ML17320A793: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
 
(Created page by program invented by StriderTol)
Line 17: Line 17:


=Text=
=Text=
{{#Wiki_filter:FOGINERTINGCRITERIAFORHYOROGEN/AIRMIXTURESS.S.Tsai,andN.J.LiparuloRiskAssessmentTechnologyWestinghouseElectricCorporationPresentedatSecondInternationalWorkshopontheImpactoff{ydrogenonWaterReactorSafetyAlbuquerque,NewMexicoOctober3-7,1982(83i0140046831010lPDRADOCK05000315PPDR2693/:1  
{{#Wiki_filter:FOGINERTINGCRITERIAFORHYOROGEN/AIR MIXTURESS.S.Tsai,andN.J.LiparuloRiskAssessment Technology Westinghouse ElectricCorporation Presented atSecondInternational WorkshopontheImpactoff{ydrogen onWaterReactorSafetyAlbuquerque, NewMexicoOctober3-7,1982(83i0140046 831010lPDRADOCK05000315PPDR2693/:1  


FOGINERTIHGCRITERIAFORHYDROGEN/AIRMIXTURESS.S.Tsai,andN.J.LiparuloRiskAssessmentTechnologyMestinghouseElectricCorporationABSTRACTAdistributedignitionsystemhasbeenproposedtoignitehydrogenatlowconcentrationintheicecondensercontainmentduringsevereaccidents.Thepost-accidentcontainmentatmospherecouldbemistyduetofoggenerationfromthebreakflowandcondensationintheicebed.Thusitisimportanttoestablishafoginertingcriterionforeffectiveperformanceo'ftheignitionsystem.Thispaperpresentssuchacriterionthatspecifiesthenecessaryfoggingconditions,i.e.,fogconcentrationanddropsize,forinertingahydrogen/airmixture.Thecriterionshowsthattheminimumfoginertingconcentrationvarieswiththesquareofthevolumemeanfogdropsize.ThepresentfoginertingcriterionisshowntobeingeneralagreementwiththeFactoryMutualtestdata.1.INTRODUCTIONAdistributedignitionsystemhasbeenproposedtoignitehydrogenatlowconcentrationintheicecondensercontainmentduringsevereacci-dents.Thepost-accidentcontainmentatmospheremaybemistybecauseoffoggenerationbythebreakflowandcondensationintheicebed.Thusitisofimportanttoestablishafoginertingcriterionforeffectiveperformanceoftheignitionsystem.ZaloshandBajpai(>)haverecentlyconductedhydrogenflamaabilityteststodeterminetheeffectofwaterfoggingonthehydrogenlowerflammabilitylimit.Inthetests,theminimumfoginertingconcentra-tionsforvariousvolumemeandropsizesandtpdrogenconcentrationsweremeasured.Itwasfoundthatan8volpercenthydrogenmixturecouldbeinertedathighfogconcentration.FogformationmayalsohavebeenresponsibleforfailureofthetwoLawrenceLivermoretests(2)athighsteamconcentrationsto'gnitetpdrogenduringthetestvesselcool-downperiod.Thecapabilityoffogdropletsin.,inhibitingcombustionorquenchingflamesisduetotheirheatabsorbingcapability-highheatofvapor-izationandsmalldropsizes(ontheorderof10p).Duetothesmalldropsizes,fogdropletscouldvaporizerapidly(ontheorderofmili-seconds)withinapropagatingflamefront("Immthick).Ifasub-stantialamountofthesedropletsarepresent,theflamemaybequenched.ThecriticaldropletdiameterforquenchingahydrogenflamehasbeenestimatedbySandiaNationalLaboratories(>).Itwasassumedthatthemeasured"quenchingdistance"forahydrogenflamepropagatingthrougha2693/:I  
FOGINERTIHGCRITERIAFORHYDROGEN/AIR MIXTURESS.S.Tsai,andN.J.LiparuloRiskAssessment Technology Mestinghouse ElectricCorporation ABSTRACTAdistributed ignitionsystemhasbeenproposedtoignitehydrogenatlowconcentration intheicecondenser containment duringsevereaccidents.
Thepost-accident containment atmosphere couldbemistyduetofoggeneration fromthebreakflowandcondensation intheicebed.Thusitisimportant toestablish afoginertingcriterion foreffective performance o'ftheignitionsystem.Thispaperpresentssuchacriterion thatspecifies thenecessary foggingconditions, i.e.,fogconcentration anddropsize,forinertingahydrogen/air mixture.Thecriterion showsthattheminimumfoginertingconcentration varieswiththesquareofthevolumemeanfogdropsize.Thepresentfoginertingcriterion isshowntobeingeneralagreement withtheFactoryMutualtestdata.1.INTRODUCTION Adistributed ignitionsystemhasbeenproposedtoignitehydrogenatlowconcentration intheicecondenser containment duringsevereacci-dents.Thepost-accident containment atmosphere maybemistybecauseoffoggeneration bythebreakflowandcondensation intheicebed.Thusitisofimportant toestablish afoginertingcriterion foreffective performance oftheignitionsystem.ZaloshandBajpai(>)
haverecentlyconducted hydrogenflamaability teststodetermine theeffectofwaterfoggingonthehydrogenlowerflammability limit.Inthetests,theminimumfoginertingconcentra-tionsforvariousvolumemeandropsizesandtpdrogenconcentrations weremeasured.
Itwasfoundthatan8volpercenthydrogenmixturecouldbeinertedathighfogconcentration.
Fogformation mayalsohavebeenresponsible forfailureofthetwoLawrenceLivermore tests(2)athighsteamconcentrations to'gnitetpdrogenduringthetestvesselcool-down period.Thecapability offogdropletsin.,inhibiting combustion orquenching flamesisduetotheirheatabsorbing capability
-highheatofvapor-izationandsmalldropsizes(ontheorderof10p).Duetothesmalldropsizes,fogdropletscouldvaporizerapidly(ontheorderofmili-seconds)withinapropagating flamefront("Immthick).Ifasub-stantialamountofthesedropletsarepresent,theflamemaybequenched.
Thecriticaldropletdiameterforquenching ahydrogenflamehasbeenestimated bySandiaNationalLaboratories(>).
Itwasassumedthatthemeasured"quenching distance" forahydrogenflamepropagating througha2693/:I  


tubeorbetweenplatescouldbeusedforfogdroplets.Thismodeldoesnotconsiderheattransferandcombustionoccurringbetweentheburnedgasandthesuspendeddroplets.Thispaperpresentsafoginertingcriterionthatspecifiesthenecessaryfoggingconditions,i.e.,fogconcentrationanddropsize,forinertingahydrogen/airmixture.2.FOGINERTINGCRITERIARecenthydrogenburnexperiments(2)conductedatLawrenceLivermoreLaboratoryindicatedthatsubstantialfogformationcouldoccurwhensaturatedsteamisdischargedintoanunheatedvessel.Itappearedthatthisfogpreventedaglowplugigniterfromsuccessfullyignitingthehydrogenmixtureinthevessel.Theabilityoffogininhibitingandquenchingahydrogencombustioncanbeexplainedasfollows.Thefogdropletssuspendedinthehydrogen-air-steammixtureactasaheatsinkthatcouldabsorbalargeamountofcombustionheatbyvaporization,greatlyreducingthepressureandtemperaturerisesresultingfromhydrogencombustion.Ifdropletsaresufficientlysmallsuchthattheycouldvaporizeinsidethethin(1mm)flamefront,theflamemaybequenchedorinhibited.Foraflamespeedof2m/s,thedropresidencetimeisoftheorderof0.5x1Q-3seconds.(3)Insuchashortperiodoftime,thedropletsofinitialradiuslessthanabout4pwillvaporizeentirelyintheflam'efront.Thequenchingofapropagatingflameisalsogovernedbythedistancebetweendroplets.Asthedropletsbecomecloselypacked,thetota1dropletsurfaceareaavailableforenergylossincreases.Acriticalspacingbetweendropletsexistssuchthatalargefractionoftheheatreleasedisabsorbed,Thuspreventing.flamepropagation.Thiscriticalspacingisknownasthe"quenchingdistance",whichisusuallydeterminedbypropagatingflamesintubes.2.1PREVIOUSMORKTheeffectivenessoffogdropletsininhibitingorquenchingaflamedependsonitsquenchingdistance,whichwasdeterminedbyBermanetal.(3)asq=L4V/SjcritwhereVisthegasvolumeandSistheheattransfersurfacearea.Inthesuspendedfogdroplets,thisvolume-to-surfaceratio(i.e.,V/S)isequaltod(1-n)/6q,wheredisthemeandropletdiameterandqisthevolumefractionofthedroplets.Mhenfourtimesthisratioapproachesthequenchingdistance,acriticaldropletdiametercanbeobtainedasndc=Y~q(2)2693':I Usingthequenchingdistancedataforagivenvolumefractionofwaterandgascomposition,thecriticaldropletdiametercanbedeterminedfromEquation(2).Thedropsizeslessthanthecriticaldropsizearecapableofquenchingaflame.2.2PRESENTTHEORYTheprevioustheoriesdonotmodeltheheattransferandcombustionprocessesoccurringbetweentheburned'gasandthesuspendeddroplets.Anewtheoryhasbeendeveloped,whichmodelstheheatlossandcombustionwithinathinflamefront.1+.K!plwhereeiConsiderahydrogen/air/steam/mistdropletsmixtureinwhichaflameispropagating.Theflamemaybedividedintothreezones:heatingzone,reactionzone,andpost-reactionzoneasshowninFigure1.TheunburnedgasattemperatureTumovesinthereactionzonewiththelaminarburningvelocitySu.Iftheunburnedgasdensityispu,thentheconstantmassflowratemisequaltopuSu.TheunburnedgasisheatedtoignitiontemperatureTiandburnedinthereactionzonetoreachtheflametemperatureTf.Thefogdropletswillactasaheatsinkthatreducestheflametemperature.TheproblemhasbeenformulatedandsolvedbyvonKarmani4).Inhisformulation,threeenergyequations,whichincorporatetheheatlossterms,werewrittenforthethreezonesdescribedabove.Thesolutiontotheseequationsyieldsthefollowingrelationship2KG.1-exp(-~p)(Y-Yf)x'ft(3)Ll+1+(4K/)]x1-uC(Ti-T)/qpiuKei(S/C')e.p1,theratioofheatlossrateperunitvolumeto'theheatreleaserateby'chemicalreactionperunitvolumeheatofcombustionCmeanspecificheatmeanheatconductivityreactionrate(massoffuelconsumedper:unittimeperunitvolume)II2693/:I  
tubeorbetweenplatescouldbeusedforfogdroplets.
Thismodeldoesnotconsiderheattransferandcombustion occurring betweentheburnedgasandthesuspended droplets.
Thispaperpresentsafoginertingcriterion thatspecifies thenecessary foggingconditions, i.e.,fogconcentration anddropsize,forinertingahydrogen/air mixture.2.FOGINERTINGCRITERIARecenthydrogenburnexperiments(2) conducted atLawrenceLivermore Laboratory indicated thatsubstantial fogformation couldoccurwhensaturated steamisdischarged intoanunheatedvessel.Itappearedthatthisfogprevented aglowplugigniterfromsuccessfully ignitingthehydrogenmixtureinthevessel.Theabilityoffogininhibiting andquenching ahydrogencombustion canbeexplained asfollows.Thefogdropletssuspended inthehydrogen-air-steam mixtureactasaheatsinkthatcouldabsorbalargeamountofcombustion heatbyvaporization, greatlyreducingthepressureandtemperature risesresulting fromhydrogencombustion.
Ifdropletsaresufficiently smallsuchthattheycouldvaporizeinsidethethin(1mm)flamefront,theflamemaybequenchedorinhibited.
Foraflamespeedof2m/s,thedropresidence timeisoftheorderof0.5x1Q-3seconds.(3)
Insuchashortperiodoftime,thedropletsofinitialradiuslessthanabout4pwillvaporizeentirelyintheflam'efront.Thequenching ofapropagating flameisalsogovernedbythedistancebetweendroplets.
Asthedropletsbecomecloselypacked,thetota1dropletsurfaceareaavailable forenergylossincreases.
Acriticalspacingbetweendropletsexistssuchthatalargefractionoftheheatreleasedisabsorbed, Thuspreventing
.flamepropagation.
Thiscriticalspacingisknownasthe"quenching distance",
whichisusuallydetermined bypropagating flamesintubes.2.1PREVIOUSMORKTheeffectiveness offogdropletsininhibiting orquenching aflamedependsonitsquenching
: distance, whichwasdetermined byBermanetal.(3)asq=L4V/Sjcrit whereVisthegasvolumeandSistheheattransfersurfacearea.Inthesuspended fogdroplets, thisvolume-to-surface ratio(i.e.,V/S)isequaltod(1-n)/6q, wheredisthemeandropletdiameterandqisthevolumefractionofthedroplets.
Mhenfourtimesthisratioapproaches thequenching
: distance, acriticaldropletdiametercanbeobtainedasndc=Y~q(2)2693':I Usingthequenching distancedataforagivenvolumefractionofwaterandgascomposition, thecriticaldropletdiametercanbedetermined fromEquation(2).Thedropsizeslessthanthecriticaldropsizearecapableofquenching aflame.2.2PRESENTTHEORYTheprevioustheoriesdonotmodeltheheattransferandcombustion processes occurring betweentheburned'gasandthesuspended droplets.
Anewtheoryhasbeendeveloped, whichmodelstheheatlossandcombustion withinathinflamefront.1+.K!plwhereeiConsiderahydrogen/air/steam/mist dropletsmixtureinwhichaflameispropagating.
Theflamemaybedividedintothreezones:heatingzone,reactionzone,andpost-reaction zoneasshowninFigure1.Theunburnedgasattemperature TumovesinthereactionzonewiththelaminarburningvelocitySu.Iftheunburnedgasdensityispu,thentheconstantmassflowratemisequaltopuSu.Theunburnedgasisheatedtoignitiontemperature Tiandburnedinthereactionzonetoreachtheflametemperature Tf.Thefogdropletswillactasaheatsinkthatreducestheflametemperature.
Theproblemhasbeenformulated andsolvedbyvonKarmani4).
Inhisformulation, threeenergyequations, whichincorporate theheatlossterms,werewrittenforthethreezonesdescribed above.Thesolutiontotheseequations yieldsthefollowing relationship 2KG.1-exp(-~p)(Y-Yf)x'ft(3)Ll+1+(4K/)]x1-uC(Ti-T)/qpiuKei(S/C')e.p1,theratioofheatlossrateperunitvolumeto'theheatreleaserateby'chemical reactionperunitvolumeheatofcombustion Cmeanspecificheatmeanheatconductivity reactionrate(massoffuelconsumedper:unittimeperunitvolume)II2693/:I  


hydrogenmassfractionintheheatingzone"f=hydrogenmassfractioninthereactionzone>uSuAplotofEq.(3)isshowninFigure2.Itisseenthatforagiven<oi,thereisaminimumvalueof(Yu-Yf1/ei.Belowthisminimumvalue,thereisnosolutionforthee;.Therefore,thisvalueisconsideredastheflamsabilitylimit.Attheflamsabilitylimit,thevalueofKelcanbedeterminedfromFigure2orfromEq.3as(K)ite.=f((Yfei\sAplotof(K)criteiasafunctionof(Yu-Yf)/eiisshowninFigure3.Equation4maybeexpressedas2ufY-YqpuSu(Yu-Yf)fe;d-212i(TiTu)(4)(5)DetailedderivationprocedureforEq.(5)isgiveninAppendixA.UsingthedataonSufromReference(5)wecancalculatetherighthandsideofEq.(5)foragivencompositionandinitialgastemperature.3-VERIFICATIONOFTHEORIESBYEXPERIMENTSExperimentshavebeenconductedatfactoryMutualtostudytheeffectsofwaterfogdensity,dropletdiameter,andtemperatureonthelowerflaranabilitylimitofhydrogen-air-steammixtures(2).Theresultsindicatedthatmostofthefognozzlestestedat20Conlychangedthelimitfrom4.03volumepercentto4.76percent,correspondingtofogconcentrationintherangeof0.028-0.085volumepercent,andvolumemeandropsizerangingfrom45-90microns.Forthe50Ccase,thelowerflammabilitylimitincreasesto7.2percent,correspondingto0.01-0.04volumepercentoffogand20-50micronvolumemeandropsizes.Theresultsdemonstratedthatthefoginertingeffectismorepronouncedatreduceddropsizesandincreasedtemperature.Figures4through6showthecomparisonbetweenthetestdataandthetheoreticalpredictions.Forthiscomp'arison,thepresenttheoryusedthefreestreamtemperaturetocalculatethethermodynamicpropertiesusedinEquation(5).Thisyieldedsomewhathigherfogconcentrationsthanthosecalculatedbyuseofthemeanoftheflameandfreestreamtemperatures.InFigures4and5,thedatasuggestsalinearrelation-shipbetweenthevolumeconcentrationandvolumemeandropsizeonthelog-logplot.Italsosuggeststhattheminimumfoginertingconcentra-tionvariesapproximatelywiththesquareofthevolumemeandropsize.2693Q:I  
hydrogenmassfractionintheheatingzone"f=hydrogenmassfractioninthereactionzone>uSuAplotofEq.(3)isshowninFigure2.Itisseenthatforagiven<oi,thereisaminimumvalueof(Yu-Yf1/ei.Belowthisminimumvalue,thereisnosolutionforthee;.Therefore, thisvalueisconsidered astheflamsability limit.Attheflamsability limit,thevalueofKelcanbedetermined fromFigure2orfromEq.3as(K)ite.=f((Yfei\sAplotof(K)criteiasafunctionof(Yu-Yf)/eiisshowninFigure3.Equation4maybeexpressed as2ufY-YqpuSu(Yu-Yf)fe;d-212i(TiTu)(4)(5)Detailedderivation procedure forEq.(5)isgiveninAppendixA.UsingthedataonSufromReference (5)wecancalculate therighthandsideofEq.(5)foragivencomposition andinitialgastemperature.
3-VERIFICATION OFTHEORIESBYEXPERIMENTS Experiments havebeenconducted atfactoryMutualtostudytheeffectsofwaterfogdensity,dropletdiameter, andtemperature onthelowerflaranability limitofhydrogen-air-steam mixtures(2).
Theresultsindicated thatmostofthefognozzlestestedat20Conlychangedthelimitfrom4.03volumepercentto4.76percent,corresponding tofogconcentration intherangeof0.028-0.085 volumepercent,andvolumemeandropsizerangingfrom45-90microns.Forthe50Ccase,thelowerflammability limitincreases to7.2percent,corresponding to0.01-0.04 volumepercentoffogand20-50micronvolumemeandropsizes.Theresultsdemonstrated thatthefoginertingeffectismorepronounced atreduceddropsizesandincreased temperature.
Figures4through6showthecomparison betweenthetestdataandthetheoretical predictions.
Forthiscomp'arison, thepresenttheoryusedthefreestreamtemperature tocalculate thethermodynamic properties usedinEquation(5).Thisyieldedsomewhathigherfogconcentrations thanthosecalculated byuseofthemeanoftheflameandfreestreamtemperatures.
InFigures4and5,thedatasuggestsalinearrelation-shipbetweenthevolumeconcentration andvolumemeandropsizeonthelog-logplot.Italsosuggeststhattheminimumfoginertingconcentra-tionvariesapproximately withthesquareofthevolumemeandropsize.2693Q:I  


ThepresenttheoryisingoodagreementwiththeFactoryMutualdataat4.76percentH2;however,itoverpredictstheminimumfoginertingconcentrationat7.2percentH2.Thecauseofthisdiscrepancyisstillunknown.Thediscrepancymaybecausedbytheuncertaintyofthedata.Thefollowingdiscussionsupportsthisview.Thefogdropletsareverysmallandtheyvaporizeveryfastinaflame.Therefore,thefogdropletsbehaveassteamexceptfortheirlargerheatabsorptioncapability.@henthefogdropletsvaporize,theyabsorbtheheatofvaporizationwhichismuchlargerthanthesteamsensibleheat.Typically,theheatofvaporizationofwaterisabout1000Btu/lbandtheaveragespecificheatofsteaminthetemperaturerangeofinterestisabout0.48Btu/lb.Itiswellknownthatahydrogenflamecannotpropagateinsteamhigherthanabout64percentinasteam-airmixture.At7.9percentH2,theadiabaticflametemperatureisabout1240Fandthereforetheincreaseofthesteamsensibleheatisabout540Btu/lb.Consequently,.forthesameamountoffogdropletsandsteam,thefogdropletsheatabsorptioncapabilityisabout1.9timeshigher.Thismeansthatthefogconcentrationwhichisequivalentto22.1percentsteaminasteam-airmixtureiscapableofinerting7.9percentH2.Thisfoginertingvolumetricconcentrationwascalculatedtobe1.61x10-4ft~H20/ft3mixfor7.9percentH2.Toinert7.2'ercentH2,aminimumfogconcentrationof1.56x10-4ft3H20/ft3mix,equivalenttoabout21.3percentsteaminasteam-airmixtureisrequired.Theseestimatesshowthatthepresentpredictionsarereasonableandconservative.TheestimatesareconsistentwithFactoryMutualdataon7.9percentH2butnoton7.2percentH2-Itshouldbenotedthatintheteststhreefogconcentrationmeasuringtechniqueswereused.Thesethreetechniquesgavesubstantiallydif-ferentresults.Thediscrepancyisatleastoneorderofmagnitudedifference.ThefogconcentrationdatapresentedinFigures4through6wereobtainedfromoneofthetechniques.Invie'woftheuncertaintyofthedata,caremustbeexercisedinusingthemforfoginertinganalysispurposes.Theyshouldbeusedinconjunctionwiththepresentfoginertingcriterionintheassessmentoffoginertingpotentialintheicecondenserplants.Someuncertaintyalsoexistsinthepresentfoginertingtheory.Themaximumuncertairityassociatedwiththeunder-predictionoftheheatlossandtemperaturedependenceofthethermo-physicalpropertiesisestimatedtobe+63percent.4.SUMMARYAkDCONCLUSIOkSAfoginertingcriterionhasbeendevelopedtopredicttheminimumfogconcentrationrequiredtoinertagivenhydrogenconcentrationandvolumemeanfogdropsize.ThepresentfoginertingcriterionhasbeenshowntobeingeneralagreementwiththeFactoryMutualtestdata.Thecriterionshowsthattheminimumfoginertingconcentrationvarieswiththesquareofthevolumemeanfogdropsize.2693':I  
Thepresenttheoryisingoodagreement withtheFactoryMutualdataat4.76percentH2;however,itoverpredicts theminimumfoginertingconcentration at7.2percentH2.Thecauseofthisdiscrepancy isstillunknown.Thediscrepancy maybecausedbytheuncertainty ofthedata.Thefollowing discussion supportsthisview.Thefogdropletsareverysmallandtheyvaporizeveryfastinaflame.Therefore, thefogdropletsbehaveassteamexceptfortheirlargerheatabsorption capability.
@henthefogdropletsvaporize, theyabsorbtheheatofvaporization whichismuchlargerthanthesteamsensibleheat.Typically, theheatofvaporization ofwaterisabout1000Btu/lbandtheaveragespecificheatofsteaminthetemperature rangeofinterestisabout0.48Btu/lb.Itiswellknownthatahydrogenflamecannotpropagate insteamhigherthanabout64percentinasteam-air mixture.At7.9percentH2,theadiabatic flametemperature isabout1240Fandtherefore theincreaseofthesteamsensibleheatisabout540Btu/lb.Consequently,.for thesameamountoffogdropletsandsteam,thefogdropletsheatabsorption capability isabout1.9timeshigher.Thismeansthatthefogconcentration whichisequivalent to22.1percentsteaminasteam-air mixtureiscapableofinerting7.9percentH2.Thisfoginertingvolumetric concentration wascalculated tobe1.61x10-4ft~H20/ft3mixfor7.9percentH2.Toinert7.2'ercent H2,aminimumfogconcentration of1.56x10-4ft3H20/ft3mix,equivalent toabout21.3percentsteaminasteam-air mixtureisrequired.
Theseestimates showthatthepresentpredictions arereasonable andconservative.
Theestimates areconsistent withFactoryMutualdataon7.9percentH2butnoton7.2percentH2-Itshouldbenotedthatintheteststhreefogconcentration measuring techniques wereused.Thesethreetechniques gavesubstantially dif-ferentresults.Thediscrepancy isatleastoneorderofmagnitude difference.
Thefogconcentration datapresented inFigures4through6wereobtainedfromoneofthetechniques.
Invie'woftheuncertainty ofthedata,caremustbeexercised inusingthemforfoginertinganalysispurposes.
Theyshouldbeusedinconjunction withthepresentfoginertingcriterion intheassessment offoginertingpotential intheicecondenser plants.Someuncertainty alsoexistsinthepresentfoginertingtheory.Themaximumuncertairity associated withtheunder-prediction oftheheatlossandtemperature dependence ofthethermo-physicalproperties isestimated tobe+63percent.4.SUMMARYAkDCONCLUSIOkS Afoginertingcriterion hasbeendeveloped topredicttheminimumfogconcentration requiredtoinertagivenhydrogenconcentration andvolumemeanfogdropsize.Thepresentfoginertingcriterion hasbeenshowntobeingeneralagreement withtheFactoryMutualtestdata.Thecriterion showsthattheminimumfoginertingconcentration varieswiththesquareofthevolumemeanfogdropsize.2693':I  


ACKNOWLEDGMENTSTheauthorswishtoexpresstheirsinceregratitudetoDrs.V.Srinivas,B.Lewis,andB.Karlovitzforassistance,suggestions,andhelpfuldiscussions,toMessrs.D.F.Paddleford,R.8ryan,F.G.Hudson,D.Renfro,andK.Shiuforvaluablecomments.TheyalsowouldliketothankTYA,DukePower,andAEPforprovidingthefinancialsupport.REFERENCES1.R.G.ZaloshandS.N.Bajpai,"MaterFogInertingofHydrogen-AirMixtures,i",EPRIProjectPreliminaryRpt.1932-1,September,1981.2.B.Lowry,"PreliminaryResults:AStudyofHydrogenIgniters,"ENN80-45,LawrenceLivermoreNationalLaboratory,November17,1980.3.M.Berman,etal.,"Analysisoff{ydrogenMitigationforDegradedCoreAccidentsintheSequoyahNuclearPowerPlant,"Sandiadraftreport,December1,1980.4.T.vonKarman,unpublishednotes,1956.5.S.S.Tsai,andN.D.Liparulo,"FlameTemperatureCriteriaTests,"acceptedforpresentationattheSecondInt.WorkshopontheImpactofHydrogenonMaterReactorSafety,Albuquerque,NewMexico,October3-7,1982.2693/:1  
ACKNOWLEDGMENTS Theauthorswishtoexpresstheirsinceregratitude toDrs.V.Srinivas, B.Lewis,andB.Karlovitz forassistance, suggestions, andhelpfuldiscussions, toMessrs.D.F.Paddleford, R.8ryan,F.G.Hudson,D.Renfro,andK.Shiuforvaluablecomments.
TheyalsowouldliketothankTYA,DukePower,andAEPforproviding thefinancial support.REFERENCES 1.R.G.ZaloshandS.N.Bajpai,"MaterFogInertingofHydrogen-AirMixtures,i",
EPRIProjectPreliminary Rpt.1932-1,September, 1981.2.B.Lowry,"Preliminary Results:AStudyofHydrogenIgniters, "ENN80-45, LawrenceLivermore NationalLaboratory, November17,1980.3.M.Berman,etal.,"Analysis off{ydrogen Mitigation forDegradedCoreAccidents intheSequoyahNuclearPowerPlant,"Sandiadraftreport,December1,1980.4.T.vonKarman,unpublished notes,1956.5.S.S.Tsai,andN.D.Liparulo, "FlameTemperature CriteriaTests,"acceptedforpresentation attheSecondInt.WorkshopontheImpactofHydrogenonMaterReactorSafety,Albuquerque, NewMexico,October3-7,1982.2693/:1  
\>
\>
APPEHDIXADERIYATIOHOFEQUATIOH(5)ThisappendixgivesdetailedprocedurestoderiveEq.(5),startingfromEq.(4)<<)cr;t<;=f<<~u-~f)/oj)(4)wheretheratioofheat.lossrateperunitvolumetotheheatreleaseratebychemicalreactionperunitvolume,(K)crit,isdefinedasKcrit=S/Cpw(A-I)andtheratioofsensibleheattoheatofcombustion,ei,isdefinedase;=Cp(Ti-Tu)/q(A-2)ToarriveatEq.(5),itisnecessarytoassumethatalltheheatlossisattributedtoconvectionheattransfertofogdropletsofonlyonedropsize.Underthisassumption,therateofheatlossperunitvolumeperdegree,S,maybee'xpressedasS=nxd2h(A-3)wheren=numberofdropsperunitvolumedvolumemeandropsizeh=heattransfercoefficientItisfurtherassumedthattherelativevelocitybetweenthedropletsandthemixtureflowissosmallthatheattransfercoefficient,h,canbeapproximatedbytheconductionlimit.Infact,itcanbeshownthatforsmalldropsizes,convectionandradiationareunimportantheattransfermechanismsatthedropsurface.Underthisassumption,Eq.(A-3)reducesto12'=~d(A-4)where7=meanheatconductivitynvolumefractionofmistdroplets(-id)n362693Q:I Theofheatgenerationperunitvolume,w,isrelatedtothelaminarburingveloc>ty,Su,andthethicknessofthereactionzone,x,byS(Y-Yf)w=ThethicknessofthereactionzonemaybeapproximatedbypSZ'A-6)CombiningEqs.(A-l),(A-4),(A-5),and(A-6),wehave12',SZ(Yu-Yf)SubstitutingEqs.(A-2)and(A-7)intoEq.(4),wehaveYu-Yfd127(T.-T)(Y-Y)f(u)1u1(5)Q.E.D.2693Q:1,B 4
APPEHDIXADERIYATIOH OFEQUATIOH(5)Thisappendixgivesdetailedprocedures toderiveEq.(5),startingfromEq.(4)<<)cr;t<;=f<<~u-~f)/oj)(4)wheretheratioofheat.lossrateperunitvolumetotheheatreleaseratebychemicalreactionperunitvolume,(K)crit,isdefinedasKcrit=S/Cpw(A-I)andtheratioofsensibleheattoheatofcombustion, ei,isdefinedase;=Cp(Ti-Tu)/q(A-2)ToarriveatEq.(5),itisnecessary toassumethatalltheheatlossisattributed toconvection heattransfertofogdropletsofonlyonedropsize.Underthisassumption, therateofheatlossperunitvolumeperdegree,S,maybee'xpressed asS=nxd2h(A-3)wheren=numberofdropsperunitvolumedvolumemeandropsizeh=heattransfercoefficient Itisfurtherassumedthattherelativevelocitybetweenthedropletsandthemixtureflowissosmallthatheattransfercoefficient, h,canbeapproximated bytheconduction limit.Infact,itcanbeshownthatforsmalldropsizes,convection andradiation areunimportant heattransfermechanisms atthedropsurface.Underthisassumption, Eq.(A-3)reducesto12'=~d(A-4)where7=meanheatconductivi tynvolumefractionofmistdroplets(-id)n362693Q:I Theofheatgeneration perunitvolume,w,isrelatedtothelaminarburingveloc>ty, Su,andthethickness ofthereactionzone,x,byS(Y-Yf)w=Thethickness ofthereactionzonemaybeapproximated bypSZ'A-6)
FIGUREjSCHEMATICREPRESENTATIONOFTEMPERATUREPROFILETHROUGHTHEFLAMEFRONT0'd,a%5gsO3002.<~v~rV+iFIGURE2THEPARAMETERA.pASAFUNCTIONOF(Y-Y~)/e.FORDIFFERENTVALUESOFK9.  
Combining Eqs.(A-l),(A-4),(A-5),and(A-6),wehave12',SZ(Yu-Yf)Substituting Eqs.(A-2)and(A-7)intoEq.(4),wehaveYu-Yfd127(T.-T)(Y-Y)f(u)1u1(5)Q.E.D.2693Q:1,B 4
FIGUREjSCHEMATIC REPRESENTATION OFTEMPERATURE PROFILETHROUGHTHEFLAMEFRONT0'd,a%5gsO3002.<~v~rV+iFIGURE2THEPARAMETER A.pASAFUNCTIONOF(Y-Y~)/e.FORDIFFERENT VALUESOFK9.  


0.30.20.i3(Yu-Yfj/0/FIGURE3(K)8.ATTHEFLAMMABILITYLIMITASAFUNCTIONOF(Y-Yf)/8.cr)tiufi 2147310.175x2PlI-10-2P4I-5z0I-LL2IzO0103CJU0tL50SPRACO2163SPRACO1405-0604QSPRAGO2020-17040SPRACO1806-1605NON-FLAMMABLEZONEBERMANETAL.THEORYPRESENTTHEORYFLAMMABLEZONE10410100200VOLUMEMEANDIAMETER(MICRONS)Figure4.ComparisonbetweenTheoriesandFactoryMutuaiFoginertingExperimentson4.76PercentH2 2147.$0SPRACO2163-7604DSPRACO2020-1704QSONICORE035HX0C4FlI-ROI-lEI-RLuORO2C9OVNON-FLAMMABLE'ONEPRESENTTHEORYFLAMMABLEZONE7.2%H2INAIRAT-50C102030405060708090100VOLUMEMEANDIAMETER(MICRONS)Figure5.ComparisonbetweenthePresentTheoryandFactoryMutualFoglnertingExperimentson7.2PercentH2 V
0.30.20.i3(Yu-Yfj/0/FIGURE3(K)8.ATTHEFLAMMABILITY LIMITASAFUNCTIONOF(Y-Yf)/8.cr)tiufi 2147310.175x2PlI-10-2P4I-5z0I-LL2IzO0103CJU0tL50SPRACO2163SPRACO1405-0604 QSPRAGO2020-1704 0SPRACO1806-1605 NON-FLAMMABLE ZONEBERMANETAL.THEORYPRESENTTHEORYFLAMMABLE ZONE10410100200VOLUMEMEANDIAMETER(MICRONS)
2147.1NON-FLAMMABLEZONEx5X1030xR10-3I-I-zRo5X10.40OU0PRESENTTHEORYFLAMMABLEZONE6FACTORYMUTUALDATAON7.9%H2INAIR10450100VOLUMEMEANDIAMETER(MICRONS)1000Figure6.ComparisonbetweenthePresentTheoryandFactoryMutualFogtnertingExperimentson7.9PercentH213  
Figure4.Comparison betweenTheoriesandFactoryMutuaiFoginertingExperiments on4.76PercentH2 2147.$0SPRACO2163-7604 DSPRACO2020-1704 QSONICORE035HX0C4FlI-ROI-lEI-RLuORO2C9OVNON-FLAMMABLE'ONEPRESENTTHEORYFLAMMABLE ZONE7.2%H2INAIRAT-50C102030405060708090100VOLUMEMEANDIAMETER(MICRONS)
Figure5.Comparison betweenthePresentTheoryandFactoryMutualFoglnertingExperiments on7.2PercentH2 V
2147.1NON-FLAMMABLE ZONEx5X1030xR10-3I-I-zRo5X10.40OU0PRESENTTHEORYFLAMMABLE ZONE6FACTORYMUTUALDATAON7.9%H2INAIR10450100VOLUMEMEANDIAMETER(MICRONS) 1000Figure6.Comparison betweenthePresentTheoryandFactoryMutualFogtnertingExperiments on7.9PercentH213  
,~}}
,~}}

Revision as of 09:51, 29 June 2018

Speech Entitled Fog Inerting Criteria for Hydrogen/Air Mixtures, Presented at 821003-07 Second Intl Workshop on Impact of Hydrogen on Water Reactor Safety in Albuquerque, Nm
ML17320A793
Person / Time
Site: Cook American Electric Power icon.png
Issue date: 10/03/1982
From: LIPARULO N J, TSAI S S
WESTINGHOUSE ELECTRIC COMPANY, DIV OF CBS CORP.
To:
Shared Package
ML17320A792 List:
References
2693Q:1, NUDOCS 8310140046
Download: ML17320A793 (24)


Text

FOGINERTINGCRITERIAFORHYOROGEN/AIR MIXTURESS.S.Tsai,andN.J.LiparuloRiskAssessment Technology Westinghouse ElectricCorporation Presented atSecondInternational WorkshopontheImpactoff{ydrogen onWaterReactorSafetyAlbuquerque, NewMexicoOctober3-7,1982(83i0140046 831010lPDRADOCK05000315PPDR2693/:1

FOGINERTIHGCRITERIAFORHYDROGEN/AIR MIXTURESS.S.Tsai,andN.J.LiparuloRiskAssessment Technology Mestinghouse ElectricCorporation ABSTRACTAdistributed ignitionsystemhasbeenproposedtoignitehydrogenatlowconcentration intheicecondenser containment duringsevereaccidents.

Thepost-accident containment atmosphere couldbemistyduetofoggeneration fromthebreakflowandcondensation intheicebed.Thusitisimportant toestablish afoginertingcriterion foreffective performance o'ftheignitionsystem.Thispaperpresentssuchacriterion thatspecifies thenecessary foggingconditions, i.e.,fogconcentration anddropsize,forinertingahydrogen/air mixture.Thecriterion showsthattheminimumfoginertingconcentration varieswiththesquareofthevolumemeanfogdropsize.Thepresentfoginertingcriterion isshowntobeingeneralagreement withtheFactoryMutualtestdata.1.INTRODUCTION Adistributed ignitionsystemhasbeenproposedtoignitehydrogenatlowconcentration intheicecondenser containment duringsevereacci-dents.Thepost-accident containment atmosphere maybemistybecauseoffoggeneration bythebreakflowandcondensation intheicebed.Thusitisofimportant toestablish afoginertingcriterion foreffective performance oftheignitionsystem.ZaloshandBajpai(>)

haverecentlyconducted hydrogenflamaability teststodetermine theeffectofwaterfoggingonthehydrogenlowerflammability limit.Inthetests,theminimumfoginertingconcentra-tionsforvariousvolumemeandropsizesandtpdrogenconcentrations weremeasured.

Itwasfoundthatan8volpercenthydrogenmixturecouldbeinertedathighfogconcentration.

Fogformation mayalsohavebeenresponsible forfailureofthetwoLawrenceLivermore tests(2)athighsteamconcentrations to'gnitetpdrogenduringthetestvesselcool-down period.Thecapability offogdropletsin.,inhibiting combustion orquenching flamesisduetotheirheatabsorbing capability

-highheatofvapor-izationandsmalldropsizes(ontheorderof10p).Duetothesmalldropsizes,fogdropletscouldvaporizerapidly(ontheorderofmili-seconds)withinapropagating flamefront("Immthick).Ifasub-stantialamountofthesedropletsarepresent,theflamemaybequenched.

Thecriticaldropletdiameterforquenching ahydrogenflamehasbeenestimated bySandiaNationalLaboratories(>).

Itwasassumedthatthemeasured"quenching distance" forahydrogenflamepropagating througha2693/:I

tubeorbetweenplatescouldbeusedforfogdroplets.

Thismodeldoesnotconsiderheattransferandcombustion occurring betweentheburnedgasandthesuspended droplets.

Thispaperpresentsafoginertingcriterion thatspecifies thenecessary foggingconditions, i.e.,fogconcentration anddropsize,forinertingahydrogen/air mixture.2.FOGINERTINGCRITERIARecenthydrogenburnexperiments(2) conducted atLawrenceLivermore Laboratory indicated thatsubstantial fogformation couldoccurwhensaturated steamisdischarged intoanunheatedvessel.Itappearedthatthisfogprevented aglowplugigniterfromsuccessfully ignitingthehydrogenmixtureinthevessel.Theabilityoffogininhibiting andquenching ahydrogencombustion canbeexplained asfollows.Thefogdropletssuspended inthehydrogen-air-steam mixtureactasaheatsinkthatcouldabsorbalargeamountofcombustion heatbyvaporization, greatlyreducingthepressureandtemperature risesresulting fromhydrogencombustion.

Ifdropletsaresufficiently smallsuchthattheycouldvaporizeinsidethethin(1mm)flamefront,theflamemaybequenchedorinhibited.

Foraflamespeedof2m/s,thedropresidence timeisoftheorderof0.5x1Q-3seconds.(3)

Insuchashortperiodoftime,thedropletsofinitialradiuslessthanabout4pwillvaporizeentirelyintheflam'efront.Thequenching ofapropagating flameisalsogovernedbythedistancebetweendroplets.

Asthedropletsbecomecloselypacked,thetota1dropletsurfaceareaavailable forenergylossincreases.

Acriticalspacingbetweendropletsexistssuchthatalargefractionoftheheatreleasedisabsorbed, Thuspreventing

.flamepropagation.

Thiscriticalspacingisknownasthe"quenching distance",

whichisusuallydetermined bypropagating flamesintubes.2.1PREVIOUSMORKTheeffectiveness offogdropletsininhibiting orquenching aflamedependsonitsquenching

distance, whichwasdetermined byBermanetal.(3)asq=L4V/Sjcrit whereVisthegasvolumeandSistheheattransfersurfacearea.Inthesuspended fogdroplets, thisvolume-to-surface ratio(i.e.,V/S)isequaltod(1-n)/6q, wheredisthemeandropletdiameterandqisthevolumefractionofthedroplets.

Mhenfourtimesthisratioapproaches thequenching

distance, acriticaldropletdiametercanbeobtainedasndc=Y~q(2)2693':I Usingthequenching distancedataforagivenvolumefractionofwaterandgascomposition, thecriticaldropletdiametercanbedetermined fromEquation(2).Thedropsizeslessthanthecriticaldropsizearecapableofquenching aflame.2.2PRESENTTHEORYTheprevioustheoriesdonotmodeltheheattransferandcombustion processes occurring betweentheburned'gasandthesuspended droplets.

Anewtheoryhasbeendeveloped, whichmodelstheheatlossandcombustion withinathinflamefront.1+.K!plwhereeiConsiderahydrogen/air/steam/mist dropletsmixtureinwhichaflameispropagating.

Theflamemaybedividedintothreezones:heatingzone,reactionzone,andpost-reaction zoneasshowninFigure1.Theunburnedgasattemperature TumovesinthereactionzonewiththelaminarburningvelocitySu.Iftheunburnedgasdensityispu,thentheconstantmassflowratemisequaltopuSu.Theunburnedgasisheatedtoignitiontemperature Tiandburnedinthereactionzonetoreachtheflametemperature Tf.Thefogdropletswillactasaheatsinkthatreducestheflametemperature.

Theproblemhasbeenformulated andsolvedbyvonKarmani4).

Inhisformulation, threeenergyequations, whichincorporate theheatlossterms,werewrittenforthethreezonesdescribed above.Thesolutiontotheseequations yieldsthefollowing relationship 2KG.1-exp(-~p)(Y-Yf)x'ft(3)Ll+1+(4K/)]x1-uC(Ti-T)/qpiuKei(S/C')e.p1,theratioofheatlossrateperunitvolumeto'theheatreleaserateby'chemical reactionperunitvolumeheatofcombustion Cmeanspecificheatmeanheatconductivity reactionrate(massoffuelconsumedper:unittimeperunitvolume)II2693/:I

hydrogenmassfractionintheheatingzone"f=hydrogenmassfractioninthereactionzone>uSuAplotofEq.(3)isshowninFigure2.Itisseenthatforagiven<oi,thereisaminimumvalueof(Yu-Yf1/ei.Belowthisminimumvalue,thereisnosolutionforthee;.Therefore, thisvalueisconsidered astheflamsability limit.Attheflamsability limit,thevalueofKelcanbedetermined fromFigure2orfromEq.3as(K)ite.=f((Yfei\sAplotof(K)criteiasafunctionof(Yu-Yf)/eiisshowninFigure3.Equation4maybeexpressed as2ufY-YqpuSu(Yu-Yf)fe;d-212i(TiTu)(4)(5)Detailedderivation procedure forEq.(5)isgiveninAppendixA.UsingthedataonSufromReference (5)wecancalculate therighthandsideofEq.(5)foragivencomposition andinitialgastemperature.

3-VERIFICATION OFTHEORIESBYEXPERIMENTS Experiments havebeenconducted atfactoryMutualtostudytheeffectsofwaterfogdensity,dropletdiameter, andtemperature onthelowerflaranability limitofhydrogen-air-steam mixtures(2).

Theresultsindicated thatmostofthefognozzlestestedat20Conlychangedthelimitfrom4.03volumepercentto4.76percent,corresponding tofogconcentration intherangeof0.028-0.085 volumepercent,andvolumemeandropsizerangingfrom45-90microns.Forthe50Ccase,thelowerflammability limitincreases to7.2percent,corresponding to0.01-0.04 volumepercentoffogand20-50micronvolumemeandropsizes.Theresultsdemonstrated thatthefoginertingeffectismorepronounced atreduceddropsizesandincreased temperature.

Figures4through6showthecomparison betweenthetestdataandthetheoretical predictions.

Forthiscomp'arison, thepresenttheoryusedthefreestreamtemperature tocalculate thethermodynamic properties usedinEquation(5).Thisyieldedsomewhathigherfogconcentrations thanthosecalculated byuseofthemeanoftheflameandfreestreamtemperatures.

InFigures4and5,thedatasuggestsalinearrelation-shipbetweenthevolumeconcentration andvolumemeandropsizeonthelog-logplot.Italsosuggeststhattheminimumfoginertingconcentra-tionvariesapproximately withthesquareofthevolumemeandropsize.2693Q:I

Thepresenttheoryisingoodagreement withtheFactoryMutualdataat4.76percentH2;however,itoverpredicts theminimumfoginertingconcentration at7.2percentH2.Thecauseofthisdiscrepancy isstillunknown.Thediscrepancy maybecausedbytheuncertainty ofthedata.Thefollowing discussion supportsthisview.Thefogdropletsareverysmallandtheyvaporizeveryfastinaflame.Therefore, thefogdropletsbehaveassteamexceptfortheirlargerheatabsorption capability.

@henthefogdropletsvaporize, theyabsorbtheheatofvaporization whichismuchlargerthanthesteamsensibleheat.Typically, theheatofvaporization ofwaterisabout1000Btu/lbandtheaveragespecificheatofsteaminthetemperature rangeofinterestisabout0.48Btu/lb.Itiswellknownthatahydrogenflamecannotpropagate insteamhigherthanabout64percentinasteam-air mixture.At7.9percentH2,theadiabatic flametemperature isabout1240Fandtherefore theincreaseofthesteamsensibleheatisabout540Btu/lb.Consequently,.for thesameamountoffogdropletsandsteam,thefogdropletsheatabsorption capability isabout1.9timeshigher.Thismeansthatthefogconcentration whichisequivalent to22.1percentsteaminasteam-air mixtureiscapableofinerting7.9percentH2.Thisfoginertingvolumetric concentration wascalculated tobe1.61x10-4ft~H20/ft3mixfor7.9percentH2.Toinert7.2'ercent H2,aminimumfogconcentration of1.56x10-4ft3H20/ft3mix,equivalent toabout21.3percentsteaminasteam-air mixtureisrequired.

Theseestimates showthatthepresentpredictions arereasonable andconservative.

Theestimates areconsistent withFactoryMutualdataon7.9percentH2butnoton7.2percentH2-Itshouldbenotedthatintheteststhreefogconcentration measuring techniques wereused.Thesethreetechniques gavesubstantially dif-ferentresults.Thediscrepancy isatleastoneorderofmagnitude difference.

Thefogconcentration datapresented inFigures4through6wereobtainedfromoneofthetechniques.

Invie'woftheuncertainty ofthedata,caremustbeexercised inusingthemforfoginertinganalysispurposes.

Theyshouldbeusedinconjunction withthepresentfoginertingcriterion intheassessment offoginertingpotential intheicecondenser plants.Someuncertainty alsoexistsinthepresentfoginertingtheory.Themaximumuncertairity associated withtheunder-prediction oftheheatlossandtemperature dependence ofthethermo-physicalproperties isestimated tobe+63percent.4.SUMMARYAkDCONCLUSIOkS Afoginertingcriterion hasbeendeveloped topredicttheminimumfogconcentration requiredtoinertagivenhydrogenconcentration andvolumemeanfogdropsize.Thepresentfoginertingcriterion hasbeenshowntobeingeneralagreement withtheFactoryMutualtestdata.Thecriterion showsthattheminimumfoginertingconcentration varieswiththesquareofthevolumemeanfogdropsize.2693':I

ACKNOWLEDGMENTS Theauthorswishtoexpresstheirsinceregratitude toDrs.V.Srinivas, B.Lewis,andB.Karlovitz forassistance, suggestions, andhelpfuldiscussions, toMessrs.D.F.Paddleford, R.8ryan,F.G.Hudson,D.Renfro,andK.Shiuforvaluablecomments.

TheyalsowouldliketothankTYA,DukePower,andAEPforproviding thefinancial support.REFERENCES 1.R.G.ZaloshandS.N.Bajpai,"MaterFogInertingofHydrogen-AirMixtures,i",

EPRIProjectPreliminary Rpt.1932-1,September, 1981.2.B.Lowry,"Preliminary Results:AStudyofHydrogenIgniters, "ENN80-45, LawrenceLivermore NationalLaboratory, November17,1980.3.M.Berman,etal.,"Analysis off{ydrogen Mitigation forDegradedCoreAccidents intheSequoyahNuclearPowerPlant,"Sandiadraftreport,December1,1980.4.T.vonKarman,unpublished notes,1956.5.S.S.Tsai,andN.D.Liparulo, "FlameTemperature CriteriaTests,"acceptedforpresentation attheSecondInt.WorkshopontheImpactofHydrogenonMaterReactorSafety,Albuquerque, NewMexico,October3-7,1982.2693/:1

\>

APPEHDIXADERIYATIOH OFEQUATIOH(5)Thisappendixgivesdetailedprocedures toderiveEq.(5),startingfromEq.(4)<<)cr;t<;=f<<~u-~f)/oj)(4)wheretheratioofheat.lossrateperunitvolumetotheheatreleaseratebychemicalreactionperunitvolume,(K)crit,isdefinedasKcrit=S/Cpw(A-I)andtheratioofsensibleheattoheatofcombustion, ei,isdefinedase;=Cp(Ti-Tu)/q(A-2)ToarriveatEq.(5),itisnecessary toassumethatalltheheatlossisattributed toconvection heattransfertofogdropletsofonlyonedropsize.Underthisassumption, therateofheatlossperunitvolumeperdegree,S,maybee'xpressed asS=nxd2h(A-3)wheren=numberofdropsperunitvolumedvolumemeandropsizeh=heattransfercoefficient Itisfurtherassumedthattherelativevelocitybetweenthedropletsandthemixtureflowissosmallthatheattransfercoefficient, h,canbeapproximated bytheconduction limit.Infact,itcanbeshownthatforsmalldropsizes,convection andradiation areunimportant heattransfermechanisms atthedropsurface.Underthisassumption, Eq.(A-3)reducesto12'=~d(A-4)where7=meanheatconductivi tynvolumefractionofmistdroplets(-id)n362693Q:I Theofheatgeneration perunitvolume,w,isrelatedtothelaminarburingveloc>ty, Su,andthethickness ofthereactionzone,x,byS(Y-Yf)w=Thethickness ofthereactionzonemaybeapproximated bypSZ'A-6)

Combining Eqs.(A-l),(A-4),(A-5),and(A-6),wehave12',SZ(Yu-Yf)Substituting Eqs.(A-2)and(A-7)intoEq.(4),wehaveYu-Yfd127(T.-T)(Y-Y)f(u)1u1(5)Q.E.D.2693Q:1,B 4

FIGUREjSCHEMATIC REPRESENTATION OFTEMPERATURE PROFILETHROUGHTHEFLAMEFRONT0'd,a%5gsO3002.<~v~rV+iFIGURE2THEPARAMETER A.pASAFUNCTIONOF(Y-Y~)/e.FORDIFFERENT VALUESOFK9.

0.30.20.i3(Yu-Yfj/0/FIGURE3(K)8.ATTHEFLAMMABILITY LIMITASAFUNCTIONOF(Y-Yf)/8.cr)tiufi 2147310.175x2PlI-10-2P4I-5z0I-LL2IzO0103CJU0tL50SPRACO2163SPRACO1405-0604 QSPRAGO2020-1704 0SPRACO1806-1605 NON-FLAMMABLE ZONEBERMANETAL.THEORYPRESENTTHEORYFLAMMABLE ZONE10410100200VOLUMEMEANDIAMETER(MICRONS)

Figure4.Comparison betweenTheoriesandFactoryMutuaiFoginertingExperiments on4.76PercentH2 2147.$0SPRACO2163-7604 DSPRACO2020-1704 QSONICORE035HX0C4FlI-ROI-lEI-RLuORO2C9OVNON-FLAMMABLE'ONEPRESENTTHEORYFLAMMABLE ZONE7.2%H2INAIRAT-50C102030405060708090100VOLUMEMEANDIAMETER(MICRONS)

Figure5.Comparison betweenthePresentTheoryandFactoryMutualFoglnertingExperiments on7.2PercentH2 V

2147.1NON-FLAMMABLE ZONEx5X1030xR10-3I-I-zRo5X10.40OU0PRESENTTHEORYFLAMMABLE ZONE6FACTORYMUTUALDATAON7.9%H2INAIR10450100VOLUMEMEANDIAMETER(MICRONS) 1000Figure6.Comparison betweenthePresentTheoryandFactoryMutualFogtnertingExperiments on7.9PercentH213

,~