producingbacteria(SRBandAPB).Inourlaboratory,*wedidsubstantialadditionalinspectionandanalyticalwork.ThesedataaresummarizedinTablesandFiguresforeasycomparisonofspecimens:~Carefulvisualobservationofthenatureofthedepositsandcorrosiononeachspecimen,withphotographicdocumentation(Tables1and12andPhotographs1through41).Physicalmeasurements,i.e.,size,wallthickness,etc.'Table2).~Depositweightdensitymeasurements(Tables3and12).~Pitdepthmeasurements(Tables4and12).~Waterchemistrystudies(Table9andFigures4,5and6).~Chemicalanalysesofdeposits(Tables5and6andFigure2).X-raydiffractionanalysestoidentifycompoundsindeposits(Table7).Microbiologicalanalysesofsamplecultureson-site(Table8andFigure3).SEM/EDSanalysestoidentifyelementsindeposits(Table6,Figures9through22andPhotographs42through49).Page7
ThomosM.Loronge,Inc.INTRDTINOnMay28,1990,aleakoccurredintheRHR2E-217CMotorOilCooleratthePennsylvania PowerandLight(PP&L)Susquehanna SteamElectricStation(SSES).ThisleakforcedashutdownofUnit1andadelayinstartupofUnit2untilallRHRmotoroilcoolingcoilscouldbereplaced, othercriticalheatexchangers usingemergency servicewater(ESW)forcoolingcouldbeinspected, therootcauseoftheproblem.determined andthepotential forsimilarfailuresinrelatedequipment evaluated.
ThomasM.Laronge,Inc.wascontracted byPP&LtoidentifytherootcauseoftheRHR2E-217Cmotoroilcoolerfailureandtoinspectequipment atotherlocations intheplantcooledbytheESWsystem.Weworkedon-siteandinPP&L'sHazleton, Pennsylvania Laboratory andAllentown, Pennsylvania officesfromFriday,June8throughTuesday,June12,1990inclusive.
Duringthistime,weinspected thefailedcooler,severalotherRHRmotoroilcoolercoils,andothercoolers,heatexchangers andaccessible pipingservicedbytheESWsystem.Weranon-sitemicrobiological assaysatsixlocations forthepresenceofsulfate-reducing bacteria(SRB)andacid-producing bacteria(APB)thatcancausemicrobiologically influenced corrosion (MIC),andwetooksamplesofheatexchanger tubes,wateranddepositsforlateranalysis.
WeworkedcloselywithPP&L'smetallurgists andotherstaffmembers.Wejointlyinspected
: failures, pits,metalsurfacesanddepositsunderthelightmicroscope andscanningelectronmicroscope (SEM)inthe'Hazleton Laboratory.
Wereviewedplantandcorporate engineering officerecords,including technical specifications, procedures, heatexchanger inspection reports,ESWwaterchemistry andoperating conditions, andotherrelatedinformation.
PP&Lprovidedaccesstoallrecordsandinformation pertinent tothisprojecttoassistusinourwork.Page1 ThomasM.Laronge,Inc.~~~~OnJune12,1990,intheAllentown office,wecompleted apreliminary reportofourfindings.
Subsequently, wecarriedoutthefollowing work:~We,carefully inspected sectionsofRHRlubeoilcoolercoilsandRCICpumproomunitcoolerheatexchanger tubesremovedduringoursitevisit.~Weanalyzedwaterandde'positsamplesandranscanningelectronmicroscope (SEM),electrondiffraction spectroscopy (EDS)andX-raydiffraction (XRD)analysesondepositsfromspecificlocations, i.e.,insidepits,onselectedtubespecimens.
~Weranfurthermicrobiological studiesonselectedtubestoassistincharacterizing thenatureofthecorrosion.
~WestudiedplantESWsystemoperating recordsandotherpertinent plantrecordsindetail.~Wereviewedourownextensive filesandcarriedoutaliterature reviewoncausesofwaterside pittingcorrosion ofcopperandcopperalloyheatexchanger tubes.ThisAnalreportincludesallessential information fromourJune12,1990preliminary report,allnewdataobtainedsinceJune12,1990andourconclusions.
Ourpreliminary reportisincludedintheAppendixandshouldbeconsidered aspartofthiscompletereport.Page2 ThomosM.Laronge,Inc.NLINTheRHRlubeoilcoolersandtheRCICpumproomunitcoolersfailedbyacombination ofmicrobiologically inducedcorrosion (MIC)andconventional chemicalpittingcorrosion mechanisms.
2.TheESW,asmeasuredattheinlettoRCIClE-228B,ismicrobiologically veryactiveandcontainshighlevelsofsulfatereducingbacteria(SRB)andacidproducing bacteria(APB).3.TheESWAandBloopshavebeenstagnant(notrunning)between65and75percentofthetimesince1987.Duringthesestagnantperiods,depositsformedontheinternal(waterside) surfacesoftheRHRandRCICcoolercoilsandtubes.Anaerobic conditions underthesedepositsallowedSRBtogeneratesulfidesthatdestroyed theprotective, passiveQlmonthecopper(RHR)coilsandattackedthe90:10cupronickel (RCIC)tubes.4.MICdidnotcontinueatahighrateunderthesedepositsbecauseofthetoxiceffectsofcopper,ions.Instead,conventional under-deposit oxygenconcentration cellcorrosion becamethedrivingforceforcontinuing pittingattack.5.SulQdesprobablycontinued toplayaroleinthecorrosion process,evenafterpitinitiation.
Continuing presenceofSRBinthesystemallowedsulfidestoformawayfromthecorroding coppersurfaces.
Thesesulfidesthendiffusedwiththewaterandwereabletoattackpassivefilmsonthemetal.Bothdeep.sharp-edged pitscharacteristic ofconcentration cellcorrosion andshallower, roundedpitscharacteristic ofsulQdeattack,werefoundintheRHRlubeoilcoolingcoils(seePhotographs).
SEM/EDSelementmapsshowsulfurpresentinallpits,butatvariouslocations, usuallynotnexttothemetalsurface.6.Manganese playedadualroleinthecorrosion process.InthemostseverelycorrodedRHRlubeoilcoolercoils,e.g.,thefailedcooler,2E-217C,nocontinuous protective depositswereobserved.
Rather,thedepositappearstohaveformedasaseriesofdiscretelayers,perhapsassociated withperiodsofflowandnoflow,waterchemistry changes,etc.CoolerRHR1E-217Bshowedsimilardeposits.
Thesedepositscontained onlysmallamountsofmanganese.
Manganese probablyactedasanelectrontransferagentinthesedepositstocatalyzethecorrosion reactions.
Page3
'v Thomos7.M.Laronge,Inc.TheRHRlubeoilcoolersintheworstcondition (2E-217Cand1E-217B)takewaterfromtheESWBloopandthecoolersinthebestcondition (lE-217A, 2E-217AandlE-217D)areallontheAloop.Thereasonsforthiscannotbepositively definedfromtheavailable data,butsomefactsareclear.PriortoJune1989theESWAloopranmorefrequently andcarriedmorewaterthantheBloop,butata20percentlowerflowvelocitythroughtheRHRcoils.Substantially higherlevelsofmanganese werefoundintheAloopcoils,comparedtotheBloop.Thedifferent flowpatternsintheAloopmayhaveallowedmoremanganese todepositinthesecoilsandtoformcontinuous filmsratherthandiscrete',
porousdepositsasdescribed inConclusion 7.Theveryhighlevelsofmanganese foundinconnecting elbowsfromcoilslE-217Aand2E-217B(oneoneachloop)remainunexplained.
Theseelbowswerenot-corroded inanyway.8.TwoRHRlubeoilcoolercoils,2E-217B(examined inourlaboratories) andlE-217B(examined byDr.WillertzofPP&L)showedheavierdepositsandpittinginthetop(wateroutlet)layersofcoilsthaninthebottom(waterinlet)layers.Othercoilsmayalsoshowthiseffectbutwerenotexaminedinthisway.Theseobservations suggestatemperature effect,butthetemperature riseacrosstheRHRlubeoilcoolers(8'F)doesnotseemtobesufficient toproducethesedifferences.
Also,theRHRpumpsonlyoperatedbetween5and10'percent ofthetimeeachyear,sothatverylittleheatwasavailable fromthissource.9.OtherthantheRHRlubeoilcoolers,mostofthecoolingequipment intheESWsystemcontains90:10cupronickel tubes.TheRCICpumproomunitcoolersarecorrodedatleastasseriously, astheRHRroomcoolers.Wefoundone90percentthrough-wall pitinRCIC1E-228Bandone60percentthrough-waQin1E-228A.Weexaminedsectionsfromonlyonetubefromeachcooler.Thesetubesshowedlowmanganese levelsandheavy,scalydepositssimQartothosefoundinRHR2E-217C,thefailedRHRlubeoilcoolercoil.RCIClE-228Bshowedthehighestlevelofmicrobiological contamination ofallcoolerstestedduringthisstudy.10.Copperand90:10cupronickel arebothhighlyresistant tocorrosion incleanfiowingwater,butinbiologically activesystems90:10cupronickel issometimes moresusceptible tobiofouling andMIC.Duringouron-siteinspections, weexaminedseveral90:10cupronickel coolersinthedieselgenerator systemandfoundlittleornopitting.Wealsoexaminedthe2E-297AGRDXcondenser butcouldnot'etermine thecondition ofthemetalinthesetubesbecauseofthelargeamountofdepositpresent.Page4 ThomasM.Laronge,Inc.11.ESWwaterchemistxy datashowaconsistent downwardtrendinconductivity andcalciumlevelsduring1989and1990.Langelier Indexvaluesareoftenabove,+0.5 andoccasio'nally approach+1.0.Somecalcium,presumably ascalciumcarbonate, wasfoundinmostoftheRHRandRCICcoolerdeposits.
Page5


Thomo,sM.Laronge,Inc.PleaserefertotheseTablesandFiguresinconnectionwiththefollowingdiscussion.ThephotographsarearrangedinageneralorderofincreasingmagniQcation,sothatbyperusingthephotographs,thereadercangainanincreasinglydetailedcomparisonofthenatureofthepittingonthevariousspecimensmcaznined.PhsiMurmnrvtionFigure1isaschematicdiagramofanRHRpumpmotor,showingthearrangementofthelubeoilcoolingcoQs.Thecoilsarearrangedinastackofsixlayers,withfourturnsineachlayer.ForidentiQcationpurposeswehavenumberedthecoilsfromtoptobottomandletteredtheturnsfromtheinsideout,asshowninFigure1.Thus,coil3Bisthesecondfromtheinsideturninthethirdlayerfromthetop.PhysicalmeasurementsareshowninTable2.'urmeasurementsshowthattheRHRlubeoilcoolingcoilsandtheRCICroomcoolertubesaregenerallywithinspecifications.DeviationsaresmallandcanbeattributedtoproblemsinwallmeasurementsontubescontainingdepositsandtosomedeformationthatmustoccurwhencoppertubingisformedtomaketheRHRcoils.Thereisnoevidencewhatsoeverfromthesemeasurementsthatanyappreciablethinningoftubewallsduetogeneralcorrosionhasoccurred.TheRHRlubeoilcoolingcoilsarereportedlymadefromtypeKcopper,andtheRCICroomcoolertubesfrom90:10cupronickel.Nowetchemistrytestsweredonetoverifythesecompositions,butEDSanalysisonagallededgeofonetubefromRCIC1E-228Aconfirmed90:10cupronickelinthistube.A.RHRLubOiller1.RHRlE-217AWeinspectedsectionscutfromcoils2and5inthiscooleron-site(seeFigure1).Thesesectionsweresimilar.BothcontainedaPage8 ThomasM.Laronge,Inc.light,smoothlayerofblackdeposit.Veryslight,irregularpittingwas1observedunderthis'deposit.Therewasnovisibletuberculation.Wejudgethiscoiltobeamongtheleastcorroded(pitted)ofalltheRHRcoQsthatwestudied.Wealsoexaminedseveral90degreeelbowsthatconnectedthelayersinthelE-217Acoil.Theseelbowsappeartobemadefromadifferentalloythanthecoppercoil,perhapsabrass.Theseelbowscontainedasubstantialamountofablack,powderydeposit.Somebaremetalwasvisible.Wemeasuredthedepositweightdensityat15.4mg/ft2.Novisiblecorrosioncouldbeseenintheseelbows.However,pittingwasclearlyvisibleinthecoppertubeconnectedtooneelbow(Photographs37,38and39).2.RHRlE-217B'Wedidnotinspectthiscoilon-site.Inourlaboratory,weinspectedlayer3B.(seeFigure1)fromthiscoil.Wefoundalargeamountofdepositmixedwithtuberclesrangingupto0.25inchinbothdiameterand'height(seedescriptioninTable1).Thedepositweightdensity,measuredat31.7gm/ft2,wassecondonlytothedensitymeasuredinRHR2E-217C(seeTable3).Pitdensitywaslowerthanfoundinthe1Cand2CRHRlubeoilcoolers,butsubstantiallyhigherthaninthelAand2Acoolers(Table4).Themaximumpitdepthmeasuredonourspecimenwas0.025inch,or35percentwallpenetration(Table4).Thiscompareswith0.042inchmeasuredbyDr.WillertzofPP&Lonadifferentsectionfromthesamecoil.ThenatureanddepthofpittingintheRHRlE-217BcoilcanbeseeninPhotographs20through23.3.R~RR13-217Thiscoolerwasnotinspectedon-site.Inthelaboratory,thisspecimenwas.foundtohavethehighestmeasureddensityofpitting,butnotthehighestpitdepthorwallpenetration(Table4).Thedepositweightdensity,at24.1gm/ft2,wasinthehighestgroupPage9 ThomosM.Lo,ronge,inc.measured(Table3).Depositsweresmoothandbrowntoblackin~~~~color,withmanybrightgreen,redandsilvercoloredcrystalsaroundandinsidepits.Pits,mostlycoveredbytubercles,werelarge,shallowandhemispherical.'IhedepositsandpittinginthisspecimencanbeseeninPhotographs28through31;thecrystalsareapparentinSEMPhotograph47.4.RHR1E-217DFortherecord,wenoteherethatnospecimensfromRHRlE-217Dwereprovidedforourinspection.Dr.Willertzreportedonlylightdepositsandtuberculation,andverylittlepitpenetrationinthis'ube.5.RHR2E-217AThiscoilwasnotinspectedon-site.Inthelaboratory,thistubesectionwaslike1E-217A.ThebrowndepositwassimilartothatinlE-217B,butmuchsmallerinquantity(Table3).Tubercleswereminorandtherewasnovisiblepittingorgeneralcorrosion.6.RHR2E-217BOn-sitewefoundthiscoiltobeintermediateinconditionbetween1E-217Aand2E-217C.Thespecimenweexaminedcontainedstringyblackdepositsthatcoveredpart,butnotallofthesurface.NosigniQcanttuberculationwaspresent,butpitdepthswerequitesevere.Laboratoryinspectionsconfirmedtheseobservations.Wewereabletoexaminespecimensfromthesecondcoilfromthetop(2E-217B-2)andthesecondcoilfromthebottom(2E-217B-5),asshowninFigure1andTable1.Theentire2E-217B-2coilwassenttoourlaboratory.Photograph10showsthiscoilassplitforinspection.Thecentertubewasmcaminedindetail.Page10 ThomasM.Loronge,Inc.Thedifferencesindepositweightdensity,pittingdensityandpitpenetrationbetween2E-217B-2and2E-217B-5(Tables3and4)confirmsimilarobservationsmadebyDr.Willertzonthe1E-2178coQ,usingX-rayexamination.Depositcharacteristics,tuberculationandpittingintheuppercoil(2E-217B-2)weremuchlikethefailedcoil2E-217C.(seebelow)exceptthatpitsin2Bweremostlyhemispherical.Depositionandpittingin2E-217B-5wereverylight;thissectionappeared,visually,muchlikelE-217Aand2E-217A.Photographs32,33and34showthenatureofthepittingin2E-217B.Unfortunately,thesephotographsdonotdistinguishbetweenthe2B-2andthe2B-5coils.Weexaminedfour90degreebendsfrom2E-217B.Thesebendsappeared,visually,tobemadefromcopperandseemedtobequitedifferentfromthebendsinthe1E-217Acoil(seeabove).Depositweightdensitieswereintheintermediaterangeandnopittingorgeneralcorrosionwasobserved.Seealsothediscussionofchemicalanalysesofdeposits,(Page19.andTable5,Page50).7.~2E-217Itwasathrough-wallfailureinthiscoilthatalertedtheplanttothepittingcorrosionproblemintheRHRlubeoilcoolers.andotherheatexchangersservedbytheESWsystem.On-site,wefoundtheinteriorsurfaceofthe2E-217Ccoilcoveredwithathick,dense,layeredscalydeposit,quitedifferentinappearancefromtheothercoils.However,thetubewesawhadbeenremovedfromthesystemseveraldaysbeforeourvisit,sothatthedepositswerequitedrywhQeothertubeswerewet.On-site,wefoundlargetuberclescoveringnumerousrandompitsovermostofthesurface.Thesepitsvariedgreatlyinsize,shapeanddepth.Bothhemisphericalandirregularly-shapedpitswereobserved,asopposedtothemostlyhemisphericalpitsfoundinother1coils.Someofthepitsin2E-217Cweresharp-edgedandquitedeep.Page11 ThomasM.Laronge,Inc.Laboratoryinspectionsconflrmedtheseverityofcorrosionanddepositioninthiscoil.ThedepositweightdensitywasthehighestmeasuredinanycoiltTable3)andpitdensityanddepthwerealsoamongthehighestmeasured(Table4).Photographs17,18and19showtheheavydepositsanddeeppitsfoundinthiscoil.Anearthrough-wallpitcanbeclearlyseeninthelowersawededgeofthetubeinPhotograph17.8.2E-217DThiscoilwasnotexanQnedon-site.Inthelaboratory,wefoundthedepositweightdensitytobehighat27;3gm/ft2,comparabletodepositsincoilslE-217Band1E-217C.Pitdensitywaslessseverethanineitherofthesetubes.Pitpenetrationin2E-217Dwassimilarto1E-217Candlessseriousthanin1E-217B.Thedepositsweretypicallybrowntoblackwithgreenedgesaroundsmalltubercles.Pitsweresmallandhemispherical.Photographs24through27comparedtoPhotographs17,18and19showthedifferencesbetweenthedepositsfoundin2E-217Dand2E-217C.RRIPumRmniIr1E-22AnlE-22BTheRCICcoolersarereportedlytubedwith,90:10cupronickeltubes,asexplainedabove.Thetubesarestraightandinstalledhorizontallyinthecoolers.Thenominaltubediameteris0.5inch(Table2).ThismeansthattheRCICtubesmaybemoresubjecttolossofflowduetopartialtubeblockagethantheRHRlubeoilcoolersifdepositsshouldforminthesetubes.TheRCIClE-228Acoolerwasopenedinourpresenceduringourinspectionvisitsothatwewereabletoexaminetheinternaldepositsimmediatelyuponexposuretoair.Thisisimportantbecauseanaerobicbacteriathatcanberesponsibleformicrobiologicallyinfluencedcorrosion(MIC)tend-tobecomeinactiveuponexposuretooxygen.Page12
ThomasM.Laronge,Inc.RELFINPENLitfIneEuimnDuringourworkon-siteandinourlaboratory, weinspected heatexchanger tubesand/orESWpipingfromthefollowing units:2.4,5.6.7.8.9.10.12.13.lE-217AlE-217B1E-217C2E-217A2E-217B2E-217C2E-217D1E-228A1E-228B2E-297AOE-505E1,2D OE-507DOE-533DRHRlubeoQcoolercoil.RHRlubeoilcoolercoil.RHRlubeoQcoolercoil.RHRlubeoilcoolercoil.RHRlubeoQcoolercoil.RHRlubeoilcoolercoil.RHRlubeoQcoolercoil.RCICpumproomunitcooler.RCICpumproomunitcooler.ESWGRDXsystemcondenser.
Dieselgenerator intercooler.
Dieselgenerator jacketwatercooler.Dieselgovernorcooler.InsInMthoIndoingouron-siteinspections, weusedthefollowing methods:~Visualinspection oftubesanddepositsaswesawtheminplaceorastheywerepresented tous.~Videoprobe inspections oftubesinplace.~Visualinspections witha15Xmagnifying lensoftheinteriorsurfaces'f coolingcoilsandtubesthathadbeensplitlongitudinally.
Page6 ThomasM.Laronge,Inc.~Microscopic examination
.ofselectedspecimens inthePALHazletonLaboratory.
~Microbiological culturesofdepositsfromcoilsandtubes,usingmediaspecificforsulfate-reducing andacid-producing bacteria(SRBandAPB).Inourlaboratory,
*wedidsubstantial additional inspection andanalytical work.Thesedataaresummarized inTablesandFiguresforeasycomparison ofspecimens:
~Carefulvisualobservation ofthenatureofthedepositsandcorrosion oneachspecimen, withphotographic documentation (Tables1and12andPhotographs 1through41).Physicalmeasurements, i.e.,size,wallthickness, etc.'Table2).~Depositweightdensitymeasurements (Tables3and12).~Pitdepthmeasurements (Tables4and12).~Waterchemistry studies(Table9andFigures4,5and6).~Chemicalanalysesofdeposits(Tables5and6andFigure2).X-raydiffraction analysestoidentifycompounds indeposits(Table7).Microbiological analysesofsamplecultureson-site(Table8andFigure3).SEM/EDSanalysestoidentifyelementsindeposits(Table6,Figures9through22andPhotographs 42through49).Page7


ThomosM.Lo,ronge,Inc.ThetubesinRCIClE-228Acontainedloose,browndeposits.MostofthesedepositsseemedtobeintheformofwellQocculatedsolidswithclearwater.Thetubemetalappearedtoberelativelycleanduringouron-siteinspection.WeunderstandthattheRCICIE-228AcoolerisservedbytheESWAloop.PP&LinformedusthattheRCICpumproomunitcoolerswerecle'anedaboutthreeyearsagoandthatlargeamountsofblackdeposit,presumablymanganese,wereremovedatthattime.The1E-228Bcoolerhadbeenopenedandcleanedforseveraldaysbeforeourinspection.Onetubehadnotbeencleaned,andwefoundthispipetocontainalargeamountofloose,blackdeposit.WeunderstandthatthelE-228BcoolerisservedbytheESWBloop.OnetubefromeachoftheRCICcoolerswassenttoourlaboratoryforinspection.Visually,thetubefromRCIClE-228AtcontainedlessdepositandfarfewerpitsthantheIE-228Btube.Whenmeasured,however,depositweightdensitiesinthesetubesweveroughlythesame(Table3)andpitdensityseemedtobe.higherin1E-228AthaninlE-228B(Table4).TheAcoolershowedthedeepestsinglepitmeasuredduringthisentirestudy;0.05inch,correspondingto91percentwallpenetration.ThelE-228Bcoolershowedamaximumof0.036inchpitdepthwith60percentwallpenetration.ThesedifferencesmaynotbesigniQcant,sinceonlyonesmallportionofonetubefromeachunitwasexamined.Also,theverticalandhorizontalsplitsdescribedinTables3and4arequestionablebecausetubeorientationcouldnotbemaintainedpreciselyduringremovalfromtheunitandduringcutting.Photographs14,15and16showthenatureanddensityof,depositsandpittingin1E-228A,andPhotographs40and41showaclose-upviewofonepitfromthistube.Thetypicalgreen,redandbrowndepositsfoundinbothDxeRHRandRCICcoolerscanbeclearlyseeninthesephotographs.Page13 p~l.'i ThomasM.Loronge,Inc.GESWSu1LinRIlE-22BDuringouron-siteinspections,wewereabletoexaminetheESWBsupplylinetoRCIClE-228B.Weunderstandthatthisismildsteelpiping.Thislinewasheavilycorrodedandcoveredwithauniformlayerofbrownscalerangingupto3/16inchinthickness.Notubercleswereseenandnopittingcouldbefoundunderthedeposit,asfaraswecouldreachintothisline.Seebelowforadiscussionofmicrobiologicaltestinginthispipe.Thispipe,aswesawit,wastypicalofmildsteelpipeexposedtocorrosivewaterformanyyearswithnochemicaltreatment.Theheavylayersofcorrosion-producedscaleareprobably,atthispoint,providingsomecorrosionprotectiontothepipe.WebelievethattheconditionofthispipeissimilartothatofmostoftheESWpipingexposedtosimilarflowconditions.D.thrIninDuringoursitevisit,weinspectedseveralcoolersandcondensersthatcouldnotbedismantledforsubsequentlaboratoryexamination.Theseinspectionsaredescribedindetailinourpreliminaryreport(Appendix);,theinformationissummarizedbrieflybelow.l.OE-7DDiInrtorackWrpierTubesinthiscoolerwerereportedtobe90:10cupronickel.Previouseddycurrent(ET)testingofthiscoolerhadidentifiedonetubewithatleast60percentwallpenetration.Weinspectedthistubeinplace,usingfiberscopeequipment,andfoundmanypitsthatappeared,throughthefiberscope,tobeverydeep.Thepitswererandomlydistributedandirregularinshape.Thecoolerhadbeencleanedbeforewearrivedsothatwedidnotseethedepositsinplace.Page14 Thomo,sM.Lo,ronge,Inc.2.E-DDi1vrnrIrWeexaminedthissmall90:10cupronickelsingletubecooleraftercleaning.Onlyminorpittingcouldbeseeninthistube.3.OE-505E12DDies1nrorIntrpolerThetubesinthis90:10cupronickelcoolerweretoosmalltopermitentranceofthefiberscope.Thetubeendswerecleanandcontainedmanysmallpits.Nootherobservationscouldbemade.4.2E-27AWRDXmnnr~Thisexchangerwasopenedjustbeforeourinspection.Thetubesandtubesheetswerecoveredwithheavydepositsthatmadeviewingthetubesimpossible.Thedepositsseemedtoincludecorrosionproducts,scaleandloose,slimymaterial.Microbiologicalactivityinthisdepositwaslow(Table8,Page54).e'iDiscussionofMeasurementsandInsectionsTable12summarizestheinspectioninformationfromTable1through4andgroupsthecoolersbyESWloop.BasedonthesedataweranktheRHRlubeoilcoolersinthefollowingway,fromworsttobest:PitDensity~pi~inkWorst1C25-3002C1-2001B5-502B-24-502D52B-512ANM1DNMtBestlANMNM=NotMeasured.DeepestPitInihe~2C0.0281B0.0252B-20.0252D0.0151C0.0132B-50.0072ANM1DNMlANMDepositWt.Densitygm~~f2C37.901B31.732D27.251C24.072B-213.212B-56.882A5251DNM1ANMPage15 0hl~1y'),V Thoma,sM.Loronge,Inc.tTheprecisionofthedatashownaboveisprobablystatisticallyunjustiQed,sinceonlyonesectionoftubefromeachcoilwasexaminedforeachdatapoint.Nevertheless,sometrendsareapparent.First,RHRlubeoilcoolersontheESWBloopseemtobeinworseconditionthanthoseontheAloop.WiththepossibleexceptionofRHR2E-217D,alloftheRHRBand"Ccoolers,usingESWBwater,showsubstantiallyhigherpitdensitiesanddepthsandhigherdepositweightdensitiesthantheRHRAandDcoolersontheESWAloop.InspiteoftherelativelyhighplaceofRHR2E-217Dinthisranking,pitdensitiesandpitdepthsforthiscooleraremoreliketheAlo'opcoolersthantheBloop.OnlythedepositweightdensityforRHR2E-217Dseemstobeinordinatelyhigh.However,itisinterestingthatDr.Willertz'srankingoftheRHRcoolersisalmostexactlythesameasourrankingbasedondepositweightdensity.ThefactthatbothdepositionandpittingweremoresevereinthetophalvesofRHRlubeoilcoolingcoils1E-217B(fromDr.Willertz'sreport)and2E-217B,comparedtothebottomhalves,suggeststhattemperaturemaybeasigniQcantfactorinthisproblem.However,thetemperatureriseacrosstheRHRlubeoilcoolersisreportedtobeonly8'F.Also,theRHRpumpshaveoperatedlessthan10percentofthetimesince1987,sothatheatgeneratedbythesepumpsdoesnotseemtobesi~ificant.SeethesectionofthisreportdealingwithESWsystemoperationsbeginningonPage27forfurtherdiscussionofthissubject.ThephysicalconditionoftheRCICpumproomunitcoolersdoesnotseemtobeafunctionoftheESWloops.Wheninspectedon-site,lE-228BseemedtobemoreheavilyfouledthanlE-228A,butmeasureddepositweightdensitiesareaboutthesame.BothtubesareheavQypitted.Page16 ThomasM.Laronge,Inc.ANALYEFDEPIANDALRFAEAniMhAvarietyofinstrumentalandwetchemicalanalyticalmethodswasusedtoassistinidentifyingelementsandchemicalcompoundspresentinthedepositsintheRHRlubeoQcoolers,theRCICpumproomunitcoolersandtheESWGRDXcondenser2E-297A.Thesemethodsincluded:Inductivelycoupledargonplasmaspectroscopy(ICAP)combinedwiththermalandwetchemicalmethodsto.,deflnetheoverallelementalcompositionofthedeposits.Scanningelectronmicroscopy(SEM)andelectrondiffractionspectroscopy(EDS)toidentifyelementspresentinmicrolayersinandaroundspeciQcpitlocations.X-raydiffraction(XRD)todefinespecificchemicalcompoundspresentinselectedpits.On-sitemicrobiologicalcultureteststodetectsulfatereducingbacteria(SRB)andacidproducingbacterial(APB)thatcancausemicrobiologicallyinfluencedcorrosion(MIC).DirectexaminationofcleanedmetalsurfacestohelpidentifymorphologicalfeaturescharacteristicofMICandgeneralunder-depositpittingcorrosion.Allofthisworkispresentedanddiscussedinthissectionofthereport.Page17 ThomasM.Laronge,Inc.hmilTable5presentstheresultsofICAP,thermalandwetchemical.analysesofdeposits.ThegreenandsomeofthereddepositsreportedinTable1andshowninthephotographscorrespondtocoppercompounds,probablycorrosionproducts.ThisisconfirmedbythehighlevelsofcopperfoundinalltheRHRandRCICdeposits.Itisentirelypossible,however,thatthesehighcoppervaluesalsoincludecoppermetalscrapedfromthetubesduringthesamplecollectionprocess.ThetwoanalysesreportedforRHR2E-217Crepresentdifferentsamplesrunbyseparatelaboratories.Agreementisexcellentexceptforcopper,discussedabove,andsodium,averycommoncontaminant.TheRHRlubeoilcoolerdatafromTable5areplottedinFiguret2.ThisFigurecomparescoolers1Band2C(heaviestdepositsanddeepestpits),cooler1C(highpitdensitybutintermediatepitdepthanddepositweightdensity)andcooler1A(leastdepositsandpit:tingofallcoolersexamined).Thedifferencesamongtheseanalysesarestriking:~Coolers1Band2C,intheworstcondition,showlowlevelsofiron,manganeseandcalcium,andrelativelyhighlevelsofsulfur.~Cooler1Cshowshighironandmanganese,slightlyhighercalciumandroughlyhalfthesulfurofcoolers1Band2C.~CoolerlA,inthebestoverallcondition,showsverylowsulfur,thehighestmanganeseandanintermediateironlevel.Baseduponexperiencewiththecombustionandthermaltdecompositionmethodusedtodeterminetotalsulfurinthedepositsamples,ourlaboratoryestimatedthatmostofthesulfurinthePage18 gIII~4<
Thomo,sM.Laronge,Inc.PleaserefertotheseTablesandFiguresinconnection withthefollowing discussion.
ThomasM.Laronge,Inc.depositsfromRHRlE-217Aand2E-217Cwasprobablypresentas~~sulfate.Thisis,ofcourse,notaquantitativedetermination,butwereportedsulfateinTable5onthatbasisfordiscussion.Sincemanyinorganicsulfatesaresolubleitmightseemunreasonabletoexpectsulfatesindepositsofthistype.Infact,however,sulfatesarecommonlyfoundinwater-formeddeposits,e.g.,inrecirculatingcoolingwatersystems.Eventhoughsimplesulfatesaltsoftenhaveappreciablesolubility,complexinorganicandorganicsulfatesexistthatarelesssoluble.Also,thesulfateion,becauseofitshighchargedensity,adsorbseasilyonmanysubstratesalongwithappropriatecationsforchargebalance..Finally,mostflocculanthydroxides,includinghydroxidesofiron,aluminum,copper,nickelandmanganeseamongothers,wQIreadilyoccludesulfatesaltsastheyprecipitate.Manycorrosionproductsprecipitatefirstasthehydroxideandthendehydrateandcrystallizetoformoxidesandotherinsolublecomplexcompounds.Substantialamountsofsulfatecanbeheldonametalsurfaceinthisway.NofirmconclusionscanbedrawnfromtheseICAPdataalone,buttheobvioustrendsmustberecognized.Itiswellknownthatmanganesecanactasacorrodantoracatalystforcorrosion,or,underdifferentcircumstances,asafilm-forminginhibitor.Iron,particularlyirontransportedtothecorrosionsiteinthewaterratherthanformedinplaceasacorrosionproduct.canalsoprovideprotection.SulfuriscommonlyfoundatenhancedlevelsindepositsformedbyMIC.SeetheRootCauseFailureAnalysissectionofthisreportforbackgroundinformationandreferencesonthebehaviorofmanganese,ironandsulfurincorrosionprocesses.Curiously,thedepositsintheRHRlE-217Aand2E-217BelbowsarealmostidenticaltoeachotherandverydiQ'erentfromtheotherRHRcoolerdeposits.Theelbowscontainmuchlesscopper,moreiron,veryhighlevelsof,manganeseandasignificantamountofzinccomparedtotheRHRlubeoilcoolertubesthemselves.These.dataindicatethattheelbowsfromboth.coils.may,infact,bemadePage19 ThornosM.Lo,ronge,Inc.fromsomeformofbrass(seetheinspectiondiscussionsabove).Thehighmanganeselevelsintheelbowdepositsconfirmtheblackdepositsfoundduringinspection,butthereisnoreadyexplanationforthepresenceofhighermanganeseintheelbowsthaninthecoils.TheanalysisoftheRCICpumproomunitcooler1E-228Bdeposit(Table5)isdifferentfromtheRHRlubeoilcoolerdeposits.Thiscupronickeltubeshowedoneofthedeepestpitsmeasuredduringthisstudy(Table4)andtheanalysisshowstheexpectedcopperandlowlevelofnickelinthedeposit.TheironlevelismoderatecomparedtotheRHRcoolerdepositsandthemanganeselevelisverylow.Thisseemstoparallelthedeeppittingandlow<manganesedepositcontentobservedinRHR1E-217Band2E-217C.However,in'contrasttotheRHRcoolers,thesulfurcontentintheRCIClE-228Bdepositisverylow.Finally,thedepositintheDX2E-297-AcondenserisentirelydifferentfromthedepositintheRHRandRCICcoolercoils.Thisisamuchmore'typicalwatersidecorrosionandfoulingdeposit,highinironandsilica,verylowinmanganese,copperandsulfur,andwithasignificantlossonignitionindicatingthepossiblepresenceoforganicmaterial.Wewereinformedthatourinspectionrepresentedthefirst.timethe2E-297Aheatexchangerhadbeenopened,sothe'a'ccumulationofwater-bornesolidsisnotsurprising.Thisexchangermustbecleanedtorestoreperformance,andatthattimeitwillbeimportanttoinspectthetubesforpossiblecorrosiondamage.SEM-EDSAnIfDeEDSspectraofselectedpitsfromtheRHRlubeoilcoolercoilsandRCICpumproomunitcoolertubesarepresentedinFigures9through22,alongwiththerespectiveelementalcompositions~calculatedfromstandardlessanalysis(inwhichthedataareinterpretedmathematicallywithouttheuseofphysicalstandards).'hecorrespondingSEMphotographsappearasNumbers42through-49.Elementmapsforsulfur,chlorine,ironandmanganeseareshownPage20 In ThomasM.Larongl,Inc.asFigures23through29.AllofthesedataaresummarizedforediscussioninTable6.EDSspectraweretakenattwoselectedmicrolocationsineachdeposit.Forwimple,referringtoTable6,Photograph42showsaspeciQcpitinRHRlubeoilcooler1E-217B-3B.Figure9showstheEDSspectrumtakeninthemiddleofthedepositinthispitandFigure10showsthespectrumofthedepositatthebaseofthepit,nexttothemetal.ThecorrespondingelementmapforthispitappearsasFigure23.ConsideringtheheterogeneousnatureofthedepositsandthespecificityoftheEDSspectra,theagreementbetweentheEDSdataandtheICAPresultsinTable5isquitegood.TheEDSanalysesforchlorine(chloride)andsulfurareparticularlyinterestingbecausetheseelementsareoftenfoundnearactivecorrosionsites.Chloridesaccumulateinunder-depositpittingcorrosioncellsbyiontransportmechanisms,whilesulfuroftenappearsatMIClocationsthroughmicrobialmetabolism.ThechlorideandsulfurdatainTable6donotshowanyconsistentpattern.Consider,forexample,theEDSspectrafromthreediferentpitsinRHRlubeoQcoolercoillE-217B-3BaslistedinTable6.~FiureLocation~ChloridRHRlE-217B-3B9,10Insidepit16.42Pitbase6.75Sulf'urNoneNone11,1213,14InsidepitNonePitbaseNoneInsidepit15.93Pitbase0.246.1213.353.57NoneThesedifferencesmay.representheterogeneousdepositsortheymaybeadditionalevidencethatmorethanonecorrosionmechanismPage21 Thomo,sM.Laronge,Inc.tmaybeinvolvedinthepittingattackintheRHRandRCICcoolers.Dr.WillertzransimilarSEM/EDSanalysesontheRHRcoilsandfoundthesamevariations,bothonpitsfromthesamecoilandamongdifferentcoils.AgreementbetweenthetwosetsofanalysesseemstobegoodwiththepossibleexceptionthatDr.Willertz'sdatashowmoreelementsandespeciallymoresulfurinsomecasesthandoourresults.Inanefforttoidentifyspecificchemicalcompoundsinthedeposits,weranX-raydiffractionstudiesonselecteddepositsfromRHRlubeoilcoolerslE-217B-3B,RHR2E-217Canda90degreebendfromRHR2E-2178.TheresultsareshowninTable7.Thedataaredisappointing.Onlytheexpectedcuprichydroxide.cuprousoxide(cuprite)andmagnetitewereidentified.X-raydiffractionissensitiveonlytocompoundspresentinamountsgreaterthanabout2percentofthetotal,butwehadhopedthatothercrystallinecompounds,particularlysulfurcompounds,couldbeidentiQedinthisway.Elementmaps(Figures23through29)areausefulwaytoidentifythelocationsanddistributionofparticularelementsinamatrix.Elementmappingdoesnotdetermineconcentrationsofelements.Figures23through29showthatallfourmappedelements,sulfur,chlorine,manganeseandironarepresentinalldeposits.However,themapsdonotrevealanyconsistentpatternsinelementdistributionsinthedeposits.Ontheotherhand,themapsareespeciallyinterestingbecausetheyseemtoconfirmthedifferencesshownbytheICAPandSEM/EDSanalyses.Foracample,Figures23,24and25areelementalmapsofthreepitsinRHRlE-217B-3B.Figure23showsabinodalvoidinthemiddleofthepit,withalmostnoneofthefourmappedelementspresentinthisarea.Figure24showsbothsulfurandchlorine'oncentratedinthemiddleofthepit,withmanganeseandironinanouterring.Figure25showsmanganese,ironandsomechlorineinthemiddleofthepit,withsulfuraroundtheoutside.Page22 Thomo,sM.Laronge,inc.MicriloialAn1Table8summarizesallofthemicrobiologicalanalysescoQectedduringthisinvestigation.On-siteculturetestsforlivesulfatereducingbacteria(SRB)andacid-producingbacteria(APB)areshownintherighttwocolumnsofthisTable.Thesebacteriaarecommonlyinvolvedinmicrobiologicallyinfluencedcorrosion(MIC).Laboratorymicroscopiccountsfortotalbacteria(alltypes)andfortotalSRBareshowninthelefttwocolumns.ToputthedatainTable8intoperspective,considerthefollowingguidelinesthatarecommonlyappliedtobothonce-throughandopenrecirculatingcoolingwatersystem.Withatotalbacterialcountbelow10~to103cellspermlorpergram,asystemisconsideredtobeundergoodmicrobiologicalcontrol.Atthistotalcountlevel,anaerobicbacteriashouldalwaysbelessthan10~perml.Between103and104totalcellsperml,acoolingwatersystemisconsideredtobebiologicallyactive.Above104to10~cellspermlthereiscauseforconcernaboutbiologicalfoulingandcorrosionproblemsandabove106cellsperml,immediateactionisusuallyconsiderednecessarytopreventdamagetothesystem.Onthisbasis,the8.5x109cellspermltotalcountmeasuredintheESWBsupplywatertoRCIClE-228B(line1inTable8)isextraordinarilyhigh.Totalmicroscopiccountsincludebothliveanddeadbacteria,butevenifasfewas10percentofthesebacteriawerealiveinthesystem,thecountswouldbewellabovethedangerpoint.ItisalsoveryunusualtofindtotalSRBlevels,aliveanddead,above106permlinawatersample.Theon-siteculturetestsforliveSRBandAPBinthiswatersampleagreewellwiththetotalmicroscopicSRBcountandindicatethatasexpected,mostoftheanaerobicbacteriadiedorbecameinactiveduringshipmenttothelaboratory.tItisclearthattheESWBsupplywaterishighlycontaminatedwithbothaerobicandanaerobicbacteria.WehavenowateranalysesPage23
Thephotographs arearrangedinageneralorderofincreasing magniQcation, sothatbyperusingthephotographs, thereadercangainanincreasingly detailedcomparison ofthenatureofthepittingonthevariousspecimens mcaznined.
>tgI,,e),k ThomasM.Loronge,Inc.fromtheESWAsystem,butsincethesesystemscirculatefromacommonsource,wecanassumethatESWAisalsocontaminated.Thisisnotsurprising,sincethespraypondreceivesonlyoccasionalalgaecidetreatmentasneeded;noregularchlorinationormicrobialcontrolprogramisused.ThedepositsampletakenfromtheRCIClE-2288pumproomunitcooler(line2inTable8)producedthehigheston-sitelivebacterialdepositcountsfoundduringthisstudy,greaterthan107cellspergramofdeposit.Thiscoolerhadbeenopenforseveraldaysbeforeourinspection.ThefactthathighviableSRBandAPBcountswereobservedevenafterthisexposuretoairindicatesthatactivitymusthavebeenveryhighwhenthesystemwasclosed.On-sitetestresultsfromthethreeRHRlubeoQcoolersandtheDXcondenserareallonetothreeordersofmagnitudelowerthanthet1E-228BRCICroomcooler.Note,however,thatliveSRBandAPBcountsfromRHRlE-217A,theRHRcoolerinthebestcondition,areonetotwoordersofmagnitude~hfhrthanfrom2E-217C,thefailedcoolerintheworstcondition.ThisdifferencemaynotbereallysigniQcantbecausethesamplefrom2E-217Cwastakenafterthecoilhadbeendryandexposedtoairforseveraldays,whiletheotherRHRlubeoilcoolersamplesweretakenwhilethecoilswerestillwet.However,thetotalmicroscopiccountsshowthesametrend.Asexplainedabove,totalmicroscopicstainingtechniquesasusedinthisworkcountbothliveanddeadbacteriaandthusprovideanindication.ofwhatthepopulationsmighthavebeenlikewhilethesystemwasonline.ThesedataarepresentedgraphicallyinFigure3.Thenumbersdonotexactlyparallelthecultureresults,butthisistobeexpectedsincevariablenumbersofanaerobicbacteriawilldiedependinguponconditionstowhichtheyareexposed.Thetotalcountdataforthefourdepositsamplesshownin--*."Figure3areapproximatelythesame,withintheprecisionofthistest.However,theSRBlevelsinthedepositsfromRHR2E-217CandRCICPage24 0IIf1 ThomasM.Laionge,Inc.1E-228B,asever'elycorrodedcupronickelcooler,arebothtwoorderstofmagnitudelowerthanlE-217A.ThisisasigniQcant'differenceanditindicatesthatmicrobiologicalactivityalonecannotexplainthedifferencesinpittinganddepositformationfoundamongboththeRHRlubeoQcoolersandtheRCICpumproomunitcoolers.SectionsofcoilsfromRHRlubeoilcoolers1E-217Band2E-217CwerecarefullyexaminedunderastereomicroscopefordirectevidenceofMIConthesecoppertubes.IndicationsofMICareclearlypresent,butnopitscouldbefoundinthesetubesthatcouldbeentirelyandunequivocallyattributedtoMIC.DiinfAnR1Manganese,andprobablyalsodepositediron,appeartobeproviding'corrosionprotectionintheRHRlubeoilcoolersratherthanincreasingcorrosion.Sulfurlevels,asdeterminedbyICAPanalysis,correlatewithobserveddepthofpitting,butlocationspecificSEM/EDSanalysesforsulfurandchloridedonotcorrelateaswell.Elementmapsshowbothelements,alongwithmanganeseandiron,presentinalldeposits,butinsomecasesnexttothemetalsurfaceandinothercasesinthedeposititselforevenoutsidethepit.Microbiologicalcounts,usuallyassociatedwiththepresenceofsulfurcompoundsincorrosionproductdeposits,donotcorrelatewellwitheithersulfurlevelsorobservedfrequencyanddepthofpittingintheRHRlubeoilcoolers,althoughalldepositstestedshowedhighlevelsofanaerobicandtotalmicrobiologicalactivity.Allofthesedata,alongwiththeobserveddifferencesinpitmorphology,frequencyanddepth,indicatethattwodifferentmechanismsarecontrollingthepittingcorrosionprocessintheRHRlubeoilcoolersandtheRCICpumproomunitcoolers.Thesemechanisms.are.conventionalunder-depositpittingattackandMIC.Itisprobablethatmanypitsweremicrobiologicallyinitiated,butthenadvancedbyconventionalmechanisms.Page25 Thomo,sM.Laronge,Inc.MICandconventionalunder-depositcorrosionandsometimebedistinguishedbydifferencesinthemorphology(shapeandsize)ofthepits.Usingmildsteelasanexamplefordiscussion,MICtendstoproducecircular,dish-shapedpitswithroundededgesanQoftenwithsmallerpitswithinthemainpit.Conventionalunder-depositcorrosionusuallyproducespitswithirregularshapes,sharpedgesandstraightorundercutsides.Oncopper,thesedifferencesareobscuredbythefactthatthebacteriaresponsibleforMICoftendieorbecomeinactiveduetothetoxiceffectsofthecopperionsgeneratedbycorrosion.Thedepositsremain,however,andcorrosioncontinuesbyconventionalmechanismssothatthepitmorphologybecomesobscured.SeetheRootCauseFailureAnalysissectionofthisreport,beginningonPage.35,forfurtherdiscussionofthissubject.ThefollowingsectionofthisreportdiscussesESWwaterchemistryandESWandRHRpumpoperations.ThisinformationisneededtohelpexplainwhythiscorrosionisoccurringandwhydepositcompositionsandratesofdepositionandpittingattackaredifferentamongthedifferentRHRandRCICcoolers.Page26 s-p4l ThomasM.Loronge,Inc.EWSYTEMHEMITRYANDPERATIQN~ESWhAvailableESWchemistryparametersfor1989and1990areplottedinFigures4and5.Conductivityandcalciumlevels(Figure4)showacleardownwardtrendduringthisoneandone-halfyearperiod.Turbidityfluctuatedwidelyduringthisperiod,whilethepHremainedinthe8to9range(Figure5).Noexplanationforthesetrendsisreadilyavailable.Figure6showstemperatureandLangelierStabilityIndex(LSI)calculationsfortheESW,asprovidedbyPAL.ItisclearfromFigure6thattheLSIwilloftenbeabove+0.5,andoccasionallyabove+1.0,creatingadefinitepossibilityforcalciumcarbonatescaleformation.Underborderlinescalingconditions,suchasthese,smalltemperatureeorconcentrationchangesinthewatercancreatethedrivingforceneededtocausecalciumcarbonatetoprecipitateinaheatexchanger.Table9presentsananalysisoftheESWBwatersupplytoRCICpumproomunitcoolerlE-228B,takenduringoursitevisitonJune9,1990.LSIvaluesforthissample,asshowninTable9,rangefrom+0.4at80'Fto+0.7at110'F,makingthissamplemarginallynon-scaling.TheanalysisinTable9showstheESWasanalyzedtobeagenerallygoodqualitywater.Parametersofparticularinterestareironat0.74ppm,manganeseat0.75ppmandsulfateat53.6ppm.TheselevelsofironandmanganesearemorethansufficienttoaccountforthedepositsoftheseelementsfoundintheRHRlubeoilcoolersandtheRCICpumproomunitcoolers.Withroughly54ppmsulfatepresentinthewater,itisreasonabletoexpectsomesulfatecompoundstobeadsorbedoroccludedincorrosionproductdeposits.ThisprovidesafoodsourceforactiveSRBandindicatesthatatleastsomeofthesulfurreportedintheRHRandRCICcoolerdepositsmaythepresentassulfate(seeTable5).Page27
PhsiMurmnrvtionFigure1isaschematic diagramofanRHRpumpmotor,showingthearrangement ofthelubeoilcoolingcoQs.Thecoilsarearrangedinastackofsixlayers,withfourturnsineachlayer.ForidentiQcation purposeswehavenumberedthecoilsfromtoptobottomandletteredtheturnsfromtheinsideout,asshowninFigure1.Thus,coil3Bisthesecondfromtheinsideturninthethirdlayerfromthetop.Physicalmeasurements areshowninTable2.'urmeasurements showthattheRHRlubeoilcoolingcoilsandtheRCICroomcoolertubesaregenerally withinspecifications.
'll'J4trkWt ThomasM.Laronge,Inc.RecommendationsforwatertreatmentattheSusquehannaplantarebeyondthescopeofthisreport.ThedataclearlyindicatethattheESWisatleastoccasionallyscalinginnature,andthemicrobiologicaldatadiscussedinaprevioussectionshowthatthesystemishighlycontaminatedwithbacteria.EWnRHRPumrnThenatureoftheflowpatternsthroughtheRHRlubeoilcoolersandtheRCICpumproomunitcoolerscanhaveamajorimpactupondepositformationandsubsequentcorrosionintheseunits.Toinvestigatethisproblem,westudiedtheoperationoftheESWsystempumpsandtheRHRpumpsinsomedetail.WeappreciatethecooperationofferedbyPP&Lpersonnelinobtainingtheoperatingdatanecessaryforthisstudy.NotaQthedata-werereadQyavailable,andthefirstinformationprovidedtousturnedouttobeincorrect.Wehavereviewedthisproblemseveraltimes,andthefollowingdiscussionisbaseduponthelatestinformationwhichPP&Lassuresusisreliable.tmrinOurstudyisbaseduponthefollowingPP&Linformation:TheESWiscirculatedfromalargespraypondthroughvariousequipmentandbacktothepond.Makeupwatertotheponds,mostlyfromthemaincondensercoolingtowerblowdown,withadditionalmakeupfromtheSusquehannaRiverasneeded.TheESWsystemisdividedintotwoloops,labeQedAandB.Twopumps,labeQedESWAandC,drivewaterthroughtheAloopandpumpsBandDdrivetheBloop.ThesepumpstakewaterfromacommonsuctionpointinthePage28 ThomasM.Laronge,Inc.spraypond.Waterreturnstothepondthroughtwoseparateheaders.~ThefollowingcoolersthatwehaveexaminedareconnectedinparallelacrosstheESWAloop:RHRlubeoilcoolers1E-217AandD,and2E-217AandD.RCICpumproomunitcoolerlE-228A.ESWGRDXsystemcondenser2E-297A.~Thefollowingcoolersthatwehaveexaminedareconnectedin.parallelacrosstheESWBloop:0RHRlubeoilcoolerslE-217BandC,and2E-217BandC.RCICpumproomunitcoolerlE-228B.~AtanytimetheESWisflowing,oneorbothoftheESWAandBloopsmayberunningandeitherorbothoftheESWpumpsontheactiveloop(s)maybeinuse.Watercirculatesthroughalloftheequipment.oneachloopwheneverthatloopisrunning.BThEWSrPnThevolume.ofwaterinthespraypondisestimatedbyPALat26milliongallons.Weunderstandthatmakeup'fromthecoolingtowerblowdown"runsatfrom300to1000gpm,withanadditional200gpmavailablefromtheriverasneeded.Page29 (4
Deviations aresmallandcanbeattributed toproblemsinwallmeasurements ontubescontaining depositsandtosomedeformation thatmustoccurwhencoppertubingisformedtomaketheRHRcoils.Thereisnoevidencewhatsoever fromthesemeasurements thatanyappreciable thinningoftubewallsduetogeneralcorrosion hasoccurred.
ThomasM.Laronge,Inc.Wedidnotpersonallyinspectthespraypond.WeunderstandfromPP&Lpersonnelandfromwatertreatmentvendorreportsthatthepondwaterqualityvariesseasonallyinturbidityanddissolvedandsuspendedsolids.Duringthesummermonths,algaegrowsinthepond;thisiscontrolledbyoccasionaltreatmentwithalgaecideandchlorinearoundtheedgesandacrossthesurfaceofthepond.ItisclearthatthespraypondisasourceofmicrobiologicalcontaminationandpossiblyalsosuspendedsolidsintheESWwaterandcoolers.Chlorinehas,inthepast,beenaddedtotheESWpumpsuctionpoint,butthishasnotbeendoneinrecentmonths.CEWRHRmRunTimPP&LprovidedmonthlyruntimedatainhoursfromAugust1986throughMay1990forboththeESWandtheRHRpumps.ThesedataarerecordedfordiscussioninTable10.Incalculatingthe"AssumedTotal"runtimesshowninTable10,weusedthefollowingguidelines:~WeunderstandthatpriortoJune1989,theentirecoolingloadforthedieselgeneratorswascarriedbyESWloopAandforthatreason,bothpumps,ESW-AandESW-C,ranwhenevertheAloopwasinoperation.ToarriveatatotalrunfortheAloopduringthisperiod,wesimplyusedthehigherofthetwohourlynumberseachmonthforpumpsESW-AandESW-C.Duringthissametimeperiod,theloadontheESWBloopwaslighterandusuallyonlyonepumpwasinoperation.TocalculatethetotalmonthlyrunhoursfortheBloop,wethereforeusedthesumoftherecordedhoursfortheESW-BandESW-Dpumps.Page30 ThomosM.Loronge,Inc.FromJune1989forward,thepipingwasrearrangedsothatthedieselgeneratorcoolingloadwassharedbetweentheESW-AandBloops.Duringthisperiod,ithasbeennormalpracticetooperateonlyonepumpatatimeineachloop.We,thereforesummedthedataforeachmonth,asabove,tocalculateassumedtotalrunhoursforeachloop.Theassumedtotalmonthlyruntimesshowagooddealofscatterthatobscuresanysignificanttrends.Tosmooththedata,wecalculatedannualruntimehoursasapercentoftheavailablehours(8,760hoursinayear).ThesedataareshowninFigures7Aand7B,representingtheESW-AandBloops,respectively.TheseFiguresalsoincludethepercentruntimesfortheRHRpumpsfromTable10,simplycalculatedbysummingthemonthlydata.tThehigherruntimesshownforbothESWloopsin1989comparedtootheryearsmaybeacalculationerrorresulting&omthefactthatbothpumpsprobablydidruntogetheroneachlooppartofthetimeafterJune1989.Thisquestiondoesnotsignificantlyaffectthedataforourpurposes.ItcanbeseenfromFigures7Aand7BthattheESWAloopranforroughly35percentofthetimefrom1987throughMay1990andtheESWBloopranforabout25percentofthetime,ontheaverage.TheexactQguresarenotimportant.Conversely,thedatasay.thattheAloopwasstagnantfor65percentofthetimeandtheBloopfor75percent'ofthetime.Itfollowsthatthecoolersconnectedtoeachloop,aslistedunderSystemOperationsabove,werealsostagnantfortheseperiodsoftime.Weassumethatthecoolerswerenotallowedtodrainandremainedfullwhilestagnant.Page31 I
TheRHRlubeoilcoolingcoilsarereportedly madefromtypeKcopper,andtheRCICroomcoolertubesfrom90:10cupronickel.
Thomo,sM.Loronge,Inc.TheexistenceoflongperiodsofstagnationintheESWwatersystemisanimportantfactorinunderstandingthepittingfailuresthatoccurredinthecopperRHRlubeoilcoolingcoilsandthe90:10cupronickelRCICpumproomunitcoolers.Thepresenceofstagnant,contaminatedwaterinthesecoolersforextendedtimeperiodsrepresentstheworstpossibleconditionforcorrosionprotectionofcopperandcopperalloys,particularlywithnospecificcorrosioninhibitorsforcopperinthewater.ThisproblemisdiscussedindetailinthefollowingRootCauseFailureAnalysissectionofthisreport.TheRHRpumppercentruntimedatainFigures7Aand7BareameasureofthetimethatheatwasappliedtotheRHRlubeoilcooling.coils.WehavenoinformationonthetimesthatheatwasappliedintheRCICpumproomunitcoolers.HeatwasappliedtotheRHRlubeoilcoolersforasmallfractionofthetotaltime,butagain,moreinloopAthaninloopB(seeFigures7Aand7B).Giventhe8'Ftemperatureriseacrossthesecoolers,asdiscussedabove,andtheshortRHRpumpruntimes,itseemsunlikelythattemperaturedifferencesacrossthecoolercoilscouldbeasignificantfactorinthedepositionandcorrosionprocess.Nevertheless,thedatashowthattheRHRpumpswiththe"best"lubeoilcoolers,namelylA,2Aand1D,ranperhapstwiceasmuchasthosepumpswiththe"worst"coils,namely1B,1Cand2C.D.RHRLuillinWrFlwVlociFlowvelocityisanimportantfactoraffectingthenatureanddegreeofbothdepositionandcorrosionthatcanoccurintubularequipment.TheinitialdatasuppliedbyPALshowedveryhighflowvelocitiesintheRHRlubeoilcoolers.Thisseemedinconsistentinviewoftheloosedepositsfoundinsomecoolersandthefactthatnoerosionorerosion/corrosionwasfoundinanyofthecoolertubesorelbowsthatweexamined.This,wasconfirmedbyDr.Willertz'sinspectionsofthesetubes.Page32 ThomosM.LoroncIe,Inc.PALcooperatedfullywithusinresolvingthis.issueandwasabletosupplynewflowvelocitydatathatseemtobereasonableandthatPPM.assuresusaretheirbestestimates.ThesedataareshowninTable11andFiguresSAandSB,fortheAandBloopsrespectively.PP&LprovidedvelocitydatafortheAloopforallthreetimeperiodsshowninTablellandfortheBloopfortheperiodfromJune1989throughJune1990.BloopdatawerenotavailableforJune1986throughJune1989.AtPP@L'ssuggestion,wecalculatedflowvelocitiesfortheBloopduringthisperiodat20percentabovethecorrespondingAloopvelocities.ThelowerflowvelocitiesintheAloopfromJune1989through1990maycorrespondtomorefrequentuseofonepumpratherthantwoduringthisperiod(seeabove).ThereisnosimpleexplanationforthehigherflowvelocitiesintheBloop,especiallyduringtheJune1989to1990periodforwhichharddataareavaQable.ThesehighervelocitiesgoalongwithshorteroperatingperiodsfortheBloop,asexplainedinthepreviousdiscussion.Typicalcriticalwatervelocities,abovewhicherosionanderosion/corrosiondamagecanbeexpectedinheatexchangertubing,havebeenreportedintheliterature:Materi1Copperalloy&#xb9;122AdmiraltyBrassalloy&#xb9;4430090:10Cupronickelalloy&#xb9;70600ri1WrV1i6fps10tollfps12to15fpsRfrnThevelocitiesinTable11andFiguresSAandSBareabovetheguidelinesforcopperasquotedabove.Velocitiesinthe0.5inchdiameterRCICpumproomunitcoolersarelowerthanintheRHRtube'oflcoolersatabout2to3'feetpersecond.ExceptforsomeminordirectionalnatureinthedepositsinoneRHRlubeoilcoolerPage33
Nowetchemistry testsweredonetoverifythesecompositions, butEDSanalysisonagallededgeofonetubefromRCIC1E-228Aconfirmed 90:10cupronickel inthistube.A.RHRLubOiller1.RHRlE-217AWeinspected sectionscutfromcoils2and5inthiscooleron-site(seeFigure1).Thesesectionsweresimilar.Bothcontained aPage8 ThomasM.Laronge,Inc.light,smoothlayerofblackdeposit.Veryslight,irregular pittingwas1observedunderthis'deposit.
Therewasnovisibletuberculation.
Wejudgethiscoiltobeamongtheleastcorroded(pitted)ofalltheRHRcoQsthatwestudied.Wealsoexaminedseveral90degreeelbowsthatconnected thelayersinthelE-217Acoil.Theseelbowsappeartobemadefromadifferent alloythanthecoppercoil,perhapsabrass.Theseelbowscontained asubstantial amountofablack,powderydeposit.Somebaremetalwasvisible.Wemeasuredthedepositweightdensityat15.4mg/ft2.Novisiblecorrosion couldbeseenintheseelbows.However,pittingwasclearlyvisibleinthecoppertubeconnected tooneelbow(Photographs 37,38and39).2.RHRlE-217B'Wedidnotinspectthiscoilon-site.Inourlaboratory, weinspected layer3B.(seeFigure1)fromthiscoil.Wefoundalargeamountofdepositmixedwithtubercles rangingupto0.25inchinbothdiameterand'height (seedescription inTable1).Thedepositweightdensity,measuredat31.7gm/ft2,wassecondonlytothedensitymeasuredinRHR2E-217C(seeTable3).Pitdensitywaslowerthanfoundinthe1Cand2CRHRlubeoilcoolers,butsubstantially higherthaninthelAand2Acoolers(Table4).Themaximumpitdepthmeasuredonourspecimenwas0.025inch,or35percentwallpenetration (Table4).Thiscompareswith0.042inchmeasuredbyDr.WillertzofPP&Lonadifferent sectionfromthesamecoil.ThenatureanddepthofpittingintheRHRlE-217BcoilcanbeseeninPhotographs 20through23.3.R~RR13-217Thiscoolerwasnotinspected on-site.Inthelaboratory, thisspecimenwas.foundtohavethehighestmeasureddensityofpitting,butnotthehighestpitdepthorwallpenetration (Table4).Thedepositweightdensity,at24.1gm/ft2,wasinthehighestgroupPage9 ThomosM.Lo,ronge, inc.measured(Table3).Depositsweresmoothandbrowntoblackin~~~~color,withmanybrightgreen,redandsilvercoloredcrystalsaroundandinsidepits.Pits,mostlycoveredbytubercles, werelarge,shallowandhemispherical.
'IhedepositsandpittinginthisspecimencanbeseeninPhotographs 28through31;thecrystalsareapparentinSEMPhotograph 47.4.RHR1E-217DFortherecord,wenoteherethatnospecimens fromRHRlE-217Dwereprovidedforourinspection.
Dr.Willertzreportedonlylightdepositsandtuberculation, andverylittlepitpenetration inthis'ube.
5.RHR2E-217AThiscoilwasnotinspected on-site.Inthelaboratory, thistubesectionwaslike1E-217A.ThebrowndepositwassimilartothatinlE-217B,butmuchsmallerinquantity(Table3).Tubercles wereminorandtherewasnovisiblepittingorgeneralcorrosion.
6.RHR2E-217BOn-sitewefoundthiscoiltobeintermediate incondition between1E-217Aand2E-217C.Thespecimenweexaminedcontained stringyblackdepositsthatcoveredpart,butnotallofthesurface.NosigniQcant tuberculation waspresent,butpitdepthswerequitesevere.Laboratory inspections confirmed theseobservations.
Wewereabletoexaminespecimens fromthesecondcoilfromthetop(2E-217B-2)andthesecondcoilfromthebottom(2E-217B-5),
asshowninFigure1andTable1.Theentire2E-217B-2 coilwassenttoourlaboratory.
Photograph 10showsthiscoilassplitforinspection.
Thecentertubewasmcaminedindetail.Page10 ThomasM.Loronge,Inc.Thedifferences indepositweightdensity,pittingdensityandpitpenetration between2E-217B-2 and2E-217B-5 (Tables3and4)confirmsimilarobservations madebyDr.Willertzonthe1E-2178coQ,usingX-rayexamination.
Depositcharacteristics, tuberculation andpittingintheuppercoil(2E-217B-2) weremuchlikethefailedcoil2E-217C.(seebelow)exceptthatpitsin2Bweremostlyhemispherical.
Deposition andpittingin2E-217B-5 wereverylight;thissectionappeared,
: visually, muchlikelE-217Aand2E-217A.Photographs 32,33and34showthenatureofthepittingin2E-217B.Unfortunately, thesephotographs donotdistinguish betweenthe2B-2andthe2B-5coils.Weexaminedfour90degreebendsfrom2E-217B.Thesebendsappeared,
: visually, tobemadefromcopperandseemedtobequitedifferent fromthebendsinthe1E-217Acoil(seeabove).Depositweightdensities wereintheintermediate rangeandnopittingorgeneralcorrosion wasobserved.
Seealsothediscussion ofchemicalanalysesofdeposits, (Page19.andTable5,Page50).7.~2E-217Itwasathrough-wall failureinthiscoilthatalertedtheplanttothepittingcorrosion problemintheRHRlubeoilcoolers.andotherheatexchangers servedbytheESWsystem.On-site,wefoundtheinteriorsurfaceofthe2E-217Ccoilcoveredwithathick,dense,layeredscalydeposit,quitedifferent inappearance fromtheothercoils.However,thetubewesawhadbeenremovedfromthesystemseveraldaysbeforeourvisit,sothatthedepositswerequitedrywhQeothertubeswerewet.On-site,wefoundlargetubercles coveringnumerousrandompitsovermostofthesurface.Thesepitsvariedgreatlyinsize,shapeanddepth.Bothhemispherical andirregularly-shaped pitswereobserved, asopposedtothemostlyhemispherical pitsfoundinother1coils.Someofthepitsin2E-217Cweresharp-edged andquitedeep.Page11 ThomasM.Laronge,Inc.Laboratory inspections conflrmed theseverityofcorrosion anddeposition inthiscoil.ThedepositweightdensitywasthehighestmeasuredinanycoiltTable3)andpitdensityanddepthwerealsoamongthehighestmeasured(Table4).Photographs 17,18and19showtheheavydepositsanddeeppitsfoundinthiscoil.Anearthrough-wall pitcanbeclearlyseeninthelowersawededgeofthetubeinPhotograph 17.8.2E-217DThiscoilwasnotexanQnedon-site.Inthelaboratory, wefoundthedepositweightdensitytobehighat27;3gm/ft2,comparable todepositsincoilslE-217Band1E-217C.Pitdensitywaslessseverethanineitherofthesetubes.Pitpenetration in2E-217Dwassimilarto1E-217Candlessseriousthanin1E-217B.Thedepositsweretypically browntoblackwithgreenedgesaroundsmalltubercles.
Pitsweresmallandhemispherical.
Photographs 24through27comparedtoPhotographs 17,18and19showthedifferences betweenthedepositsfoundin2E-217Dand2E-217C.RRIPumRmniIr1E-22AnlE-22BTheRCICcoolersarereportedly tubedwith,90:10 cupronickel tubes,asexplained above.Thetubesarestraightandinstalled horizontally inthecoolers.Thenominaltubediameteris0.5inch(Table2).ThismeansthattheRCICtubesmaybemoresubjecttolossofflowduetopartialtubeblockagethantheRHRlubeoilcoolersifdepositsshouldforminthesetubes.TheRCIClE-228Acoolerwasopenedinourpresenceduringourinspection visitsothatwewereabletoexaminetheinternaldepositsimmediately uponexposuretoair.Thisisimportant becauseanaerobic bacteriathatcanberesponsible formicrobiologically influenced corrosion (MIC)tend-tobecomeinactiveuponexposuretooxygen.Page12


ThomasM.Laronge,Inc.(RHRlE-217B,seeTable1),wehavefoundnoevidencethatvelocityaffectedthenatureofthecorrosionintheRHRandRCICcoolers.However,waterflowvelocityalmostcertainlyinfluencedthetype,amountandphysicalformofthedepositsinthesecoolers.Page34 IJ' Thomo,sM.Laronge,Inl-.RTAEFAILREANALYIBrieflystated,theRHRlubeoilcoolersandtheRCICpumproomunitcoolersfailedbyacombinationofmicrobiologicallyinducedcorrosionandchemicalpittingcorrosionmechanisms.Periodsofstandingincontactwithstagnant,microbiologicallyactivewaterallowedinitialdepositstoformonthetubesurfaces.Underneaththesedeposits,anaerobicconditionsallowedsulfate-reducingbacteriatoproducesulfidesfromsulfateionsinthewater.Themicrobiologically-generatedsulfidesinitiallyattackedthemetalsurfaces.Thebaremetalexposedinthiswaytendedtoinhibitfurthermicrobiologicalgrowthunderthedeposits.However,oxygenconcentrationcellsnowexistedbetweenthemoistdepositsnexttothemetalandthebulkwater.Thebaremetalbecameanodicrelativetothemetalawayfromthedepositsandpittingcorrosionbegan'.Chlorideionsfromthewaterconcentratedinthepitthroughcomplexionformationwithcopperionsproducedthroughcorrosion.Ironandmanganeseinthewatersupplyalsoconcentratedinandnearthegrowingtuberclesandpits.Irondepositstendedtoreducethepittingcorrosionratebyinhibitingdiffusionofwaterthroughthedeposits.Manganesealsoservedinthisrole,butinsomecasesalsoincreasedthecorrosionratebycatalyzingtheelectrontransferreactionswithinthepitsandnexttothemetalsurface.Thispittingcorrosioneventuallyproducedthethrough-wallfailureofRHRlubeoilcooler2E-217CandtheincipientfailuresofRHRlE-217BandRCICpumproomunitcoolerlE-228A.ThereasonsforthelessseverepittinganddepositionobservedinotherRHRandRCICcoolersarerelatedtodifferencesindepositcompositionsandoperatingconditionsamongthesecoolers:Page35 ThomosM.Laronge,Inc.Thefollowingparagraphsofthissectionexaminethispittingcorrosionfailurescenarioinmoredetail.PiIniCopperand90:10cupronickelarechosenforheatexchangerservicebecauseoftheirgoodmechanicalandheattransferpropertiesandbecauseoftheiroutstandingresistancetocorrosioninclean,flowingwater.Thesemetalsaresostableinwaterthatheatexchangertubesthathavebeencorrodedunderdepositscanbesafelyreturnedtoserviceaftercleaning(4).However,itiswellknownthatcopperalloysareattackedbysulfides.Muchworkhasbeendonetounderstandandtodocumentthepittingcorrosionofcopperand90:10cupronickelthatcanoccurinsulflde-contaminatedwater(45@.Mostofthisworkhasbeendoneinmarineenvironments.Ionicconcentrationsare,ofcourse,quitedifferentinafreshwaterenvironmentsuchastheESWspraypond.Sulfideshouldnormallynotexistinthissystem.ThedifferenceisthattheESWspraypondisbiologicallyveryactiveandprobablycontainslargenumbersofsulfatereducingbacteria(SRB).Thisassumptionisbasedupontheknownlackofbiocidaltreatmentinthepond,probableanaerobicconditionsnearthebottomofthepondandtheestablishedhighlevelsofSRBintheESW-BsupplytoRCICcooler1E-228B.WaterintheRHRlubeoilcoolersandtheRCICpumproomunitcoolershasbeenstagnantfrom65to75percentofthetime(Table10andFigures7Aand7B).Duringthesestagnantperiods,suspendedsolids,biologicalmatterandsolublematerialsfromthewater,particularlyiron,manganeseandcalciumsalts,tendedtoprecipitateonthetubesurfaces.SomeofthesesolidsmusthavebeenmovedeverytimetheESWwatercirculated,butovertime,adherentdepositsaccumulated.tSulfldicmetabolicproductsfromSRBinthesedepositsactedinthesamewayassulfldesincontaminatedseawater;theyattackedthePage36 ThomasM.Laronge,Inc.metalsurfaces.Thesebacteriatheneitherdiedorbecameinactive.Popeetal(7)explainedthatlittleisknownaboutMICoricopperalloysinfreshwaterbecauseoftheknowntoxicityofcopperionstobacteria.Schiffrinetal+)showedthataerobicorganisms,e.g.,Pseudomonas,canalsoinducepittingcorrosionofcopperalloysbyformingdeposits.thatleadtooxygenconcentrationcellsandeventualdestructionoftheprotectiveoxidelayersonthemetal.Oncebaremetalhadbeenexposedbymicrobiologicallyinducedsulfideattack,standardunder-depositoxygenconcentrationcell,corrosionbecamethedrivingforce.Manyauthorshavedocumentedpittingcorrosiononcopper.During+)describedseveralcasesofpittingoncopperbeneathironoxidedeposits.ThephotographsinDuring'sbooklooksimilarinsomerespectstothoseinthisreport.TheAWWA('@explainspittingoncopperwaterpipingingreatdetail,withdiagramsandelectrochemicalmechanisms.Quotingfromthiswork,"Pitting(oncopper)ischaracterizedbythepresenceoftubercles,whicharerandomlydistributed.Theinsideofthetube(contains)blue-greenbasiccoppercarbonate(Malachite).Underthislayerisabrownlayerofcuprite(cuprousoxide,Cu20),whichisfriableandeasilyspalledfromtheunderlyingcoppermetal.Typically,manypitsataHstagesofdevelopmentareseen,butonly,afewhaveactuallypenetratedthewallthickness."ThisdescriptionseemstomatchquitewellthetheconditionsinthefailedRHRlubeoil'ooler,2E-217C.LymanandCohen(>0)comparedthechemicalcompositionsofmanywatersuppliesassociatedwithpittingfailuresincoppertubes.ThepH,chlorideandsulfatelevelsintheESW,aslistedinTable9,fallintoLyman.andCohens'angeofmaximumsusceptibilitytopitting.However,theauthorsalsopointoutthatmanysuccessfulapplicationsofcopperpipingexistinwaterswithsimilarcompositions.ChloridedoestendtoconcentrateatanodicsitesbecauseofcomplexionPage37 ThomasM.Laronge,Inc.formationwithnewlyreleasedcopperions.ThiscanfurtherreducethepHattheanodicsiteandincreasethecorrosionrate.EfffulfrIrnSulfidesandsulfatesmaycontinuetoinfluencethecorrosionmechanismduringthesecond,orconcentrationcellphaseofpitgrowth.TheAWWAmanual(@describespitmorphologyincopperpipes.Intheabsenceofsulfides,theAWWAclaimsthatmostpitsareirregularinshape,straightedgedandnarrow.WithsulQdespresent(fromthewater,notfromMIC),pitstendtobewiderandshallowerinnature.Themechanismdescribedhereisverysimilartochloride-.enhancedpittingcorrosionofmildsteel.BothtypesofpittingdescribedbytheAWWAareclearlyevidentintheRHRlubeoilcoolertubes.See,forexample,Photographs19,~~~~~~~~23,27,30,31,33and34.IntheESWsystem,SRBobviouslycontinuetoexistinthedeposits,althoughnotindirectcontactwiththemetalsurface.ItisentirelypossibleforsulfidesgeneratedbySRBmetabolismtocontinuetodiffusewiththewaterandaffectpitmorphologyasdiscussedbytheAWWA.ThefactthatSEM/EDSanalysesandtheelementmapsinthisreportshowedsulfurpresentatspecificbut'differentlocationsinvariouspitsanddepositsmaybetheresultofthiseffect.SeeTable6andFigures23through29.IronfoundintheRHRlubeoilcoolerandRCICpumproomunitcoolerdepositscomesmostlyfromthemakeupwatertothespraypond,withadditionalcontributionsfromironaccumulatedinthepondandfrompossiblecorrosionofESWtransferlines.SolubleironinthewatermaybeprecipitatedintheESWsystembychemicaloxidationorbytheactionofironoxidizingbacteria.Thesebacteriaareoftenfoundtocoexistwithotherbacteriainbiologicallyactivewatersystems.TheXRDdata(Table7)showthatironindepositswaspresenttentirelyasmagnetite.Thisisexpectedinlowoxygenlocations,i.e.,insideandunderneathtubercles.DependinguponotherPage38 ThomasM.Laronge,Inc.$1characteristicsofthespeciQcdeposits,magnetitemayprovidesome,barrierlayercorrosionprotection,oritmayserveonlytoincreasethesizeandnumberofthetuberclesandthereforetheintensityofpitting.Thepresenceofmanganese,atthelevelsfoundintheSusquehannadeposits,canbothaggravateandreduce'ittingcorrosion.Manganeseisamultivalentmetal.Itcanexistinseveraloxidationstatesandcanthereforeactasanelectrontransferagenttoencourageelectrochemicaloxidation-reductionreactions.This,ineffect,increasesthecorr'osionrateandparticularlypittingcorrosionundermanganese-containingdeposits(>>).Atthesametime,however,tightlyadherentlayersofmanganeseoxidescanprotectmetalsurfacesfromcontactwithwater.Manganeseoxidesareoftensuggestedasproductsofbiologicalmetabolisminmanganese-containingwaters.Bothofthesemechanismswereinvolved'intheRHRlubeoiltcoolerpittingcorrosion.process.TheRHR2E-217Ccoolershowedlittlemanganeseinthedeposits,butthedepositswerecrystalline,scalingandnon-adherentinnature.Eventhesmallamountofmanganesefoundinthisdeposit(Table5)canincreasecorrosivitybyaidingoxidation-reductionreactionsinvolvingelectrontransfer,asexplainedabove.TheRHRlE-217Adepositcontainedmuchmoremanganese,butasexplainedintheinspectionsectionabove,thesedepositswerelessscalingandmoreadherentinnature.Pittingattackwascorrespondinglylesssevere.ThevariationsinmanganesecontentofthedepositsmaybepartofthereasonforthedifferencesinconditionofthevariousRHRlubeoilcoolers.Theworstcoolers(2Cand1B)areontheESWBloop,whilethecoolersinthebestcondition(lA,2Aand1D)areontheAloop.TheESWAandBloopsmustbeconsideredasonesystem,sothesedifferencesarehardtoexplain.PriortoJune1989,theAloopranmorefrequentlyandcarriedmorewaterthantheBloopandatabouta20percentlowervelocity.Possiblymoremanganesecould-havedepositedintheAloopundertheseconditions.TheveryhighPage39 ThomasM.Laronge,Inl-.levelsofmanganeseinthelE-217Aand2E-217Belbowsremainunexplained.nfRHR1rRIlrurnikelItisinterestingtocomparetheconditionoftheRHRlubeoilcoolers(typeKcopper)withtheRCICpumproomunitcoolers(90:10cupronickel).ThediscussioninthisreporthascenteredontheRHRcoolersbecauseofthefailurethatoccurredin2E-217Candthenearthrough-wallpitsfoundinotherRHRcoolers.However,theRCICcoolerswerenotfarbehind.Wemeasureda90percentthrough-wallpitin1E-228Aanda60percentthrough-wallpitinlE-228B(Table4).TheflowvelocityintheRCICcoolerswasreportedbyPALasabout2to3feetpersecond.WaterflowsinboththeRHRandRCICcoolerswhenevertheESWpumpsarerunning.RCIC1E-228AisconnectedtotheAloopandlE-228BtotheBloop.RCIC1E-228BandtheESWBinletwaterlinetothiscoolershowedthehighestlevelsofmicrobiologicalactivityofallthecoolerstested.ThemanganeselevelinthedepositfromRCIC1E-228Bwasverylow,similartoRHR2E-217C.ItisclearthatthepittingcorrosionproblemisjustasseriousintheRCICroomcoolersasintheRHRlubeoilcoolers.ThisisimportantbecausetheRHRcoolersaretheonlycoppercoilsintheESWsystem;allothercoolersare90:10cupronickelorotheralloys.Cupronickelandcopperarebothknownfortheirexcellentresistancetocorrosioninclean,flowingwateratneutralandalkalinepH.However,cupronickelismoresusceptiblethancoppertobothgeneralbiofoulingandMIC(>2).Thisbehaviorhasbeenobservedanddocumented,butnot.explainedverywell.Copper(and304stainlesssteel)formpassive,protectiveAlmsthatprovidecorrosionresistance.90:10cupronickelalsoformspassivesurfacefilms,andobtainsadditionalcorrosionPage40 ThomasM.Loronge,Inc.resistancefromtheelectrochemicalnobilityofthealloyedsurface.Inthepresenceofacorrosiveagentsuchashydrogensulfidefrombiologicalmetabolism,andintheabsenceofoxygenneededtorepairpassivefQms,itispossiblethatfilmsonthesinglecomponentcoppersurface.mightbemoreresistanttoattackthanthoseonthetwocomponent90:1'0cupronickelsurface.0Page41 ThomosM.Larongt,Inc.ENDIPage42 pi'p,tErr4' ThomasM.Laronge,Inc.BIBLIRAPHYy1.ClaudeD.Tapley,"ProcessIndustriesCorrosion."NationalAssociationofCorrosionEngineers,1975.Texas,2.R.JamesLandrum,"FundamentalsofDesigningforCorrosionControl:ACorrosionAidfortheDesigner."Texas,NationalAssociationofCorrosionEngineers,1989.3.K.I.JohnsonandD.A.Neitzel,"ImprovingtheReliabilityofOpenCycleWaterSystem:ApplicationsofBiofoulingSurveillanceandControlTechniquestoSedimentandCorrosionFoulingatNuclearPowerPlants."Washington,DivisionofSafetyReviewandOversite,OfficeofNuclearReactorRegulation,U.S.NuclearRegulatoryCommission,1987.~'rthurH.Tuthill,"SuccessfuluseofCarbonSteel,CopperBaseAlloysandStainlessSteelinServiceWaterSystemsinOtherIndustries."PresentedattheEPRIServiceWaterSystemReliabilityImprovementSeminar,Charlotte,NorthCarolina,October1988.5.H.A.Videla,M.F.L.deMele,andG.Brankevich,"AssessmentofCorrosionandMicrofoulingofSeveralMetalsinPolluted8*1."81LNNN448.1,4ty1888.6.D.FSchiffrinandS.R.deSanchez,'TheEffectsofPollutantsandBacterialMicrofoulingontheCorrosionofCopperBaseAlloysinSeawater."Quernin,41,No.1,January1985.7.D.H.Pope,D.Tuques,P.C.Wayner,Jr.andA.H.Johannes,"MicrobiologicallyInfluencedCorrosion:AStateoftheArtReview."MTIPublicationNo.13,MaterialsTechnologyInstituteoftheChemicalProcessIndustries,Inc.,secondedition,1990.Page43 c~MH ThomasM.Laronge,Inc.8.EvertD.D.During,rrinA111nfIllurHiriV12NewYork,ElsevierPress,1988.9.AWWAResearchFoundation,nrn1rrinfWrDirinmpp.337-365.Denver,AWWAPress,1985.10.W.StuartLymanandArthurCohen,"ServiceExperienceWithCopperPlumbingPipe."Mri1PrinnPrfrmnV~111,No.2,pp.43-53,February1972.ll.VictorJ.LinnenbomandJeffreyJ.Forshee,"ServiceWaterSystemExperienceatBeaverValleyPowerStation."PresentedattheServiceWaterSystemReliabilityImprovementSeminar,Charlotte,NorthCarolina,October1988.12.DavidS.Hibbard,"CopperAlloyTubeApplicationsinPowerPlanteCondensers."PwrEninrin,August1981.Page44 P)jc0 ThomasM.Laronge,inc.LIFTABLETABLE1TABLE2TABLE3TABLE4TABLE5TABLE6TABLE7TABLE8TABLE9eTABLE10TABLE11TABLE12RESULTSOFVISUALINSPECTIONSOFSPECIMENSRESULTSOFPHYSICALMMBUREMENTSONAS-RECEIVEDSPECIMENSRESULTSOFDEPOSITWEIGHTDENSITYMEASUREMENTSRESULTSOFPITDEPTHSURVEYSCHEMICALANALYSESOFDEPOSITSSUMMIARYOFSEM-EDSANALYTICALRESULTSRESULTSOFDEBYE-SCHERRERX-RAYDIFFRACTIONANALYSISOFDEPOSITSAMPLESUSINGCOPPERK-ALPHARADIATIONRESULTSOFMICROBIOLOGICALANALYSESRESULTSOFTHEANALYSISOFESWBWATERSUPPLYTORCIC1E-228BPUMPROOMUNITCOOLERESWANDRHRPUMPRUNTIMES,HOURSRHRLUBEOILCOOLERFLOWVELOCITIESCOMPARISONSOFOBSERVATIONSANDPHYSICALMEASUREMENTSPage45 C(I TABLRESULTSOFVISUALINSPThomosM.LoIonge,Inc.NSOFSPECIMENSItemNumberDescritionRCIC1&228APumproomunitcooler.RCIClE-228BPumroomunitcooler.RHRlE-217ALubeoQcooler.RHRlE-217ALubeoQcooler,90degree90DegreeBendsbends.~RHRlE-217BLueocooer,3rowSection3Bfromtop,2ndcoQfromcenter.RHRlE-217CLubeocooler.PhotoNo.1,14,15.16,40,41,4311,48,491313,37,38,39,20,21,2,23,42,44,457,28,29,30,31,46,47VisualInsectionsofInteriorSurfacesUormthinbrowndepositsplustubercles,alsosomemse/tandepositsonsurfaces.Greenandreddepositsbeneathtubercles.Pitsmostlyhemispherical,somejaggedandirreular.Noundercuttin.Noeneralcorrosion.DeosftsandfttfnsfmQartolE-228A.Uniformthindeosits,notubercles,veslhtfttin.Apparentlybrasselbows.Blackpowderydeposit,somearemetal.Novisiblecorrosionunderdeposits,exceptpittingoncoppertube(PhotoNo.39).Mosysmoorownaceposft,someagreendeposits.Largebrowntubercles,0.25inchdiameterandheight.Under-depositpitsmostlyhemispherical,noodd-shapedored-edepfts.Largeamountosmoothbrown/blackdeposit,rightgreencrystalsaroundtuberclesandpits.Sparklingsilver/redcrystalsinbottomsoflargeshallowhemisphericalpits(SEMPhotoNos.46and47.RHR2E-217ALueocooer.6Uormrown,sto1E-217B,utmucsmaertubercles.Nosignificantvisiblelocalizedorgeneral'orrosion.RHR2E-217BLubeoQcooler.9RHR2E-217BLubeoQcooler,90degree90DeeBendsbends.10-RHR2E-217CLubeoQcooler.RHR2E-217DLubeoQcooler.8,9,10,12,32,33,3412,35,362,17,18,194,5,24,25,26,27Scatteredblackandgreendeposits,appeartoollowowpattern.Nosignificanttuberculatfon.HemisphericalpitswereQlledwitheenandblackdeposits.Apparentlycopperelbows.Smoothtan/blackdeposits.Novisiblelocalizedoreneralcorrosion.Heavygrey/greenscalydeposit,nosmoothrown/blacklayerasinothercoQs.Largetuberclescoveringgreenandreddeposits.Manyjaggedandhemisphericalpits,MostseverepfttfnofallRHRlubeoQcoocoQsexamined.Uormbrowndeposit,manysmalltubercleswithgreenedges,greendepositbelowtubezeles.Shallow,Mundpits,lessseverethanothercoolers.Page46
ThomosM.Lo,ronge, Inc.ThetubesinRCIClE-228Acontained loose,browndeposits.
'I'8aii TABLE2RESULTSOFPHYSICALMEASUREMENTSONAS-RECEIVEDSPECIMENSSpecimenRCIClE-228AHorizontalSplitRCIClE-228AVerticalSplitRCIClE-228BHorizontalSplitRCIClE-228BVerticalSplitRHRlE-217A90DeBendsRHR1E-217B-3BRHR1E-217CRHR2E-217ARHR2E-217B-22ndRowFromToRHR2E-217B-2ndRowFromBottomRHR2E-217B-22ndRowFromTopsA,B,C,DRHR2E-217B90DreeBendsRHR2E-217CRHR2E-217DOverall,Length,Inches20.319.622.52.3to2.516.010.014.0VariesDependingonSecimenConsideredSecimenConsideredVariesDependingonSecfmenConsidered1.9to2.116.515.5OutsideDiameter,Inches0.6370.6350.6370.6370.9800.8730.8900.8550.875VariesDepenon0.8750.8250.90to1.00.8500.895InsideDiameter,Inches0.5290.5310.5280.5140.7600.7410.7650.7500.7430.7430.7130.75to0.850.7180.755MeasuredWallThfckness,Inches0.0550.0520.0600.0600.0980.0710.0710.058to0.0700.0650.0650.0560.0750.0750.070TypicalMinimumWallThickness+/-Tolerance,Inches0.049+0.0040.049+0.0040.049+0.0040.049+0.004Uncertain0.065+0.00450.065+0.00450.065+0.00450.065+0.0045.0.065+0.00450.065+0.00450.065g0.00450.065+0.00450.065+0.0045Page47 TABLE3RESULTSOFDEPOSITWEIGHTDENSITYMEASUREMENTS~SecimenRCIClE-228A,HorizontalSlitRCIClE-228A,VerticalSlitRCIC1E-228B,HorizontalSlitRCIClE-228B,VerticalSlitRHRlE-217A,90DereeBendsRHRlE-217B-3B,3rdRowFromTop,2ndRinFromtheInsideRHRlE-217CRHR2E-217ARHR2E-217B-2,2ndRowFromToRHR2E-217B-5,2ndRowFromBottomRHR2E-217B,90DereeBendsRHR2E-217CRHR2E-217Dm/ft210.677.137.727.7715.4031.7324.075.2513.216.8617.2337.9027.25DeositWeihtDensim/mm20.110.080.080.080.160.340.260.060.140.070.18~0.410.29'CalculatedaccordingtoASTMStandardD3483-83MethodAPage48 I
MostofthesedepositsseemedtobeintheformofwellQocculated solidswithclearwater.Thetubemetalappearedtoberelatively cleanduringouron-siteinspection.
ThomosM.Loronge,Inc.TABLE4RESULTSOFPITDEPMSURVEYSSecimenRCIClE-228A,HorizontalSlitRCIClE-228A,VerticalSlitRCIClE-228B,HorizontalSlitEstimatedDensityofPitting,Pits/SquareInch5to50EstimatedMaximumPitDepth,Inches0.0500.0170.017alculatedPercentThrough-WallUsingMaximumPitDepth,Percent913328RCIC1E-228B,VerticalSlitRHRlE-217A,90DereeBends2to50.036EssentiallFreeofLocalorGeneralAttack60RHRlE-217B-3B,3rdRowFromTop,2ndRinFromtheInsideRHR1E-217C:5to5025to3000.0250.01318RHR2E-217ARHR2E-217B-5,2ndRowFromBottomRHR2E-217B-2,2ndRowFromToRHR2E-217B,90DereeBendsRHR2E-217CRHR2E-217D4to500.0070.025EssentiallFreeofLocalorGeneralAttack1to2000.0280.015EssentiallFreeofLocalorGeneralAttack3837Page49 ThomosM.Lo,ronge,inc.TABLE5CIIEMICALANALYSESOFDEPOSITSDatainWUeightPercentAllTestsRunbvICAPExcet"ParameterRHR1ERHR2ERCIC1EES%V"2'17A217BRHR1ERHRlERHR1ERHR2ERHR2E2MBGRDXElbowElbow217A217C217B-3B217C217CHor.solit2E-297AFeCuMnZnICaiIPAlIBaIglIiYia~T'IVCrMoSi02SO4"lCO""'.~U10.1922,802663.140.200,95NDADND.'4DYiD0.21<0.010.14NDYiDQTD5.009.5323.373.944290.270.970.49(0.63(0.47IO.o4~0.'2~I0.14)<0.01)0.15IYiDf'i2.9570.30?.070.79'.200.060.001.090.460.290.270.040.08<0.01<0.013.640.303.207.~Dl49.54l4.98,.'.83l1.40i2.08l3.93I0.39!0.23lO.22',0.18!0.26i0.05l<0.01l0.02,II~DiYiDi4D',I'.02'1.470.670.170.684.954.720220,030.040.030.050,010.01<0.01NDADND0.9657,901.220.250.774.484.480.210.040.070.040.26<0.01<0.01<0.01NDYiDXDIl0.86!80.30l0.89ii0.30iO.8Oii2.81'!0.00>0.41f0.04i0.10I0.08il10.00i<0.01'0.01i1<0.0'1,1.07'i8.40I!6.80ill~l3.36I4O.8O72.59l0.020.34'.110.27i0.08031i0,120.69l0.635.84i0.000.38,'.860.04l0.020,12I0.100.09i0.630.13l0.091.24I<0.01<0,01l<0.01<0.01,<0.01ND').80NDi0.63XD,0.10LOI(@:i'105C850CiNDYiDND<YiDiiIII9.40NDii,'ADND14.90'.10iuDIiiiDYiD11.?0i38.2012.50""SCombustiontoSO2SO4EstimatefromtotalsulfurdeterminationCO3YieutralizationPage50 1~II ThomasM.Laronge,Inc.TABLE6SUMMARYOFSEM-EDSANALYTICALRESULTSPage1of2Fig.illumbersEDSMAPSPhotosRHRPumLocationEDSWt.%'Aormal,Atom%iiletIntensitvI923I10!23IIII1EilE-2178-38WatersidepitbaseIIIIIIlI-2178-~8!DepositinsidewatersidepitIIClMnFeCUI16.42I83.58I6.750.65I0.91I91.69II2d.O4i73.96I11.45I0.710.98i86.8537.15100.4127812.173.05177,99112444i1B-217B-3BtDepositinsidewatersidepitIIIIIIIIIIISMnFeCU6.12II1,43I1.37I91.08I1.4785.59I4.891878011.3916.121.55I5.1524IIIII1E-2178-38!WatersidepitbaseIIIiIIII13.35)MnFeCu82.67'2.17!II1.SOi23.26I2'71II1.81I72.72'.30.106.034.93133.72131IIIIIlt14.IIIII45IlE-2178-38IDepositinsidewatersidepitIIIIIIIIIIIIIII1E-2178-38iWatersidepitbaseIIIIIIISClMnFeCuSClMnFeCli3.57i15.93II1.07IZ91I76.52I0.00I0,24I0,99I'72896.48!6.05I24.47I1.06I2.84!65.58',O.OOI0.43I1.142.58I9585I10,1256.673.409.08144.820.000.893.878.83211.9215I76II46I1E-217CAdjacenttowatersidepitII/IFeCli1.07I1.21I,98.93'98.79,'.75196.9116I2611E-217CIInsidewatersidepitbaseIIFeCu0.93I99.07I1.05I98.95I2.77167,81Page51 f<Zp ThOmaSM.Lo,rOnge,InC.TABLE6SUMMARYOFSEM-EDSANALYTICALRESULTSPage2of2Fig.NumbersEDSMAPSPhotosRHRPumEDSWt.%Normal,Atom%NetIntensitvi17IIII18II(I(I20-(1i1r2727I(IIIIiI48I11E228A(1I'1E-228AiIIIII(1E-228B((Il(1E-228BIIllII((HorizontalsplitI(Depositinsidewatersidepit(IIII'HorizontalsplitI(WatersidepitbaseIiIIII(VerticalsplitI,Adjacenttowatersidepit(rI(Verticalsplit,'InsidewatersidepitbaseIIIlClFeCUAlSiSKFeCQClMnFeNiiCUSClMnFeCuI0.11(3.79(96.09(10.2143.485.972.078.2130.050,35(1.475.71((87.77'85(0,25I0.79(15.73t4.88(75.50(429(95.51I1358(55.57(6.68(1.90(5.28i16.98'.61I6.39i5.01I86.32'.34(0.42,0.87(16.93,'.oo,'1.44i0.36'l285184.9518.40109.6613.558.9123.3655.191.335.897'7<71245196,886.140.70'72543.519.02119.1121I,29('1E-228BiI,Verticalsplit(AdjacenttowatersidepitrIIIrIIIIIClMnFeNiCu8.87',1.01i3.21i6.72',80.19l14.70r1.08'D.DI6.73'4.12i35.503.86121017.48176.60(III,1E-228BII(Verticalsplit'Insidewatersidepitbasel1FeCu5.35(94.65(I6.o4t93.96(17.22173.17'"Elementmapscoverpitareaforeachspecimen.Page52 I),+%1~~f TABLE7RESULTSOFDEBYE-SCHERRERX-RAYDIFFRACTIONANALYSISOF.DEPOSITSAMPLESUSINGCOPPERK-ALPHARADIATIONDepositSampleFromRHRlE-217B-3BLineNo.10"d"Measured5.373.722.942.682,532.47.272.142.081.74"d""'ables5.383.732.972.692.532.472.132.101.71.CompoundCuOH2CuOH)2Fe304CuOH)2Fe304Cu20uOH2Cu20Fe304Fe304LineNo.5.405.382.7DepositSampleFromRHRlE-217C"d"Measured"d""'ablesCompoundCu(OH)2Fe32.472.141.731.512.472.131.711.51Cu20Cu20Fe304Cu20LineNo.1.461.48DepositSampleFromRHR2E-217B,90DereeBend"d"Measured"d""'ablesFe304Compound2.952.532.432.151.952,952.512.472.131.95Fe304Fe304Cu20Cu20Fe304LineNo.1.491.48"d""'ables"d"MeasuredDepositSampleFromRHR2E-217CFe304Compound105.403.733.002.69.472.131.731.511.290.985.383.732,972.69.472.131.711.511.290,98Cu(OH)2CuOH)2Fe304CuOH2Cu20Fe304Cu20Cu20Cu20"'d"inangstromsPage53 ThomasM.Lo,ronge,inc.TABLE8RESULTSOFMICROBIOLOGICALANALYSESSamleTotalCountTveUnitsbvFITCTotalSRBbvIFALiveSRBLiveAPBbyOn-SitebyOn-SiteCultureCulture1E228BRCICroomcooler1E228BRCICroomcooler7Aoilcooler2E217BRHRoilcooler2E217CRHRoilcoolerIWater',Cells/mttlIIIIIIIIIDepositlCells/gmlIIIIIIIDepositJCells/gm~)I'IIIIIIDepositICells/gmiIIIIIII,IIDepositlCells/gmlI'III3SE+09IIIII3.8E+07l'1.8E+08IIlIIIIII1~9E+07IIII6.1E+06iIIII1.9E+05ItI8.2E+06iIIIIIIIlI<9.8E+04iIIII>1.0E+07iIIII>1.0E+07II>'1.0E+06'II>'1.0E+04IIIII>1.0E+04lIII>1.0E+07>1.0E+07>1.0E+05>1.0E+03>1.0E+042E297ADXCondenserI1IIIDeposit',Cells/gm',4.5E+07'1.2E+06I>1.0E+05,'>1.0E+04IIPage54 ThomasM.Laronge,Inc.TABLE9RESULTSOFTHEANALYSISOFESWBXVATERSUPPLYTORCIC1E-2288PUMPROOMUNITCOOLERSamleTakenJune9,1990ParameterpI-ITotalalkal.ConductivityAsMethodIi1ipHIpHI<CaCO3iTitrationi'umhos,'eteriIIPPM7.7183.0587.00AluminumBariumCalciumCopperIronMagnesiumManganesePotassiumSilicaSodiumZinci1iAlII,Ba',CaCO3i1Cui'FeiCaCO3iI,Mn'I1~Si02gT~ZntiICAPICAPICAPiICAPiICAPiICAPiICAPICAPICAPICAPi(0.10(0.10150.000.040.7455.600.755.754.7518.800.28ChlorideFluorideYlitrate]nitriteSulfateCl"FISO4ICICICIC33.300.1510.~~53.60LSIat80FLSIa<<OOFLSIat110F-:0.4+0.6-:0.70Page55 0
Weunderstand thattheRCICIE-228AcoolerisservedbytheESWAloop.PP&LinformedusthattheRCICpumproomunitcoolerswerecle'anedaboutthreeyearsagoandthatlargeamountsofblackdeposit,presumably manganese, wereremovedatthattime.The1E-228Bcoolerhadbeenopenedandcleanedforseveraldaysbeforeourinspection.
Onetubehadnotbeencleaned,andwefoundthispipetocontainalargeamountofloose,blackdeposit.Weunderstand thatthelE-228BcoolerisservedbytheESWBloop.OnetubefromeachoftheRCICcoolerswassenttoourlaboratory forinspection.
: Visually, thetubefromRCIClE-228Atcontained lessdepositandfarfewerpitsthantheIE-228Btube.Whenmeasured, however,depositweightdensities inthesetubesweveroughlythesame(Table3)andpitdensityseemedtobe.higherin1E-228AthaninlE-228B(Table4).TheAcoolershowedthedeepestsinglepitmeasuredduringthisentirestudy;0.05inch,corresponding to91percentwallpenetration.
ThelE-228Bcoolershowedamaximumof0.036inchpitdepthwith60percentwallpenetration.
Thesedifferences maynotbesigniQcant, sinceonlyonesmallportionofonetubefromeachunitwasexamined.
Also,theverticalandhorizontal splitsdescribed inTables3and4arequestionable becausetubeorientation couldnotbemaintained precisely duringremovalfromtheunitandduringcutting.Photographs 14,15and16showthenatureanddensityof,depositsandpittingin1E-228A,andPhotographs 40and41showaclose-upviewofonepitfromthistube.Thetypicalgreen,redandbrowndepositsfoundinbothDxeRHRandRCICcoolerscanbeclearlyseeninthesephotographs.
Page13 p~l.'i ThomasM.Loronge,Inc.GESWSu1LinRIlE-22BDuringouron-siteinspections, wewereabletoexaminetheESWBsupplylinetoRCIClE-228B.Weunderstand thatthisismildsteelpiping.Thislinewasheavilycorrodedandcoveredwithauniformlayerofbrownscalerangingupto3/16inchinthickness.
Notubercles wereseenandnopittingcouldbefoundunderthedeposit,asfaraswecouldreachintothisline.Seebelowforadiscussion ofmicrobiological testinginthispipe.Thispipe,aswesawit,wastypicalofmildsteelpipeexposedtocorrosive waterformanyyearswithnochemicaltreatment.
Theheavylayersofcorrosion-produced scaleareprobably, atthispoint,providing somecorrosion protection tothepipe.Webelievethatthecondition ofthispipeissimilartothatofmostoftheESWpipingexposedtosimilarflowconditions.
D.thrIninDuringoursitevisit,weinspected severalcoolersandcondensers thatcouldnotbedismantled forsubsequent laboratory examination.
Theseinspections aredescribed indetailinourpreliminary report(Appendix);,
theinformation issummarized brieflybelow.l.OE-7DDiInrtorackWrpierTubesinthiscoolerwerereportedtobe90:10cupronickel.
Previouseddycurrent(ET)testingofthiscoolerhadidentified onetubewithatleast60percentwallpenetration.
Weinspected thistubeinplace,usingfiberscope equipment, andfoundmanypitsthatappeared, throughthefiberscope, tobeverydeep.Thepitswererandomlydistributed andirregular inshape.Thecoolerhadbeencleanedbeforewearrivedsothatwedidnotseethedepositsinplace.Page14 Thomo,sM.Lo,ronge, Inc.2.E-DDi1vrnrIrWeexaminedthissmall90:10cupronickel singletubecooleraftercleaning.
Onlyminorpittingcouldbeseeninthistube.3.OE-505E12DDies1nrorIntrpolerThetubesinthis90:10cupronickel coolerweretoosmalltopermitentranceofthefiberscope.
Thetubeendswerecleanandcontained manysmallpits.Nootherobservations couldbemade.4.2E-27AWRDXmnnr~Thisexchanger wasopenedjustbeforeourinspection.
Thetubesandtubesheetswerecoveredwithheavydepositsthatmadeviewingthetubesimpossible.
Thedepositsseemedtoincludecorrosion
: products, scaleandloose,slimymaterial.
Microbiological activityinthisdepositwaslow(Table8,Page54).e'iDiscussion ofMeasurements andInsectionsTable12summarizes theinspection information fromTable1through4andgroupsthecoolersbyESWloop.BasedonthesedataweranktheRHRlubeoilcoolersinthefollowing way,fromworsttobest:PitDensity~pi~inkWorst1C25-3002C1-2001B5-502B-24-502D52B-512ANM1DNMtBestlANMNM=NotMeasured.
DeepestPitInihe~2C0.0281B0.0252B-20.0252D0.0151C0.0132B-50.0072ANM1DNMlANMDepositWt.Densitygm~~f2C37.901B31.732D27.251C24.072B-213.212B-56.882A5251DNM1ANMPage15 0hl~1y'),V Thoma,sM.Loronge,Inc.tTheprecision ofthedatashownaboveisprobablystatistically unjustiQed, sinceonlyonesectionoftubefromeachcoilwasexaminedforeachdatapoint.Nevertheless, sometrendsareapparent.
First,RHRlubeoilcoolersontheESWBloopseemtobeinworsecondition thanthoseontheAloop.Withthepossibleexception ofRHR2E-217D,alloftheRHRBand"Ccoolers,usingESWBwater,showsubstantially higherpitdensities anddepthsandhigherdepositweightdensities thantheRHRAandDcoolersontheESWAloop.Inspiteoftherelatively highplaceofRHR2E-217Dinthisranking,pitdensities andpitdepthsforthiscooleraremoreliketheAlo'opcoolersthantheBloop.OnlythedepositweightdensityforRHR2E-217Dseemstobeinordinately high.However,itisinteresting thatDr.Willertz's rankingoftheRHRcoolersisalmostexactlythesameasourrankingbasedondepositweightdensity.Thefactthatbothdeposition andpittingweremoresevereinthetophalvesofRHRlubeoilcoolingcoils1E-217B(fromDr.Willertz's report)and2E-217B,comparedtothebottomhalves,suggeststhattemperature maybeasigniQcant factorinthisproblem.However,thetemperature riseacrosstheRHRlubeoilcoolersisreportedtobeonly8'F.Also,theRHRpumpshaveoperatedlessthan10percentofthetimesince1987,sothatheatgenerated bythesepumpsdoesnotseemtobesi~ificant.
SeethesectionofthisreportdealingwithESWsystemoperations beginning onPage27forfurtherdiscussion ofthissubject.Thephysicalcondition oftheRCICpumproomunitcoolersdoesnotseemtobeafunctionoftheESWloops.Wheninspected on-site,lE-228BseemedtobemoreheavilyfouledthanlE-228A,butmeasureddepositweightdensities areaboutthesame.BothtubesareheavQypitted.Page16 ThomasM.Laronge,Inc.ANALYEFDEPIANDALRFAEAniMhAvarietyofinstrumental andwetchemicalanalytical methodswasusedtoassistinidentifying elementsandchemicalcompounds presentinthedepositsintheRHRlubeoQcoolers,theRCICpumproomunitcoolersandtheESWGRDXcondenser 2E-297A.Thesemethodsincluded:
Inductively coupledargonplasmaspectroscopy (ICAP)combinedwiththermalandwetchemicalmethodsto.,deflnetheoverallelemental composition ofthedeposits.
Scanningelectronmicroscopy (SEM)andelectrondiffraction spectroscopy (EDS)toidentifyelementspresentinmicrolayers inandaroundspeciQcpitlocations.
X-raydiffraction (XRD)todefinespecificchemicalcompounds presentinselectedpits.On-sitemicrobiological cultureteststodetectsulfatereducingbacteria(SRB)andacidproducing bacterial (APB)thatcancausemicrobiologically influenced corrosion (MIC).Directexamination ofcleanedmetalsurfacestohelpidentifymorphological featurescharacteristic ofMICandgeneralunder-deposit pittingcorrosion.
Allofthisworkispresented anddiscussed inthissectionofthereport.Page17 ThomasM.Laronge,Inc.hmilTable5presentstheresultsofICAP,thermalandwetchemical.analyses ofdeposits.
ThegreenandsomeofthereddepositsreportedinTable1andshowninthephotographs correspond tocoppercompounds, probablycorrosion products.
Thisisconfirmed bythehighlevelsofcopperfoundinalltheRHRandRCICdeposits.
Itisentirelypossible, however,thatthesehighcoppervaluesalsoincludecoppermetalscrapedfromthetubesduringthesamplecollection process.ThetwoanalysesreportedforRHR2E-217Crepresent different samplesrunbyseparatelaboratories.
Agreement isexcellent exceptforcopper,discussed above,andsodium,averycommoncontaminant.
TheRHRlubeoilcoolerdatafromTable5areplottedinFiguret2.ThisFigurecomparescoolers1Band2C(heaviest depositsanddeepestpits),cooler1C(highpitdensitybutintermediate pitdepthanddepositweightdensity)andcooler1A(leastdepositsandpit:tingofallcoolersexamined).
Thedifferences amongtheseanalysesarestriking:
~Coolers1Band2C,intheworstcondition, showlowlevelsofiron,manganese andcalcium,andrelatively highlevelsofsulfur.~Cooler1Cshowshighironandmanganese, slightlyhighercalciumandroughlyhalfthesulfurofcoolers1Band2C.~CoolerlA,inthebestoverallcondition, showsverylowsulfur,thehighestmanganese andanintermediate ironlevel.Baseduponexperience withthecombustion andthermaltdecomposition methodusedtodetermine totalsulfurinthedepositsamples,ourlaboratory estimated thatmostofthesulfurinthePage18 gIII~4<
ThomasM.Laronge,Inc.depositsfromRHRlE-217Aand2E-217Cwasprobablypresentas~~sulfate.Thisis,ofcourse,notaquantitative determination, butwereportedsulfateinTable5onthatbasisfordiscussion.
Sincemanyinorganic sulfatesaresolubleitmightseemunreasonable toexpectsulfatesindepositsofthistype.Infact,however,sulfatesarecommonlyfoundinwater-formed
: deposits, e.g.,inrecirculating coolingwatersystems.Eventhoughsimplesulfatesaltsoftenhaveappreciable solubility, complexinorganic andorganicsulfatesexistthatarelesssoluble.Also,thesulfateion,becauseofitshighchargedensity,adsorbseasilyonmanysubstrates alongwithappropriate cationsforchargebalance..Finally, mostflocculant hydroxides, including hydroxides ofiron,aluminum, copper,nickelandmanganese amongothers,wQIreadilyoccludesulfatesaltsastheyprecipitate.
Manycorrosion productsprecipitate firstasthehydroxide andthendehydrate andcrystallize toformoxidesandotherinsoluble complexcompounds.
Substantial amountsofsulfatecanbeheldonametalsurfaceinthisway.Nofirmconclusions canbedrawnfromtheseICAPdataalone,buttheobvioustrendsmustberecognized.
Itiswellknownthatmanganese canactasacorrodant oracatalystforcorrosion, or,underdifferent circumstances, asafilm-forming inhibitor.
Iron,particularly irontransported tothecorrosion siteinthewaterratherthanformedinplaceasacorrosion product.canalsoprovideprotection.
SulfuriscommonlyfoundatenhancedlevelsindepositsformedbyMIC.SeetheRootCauseFailureAnalysissectionofthisreportforbackground information andreferences onthebehaviorofmanganese, ironandsulfurincorrosion processes.
Curiously, thedepositsintheRHRlE-217Aand2E-217Belbowsarealmostidentical toeachotherandverydiQ'erent fromtheotherRHRcoolerdeposits.
Theelbowscontainmuchlesscopper,moreiron,veryhighlevelsof,manganese andasignificant amountofzinccomparedtotheRHRlubeoilcoolertubesthemselves.
These.dataindicatethattheelbowsfromboth.coils.may,infact,bemadePage19 ThornosM.Lo,ronge, Inc.fromsomeformofbrass(seetheinspection discussions above).Thehighmanganese levelsintheelbowdepositsconfirmtheblackdepositsfoundduringinspection, butthereisnoreadyexplanation forthepresenceofhighermanganese intheelbowsthaninthecoils.TheanalysisoftheRCICpumproomunitcooler1E-228Bdeposit(Table5)isdifferent fromtheRHRlubeoilcoolerdeposits.
Thiscupronickel tubeshowedoneofthedeepestpitsmeasuredduringthisstudy(Table4)andtheanalysisshowstheexpectedcopperandlowlevelofnickelinthedeposit.TheironlevelismoderatecomparedtotheRHRcoolerdepositsandthemanganese levelisverylow.Thisseemstoparallelthedeeppittingandlow<manganese depositcontentobservedinRHR1E-217Band2E-217C.However,in'contrast totheRHRcoolers,thesulfurcontentintheRCIClE-228Bdepositisverylow.Finally,thedepositintheDX2E-297-Acondenser isentirelydifferent fromthedepositintheRHRandRCICcoolercoils.Thisisamuchmore'typical waterside corrosion andfoulingdeposit,highinironandsilica,verylowinmanganese, copperandsulfur,andwithasignificant lossonignitionindicating thepossiblepresenceoforganicmaterial.
Wewereinformedthatourinspection represented thefirst.timethe2E-297Aheatexchanger hadbeenopened,sothe'a'ccumulation ofwater-borne solidsisnotsurprising.
Thisexchanger mustbecleanedtorestoreperformance, andatthattimeitwillbeimportant toinspectthetubesforpossiblecorrosion damage.SEM-EDSAnIfDeEDSspectraofselectedpitsfromtheRHRlubeoilcoolercoilsandRCICpumproomunitcoolertubesarepresented inFigures9through22,alongwiththerespective elemental compositions
~calculated fromstandardlessanalysis(inwhichthedataareinterpreted mathematically withouttheuseofphysicalstandards).
'hecorresponding SEMphotographs appearasNumbers42through-49.Elementmapsforsulfur,chlorine, ironandmanganese areshownPage20 In ThomasM.Larongl,Inc.asFigures23through29.Allofthesedataaresummarized forediscussion inTable6.EDSspectraweretakenattwoselectedmicrolocations ineachdeposit.Forwimple,referring toTable6,Photograph 42showsaspeciQcpitinRHRlubeoilcooler1E-217B-3B.
Figure9showstheEDSspectrumtakeninthemiddleofthedepositinthispitandFigure10showsthespectrumofthedepositatthebaseofthepit,nexttothemetal.Thecorresponding elementmapforthispitappearsasFigure23.Considering theheterogeneous natureofthedepositsandthespecificity oftheEDSspectra,theagreement betweentheEDSdataandtheICAPresultsinTable5isquitegood.TheEDSanalysesforchlorine(chloride) andsulfurareparticularly interesting becausetheseelementsareoftenfoundnearactivecorrosion sites.Chlorides accumulate inunder-deposit pittingcorrosion cellsbyiontransport mechanisms, whilesulfuroftenappearsatMIClocations throughmicrobial metabolism.
ThechlorideandsulfurdatainTable6donotshowanyconsistent pattern.Consider, forexample,theEDSspectrafromthreediferentpitsinRHRlubeoQcoolercoillE-217B-3B aslistedinTable6.~FiureLocation~ChloridRHRlE-217B-3B 9,10Insidepit16.42Pitbase6.75Sulf'urNoneNone11,1213,14InsidepitNonePitbaseNoneInsidepit15.93Pitbase0.246.1213.353.57NoneThesedifferences may.represent heterogeneous depositsortheymaybeadditional evidencethatmorethanonecorrosion mechanism Page21 Thomo,sM.Laronge,Inc.tmaybeinvolvedinthepittingattackintheRHRandRCICcoolers.Dr.WillertzransimilarSEM/EDSanalysesontheRHRcoilsandfoundthesamevariations, bothonpitsfromthesamecoilandamongdifferent coils.Agreement betweenthetwosetsofanalysesseemstobegoodwiththepossibleexception thatDr.Willertz's datashowmoreelementsandespecially moresulfurinsomecasesthandoourresults.Inanefforttoidentifyspecificchemicalcompounds inthedeposits, weranX-raydiffraction studiesonselecteddepositsfromRHRlubeoilcoolerslE-217B-3B, RHR2E-217Canda90degreebendfromRHR2E-2178.TheresultsareshowninTable7.Thedataaredisappointing.
Onlytheexpectedcuprichydroxide.
cuprousoxide(cuprite) andmagnetite wereidentified.
X-raydiffraction issensitive onlytocompounds presentinamountsgreaterthanabout2percentofthetotal,butwehadhopedthatothercrystalline compounds, particularly sulfurcompounds, couldbeidentiQed inthisway.Elementmaps(Figures23through29)areausefulwaytoidentifythelocations anddistribution ofparticular elementsinamatrix.Elementmappingdoesnotdetermine concentrations ofelements.
Figures23through29showthatallfourmappedelements, sulfur,chlorine, manganese andironarepresentinalldeposits.
However,themapsdonotrevealanyconsistent patternsinelementdistributions inthedeposits.
Ontheotherhand,themapsareespecially interesting becausetheyseemtoconfirmthedifferences shownbytheICAPandSEM/EDSanalyses.
Foracample,Figures23,24and25areelemental mapsofthreepitsinRHRlE-217B-3B.
Figure23showsabinodalvoidinthemiddleofthepit,withalmostnoneofthefourmappedelementspresentinthisarea.Figure24showsbothsulfurandchlorine'oncentrated inthemiddleofthepit,withmanganese andironinanouterring.Figure25showsmanganese, ironandsomechlorineinthemiddleofthepit,withsulfuraroundtheoutside.Page22 Thomo,sM.Laronge,inc.MicriloialAn1Table8summarizes allofthemicrobiological analysescoQectedduringthisinvestigation.
On-siteculturetestsforlivesulfatereducingbacteria(SRB)andacid-producing bacteria(APB)areshownintherighttwocolumnsofthisTable.Thesebacteriaarecommonlyinvolvedinmicrobiologically influenced corrosion (MIC).Laboratory microscopic countsfortotalbacteria(alltypes)andfortotalSRBareshowninthelefttwocolumns.ToputthedatainTable8intoperspective, considerthefollowing guidelines thatarecommonlyappliedtobothonce-through andopenrecirculating coolingwatersystem.Withatotalbacterial countbelow10~to103cellspermlorpergram,asystemisconsidered tobeundergoodmicrobiological control.Atthistotalcountlevel,anaerobic bacteriashouldalwaysbelessthan10~perml.Between103and104totalcellsperml,acoolingwatersystemisconsidered tobebiologically active.Above104to10~cellspermlthereiscauseforconcernaboutbiological foulingandcorrosion problemsandabove106cellsperml,immediate actionisusuallyconsidered necessary topreventdamagetothesystem.Onthisbasis,the8.5x109cellspermltotalcountmeasuredintheESWBsupplywatertoRCIClE-228B(line1inTable8)isextraordinarily high.Totalmicroscopic countsincludebothliveanddeadbacteria, butevenifasfewas10percentofthesebacteriawerealiveinthesystem,thecountswouldbewellabovethedangerpoint.ItisalsoveryunusualtofindtotalSRBlevels,aliveanddead,above106permlinawatersample.Theon-siteculturetestsforliveSRBandAPBinthiswatersampleagreewellwiththetotalmicroscopic SRBcountandindicatethatasexpected, mostoftheanaerobic bacteriadiedorbecameinactiveduringshipmenttothelaboratory.
tItisclearthattheESWBsupplywaterishighlycontaminated withbothaerobicandanaerobic bacteria.
WehavenowateranalysesPage23
>tgI,,e),k ThomasM.Loronge,Inc.fromtheESWAsystem,butsincethesesystemscirculate fromacommonsource,wecanassumethatESWAisalsocontaminated.
Thisisnotsurprising, sincethespraypondreceivesonlyoccasional algaecide treatment asneeded;noregularchlorination ormicrobial controlprogramisused.ThedepositsampletakenfromtheRCIClE-2288pumproomunitcooler(line2inTable8)producedthehigheston-sitelivebacterial depositcountsfoundduringthisstudy,greaterthan107cellspergramofdeposit.Thiscoolerhadbeenopenforseveraldaysbeforeourinspection.
ThefactthathighviableSRBandAPBcountswereobservedevenafterthisexposuretoairindicates thatactivitymusthavebeenveryhighwhenthesystemwasclosed.On-sitetestresultsfromthethreeRHRlubeoQcoolersandtheDXcondenser areallonetothreeordersofmagnitude lowerthanthet1E-228BRCICroomcooler.Note,however,thatliveSRBandAPBcountsfromRHRlE-217A,theRHRcoolerinthebestcondition, areonetotwoordersofmagnitude
~hfhrthanfrom2E-217C,thefailedcoolerintheworstcondition.
Thisdifference maynotbereallysigniQcant becausethesamplefrom2E-217Cwastakenafterthecoilhadbeendryandexposedtoairforseveraldays,whiletheotherRHRlubeoilcoolersamplesweretakenwhilethecoilswerestillwet.However,thetotalmicroscopic countsshowthesametrend.Asexplained above,totalmicroscopic stainingtechniques asusedinthisworkcountbothliveanddeadbacteriaandthusprovideanindication
.ofwhatthepopulations mighthavebeenlikewhilethesystemwasonline.Thesedataarepresented graphically inFigure3.Thenumbersdonotexactlyparallelthecultureresults,butthisistobeexpectedsincevariablenumbersofanaerobic bacteriawilldiedepending uponconditions towhichtheyareexposed.Thetotalcountdataforthefourdepositsamplesshownin--*."Figure3areapproximately thesame,withintheprecision ofthistest.However,theSRBlevelsinthedepositsfromRHR2E-217CandRCICPage24 0IIf1 ThomasM.Laionge,Inc.1E-228B,asever'ely corrodedcupronickel cooler,arebothtwoorderstofmagnitude lowerthanlE-217A.ThisisasigniQcant'difference anditindicates thatmicrobiological activityalonecannotexplainthedifferences inpittinganddepositformation foundamongboththeRHRlubeoQcoolersandtheRCICpumproomunitcoolers.SectionsofcoilsfromRHRlubeoilcoolers1E-217Band2E-217Cwerecarefully examinedunderastereomicroscope fordirectevidenceofMIConthesecoppertubes.Indications ofMICareclearlypresent,butnopitscouldbefoundinthesetubesthatcouldbeentirelyandunequivocally attributed toMIC.DiinfAnR1Manganese, andprobablyalsodeposited iron,appeartobeproviding'corrosion protection intheRHRlubeoilcoolersratherthanincreasing corrosion.
Sulfurlevels,asdetermined byICAPanalysis, correlate withobserveddepthofpitting,butlocationspecificSEM/EDSanalysesforsulfurandchloridedonotcorrelate aswell.Elementmapsshowbothelements, alongwithmanganese andiron,presentinalldeposits, butinsomecasesnexttothemetalsurfaceandinothercasesinthedeposititselforevenoutsidethepit.Microbiological counts,usuallyassociated withthepresenceofsulfurcompounds incorrosion productdeposits, donotcorrelate wellwitheithersulfurlevelsorobservedfrequency anddepthofpittingintheRHRlubeoilcoolers,althoughalldepositstestedshowedhighlevelsofanaerobic andtotalmicrobiological activity.
Allofthesedata,alongwiththeobserveddifferences inpitmorphology, frequency anddepth,indicatethattwodifferent mechanisms arecontrolling thepittingcorrosion processintheRHRlubeoilcoolersandtheRCICpumproomunitcoolers.Thesemechanisms.
are.conventional under-deposit pittingattackandMIC.Itisprobablethatmanypitsweremicrobiologically initiated, butthenadvancedbyconventional mechanisms.
Page25 Thomo,sM.Laronge,Inc.MICandconventional under-deposit corrosion andsometimebedistinguished bydifferences inthemorphology (shapeandsize)ofthepits.Usingmildsteelasanexamplefordiscussion, MICtendstoproducecircular, dish-shaped pitswithroundededgesanQoftenwithsmallerpitswithinthemainpit.Conventional under-deposit corrosion usuallyproducespitswithirregular shapes,sharpedgesandstraightorundercutsides.Oncopper,thesedifferences areobscuredbythefactthatthebacteriaresponsible forMICoftendieorbecomeinactiveduetothetoxiceffectsofthecopperionsgenerated bycorrosion.
Thedepositsremain,however,andcorrosion continues byconventional mechanisms sothatthepitmorphology becomesobscured.
SeetheRootCauseFailureAnalysissectionofthisreport,beginning onPage.35,forfurtherdiscussion ofthissubject.Thefollowing sectionofthisreportdiscusses ESWwaterchemistry andESWandRHRpumpoperations.
Thisinformation isneededtohelpexplainwhythiscorrosion isoccurring andwhydepositcompositions andratesofdeposition andpittingattackaredifferent amongthedifferent RHRandRCICcoolers.Page26 s-p4l ThomasM.Loronge,Inc.EWSYTEMHEMITRYANDPERATIQN~ESWhAvailable ESWchemistry parameters for1989and1990areplottedinFigures4and5.Conductivity andcalciumlevels(Figure4)showacleardownwardtrendduringthisoneandone-halfyearperiod.Turbidity fluctuated widelyduringthisperiod,whilethepHremainedinthe8to9range(Figure5).Noexplanation forthesetrendsisreadilyavailable.
Figure6showstemperature andLangelier Stability Index(LSI)calculations fortheESW,asprovidedbyPAL.ItisclearfromFigure6thattheLSIwilloftenbeabove+0.5,andoccasionally above+1.0,creatingadefinitepossibility forcalciumcarbonate scaleformation.
Underborderline scalingconditions, suchasthese,smalltemperature eorconcentration changesinthewatercancreatethedrivingforceneededtocausecalciumcarbonate toprecipitate inaheatexchanger.
Table9presentsananalysisoftheESWBwatersupplytoRCICpumproomunitcoolerlE-228B,takenduringoursitevisitonJune9,1990.LSIvaluesforthissample,asshowninTable9,rangefrom+0.4at80'Fto+0.7at110'F,makingthissamplemarginally non-scaling.
TheanalysisinTable9showstheESWasanalyzedtobeagenerally goodqualitywater.Parameters ofparticular interestareironat0.74ppm,manganese at0.75ppmandsulfateat53.6ppm.Theselevelsofironandmanganese aremorethansufficient toaccountforthedepositsoftheseelementsfoundintheRHRlubeoilcoolersandtheRCICpumproomunitcoolers.Withroughly54ppmsulfatepresentinthewater,itisreasonable toexpectsomesulfatecompounds tobeadsorbedoroccludedincorrosion productdeposits.
ThisprovidesafoodsourceforactiveSRBandindicates thatatleastsomeofthesulfurreportedintheRHRandRCICcoolerdepositsmaythepresentassulfate(seeTable5).Page27
'll'J4trkWt ThomasM.Laronge,Inc.Recommendations forwatertreatment attheSusquehanna plantarebeyondthescopeofthisreport.ThedataclearlyindicatethattheESWisatleastoccasionally scalinginnature,andthemicrobiological datadiscussed inaprevioussectionshowthatthesystemishighlycontaminated withbacteria.
EWnRHRPumrnThenatureoftheflowpatternsthroughtheRHRlubeoilcoolersandtheRCICpumproomunitcoolerscanhaveamajorimpactupondepositformation andsubsequent corrosion intheseunits.Toinvestigate thisproblem,westudiedtheoperation oftheESWsystempumpsandtheRHRpumpsinsomedetail.Weappreciate thecooperation offeredbyPP&Lpersonnel inobtaining theoperating datanecessary forthisstudy.NotaQthedata-werereadQyavailable, andthefirstinformation providedtousturnedouttobeincorrect.
Wehavereviewedthisproblemseveraltimes,andthefollowing discussion isbaseduponthelatestinformation whichPP&Lassuresusisreliable.
tmrinOurstudyisbaseduponthefollowing PP&Linformation:
TheESWiscirculated fromalargespraypondthroughvariousequipment andbacktothepond.Makeupwatertotheponds,mostlyfromthemaincondenser coolingtowerblowdown, withadditional makeupfromtheSusquehanna Riverasneeded.TheESWsystemisdividedintotwoloops,labeQedAandB.Twopumps,labeQedESWAandC,drivewaterthroughtheAloopandpumpsBandDdrivetheBloop.ThesepumpstakewaterfromacommonsuctionpointinthePage28 ThomasM.Laronge,Inc.spraypond.Waterreturnstothepondthroughtwoseparateheaders.~Thefollowing coolersthatwehaveexaminedareconnected inparallelacrosstheESWAloop:RHRlubeoilcoolers1E-217AandD,and2E-217AandD.RCICpumproomunitcoolerlE-228A.ESWGRDXsystemcondenser 2E-297A.~Thefollowing coolersthatwehaveexaminedareconnected in.parallelacrosstheESWBloop:0RHRlubeoilcoolerslE-217BandC,and2E-217BandC.RCICpumproomunitcoolerlE-228B.~AtanytimetheESWisflowing,oneorbothoftheESWAandBloopsmayberunningandeitherorbothoftheESWpumpsontheactiveloop(s)maybeinuse.Watercirculates throughalloftheequipment.
oneachloopwheneverthatloopisrunning.BThEWSrPnThevolume.ofwaterinthespraypondisestimated byPALat26milliongallons.Weunderstand thatmakeup'from thecoolingtowerblowdown" runsatfrom300to1000gpm,withanadditional 200gpmavailable fromtheriverasneeded.Page29 (4
ThomasM.Laronge,Inc.Wedidnotpersonally inspectthespraypond.Weunderstand fromPP&Lpersonnel andfromwatertreatment vendorreportsthatthepondwaterqualityvariesseasonally inturbidity anddissolved andsuspended solids.Duringthesummermonths,algaegrowsinthepond;thisiscontrolled byoccasional treatment withalgaecide andchlorinearoundtheedgesandacrossthesurfaceofthepond.Itisclearthatthespraypondisasourceofmicrobiological contamination andpossiblyalsosuspended solidsintheESWwaterandcoolers.Chlorinehas,inthepast,beenaddedtotheESWpumpsuctionpoint,butthishasnotbeendoneinrecentmonths.CEWRHRmRunTimPP&LprovidedmonthlyruntimedatainhoursfromAugust1986throughMay1990forboththeESWandtheRHRpumps.Thesedataarerecordedfordiscussion inTable10.Incalculating the"AssumedTotal"runtimesshowninTable10,weusedthefollowing guidelines:
~Weunderstand thatpriortoJune1989,theentirecoolingloadforthedieselgenerators wascarriedbyESWloopAandforthatreason,bothpumps,ESW-AandESW-C,ranwhenevertheAloopwasinoperation.
ToarriveatatotalrunfortheAloopduringthisperiod,wesimplyusedthehigherofthetwohourlynumberseachmonthforpumpsESW-AandESW-C.Duringthissametimeperiod,theloadontheESWBloopwaslighterandusuallyonlyonepumpwasinoperation.
Tocalculate thetotalmonthlyrunhoursfortheBloop,wetherefore usedthesumoftherecordedhoursfortheESW-BandESW-Dpumps.Page30 ThomosM.Loronge,Inc.FromJune1989forward,thepipingwasrearranged sothatthedieselgenerator coolingloadwassharedbetweentheESW-AandBloops.Duringthisperiod,ithasbeennormalpracticetooperateonlyonepumpatatimeineachloop.We,therefore summedthedataforeachmonth,asabove,tocalculate assumedtotalrunhoursforeachloop.Theassumedtotalmonthlyruntimesshowagooddealofscatterthatobscuresanysignificant trends.Tosmooththedata,wecalculated annualruntimehoursasapercentoftheavailable hours(8,760hoursinayear).ThesedataareshowninFigures7Aand7B,representing theESW-AandBloops,respectively.
TheseFiguresalsoincludethepercentruntimesfortheRHRpumpsfromTable10,simplycalculated bysummingthemonthlydata.tThehigherruntimesshownforbothESWloopsin1989comparedtootheryearsmaybeacalculation errorresulting
&omthefactthatbothpumpsprobablydidruntogetheroneachlooppartofthetimeafterJune1989.Thisquestiondoesnotsignificantly affectthedataforourpurposes.
ItcanbeseenfromFigures7Aand7BthattheESWAloopranforroughly35percentofthetimefrom1987throughMay1990andtheESWBloopranforabout25percentofthetime,ontheaverage.TheexactQguresarenotimportant.
Conversely, thedatasay.thattheAloopwasstagnantfor65percentofthetimeandtheBloopfor75percent'ofthetime.Itfollowsthatthecoolersconnected toeachloop,aslistedunderSystemOperations above,werealsostagnantfortheseperiodsoftime.Weassumethatthecoolerswerenotallowedtodrainandremainedfullwhilestagnant.
Page31 I
Thomo,sM.Loronge,Inc.Theexistence oflongperiodsofstagnation intheESWwatersystemisanimportant factorinunderstanding thepittingfailuresthatoccurredinthecopperRHRlubeoilcoolingcoilsandthe90:10cupronickel RCICpumproomunitcoolers.Thepresenceofstagnant, contaminated waterinthesecoolersforextendedtimeperiodsrepresents theworstpossiblecondition forcorrosion protection ofcopperandcopperalloys,particularly withnospecificcorrosion inhibitors forcopperinthewater.Thisproblemisdiscussed indetailinthefollowing RootCauseFailureAnalysissectionofthisreport.TheRHRpumppercentruntimedatainFigures7Aand7BareameasureofthetimethatheatwasappliedtotheRHRlubeoilcooling.coils.Wehavenoinformation onthetimesthatheatwasappliedintheRCICpumproomunitcoolers.HeatwasappliedtotheRHRlubeoilcoolersforasmallfractionofthetotaltime,butagain,moreinloopAthaninloopB(seeFigures7Aand7B).Giventhe8'Ftemperature riseacrossthesecoolers,asdiscussed above,andtheshortRHRpumpruntimes,itseemsunlikelythattemperature differences acrossthecoolercoilscouldbeasignificant factorinthedeposition andcorrosion process.Nevertheless, thedatashowthattheRHRpumpswiththe"best"lubeoilcoolers,namelylA,2Aand1D,ranperhapstwiceasmuchasthosepumpswiththe"worst"coils,namely1B,1Cand2C.D.RHRLuillinWrFlwVlociFlowvelocityisanimportant factoraffecting thenatureanddegreeofbothdeposition andcorrosion thatcanoccurintubularequipment.
TheinitialdatasuppliedbyPALshowedveryhighflowvelocities intheRHRlubeoilcoolers.Thisseemedinconsistent inviewoftheloosedepositsfoundinsomecoolersandthefactthatnoerosionorerosion/corrosion wasfoundinanyofthecoolertubesorelbowsthatweexamined.
This,wasconfirmed byDr.Willertz's inspections ofthesetubes.Page32 ThomosM.LoroncIe, Inc.PALcooperated fullywithusinresolving this.issueandwasabletosupplynewflowvelocitydatathatseemtobereasonable andthatPPM.assuresusaretheirbestestimates.
ThesedataareshowninTable11andFiguresSAandSB,fortheAandBloopsrespectively.
PP&LprovidedvelocitydatafortheAloopforallthreetimeperiodsshowninTablellandfortheBloopfortheperiodfromJune1989throughJune1990.Bloopdatawerenotavailable forJune1986throughJune1989.AtPP@L'ssuggestion, wecalculated flowvelocities fortheBloopduringthisperiodat20percentabovethecorresponding Aloopvelocities.
Thelowerflowvelocities intheAloopfromJune1989through1990maycorrespond tomorefrequentuseofonepumpratherthantwoduringthisperiod(seeabove).Thereisnosimpleexplanation forthehigherflowvelocities intheBloop,especially duringtheJune1989to1990periodforwhichharddataareavaQable.
Thesehighervelocities goalongwithshorteroperating periodsfortheBloop,asexplained inthepreviousdiscussion.
Typicalcriticalwatervelocities, abovewhicherosionanderosion/corrosion damagecanbeexpectedinheatexchanger tubing,havebeenreportedintheliterature:
Materi1Copperalloy&#xb9;122Admiralty Brassalloy&#xb9;4430090:10Cupronickel alloy&#xb9;70600ri1WrV1i6fps10tollfps12to15fpsRfrnThevelocities inTable11andFiguresSAandSBareabovetheguidelines forcopperasquotedabove.Velocities inthe0.5inchdiameterRCICpumproomunitcoolersarelowerthanintheRHRtube'oflcoolersatabout2to3'feetpersecond.Exceptforsomeminordirectional natureinthedepositsinoneRHRlubeoilcoolerPage33
 
ThomasM.Laronge,Inc.(RHRlE-217B,seeTable1),wehavefoundnoevidencethatvelocityaffectedthenatureofthecorrosion intheRHRandRCICcoolers.However,waterflowvelocityalmostcertainly influenced thetype,amountandphysicalformofthedepositsinthesecoolers.Page34 IJ' Thomo,sM.Laronge,Inl-.RTAEFAILREANALYIBrieflystated,theRHRlubeoilcoolersandtheRCICpumproomunitcoolersfailedbyacombination ofmicrobiologically inducedcorrosion andchemicalpittingcorrosion mechanisms.
Periodsofstandingincontactwithstagnant, microbiologically activewaterallowedinitialdepositstoformonthetubesurfaces.
Underneath thesedeposits, anaerobic conditions allowedsulfate-reducing bacteriatoproducesulfidesfromsulfateionsinthewater.Themicrobiologically-generated sulfidesinitially attackedthemetalsurfaces.
Thebaremetalexposedinthiswaytendedtoinhibitfurthermicrobiological growthunderthedeposits.
However,oxygenconcentration cellsnowexistedbetweenthemoistdepositsnexttothemetalandthebulkwater.Thebaremetalbecameanodicrelativetothemetalawayfromthedepositsandpittingcorrosion began'.Chlorideionsfromthewaterconcentrated inthepitthroughcomplexionformation withcopperionsproducedthroughcorrosion.
Ironandmanganese inthewatersupplyalsoconcentrated inandnearthegrowingtubercles andpits.Irondepositstendedtoreducethepittingcorrosion ratebyinhibiting diffusion ofwaterthroughthedeposits.
Manganese alsoservedinthisrole,butinsomecasesalsoincreased thecorrosion ratebycatalyzing theelectrontransferreactions withinthepitsandnexttothemetalsurface.Thispittingcorrosion eventually producedthethrough-wall failureofRHRlubeoilcooler2E-217Candtheincipient failuresofRHRlE-217BandRCICpumproomunitcoolerlE-228A.Thereasonsforthelessseverepittinganddeposition observedinotherRHRandRCICcoolersarerelatedtodifferences indepositcompositions andoperating conditions amongthesecoolers:Page35 ThomosM.Laronge,Inc.Thefollowing paragraphs ofthissectionexaminethispittingcorrosion failurescenarioinmoredetail.PiIniCopperand90:10cupronickel arechosenforheatexchanger servicebecauseoftheirgoodmechanical andheattransferproperties andbecauseoftheiroutstanding resistance tocorrosion inclean,flowingwater.Thesemetalsaresostableinwaterthatheatexchanger tubesthathavebeencorrodedunderdepositscanbesafelyreturnedtoserviceaftercleaning(4).
However,itiswellknownthatcopperalloysareattackedbysulfides.
Muchworkhasbeendonetounderstand andtodocumentthepittingcorrosion ofcopperand90:10cupronickel thatcanoccurinsulflde-contaminated water(45@.Mostofthisworkhasbeendoneinmarineenvironments.
Ionicconcentrations are,ofcourse,quitedifferent inafreshwaterenvironment suchastheESWspraypond.Sulfideshouldnormallynotexistinthissystem.Thedifference isthattheESWspraypondisbiologically veryactiveandprobablycontainslargenumbersofsulfatereducingbacteria(SRB).Thisassumption isbasedupontheknownlackofbiocidaltreatment inthepond,probableanaerobic conditions nearthebottomofthepondandtheestablished highlevelsofSRBintheESW-BsupplytoRCICcooler1E-228B.WaterintheRHRlubeoilcoolersandtheRCICpumproomunitcoolershasbeenstagnantfrom65to75percentofthetime(Table10andFigures7Aand7B).Duringthesestagnantperiods,suspended solids,biological matterandsolublematerials fromthewater,particularly iron,manganese andcalciumsalts,tendedtoprecipitate onthetubesurfaces.
SomeofthesesolidsmusthavebeenmovedeverytimetheESWwatercirculated, butovertime,adherentdepositsaccumulated.
tSulfldicmetabolic productsfromSRBinthesedepositsactedinthesamewayassulfldesincontaminated seawater;theyattackedthePage36 ThomasM.Laronge,Inc.metalsurfaces.
Thesebacteriatheneitherdiedorbecameinactive.
Popeetal(7)explained thatlittleisknownaboutMICoricopperalloysinfreshwaterbecauseoftheknowntoxicityofcopperionstobacteria.
Schiffrin etal+)showedthataerobicorganisms, e.g.,Pseudomonas, canalsoinducepittingcorrosion ofcopperalloysbyformingdeposits.thatleadtooxygenconcentration cellsandeventualdestruction oftheprotective oxidelayersonthemetal.Oncebaremetalhadbeenexposedbymicrobiologically inducedsulfideattack,standardunder-deposit oxygenconcentration cell,corrosion becamethedrivingforce.Manyauthorshavedocumented pittingcorrosion oncopper.During+)described severalcasesofpittingoncopperbeneathironoxidedeposits.
Thephotographs inDuring'sbooklooksimilarinsomerespectstothoseinthisreport.TheAWWA('@explainspittingoncopperwaterpipingingreatdetail,withdiagramsandelectrochemical mechanisms.
Quotingfromthiswork,"Pitting(oncopper)ischaracterized bythepresenceoftubercles, whicharerandomlydistributed.
Theinsideofthetube(contains) blue-green basiccoppercarbonate (Malachite).
Underthislayerisabrownlayerofcuprite(cuprousoxide,Cu20),whichisfriableandeasilyspalledfromtheunderlying coppermetal.Typically, manypitsataHstagesofdevelopment areseen,butonly,afewhaveactuallypenetrated thewallthickness."
Thisdescription seemstomatchquitewellthetheconditions inthefailedRHRlubeoil'ooler, 2E-217C.LymanandCohen(>0) comparedthechemicalcompositions ofmanywatersuppliesassociated withpittingfailuresincoppertubes.ThepH,chlorideandsulfatelevelsintheESW,aslistedinTable9,fallintoLyman.and Cohens'ange ofmaximumsusceptibility topitting.However,theauthorsalsopointoutthatmanysuccessful applications ofcopperpipingexistinwaterswithsimilarcompositions.
Chloridedoestendtoconcentrate atanodicsitesbecauseofcomplexionPage37 ThomasM.Laronge,Inc.formation withnewlyreleasedcopperions.ThiscanfurtherreducethepHattheanodicsiteandincreasethecorrosion rate.EfffulfrIrnSulfidesandsulfatesmaycontinuetoinfluence thecorrosion mechanism duringthesecond,orconcentration cellphaseofpitgrowth.TheAWWAmanual(@describes pitmorphology incopperpipes.Intheabsenceofsulfides, theAWWAclaimsthatmostpitsareirregular inshape,straightedgedandnarrow.WithsulQdespresent(fromthewater,notfromMIC),pitstendtobewiderandshallower innature.Themechanism described hereisverysimilartochloride-
.enhanced pittingcorrosion ofmildsteel.Bothtypesofpittingdescribed bytheAWWAareclearlyevidentintheRHRlubeoilcoolertubes.See,forexample,Photographs 19,~~~~~~~~23,27,30,31,33and34.IntheESWsystem,SRBobviously continuetoexistinthedeposits, althoughnotindirectcontactwiththemetalsurface.Itisentirelypossibleforsulfidesgenerated bySRBmetabolism tocontinuetodiffusewiththewaterandaffectpitmorphology asdiscussed bytheAWWA.ThefactthatSEM/EDSanalysesandtheelementmapsinthisreportshowedsulfurpresentatspecificbut'different locations invariouspitsanddepositsmaybetheresultofthiseffect.SeeTable6andFigures23through29.IronfoundintheRHRlubeoilcoolerandRCICpumproomunitcoolerdepositscomesmostlyfromthemakeupwatertothespraypond,withadditional contributions fromironaccumulated inthepondandfrompossiblecorrosion ofESWtransferlines.Solubleironinthewatermaybeprecipitated intheESWsystembychemicaloxidation orbytheactionofironoxidizing bacteria.
Thesebacteriaareoftenfoundtocoexistwithotherbacteriainbiologically activewatersystems.TheXRDdata(Table7)showthatironindepositswaspresenttentirelyasmagnetite.
Thisisexpectedinlowoxygenlocations, i.e.,insideandunderneath tubercles.
Depending uponotherPage38 ThomasM.Laronge,Inc.$1characteristics ofthespeciQcdeposits, magnetite mayprovidesome,barrierlayercorrosion protection, oritmayserveonlytoincreasethesizeandnumberofthetubercles andtherefore theintensity ofpitting.Thepresenceofmanganese, atthelevelsfoundintheSusquehanna
: deposits, canbothaggravate andreduce'ittingcorrosion.
Manganese isamultivalent metal.Itcanexistinseveraloxidation statesandcantherefore actasanelectrontransferagenttoencourage electrochemical oxidation-reduction reactions.
This,ineffect,increases thecorr'osion rateandparticularly pittingcorrosion undermanganese-containing deposits(>>).
Atthesametime,however,tightlyadherentlayersofmanganese oxidescanprotectmetalsurfacesfromcontactwithwater.Manganese oxidesareoftensuggested asproductsofbiological metabolism inmanganese-containing waters.Bothofthesemechanisms wereinvolved'in theRHRlubeoiltcoolerpittingcorrosion.
process.TheRHR2E-217Ccoolershowedlittlemanganese inthedeposits, butthedepositswerecrystalline, scalingandnon-adherent innature.Eventhesmallamountofmanganese foundinthisdeposit(Table5)canincreasecorrosivity byaidingoxidation-reduction reactions involving electrontransfer, asexplained above.TheRHRlE-217Adepositcontained muchmoremanganese, butasexplained intheinspection sectionabove,thesedepositswerelessscalingandmoreadherentinnature.Pittingattackwascorrespondingly lesssevere.Thevariations inmanganese contentofthedepositsmaybepartofthereasonforthedifferences incondition ofthevariousRHRlubeoilcoolers.Theworstcoolers(2Cand1B)areontheESWBloop,whilethecoolersinthebestcondition (lA,2Aand1D)areontheAloop.TheESWAandBloopsmustbeconsidered asonesystem,sothesedifferences arehardtoexplain.PriortoJune1989,theAloopranmorefrequently andcarriedmorewaterthantheBloopandatabouta20percentlowervelocity.
Possiblymoremanganese could-havedeposited intheAloopundertheseconditions.
TheveryhighPage39 ThomasM.Laronge,Inl-.levelsofmanganese inthelE-217Aand2E-217Belbowsremainunexplained.
nfRHR1rRIlrurnikelItisinteresting tocomparethecondition oftheRHRlubeoilcoolers(typeKcopper)withtheRCICpumproomunitcoolers(90:10cupronickel).
Thediscussion inthisreporthascenteredontheRHRcoolersbecauseofthefailurethatoccurredin2E-217Candthenearthrough-wall pitsfoundinotherRHRcoolers.However,theRCICcoolerswerenotfarbehind.Wemeasureda90percentthrough-wall pitin1E-228Aanda60percentthrough-wall pitinlE-228B(Table4).TheflowvelocityintheRCICcoolerswasreportedbyPALasabout2to3feetpersecond.WaterflowsinboththeRHRandRCICcoolerswhenevertheESWpumpsarerunning.RCIC1E-228Aisconnected totheAloopandlE-228BtotheBloop.RCIC1E-228BandtheESWBinletwaterlinetothiscoolershowedthehighestlevelsofmicrobiological activityofallthecoolerstested.Themanganese levelinthedepositfromRCIC1E-228Bwasverylow,similartoRHR2E-217C.Itisclearthatthepittingcorrosion problemisjustasseriousintheRCICroomcoolersasintheRHRlubeoilcoolers.Thisisimportant becausetheRHRcoolersaretheonlycoppercoilsintheESWsystem;allothercoolersare90:10cupronickel orotheralloys.Cupronickel andcopperarebothknownfortheirexcellent resistance tocorrosion inclean,flowingwateratneutralandalkalinepH.However,cupronickel ismoresusceptible thancoppertobothgeneralbiofouling andMIC(>2).Thisbehaviorhasbeenobservedanddocumented, butnot.explained verywell.Copper(and304stainless steel)formpassive,protective Almsthatprovidecorrosion resistance.
90:10cupronickel alsoformspassivesurfacefilms,andobtainsadditional corrosion Page40 ThomasM.Loronge,Inc.resistance fromtheelectrochemical nobilityofthealloyedsurface.Inthepresenceofacorrosive agentsuchashydrogensulfidefrombiological metabolism, andintheabsenceofoxygenneededtorepairpassivefQms,itispossiblethatfilmsonthesinglecomponent coppersurface.mightbemoreresistant toattackthanthoseonthetwocomponent 90:1'0cupronickel surface.0Page41 ThomosM.Larongt,Inc.ENDIPage42 pi'p,tErr4' ThomasM.Laronge,Inc.BIBLIRAPHYy1.ClaudeD.Tapley,"ProcessIndustries Corrosion."
NationalAssociation ofCorrosion Engineers, 1975.Texas,2.R.JamesLandrum,"Fundamentals ofDesigning forCorrosion Control:ACorrosion AidfortheDesigner."
Texas,NationalAssociation ofCorrosion Engineers, 1989.3.K.I.JohnsonandD.A.Neitzel,"Improving theReliability ofOpenCycleWaterSystem:Applications ofBiofouling Surveillance andControlTechniques toSedimentandCorrosion FoulingatNuclearPowerPlants."Washington, DivisionofSafetyReviewandOversite, OfficeofNuclearReactorRegulation, U.S.NuclearRegulatory Commission, 1987.~'rthurH.Tuthill,"Successful useofCarbonSteel,CopperBaseAlloysandStainless SteelinServiceWaterSystemsinOtherIndustries."
Presented attheEPRIServiceWaterSystemReliability Improvement Seminar,Charlotte, NorthCarolina, October1988.5.H.A.Videla,M.F.L.deMele,andG.Brankevich, "Assessment ofCorrosion andMicrofouling ofSeveralMetalsinPolluted8*1."81LNNN448.1,4ty1888.6.D.FSchiffrin andS.R.deSanchez,'TheEffectsofPollutants andBacterial Microfouling ontheCorrosion ofCopperBaseAlloysinSeawater."
Quernin,41,No.1,January1985.7.D.H.Pope,D.Tuques,P.C.Wayner,Jr.andA.H.Johannes, "Microbiologically Influenced Corrosion:
AStateoftheArtReview."MTIPublication No.13,Materials Technology Institute oftheChemicalProcessIndustries, Inc.,secondedition,1990.Page43 c~MH ThomasM.Laronge,Inc.8.EvertD.D.During,rrinA111nfIllurHiriV12NewYork,ElsevierPress,1988.9.AWWAResearchFoundation, nrn1rrinfWrDirinmpp.337-365.Denver,AWWAPress,1985.10.W.StuartLymanandArthurCohen,"ServiceExperience WithCopperPlumbingPipe."Mri1PrinnPrfrmnV~111,No.2,pp.43-53,February1972.ll.VictorJ.Linnenbom andJeffreyJ.Forshee,"ServiceWaterSystemExperience atBeaverValleyPowerStation."
Presented attheServiceWaterSystemReliability Improvement Seminar,Charlotte, NorthCarolina, October1988.12.DavidS.Hibbard,"CopperAlloyTubeApplications inPowerPlanteCondensers."
PwrEninrin,August1981.Page44 P)jc0 ThomasM.Laronge,inc.LIFTABLETABLE1TABLE2TABLE3TABLE4TABLE5TABLE6TABLE7TABLE8TABLE9eTABLE10TABLE11TABLE12RESULTSOFVISUALINSPECTIONS OFSPECIMENS RESULTSOFPHYSICALMMBUREMENTS ONAS-RECEIVEDSPECIMENS RESULTSOFDEPOSITWEIGHTDENSITYMEASUREMENTS RESULTSOFPITDEPTHSURVEYSCHEMICALANALYSESOFDEPOSITSSUMMIARYOFSEM-EDSANALYTICAL RESULTSRESULTSOFDEBYE-SCHERRER X-RAYDIFFRACTION ANALYSISOFDEPOSITSAMPLESUSINGCOPPERK-ALPHARADIATION RESULTSOFMICROBIOLOGICAL ANALYSESRESULTSOFTHEANALYSISOFESWBWATERSUPPLYTORCIC1E-228BPUMPROOMUNITCOOLERESWANDRHRPUMPRUNTIMES,HOURSRHRLUBEOILCOOLERFLOWVELOCITIES COMPARISONS OFOBSERVATIONS ANDPHYSICALMEASUREMENTS Page45 C(I TABLRESULTSOFVISUALINSPThomosM.LoIonge,Inc.NSOFSPECIMENS ItemNumberDescritionRCIC1&228APumproomunitcooler.RCIClE-228BPumroomunitcooler.RHRlE-217ALubeoQcooler.RHRlE-217ALubeoQcooler,90degree90DegreeBendsbends.~RHRlE-217BLueocooer,3rowSection3Bfromtop,2ndcoQfromcenter.RHRlE-217CLubeocooler.PhotoNo.1,14,15.16, 40,41,4311,48,491313,37,38,39
,20,21,2, 23,42,44,45 7,28,29,30, 31,46,47VisualInsectionsofInteriorSurfacesUormthinbrowndepositsplustubercles, alsosomemse/tandepositsonsurfaces.
Greenandreddepositsbeneathtubercles.
Pitsmostlyhemispherical, somejaggedandirreular.Noundercuttin
.Noeneralcorrosion.
DeosftsandfttfnsfmQartolE-228A.Uniformthindeosits,notubercles, veslhtfttin.Apparently brasselbows.Blackpowderydeposit,somearemetal.Novisiblecorrosion underdeposits, exceptpittingoncoppertube(PhotoNo.39).Mosysmoorownaceposft,someagreendeposits.
Largebrowntubercles, 0.25inchdiameterandheight.Under-deposit pitsmostlyhemispherical, noodd-shapedored-edepfts.Largeamountosmoothbrown/black deposit,rightgreencrystalsaroundtubercles andpits.Sparkling silver/red crystalsinbottomsoflargeshallowhemispherical pits(SEMPhotoNos.46and47.RHR2E-217A Lueocooer.6Uormrown,sto1E-217B,utmucsmaertubercles.
Nosignificant visiblelocalized orgeneral'orrosion.
RHR2E-217B LubeoQcooler.9RHR2E-217B LubeoQcooler,90degree90DeeBendsbends.10-RHR2E-217C LubeoQcooler.RHR2E-217D LubeoQcooler.8,9,10,12, 32,33,3412,35,362,17,18,19 4,5,24,25,26,27 Scattered blackandgreendeposits, appeartoollowowpattern.Nosignificant tuberculatfon.
Hemispherical pitswereQlledwitheenandblackdeposits.
Apparently copperelbows.Smoothtan/black deposits.
Novisiblelocalized oreneralcorrosion.
Heavygrey/green scalydeposit,nosmoothrown/black layerasinothercoQs.Largetubercles coveringgreenandreddeposits.
Manyjaggedandhemispherical pits,MostseverepfttfnofallRHRlubeoQcoocoQsexamined.
Uormbrowndeposit,manysmalltubercles withgreenedges,greendepositbelowtubezeles.
Shallow,Mundpits,lessseverethanothercoolers.Page46
'I'8aii TABLE2RESULTSOFPHYSICALMEASUREMENTS ONAS-RECEIVED SPECIMENS SpecimenRCIClE-228AHorizontal SplitRCIClE-228AVerticalSplitRCIClE-228BHorizontal SplitRCIClE-228BVerticalSplitRHRlE-217A90DeBendsRHR1E-217B-3B RHR1E-217CRHR2E-217ARHR2E-217B-2 2ndRowFromToRHR2E-217B-2ndRowFromBottomRHR2E-217B-2 2ndRowFromTopsA,B,C,DRHR2E-217B90DreeBendsRHR2E-217CRHR2E-217DOverall,Length,Inches20.319.622.52.3to2.516.010.014.0VariesDepending onSecimenConsidered SecimenConsidered VariesDepending onSecfmenConsidered 1.9to2.116.515.5OutsideDiameter, Inches0.6370.6350.6370.6370.9800.8730.8900.8550.875VariesDepenon0.8750.8250.90to1.00.8500.895InsideDiameter, Inches0.5290.5310.5280.5140.7600.7410.7650.7500.7430.7430.7130.75to0.850.7180.755MeasuredWallThfckness, Inches0.0550.0520.0600.0600.0980.0710.0710.058to0.0700.0650.0650.0560.0750.0750.070TypicalMinimumWallThickness
+/-Tolerance, Inches0.049+0.0040.049+0.0040.049+0.0040.049+0.004Uncertain 0.065+0.00450.065+0.00450.065+0.00450.065+0.0045.0.065+0.00450.065+0.00450.065g0.00450.065+0.00450.065+0.0045Page47 TABLE3RESULTSOFDEPOSITWEIGHTDENSITYMEASUREMENTS~
SecimenRCIClE-228A,Horizontal SlitRCIClE-228A,VerticalSlitRCIC1E-228B,Horizontal SlitRCIClE-228B,VerticalSlitRHRlE-217A,90DereeBendsRHRlE-217B-3B, 3rdRowFromTop,2ndRinFromtheInsideRHRlE-217CRHR2E-217ARHR2E-217B-2, 2ndRowFromToRHR2E-217B-5, 2ndRowFromBottomRHR2E-217B,90DereeBendsRHR2E-217CRHR2E-217Dm/ft210.677.137.727.7715.4031.7324.075.2513.216.8617.2337.9027.25DeositWeihtDensim/mm20.110.080.080.080.160.340.260.060.140.070.18~0.410.29'Calculated according toASTMStandardD3483-83MethodAPage48 I
ThomosM.Loronge,Inc.TABLE4RESULTSOFPITDEPMSURVEYSSecimenRCIClE-228A,Horizontal SlitRCIClE-228A,VerticalSlitRCIClE-228B,Horizontal SlitEstimated DensityofPitting,Pits/Square Inch5to50Estimated MaximumPitDepth,Inches0.0500.0170.017alculated PercentThrough-WallUsingMaximumPitDepth,Percent913328RCIC1E-228B,VerticalSlitRHRlE-217A,90DereeBends2to50.036Essentiall FreeofLocalorGeneralAttack60RHRlE-217B-3B, 3rdRowFromTop,2ndRinFromtheInsideRHR1E-217C:5to5025to3000.0250.01318RHR2E-217ARHR2E-217B-5, 2ndRowFromBottomRHR2E-217B-2, 2ndRowFromToRHR2E-217B,90DereeBendsRHR2E-217CRHR2E-217D4to500.0070.025Essentiall FreeofLocalorGeneralAttack1to2000.0280.015Essentiall FreeofLocalorGeneralAttack3837Page49 ThomosM.Lo,ronge, inc.TABLE5CIIEMICAL ANALYSESOFDEPOSITSDatainWUeightPercentAllTestsRunbvICAPExcet"ParameterRHR1ERHR2ERCIC1EES%V"2'17A217BRHR1ERHRlERHR1ERHR2ERHR2E2MBGRDXElbowElbow217A217C217B-3B217C217CHor.solit 2E-297AFeCuMnZnICaiIPAlIBaIglIiYia~T'IVCrMoSi02SO4"lCO""'.~U10.1922,802663.140.200,95NDADND.'4DYiD0.21<0.010.14NDYiDQTD5.009.5323.373.944290.270.970.49(0.63(0.47IO.o4~0.'2~I0.14)<0.01)0.15IYiDf'i2.9570.30?.070.79'.200.060.001.090.460.290.270.040.08<0.01<0.013.640.303.207.~Dl49.54l4.98,.'.83l1.40i2.08l3.93I0.39!0.23lO.22',0.18!0.26i0.05l<0.01l0.02,II~DiYiDi4D',I'.02'1.470.670.170.684.954.720220,030.040.030.050,010.01<0.01NDADND0.9657,901.220.250.774.484.480.210.040.070.040.26<0.01<0.01<0.01NDYiDXDIl0.86!80.30l0.89ii0.30iO.8Oii2.81'!0.00>0.41f0.04i0.10I0.08il10.00i<0.01'0.01i1<0.0'1,1.07'i8.40I!6.80ill~l3.36I4O.8O72.59l0.020.34'.110.27i0.08031i0,120.69l0.635.84i0.000.38,'.86 0.04l0.020,12I0.100.09i0.630.13l0.091.24I<0.01<0,01l<0.01<0.01,<0.01ND').80NDi0.63XD,0.10LOI(@:i'105C850CiNDYiDND<YiDiiIII9.40NDii,'ADND14.90'.10iuDIiiiDYiD11.?0i38.2012.50""SCombustion toSO2SO4Estimatefromtotalsulfurdetermination CO3Yieutralization Page50 1~II ThomasM.Laronge,Inc.TABLE6SUMMARYOFSEM-EDSANALYTICAL RESULTSPage1of2Fig.illumbersEDSMAPSPhotosRHRPumLocationEDSWt.%'Aormal,Atom%iiletIntensitv I923I10!23IIII1EilE-2178-38 Waterside pitbaseIIIIIIlI-2178-~8!Depositinsidewaterside pitIIClMnFeCUI16.42I83.58I6.750.65I0.91I91.69II2d.O4i73.96I11.45I0.710.98i86.8537.15100.4127812.173.05177,99112444i1B-217B-3BtDeposit insidewaterside pitIIIIIIIIIIISMnFeCU6.12II1,43I1.37I91.08I1.4785.59I4.891878011.3916.121.55I5.1524IIIII1E-2178-38!
Waterside pitbaseIIIiIIII13.35)MnFeCu82.67'2.17!II1.SOi23.26I2'71II1.81I72.72'.30.106.034.93133.72131IIIIIlt14.IIIII45IlE-2178-38 IDepositinsidewaterside pitIIIIIIIIIIIIIII1E-2178-38 iWaterside pitbaseIIIIIIISClMnFeCuSClMnFeCli3.57i15.93II1.07IZ91I76.52I0.00I0,24I0,99I'72896.48!6.05I24.47I1.06I2.84!65.58',O.OOI0.43I1.142.58I9585I10,1256.673.409.08144.820.000.893.878.83211.9215I76II46I1E-217CAdjacenttowaterside pitII/IFeCli1.07I1.21I,98.93'98.79,'.75 196.9116I2611E-217CIInsidewaterside pitbaseIIFeCu0.93I99.07I1.05I98.95I2.77167,81Page51 f<Zp ThOmaSM.Lo,rOnge, InC.TABLE6SUMMARYOFSEM-EDSANALYTICAL RESULTSPage2of2Fig.NumbersEDSMAPSPhotosRHRPumEDSWt.%Normal,Atom%NetIntensitv i17IIII18II(I(I20-(1i1r2727I(IIIIiI48I11E228A(1I'1E-228AiIIIII(1E-228B((Il(1E-228BIIllII((Horizontal splitI(Depositinsidewaterside pit(IIII'Horizontal splitI(Waterside pitbaseIiIIII(Vertical splitI,Adjacent towaterside pit(rI(Vertical split,'Insidewaterside pitbaseIIIlClFeCUAlSiSKFeCQClMnFeNiiCUSClMnFeCuI0.11(3.79(96.09(10.2143.485.972.078.2130.050,35(1.475.71((87.77'85(0,25I0.79(15.73t4.88(75.50(429(95.51I1358(55.57(6.68(1.90(5.28i16.98'.61I6.39i5.01I86.32'.34(0.42,0.87(16.93,'.oo,'1.44 i0.36'l285184.9518.40109.6613.558.9123.3655.191.335.897'7<71245196,886.140.70'72543.519.02119.1121I,29('1E-228B iI,Vertical split(Adjacent towaterside pitrIIIrIIIIIClMnFeNiCu8.87',1.01i3.21i6.72',80.19l14.70r1.08'D.DI6.73'4.12i35.503.86121017.48176.60(III,1E-228BII(Vertical split'Insidewaterside pitbasel1FeCu5.35(94.65(I6.o4t93.96(17.22173.17'"Elementmapscoverpitareaforeachspecimen.
Page52 I),+%1~~f TABLE7RESULTSOFDEBYE-SCHERRER X-RAYDIFFRACTION ANALYSISOF.DEPOSITSAMPLESUSINGCOPPERK-ALPHARADIATION DepositSampleFromRHRlE-217B-3B LineNo.10"d"Measured5.373.722.942.682,532.47.272.142.081.74"d""'ables 5.383.732.972.692.532.472.132.101.71.CompoundCuOH2CuOH)2Fe304CuOH)2Fe304Cu20uOH2Cu20Fe304Fe304LineNo.5.405.382.7DepositSampleFromRHRlE-217C"d"Measured"d""'ables CompoundCu(OH)2Fe32.472.141.731.512.472.131.711.51Cu20Cu20Fe304Cu20LineNo.1.461.48DepositSampleFromRHR2E-217B,90DereeBend"d"Measured"d""'ables Fe304Compound2.952.532.432.151.952,952.512.472.131.95Fe304Fe304Cu20Cu20Fe304LineNo.1.491.48"d""'ables "d"MeasuredDepositSampleFromRHR2E-217CFe304Compound105.403.733.002.69.472.131.731.511.290.985.383.732,972.69.472.131.711.511.290,98Cu(OH)2CuOH)2Fe304CuOH2Cu20Fe304Cu20Cu20Cu20"'d"inangstroms Page53 ThomasM.Lo,ronge, inc.TABLE8RESULTSOFMICROBIOLOGICAL ANALYSESSamleTotalCountTveUnitsbvFITCTotalSRBbvIFALiveSRBLiveAPBbyOn-SitebyOn-SiteCultureCulture1E228BRCICroomcooler1E228BRCICroomcooler7Aoilcooler2E217BRHRoilcooler2E217CRHRoilcoolerIWater',Cells/mttlIIIIIIIIIDepositlCells/gm lIIIIIIIDepositJCells/gm
~)I'IIIIIIDepositICells/gm iIIIIIII,IIDepositlCells/gm lI'III3SE+09IIIII3.8E+07l'1.8E+08IIlIIIIII1~9E+07IIII6.1E+06iIIII1.9E+05ItI8.2E+06iIIIIIIIlI<9.8E+04iIIII>1.0E+07iIIII>1.0E+07II>'1.0E+06
'II>'1.0E+04 IIIII>1.0E+04lIII>1.0E+07>1.0E+07>1.0E+05>1.0E+03>1.0E+042E297ADXCondenser I1IIIDeposit',Cells/gm
',4.5E+07'1.2E+06 I>1.0E+05,'>1.0E+04 IIPage54 ThomasM.Laronge,Inc.TABLE9RESULTSOFTHEANALYSISOFESWBXVATERSUPPLYTORCIC1E-2288PUMPROOMUNITCOOLERSamleTakenJune9,1990Parameter pI-ITotalalkal.Conductivity AsMethodIi1ipHIpHI<CaCO3iTitrationi
'umhos,'eter iIIPPM7.7183.0587.00AluminumBariumCalciumCopperIronMagnesium Manganese Potassium SilicaSodiumZinci1iAlII,Ba',CaCO3i1Cui'FeiCaCO3iI,Mn'I1~Si02gT~ZntiICAPICAPICAPiICAPiICAPiICAPiICAPICAPICAPICAPi(0.10(0.10150.000.040.7455.600.755.754.7518.800.28ChlorideFluorideYlitrate]nitrite SulfateCl"FISO4ICICICIC33.300.1510.~~53.60LSIat80FLSIa<<OOFLSIat110F-:0.4+0.6-:0.70Page55 0
TABLEESWANDIilll<PUMI'IIML'S,IIOUI(SPage1of2LoopAIuopl3AssumedAssumedMoutltESW-AESW-C'l'otalFSW-I3l>W-I)Totall<lIi<Pumps1A113IC1D2A213=-2C20Aug46Sep-S6Oct-S6Nov-86'ec-86Jan-S7I'el)47-Mar47Apr-S7May47Jun-87Jul47Aug-87Sep-87Oct-87Nov47Dec47Jan-88I'eb48Mar-88Apr-SSMay-88Jun-88'407448l62213487289355173166190l503525692323377l36)53580264254S4074474311622l14767893461721651901503735552383377136S967416445-lS407.4484311622134872893551731661901503735692383377136596802644548042344760105SS5231320S189106108435553384156416284118257-174436217191'I641012210183415221185086113929574245214961269571423846110110811845358739917852125146398021'1105401003006204447204145l721221003111001091211425099242203017706982181329216102122l3-231304214300124113'05'21022904175005080137415400030'.03370221100032'211136000000144027640245372265210Note:RHRpumpdataforApril,1987includeJanuarythroughApril,1987.Page56  
TABLEESWANDIilll<PUMI'IIML'S,IIOUI(SPage1of2LoopAIuopl3AssumedAssumedMoutltESW-AESW-C'l'otalFSW-I3l>W-I)Totall<lIi<Pumps1A113IC1D2A213=-2C20Aug46Sep-S6Oct-S6Nov-86'ec-86Jan-S7I'el)47-Mar47Apr-S7May47Jun-87Jul47Aug-87Sep-87Oct-87Nov47Dec47Jan-88I'eb48Mar-88Apr-SSMay-88Jun-88'407448l62213487289355173166190l503525692323377l36)53580264254S4074474311622l14767893461721651901503735552383377136S967416445-lS407.4484311622134872893551731661901503735692383377136596802644548042344760105SS5231320S189106108435553384156416284118257-174436217191'I641012210183415221185086113929574245214961269571423846110110811845358739917852125146398021'1105401003006204447204145l721221003111001091211425099242203017706982181329216102122l3-231304214300124113'05'21022904175005080137415400030'.03370221100032'211136000000144027640245372265210Note:RHRpumpdataforApril,1987includeJanuarythroughApril,1987.Page56  
~+a%
~+a%
TABL"ESWANDRlIRPUMP10IML'S,IIOIJI(SPage2of2I.oop13AssumedAssumedMontbLS'W-AESW-C'I'otalI'.SW-}3le-DTotalICI<Ill<Pumps1D2A'282C2DJul-88Aug-88Sep-88Oct-88Nov-88Dec-88Jan-89Feb-89Mar89Apr89May-89Jun-89Jul-89Aug-89Sep-89Oct89No~-89Dec89Jan-90Feb-90Mar-90Apr-90iVfay-90l08134635847O'Ilool68162506607360907651143210731412871100108133745737,.4010016816250760739942592123212467391511315632108l347458474110016816250760775913213553267855617483465259l27l3256967836334314126137166~D29881l044344051745741315146531001757243114789835040161012743551534352426226811134335471724014425533512112053567952921084367188ll51261329201210155211242387213241781593133l85261727151514137172208901100334315156'125650341120201000001001423101100007540001383105'l91512434729685521080083262178600008426170.1010008lo0009703Page57  
TABL"ESWANDRlIRPUMP10IML'S,IIOIJI(SPage2of2I.oop13AssumedAssumedMontbLS'W-AESW-C'I'otalI'.SW-}3le-DTotalICI<Ill<Pumps1D2A'282C2DJul-88Aug-88Sep-88Oct-88Nov-88Dec-88Jan-89Feb-89Mar89Apr89May-89Jun-89Jul-89Aug-89Sep-89Oct89No~-89Dec89Jan-90Feb-90Mar-90Apr-90iVfay-90l08134635847O'Ilool68162506607360907651143210731412871100108133745737,.4010016816250760739942592123212467391511315632108l347458474110016816250760775913213553267855617483465259l27l3256967836334314126137166~D29881l044344051745741315146531001757243114789835040161012743551534352426226811134335471724014425533512112053567952921084367188ll51261329201210155211242387213241781593133l85261727151514137172208901100334315156'125650341120201000001001423101100007540001383105'l91512434729685521080083262178600008426170.1010008lo0009703Page57  


ThomasM.Laronge,Inc.TABLE11RHRLUBEOILCOOLERFLOWVELOCITIESRHRPum4Jun-86toAr-87FeetpersecondAr-87toJun-89Jun-89toJun-90ESWLoopAI8.08.01D9.08.0Q22A9.08.07.32D10.5eiESWLoopB~,'B9.69.51C10.8922B10.88.02C12.6""8loopdataforJune1986throughJune1989calculatedas20'PohigherthancorrespondingAloopdata.8loopdataforJune1989throughJune1990areactualmeasurements.Page58 Pa ThomosM.Lcxronge,Inc.TABLE12COMPARISONSOFOBSERVATIONSANDPHYSICALMEASUREMENTSPagelof2CoolersESWLooARHR1E-217ARHR1E-217D2E-217ARHR2E-217DRCIC1E-228Ahoriz.splitRCIC1E-228Avert.splitESWGRDX2E-297APitDensityPits/s.in.Verylow,notmeasured.Nottested.LWreportedlittletonopitting.Verylow.notmeasured.5to50Notmeasured.DeepestPitInchesIIIIIIIIIlNotmeasured)lIINotmeasured)IIIIIII1IINotmeasuredIIIlIlIIII0.015IIIIIIIII0.050IIIIIIIIIIIII0.017IIIIIIIIIIIIIIl.iotmeasuredIIIDep.Wt.Dens.mn/s.ft.NotmeasuredNotmeasured27,~D10.677.13NotmeasuredvisualheavyObservationsIIIIl)Uniformthindeposit.'veryslightpitting.)iNottested.LWreported'lightgeneraloxidationIIw/greencoloration.lIIUniformbrowndeposit,I,nosignificanttubercu-IIlationorpittin~.IIUniformbrowndeposit,Imanysmalltubercles.',shallowroundpits.IIlUniformthinbrown,'depositwithtubercles,~hemisphericaland,'irregularpits,I,Uniformthinbrown,'depositwithtubercles,Ihemisphericaland',irregularpits.II,HeavyscaleRslime.no,'visiblepitting.Page59 ThomosM.Lo,ronge,Inc.TABLE12COMPARISONSOFOBSERVATIONSANDPHYSICALMEASUREMENTSPage'2of2Coolers<<~ESNVLBRHR1E-2178)<<<<IIRHR-1E-217CRHR2E-2178-2iRHR2E-2178-5IRHR2E-217CRCIC1E-2288horiz.split'E-2288splitPitDensityPits/s.in.5to5025to3004to50lto2002to50.017',7.72,0.036/.77DeepestPitDep.WVt.Dens.Inches'm/s.ft.II<<<<0.025)31.73<<I<<I<<<<<<0.013)24.07<<II<<0.0~><<13.21<<j<<I<<<<0.007'.86I<<0.028<<37.90Observations<<<<I<<<<Smoothbrown/blackand,'flakygreendeposits,<<largetuberclesand,hemispericalpits.<<1<<Heavybrown/blackdeposit,largetubercles<<andhemisphericalpits.<<'Scatteredblack/green<<,deposit,nosignificant'tubercles.hemispherical<<pits.<<<<<<Scatteredblack/careen,deposit.nosignificant'tubercles.hemispherical"pits.!'Failedtube.Heawscaly,deposit.manyjagged8r.,'hemisphericalpits.<<,Uniformthinbrowndepositwithtuhercles.Ihemisphericaland'irregularpits.;Uniformthinbrowndepositwithtubercles.I-hemisphericaland'irregularpits.
ThomasM.Laronge,Inc.TABLE11RHRLUBEOILCOOLERFLOWVELOCITIES RHRPum4Jun-86toAr-87FeetpersecondAr-87toJun-89Jun-89toJun-90ESWLoopAI8.08.01D9.08.0Q22A9.08.07.32D10.5eiESWLoopB~,'B9.69.51C10.8922B10.88.02C12.6""8loopdataforJune1986throughJune1989calculated as20'Pohigherthancorresponding Aloopdata.8loopdataforJune1989throughJune1990areactualmeasurements.
i'I>lt Thomo,sM.Laronge,lnl-.LITFFIREFIGURE1FIGURE2FIGURE3FIGURE4FIGURE5FIGURE6FIGURE7AFIGURE7BFIGURE8AFIGURE8B'IGURE9FIGURE10FIGURE11FIGURE12FIGURE13FIGURE14FIGURE15FIGURE16FIGURE17SKETCHOFVERTICAL,HIGHTHRUSTINDUCTIONMOTORGEH-3298COMPARISONOFDEPOSITCOMPOSITIONSOFF-SITEMICROBIOLOGICALANALYSESESWALKALINITY,CALCIUM8tCONDUCTIVITY'SWTURBIDITYANDpHESWLANGELIERINDEXDATAPERCENTESWANDRHRPUMPRUNTIMES-ESWLOOPAPERCENTESWANDRHRPUMPRUNTIMES-ESWLOOPBRHRLUBEOILCOOLERFLOWVELOCITIES-ESWLOOPARHRLUBEOILCOOLERFLOWVELOCITIES-ESWLOOPBENERGYDISPERSIVEX-RAYSPECTROSCOPYOFRHR1E-217B-3BDEPOSITINSIDEWATERSIDEPITENERGYDISPERSIVEX-RAYSPECTROSCOPYOFRHRlE-217B-3BWATERSIDEPITBASEENERGYDISPERSIVEX-RAYSPECTROSCOPYOFRHRlE-217B-3BDEPOSITINSIDEWATERSIDEPITENERGYDISPERSIVEX-RAYSPECTROSCOPYOFRHR1E-217B-3BWATERSIDEPITBASEENERGYDISPERSIVEX-RAYSPECTROSCOPYOFRHR1E-217B-3BDEPOSITINSIDEWATERSIDEPIT'NERGYDISPERSIVEX-RAYSPECTROSCOPYOFRHRlE-217B-3BWATERSIDEPITBASEENERGYDISPERSIVEX-RAYSPECTROSCOPYOFRHR1E-217CADJACENTTOWATERSIDEPITENERGYDISPERSIVEX-RAYSPECTROSCOPYOFRHRlE-217C'NSIDEWATERSIDEPITBASEENERGYDISPERSIVEX-RAYSPECTROSCOPYOFRCIClE-228AHORIZONTALSPLITDEPOSITINSIDEWATERSIDEPITPage61
Page58 Pa ThomosM.Lcxronge, Inc.TABLE12COMPARISONS OFOBSERVATIONS ANDPHYSICALMEASUREMENTS Pagelof2CoolersESWLooARHR1E-217ARHR1E-217D2E-217ARHR2E-217DRCIC1E-228Ahoriz.splitRCIC1E-228Avert.splitESWGRDX2E-297APitDensityPits/s.in.Verylow,notmeasured.
Nottested.LWreportedlittletonopitting.Verylow.notmeasured.
5to50Notmeasured.
DeepestPitInchesIIIIIIIIIlNotmeasured)lIINotmeasured)IIIIIII1IINotmeasuredIIIlIlIIII0.015IIIIIIIII0.050IIIIIIIIIIIII0.017IIIIIIIIIIIIIIl.iotmeasuredIIIDep.Wt.Dens.mn/s.ft.NotmeasuredNotmeasured27,~D10.677.13NotmeasuredvisualheavyObservations IIIIl)Uniformthindeposit.'veryslightpitting.)iNottested.LWreported'lightgeneraloxidation IIw/greencoloration.
lIIUniformbrowndeposit,I,nosignificant tubercu-IIlationorpittin~.IIUniformbrowndeposit,Imanysmalltubercles.
',shallow roundpits.IIlUniformthinbrown,'deposit withtubercles,
~hemispherical and,'irregular pits,I,Uniformthinbrown,'deposit withtubercles, Ihemispherical and',irregular pits.II,HeavyscaleRslime.no,'visible pitting.Page59 ThomosM.Lo,ronge, Inc.TABLE12COMPARISONS OFOBSERVATIONS ANDPHYSICALMEASUREMENTS Page'2of2Coolers<<~ESNVLBRHR1E-2178)<<<<IIRHR-1E-217C RHR2E-2178-2 iRHR2E-2178-5 IRHR2E-217CRCIC1E-2288horiz.split'E-2288splitPitDensityPits/s.in.5to5025to3004to50lto2002to50.017',7.72,0.036/.77DeepestPitDep.WVt.Dens.
Inches'm/s.ft.II<<<<0.025)31.73<<I<<I<<<<<<0.013)24.07<<II<<0.0~><<13.21<<j<<I<<<<0.007'.86I<<0.028<<37.90Observations
<<<<I<<<<Smoothbrown/black and,'flakygreendeposits,
<<largetubercles and,hemisperical pits.<<1<<Heavybrown/black deposit,largetubercles
<<andhemispherical pits.<<'Scattered black/green
<<,deposit, nosignificant
'tubercles.
hemispherical
<<pits.<<<<<<Scattered black/careen
,deposit.nosignificant
'tubercles.
hemispherical "pits.!'Failedtube.Heawscaly,deposit.
manyjagged8r.,'hemispherical pits.<<,Uniformthinbrowndepositwithtuhercles.
Ihemispherical and'irregular pits.;Uniformthinbrowndepositwithtubercles.
I-hemispherical and'irregular pits.
i'I>lt Thomo,sM.Laronge,lnl-.LITFFIREFIGURE1FIGURE2FIGURE3FIGURE4FIGURE5FIGURE6FIGURE7AFIGURE7BFIGURE8AFIGURE8B'IGURE9FIGURE10FIGURE11FIGURE12FIGURE13FIGURE14FIGURE15FIGURE16FIGURE17SKETCHOFVERTICAL, HIGHTHRUSTINDUCTION MOTORGEH-3298COMPARISON OFDEPOSITCOMPOSITIONS OFF-SITEMICROBIOLOGICAL ANALYSESESWALKALINITY, CALCIUM8tCONDUCTIVITY'SW TURBIDITY ANDpHESWLANGELIER INDEXDATAPERCENTESWANDRHRPUMPRUNTIMES-ESW LOOPAPERCENTESWANDRHRPUMPRUNTIMES-ESW LOOPBRHRLUBEOILCOOLERFLOWVELOCITIES-ESW LOOPARHRLUBEOILCOOLERFLOWVELOCITIES-ESW LOOPBENERGYDISPERSIVE X-RAYSPECTROSCOPY OFRHR1E-217B-3B DEPOSITINSIDEWATERSIDE PITENERGYDISPERSIVE X-RAYSPECTROSCOPY OFRHRlE-217B-3B WATERSIDE PITBASEENERGYDISPERSIVE X-RAYSPECTROSCOPY OFRHRlE-217B-3B DEPOSITINSIDEWATERSIDE PITENERGYDISPERSIVE X-RAYSPECTROSCOPY OFRHR1E-217B-3B WATERSIDE PITBASEENERGYDISPERSIVE X-RAYSPECTROSCOPY OFRHR1E-217B-3B DEPOSITINSIDEWATERSIDE PIT'NERGYDISPERSIVE X-RAYSPECTROSCOPY OFRHRlE-217B-3B WATERSIDE PITBASEENERGYDISPERSIVE X-RAYSPECTROSCOPY OFRHR1E-217CADJACENTTOWATERSIDE PITENERGYDISPERSIVE X-RAYSPECTROSCOPY OFRHRlE-217C'NSIDEWATERSIDE PITBASEENERGYDISPERSIVE X-RAYSPECTROSCOPY OFRCIClE-228AHORIZONTAL SPLITDEPOSITINSIDEWATERSIDE PITPage61


ThomasM.Larongt,Inc.FIGURE18FIGURE19FIGURE20FIGURE21FIGURE22FIGURE23FIGURE24FIGURE25FIGURE26FIGURE27FIGURE28FIGURE29ENERGYDISPERSIVEX-RAYSPECTROSCOPYOFRCIC1E-228AHORIZONTALSPLITWATERSIDEPITBASEENERGYDISPERSIVEX-RAYSPECTROSCOPYOFRCIClE-228BVERTICALSPLITADJACENTTOWATERSIDEPITENERGYDISPERSIVEX-RAYSPECTROSCOPYOFRCIClE-228VERTICALSPLITINSIDEWATERSIDEPITBASEENERGYDISPERSIVEX-RAYSPECTROSCOPYOFRCIClE-228BVERTICALSPLITADJACENTTOWATERSIDEPITENERGYDISPERSIVEX-HAYSPECTROSCOPYOFRCIClE-228BVERTICALSPLITINSIDEWATERSIDEPITBASEELEMENTMAPS,RHR1E-217B-3BELEMENTMAPS,RHRlE-217B-3BELEMENTMAPS,RHR1E-217B-3BELEMENTMAPS,RHRlE-217CELEMENTMAPS,RCIClE-228A,HORIZONTALSPLITELEMEKI'APS,RCIC1E-228B,VERTICALSPLIT,TOPSECTIONELEMENTMAPS,RCIClE-228B,VERTICALSPLIT,BOTTOMSECTIONPage62 ThomasM.Laronge,Inc.Figure1SketchofVertical,HighThrustInductionMotorGEH-3298TopCapDCB.A1CEXEXED2CDXXED3tXXXXED4Q3XXED5CEXE3XD6CE3XXEOMotorShaftNutsandLockwashersJournalSleeveandThrustBearingOilLevelCoolingWaterOutletCoolingWaterInletSixrowswithfoureach,co-planarcoolingcoilsStatorFramePage63 t$iI~4 FIGURE2COMPARISONOFDEPOSITCOMPOSITIONS03000(QCPAz0K400)I-QKeec;0-1A1C1BRHRLUBEOILCOOLERS2C[IIIFegQMn~ca~sJPage64 14'~
ThomasM.Larongt,Inc.FIGURE18FIGURE19FIGURE20FIGURE21FIGURE22FIGURE23FIGURE24FIGURE25FIGURE26FIGURE27FIGURE28FIGURE29ENERGYDISPERSIVE X-RAYSPECTROSCOPY OFRCIC1E-228AHORIZONTAL SPLITWATERSIDE PITBASEENERGYDISPERSIVE X-RAYSPECTROSCOPY OFRCIClE-228BVERTICALSPLITADJACENTTOWATERSIDE PITENERGYDISPERSIVE X-RAYSPECTROSCOPY OFRCIClE-228VERTICALSPLITINSIDEWATERSIDE PITBASEENERGYDISPERSIVE X-RAYSPECTROSCOPY OFRCIClE-228BVERTICALSPLITADJACENTTOWATERSIDE PITENERGYDISPERSIVE X-HAYSPECTROSCOPY OFRCIClE-228BVERTICALSPLITINSIDEWATERSIDE PITBASEELEMENTMAPS,RHR1E-217B-3B ELEMENTMAPS,RHRlE-217B-3B ELEMENTMAPS,RHR1E-217B-3B ELEMENTMAPS,RHRlE-217CELEMENTMAPS,RCIClE-228A,HORIZONTAL SPLITELEMEKI'APS, RCIC1E-228B,VERTICALSPLIT,TOPSECTIONELEMENTMAPS,RCIClE-228B,VERTICALSPLIT,BOTTOMSECTIONPage62 ThomasM.Laronge,Inc.Figure1SketchofVertical, HighThrustInduction MotorGEH-3298TopCapDCB.A1CEXEXED2CDXXED3tXXXXED4Q3XXED5CEXE3XD6CE3XXEOMotorShaftNutsandLockwashers JournalSleeveandThrustBearingOilLevelCoolingWaterOutletCoolingWaterInletSixrowswithfoureach,co-planarcoolingcoilsStatorFramePage63 t$iI~4 FIGURE2COMPARISON OFDEPOSITCOMPOSITIONS 03000(QCPAz0K400)I-QKeec;0-1A1C1BRHRLUBEOILCOOLERS2C[IIIFegQMn~ca~sJPage64 14'~
FIGURE3OFF-SITEMICROBIOLOGICALANALYSESIE+09-1E+08=~1E+07-GKUJ0V)1E+06=UJ1E+05=v3>cgpXjw./)a~1E+04-1E217A2E217C1E228BHEATEXCHANGERDEPOSlTS2E297AQQTOTALBACTERIAIISULFATEREDUCERSPage65 I
FIGURE3OFF-SITEMICROBIOLOGICAL ANALYSESIE+09-1E+08=~1E+07-GKUJ0V)1E+06=UJ1E+05=v3>cgpXjw./)a~1E+04-1E217A2E217C1E228BHEATEXCHANGER DEPOSlTS2E297AQQTOTALBACTERIAIISULFATEREDUCERSPage65 I
800FlGUR4ESWALKALINITY,CALCIUM8CONDUCTIVITY8000OOEOOZ700600500400300200100CalciumConductivityAlkalinity700600.500400300200100OOJELl-OClz0Q198919900r-a--i---,-rarTat-7at-w~t-rww.rvwr002/0604/1105/2607/1108/0909/0611/0301/0303/0805/1506/0206/11MONTHLYDATA,1989TOPRESENTPage66  
800FlGUR4ESWALKALINITY, CALCIUM8CONDUCTIVITY 8000OOEOOZ700600500400300200100CalciumConductivity Alkalinity 700600.500400300200100OOJELl-OClz0Q198919900r-a--i---,-rarTat-7at-w~t-rww.rvwr002/0604/1105/2607/1108/0909/0611/0301/0303/0805/1506/0206/11MONTHLYDATA,1989TOPRESENTPage66  
,r 1098765.432.1.FIGURESN/TURBIDITYANDpHpHTurbidity090031989I9900'1ttrT'f1il7TlII7TIII1TII02/0604/1105/2607/1108/0909/0611/0301/0303/0805/1506/0206/1IMONTHLYDATA,1989TOPRESENTPage67 FIGU6ESWLANGELIERINDEXDATATEMPERATURE100-804>CLLIC3z3.CCLLl(g2LSI60LUa40CL"I--20LLICL-0LLI0-20-1TII02/0604/1105/2607/1108/0909/0611/0301/0303/0805/1506/0206/11MONTHYDATA,1989TOPRESENT19891990rvtgqrT's;rrwawrT'sa-40Page68 17'4~I4'Itf0'I~l~~1II ThomosM.Laronge,Inc.60FIGURE7APERCENTESWANDRHRPUMPRUNTIMESESWLOOPA50I=4oZ30O20100.198719881989YEAR1990,'m'ESW-AggRHR-1A1RHR-1DRHR-2A~RHR-2DI60UJ50I-4030z.'OCCLLI100FIGURE7BPERCENTESWANDRHRPUMPRUNTIMESESWLOOPB19871988YEAR19891990'ESW-BggRHR-1BmRHR-1CII~FQRHR-2B~RHR-2CPage69 e)Ii'n~gh'IC4~E%  
,r 1098765.432.1.FIGURESN/TURBIDITY ANDpHpHTurbidity 090031989I9900'1ttrT'f1il7TlII7TIII1TII02/0604/1105/2607/1108/0909/0611/0301/0303/0805/1506/0206/1IMONTHLYDATA,1989TOPRESENTPage67 FIGU6ESWLANGELIER INDEXDATATEMPERATURE 100-804>CLLIC3z3.CCLLl(g2LSI60LUa40CL"I--20LLICL-0LLI0-20-1TII02/0604/1105/2607/1108/0909/0611/0301/0303/0805/1506/0206/11MONTHYDATA,1989TOPRESENT19891990rvtgqrT's;rrwawrT'sa-40Page68 17'4~I4'Itf0'I~l~~1II ThomosM.Laronge,Inc.60FIGURE7APERCENTESWANDRHRPUMPRUNTIMESESWLOOPA50I=4oZ30O20100.198719881989YEAR1990,'m'ESW-AggRHR-1A1RHR-1DRHR-2A~RHR-2DI60UJ50I-4030z.'OCCLLI100FIGURE7BPERCENTESWANDRHRPUMPRUNTIMESESWLOOPB19871988YEAR19891990'ESW-BggRHR-1BmRHR-1CII~FQRHR-2B~RHR-2CPage69 e)Ii'n~gh'IC4~E%  
,ThomasM.Laronge,Inl-.Oz00t4121086420FIGUREBARHRLUBEOILCOOLERFLOWVELOCITIESESWLOOPAJun-86toApr-87Apr-87toJun-89Jun.89toJun-90TIMEINTERVALS,1986-1990eimRHR-1AggRHR-1DmRHR-2AggRHR-2DbO000t4t21086420FIGUREBBRHRLUBEOILCOOLERFLOWVELOCITIESESWLOOPBJun.86toApr-87Apr-87toJun-89Jun.89toJun-90TIMEINTERVALS,1986-1990ImRHR-1B+RHR-1CmRHR-2BggRHR-2CPage70 Jfl4P0 ThomasM.Laronge,Inc.FIGURE9ENERGYDISPERSIVEX-RAYSPECTROSCOPYOFRHR1E-2178-3BDEPOSITINSIDEWATERSIDEPITIq4~>~0'~'i~aJ~Il~lCALCULATEDRESULTSFROMSTANDARDLESSANALYSISElementClWeightPercent16.4283.58NormalizedAtomicPercent26.0473.96NetIntensit37.15100.41Page71 ThomosM.Laronge,Inc.FIGURE10ENERGYDISPERSIVEX-RAYSPECTROSCOPYOFRHRlE-217B-3BWATERSIDEPITBASE'cCXCALCULATED.RESULTSFROMSTANDARDLESSANALYSISElementClMnWeightPercent6.750.650.9191.69NormalizedAtomicPercent11.450.710.9886-.85NetIntensit22.812.173.05177.99Page72 ThomasM.Lo,range,Inc.FIGURE11ENERGYDISPERSIVEX-RAYSPECTROSCOPYOFRHRlE-217B-3BDEPOSITINSIDEWATERSIDEPITCALCULATEDRESULTSFROMSTANDARDLESSANALYSISElementSMnFeWeightPercent6.121.431.3791.08NormalizedAtomicPercent11.391.551.4785.59NetIntensit16.125.154.89187.80Page73 QCW' ThomasM.Laronge,Inc.FIGURE12ENERGYDISPERSIVEX-RAYSPECTROSCOPYOFRHRlE-217B-3BWATERSIDEPITBASE~/PAJQJ+ar~CALCULATEDRESULTSFROMSTANDARDLESSANALYSISElementSMnFeWeightPercent13;352.171.8082.67NormalizedAtomicPercent23.262.211.8172.72NetIntensit30.106.034.93133.72Page74 4~tflI~I'f'P Thomo,sM.Lo,ronge,Inc.FIGURE13ENERGYDISPERSIVEX-RAYSPECTROSCOPYOFRHR1E-217B-3BDEPOSITINSIDEWATERSIDEPITj+l(lpVl~~Q)0/'ALCULATEDRESULTSFROMSTANDARDLESSANALYSISElementSClMnFeWeightPercent3.5715.931.072.9176.52NormalizedAtomicPercent6.0524.471.062.8465,58NetIntensit10.1256.673.409.08144.82Page75 l
,ThomasM.Laronge,Inl-.Oz00t4121086420FIGUREBARHRLUBEOILCOOLERFLOWVELOCITIES ESWLOOPAJun-86toApr-87Apr-87toJun-89Jun.89toJun-90TIMEINTERVALS, 1986-1990 eimRHR-1AggRHR-1DmRHR-2AggRHR-2DbO000t4t21086420FIGUREBBRHRLUBEOILCOOLERFLOWVELOCITIES ESWLOOPBJun.86toApr-87Apr-87toJun-89Jun.89toJun-90TIMEINTERVALS, 1986-1990 ImRHR-1B+RHR-1CmRHR-2BggRHR-2CPage70 Jfl4P0 ThomasM.Laronge,Inc.FIGURE9ENERGYDISPERSIVE X-RAYSPECTROSCOPY OFRHR1E-2178-3B DEPOSITINSIDEWATERSIDE PITIq4~>~0'~'i~aJ~Il~lCALCULATED RESULTSFROMSTANDARDLESS ANALYSISElementClWeightPercent16.4283.58Normalized AtomicPercent26.0473.96NetIntensit37.15100.41Page71 ThomosM.Laronge,Inc.FIGURE10ENERGYDISPERSIVE X-RAYSPECTROSCOPY OFRHRlE-217B-3B WATERSIDE PITBASE'cCXCALCULATED.
ThomosM.Laronge,Inc.FIGURE14ENERGYDISPERSIVEX-RAYSPECTROSCOPYOFRHR1E-217B-3BWATERSIDEPITBASEYCAYMYCOV~CALCULATEDRESULTSFROMSTANDARDLESSANALYSISElementSClMnFeWeightPercent0.000.240.992.2896.48NormalizedAtomicPercent0.000.431.142.5895.85NetIntensit0.000.893.878.83211,.92Page76  
RESULTSFROMSTANDARDLESS ANALYSISElementClMnWeightPercent6.750.650.9191.69Normalized AtomicPercent11.450.710.9886-.85NetIntensit22.812.173.05177.99Page72 ThomasM.Lo,range, Inc.FIGURE11ENERGYDISPERSIVE X-RAYSPECTROSCOPY OFRHRlE-217B-3B DEPOSITINSIDEWATERSIDE PITCALCULATED RESULTSFROMSTANDARDLESS ANALYSISElementSMnFeWeightPercent6.121.431.3791.08Normalized AtomicPercent11.391.551.4785.59NetIntensit16.125.154.89187.80Page73 QCW' ThomasM.Laronge,Inc.FIGURE12ENERGYDISPERSIVE X-RAYSPECTROSCOPY OFRHRlE-217B-3B WATERSIDE PITBASE~/PAJQJ+a r~CALCULATED RESULTSFROMSTANDARDLESS ANALYSISElementSMnFeWeightPercent13;352.171.8082.67Normalized AtomicPercent23.262.211.8172.72NetIntensit30.106.034.93133.72Page74 4~tflI~I'f'P Thomo,sM.Lo,ronge, Inc.FIGURE13ENERGYDISPERSIVE X-RAYSPECTROSCOPY OFRHR1E-217B-3B DEPOSITINSIDEWATERSIDE PITj+l(lpVl~~Q)0/'ALCULATED RESULTSFROMSTANDARDLESS ANALYSISElementSClMnFeWeightPercent3.5715.931.072.9176.52Normalized AtomicPercent6.0524.471.062.8465,58NetIntensit10.1256.673.409.08144.82Page75 l
)h0 Thomo,sM.Laronge,Inc.FIGURE15ENERGYDISPERSIVEX-RAYSPECTROSCOPYOFRHRlE-217CADJACENTTOWATERSIDEPITCALCULATEDRESULTSFROMSTANDARDLESSANALYSISElementFeWeightPercent1.0798.93NormalizedAtomicPercent1.2198.79NetIntensit3.75196.91Page77 ThomasM.Laronge,Inc.FIGURE16ENERGYDISPERSIVEX-HAYSPECTROSCOPYOFRHRlE-217CINSIDEWATERSIDEPITBASE)~fVthlpshC,~h'l~~>'qg>vyj(f<tvsYhg~~UOJOlUY/h'~<0~4LP~'A,~g4pg~~CALCULATEDRESULTSFROMSTANDARDLESSANALYSISElementFeWeightPercent0.9399.07NormalizedAtomicPercent1.0598.95NetIntensit2.77167'.81Page78 Thomo,sM.Lo,ronge,Inc.FIGURE17ENERGYDISPERSIVEX-RAYSPECTROSCOPYOFRCIC1E-228AHORIZONTALSPLITDEPOSITINSIDEWATERSIDEPIT'lehCCAChhCCa1'ChCIJm4lLJUOJU*CALCULATEDRESULTSFROMSTANDABDLESSANALYSISElementClFeWeightPercent0.113.7996.09NormalizedAtomicPercent0.204.2995.51NetIntensit0.3612.85184.95Page79 J'
ThomosM.Laronge,Inc.FIGURE14ENERGYDISPERSIVE X-RAYSPECTROSCOPY OFRHR1E-217B-3B WATERSIDE PITBASEYCAYMYCOV~CALCULATED RESULTSFROMSTANDARDLESS ANALYSISElementSClMnFeWeightPercent0.000.240.992.2896.48Normalized AtomicPercent0.000.431.142.5895.85NetIntensit0.000.893.878.83211,.92Page76  
ThomasM.Laronge,Inc.FIGURE18ENERGYDISPERSIVEX-RAYSPECTROSCOPYOFRCIClE-228AHORIZONTALSPLITWATERSIDEPITBASE'leVA4tVU4hVQ~+~CALCULATEDRESULTSFROMSTANDARDLESSANALYSISElementSiSFeWeightPercent10.2143.485.972.078.2130.05NormalizedAtomicPercent13.5855.576.681.905.2816.98NetIntensit18.40109.6613.558.9123.365519"=Page80  
)h0 Thomo,sM.Laronge,Inc.FIGURE15ENERGYDISPERSIVE X-RAYSPECTROSCOPY OFRHRlE-217CADJACENTTOWATERSIDE PITCALCULATED RESULTSFROMSTANDARDLESS ANALYSISElementFeWeightPercent1.0798.93Normalized AtomicPercent1.2198.79NetIntensit3.75196.91Page77 ThomasM.Laronge,Inc.FIGURE16ENERGYDISPERSIVE X-HAYSPECTROSCOPY OFRHRlE-217CINSIDEWATERSIDE PITBASE)~fVthlpshC,~h'l~~>'qg>vy j(f<tvsYhg~~UOJOlUY/h'~<0~4 LP~'A,~g4pg~
~~3n=~~~,y'\l~'IVl+P Thomo,sM.Lo,range,Inc.FIGURE19ENERGYDISPERSIVEX-RAYSPECTROSCOPYOFRCIClE-228BVERTICALSPLITADJACENTTOWATERSIDEPITV5VUCCACOLJC5C~~~~~J('~YM//~)'ilpga(gC'~Pi.y~'~~,vgpssE5X4IUl~s,&#x17d;ig<eCALCULATEDRESULTSFROMSTANDARDLESSANALYSISElementCIMnFeNiWeightPercent0.351.475,714.7087.77NormalizedAtomicPercent0.611.676.395.0186.32NetIntensit1.335.8922.5712.45196.88Page81 tl~Vl Thomo,sM.Larongt,inc.FIGURE20ENERGYDISPERSIVEX-RAYSPECTROSCOPYOFRCIClE-228BVERTICALSPLITINSIDEWATERSIDEPITBASEVbCEIUCALCULATEDRESULTSFROMSTANDARDLESSANALYSISElementSClMnFeNiCuWeightPercent2.850.250.7915.734.8875.50NormalizedAtomicPercent5.340.420.8716.935.0071.44NetIntensit6.140.702.2543.519.02119.11Page82 ThomosM.Loronge,inc.FIGURE21ENERGYDISPERSIVEX-RAYSPECTROSCOPYOFRCIClE-228BVERTICALSPLITADJACENTTOWATERSIDEPITbCCVCApA~>>iyi=>ii+(<i)J,hChC4t4(~<i,rgCALCULATEDRESULTSFROMSTANDARDLESSANALYSISElementClMnFeNiWeightPercent8.871.013.216.7280.19NormalizedAtomicPercent14.701.083.376.7374.12NetIntensit35.503.8612.1017.48176.600Page83 Thomo,shh.Lo,ronge,Inc.FIGURE22ENERGYDISPERSIVEX-RAYSPECTROSCOPYOFRCIClE-228BVERTICALSPLITINSIDEWATERSIDEPITBASEDVViCALCULATEDRESULTSFROMSTANDARDLESSANALYSISElementFeWeightPercent5.3594.65NormalizedAtomicPercent6.0493.96NetIntensit17.22173.17Page84 I~'FIGURE23ELEMENTMAPS,RHR1E-2178-38I.EGENDSMnPage85CIFe J~~I~gggmgg~i(g~iggggI;pygmygj"ggpj+igg%IHN~I~gg)gpg~i+iGQNcjmggjjggggigJJggI%I%IIGURE24~EI.EMENTMAPS,,RHR1E-2178-38I.EGENDSPage86CIle  
~CALCULATED RESULTSFROMSTANDARDLESS ANALYSISElementFeWeightPercent0.9399.07Normalized AtomicPercent1.0598.95NetIntensit2.77167'.81Page78 Thomo,sM.Lo,ronge, Inc.FIGURE17ENERGYDISPERSIVE X-RAYSPECTROSCOPY OFRCIC1E-228AHORIZONTAL SPLITDEPOSITINSIDEWATERSIDE PIT'lehCCAChhCCa1'ChCIJm4lLJUOJU*CALCULATED RESULTSFROMSTANDABDLESS ANALYSISElementClFeWeightPercent0.113.7996.09Normalized AtomicPercent0.204.2995.51NetIntensit0.3612.85184.95Page79 J'
ThomasM.Laronge,Inc.FIGURE18ENERGYDISPERSIVE X-RAYSPECTROSCOPY OFRCIClE-228AHORIZONTAL SPLITWATERSIDE PITBASE'leVA4tVU4hVQ~+~CALCULATED RESULTSFROMSTANDARDLESS ANALYSISElementSiSFeWeightPercent10.2143.485.972.078.2130.05Normalized AtomicPercent13.5855.576.681.905.2816.98NetIntensit18.40109.6613.558.9123.365519"=Page80  
~~3n=~~~,y'\l~'IVl+P Thomo,sM.Lo,range, Inc.FIGURE19ENERGYDISPERSIVE X-RAYSPECTROSCOPY OFRCIClE-228BVERTICALSPLITADJACENTTOWATERSIDE PITV5VUCCACOLJC5C~~~~~J('~YM//~)'ilpga(gC'~Pi.y~'~~,vgpssE5X4IUl~s,&#x17d;ig<eCALCULATED RESULTSFROMSTANDARDLESS ANALYSISElementCIMnFeNiWeightPercent0.351.475,714.7087.77Normalized AtomicPercent0.611.676.395.0186.32NetIntensit1.335.8922.5712.45196.88Page81 tl~Vl Thomo,sM.Larongt,inc.FIGURE20ENERGYDISPERSIVE X-RAYSPECTROSCOPY OFRCIClE-228BVERTICALSPLITINSIDEWATERSIDE PITBASEVbCEIUCALCULATED RESULTSFROMSTANDARDLESS ANALYSISElementSClMnFeNiCuWeightPercent2.850.250.7915.734.8875.50Normalized AtomicPercent5.340.420.8716.935.0071.44NetIntensit6.140.702.2543.519.02119.11Page82 ThomosM.Loronge,inc.FIGURE21ENERGYDISPERSIVE X-RAYSPECTROSCOPY OFRCIClE-228BVERTICALSPLITADJACENTTOWATERSIDE PITbCCVCApA~>>iyi=>ii+(<i)J, hChC4t4(~<i,rgCALCULATED RESULTSFROMSTANDARDLESS ANALYSISElementClMnFeNiWeightPercent8.871.013.216.7280.19Normalized AtomicPercent14.701.083.376.7374.12NetIntensit35.503.8612.1017.48176.600Page83 Thomo,shh.Lo,ronge, Inc.FIGURE22ENERGYDISPERSIVE X-RAYSPECTROSCOPY OFRCIClE-228BVERTICALSPLITINSIDEWATERSIDE PITBASEDVViCALCULATED RESULTSFROMSTANDARDLESS ANALYSISElementFeWeightPercent5.3594.65Normalized AtomicPercent6.0493.96NetIntensit17.22173.17Page84 I~'FIGURE23ELEMENTMAPS,RHR1E-2178-38 I.EGENDSMnPage85CIFe J~~I~gggmgg~i(g~igggg I;pygmygj"ggpj+igg%IHN~I~gg)gpg~i+iGQNcjmggjjggggigJJggI%I%IIGURE24~EI.EMENTMAPS,,RHR 1E-2178-38 I.EGENDSPage86CIle  


I~IGURE25ELEMENTMAPS,RHRlE-2178-38LEGENDSMnPage87C1Fe
I~IGURE25ELEMENTMAPS,RHRlE-2178-38 LEGENDSMnPage87C1Fe


FIGURE26ELEMENTMAPS,RHR1E-217CLEGENDSMn,Page88C1Ie  
FIGURE26ELEMENTMAPS,RHR1E-217CLEGENDSMn,Page88C1Ie  


FIGURF27ELEMENTMAPS,RCIC.1E-228A;HORIZONTAISPLITLEGEND.SMnPage89C1Fe.  
FIGURF27ELEMENTMAPS,RCIC.1E-228A; HORIZONTAI SPLITLEGEND.SMnPage89C1Fe.  


FIGURE28EI.EMENTMAPS,RCIClE-2288,VERTICAISPLIT,TOPSECTIONLF.GENDSMn.CIFePage90 0  
FIGURE28EI.EMENTMAPS,RCIClE-2288,VERTICAISPLIT,TOPSECTIONLF.GENDSMn.CIFePage90 0  
~S'liiiiQSSRR,fan%F498Riiiii55iRRf..&lkNQ,~~yplQRi55RRSRQl%%biiQRMWf:~MFIGURE29EI.FMENTMAPS,RCIClE-228B,VERTICAISPLIT,BOTTOMSECTION.LEGENDCIMn.Page91Ie ThornM.j.aronge,Inc.PhotographDesination10121314'5ApproximateMagnificationAsPrinted,Diameters0.30.30.40.40.40.40.60.30.30.30.30.30.31.91.9LISI'FPHOTOGRAPHSSecimenDesinationandDescritionofPhotoahsRCIClE-228A,As-Received.RHR2E-217C,As-Received.RHR1B-3B(lE-217B-3B),As-Received."3B"SignifiestheThirdRingFromtheTopandtheSecondRowinFromtheInsideDiameter.RHR2E-217D,As-Received.RHR2E-217D,As-Received.RHR2E-217A,As-Received.RHRlE-217C,As-Received.RHR2E-217B,As-Received.RHR2E-217B,As-Received.RHR2E-217B,As-Received.RCIC1E-228B,As-Received.RHR2E-217B,As-Received.RHR-lE-217A,As-Received.RCIClE-228A,InteriorViewofSectionofVerticalSlitTube.RCIClE-228A,InteriorViewofSectionofVertical.SplitTube,asSeeninPhotorahNo.14,AfterSandBlastin.Page92 ThomasM.Laronge,Inc.LISTOFPHOTOGRAPHS(Continued)PhotographDesination161718192021.2223242526272829ApproximateMagniAcationAsPrinted,Diameters4.72.32.32.42.02.01.02.42.44.32.12.3SecimenDesinationandDescritionofPhotorahsRCIClE-228A,CloseUpViewofInteriorSectionofVerticalSplitTube,asSeeninPhotorahNo.15,AfterSandBlastin.RHR2E-217C,CloseUViewofInteriorSurfaces.RHR2E-217C,CloseUViewofInteriorSurfaces.RHR2E-217C,CloseUpViewofTypicalInteriorSurfaces,AfterSandBlastin.RHR1E-217B-3B,ViewofInteriorSurfaces,AfterSectionin.RHRlE-217B-3B,CloseUpViewofInteriorSurfaces,-asSeeninPhotorahNo.20,AfterSectioninNote:DamaedWallisEvident.RHRlE-217B-3B,ViewofInteriorSurfacesofaSmallSectionofPie,AfterSectionin.RHR1E-271B-3B,ViewofInteriorSurfacesofaSmallSectionofPie,asSeeninPhotorahNo.22,AfterSandBlastin.RHR2E-217D,ViewofInteriorSurfaces,AfterSectionin.RHR2E-217D,CloseUpViewofInteriorSurfaces,asSeeninPhotorahNo.24,AfterSectionin.RHR2E-217D,ViewofInteriorSurfacesofaSmallSectionofPipe,AfterSectionin.RHR2E-217D,CloseUpViewofTypicalInteriorSurfacesofSecimen2D,AfterSandBlastin.RHRlE-217C,ViewofInteriorSurfacesofaSmallSectionofPie.RHRlE-217C,ViewofInteriorSurfacesofaSectionofPie.Page93  
~S'liiiiQSSRR,fan%
F498Riiiii55iRR f..&lkNQ,~~yplQRi55RRSRQ l%%biiQRMWf:~MFIGURE29EI.FMENTMAPS,RCIClE-228B,VERTICAISPLIT,BOTTOMSECTION.LEGENDCIMn.Page91Ie ThornM.j.aronge, Inc.Photograph Desination10121314'5Approximate Magnification AsPrinted,Diameters 0.30.30.40.40.40.40.60.30.30.30.30.30.31.91.9LISI'FPHOTOGRAPHS SecimenDesinationandDescritionofPhotoahsRCIClE-228A,As-Received.
RHR2E-217C,As-Received.
RHR1B-3B(lE-217B-3B),
As-Received.
"3B"Signifies theThirdRingFromtheTopandtheSecondRowinFromtheInsideDiameter.
RHR2E-217D,As-Received.
RHR2E-217D,As-Received.
RHR2E-217A,As-Received.
RHRlE-217C,As-Received.
RHR2E-217B,As-Received.
RHR2E-217B,As-Received.
RHR2E-217B,As-Received.
RCIC1E-228B,As-Received.
RHR2E-217B,As-Received.
RHR-lE-217A,As-Received.
RCIClE-228A,InteriorViewofSectionofVerticalSlitTube.RCIClE-228A,InteriorViewofSectionofVertical.
SplitTube,asSeeninPhotorahNo.14,AfterSandBlastin.Page92 ThomasM.Laronge,Inc.LISTOFPHOTOGRAPHS (Continued)
Photograph Desination161718192021.2223242526272829Approximate MagniAcationAsPrinted,Diameters 4.72.32.32.42.02.01.02.42.44.32.12.3SecimenDesinationandDescritionofPhotorahsRCIClE-228A,CloseUpViewofInteriorSectionofVerticalSplitTube,asSeeninPhotorahNo.15,AfterSandBlastin.RHR2E-217C,CloseUViewofInteriorSurfaces.
RHR2E-217C,CloseUViewofInteriorSurfaces.
RHR2E-217C,CloseUpViewofTypicalInteriorSurfaces, AfterSandBlastin.RHR1E-217B-3B, ViewofInteriorSurfaces, AfterSectionin
.RHRlE-217B-3B, CloseUpViewofInteriorSurfaces,-as SeeninPhotorahNo.20,AfterSectionin Note:DamaedWallisEvident.RHRlE-217B-3B, ViewofInteriorSurfacesofaSmallSectionofPie,AfterSectionin
.RHR1E-271B-3B, ViewofInteriorSurfacesofaSmallSectionofPie,asSeeninPhotorahNo.22,AfterSandBlastin.RHR2E-217D,ViewofInteriorSurfaces, AfterSectionin
.RHR2E-217D,CloseUpViewofInteriorSurfaces, asSeeninPhotorahNo.24,AfterSectionin
.RHR2E-217D,ViewofInteriorSurfacesofaSmallSectionofPipe,AfterSectionin
.RHR2E-217D,CloseUpViewofTypicalInteriorSurfacesofSecimen2D,AfterSandBlastin.RHRlE-217C,ViewofInteriorSurfacesofaSmallSectionofPie.RHRlE-217C,ViewofInteriorSurfacesofaSectionofPie.Page93  
~'
~'
ThomasM.Loronge,Inc.LISI'FPHOTOGRAPHS(Continued)PhotographDesination30333436;374041ApproximateMagnificationAsPrinted,Diameters1.63.81.61.64.71.21.61.21.61.611.012.5SecimenDesinationandDescritionofPhotoahsRHR1E-217C,ViewofInteriorSurfacesofaSectionofPipe,AfterSandBlastin.RHRlE-271C,CloseUpViewofTypicalInteriorSurfacesof1C,AfterSandBlastin.RHR2E-217B,ViewofInteriorSurfacesofaSmallSection.RHR2E-217B,ViewofInteriorSurfaces,asPicturedinPhotographNo.32,AfterSandBlastin.RHR2E-217B,CloseUpViewofInteriorSurfaces,asPicturedinPhotoahNo.33,AfterSandBlastin.RHR2E-217B,ViewofInteriorSurfacesofTwo90DegreeBends,AfterSectionin.RHR2E-217B,ViewofInteriorSurfacesofOne90DegreeBend,asSeenintheToofPhotorahNo.35,AfterSandBlastin.RHR1E-217A,ViewofInteriorSurfacesofTwo90DegreeBends,AfterSectionin.RHRlE-217A,ViewofInteriorSurfacesofOne90DegreeBend,asSeenintheBottomofPhotorahNo.37.RHRlE-217A,ViewofInteriorSurfacesofOne90DegreeBend,asSeeninPhotorahNo.38,AfterSandBlastin.RCIClE-228A,ViewofIrregularCraterBeforeRemovalofOverlyingMaterial.OverlyingMaterialwasRemovedtoPreparethePitforBioloicalExamination.RCIClE-228A,ViewofIrregularCrater,asSeeninPhotographNo.40,AfterRemovalofOverlyingMaterial.ThisPitwasBiologicallyExaminedtoDeterminetheExtentofBacterialContamination.Page94  
ThomasM.Loronge,Inc.LISI'FPHOTOGRAPHS (Continued)
Photograph Desination30333436;374041Approximate Magnification AsPrinted,Diameters 1.63.81.61.64.71.21.61.21.61.611.012.5SecimenDesinationandDescritionofPhotoahsRHR1E-217C,ViewofInteriorSurfacesofaSectionofPipe,AfterSandBlastin.RHRlE-271C,CloseUpViewofTypicalInteriorSurfacesof1C,AfterSandBlastin.RHR2E-217B,ViewofInteriorSurfacesofaSmallSection.RHR2E-217B,ViewofInteriorSurfaces, asPicturedinPhotograph No.32,AfterSandBlastin.RHR2E-217B,CloseUpViewofInteriorSurfaces, asPicturedinPhotoahNo.33,AfterSandBlastin.RHR2E-217B,ViewofInteriorSurfacesofTwo90DegreeBends,AfterSectionin
.RHR2E-217B,ViewofInteriorSurfacesofOne90DegreeBend,asSeenintheToofPhotorahNo.35,AfterSandBlastin.RHR1E-217A,ViewofInteriorSurfacesofTwo90DegreeBends,AfterSectionin
.RHRlE-217A,ViewofInteriorSurfacesofOne90DegreeBend,asSeenintheBottomofPhotorahNo.37.RHRlE-217A,ViewofInteriorSurfacesofOne90DegreeBend,asSeeninPhotorahNo.38,AfterSandBlastin.RCIClE-228A,ViewofIrregular CraterBeforeRemovalofOverlying Material.
Overlying MaterialwasRemovedtoPreparethePitforBioloicalExamination.
RCIClE-228A,ViewofIrregular Crater,asSeeninPhotograph No.40,AfterRemovalofOverlying Material.
ThisPitwasBiologically ExaminedtoDetermine theExtentofBacterial Contamination.
Page94  


Thomo,sM.Lo,ronge,Inc.LISTOFPHOTOGRAPHS(Continued)PhotographDesiation424445464748ApproximateMagnificationAsPrinted,Diameters151515151535015015SecimenDesinationandDescritionofPhotorahsRHR1E-217B-3B,SEMPhotographofTypicalPit.ElementMappingandEDSWerePerformedonthisPit.RCIClE-228A,HorizontallySplitSection,SEMViewofTypicalPitasSeenontheInteriorSurfacesof1E-228A.ElementMappingandEDSWerePerformedonthisPit.RHRlE-217B-3B,SEMPhotographofTypicalPit.ElementMappingandEDSWerePerformedonthisPit.RHRlE-217B-3B,SEMPhotographofTypicalPit.ElementMappingandEDSWerePerformedonthisPit.RHRlE-217C,SEMPhotographofPitContainingCrystallineDeosits.ElementMainandEDSwerePerformedonthisPit.RHRlE-217C,CloseUpSEMPhotographofCrystallineDeposits,asSeeninPhotoahNo.46.RCIClE-228B,TopHalfofVerticallySplitTube,SEMViewofSmallPit.ElementMainandEDSWerePerformedonthisPit.RCIClE-228B,BottomHalfofVerticallySplitTube,SEMViewofPit.ElementMainandEDSWerePerformedonthisPit.Page95 ThomasM.Laronge,inc.POSTOFFICEBOX338~CALIFON.NEWJERSEY07830~i201]832-5097~FAXt201)832-9775ARTHURJ.FREEDMAN,Ph.D.ExecutiveVicePresidentJune12,1990Mr.RaymondS.TombaughProspectEngineerPennsylvaniaPowerandLightCompanyTwoNorthNinthStreetAllentown,PA18101Sub)ect:PreliminaryReportofSomeSusquehannaESWCoolerInspections
Thomo,sM.Lo,ronge, Inc.LISTOFPHOTOGRAPHS (Continued)
Photograph Desiation424445464748Approximate Magnification AsPrinted,Diameters 151515151535015015SecimenDesinationandDescritionofPhotorahsRHR1E-217B-3B, SEMPhotograph ofTypicalPit.ElementMappingandEDSWerePerformed onthisPit.RCIClE-228A,Horizontally SplitSection,SEMViewofTypicalPitasSeenontheInteriorSurfacesof1E-228A.ElementMappingandEDSWerePerformed onthisPit.RHRlE-217B-3B, SEMPhotograph ofTypicalPit.ElementMappingandEDSWerePerformed onthisPit.RHRlE-217B-3B, SEMPhotograph ofTypicalPit.ElementMappingandEDSWerePerformed onthisPit.RHRlE-217C,SEMPhotograph ofPitContaining Crystalline Deosits.ElementMainandEDSwerePerformed onthisPit.RHRlE-217C,CloseUpSEMPhotograph ofCrystalline
: Deposits, asSeeninPhotoahNo.46.RCIClE-228B,TopHalfofVertically SplitTube,SEMViewofSmallPit.ElementMainandEDSWerePerformed onthisPit.RCIClE-228B,BottomHalfofVertically SplitTube,SEMViewofPit.ElementMainandEDSWerePerformed onthisPit.Page95 ThomasM.Laronge,inc.POSTOFFICEBOX338~CALIFON.NEWJERSEY07830~i201]832-5097~FAXt201)832-9775ARTHURJ.FREEDMAN, Ph.D.Executive VicePresident June12,1990Mr.RaymondS.TombaughProspectEngineerPennsylvania PowerandLightCompanyTwoNorthNinthStreetAllentown, PA18101Sub)ect:Preliminary ReportofSomeSusquehanna ESWCoolerInspections


==DearMr.Tombaugh:==
==DearMr.Tombaugh:==
hisletterconstitutesourpreliminaryreportofourstudyofpittingorrosionintheSusquehannaESWsystemcoolers.Briefly,wehavedeterminedthattherootcauseofthepittingisconventionalunder-depositcorrosionaggravatedbythepresenceofhighlevelsofmanganeseinthedepositsnearthecorrosionsites.Microbiologically-influencedcorrosion(MIC)isacontributingfactorthatmayhaveaggravatedtheattackinsomecoolers,butMICisnottherootcausaoftheproblem.Detailsfollow.WearrivedatthePP&LAllentownofficeatabout11:30AMonFriday,June8,1990.AfterdiscussionswithLouWillertzandRayTombaugh,wewenttotheSusquehannaplantforrequiredtraining.LateFridaynight,weinspectedthe2E-217CRHRoilcoolercoil.Overthenexttwodays(SaturdayandSunday),weinspectedthefollowingequipment:1.1E-217A2.2E-217B3.OE-507D4.OE-533D5.OE-505E1,2D6.1E-228B7.1E-228A8.2E-297ARHROilCoolerCoilRHROilCoolerCoilDieselGeneratorJacketWaterCoolerDieselGovernorCoolerDieselGeneratorIntercoolerRCICPumpRoomUnitCoolerRCICPumpRoomUnitCoolerESWGRDXSystemCondenserllowingisasummaryofourdataandtheconclusionswehavedrawnfromourrktodate.QualityforIndustry III ThomasM.LaroncIe,Inc.InsectionMethod0doingourwork,weusedthefollowingmethods:Visualinspectionoftubesanddepositsaswesawtheminplaceorastheyweiepresentedtousattheplant.oVideoprobeinspectionsoftubesinplace.oVisualinspectionwitha15Xmagnifyinglensoftheinteriorsurfaces,ofcoolingcoilsandtubesthathadbeensplitlongitudinally.oMicroscopicexaminationofselectedcoolercoilsinthePP&LHazletonLaboratory.0Microbiologicalculturesofdepositsfromcoolingcoils,usingmediaspecificforsulfate-reducingandacid-producingbacteria(SRBandAPB).On-siteInsectionResults2E-217CRHROilCoolerCoilThisandtheotherRHRoilcoolingcoilaretypeKcopper.The2E-217Ccoolerhadbeenremovedfromthesystemforseveraldaysbeforeourinspection,andthespecimenswesawweredry.Theinnersurfaceswerecoveredwithaheavy,densescale.Areasofthisscalewerecoloredgreen,white,andbrown,indicatingdifferentmetalliccomponentsinthescale.Wecarefullycleanedthedepositfromsectionsofthiscoilandexaminedthemetalwitha15Xhandlens.Wefoundnumerousrandompitsovermostofthesurface.Thesepitsvariedgreatlyinsi.ze,depth,andshape.Mostwereirregularinshape,smallandshallow,butsomeweresharp-edgedandquitedeep.WetooksamplesofthedepositfrompittedareasofthiscoilandranbiologicalculturesforSRBandAPBasexplainedabove.Theseculturesshowednoresponsein24hours.After48hours,sufficientgrowthhadoccurredtoindicatethatlowtomoderatelevelsofthesebacteri.awerepresentinthiscoil.2.1E-217ARHROilCoolerCoilThe2E-217CRHRoilcoolercoilcarriesESWwaterfromtheB'loop.ToobtainacomparisonwiththeAloop,weinspectedthe1E-217Acoil,usingthesamemethodsdescribedabove.Weinspectedsectionscutfromthesecondcoillayerfromthetopandthesecondlayerfromthebottom.Thenatureofthedepositinthe1E-217Acoilwasentirelydifferentfromthe2E-217Ccoil.Wefoundnoneofthehard"scale"depositsdescribedin2E-217C.Instead,wefoundaloose,flowableblackdeposit,andbelowthat(nexttothemetal)ahard,firmly-attachedblacklayer.SEM/EDAXanalysisofthisdepositatHazletonidentifiedthisblackdepositasprimarilymanganesesalts.Page2  
 
: 4gIIA, ThomasM.Laronge,Inc.,.Wefoundpitsbeneaththeblackdeposit.Allwereverysmall,irregularinshape,andrandomlydistributed.Nopitswereasdeepasthosefoundin2E-217C.2E-217BRHROilCoolerCoilToprovideasecondinspectionofoilcoolersontheBESWloop,weinspectedthe2E-217Bcoil.Thiscoilwasfoundtobeintermediateinconditionbetweenthe1E-217Aand2E-217Ccoils.Nohardscalewaspresent.WefoundsubstantialblackdepositsthatwerelateridentifiedbySEM/EDAXasprimarilymanganesecompounds.Theblackdepositwasstringyandcoveredpartbutnotallofthesurface.Underthedepositinthiscoilwefoundpittingthatwasmoreprevalentanddeeperthanin1E-217Abutnotasseriousasin2E-217C.MicrobiologicalculturesofthedepositscoveringthesepitsshowedlessactivitythaneitheroftheothertwoRHRoilcoolers.4,OE-507DDieselGeneratorJacketWaterCoolerThetubesinthiscoolerarereportedtobe90/10cupronickel.ETinspectionofthisexchangerhadidentifiedatleastonetubewithmorethan60Xwallpenetration.Weidentifiedthistube-fromthe"map"intheETinspectionreportandwereabletovisuallyinspecttheentireinsidesurfaceusingthenewly-acquiredfiberscopeequipment.Wewereableto.seemanypittedareasinthistube.Wecouldnotmeasurepitdepth,butsomeappearedtobeverydeep.Asinothercoolers,thepitswererandomlydistributedandirregularinshape.'hesetubeshadbeencleaned,andwewerenotabletocollectsufficientdepositformicrobiologicalanalysis.Tubesshouldbepulledfromthisheatexchangerformoredetailedinspection.5.OE-533DDieselGovernorCoolerWeexaminedthisverysmallsingletubecoolerbutwerenotabletomakeadetailedinspection.Thetubehadbeencleanedandnodepositswereavailable.Wecouldseewhatappearedtobeminorpittinginsidethetube,butnootherobservationswerepossible.6.OE-505E1,2DDieselGeneratorIntercoolerInspectionofthiscoolerwasdifficult.Thetubesweretoosmalltopermitentranceofthefiberscope.Thetubeends(internal)werecleanandappearedtoshowmanysmallpits.Nofirmconclusioncanbedrawn;atubeshouldbepulledfromthisexchangerforinspectionwhenpossible.7.1E-228BRCICPumRoomUnitCoolerThiscoolerhadbeenopen'forseveraldaysbeforeourinspection.Thetubesarecupronickel.Thetubeshadbeencleaned,butwefoundonetubethatcontainedsubstantialamountsoflooseblackdeposit.Wecouldnotusethefiberscopeeffectivelybecauseitfitonlyashortdistanceintothetube.Page3 ThomasM.LaroncIe,Inc.The"depositfromthisdirtytubeshowedthehighestmicrobiologicalactivityofanysampletested.'hissamplewasonetotwoordersofmagnitudemoreactivethananyoftheRHRlubeoilcoolers.Weunderstandt'hatthisunitisontheBESWloop.Onetubefromtheoutsidelayerwascutoutforinspection.Byvisual(15X)examination,thistubewasfoundtocontainnumerousunder-depositpitsofvaryingdepthandrandomshape.8.ESWBSulWaterLineto1E-228BBydisconnectingtheflexiblehosebetweenthe1E-228BRCICPumpRoomUnitCoolerandtheESWBsupplywaterline,wewereabletoinspecttheinteriorofthesupplywaterline.Usingthefiberscope,wewereabletoseeapproximately18inchesintothislineincludingone90-degreeelbow.Thismildsteellinewasheavilycorrodedandcoveredwithauniformlayerofscale.Thisscalewasdarkbrownincolorandvariedbetween1/16"andabout3/16"inthickness.Nooutstandingtubercles.werevisible.Thescaleprobablyismostlyironoxides.Weremovedsmallpiecesofscalefromthepipeopening.Theunderlyingmetalseemedtoberelativelysmooth.Noseriouspittingwasseen.However,viewingwasverydifficult,andthisshouldnotbeconsideredacompletestatementof.theconditionofthispipe.Thispipe,aswesawit,wastypicalofmildsteelpipeexposedtocorrosivewaterwithnochemicaltreatmentformanyyears.Theheavylayersofcorrosion-producedscaleareprobablyatthispointprovidingsomeprotectionagainstfurthergeneralcorrosionofthepipe.However,anyunder-depositcorrosiongoingonunderneaththesescalewillbeverydifficulttocontrolwithoutcleaningthepipe.Weranmicrobiologicalculturesonamixtureofdepositandwaterfromthispipe.Theculturesrespondedinlessthan12hours,indicatingveryhighlevelsofSRBandAPBatthispoint.Thegrowthratewassimilartotha'tfoundinthesamplefrom1E-228B.Thiswastheonlypieceofmildsteelpipingorequipmentthatweinspectedduringthisvisit.Webelieve,however,thattheconditionofthispipeissimilartothatofmostoftheESWpipingexposedtosimilarflowconditions.9.1E-228ARCICPumRoomUnitCoolerThisunitwasopenedforinspectioninourpresence,sothatwewereabletoexaminethedepositimmediatelyuponexposuretoair.Thisisimportantbecauseanaerobicbacteria,typicallytheSRBandAPBofconcernatSusquehanna,tendtoformspores(becomeinactive)inthepresenceofoxygen.This'nitwascleanerthan1E-228Bandcontainedbrownratherthanblackdeposits.Mostofthedepositsseemedtobeintheformofloose,well-flocculatedsolidswithclearwater.1E-228B,bycontrast,containedmuddywaterandslimy,blackdeposits.Page4 ThornosM.Laronge,Inc.containedlessdepositandfarfewerlE-228B.Weunderstandthat1E-228A10.2E-297AESWGRDXSstemCondenserWecouldnotseemorethanafewinchesintothetubesasinstalled.Onetubewascutfromthe"outsiderowforourexamination.ThistubepitsthanthecorrespondingtubefromreceivesESWwaterfromtheAloop.Thisexchangerwasopenedgustbeforeourinspection.Weunderstandthatthiswasthefirstinspectionofthisunit.Roughly75Xofthetubesheetwascoveredwithathickdepositconsistingofvariouscolored"scaledeposits"plusloose,slimyblackmaterial.Mostofthetubeswerepartiallyorcompletelyblockedwiththismaterial.Thesedepositsmustrestrictflowthroughthiscooler.Thefiberscopewouldnotfitmorethanafewinchesintothetubes.Also,thevoluminousdepositmadeviewingthemetalsurfaceimpossible.Wetookamixedsampleofthedepositformicrobiologicalcultureanalysis.Afteroneday,thissampleshowedonlylowlevelactivity.The2E-297Acoolerwasclosed,withnocleaning,immediatelyafterourinspection.Werecommendthatthisequipmentbecleanedandthoroughlyinspectedassoonaspossible.LaboratorExaminationHeatexchangertubingremovedfromfiveESWcoolerswasexaminedintheazletonLaboratoryofPP&L.Thisexaminationconsistedofvisualexaminationthandwithoutamagnifyingloupe,visualexaminationusinga0.7Xto4.5XnitronstereomicroscopeandSEM/EDSexaminationusinganAmray1830SEMfittedwithaPrincetonGammaTechnicalEDSAnalyzer.ThelatterwasoperatedbyMr.T.J.PensockandMr.L.E.Willertz..Thesectionsofheatexchangertubingexaminedwerefromthefollowingexchangers:~ExchacacVlacalStereomicroscoeSEM/EDS1E-217A2E-217B2E-217C1E-228A1E-228BXXXXXXXXXXXXXInallcasestheRHRpumplubeoilcoolersexaminedwereremovedfromthefifth"pancake"orhorizontalbankoffourloopsnumberingfromthebottom.Fourelbowseachfromunits2B(fabricated)andfrom2C(cast),respectively,werealsovisuallyexamined.Alltubesweresectionedinahorizontalplanesothat"top"and"bottom"couldbedistinguished.Additionally,asectionoftubingfrom2E-217Bwassectionedtop-to-bottomsothatthehorizontalsidescouldbeexaminedintact.TheRCICPumpRoomCoolertubesexaminedwerefromanouterlocationi'nthetubebundles.Thetubesweresplitwithoutnotingthespecificdirectionofstallation.Page5 tlil~>>
hisletterconstitutes ourpreliminary reportofourstudyofpittingorrosionintheSusquehanna ESWsystemcoolers.Briefly,wehavedetermined thattherootcauseofthepittingisconventional under-deposit corrosion aggravated bythepresenceofhighlevelsofmanganese inthedepositsnearthecorrosion sites.Microbiologically-influenced corrosion (MIC)isacontributing factorthatmayhaveaggravated theattackinsomecoolers,butMICisnottherootcausaoftheproblem.Detailsfollow.WearrivedatthePP&LAllentown officeatabout11:30AMonFriday,June8,1990.Afterdiscussions withLouWillertzandRayTombaugh, wewenttotheSusquehanna plantforrequiredtraining.
ThomasM.Loronc3e,Inc.Visualinspectionclearlyshowedforeignmat'ter,i.e.,scaleanddepositsonalltubewatersidesurfaces.Eachofthetubeshadnearlythesameappearanceonthewatersideexceptforthosefrom2E-217C.helattertubewasessentiallycoveredwithamottledmixtureofgreen,white,andbrowndeposits,rangingfromafewthousandthsofan,inchtobetterthan0.125inchinthickness.Thematerialappearedtohavebeenlaiddowninlayers.Thissuggestsformationinaseriesofdiscontinuances,discreteeventssuchason-offoperatingperiods,significantwaterchemistrychangesfromscalingtonon-scaling,andsoon.Thee..posedsurfacewasdryingoutandevidencedcrackingatintervalsof0.125inchto0.375inch.Thisresultedinarectangulartosquarepatternedpeelingappearance.Allotherexchangertubeswerecoveredtovaryingdegreeswithapredominantlybrowntoblack,"oily"appearingfilm.Thefilmwasmattedwithsmalltolargepatchesoforange-browntogreen-brownmaterialwhichhadadullsurfacefinish.Thedeposit/scalelaidinadistinctpatternonallexaminedtubes.Specifically,intheRHRpumpslubeoilcoolertubestherewasmoredeposit/scaleattheinsidediameterthanattheoutsidediameter.Additionally,therewasmorematerialatthebottomofthetubesthanatthetopofthetubes.Uponcuttingthesetubes,moredeposit/scalespalledfromtheinsidediametersurfacethanfromtheoutsidediametersurface.Wherethedeposit/scalespalled,ablotchyappearanceresultedshowingmetalsurfaceatomepoints.Mostoftheblotchestendedtorangeincolorfromacopperolortoanorange-browncolor.Pitswerefoundinalltubespecimensexamined.Mostofthepitswereround,althoughsomeelongatedpitsinthedirectionofflowwereseen.Nohemisphericalpitswithinpitswereseen.Whereasinglepitappearedtobethecompositeoftwoormoreindividualpits,thisappearedtoresultfromhorizontalgrowingtogetheratthecorrosionboundaries.Inotherwords,themorphologyofsmallhemisphericalpitswithinpitsthatisoftenascribedtothemorphologyresultingwhenMICoccurswasnotfound.Also,noodorcouldbedetectedonfreshlycutsurfaces.Notunnelingormajorundercuttingwasnoticed.Almostallpitswerecoveredwithdeposit/scalematerialintheshapeofatubercleexceptforthepitsof2E-217C.Thelattersimplyhadpitsbeneaththerelativelythickdeposit.Severalspecimensfrom1E-217A,2E-2178,and2E-217CweremountedforSEMexamination.SomeofthesespecimenswerevaporcoatedwithcarbontoreducethetendencyforsurfacechargingintheSEM.TheexactdetailsshouldbeobtainedfromMessrs.Pensockand/orWillertzastheydidthework.Wesimplywitnessedasignificantportion,ofthisonSunday,June10,1990.Whilethesampleswereinthescanningelectronmicroscope,EDSwasusedonmanyareastoobtainsemiquantitativeidentificationofmaterialspresentatexaminedsurfaces.Basically,theelectronbombardmentofthesurfacesesultsinthegenerationofx-rayswhoseenergiesareassociatedwithecificelements.Theseenergieswerescannedfromabout0toabout10,000ectronvoltsandthequantityofx-raysversustheirrespectiveenergiesPage6 ThomasM.Laronge,In(:.hwereplottedusingcomputergraphics.Theresultingplotorspectrumgivesanearexactideaofwhichmaterialsarepresentandaqualitativetosemi-qualitativeideaofhowmuchofeachmaterialispresent.Alldeposit/scalesamplesexaminedhad,atleast,thesamebasicfourelements,namely:1)2)3)4)Copper.Manganese.Iron.Calcium.Itisbelievedthatthemanganesecamefromeitheroftwosources.ThesearetheinfluentESWwaterandcorrosionproductsofcarbonsteelorothermanganese-containingmaterials.Itisbelievedthattheironcamefromthesametwosourceslistedformanganese.However,someoftheironfoundcouldhavebeentheresultofiron'II)oxidationby"ironbacteria"toiron(III).ItisbelievedthatthecalciumallcamefromtheESWinfluentwater.Thiscalciumdepositedastherespectivesolubilityproductsofcalciumwithcertainanionswereexceeded.Thesesolubilitiesarefunctionallydependentupontime,temperature,pressure,andtheamountandtypeofothermaterialspresent.Sufficeittosay,thecopperwasdetectedbecauseofthepresenceofcopperinthetubes.Othersourcesofcoppercouldnotbeexpectedtoyielddetectableamountsinthepresenceofcopper-containingmaterials.EDSanalysisshowedthepresenceofmanyotherelements.Bothchlorineandsulfurwerefoundwithinpits.Generally,thesematerialswerefoundtogether.Therewasonepitexaminedinwhichsulfurwasdetectedandchlorinewasnotdetected,butoverall,wheretheseelementswerefound,chlorinelevelswerehighandsulfurlevelswerelow,relativetoeachother.Bothchlorineandsulfur-containingcompoundsaretypicallyimplicatedinmanypittingcorrosionprocessesofcopperandcopper-bearingalloys.Themajordifferenceinimplicationisthatchlorineisinvolvedingenericunder-depositpittingandsulfuristypicallyinvolvedinMICpitting.Mic'robioloicall-Influenced'Corrosion(MIC)MICreferstoaspecializedformofunder-depositcorrosioninwhichthemetabolicproductsofbacteriaplayasignificantroleinthecorrosionprocess.Typically,SRBandAPBgenerateacidthatmakest'eenvironmentunderdepositsmorecorrosivetothemetal.ItisoftenassumedthatthepresenceofSRBand/orAPB(orotheranaerobicbacteria)inasystemisproofthatMICisoccurringinthatsystem.Thisisdefinitelynotthecase.InorderforMXCtobepositivelyconfirmedinasystem,threeconditionsmustexist:a.Theappropriatebacteriamustbepresent.Page7  
LateFridaynight,weinspected the2E-217CRHRoilcoolercoil.Overthenexttwodays(Saturday andSunday),weinspected thefollowing equipment:
1.1E-217A2.2E-217B3.OE-507D4.OE-533D5.OE-505E1,2D 6.1E-228B7.1E-228A8.2E-297ARHROilCoolerCoilRHROilCoolerCoilDieselGenerator JacketWaterCoolerDieselGovernorCoolerDieselGenerator Intercooler RCICPumpRoomUnitCoolerRCICPumpRoomUnitCoolerESWGRDXSystemCondenser llowingisasummaryofourdataandtheconclusions wehavedrawnfromourrktodate.QualityforIndustry III ThomasM.LaroncIe, Inc.InsectionMethod0doingourwork,weusedthefollowing methods:Visualinspection oftubesanddepositsaswesawtheminplaceorastheyweiepresented tousattheplant.oVideoprobe inspections oftubesinplace.oVisualinspection witha15Xmagnifying lensoftheinteriorsurfaces, ofcoolingcoilsandtubesthathadbeensplitlongitudinally.
oMicroscopic examination ofselectedcoolercoilsinthePP&LHazletonLaboratory.
0Microbiological culturesofdepositsfromcoolingcoils,usingmediaspecificforsulfate-reducing andacid-producing bacteria(SRBandAPB).On-siteInsectionResults2E-217CRHROilCoolerCoilThisandtheotherRHRoilcoolingcoilaretypeKcopper.The2E-217Ccoolerhadbeenremovedfromthesystemforseveraldaysbeforeourinspection, andthespecimens wesawweredry.Theinnersurfaceswerecoveredwithaheavy,densescale.Areasofthisscalewerecoloredgreen,white,andbrown,indicating different metalliccomponents inthescale.Wecarefully cleanedthedepositfromsectionsofthiscoilandexaminedthemetalwitha15Xhandlens.Wefoundnumerousrandompitsovermostofthesurface.Thesepitsvariedgreatlyinsi.ze,depth,andshape.Mostwereirregular inshape,smallandshallow,butsomeweresharp-edged andquitedeep.Wetooksamplesofthedepositfrompittedareasofthiscoilandranbiological culturesforSRBandAPBasexplained above.Theseculturesshowednoresponsein24hours.After48hours,sufficient growthhadoccurredtoindicatethatlowtomoderatelevelsofthesebacteri.a werepresentinthiscoil.2.1E-217ARHROilCoolerCoilThe2E-217CRHRoilcoolercoilcarriesESWwaterfromtheB'loop.Toobtainacomparison withtheAloop,weinspected the1E-217Acoil,usingthesamemethodsdescribed above.Weinspected sectionscutfromthesecondcoillayerfromthetopandthesecondlayerfromthebottom.Thenatureofthedepositinthe1E-217Acoilwasentirelydifferent fromthe2E-217Ccoil.Wefoundnoneofthehard"scale"depositsdescribed in2E-217C.Instead,wefoundaloose,flowableblackdeposit,andbelowthat(nexttothemetal)ahard,firmly-attached blacklayer.SEM/EDAXanalysisofthisdepositatHazletonidentified thisblackdepositasprimarily manganese salts.Page2  
: 4gIIA, ThomasM.Laronge,Inc.,.Wefoundpitsbeneaththeblackdeposit.Allwereverysmall,irregular inshape,andrandomlydistributed.
Nopitswereasdeepasthosefoundin2E-217C.2E-217BRHROilCoolerCoilToprovideasecondinspection ofoilcoolersontheBESWloop,weinspected the2E-217Bcoil.Thiscoilwasfoundtobeintermediate incondition betweenthe1E-217Aand2E-217Ccoils.Nohardscalewaspresent.Wefoundsubstantial blackdepositsthatwerelateridentified bySEM/EDAXasprimarily manganese compounds.
Theblackdepositwasstringyandcoveredpartbutnotallofthesurface.Underthedepositinthiscoilwefoundpittingthatwasmoreprevalent anddeeperthanin1E-217Abutnotasseriousasin2E-217C.Microbiological culturesofthedepositscoveringthesepitsshowedlessactivitythaneitheroftheothertwoRHRoilcoolers.4,OE-507DDieselGenerator JacketWaterCoolerThetubesinthiscoolerarereportedtobe90/10cupronickel.
ETinspection ofthisexchanger hadidentified atleastonetubewithmorethan60Xwallpenetration.
Weidentified thistube-fromthe"map"intheETinspection reportandwereabletovisuallyinspecttheentireinsidesurfaceusingthenewly-acquired fiberscope equipment.
Wewereableto.seemanypittedareasinthistube.Wecouldnotmeasurepitdepth,butsomeappearedtobeverydeep.Asinothercoolers,thepitswererandomlydistributed andirregular inshape.'hesetubeshadbeencleaned,andwewerenotabletocollectsufficient depositformicrobiological analysis.
Tubesshouldbepulledfromthisheatexchanger formoredetailedinspection.
5.OE-533DDieselGovernorCoolerWeexaminedthisverysmallsingletubecoolerbutwerenotabletomakeadetailedinspection.
Thetubehadbeencleanedandnodepositswereavailable.
Wecouldseewhatappearedtobeminorpittinginsidethetube,butnootherobservations werepossible.
6.OE-505E1,2D DieselGenerator Intercooler Inspection ofthiscoolerwasdifficult.
Thetubesweretoosmalltopermitentranceofthefiberscope.
Thetubeends(internal) werecleanandappearedtoshowmanysmallpits.Nofirmconclusion canbedrawn;atubeshouldbepulledfromthisexchanger forinspection whenpossible.
7.1E-228BRCICPumRoomUnitCoolerThiscoolerhadbeenopen'forseveraldaysbeforeourinspection.
Thetubesarecupronickel.
Thetubeshadbeencleaned,butwefoundonetubethatcontained substantial amountsoflooseblackdeposit.Wecouldnotusethefiberscope effectively becauseitfitonlyashortdistanceintothetube.Page3 ThomasM.LaroncIe, Inc.The"depositfromthisdirtytubeshowedthehighestmicrobiological activityofanysampletested.'hissamplewasonetotwoordersofmagnitude moreactivethananyoftheRHRlubeoilcoolers.Weunderstand t'hatthisunitisontheBESWloop.Onetubefromtheoutsidelayerwascutoutforinspection.
Byvisual(15X)examination, thistubewasfoundtocontainnumerousunder-deposit pitsofvaryingdepthandrandomshape.8.ESWBSulWaterLineto1E-228BBydisconnecting theflexiblehosebetweenthe1E-228BRCICPumpRoomUnitCoolerandtheESWBsupplywaterline,wewereabletoinspecttheinteriorofthesupplywaterline.Usingthefiberscope, wewereabletoseeapproximately 18inchesintothislineincluding one90-degree elbow.Thismildsteellinewasheavilycorrodedandcoveredwithauniformlayerofscale.Thisscalewasdarkbrownincolorandvariedbetween1/16"andabout3/16"inthickness.
Nooutstanding tubercles.
werevisible.Thescaleprobablyismostlyironoxides.Weremovedsmallpiecesofscalefromthepipeopening.Theunderlying metalseemedtoberelatively smooth.Noseriouspittingwasseen.However,viewingwasverydifficult, andthisshouldnotbeconsidered acompletestatement of.thecondition ofthispipe.Thispipe,aswesawit,wastypicalofmildsteelpipeexposedtocorrosive waterwithnochemicaltreatment formanyyears.Theheavylayersofcorrosion-produced scaleareprobablyatthispointproviding someprotection againstfurthergeneralcorrosion ofthepipe.However,anyunder-deposit corrosion goingonunderneath thesescalewillbeverydifficult tocontrolwithoutcleaningthepipe.Weranmicrobiological culturesonamixtureofdepositandwaterfromthispipe.Theculturesresponded inlessthan12hours,indicating veryhighlevelsofSRBandAPBatthispoint.Thegrowthratewassimilartotha'tfoundinthesamplefrom1E-228B.Thiswastheonlypieceofmildsteelpipingorequipment thatweinspected duringthisvisit.Webelieve,however,thatthecondition ofthispipeissimilartothatofmostoftheESWpipingexposedtosimilarflowconditions.
9.1E-228ARCICPumRoomUnitCoolerThisunitwasopenedforinspection inourpresence, sothatwewereabletoexaminethedepositimmediately uponexposuretoair.Thisisimportant becauseanaerobic
: bacteria, typically theSRBandAPBofconcernatSusquehanna, tendtoformspores(becomeinactive) inthepresenceofoxygen.This'nitwascleanerthan1E-228Bandcontained brownratherthanblackdeposits.
Mostofthedepositsseemedtobeintheformofloose,well-flocculated solidswithclearwater.1E-228B,bycontrast, contained muddywaterandslimy,blackdeposits.
Page4 ThornosM.Laronge,Inc.contained lessdepositandfarfewerlE-228B.Weunderstand that1E-228A10.2E-297AESWGRDXSstemCondenser Wecouldnotseemorethanafewinchesintothetubesasinstalled.
Onetubewascutfromthe"outside rowforourexamination.
Thistubepitsthanthecorresponding tubefromreceivesESWwaterfromtheAloop.Thisexchanger wasopenedgustbeforeourinspection.
Weunderstand thatthiswasthefirstinspection ofthisunit.Roughly75Xofthetubesheetwascoveredwithathickdepositconsisting ofvariouscolored"scaledeposits" plusloose,slimyblackmaterial.
Mostofthetubeswerepartially orcompletely blockedwiththismaterial.
Thesedepositsmustrestrictflowthroughthiscooler.Thefiberscope wouldnotfitmorethanafewinchesintothetubes.Also,thevoluminous depositmadeviewingthemetalsurfaceimpossible.
Wetookamixedsampleofthedepositformicrobiological cultureanalysis.
Afteroneday,thissampleshowedonlylowlevelactivity.
The2E-297Acoolerwasclosed,withnocleaning, immediately afterourinspection.
Werecommend thatthisequipment becleanedandthoroughly inspected assoonaspossible.
Laborator Examination Heatexchanger tubingremovedfromfiveESWcoolerswasexaminedintheazletonLaboratory ofPP&L.Thisexamination consisted ofvisualexamination thandwithoutamagnifying loupe,visualexamination usinga0.7Xto4.5Xnitronstereomicroscope andSEM/EDSexamination usinganAmray1830SEMfittedwithaPrinceton GammaTechnical EDSAnalyzer.
ThelatterwasoperatedbyMr.T.J.PensockandMr.L.E.Willertz.
.Thesectionsofheatexchanger tubingexaminedwerefromthefollowing exchangers:
~ExchacacVlacalStereomicrosco eSEM/EDS1E-217A2E-217B2E-217C1E-228A1E-228BXXXXXXXXXXXXXInallcasestheRHRpumplubeoilcoolersexaminedwereremovedfromthefifth"pancake" orhorizontal bankoffourloopsnumbering fromthebottom.Fourelbowseachfromunits2B(fabricated) andfrom2C(cast),respectively, werealsovisuallyexamined.
Alltubesweresectioned inahorizontal planesothat"top"and"bottom"couldbedistinguished.
Additionally, asectionoftubingfrom2E-217Bwassectioned top-to-bottom sothatthehorizontal sidescouldbeexaminedintact.TheRCICPumpRoomCoolertubesexaminedwerefromanouterlocationi'nthetubebundles.Thetubesweresplitwithoutnotingthespecificdirection ofstallation.
Page5 tlil~>>
ThomasM.Loronc3e, Inc.Visualinspection clearlyshowedforeignmat'ter,i.e.,scaleanddepositsonalltubewaterside surfaces.
Eachofthetubeshadnearlythesameappearance onthewaterside exceptforthosefrom2E-217C.helattertubewasessentially coveredwithamottledmixtureofgreen,white,andbrowndeposits, rangingfromafewthousandths ofan,inchtobetterthan0.125inchinthickness.
Thematerialappearedtohavebeenlaiddowninlayers.Thissuggestsformation inaseriesofdiscontinuances, discreteeventssuchason-offoperating periods,significant waterchemistry changesfromscalingtonon-scaling, andsoon.Thee..posedsurfacewasdryingoutandevidenced crackingatintervals of0.125inchto0.375inch.Thisresultedinarectangular tosquarepatterned peelingappearance.
Allotherexchanger tubeswerecoveredtovaryingdegreeswithapredominantly browntoblack,"oily"appearing film.Thefilmwasmattedwithsmalltolargepatchesoforange-brown togreen-brown materialwhichhadadullsurfacefinish.Thedeposit/scale laidinadistinctpatternonallexaminedtubes.Specifically, intheRHRpumpslubeoilcoolertubestherewasmoredeposit/scale attheinsidediameterthanattheoutsidediameter.
Additionally, therewasmorematerialatthebottomofthetubesthanatthetopofthetubes.Uponcuttingthesetubes,moredeposit/scale spalledfromtheinsidediametersurfacethanfromtheoutsidediametersurface.Wherethedeposit/scale spalled,ablotchyappearance resultedshowingmetalsurfaceatomepoints.Mostoftheblotchestendedtorangeincolorfromacopperolortoanorange-brown color.Pitswerefoundinalltubespecimens examined.
Mostofthepitswereround,althoughsomeelongated pitsinthedirection offlowwereseen.Nohemispherical pitswithinpitswereseen.Whereasinglepitappearedtobethecomposite oftwoormoreindividual pits,thisappearedtoresultfromhorizontal growingtogetheratthecorrosion boundaries.
Inotherwords,themorphology ofsmallhemispherical pitswithinpitsthatisoftenascribedtothemorphology resulting whenMICoccurswasnotfound.Also,noodorcouldbedetectedonfreshlycutsurfaces.
Notunneling ormajorundercutting wasnoticed.Almostallpitswerecoveredwithdeposit/scale materialintheshapeofatubercleexceptforthepitsof2E-217C.Thelattersimplyhadpitsbeneaththerelatively thickdeposit.Severalspecimens from1E-217A,2E-2178,and2E-217CweremountedforSEMexamination.
Someofthesespecimens werevaporcoatedwithcarbontoreducethetendencyforsurfacechargingintheSEM.TheexactdetailsshouldbeobtainedfromMessrs.Pensockand/orWillertzastheydidthework.Wesimplywitnessed asignificant portion,ofthisonSunday,June10,1990.Whilethesampleswereinthescanningelectronmicroscope, EDSwasusedonmanyareastoobtainsemiquantitative identification ofmaterials presentatexaminedsurfaces.
Basically, theelectronbombardment ofthesurfacesesultsinthegeneration ofx-rayswhoseenergiesareassociated withecificelements.
Theseenergieswerescannedfromabout0toabout10,000ectronvoltsandthequantityofx-raysversustheirrespective energiesPage6 ThomasM.Laronge,In(:.hwereplottedusingcomputergraphics.
Theresulting plotorspectrumgivesanearexactideaofwhichmaterials arepresentandaqualitative tosemi-qualitative ideaofhowmuchofeachmaterialispresent.Alldeposit/scale samplesexaminedhad,atleast,thesamebasicfourelements, namely:1)2)3)4)Copper.Manganese.
Iron.Calcium.Itisbelievedthatthemanganese camefromeitheroftwosources.ThesearetheinfluentESWwaterandcorrosion productsofcarbonsteelorothermanganese-containing materials.
Itisbelievedthattheironcamefromthesametwosourceslistedformanganese.
However,someoftheironfoundcouldhavebeentheresultofiron'II)oxidation by"ironbacteria" toiron(III).ItisbelievedthatthecalciumallcamefromtheESWinfluentwater.Thiscalciumdeposited astherespective solubility productsofcalciumwithcertainanionswereexceeded.
Thesesolubilities arefunctionally dependent upontime,temperature,
: pressure, andtheamountandtypeofothermaterials present.Sufficeittosay,thecopperwasdetectedbecauseofthepresenceofcopperinthetubes.Othersourcesofcoppercouldnotbeexpectedtoyielddetectable amountsinthepresenceofcopper-containing materials.
EDSanalysisshowedthepresenceofmanyotherelements.
Bothchlorineandsulfurwerefoundwithinpits.Generally, thesematerials werefoundtogether.
Therewasonepitexaminedinwhichsulfurwasdetectedandchlorinewasnotdetected, butoverall,wheretheseelementswerefound,chlorinelevelswerehighandsulfurlevelswerelow,relativetoeachother.Bothchlorineandsulfur-containing compounds aretypically implicated inmanypittingcorrosion processes ofcopperandcopper-bearing alloys.Themajordifference inimplication isthatchlorineisinvolvedingenericunder-deposit pittingandsulfuristypically involvedinMICpitting.Mic'robiolo icall-Influenced
'Corrosion (MIC)MICreferstoaspecialized formofunder-deposit corrosion inwhichthemetabolic productsofbacteriaplayasignificant roleinthecorrosion process.Typically, SRBandAPBgenerateacidthatmakest'eenvironment underdepositsmorecorrosive tothemetal.ItisoftenassumedthatthepresenceofSRBand/orAPB(orotheranaerobic bacteria) inasystemisproofthatMICisoccurring inthatsystem.Thisisdefinitely notthecase.InorderforMXCtobepositively confirmed inasystem,threeconditions mustexist:a.Theappropriate bacteriamustbepresent.Page7  
~,n<
~,n<
ThomasM.Laronge,1nc.b.Thedepositnexttothemetalsurfacemustshowsignificantlyhigherlevelsofsulfurthanwouldbeexpectedfromsimpleconcentrationofsystemwaterandsulfur-containinggeneralsystemdebris.c.ThemorphologyofthepitsonthemetalsurfacemustshowpatternsknowntobecharacteristicofMIC.IntheSusquehannaplant:SignificantlevelsofSRBandAPBarepresent.ThisisnotatallsurprisingsincetheESWwaterisdrawnfromapondthatsupportsaquaticplantgrowthandisknowntohaveanaerobicbottomconditions.Thispondreceivesnochemicaltreatmentotherthanoccasionalalgacidearoundtheedgesasneeded.b.TheSEM/EDAXdepositanalysispreparedbytheHazletonLaboratoryshowshighlevelsofcopperandchloride,tobeexpectedinunder-depositcorrosion,butonlymarginallyhigherlevelsofsulfurinsomecases.c.ThemorphologyofMIConmostmetalsconsistsgenerallyofshallow-walledhemisphericalpits,oftenwithsmaller"pitswithinpits."InsomecasesofMIC>severallayersofpitswithinpitsmaybeobserved.Onsomemetals,particularlytheausteniticstainlesssteels,tunnelingunderthesurfacemaybeseen.ThesecharacteristicpatternsofpitformationanddevelopmentwerenotenerallyfoundduringourinspectionsatSusquehanna.Asarule,thepitsendedtobe'eparate,randomlyorientedandirregularinbothsizeandshape.WebelievethatalthoughMICundoubtedlywasasignificantfactorinsomepitsandprobablyaggravatedcorrosiveconditionsinothercases,itwasneitherthemajorcausativefactornortherate-determiningstepinthepittingcorrosionprocess.Under-DeositPittinCorrosionWhendepositsareallowedtoformonametalsurfaceexposedtocorrosivewater,differentialconcentrationcellsarecreatedthatincreasethecorrosivityofthewaterlayerbeneaththedeposit,relativetothebulkwater.Ineffect,a"battery"isformedinwhichthemetalsurfacebelowthedepositbecomestheanodeoractivesiteatwhichmetaldissolves.Thisresultsinpittingcorrosion.Thedegreeofpittingthatoccursinanygivencasedependsuponmanyvariables,includingparticularlythemetalcomposition,thewatercomposition,andoperatingvariables.Flowconditions,temperature,andtimearethecriticaloperatingvariables.Thepresenceofmanganese,especiallyatthehighlevelsfoundintheSusquehannaESWdeposits,canseriouslyaggravatepittingcorrosion.Manganeseisamultivalentmetal.Itcanexistinseveraloxidationstatesand,therefore,encourageselectrochemicalreactions.This,ineffect,increasescorrosionrateandparticularlypittingcorrosionunderanganese-containingdeposits.Page8 Thomo,sM.Lo,ronge,Inc.RootCauseSummar'heevidencewehavegatheredfromtheworkdescribedinthisletterleadsusotheconclusionthattherootcauseofthepittingattackobservedoncopperandcupronickelheatexchangertubesintheSusquehannaESWsystemisconventionalunder-depositcorrosionaggravatedbythehighlevelsofmanganeseinthedeposits.SRBandAPBareclearlypresentthroughouttheESWsystem,andMICmustbeacontributingfactorinthepittingcorrosion.SomepitsmaybeprimarilycausedbyMIC.However,thechemicalanalysisandmetalsurfacemorphologyonallspecimensthatweexaminedindicateverystronglythatMICisonlyacontributingfactorandnottherootcauseoftheproblem.Wemustpointoutthatflowconditions,particularlylongperiodsofnoflow,canseriouslyaggravatepittingcorrosion.Thismayhelptoexplaintheheavierdepositsandmoreseriouspittinginthe2E-217CRHRoilcoolercoil,comparedtootherpartsofthesystem.Ourcompletereport,tofollow,willincludefulldocumentationanddiscussionofourfindings,includingappropriatereferencesandbackgroundinformation.Pleasecontactuswithanycomments,questions,requests,and/orinstructions.Verytrulyyours,g~ArthurJ.FreedmanExecutiveVicePresidentThomasM.LarongePresidentCC~DistributionFilePage9 sPENNSYLVANIAPOWER4LIGHTCOMPANY$E228At."hh~,'f',ili,'t'itlfftf'itffrV>AililPir;tst",tttttffit'Ittttttftftffttilttflightl4,t,flil<IiIiIiliIiIPENNSYLVANIAPOWER5LIGHTCOMPANY~&2E217CIs'sstslsfslstslstsshlslsllllsl>>ssitsfIffstlhfshtslllftstsfs(sfstslstsfstslstslststsfslstslslshfstshsls PENNSYLVANIAPOWER5LIGHTCOMPANY20PENNSYLVANIAPOWER8(LIGHTCOMPANY18-3B PENNSYLVANIAPOWER&LIGHTCOMPANY2DPENNSYLVANIAPOWER8LIGHTCOMPANY2A PENNSYLVANIAPOWERLIGHTCOMPANYPENNSYLVANIAPOWER&LIGHTCOMPANY2E217Bl"r"'Iri~t~m<,.~mmrrnti>rlmi'"l~~~sOtN,NFI>',.NQ0)sNHll'jh>sN~~~~~~~l>>"t>l>tsssl>tslsislst>lstsltisistsIitslslslstsl>tsistslsI>lstslstslstsIstslstsfstslstsl>tslstsl>t>l>t~I>t>ls,l>ls PENNSYLVANIAPOWER&LIGHTCOMPANY2E217B''!"'.IWPs~10N6<l<~Ns<<6<(<f<N"Ns6<<<9<~~~~'s<I'sl<sls<sls<si<hlshlsl<l<l<lsf<I<I<hist<hi<I<I<I<!<hI<I<I<hi<I<I<I<I<hi~<<Is<<Is<sl<<Is<I<<'st'ssPENNSYLVANIAPOWER5LIGHTCOMPANY~s~'2E217B,,pry<,<fl~i<f</s<s/''sg<s<~eeV~,Wr41<!'iss~Isl<<<I<I<I<<il<iil<iilfis<IIIlIlibel<shI1HII(IilliIftiiil<lil<i<l<I<l<lil<i<l<isl<hI<isl<<<Is<<Is<Is<I<i PENNSYLVANIAPOWER&LIGHTCOMPANY(~'k's'i[j,'IcitlVP@)Q)pl~~t00~NN+Nsnl,ssssllslslslsls4lslslsls1E2288fglPPPPfgf>rigA'ale]ihlii~CIt's.Itttls4lililii&#xc3;s'iiIailililiIiIsIsIsIsIsIsI~IIsisIsIIs(IsPENNSYLVANIAPOWER&LIGHTCOMPANY2E217B'isdpgggpJlt"lppl~illIllijslll~lsMImmVm!PTemriTqriqil'~.1@~ii)>l</~i/"'I,,tisi~5'Sli~lih'lltilalilslstslililililelils<slsiIiisliiI PENNSYLVANIAPOWER&LIGHTCOMPANY1E217All;,lii.l,:~llIlilrnteimamrp~nta1Igm~lalamsrlr"sl)>>lMs~S~alaaaaSllatlaaaa'Sala~~ISIaallaa~~~~~a~la~slsashlslslllslshhhllhhhlslalaslalahhiahlalalalalalalalllalalalslalsl~Islsl~allsaslsaslsaslsasIIhtM~~stSal'Saa'laaAllW~aaalaalasa.la'aagl,a~"...~pfs-a(s0pTZSMSM~as"]saaasw..ss I)'i<.hpcjrj,~f'IhI<Jgji>.p(gi.t~~)'.(<q,~4,~i'(VAIYI~~<4iVfl,Atttj'ieIgV$;.~:;V~i.s.C-'.K'.e.>)re">-'~+')~g(>gi4I.zp'y'"f'5'~pyq'gg((i'p)."44)~g4)'0)~CIiII~II~~'II~I'fis~'-e~I!I'4IVI0'I~FI~1'IIIII.i%l<~/JAILi'swf(C>~"4gl'I'g'(37~-l~R1i~lifta~.,:.'!jV~VUC.tlatR'"l,,'L"i,.~,'f;;l)'s",.>'W(f.WwA'ps~s4taaat'y<a+>s)Aw>tNar~ib S)~lf~tk~~~~pr,r)C()gyaI7Elr"i',.~f)'".<ni]-.<<i',~g~!~Kf-('k)]...ig)'~r(P",5I27~9'2$46719l2346789)23~~/P,',}4Pgq+g,g),.Q~,'-~P)'(P('iVVP)R;.));>!''),')'('K(T)'I,V'o',V)')j,.i)",r'yiA,',,):~"4."'""*(~,~
ThomasM.Laronge,1nc.b.Thedepositnexttothemetalsurfacemustshowsignificantly higherlevelsofsulfurthanwouldbeexpectedfromsimpleconcentration ofsystemwaterandsulfur-containing generalsystemdebris.c.Themorphology ofthepitsonthemetalsurfacemustshowpatternsknowntobecharacteristic ofMIC.IntheSusquehanna plant:Significant levelsofSRBandAPBarepresent.Thisisnotatallsurprising sincetheESWwaterisdrawnfromapondthatsupportsaquaticplantgrowthandisknowntohaveanaerobic bottomconditions.
Thispondreceivesnochemicaltreatment otherthanoccasional algacidearoundtheedgesasneeded.b.TheSEM/EDAXdepositanalysispreparedbytheHazletonLaboratory showshighlevelsofcopperandchloride, tobeexpectedinunder-deposit corrosion, butonlymarginally higherlevelsofsulfurinsomecases.c.Themorphology ofMIConmostmetalsconsistsgenerally ofshallow-walled hemispherical pits,oftenwithsmaller"pitswithinpits."InsomecasesofMIC>severallayersofpitswithinpitsmaybeobserved.
Onsomemetals,particularly theaustenitic stainless steels,tunneling underthesurfacemaybeseen.Thesecharacteristic patternsofpitformation anddevelopment werenotenerallyfoundduringourinspections atSusquehanna.
Asarule,thepitsendedtobe'eparate, randomlyorientedandirregular inbothsizeandshape.WebelievethatalthoughMICundoubtedly wasasignificant factorinsomepitsandprobablyaggravated corrosive conditions inothercases,itwasneitherthemajorcausative factornortherate-determining stepinthepittingcorrosion process.Under-DeositPittinCorrosion Whendepositsareallowedtoformonametalsurfaceexposedtocorrosive water,differential concentration cellsarecreatedthatincreasethecorrosivity ofthewaterlayerbeneaththedeposit,relativetothebulkwater.Ineffect,a"battery" isformedinwhichthemetalsurfacebelowthedepositbecomestheanodeoractivesiteatwhichmetaldissolves.
Thisresultsinpittingcorrosion.
Thedegreeofpittingthatoccursinanygivencasedependsuponmanyvariables, including particularly themetalcomposition, thewatercomposition, andoperating variables.
Flowconditions, temperature, andtimearethecriticaloperating variables.
Thepresenceofmanganese, especially atthehighlevelsfoundintheSusquehanna ESWdeposits, canseriously aggravate pittingcorrosion.
Manganese isamultivalent metal.Itcanexistinseveraloxidation statesand,therefore, encourages electrochemical reactions.
This,ineffect,increases corrosion rateandparticularly pittingcorrosion underanganese-containing deposits.
Page8 Thomo,sM.Lo,ronge, Inc.RootCauseSummar'heevidencewehavegatheredfromtheworkdescribed inthisletterleadsusotheconclusion thattherootcauseofthepittingattackobservedoncopperandcupronickel heatexchanger tubesintheSusquehanna ESWsystemisconventional under-deposit corrosion aggravated bythehighlevelsofmanganese inthedeposits.
SRBandAPBareclearlypresentthroughout theESWsystem,andMICmustbeacontributing factorinthepittingcorrosion.
Somepitsmaybeprimarily causedbyMIC.However,thechemicalanalysisandmetalsurfacemorphology onallspecimens thatweexaminedindicateverystronglythatMICisonlyacontributing factorandnottherootcauseoftheproblem.Wemustpointoutthatflowconditions, particularly longperiodsofnoflow,canseriously aggravate pittingcorrosion.
Thismayhelptoexplaintheheavierdepositsandmoreseriouspittinginthe2E-217CRHRoilcoolercoil,comparedtootherpartsofthesystem.Ourcompletereport,tofollow,willincludefulldocumentation anddiscussion ofourfindings, including appropriate references andbackground information.
Pleasecontactuswithanycomments, questions,
: requests, and/orinstructions.
Verytrulyyours,g~ArthurJ.FreedmanExecutive VicePresident ThomasM.LarongePresident CC~Distribution FilePage9 sPENNSYLVANIA POWER4LIGHTCOMPANY$E228At."hh~,'f',i li,'t'itlfftf'itffrV>AililPir;tst",tttt tffit'Ittttttftftfftt ilttflightl4,t,flil<IiIiIiliIiIPENNSYLVANIA POWER5LIGHTCOMPANY~&2E217CIs'sstslsfslstslsts shlslsllll sl>>ssitsfIffstlhfshtslllftstsfs(sfstslstsfstslstslststsfslstslslshfstshs ls PENNSYLVANIA POWER5LIGHTCOMPANY20PENNSYLVANIA POWER8(LIGHTCOMPANY18-3B PENNSYLVANIA POWER&LIGHTCOMPANY2DPENNSYLVANIA POWER8LIGHTCOMPANY2A PENNSYLVANIA POWERLIGHTCOMPANYPENNSYLVANIA POWER&LIGHTCOMPANY2E217Bl"r"'Iri~t~m<,
.~mmrrnti>rlmi
'"l~~~sOtN,NFI>',.NQ0)sNHll'jh>sN~~~~~~~l>>"t>l>tsssl>tslsislst>lstsltisistsIitslslslstsl>tsistslsI>lstslstslstsIstslstsfstslstsl>tslstsl>t>l>t
~I>t>ls,l>ls PENNSYLVANIA POWER&LIGHTCOMPANY2E217B''!"'.IWPs~10N6<l<~Ns<<6<(<f<N"Ns6<<<9<~~~~'s<I'sl<sls<sls<si<hlshlsl<l<l<lsf<I<I<hist<hi<I<I<I<!<hI<I<I<hi<I<I<I<I<hi
~<<Is<<Is<sl
<<Is<I<<'st'ssPENNSYLVANIA POWER5LIGHTCOMPANY~s~'2E217B,,pry<,<fl~i<f</s<s/''s g<s<~eeV~,Wr41<!'iss~Isl<<<I<I<I<<
il<iil<iil fis<IIIlIlibel<shI1HII(IilliIftiiil<lil<i<l<I<l<lil<i<l<isl<hI<isl<<<Is<<Is<
Is<I<i PENNSYLVANIA POWER&LIGHTCOMPANY(~'k's'i[j,'IcitlVP@)Q)pl~~t00~NN+Nsnl,ssssllslslslsls4lslslsls 1E2288fglPPPPfgf>rig A'ale]ihlii~
CIt's.Itttls4lililii&#xc3;s'i iIailililiIiIsIsIsIsIsIsI~IIsisIsIIs(IsPENNSYLVANIA POWER&LIGHTCOMPANY2E217B'isdpgggpJlt"lppl~illIllijslll
~lsMImmVm!PTemriTqriqil'~.1@~ii)>l<
/~i/"'I,,tisi~5'Sli~lih'lltilalilslstslililililelils<slsi IiisliiI PENNSYLVANIA POWER&LIGHTCOMPANY1E217All;,lii.l,:~llIlilrnteimamrp~nta1Igm~lalamsrlr"sl
)>>lMs~S~alaaaaSllatlaaaa'Sala~~ISIaallaa~~~~~a~la~slsashlslslllslshhhllhhhlslala slalahhiahlalalalalalalalllalalalslalsl
~Islsl~allsaslsaslsaslsas IIhtM~~stSal'Saa'laaAllW~aaa laalasa.la'aagl,a~"...~pfs-a(s0pTZSMSM~as"]saaasw..ss I)'i<.hpcjrj,~f'IhI<Jgji>.p(gi.t~~)'.(<q,~4,
~i'(VAIYI~~<4iVfl,Atttj'ieIgV$;.~:;V~i.s
.C-'.K'.e.>)re"
>-'~+')~g(>gi 4I.zp'y'"f'5'~pyq
'gg((i'p)
."44)~g4)'0)~CIiII~II~~'II~I'fis~'-e~I!I'4IVI0'I~FI~1'IIIII.i%l<~/JAILi'swf(C>~"4gl'I'g'(37~-l~R1i~lifta~.
,:.'!jV~VUC.tlatR'"l,,'L"i,.~,'f;;l)'s",
.>'W(f.WwA'ps~s4taaat'y<a+>s)Aw>tNar~ib S)~lf~tk~~~~pr,r)C()gyaI7Elr"i',.~f)'".<ni]-.<<i',~g~!~Kf-('k)]...ig)'~r(P",5I27~9'2$46719l2346789)23~~/P,',}4Pgq+g,g),
.Q~,'-~P)'(P('i VVP)R;.));>!''),
')'('K(T)'I,V'o',V)')j,.i)",r'yi A,',,):~"4."'""*(~,~
Pt'  
Pt'  


IIJIIJIS/I/IIJ'llf'I!jufI234667II<>I1Ii.'I~40~~~I~!'0'0I"'t'",'""'."~'il'~f~~''"'~'j")"",j:p,'9.>>""...",Ig-'ll"I~~,~I0!0!0'4t,LL<'(''k'~.jlKN",."~''7Ir<I,j0l04J,>>~I)g))g~ItI~~s'2ls0~~0fI0A$~P''~i!I~~;j'',k"6IIjI!Ij~~ALII~~"~.,'~f>>"Ilf4A(,Q~',tlI4'>>i~~~)0~sf>>>>I>>/~Cg0isI:sI>>sjssiiilsjss'lsjsssslisii'ri~jsli'jssI''jslisjsssstsslfjsIjsjslls'jIIIIIsiltlljsfIIjslsstsIIsjiissjsilsjsI!I!I23466769sl2  
IIJIIJIS/I/IIJ'llf'I!jufI234667II<>I1Ii.'I~40~~~I~!'0'0I"'t'",'""
&)P~~~'~~rk i"'I"I")6Pp~gj,xabJ~gwp'gc>1~~+A%6%AO+AtHtg4gAtg'~~''~,Q~~~v!ilp4~k'~h'sc)~$:tjiy'',,",'g$4C('sl~~'~k)$'~3P.i~i<d<i.ffj',:ci'IlVj~gjQi  
'."~'il'~f~~''"'~'j")"",j:p,'9
.>>""...",Ig-'ll"I~~,~I0!0!0'4t,LL<'(''k'~.jlKN",."
~''7Ir<I,j0l04J,>>~I) g))g~ItI~~s'2ls0~~0fI0A$~P''~i!I~~;j'',
k"6IIjI!Ij~~ALII~~"~.,'~f>>"Ilf4A(,Q~',tlI4'>>i~~~)0~sf>>>>I>>/~Cg0isI:sI>>sjssiiilsjss'lsjsssslisii
'ri~jsli'jssI''jslisjsssstsslfjsIjsjslls'jIIIIIsil tlljsfIIjslsstsIIsjiissjsilsjs I!I!I23466769sl2  
&)P~~~'~~rk i"'I"I")6Pp~gj,xabJ~gwp'gc>1~~+A%6%AO+AtHtg4gAtg'~~''~,Q~~~v!ilp4~k'~h'sc)~$:tjiy'',,",'g$4C('sl~~'~k)$'~3P.i~i<d<i.ffj',:ci'I lVj~gjQi  


avvolP~~e>~L\~L'~vvL<.%Lall.l,I(v'Sr.,I.~.>l.!IIIu..4hi.l.'IBleak.'[$,)i~@@4lgf/)~)'qi,'];(vvt1il1>>i'l>>ll>>ll<>>ll'['I>>'ll'['ll'f'll'f'll'['ll'J'IIl[~II~J~III[lIP]ll14II~J'll')'IV]'ll']'II,6189I23466789Il234  
avvolP~~e>~L\~L'~vvL<.%Lall.l,I(v'Sr.,I.~.>l.!IIIu..4hi.l.'I Bleak.'[$
,)i~@@4lgf/)~)'qi,'];(
vvt1il1>>i'l>>ll>>ll<>>ll'['I>>
'll'['ll'f'll'f'll'['ll'J'IIl[~II~J~III[lIP]ll14II~J'll')'IV]'ll']'
II,6189I23466789Il234  
.~Cg4I<pl'I~'
.~Cg4I<pl'I~'
js'p$glIlg'~I)~V'I)'It!@14@2'I.tt,,,50THSQ,,l4,(',,pq(t,",.";1'0TQS.l3I.~4,),l!.l,')l1),11ll)li>Ji/iglP4yli~~IlgP,P//gl(//QA~'I~I'I'Il"40'ct0ir~r-~itrtrtrt1''""'~"~"~~t':"'iree'i,n<<te<io)6<<~P~~~'i~"""r'0IlriIII'>rrQJ~'I~~IW~Ittqt'IgM)IitI7ai)I~k~'>4+CJ,~~i~gC~lPl~j~e)tgKrjtt(~
js'p$glIlg'~I)~V'I)'It!@14@2'I
.tt,,,50THS Q,,l4,(',,pq(t,",.";1'0 TQS.l3I.~4,),l!.l,')l1),11ll)li>Ji/iglP4 yli~~IlgP,P//gl(//QA~'I~I'I'Il"40'ct0ir~r-~itrtrtrt1''""'~"~"~~t':"'iree'i, n<<te<io)6<<~P~~~'i~"""r'0IlriIII'>rrQJ~'I~~IW~Ittqt'IgM)IitI7ai)I~k~'>4+CJ,~~i~gC~lPl~
j~e)tgKrjtt(~
i~C'i)C.1'~PYV cg~
i~C'i)C.1'~PYV cg~
Shf1%I,I.CS',I0eV0>>I"Tf'II~t''IJplt))If/"i/-:,III,V~'i)tf(Ca~14f)I,tIf'I[i~)",g''tPII<<ef'II()~V>>h,qv.\(f~III~'I>>r""'-v')M+~TOX~3ka:f)wf1Ttf'I~tf'i>~'Vgpt'4offN~'4,Ige.Cff(f>>~'I(~]"L"pWjj>>'rtf>>I.V(,'gffqj"jf4/jlll1gf  
Shf1%I,I.CS',I0eV0>>I"Tf'II~t''IJplt))If/"i/-:,III,V~'i)tf(Ca~14f)I,tIf'I[i~)",g''tPII<<ef'II()~V>>h,qv.\(f~III~'I>>r""'-v')M+~TOX~3ka:f)wf1Ttf'I~tf'i>~'Vgpt'4offN~'4,Ige.Cff(f>>~'I(~]"L"pWjj>>'rtf>>I.V(,'gffqj" jf4/jlll1gf  


A,~~~rI~I1j7rI)/4l~I77 tI~+Pg~jiQcQji.4(gilP]illlillijilIJlI~>!i~gy~'~Ia7~S~'1'  
A,~~~rI~I1j7rI)/4l~I77 tI~+Pg~jiQcQji.4(gilP]illlillijil IJlI~>!i~gy~'~Ia7~S~'1'  
')1,Il4$'.L)e'ly~/('.t,I/'I4'f~'Eg);~~--K-'//  
')1,Il4$'.L)e'ly~/('.t,I/'I4'f~'Eg);~~--K-'//  
'Iip'b0AVe~III1 ty~~gait7YC.fi&I~HH  
'Iip'b0AVe~III1 ty~~gait7YC.fi&I~HH  
~,IJ0e~d'C'fyrl'IIVbC  
~,IJ0e~d'C'fyrl'IIVbC  
+48%5~'P@~~h,IPr~Wv4trjtt~'/,Al'j'l~e,i-4~IO.~~II~iPC~i~I+g(h1'  
+48%5~'P@~~
h,IPr~Wv4trjtt~'/,Al'j'l~e,i-4~IO.~~II~iPC~i~I+g(h1'  
&[<<f,~>r5'fi11  
&[<<f,~>r5'fi11  
~Wkt~gQl'i%~>$>>4fQ~,p..Vgcf404~~e~C,;~p~1tP)~'I)~g//fiMa,4w,C>>Ar-gfiptlV,Vtkj-<,\I'//
~Wkt~gQl'i%~>$>>4fQ~,p..Vgcf404~~e~C,;~p~1tP)~'I)~g//fiMa,4w,C>>Ar-gfiptlV,Vtkj-<,\I'//
4FT(II(,yIF~f1'~..+-~l(g(T et4~'~CCg')Z~~~c}}
4FT(II(,yIF~f1'~..+-~l(g(T et4~'~CCg')Z~~~c}}

Revision as of 19:46, 29 June 2018

Analysis of Pitting Corrosion Failures in ESW Sys RHR Lube Oil Coolers & RCIC Pump Room Unit Coolers at Susquehanna Steam Electric Station.
ML17157A421
Person / Time
Site: Susquehanna  Talen Energy icon.png
Issue date: 08/31/1990
From:
THOMAS M. LARONGE, INC.
To:
Shared Package
ML17157A422 List:
References
NUDOCS 9011190331
Download: ML17157A421 (200)


Text

ThomosM.Laronge,In(-.10439N.E.FOURTHPLAINROA0~P.O.BOX4448~VANCOUVER, WA98662~(206)254-1213~FAX(206)896-2106September 10,1990ORIINALENTBYFEDERALEXPRESPENNSYLVANIA POWER&LIGHTCOMPANYTwoNorthNinthStreetAllentown, PA18101-1179 Attention:

Mr.RaymondS.Tombaugh, ProjectEngineer

SUBJECT:

REQUESTED REVISIONS TOFINALREPORTONESWRHRLUBEOILCOOLERFAILUREANALYSIST.M.L.197-90-002

DearMr.Tombaugh,

Wearepleasedtoprovidetheattachedreplacement pagesforourreportT.M.L.197-90-002, containing theeditorial corrections andsuggestions providedbyyouandyourco-workers duringourmeetingonSeptember 7,1990.Bestregards,.~c.c<ArthurJ.Freedman,

~Executive VicePresident (ThomasM.Laronge,President AJF/TML:dh Enc:A/S9011190331 PDRADOCKP901i1205000337PDC4Quo,lityforIndustryWeappreciate yourinputandhopethatthereport,ascorrected, willbesatisfactory.

Pleasedonothesitatetocallifyouhaveanyfurtherquestions.

ThomasM.Laronge,Inc.AKNWLEDEMENTTheworkdescribed inthisreport,particularly theworkon-siteandatPP&L's.HazletonLaboratory andAllentown ofQces,couldnothavebeenaccomplished withoutthewholehearted supportandcooperation ofPP@Lpersonnel.

Thewriterswishtoexpresstheirappreciation forthetime,effortandcourtesies extendedtousduringthisproj'ect.

Wealsowishtoexpressourspecialthankstothefollowing individuals, listedinalphabetical order,fortheirextrahelpbeyondthecallofduty:D.P.DunnD.J.MorganT.J.PensockW.J.RhoadesR.S.TombaughL.E.WillertzPagei ThomosM.Laronge,Inc.TABLEFNTEAcknowledgement TableofContentsIntroduction Conclusions ResultsofInspections ListofInspected Equipment Inspection MethodsPhysicalMeasurements andObservations RHRLubeOilCoolersRCICPumpRoomUnitCoolersESWSupplyLinetoRCIClE-228BOtherInspections Discussion ofMeasurements andInspections AnalysesofDepositsandMetalSurfacesAnalytical MethodsICAPandChemicalAnalysesofDepositsSEM/EDSAnalysesofDepositsMicrobiological AnalysesDiscussion ofAnalytical ResultsESWSystemChemistry andOperations ESWChemistry ESWandRHRPumpOperations SystemOperations TheESWSprayPondESWandRHRPumpRunTimesRHRLubeOilCoolingWaterFlowVelocities 666881214141517171820232527272828293032Pageii

ThomasM.Laronge,Inc.RootCauseFailureAnalysisSummaryPitInitiation PitPropagation EffectsofSulfur,IronandManganese inDepositsComparison ofRHRCoolers(Copper)andRCICCoolers(Cupronickel)

AppendixBibliography ListofTablesListofFiguresListofPhotographs Preliminary Report3535363738404243456192Pageiii

ThomosM.Loronge,Inc.INTRDTINOnMay28,1990,aleakoccurredintheRHR2E-217CMotorOilCooleratthePennsylvania PowerandLight(PP&L)Susquehanna SteamElectricStation(SSES).ThisleakforcedashutdownofUnit1andadelayinstartupofUnit2untilallRHRmotoroilcoolingcoilscouldbereplaced, othercriticalheatexchangers usingemergency servicewater(ESW)forcoolingcouldbeinspected, therootcauseoftheproblem.determined andthepotential forsimilarfailuresinrelatedequipment evaluated.

ThomasM.Laronge,Inc.wascontracted byPP&LtoidentifytherootcauseoftheRHR2E-217Cmotoroilcoolerfailureandtoinspectequipment atotherlocations intheplantcooledbytheESWsystem.Weworkedon-siteandinPP&L'sHazleton, Pennsylvania Laboratory andAllentown, Pennsylvania officesfromFriday,June8throughTuesday,June12,1990inclusive.

Duringthistime,weinspected thefailedcooler,severalotherRHRmotoroilcoolercoils,andothercoolers,heatexchangers andaccessible pipingservicedbytheESWsystem.Weranon-sitemicrobiological assaysatsixlocations forthepresenceofsulfate-reducing bacteria(SRB)andacid-producing bacteria(APB)thatcancausemicrobiologically influenced corrosion (MIC),andwetooksamplesofheatexchanger tubes,wateranddepositsforlateranalysis.

WeworkedcloselywithPP&L'smetallurgists andotherstaffmembers.Wejointlyinspected

failures, pits,metalsurfacesanddepositsunderthelightmicroscope andscanningelectronmicroscope (SEM)inthe'Hazleton Laboratory.

Wereviewedplantandcorporate engineering officerecords,including technical specifications, procedures, heatexchanger inspection reports,ESWwaterchemistry andoperating conditions, andotherrelatedinformation.

PP&Lprovidedaccesstoallrecordsandinformation pertinent tothisprojecttoassistusinourwork.Page1 ThomasM.Laronge,Inc.~~~~OnJune12,1990,intheAllentown office,wecompleted apreliminary reportofourfindings.

Subsequently, wecarriedoutthefollowing work:~We,carefully inspected sectionsofRHRlubeoilcoolercoilsandRCICpumproomunitcoolerheatexchanger tubesremovedduringoursitevisit.~Weanalyzedwaterandde'positsamplesandranscanningelectronmicroscope (SEM),electrondiffraction spectroscopy (EDS)andX-raydiffraction (XRD)analysesondepositsfromspecificlocations, i.e.,insidepits,onselectedtubespecimens.

~Weranfurthermicrobiological studiesonselectedtubestoassistincharacterizing thenatureofthecorrosion.

~WestudiedplantESWsystemoperating recordsandotherpertinent plantrecordsindetail.~Wereviewedourownextensive filesandcarriedoutaliterature reviewoncausesofwaterside pittingcorrosion ofcopperandcopperalloyheatexchanger tubes.ThisAnalreportincludesallessential information fromourJune12,1990preliminary report,allnewdataobtainedsinceJune12,1990andourconclusions.

Ourpreliminary reportisincludedintheAppendixandshouldbeconsidered aspartofthiscompletereport.Page2 ThomosM.Laronge,Inc.NLINTheRHRlubeoilcoolersandtheRCICpumproomunitcoolersfailedbyacombination ofmicrobiologically inducedcorrosion (MIC)andconventional chemicalpittingcorrosion mechanisms.

2.TheESW,asmeasuredattheinlettoRCIClE-228B,ismicrobiologically veryactiveandcontainshighlevelsofsulfatereducingbacteria(SRB)andacidproducing bacteria(APB).3.TheESWAandBloopshavebeenstagnant(notrunning)between65and75percentofthetimesince1987.Duringthesestagnantperiods,depositsformedontheinternal(waterside) surfacesoftheRHRandRCICcoolercoilsandtubes.Anaerobic conditions underthesedepositsallowedSRBtogeneratesulfidesthatdestroyed theprotective, passiveQlmonthecopper(RHR)coilsandattackedthe90:10cupronickel (RCIC)tubes.4.MICdidnotcontinueatahighrateunderthesedepositsbecauseofthetoxiceffectsofcopper,ions.Instead,conventional under-deposit oxygenconcentration cellcorrosion becamethedrivingforceforcontinuing pittingattack.5.SulQdesprobablycontinued toplayaroleinthecorrosion process,evenafterpitinitiation.

Continuing presenceofSRBinthesystemallowedsulfidestoformawayfromthecorroding coppersurfaces.

Thesesulfidesthendiffusedwiththewaterandwereabletoattackpassivefilmsonthemetal.Bothdeep.sharp-edged pitscharacteristic ofconcentration cellcorrosion andshallower, roundedpitscharacteristic ofsulQdeattack,werefoundintheRHRlubeoilcoolingcoils(seePhotographs).

SEM/EDSelementmapsshowsulfurpresentinallpits,butatvariouslocations, usuallynotnexttothemetalsurface.6.Manganese playedadualroleinthecorrosion process.InthemostseverelycorrodedRHRlubeoilcoolercoils,e.g.,thefailedcooler,2E-217C,nocontinuous protective depositswereobserved.

Rather,thedepositappearstohaveformedasaseriesofdiscretelayers,perhapsassociated withperiodsofflowandnoflow,waterchemistry changes,etc.CoolerRHR1E-217Bshowedsimilardeposits.

Thesedepositscontained onlysmallamountsofmanganese.

Manganese probablyactedasanelectrontransferagentinthesedepositstocatalyzethecorrosion reactions.

Page3

'v Thomos7.M.Laronge,Inc.TheRHRlubeoilcoolersintheworstcondition (2E-217Cand1E-217B)takewaterfromtheESWBloopandthecoolersinthebestcondition (lE-217A, 2E-217AandlE-217D)areallontheAloop.Thereasonsforthiscannotbepositively definedfromtheavailable data,butsomefactsareclear.PriortoJune1989theESWAloopranmorefrequently andcarriedmorewaterthantheBloop,butata20percentlowerflowvelocitythroughtheRHRcoils.Substantially higherlevelsofmanganese werefoundintheAloopcoils,comparedtotheBloop.Thedifferent flowpatternsintheAloopmayhaveallowedmoremanganese todepositinthesecoilsandtoformcontinuous filmsratherthandiscrete',

porousdepositsasdescribed inConclusion 7.Theveryhighlevelsofmanganese foundinconnecting elbowsfromcoilslE-217Aand2E-217B(oneoneachloop)remainunexplained.

Theseelbowswerenot-corroded inanyway.8.TwoRHRlubeoilcoolercoils,2E-217B(examined inourlaboratories) andlE-217B(examined byDr.WillertzofPP&L)showedheavierdepositsandpittinginthetop(wateroutlet)layersofcoilsthaninthebottom(waterinlet)layers.Othercoilsmayalsoshowthiseffectbutwerenotexaminedinthisway.Theseobservations suggestatemperature effect,butthetemperature riseacrosstheRHRlubeoilcoolers(8'F)doesnotseemtobesufficient toproducethesedifferences.

Also,theRHRpumpsonlyoperatedbetween5and10'percent ofthetimeeachyear,sothatverylittleheatwasavailable fromthissource.9.OtherthantheRHRlubeoilcoolers,mostofthecoolingequipment intheESWsystemcontains90:10cupronickel tubes.TheRCICpumproomunitcoolersarecorrodedatleastasseriously, astheRHRroomcoolers.Wefoundone90percentthrough-wall pitinRCIC1E-228Bandone60percentthrough-waQin1E-228A.Weexaminedsectionsfromonlyonetubefromeachcooler.Thesetubesshowedlowmanganese levelsandheavy,scalydepositssimQartothosefoundinRHR2E-217C,thefailedRHRlubeoilcoolercoil.RCIClE-228Bshowedthehighestlevelofmicrobiological contamination ofallcoolerstestedduringthisstudy.10.Copperand90:10cupronickel arebothhighlyresistant tocorrosion incleanfiowingwater,butinbiologically activesystems90:10cupronickel issometimes moresusceptible tobiofouling andMIC.Duringouron-siteinspections, weexaminedseveral90:10cupronickel coolersinthedieselgenerator systemandfoundlittleornopitting.Wealsoexaminedthe2E-297AGRDXcondenser butcouldnot'etermine thecondition ofthemetalinthesetubesbecauseofthelargeamountofdepositpresent.Page4 ThomasM.Laronge,Inc.11.ESWwaterchemistxy datashowaconsistent downwardtrendinconductivity andcalciumlevelsduring1989and1990.Langelier Indexvaluesareoftenabove,+0.5 andoccasio'nally approach+1.0.Somecalcium,presumably ascalciumcarbonate, wasfoundinmostoftheRHRandRCICcoolerdeposits.

Page5

ThomasM.Laronge,Inc.RELFINPENLitfIneEuimnDuringourworkon-siteandinourlaboratory, weinspected heatexchanger tubesand/orESWpipingfromthefollowing units:2.4,5.6.7.8.9.10.12.13.lE-217AlE-217B1E-217C2E-217A2E-217B2E-217C2E-217D1E-228A1E-228B2E-297AOE-505E1,2D OE-507DOE-533DRHRlubeoQcoolercoil.RHRlubeoilcoolercoil.RHRlubeoQcoolercoil.RHRlubeoilcoolercoil.RHRlubeoQcoolercoil.RHRlubeoilcoolercoil.RHRlubeoQcoolercoil.RCICpumproomunitcooler.RCICpumproomunitcooler.ESWGRDXsystemcondenser.

Dieselgenerator intercooler.

Dieselgenerator jacketwatercooler.Dieselgovernorcooler.InsInMthoIndoingouron-siteinspections, weusedthefollowing methods:~Visualinspection oftubesanddepositsaswesawtheminplaceorastheywerepresented tous.~Videoprobe inspections oftubesinplace.~Visualinspections witha15Xmagnifying lensoftheinteriorsurfaces'f coolingcoilsandtubesthathadbeensplitlongitudinally.

Page6 ThomasM.Laronge,Inc.~Microscopic examination

.ofselectedspecimens inthePALHazletonLaboratory.

~Microbiological culturesofdepositsfromcoilsandtubes,usingmediaspecificforsulfate-reducing andacid-producing bacteria(SRBandAPB).Inourlaboratory,

  • wedidsubstantial additional inspection andanalytical work.Thesedataaresummarized inTablesandFiguresforeasycomparison ofspecimens:

~Carefulvisualobservation ofthenatureofthedepositsandcorrosion oneachspecimen, withphotographic documentation (Tables1and12andPhotographs 1through41).Physicalmeasurements, i.e.,size,wallthickness, etc.'Table2).~Depositweightdensitymeasurements (Tables3and12).~Pitdepthmeasurements (Tables4and12).~Waterchemistry studies(Table9andFigures4,5and6).~Chemicalanalysesofdeposits(Tables5and6andFigure2).X-raydiffraction analysestoidentifycompounds indeposits(Table7).Microbiological analysesofsamplecultureson-site(Table8andFigure3).SEM/EDSanalysestoidentifyelementsindeposits(Table6,Figures9through22andPhotographs 42through49).Page7

Thomo,sM.Laronge,Inc.PleaserefertotheseTablesandFiguresinconnection withthefollowing discussion.

Thephotographs arearrangedinageneralorderofincreasing magniQcation, sothatbyperusingthephotographs, thereadercangainanincreasingly detailedcomparison ofthenatureofthepittingonthevariousspecimens mcaznined.

PhsiMurmnrvtionFigure1isaschematic diagramofanRHRpumpmotor,showingthearrangement ofthelubeoilcoolingcoQs.Thecoilsarearrangedinastackofsixlayers,withfourturnsineachlayer.ForidentiQcation purposeswehavenumberedthecoilsfromtoptobottomandletteredtheturnsfromtheinsideout,asshowninFigure1.Thus,coil3Bisthesecondfromtheinsideturninthethirdlayerfromthetop.Physicalmeasurements areshowninTable2.'urmeasurements showthattheRHRlubeoilcoolingcoilsandtheRCICroomcoolertubesaregenerally withinspecifications.

Deviations aresmallandcanbeattributed toproblemsinwallmeasurements ontubescontaining depositsandtosomedeformation thatmustoccurwhencoppertubingisformedtomaketheRHRcoils.Thereisnoevidencewhatsoever fromthesemeasurements thatanyappreciable thinningoftubewallsduetogeneralcorrosion hasoccurred.

TheRHRlubeoilcoolingcoilsarereportedly madefromtypeKcopper,andtheRCICroomcoolertubesfrom90:10cupronickel.

Nowetchemistry testsweredonetoverifythesecompositions, butEDSanalysisonagallededgeofonetubefromRCIC1E-228Aconfirmed 90:10cupronickel inthistube.A.RHRLubOiller1.RHRlE-217AWeinspected sectionscutfromcoils2and5inthiscooleron-site(seeFigure1).Thesesectionsweresimilar.Bothcontained aPage8 ThomasM.Laronge,Inc.light,smoothlayerofblackdeposit.Veryslight,irregular pittingwas1observedunderthis'deposit.

Therewasnovisibletuberculation.

Wejudgethiscoiltobeamongtheleastcorroded(pitted)ofalltheRHRcoQsthatwestudied.Wealsoexaminedseveral90degreeelbowsthatconnected thelayersinthelE-217Acoil.Theseelbowsappeartobemadefromadifferent alloythanthecoppercoil,perhapsabrass.Theseelbowscontained asubstantial amountofablack,powderydeposit.Somebaremetalwasvisible.Wemeasuredthedepositweightdensityat15.4mg/ft2.Novisiblecorrosion couldbeseenintheseelbows.However,pittingwasclearlyvisibleinthecoppertubeconnected tooneelbow(Photographs 37,38and39).2.RHRlE-217B'Wedidnotinspectthiscoilon-site.Inourlaboratory, weinspected layer3B.(seeFigure1)fromthiscoil.Wefoundalargeamountofdepositmixedwithtubercles rangingupto0.25inchinbothdiameterand'height (seedescription inTable1).Thedepositweightdensity,measuredat31.7gm/ft2,wassecondonlytothedensitymeasuredinRHR2E-217C(seeTable3).Pitdensitywaslowerthanfoundinthe1Cand2CRHRlubeoilcoolers,butsubstantially higherthaninthelAand2Acoolers(Table4).Themaximumpitdepthmeasuredonourspecimenwas0.025inch,or35percentwallpenetration (Table4).Thiscompareswith0.042inchmeasuredbyDr.WillertzofPP&Lonadifferent sectionfromthesamecoil.ThenatureanddepthofpittingintheRHRlE-217BcoilcanbeseeninPhotographs 20through23.3.R~RR13-217Thiscoolerwasnotinspected on-site.Inthelaboratory, thisspecimenwas.foundtohavethehighestmeasureddensityofpitting,butnotthehighestpitdepthorwallpenetration (Table4).Thedepositweightdensity,at24.1gm/ft2,wasinthehighestgroupPage9 ThomosM.Lo,ronge, inc.measured(Table3).Depositsweresmoothandbrowntoblackin~~~~color,withmanybrightgreen,redandsilvercoloredcrystalsaroundandinsidepits.Pits,mostlycoveredbytubercles, werelarge,shallowandhemispherical.

'IhedepositsandpittinginthisspecimencanbeseeninPhotographs 28through31;thecrystalsareapparentinSEMPhotograph 47.4.RHR1E-217DFortherecord,wenoteherethatnospecimens fromRHRlE-217Dwereprovidedforourinspection.

Dr.Willertzreportedonlylightdepositsandtuberculation, andverylittlepitpenetration inthis'ube.

5.RHR2E-217AThiscoilwasnotinspected on-site.Inthelaboratory, thistubesectionwaslike1E-217A.ThebrowndepositwassimilartothatinlE-217B,butmuchsmallerinquantity(Table3).Tubercles wereminorandtherewasnovisiblepittingorgeneralcorrosion.

6.RHR2E-217BOn-sitewefoundthiscoiltobeintermediate incondition between1E-217Aand2E-217C.Thespecimenweexaminedcontained stringyblackdepositsthatcoveredpart,butnotallofthesurface.NosigniQcant tuberculation waspresent,butpitdepthswerequitesevere.Laboratory inspections confirmed theseobservations.

Wewereabletoexaminespecimens fromthesecondcoilfromthetop(2E-217B-2)andthesecondcoilfromthebottom(2E-217B-5),

asshowninFigure1andTable1.Theentire2E-217B-2 coilwassenttoourlaboratory.

Photograph 10showsthiscoilassplitforinspection.

Thecentertubewasmcaminedindetail.Page10 ThomasM.Loronge,Inc.Thedifferences indepositweightdensity,pittingdensityandpitpenetration between2E-217B-2 and2E-217B-5 (Tables3and4)confirmsimilarobservations madebyDr.Willertzonthe1E-2178coQ,usingX-rayexamination.

Depositcharacteristics, tuberculation andpittingintheuppercoil(2E-217B-2) weremuchlikethefailedcoil2E-217C.(seebelow)exceptthatpitsin2Bweremostlyhemispherical.

Deposition andpittingin2E-217B-5 wereverylight;thissectionappeared,

visually, muchlikelE-217Aand2E-217A.Photographs 32,33and34showthenatureofthepittingin2E-217B.Unfortunately, thesephotographs donotdistinguish betweenthe2B-2andthe2B-5coils.Weexaminedfour90degreebendsfrom2E-217B.Thesebendsappeared,
visually, tobemadefromcopperandseemedtobequitedifferent fromthebendsinthe1E-217Acoil(seeabove).Depositweightdensities wereintheintermediate rangeandnopittingorgeneralcorrosion wasobserved.

Seealsothediscussion ofchemicalanalysesofdeposits, (Page19.andTable5,Page50).7.~2E-217Itwasathrough-wall failureinthiscoilthatalertedtheplanttothepittingcorrosion problemintheRHRlubeoilcoolers.andotherheatexchangers servedbytheESWsystem.On-site,wefoundtheinteriorsurfaceofthe2E-217Ccoilcoveredwithathick,dense,layeredscalydeposit,quitedifferent inappearance fromtheothercoils.However,thetubewesawhadbeenremovedfromthesystemseveraldaysbeforeourvisit,sothatthedepositswerequitedrywhQeothertubeswerewet.On-site,wefoundlargetubercles coveringnumerousrandompitsovermostofthesurface.Thesepitsvariedgreatlyinsize,shapeanddepth.Bothhemispherical andirregularly-shaped pitswereobserved, asopposedtothemostlyhemispherical pitsfoundinother1coils.Someofthepitsin2E-217Cweresharp-edged andquitedeep.Page11 ThomasM.Laronge,Inc.Laboratory inspections conflrmed theseverityofcorrosion anddeposition inthiscoil.ThedepositweightdensitywasthehighestmeasuredinanycoiltTable3)andpitdensityanddepthwerealsoamongthehighestmeasured(Table4).Photographs 17,18and19showtheheavydepositsanddeeppitsfoundinthiscoil.Anearthrough-wall pitcanbeclearlyseeninthelowersawededgeofthetubeinPhotograph 17.8.2E-217DThiscoilwasnotexanQnedon-site.Inthelaboratory, wefoundthedepositweightdensitytobehighat27;3gm/ft2,comparable todepositsincoilslE-217Band1E-217C.Pitdensitywaslessseverethanineitherofthesetubes.Pitpenetration in2E-217Dwassimilarto1E-217Candlessseriousthanin1E-217B.Thedepositsweretypically browntoblackwithgreenedgesaroundsmalltubercles.

Pitsweresmallandhemispherical.

Photographs 24through27comparedtoPhotographs 17,18and19showthedifferences betweenthedepositsfoundin2E-217Dand2E-217C.RRIPumRmniIr1E-22AnlE-22BTheRCICcoolersarereportedly tubedwith,90:10 cupronickel tubes,asexplained above.Thetubesarestraightandinstalled horizontally inthecoolers.Thenominaltubediameteris0.5inch(Table2).ThismeansthattheRCICtubesmaybemoresubjecttolossofflowduetopartialtubeblockagethantheRHRlubeoilcoolersifdepositsshouldforminthesetubes.TheRCIClE-228Acoolerwasopenedinourpresenceduringourinspection visitsothatwewereabletoexaminetheinternaldepositsimmediately uponexposuretoair.Thisisimportant becauseanaerobic bacteriathatcanberesponsible formicrobiologically influenced corrosion (MIC)tend-tobecomeinactiveuponexposuretooxygen.Page12

ThomosM.Lo,ronge, Inc.ThetubesinRCIClE-228Acontained loose,browndeposits.

MostofthesedepositsseemedtobeintheformofwellQocculated solidswithclearwater.Thetubemetalappearedtoberelatively cleanduringouron-siteinspection.

Weunderstand thattheRCICIE-228AcoolerisservedbytheESWAloop.PP&LinformedusthattheRCICpumproomunitcoolerswerecle'anedaboutthreeyearsagoandthatlargeamountsofblackdeposit,presumably manganese, wereremovedatthattime.The1E-228Bcoolerhadbeenopenedandcleanedforseveraldaysbeforeourinspection.

Onetubehadnotbeencleaned,andwefoundthispipetocontainalargeamountofloose,blackdeposit.Weunderstand thatthelE-228BcoolerisservedbytheESWBloop.OnetubefromeachoftheRCICcoolerswassenttoourlaboratory forinspection.

Visually, thetubefromRCIClE-228Atcontained lessdepositandfarfewerpitsthantheIE-228Btube.Whenmeasured, however,depositweightdensities inthesetubesweveroughlythesame(Table3)andpitdensityseemedtobe.higherin1E-228AthaninlE-228B(Table4).TheAcoolershowedthedeepestsinglepitmeasuredduringthisentirestudy;0.05inch,corresponding to91percentwallpenetration.

ThelE-228Bcoolershowedamaximumof0.036inchpitdepthwith60percentwallpenetration.

Thesedifferences maynotbesigniQcant, sinceonlyonesmallportionofonetubefromeachunitwasexamined.

Also,theverticalandhorizontal splitsdescribed inTables3and4arequestionable becausetubeorientation couldnotbemaintained precisely duringremovalfromtheunitandduringcutting.Photographs 14,15and16showthenatureanddensityof,depositsandpittingin1E-228A,andPhotographs 40and41showaclose-upviewofonepitfromthistube.Thetypicalgreen,redandbrowndepositsfoundinbothDxeRHRandRCICcoolerscanbeclearlyseeninthesephotographs.

Page13 p~l.'i ThomasM.Loronge,Inc.GESWSu1LinRIlE-22BDuringouron-siteinspections, wewereabletoexaminetheESWBsupplylinetoRCIClE-228B.Weunderstand thatthisismildsteelpiping.Thislinewasheavilycorrodedandcoveredwithauniformlayerofbrownscalerangingupto3/16inchinthickness.

Notubercles wereseenandnopittingcouldbefoundunderthedeposit,asfaraswecouldreachintothisline.Seebelowforadiscussion ofmicrobiological testinginthispipe.Thispipe,aswesawit,wastypicalofmildsteelpipeexposedtocorrosive waterformanyyearswithnochemicaltreatment.

Theheavylayersofcorrosion-produced scaleareprobably, atthispoint,providing somecorrosion protection tothepipe.Webelievethatthecondition ofthispipeissimilartothatofmostoftheESWpipingexposedtosimilarflowconditions.

D.thrIninDuringoursitevisit,weinspected severalcoolersandcondensers thatcouldnotbedismantled forsubsequent laboratory examination.

Theseinspections aredescribed indetailinourpreliminary report(Appendix);,

theinformation issummarized brieflybelow.l.OE-7DDiInrtorackWrpierTubesinthiscoolerwerereportedtobe90:10cupronickel.

Previouseddycurrent(ET)testingofthiscoolerhadidentified onetubewithatleast60percentwallpenetration.

Weinspected thistubeinplace,usingfiberscope equipment, andfoundmanypitsthatappeared, throughthefiberscope, tobeverydeep.Thepitswererandomlydistributed andirregular inshape.Thecoolerhadbeencleanedbeforewearrivedsothatwedidnotseethedepositsinplace.Page14 Thomo,sM.Lo,ronge, Inc.2.E-DDi1vrnrIrWeexaminedthissmall90:10cupronickel singletubecooleraftercleaning.

Onlyminorpittingcouldbeseeninthistube.3.OE-505E12DDies1nrorIntrpolerThetubesinthis90:10cupronickel coolerweretoosmalltopermitentranceofthefiberscope.

Thetubeendswerecleanandcontained manysmallpits.Nootherobservations couldbemade.4.2E-27AWRDXmnnr~Thisexchanger wasopenedjustbeforeourinspection.

Thetubesandtubesheetswerecoveredwithheavydepositsthatmadeviewingthetubesimpossible.

Thedepositsseemedtoincludecorrosion

products, scaleandloose,slimymaterial.

Microbiological activityinthisdepositwaslow(Table8,Page54).e'iDiscussion ofMeasurements andInsectionsTable12summarizes theinspection information fromTable1through4andgroupsthecoolersbyESWloop.BasedonthesedataweranktheRHRlubeoilcoolersinthefollowing way,fromworsttobest:PitDensity~pi~inkWorst1C25-3002C1-2001B5-502B-24-502D52B-512ANM1DNMtBestlANMNM=NotMeasured.

DeepestPitInihe~2C0.0281B0.0252B-20.0252D0.0151C0.0132B-50.0072ANM1DNMlANMDepositWt.Densitygm~~f2C37.901B31.732D27.251C24.072B-213.212B-56.882A5251DNM1ANMPage15 0hl~1y'),V Thoma,sM.Loronge,Inc.tTheprecision ofthedatashownaboveisprobablystatistically unjustiQed, sinceonlyonesectionoftubefromeachcoilwasexaminedforeachdatapoint.Nevertheless, sometrendsareapparent.

First,RHRlubeoilcoolersontheESWBloopseemtobeinworsecondition thanthoseontheAloop.Withthepossibleexception ofRHR2E-217D,alloftheRHRBand"Ccoolers,usingESWBwater,showsubstantially higherpitdensities anddepthsandhigherdepositweightdensities thantheRHRAandDcoolersontheESWAloop.Inspiteoftherelatively highplaceofRHR2E-217Dinthisranking,pitdensities andpitdepthsforthiscooleraremoreliketheAlo'opcoolersthantheBloop.OnlythedepositweightdensityforRHR2E-217Dseemstobeinordinately high.However,itisinteresting thatDr.Willertz's rankingoftheRHRcoolersisalmostexactlythesameasourrankingbasedondepositweightdensity.Thefactthatbothdeposition andpittingweremoresevereinthetophalvesofRHRlubeoilcoolingcoils1E-217B(fromDr.Willertz's report)and2E-217B,comparedtothebottomhalves,suggeststhattemperature maybeasigniQcant factorinthisproblem.However,thetemperature riseacrosstheRHRlubeoilcoolersisreportedtobeonly8'F.Also,theRHRpumpshaveoperatedlessthan10percentofthetimesince1987,sothatheatgenerated bythesepumpsdoesnotseemtobesi~ificant.

SeethesectionofthisreportdealingwithESWsystemoperations beginning onPage27forfurtherdiscussion ofthissubject.Thephysicalcondition oftheRCICpumproomunitcoolersdoesnotseemtobeafunctionoftheESWloops.Wheninspected on-site,lE-228BseemedtobemoreheavilyfouledthanlE-228A,butmeasureddepositweightdensities areaboutthesame.BothtubesareheavQypitted.Page16 ThomasM.Laronge,Inc.ANALYEFDEPIANDALRFAEAniMhAvarietyofinstrumental andwetchemicalanalytical methodswasusedtoassistinidentifying elementsandchemicalcompounds presentinthedepositsintheRHRlubeoQcoolers,theRCICpumproomunitcoolersandtheESWGRDXcondenser 2E-297A.Thesemethodsincluded:

Inductively coupledargonplasmaspectroscopy (ICAP)combinedwiththermalandwetchemicalmethodsto.,deflnetheoverallelemental composition ofthedeposits.

Scanningelectronmicroscopy (SEM)andelectrondiffraction spectroscopy (EDS)toidentifyelementspresentinmicrolayers inandaroundspeciQcpitlocations.

X-raydiffraction (XRD)todefinespecificchemicalcompounds presentinselectedpits.On-sitemicrobiological cultureteststodetectsulfatereducingbacteria(SRB)andacidproducing bacterial (APB)thatcancausemicrobiologically influenced corrosion (MIC).Directexamination ofcleanedmetalsurfacestohelpidentifymorphological featurescharacteristic ofMICandgeneralunder-deposit pittingcorrosion.

Allofthisworkispresented anddiscussed inthissectionofthereport.Page17 ThomasM.Laronge,Inc.hmilTable5presentstheresultsofICAP,thermalandwetchemical.analyses ofdeposits.

ThegreenandsomeofthereddepositsreportedinTable1andshowninthephotographs correspond tocoppercompounds, probablycorrosion products.

Thisisconfirmed bythehighlevelsofcopperfoundinalltheRHRandRCICdeposits.

Itisentirelypossible, however,thatthesehighcoppervaluesalsoincludecoppermetalscrapedfromthetubesduringthesamplecollection process.ThetwoanalysesreportedforRHR2E-217Crepresent different samplesrunbyseparatelaboratories.

Agreement isexcellent exceptforcopper,discussed above,andsodium,averycommoncontaminant.

TheRHRlubeoilcoolerdatafromTable5areplottedinFiguret2.ThisFigurecomparescoolers1Band2C(heaviest depositsanddeepestpits),cooler1C(highpitdensitybutintermediate pitdepthanddepositweightdensity)andcooler1A(leastdepositsandpit:tingofallcoolersexamined).

Thedifferences amongtheseanalysesarestriking:

~Coolers1Band2C,intheworstcondition, showlowlevelsofiron,manganese andcalcium,andrelatively highlevelsofsulfur.~Cooler1Cshowshighironandmanganese, slightlyhighercalciumandroughlyhalfthesulfurofcoolers1Band2C.~CoolerlA,inthebestoverallcondition, showsverylowsulfur,thehighestmanganese andanintermediate ironlevel.Baseduponexperience withthecombustion andthermaltdecomposition methodusedtodetermine totalsulfurinthedepositsamples,ourlaboratory estimated thatmostofthesulfurinthePage18 gIII~4<

ThomasM.Laronge,Inc.depositsfromRHRlE-217Aand2E-217Cwasprobablypresentas~~sulfate.Thisis,ofcourse,notaquantitative determination, butwereportedsulfateinTable5onthatbasisfordiscussion.

Sincemanyinorganic sulfatesaresolubleitmightseemunreasonable toexpectsulfatesindepositsofthistype.Infact,however,sulfatesarecommonlyfoundinwater-formed

deposits, e.g.,inrecirculating coolingwatersystems.Eventhoughsimplesulfatesaltsoftenhaveappreciable solubility, complexinorganic andorganicsulfatesexistthatarelesssoluble.Also,thesulfateion,becauseofitshighchargedensity,adsorbseasilyonmanysubstrates alongwithappropriate cationsforchargebalance..Finally, mostflocculant hydroxides, including hydroxides ofiron,aluminum, copper,nickelandmanganese amongothers,wQIreadilyoccludesulfatesaltsastheyprecipitate.

Manycorrosion productsprecipitate firstasthehydroxide andthendehydrate andcrystallize toformoxidesandotherinsoluble complexcompounds.

Substantial amountsofsulfatecanbeheldonametalsurfaceinthisway.Nofirmconclusions canbedrawnfromtheseICAPdataalone,buttheobvioustrendsmustberecognized.

Itiswellknownthatmanganese canactasacorrodant oracatalystforcorrosion, or,underdifferent circumstances, asafilm-forming inhibitor.

Iron,particularly irontransported tothecorrosion siteinthewaterratherthanformedinplaceasacorrosion product.canalsoprovideprotection.

SulfuriscommonlyfoundatenhancedlevelsindepositsformedbyMIC.SeetheRootCauseFailureAnalysissectionofthisreportforbackground information andreferences onthebehaviorofmanganese, ironandsulfurincorrosion processes.

Curiously, thedepositsintheRHRlE-217Aand2E-217Belbowsarealmostidentical toeachotherandverydiQ'erent fromtheotherRHRcoolerdeposits.

Theelbowscontainmuchlesscopper,moreiron,veryhighlevelsof,manganese andasignificant amountofzinccomparedtotheRHRlubeoilcoolertubesthemselves.

These.dataindicatethattheelbowsfromboth.coils.may,infact,bemadePage19 ThornosM.Lo,ronge, Inc.fromsomeformofbrass(seetheinspection discussions above).Thehighmanganese levelsintheelbowdepositsconfirmtheblackdepositsfoundduringinspection, butthereisnoreadyexplanation forthepresenceofhighermanganese intheelbowsthaninthecoils.TheanalysisoftheRCICpumproomunitcooler1E-228Bdeposit(Table5)isdifferent fromtheRHRlubeoilcoolerdeposits.

Thiscupronickel tubeshowedoneofthedeepestpitsmeasuredduringthisstudy(Table4)andtheanalysisshowstheexpectedcopperandlowlevelofnickelinthedeposit.TheironlevelismoderatecomparedtotheRHRcoolerdepositsandthemanganese levelisverylow.Thisseemstoparallelthedeeppittingandlow<manganese depositcontentobservedinRHR1E-217Band2E-217C.However,in'contrast totheRHRcoolers,thesulfurcontentintheRCIClE-228Bdepositisverylow.Finally,thedepositintheDX2E-297-Acondenser isentirelydifferent fromthedepositintheRHRandRCICcoolercoils.Thisisamuchmore'typical waterside corrosion andfoulingdeposit,highinironandsilica,verylowinmanganese, copperandsulfur,andwithasignificant lossonignitionindicating thepossiblepresenceoforganicmaterial.

Wewereinformedthatourinspection represented thefirst.timethe2E-297Aheatexchanger hadbeenopened,sothe'a'ccumulation ofwater-borne solidsisnotsurprising.

Thisexchanger mustbecleanedtorestoreperformance, andatthattimeitwillbeimportant toinspectthetubesforpossiblecorrosion damage.SEM-EDSAnIfDeEDSspectraofselectedpitsfromtheRHRlubeoilcoolercoilsandRCICpumproomunitcoolertubesarepresented inFigures9through22,alongwiththerespective elemental compositions

~calculated fromstandardlessanalysis(inwhichthedataareinterpreted mathematically withouttheuseofphysicalstandards).

'hecorresponding SEMphotographs appearasNumbers42through-49.Elementmapsforsulfur,chlorine, ironandmanganese areshownPage20 In ThomasM.Larongl,Inc.asFigures23through29.Allofthesedataaresummarized forediscussion inTable6.EDSspectraweretakenattwoselectedmicrolocations ineachdeposit.Forwimple,referring toTable6,Photograph 42showsaspeciQcpitinRHRlubeoilcooler1E-217B-3B.

Figure9showstheEDSspectrumtakeninthemiddleofthedepositinthispitandFigure10showsthespectrumofthedepositatthebaseofthepit,nexttothemetal.Thecorresponding elementmapforthispitappearsasFigure23.Considering theheterogeneous natureofthedepositsandthespecificity oftheEDSspectra,theagreement betweentheEDSdataandtheICAPresultsinTable5isquitegood.TheEDSanalysesforchlorine(chloride) andsulfurareparticularly interesting becausetheseelementsareoftenfoundnearactivecorrosion sites.Chlorides accumulate inunder-deposit pittingcorrosion cellsbyiontransport mechanisms, whilesulfuroftenappearsatMIClocations throughmicrobial metabolism.

ThechlorideandsulfurdatainTable6donotshowanyconsistent pattern.Consider, forexample,theEDSspectrafromthreediferentpitsinRHRlubeoQcoolercoillE-217B-3B aslistedinTable6.~FiureLocation~ChloridRHRlE-217B-3B 9,10Insidepit16.42Pitbase6.75Sulf'urNoneNone11,1213,14InsidepitNonePitbaseNoneInsidepit15.93Pitbase0.246.1213.353.57NoneThesedifferences may.represent heterogeneous depositsortheymaybeadditional evidencethatmorethanonecorrosion mechanism Page21 Thomo,sM.Laronge,Inc.tmaybeinvolvedinthepittingattackintheRHRandRCICcoolers.Dr.WillertzransimilarSEM/EDSanalysesontheRHRcoilsandfoundthesamevariations, bothonpitsfromthesamecoilandamongdifferent coils.Agreement betweenthetwosetsofanalysesseemstobegoodwiththepossibleexception thatDr.Willertz's datashowmoreelementsandespecially moresulfurinsomecasesthandoourresults.Inanefforttoidentifyspecificchemicalcompounds inthedeposits, weranX-raydiffraction studiesonselecteddepositsfromRHRlubeoilcoolerslE-217B-3B, RHR2E-217Canda90degreebendfromRHR2E-2178.TheresultsareshowninTable7.Thedataaredisappointing.

Onlytheexpectedcuprichydroxide.

cuprousoxide(cuprite) andmagnetite wereidentified.

X-raydiffraction issensitive onlytocompounds presentinamountsgreaterthanabout2percentofthetotal,butwehadhopedthatothercrystalline compounds, particularly sulfurcompounds, couldbeidentiQed inthisway.Elementmaps(Figures23through29)areausefulwaytoidentifythelocations anddistribution ofparticular elementsinamatrix.Elementmappingdoesnotdetermine concentrations ofelements.

Figures23through29showthatallfourmappedelements, sulfur,chlorine, manganese andironarepresentinalldeposits.

However,themapsdonotrevealanyconsistent patternsinelementdistributions inthedeposits.

Ontheotherhand,themapsareespecially interesting becausetheyseemtoconfirmthedifferences shownbytheICAPandSEM/EDSanalyses.

Foracample,Figures23,24and25areelemental mapsofthreepitsinRHRlE-217B-3B.

Figure23showsabinodalvoidinthemiddleofthepit,withalmostnoneofthefourmappedelementspresentinthisarea.Figure24showsbothsulfurandchlorine'oncentrated inthemiddleofthepit,withmanganese andironinanouterring.Figure25showsmanganese, ironandsomechlorineinthemiddleofthepit,withsulfuraroundtheoutside.Page22 Thomo,sM.Laronge,inc.MicriloialAn1Table8summarizes allofthemicrobiological analysescoQectedduringthisinvestigation.

On-siteculturetestsforlivesulfatereducingbacteria(SRB)andacid-producing bacteria(APB)areshownintherighttwocolumnsofthisTable.Thesebacteriaarecommonlyinvolvedinmicrobiologically influenced corrosion (MIC).Laboratory microscopic countsfortotalbacteria(alltypes)andfortotalSRBareshowninthelefttwocolumns.ToputthedatainTable8intoperspective, considerthefollowing guidelines thatarecommonlyappliedtobothonce-through andopenrecirculating coolingwatersystem.Withatotalbacterial countbelow10~to103cellspermlorpergram,asystemisconsidered tobeundergoodmicrobiological control.Atthistotalcountlevel,anaerobic bacteriashouldalwaysbelessthan10~perml.Between103and104totalcellsperml,acoolingwatersystemisconsidered tobebiologically active.Above104to10~cellspermlthereiscauseforconcernaboutbiological foulingandcorrosion problemsandabove106cellsperml,immediate actionisusuallyconsidered necessary topreventdamagetothesystem.Onthisbasis,the8.5x109cellspermltotalcountmeasuredintheESWBsupplywatertoRCIClE-228B(line1inTable8)isextraordinarily high.Totalmicroscopic countsincludebothliveanddeadbacteria, butevenifasfewas10percentofthesebacteriawerealiveinthesystem,thecountswouldbewellabovethedangerpoint.ItisalsoveryunusualtofindtotalSRBlevels,aliveanddead,above106permlinawatersample.Theon-siteculturetestsforliveSRBandAPBinthiswatersampleagreewellwiththetotalmicroscopic SRBcountandindicatethatasexpected, mostoftheanaerobic bacteriadiedorbecameinactiveduringshipmenttothelaboratory.

tItisclearthattheESWBsupplywaterishighlycontaminated withbothaerobicandanaerobic bacteria.

WehavenowateranalysesPage23

>tgI,,e),k ThomasM.Loronge,Inc.fromtheESWAsystem,butsincethesesystemscirculate fromacommonsource,wecanassumethatESWAisalsocontaminated.

Thisisnotsurprising, sincethespraypondreceivesonlyoccasional algaecide treatment asneeded;noregularchlorination ormicrobial controlprogramisused.ThedepositsampletakenfromtheRCIClE-2288pumproomunitcooler(line2inTable8)producedthehigheston-sitelivebacterial depositcountsfoundduringthisstudy,greaterthan107cellspergramofdeposit.Thiscoolerhadbeenopenforseveraldaysbeforeourinspection.

ThefactthathighviableSRBandAPBcountswereobservedevenafterthisexposuretoairindicates thatactivitymusthavebeenveryhighwhenthesystemwasclosed.On-sitetestresultsfromthethreeRHRlubeoQcoolersandtheDXcondenser areallonetothreeordersofmagnitude lowerthanthet1E-228BRCICroomcooler.Note,however,thatliveSRBandAPBcountsfromRHRlE-217A,theRHRcoolerinthebestcondition, areonetotwoordersofmagnitude

~hfhrthanfrom2E-217C,thefailedcoolerintheworstcondition.

Thisdifference maynotbereallysigniQcant becausethesamplefrom2E-217Cwastakenafterthecoilhadbeendryandexposedtoairforseveraldays,whiletheotherRHRlubeoilcoolersamplesweretakenwhilethecoilswerestillwet.However,thetotalmicroscopic countsshowthesametrend.Asexplained above,totalmicroscopic stainingtechniques asusedinthisworkcountbothliveanddeadbacteriaandthusprovideanindication

.ofwhatthepopulations mighthavebeenlikewhilethesystemwasonline.Thesedataarepresented graphically inFigure3.Thenumbersdonotexactlyparallelthecultureresults,butthisistobeexpectedsincevariablenumbersofanaerobic bacteriawilldiedepending uponconditions towhichtheyareexposed.Thetotalcountdataforthefourdepositsamplesshownin--*."Figure3areapproximately thesame,withintheprecision ofthistest.However,theSRBlevelsinthedepositsfromRHR2E-217CandRCICPage24 0IIf1 ThomasM.Laionge,Inc.1E-228B,asever'ely corrodedcupronickel cooler,arebothtwoorderstofmagnitude lowerthanlE-217A.ThisisasigniQcant'difference anditindicates thatmicrobiological activityalonecannotexplainthedifferences inpittinganddepositformation foundamongboththeRHRlubeoQcoolersandtheRCICpumproomunitcoolers.SectionsofcoilsfromRHRlubeoilcoolers1E-217Band2E-217Cwerecarefully examinedunderastereomicroscope fordirectevidenceofMIConthesecoppertubes.Indications ofMICareclearlypresent,butnopitscouldbefoundinthesetubesthatcouldbeentirelyandunequivocally attributed toMIC.DiinfAnR1Manganese, andprobablyalsodeposited iron,appeartobeproviding'corrosion protection intheRHRlubeoilcoolersratherthanincreasing corrosion.

Sulfurlevels,asdetermined byICAPanalysis, correlate withobserveddepthofpitting,butlocationspecificSEM/EDSanalysesforsulfurandchloridedonotcorrelate aswell.Elementmapsshowbothelements, alongwithmanganese andiron,presentinalldeposits, butinsomecasesnexttothemetalsurfaceandinothercasesinthedeposititselforevenoutsidethepit.Microbiological counts,usuallyassociated withthepresenceofsulfurcompounds incorrosion productdeposits, donotcorrelate wellwitheithersulfurlevelsorobservedfrequency anddepthofpittingintheRHRlubeoilcoolers,althoughalldepositstestedshowedhighlevelsofanaerobic andtotalmicrobiological activity.

Allofthesedata,alongwiththeobserveddifferences inpitmorphology, frequency anddepth,indicatethattwodifferent mechanisms arecontrolling thepittingcorrosion processintheRHRlubeoilcoolersandtheRCICpumproomunitcoolers.Thesemechanisms.

are.conventional under-deposit pittingattackandMIC.Itisprobablethatmanypitsweremicrobiologically initiated, butthenadvancedbyconventional mechanisms.

Page25 Thomo,sM.Laronge,Inc.MICandconventional under-deposit corrosion andsometimebedistinguished bydifferences inthemorphology (shapeandsize)ofthepits.Usingmildsteelasanexamplefordiscussion, MICtendstoproducecircular, dish-shaped pitswithroundededgesanQoftenwithsmallerpitswithinthemainpit.Conventional under-deposit corrosion usuallyproducespitswithirregular shapes,sharpedgesandstraightorundercutsides.Oncopper,thesedifferences areobscuredbythefactthatthebacteriaresponsible forMICoftendieorbecomeinactiveduetothetoxiceffectsofthecopperionsgenerated bycorrosion.

Thedepositsremain,however,andcorrosion continues byconventional mechanisms sothatthepitmorphology becomesobscured.

SeetheRootCauseFailureAnalysissectionofthisreport,beginning onPage.35,forfurtherdiscussion ofthissubject.Thefollowing sectionofthisreportdiscusses ESWwaterchemistry andESWandRHRpumpoperations.

Thisinformation isneededtohelpexplainwhythiscorrosion isoccurring andwhydepositcompositions andratesofdeposition andpittingattackaredifferent amongthedifferent RHRandRCICcoolers.Page26 s-p4l ThomasM.Loronge,Inc.EWSYTEMHEMITRYANDPERATIQN~ESWhAvailable ESWchemistry parameters for1989and1990areplottedinFigures4and5.Conductivity andcalciumlevels(Figure4)showacleardownwardtrendduringthisoneandone-halfyearperiod.Turbidity fluctuated widelyduringthisperiod,whilethepHremainedinthe8to9range(Figure5).Noexplanation forthesetrendsisreadilyavailable.

Figure6showstemperature andLangelier Stability Index(LSI)calculations fortheESW,asprovidedbyPAL.ItisclearfromFigure6thattheLSIwilloftenbeabove+0.5,andoccasionally above+1.0,creatingadefinitepossibility forcalciumcarbonate scaleformation.

Underborderline scalingconditions, suchasthese,smalltemperature eorconcentration changesinthewatercancreatethedrivingforceneededtocausecalciumcarbonate toprecipitate inaheatexchanger.

Table9presentsananalysisoftheESWBwatersupplytoRCICpumproomunitcoolerlE-228B,takenduringoursitevisitonJune9,1990.LSIvaluesforthissample,asshowninTable9,rangefrom+0.4at80'Fto+0.7at110'F,makingthissamplemarginally non-scaling.

TheanalysisinTable9showstheESWasanalyzedtobeagenerally goodqualitywater.Parameters ofparticular interestareironat0.74ppm,manganese at0.75ppmandsulfateat53.6ppm.Theselevelsofironandmanganese aremorethansufficient toaccountforthedepositsoftheseelementsfoundintheRHRlubeoilcoolersandtheRCICpumproomunitcoolers.Withroughly54ppmsulfatepresentinthewater,itisreasonable toexpectsomesulfatecompounds tobeadsorbedoroccludedincorrosion productdeposits.

ThisprovidesafoodsourceforactiveSRBandindicates thatatleastsomeofthesulfurreportedintheRHRandRCICcoolerdepositsmaythepresentassulfate(seeTable5).Page27

'll'J4trkWt ThomasM.Laronge,Inc.Recommendations forwatertreatment attheSusquehanna plantarebeyondthescopeofthisreport.ThedataclearlyindicatethattheESWisatleastoccasionally scalinginnature,andthemicrobiological datadiscussed inaprevioussectionshowthatthesystemishighlycontaminated withbacteria.

EWnRHRPumrnThenatureoftheflowpatternsthroughtheRHRlubeoilcoolersandtheRCICpumproomunitcoolerscanhaveamajorimpactupondepositformation andsubsequent corrosion intheseunits.Toinvestigate thisproblem,westudiedtheoperation oftheESWsystempumpsandtheRHRpumpsinsomedetail.Weappreciate thecooperation offeredbyPP&Lpersonnel inobtaining theoperating datanecessary forthisstudy.NotaQthedata-werereadQyavailable, andthefirstinformation providedtousturnedouttobeincorrect.

Wehavereviewedthisproblemseveraltimes,andthefollowing discussion isbaseduponthelatestinformation whichPP&Lassuresusisreliable.

tmrinOurstudyisbaseduponthefollowing PP&Linformation:

TheESWiscirculated fromalargespraypondthroughvariousequipment andbacktothepond.Makeupwatertotheponds,mostlyfromthemaincondenser coolingtowerblowdown, withadditional makeupfromtheSusquehanna Riverasneeded.TheESWsystemisdividedintotwoloops,labeQedAandB.Twopumps,labeQedESWAandC,drivewaterthroughtheAloopandpumpsBandDdrivetheBloop.ThesepumpstakewaterfromacommonsuctionpointinthePage28 ThomasM.Laronge,Inc.spraypond.Waterreturnstothepondthroughtwoseparateheaders.~Thefollowing coolersthatwehaveexaminedareconnected inparallelacrosstheESWAloop:RHRlubeoilcoolers1E-217AandD,and2E-217AandD.RCICpumproomunitcoolerlE-228A.ESWGRDXsystemcondenser 2E-297A.~Thefollowing coolersthatwehaveexaminedareconnected in.parallelacrosstheESWBloop:0RHRlubeoilcoolerslE-217BandC,and2E-217BandC.RCICpumproomunitcoolerlE-228B.~AtanytimetheESWisflowing,oneorbothoftheESWAandBloopsmayberunningandeitherorbothoftheESWpumpsontheactiveloop(s)maybeinuse.Watercirculates throughalloftheequipment.

oneachloopwheneverthatloopisrunning.BThEWSrPnThevolume.ofwaterinthespraypondisestimated byPALat26milliongallons.Weunderstand thatmakeup'from thecoolingtowerblowdown" runsatfrom300to1000gpm,withanadditional 200gpmavailable fromtheriverasneeded.Page29 (4

ThomasM.Laronge,Inc.Wedidnotpersonally inspectthespraypond.Weunderstand fromPP&Lpersonnel andfromwatertreatment vendorreportsthatthepondwaterqualityvariesseasonally inturbidity anddissolved andsuspended solids.Duringthesummermonths,algaegrowsinthepond;thisiscontrolled byoccasional treatment withalgaecide andchlorinearoundtheedgesandacrossthesurfaceofthepond.Itisclearthatthespraypondisasourceofmicrobiological contamination andpossiblyalsosuspended solidsintheESWwaterandcoolers.Chlorinehas,inthepast,beenaddedtotheESWpumpsuctionpoint,butthishasnotbeendoneinrecentmonths.CEWRHRmRunTimPP&LprovidedmonthlyruntimedatainhoursfromAugust1986throughMay1990forboththeESWandtheRHRpumps.Thesedataarerecordedfordiscussion inTable10.Incalculating the"AssumedTotal"runtimesshowninTable10,weusedthefollowing guidelines:

~Weunderstand thatpriortoJune1989,theentirecoolingloadforthedieselgenerators wascarriedbyESWloopAandforthatreason,bothpumps,ESW-AandESW-C,ranwhenevertheAloopwasinoperation.

ToarriveatatotalrunfortheAloopduringthisperiod,wesimplyusedthehigherofthetwohourlynumberseachmonthforpumpsESW-AandESW-C.Duringthissametimeperiod,theloadontheESWBloopwaslighterandusuallyonlyonepumpwasinoperation.

Tocalculate thetotalmonthlyrunhoursfortheBloop,wetherefore usedthesumoftherecordedhoursfortheESW-BandESW-Dpumps.Page30 ThomosM.Loronge,Inc.FromJune1989forward,thepipingwasrearranged sothatthedieselgenerator coolingloadwassharedbetweentheESW-AandBloops.Duringthisperiod,ithasbeennormalpracticetooperateonlyonepumpatatimeineachloop.We,therefore summedthedataforeachmonth,asabove,tocalculate assumedtotalrunhoursforeachloop.Theassumedtotalmonthlyruntimesshowagooddealofscatterthatobscuresanysignificant trends.Tosmooththedata,wecalculated annualruntimehoursasapercentoftheavailable hours(8,760hoursinayear).ThesedataareshowninFigures7Aand7B,representing theESW-AandBloops,respectively.

TheseFiguresalsoincludethepercentruntimesfortheRHRpumpsfromTable10,simplycalculated bysummingthemonthlydata.tThehigherruntimesshownforbothESWloopsin1989comparedtootheryearsmaybeacalculation errorresulting

&omthefactthatbothpumpsprobablydidruntogetheroneachlooppartofthetimeafterJune1989.Thisquestiondoesnotsignificantly affectthedataforourpurposes.

ItcanbeseenfromFigures7Aand7BthattheESWAloopranforroughly35percentofthetimefrom1987throughMay1990andtheESWBloopranforabout25percentofthetime,ontheaverage.TheexactQguresarenotimportant.

Conversely, thedatasay.thattheAloopwasstagnantfor65percentofthetimeandtheBloopfor75percent'ofthetime.Itfollowsthatthecoolersconnected toeachloop,aslistedunderSystemOperations above,werealsostagnantfortheseperiodsoftime.Weassumethatthecoolerswerenotallowedtodrainandremainedfullwhilestagnant.

Page31 I

Thomo,sM.Loronge,Inc.Theexistence oflongperiodsofstagnation intheESWwatersystemisanimportant factorinunderstanding thepittingfailuresthatoccurredinthecopperRHRlubeoilcoolingcoilsandthe90:10cupronickel RCICpumproomunitcoolers.Thepresenceofstagnant, contaminated waterinthesecoolersforextendedtimeperiodsrepresents theworstpossiblecondition forcorrosion protection ofcopperandcopperalloys,particularly withnospecificcorrosion inhibitors forcopperinthewater.Thisproblemisdiscussed indetailinthefollowing RootCauseFailureAnalysissectionofthisreport.TheRHRpumppercentruntimedatainFigures7Aand7BareameasureofthetimethatheatwasappliedtotheRHRlubeoilcooling.coils.Wehavenoinformation onthetimesthatheatwasappliedintheRCICpumproomunitcoolers.HeatwasappliedtotheRHRlubeoilcoolersforasmallfractionofthetotaltime,butagain,moreinloopAthaninloopB(seeFigures7Aand7B).Giventhe8'Ftemperature riseacrossthesecoolers,asdiscussed above,andtheshortRHRpumpruntimes,itseemsunlikelythattemperature differences acrossthecoolercoilscouldbeasignificant factorinthedeposition andcorrosion process.Nevertheless, thedatashowthattheRHRpumpswiththe"best"lubeoilcoolers,namelylA,2Aand1D,ranperhapstwiceasmuchasthosepumpswiththe"worst"coils,namely1B,1Cand2C.D.RHRLuillinWrFlwVlociFlowvelocityisanimportant factoraffecting thenatureanddegreeofbothdeposition andcorrosion thatcanoccurintubularequipment.

TheinitialdatasuppliedbyPALshowedveryhighflowvelocities intheRHRlubeoilcoolers.Thisseemedinconsistent inviewoftheloosedepositsfoundinsomecoolersandthefactthatnoerosionorerosion/corrosion wasfoundinanyofthecoolertubesorelbowsthatweexamined.

This,wasconfirmed byDr.Willertz's inspections ofthesetubes.Page32 ThomosM.LoroncIe, Inc.PALcooperated fullywithusinresolving this.issueandwasabletosupplynewflowvelocitydatathatseemtobereasonable andthatPPM.assuresusaretheirbestestimates.

ThesedataareshowninTable11andFiguresSAandSB,fortheAandBloopsrespectively.

PP&LprovidedvelocitydatafortheAloopforallthreetimeperiodsshowninTablellandfortheBloopfortheperiodfromJune1989throughJune1990.Bloopdatawerenotavailable forJune1986throughJune1989.AtPP@L'ssuggestion, wecalculated flowvelocities fortheBloopduringthisperiodat20percentabovethecorresponding Aloopvelocities.

Thelowerflowvelocities intheAloopfromJune1989through1990maycorrespond tomorefrequentuseofonepumpratherthantwoduringthisperiod(seeabove).Thereisnosimpleexplanation forthehigherflowvelocities intheBloop,especially duringtheJune1989to1990periodforwhichharddataareavaQable.

Thesehighervelocities goalongwithshorteroperating periodsfortheBloop,asexplained inthepreviousdiscussion.

Typicalcriticalwatervelocities, abovewhicherosionanderosion/corrosion damagecanbeexpectedinheatexchanger tubing,havebeenreportedintheliterature:

Materi1Copperalloy¹122Admiralty Brassalloy¹4430090:10Cupronickel alloy¹70600ri1WrV1i6fps10tollfps12to15fpsRfrnThevelocities inTable11andFiguresSAandSBareabovetheguidelines forcopperasquotedabove.Velocities inthe0.5inchdiameterRCICpumproomunitcoolersarelowerthanintheRHRtube'oflcoolersatabout2to3'feetpersecond.Exceptforsomeminordirectional natureinthedepositsinoneRHRlubeoilcoolerPage33

ThomasM.Laronge,Inc.(RHRlE-217B,seeTable1),wehavefoundnoevidencethatvelocityaffectedthenatureofthecorrosion intheRHRandRCICcoolers.However,waterflowvelocityalmostcertainly influenced thetype,amountandphysicalformofthedepositsinthesecoolers.Page34 IJ' Thomo,sM.Laronge,Inl-.RTAEFAILREANALYIBrieflystated,theRHRlubeoilcoolersandtheRCICpumproomunitcoolersfailedbyacombination ofmicrobiologically inducedcorrosion andchemicalpittingcorrosion mechanisms.

Periodsofstandingincontactwithstagnant, microbiologically activewaterallowedinitialdepositstoformonthetubesurfaces.

Underneath thesedeposits, anaerobic conditions allowedsulfate-reducing bacteriatoproducesulfidesfromsulfateionsinthewater.Themicrobiologically-generated sulfidesinitially attackedthemetalsurfaces.

Thebaremetalexposedinthiswaytendedtoinhibitfurthermicrobiological growthunderthedeposits.

However,oxygenconcentration cellsnowexistedbetweenthemoistdepositsnexttothemetalandthebulkwater.Thebaremetalbecameanodicrelativetothemetalawayfromthedepositsandpittingcorrosion began'.Chlorideionsfromthewaterconcentrated inthepitthroughcomplexionformation withcopperionsproducedthroughcorrosion.

Ironandmanganese inthewatersupplyalsoconcentrated inandnearthegrowingtubercles andpits.Irondepositstendedtoreducethepittingcorrosion ratebyinhibiting diffusion ofwaterthroughthedeposits.

Manganese alsoservedinthisrole,butinsomecasesalsoincreased thecorrosion ratebycatalyzing theelectrontransferreactions withinthepitsandnexttothemetalsurface.Thispittingcorrosion eventually producedthethrough-wall failureofRHRlubeoilcooler2E-217Candtheincipient failuresofRHRlE-217BandRCICpumproomunitcoolerlE-228A.Thereasonsforthelessseverepittinganddeposition observedinotherRHRandRCICcoolersarerelatedtodifferences indepositcompositions andoperating conditions amongthesecoolers:Page35 ThomosM.Laronge,Inc.Thefollowing paragraphs ofthissectionexaminethispittingcorrosion failurescenarioinmoredetail.PiIniCopperand90:10cupronickel arechosenforheatexchanger servicebecauseoftheirgoodmechanical andheattransferproperties andbecauseoftheiroutstanding resistance tocorrosion inclean,flowingwater.Thesemetalsaresostableinwaterthatheatexchanger tubesthathavebeencorrodedunderdepositscanbesafelyreturnedtoserviceaftercleaning(4).

However,itiswellknownthatcopperalloysareattackedbysulfides.

Muchworkhasbeendonetounderstand andtodocumentthepittingcorrosion ofcopperand90:10cupronickel thatcanoccurinsulflde-contaminated water(45@.Mostofthisworkhasbeendoneinmarineenvironments.

Ionicconcentrations are,ofcourse,quitedifferent inafreshwaterenvironment suchastheESWspraypond.Sulfideshouldnormallynotexistinthissystem.Thedifference isthattheESWspraypondisbiologically veryactiveandprobablycontainslargenumbersofsulfatereducingbacteria(SRB).Thisassumption isbasedupontheknownlackofbiocidaltreatment inthepond,probableanaerobic conditions nearthebottomofthepondandtheestablished highlevelsofSRBintheESW-BsupplytoRCICcooler1E-228B.WaterintheRHRlubeoilcoolersandtheRCICpumproomunitcoolershasbeenstagnantfrom65to75percentofthetime(Table10andFigures7Aand7B).Duringthesestagnantperiods,suspended solids,biological matterandsolublematerials fromthewater,particularly iron,manganese andcalciumsalts,tendedtoprecipitate onthetubesurfaces.

SomeofthesesolidsmusthavebeenmovedeverytimetheESWwatercirculated, butovertime,adherentdepositsaccumulated.

tSulfldicmetabolic productsfromSRBinthesedepositsactedinthesamewayassulfldesincontaminated seawater;theyattackedthePage36 ThomasM.Laronge,Inc.metalsurfaces.

Thesebacteriatheneitherdiedorbecameinactive.

Popeetal(7)explained thatlittleisknownaboutMICoricopperalloysinfreshwaterbecauseoftheknowntoxicityofcopperionstobacteria.

Schiffrin etal+)showedthataerobicorganisms, e.g.,Pseudomonas, canalsoinducepittingcorrosion ofcopperalloysbyformingdeposits.thatleadtooxygenconcentration cellsandeventualdestruction oftheprotective oxidelayersonthemetal.Oncebaremetalhadbeenexposedbymicrobiologically inducedsulfideattack,standardunder-deposit oxygenconcentration cell,corrosion becamethedrivingforce.Manyauthorshavedocumented pittingcorrosion oncopper.During+)described severalcasesofpittingoncopperbeneathironoxidedeposits.

Thephotographs inDuring'sbooklooksimilarinsomerespectstothoseinthisreport.TheAWWA('@explainspittingoncopperwaterpipingingreatdetail,withdiagramsandelectrochemical mechanisms.

Quotingfromthiswork,"Pitting(oncopper)ischaracterized bythepresenceoftubercles, whicharerandomlydistributed.

Theinsideofthetube(contains) blue-green basiccoppercarbonate (Malachite).

Underthislayerisabrownlayerofcuprite(cuprousoxide,Cu20),whichisfriableandeasilyspalledfromtheunderlying coppermetal.Typically, manypitsataHstagesofdevelopment areseen,butonly,afewhaveactuallypenetrated thewallthickness."

Thisdescription seemstomatchquitewellthetheconditions inthefailedRHRlubeoil'ooler, 2E-217C.LymanandCohen(>0) comparedthechemicalcompositions ofmanywatersuppliesassociated withpittingfailuresincoppertubes.ThepH,chlorideandsulfatelevelsintheESW,aslistedinTable9,fallintoLyman.and Cohens'ange ofmaximumsusceptibility topitting.However,theauthorsalsopointoutthatmanysuccessful applications ofcopperpipingexistinwaterswithsimilarcompositions.

Chloridedoestendtoconcentrate atanodicsitesbecauseofcomplexionPage37 ThomasM.Laronge,Inc.formation withnewlyreleasedcopperions.ThiscanfurtherreducethepHattheanodicsiteandincreasethecorrosion rate.EfffulfrIrnSulfidesandsulfatesmaycontinuetoinfluence thecorrosion mechanism duringthesecond,orconcentration cellphaseofpitgrowth.TheAWWAmanual(@describes pitmorphology incopperpipes.Intheabsenceofsulfides, theAWWAclaimsthatmostpitsareirregular inshape,straightedgedandnarrow.WithsulQdespresent(fromthewater,notfromMIC),pitstendtobewiderandshallower innature.Themechanism described hereisverysimilartochloride-

.enhanced pittingcorrosion ofmildsteel.Bothtypesofpittingdescribed bytheAWWAareclearlyevidentintheRHRlubeoilcoolertubes.See,forexample,Photographs 19,~~~~~~~~23,27,30,31,33and34.IntheESWsystem,SRBobviously continuetoexistinthedeposits, althoughnotindirectcontactwiththemetalsurface.Itisentirelypossibleforsulfidesgenerated bySRBmetabolism tocontinuetodiffusewiththewaterandaffectpitmorphology asdiscussed bytheAWWA.ThefactthatSEM/EDSanalysesandtheelementmapsinthisreportshowedsulfurpresentatspecificbut'different locations invariouspitsanddepositsmaybetheresultofthiseffect.SeeTable6andFigures23through29.IronfoundintheRHRlubeoilcoolerandRCICpumproomunitcoolerdepositscomesmostlyfromthemakeupwatertothespraypond,withadditional contributions fromironaccumulated inthepondandfrompossiblecorrosion ofESWtransferlines.Solubleironinthewatermaybeprecipitated intheESWsystembychemicaloxidation orbytheactionofironoxidizing bacteria.

Thesebacteriaareoftenfoundtocoexistwithotherbacteriainbiologically activewatersystems.TheXRDdata(Table7)showthatironindepositswaspresenttentirelyasmagnetite.

Thisisexpectedinlowoxygenlocations, i.e.,insideandunderneath tubercles.

Depending uponotherPage38 ThomasM.Laronge,Inc.$1characteristics ofthespeciQcdeposits, magnetite mayprovidesome,barrierlayercorrosion protection, oritmayserveonlytoincreasethesizeandnumberofthetubercles andtherefore theintensity ofpitting.Thepresenceofmanganese, atthelevelsfoundintheSusquehanna

deposits, canbothaggravate andreduce'ittingcorrosion.

Manganese isamultivalent metal.Itcanexistinseveraloxidation statesandcantherefore actasanelectrontransferagenttoencourage electrochemical oxidation-reduction reactions.

This,ineffect,increases thecorr'osion rateandparticularly pittingcorrosion undermanganese-containing deposits(>>).

Atthesametime,however,tightlyadherentlayersofmanganese oxidescanprotectmetalsurfacesfromcontactwithwater.Manganese oxidesareoftensuggested asproductsofbiological metabolism inmanganese-containing waters.Bothofthesemechanisms wereinvolved'in theRHRlubeoiltcoolerpittingcorrosion.

process.TheRHR2E-217Ccoolershowedlittlemanganese inthedeposits, butthedepositswerecrystalline, scalingandnon-adherent innature.Eventhesmallamountofmanganese foundinthisdeposit(Table5)canincreasecorrosivity byaidingoxidation-reduction reactions involving electrontransfer, asexplained above.TheRHRlE-217Adepositcontained muchmoremanganese, butasexplained intheinspection sectionabove,thesedepositswerelessscalingandmoreadherentinnature.Pittingattackwascorrespondingly lesssevere.Thevariations inmanganese contentofthedepositsmaybepartofthereasonforthedifferences incondition ofthevariousRHRlubeoilcoolers.Theworstcoolers(2Cand1B)areontheESWBloop,whilethecoolersinthebestcondition (lA,2Aand1D)areontheAloop.TheESWAandBloopsmustbeconsidered asonesystem,sothesedifferences arehardtoexplain.PriortoJune1989,theAloopranmorefrequently andcarriedmorewaterthantheBloopandatabouta20percentlowervelocity.

Possiblymoremanganese could-havedeposited intheAloopundertheseconditions.

TheveryhighPage39 ThomasM.Laronge,Inl-.levelsofmanganese inthelE-217Aand2E-217Belbowsremainunexplained.

nfRHR1rRIlrurnikelItisinteresting tocomparethecondition oftheRHRlubeoilcoolers(typeKcopper)withtheRCICpumproomunitcoolers(90:10cupronickel).

Thediscussion inthisreporthascenteredontheRHRcoolersbecauseofthefailurethatoccurredin2E-217Candthenearthrough-wall pitsfoundinotherRHRcoolers.However,theRCICcoolerswerenotfarbehind.Wemeasureda90percentthrough-wall pitin1E-228Aanda60percentthrough-wall pitinlE-228B(Table4).TheflowvelocityintheRCICcoolerswasreportedbyPALasabout2to3feetpersecond.WaterflowsinboththeRHRandRCICcoolerswhenevertheESWpumpsarerunning.RCIC1E-228Aisconnected totheAloopandlE-228BtotheBloop.RCIC1E-228BandtheESWBinletwaterlinetothiscoolershowedthehighestlevelsofmicrobiological activityofallthecoolerstested.Themanganese levelinthedepositfromRCIC1E-228Bwasverylow,similartoRHR2E-217C.Itisclearthatthepittingcorrosion problemisjustasseriousintheRCICroomcoolersasintheRHRlubeoilcoolers.Thisisimportant becausetheRHRcoolersaretheonlycoppercoilsintheESWsystem;allothercoolersare90:10cupronickel orotheralloys.Cupronickel andcopperarebothknownfortheirexcellent resistance tocorrosion inclean,flowingwateratneutralandalkalinepH.However,cupronickel ismoresusceptible thancoppertobothgeneralbiofouling andMIC(>2).Thisbehaviorhasbeenobservedanddocumented, butnot.explained verywell.Copper(and304stainless steel)formpassive,protective Almsthatprovidecorrosion resistance.

90:10cupronickel alsoformspassivesurfacefilms,andobtainsadditional corrosion Page40 ThomasM.Loronge,Inc.resistance fromtheelectrochemical nobilityofthealloyedsurface.Inthepresenceofacorrosive agentsuchashydrogensulfidefrombiological metabolism, andintheabsenceofoxygenneededtorepairpassivefQms,itispossiblethatfilmsonthesinglecomponent coppersurface.mightbemoreresistant toattackthanthoseonthetwocomponent 90:1'0cupronickel surface.0Page41 ThomosM.Larongt,Inc.ENDIPage42 pi'p,tErr4' ThomasM.Laronge,Inc.BIBLIRAPHYy1.ClaudeD.Tapley,"ProcessIndustries Corrosion."

NationalAssociation ofCorrosion Engineers, 1975.Texas,2.R.JamesLandrum,"Fundamentals ofDesigning forCorrosion Control:ACorrosion AidfortheDesigner."

Texas,NationalAssociation ofCorrosion Engineers, 1989.3.K.I.JohnsonandD.A.Neitzel,"Improving theReliability ofOpenCycleWaterSystem:Applications ofBiofouling Surveillance andControlTechniques toSedimentandCorrosion FoulingatNuclearPowerPlants."Washington, DivisionofSafetyReviewandOversite, OfficeofNuclearReactorRegulation, U.S.NuclearRegulatory Commission, 1987.~'rthurH.Tuthill,"Successful useofCarbonSteel,CopperBaseAlloysandStainless SteelinServiceWaterSystemsinOtherIndustries."

Presented attheEPRIServiceWaterSystemReliability Improvement Seminar,Charlotte, NorthCarolina, October1988.5.H.A.Videla,M.F.L.deMele,andG.Brankevich, "Assessment ofCorrosion andMicrofouling ofSeveralMetalsinPolluted8*1."81LNNN448.1,4ty1888.6.D.FSchiffrin andS.R.deSanchez,'TheEffectsofPollutants andBacterial Microfouling ontheCorrosion ofCopperBaseAlloysinSeawater."

Quernin,41,No.1,January1985.7.D.H.Pope,D.Tuques,P.C.Wayner,Jr.andA.H.Johannes, "Microbiologically Influenced Corrosion:

AStateoftheArtReview."MTIPublication No.13,Materials Technology Institute oftheChemicalProcessIndustries, Inc.,secondedition,1990.Page43 c~MH ThomasM.Laronge,Inc.8.EvertD.D.During,rrinA111nfIllurHiriV12NewYork,ElsevierPress,1988.9.AWWAResearchFoundation, nrn1rrinfWrDirinmpp.337-365.Denver,AWWAPress,1985.10.W.StuartLymanandArthurCohen,"ServiceExperience WithCopperPlumbingPipe."Mri1PrinnPrfrmnV~111,No.2,pp.43-53,February1972.ll.VictorJ.Linnenbom andJeffreyJ.Forshee,"ServiceWaterSystemExperience atBeaverValleyPowerStation."

Presented attheServiceWaterSystemReliability Improvement Seminar,Charlotte, NorthCarolina, October1988.12.DavidS.Hibbard,"CopperAlloyTubeApplications inPowerPlanteCondensers."

PwrEninrin,August1981.Page44 P)jc0 ThomasM.Laronge,inc.LIFTABLETABLE1TABLE2TABLE3TABLE4TABLE5TABLE6TABLE7TABLE8TABLE9eTABLE10TABLE11TABLE12RESULTSOFVISUALINSPECTIONS OFSPECIMENS RESULTSOFPHYSICALMMBUREMENTS ONAS-RECEIVEDSPECIMENS RESULTSOFDEPOSITWEIGHTDENSITYMEASUREMENTS RESULTSOFPITDEPTHSURVEYSCHEMICALANALYSESOFDEPOSITSSUMMIARYOFSEM-EDSANALYTICAL RESULTSRESULTSOFDEBYE-SCHERRER X-RAYDIFFRACTION ANALYSISOFDEPOSITSAMPLESUSINGCOPPERK-ALPHARADIATION RESULTSOFMICROBIOLOGICAL ANALYSESRESULTSOFTHEANALYSISOFESWBWATERSUPPLYTORCIC1E-228BPUMPROOMUNITCOOLERESWANDRHRPUMPRUNTIMES,HOURSRHRLUBEOILCOOLERFLOWVELOCITIES COMPARISONS OFOBSERVATIONS ANDPHYSICALMEASUREMENTS Page45 C(I TABLRESULTSOFVISUALINSPThomosM.LoIonge,Inc.NSOFSPECIMENS ItemNumberDescritionRCIC1&228APumproomunitcooler.RCIClE-228BPumroomunitcooler.RHRlE-217ALubeoQcooler.RHRlE-217ALubeoQcooler,90degree90DegreeBendsbends.~RHRlE-217BLueocooer,3rowSection3Bfromtop,2ndcoQfromcenter.RHRlE-217CLubeocooler.PhotoNo.1,14,15.16, 40,41,4311,48,491313,37,38,39

,20,21,2, 23,42,44,45 7,28,29,30, 31,46,47VisualInsectionsofInteriorSurfacesUormthinbrowndepositsplustubercles, alsosomemse/tandepositsonsurfaces.

Greenandreddepositsbeneathtubercles.

Pitsmostlyhemispherical, somejaggedandirreular.Noundercuttin

.Noeneralcorrosion.

DeosftsandfttfnsfmQartolE-228A.Uniformthindeosits,notubercles, veslhtfttin.Apparently brasselbows.Blackpowderydeposit,somearemetal.Novisiblecorrosion underdeposits, exceptpittingoncoppertube(PhotoNo.39).Mosysmoorownaceposft,someagreendeposits.

Largebrowntubercles, 0.25inchdiameterandheight.Under-deposit pitsmostlyhemispherical, noodd-shapedored-edepfts.Largeamountosmoothbrown/black deposit,rightgreencrystalsaroundtubercles andpits.Sparkling silver/red crystalsinbottomsoflargeshallowhemispherical pits(SEMPhotoNos.46and47.RHR2E-217A Lueocooer.6Uormrown,sto1E-217B,utmucsmaertubercles.

Nosignificant visiblelocalized orgeneral'orrosion.

RHR2E-217B LubeoQcooler.9RHR2E-217B LubeoQcooler,90degree90DeeBendsbends.10-RHR2E-217C LubeoQcooler.RHR2E-217D LubeoQcooler.8,9,10,12, 32,33,3412,35,362,17,18,19 4,5,24,25,26,27 Scattered blackandgreendeposits, appeartoollowowpattern.Nosignificant tuberculatfon.

Hemispherical pitswereQlledwitheenandblackdeposits.

Apparently copperelbows.Smoothtan/black deposits.

Novisiblelocalized oreneralcorrosion.

Heavygrey/green scalydeposit,nosmoothrown/black layerasinothercoQs.Largetubercles coveringgreenandreddeposits.

Manyjaggedandhemispherical pits,MostseverepfttfnofallRHRlubeoQcoocoQsexamined.

Uormbrowndeposit,manysmalltubercles withgreenedges,greendepositbelowtubezeles.

Shallow,Mundpits,lessseverethanothercoolers.Page46

'I'8aii TABLE2RESULTSOFPHYSICALMEASUREMENTS ONAS-RECEIVED SPECIMENS SpecimenRCIClE-228AHorizontal SplitRCIClE-228AVerticalSplitRCIClE-228BHorizontal SplitRCIClE-228BVerticalSplitRHRlE-217A90DeBendsRHR1E-217B-3B RHR1E-217CRHR2E-217ARHR2E-217B-2 2ndRowFromToRHR2E-217B-2ndRowFromBottomRHR2E-217B-2 2ndRowFromTopsA,B,C,DRHR2E-217B90DreeBendsRHR2E-217CRHR2E-217DOverall,Length,Inches20.319.622.52.3to2.516.010.014.0VariesDepending onSecimenConsidered SecimenConsidered VariesDepending onSecfmenConsidered 1.9to2.116.515.5OutsideDiameter, Inches0.6370.6350.6370.6370.9800.8730.8900.8550.875VariesDepenon0.8750.8250.90to1.00.8500.895InsideDiameter, Inches0.5290.5310.5280.5140.7600.7410.7650.7500.7430.7430.7130.75to0.850.7180.755MeasuredWallThfckness, Inches0.0550.0520.0600.0600.0980.0710.0710.058to0.0700.0650.0650.0560.0750.0750.070TypicalMinimumWallThickness

+/-Tolerance, Inches0.049+0.0040.049+0.0040.049+0.0040.049+0.004Uncertain 0.065+0.00450.065+0.00450.065+0.00450.065+0.0045.0.065+0.00450.065+0.00450.065g0.00450.065+0.00450.065+0.0045Page47 TABLE3RESULTSOFDEPOSITWEIGHTDENSITYMEASUREMENTS~

SecimenRCIClE-228A,Horizontal SlitRCIClE-228A,VerticalSlitRCIC1E-228B,Horizontal SlitRCIClE-228B,VerticalSlitRHRlE-217A,90DereeBendsRHRlE-217B-3B, 3rdRowFromTop,2ndRinFromtheInsideRHRlE-217CRHR2E-217ARHR2E-217B-2, 2ndRowFromToRHR2E-217B-5, 2ndRowFromBottomRHR2E-217B,90DereeBendsRHR2E-217CRHR2E-217Dm/ft210.677.137.727.7715.4031.7324.075.2513.216.8617.2337.9027.25DeositWeihtDensim/mm20.110.080.080.080.160.340.260.060.140.070.18~0.410.29'Calculated according toASTMStandardD3483-83MethodAPage48 I

ThomosM.Loronge,Inc.TABLE4RESULTSOFPITDEPMSURVEYSSecimenRCIClE-228A,Horizontal SlitRCIClE-228A,VerticalSlitRCIClE-228B,Horizontal SlitEstimated DensityofPitting,Pits/Square Inch5to50Estimated MaximumPitDepth,Inches0.0500.0170.017alculated PercentThrough-WallUsingMaximumPitDepth,Percent913328RCIC1E-228B,VerticalSlitRHRlE-217A,90DereeBends2to50.036Essentiall FreeofLocalorGeneralAttack60RHRlE-217B-3B, 3rdRowFromTop,2ndRinFromtheInsideRHR1E-217C:5to5025to3000.0250.01318RHR2E-217ARHR2E-217B-5, 2ndRowFromBottomRHR2E-217B-2, 2ndRowFromToRHR2E-217B,90DereeBendsRHR2E-217CRHR2E-217D4to500.0070.025Essentiall FreeofLocalorGeneralAttack1to2000.0280.015Essentiall FreeofLocalorGeneralAttack3837Page49 ThomosM.Lo,ronge, inc.TABLE5CIIEMICAL ANALYSESOFDEPOSITSDatainWUeightPercentAllTestsRunbvICAPExcet"ParameterRHR1ERHR2ERCIC1EES%V"2'17A217BRHR1ERHRlERHR1ERHR2ERHR2E2MBGRDXElbowElbow217A217C217B-3B217C217CHor.solit 2E-297AFeCuMnZnICaiIPAlIBaIglIiYia~T'IVCrMoSi02SO4"lCO""'.~U10.1922,802663.140.200,95NDADND.'4DYiD0.21<0.010.14NDYiDQTD5.009.5323.373.944290.270.970.49(0.63(0.47IO.o4~0.'2~I0.14)<0.01)0.15IYiDf'i2.9570.30?.070.79'.200.060.001.090.460.290.270.040.08<0.01<0.013.640.303.207.~Dl49.54l4.98,.'.83l1.40i2.08l3.93I0.39!0.23lO.22',0.18!0.26i0.05l<0.01l0.02,II~DiYiDi4D',I'.02'1.470.670.170.684.954.720220,030.040.030.050,010.01<0.01NDADND0.9657,901.220.250.774.484.480.210.040.070.040.26<0.01<0.01<0.01NDYiDXDIl0.86!80.30l0.89ii0.30iO.8Oii2.81'!0.00>0.41f0.04i0.10I0.08il10.00i<0.01'0.01i1<0.0'1,1.07'i8.40I!6.80ill~l3.36I4O.8O72.59l0.020.34'.110.27i0.08031i0,120.69l0.635.84i0.000.38,'.86 0.04l0.020,12I0.100.09i0.630.13l0.091.24I<0.01<0,01l<0.01<0.01,<0.01ND').80NDi0.63XD,0.10LOI(@:i'105C850CiNDYiDND<YiDiiIII9.40NDii,'ADND14.90'.10iuDIiiiDYiD11.?0i38.2012.50""SCombustion toSO2SO4Estimatefromtotalsulfurdetermination CO3Yieutralization Page50 1~II ThomasM.Laronge,Inc.TABLE6SUMMARYOFSEM-EDSANALYTICAL RESULTSPage1of2Fig.illumbersEDSMAPSPhotosRHRPumLocationEDSWt.%'Aormal,Atom%iiletIntensitv I923I10!23IIII1EilE-2178-38 Waterside pitbaseIIIIIIlI-2178-~8!Depositinsidewaterside pitIIClMnFeCUI16.42I83.58I6.750.65I0.91I91.69II2d.O4i73.96I11.45I0.710.98i86.8537.15100.4127812.173.05177,99112444i1B-217B-3BtDeposit insidewaterside pitIIIIIIIIIIISMnFeCU6.12II1,43I1.37I91.08I1.4785.59I4.891878011.3916.121.55I5.1524IIIII1E-2178-38!

Waterside pitbaseIIIiIIII13.35)MnFeCu82.67'2.17!II1.SOi23.26I2'71II1.81I72.72'.30.106.034.93133.72131IIIIIlt14.IIIII45IlE-2178-38 IDepositinsidewaterside pitIIIIIIIIIIIIIII1E-2178-38 iWaterside pitbaseIIIIIIISClMnFeCuSClMnFeCli3.57i15.93II1.07IZ91I76.52I0.00I0,24I0,99I'72896.48!6.05I24.47I1.06I2.84!65.58',O.OOI0.43I1.142.58I9585I10,1256.673.409.08144.820.000.893.878.83211.9215I76II46I1E-217CAdjacenttowaterside pitII/IFeCli1.07I1.21I,98.93'98.79,'.75 196.9116I2611E-217CIInsidewaterside pitbaseIIFeCu0.93I99.07I1.05I98.95I2.77167,81Page51 f<Zp ThOmaSM.Lo,rOnge, InC.TABLE6SUMMARYOFSEM-EDSANALYTICAL RESULTSPage2of2Fig.NumbersEDSMAPSPhotosRHRPumEDSWt.%Normal,Atom%NetIntensitv i17IIII18II(I(I20-(1i1r2727I(IIIIiI48I11E228A(1I'1E-228AiIIIII(1E-228B((Il(1E-228BIIllII((Horizontal splitI(Depositinsidewaterside pit(IIII'Horizontal splitI(Waterside pitbaseIiIIII(Vertical splitI,Adjacent towaterside pit(rI(Vertical split,'Insidewaterside pitbaseIIIlClFeCUAlSiSKFeCQClMnFeNiiCUSClMnFeCuI0.11(3.79(96.09(10.2143.485.972.078.2130.050,35(1.475.71((87.77'85(0,25I0.79(15.73t4.88(75.50(429(95.51I1358(55.57(6.68(1.90(5.28i16.98'.61I6.39i5.01I86.32'.34(0.42,0.87(16.93,'.oo,'1.44 i0.36'l285184.9518.40109.6613.558.9123.3655.191.335.897'7<71245196,886.140.70'72543.519.02119.1121I,29('1E-228B iI,Vertical split(Adjacent towaterside pitrIIIrIIIIIClMnFeNiCu8.87',1.01i3.21i6.72',80.19l14.70r1.08'D.DI6.73'4.12i35.503.86121017.48176.60(III,1E-228BII(Vertical split'Insidewaterside pitbasel1FeCu5.35(94.65(I6.o4t93.96(17.22173.17'"Elementmapscoverpitareaforeachspecimen.

Page52 I),+%1~~f TABLE7RESULTSOFDEBYE-SCHERRER X-RAYDIFFRACTION ANALYSISOF.DEPOSITSAMPLESUSINGCOPPERK-ALPHARADIATION DepositSampleFromRHRlE-217B-3B LineNo.10"d"Measured5.373.722.942.682,532.47.272.142.081.74"d""'ables 5.383.732.972.692.532.472.132.101.71.CompoundCuOH2CuOH)2Fe304CuOH)2Fe304Cu20uOH2Cu20Fe304Fe304LineNo.5.405.382.7DepositSampleFromRHRlE-217C"d"Measured"d""'ables CompoundCu(OH)2Fe32.472.141.731.512.472.131.711.51Cu20Cu20Fe304Cu20LineNo.1.461.48DepositSampleFromRHR2E-217B,90DereeBend"d"Measured"d""'ables Fe304Compound2.952.532.432.151.952,952.512.472.131.95Fe304Fe304Cu20Cu20Fe304LineNo.1.491.48"d""'ables "d"MeasuredDepositSampleFromRHR2E-217CFe304Compound105.403.733.002.69.472.131.731.511.290.985.383.732,972.69.472.131.711.511.290,98Cu(OH)2CuOH)2Fe304CuOH2Cu20Fe304Cu20Cu20Cu20"'d"inangstroms Page53 ThomasM.Lo,ronge, inc.TABLE8RESULTSOFMICROBIOLOGICAL ANALYSESSamleTotalCountTveUnitsbvFITCTotalSRBbvIFALiveSRBLiveAPBbyOn-SitebyOn-SiteCultureCulture1E228BRCICroomcooler1E228BRCICroomcooler7Aoilcooler2E217BRHRoilcooler2E217CRHRoilcoolerIWater',Cells/mttlIIIIIIIIIDepositlCells/gm lIIIIIIIDepositJCells/gm

~)I'IIIIIIDepositICells/gm iIIIIIII,IIDepositlCells/gm lI'III3SE+09IIIII3.8E+07l'1.8E+08IIlIIIIII1~9E+07IIII6.1E+06iIIII1.9E+05ItI8.2E+06iIIIIIIIlI<9.8E+04iIIII>1.0E+07iIIII>1.0E+07II>'1.0E+06

'II>'1.0E+04 IIIII>1.0E+04lIII>1.0E+07>1.0E+07>1.0E+05>1.0E+03>1.0E+042E297ADXCondenser I1IIIDeposit',Cells/gm

',4.5E+07'1.2E+06 I>1.0E+05,'>1.0E+04 IIPage54 ThomasM.Laronge,Inc.TABLE9RESULTSOFTHEANALYSISOFESWBXVATERSUPPLYTORCIC1E-2288PUMPROOMUNITCOOLERSamleTakenJune9,1990Parameter pI-ITotalalkal.Conductivity AsMethodIi1ipHIpHI<CaCO3iTitrationi

'umhos,'eter iIIPPM7.7183.0587.00AluminumBariumCalciumCopperIronMagnesium Manganese Potassium SilicaSodiumZinci1iAlII,Ba',CaCO3i1Cui'FeiCaCO3iI,Mn'I1~Si02gT~ZntiICAPICAPICAPiICAPiICAPiICAPiICAPICAPICAPICAPi(0.10(0.10150.000.040.7455.600.755.754.7518.800.28ChlorideFluorideYlitrate]nitrite SulfateCl"FISO4ICICICIC33.300.1510.~~53.60LSIat80FLSIa<<OOFLSIat110F-:0.4+0.6-:0.70Page55 0

TABLEESWANDIilll<PUMI'IIML'S,IIOUI(SPage1of2LoopAIuopl3AssumedAssumedMoutltESW-AESW-C'l'otalFSW-I3l>W-I)Totall<lIi<Pumps1A113IC1D2A213=-2C20Aug46Sep-S6Oct-S6Nov-86'ec-86Jan-S7I'el)47-Mar47Apr-S7May47Jun-87Jul47Aug-87Sep-87Oct-87Nov47Dec47Jan-88I'eb48Mar-88Apr-SSMay-88Jun-88'407448l62213487289355173166190l503525692323377l36)53580264254S4074474311622l14767893461721651901503735552383377136S967416445-lS407.4484311622134872893551731661901503735692383377136596802644548042344760105SS5231320S189106108435553384156416284118257-174436217191'I641012210183415221185086113929574245214961269571423846110110811845358739917852125146398021'1105401003006204447204145l721221003111001091211425099242203017706982181329216102122l3-231304214300124113'05'21022904175005080137415400030'.03370221100032'211136000000144027640245372265210Note:RHRpumpdataforApril,1987includeJanuarythroughApril,1987.Page56

~+a%

TABL"ESWANDRlIRPUMP10IML'S,IIOIJI(SPage2of2I.oop13AssumedAssumedMontbLS'W-AESW-C'I'otalI'.SW-}3le-DTotalICI<Ill<Pumps1D2A'282C2DJul-88Aug-88Sep-88Oct-88Nov-88Dec-88Jan-89Feb-89Mar89Apr89May-89Jun-89Jul-89Aug-89Sep-89Oct89No~-89Dec89Jan-90Feb-90Mar-90Apr-90iVfay-90l08134635847O'Ilool68162506607360907651143210731412871100108133745737,.4010016816250760739942592123212467391511315632108l347458474110016816250760775913213553267855617483465259l27l3256967836334314126137166~D29881l044344051745741315146531001757243114789835040161012743551534352426226811134335471724014425533512112053567952921084367188ll51261329201210155211242387213241781593133l85261727151514137172208901100334315156'125650341120201000001001423101100007540001383105'l91512434729685521080083262178600008426170.1010008lo0009703Page57

ThomasM.Laronge,Inc.TABLE11RHRLUBEOILCOOLERFLOWVELOCITIES RHRPum4Jun-86toAr-87FeetpersecondAr-87toJun-89Jun-89toJun-90ESWLoopAI8.08.01D9.08.0Q22A9.08.07.32D10.5eiESWLoopB~,'B9.69.51C10.8922B10.88.02C12.6""8loopdataforJune1986throughJune1989calculated as20'Pohigherthancorresponding Aloopdata.8loopdataforJune1989throughJune1990areactualmeasurements.

Page58 Pa ThomosM.Lcxronge, Inc.TABLE12COMPARISONS OFOBSERVATIONS ANDPHYSICALMEASUREMENTS Pagelof2CoolersESWLooARHR1E-217ARHR1E-217D2E-217ARHR2E-217DRCIC1E-228Ahoriz.splitRCIC1E-228Avert.splitESWGRDX2E-297APitDensityPits/s.in.Verylow,notmeasured.

Nottested.LWreportedlittletonopitting.Verylow.notmeasured.

5to50Notmeasured.

DeepestPitInchesIIIIIIIIIlNotmeasured)lIINotmeasured)IIIIIII1IINotmeasuredIIIlIlIIII0.015IIIIIIIII0.050IIIIIIIIIIIII0.017IIIIIIIIIIIIIIl.iotmeasuredIIIDep.Wt.Dens.mn/s.ft.NotmeasuredNotmeasured27,~D10.677.13NotmeasuredvisualheavyObservations IIIIl)Uniformthindeposit.'veryslightpitting.)iNottested.LWreported'lightgeneraloxidation IIw/greencoloration.

lIIUniformbrowndeposit,I,nosignificant tubercu-IIlationorpittin~.IIUniformbrowndeposit,Imanysmalltubercles.

',shallow roundpits.IIlUniformthinbrown,'deposit withtubercles,

~hemispherical and,'irregular pits,I,Uniformthinbrown,'deposit withtubercles, Ihemispherical and',irregular pits.II,HeavyscaleRslime.no,'visible pitting.Page59 ThomosM.Lo,ronge, Inc.TABLE12COMPARISONS OFOBSERVATIONS ANDPHYSICALMEASUREMENTS Page'2of2Coolers<<~ESNVLBRHR1E-2178)<<<<IIRHR-1E-217C RHR2E-2178-2 iRHR2E-2178-5 IRHR2E-217CRCIC1E-2288horiz.split'E-2288splitPitDensityPits/s.in.5to5025to3004to50lto2002to50.017',7.72,0.036/.77DeepestPitDep.WVt.Dens.

Inches'm/s.ft.II<<<<0.025)31.73<<I<<I<<<<<<0.013)24.07<<II<<0.0~><<13.21<<j<<I<<<<0.007'.86I<<0.028<<37.90Observations

<<<<I<<<<Smoothbrown/black and,'flakygreendeposits,

<<largetubercles and,hemisperical pits.<<1<<Heavybrown/black deposit,largetubercles

<<andhemispherical pits.<<'Scattered black/green

<<,deposit, nosignificant

'tubercles.

hemispherical

<<pits.<<<<<<Scattered black/careen

,deposit.nosignificant

'tubercles.

hemispherical "pits.!'Failedtube.Heawscaly,deposit.

manyjagged8r.,'hemispherical pits.<<,Uniformthinbrowndepositwithtuhercles.

Ihemispherical and'irregular pits.;Uniformthinbrowndepositwithtubercles.

I-hemispherical and'irregular pits.

i'I>lt Thomo,sM.Laronge,lnl-.LITFFIREFIGURE1FIGURE2FIGURE3FIGURE4FIGURE5FIGURE6FIGURE7AFIGURE7BFIGURE8AFIGURE8B'IGURE9FIGURE10FIGURE11FIGURE12FIGURE13FIGURE14FIGURE15FIGURE16FIGURE17SKETCHOFVERTICAL, HIGHTHRUSTINDUCTION MOTORGEH-3298COMPARISON OFDEPOSITCOMPOSITIONS OFF-SITEMICROBIOLOGICAL ANALYSESESWALKALINITY, CALCIUM8tCONDUCTIVITY'SW TURBIDITY ANDpHESWLANGELIER INDEXDATAPERCENTESWANDRHRPUMPRUNTIMES-ESW LOOPAPERCENTESWANDRHRPUMPRUNTIMES-ESW LOOPBRHRLUBEOILCOOLERFLOWVELOCITIES-ESW LOOPARHRLUBEOILCOOLERFLOWVELOCITIES-ESW LOOPBENERGYDISPERSIVE X-RAYSPECTROSCOPY OFRHR1E-217B-3B DEPOSITINSIDEWATERSIDE PITENERGYDISPERSIVE X-RAYSPECTROSCOPY OFRHRlE-217B-3B WATERSIDE PITBASEENERGYDISPERSIVE X-RAYSPECTROSCOPY OFRHRlE-217B-3B DEPOSITINSIDEWATERSIDE PITENERGYDISPERSIVE X-RAYSPECTROSCOPY OFRHR1E-217B-3B WATERSIDE PITBASEENERGYDISPERSIVE X-RAYSPECTROSCOPY OFRHR1E-217B-3B DEPOSITINSIDEWATERSIDE PIT'NERGYDISPERSIVE X-RAYSPECTROSCOPY OFRHRlE-217B-3B WATERSIDE PITBASEENERGYDISPERSIVE X-RAYSPECTROSCOPY OFRHR1E-217CADJACENTTOWATERSIDE PITENERGYDISPERSIVE X-RAYSPECTROSCOPY OFRHRlE-217C'NSIDEWATERSIDE PITBASEENERGYDISPERSIVE X-RAYSPECTROSCOPY OFRCIClE-228AHORIZONTAL SPLITDEPOSITINSIDEWATERSIDE PITPage61

ThomasM.Larongt,Inc.FIGURE18FIGURE19FIGURE20FIGURE21FIGURE22FIGURE23FIGURE24FIGURE25FIGURE26FIGURE27FIGURE28FIGURE29ENERGYDISPERSIVE X-RAYSPECTROSCOPY OFRCIC1E-228AHORIZONTAL SPLITWATERSIDE PITBASEENERGYDISPERSIVE X-RAYSPECTROSCOPY OFRCIClE-228BVERTICALSPLITADJACENTTOWATERSIDE PITENERGYDISPERSIVE X-RAYSPECTROSCOPY OFRCIClE-228VERTICALSPLITINSIDEWATERSIDE PITBASEENERGYDISPERSIVE X-RAYSPECTROSCOPY OFRCIClE-228BVERTICALSPLITADJACENTTOWATERSIDE PITENERGYDISPERSIVE X-HAYSPECTROSCOPY OFRCIClE-228BVERTICALSPLITINSIDEWATERSIDE PITBASEELEMENTMAPS,RHR1E-217B-3B ELEMENTMAPS,RHRlE-217B-3B ELEMENTMAPS,RHR1E-217B-3B ELEMENTMAPS,RHRlE-217CELEMENTMAPS,RCIClE-228A,HORIZONTAL SPLITELEMEKI'APS, RCIC1E-228B,VERTICALSPLIT,TOPSECTIONELEMENTMAPS,RCIClE-228B,VERTICALSPLIT,BOTTOMSECTIONPage62 ThomasM.Laronge,Inc.Figure1SketchofVertical, HighThrustInduction MotorGEH-3298TopCapDCB.A1CEXEXED2CDXXED3tXXXXED4Q3XXED5CEXE3XD6CE3XXEOMotorShaftNutsandLockwashers JournalSleeveandThrustBearingOilLevelCoolingWaterOutletCoolingWaterInletSixrowswithfoureach,co-planarcoolingcoilsStatorFramePage63 t$iI~4 FIGURE2COMPARISON OFDEPOSITCOMPOSITIONS 03000(QCPAz0K400)I-QKeec;0-1A1C1BRHRLUBEOILCOOLERS2C[IIIFegQMn~ca~sJPage64 14'~

FIGURE3OFF-SITEMICROBIOLOGICAL ANALYSESIE+09-1E+08=~1E+07-GKUJ0V)1E+06=UJ1E+05=v3>cgpXjw./)a~1E+04-1E217A2E217C1E228BHEATEXCHANGER DEPOSlTS2E297AQQTOTALBACTERIAIISULFATEREDUCERSPage65 I

800FlGUR4ESWALKALINITY, CALCIUM8CONDUCTIVITY 8000OOEOOZ700600500400300200100CalciumConductivity Alkalinity 700600.500400300200100OOJELl-OClz0Q198919900r-a--i---,-rarTat-7at-w~t-rww.rvwr002/0604/1105/2607/1108/0909/0611/0301/0303/0805/1506/0206/11MONTHLYDATA,1989TOPRESENTPage66

,r 1098765.432.1.FIGURESN/TURBIDITY ANDpHpHTurbidity 090031989I9900'1ttrT'f1il7TlII7TIII1TII02/0604/1105/2607/1108/0909/0611/0301/0303/0805/1506/0206/1IMONTHLYDATA,1989TOPRESENTPage67 FIGU6ESWLANGELIER INDEXDATATEMPERATURE 100-804>CLLIC3z3.CCLLl(g2LSI60LUa40CL"I--20LLICL-0LLI0-20-1TII02/0604/1105/2607/1108/0909/0611/0301/0303/0805/1506/0206/11MONTHYDATA,1989TOPRESENT19891990rvtgqrT's;rrwawrT'sa-40Page68 17'4~I4'Itf0'I~l~~1II ThomosM.Laronge,Inc.60FIGURE7APERCENTESWANDRHRPUMPRUNTIMESESWLOOPA50I=4oZ30O20100.198719881989YEAR1990,'m'ESW-AggRHR-1A1RHR-1DRHR-2A~RHR-2DI60UJ50I-4030z.'OCCLLI100FIGURE7BPERCENTESWANDRHRPUMPRUNTIMESESWLOOPB19871988YEAR19891990'ESW-BggRHR-1BmRHR-1CII~FQRHR-2B~RHR-2CPage69 e)Ii'n~gh'IC4~E%

,ThomasM.Laronge,Inl-.Oz00t4121086420FIGUREBARHRLUBEOILCOOLERFLOWVELOCITIES ESWLOOPAJun-86toApr-87Apr-87toJun-89Jun.89toJun-90TIMEINTERVALS, 1986-1990 eimRHR-1AggRHR-1DmRHR-2AggRHR-2DbO000t4t21086420FIGUREBBRHRLUBEOILCOOLERFLOWVELOCITIES ESWLOOPBJun.86toApr-87Apr-87toJun-89Jun.89toJun-90TIMEINTERVALS, 1986-1990 ImRHR-1B+RHR-1CmRHR-2BggRHR-2CPage70 Jfl4P0 ThomasM.Laronge,Inc.FIGURE9ENERGYDISPERSIVE X-RAYSPECTROSCOPY OFRHR1E-2178-3B DEPOSITINSIDEWATERSIDE PITIq4~>~0'~'i~aJ~Il~lCALCULATED RESULTSFROMSTANDARDLESS ANALYSISElementClWeightPercent16.4283.58Normalized AtomicPercent26.0473.96NetIntensit37.15100.41Page71 ThomosM.Laronge,Inc.FIGURE10ENERGYDISPERSIVE X-RAYSPECTROSCOPY OFRHRlE-217B-3B WATERSIDE PITBASE'cCXCALCULATED.

RESULTSFROMSTANDARDLESS ANALYSISElementClMnWeightPercent6.750.650.9191.69Normalized AtomicPercent11.450.710.9886-.85NetIntensit22.812.173.05177.99Page72 ThomasM.Lo,range, Inc.FIGURE11ENERGYDISPERSIVE X-RAYSPECTROSCOPY OFRHRlE-217B-3B DEPOSITINSIDEWATERSIDE PITCALCULATED RESULTSFROMSTANDARDLESS ANALYSISElementSMnFeWeightPercent6.121.431.3791.08Normalized AtomicPercent11.391.551.4785.59NetIntensit16.125.154.89187.80Page73 QCW' ThomasM.Laronge,Inc.FIGURE12ENERGYDISPERSIVE X-RAYSPECTROSCOPY OFRHRlE-217B-3B WATERSIDE PITBASE~/PAJQJ+a r~CALCULATED RESULTSFROMSTANDARDLESS ANALYSISElementSMnFeWeightPercent13;352.171.8082.67Normalized AtomicPercent23.262.211.8172.72NetIntensit30.106.034.93133.72Page74 4~tflI~I'f'P Thomo,sM.Lo,ronge, Inc.FIGURE13ENERGYDISPERSIVE X-RAYSPECTROSCOPY OFRHR1E-217B-3B DEPOSITINSIDEWATERSIDE PITj+l(lpVl~~Q)0/'ALCULATED RESULTSFROMSTANDARDLESS ANALYSISElementSClMnFeWeightPercent3.5715.931.072.9176.52Normalized AtomicPercent6.0524.471.062.8465,58NetIntensit10.1256.673.409.08144.82Page75 l

ThomosM.Laronge,Inc.FIGURE14ENERGYDISPERSIVE X-RAYSPECTROSCOPY OFRHR1E-217B-3B WATERSIDE PITBASEYCAYMYCOV~CALCULATED RESULTSFROMSTANDARDLESS ANALYSISElementSClMnFeWeightPercent0.000.240.992.2896.48Normalized AtomicPercent0.000.431.142.5895.85NetIntensit0.000.893.878.83211,.92Page76

)h0 Thomo,sM.Laronge,Inc.FIGURE15ENERGYDISPERSIVE X-RAYSPECTROSCOPY OFRHRlE-217CADJACENTTOWATERSIDE PITCALCULATED RESULTSFROMSTANDARDLESS ANALYSISElementFeWeightPercent1.0798.93Normalized AtomicPercent1.2198.79NetIntensit3.75196.91Page77 ThomasM.Laronge,Inc.FIGURE16ENERGYDISPERSIVE X-HAYSPECTROSCOPY OFRHRlE-217CINSIDEWATERSIDE PITBASE)~fVthlpshC,~h'l~~>'qg>vy j(f<tvsYhg~~UOJOlUY/h'~<0~4 LP~'A,~g4pg~

~CALCULATED RESULTSFROMSTANDARDLESS ANALYSISElementFeWeightPercent0.9399.07Normalized AtomicPercent1.0598.95NetIntensit2.77167'.81Page78 Thomo,sM.Lo,ronge, Inc.FIGURE17ENERGYDISPERSIVE X-RAYSPECTROSCOPY OFRCIC1E-228AHORIZONTAL SPLITDEPOSITINSIDEWATERSIDE PIT'lehCCAChhCCa1'ChCIJm4lLJUOJU*CALCULATED RESULTSFROMSTANDABDLESS ANALYSISElementClFeWeightPercent0.113.7996.09Normalized AtomicPercent0.204.2995.51NetIntensit0.3612.85184.95Page79 J'

ThomasM.Laronge,Inc.FIGURE18ENERGYDISPERSIVE X-RAYSPECTROSCOPY OFRCIClE-228AHORIZONTAL SPLITWATERSIDE PITBASE'leVA4tVU4hVQ~+~CALCULATED RESULTSFROMSTANDARDLESS ANALYSISElementSiSFeWeightPercent10.2143.485.972.078.2130.05Normalized AtomicPercent13.5855.576.681.905.2816.98NetIntensit18.40109.6613.558.9123.365519"=Page80

~~3n=~~~,y'\l~'IVl+P Thomo,sM.Lo,range, Inc.FIGURE19ENERGYDISPERSIVE X-RAYSPECTROSCOPY OFRCIClE-228BVERTICALSPLITADJACENTTOWATERSIDE PITV5VUCCACOLJC5C~~~~~J('~YM//~)'ilpga(gC'~Pi.y~'~~,vgpssE5X4IUl~s,Žig<eCALCULATED RESULTSFROMSTANDARDLESS ANALYSISElementCIMnFeNiWeightPercent0.351.475,714.7087.77Normalized AtomicPercent0.611.676.395.0186.32NetIntensit1.335.8922.5712.45196.88Page81 tl~Vl Thomo,sM.Larongt,inc.FIGURE20ENERGYDISPERSIVE X-RAYSPECTROSCOPY OFRCIClE-228BVERTICALSPLITINSIDEWATERSIDE PITBASEVbCEIUCALCULATED RESULTSFROMSTANDARDLESS ANALYSISElementSClMnFeNiCuWeightPercent2.850.250.7915.734.8875.50Normalized AtomicPercent5.340.420.8716.935.0071.44NetIntensit6.140.702.2543.519.02119.11Page82 ThomosM.Loronge,inc.FIGURE21ENERGYDISPERSIVE X-RAYSPECTROSCOPY OFRCIClE-228BVERTICALSPLITADJACENTTOWATERSIDE PITbCCVCApA~>>iyi=>ii+(<i)J, hChC4t4(~<i,rgCALCULATED RESULTSFROMSTANDARDLESS ANALYSISElementClMnFeNiWeightPercent8.871.013.216.7280.19Normalized AtomicPercent14.701.083.376.7374.12NetIntensit35.503.8612.1017.48176.600Page83 Thomo,shh.Lo,ronge, Inc.FIGURE22ENERGYDISPERSIVE X-RAYSPECTROSCOPY OFRCIClE-228BVERTICALSPLITINSIDEWATERSIDE PITBASEDVViCALCULATED RESULTSFROMSTANDARDLESS ANALYSISElementFeWeightPercent5.3594.65Normalized AtomicPercent6.0493.96NetIntensit17.22173.17Page84 I~'FIGURE23ELEMENTMAPS,RHR1E-2178-38 I.EGENDSMnPage85CIFe J~~I~gggmgg~i(g~igggg I;pygmygj"ggpj+igg%IHN~I~gg)gpg~i+iGQNcjmggjjggggigJJggI%I%IIGURE24~EI.EMENTMAPS,,RHR 1E-2178-38 I.EGENDSPage86CIle

I~IGURE25ELEMENTMAPS,RHRlE-2178-38 LEGENDSMnPage87C1Fe

FIGURE26ELEMENTMAPS,RHR1E-217CLEGENDSMn,Page88C1Ie

FIGURF27ELEMENTMAPS,RCIC.1E-228A; HORIZONTAI SPLITLEGEND.SMnPage89C1Fe.

FIGURE28EI.EMENTMAPS,RCIClE-2288,VERTICAISPLIT,TOPSECTIONLF.GENDSMn.CIFePage90 0

~S'liiiiQSSRR,fan%

F498Riiiii55iRR f..&lkNQ,~~yplQRi55RRSRQ l%%biiQRMWf:~MFIGURE29EI.FMENTMAPS,RCIClE-228B,VERTICAISPLIT,BOTTOMSECTION.LEGENDCIMn.Page91Ie ThornM.j.aronge, Inc.Photograph Desination10121314'5Approximate Magnification AsPrinted,Diameters 0.30.30.40.40.40.40.60.30.30.30.30.30.31.91.9LISI'FPHOTOGRAPHS SecimenDesinationandDescritionofPhotoahsRCIClE-228A,As-Received.

RHR2E-217C,As-Received.

RHR1B-3B(lE-217B-3B),

As-Received.

"3B"Signifies theThirdRingFromtheTopandtheSecondRowinFromtheInsideDiameter.

RHR2E-217D,As-Received.

RHR2E-217D,As-Received.

RHR2E-217A,As-Received.

RHRlE-217C,As-Received.

RHR2E-217B,As-Received.

RHR2E-217B,As-Received.

RHR2E-217B,As-Received.

RCIC1E-228B,As-Received.

RHR2E-217B,As-Received.

RHR-lE-217A,As-Received.

RCIClE-228A,InteriorViewofSectionofVerticalSlitTube.RCIClE-228A,InteriorViewofSectionofVertical.

SplitTube,asSeeninPhotorahNo.14,AfterSandBlastin.Page92 ThomasM.Laronge,Inc.LISTOFPHOTOGRAPHS (Continued)

Photograph Desination161718192021.2223242526272829Approximate MagniAcationAsPrinted,Diameters 4.72.32.32.42.02.01.02.42.44.32.12.3SecimenDesinationandDescritionofPhotorahsRCIClE-228A,CloseUpViewofInteriorSectionofVerticalSplitTube,asSeeninPhotorahNo.15,AfterSandBlastin.RHR2E-217C,CloseUViewofInteriorSurfaces.

RHR2E-217C,CloseUViewofInteriorSurfaces.

RHR2E-217C,CloseUpViewofTypicalInteriorSurfaces, AfterSandBlastin.RHR1E-217B-3B, ViewofInteriorSurfaces, AfterSectionin

.RHRlE-217B-3B, CloseUpViewofInteriorSurfaces,-as SeeninPhotorahNo.20,AfterSectionin Note:DamaedWallisEvident.RHRlE-217B-3B, ViewofInteriorSurfacesofaSmallSectionofPie,AfterSectionin

.RHR1E-271B-3B, ViewofInteriorSurfacesofaSmallSectionofPie,asSeeninPhotorahNo.22,AfterSandBlastin.RHR2E-217D,ViewofInteriorSurfaces, AfterSectionin

.RHR2E-217D,CloseUpViewofInteriorSurfaces, asSeeninPhotorahNo.24,AfterSectionin

.RHR2E-217D,ViewofInteriorSurfacesofaSmallSectionofPipe,AfterSectionin

.RHR2E-217D,CloseUpViewofTypicalInteriorSurfacesofSecimen2D,AfterSandBlastin.RHRlE-217C,ViewofInteriorSurfacesofaSmallSectionofPie.RHRlE-217C,ViewofInteriorSurfacesofaSectionofPie.Page93

~'

ThomasM.Loronge,Inc.LISI'FPHOTOGRAPHS (Continued)

Photograph Desination30333436;374041Approximate Magnification AsPrinted,Diameters 1.63.81.61.64.71.21.61.21.61.611.012.5SecimenDesinationandDescritionofPhotoahsRHR1E-217C,ViewofInteriorSurfacesofaSectionofPipe,AfterSandBlastin.RHRlE-271C,CloseUpViewofTypicalInteriorSurfacesof1C,AfterSandBlastin.RHR2E-217B,ViewofInteriorSurfacesofaSmallSection.RHR2E-217B,ViewofInteriorSurfaces, asPicturedinPhotograph No.32,AfterSandBlastin.RHR2E-217B,CloseUpViewofInteriorSurfaces, asPicturedinPhotoahNo.33,AfterSandBlastin.RHR2E-217B,ViewofInteriorSurfacesofTwo90DegreeBends,AfterSectionin

.RHR2E-217B,ViewofInteriorSurfacesofOne90DegreeBend,asSeenintheToofPhotorahNo.35,AfterSandBlastin.RHR1E-217A,ViewofInteriorSurfacesofTwo90DegreeBends,AfterSectionin

.RHRlE-217A,ViewofInteriorSurfacesofOne90DegreeBend,asSeenintheBottomofPhotorahNo.37.RHRlE-217A,ViewofInteriorSurfacesofOne90DegreeBend,asSeeninPhotorahNo.38,AfterSandBlastin.RCIClE-228A,ViewofIrregular CraterBeforeRemovalofOverlying Material.

Overlying MaterialwasRemovedtoPreparethePitforBioloicalExamination.

RCIClE-228A,ViewofIrregular Crater,asSeeninPhotograph No.40,AfterRemovalofOverlying Material.

ThisPitwasBiologically ExaminedtoDetermine theExtentofBacterial Contamination.

Page94

Thomo,sM.Lo,ronge, Inc.LISTOFPHOTOGRAPHS (Continued)

Photograph Desiation424445464748Approximate Magnification AsPrinted,Diameters 151515151535015015SecimenDesinationandDescritionofPhotorahsRHR1E-217B-3B, SEMPhotograph ofTypicalPit.ElementMappingandEDSWerePerformed onthisPit.RCIClE-228A,Horizontally SplitSection,SEMViewofTypicalPitasSeenontheInteriorSurfacesof1E-228A.ElementMappingandEDSWerePerformed onthisPit.RHRlE-217B-3B, SEMPhotograph ofTypicalPit.ElementMappingandEDSWerePerformed onthisPit.RHRlE-217B-3B, SEMPhotograph ofTypicalPit.ElementMappingandEDSWerePerformed onthisPit.RHRlE-217C,SEMPhotograph ofPitContaining Crystalline Deosits.ElementMainandEDSwerePerformed onthisPit.RHRlE-217C,CloseUpSEMPhotograph ofCrystalline

Deposits, asSeeninPhotoahNo.46.RCIClE-228B,TopHalfofVertically SplitTube,SEMViewofSmallPit.ElementMainandEDSWerePerformed onthisPit.RCIClE-228B,BottomHalfofVertically SplitTube,SEMViewofPit.ElementMainandEDSWerePerformed onthisPit.Page95 ThomasM.Laronge,inc.POSTOFFICEBOX338~CALIFON.NEWJERSEY07830~i201]832-5097~FAXt201)832-9775ARTHURJ.FREEDMAN, Ph.D.Executive VicePresident June12,1990Mr.RaymondS.TombaughProspectEngineerPennsylvania PowerandLightCompanyTwoNorthNinthStreetAllentown, PA18101Sub)ect:Preliminary ReportofSomeSusquehanna ESWCoolerInspections

DearMr.Tombaugh:

hisletterconstitutes ourpreliminary reportofourstudyofpittingorrosionintheSusquehanna ESWsystemcoolers.Briefly,wehavedetermined thattherootcauseofthepittingisconventional under-deposit corrosion aggravated bythepresenceofhighlevelsofmanganese inthedepositsnearthecorrosion sites.Microbiologically-influenced corrosion (MIC)isacontributing factorthatmayhaveaggravated theattackinsomecoolers,butMICisnottherootcausaoftheproblem.Detailsfollow.WearrivedatthePP&LAllentown officeatabout11:30AMonFriday,June8,1990.Afterdiscussions withLouWillertzandRayTombaugh, wewenttotheSusquehanna plantforrequiredtraining.

LateFridaynight,weinspected the2E-217CRHRoilcoolercoil.Overthenexttwodays(Saturday andSunday),weinspected thefollowing equipment:

1.1E-217A2.2E-217B3.OE-507D4.OE-533D5.OE-505E1,2D 6.1E-228B7.1E-228A8.2E-297ARHROilCoolerCoilRHROilCoolerCoilDieselGenerator JacketWaterCoolerDieselGovernorCoolerDieselGenerator Intercooler RCICPumpRoomUnitCoolerRCICPumpRoomUnitCoolerESWGRDXSystemCondenser llowingisasummaryofourdataandtheconclusions wehavedrawnfromourrktodate.QualityforIndustry III ThomasM.LaroncIe, Inc.InsectionMethod0doingourwork,weusedthefollowing methods:Visualinspection oftubesanddepositsaswesawtheminplaceorastheyweiepresented tousattheplant.oVideoprobe inspections oftubesinplace.oVisualinspection witha15Xmagnifying lensoftheinteriorsurfaces, ofcoolingcoilsandtubesthathadbeensplitlongitudinally.

oMicroscopic examination ofselectedcoolercoilsinthePP&LHazletonLaboratory.

0Microbiological culturesofdepositsfromcoolingcoils,usingmediaspecificforsulfate-reducing andacid-producing bacteria(SRBandAPB).On-siteInsectionResults2E-217CRHROilCoolerCoilThisandtheotherRHRoilcoolingcoilaretypeKcopper.The2E-217Ccoolerhadbeenremovedfromthesystemforseveraldaysbeforeourinspection, andthespecimens wesawweredry.Theinnersurfaceswerecoveredwithaheavy,densescale.Areasofthisscalewerecoloredgreen,white,andbrown,indicating different metalliccomponents inthescale.Wecarefully cleanedthedepositfromsectionsofthiscoilandexaminedthemetalwitha15Xhandlens.Wefoundnumerousrandompitsovermostofthesurface.Thesepitsvariedgreatlyinsi.ze,depth,andshape.Mostwereirregular inshape,smallandshallow,butsomeweresharp-edged andquitedeep.Wetooksamplesofthedepositfrompittedareasofthiscoilandranbiological culturesforSRBandAPBasexplained above.Theseculturesshowednoresponsein24hours.After48hours,sufficient growthhadoccurredtoindicatethatlowtomoderatelevelsofthesebacteri.a werepresentinthiscoil.2.1E-217ARHROilCoolerCoilThe2E-217CRHRoilcoolercoilcarriesESWwaterfromtheB'loop.Toobtainacomparison withtheAloop,weinspected the1E-217Acoil,usingthesamemethodsdescribed above.Weinspected sectionscutfromthesecondcoillayerfromthetopandthesecondlayerfromthebottom.Thenatureofthedepositinthe1E-217Acoilwasentirelydifferent fromthe2E-217Ccoil.Wefoundnoneofthehard"scale"depositsdescribed in2E-217C.Instead,wefoundaloose,flowableblackdeposit,andbelowthat(nexttothemetal)ahard,firmly-attached blacklayer.SEM/EDAXanalysisofthisdepositatHazletonidentified thisblackdepositasprimarily manganese salts.Page2

4gIIA, ThomasM.Laronge,Inc.,.Wefoundpitsbeneaththeblackdeposit.Allwereverysmall,irregular inshape,andrandomlydistributed.

Nopitswereasdeepasthosefoundin2E-217C.2E-217BRHROilCoolerCoilToprovideasecondinspection ofoilcoolersontheBESWloop,weinspected the2E-217Bcoil.Thiscoilwasfoundtobeintermediate incondition betweenthe1E-217Aand2E-217Ccoils.Nohardscalewaspresent.Wefoundsubstantial blackdepositsthatwerelateridentified bySEM/EDAXasprimarily manganese compounds.

Theblackdepositwasstringyandcoveredpartbutnotallofthesurface.Underthedepositinthiscoilwefoundpittingthatwasmoreprevalent anddeeperthanin1E-217Abutnotasseriousasin2E-217C.Microbiological culturesofthedepositscoveringthesepitsshowedlessactivitythaneitheroftheothertwoRHRoilcoolers.4,OE-507DDieselGenerator JacketWaterCoolerThetubesinthiscoolerarereportedtobe90/10cupronickel.

ETinspection ofthisexchanger hadidentified atleastonetubewithmorethan60Xwallpenetration.

Weidentified thistube-fromthe"map"intheETinspection reportandwereabletovisuallyinspecttheentireinsidesurfaceusingthenewly-acquired fiberscope equipment.

Wewereableto.seemanypittedareasinthistube.Wecouldnotmeasurepitdepth,butsomeappearedtobeverydeep.Asinothercoolers,thepitswererandomlydistributed andirregular inshape.'hesetubeshadbeencleaned,andwewerenotabletocollectsufficient depositformicrobiological analysis.

Tubesshouldbepulledfromthisheatexchanger formoredetailedinspection.

5.OE-533DDieselGovernorCoolerWeexaminedthisverysmallsingletubecoolerbutwerenotabletomakeadetailedinspection.

Thetubehadbeencleanedandnodepositswereavailable.

Wecouldseewhatappearedtobeminorpittinginsidethetube,butnootherobservations werepossible.

6.OE-505E1,2D DieselGenerator Intercooler Inspection ofthiscoolerwasdifficult.

Thetubesweretoosmalltopermitentranceofthefiberscope.

Thetubeends(internal) werecleanandappearedtoshowmanysmallpits.Nofirmconclusion canbedrawn;atubeshouldbepulledfromthisexchanger forinspection whenpossible.

7.1E-228BRCICPumRoomUnitCoolerThiscoolerhadbeenopen'forseveraldaysbeforeourinspection.

Thetubesarecupronickel.

Thetubeshadbeencleaned,butwefoundonetubethatcontained substantial amountsoflooseblackdeposit.Wecouldnotusethefiberscope effectively becauseitfitonlyashortdistanceintothetube.Page3 ThomasM.LaroncIe, Inc.The"depositfromthisdirtytubeshowedthehighestmicrobiological activityofanysampletested.'hissamplewasonetotwoordersofmagnitude moreactivethananyoftheRHRlubeoilcoolers.Weunderstand t'hatthisunitisontheBESWloop.Onetubefromtheoutsidelayerwascutoutforinspection.

Byvisual(15X)examination, thistubewasfoundtocontainnumerousunder-deposit pitsofvaryingdepthandrandomshape.8.ESWBSulWaterLineto1E-228BBydisconnecting theflexiblehosebetweenthe1E-228BRCICPumpRoomUnitCoolerandtheESWBsupplywaterline,wewereabletoinspecttheinteriorofthesupplywaterline.Usingthefiberscope, wewereabletoseeapproximately 18inchesintothislineincluding one90-degree elbow.Thismildsteellinewasheavilycorrodedandcoveredwithauniformlayerofscale.Thisscalewasdarkbrownincolorandvariedbetween1/16"andabout3/16"inthickness.

Nooutstanding tubercles.

werevisible.Thescaleprobablyismostlyironoxides.Weremovedsmallpiecesofscalefromthepipeopening.Theunderlying metalseemedtoberelatively smooth.Noseriouspittingwasseen.However,viewingwasverydifficult, andthisshouldnotbeconsidered acompletestatement of.thecondition ofthispipe.Thispipe,aswesawit,wastypicalofmildsteelpipeexposedtocorrosive waterwithnochemicaltreatment formanyyears.Theheavylayersofcorrosion-produced scaleareprobablyatthispointproviding someprotection againstfurthergeneralcorrosion ofthepipe.However,anyunder-deposit corrosion goingonunderneath thesescalewillbeverydifficult tocontrolwithoutcleaningthepipe.Weranmicrobiological culturesonamixtureofdepositandwaterfromthispipe.Theculturesresponded inlessthan12hours,indicating veryhighlevelsofSRBandAPBatthispoint.Thegrowthratewassimilartotha'tfoundinthesamplefrom1E-228B.Thiswastheonlypieceofmildsteelpipingorequipment thatweinspected duringthisvisit.Webelieve,however,thatthecondition ofthispipeissimilartothatofmostoftheESWpipingexposedtosimilarflowconditions.

9.1E-228ARCICPumRoomUnitCoolerThisunitwasopenedforinspection inourpresence, sothatwewereabletoexaminethedepositimmediately uponexposuretoair.Thisisimportant becauseanaerobic

bacteria, typically theSRBandAPBofconcernatSusquehanna, tendtoformspores(becomeinactive) inthepresenceofoxygen.This'nitwascleanerthan1E-228Bandcontained brownratherthanblackdeposits.

Mostofthedepositsseemedtobeintheformofloose,well-flocculated solidswithclearwater.1E-228B,bycontrast, contained muddywaterandslimy,blackdeposits.

Page4 ThornosM.Laronge,Inc.contained lessdepositandfarfewerlE-228B.Weunderstand that1E-228A10.2E-297AESWGRDXSstemCondenser Wecouldnotseemorethanafewinchesintothetubesasinstalled.

Onetubewascutfromthe"outside rowforourexamination.

Thistubepitsthanthecorresponding tubefromreceivesESWwaterfromtheAloop.Thisexchanger wasopenedgustbeforeourinspection.

Weunderstand thatthiswasthefirstinspection ofthisunit.Roughly75Xofthetubesheetwascoveredwithathickdepositconsisting ofvariouscolored"scaledeposits" plusloose,slimyblackmaterial.

Mostofthetubeswerepartially orcompletely blockedwiththismaterial.

Thesedepositsmustrestrictflowthroughthiscooler.Thefiberscope wouldnotfitmorethanafewinchesintothetubes.Also,thevoluminous depositmadeviewingthemetalsurfaceimpossible.

Wetookamixedsampleofthedepositformicrobiological cultureanalysis.

Afteroneday,thissampleshowedonlylowlevelactivity.

The2E-297Acoolerwasclosed,withnocleaning, immediately afterourinspection.

Werecommend thatthisequipment becleanedandthoroughly inspected assoonaspossible.

Laborator Examination Heatexchanger tubingremovedfromfiveESWcoolerswasexaminedintheazletonLaboratory ofPP&L.Thisexamination consisted ofvisualexamination thandwithoutamagnifying loupe,visualexamination usinga0.7Xto4.5Xnitronstereomicroscope andSEM/EDSexamination usinganAmray1830SEMfittedwithaPrinceton GammaTechnical EDSAnalyzer.

ThelatterwasoperatedbyMr.T.J.PensockandMr.L.E.Willertz.

.Thesectionsofheatexchanger tubingexaminedwerefromthefollowing exchangers:

~ExchacacVlacalStereomicrosco eSEM/EDS1E-217A2E-217B2E-217C1E-228A1E-228BXXXXXXXXXXXXXInallcasestheRHRpumplubeoilcoolersexaminedwereremovedfromthefifth"pancake" orhorizontal bankoffourloopsnumbering fromthebottom.Fourelbowseachfromunits2B(fabricated) andfrom2C(cast),respectively, werealsovisuallyexamined.

Alltubesweresectioned inahorizontal planesothat"top"and"bottom"couldbedistinguished.

Additionally, asectionoftubingfrom2E-217Bwassectioned top-to-bottom sothatthehorizontal sidescouldbeexaminedintact.TheRCICPumpRoomCoolertubesexaminedwerefromanouterlocationi'nthetubebundles.Thetubesweresplitwithoutnotingthespecificdirection ofstallation.

Page5 tlil~>>

ThomasM.Loronc3e, Inc.Visualinspection clearlyshowedforeignmat'ter,i.e.,scaleanddepositsonalltubewaterside surfaces.

Eachofthetubeshadnearlythesameappearance onthewaterside exceptforthosefrom2E-217C.helattertubewasessentially coveredwithamottledmixtureofgreen,white,andbrowndeposits, rangingfromafewthousandths ofan,inchtobetterthan0.125inchinthickness.

Thematerialappearedtohavebeenlaiddowninlayers.Thissuggestsformation inaseriesofdiscontinuances, discreteeventssuchason-offoperating periods,significant waterchemistry changesfromscalingtonon-scaling, andsoon.Thee..posedsurfacewasdryingoutandevidenced crackingatintervals of0.125inchto0.375inch.Thisresultedinarectangular tosquarepatterned peelingappearance.

Allotherexchanger tubeswerecoveredtovaryingdegreeswithapredominantly browntoblack,"oily"appearing film.Thefilmwasmattedwithsmalltolargepatchesoforange-brown togreen-brown materialwhichhadadullsurfacefinish.Thedeposit/scale laidinadistinctpatternonallexaminedtubes.Specifically, intheRHRpumpslubeoilcoolertubestherewasmoredeposit/scale attheinsidediameterthanattheoutsidediameter.

Additionally, therewasmorematerialatthebottomofthetubesthanatthetopofthetubes.Uponcuttingthesetubes,moredeposit/scale spalledfromtheinsidediametersurfacethanfromtheoutsidediametersurface.Wherethedeposit/scale spalled,ablotchyappearance resultedshowingmetalsurfaceatomepoints.Mostoftheblotchestendedtorangeincolorfromacopperolortoanorange-brown color.Pitswerefoundinalltubespecimens examined.

Mostofthepitswereround,althoughsomeelongated pitsinthedirection offlowwereseen.Nohemispherical pitswithinpitswereseen.Whereasinglepitappearedtobethecomposite oftwoormoreindividual pits,thisappearedtoresultfromhorizontal growingtogetheratthecorrosion boundaries.

Inotherwords,themorphology ofsmallhemispherical pitswithinpitsthatisoftenascribedtothemorphology resulting whenMICoccurswasnotfound.Also,noodorcouldbedetectedonfreshlycutsurfaces.

Notunneling ormajorundercutting wasnoticed.Almostallpitswerecoveredwithdeposit/scale materialintheshapeofatubercleexceptforthepitsof2E-217C.Thelattersimplyhadpitsbeneaththerelatively thickdeposit.Severalspecimens from1E-217A,2E-2178,and2E-217CweremountedforSEMexamination.

Someofthesespecimens werevaporcoatedwithcarbontoreducethetendencyforsurfacechargingintheSEM.TheexactdetailsshouldbeobtainedfromMessrs.Pensockand/orWillertzastheydidthework.Wesimplywitnessed asignificant portion,ofthisonSunday,June10,1990.Whilethesampleswereinthescanningelectronmicroscope, EDSwasusedonmanyareastoobtainsemiquantitative identification ofmaterials presentatexaminedsurfaces.

Basically, theelectronbombardment ofthesurfacesesultsinthegeneration ofx-rayswhoseenergiesareassociated withecificelements.

Theseenergieswerescannedfromabout0toabout10,000ectronvoltsandthequantityofx-raysversustheirrespective energiesPage6 ThomasM.Laronge,In(:.hwereplottedusingcomputergraphics.

Theresulting plotorspectrumgivesanearexactideaofwhichmaterials arepresentandaqualitative tosemi-qualitative ideaofhowmuchofeachmaterialispresent.Alldeposit/scale samplesexaminedhad,atleast,thesamebasicfourelements, namely:1)2)3)4)Copper.Manganese.

Iron.Calcium.Itisbelievedthatthemanganese camefromeitheroftwosources.ThesearetheinfluentESWwaterandcorrosion productsofcarbonsteelorothermanganese-containing materials.

Itisbelievedthattheironcamefromthesametwosourceslistedformanganese.

However,someoftheironfoundcouldhavebeentheresultofiron'II)oxidation by"ironbacteria" toiron(III).ItisbelievedthatthecalciumallcamefromtheESWinfluentwater.Thiscalciumdeposited astherespective solubility productsofcalciumwithcertainanionswereexceeded.

Thesesolubilities arefunctionally dependent upontime,temperature,

pressure, andtheamountandtypeofothermaterials present.Sufficeittosay,thecopperwasdetectedbecauseofthepresenceofcopperinthetubes.Othersourcesofcoppercouldnotbeexpectedtoyielddetectable amountsinthepresenceofcopper-containing materials.

EDSanalysisshowedthepresenceofmanyotherelements.

Bothchlorineandsulfurwerefoundwithinpits.Generally, thesematerials werefoundtogether.

Therewasonepitexaminedinwhichsulfurwasdetectedandchlorinewasnotdetected, butoverall,wheretheseelementswerefound,chlorinelevelswerehighandsulfurlevelswerelow,relativetoeachother.Bothchlorineandsulfur-containing compounds aretypically implicated inmanypittingcorrosion processes ofcopperandcopper-bearing alloys.Themajordifference inimplication isthatchlorineisinvolvedingenericunder-deposit pittingandsulfuristypically involvedinMICpitting.Mic'robiolo icall-Influenced

'Corrosion (MIC)MICreferstoaspecialized formofunder-deposit corrosion inwhichthemetabolic productsofbacteriaplayasignificant roleinthecorrosion process.Typically, SRBandAPBgenerateacidthatmakest'eenvironment underdepositsmorecorrosive tothemetal.ItisoftenassumedthatthepresenceofSRBand/orAPB(orotheranaerobic bacteria) inasystemisproofthatMICisoccurring inthatsystem.Thisisdefinitely notthecase.InorderforMXCtobepositively confirmed inasystem,threeconditions mustexist:a.Theappropriate bacteriamustbepresent.Page7

~,n<

ThomasM.Laronge,1nc.b.Thedepositnexttothemetalsurfacemustshowsignificantly higherlevelsofsulfurthanwouldbeexpectedfromsimpleconcentration ofsystemwaterandsulfur-containing generalsystemdebris.c.Themorphology ofthepitsonthemetalsurfacemustshowpatternsknowntobecharacteristic ofMIC.IntheSusquehanna plant:Significant levelsofSRBandAPBarepresent.Thisisnotatallsurprising sincetheESWwaterisdrawnfromapondthatsupportsaquaticplantgrowthandisknowntohaveanaerobic bottomconditions.

Thispondreceivesnochemicaltreatment otherthanoccasional algacidearoundtheedgesasneeded.b.TheSEM/EDAXdepositanalysispreparedbytheHazletonLaboratory showshighlevelsofcopperandchloride, tobeexpectedinunder-deposit corrosion, butonlymarginally higherlevelsofsulfurinsomecases.c.Themorphology ofMIConmostmetalsconsistsgenerally ofshallow-walled hemispherical pits,oftenwithsmaller"pitswithinpits."InsomecasesofMIC>severallayersofpitswithinpitsmaybeobserved.

Onsomemetals,particularly theaustenitic stainless steels,tunneling underthesurfacemaybeseen.Thesecharacteristic patternsofpitformation anddevelopment werenotenerallyfoundduringourinspections atSusquehanna.

Asarule,thepitsendedtobe'eparate, randomlyorientedandirregular inbothsizeandshape.WebelievethatalthoughMICundoubtedly wasasignificant factorinsomepitsandprobablyaggravated corrosive conditions inothercases,itwasneitherthemajorcausative factornortherate-determining stepinthepittingcorrosion process.Under-DeositPittinCorrosion Whendepositsareallowedtoformonametalsurfaceexposedtocorrosive water,differential concentration cellsarecreatedthatincreasethecorrosivity ofthewaterlayerbeneaththedeposit,relativetothebulkwater.Ineffect,a"battery" isformedinwhichthemetalsurfacebelowthedepositbecomestheanodeoractivesiteatwhichmetaldissolves.

Thisresultsinpittingcorrosion.

Thedegreeofpittingthatoccursinanygivencasedependsuponmanyvariables, including particularly themetalcomposition, thewatercomposition, andoperating variables.

Flowconditions, temperature, andtimearethecriticaloperating variables.

Thepresenceofmanganese, especially atthehighlevelsfoundintheSusquehanna ESWdeposits, canseriously aggravate pittingcorrosion.

Manganese isamultivalent metal.Itcanexistinseveraloxidation statesand,therefore, encourages electrochemical reactions.

This,ineffect,increases corrosion rateandparticularly pittingcorrosion underanganese-containing deposits.

Page8 Thomo,sM.Lo,ronge, Inc.RootCauseSummar'heevidencewehavegatheredfromtheworkdescribed inthisletterleadsusotheconclusion thattherootcauseofthepittingattackobservedoncopperandcupronickel heatexchanger tubesintheSusquehanna ESWsystemisconventional under-deposit corrosion aggravated bythehighlevelsofmanganese inthedeposits.

SRBandAPBareclearlypresentthroughout theESWsystem,andMICmustbeacontributing factorinthepittingcorrosion.

Somepitsmaybeprimarily causedbyMIC.However,thechemicalanalysisandmetalsurfacemorphology onallspecimens thatweexaminedindicateverystronglythatMICisonlyacontributing factorandnottherootcauseoftheproblem.Wemustpointoutthatflowconditions, particularly longperiodsofnoflow,canseriously aggravate pittingcorrosion.

Thismayhelptoexplaintheheavierdepositsandmoreseriouspittinginthe2E-217CRHRoilcoolercoil,comparedtootherpartsofthesystem.Ourcompletereport,tofollow,willincludefulldocumentation anddiscussion ofourfindings, including appropriate references andbackground information.

Pleasecontactuswithanycomments, questions,

requests, and/orinstructions.

Verytrulyyours,g~ArthurJ.FreedmanExecutive VicePresident ThomasM.LarongePresident CC~Distribution FilePage9 sPENNSYLVANIA POWER4LIGHTCOMPANY$E228At."hh~,'f',i li,'t'itlfftf'itffrV>AililPir;tst",tttt tffit'Ittttttftftfftt ilttflightl4,t,flil<IiIiIiliIiIPENNSYLVANIA POWER5LIGHTCOMPANY~&2E217CIs'sstslsfslstslsts shlslsllll sl>>ssitsfIffstlhfshtslllftstsfs(sfstslstsfstslstslststsfslstslslshfstshs ls PENNSYLVANIA POWER5LIGHTCOMPANY20PENNSYLVANIA POWER8(LIGHTCOMPANY18-3B PENNSYLVANIA POWER&LIGHTCOMPANY2DPENNSYLVANIA POWER8LIGHTCOMPANY2A PENNSYLVANIA POWERLIGHTCOMPANYPENNSYLVANIA POWER&LIGHTCOMPANY2E217Bl"r"'Iri~t~m<,

.~mmrrnti>rlmi

'"l~~~sOtN,NFI>',.NQ0)sNHll'jh>sN~~~~~~~l>>"t>l>tsssl>tslsislst>lstsltisistsIitslslslstsl>tsistslsI>lstslstslstsIstslstsfstslstsl>tslstsl>t>l>t

~I>t>ls,l>ls PENNSYLVANIA POWER&LIGHTCOMPANY2E217B!"'.IWPs~10N6<l<~Ns<<6<(<f<N"Ns6<<<9<~~~~'s<I'sl<sls<sls<si<hlshlsl<l<l<lsf<I<I<hist<hi<I<I<I<!<hI<I<I<hi<I<I<I<I<hi

~<<Is<<Is<sl

<<Is<I<<'st'ssPENNSYLVANIA POWER5LIGHTCOMPANY~s~'2E217B,,pry<,<fl~i<f</s<s/s g<s<~eeV~,Wr41<!'iss~Isl<<<I<I<I<<

il<iil<iil fis<IIIlIlibel<shI1HII(IilliIftiiil<lil<i<l<I<l<lil<i<l<isl<hI<isl<<<Is<<Is<

Is<Irig A'ale]ihlii~

CIt's.Itttls4lililiiÃs'i iIailililiIiIsIsIsIsIsIsI~IIsisIsIIs(IsPENNSYLVANIA POWER&LIGHTCOMPANY2E217B'isdpgggpJlt"lppl~illIllijslll

~lsMImmVm!PTemriTqriqil'~.1@~ii)>l<

/~i/"'I,,tisi~5'Sli~lih'lltilalilslstslililililelils<slsi IiisliiI PENNSYLVANIA POWER&LIGHTCOMPANY1E217All;,lii.l,:~llIlilrnteimamrp~nta1Igm~lalamsrlr"sl

)>>lMs~S~alaaaaSllatlaaaa'Sala~~ISIaallaa~~~~~a~la~slsashlslslllslshhhllhhhlslala slalahhiahlalalalalalalalllalalalslalsl

~Islsl~allsaslsaslsaslsas IIhtM~~stSal'Saa'laaAllW~aaa laalasa.la'aagl,a~"...~pfs-a(s0pTZSMSM~as"]saaasw..ss I)'i<.hpcjrj,~f'IhI<Jgji>.p(gi.t~~)'.(<q,~4,

~i'(VAIYI~~<4iVfl,Atttj'ieIgV$;.~:;V~i.s

.C-'.K'.e.>)re"

>-'~+')~g(>gi 4I.zp'y'"f'5'~pyq

'gg((i'p)

."44)~g4)'0)~CIiII~II~~'II~I'fis~'-e~I!I'4IVI0'I~FI~1'IIIII.i%l<~/JAILi'swf(C>~"4gl'I'g'(37~-l~R1i~lifta~.

,:.'!jV~VUC.tlatR'"l,,'L"i,.~,'f;;l)'s",

.>'W(f.WwA'ps~s4taaat'y<a+>s)Aw>tNar~ib S)~lf~tk~~~~pr,r)C()gyaI7Elr"i',.~f)'".<ni]-.<<i',~g~!~Kf-('k)]...ig)'~r(P",5I27~9'2$46719l2346789)23~~/P,',}4Pgq+g,g),

.Q~,'-~P)'(P('i VVP)R;.));>!),

')'('K(T)'I,V'o',V)')j,.i)",r'yi A,',,):~"4."'""*(~,~

Pt'

IIJIIJIS/I/IIJ'llf'I!jufI234667II<>I1Ii.'I~40~~~I~!'0'0I"'t'",'""

'."~'il'~f~~"'~'j")"",j:p,'9

.>>""...",Ig-'ll"I~~,~I0!0!0'4t,LL<'(k'~.jlKN",."

~7Ir<I,j0l04J,>>~I) g))g~ItI~~s'2ls0~~0fI0A$~P~i!I~~;j,

k"6IIjI!Ij~~ALII~~"~.,'~f>>"Ilf4A(,Q~',tlI4'>>i~~~)0~sf>>>>I>>/~Cg0isI:sI>>sjssiiilsjss'lsjsssslisii

'ri~jsli'jssIjslisjsssstsslfjsIjsjslls'jIIIIIsil tlljsfIIjslsstsIIsjiissjsilsjs I!I!I23466769sl2

&)P~~~'~~rk i"'I"I")6Pp~gj,xabJ~gwp'gc>1~~+A%6%AO+AtHtg4gAtg'~~~,Q~~~v!ilp4~k'~h'sc)~$:tjiy,,",'g$4C('sl~~'~k)$'~3P.i~i<d<i.ffj',:ci'I lVj~gjQi

avvolP~~e>~L\~L'~vvL<.%Lall.l,I(v'Sr.,I.~.>l.!IIIu..4hi.l.'I Bleak.'[$

,)i~@@4lgf/)~)'qi,'];(

vvt1il1>>i'l>>ll>>ll<>>ll'['I>>

'll'['ll'f'll'f'll'['ll'J'IIl[~II~J~III[lIP]ll14II~J'll')'IV]'ll']'

II,6189I23466789Il234

.~Cg4I<pl'I~'

js'p$glIlg'~I)~V'I)'It!@14@2'I

.tt,,,50THS Q,,l4,(',,pq(t,",.";1'0 TQS.l3I.~4,),l!.l,')l1),11ll)li>Ji/iglP4 yli~~IlgP,P//gl(//QA~'I~I'I'Il"40'ct0ir~r-~itrtrtrt1""'~"~"~~t':"'iree'i, n<<te<io)6<<~P~~~'i~"""r'0IlriIII'>rrQJ~'I~~IW~Ittqt'IgM)IitI7ai)I~k~'>4+CJ,~~i~gC~lPl~

j~e)tgKrjtt(~

i~C'i)C.1'~PYV cg~

Shf1%I,I.CS',I0eV0>>I"Tf'II~tIJplt))If/"i/-:,III,V~'i)tf(Ca~14f)I,tIf'I[i~)",gtPII<<ef'II()~V>>h,qv.\(f~III~'I>>r""'-v')M+~TOX~3ka:f)wf1Ttf'I~tf'i>~'Vgpt'4offN~'4,Ige.Cff(f>>~'I(~]"L"pWjj>>'rtf>>I.V(,'gffqj" jf4/jlll1gf

A,~~~rI~I1j7rI)/4l~I77 tI~+Pg~jiQcQji.4(gilP]illlillijil IJlI~>!i~gy~'~Ia7~S~'1'

')1,Il4$'.L)e'ly~/('.t,I/'I4'f~'Eg);~~--K-'//

'Iip'b0AVe~III1 ty~~gait7YC.fi&I~HH

~,IJ0e~d'C'fyrl'IIVbC

+48%5~'P@~~

h,IPr~Wv4trjtt~'/,Al'j'l~e,i-4~IO.~~II~iPC~i~I+g(h1'

&[<<f,~>r5'fi11

~Wkt~gQl'i%~>$>>4fQ~,p..Vgcf404~~e~C,;~p~1tP)~'I)~g//fiMa,4w,C>>Ar-gfiptlV,Vtkj-<,\I'//

4FT(II(,yIF~f1'~..+-~l(g(T et4~'~CCg')Z~~~c