ML071580366: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
 
(StriderTol Bot change)
 
(3 intermediate revisions by the same user not shown)
Line 3: Line 3:
| issue date = 09/10/2004
| issue date = 09/10/2004
| title = Calculation H21C-097, Rev 0, Post-LOCA Suppression Pool Ph Analysis.
| title = Calculation H21C-097, Rev 0, Post-LOCA Suppression Pool Ph Analysis.
| author name = Johnson W J, Kopke H R, Peterson R J
| author name = Johnson W, Kopke H, Peterson R
| author affiliation = Engineering Services Co
| author affiliation = Engineering Services Co
| addressee name =  
| addressee name =  
Line 16: Line 16:


=Text=
=Text=
{{#Wiki_filter:Nine Mile Point Unit 2 Alternative Source Term Calculation H21C-097"Post-LOCA Suppression Pool pH Analysis"  
{{#Wiki_filter:Nine Mile Point Unit 2 Alternative Source Term Calculation H21C-097 "Post-LOCA Suppression Pool pH Analysis"
: 1. .j ,.Project: NINE MILE POINT.NUCLEAR STATION. Unit (1, 2 or 0=Both): 2 Discipline:
: 1.   .j             ,.
MECHANICAL
Project: NINE MILE POINT.NUCLEAR STATION.                 Unit (1, 2 or 0=Both): 2             Discipline:     MECHANICAL
[Title Calculation No.POST-LOCA SUPPRESSION POOL.PH ANALYSIS H21C-097 (Sub)system(s)
[Title                                                                     Calculation No.
Building Floor Elev. Index No.N/A CONT N/A N/A[Originator(s)
POST-LOCA SUPPRESSION POOL.PH ANALYSIS                                   H21C-097 (Sub)system(s)         Building             Floor Elev.         Index No.
S A..-...-, 9-go4 r 7.i1-t4 JERI Q~ PENROSE S&L I HELMUT R. KOPKE S&L (INPUT)#9 Reviewer(s)
N/A                   CONT                 N/A                 N/A
I Approver(s)  
[Originator(s)       S                                               A..-...-,     9-go4               r       7.i1-t4 JERI Q~ PENROSE S&L I HELMUT R. KOPKE S&L (INPUT)#9 Reviewer(s) I Approver(s)                             /eJ,,...J.. "'-/.-D tA I
/eJ,,...J..  
{
"'-/.-D tA M. B. COOPER S&L, D. J. FEINGOLD S&L (CHEM) , W. J.'39HNSON S&L (RAD),I R. J. PETERSON S&L (APPROVER)I fOV. ' ----v-- p I RtatV*.o 60o/% 1.T, fe,-l.DER, or Preg0o Rev Descriotion Chan. No. D Date Reviewed By tjmpip.~r Oc~Ai/-~o--- -. ... .. ...__ _*.. ...0 INITIAL ISSUE { A/t4 JCP q-,o-c4 MBC UjiRJOL P ,RJP Computer Output/Microfilm Filed Separately (Yes I No I NA): No Safety Class (SR / NSRI Qxx) : SR Superseded Document(s):
M. B. COOPER S&L, D. J. FEINGOLD S&L (CHEM) , W. J.'39HNSON S&L (RAD),I R. J. PETERSON S&L (APPROVER)I- fOV.                           --- v-- '      p 1
NONE, Document Cross Reference(s)  
RtatV*.o                   60o/%         .T,                   or      fe,-l.DER, Preg0o                             tjmpip.~r Oc~Ai/-~o Rev                  Descriotion                  Chan.D No.                      Date      Reviewed By
-For:additional references see page(s): p. 24-25 ORIGINAL Output provided?  
                          ---     ...           -.               ..                   __ . ..     _*..                           ...                     --T 0INITIAL ISSUE                           A/t4               JCP     q-,o-c4       MBC       UjiRJOL         ,RJPP Computer Output/Microfilm Filed Separately (Yes I No I NA): No                           Safety Class (SR / NSRI Qxx) : SR Superseded Document(s): NONE, Document Cross Reference(s) - For:additional references see page(s): p. 24-25 Output provided? : No                 If yes, group(s) *     .
: No If yes, group(s) * .(YIN)Ref Doc No Document No. Ty Index Sheet Rev Si/5 Pw~2, .2 el-.2-r 'General Reference(s):
ORIGINAL (YIN)
See Section 7.0 of this calculation (p. '24-25).--T Remarks: The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the following items: correctness of math for manually prepared calculations, appropriateness of Input data, appropriateness of assumptions and appropriateness of the calculation method.Confirmation Required (Yes I No): *e& No, Final Issue Status: Turnover Requirpd See Page(s) :* j~nI -/I ý( Yes I N/A t0CFR50.59 Evaluation Number(s):
Ref                                                                                           Doc No                                       Document No.                                         Ty             Index         Sheet           Rev Si/5 Pw~2,       .2 el-.2-r         '
N/A Component ID(s) (As shown in MEL): Copy of Applicability Determination or 50.59 Screen N/A Attached?
General Reference(s):
Yes [I No [Key Words : POST-LOCA, SUPPRESSION POOL, PH, ALTERNATE SOURCE TERM, AST; STANDBY LIQUID CONTROL SYSTEM, SLCS NEP-DES-08 Rev 07 ENGINEERING SERVICES iCALCULATION ONTINUAON S EPage 2 2 l(Next Project: Nine Mile Point Nuclear Station Unit: .2 Disposition:
See Section 7.0 of this calculation (p. '24-25).
Originator/Date Reviewer/Date Cdalc-ulation NO. Revision J. C. Penrose /H. R. Koke M. B. Cooper I H21C-097 0 eef.TalTable of Contents Calculation Cover Sheet ...................................................
Remarks:
1 Table of Contents ...........  
The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the following items: correctness of math for manually prepared calculations, appropriateness of Input data, appropriateness of assumptions and appropriateness of the calculation method.
............................................................................................................
Confirmation Required (Yes I No): *e& No,               Final Issue Status:                               Turnover Requirpd See Page(s) :*                                         j~nI-     /I                                       ý( Yes I N/A t0CFR50.59 Evaluation Number(s): N/A                                     Component ID(s) (As shown in MEL):
2 1.0 P u p tose ........................................................................................................................................
Copy of Applicability Determination or 50.59 Screen                     N/A Attached? Yes [I No [
3 2.0 Methodology and Acceptance Criteria .............  
Key Words : POST-LOCA, SUPPRESSION POOL, PH, ALTERNATE SOURCE TERM, AST; STANDBY LIQUID CONTROL SYSTEM, SLCS NEP-DES-08 Rev 07
"....................................  
 
.............  
ENGINEERING SERVICES                         iCALCULATION ONTINUAON S                                                                 EPage                               2 l(Next Project: Nine Mile PointNuclear Station                                 Unit: .2                                                             Disposition:
.4 3.0 A ssum ptions ..........  
Originator/Date                               Reviewer/Date                                               Cdalc-ulation NO.                                           Revision J. C. Penrose /H. R. Koke                     M. B. Cooper                                             I H21C-097                                                         0 eef.
......... I..........................
TalTable                               of Contents Calculation Cover Sheet         ...................................................                                                                             1 Table of Contents ........... ............................................................................................................                       2 1.0       P u p tose........................................................................................................................................               3 2.0       Methodology and Acceptance Criteria ............. "....................................                                           ............. .4 3.0       Assum ptions . .................. I.......................... 2..........................................             ........... ............................. 6-4.0       Design Input .............................................................................................................................                       9 5.0.     Calculations ...........................................................................................................................                         13 6.0       Results ..............................................       .         ..................... .......................................................           24 7.0       References .........................................................................................................................                           25 Attachments Attachment 1: Determination of Reactor Core Inventories ...........................................                                               (15 pages)
2..........................................  
Attachment 2: Determination of Radiation Doses.................... ...................................... (7 pages)
... ........ .............................
Attachment 3: DIT-NM-NPEE-001, "Determination of Exposed Cables in the.
6-4.0 Design Input .............................................................................................................................
NMP2 Drywell" .......................................................... (29 pages)
9 5.0. Calculations  
Attachment 4: Calculations Determining Post-LOCA Suppression Pool pH ............ *.... (29 pages)
...........................................................................................................................
Attachment 5: Post-LOCA Suppression Pool pH Benchmark to Grand Gulf Nuclear Station (GGNS) ..................................... ..................... I........... (30 pages)
13 6.0 Results ..............................................  
Attachment 6: Design Verification Report .......................................................................                                       (1-page)
......................  
NEP-DES-08 Revw07
.......................................................
 
24 7.0 References  
'ENGINEERING SERVICES               ICALCULATIONCONTINUATIONSHEET                                    Page     3 I               .(Next Project: Nine Mile Point Nuclear Station               Unit: .2_                           Disposition:
.........................................................................................................................
Originator/Date                       Reviewer/Date                   Calculation No.                     Revision J. C. Penrose / H. R. Kopke           M. B. Cooper                     H21C-097                               0-Ref.
25 Attachments Attachment 1: Determination of Reactor Core Inventories  
1.0       Purpose The purpose of this calculation is to demonstrate that the pH of the suppression pool remains continuously above 7.0 following a Loss of Coolant Accident (LOCA) for the 30-day duration of
...........................................  
                .the. accident. Based on Section 6.5.2 of the Standard Review Plan, NUREG-0800 (Ref. 7.20),
(15 pages)Attachment 2: Determination of Radiation Doses....................  
long-term iodine retention may be assumed only when the equilibrium suppression pool pH. is above 7.0. The pH transient of the suppression pool is evaluated in this calculation to determine whether the uncontrolled suppression pool pH remains above 7.0. If not, the effect on final pH of adding sodium pentaborate to the suppression pool via the Standby Liquid Control System (SLCS) is subsequently determined to verify that the suppression pool pH can be maintained above 7.0.
......................................  
NEP-DES-08
(7 pages)Attachment 3: DIT-NM-NPEE-001, "Determination of Exposed Cables in the.NMP2 Drywell" ..........................................................  
                                                                                                                . Rev 07
(29 pages)Attachment 4: Calculations Determining Post-LOCA Suppression Pool pH ............  
 
* .... (29 pages)Attachment 5: Post-LOCA Suppression Pool pH Benchmark to Grand Gulf Nuclear Station (GGNS) .....................................  
ENGINEERING SERVICES               i-CALCULATION CONTINUATION SHEET.                                   Page     4 Project: Nine Mile Point Nuclear Station               Unit: 2                                 Disposition:
.....................
Originator/Date                       Reviewer/Date                     Calculation No.                     Revision J. C. Penrose / H. R. Kopke           M. B. Cooper                       H21 C-097                               0 ef.
I ...........  
2.0       Methodology and Acceptance Criteria 2.1       Methodology The suppression pool pH is calculated using the methodology described in NUREG/CR-5950 and in Grand Gulf Nuclear Station Engineering Report GGNS-98-0039. Grand Gulf was one of the NRC's Alternate Source Term pilot plants.
(30 pages)Attachment 6: Design Verification Report .......................................................................  
This methodology considers the addition of the following acids and bases to the post-LOCA suppression pool in the pH calculation:
(1 -page)NEP-DES-08 Revw07  
: 1. Carbon Dioxide - Carbon dioxide is absorbed from the air to form the weak acid carbonic acid. This acid can reduce pH to a limiting value of approximately 5.65 (Ref. 7.13, §2.2.3) and is bounded in the initial condition selected for the suppression pool pH. Therefore, carbonic acid is not explicitly computed -but is accounted for in the pH calculation.
'ENGINEERING SERVICES I CALCULATIONCONTINUATIONSHEET Page 3 I .(Next Project: Nine Mile Point Nuclear Station Unit: .2_ Disposition:
: 2. Hydriodic Acid - Hydrioclic acid is produced by the release of iodine from the reactor core as fuel failure occurs. Hydriodic acid is added to the suppression pool during the Gap Release Phase and during.the Early In-Vessel Phase only. This occurs for a two-hour period at the beginning of the LOCA per Regulatory Guide 1.183 (Ref. 7.10.2).
Originator/Date Reviewer/Date Calculation No. Revision J. C. Penrose / H. R. Kopke M. B. Cooper H21C-097 0-Ref.1.0 Purpose The purpose of this calculation is to demonstrate that the pH of the suppression pool remains continuously above 7.0 following a Loss of Coolant Accident (LOCA) for the 30-day duration of.the. accident.
: 3. Cesium Hydroxide - Cesium hydroxide is produced by the release of cesium from the reactor core as fuel failure occurs. Cesium hydroxide is added to the suppression pool during the Gap Release Phase and during the Early In-Vessel Phase only. This occurs for a two-hour period at the beginning of the LOCA per Regulatory Guide 1.183 (Ref. 7.10.2).
Based on Section 6.5.2 of the Standard Review Plan, NUREG-0800 (Ref. 7.20), long-term iodine retention may be assumed only when the equilibrium suppression pool pH. is above 7.0. The pH transient of the suppression pool is evaluated in this calculation to determine whether the uncontrolled suppression pool pH remains above 7.0. If not, the effect on final pH of adding sodium pentaborate to the suppression pool via the Standby Liquid Control System (SLCS) is subsequently determined to verify that the suppression pool pH can be maintained above 7.0.NEP-DES-08
: 4. Nitric Acid - Nitric acid is produced by irradiation of water and. air during the LOCA. Nitric acid is added to the suppression pool continuously during the LOCA.
.Rev 07 ENGINEERING SERVICES i-CALCULATION CONTINUATION SHEET .Page 4 Project: Nine Mile Point Nuclear Station Unit: 2 Disposition:
: 5. Hydrochloric Acid - Hydrochloric acid is produced by radiolysis of chlorine-bearing electrical insulation/jacketing during a LOCA. Only electrical cable exposed to free air or in cable trays is considered. Hydrogen chloride formed from cable enclosed in conduit or enclosures will be contained in the conduit or enclosure and will not be available to form acid in the suppression pool. Hydrochloric acid is added to the suppression pool continuously during the LOCA. Hydrochloric acid can also be produced by pyrolysis of chlorine-bearing electrical insulation/jacketing at temperatures near 5720 F (Ref. 7.13, §2.2.5.3); however, since post-LOCA containment temperatures are much lower than this, pyrolysis is not considered herein.
Originator/Date Reviewer/Date Calculation No. Revision J. C. Penrose / H. R. Kopke M. B. Cooper H21 C-097 0 ef.2.0 Methodology and Acceptance Criteria 2.1 Methodology The suppression pool pH is calculated using the methodology described in NUREG/CR-5950 and in Grand Gulf Nuclear Station Engineering Report GGNS-98-0039.
: 6. Concrete Core Aerosols - Per NUREG/CR-5950 (Ref. 7.13, §2.3.2), aerosols from limestone concrete will contain the basic oxides CaO, Na20, and K20. However, the aerosols are produced from the interaction of a molten core with concrete and, per SECY-94-302 (Ref.
Grand Gulf was one of the NRC's Alternate Source Term pilot plants.This methodology considers the addition of the following acids and bases to the post-LOCA suppression pool in the pH calculation:
7.21), core damage can be assumed to cease after the Early In-Vessel Phase. Therefore, concrete core aerosols are not considered in this calculation.
: 1. Carbon Dioxide -Carbon dioxide is absorbed from the air to form the weak acid carbonic acid. This acid can reduce pH to a limiting value of approximately 5.65 (Ref. 7.13, §2.2.3)and is bounded in the initial condition selected for the suppression pool pH. Therefore, carbonic acid is not explicitly computed -but is accounted for in the pH calculation.
The acids and bases are combined in the suppression pool and the resulting pH transient response is calculated for a 30-day period. This pH is the unbuffered suppression pool pH.
: 2. Hydriodic Acid -Hydrioclic acid is produced by the release of iodine from the reactor core as fuel failure occurs. Hydriodic acid is added to the suppression pool during the Gap Release Phase and during.the Early In-Vessel Phase only. This occurs for a two-hour period at the beginning of the LOCA per Regulatory Guide 1.183 (Ref. 7.10.2).3. Cesium Hydroxide  
NEP-DES-08 Rev 07
-Cesium hydroxide is produced by the release of cesium from the reactor core as fuel failure occurs. Cesium hydroxide is added to the suppression pool during the Gap Release Phase and during the Early In-Vessel Phase only. This occurs for a two-hour period at the beginning of the LOCA per Regulatory Guide 1.183 (Ref. 7.10.2).4. Nitric Acid -Nitric acid is produced by irradiation of water and. air during the LOCA. Nitric acid is added to the suppression pool continuously during the LOCA.5. Hydrochloric Acid -Hydrochloric acid is produced by radiolysis of chlorine-bearing electrical insulation/jacketing during a LOCA. Only electrical cable exposed to free air or in cable trays is considered.
 
Hydrogen chloride formed from cable enclosed in conduit or enclosures will be contained in the conduit or enclosure and will not be available to form acid in the suppression pool. Hydrochloric acid is added to the suppression pool continuously during the LOCA. Hydrochloric acid can also be produced by pyrolysis of chlorine-bearing electrical insulation/jacketing at temperatures near 572 0 F (Ref. 7.13, §2.2.5.3);
ENGINEERING     SERVICES             CALCULATION CONTINUATION SHEET                                     Page     5 Project: Nine Mile Point Nuclear Station             Unit:   .2                                 Disposition:
however, since post-LOCA containment temperatures are much lower than this, pyrolysis is not considered herein.6. Concrete Core Aerosols -Per NUREG/CR-5950 (Ref. 7.13, §2.3.2), aerosols from limestone concrete will contain the basic oxides CaO, Na 2 0, and K 2 0. However, the aerosols are produced from the interaction of a molten core with concrete and, per SECY-94-302 (Ref.7.21), core damage can be assumed to cease after the Early In-Vessel Phase. Therefore, concrete core aerosols are not considered in this calculation.
Originator/Date                   . ; Reviewer/Date                       Calculation No.
The acids and bases are combined in the suppression pool and the resulting pH transient response is calculated for a 30-day period. This pH is the unbuffered suppression pool pH.NEP-DES-08 Rev 07 ENGINEERING SERVICES CALCULATION CONTINUATION SHEET Page 5 Project: Nine Mile Point Nuclear Station Unit: .2 Disposition:
H21C-097                                  0 Revision J. C*. Penrose / H. R. Kopke         M.B. Cooper Ref.
Originator/Date  
A final pH after 30:days is then recalculated considering the addition of sodium pentaborate from the SLCS. This irnjection is manually initiated, so the pH transient is subject to the timing of the injection. Since only acids are added to the suppression pool after the initial two-hour release of cesium hydroxide, the final pH is the lowest pH that will be attained in the pool.
.; Reviewer/Date Calculation No. Revision J. C*. Penrose / H. R. Kopke M. B. Cooper H21C-097 0 Ref.A final pH after 30:days is then recalculated considering the addition of sodium pentaborate from the SLCS. This irnjection is manually initiated, so the pH transient is subject to the timing of the injection.
2.2       Computer Programs The analysis performed herein utilizes Microsoft Excel (Ref. 7.1), which is commercially available. The validation of Excel is implicit in the detailed review of all spreadsheets used in this analysis. All computer runs were performed using PC No. 9098 under the Windows NT operating system.:
Since only acids are added to the suppression pool after the initial two-hour release of cesium hydroxide, the final pH is the lowest pH that will be attained in the pool.2.2 Computer Programs The analysis performed herein utilizes Microsoft Excel (Ref. 7.1), which is commercially available.
2.3       Acceptance Criteria The acceptance criterion is that the suppression pool pH is at or above 7.0 for the 30-day period of the LOCA so that iodine re-evolution is not a source term.
The validation of Excel is implicit in the detailed review of all spreadsheets used in this analysis.
-A.
All computer runs were performed using PC No. 9098 under the Windows NT operating system.: 2.3 Acceptance Criteria The acceptance criterion is that the suppression pool pH is at or above 7.0 for the 30-day period of the LOCA so that iodine re-evolution is not a source term.-A.NEP-DES-08 Rev'07 ENGINEERING SERVICES .CALCULATION CONTINUATION SHEET'. Page 6 (Next Project: Nine Mile Point Nuclear Station Unit: 2 Disposition:
NEP-DES-08 Rev'07
Originator/Date Reviewer/Date Calculation No. Revision J. C. Penrose / H. R. Kopke M. B. Cooper H21C-097 0 Ref.3.0 Assumptions I 3.1 The maximum post-LOCA suppression pool volume is used in this calculation.
 
This is conservative for the following reasons: The concentration of nitric acid is based on the suppression pool submersion gamma TID values from Reference 7.6.3, which are based on a dilution volume which is smaller than the maximum suppression pool Volume used herein (see Attachment 2). Therefore, -the concentration of nitric acid, which is the main contributor to the acidity of the post-LOCA suppression pool (see Attachment 4, Table 4-1), is conservatively over-estimated when the maximum suppression pool volume is used. This conservatively minimizes the post-LOCA suppression pool pH. The over-estimation is a direct result of not reducing the submersion gamma TID to account for the suppression pool volume that is larger than the dilution volume upon which the TID is based.A larger suppression pool volume would result in lower Concentrations of hydriodic acid and hydrochloric acid, as well as cesium hydroxide.
ENGINEERING SERVICES                 . CALCULATION CONTINUATION SHEET'.                           Page     6 (Next Project:Nine Mile Point Nuclear Station                 Unit: 2                           Disposition:
However, since the contribution of cesium hydroxide to ;the post-LOCA suppression pool is orders of magnitude larger than the contributions of both hydriodic and hydrochloric acid (see concentrations in Table 4-1 of Attachment 4), a more dilute solution in which the cesium hydroxide concentration is lowest is conservative for minimizing the post-LOCA suppression pool pH.Thus, use of the maximum post-LOCA suppression pool volume will result in the minimum post-LOCA suppression pool pH.3.2 The reduction in. RCS/suppression pool mass due to steam addition to the post-LOCA containment is conservatively neglected.
Originator/Date                         Reviewer/Date                 Calculation No.                   Revision J. C. Penrose / H. R. Kopke             M. B. Cooper                   H21C-097                               0 Ref.
As discussed in Assumption 3.1, use of the maximum suppression pool mass is conservative.
3.0       Assumptions         I 3.1       The maximum post-LOCA suppression pool volume is used in this calculation.                 This is conservative for the following reasons:
3.3 The initial pH in the suppression pool and in the Reactor Coolant System is assumed to be at the minimum value, 5.3, expected during normal operation.
The concentration of nitric acid is based on the suppression pool submersion gamma TID values from Reference 7.6.3, which are based on a dilution volume which is smaller than the maximum suppression pool Volume used herein (see Attachment 2). Therefore, -the concentration of nitric acid, which is the main contributor to the acidity of the post-LOCA suppression pool (see Attachment 4, Table 4-1), is conservatively over-estimated when the maximum suppression pool volume is used. This conservatively minimizes the post-LOCA suppression pool pH. The over-estimation is a direct result of not reducing the submersion gamma TID to account for the suppression pool volume that is larger than the dilution volume upon which the TID is based.
Although the RCS generally operates at a minimum pH of 5.6, this assumption is conservative because it leads to the lowest calculated pH.3.4 The suppression pool is assumed to be sufficiently mixed so a single pH adequately represents the pool contents.
A larger suppression pool volume would result in lower Concentrations of hydriodic acid and hydrochloric acid, as well as cesium hydroxide. However, since the contribution of cesium hydroxide to ;the post-LOCA suppression pool is orders of magnitude larger than the contributions of both hydriodic and hydrochloric acid (see concentrations in Table 4-1 of Attachment 4), a more dilute solution in which the cesium hydroxide concentration is lowest is conservative for minimizing the post-LOCA suppression pool pH.
Per Design Input 4.14, there are a minimum of 0.3 complete exchanges of water in the suppression pool per hour. This is judged to provide adequate mixing.3.5 The Cesium-133 reactor core inventory is conservatively not included in this analysis.
Thus, use of the maximum post-LOCA suppression pool volume will result in the minimum post-LOCA suppression pool pH.
Cesium-133 would form. additional cesium hydroxide in the suppression pool, increasing the pH.Exclusion of this stable isotope of cesium leads to a lower suppression pool pH. Also note that the stable nuclide inventory for NMP U2 is not provided in Reference 7.7. However, Reference 7.7 does include products from the activation of Cs-133 such as Cs-134, which is included in this calculation (see Attachment 1, Tables 1-2 and 1-4).NEP-DES-08 Rev 07 ENGINEERING SERVICES :CALCULATION:CONTINUATIONSHEET Page 7 (Next Project: Nine Mile Point Nuclear Station Unit: 2. Disposition:
3.2       The reduction in. RCS/suppression pool mass due to steam addition to the post-LOCA containment is conservatively neglected. As discussed in Assumption 3.1, use of the maximum suppression pool mass is conservative.
Originator/Date Reviewer/Date Calculation No. Revision J C. Penrose/ H. R. Kopke M. B. Cooper H21C-097 0 Ref.3.6 Since*Reference 7.7 does not provide the reactor core inventory of stable isotopes, it is assumed that the'quantity of Iodine-127 is 30% of the quantity of Iodine-129.
3.3       The initial pH in the suppression pool and in the Reactor Coolant System is assumed to be at the minimum value, 5.3, expected during normal operation. Although the RCS generally operates at a minimum pH of 5.6, this assumption is conservative because it leads to the lowest calculated pH.
Based on the cumulative fission yields presented in Reference 7.26 for thermal neutron fission of U 2 3, U 2 M, PuM, and Pu 2 4 1 , this value is, greater than will actually occur in the reactor core. The ratio of Iodine-127 to Iodine-129 is computed in the table below based on Reference 7.26. Note that U 2 3 does not undergo thermal neutron fission. -U235 Fission Pu239 Fission Pu24' Fission% Cumulative Yield 1-1271" 0.137 0:46 0.25% Cumulative Yield 1-129l') 1.0 1.7 1.02 nH 1 2 7/ni-1 2 9 [= %1-12^/%1129 13.7% 27.1% 24.5%1) Recommended.
3.4       The suppression pool is assumed to be sufficiently mixed so a single pH adequately represents the pool contents. Per Design Input 4.14, there are a minimum of 0.3 complete exchanges of water in the suppression pool per hour. This is judged to provide adequate mixing.
values from Reference 7.26 used herein.Since iodine contributes to the post-LOCA suppression pool acidity, this assumption is conservative as it bounds the actual amount of Iodine-127 which may be in the reactor core.3.7 It is conservatively assumed that 5% of the iodine released into containment produces hydriodic acid. Per Regulatory Guide 1.183 (Ref. 7.10.2), 95% of the iodine released from the RCS is in the form of cesium iodide (Csl), 4.85% is in the form of elemental iodine, and 0.15% is in the form of organic iodide. NUREG-1465 (Ref. 7.14) indicates that at least 95% of the iodine entering containment from the RCS is in the form of cesium iodide with no more than 5% as I plus HI. Therefore, for this calculation, it is conservatively assumed that the combined I plus HI quantity is the maximum 5% in order to maximize the acid contribution from iodine to the Suppression Pool.3.8 Radiation dose calculations for gamma and beta total integrated dose (TID) in the drywell used as input are assumed to apply at electrical cable surfaces.
3.5       The Cesium-133 reactor core inventory is conservatively not included in this analysis. Cesium-133 would form. additional cesium hydroxide in the suppression pool, increasing the pH.
If attenuation of air was not taken into account in the TID calculations (Ref. 7.6.2/7.6.3), this assumption is conservative in that it uses a higher radiation flux and computes a higher hydrochloric acid production rate. If attenuation of air was taken into :account in the TID calculations (Ref. 7.6.2/7.6.3), this assumption is moot.3.9 The available G value for hydrochloric acid generation in electrical cable jacketing was developed based on material (Hypalon) with a variable chlorine content. The chlorine content of this material can be higher than the 16+2% chlorine content of the electrical cable jacket material, Chlorosulfonated Polyethylene (CSPE), specified at NMP Unit 2 (see description in NUREG/CR-5950, Ref. 7.13). Use of the available G value is conservative because the application of G involves only the mass of the cable and not the chlorine content; therefore, use of a G value for a higher chlorine content material leads to a higher hydrochloric acid production rate.3.10 The amount of sodium pentaborate added to the suppression pool as a buffer is conservatively assumed to be the minimum mass contained by the SLCS injection tank.3.11 Hydrogen ion activity coefficients are ignored when calculating the pH of the suppression pool.Because the suppression pool is initially filled with demineralized water, the ionic strength is low and any deviation from ideality is negligible for purposes of this calculation.
Exclusion of this stable isotope of cesium leads to a lower suppression pool pH. Also note that the stable nuclide inventory for NMP U2 is not provided in Reference 7.7. However, Reference 7.7 does include products from the activation of Cs-133 such as Cs-134, which is included in this calculation (see Attachment 1, Tables 1-2 and 1-4).
NEP-DES-08 Rev 07 FENGINEERING SERVICES f CALCULATION CONTINUATION SHEET Page 8 I (Next Project: Nine Mile Point Nuclear, Station Unit: 2 Disposition:
NEP-DES-08 Rev 07
Originator/Date Reviewer/Date Calculation No. Revision J. C. Penrose / H. R. Kopke M. B. Cooper H21C-097 0 Ref.3.12 The contribution ofthe ethylene propylene rubber (EPR) cable insulation to the hydrochloric acid production is corsidered negligible.
 
This assumption is acceptable, particularly when considering Assumption 3.9, since the EPR cable insulation contains less than 1% chlorine by weight (Ref. 7.19)., 3.13 The gamma radiation dose used herein is increased by 5% to account for bremsstrahlung.
ENGINEERING SERVICES                   :CALCULATION:CONTINUATIONSHEET                                   Page     7 (Next Project:Nine Mile Point Nuclear Station                   Unit:   2.                           Disposition:
This conservative increase is justified as follows: The fraction of beta energy that is converted to bremsstrahlung (or gamma radiation) is estimated using the equation (Ref. 7.24, p. 110): Fraction = k
Originator/Date                             Reviewer/Date                   Calculation No.                   Revision J C. Penrose/ H. R. Kopke                   M. B. Cooper                     H21C-097                               0 Ref.
3.6       Since*Reference 7.7 does not provide the reactor core inventory of stable isotopes, it is assumed that the'quantity of Iodine-127 is 30% of the quantity of Iodine-129. Based on the cumulative fission yields presented in Reference 7.26 for thermal neutron fission of U23, U2M, PuM, and Pu 241, this value is, greater than will actually occur in the reactor core. The ratio of Iodine-127 to Iodine-129 is computed in the table below based on Reference 7.26. Note that U23 does not undergo thermal neutron fission. -
U235 Fission         Pu239 Fission       Pu24' Fission
                  % Cumulative Yield 1-1271"                 0.137                   0:46               0.25
                  % Cumulative Yield 1-129l')                   1.0                     1.7               1.02 nH1 27/ni- 129 [= %1-12^/%1129             13.7%                 27.1%             24.5%
: 1) Recommended. values from Reference 7.26 used herein.
Since iodine contributes to the post-LOCA suppression pool acidity, this assumption is conservative as it bounds the actual amount of Iodine-127 which may be in the reactor core.
3.7       It is conservatively assumed that 5% of the iodine released into containment produces hydriodic acid. Per Regulatory Guide 1.183 (Ref. 7.10.2), 95% of the iodine released from the RCS is in the form of cesium iodide (Csl), 4.85% is in the form of elemental iodine, and 0.15% is in the form of organic iodide. NUREG-1465 (Ref. 7.14) indicates that at least 95% of the iodine entering containment from the RCS is in the form of cesium iodide with no more than 5% as I plus HI. Therefore, for this calculation, it is conservatively assumed that the combined I plus HI quantity is the maximum 5% in order to maximize the acid contribution from iodine to the Suppression Pool.
3.8       Radiation dose calculations for gamma and beta total integrated dose (TID) in the drywell used as input are assumed to apply at electrical cable surfaces. If attenuation of air was not taken into account in the TID calculations (Ref. 7.6.2/7.6.3), this assumption is conservative in that it uses a higher radiation flux and computes a higher hydrochloric acid production rate. If attenuation of air was taken into :account in the TID calculations (Ref. 7.6.2/7.6.3), this assumption is moot.
3.9       The available G value for hydrochloric acid generation in electrical cable jacketing was developed based on material (Hypalon) with a variable chlorine content. The chlorine content of this material can be higher than the 16+2% chlorine content of the electrical cable jacket material, Chlorosulfonated Polyethylene (CSPE), specified at NMP Unit 2 (see description in NUREG/CR-5950, Ref. 7.13). Use of the available G value is conservative because the application of G involves only the mass of the cable and not the chlorine content; therefore, use of a G value for a higher chlorine content material leads to a higher hydrochloric acid production rate.
3.10     The amount of sodium pentaborate added to the suppression pool as a buffer is conservatively assumed to be the minimum mass contained by the SLCS injection tank.
3.11     Hydrogen ion activity coefficients are ignored when calculating the pH of the suppression pool.
Because the suppression pool is initially filled with demineralized water, the ionic strength is low and any deviation from ideality is negligible for purposes of this calculation.
NEP-DES-08 Rev 07
 
FENGINEERING     SERVICES             f CALCULATION CONTINUATION SHEET I
Page (Next 8
Project:Nine Mile Point Nuclear,Station               Unit:   2                             Disposition:
Originator/Date                       Reviewer/Date                     Calculation No.                     Revision J. C. Penrose / H. R. Kopke           M. B. Cooper                       H21C-097                               0 Ref.
3.12     The contribution ofthe ethylene propylene rubber (EPR) cable insulation to the hydrochloric acid production is corsidered negligible. This assumption is acceptable, particularly when considering Assumption 3.9, since the EPR cable insulation contains less than 1% chlorine by weight (Ref. 7.19).,
3.13     The gamma radiation dose used herein is increased by 5% to account for bremsstrahlung. This conservative increase is justified as follows:
The fraction of beta energy that is converted to bremsstrahlung (or gamma radiation) is estimated using the equation (Ref. 7.24, p. 110):
Fraction = k
* Z
* Z
* E where: Fraction = the fraction of beta energy converted to bremsstrahlung k = 0.7x10o3 per MeV Z = atomic number of the absorber E = energy of the beta particle [MeV]For this calculation, absorption in air, water, or CSPE is considered, so a conservative value for Z would be 20. Similar to. gamma energy,, the beta energy is different for each radionuclide.
* E where:
Assuming the average beta energy per decay is the same as the average gamma energy per decay, and using a typical gamma energy of 1 MeV, the fraction converted to bremsstrahlung would be: Fraction = 0.7x10 3 20' 1 = 1.4%Inspection of the beta energies for noble gases, iodines, and cesiums in Reference 7.25 indicates that, for most radionuclides, the gamma energy per decay is higher than the beta energy per decay. Using a fraction of 5% is large enough to account for the cases where the beta energy per decay is larger than the gamma energy per decay, and to account for bremsstrahlung frbm pure beta emitting radionuclides.
Fraction = the fraction of beta energy converted to bremsstrahlung k = 0.7x10o3 per MeV Z = atomic number of the absorber E = energy of the beta particle [MeV]
Therefore, the assumption that the bremsstrahlung contribution to the dose is equal to 5% of the gamma dose is considered conservative.
For this calculation, absorption in air, water, or CSPE is considered, so a conservative value for Z would be 20. Similar to. gamma energy,, the beta energy is different for each radionuclide.
NEP-DES-08 RevO07 ENGINEERING SERVICES CALCULATION CONTINUATION.
Assuming the average beta energy per decay is the same as the average gamma energy per decay, and using a typical gamma energy of 1 MeV, the fraction converted to bremsstrahlung would be:
SHEET .Page 9-i(Next Project: Nine Mile Point Nuclear Station Unit: 2 Disposition:
Fraction = 0.7x10 3 20' 1 = 1.4%
Originator/Date Reviewer/Date Calculation No. Revison J. C. Penrose / H. R. Kopke M. B. Cooper H210-097 Ref.4.0 Design Input 4.1 The initial suppression pool pH is maintained between 5.3 and 8.6 (Ref. 7.3.1,p. 3).4.2 The RCS pH is maintained between the following limits (Ref. 7.4, p. B3.4-8): Mode PH Range 1 (>10% power) .5.6: <pH5 <8.6 2,3 5.6 5 pH S 8.6 All others 5.3 5 pH 5 8.6 For Mode 1 operation, the pH range above coincides with the Action Level 1 acceptable pH range (5.6 < pH < 8.6). The Action Level 2 pH range is 4.9 < pH < 9.3 and the Action Level 3.pH range is 4.6 < pH < 9.6 (Ref. 7.3.2, p. 11).4.3 The volume of water (liquid and steam) in the Reactor Coolant System (RCS) during normal operation is 24,266 ft 3 , with a liquid fraction of 0.579. This corresponds to a total liquid mass of 644,850 Ibm and a total steam mass of 24,324 Ibm (669,174 Ibm total water mass). See p. 86 of Reference 7.6.5.4.4 Linear absorption  
Inspection of the beta energies for noble gases, iodines, and cesiums in Reference 7.25 indicates that, for most radionuclides, the gamma energy per decay is higher than the beta energy per decay. Using a fraction of 5% is large enough to account for the cases where the beta energy per decay is larger than the gamma energy per decay, and to account for bremsstrahlung frbm pure beta emitting radionuclides. Therefore, the assumption that the bremsstrahlung contribution to the dose is equal to 5% of the gamma dose is considered conservative.
'coefficients are determined from input in NUREG-1081 (Ref. 7.15) as follows.Note that the values below (a, p) are those provided for Hypalon in Reference 7.15. They are considered acceptable for CSPE.Linear absorption coefficient for gamma radiation, 'o:./p =0.0637 cm 2/g PH =1.55.g/cm 3 CY-,H = 0.0637 x 1.55 = 0.099 cm-1 Linear absorption  
NEP-DES-08 RevO07
'coefficient for beta radiation, op:/l3PH = 33.6 cm2/g g/ 3 3, PH = 1.55 g/cm OPH = 33.6 x 1.55 = 52.08 cm-1 4.5 The 100% rated thermal reactor core power level is 3,467 MWt (Ref. 7.5, p. 3).4.6 The maximum and minimum suppression pool water level (referenced to mean sea level) and volume for normal operation are given below.NEP-DES-08 Rev 07 ENGINEERING SERVICES 1CALCULATION CONTINUATION SHEET. Page 10 (Next _ )Project: Nine Mile Point Nuclear Station Unit: 2 Disposition:
 
Originator/Date Reviewer/Date Calculation No. Revision J. C. Penrose /H. R. Kopke M. B. Cooper H21 C-097 0 Ref.Suppression Pool Elevation (Ref. 7.2.5) Volume (Ref. 7.6.1, p. 58)Water Level [ft 3]Maximum- 201 ft 0 in 154,400 Minimum 199 ft 6 in 145,200 4.7 The suppression pool temperature range is 70'F : T < 90&deg;F for continuous plant operation (Ref.7.6.4, p. 13). However, the maximum temperature can rise to 1 10&deg;F before reactor shutdown is required (Ref. 7.2.4). The maximum temperature values are consistent with the Technical Specification (Ref.:7.2.4).
ENGINEERING SERVICES                     CALCULATION CONTINUATION. SHEET                         . Page   9
4.8 The suppression 6hamber / drywell pressure is maintained between 14.2 psia and 15.45 psia (Ref. 7.2.2).4.9 The reactor core 'cesium and iodine inventories are determined in Attachment 1, and are repeated below for convenience since they are input to the. pH analysis.
                                                                              -                       i(Next Project:Nine Mile Point Nuclear Station                   Unit: 2                             Disposition:
These quantities are conservatively based on the activities at time t=0 following a LOCA.Iodines: 81.0 gram-moles Cesiums: 503.3 gram-moles The above core inventories are based on a core thermal power of 3,536 MWt (102% of licensed core thermal power, 3,467 MWt), consistent with Regulatory Guide 1.49 (Ref. 7.10.1).It should be noted that the quantity of cesium given above excludes Cesium-133, which is stable, since it is not provided in Reference 7.7. The exclusion of the stable isotope is conservative as it would form cesium hydroxide (CsOH) which would raise the pH of the post-LOCA suppression pool. The stable, cesium would form cesium hydroxide since number of moles of non-stable cesium is greater than 95% of the number of moles of, iodine (95% of cesium is released as cesium iodide, Csl -see Assumption 3.7).4.10 The gamma (y) dose in the drywell, wetwell, and suppression pool is determined in Attachment 2 and is repeated below for convenience since it is input to the pH analysis.
Originator/Date                           Reviewer/Date                   Calculation No.                   Revison J. C. Penrose / H. R. Kopke               M. B. Cooper                   H210-097 Ref.
The dose provided below is based on the core thermal power of 3,467 MWt and includes a 5% increase to account for bremsstrahlung (see Assumption 3.13).Time Drywell & Wetwell Airborne y Dose Suppression Pool Submersion y Dose[hr] [rad] [rad]1 2.4E+06 4.OE+05 6 7.4E+06 1.5E+06 24. 1.2E+07 3.OE+06 720 3.2E+07 1.7E+07 2400 '5.OE+07 3.8E+07 4320 6.7E+07 5.9E+07 8760 1.OE+08 1.0E+08 NEP-DES.08 Rev 07 ENGNEEIN SE VIC : A.LCU.LATION  
4.0       Design Input 4.1       The initial suppression pool pH is maintained between 5.3 and 8.6 (Ref. 7.3.1,p. 3).
=CONTINU.ATIO N .SHEET ""," :. Page 11 Project: Nine Mile Point Nuclear. Station. Unit: 2 Disposition:
4.2       The RCS pH is maintained between the following limits (Ref. 7.4, p. B3.4-8):
Originator/Date Reviewer/Date Calculation No. Revision J.C. Penrose / H. R. Kopke M. B. Cooper H21C-097 0 Ref.4.11 The beta (A) dose in the drywell is determined in Attachment 2 and is repeated below for convenience since it is input to the pH analysis.
Mode                         PH Range 1 (>10% power)         . 5.6:<pH5<8.6 2,3                           5.6 5 pH S 8.6 All others                   5.3 5 pH 5 8.6 For Mode 1 operation, the pH range above coincides with the Action Level 1 acceptable pH range (5.6 < pH < 8.6). The Action Level 2 pH range is 4.9 < pH < 9.3 and the Action Level 3.pH range is 4.6 < pH < 9.6 (Ref. 7.3.2, p. 11).
The dose provided below is based on the core thermal power of 3,467 MWt.Time Drywell Airborne P Dose Wetwell Airborne P3 Dose[hr] rrad] [rad]1 2.OOE+07 2.26E+07 6 5.78E+07 6.90E+07 24 1.30E+08 1.59E+08 720 5.65E+08 7.03E+08 2400 6.07E+08 7.54E+08 4320 6.35E+08 7.81 E+08 8760 6.97E+08 8.44E+08 4.12 Standby Liquid Control System (SLCS) Parameters The SLC system has an acceptable range of operation, defined in Figure 3.1.7-1 of Technical Specification 3.1.7 (Ref. 7.2.1). The lower boundary is defined by the following endpoints:
4.3       The volume of water (liquid and steam) in the Reactor Coolant System (RCS) during normal operation is 24,266 ft3, with a liquid fraction of 0.579. This corresponds to a total liquid mass of 644,850 Ibm and a total steam mass of 24,324 Ibm (669,174 Ibm total water mass). See p. 86 of Reference 7.6.5.
4.4       Linear absorption 'coefficients are determined from input in NUREG-1081 (Ref. 7.15) as follows.
Note that the values below (a, p) are those provided for Hypalon in Reference 7.15. They are considered acceptable for CSPE.
Linear absorption coefficient for gamma radiation, 'o:.
                      /p   =0.0637 cm 2 /g 3
PH =1.55.g/cm CY-,H = 0.0637 x 1.55 = 0.099 cm-1 Linear absorption 'coefficient for beta radiation, op:
                          = 33.6
                      /l3PH        cm2/g 33, g/
PH = 1.55   g/cm OPH =   33.6 x 1.55   = 52.08 cm-1 4.5       The 100% rated thermal reactor core power level is 3,467 MWt (Ref. 7.5, p. 3).
4.6       The maximum and minimum suppression pool water level (referenced to mean sea level) and volume for normal operation are given below.
NEP-DES-08 Rev 07
 
ENGINEERING SERVICES                 1CALCULATION CONTINUATION SHEET.                                       Page     10 (Next     _ )
Project: Nine Mile Point NuclearStation                Unit: 2                                   Disposition:
Originator/Date                       Reviewer/Date                     Calculation No.                           Revision J. C. Penrose /H. R. Kopke             M.B. Cooper                       H21 C-097                                     0 Ref.
Suppression Pool               Elevation (Ref. 7.2.5)           Volume (Ref. 7.6.1, p. 58)
Water Level                                                               [ft 3]
Maximum-                         201 ft 0 in                           154,400 Minimum                         199 ft 6 in                           145,200 4.7       The suppression pool temperature range is 70'F : T < 90&deg;F for continuous plant operation (Ref.
7.6.4, p. 13). However, the maximum temperature can rise to 110&deg;F before reactor shutdown is required (Ref. 7.2.4). The maximum temperature values are consistent with the Technical Specification (Ref.:7.2.4).
4.8       The suppression 6hamber / drywell pressure is maintained between 14.2 psia and 15.45 psia (Ref. 7.2.2).
4.9       The reactor core 'cesium and iodine inventories are determined in Attachment 1, and are repeated below for convenience since they are input to the. pH analysis. These quantities are conservatively based on the activities at time t=0 following a LOCA.
Iodines: 81.0 gram-moles Cesiums: 503.3 gram-moles The above core inventories are based on a core thermal power of 3,536 MWt (102% of licensed core thermal power, 3,467 MWt), consistent with Regulatory Guide 1.49 (Ref. 7.10.1).
It should be noted that the quantity of cesium given above excludes Cesium-133, which is stable, since it is not provided in Reference 7.7. The exclusion of the stable isotope is conservative as it would form cesium hydroxide (CsOH) which would raise the pH of the post-LOCA suppression pool. The stable, cesium would form cesium hydroxide since number of moles of non-stable cesium is greater than 95% of the number of moles of, iodine (95% of cesium is released as cesium iodide, Csl - see Assumption 3.7).
4.10     The gamma (y) dose in the drywell, wetwell, and suppression pool is determined in Attachment 2 and is repeated below for convenience since it is input to the pH analysis. The dose provided below is based on the core thermal power of 3,467 MWt and includes a 5% increase to account for bremsstrahlung (see Assumption 3.13).
Time         Drywell & Wetwell Airborne y Dose         Suppression Pool Submersion y Dose
[hr]                         [rad]                                         [rad]
1                       2.4E+06                                       4.OE+05 6                       7.4E+06                                       1.5E+06
: 24.                     1.2E+07                                       3.OE+06 720                       3.2E+07                                       1.7E+07 2400                     '5.OE+07                                       3.8E+07 4320                       6.7E+07                                       5.9E+07 8760                       1.OE+08                                       1.0E+08 NEP-DES.08 Rev 07
 
ENGNEEIN SE VIC           : -"-.*C A.LCU.LATION =CONTINU.ATIO N .SHEET ""," :. Page                     11 Project:Nine Mile PointNuclear.Station.                 Unit: 2                               Disposition:
Originator/Date                         Reviewer/Date                 Calculation No.                     Revision J.C. Penrose / H. R. Kopke               M.B. Cooper                   H21C-097                                 0 Ref.
4.11     The beta (A)dose in the drywell is determined in Attachment 2 and is repeated below for convenience since it is input to the pH analysis. The dose provided below is based on the core thermal power of 3,467 MWt.
Time               Drywell Airborne P Dose                     Wetwell Airborne P3 Dose
[hr]                           rrad]                                     [rad]
1                         2.OOE+07                                   2.26E+07 6                         5.78E+07                                   6.90E+07 24                         1.30E+08                                 1.59E+08 720                       5.65E+08                                   7.03E+08 2400                       6.07E+08                                   7.54E+08 4320                       6.35E+08                                   7.81 E+08 8760                       6.97E+08                                   8.44E+08 4.12     Standby Liquid Control System (SLCS) Parameters The SLC system has an acceptable range of operation, defined in Figure 3.1.7-1 of Technical Specification 3.1.7 (Ref. 7.2.1). The lower boundary is defined by the following endpoints:
* 4,558.6 gallons of 13.6 weight % sodium- pentaborate solution (SG=1.068).
* 4,558.6 gallons of 13.6 weight % sodium- pentaborate solution (SG=1.068).
* 4,288.0 gallons of 14.4 weight % sodium pentaborate solution (SG=1.071)
* 4,288.0 gallons of 14.4 weight % sodium pentaborate solution (SG=1.071)
The specific gravity (SG) provided above is taken from Figure 1 of Reference 7.22.It should be noted that the above weight percentages define the lower boundary of acceptable SLCS operation and are only valid for sodium pentaborate enrichments greater than or equal to 25 atom percent B-10.Sodium pentaborate decahydrate has the chemical formula Na 2 B 1 0 O 1 6-10H 2 0 (Ref. 7.22, &sect;3.3.1)and a molecular weight of 590.224. In this calculation, "sodium pentaborate" actually refers to sodium pentaborate decahydrate for consistency with plant documentation.
The specific gravity (SG) provided above is taken from Figure 1 of Reference 7.22.
The sodium pentaborate solution is maintained between 75 0 F and 85 0 F by internally located electric heaters (5ef. 7.3.4, &sect;5.0(B), p. 4). Note that 75 0 F bounds the Technical Specification lower limit of 70&deg;F (Ref. 7.2.1).Each sodium pentaborate pump (2SLS-P1A and 2SLS-P1B) must be able to deliver > 41.2 gpm at a discharge pressure ? 1,235 psig (Ref. 7.2.1).4.13 The chloride beating cable inventory is determined in Table 4-4 of Attachment  
It should be noted that the above weight percentages define the lower boundary of acceptable SLCS operation and are only valid for sodium pentaborate enrichments greater than or equal to 25 atom percent B-10.
: 4. Information from DIT-NM-NPEE-001 (Ref. 7.19) is used to determine the chloride bearing cable inventory.
Sodium pentaborate decahydrate has the chemical formula Na2B10O16-10H 20 (Ref. 7.22, &sect;3.3.1) and a molecular weight of 590.224. In this calculation, "sodium pentaborate" actually refers to sodium pentaborate decahydrate for consistency with plant documentation.
4.14 The limiting Design Basis Accident (DBA) LOCA is identified in UFSAR Section 6.2.1.1.5 (Ref.7.11.1) as Case C of UFSAR Section 6.2.1.1.3 (Ref. 7.11.2), which corresponds to Case C of Reference 7.6.5., For this case, a minimum of one Low Pressure Core Injection (LPCI) pump is operable throughout the accident (Ref. 7.6.5, p. 21). Given that the reactor vessel depressurizes reasonably quickly for a large break L4OCA (see -Ref. 7:6.5, Tables 6.2-9 and 6.2-10), -a minimum NEP'DES-08 Rev 07 ENGINEERING SERVICES CALCULATION CONTINUATIONRSHEET 1 Page 12.1(Next Project: Nine Mile Point Nuclear, Station Unit: 2. Disposition:
The sodium pentaborate solution is maintained between 750 F and 85 0 F by internally located electric heaters (5ef. 7.3.4, &sect;5.0(B), p. 4). Note that 750 F bounds the Technical Specification lower limit of 70&deg;F (Ref. 7.2.1).
Originator/Date Reviewer/Date Calculation No. ison J. C. Penrose / H. R. Kopke 1 M.B. Cper H21C-097.Ref.R LPCI flow rate of 6,000 to 7,000 gpm can be expected per Figure 6.2-3 of Reference 7.6.5. This flow rate equates to approximately
Each sodium pentaborate pump (2SLS-P1A and 2SLS-P1B) must be able to deliver > 41.2 gpm at a discharge pressure ? 1,235 psig (Ref. 7.2.1).
4.13     The chloride beating cable inventory is determined in Table 4-4 of Attachment 4. Information from DIT-NM-NPEE-001 (Ref. 7.19) is used to determine the chloride bearing cable inventory.
4.14     The limiting Design Basis Accident (DBA) LOCA is identified in UFSAR Section 6.2.1.1.5 (Ref.
7.11.1) as Case C of UFSAR Section 6.2.1.1.3 (Ref. 7.11.2), which corresponds to Case C of Reference 7.6.5., For this case, a minimum of one Low Pressure Core Injection (LPCI) pump is operable throughout the accident (Ref. 7.6.5, p. 21). Given that the reactor vessel depressurizes reasonably quickly for a large break L4OCA (see -Ref. 7:6.5, Tables 6.2-9 and 6.2-10), -a minimum NEP'DES-08 Rev 07


===0.3 complete===
ENGINEERING SERVICES                CALCULATION CONTINUATIONRSHEET                                  1  Page
exchanges of the water in the suppression pool per hour (1 comple~te exchange in approximately 3- hours).4.15 The post-LOCA suppression pool temperature response for an RCS recirculation suction line break for the DBA; LOCA is provided below. The shortrterm temperature response (t=0 to 1.2 days) is taken from Figure 6.2-27 of Reference 7.6.5 (p. 154). It should be noted that the temperature respobse for the DBA LOCA bounds the response of the other cases.Time Tpo, 1 Time TP 0 o, Time Tp[ (h]F [sec (hr)o [0E] [sec (hr)]0.1 (2.8x10"5) 90 100 (0.028) 125 42,000 (11.7) 202 1.0 (2.8x104) 90 300(0.083) 140 60,000 (16.7) 200 8.0 (2.2x10-3) 95 1000 (0.28) 160 100,000 (27.8) 190 10 (2.8x10 3 99 10,000 (2.8) 185 30 (8.3xl 03) 115 30,000 (8.3) 200 The long-term suppression pool temperature response (from t=1.25 days to 30 days) is taken from Table 1 of Reference 7.6.7 and is provided below., Time Tpoo 1  Time Ti Time Tpo,[days (hr) JF] [days (hr)] [j] [days (hr)] [F]1.250(30)  
                                                                                                        .1(Next 12 Project: Nine Mile Point Nuclear,Station            Unit:    2.                                Disposition:
-190.0 4.500 (108) 153.3 12.000 (288) 132.4 1.500 (36) 185.9 5.000 (120) 150.2. 13.000 (312) 131.3 1.750(42) 181.8 5.500(132) 147.6 14.000 (336) 130.3 2.000 (48) 177.9 6.000 (144) 145.3 15.000 (360) 129.2 2.333 (56) 173.4 7.000 (168) 142.5 20.000 (480) 127.9 2.666(64) 169.2 8.000 (192) 139.6 25.000 (600) 125.1 3.000 (72) 165.5 9.000 (216) 137.1 30.000 (720) 122.4 3.500 (84) 161.0 10.000 (240) 135.3 4.000(96) 157.0 11.000 (264) 133.6 NEP-DES-08 Rev 07 ENGINEERING SERVICES C Page (Next Project: Nine Mile Point Nuclear Station Unit: 2 Disposition:
Originator/Date                      Reviewer/Date                    Calculation No.                              ison J. C. Penrose / H. R. Kopke        1M.B. Cper                        H21C-097.
Originator/Date
Ref.R LPCI flow rate of 6,000 to 7,000 gpm can be expected per Figure 6.2-3 of Reference 7.6.5. This flow rate equates to approximately 0.3 complete exchanges of the water in the suppression pool per hour (1 comple~te exchange in approximately 3- hours).
= Reviewer/Date Calculation No. Revision J. C. Penrose / H. R. Ko ke M. B. Cooper H21C-097.
4.15     The post-LOCA suppression pool temperature response for an RCS recirculation suction line break for the DBA; LOCA is provided below. The shortrterm temperature response (t=0 to 1.2 days) is taken from Figure 6.2-27 of Reference 7.6.5 (p. 154). It should be noted that the temperature respobse for the DBA LOCA bounds the response of the other cases.
0 5.0 Calculations
Time           Tpo,1           Time           TP0o,               Time               Tp
[   (h]F                       [sec (hr)o       [0E]             [sec (hr)]
0.1 (2.8x10"5)       90         100 (0.028)         125           42,000 (11.7)           202 1.0 (2.8x104)         90         300(0.083)         140           60,000 (16.7)           200 8.0 (2.2x10-3)       95         1000 (0.28)         160           100,000 (27.8)           190 10 (2.8x10 3         99       10,000 (2.8)         185 30 (8.3xl 03)       115       30,000 (8.3)         200 The long-term suppression pool temperature response (from t=1.25 days to 30 days) is taken from Table 1 of Reference 7.6.7 and is provided below.,
Time           Tpoo1          Time           Ti                 Time               Tpo,
[days (hr)       JF]           [days (hr)]       [j]             [days (hr)]           [F]
1.250(30)       -190.0       4.500 (108)       153.3           12.000 (288)           132.4 1.500 (36)       185.9       5.000 (120)       150.2.           13.000 (312)           131.3 1.750(42)         181.8       5.500(132)       147.6           14.000 (336)           130.3 2.000 (48)       177.9       6.000 (144)       145.3           15.000 (360)           129.2 2.333 (56)       173.4       7.000 (168)       142.5           20.000 (480)           127.9 2.666(64)         169.2       8.000 (192)       139.6           25.000 (600)           125.1 3.000 (72)       165.5       9.000 (216)       137.1           30.000 (720)           122.4 3.500 (84)       161.0       10.000 (240)       135.3 4.000(96)         157.0       11.000 (264)       133.6 NEP-DES-08 Rev 07


===5.1 Suppression===
ENGINEERING SERVICES                  C                                                            Page (Next Project:Nine Mile Point Nuclear Station              Unit:  2                              Disposition:
Originator/Date                      = Reviewer/Date                    Calculation No.                  Revision J. C. Penrose / H. R. Ko ke            M. B. Cooper                    H21C-097.                            0 5.0      Calculations 5.1      Suppression Pool Initial Conditions 5.1.1  Suppression Pool Volume The maximum suppression pool volume will be used in this calculation. This will result in the calculation of the lowest transient pH and is conservative (see Assumption 3.1). The total pool volume for this calculation is the sum of the maximum initial suppression pool volume plus the added RCS volume. The complete RCS mass is added to the suppression pool at the start of the LOCA.
The suppression pool liquid volume at the maximum water level is 154,400 ft3. The Reactor Coolant System (RCS) has a total volume of 24,266 ft3 , with a liquid fraction of 0.579. Once the RCS mass is added to the suppression pool, the total suppression pool volume is approximately 168,000 ft3 (Attachment 4, Table 4-9).
5.1.2  InitialpH The suppression pool is maintained at a pH between 5.3 and 8.6. Lower pH levels are conservative for this analysis, so an initial pH of 5.3 is used. This pH also accounts for dissolved carbon dioxide, The RCS pH is maintained at a pH between 5.6 and 8.6 for Modes 1, 2, and 3 and between 5.3 and 8.6 for all other Modes. A conservative initial pH of 5.3 is used for this analysis. The'choice of this conservative input does not impact the final result of this calculation.
The pH of the pool contents after addition of the RCS is 5.3.
5.2      Hydriodic Acid (HI)
Hydriodic acid is formed by the post-LOCA release of elemental iodine (I) and hydrogen iodide (HI) from the reactor core and its absorption in the suppression pool.
Per Regulatory Guide 1.183, Table 1 (Ref. 7.10.2), 5% of the iodine core inventory is released into containment during the Gap Release Phase and an additional 25% of the iodine core inventory is released into containment during the Early In-Vessel (EIV) Phase. The Gap Release Phase has an onset of 2 minutes and a duration of 30 minutes and is followed by the EIV Phase with a duration of 90 minutes per Table 4 of Regulatory Guide 1.183 (Ref. 7.10.2).
The reactor core inventory of iodine, the Gap Release Phase iodine release, and the EIV Phase iodine release are determined in Attachment 1 and listed in Attachment 1, Table 1-1.
Per Section 3.5 of Regulatory Guide 1.183 (Ref.. 7.10.2), 95% of the iodine released-from the RCS is in the form of cesium iodide, 4.85% is in the form of elemental iodine, and 0.15% is in the form of organic iodide. Section 3.5 of NUREG-1465 (Ref. 7.14) indicates that at least 95% of the iodine entering containment from the RCS is in the form of cesium iodide with normore than 5%
NEP-DES-08 Rev 07


Pool Initial Conditions
ENGINEERING SERVICES                T CALCULATION CONTINUATION &#xfd;SHEET                                  age
                                                                                                    ,Next
(
14 Project: Nine Mile Point Nuclear, Station              Unit:    2                            Disposition:
Originator/Date                        Reviewer/Date                      Calculation No.                  Revision J. C. Penrose / H. R. Kopke            M. B. Cooper                        H21C-097 Ref.
as I plus HI. For this calculation, it will be conservatively assumed that the combined I plus HI is the maximum 5% in order to maximize the acid contribution from iodine to the suppression pool.
The formation of hydriodic acid in the suppression pool is equal to the molar addition of iodine.
Computations are shown in Attachment 4, Table 4-2. During the Gap Release Phase, 5% of the Gap Release Phase iodine release produces hydriodic acid in the suppression pool. During the EIV Phase, 5% of the EIV -Phase iodine release produces additional hydriodic acid in the suppression pool. The concentrations are determined at the end of the Gap -Release Phase, at one hour, and at the end of the EIV Phase. The rates of addition during the Gap Release Phase and during the EIV Phase are linear per Section 3.3 of Regulatory Guide 1.183 (Ref. 7.10.2). No additional hydriodic acid is formed after the EIV Phase.
5.3      Cesium Hydroxide,(CsOH)
Cesium hydroxide is formed by the release of cesium from the reactor core and its absorption in the suppression pool.
Per Regulatory Gtiide. 1.183, Table 1 (Ref. 7.10.2), 5% of the cesium core inventory is released into containment during the Gap Release Phase and an additional 20% of the cesium core inventory is released into containment during the Early In-Vessel (EIV) Phase. The Gap Release Phase has an onset of 2 minutes and a duration of 30 minutes and is followed by the EIV phase with a duration of 90 minutes per Table 4 of Regulatory Guide 1.183 (Ref. 7.10.2).
The reactor core inventory of cesium, the Gap Phase cesium release, and the EIV Phase cesium release are determined in Attachment 1 and listed in Attachment 1, Table 1-2.
Cesium released in the form of cesium iodide does not contribute to formation of cesium hydroxide. The quantity of cesium iodide is 95% of the molar quantity of iodine released, consistent with the determination of hydriodic acid production (see Section 5.3). The amount of cesium as cesium iodide is subtracted from the Gap Phase cesium release and the EIV Phase cesium release to'obtain the quantity of cesium hydroxide in the post-LOCA suppression pool.
The formation of :cesium hydroxide in the suppression pool is equal to the molar addition of cesium not in theform of cesium iodide. Computations are shown in Attachment 4, Table 4-5.
The concentrationrs are determined at the end of the Gap Release Phase, at one hour, and at the end of the EIV Phase. The rates of addition during the Gap Release Phase and during the EIV Phase are linear per Section 3.3 of Regulatory Guide 1.183 (Ref. 7.10.2). No additional cesium hydroxide is formed after the EIV Phase.
5.4      Nitric Acid (HNO 3).
Nitric acid is formed by irradiation of air and water in the suppression pool by gamma radiation.
Per Section 2.2.4 of NUREG/CR-5950 (Ref. 7.13), the generation rate of HNO 3, G, is 0.007 molecules HNO 3 per 100 eV. This generation rate converts to 7.3x10.6 g-mole/liter per MegaRad as follows:
NEP-DES-08 Rev 07


====5.1.1 Suppression====
ENGINEERING SERVICES                  CALCULATION-CONTINUATION i"s,"'                                          SHEET*;.:.        Page    15'
                                                                                                      '(Next-*)
Project: Nine Mile Point Nuclear!Station                Unit: 2                              Disposition:
Originator/Date                        Reviewer/Date                    Calculation No.                      Revision J. C. Penrose/H. R. Kopke              M.B. Cooper                      H21C-097                                  0 Rief.
0.007 molecule                mole        6.241x 1011 eV 100 x 106 ergx 1000 g 100 eV I.6.022x 10 2 3 molecule X G                                          erg            MegaRadg Xliter Total integrated suppression pool gamma radiation doses were multiplied by this value to compute the nitric acid concentration at varying times. Computations are shown in Attachment 4, Table 4-3.
5.5      Hydrochloric Acid (HCI)
Hydrochloric acid is formed by radiolysis of chloride-bearing electrical cable in the drywell.
The types and amounts of cable are as shown in DIT-NM-NPEE-001 (Attachment 3). Two sizes of cable are present in the drywell, 750 MCM power cable and 1/0 ground cable. Jacketing material for both types is chlorosulfonated polyethylene (CSPE). This material contains 16+2%
chlorine. Note, however, that the hydrochloric acid generation rate is determined using the properties of Hypalon (see Assumption 3.9).
The 750 MCM cable has ethylene propylene rubber (EPR) insulation, while the ground cable has no insulation. The insulation material does not contain chlorine (specified as <1%) and consequently does not contribute to HCI formation (see Assumption 3.12).
The mass of jacket material for each cable is computed based on the maximum guaranteed cable outer diameter (OD) and on the jacket thickness per NMP specification NMP2-E023A (Ref.
7.23) as shown on pages 22, 24, and 25 of attached DIT-NM-NPEE-001 (Attachment 3). A density of 1.55 g/cm 3 was used for Hypalon per Section 4.2 of NUREG-1081 (Ref. 7.15). Cable lengths are as identified in DIT-NM-NPEE-001 (Attachment 3). As-built cable lengths are located in cable tray and additional cable lengths are conservatively assumed to be in free air.
The methodology for computing hydrochloric acid production in GGNS-98-0039, Revision 1 (Ref.
7.12.1) differs from that used in GGNS-98-0039, Revision 3 (Ref. 7.12.2). The hydrochloric acid production rate iniGGNS-98-0039, Revision 1, is based on the mass of cable jacket and on the radiation dose rate at the cable jacket surface multiplied by a flux averaging factor. However, the hydrochloric acid :production rate in GGNS-98-0039, Revision 3, is based on the cable jacket surface area and on the energy release per unit volume of containment, diminished by attenuation in air between the center of containment and the cable surface. Both methodologies use the same G value (with units converted to rads in GGNS-98-0039, Revision 1) and the same expression for energy absorption fraction in the cable jacket. Consistent with Assumption 3.8, which is conservative, the GGNS-98-0039, Revision 1, methodology for hydrochloric acid production is used herein. The benchmark (&sect;5.8) demonstrates that both methodologies yield very similar results, and therefore the choice of the GGNS-98-0039, Revision 1-, methodology used in this calculation is considered acceptable.
Hydrochloric acid generation in bchlorine-bearing material in the cable is determined using the following equation from Appendix B of NUREG/CR-5950 (Ref. 7.13) and further developments from Grand Gulf Engineering Report GGNS-98-0039, Revision 1, Appendix A (Ref. 7.12.1):
R =GxSxoxA NEP-DES-08 Rev 07


Pool Volume The maximum suppression pool volume will be used in this calculation.
ENGINEERING SERVICES                   CALCULATION CONTINUATION SHEET..                                Page      16 (Next Project: Nine Mile Point NuclearStation                  Unit:   2                           Disposition:
This will result in the calculation of the lowest transient pH and is conservative (see Assumption 3.1). The total pool volume for this calculation is the sum of the maximum initial suppression pool volume plus the added RCS volume. The complete RCS mass is added to the suppression pool at the start of the LOCA.The suppression pool liquid volume at the maximum water level is 154,400 ft 3.The Reactor Coolant System (RCS) has a total volume of 24,266 ft 3 , with a liquid fraction of 0.579. Once the RCS mass is added to the suppression pool, the total suppression pool volume is approximately 168,000 ft3 (Attachment 4, Table 4-9).5.1.2 InitialpH The suppression pool is maintained at a pH between 5.3 and 8.6. Lower pH levels are conservative for this analysis, so an initial pH of 5.3 is used. This pH also accounts for dissolved carbon dioxide, The RCS pH is maintained at a pH between 5.6 and 8.6 for Modes 1, 2, and 3 and between 5.3 and 8.6 for all other Modes. A conservative initial pH of 5.3 is used for this analysis.
Originator/Date                       I Reviewer/Date M. B. Cooper                       H21C-097 Calculation No.                       0 Revision J. C. Penrose /H.- R. Kopke Ref.                                                                       --
The'choice of this conservative input does not impact the final result of this calculation.
where:
The pH of the pool contents after addition of the RCS is 5.3.5.2 Hydriodic Acid (HI)Hydriodic acid is formed by the post-LOCA release of elemental iodine (I) and hydrogen iodide (HI) from the reactor core and its absorption in the suppression pool.Per Regulatory Guide 1.183, Table 1 (Ref. 7.10.2), 5% of the iodine core inventory is released into containment during the Gap Release Phase and an additional 25% of the iodine core inventory is released into containment during the Early In-Vessel (EIV) Phase. The Gap Release Phase has an onset of 2 minutes and a duration of 30 minutes and is followed by the EIV Phase with a duration of 90 minutes per Table 4 of Regulatory Guide 1.183 (Ref. 7.10.2).The reactor core inventory of iodine, the Gap Release Phase iodine release, and the EIV Phase iodine release are determined in Attachment 1 and listed in Attachment 1, Table 1-1.Per Section 3.5 of Regulatory Guide 1.183 (Ref.. 7.10.2), 95% of the iodine released-from the RCS is in the form of cesium iodide, 4.85% is in the form of elemental iodine, and 0.15% is in the form of organic iodide. Section 3.5 of NUREG-1465 (Ref. 7.14) indicates that at least 95% of the iodine entering containment from the RCS is in the form of cesium iodide with normore than 5%NEP-DES-08 Rev 07 ENGINEERING SERVICES T CALCULATION CONTINUATION  
R = HCI production rate G = radiolysis yield S = cable;jacket surface area
&#xfd;SHEET age 14 ( ,Next Project: Nine Mile Point Nuclear, Station Unit: 2 Disposition:
                            * = average radiation energy flux in the cable jacket A = absorption fraction of energy flux in the cable jacket A factor for computing the average radiation energy flux, , in the jacket is developed based on attenuation of radiation flux at radius r in the cable jacket (Reference 7.12.1, Appendix A, Section A.2):
Originator/Date Reviewer/Date Calculation No. Revision J. C. Penrose / H. R. Kopke M. B. Cooper H21C-097 Ref. 0 as I plus HI. For this calculation, it will be conservatively assumed that the combined I plus HI is the maximum 5% in order to maximize the acid contribution from iodine to the suppression pool.The formation of hydriodic acid in the suppression pool is equal to the molar addition of iodine.Computations are shown in Attachment 4, Table 4-2. During the Gap Release Phase, 5% of the Gap Release Phase iodine release produces hydriodic acid in the suppression pool. During the EIV Phase, 5% of the EIV -Phase iodine release produces additional hydriodic acid in the suppression pool. The concentrations are determined at the end of the Gap -Release Phase, at one hour, and at the end of the EIV Phase. The rates of addition during the Gap Release Phase and during the EIV Phase are linear per Section 3.3 of Regulatory Guide 1.183 (Ref. 7.10.2). No additional hydriodic acid is formed after the EIV Phase.5.3 Cesium Hydroxide,(CsOH)
0(r) = 0(Rn)   x e-P("&deg;-r) where:
Cesium hydroxide is formed by the release of cesium from the reactor core and its absorption in the suppression pool.Per Regulatory Gtiide. 1.183, Table 1 (Ref. 7.10.2), 5% of the cesium core inventory is released into containment during the Gap Release Phase and an additional 20% of the cesium core inventory is released into containment during the Early In-Vessel (EIV) Phase. The Gap Release Phase has an onset of 2 minutes and a duration of 30 minutes and is followed by the EIV phase with a duration of 90 minutes per Table 4 of Regulatory Guide 1.183 (Ref. 7.10.2).The reactor core inventory of cesium, the Gap Phase cesium release, and the EIV Phase cesium release are determined in Attachment 1 and listed in Attachment 1, Table 1-2.Cesium released in the form of cesium iodide does not contribute to formation of cesium hydroxide.
r = cable radius R, = outside cable radius p = linear absorption coefficient for Hypalon Integration of this, equation over the cable jacket thickness leads to an expression for a flux averaging factor that can be multiplied by the flux at the cable jacket surface to give-the average flux in the. cable jacket:
The quantity of cesium iodide is 95% of the molar quantity of iodine released, consistent with the determination of hydriodic acid production (see Section 5.3). The amount of cesium as cesium iodide is subtracted from the Gap Phase cesium release and the EIV Phase cesium release to'obtain the quantity of cesium hydroxide in the post-LOCA suppression pool.The formation of :cesium hydroxide in the suppression pool is equal to the molar addition of cesium not in theform of cesium iodide. Computations are shown in Attachment 4, Table 4-5.The concentrationrs are determined at the end of the Gap Release Phase, at one hour, and at the end of the EIV Phase. The rates of addition during the Gap Release Phase and during the EIV Phase are linear per Section 3.3 of Regulatory Guide 1.183 (Ref. 7.10.2). No additional cesium hydroxide is formed after the EIV Phase.5.4 Nitric Acid (HNO 3).Nitric acid is formed by irradiation of air and water in the suppression pool by gamma radiation.
1 le -(py     + 1) - 1]     (e-Y -
Per Section 2.2.4 of NUREG/CR-5950 (Ref. 7.13), the generation rate of HNO 3 , G, is 0.007 molecules HNO 3 per 100 eV. This generation rate converts to 7.3x10.6 g-mole/liter per MegaRad as follows: NEP-DES-08 Rev 07 ENGINEERING SERVICES i"s,"' CALCULATION-CONTINUATION SHEET*;.:.
                                          !~R,,           Ryy2 2 2
Page 15'Project: Nine Mile Point Nuclear! Station Unit: 2 Disposition:
where:
Originator/Date Reviewer/Date Calculation No. Revision J. C. Penrose/H.
                              = average radiation energy flux in the cable jacket 0(Ro) = radiation energy flux at the cable jacket surface p = linear absorption coefficient for Hypalone y = thickness of cable jacket The absorption fraction of energy flux is calculated as follows per Section 4.2 of NUREG-1081 (Ref. 7.15):
R. Kopke M. B. Cooper H21C-097 0 Rief.0.007 molecule mole 6.241x 1011 eV 100 x 106 ergx 1000 g G 100 eV I.6.022x 10 2 3 molecule X erg MegaRadg Xliter Total integrated suppression pool gamma radiation doses were multiplied by this value to compute the nitric acid concentration at varying times. Computations are shown in Attachment 4, Table 4-3.5.5 Hydrochloric Acid (HCI)Hydrochloric acid is formed by radiolysis of chloride-bearing electrical cable in the drywell.The types and amounts of cable are as shown in DIT-NM-NPEE-001 (Attachment 3). Two sizes of cable are present in the drywell, 750 MCM power cable and 1/0 ground cable. Jacketing material for both types is chlorosulfonated polyethylene (CSPE). This material contains 16+2%chlorine.
A = 1-e where:
Note, however, that the hydrochloric acid generation rate is determined using the properties of Hypalon (see Assumption 3.9).The 750 MCM cable has ethylene propylene rubber (EPR) insulation, while the ground cable has no insulation.
A = fraction of radiation energy flux absorbed by cable jacket p = linear absorption coefficient for Hypalon y = thickness of cable jacket NEP-DES-08
The insulation material does not contain chlorine (specified as <1%) and consequently does not contribute to HCI formation (see Assumption 3.12).The mass of jacket material for each cable is computed based on the maximum guaranteed cable outer diameter (OD) and on the jacket thickness per NMP specification NMP2-E023A (Ref.7.23) as shown on pages 22, 24, and 25 of attached DIT-NM-NPEE-001 (Attachment 3). A density of 1.55 g/cm 3 was used for Hypalon per Section 4.2 of NUREG-1081 (Ref. 7.15). Cable lengths are as identified in DIT-NM-NPEE-001 (Attachment 3). As-built cable lengths are located in cable tray and additional cable lengths are conservatively assumed to be in free air.The methodology for computing hydrochloric acid production in GGNS-98-0039, Revision 1 (Ref.7.12.1) differs from that used in GGNS-98-0039, Revision 3 (Ref. 7.12.2). The hydrochloric acid production rate iniGGNS-98-0039, Revision 1, is based on the mass of cable jacket and on the radiation dose rate at the cable jacket surface multiplied by a flux averaging factor. However, the hydrochloric acid :production rate in GGNS-98-0039, Revision 3, is based on the cable jacket surface area and on the energy release per unit volume of containment, diminished by attenuation in air between the center of containment and the cable surface. Both methodologies use the same G value (with units converted to rads in GGNS-98-0039, Revision 1) and the same expression for energy absorption fraction in the cable jacket. Consistent with Assumption 3.8, which is conservative, the GGNS-98-0039, Revision 1, methodology for hydrochloric acid production is used herein. The benchmark
                                                                                                                    .Rev 07
(&sect;5.8) demonstrates that both methodologies yield very similar results, and therefore the choice of the GGNS-98-0039, Revision 1-, methodology used in this calculation is considered acceptable.
 
Hydrochloric acid generation in bchlorine-bearing material in the cable is determined using the following equation from Appendix B of NUREG/CR-5950 (Ref. 7.13) and further developments from Grand Gulf Engineering Report GGNS-98-0039, Revision 1, Appendix A (Ref. 7.12.1): R =GxSxoxA NEP-DES-08 Rev 07 ENGINEERING SERVICES CALCULATION CONTINUATION SHEET.. Page 16 (Next Project: Nine Mile Point Nuclear Station Unit: 2 Disposition:
ENGNEEIN SEVICS               CALCULATION:CONTINUATION SHEET,`:                                                 Page     _17
Originator/Date I Reviewer/Date Calculation No. Revision J. C. Penrose /H.- R. Kopke M. B. Cooper H21C-097 0 Ref. --where: R = HCI production rate G = radiolysis yield S = cable;jacket surface area* = average radiation energy flux in the cable jacket A = absorption fraction of energy flux in the cable jacket A factor for computing the average radiation energy flux, *, in the jacket is developed based on attenuation of radiation flux at radius r in the cable jacket (Reference 7.12.1, Appendix A, Section A.2): 0(r) = 0(Rn) x e-P("&deg;-r)where: r = cable radius R, = outside cable radius p = linear absorption coefficient for HypalonIntegration of this, equation over the cable jacket thickness leads to an expression for a flux averaging factor that can be multiplied by the flux at the cable jacket surface to give-the average flux in the. cable jacket: 1 le -(py + 1) -1] (e-Y -Ry 2!~R,, y2 2 where:= average radiation energy flux in the cable jacket 0(Ro) = radiation energy flux at the cable jacket surface p = linear absorption coefficient for Hypalone y = thickness of cable jacket The absorption fraction of energy flux is calculated as follows per Section 4.2 of NUREG-1081 (Ref. 7.15): A = 1-e where: A = fraction of radiation energy flux absorbed by cable jacket p = linear absorption coefficient for Hypalony = thickness of cable jacket NEP-DES-08.Rev 07 ENGNEEIN SEVICS CALCULATION:
                                .     .     .* , /: " .: .: :*. *    . ; " . i .;J" :', :   i 'i     " .*..          (Ne xt)
CONTINUATION SHEET,` : Page _17.., /: " .: .: .; " .i .;J" :', : i 'i " (N e xt)Project: Nine Mile Point Nuclear Station Unit: 2 Disposition:
Project: Nine Mile PointNuclear Station                       Unit:   2                                     Disposition:
Originator/Date Reviewer/Date Calculation No. Revision J. C. Penrose / H. R. Kopke M. B. Cooper H21C-097 0 Ref.The HCI generation equation then becomes: 1 [e_,,py + 1) Rl Fo(e_,_-R= G *.S, O(Ro) e ", 1-Pex")2 The last two terms 'are the previously developed flux averaging factor and the absorption fraction, respectively.
Originator/Date                         Reviewer/Date                             Calculation No.                               Revision J. C. Penrose / H. R. Kopke             M. B. Cooper                             H21C-097                                         0 Ref.
The HCI generation equation then becomes:
1 [e_,,py + 1)             Fo(e_,_-
Rl R= G *.S, O(Ro)                                           2*    ",                       e 1-Pex")
2 The last two terms 'are the previously developed flux averaging factor and the absorption fraction, respectively.
Grand Gulf Engineering Report GGNS-98-0039, Revision 1, Appendix A (Ref. 7.12.1), then derives from this the following equation in order to use radiation dose reported in units of MegaRad per hour (or MegaRad when integrated over time) as is typically available:
Grand Gulf Engineering Report GGNS-98-0039, Revision 1, Appendix A (Ref. 7.12.1), then derives from this the following equation in order to use radiation dose reported in units of MegaRad per hour (or MegaRad when integrated over time) as is typically available:
L .2 [e-'(jy + 1) -] o (e"Y -R =G mH *X(Ro)* -y 2 * -Y)R y = , (1 -e" where: R = HCI p roduction rate G = radiolysis yield mH = mass of cable jacket X (R,) = radiation dose .rate at the surface of the cable jacket R, = outside cable radius p = linear absorption coefficient for Hypalony = thickness of cable jacket The following linear absorption coefficients are determined for Hypalon (see Design Input 4.4): p = 0.099 cm' for gamma radiation p = 52.08 cm 1 for beta radiation Per NUREG/CR-5950 (Ref. 7.13) the G value for Hypalon is 2.115 molecules HCI per 100 eV.This corresponds to 2.192E-6 g-mole HCI/g Hypalon per MegaRad: G 2.115 molecule mole 6.241 x 10" eV 100 x 106 erg G=xx x 100 eV 6.022 x 1023 molecule erg MegaRad g The G value for hydrochloric acid generation in electrical cable jacketing available from Appendix B of NUREG/CR-5950 (Ref. 7.13) was developed based on material (Hypalonr) with a variable chlorine content. The chlorine content of this material can be higher than the 16+2% chlorine content of the electrical cable jacket material, Chlorosulfonated Polyethylene (CSPE), specified at NMP Unit 2 &#xfd;(see description in NUREG/CR-5950).
L.2 [e-'(jy + 1)     ]-       o (e"Y   -
Use -of the available G value is conservative because the. application of G involves only the mass of the cable jacketing and not NEP-DES-08 Rev 07 ENGINEERING SERVICES CALCULATION.CONTINUATION SHEET Page 18 (Next Project: Nine Mile Point Nuclear, Station Unit: 2 Disposition:
R =G       mH   *X(Ro)*                             Ry    -y 2
Originator/Date  
                                                                                        =                  *, (1 -e"
] Reviewer/Date Calculation No. Revision J. C. Penrose / H. R. Koke I M. B. Cooper H21C-097 Ref. -" the chlorine content. Therefore, use of the G value for Hypalon will overpredict the hydrochloric acid production rate when applied to materials with lower chlorine contents, such as the CSPE utilized in the cables at NMP Unit 2 (Assumption 3.9).Hydrochloric acid formed by gamma. radiation is computed at varying times using the Total Integrated Dose (TID) for gamma radiation in the drywell multiplied by the generation rate. The total mass of cable, jacketing is determined and then used in the computation.
                                                                                                                      -Y) where:
Hydrochloric acid formed by beta radiation is computed at varying times using the TID for beta radiation in the drywell multiplied by the generation rate. The mass of cable in cable tray is discounted by 50% to account for localized shielding from beta radiation in the tray.The mass of hydrochloric acid generated, by gamma and beta radiation is divided by the post-LOCA suppression pool volume to determine the total concentration of HCI formed by irradiation of electrical cable as a function of time.The computations determining the hydrochloric acid generation are presented in Attachment 4, Table 4-4&#xfd;5.6 Transient pH Calculation The transient pH was computed by combining the contributions of acids and bases. The concentrations of. [H*] and (OH] were summed and the net resultant concentrations from self-neutralization determined by the relationship:
R = HCI production rate G = radiolysis yield mH = mass of cable jacket X (R,) = radiation dose .rate at the surface of the cable jacket R, = outside cable radius p = linear absorption coefficient for Hypalon y = thickness of cable jacket The following linear absorption coefficients are determined for Hypalon (see Design Input 4.4):
where: K, = dissociation constant for water x = [H*] and [OH] self-neutralized 7-[H'] = sum of acids added [g-mole/liter]
p = 0.099 cm' for gamma radiation p = 52.08 cm 1 for beta radiation Per NUREG/CR-5950 (Ref. 7.13) the G value for Hypalon is 2.115 molecules HCI per 100 eV.
This corresponds to 2.192E-6 g-mole HCI/g Hypalon per MegaRad:
G       2.115 molecule                     mole                   6.241 x 10" eV         100 x 106 erg G=xx                                                                           x 100 eV                 6.022 x 1023 molecule                   erg               MegaRad g The G value for hydrochloric acid generation in electrical cable jacketing available from Appendix B of NUREG/CR-5950 (Ref. 7.13) was developed based on material (Hypalonr) with a variable chlorine content. The chlorine content of this material can be higher than the 16+2% chlorine content of the electrical cable jacket material, Chlorosulfonated Polyethylene (CSPE), specified at NMP Unit 2 &#xfd;(see description in NUREG/CR-5950). Use -of the available G value is conservative because the. application of G involves only the mass of the cable jacketing and not NEP-DES-08 Rev 07
 
ENGINEERING SERVICES                   CALCULATION.CONTINUATION SHEET                                 Page     18 (Next Project: Nine Mile Point Nuclear,Station               Unit:   2                           Disposition:
Originator/Date                       ] Reviewer/Date                   Calculation No.                     Revision J. C. Penrose / H. R. Koke I M. B. Cooper                               H21C-097 Ref.         -"
the chlorine content. Therefore, use of the G value for Hypalon will overpredict the hydrochloric acid production rate when applied to materials with lower chlorine contents, such as the CSPE utilized in the cables at NMP Unit 2 (Assumption 3.9).
Hydrochloric acid formed by gamma. radiation is computed at varying times using the Total Integrated Dose (TID) for gamma radiation in the drywell multiplied by the generation rate. The total mass of cable, jacketing is determined and then used in the computation.
Hydrochloric acid formed by beta radiation is computed at varying times using the TID for beta radiation in the drywell multiplied by the generation rate. The mass of cable in cable tray is discounted by 50% to account for localized shielding from beta radiation in the tray.
The mass of hydrochloric acid generated, by gamma and beta radiation is divided by the post-LOCA suppression pool volume to determine the total concentration of HCI formed by irradiation of electrical cable as a function of time.
The computations determining the hydrochloric acid generation are presented in Attachment 4, Table 4-4&#xfd; 5.6       Transient pH Calculation The transient pH was computed by combining the contributions of acids and bases. The concentrations of. [H*] and (OH] were summed and the net resultant concentrations from self-neutralization determined by the relationship:
where:
K, = dissociation constant for water x = [H*] and [OH] self-neutralized 7-[H'] = sum of acids added [g-mole/liter]
Z[OH] = 1sum of bases added [g-mole/liter]
Z[OH] = 1sum of bases added [g-mole/liter]
Solving for x:[OH-] + [H 4] -VqOH-] + [H]-)2 -4 x (JOH-][HW]  
Solving for x:
-K.)X=2 The dissociation constant is temperature dependent, and the temperature function is per the CRC Handbook (Ref. 7.17, consistent with correlation used in Ref. 7.12):-log(K,) = 15.5129 -2.24 x 10-2 T + 3.352 x 10--T 2 where: NEP-DES-08 Rev 07 ENGINEERING SERVICES " CALCULATION CONTINUATIONW SHEET Page 19 (Next Project: Nine Mile Point Nuclear, Station Unit: 2 Disposition:
X=    [OH-] + [H4 ] - VqOH-] + [H]-)2 - 4 x (JOH-][HW] - K.)
OriginatorDate I Reviewer/Date Calculation No. Revision J. C. Penrose /H. R. Kopke M. B. Cooper H21C-097 0 Ref.T = temperature, *F Finally, the suppression pool pH is determined:
2 The dissociation constant is temperature dependent, and the temperature function is per the CRC Handbook (Ref. 7.17, consistent with correlation used in Ref. 7.12):
[H]= [H 4]um x pH = -Iog([H*)5.7 Sodium Pentaborate Addition Sodium pentaborate can be added via the Standby Liquid Control System (SLCS) to buffer the suppression pool, resulting in higher pH values.The SLCS contains an aqueous solution of sodium pentaborate (Na 2 Bl 1 0 O 1 6 10H 2 0). The solution is prepared by mixing borax (Na 2 B 4 0 7.0H 2 0) and boric acid (H 3 B0 3) in a 1:6 stoichiometric molar ratio in distilled water (Ref. 7.22, &sect;4.4). This yields sodium pentaborate (Na 2 B 1 oO 1 6 or Na 2 0*5B 2 0 3) and water.Sodium pentaborate dissociates in water in accordance with the following equilibrium:
                            - log(K,) = 15.5129 - 2.24 x 10-2 T + 3.352 x 10--T 2 where:
Na 2 B 1 0 0, 1 6 .10H 2 0 + 6H 2 0 <->2Na+ + 2B(OH)- + 8B(OH)3 This buffers the pH in accordance with:[anion]pH = pK 8 + log[acid]pH = pK, + log [B(OH)4][B(OH)3]where: K, = equilibrium constant for the sodium pentaborate dissociation The sodium pentaborate dissociation constant is temperature dependent in accordance with the following correlation (Ref. 7.12.2, &sect;6.1): K, = (0.0585 T + 1.309) 10.1 temperature in 'F This correlation is, based on temperature data from 5-10TC (41-122&deg;F).
NEP-DES-08 Rev 07
However, Reference 7.12.2 states the following regarding the correlation:  
 
"...linear extrapolation of this data to temperatures above 50 0 C is expected to result in conservatively high dissociation constants and correspondingly lower pool pH values." Therefore, use of this correlation with suppression pool temperatures greater than 122 0 F is conservative.
ENGINEERING SERVICES         "         CALCULATION CONTINUATIONW SHEET                             Page     19 (Next Project: Nine Mile Point Nuclear,Station                 Unit:   2                         Disposition:
NEP-DES-08-Rev 07 ENGINEERING SERVICES "-CALCULATION CONTINUATION SHEET Page 20[.,(Next Project: Nine Mile Point Nuclear Station Unit: 2 Disposition:
OriginatorDate                       I Reviewer/Date                       Calculation No.               Revision J. C. Penrose /H. R. Kopke               M. B. Cooper                       H21C-097                           0 Ref.
Originator/Date T Reviewer/Date Calculation No. Revision J. C. Penrose / H. R. Kopke M. B. Cooper H21C-097 0 Ref.Due to the nature of.the correlation for the pentaborate dissociation constant, a bounding 30-day suppression pool temperature of 200&deg;F is used. Use of a higher temperature than will actually exist results in a lower final pH.The minimum volume of the SLCS injection tank is 4288.0 gallons and the concentration of the sodium pentaborate solution is 14.4% at that volume based on the decahydrate (includes water of hydration) as defined in Figure 3.1.7-1 of Technical Specification 3.1.7 (Ref. 7.2.1). Using the maximum controlled temperature of 85 0 F, the minimum specific gravity is 1.068 (Ref. 7.22, Figure 1). The min.imum mass of sodium pentaborate can be calculated:
T = temperature, *F Finally, the suppression pool pH is determined:
Mass = volume density
[H]= [H4 ]um         x pH =   -   Iog([H*)
* concentration Note that the mass of sodium pentaborate in 4,288 gallons of 14.4% solution is slightly less than the mass in 4,558.6 gallons of 13.6% solution.The number of moles of sodium pentaborate added to the suppression pool is determined using a molecular weight of 590.224 since the concentration is based on the decahydrate.
5.7     Sodium Pentaborate Addition Sodium pentaborate can be added via the Standby Liquid Control System (SLCS) to buffer the suppression pool, resulting in higher pH values.
The amounts of anion and acid are 2 and 8 times this amount, respectively, by stoichiometry.
The SLCS contains an aqueous solution of sodium pentaborate (Na 2Bl10O16 10H20). The solution is prepared by mixing borax (Na 2B40 7 .0H 20) and boric acid (H3B0 3) in a 1:6 stoichiometric molar ratio in distilled water (Ref. 7.22, &sect;4.4). This yields sodium pentaborate (Na2 B1 oO16 or Na20*5B20 3) and water.
The equivalents of acid in the unbuffered suppression pool neutralize the equivalents of conjugate base and shift the equilibrium, so, by mass balance, 2 x mole SP -mole H&#xf7;pH = pK, 6 + log 8 x mole SP + mole H*where: mole SP = moles of sodium pentaborate added to the suppression pool mole HW -moles of acid in unbuffered suppression pool 5.8 Benchmark 5.8.1 Input for pH Calculation Benchmark The pH transient developed in this calculation is determined using a Microsoft Excel (Ref.7.1) spreadsheet.
Sodium pentaborate dissociates in water in accordance with the following equilibrium:
In order to benchmark the spreadsheets, the design input from Grand Gulf Nuclear Station (GGNS) Calculation No. XC-Q1111-98013, Revision 1,"Suppression Pool pH Analysis," (Ref. 7.12.3) is input into the spreadsheets developed herein. Since Grand Gulf was an NRC pilot plant for Alternate Source Term implementation, the calculation has been accepted by the NRC and is part of the public record.Case 1 of this GGNS calculation is used to benchmark the model herein. This case assumes that all source terms (except noble gases)-are deposited upon release into the suppression pool water. This maximizes the suppression pool dose and the generation of nitric acid.NEP-DES-08 Rev 07 ENGINEERING SERVICES CALCULATIONCONTINUATIONSHEET Page 21 I (Next Project: Nine Mile Point Nuclear Station Unit: 2 Disposition:
Na 2 B1 0 0, 16 . 10H 2 0 + 6H 2 0 <->2Na+ + 2B(OH)- + 8B(OH) 3 This buffers the pH in accordance with:
Originator/Date Reviewer/Date Calculation No. Revision J. C. Penrose / H. R. Kopke M. B. Cooper H21C-097 0 Ref. i. ..The design, input taken from the Grand Gulf post-LOCA suppression pool pH calculation (Ref. 7.12.3) is provided in the following table. Input which is unchanged in the benchmark' (e.g. the density of Hypalon, core inventory fractions released into containment, etc.) is not re-stated.
[anion]
Table 5.8.1-1: Desiqn Input from GGNS Post-LOCA Suppression Pool oH Analvsis Parameter Value Source Suppression Pool (SP): SP volume 4.841 x10 6 liters Ref. 7.12.3, p. 2 SP temperature profile see AUt. 5, Table 5-8 Ref. 7.12.3, AUt. 3, p. 1 Reactor Core Inventory:
pH = pK8 + log
Iodine inventory 325 g-atoms 2 Ref. 7.12.3, p. 4 Cesium inventory 2,400 g-atoms 2 Ref. 7.12.3, p. 4 Radiation Dose: Sup ression pool gamma dose Correlations provided Ref. 7.12.3, Att. 2, Case 1 Drywell gamma dose 1  in Att. 5, Table 5-7. Ref. 7.12.3, AUt. 2, Case 1 Containment gamma dose 1  SP y dose correlation Ref. 7.12.3, AUt. 2, Case 1 Drywell beta dose' is in Mrad; other y & f3 Ref. 7.12.3, Att. 2, Case 1 Containment beta dose 1  doses are in MeV/cc. Ref. 7.12.3, Aft. 2, Case 1 Cables: Cable material HypalonTypical/modeled cable outer radius 0.35 inches Ref. 7.12.3, p. 8 Typical/modeled cable jacket thickness 0.28 inches Ref. 7.12.3, p. 8 Drywell cable masses: mass of jacket and insulation 873.65 Ibm Ref. 7.12.3, p. 3 (combined) in exposed cable ,trays mass 'of jacket and insulation 873.65 Ibm Ref. 7.12.3, p. 3 (combined) in free air drops Containment cable masses: mass ;of jacket and insulation 14,049.27 Ibm Ref. 7.12.3, p. 3 (combined) in exposed cable trays mass of jacket and insulation 1,561.03 Ibm Ref. 7.12.3, p. 3 (combined) in free air drops SLCS: ,._ _.Neutron absorber anhydrous sodium pentaborate Molecular weight (Na 2 B 1 0 O 1 6) 410 Ret. 7.12.3, p. 15 Final suppression pool temperature 120'F Ref. 7.12.3, p. 16 Mass of sodium pentaborate injected 5,800 Ibm Ref. 7.12.3, p. 15 1) Dose in Mev/cc converted to rad using 1 rad = 8.071x10 MeV/cc for air at S.T.P. (Ref. 7.8, p. 23).2) Per the CRC handbook (Ref. 7.17), a gram-atom is defined as "the mass in grams numerically equal to the atomic weight,' which is essentially the same as the definition for a gram-mole.
[acid]
The CRC handbook defines a gram-mole as the 'mass in grams numerically equal to the molecular weight." The inventories presented above are given in gram-atoms to be consistent with Reference 7.12.3.The benchmark is performed in Attachment 5 by utilizing the above design input in the spreadsheets developed for the current calculation in Attachment  
pH = pK, + log [B(OH)4]
: 4. Wherever an input has been changed or added, the cell is italicized.
[B(OH)3 ]
Similarly, additional information/equations which are added are italicized.
where:
The addition of new-equations/cells NEP-DES-08 Rev 07 I -
K, = equilibrium constant for the sodium pentaborate dissociation The sodium pentaborate dissociation constant is temperature dependent in accordance with the following correlation (Ref. 7.12.2, &sect;6.1):
ENGINEERING SERVICES 1" " CALCULATION CONTINUATION SHEET Page 22 (Next I Project: Nine Mile Point Nuclear Station Unit: 2 Disposition:
K, = (0.0585 T + 1.309) 10.1             temperature in 'F This correlation is, based on temperature data from 5-10TC (41-122&deg;F). However, Reference 7.12.2 states the following regarding the correlation: "...linear extrapolation of this data to temperatures above 50 0 C is expected to result in conservatively high dissociation constants and correspondingly lower pool pH values." Therefore, use of this correlation with suppression pool temperatures greater than 122 0 F is conservative.
Originator/Date  
NEP-DES-08
.Reviewer/Date Calculation No. Revision J. C. Penrose / H. R. Kopke M. B. Cooper H21 C-097 0 R, .is necessalry since, in some instances, the input provided in Reference different foim than used herein.7.12.3 is in a 5.8.2 Benchmark Results The results of the benchmark provided in Attachment 5 are compared reported in Reference 7.12.3. This comparison is -illustrated in Figure below for convenience.
                                                                                                                -Rev 07
to the results 5-1, repeated Figure.5-1:
 
GGNS Benchmark Post-LOCA Suppression Pool pH Analysis pH Response without SLCS ft A.S'A-e- Benchms-4F- GGNS &#xfd;, .D 1 i 0.01 0.1 1 10 100 Time Alter LOCA (hours)1000 Figure 5-1: demonstrates the successful benchmarking of the model developed herein.The result, are identical to 2 hours post-LOCA, thus indicating that the gap release phase and early in-vessel release phases are modeled in the same manner for both GGNS and the benchmark.
ENGINEERING SERVICES             "-CALCULATION CONTINUATION SHEET                                   Page     20
Beyond 2 hours, nitric acid and hydrochloric acid are produced as a result of radiolysis.
[.,(Next Project:Nine Mile Point Nuclear Station               Unit:   2                             Disposition:
The nitric acid contribution is the same for GGNS and the benchmark.
Originator/Date                     T Reviewer/Date                     Calculation No.                   Revision J. C. Penrose / H. R. Kopke           M.B. Cooper                       H21C-097                             0 Ref.
Slight differences between the benchmark and GGNS curves beyond 2 hours are attributed to differences in methodologies between GGNS-98-0039, Revision 1 (Ref.7.12.1), adopted in this calculation, and GGNS-98-0039, Revision 3 (Ref. 7.12.2), which is the basis for Reference 7.12.3 (the benchmark), for computing hydrochloric acid production.
Due to the nature of.the correlation for the pentaborate dissociation constant, a bounding 30-day suppression pool temperature of 200&deg;F is used. Use of a higher temperature than will actually exist results in a lower final pH.
The hydrochloric acid production rate in GGNS-98-0039, Revision 1, is based on -the. mass of cable jacket and on the radiation dose rate at the cable jacket surface multiplied by a flux averaging factor. However, the hydrochloric acid production rate in GGNS-98-0039, Revision 3, is based on the cable jacket surface area and on the NEP-DES-08 Rev 07 ENGINEERING SERVICES -CALCULATION CONTINUATION SHEET.,: Page 23.(Next Project: Nine Mile Point Nuclear Station Unit: 2 Disposition:
The minimum volume of the SLCS injection tank is 4288.0 gallons and the concentration of the sodium pentaborate solution is 14.4% at that volume based on the decahydrate (includes water of hydration) as defined in Figure 3.1.7-1 of Technical Specification 3.1.7 (Ref. 7.2.1). Using the maximum controlled temperature of 85 0F, the minimum specific gravity is 1.068 (Ref. 7.22, Figure 1). The min.imum mass of sodium pentaborate can be calculated:
Originator/Date Reviewer/Date Calculation No. Revision J. C. Penrose / H. R. Kopke M. B. Cooper H21C-097 0 Ref.I energy release per unit volume of containment, diminished by attenuation in air between the center of containment and the cable surface. Both methodologies use the same G value (with units -converted to rads in GGNS-98-0039, Revision 1) and the same expression for energy absorption fraction in the cable jacket. The benchmark also demonstrates that both methodologies yield very similar results.The final suppression pool pH calculated by the spreadsheets herein is 4.07 in comparison to 4.03 in the GGNS calculation.
Mass = volume       density
This is considered sufficiently accurate to benchmark:
* concentration Note that the mass of sodium pentaborate in 4,288 gallons of 14.4% solution is slightly less than the mass in 4,558.6 gallons of 13.6% solution.
the model developed for this calculation.
The number of moles of sodium pentaborate added to the suppression pool is determined using a molecular weight of 590.224 since the concentration is based on the decahydrate. The amounts of anion and acid are 2 and 8 times this amount, respectively, by stoichiometry.
Similarly, the model. determining the final suppression pool pH following SLCS addition is benchmarked.
The equivalents of acid in the unbuffered suppression pool neutralize the equivalents of conjugate base and shift the equilibrium, so, by mass balance, pH = pK,6 + log 2 x mole SP - mole H&#xf7; 8 x mole SP + mole H*
Both the model herein and the GGNS calculation predict a final pH of 8.46.NEP-DES-08 Rev 07 ENGINEERING SERVICES CACLTO OTNAINSETPage 24 I I Project: Nine Mile Point Nuclear Station Unit: 2 Disposition:
where:
Originator/Date Reviewer/Date Calculation No. Revision J. C. Penrose / H. R. Kopke M. B. Cooper H21C-097 0 Ref.6.0 Results 6.1 The pH in the unbuffered post-LOCA suppression pool initially rises due to the influence of cesium hydroxide addition at the beginning of the LOCA, but falls to below a pH 7.0 between approximately 12 to 14 days (see Figure 4-1, repeated below for convenience).
mole SP = moles of sodium pentaborate added to the suppression pool mole HW - moles of acid in unbuffered suppression pool 5.8       Benchmark 5.8.1   Input for pH Calculation Benchmark The pH transient developed in this calculation is determined using a Microsoft Excel (Ref.
The final pH at 30 days without buffering is 4.4, so the suppression pool pH does not satisfy the Acceptance Criterion of a pH greater than 7.0.6.2 Addition of sodium pentaborate via the Standby Liquid Control System (SLCS) buffers the suppression pool and results in a final pH at 30 days of 8.3. The suppression pool pH will satisfy the Acceptance Criterion of a pH greater than 7.0 with use of the SLC system. The SLCS should be used prior to the suppression pool pH falling below 7.0. When determining the appropriate time to inject the sodium pentaborate, the duration of injection should be considered as well as the amount of time to achieve a homogenous mixture in the suppression pool.Figure 4-1: Nine Mile Point Unit 2 Post-LOCA Suppression Pool pH Analysis pH Response without SLCS 9.0 Final pH with SLCS would be 8.3 8.0 7.0 6.0.3.0 L.0.010 0.100 1.000 10.000 Time After LOCA (hours)100.000 1000.000 NEP-DES-08 Rev 07 ENGINEERING SERVICES CALCULATION CONTINUATION SHEET Page 25 (Next Project:*Nine Mile Point Nuclear Station Unit: 2 Disposition:
7.1) spreadsheet. In order to benchmark the spreadsheets, the design input from Grand Gulf Nuclear Station (GGNS) Calculation No. XC-Q1111-98013, Revision 1, "Suppression Pool pH Analysis," (Ref. 7.12.3) is input into the spreadsheets developed herein. Since Grand Gulf was an NRC pilot plant for Alternate Source Term implementation, the calculation has been accepted by the NRC and is part of the public record.
Originator/Date Reviewer/Date Calculation No. Revision J. C. Penrose / H. R. Kopke M. B. Cooper H21C-097 0 Ref.7.0 References
Case 1 of this GGNS calculation is used to benchmark the model herein. This case assumes that all source terms (except noble gases)-are deposited upon release into the suppression pool water. This maximizes the suppression pool dose and the generation of nitric acid.
NEP-DES-08 Rev 07
 
ENGINEERING SERVICES                 CALCULATIONCONTINUATIONSHEET                                                 Page       21 I                                                                             (Next Project: Nine Mile PointNuclear Station                 Unit:   2                                       Disposition:
Originator/Date                       Reviewer/Date                             Calculation No.                           Revision J. C. Penrose / H.R. Kopke           M.B.Cooper                               H21C-097                                     0 Ref.                               i.                                             ..
The design, input taken from the Grand Gulf post-LOCA suppression pool pH calculation (Ref. 7.12.3) is provided in the following table. Input which is unchanged in the benchmark' (e.g. the density of Hypalon, core inventory fractions released into containment, etc.) is not re-stated.
Table 5.8.1-1: Desiqn Input from GGNS Post-LOCA Suppression Pool oH Analvsis Parameter                                 Value                       Source Suppression Pool (SP):
SP volume                                       4.841 x10 6 liters           Ref. 7.12.3, p. 2 SP temperature profile                           see AUt. 5, Table 5-8         Ref. 7.12.3, AUt. 3, p. 1 Reactor Core Inventory:
Iodine inventory                                 325 g-atoms 2                 Ref. 7.12.3, p. 4 Cesium inventory                                 2,400 g-atoms 2               Ref. 7.12.3, p. 4 Radiation Dose:
Sup ression pool gamma dose                     Correlations provided         Ref. 7.12.3, Att. 2, Case   1 Drywell gamma dose1                              in Att. 5, Table 5-7.         Ref. 7.12.3, AUt. 2, Case   1 Containment gamma dose1                          SP y dose correlation         Ref. 7.12.3, AUt. 2, Case   1 Drywell beta dose'                               is in Mrad; other y & f3     Ref. 7.12.3, Att. 2, Case   1 Containment beta dose1                          doses are in MeV/cc.         Ref. 7.12.3, Aft. 2, Case   1 Cables:
Cable material                                   Hypalon Typical/modeled cable outer radius               0.35 inches                   Ref. 7.12.3, p. 8 Typical/modeled cable jacket thickness           0.28 inches                   Ref. 7.12.3, p. 8 Drywell cable masses:
mass of jacket and insulation               873.65 Ibm                   Ref. 7.12.3, p. 3 (combined) in exposed cable ,trays mass 'of jacket and insulation             873.65 Ibm                   Ref. 7.12.3, p. 3 (combined) in free air drops Containment cable masses:
mass ;of jacket and insulation             14,049.27 Ibm                 Ref. 7.12.3, p. 3 (combined) in exposed cable trays mass of jacket and insulation               1,561.03 Ibm                 Ref. 7.12.3, p. 3 (combined) in free air drops SLCS:       ,._                                                   _.
Neutron absorber                                 anhydrous sodium pentaborate Molecular weight (Na 2 B1 0O 16 )               410                           Ret. 7.12.3, p. 15 Final suppression pool temperature               120'F                         Ref. 7.12.3, p. 16 Mass of sodium pentaborate injected             5,800 Ibm                     Ref. 7.12.3, p. 15
: 1) Dose in Mev/cc converted to rad using 1 rad = 8.071x10 MeV/cc for air at S.T.P. (Ref. 7.8, p. 23).
: 2) Per the CRC handbook (Ref. 7.17), a gram-atom is defined as "the mass in grams numerically equal to the atomic weight,' which is essentially the same as the definition for a gram-mole. The CRC handbook defines a gram-mole as the 'mass in grams numerically equal to the molecular weight." The inventories presented above are given in gram-atoms to be consistent with Reference 7.12.3.
The benchmark is performed in Attachment 5 by utilizing the above design input in the spreadsheets developed for the current calculation in Attachment 4. Wherever an input has been changed or added, the cell is italicized.                                   Similarly, additional information/equations which are added are italicized. The addition of new-equations/cells NEP-DES-08 Rev 07 I                               -
 
ENGINEERING SERVICES Project:Nine Mile PointNuclear Station "1" CALCULATION CONTINUATION SHEET Unit:      2 Page (Next Disposition:
22 I
Originator/Date                         . Reviewer/Date                             Calculation No.                       Revision J. C. Penrose / H. R. Kopke               M. B. Cooper                               H21 C-097                                 0 R, .
is necessalry since, in some instances, the input provided in Reference 7.12.3 is in a different foim than used herein.
5.8.2 Benchmark Results The results of the benchmark provided in Attachment 5 are compared to the results reported in Reference 7.12.3. This comparison is -illustrated in Figure 5-1, repeated below for convenience.
Figure.5-1: GGNS Benchmark Post-LOCA Suppression Pool pH Analysis pH Response without SLCS ft A.
S                                                                                           -e- Benchms
                                                                                                                    -4F- GGNS &#xfd;
                        'A
                            , . D   1 i 0.01             0.1           1                 10               100     1000 Time Alter LOCA (hours)
Figure 5-1: demonstrates the successful benchmarking of the model developed herein.
The result, are identical to 2 hours post-LOCA, thus indicating that the gap release phase and early in-vessel release phases are modeled in the same manner for both GGNS and the benchmark. Beyond 2 hours, nitric acid and hydrochloric acid are produced as a result of radiolysis. The nitric acid contribution is the same for GGNS and the benchmark.
Slight differences between the benchmark and GGNS curves beyond 2 hours are attributed to differences in methodologies between GGNS-98-0039, Revision 1 (Ref.
7.12.1), adopted in this calculation, and GGNS-98-0039, Revision 3 (Ref. 7.12.2), which is the basis for Reference 7.12.3 (the benchmark), for computing hydrochloric acid production. The hydrochloric acid production rate in GGNS-98-0039, Revision 1, is based on -the. mass of cable jacket and on the radiation dose rate at the cable jacket surface multiplied by a flux averaging factor. However, the hydrochloric acid production rate in GGNS-98-0039, Revision 3, is based on the cable jacket surface area and on the NEP-DES-08 Rev 07
 
ENGINEERING SERVICES           - CALCULATION CONTINUATION SHEET.,:                               Page     23
                                                                                                .(Next Project:Nine Mile Point Nuclear Station           Unit: 2                               Disposition:
Originator/Date                   Reviewer/Date                     Calculation No.                   Revision J. C. Penrose / H. R. Kopke       M.B. Cooper                       H21C-097                               0 Ref.I energy release per unit volume of containment, diminished by attenuation in air between the center of containment and the cable surface. Both methodologies use the same G value (with units -converted to rads in GGNS-98-0039, Revision 1) and the same expression for energy absorption fraction in the cable jacket. The benchmark also demonstrates that both methodologies yield very similar results.
The final suppression pool pH calculated by the spreadsheets herein is 4.07 in comparison to 4.03 in the GGNS calculation. This is considered sufficiently accurate to benchmark: the model developed for this calculation.
Similarly, the model. determining the final suppression pool pH following SLCS addition is benchmarked. Both the model herein and the GGNS calculation predict a final pH of 8.46.
NEP-DES-08 Rev 07
 
ENGINEERING SERVICES                 CACLTO                           OTNAINSETPage                                                         24 I                                                                                                                                           I Project: Nine Mile Point Nuclear Station                 Unit:     2                                               Disposition:
Originator/Date                       Reviewer/Date                                   Calculation No.                                   Revision J. C. Penrose / H. R. Kopke           M. B. Cooper                                     H21C-097                                               0 Ref.
6.0       Results 6.1       The pH in the unbuffered post-LOCA suppression pool initially rises due to the influence of cesium hydroxide addition at the beginning of the LOCA, but falls to below a pH 7.0 between approximately 12 to 14 days (see Figure 4-1, repeated below for convenience). The final pH at 30 days without buffering is 4.4, so the suppression pool pH does not satisfy the Acceptance Criterion of a pH greater than 7.0.
6.2       Addition of sodium pentaborate via the Standby Liquid Control System (SLCS) buffers the suppression pool and results in a final pH at 30 days of 8.3. The suppression pool pH will satisfy the Acceptance Criterion of a pH greater than 7.0 with use of the SLC system. The SLCS should be used prior to the suppression pool pH falling below 7.0. When determining the appropriate time to inject the sodium pentaborate, the duration of injection should be considered as well as the amount of time to achieve a homogenous mixture in the suppression pool.
Figure 4-1: Nine Mile Point Unit 2 Post-LOCA Suppression Pool pH Analysis pH Response without SLCS 9.0 Final pH with SLCS would be 8.3 8.0 7.0 6.0.
3.0 L.
0.010         0.100               1.000                 10.000                100.000                1000.000 Time After LOCA (hours)
NEP-DES-08 Rev 07


===7.1 Microsoft===
ENGINEERING SERVICES                    CALCULATION CONTINUATION SHEET                                Page      25 (Next Project:*Nine Mile Point Nuclear Station                Unit:  2                              Disposition:
Originator/Date                          Reviewer/Date                    Calculation No.                    Revision J. C. Penrose / H. R. Kopke              M. B. Cooper                      H21C-097                              0 Ref. 7.0        References 7.1       Microsoft Excel 97 SR-2, S&L Program No. 03.2.081-1.0, dated 04/28/1999.
7.2      NMPNS Unit 2 Technical Specifications 7.2.1 TS 3.1.7, Amendment 91, "Standby Liquid Control (SLC) System."
7.2.2 TS 3.6.1.4,'Amendment 91, "Drywell and Suppression Chamber Pressure."
7.2.3 TS 3.6.1.5, Amendment 91, "Drywell Air Temperature."
7.2.4 TS 3.6.2.1, Amendment 91, "Suppression Pool Average Temperature."
7.2.5 TS 3.6.2.2, Amendment 91, "Suppression Pool Water Level."
7.3      NMPNS Unit 2 Procedures 7.3.1 N2-CTP-GEN-M105, Revision 00, "Monthly Reactor Water, SFC and Suppression Pool Chemistry.'
7.3.2 GAP-CHE-O1, Revision 09, "BWR Water Chemistry Operating Limits."
7.3.3 S-CTP-V666, Revision 01, "Auxiliary Chemistry System."
7.3.4 N2-OP-36A, Revision 04, "Standby Liquid Control System."
7.4      NMPNS Unit 2 Technical Requirements Manual, Revision 16.
7.5      NMPNS Unit 2 Facility Operating License, Docket No. 50-410, Amendment 100.
7.6      NMPNS Unit 2 Calculations 7.6.1. ES-1 15, Revision 2, "Primary Containment Volume/Area."
7.6.2 PR-C-19-C, Revision 3, "Dose Rates and Integrated Doses from Airborne and Plate-out Sources in;Drywell and Wetwell - Post-LOCA."
7.6.2.a PR-C-19-C, Revision 3, Disposition PR-C-19-C-03A.
7.6.3 PR-C-21-Q, Revision 1, "Post-LOCA Radiation Environment (Gamma) in Drywell and Wetwell du'e to Airborne and Liquid Sources."
7.6.3.a PR-C-21-Q, Revision 1, Disposition PR-C-21-Q-01A.
7.6.4 ES-145, Revision 02, "Primary Containment Environmental Parameters."
7.6.5 ES-121, Revision 01, "Large Break Accident Analysis for FSAR Section 6.2.1.1."
7.6.6 PR-C-20-1, Revision 3, "Dose Rates versus Distance and Dose Rate to Dose Conversion Factors for. Piping Containing Post-LOCA Fluids" 7.6.7 ES-142, Revision 2, "Evaluation of Long-Term Containment Pressure and Temperature Profiles for: Large Break Accident."
7.7      GE Nuclear Energy (GENE) Document No. GE-NE-A41-00097-00-01. DRF A41-00097-00, Class III, "Nine Mile Point Unit 2 24-Month Cycle Fission Product Inventory Evaluation," dated February 1999.
7.8      Radiological Health Handbook, U.S. Department of Health, Education, and Welfare, Public Health Service, Compiled and Edited by the Bureau of Radiological'Health and the Training Institute Environmental Control Administration, Revised Edition, 1970.
7.9      "Nuclides and.Isotopes - Chart of the Nuclides,"  1 5 th Edition, GE Nuclear Energy, 1996.
NEP-DES-08 Rev 07


Excel 97 SR-2, S&L Program No. 03.2.081-1.0, dated 04/28/1999.
ENGINEERING SERVICES.                CPage                                                                  26 (Next Project:Nine Mile Point NuclearStation              Unit: 2    .                        Disposition:
Originator/Date                      Reviewer/Date                  Calculation No.                    Revision J. C. Penrose / H. R. Kopke,          M.B. Cooper                    H21C-097                              0 Ref.
7.10 U.S. Nuclear Regulatory Commission Regulatory Guides 7.10.1 Regulatory; Guide 1.49, Revision 1, "Power Levels of Nuclear Power Plants," dated December 1973.
7.10.2 Regulatory' Guide 1.183, Revision 0, "Alternative Radiological Source Terms for Evaluating Design Basis Accidents at Nuclear Power Reactors," dated July 2000.
7.11      NMPNS Unit 2 Updated Final Safety Analysis Report (UFSAR).
7.11.1 UFSAR Revision 15, &sect;6.2.1.1.5, "Impact of Power Uprate on Large Break Containment Response Analysis."
7.11.2 UFSAR Revision 14, &sect;6.2.1.1.3, "Design Evaluation."
7.12      Grand Gulf Nuclear Station Documents 7.12.1 Engineering Report No. GGNS-98-0039, Revision 1, "Suppression Pool pH and Iodine Re-Evolution Methodology." (included as Attachment 7 to Letter GNRO-2000/20005 from GGNS to the NRC) 7.12.2 Engineering Report No. GGNS-98-0039, Revision 3, " Suppression Pool pH and Iodine Re-Evolution Methodology." (included as Attachment 1 to Letter GNRO-2000/00100 from GGNS to the NRC) 7.12.3 Calculation' No. XC-Q11111-98013, Revision 2, "Suppression Pool pH Analysis." (included as Attachment 2 to Letter GNRO-2000/00100 from GGNS to the NRC) 7.13      NUREG/CR-5950,:"Iodine Evolution and pH Control", Published December, 1992.
7.14      NUREG-1465, "Accident Source Terms for Light Water Nuclear Power Plants", Published February, 1995.
7.15      NUREG-1081, "Post Accident Gas Generation from Radiolysis of Organic Materials", Published September, 1984.
7.16      NUREG-5732, "Iodine Chemical Forms in LWR Severe Accidents", Published April, 1992.
7.17      CRC Handbook of'Chemistry and Physics 7.18      ASME Steam Tables, 4 th Edition, The American Society of Mechanical Engineers, New York, NY, 1979.
7.19      DIT-NM-NPEE-001, "Determination of Exposed Cables in the. NMP2 Drywell." (Included as Attachment 3) 7.20      U.S. Nuclear Regulatory Commission Standard Review Plan, NUREG-0800, Revision 2, Section 6.5.2, "Containment Spray as a Fission Product Cleanup System."
7.21      Commission Paper No. SECY-94-302, "Source Term Related Technical and Licensing Issues Pertaining to Evolutionary and Passive Light Water Reactor Designs," December 19, 1994.
7.22      General Electric Design Specification 22A7641, Revision 1, "Standby Liquid Control System."
7.23      NMP2 Specification No. NMP2-E023A, Revision 2, "Insulated 15-kV Power Cable."
NEP-DES-08 Rev 07


===7.2 NMPNS===
ENGINEERING SERVICES                 CALCULATION CONTINUATION SHEET                                   P.*age 27 Final (Next_____
Unit 2 Technical Specifications 7.2.1 TS 3.1.7, Amendment 91, "Standby Liquid Control (SLC) System." 7.2.2 TS 3.6.1.4,'Amendment 91, "Drywell and Suppression Chamber Pressure." 7.2.3 TS 3.6.1.5, Amendment 91, "Drywell Air Temperature." 7.2.4 TS 3.6.2.1, Amendment 91, "Suppression Pool Average Temperature." 7.2.5 TS 3.6.2.2, Amendment 91, "Suppression Pool Water Level." 7.3 NMPNS Unit 2 Procedures 7.3.1 N2-CTP-GEN-M105, Revision 00, "Monthly Reactor Water, SFC and Suppression Pool Chemistry.'
Project:Nine Mile Point NuclearStation                Unit: 2                                 Disposition:
7.3.2 GAP-CHE-O1, Revision 09, "BWR Water Chemistry Operating Limits." 7.3.3 S-CTP-V666, Revision 01, "Auxiliary Chemistry System." 7.3.4 N2-OP-36A, Revision 04, "Standby Liquid Control System." 7.4 NMPNS Unit 2 Technical Requirements Manual, Revision 16.7.5 NMPNS Unit 2 Facility Operating License, Docket No. 50-410, Amendment 100.7.6 NMPNS Unit 2 Calculations 7.6.1. ES-1 15, Revision 2, "Primary Containment Volume/Area." 7.6.2 PR-C-19-C, Revision 3, "Dose Rates and Integrated Doses from Airborne and Plate-out Sources in;Drywell and Wetwell -Post-LOCA." 7.6.2.a PR-C-19-C, Revision 3, Disposition PR-C-19-C-03A.
Originator/Date                       Reviewer/Date                       Calculation No.                     Revision J. C.Penrose H. R. KoHke               M.B. Cooper                         H21C-097                               0 Ref.
7.6.3 PR-C-21-Q, Revision 1, "Post-LOCA Radiation Environment (Gamma) in Drywell and Wetwell du'e to Airborne and Liquid Sources." 7.6.3.a PR-C-21-Q, Revision 1, Disposition PR-C-21-Q-01A.
7.24     Chilton, A. B., Shultis, J. K., and Faw, R. E., Principles of Radiation Shielding, Prentice-Hall, Inc.,
7.6.4 ES-145, Revision 02, "Primary Containment Environmental Parameters." 7.6.5 ES-121, Revision 01, "Large Break Accident Analysis for FSAR Section 6.2.1.1." 7.6.6 PR-C-20-1, Revision 3, "Dose Rates versus Distance and Dose Rate to Dose Conversion Factors for. Piping Containing Post-LOCA Fluids" 7.6.7 ES-142, Revision 2, "Evaluation of Long-Term Containment Pressure and Temperature Profiles for: Large Break Accident." 7.7 GE Nuclear Energy (GENE) Document No. GE-NE-A41-00097-00-01.
Englewood Cliffs, NJ, 1984. ISBN 0-13-709907-X 7.25     NUREG/CR-1413, "A Radionuclide Decay Data Base - Index and Summary Table," May 1980.
DRF A41-00097-00, Class III, "Nine Mile Point Unit 2 24-Month Cycle Fission Product Inventory Evaluation," dated February 1999.7.8 Radiological Health Handbook, U.S. Department of Health, Education, and Welfare, Public Health Service, Compiled and Edited by the Bureau of Radiological'Health and the Training Institute Environmental Control Administration, Revised Edition, 1970.7.9 "Nuclides and.Isotopes
7.26     GE Document No! APED-5398-A, "Summary-of Fission Product Yields for U23, U22, Pu 239, and Pu 241 at Thermal,; Fission Spectrum and 14 MeV Neutron Energies," Class I, Revised, dated October 1, 1968.
-Chart of the Nuclides," 1 5 th Edition, GE Nuclear Energy, 1996.NEP-DES-08 Rev 07 ENGINEERING SERVICES.
NEP-DES-08 RevO07 Calculation No. H21C-097 Nine Mile- Point Nuclear Station                                                   Revision 0 Unit 2                                                                             Page 1-1 Attachment I Determination of Reactor Core Inventories
CPage 26 (Next Project: Nine Mile Point Nuclear Station Unit: 2 .Disposition:
Originator/Date Reviewer/Date Calculation No. Revision J. C. Penrose / H. R. Kopke, M. B. Cooper H21C-097 0 Ref.7.10 U.S. Nuclear Regulatory Commission Regulatory Guides 7.10.1 Regulatory; Guide 1.49, Revision 1, "Power Levels of Nuclear Power Plants," dated December 1973.7.10.2 Regulatory' Guide 1.183, Revision 0, "Alternative Radiological Source Terms for Evaluating Design Basis Accidents at Nuclear Power Reactors," dated July 2000.7.11 NMPNS Unit 2 Updated Final Safety Analysis Report (UFSAR).7.11.1 UFSAR Revision 15, &sect;6.2.1.1.5, "Impact of Power Uprate on Large Break Containment Response Analysis." 7.11.2 UFSAR Revision 14, &sect;6.2.1.1.3, "Design Evaluation." 7.12 Grand Gulf Nuclear Station Documents 7.12.1 Engineering Report No. GGNS-98-0039, Revision 1, "Suppression Pool pH and Iodine Re-Evolution Methodology." (included as Attachment 7 to Letter GNRO-2000/20005 from GGNS to the NRC)7.12.2 Engineering Report No. GGNS-98-0039, Revision 3, " Suppression Pool pH and Iodine Re-Evolution Methodology." (included as Attachment 1 to Letter GNRO-2000/00100 from GGNS to the NRC)7.12.3 Calculation' No. XC-Q11111-98013, Revision 2, "Suppression Pool pH Analysis." (included as Attachment 2 to Letter GNRO-2000/00100 from GGNS to the NRC)7.13 NUREG/CR-5950,:"Iodine Evolution and pH Control", Published December, 1992.7.14 NUREG-1465, "Accident Source Terms for Light Water Nuclear Power Plants", Published February, 1995.7.15 NUREG-1081, "Post Accident Gas Generation from Radiolysis of Organic Materials", Published September, 1984.7.16 NUREG-5732, "Iodine Chemical Forms in LWR Severe Accidents", Published April, 1992.7.17 CRC Handbook of'Chemistry and Physics 7.18 ASME Steam Tables, 4 th Edition, The American Society of Mechanical Engineers, New York, NY, 1979.7.19 DIT-NM-NPEE-001, "Determination of Exposed Cables in the. NMP2 Drywell." (Included as Attachment 3)7.20 U.S. Nuclear Regulatory Commission Standard Review Plan, NUREG-0800, Revision 2, Section 6.5.2, "Containment Spray as a Fission Product Cleanup System." 7.21 Commission Paper No. SECY-94-302, "Source Term Related Technical and Licensing Issues Pertaining to Evolutionary and Passive Light Water Reactor Designs," December 19, 1994.7.22 General Electric Design Specification 22A7641, Revision 1, "Standby Liquid Control System." 7.23 NMP2 Specification No. NMP2-E023A, Revision 2, "Insulated 15-kV Power Cable." NEP-DES-08 Rev 07 ENGINEERING SERVICES CALCULATION CONTINUATION SHEET P.*age 27 Final (Next_____
Project: Nine Mile Point Nuclear Station Unit: 2 Disposition:
Originator/Date Reviewer/Date Calculation No. Revision J. C. Penrose H. R. KoHke M. B. Cooper H21C-097 0 Ref.7.24 Chilton, A. B., Shultis, J. K., and Faw, R. E., Principles of Radiation Shielding, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1984. ISBN 0-13-709907-X 7.25 NUREG/CR-1413, "A Radionuclide Decay Data Base -Index and Summary Table," May 1980.7.26 GE Document No! APED-5398-A, "Summary-of Fission Product Yields for U 2 3, U 2 2, Pu 2 3 9 , and Pu 2 4 1 at Thermal,;
Fission Spectrum and 14 MeV Neutron Energies," Class I, Revised, dated October 1, 1968.NEP-DES-08 RevO07 Attachment 1 Nine Mile- Point Nuclear Station Unit 2 Calculation No. H21C-097 Revision 0 Page 1-1 Attachment I Determination of Reactor Core Inventories Attachment.
1 Calculation No. H21 C-097 Nine Mile Point Nuclear Station "Revision 0 Unit 2 -Page 1-2 Purpose The purpose of this attachment is to document the inventory of all iodine and cesium isotopes in the reactor core.Methodology.
The reactor core inventory is calculated using GE document GE-NE-A41-00097-00-01, DRF A41-00097-00, "Nine Mile Point Unit 2 24-Month Cycle Fission Product Inventory Evaluation," (Ref. 7.7 in main body). Case 3, which addresses a single batch core with 1,400 Effective Full Power Days (EFPD) and 34,000 MWd/ST Expected Core Average Exposure (CAVEX), is conservatively used to determine the inventories.
The inventory at both t=0 and t=30 days (720 hours) is calculated to demonstrate that the values at t=0 are conservative.
Reference


===7.7 presents===
Attachment. 1                                                              Calculation No. H21 C-097 Nine Mile Point Nuclear Station                    "Revision                                          0 Unit 2          -                                                                            Page 1-2 Purpose The purpose of this attachment is to document the inventory of all iodine and cesium isotopes in the reactor core.
the activity in Ci/MWt. To convert this to core inventory, the methodology on p. 29 of the Radiological Health Handbook (Ref. 7.8 in the main body) is used.XN ln(2)._ N In(2).Na XN [Ci1 In(2)-Na tl/2 .M~tl/2 =3.7x1010 g'm = 37x1010.Mt/
Methodology.
where: XN specific activity [dis/sec/gm]
The reactor core inventory is calculated using GE document GE-NE-A41-00097-00-01, DRF A41-00097-00, "Nine Mile Point Unit 2 24-Month Cycle Fission Product Inventory Evaluation,"
N number of atoms per gram [atoms/gm]
(Ref. 7.7 in main body). Case 3, which addresses a single batch core with 1,400 Effective Full Power Days (EFPD) and 34,000 MWd/ST Expected Core Average Exposure (CAVEX), is conservatively used to determine the inventories. The inventory at both t=0 and t=30 days (720 hours) is calculated to demonstrate that the values at t=0 are conservative.
tI r2 half life [sec]Na Avogadro constant [atoms/mole]
Reference 7.7 presents the activity in Ci/MWt. To convert this to core inventory, the methodology on p. 29 of the Radiological Health Handbook (Ref. 7.8 in the main body) is used.
M molecular weight [gm/mole]  
XN     ln(2)._N tl/2.M~tl/2 In(2).Na   =3.7x1010      XN   [Ci1         In(2)-Na g'm = 37x1010.Mt/
= [amu]3.7x1 010 disintegrations per second per Curie Once the total core inventory is known, the fractions released during the gap release phase and early in-vessel (EIV) phase are determined in accordance with the guidance provided in Table I of Regulatory Guide 1.183 (Ref. 7.10.2 in main body). This table is summarized below for alkali metals such as cesium and halogens such as iodine.Group Core Inventory Fraction Released into Containment Gap Release Phase I Early In-Vessel Phase Total Halogens 0.05 I 0.25 0.30 Alkali Metals 0.05 0.20 0.25 Notes/Assumptions See the text in the main bodyfor the basis for these items.1. Stable cesium is conservatively not included in the cesium inventory.
where:
XN           specific activity [dis/sec/gm]
N           number of atoms per gram [atoms/gm]
tI r2       half life [sec]
Na           Avogadro constant [atoms/mole]
M           molecular weight [gm/mole] = [amu]
3.7x1 010 disintegrations per second per Curie Once the total core inventory is known, the fractions released during the gap release phase and early in-vessel (EIV) phase are determined in accordance with the guidance provided in Table I of Regulatory Guide 1.183 (Ref. 7.10.2 in main body). This table is summarized below for alkali metals such as cesium and halogens such as iodine.
Group                         Core Inventory Fraction Released into Containment Gap Release Phase I Early In-Vessel Phase                 Total Halogens                           0.05         I         0.25                     0.30 Alkali Metals                     0.05                     0.20                     0.25 Notes/Assumptions See the text in the main bodyfor the basis for these items.
: 1. Stable cesium is conservatively not included in the cesium inventory.
: 2. The mass of iodine-127 is assumed to be 30% of the mass of iodine-129.
: 2. The mass of iodine-127 is assumed to be 30% of the mass of iodine-129.
Attachment I calculation No. H21C-097 Nine Mile Point Nuclear Station Revision 0 Unit 2 Page 1-3 Results The results below are taken from Tables 1-1 through 1-4..Reactor Core Inventory  
 
[gram-moles]
Attachment I                                                         calculation No. H21C-097 Nine Mile Point Nuclear Station                                                     Revision 0 Unit 2                                                                               Page 1-3 Results The results below are taken from Tables 1-1 through 1-4..
Element t=0 t=30 days_ Gap Release EIV Total Gap Release EIV Total Iodine 13.5 I 67.5 81.0 13.1 65.7 78.8 Cesium 100.7 402.7 503.3 100.3 401.1 501.4 It can be seen that the reactor core inventory of both iodine and cesium does, not change appreciably during the duration of the accident.
Reactor Core Inventory [gram-moles]
Therefore, use of the values at time=0 is both reasonable and conservative.
Element                     t=0                                   t=30 days
Attachment 1 Nine Mile Point Nuclear Station Unit 2 Time post-LOCA Neutron Mass Core Thermal Power (100%)Core Thermal Power (102%)1 Curie Avogadro's Number Table 1-1: Core Iodine Inventory Determination (t=0 Post-LOCA)(Single Batch Core with 1400 EFPD and 34,000 MWd/ST CAVEX)Calculation No. H21C-097 Revision 0 Page 1-4 0 sec 1.008665 amu (Ref. 1)3,467 MWt (Ref. 5).3,536 MWt (Ref. 6)3.70t+10 dis/sec (Ref. 1)6.022137E+23 atoms/mole (Ref. 2)Core Inventov Fryaction Released in Containment for Haloens Gap Release Phase Early In-Vessel Phase 0.05 (Ref. 4, Tbl 1).0.25 (Ref. 4, Tbl 1)Isotope Atomic Mass Half Life 12 nits HalfLife Activity Activity Specific Core Gap ElV Total (Ref. 1) (Ref. 2) (Ref. 3) per Core Activity Inventory Release Release Release[amu _ Isec] [CI/MWt) [Ci/corel
Gap Release         EIV         Total   Gap Release       EIV         Total Iodine           13.5     I   67.5         81.0           13.1         65.7         78.8 Cesium           100.7         402.7       503.3         100.3       401.1       501.4 It can be seen that the reactor core inventory of both iodine and cesium does, not change appreciably during the duration of the accident. Therefore, use of the values at time=0 is both reasonable and conservative.
[Cl/gm) [gmn/core)
Table 1-1: Core Iodine Inventory Determination (t=0 Post-LOCA)                                                        Calculation No. H21C-097 Nine Mile Point Nuclear Station                                       (Single Batch Core with 1400 EFPD and 34,000 MWd/ST CAVEX)                                                                          Revision 0 Unit 2                                                                                                                                                                                                      Page 1-4 Time post-LOCA                                           0 sec                                    Core Inventov Fryaction Released in Containment for Haloens Neutron Mass                                   1.008665 amu            (Ref. 1)                    Gap Release Phase              0.05  (Ref. 4, Tbl 1)
[mole) [mole) [mole)1-127(2) 126.904470 stable 3.03E+00 1.51E+01 1.82E+01 1-128 127.905838 25.00 m 1,500 4.28E+02 1.51E+06 5.88E+07 2.57E-02 1.01E-05 5.03E-05 6.04E-05 1-129 128.904987 1.57E+07 a 4.95E+14 1.30E-03 4.60E+00 1.77E-04 2.60E+04 1.012+01 5.04E+01 6.052+01 1-130 129.906676 12.36 h 44,496 1.09E+03 3.85E+06 1.95E+06 1.97E+00 7.60E-04 3.80E-03 4.56E503 1-130M 129.906676 9.0 m 540 4.23E+02 1,50E+06 1.61E+08 9.30E-03 3.58E-06 1.79E-05 2.15E-05 1-131 130.906127 8.020 d 692,928 2.71E+04 9.58E+07 1.24E+05 7.71E+02 2.94E-01 1.47E+00 1.77E+00 1-132 131.907981 2.28 h 8,208 3.92E+04 1.39E+08 1.04E+07 1.33E+01 5.04E-03 2.52E-02 3.03E-02 1-133 132.907750 20.8 h " 74,880 5.51E+04 1.95E+08 1.13E+06 1.72E+02 6.47E-02 3.23E-01 3.88E-01 1-133M 132.907750 9 s .9 1.70E+03 6.01 E+06 9.43E+09 6.37E-04 2.40E-07 1.20E-06 1.44E-06 1-134 133.909850 52.6 m 3,156 6.03E+04 2.13E+08 2.67E+07 7.99E+00 2.98E-03 1.49E-02 1.79E-02 1-134M 133.909850 3.7 m 1222 6.00E+03 2.12E+07 3.79E+08 5.59E-02 2.09E-05 1.04E-04 1.25E-04 1-135 134.910020 6.57 h. .23,652 5.16E+04 1.82E+08 3.54E+06 5.16E+01 1.91E-02 9.56E-02 1.15E-01 1-136 135.914740 1.39 m 83 2.44E+04 8.63E+07 9.95E+08 8.67E-02 3.19E-05 1.59E-04 1.91E-04 1-136M 135.914740 47 s 47 1.43E+04 5.06E+07 1.77E+09 2.86E-02 1.05E-05 5.27E-05 6.322-05 1-137(1) 136.923405 24.5 s 24.5 2.38E+04 8.42E+07 3.36E+09 2.50E-02 9.14E-06 4.57E-05 5.48E-05 1.138(l) 137.932070 6.5 s 6.5 1.18E+04 4.17E+07.
Core Thermal Power (100%)                             3,467 MWt        (Ref. 5)                    Early In-Vessel Phase          .0.25  (Ref. 4, Tbl 1)
1.26E+10 3.32E-03 1.20E-06 6.012&06 7.21E-06 1.139(1) 138.940735 2.30 s 2.30 5.22E+03 1.85E+07 3.53E+10 5.23E-04 1.88E-07 9.41 E-07 1.13E-06 1.1401) 139.949400 0.86 S 0.86 1.47E+03 5.20E+06 9.37E+10 5.55E-05 1.98E-08 9.91E-08 1.19E-07 1-141(") 140.958065 0.45 s 0.45 2.43E+02 8.59E+05 1.78E+11 4.83E-06 1.71E-09 8.57E-09 1.03E-08 1-142(l) 141.966730 0.2 s 0.2 3.53E+01 1.25E+05 3.97E+11 3.14E-07 1.11E-10 5.53E-10 6.64E-10 1-1 4 3 (lx3" 142.975395 n/a 2.33E+00 8.24E+03 " 1.1 4 4 ('IX31 143.984060 We' n/a 1.90E-01 6.72E+02 Total 2.70E+04 13.50 67.51 81.01 1) Atomic mass not given for these isotopes in Reference 1; therefore, a multiple of the neutron mass is added to the atomic mass of I-1 36M.2) Since 1-127 is a stable element, its quantity is not presented in Reference  
Core Thermal Power (102%)                           .3,536  MWt        (Ref. 6) 1 Curie                                        3.70t+10    dis/sec     (Ref. 1)
: 3. The mass of 1-127 is assumed to be 30% of the mass of 1-129.3) Half-life Information not available in Reference.2.
Avogadro's Number                          6.022137E+23    atoms/mole  (Ref. 2)
Isotope      Atomic (Ref.Mass
: 1)     (Ref.Life Half  2)   12      nits      HalfLife    Activity (Ref. 3)
Activity per Core Specific Activity Core Inventory Gap Release ElV Release Total Release
[amu    _                                  Isec]    [CI/MWt)       [Ci/corel    [Cl/gm)    [gmn/core)    [mole)      [mole)        [mole) 1-127(2)    126.904470      stable                                                                                        3.03E+00    1.51E+01      1.82E+01 1-128      127.905838      25.00          m              1,500  4.28E+02        1.51E+06    5.88E+07      2.57E-02    1.01E-05    5.03E-05      6.04E-05 1-129      128.904987    1.57E+07          a            4.95E+14    1.30E-03      4.60E+00     1.77E-04    2.60E+04    1.012+01    5.04E+01      6.052+01 1-130      129.906676      12.36          h              44,496    1.09E+03      3.85E+06    1.95E+06    1.97E+00     7.60E-04     3.80E-03      4.56E503 1-130M      129.906676       9.0          m                540    4.23E+02        1,50E+06     1.61E+08    9.30E-03    3.58E-06    1.79E-05      2.15E-05 1-131      130.906127    8.020          d            692,928  2.71E+04        9.58E+07    1.24E+05    7.71E+02    2.94E-01    1.47E+00      1.77E+00 1-132      131.907981      2.28          h              8,208  3.92E+04       1.39E+08    1.04E+07      1.33E+01    5.04E-03    2.52E-02      3.03E-02 1-133      132.907750      20.8          h           " 74,880    5.51E+04       1.95E+08   1.13E+06      1.72E+02    6.47E-02    3.23E-01      3.88E-01 1-133M        132.907750       9            s                .9    1.70E+03      6.01 E+06   9.43E+09      6.37E-04    2.40E-07    1.20E-06      1.44E-06 1-134      133.909850      52.6          m              3,156  6.03E+04        2.13E+08    2.67E+07      7.99E+00    2.98E-03    1.49E-02      1.79E-02 1-134M      133.909850       3.7          m             1222    6.00E+03        2.12E+07    3.79E+08      5.59E-02    2.09E-05    1.04E-04      1.25E-04 1-135      134.910020      6.57          h. .           23,652  5.16E+04        1.82E+08    3.54E+06      5.16E+01      1.91E-02   9.56E-02      1.15E-01 1-136      135.914740      1.39          m                83    2.44E+04       8.63E+07    9.95E+08      8.67E-02    3.19E-05    1.59E-04      1.91E-04 1-136M      135.914740       47            s                47    1.43E+04       5.06E+07   1.77E+09      2.86E-02     1.05E-05   5.27E-05      6.322-05 1-137(1)    136.923405      24.5          s               24.5  2.38E+04       8.42E+07   3.36E+09     2.50E-02     9.14E-06    4.57E-05     5.48E-05 1.138(l)     137.932070        6.5           s               6.5   1.18E+04       4.17E+07. 1.26E+10      3.32E-03    1.20E-06     6.012&06      7.21E-06 1.139(1)     138.940735      2.30            s             2.30    5.22E+03        1.85E+07   3.53E+10     5.23E-04    1.88E-07    9.41 E-07    1.13E-06 1.1401)      139.949400      0.86          S              0.86    1.47E+03       5.20E+06    9.37E+10     5.55E-05    1.98E-08    9.91E-08      1.19E-07 1-141(")     140.958065      0.45          s              0.45    2.43E+02        8.59E+05    1.78E+11      4.83E-06    1.71E-09    8.57E-09      1.03E-08 1-142(l)     141.966730      0.2            s               0.2   3.53E+01        1.25E+05   3.97E+11     3.14E-07    1.11E-10    5.53E-10      6.64E-10 1-14 3 (lx3"  142.975395                                      n/a    2.33E+00        8.24E+03                  "
: 1. 14 4 ('IX31 143.984060                                      n/a We'    1.90E-01      6.72E+02 Total  2.70E+04        13.50      67.51        81.01
: 1) Atomic mass not given for these isotopes in Reference 1; therefore, a multiple of the neutron mass is added to the atomic mass of I-1 36M.
: 2) Since 1-127 is a stable element, its quantity is not presented in Reference 3. The mass of 1-127 is assumed to be 30% of the mass of 1-129.
: 3) Half-life Information not available in Reference.2.
References
: 1. Radiological Health Handbook, 1970 (main body Reference 7.8)
: 2. Chart of the Nuclides, 15th Edition (main body Reference 7.9).
: 3. GE-NE-A41-00097-00-01, NMP2 24-month Cycle Fission Product Inventory Evaluation (main body Reference 7.7)
: 4. Regulatory Guide 1.183 (main body Reference 7.10.2)
: 5. NMP2 Site License (main body Reference 7.5)
: 6. Regulatory Guide 1.49 (main body Reference 7.10.1)
Iodine t=0 Table 1-2: Core Cesium Inventory Determination (t-0 Post-LOCA)                                                Calculation No. H21C-097 Nine Mile Point Nuclear Station                              (Single Batch Core with 1400 EFPD and 34,000 MWd/ST CAVEX)                                                                  Revision 0 Unit 2                                                                                                                                                                                    Page 1-5 Time post-LOCA                                          S'0 sec                                    Core Inventory Fraction Released ih Containment for Alkalis Neutron Mass                                    1.008615 amu          (Ref. 1)                  Gap Release Phase              0.05    (Ref. 4, Thl 1)
Core Thermal Power (100%)                            3,467 MWt          (Ref. 5)                  Early In-Vessel Phase          0.20  (Ref. 4, Thl 1)
Core Thermal Power (102%)                            3,536 MWt          (Ref. 6) 1 Curie                                        3.70E+10 dis/sec        (Ref. 1)
Avogadros Number                          6.022137E+23 a.omsjmole      (Ref. 2)
Atomic Mass      Half Life                  1 HafLfJlvtActivity          Activity    Specific      . Core          Gap p        EIV EV [Total'oa Istp      (Ref. 1)
[amu]
(Ref. 2)      t1/2 units    j                (Ref. 3)    per Core    Activity Cr Inventory
* Release      Release      Release
_                                  [sec]    [CI/MWt]      [Ci/core]  [Cl/gm]      [gm/core]      [mole]      [mole]        [mole]
CS-132      131.906393        6.48            d            559,872    7.96E+00      2.81E+04    1.53E+05      1.84E-01    6.98E-05    2.79E-04      3.49E-04 CS-133(i)                    "                        '
CS-134      133.906823      2.065            a          65,121,840  7.29E+03      2.58E+07    1.29E+03      1.99E+04    7.44E+00    2.98E+01      3.72E+01 CS-134M      133.906823        2.90            h            10,440    1.70E+03    6.01E+06    8.07E+06      7.45E-01    2.78E-04    1.11E-03      1.39E-03 CS-135      134.905770    2.30E+06            a          7.25E+13    2.51E-02      8.88E+01    1.15E-03      7.70E+04    2.85E+01    1.14E+02      1.43E+02 CS-135M      134.905770          53            m              3,180    8.81E+02      3.12E+06    2.63E+07      1.18E-01    4.39E-05    1.76E-04      2.20E-04 CS-136      135.907340        13.16            d          1,137,024  2.28E+03    8.06E+06    7.30E+04      1.1OE+02    4.06E-02    1.63E-01      2.03E-01 CS-137      136.906770      30.07            a          9.48E+08  4.35E+03      1.54E+07    8.69E+01      1.77E+05    6.47E+01    2.59E+02      3.23E+02 CS-138      137.910800        32.2            m              1,932    5.002+04      1.77E+08    4.23E+07      4.18E+00      1.51 E-03  6.06E-03      7.57E-03 CS-138M      137.910800        2.9            m              174    2.39E+03      8.45E+06    4.70E+08      1.80E-02    6.52E-06    2.61E-05      3.26E-05 CS-139      138.912900        9.3            mr              558    4.73E+04      1.67E+08    1.46E+08      1.15E+00    4.14E-04    1.65E-03      2.07E-03 CS-140'    139.917110      -1.06            m                64    4.26E+04      1.51E+08    1.27E+09      1.19E-01    4.25E-05    1.70E-04      2.12E-04 CS-141(2)    140.925775        24.9            s              24.9    3.16E+04      1.12E+08    3.22E+09      3.48E-02    1.23E-05  4.93E-05      6.17E-05 CS-142(2)    141.934440          1.8            a                1.8    1.91E+04    6.75E+07    4.42E+10      1.53E-03    5.39E-07    2.16E-06      2.69E-06 12 CS-143    )  142.943105'        1.78            s              1.78    9.33E+03      3.30E+07    4.43E+10 ,7.44E-04        2.60E-07    1.04E-06      1.30E-06 1 21 CS-144      143.951770        1.01            s              1.01    2.70E+03    9,55E+06    7.76E+10      1.23E-04    4.27E-08    1.71E-07      2.14E-07.
CS-145(2)    144.960435        0.59            a              0.59    6.79E+02    2.40E+06    1.32E+1 I    .1.82E-05    6.28E-09    2.51E-08      3.14E-08 CS-146(2)    145.969100      0.322            s              0.322    9.96E+01      3.52E205    2.40E+11      1.47E-06    5;03E-10    2.01E-09      2.51E-09.
CS-147(2 )  146.977765      0.227            s              0.227    1.65E+01    5.83E+04    3.38E+11      1.73E-07    5.87E-11    2.35E-10      2.94E-10 CS-148(2)    147.986430        0.15            s              0 15    1.07E+00    3.78E+03    5.08E+11      7.45E-09    2.52E-12    1.01E-1111    1.26E-11 Total 2.741E+05        100.67    *402.68        503.34
: 1) Stable cesium Is conservatively not accounted for In this analysis as it forms cesium hydroxide (CsOH).
: 2) Atomic mass not given for these isotopes in Reference 1; therefore, a multiple of the neutron mass is added to the atomic mass of CS-1 40.
References
: 1. Radiological Health Handbook, 1970 (main body, Reference 7.8)
: 2. Chart of the Nuclides, 15th Edition (main body Reference 7.9)
: 3. GE-NE-A4I-00097-00-01, NMP2 24-month Cycle Fission Product Inventory Evaluation (main body Reference 7.7)
: 4. Regulatory Guide 1.183 (main body Reference 7.10.2)
: 5. NMP2 Site License (main body Reference 7.5)
: 6. Regulatory Guide 1.49 (main body Reference 7.10.1)
Cesium t=0 Table 1-3: Core Iodine Inventory Determination (t=30 days Post-LOCA)                                                        Calculation No. H21C-097 Nine Mile Point Nuclear Station                                      (Single Batch Core with 1400 EFPD and 34,000 MWd/ST CAVEX) .                                                                            Revision 0 Unit 2                                                                                                                                                                                                        Page 1-6 Time post-LOCA                                          30 days                                      Core Inventory Fraction Released inContainment for Halooens Neutron Mass                                    1.008665 amu              (Ref. 1)                  Gap Release Phase              0.05  (Ref. 4, Tbl 1)
Core Thermal Power (100%)
* 3,467 MWt            (Ref. 5)                  Early In-Vessel Phase          0.25  (Ref. 4, Tbl 1)
Core ThermalPower (102%)                            .3,536 MWt              (Ref. 6) 1 Curie                                        3.70E+10 dis/sec            (Ref. 1)
Avogadro's Number                          6.022137E+23 atoms/mole          (Ref. 2)
Atomic Mass    Half Life                              Life    Activity      Activity    Specific      Core        Gap        EIV          Total Isotopa        (Ref. 1)    (Ref. 2)                                        (Ref. 3)      per Core    Activity    Inventory    Release    Release      Release amu]                                  . .    [Isec]    ICi/MWtII        [Ci/corel    [Ci/gm]    [gm/cora      [molel I [mole]          imolel 1-127(2)    126.904470      stable                                                                                            3.03E+00    1.51E+01      1.82E+01 1-128      127.905838      25.00            m              1,500      0.00E+00      0.OOE+00    5.88E+07      0.OOE+00    0.OOE+00    0.00E+00      0:00E+00 1-129      128.904987    1.57E+07            a          4.95E+14        1.30E-03      4.60E+00    1.77E-04    2.60E+04    1.01E+01  5.04E+01      6.05E+01 1-130      129.906676      12.36            h            44,496        3.18E-15      1.12E-11  1.95E+06      5.76E-18    2.22E-21    1.11E-20      1.33E-20 1-130M      129.906676        9.0            m                540      0.00E+00      0.00E+00    1.61E+08      0.00E+00    0.OOE+00    0.00E+00      0.00E+00 1-131      130.906127      8.020            d            692,928      2.10E+03      7.43E+06    1.24E+05      5.97E+01    2.28E-02    1.14E-01      1.37E-01 1-132      131.907981      2.28            h              8,208      6.71E+01      2.37E+05    1.04E+07      2.28E-02    8.63E-06    4.32E-05      5.18E-05 1-133      132.907750      20.8            h            74,880        2.14E-06      7.57E-03    1.13E+06      6.68E-09    2.51E-12    1.26E-11      1.51E-11 1-133M      132.907750          9            a                  9      0.OOE+00      0.00E+00    9.43E+09      0,00E+00    0.00E+00    0.00E+00      0.00E+00 1-134      133.909850      52.6            m              3,156      0.00E+00      0.00E+00    2.67E+07      0.00E+00    0.00E+00    0.00E+00      0.00E+00 1-134M      133.909850        3.7            m 1              222      0.00E+00      0.00E+00    3.79E+08      0.00E+00    0.00E+00    0.00E+00      0.00E+00 1-135      134.910020      6.57            h.'          23,652      0.OOE+00      0.00E+00    3.54E+06      0.00E+00    0.00E+00    0.00E+00      0.00E+00 1-136      135.914740        1.39            m                83      0.00E+00      0.00E+00    9.95E+08      0.00E+00    0.00E+00    0.00E+00      0.00E+00 1-136M      135.914740        47            s                47      0.00E+00      0.00E+00    1.77E+09      0.002+00    0.OOE+00    0.00E+00      0.00E+00 1-137(')    136.923405      24.5            a              24.5      0.00E+00      0.00E+00    3.36E+09      0.00E+00    0.00E+00    0.00E+00      0.00E+00 1-13801)    137.932070        6.5            s                6.5      0.00E+00      0.00E+00    1.26E+10      0.00E+00    0.00E+00    0.00E+00      0.00E+00 1-139(')    138.940735      2.30            s              2.30      0.00+E00      0.00E+00    3.53E+10      0.002+00    0.00E+00    0.00E+00      0.00E+00 1.140(1')    139.949400      0.86            s              0.86      0.00E+00      O.00E+00    9.37E+10      0.00E+00    0.00E+00    0.00E+00      0.OOE+00 1-141(1)    140.958065      0.45            s              0.45      0.00E+00      0.00E+00    1.78E+11      0.002+00    0.00E+00    0.00E+00      0.00E+00 1-142(')    141.966730        0.2            a                0.2      0.00E+00      0.00E+00    3.97E+11      0.00E+00    0.00E+00    0.00E+00      0.00E+00 1-14 3 (lX3)  142.975395                                        n/a      0.00E+00      0.00E+00 1-144)(X3)    143.984060                                        n/a                      0.00E+00 Total 2.61 E+04      13.14      65.69          78.82 Notes
: 1) Atomic mass not given for these isotopes in Reference 1; therefore, a multiple of the neutron mass is added to the atomic mass of 1-136M.
: 2) Since 1-127 Is a stable element, its quantity is not presented in Reference 3. The mass of 1-127 Is assumed to be 30% of the mass of 1-129.
: 3) Half-life information not available in Reference 2.
: 1. Radiological Health Handbook, 1970 (main body Reference 7.8)
: 2. Chart of the Nuclides, 15th Edition (main body Reference 7.9)
: 3. GE-NE-A41-00097-00-01, NMP2 24-month Cycle Fission Product Inventory Evaluation (main body Reference 7.7)
: 4. Regulatory Guide 1.183 (main body Reference 7.10.2)
: 5. NMP2 Site License.(main body Reference 7.5)
: 6. Regulatory Guide 1.49 (main body Reterence:7.10.1)
Iodine t=30d Table 1-4: Core Cesium Inventory Determination (t=30 days Post-LOCA)                                            Calculation No. H21C-097 Nine Mile Point NuclearStation                              (Single Batch Core with 1400 EFPD and 34,000 MWdlST CAVEX)                                                                Revision 0 Unit 2                                                                                                                                                                                  Page 1.7 Time post-LOCA                                        30  days                                  Core Inventory Fraction Released in Containment for Alkalis Neutron Mass                                  1.008665  amu          (Ref. 1)                  Gap Release Phase              0.05  (Ref. 4, TbI 1)
Core Thermal Power (100%)                          3,467  MWt          (Ref. 5)                  Early In-Vessel Phase          0.20  (Ref. 4, Tbl 1)
Core Thermal Power (102%)                          3,536  MWt          (Ref. 6) 1 Curie                                      3.70E+10    dis/sec      (Ref. 1)
Avogadro's Number                        6.022137E+23    atoms/mole  (Ref. 2)
Isotope Atomic Mass (Ref. 1)
Half Life (Ref. 2) 1        units!            f Half Life Activity (Ref. 3)
Activity per Core Specific Activity Core I Inventory Gap Release EIV Release Total Release I [amu]                            . j      [sec]    [Ci/MWt]      [Cilcorel  I  [Cilgm]      [gm/core]    [mole]      [mole]        [mole]
CS-132      131.906393        6.48            d            559,872    3.21E-01    1.14E+03    1.53E+05      7.43E-03  2.82E-06    1.13E-05      1.41E-05 1)
CS- 133('
CS-134      133.906823      2.065            a          65,121,840  7.09E+03      2.51E+07    1.29E+03      1.94E+04  .7.24E+00    2.89E+01      3.62E+01 CS-134M      133.906823        2.90            h            10,440    0.00E+00      0.00E+00    8.07E+06      0.OOE+00    0.OOE+00    0.OOE+00      0.OOE+00 CS-135      134.905770    2.30E+06            a          7.25E+13    2.51E-02    8.68E+01      1.15E-03    7.70E+04    2.85E+01    1.14E+02      1.43E+02 CS-135M      134.905770        53            m              3,180    0.OOE+00      0.OOE+00    2.63E+07      0.OOE+00    0.00E+00    0.OOE+00      0.OOE+00 CS-136      135.907340      13.16            d          1,137,024  4.66E+02      1.65E+06    7.30E+04      2.26E+01    8.30E-03    3.32E-02    4.15E-02 CS-137      136.906770      30.07            a          9.48E+08    4.34E+03      1.53E+07    8.69E+01      1.77E+05  6.45E+01    2.58E+02      3.23E+02 CS-138      137.910800        32.2            m              1,932    0.OOE+00      0.OOE+00    4.23E+07      0.OOE+00    0.00E+00    0.OOE+00      0.00E+00 CS-138M      137.910800        2.9            mr              174    0.OOE+00      0.00E+00    4.70E+08      0.OOE+00    0.OOE+00    0.OOE+00      0.OOE&#xf7;00 CS-139      138.912900        9.3            m              558    0.OOE+00      0.OOE+00    1.46E+08      0.00E+00    0.OOE+00    0.OOE+00      0.OOE+00 CS-140      139.917110        1.06            mr              64    0.OOE+00      0.OOE&#xf7;00    1.27E+09      0.OOE+00    0.OOE+00    0.OOE+00      0.OOE+00 CS-141(2)    140.925775        24.9            s              24.9    0.00E+00      0.OOE+00    3.22E+09      0.OOE+00    0.00E+00    0.OOE+00      0.OOE+00 CS-142(2)    141.934440        1.8            s                1.8    0.OOE+00      0.OOE+00    4.42E+10      0.OOE+00    0.OOE+00    0.OOE+00      0.OOE+00 CS-143(2)    142.943105        1.78            s              1.78    0.OOE&#xf7;00      0.OOE+00    4.43E+10      0.OOE+00    0.OOE+00    0.OOE+00      O.OOE+00 CS-144( 2 )  143.951770        1.01            s              1.01    0.OOE+00      0.OOE+00    7.76E+10      0.OOE+00    0.OOE+00    0.OOE+00      0.OOE+00 CS-145(2)    144.960435        0.59            s              0.59    O.OOE+00      0.OOE+00    1.32E+11      0.00E+00    0.OOE+00    0.OOE+00      0.OOE+00 CS-146( 2 )  145.969100      0.322            s            0.322    0.00E+00      0.OOE+00    2.40E+11      0.OOE+00    0.00E+00    0.00E+00      0.00E+00 CS-147(2)    146.977765      0.227            s            0.227    0.OOE+00      0.OOE+00    3.38E+11      0.OOE+00    0.OOE+00    0.OOE+00      0.OOE+00 CS-148(2)    147.986430        0.15            s              0:15    0.OOE+00      0.OOE+00    5.08E+11      0.OOE+00    0.OOE+00    0.OOE+00      0.OOE+00 Total 2.730E+05      100.3        401.1        501.4 Notes
: 1) Stable cesium Is conservatively not accounted for In this analysis as It forms cesium hydroxide (CsOH).
: 2) Atomic mass not given for these Isotopes In Reference 1; therefore, a multiple of the neutron mass is added to the atomic mass of CS-140.
References
References
: 1. Radiological Health Handbook, 1970 (main body Reference 7.8)2. Chart of the Nuclides, 15th Edition (main body Reference 7.9).3. GE-NE-A41-00097-00-01, NMP2 24-month Cycle Fission Product Inventory Evaluation (main body Reference 7.7)4. Regulatory Guide 1.183 (main body Reference 7.10.2)5. NMP2 Site License (main body Reference 7.5)6. Regulatory Guide 1.49 (main body Reference 7.10.1)Iodine t=0 Attachment 1 Nine Mile Point Nuclear Station Unit 2 Time post-LOCA Neutron Mass Core Thermal Power (100%)Core Thermal Power (102%)1 Curie Avogadros Number Table 1-2: Core Cesium Inventory Determination (t-0 Post-LOCA)(Single Batch Core with 1400 EFPD and 34,000 MWd/ST CAVEX)Calculation No. H21C-097 Revision 0 Page 1-5 S' 0 sec 1.008615 amu 3,467 MWt 3,536 MWt 3.70E+10 dis/sec 6.022137E+23 a.omsjmole Core Inventory Fraction Released ih Containment for Alkalis (Ref. 1)(Ref. 5)(Ref. 6)(Ref. 1)(Ref. 2)Gap Release Phase Early In-Vessel Phase 0.05 (Ref. 4, Thl 1)0.20 (Ref. 4, Thl 1)Atomic Mass Half Life 1 Activity Activity Specific .Core Gap EIV [Total Istp t1/2 units HafLfJlvt Cr p EV 'oa (Ref. 1) (Ref. 2) j (Ref. 3) per Core Activity Inventory
: 1. Radiological Health Handbook, 1970 (main body Reference 7.8)
* Release Release Release[amu] _ [sec] [CI/MWt] [Ci/core]
: 2. Chart of the Nuclides, 15th Edition (main body Reference 7.9)
[Cl/gm] [gm/core]
: 3. GE-NE-A41-00097-00-01, NMP2 24-month Cycle Fission Product inventory Evaluation (main body Reference 7.7)
[mole] [mole] [mole]CS-132 131.906393 6.48 d 559,872 7.96E+00 2.81E+04 1.53E+05 1.84E-01 6.98E-05 2.79E-04 3.49E-04 CS-133(i) " 'CS-134 133.906823 2.065 a 65,121,840 7.29E+03 2.58E+07 1.29E+03 1.99E+04 7.44E+00 2.98E+01 3.72E+01 CS-134M 133.906823 2.90 h 10,440 1.70E+03 6.01E+06 8.07E+06 7.45E-01 2.78E-04 1.11E-03 1.39E-03 CS-135 134.905770 2.30E+06 a 7.25E+13 2.51E-02 8.88E+01 1.15E-03 7.70E+04 2.85E+01 1.14E+02 1.43E+02 CS-135M 134.905770 53 m 3,180 8.81E+02 3.12E+06 2.63E+07 1.18E-01 4.39E-05 1.76E-04 2.20E-04 CS-136 135.907340 13.16 d 1,137,024 2.28E+03 8.06E+06 7.30E+04 1.1OE+02 4.06E-02 1.63E-01 2.03E-01 CS-137 136.906770 30.07 a 9.48E+08 4.35E+03 1.54E+07 8.69E+01 1.77E+05 6.47E+01 2.59E+02 3.23E+02 CS-138 137.910800 32.2 m 1,932 5.002+04 1.77E+08 4.23E+07 4.18E+00 1.51 E-03 6.06E-03 7.57E-03 CS-138M 137.910800 2.9 m 174 2.39E+03 8.45E+06 4.70E+08 1.80E-02 6.52E-06 2.61E-05 3.26E-05 CS-139 138.912900 9.3 mr 558 4.73E+04 1.67E+08 1.46E+08 1.15E+00 4.14E-04 1.65E-03 2.07E-03 CS-140' 139.917110
: 4. Regulatory Guide 1.183 (main body Reference 7.10.2)
-1.06 m 64 4.26E+04 1.51E+08 1.27E+09 1.19E-01 4.25E-05 1.70E-04 2.12E-04 CS-141(2) 140.925775 24.9 s 24.9 3.16E+04 1.12E+08 3.22E+09 3.48E-02 1.23E-05 4.93E-05 6.17E-05 CS-142(2) 141.934440 1.8 a 1.8 1.91E+04 6.75E+07 4.42E+10 1.53E-03 5.39E-07 2.16E-06 2.69E-06 CS-143 1 2) 142.943105' 1.78 s 1.78 9.33E+03 3.30E+07 4.43E+10 ,7.44E-04 2.60E-07 1.04E-06 1.30E-06 CS-144 1 2 1 143.951770 1.01 s 1.01 2.70E+03 9,55E+06 7.76E+10 1.23E-04 4.27E-08 1.71E-07 2.14E-07.CS-145(2) 144.960435 0.59 a 0.59 6.79E+02 2.40E+06 1.32E+1 I .1.82E-05 6.28E-09 2.51E-08 3.14E-08 CS-146(2) 145.969100 0.322 s 0.322 9.96E+01 3.52E205 2.40E+11 1.47E-06 5;03E-10 2.01E-09 2.51E-09.CS-147(2) 146.977765 0.227 s 0.227 1.65E+01 5.83E+04 3.38E+11 1.73E-07 5.87E-11 2.35E-10 2.94E-10 CS-148(2) 147.986430 0.15 s 0 15 1.07E+00 3.78E+03 5.08E+11 7.45E-09 2.52E-12 1.01E-1111 1.26E-11 Total 2.741E+05 100.67 *402.68 503.34 1) Stable cesium Is conservatively not accounted for In this analysis as it forms cesium hydroxide (CsOH).2) Atomic mass not given for these isotopes in Reference 1; therefore, a multiple of the neutron mass is added to the atomic mass of CS-1 40.References
: 5. NMP2 Site License (main body Reference 7.5)
: 1. Radiological Health Handbook, 1970 (main body, Reference 7.8)2. Chart of the Nuclides, 15th Edition (main body Reference 7.9)3. GE-NE-A4I-00097-00-01, NMP2 24-month Cycle Fission Product Inventory Evaluation (main body Reference 7.7)4. Regulatory Guide 1.183 (main body Reference 7.10.2)5. NMP2 Site License (main body Reference 7.5)6. Regulatory Guide 1.49 (main body Reference 7.10.1)Cesium t=0 Attachment 1 Nine Mile Point Nuclear Station Unit 2 Time post-LOCA Neutron Mass Core Thermal Power (100%)Core ThermalPower (102%)1 Curie Avogadro's Number Table 1-3: Core Iodine Inventory Determination (t=30 days Post-LOCA)(Single Batch Core with 1400 EFPD and 34,000 MWd/ST CAVEX) .Calculation No. H21C-097 Revision 0 Page 1-6 30 days 1.008665 amu (Ref. 1)* 3,467 MWt (Ref. 5).3,536 MWt (Ref. 6)3.70E+10 dis/sec (Ref. 1)6.022137E+23 atoms/mole (Ref. 2)Core Inventory Fraction Released in Containment for Halooens Gap Release Phase Early In-Vessel Phase 0.05 (Ref. 4, Tbl 1)0.25 (Ref. 4, Tbl 1)Atomic Mass Half Life Life Activity Activity Specific Core Gap EIV Total Isotopa (Ref. 1) (Ref. 2) (Ref. 3) per Core Activity Inventory Release Release Release amu] ..[Isec] ICi/MWtII
: 6. Regulatory Guide 1.49 (main body Reference 7.10.1)
[Ci/corel
Cesium t=30d
[Ci/gm] [gm/cora [molel I [mole] imolel 1-127(2) 126.904470 stable 3.03E+00 1.51E+01 1.82E+01 1-128 127.905838 25.00 m 1,500 0.00E+00 0.OOE+00 5.88E+07 0.OOE+00 0.OOE+00 0.00E+00 0:00E+00 1-129 128.904987 1.57E+07 a 4.95E+14 1.30E-03 4.60E+00 1.77E-04 2.60E+04 1.01E+01 5.04E+01 6.05E+01 1-130 129.906676 12.36 h 44,496 3.18E-15 1.12E-11 1.95E+06 5.76E-18 2.22E-21 1.11E-20 1.33E-20 1-130M 129.906676 9.0 m 540 0.00E+00 0.00E+00 1.61E+08 0.00E+00 0.OOE+00 0.00E+00 0.00E+00 1-131 130.906127 8.020 d 692,928 2.10E+03 7.43E+06 1.24E+05 5.97E+01 2.28E-02 1.14E-01 1.37E-01 1-132 131.907981 2.28 h 8,208 6.71E+01 2.37E+05 1.04E+07 2.28E-02 8.63E-06 4.32E-05 5.18E-05 1-133 132.907750 20.8 h 74,880 2.14E-06 7.57E-03 1.13E+06 6.68E-09 2.51E-12 1.26E-11 1.51E-11 1-133M 132.907750 9 a 9 0.OOE+00 0.00E+00 9.43E+09 0,00E+00 0.00E+00 0.00E+00 0.00E+00 1-134 133.909850 52.6 m 3,156 0.00E+00 0.00E+00 2.67E+07 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1-134M 133.909850 3.7 m 1 222 0.00E+00 0.00E+00 3.79E+08 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1-135 134.910020 6.57 h.' 23,652 0.OOE+00 0.00E+00 3.54E+06 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1-136 135.914740 1.39 m 83 0.00E+00 0.00E+00 9.95E+08 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1-136M 135.914740 47 s 47 0.00E+00 0.00E+00 1.77E+09 0.002+00 0.OOE+00 0.00E+00 0.00E+00 1-137(') 136.923405 24.5 a 24.5 0.00E+00 0.00E+00 3.36E+09 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1-13801) 137.932070 6.5 s 6.5 0.00E+00 0.00E+00 1.26E+10 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1-139(') 138.940735 2.30 s 2.30 0.00+E00 0.00E+00 3.53E+10 0.002+00 0.00E+00 0.00E+00 0.00E+00 1.140(1')
 
139.949400 0.86 s 0.86 0.00E+00 O.00E+00 9.37E+10 0.00E+00 0.00E+00 0.00E+00 0.OOE+00 1-141(1) 140.958065 0.45 s 0.45 0.00E+00 0.00E+00 1.78E+11 0.002+00 0.00E+00 0.00E+00 0.00E+00 1-142(') 141.966730 0.2 a 0.2 0.00E+00 0.00E+00 3.97E+11 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1-1 4 3 (lX3) 142.975395 n/a 0.00E+00 0.00E+00 1-144)(X3) 143.984060 n/a 0.00E+00 Total 2.61 E+04 13.14 65.69 78.82 Notes 1) Atomic mass not given for these isotopes in Reference 1; therefore, a multiple of the neutron mass is added to the atomic mass of 1-136M.2) Since 1-127 Is a stable element, its quantity is not presented in Reference
Attachment I                                                        Table 1-1 Equations: Core Iodine Inventory Determination (t=0 Post-LOCA)                                                             Calculation No. H21C-097 Nine Mile Point Nuclear Station                                            (Single Batch Core with 1400 EFPD and 34,000 MWd/ST CAVEX)                                                                                   Revision 0 Unit 2                                                                                                                                                                                                                    Page 1-8 A      I                                    D                                                                              E                                                                      F I  Time post-LOCA                                0               sec__
: 3. The mass of 1-127 Is assumed to be 30% of the mass of 1-129.3) Half-life information not available in Reference
2  Neutron Mass                                  1.008665        aenu                                                                                                                                  (Ref. 1) 3  Core Thermal Power(100%)                      3467            MWt                                                                                                                                    (Ref. 5) 4  Core Thermal Power (102%)                      =D3"1.02        MWt                                                                                                                                    (Ref. 6) 5  1 Curie                                        37000000000      dis/sec .                                                                                                                              (Ref. 1) 6  Avogadro's Number                              6.022137E+23    atoms/mole                                                                                                                            (Ref. 2) 7 Atomic Mass      Half Life          usl                                                                                                                                                Activity
        *Isotope          (Ref. 1)     (Ref. 2)      11,2Units                    *Half                                                 Life                                                               Activity (Ref. 3) 8 9                        [smut                                                                                                        Isect                                                                [Ci/MWt!
10      1-127(2*    126.90447          stable 11        1-128      127.905838    25                  m        =IF(D1 l='"s',Ci11 IF(D1 l="m*,C 11"60,IF(D11I ="h",Cl1*60*60,1F(ID l=d",C 11"24"60"60,1F(ID1 =*a*,C 11&deg;365*24*60"60,"r11a")))))      428 12        1-129      128.904987    15700000              a        =IF(_12=_ _              __C_2,_F(D_2=_m_,C_2*60,_F(D_2_'h",C_12*60*60,1F(D12_"d*,C_2*24*60*60,1FI12='a_,C_2*365*24*60*60,'nla")))))  0.0013 13        1-130      129.906876    12.36                h        IF(D13=s_,C13,1F(D_13=_m",C_13"60,1F(D13            _h'.C_13*60_60,_F(D13="d_,C_3_24&deg;60*60,_F(D13='a",C13*36524*60*60,"na_)))))      1090 14      1-130M      129.906676    9                    m        =IF(D14='s.,C14,1F(D14="m.,C14*60.IF(D14="h'.C 1460*60,IF(D14="d",C14*24*60*60,IF D14='a,C 14*365"24*60*60.,n/a')))))                  423 15        1-131      130.906127    8.02                 d        =IFfD15="sr.C15,IF(D1S=*m.,C15*60,IF(D1S='h".C15*60*60.IF(D15=-d*,C1524*60*60.IF D15=-a.'C15*385*24*60*60.'n/a*)))'                    27100 16        1-132      131.907981    2.28                  h        =IFD16=-s-,C16,F(F016= m-,C16*60,IF(D16=-h*,C1l6*6060*IF(D16=-d",C16*24*60*60,IF D16=*a*.C16*365*246060"n/a')))))                      39200 17        1-133      132.90775      20.8                  h        =1F D17=&#xfd;s.`C17,F D17=*m-,C17*60`F(D17=h-,C17*6060,IF(D17=d*,C17*2460*60IF(D17=aC17*365*24606Dn/a-))))                                55100 18      1-133M      132.90775      9                     a        =IF(D18=s-.C18,IF(FD18=-m.`C1860,IF(D18="h,.C1*60*60.IF(D 18=-d-,C18*24*60*60,IF D18=*asC1l8*36524*60*60,-n/a-)))                      1700 19        1-134      133.90985      52.6                 m        =IF(D19='s',C19,IF(D19=*m',C19&deg;60, F(D19="h',C19*60*60, F(DI9="d",C19&deg;24"60*60,IF(D19='a',C19365*24"60*60,"n/a*))))                    60300 20      1-134M      133.90985      3.7                  m        =IF(D20='s",C20,1F(D20='mn,C20&deg;60, F(D20='h'.C20"60*60,IF(020="d',C20*24"60*60,IF D20=*a*,C20*365*24*60&deg;60.'n/a')))                    6000 21        1-135      134.91002      6.57                  h        =IFD21        ,C21,iF(D21=-m',C21*60,IF(D21=h".C21.6060.IF(D21=dC21246060,IFD21='a",C2136524*6060.,nra")))))                          51600 22        1-136      135.91474      1.39                m        =IF(D22="s.C22,IF(D22= m*,C22*60,IF(D22='h*,C22*60*60,F(D22=d*,C22*2460*60,IF(D22=aC22-365*24&deg;60*60,"n/a-))))                          24400 23      1-136M      135.91474      47                    s        =IF(D23=s*,C23.IF(D23="m.C2360,IF(D23=h*,C2360*60,F(D23="d.C23*246060,IF(D23="aC23*365*246060,"nla)                                   14300 24      1-13711)    =823+1*D$2    24.5                  s        IF(D24=s'.C24,[F(D24='m,C24'60.IF(D24='h-,C24*60"60,IF(024="d,&#xfd;C24*24"60*60,1F(D24=&deg;a*.C24*365*24*60"60,*n/a")))))                    23800 25      1-138"1)    =B24+1*D$2    6.5                  s        =IF(D25= s",C25,1F(D25=-m".25160.*F(D25="h*'C25*6060F(D25='d-*C25*24*60*60F(D25=-a".C25*365*24*6060'*n/*-)))))                         11800 26      1-139(')     =B25+lSD$2    2.3                  s        =_F(D2_=_s        _C26__FD26=-__        _F(D2_=_d-.C2_24___F(D2_=_a__C2__3_5_24__-na_)_)_
                                                                                                    .C2-6_6_'_F(D2_=-h__C2_6_6__                                                                          5220 27      1-140'1)     =B26+1"D$2    0.86                  s        =IF(D27=_s          _,C27_IFD27=_m"_C27_60_IF(D27=_h'_C27"60*60_IF(D27="d__C27_24_60*60,1FD27'a',C27*365&deg;24"80*60,_n/a")))))           1470 28      1-141(')     =B27+l&deg;D$2    0.45                  s        =_F(D28=_s'C28__    F(D28__m__C2__  6_ F(D28=_hC28_6_6_F(D28=_d_            C28_24_6_6'_FD28=-aC28_365*2_6_6_na_)_))                243 29      1-142(")    =828+1D$2      0.2                  s        =IF(D29=__s",C29,1F(D29=_m',C29&deg;60,1F(D29="h&deg;,C29*60_60_1F(D29="d",C29-24*60*60,1F(D29=_a_0C29*365&deg;24&deg;60&deg;60_"n/a______                35.3 30    1- 14 3 ('"3) =B29+1*D$2                                    =.F(D30="s.C30F(D30=-m',C3060F(D30=*h-,C306060,IF(D30=*d-,C3024660.IF(D30=-a*,C30365*24*6060.-n/a-)))))                                2.33 31      1-144 (I'3)  =B30+&#xf7;l&deg;$2      _=IF(D31=_s_,C31,_FD31=_m',C31"80,_F(D31=_h-_C31_6__6__F(D31=-d_'C31_24_6__6__                                              F(D31=-a_'C31_365_24_6__6_.-n/a-)))))  0.19 32 33 Nola              I 34 1) Atomic mass not given for these isotopes in Reference 1; therefore, a multiple of the neutron mass is added to the atomic mass of I-1 36M.
35 2) Since 1-127 is a stable element, its quantity is not presented in Reference 3. The mass of 1-127 is assumed to be 30% of the mass of 1-129.
37 36 3) Half-life information not available In Reference 2.
38 Rafe:
39  1. Radiological Health Handbook, 1970 (main body Reference 7.8) 40  2. Chart of the Nuclides, 15th Edition (main body Reference 7.9) 41  3. GE-NE-A41-00097-00-01, NMP2 24-month Cycle Fission Product Inventory Evaluation (main body Reference 7.7) 42  4. Regulatory Guide 1.183 (main body Reference 7.10.2) 43  5. NMP2 Site License (main body Reference 7.5)                          :                                  ._
44  6. Regulatory Guide 1.49 (main body Reference 7.10.1)
Iodine t-0 Eqs


===2.1. Radiological===
Attachment I                                                        Table 1-11 Equations: Core Iodine Inventory Determination (t0 Post-LOCA). Calculation No. H21C-097 Nine Mile Point Nuclear Station                                            (Single Batch Core with 1400 EFPD and 34,000 MWdIST CAVEX)                        Revision 0 Unit 2                                                                                                                                                          Page 1-9 G                      H                        I                                  K        [          L 1            Core Inventory Fra tion Rele asd inContainment for Halogens 2    _____Gap            Release Phase                            0.05              (Ref. 4, Tbl 1)      ______
3                  Early In-Vessel Phase                          0.25              (Ref. 4, Tbt 1)        _____
7 Activity                Specific                  Core            Gap.                EIV                Total per Core                Activity              Inventory        Release            Release              Release 9 1    Cilcore]              ICi/gmj                lgmlcorel        [mole]            Imolell              [mole]
10      ______________                                          =0.3*J12          =0.3*K12            =J1O.KlO      _
11 =F11OD$4        =LN(2)D$6/(D$5BI11E11          =GilIH11      =I1VJS2IBlI      =111J$311611        =JI1+Ki1 12 =F12*D$4        =LN 2 *D$61(0$5512*El2)        =G121H12      =112*J$2i912      =112J$3IB312        =J12+K12 13 =F13'D$4        =LN(2)t5$61(D$5513'E13)        =G1311H13      =113*J$21BI3      =113*J$3/B13        =J13+K13 14 =Fl4*D$4        =LN 2 rO$6/ D$5*l4*E14)        =G141H14      =114J52/B14l      =1114JS31114        -J14+Kl4 15 =F15-D$4        =      JpSrD6/O$5'B15-E15)      =G151H15      I=I15'J$2/B15      =115*JS31B15        =J15.K15 16 1-F6*$4        I-LN(2)*D$6/(D$5*B616E16)        =G161H16      =116J 211316    I-I16*J$31B16        -J16+KI6 171=FI7DS$4        I=LN(2)*D$P/(D$5-17'E17)        =G 17/H 17    =117*J$2/817      =117*J$3/817        =J17+K17 18 =F18'D$4        = L N(2)-D$61(D$ 5 BI VE 18)    =G 18/1-18    -118*J$21B18      -118*J$3IBl8    .=J18+K18 19 =F19-D$4        = LN(2)-0$61(D$5561 E 19)      =G19/1-19      =119*J521B19      =1119J$31B319      =J19.K19 20 =F20*t$4        =LN(2)*D$6/(D$S*B20*E20)        =G20/1-120    =120*J$21B20      =120*J$31B20        =J20.K20 21 =F21l0$4        =LNL2)D$6/(D$5-B21 E21)        =G21/1-1211 =121J$21B21          -121*J$3/B21        =J21+K21 22 =F22*DS4        =LN(2)*D$6/(D$5*B22*E22)        =G22/1-22      =122*J$2/B22      =122*JS31922        =J22+K22 23 =F23tD$4        =LN(2)-D$6/(D$5*B23*E23)        -G23IH23      =123*J$21823      =123J$31B23          =J23.K23 24 =F24tD$4        I=LN(2rD$&sect;1(D$55624*E24).        =G24/1-124    =124J412/B24      =124*J$31B24        =J24.K24 25 =F25*0$4        =LN(2)*D$61(D$5*B25*E25)        =G25/1-125    =125*J$21625      =125'J$3/B25        =J25+K25 26 =F2603$4        =LN(2)*D$ /(D$55926*E26)        =G28/H26      =126-JS2/26      =126*J$3lB26        =J26.K26 27 =F270D$4        =LN(2)D$6/(D$55627'E27)        =G27/H27      =127'J$21IJ27    =127JS311327        =J27+K27 28 =F28*D$4        'LN(2)*D$6/(D$5*828*E28)        =G28/1-128    =128*J$2/628      =128*J$3IB28        =J28+K28 29 =F29tD$4        =LN(2)TD$6/(D$56829'E29)        =G29/1-29      =129J$2/1B29      =129*J$3/B29        =.129+K29 32                            ~~Total -SUM(1lO:i31)  =SUM(JIO:J31) =SUM(KIC:K31)            =SULM(-10:1.311)
Iodine t=0 Eqs


Health Handbook, 1970 (main body Reference 7.8)2. Chart of the Nuclides, 15th Edition (main body Reference 7.9)3. GE-NE-A41-00097-00-01, NMP2 24-month Cycle Fission Product Inventory Evaluation (main body Reference 7.7)4. Regulatory Guide 1.183 (main body Reference 7.10.2)5. NMP2 Site License.(main body Reference 7.5)6. Regulatory Guide 1.49 (main body Reterence:7.10.1)
Attachment I                                                    Table 1-2 Equations: Core Cesium Inventory Determination (t=O Post-LOCA)                                                  Calculation No. H21C-097 Nine Mile Point Nuclear Station                                        (Single Batch Core with 1400 EFPO and 34,000 MWd/ST CAVEX)                                                                          Revision 0 Unit 2                                                                                                                                                                                                      Page 1-10 I              A      I        B            C            D                                                                      E                                                                        F ITime Ipost-LOCA                                0sec 2  Neutron Mass                                1.008665      amu                                                                                                                            (Ref. 1) 3  Core Thermal Power (100%)                    3467          MWI                                                                                                                            (Ref. 5) 4  Core Thermal Power (102%)                    =D3 1.02      MWI                                                                                                                            (Ref. 6) 5  1 Curie                                      37000000000    dis/sec                                                                                                                        (Ref
Iodine t=30d Attachment 1 Nine Mile Point NuclearStation Unit 2 Time post-LOCA Neutron Mass Core Thermal Power (100%)Core Thermal Power (102%)1 Curie Avogadro's Number Table 1-4: Core Cesium Inventory Determination (t=30 days Post-LOCA)(Single Batch Core with 1400 EFPD and 34,000 MWdlST CAVEX)Calculation No. H21C-097 Revision 0 Page 1.7 30 days 1.008665 amu (Ref. 1)3,467 MWt (Ref. 5)3,536 MWt (Ref. 6)3.70E+10 dis/sec (Ref. 1)6.022137E+23 atoms/mole (Ref. 2)Core Inventory Fraction Released in Containment for Alkalis Gap Release Phase Early In-Vessel Phase 0.05 (Ref. 4, TbI 1)0.20 (Ref. 4, Tbl 1)Atomic Mass Half Life units! f Activity Activity Specific Core Gap EIV Total Isotope (Ref. 1) (Ref. 2) 1 Half Life (Ref. 3) per Core Activity I Inventory Release Release Release I [amu] .j [sec] [Ci/MWt] [Cilcorel I [Cilgm] [gm/core]
[mole] [mole] [mole]CS-132 131.906393 6.48 d 559,872 3.21E-01 1.14E+03 1.53E+05 7.43E-03 2.82E-06 1.13E-05 1.41E-05 CS- 133('1)CS-134 133.906823 2.065 a 65,121,840 7.09E+03 2.51E+07


==Subject:==
==Subject:==
Determination of Exoosiad Cables In the NMP2 Drywall MODIFICATION OR DESIGN CHANGE NUMBERS A l JH Gotston NPEE w" L ie, ,,641 Preparer (Print name) Process Group \..'repa, Sinaturei IssueDate STATUS OF INFORMATION (This Information Is approved for use. Design Information, approved for use, that contains assumptions or Is preliminary or requires further verification shall be so identified).
Determination of Exoosiad Cables Inthe NMP2 Drywall MODIFICATION OR DESIGN CHANGE NUMBERS                             A l JH Gotston                   NPEE                                 w"       L                     ie,     ,,641 Preparer (Print name)         Process Group         \..'repa,       Sinaturei                   IssueDate STATUS OF INFORMATION (This Information Is approved for use. Design Information, approved for use, that contains assumptions or Is preliminary or requires further verification shall be so identified).
Approved For Use -This DIT conitains Ennineerim Judgement That Does NRot.eaulm Verification IDENTIFICATION OF THE SPECIFIC DESIGN INFORMATION TRANSMITTED AND PURPOSE OF ISSUE (list any supporting documents attached to DIT by Its itle, revision and/or issue date, and total number of pages for each supporting document.)
Approved For Use - This DIT conitains Ennineerim Judgement That Does NRot.eaulm Verification IDENTIFICATION OF THE SPECIFIC DESIGN INFORMATION TRANSMITTED AND PURPOSE OF ISSUE (list any supporting documents attached to DIT by Its itle, revision and/or issue date, and total number of pages for each supporting document.)
This DIT contains cable length, and cable insulation and jacket information for exposed cable installed in the Nine Mile Point Unit 2 (NMP2) Drywall.The data provided herein may' be used to calculate the formation of HCI by radiolysis of chlorine-bearing Materials.
This DIT contains cable length, and cable insulation and jacket information for exposed cable installed in the Nine Mile Point Unit 2 (NMP2) Drywall.
SOURCE OF INFORMATION Calc No.Rev. Data Report No.Rev. Date Other Sources of Information are listed on the foliowtng  
The data provided herein may' be used to calculate the formation of HCI by radiolysis of chlorine-bearing Materials.
[ane 2 of this DIT DISTRIBUTION Action: JC Penrose HR Kopko.Information:
SOURCE OF INFORMATION Calc No.
RE Davis OM Wright Reviewed Mb. Jayaa " J, OD SOP04030202-REV4.do Rev. Data: 04-19-2004 page I orl4 Attachment 3 Calculation No. H21C-097 Nine Mile Point'Nuclear Station Revisio21 0 Unit 2 Revision 0 Page 3-3 DESIGN INFORMATION TRANSMITrAL  
Rev.                 Data Report No.
-.CONTINUATION PAGE Form SOP-0403-02-03.
Rev.                 Date Other     Sources of Information are listed on the foliowtng [ane 2 of this DIT DISTRIBUTION Action:
Revision 4* L~ DESIGN INFORMATION TRANSMITTAL DIT No.: DIT-NM-NPEE-00t Project No.: 11236-061 Page 2 of Z7  
JC Penrose HR Kopko.
Information:
RE Davis OM Wright Reviewed   Mb.Jayaa     "     J,                       OD SOP04030202-REV4.do                                             page I orl4 Rev. Data: 04-19-2004 Calculation No. H21C-097 Nine Mile Point'Nuclear Station                                                                                                             Revisio21 0
Unit 2                                                                                                                                       Revision 0 Page 3-3 DESIGN INFORMATION TRANSMITrAL -. CONTINUATION PAGE Form SOP-0403-02-03. Revision 4
    *          .*:* L~                                       DESIGN INFORMATION TRANSMITTAL DIT No.: DIT-NM-NPEE-00t                         Project No.: 11236-061                   Page 2 of     Z7


==SUBJECT:==
==SUBJECT:==
Determination of exposed cables In the NMP2 Drywell.PURPOSE: Cables installed In the NMP2 Drywall containing chlorine-bearing materials may release HCI via rediolyals when exposed to various forms of radiation.
 
This DIT estimates the lengths and sizes of cables Installed In the Drywall, that am Installed In cable tray or free air. It also provides Information on cable insulation and jacket material.
Determination of exposed cables In the NMP2 Drywell.
The user of this DIT can use this information to calculate the exposed surface area of cable jacket material, and the volume of cable jacket and cable insulation material contained by these exposed cables. (Ref. 11  
PURPOSE:
Cables installed Inthe NMP2 Drywall containing chlorine-bearing materials may release HCI via rediolyals when exposed to various forms of radiation. This DIT estimates the lengths and sizes of cables Installed In the Drywall, that am Installed In cable tray or free air. It also provides Information on cable insulation and jacket material. The user of this DIT can use this information to calculate the exposed surface area of cable jacket material, and the volume of cable jacket and cable insulation material contained by these exposed cables. (Ref. 11


==REFERENCES:==
==REFERENCES:==
: 1. Emall mesage from Jeri C Penrose to Robefl E Davis, sent 8/11/2004at 4*:44pm, Attachment 1.2. "Electrtcal Installation" Specification E061A 3. "insulated 15-kV Power Cable" Specification No. NMP2-E023A.
: 1.     Emall mesage from Jeri C Penrose to Robefl E Davis, sent 8/11/2004at 4*:44pm, Attachment 1.
Rev. 02, Attachment 5 (selected pages)4. 'Electrak Corp. Raceway Reportr, Attachment 2 (selected pages)5. "As-Built Cable Report", Altachment 3 (selected pages)6. "Cable Mark Number Report", Attachment 4 (selected pages)7. Drawing EE-036U, Rev. 6, Wiring Diagram Electrical Penetrations 2CES-Z31E. -Z32E, .Z45E, -Z46E" 8. Drawing EE-34Z-12; Rev. 12, "Cable Tray Arrangement EL. 215'-0" Reactor Building Sheet 1" 9. Drawing EE-034AA, Rev. 13, "Cable Tray Arrangement EL. 215'-0" Reactor Building Sheet 2" 10. Drawing EE-34AB-15, Rev. 15, 'Cable Tray Arrangement EL. 240'-0" Reactor Building Sheet 1" 11. Drawing EE-34AC-15.
: 2.     "Electrtcal Installation" Specification E061A
Rev. 15, "Cable Tray Arrangement EL. 240'-0" Reactor Building Sheet 2'12. Drawing EE-34AD-11.
: 3.     "insulated 15-kV Power Cable" Specification No. NMP2-E023A. Rev. 02, Attachment 5 (selected pages)
Rev. 11, Tcable Tray Arrangement EL. 261'-0" Reactor Building Sheet 1" 13. Drawing EE-034AE, Rev. 13, Cable Tray Arrangement EL 261'-0" Reactor Building Sheet 2" 14. Drawing EE-34AF-7.
: 4.     'Electrak Corp. Raceway Reportr, Attachment 2 (selected pages)
Rev. 7, "Cable Tray Arrangement EL 289'-0" Reactor Building Sheet 1" 15. Drawing EE-34AG-7.
: 5.     "As-Built Cable Report", Altachment 3 (selected pages)
Rev. 7. "Cable Tray Arrangement EL. 289'4"- Reactor Building Sheet 2'16. Drawing EE-340G-6, Rev. 6, "Arrangement Seismic Cable Tray Supports Reactor Building -EL. 261'- 0' Sheet I'17. Drawing EE-34OH-6.
: 6.     "Cable Mark Number Report", Attachment 4 (selected pages)
Rev. 6, "Arrangement Seismic Cable Tray Supports Reactor Building -EL. 261'- 0" Sheet 2" 18. Email message from the Keoria Company's R. Flemming to S&L's Helmut Kopke, sent 8/412004 at 2:06pm, Attachment 6.ASSUMPTIONS.
: 7. Drawing EE-036U, Rev. 6, Wiring Diagram Electrical Penetrations 2CES-Z31E. -Z32E, .Z45E, -Z46E"
: 1. The calculation results of 'HCI released via rediolysls' may be used in a safety related applicatiori:
: 8. Drawing EE-34Z-12; Rev. 12, "Cable Tray Arrangement EL. 215'-0" Reactor Building Sheet 1"
therefore this DIT will be prepared as Safety Related.2. The user will calculate cable jacket surface area. and cable jacket and insulation volume from data provided herein.3, Over-estimates of cable length and size are In a conservative direction for the user of this DIT's data.4. The Drywall is a plant area Whiere virtually all scheduled cables am Installed in conduit Exceptions are the power cables to the RCPs and their associated free air drops from tray to motor junction boxes. Other scheduled cables are Installed in conduit.Other potential exceptions may exist for non-scheduled short lengths of lighting or receptacle power cables, or aluminum sheathed cables, etc.EVALUATION:
: 9. Drawing EE-034AA, Rev. 13, "Cable Tray Arrangement EL. 215'-0" Reactor Building Sheet 2"
: 1. The user of this DIT is Interested In exposed cable only. Exposed cable Is routed In open cable tray or free air. Cable muted in enclosed raceway. Ie. conduit, flexible conduit, pull boxes, etc.. and cable contained Inside equipment.
: 10. Drawing EE-34AB-15, Rev. 15, 'Cable Tray Arrangement EL. 240'-0" Reactor Building Sheet 1"
I.e. termination boxes, motors, etc., will not be considered.
: 11. Drawing EE-34AC-15. Rev. 15, "Cable Tray Arrangement EL. 240'-0" Reactor Building Sheet 2'
A review of the Installation specification E061A Indicates that free air cable muting Is typically only allowed as cables enter and exit the cable trays. Therefore, this DIT estimates the cable lengths and sizes of those that are muted In cable tray. There may be some aluminum sheathed or metal clad cable routed in some areas, and the potentlal exists of small quantities of lighting or receptacle cable. These cable types can be muted without the use of a raceway utilizing simple supports and have an overall jacket. Therefore, for conservatism, it will be estimated that the amount of cable Insulation and jacket matarial for cables of this construction is equal to the amount contained in the cable trays.2. A detailed search of NMP2 cable tray, penetration wirng dis rams, conduit plan and arrangement drawings was performed to 6OP04030203-REV4.doc Rev. Date: 04-19-2004 Attachment 3 Calculation No. H21C-097 Nine Mile Point Nuclear Station Unit ,. .Revision 0 Page 3-4 DESIGN INFORMATION TRANSMITTAL -CONTINUATION PAGE .3 Form SOP-0403-02-03.
: 12. Drawing EE-34AD-11. Rev. 11, Tcable Tray Arrangement EL. 261'-0" Reactor Building Sheet 1"
Revision 4 L'- Z.i Identify any cable tray that is installed in the primary containment Cable tray drawings EE-034AA and EE-034Z for Reactor Building El. 215'. and drawings EE-034AG and EE-034AF for Reactor Building El. 289' indicate that ther are no trays installed In the Drywell or Suppression Pool for these elevations.
: 13. Drawing EE-034AE, Rev. 13, Cable Tray Arrangement EL 261'-0" Reactor Building Sheet 2"
Cable tray locations were verified utilizing the tray support drawings EE-340H and EE.340G.3. Cable tray drawings EE-034AB and EE-034AC for Reactor Building El. 240', and drawings EE-034AD and EE-034AE for Reactor Building El. 261' indicate that there are cable trays installed In the Drywall for these elevations.
: 14. Drawing EE-34AF-7. Rev. 7, "Cable Tray Arrangement EL 289'-0" Reactor Building Sheet 1"
The following are the approximate lengths of tray as shown on the drawings.
: 15. Drawing EE-34AG-7. Rev. 7. "Cable Tray Arrangement EL. 289'4"- Reactor Building Sheet 2'
Where actual tray segment lengths are listed on the drawings, the values were conservatively rounded up to the nearest fool. In addition, where cable trays segment lengths are not listed on the drawings, the tray length has been conservatively estimated by scaling the lengths from the drawing. The following era the resulting scaled lengths: El. 240' 50-ft. (EE-034AC)
: 16. Drawing EE-340G-6, Rev. 6, "Arrangement Seismic Cable Tray Supports Reactor Building - EL. 261'- 0' Sheet I'
Df0- (EE-034AB)
: 17. Drawing EE-34OH-6. Rev. 6, "Arrangement Seismic Cable Tray Supports Reactor Building - EL. 261'- 0" Sheet 2"
Sub Total 50-t.L El. 261' 40-ft. (EE-034AD)
: 18. Email message from the Keoria Company's R. Flemming to S&L's Helmut Kopke, sent 8/412004 at 2:06pm, Attachment 6.
& 1- (EE-034AE)
ASSUMPTIONS.
Sub Total 130-ft.Total. 180-ft.4. To verity the above scaled cable tray lengths, the TRAK 2000 raceway report (Ref. 41 was reviewed for the raceways Identified on the above drawings.
: 1. The calculation results of 'HCI released via rediolysls' may be used in a safety related applicatiori: therefore this DIT will be prepared as Safety Related.
The Identified cable trays contain the cables feeding the Reactor Recirculation Pumps. The TRAK 2000 Information for these raceways installed in the Drywell provide the following installed lengths: 2TJ012N 70-FT 2TJO15N 39-FT 2TJO22N 8-FT Total: 19441.If cable lengths are to based on cable tray lengths, this ODT would estimate a 210-ft total cable tray length.5. To Investigate the cables Installed between the electrical penetrations and the Reactor Recirculatton Pumps (RCP), and Installed In the abovementioned cable tray, the As-BuIlt Cable Report [Ref. 5] was reviewed.
: 2. The user will calculate cable jacket surface area. and cable jacket and insulation volume from data provided herein.
The as-buflt cable reports Identifies the cable Identficatton number, the number of cables, the type of cable, Its racaway's Installed length, the cable's calculated length and Its actual length. The actual length exceeds the cable tray length to allow for free air length. termination length, and actual Installed length. The below'summarizes the Installed cables' types and lengths: Cable IDI Raceways Number of Cobles/Tvoe Size Ifrom Ref. c1 Actual cable lenath 2RCSANJ308f 3 -NJN-03 750-kCMIL 80-ft 2TJO12N 2RCSANJ3O9/
3, Over-estimates of cable length and size are In a conservative direction for the user of this DIT's data.
1 -NJN-04 1/0-AWG 80-ft 2TJO12N 2RCSBNJ308/
: 4. The Drywall is a plant area Whiere virtually all scheduled cables am Installed in conduit Exceptions are the power cables to the RCPs and their associated free air drops from tray to motor junction boxes. Other scheduled cables are Installed in conduit.
3 -NJN-03 750-kCMIL 155-ft 2TJO1SN +2TJ022N 2RCSBNJ309/
Other potential exceptions may exist for non-scheduled short lengths of lighting or receptacle power cables, or aluminum sheathed cables, etc.
1 -NJN-04 1I0.AWG 155-ft 2TJOI5N +2TJO22N The above one way crcluit lengths from penetrations to RCPs is 235-ft.6. Using the actual installed cable lengths from the above as-built cable report summary yields the following:
EVALUATION:
Coble 1i) Number of cables X Lenath Total Cable length I Size 2RCSANJ308 3 x 80-ft 240-ft 1750-kCMIL 2RCSBNJ308.
: 1. The user of this DIT is Interested In exposed cable only. Exposed cable Is routed Inopen cable tray or free air. Cable muted in enclosed raceway. Ie. conduit, flexible conduit, pull boxes, etc.. and cable contained Inside equipment. I.e. termination boxes, motors, etc., will not be considered. A review of the Installation specification E061A Indicates that free air cable muting Is typically only allowed as cables enter and exit the cable trays. Therefore, this DIT estimates the cable lengths and sizes of those that are muted Incable tray. There may be some aluminum sheathed or metal clad cable routed in some areas, and the potentlal exists of small quantities of lighting or receptacle cable. These cable types can be muted without the use of a raceway utilizing simple supports and have an overall jacket. Therefore, for conservatism, it will be estimated that the amount of cable Insulation and jacket matarial for cables of this construction is equal to the amount contained in the cable trays.
3 x 155-ft 465-ft 1750-kCMIL SOP04030203-REV4.WOC.
: 2. A detailed search of NMP2 cable tray, penetration wirng dis rams, conduit plan and arrangement drawings was performed to 6OP04030203-REV4.doc Rev. Date: 04-19-2004 Calculation No. H21C-097 Nine Mile Point Nuclear           Unit Station
Rev. Date: 04-19,2004 Attachment 3 Nine Mile Point Nuclear Station Unit 2 Calculation No. H21C-097 Revision 0 Page 3-5 DESIGN INFORMATION TRANSMITTAL -CONTINUATION PAGE Forrri SOP-0403.02-03.
                                      .Revision                    ,.                                                                             0 Page 3-4 DESIGN INFORMATION TRANSMITTAL -CONTINUATION PAGE                                                       .3 Form SOP-0403-02-03. Revision 4                     L'-                           Z.i Identify any cable tray that is installed in the primary containment Cable tray drawings EE-034AA and EE-034Z for Reactor Building El. 215'. and drawings EE-034AG and EE-034AF for Reactor Building El. 289' indicate that ther are no trays installed In the Drywell or Suppression Pool for these elevations. Cable tray locations were verified utilizing the tray support drawings EE-340H and EE.340G.
Revision 4 bIT- NM-t )PE E- ~oo LI~s 4~ apZ 2RCSANJ309 i x80 80-ft I 1/0-AWG 2RCSBNJ3091 4 1 x 155-fl 155-ft 1 110-AWG Total Cable Lengths by' size: 750-kCMIL 705-ft I10-AWG 235-fl 7. To account for the potential existence of other exposed cables, not Included on NMP2 drawings or cable and raceway reports.the above total cable lengtts'are doubled, yielding the following:
: 3. Cable tray drawings EE-034AB and EE-034AC for Reactor Building El. 240', and drawings EE-034AD and EE-034AE for Reactor Building El. 261' indicate that there are cable trays installed In the Drywall for these elevations. The following are the approximate lengths of tray as shown on the drawings. Where actual tray segment lengths are listed on the drawings, the values were conservatively rounded up to the nearest fool. In addition, where cable trays segment lengths are not listed on the drawings, the tray length has been conservatively estimated by scaling the lengths from the drawing. The following era the resulting scaled lengths:
750-kCMIL 1400-ft NJN-03 1)0-AWO 600-ft NJN-04 8. From the 15-kV electrical cable specification fRef. 3], the following dimensions pertaining to the two above cable types 'are summarized:
El. 240'             50-ft.           (EE-034AC)
Tvye NJN-03 1.conductor.
Df0-             (EE-034AB)
750-kCMIL:
Sub Total           50-t.L El. 261'             40-ft.           (EE-034AD) 1-
Conductor Diameter 0 0.9734nch Copper Insulation Thickness:
                                                      &               (EE-034AE)
220-mils Ethylene Propylene Rubber (EPR)Jacket Thickness 110-mils Chlorosulfonated Polyethylene (CSPE)Tyae NJN.04 1.conductor Il-AWG: Conductor Diameter 0.363-inch Copper Insulation Thickness' NONE Jacket Only Jacket Thickness I 50-mille Chlorosulfonated Polyethylene (CSPE)9. From Information providedlby the Kerite Company [Ref. 18], the following Chlorine content Is available In insulation and jacket material: Insulation (EPR) I %Jacket (CSPE) 16%,*2%.1 SOP04030203-REV4.doc Rev. Date 04-19-2004 Attachment 3 Calculation No. H21C-097 Nine Mile Point Nuclear Station Revisioo 0 D -S--- 2 Page 3-6 Form SOP-0403-02-03.
Sub Total           130-ft.
Revision 4 DESIGN INFORMATION TRANSMITTAL DIT No.: DIT-NM.NPEE-001 Project No.: 11236-061 Page S of ZV-ATTACHMENT I E-Mail message from Sargent & Lundy, LLC's JC Penrose to RE Davis, sent 8111/2004 at 4:44pm
Total.               180-ft.
: 4. To verity the above scaled cable tray lengths, the TRAK 2000 raceway report (Ref. 41 was reviewed for the raceways Identified on the above drawings. The Identified cable trays contain the cables feeding the Reactor Recirculation Pumps. The TRAK 2000 Information for these raceways installed in the Drywell provide the following installed lengths:
2TJ012N             70-FT 2TJO15N             39-FT 2TJO22N             8-FT Total:             19441.
Ifcable lengths are to based on cable tray lengths, this ODTwould estimate a 210-ft total cable tray length.
: 5. To Investigate the cables Installed between the electrical penetrations and the Reactor Recirculatton Pumps (RCP), and Installed In the abovementioned cable tray, the As-BuIlt Cable Report [Ref. 5] was reviewed. The as-buflt cable reports Identifies the cable Identficatton number, the number of cables, the type of cable, Its racaway's Installed length, the cable's calculated length and Its actual length. The actual length exceeds the cable tray length to allow for free air length. termination length, and actual Installed length. The below'summarizes the Installed cables' types and lengths:
Cable IDI Raceways           Number of Cobles/Tvoe                 Size Ifrom Ref. c1         Actual cable lenath 2RCSANJ308f                 3 - NJN-03                           750-kCMIL                   80-ft 2TJO12N 2RCSANJ3O9/                   1 - NJN-04                           1/0-AWG                     80-ft 2TJO12N 2RCSBNJ308/                   3 - NJN-03                           750-kCMIL                   155-ft 2TJO1SN +
2TJ022N 2RCSBNJ309/                   1 - NJN-04                           1I0.AWG                     155-ft 2TJOI5N +
2TJO22N The above one way crcluit lengths from penetrations to RCPs is 235-ft.
: 6. Using the actual installed cable lengths from the above as-built cable report summary yields the following:
Coble 1i)                   Number of cables X Lenath             Total Cable length I Size 2RCSANJ308                   3 x 80-ft                             240-ft 1750-kCMIL 2RCSBNJ308.                   3 x 155-ft                           465-ft 1750-kCMIL SOP04030203-REV4.WOC.
Rev. Date: 04-19,2004 Calculation No. H21C-097 Nine Mile Point Nuclear Station                                                                                                                Revision 0 Unit 2                                                                                                                                          Page 3-5 bIT- NM-t )PE E-         ~oo PAGE                              4~apZ LI~s DESIGN INFORMATION TRANSMITTAL -CONTINUATION Forrri SOP-0403.02-03. Revision 4 i  x80                                  80-ftI 1/0-AWG 2RCSANJ309 4     1 x 155-fl                               155-ft 1 110-AWG 2RCSBNJ3091 Total Cable Lengths by' size:
750-kCMIL         705-ft I10-AWG         235-fl reports.
cables, not Included on NMP2 drawings or cable and raceway
: 7. To account for the potential existence of other exposed yielding  the  following:
the above total cable lengtts'are doubled, 750-kCMIL         1400-ft             NJN-03 1)0-AWO           600-ft             NJN-04 types 'are the following dimensions pertaining to the two above cable
: 8. From the 15-kV electrical cable specification fRef. 3],
summarized:
Tvye NJN-03 1.conductor. 750-kCMIL:
0 0.9734nch             Copper Conductor Diameter                                                  Ethylene Propylene Rubber (EPR)
Insulation Thickness:                        220-mils 110-mils               Chlorosulfonated Polyethylene (CSPE)
Jacket Thickness Tyae NJN.04 1.conductor Il-AWG:
0.363-inch             Copper Conductor Diameter NONE                 Jacket Only Insulation Thickness' I                         50-mille             Chlorosulfonated Polyethylene (CSPE)
Jacket Thickness and jacket 18], the following Chlorine content Is available In insulation
: 9. From Information providedlby the Kerite Company [Ref.
material:
Insulation (EPR)                                 I %
Jacket (CSPE)                                 16%,*2%
                                    .1 SOP04030203-REV4.doc Rev. Date 04-19-2004
 
Calculation No. H21C-097 Nine Mile Point Nuclear Station                                                                             Revisioo0 2                          D     -S---                                                                 Page 3-6 Form SOP-0403-02-03. Revision 4 DESIGN INFORMATION TRANSMITTAL Page S of ZV-Project No.: 11236-061 DIT No.: DIT-NM.NPEE-001 ATTACHMENT I sent 8111/2004 at 4:44pm from Sargent & Lundy,   LLC's JC Penrose to RE Davis, E-Mail message pH Analysis


==Subject:==
==Subject:==
Cable Inventory for pH Analysis SOP403O203-REV4,d0C Rev. Date: 04-19-2004 Attachment 3 Calculation No. H21C-097 Nine Mile Point Nuclear Station- Revision 0 Unit 2 Ui2Page 3-7 JERI C PENROSE To: "Davis, Robert E" <Robert.E.Davts@constellation.com>
Cable Inventory for SOP403O203-REV4,d0C Rev. Date: 04-19-2004 Calculation No. H21C-097 Nine Mile Point Nuclear Station-                                                                                           Revision 0 Unit 2                               Ui2Page                                                                                     3-7 JERI C PENROSE                 To: "Davis, Robert E" <Robert.E.Davts@constellation.com>
cc: HELMUT R KOPKEISargenfundy@Sorgentlundy 08/11104 G444 PM Subject Cable Inventory for pH Analysis Bob, I've been using your data as Input to the calculation of the pH In the Suppression Pool In Unit 2. Its a nice analysis and has much of the Information I need, but I'd like to confirm a few additional details to properly use the data.Your data will be used to calculate the formation of HCI by.radlolysis of chlorine-bearing materials.
cc: HELMUT R KOPKEISargenfundy@Sorgentlundy 08/11104 G444 PM         Subject Cable Inventory for pH Analysis Bob, I've been using your data as Input to the calculation of the pH In the Suppression Pool In Unit 2. Its a nice analysis and has much of the Information I need, but I'd like to confirm a few additional details to properly use the data.
As I understand itL only the jacketing contains chlorine; the insulation Is made of EP or some other material that does not contain chlorine.
Your data will be used to calculate the formation of HCI by.radlolysis of chlorine-bearing materials. As I understand itLonly the jacketing contains chlorine; the insulation Is made of EP or some other material that does not contain chlorine. Therefor, I need to determine the amounts of jacketing only. The radiolysla -
Therefor, I need to determine the amounts of jacketing only. The radiolysla  
calculation Is sensitive to depth because radiation Is absorbed as it passes through the materiel. Because of this, besides the total weight of jacketing I also need data which Identify the jacket OD and the Jacket thickness.
-calculation Is sensitive to depth because radiation Is absorbed as it passes through the materiel.
The Cable Inventory you prepared concludes that there Is a total of 200 LF of tray in the Drywall which is used for Reactor Recirculation Pump power cables. It also uses a jacket and insulation weight of 6.4 lb per foot for cable In this tray, but doesn't Identify the basis for this unit weight. Your email dated 7120 indicates 1/c 750 MCM cables are used plus a 1/0 ground cable. Is the 6.4 lb per foot weight based on the total insulation and jacketing for three power cables plus one ground cable (i.e.. 600 LF 750 MCM cable and 200 LF 110.cable)? Are there any other cables in the tray?
Because of this, besides the total weight of jacketing I also need data which Identify the jacket OD and the Jacket thickness.
The Cable Inventory also assumed additional exposed cable equal in weight to the Recirculation Pump power cables. Again. I need to use a.jacket.OD and thickness for the pH calculation. Would this additional cable be power cable or would it include smaller diameter control cable? Perhaps a reasonable assumption would be a mix of both.
The Cable Inventory you prepared concludes that there Is a total of 200 LF of tray in the Drywall which is used for Reactor Recirculation Pump power cables. It also uses a jacket and insulation weight of 6.4 lb per foot for cable In this tray, but doesn't Identify the basis for this unit weight. Your email dated 7120 indicates 1/c 750 MCM cables are used plus a 1/0 ground cable. Is the 6.4 lb per foot weight based on the total insulation and jacketing for three power cables plus one ground cable (i.e.. 600 LF 750 MCM cable and 200 LF 110.cable)?
I need to get the additional Information for all cables In the cable tray and elsewhere In the Drywall as described above. Your emall dated 7/20 provided the cable OD and the jacketing thickness for 1/c 750 MCM power cable. Please provide similar data for other cables and quantities by type of cable.
Are there any other cables in the tray?The Cable Inventory also assumed additional exposed cable equal in weight to the Recirculation Pump power cables. Again. I need to use a.jacket.OD and thickness for the pH calculation.
I would appreciate inclusion of a summary results table such as the following In your analysis. This would help me understand the data and provide a reference to be used for input to the pH calculation.
Would this additional cable be power cable or would it include smaller diameter control cable? Perhaps a reasonable assumption would be a mix of both.I need to get the additional Information for all cables In the cable tray and elsewhere In the Drywall as described above. Your emall dated 7/20 provided the cable OD and the jacketing thickness for 1/c 750 MCM power cable. Please provide similar data for other cables and quantities by type of cable.I would appreciate inclusion of a summary results table such as the following In your analysis.
Cable                     Total length     Jacket wt         Jacket OD.-     Jacket thickness 750 MCM power                     600 LF             xxx lb/kft       1.94 In         110 ml 1/0 ground                 200 LF           xxx tb/kft       x.xx In         xxx mill etc.
This would help me understand the data and provide a reference to be used for input to the pH calculation.
The final calculation is due to the client on August 24 and must be reviewed and approved before then. I need to receive an updated Cable Inventory to use as Input no later than Monday, August 16 to support the schedule.
Cable Total length Jacket wt Jacket OD.- Jacket thickness 750 MCM power 600 LF xxx lb/kft 1.94 In 110 ml 1/0 ground 200 LF xxx tb/kft x.xx In xxx mill etc.The final calculation is due to the client on August 24 and must be reviewed and approved before then. I need to receive an updated Cable Inventory to use as Input no later than Monday, August 16 to support the schedule.Thanks, Jeri 312-269-6234 Attachment 3 Calculation No. H21C-097 Nine Mile Point Nuclear Station Revision1 0 Unit 2 0 Ui2Page 3-8 DESIGN INFORMATION TRANSMITTAL  
Thanks, Jeri 312-269-6234
-CONTINUATION PAGE Form SOP-0403-02-03.
 
Revision 4.DESIGN INFORMATION TRANSMITTAL DT No.: DIT-NM-NPEE-01 Proect No.: 11236-061 Page 7 of Z.ATTACHMENT 2'Electrak Corp." Raceway Reports, dated 1213112003 for Cable Trays* 2TJ012N* 2TJO15N, and* 2TJ022N SOPM4030203-REV4 doc Rev. Date: 04-19-2004 Attachment 3 Nine Mile Point Nuclear Station Unit 2 Calculation No. H21C-097 Revision 0 Page 3-9 z?
Calculation No. H21C-097                                                                                                     00 Revision1 Nine Mile Point Nuclear         Station Unit 2 *Revision                                                                  3-8 Ui2Page CONTINUATION PAGE DESIGN INFORMATION TRANSMITTAL -
Attachment 3 Nine Mile Point Nuclear Station Unit 2 Calculation No. H21C-097 Revision 0 Page 3-10 NT-M-PEE00 Attachment 3 Nine Mile Point Nuclear Station Unit 2 Calculation No. H21C-097 Revision 0 Page 3-11 I~2 b~T-N~M-N~PEE-oc~i p ~I.
Form SOP-0403-02-03. Revision 4
Attachment 3 Calculation No. H21 C-097 Nine Mile Point Nuclear Station Revision 0 Unit 2 R vso Page 3-12 DESIGN INFORMATION TRANSMITTAL  
        .
-CONTINUATION PAGE Form SOP-0403-02-03, Revision 4* INFORMATION TRANSMITTAL DIT No.: DIT-NM-NPEE-O01 Proect No.: 11236-061 Page 11 of Z?ATTACHMENT 3'As-Built Cable Report". dated 7/16/2004 for Cables* 2RCSANJ308, in Cable Tray 2TJO12N* 2RCSANJ309, in Cable Tray 2TJO12N* 2RCSBNJ308, in Cable Trays 2TJ01 5N and 2TJ022N* 2RCSBNJ309, in Cable Trays 2TJ01 5N and 2TJ022N SOP040302034REW.doc Rev. Date: 04-19-2004 As-Built Cable Report 7/16/04-........ ..r --Cable ID 2RCSANJ308 From Ccuponent 2CES-Z45Z PENETRATION 13.8 KV (N)To Ccazonent 2RCS-MIA REACT RECIRC PP MTR 2RCS*PIA Hank Ro. of go. of Service Swpacity Current Length Data Roids Design Cables/Cables/
* DESIGN INFORMATION TRANSMITTAL Proect No.: 11236-061              Page 7 of Z.
IXn Tyye Design ZXa.alled QA separation Design Program Vendor Cable No. Constr Code Splice Codes Stolpe FIA Irelin Level Codes Flage Design Rev A 3 J 70' 0 N 0 Route, Holds xnztallea No. of Pat Fi11 Structural Struzt Load Separation Service Troy Prot cz a.5 01 0 0 g Raceway Xd 1 "2TJ012N NotesI V00C Code Length 0000 312 70, Cables Pat W11l Linrit Load Override Codes Codes Cover Hold 4 25.25 10.98 N J. N/A 3 3 4 5 Drawings a Type D D D D LvI A A A A A Del Text: Calclength:
DT No.: DIT-NM-NPEE-01 ATTACHMENT       2 1213112003 for Cable Trays
0e00070 Actlength:5S1.00080 Servolt: 13900V Servfunc:
      'Electrak Corp." Raceway Reports, dated
SRCS15 Ree3.nu1Tb:
* 2TJ012N
23k1-08 Text Drawing No. Sheet Title 5RCSI5-z P ,V eM 0 R)0 0)z a) (D 'W(0 <-4 As-Built Cable Report 7/16/04 Cable D 2RCB1JI7309 From Coa.onent 2CES-Z45E PENETRATION 13.8 [KV (N)To Component 2RCS-MIA REACT RECIRC PP MTR 2RCSP.IA Rank No. of Uo. of service ity Current Length Data Holds Design Cabieecableal/
* 2TJO15N, and
ICHA Type Design Installed QA Separation Design Program Vendor Cable No. Constr Code S&#xfd;lice Codes Stolpe FLA prelim Level Codes Flags Design Rev A 1 J 70 70 N 1 NJN-04 cz~Z'3.CD*-u z'.0 0)MI Raceway Id 1 2TJ01Ni Notes s VWIC Code Length Cables Vot P11i 0000 312 70 4 25.25 Limit Load Override Codes Codes 10.99 N J Cover Hold N/A Type 1 D 2 D 3 D 4 D 5 D Drawings 8 LvI Del Text A Calc]A Actl1 A Serv;A Serv A Reeli Length: 000070 ength: 000080 olt: 13800V func: SRCS15 inmb: 23A-02 Drawing No. Sheet; Title 5RCS15-1 p 1 0, 0 C__R 0)0)B.<0 z  
* 2TJ022N SOPM4030203-REV4 doc Rev. Date: 04-19-2004 Calculation No. H21C-097 Nine Mile Point Nuclear Station                 Revision 0 Unit 2                                           Page 3-9 z?
-ARA-01 %kt '750 #"tMl As-Built Cable Report 7/16/04 Cable ZD MiCdikj3OU cz-.CD a')0=r (D From Coamonent 2CES-Z46E To Component 2RCS-MIB PENETRATION 13.8 K(V (N)REIACT RECIRC PP XTh 2RCS*PlB Rank No. of Hf. of fezvyioe Anpaaity Current Length Data Holds Design Cables/Cabloe/
Calculation No. H21C-097 Nine Mile Point Nuclear Station                    Revision 0 Unit 2                                              Page 3-10 NT-M-PEE00 Calculation No. H21C-097 Nine Mile Point Nuclear Station                      Revision 0 Unit 2                                              Page 3-11 b~T-N~M-N~PEE- oc~i p     ~
ICKI Type Design Znatalled QA separation Design Program Vendor Cable No. Constr Code Codes I togpe IFA Prelim Level Codes Flags Design Rev A 3 .124 124"" 1" NJ-03" Route i Raceway Xd I. 2TJO15N.2 2TJ022N Noteas Holds xnstalled go. of " VlSC Code Length 0000 312 39;0000 312 85 Cables Pat Vi1 4 25.25 4 25.25 ePt pill Stzruct Lead SeParation Service Tray Prog 1- Limit Load Override Codes Codes Cover Hold 10.98 ii J N/A 1 N I N/A 1 2 3 4 5 Type D D D D D A A A A A e Tz De& Text Caiclength:
I~2 I.
600155.Actlength:
Calculation No. H21 C-097 Nine Mile Point Nuclear Station                                                                         Revision 0 Unit 2                                                                                                 R vso Page 3-12 DESIGN INFORMATION TRANSMITTAL - CONTINUATION PAGE Form SOP-0403-02-03, Revision 4
000155 Servolt: 13800V Servfunc:
              *                 *DESIGN              INFORMATION TRANSMITTAL DIT No.: DIT-NM-NPEE-O01         Proect No.: 11236-061               Page 11 of Z?
SRCS17 Reelnumb:
ATTACHMENT 3
23A-08 Drawing No. Sheet' Title 5RCS17 2..0 z S20 W(0 6 ..0 0-As-Built Cable Report*f7/16/04 cable ID' 2RCsBEN309 Prom Conponent 2CES-Z46E
    'As-Built Cable Report". dated 7/16/2004 for Cables
!PETATION 13.S KV (N)To Coaqonent 2RCS-NIB ;REACT RECIRC PP MTR 2RCS*18 Rank No. of No. of Msaoity Current Length Data Holds Design Cables/Cables/
* 2RCSANJ308, in Cable Tray 2TJO12N
XC.A -Type Design installed Qh sepauation Design Program Vendor Cable No. Conet: Code fplice Codes Utolpe'. "a Prellim Level Codes Flags Design Rev Ate3 124 124 N I RoUtes Holds Installed Nob. of Pat Fill structural struet Load separation Service Tray Frog Raceway Id 1 2TJOl5N VFSC Code Length 0000 312 39'i 0000 312 85!Cables Pct Pill L-4-t Load a 25.25 10.98 4 25.25 10.98 Override Codes N N Codes 3 3 Cover Hold N/A N/A CZ>2.5*(D-3 CD CD-0 a 2. c,)z.c 0 (0 0)0)z 0 Cc <.~l CD 0 -O--.2 2TJ02: NotesI 1 2.3 4 5 Drawings a 2N Type LvI Del "Text D A Calc D A, Actli D A Serv D A Servi D. A Reel.lengthi 000155 angth: 000155 ait: 13800V func: 5RC$17 numb: 23A-02 Drawing No. 'Sheet.; Title Z..Z.1'SRCS17 Attachment 3 Calculation No. H21C-097 Nine Mile Point Nuclear Station Revision 0 Unit2 Page 3-17 DESIGN INFORMATION TRANSMIT'AL
* 2RCSANJ309, in Cable Tray 2TJO12N
-CONTINUATION PAGE Form SOP-0403-02-03, Revision 4 DESIGN INFORMATION TRANSMITTAL DIT No.: DIT-NM-NPEE-001.
* 2RCSBNJ308, in Cable Trays 2TJ01 5N and 2TJ022N
Project No.: 11236-061 Papella of. ATTACHMENT 4"Cable Mark Number Report", dated 8/13/2004, selected page containing Cable Mark Numbers" NJN-03" NJN-04 S0P04030203-REV4.doc Rev. Date: 04-19-2004 Attachment 3 Nine Mile Point Nuclear Station Unit 2 Calculation No. H21C-097 Revision 0 Page 3-18 I Q~arlm fo Widows 32fitlifi
* 2RCSBNJ309, in Cable Trays 2TJ01 5N and 2TJ022N SOP040302034REW.doc Rev. Date: 04-19-2004
-[Tn(! Conecton t -e SI.Attachment 3 Nine Mile Point Nuclear Station Unit 2 Calculation No. H21 C-097 Revision 0 Page 3-19 JQSmmleffn far windowsv 32-Bit Editim -[I Onct Connection to Host) .I : Inq~MM~I.iPEt-OoI as~i~e It bC 'it Attachment 3 Calculation No. H21C-097 Nine Mile Point Nuclear Station Revision 0 Unit 2 ,Revision 0 Ut2Page 3-20 DESIGN INFORMATION TRANSMITTAL
 
-CONTINUATION PAGE Form SOP-0403-02-03.
7/16/04           cz As-Built Cable Report
Revision 4 ,DESIGN INFORMATION TRANSMITTAL DIT No.: DIT-NM-NPEE-001 Pro ect No.:" 11236-061 page 19 of Z7-ATTACHMENT 5'Specification No. NMP2-E023A for "Insulated 15-kV Power Cable", Revision 2, dated 50/1986, selected pages SOP04030203-REV4.doc Rev. Date: 04-19-2004 Attachment 3 Nine Mile Point Nuclear Station Unit 2 Calculation No. H21C-097 Revision 0 Page 3-21 I I.I.I J.O. NO. 22177 Spec No. NMP2-E023A
                    .     .   . .     . ...       .   .r     -
'Revision~
a.5 01
2 M&#xfd;ay 1.' 1986, Specification for INSULATED 15-kV POWER CABLE I I I Nine Mile Point Nuclear Station -Unit 2 Niagara Mohawk Power Corporation Scribe, NewYork Sellers The Kerite Company Seymour,-Connecticut I'DOCUMENT USER: I I U I I I I APP 3ONSULT DCIS TO RECEIVED OBTAIN LATEST A.0. No. .,,1, ,LICABLE DOCUMENT W 1276 INFORMATION.
                                                              -                                                                             0 Cable ID         2RCSANJ308 From Ccuponent   2CES-Z45Z                     PENETRATION 13.8 KV (N) 0 To Ccazonent     2RCS-MIA                       REACT RECIRC PP MTR 2RCS*PIA Hank   Ro. of go. of Service Swpacity Current       Length Data                             Roids Design Cables/Cables/               IXn     Tyye       Design ZXa.alled QA   separation Design Program Vendor Cable No.         Constr Code     Splice Codes       Stolpe FIA       Irelin           Level Codes     Flage Design Rev A       3                 J                           70'     00            N Route,                       Holds       xnztallea No. of         Pat Fi11 Structural Struzt Load Separation Service Troy   Protg Raceway Xd               V00C Code Length           Cables Pat W11l Linrit Load       Override   Codes     Codes   Cover Hold 1  "2TJ012N                0000 312                  4     25.25             10.98                 N         J.     N/A 70, NotesI Type LvI Del Text Text:
s'lnPl a wu'-
D    A          Calclength: 0e00070 3  D    A          Actlength:5S1.00080 3  D    A          Servolt: 13900V 4  D    A          Servfunc: SRCS15 5        A          Ree3.nu1Tb: 23k1-08 Drawings a                                                                                                                        z Sheet        Title 0
W AMPOVED Conat Dept t*Indep Beflbw copyright 1986 Stone & Webster Engineering Corporaltion cherry Hill Operations Center Cherry Hill, New Jersey QA Category I NUCLEAR SAFETY RELATED I I I I Attachment 3 Nine Mile Point Nuclear Station Unit 2 Calculation No. H21C-097 Revision 0 Page 3-22 I I biT-tQM -NP1E-oo%.
Drawing No.                                                                                                                   R)
Pcse. 7-1 4~ Z?1-4!I i Quality Quality Assurance comprises all those Assurance planned systeiatic actions necessary to provide adequate confidence that a structure, system, or component will perform satisfactorily in service.Quality Assurance includes Quality Control, which comprises those quality assurance actions related to the physical characteristics of a material, structure, component, or system which provide 'a means to control the quality of the material, structure, component, or system to predetermined requirements.
P              0 5RCSI5-                                                                                                         ,V 0) eM z
3.37 3.39 3.40 3.41 3.43 3.44 3.45 3.46 I U I I I I I I I i I I Cable -insulated.
a) (D   '
15-kV power cable as specified 3.49 herein. 3.50 Triplexed
W(0<-4
-A cable which consists of three phase con- 3.55 Cable ductors with insulation and a jacket over 3.57 each conductor, twisted, and a jacketed 3.58 ground wire run in one interstice of the cable. (The ground wire la usually 3.59 smaller than the phase conductors.)
 
FURNISMED BY THE SELLER 4.4'The equipment, materials, and services to be 4.7 furnished by the Seller shall include, but not be limited 4.8 to, the followings The Engineer is to have the privilege of increasing 4.10 or decreasing the quantity of any items not more than ten percent at the unit price before the manufacture is started. 4.11 i(NA indicates not applicable)
7/16/04       cz~
Item No..1 2 3 NJN-02 N3N-03 5,883 ckt. ft 2,215 ft Mark No. NJN-01 -Quantity, ft 20,580 ckt.ft No. of Insulated Conductors 3-Trlplexed Size, AWO or.KCMIL Three 4/0 Conductor Mat-erial -.Copper Insulation Wall'Thickness, min.avg 220 mile Insulation Shield-ing Required Yes 3-TrIplexed Three 250 Copper.1 750 Copper 4.13 4.26 4.25 ,4.26 4.28 4.29 4.30 4.31 4.32.4.33 4.34 4.35 4.36 4.37 4.38 220 mile 220 mile Yes
As-Built Cable Report                                                                                            Z'3.
* Yes ch-12177;.S526e 04/28/86 10s Attachment 3 Nine Mile Point Nuclear Station Unit 2 Calculation No. H21C-097 Revision 0 Page 3-23 I I I I I i I I I I I I I I 1-5*23 Item No. I Jacket Wall Thickness, min .avg I0 mile* Grounding Con-ductor Size 2 AW_Grounding Jac-ket Thickness, min.avg .50 mile Cable Firiish Non-Metal Reel Length Ref. Sec. 2 Nuclear Incident, Test Required Yes Item No.' 4 S5 mils 2 AWG 110 mile NA 50 mils NA Non-Metal Non-Metal Ref. Sec. 2 Ref. Sec. 2 Yes Yes 5 Mark No. NJN-OS NJN-04 Quantity, ft 24,345 57888 Noo. of Insu-lated Con-ductors! 1 1 Size, AWO or KCMIL So0 1/0 Conductor Material Copper Copinr Insulation Wall Thick-ness, min.avg 220 mils NA Insulatibn Shielding Required Yes No Jacket Wall Thickness, min. vgi 95 mile 50 mile Cable Finish Non-Metal Non-Metal Reel Length Ref. Sec. 2 Ref. Sec. 2 Nuclear Incident Test Required Yes Yes PROCUREMENT, FABRICATION.
CD
AND CANCELLATrION PROVISIONS 4.40 4.41 4.42 4.44 4.45 4.47 4.48 4.49 4.51 4.52 4.53 4.54 4.56 4.58 4.59 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 5.12 5.13 5.14 5.15 5.16 5.17 5.18 5.19 5.20 5.24 5.27 5.28 5.30 5.31 5.38 5.40 5.41 5.42 5.43 The procurement of material and the fabrication of the Sellfr's cable covered by this specification shall not commence prior to receipt by the Seller of a written authorizlation from the Engineers.,:This release will be based on approval of Seller's engineeiing and drawing information.
                                                                                                                                  -u Cable    D      2RCB1JI7309 z'.
The Bidder shall include in his proposal the date before which he requires release :in order to meet delivery of the cable at the jobsite..
0 From Coa.onent   2CES-Z45E                 PENETRATION 13.8 [KV (N)
Should the Seller deem it necessary to purchase ch-12177-5526e 04/28/86 105 Attachment 3 Nine Mile Point Nuclear .Station Unit 2 Calculation No. H21C-097 Revision 0 Page 3-24 II I II!1 II II II II II II II II II Ii II II II II II lose-Z4. C e Z2~2-6 Track resistance Surface resistivity Phaee Identification Triplexed cable Shield Characteristics Shield material Conductivity, X Coverage Percent lap Cable Tray Fire Propagation Tests Typical Guaranteed Not Applicable Not Applicable 5.17 5.18 5.22 4 d Time for ignition, min.See Report sutbmi tted with propo.and encloa Gas burner Time for short circuit after ignition, min'., Gas burner Length of burn, in.Gas burner After burn, min.Gas burner Item No.Ampacity in 400C ambient air.in 50&deg;C ambient air in 65.5&deg;C ambient air Factory test voltage, kV indicate, ac and dc AC/DC Field acceptance test.voltage,_
To Component     2RCS-MIA                   REACT RECIRC PP MTR 2RCSP.IA 0)
kV dc Insulation thickness, mile individual jacket thickness, mile igits surface printed 5.24 (1111, 2222, 3333). 5.25 5.29 a mil zinc 5.31 28.44 iACS 5.33 100o S.36 minimum 25X 5.38 S.42 NO. 76 VG-35P 5.44 as Attachment No. 2 5.45 Hsal dated 11/3/76 5.46 eed herewlth, 5.47 5.48 5.49 5.50 5.51 5.53 5.54 5.55 5.56 2 3 6.6 6.8 38 6.9 34-6 797.45 6.10 272 624.4 6.12 6.23 35/80 35/80 6.24 6.25 56 56 6.26 220 220 6.27 6.28 95 110 6.29 1 352 315 246.4 56 220 so ch-12177-5526f 04/28/86 105* 8 Attachment 3 Nine Mile Point Nuclear Station Unit 2 Calculation No. H21C-097 Revision 0 Page 3-25 I I I I I I I I I I I I I, I U I I I b1T- K3M- t3PjEk-M PC, 5 e 44 2-7 Item No.Minimum temperature at which cable may safely be pulled 1 2 3 If pulling below 3201, store indoors for a minimum of 24 hours before installation Length of time cable must be stored at this minimum temperature before pulling Maximum allowable pulling tension, lb Straight runs By conductor 5080 6000 6000 By Jacket (1 grip) 1000 1000 1000 Bends, per ft radius By conductor 610 648 815.By Jacket 610 648 815 Minimum bending radius for permanent training, in.Completed cable 33 35 22 Individual conductor 15 16 22 Maximum uniformly distri-buted vertical load which.cable can withstand when installed in cable tray with 9 in. maximum rung spacing and 3/4 in.flat rung bearing surface, lbs per linear foot 15.6 16.6 22.4.Minimum bending radius for , cable being pulled, in. 33 35 22 Maximum guaranteed, OD, in. 2.91 3.10 1.94 Minimum guaranteed, OD; in. 2.51 2.66 1.68 Average guaranteed.
MI Rank   No. of Uo. of service Acra* ity Current   Length Data                             Holds Design Cabieecableal/           ICHA     Type     Design Installed QA   Separation Design Program Vendor Cable No.       Constr Code     S&#xfd;lice Codes   Stolpe   FLA       prelim           Level Codes     Flags Design Rev A       1               J                           70     70             N                           1 NJN-04 Raceway Id               VWIC Code Length     Cables Vot P11i   Limit  Load      Override    Codes    Codes  Cover Hold 1  2TJ01Ni                  0000 312   70         4     25.25             10.99                   N         J       N/A Notes s Type LvI Del Text 1  D    A         Calc]Length: 000070 2  D    A         Actl1ength: 000080 3  D    A         Serv;olt: 13800V 4  D    A         Serv func: SRCS15 5  D    A         Reeli inmb: 23A-02 Drawings 8 Drawing No.       Sheet;   Title                                                                                     0
OD, in. 2.71 2.88 1.81 Weight in lb per ft/ckt ft 4.4 per 5.0 per 3T.5per i ckt ft ckt ft ft Length on reel 2043 ckt ft 1900 ckt ft 2150ft 2200 ckt ft 1500 ckt ft 800 ckt ft Reel size, in. *96x50x60R  
                                                                                                                              -1       C__
*96xSOx6OR  
0)
*8Rx40x36R
R 5RCS15 p1          B.
*96xSOx42R or as required* 6.32 6.33 6.34 6.35 6.36 6.37* 6.38 6.41 6.42 6.43 6.44 6.45 6.46 6.47 6.48 6.49.6.50 6.51 6.53 6.54 6.55 6.56 6.57 6.58 7.1 7.2 7.4 7.5 7.6 7.7 7.8 7.9 7.10 7.11 7.12 7.13 7.14 7.15 7.16 7.17 7.19-7.20 7.21 7.22 7.23 7.24 7.25 Manufacturer's recommended.terminatton procedure Manufacturer's recommended splicing procedure Manufacturer.'s recommended pulling lubricant See Kerite Prints IT-15P1T, OT-15 PMT (Add suffix NUC for Containment Area)Print S-15 PMT (Add suffix NUC -for Containment Area)See Kerite'e Memo-EM60 I cb-12177-SS26f 04/28/86 105 Attachment 3 Nine Mile Point Nuclear .Station Unit 2 Calculation No. H21C-097 Revision 0 Page 3-26 I I I P&#xfd;5.7Sr ?XJ- af 2-6 I I I I I I I I I I I I I I I I Itmo-4 5 Ampacity in 400C ambient air 692 N A in SOOC ambient air.in 65.5&deg;C ambient air 484 N/A Factory test voltage, kV indicate ac and de, AC/DC 35/80 N/A Field acceptance test voltage, kV, dc 56 N/A Insulation thickness.
0, 00)
mile 220 N/A Individual jacket thickness, mils 95 50 ifPlling'-b'w-320F, store 7.36 7.37 7.38 7.39 7.40 7.41 7.43 7.44 7.46 7.48 7.49 7.51 7.52 7.53 Minimum temperature at which indou cable may safely be pulled 24 hc Length of' time cable must be stored at this minimum temperature before pulling maximum allowable pulling tension, lb straight runs By conductor 4000 By jacket 100 Bends, per ft radius By conductor 783 By Jacket 783 Minimum bending radius for permanent training, in.Completed cable 19 Individual conductor 19 Maximum uniformly distri-* buted vertical load which cable can withstand when installed in cable tray.with9 in. maximum rung spacing and 3/4 in.flat rung bearing surface, lb per linear foot .19.6 Minimum bending radius for.cable being pulled. in. 19 maximum guaranteed.
                                                                                                                                    <z C*)
OD, In. 1.74 Minimum guaranteed, OD, in. 4L---Average guaranteed, OD, in. 1.58 Neight In lb per ft 2.5 Length on-reel, ft 3088 Urs for a minimum of)ure before Instal lation 845 845 300 300 2.4 2.4 6.0 2.4 0.53 0.44 50.48 T. 38'0 or 1000';-3014R 7.54 7.55 7.56 8.S 8.6.8.7 8..8*8.9.211 8.12 8.13 8.14 8.15 8.16 8.17 8.18 8.19 8.20 8.21 8.22 8.23 8.24 8.25 8.26 8.27 8.28 8.29 8.30 9.31 8.32 8.33 8.35 8.36.5 8.4S fix 8.46 Reel size, in.Manufacturer's.
 
recommended termination procedure'80x"'z3'66NR*See Kerite prints IT-2 PMT OT-I5 PMT (Add sulf ch-12177-SS26f 04/28/86 105 Attachment 3 Nine Mile Point Nuclear Station Calculation No. H21C-097 Unit 2 Revision 0 Page 3-27 DESIGN INFORMATION TRANSMITTAL
                                                                                                                                                      =r
-CONTINUATION PAGE Form SOP-0403-02-03, Revision 4:". "- , DESIGN INFORMATION TRANSMITTAL DIT No.: DIT-NM-NPEE-001 I Proect No.: 11236-061 PageZlo of Za ATTACHMENT 6 E-Mail message from the Kerite Company's Robert Flemming to Sargent & Lundy, LLC's Helmut Kopke, sent 8/412004 at 2:06pm
                                                                                                -ARA-01   %kt '750 #"tMl cz As-Built Cable Report                                                                                       7/16/04                 (D
                                                                                                                                              -. CD Cable ZD         MiCdikj3OU a')
From Coamonent   2CES-Z46E                     PENETRATION 13.8 K(V(N)
To Component    2RCS-MIB                      REIACT RECIRC PP XTh 2RCS*PlB Rank   No. of Hf. of fezvyioe Anpaaity Current     Length Data                                 Holds 0
Design Cables/Cabloe/             ICKI   Type         Design Znatalled QA       separation Design Program Vendor Cable No.           Constr Code     Sp*ioe CodesI      togpe   IFA       Prelim             Level Codes     Flags   Design Rev A       3                 .                             124     124""                                         1
                                  " NJ-03" Route i                       Holds       xnstalled go. of "         ePt pill  Btrz*tral Stzruct Lead SeParation Service Tray     Prog Raceway Xd                VlSC Code Length                      1- Limit Cables Pat Vi1            Load         Override     Codes     Codes   Cover Hold I. 2TJO15N.                    0000 312    39;          4      25.25              10.98                     ii         J       N/A 2  2TJ022N                    0000 312    85          4      25.25              1 0*.98                                      N/A NI Noteas Type        De&    Text 1 D                  Caiclength: 600155 A
2 D         A   e   Tz
                              .Actlength:   000155 D      A 3 D                  Servolt: 13800V A
4 D                  Servfunc: SRCS17 A
5                    Reelnumb: 23A-08 Drawi*gol Drawing No.           Sheet'     Title                                                                                 2..
0 5RCS17 z
S20 W(0     6..
0 0-
 
CZ>
2.5*
(D
                                                                                                                                            -3 As-Built Cable Report                                                                               *f7/16/04             CD CD
                                                                                                                                            -0 a
: 2. c,)
cable    ID'      2RCsBEN309 z.
c Prom Conponent    2CES-Z46E                  !PETATION 13.S KV (N)                                                                         0 To Coaqonent       2RCS-NIB                   ;REACT RECIRC PP MTR 2RCS*18                                                                 (0 Rank   No. of No. of se*vice    Msaoity Current     Length Data                             Holds Design Cables/Cables/           XC.A -     Type     Design installed Qh   sepauation Design Program Vendor Cable No.           Conet: Code     fplice Codes     Utolpe'.   "a       Prellim         Level Codes     Flags Design     Rev Ate3                                                 124     124           N                               I RoUtes                         Holds     Installed Nob. of             Pat Fill structural struet Load separation Service Tray     Frog Raceway Id                 VFSC Code Length       Cables Pct Pill   L-4-t   Load       Override  Codes      Codes    Cover Hold 1  2TJOl5N                    0000 312  39'          a      25.25              10.98                   N        3        N/A                0) 2  2TJ02: 2N                  0000 312  85!i        4     25.25             10.98                 N         3       N/A                 0)
NotesI Type LvI  Del "Text 1    D   A          Calc lengthi 000155 2     D    A,         Actliangth: 000155
      .3    D    A          Serv ait: 13800V 4    D    A          Servifunc: 5RC$17 5    D. A          Reel. numb: 23A-02 Drawings a                                                                                                                        Z.
Drawing No.      'Sheet.;    Title SRCS17                                                                                                      1'
                                                                                                                                    .Z.
z0 Cc <.~l O--.
CD 0    -
 
Calculation No. H21C-097                                                                                              Revision 0 Nine Mile Point Nuclear Station                                                                          Page 3-17 Unit2 PAGE DESIGN INFORMATION TRANSMIT'AL - CONTINUATION Form SOP-0403-02-03, Revision 4 DESIGN INFORMATION TRANSMITTAL Papella of. Z*
Project No.: 11236-061 DIT No.: DIT-NM-NPEE-001.
ATTACHMENT 4 Cable Mark Numbers 8/13/2004, selected page containing "Cable Mark Number Report", dated
          "  NJN-03
          " NJN-04 S0P04030203-REV4.doc Rev. Date: 04-19-2004 Calculation No. H21C-097 Nine Mile Point Nuclear Station                             Revision 0 Unit 2                                                      Page 3-18
                                                              -e Q~arlm I-[Tn(!  32fitlifi t foWidows Conecton
 
SI.                                                                           Calculation No. H21 C-097 Nine Mile Point Nuclear Station                                                                          Revision 0 Unit 2                                                                                                    Page 3-19 JQSmmleffn far windowsv 32-Bit Editim -[I Onct Connection to Host) . I                          :          Inq
                                                                        ~MM~I.iPEt-OoI as~i~e It  bC 'it Calculation No. H21C-097 Nine Mile Point Nuclear Station                                                                           Revision0 0 Unit 2                             ,Revision Ut2Page                                                                      3-20 DESIGN INFORMATION TRANSMITTAL - CONTINUATION PAGE Form SOP-0403-02-03. Revision 4
                                              ,DESIGN INFORMATION TRANSMITTAL DIT No.: DIT-NM-NPEE-001        Pro ect No.:" 11236-061              page 19 of Z7-ATTACHMENT 5
    'Specification No. NMP2-E023A for "Insulated 15-kV Power Cable", Revision 2, dated 50/1986, selected pages SOP04030203-REV4.doc Rev. Date: 04-19-2004 Calculation No. H21C-097 Nine Mile Point Nuclear Station                                                                   Revision 0 Unit 2                                                                                           Page 3-21 I
I        J.O. NO. 22177 Spec No. NMP2-E023A
                                                                'Revision~ 2 M&#xfd;ay 1.' 1986,
      .I Specification for
      .I                          INSULATED 15-kV POWER CABLE I                    Nine Mile Point Nuclear Station - Unit 2 Niagara Mohawk Power Corporation I                                 Scribe, NewYork I                        Sellers  The Kerite Company Seymour,-Connecticut I
                          'DOCUMENT USER:
I                   3ONSULT DCIS TO                                        RECEIVED A.0. No. .,,1, OBTAIN LATEST I              APP ,LICABLE DOCUMENT INFORMATION.
W1276 s'lnPl a wu U                                            '-                                       W D*CONTROL I                                                                     AMPOVED I
I                                                       Conat Dept                        t I                                  copyright 1986
                                                              *Indep Beflbw *.
Stone & Webster Engineering Corporaltion I                          cherry Hill Operations Center I                              Cherry Hill, New Jersey QA Category I NUCLEAR SAFETY RELATED I
I Calculation No. H21C-097 Nine Mile Point Nuclear Station                                                                      Revision 0 Unit 2                                                                                               Page 3-22 biT-tQM -NP1E-oo%.
I                                                                       Pcse. 7-1 4~ Z?
I                                               1-4 Quality            Quality    Assurance    comprises      all    those  3.37 Assurance            planned systeiatic actions necessary to                3.39
      !                                  provide adequate structure,       system, confidence        that or component will a  3.40 3.41 perform      satisfactorily      in      service.
Quality        Assurance    includes      Quality  3.43 Control, which comprises those quality I                                  assurance actions related to the physical characteristics of a material, structure, component,       or system which provide 'a 3.44 3.45 means to control the quality of the i                                  material, structure, component, or system to predetermined requirements.
3.46 I             Cable        -     insulated. 15-kV herein.
power cable as specified        3.49 3.50 U              Triplexed Cable
                                  -   A cable which consists of three phase con-ductors with insulation and a jacket over each conductor, twisted, and a jacketed 3.55 3.57 3.58 ground wire run in one interstice of the I                                  cable.      (The ground wire la smaller than the phase conductors.)
usually  3.59 I                    'The FURNISMED BY THE SELLER equipment,    materials,      and    services to be 4.4 4.7 furnished by the Seller shall include,              but    not be limited        4.8 I        to, the followings The Engineer is to have the privilege of increasing                  4.10 I         or decreasing the quantity of any items not more than ten percent at the unit price before the manufacture is started.                    4.11 i(NA indicates not applicable)
I         Item No..                       1                    2                    3 4.13 4.26 I          Mark No.
Quantity, ft NJN-01 20,580 ckt.ft NJN-02 5,883 ckt. ft N3N-03 2,215 ft 4.25
                                                                                                ,4.26 No. of Insulated                                                                4.28 I          Conductors Size, AWO or.
KCMIL 3-Trlplexed Three 4/0 3-TrIplexed Three 250 1
750 4.29 4.30 4.31 i          Conductor Mat-erial      -
Insulation Wall'
                                          . Copper              Copper.        Copper 4.32
                                                                                                .4.33 4.34 Thickness,                                                                     4.35 min.avg I          Insulation Shield-ing Required 220 mile Yes 220 mile Yes
* 220 mile Yes 4.36 4.37 4.38 I
ch-12177;.S526e                    04/28/86                                10s Calculation No. H21C-097 Nine Mile Point Nuclear Station                                                            Revision 0 Unit 2                                                                                      Page 3-23 I                                            1-5*
Item No.                    I                  23 I          Jacket Wall                                                          4.40 Thickness,                                                           4.41 I            min. avg I0
* Grounding Con-ductor Size mile 2 AW_
S5 mils 2 AWG 110 mile NA 4.42 4.44 4.45 Grounding Jac-I            ket  Thickness, min.avg                 .50 mile             50 mils      NA 4.47 4.48 4.49 Cable Firiish      Non-Metal            Non-Metal      Non-Metal    4.51 I          Reel Length Nuclear Incident, Ref. Sec. 2      Ref. Sec. 2    Ref. Sec. 4.52 4.53 Test Required        Yes                  Yes            Yes        4.54 i          Item No.'                4                  5                      4.56 Mark No.            NJN-OS              NJN-04                      4.58 Quantity, ft        24,345                57888                      4.59 Noo. of Insu-                                                        5.1 lated Con-                                   1                       5.2 ductors!                  1                                        5.3 Size, AWO or                                                          5.4 KCMIL                  So0                  1/0                      5.5 I          Conductor Material Insulation Copper                    Copinr 5.6 5.7 5.8 Wall Thick-                                                         5.9 I            ness, min.avg Insulatibn 220 mils               NA                        5.10 5.11 Shielding                                                            5.12 5.13 I            Required Jacket Wall Thickness, Yes                   No 5.14 5.15 min. vgi            95 mile              50 mile                    5.16 I          Cable Finish Reel Length Non-Metal Ref. Sec. 2 Non-Metal Ref. Sec. 2 5.17 5.18 Nuclear Incident                                                      5.19 I            Test Required           Yes PROCUREMENT, FABRICATION.
Yes AND CANCELLATrION PROVISIONS 5.20 5.24 I                      The procurement of material and the fabrication of the Sellfr's cable covered by this specification shall not 5.27 5.28 commence prior to receipt by the Seller of a written                  5.30 I            authorizlation from the Engineers.,                                  5.31 5.38
:This release will be based on approval of Seller's I          engineeiing and drawing information.               The Bidder shall include in his proposal the date before which he requires release :in order to meet delivery of the cable at the 5.40 5.41 5.42 jobsite.. Should the Seller deem it necessary to purchase          5.43 ch-12177-5526e                  04/28/86                          105 Calculation No. H21C-097 Nine Mile Point Nuclear .Station                                                                  Revision 0 Unit 2                                                                                            Page 3-24 II                                                                      lose-Z4. eC Z2~
I                                            2-6 Typical      Guaranteed II                Track resistance                      Not Applicable Not Applicable 5.17 5.18 Surface resistivity
      !1                    Phaee  Identification                                          5.22 4 d igits surface printed II                Triplexed cable                        (1111,    2222,  3333).
5.24 5.25 Shield Characteristics                                                    5.29 II                Shield material                        a mil zinc                  5.31 28.44 iACS                  5.33 II                Conductivity, X Coverage                                      100o                  S.36 II                Percent lap                                minimum 25X              5.38 S.42 Cable Tray Fire Propagation Tests II          Time for ignition, min.        See Report NO.      76 VG-35P sutbmi tted as Attachment No. 2 5.44 5.45 with propoHsal dated 11/3/76              5.46 II            Gas burner
                                                .and  encloaeed herewlth,                 5.47 5.48 5.49 Time for short circuit after II          ignition, min'.
                  , Gas burner 5.50 5.51 5.53 Length of burn, in.
II              Gas burner After burn, min.
Gas burner 5.54 5.55 5.56 II          Item No.                             1            2            3           6.6 6.8 Ampacity Ii           in 400C ambient air.
in 50&deg;C ambient air 352 315 246.4 38 34-6 272 797.45 624.4 6.9 6.10 6.12 in 65.5&deg;C ambient air                                                    6.23 II          Factory test voltage, kV indicate, ac and dc AC/DC Field acceptance test           56 35/80        35/80          6.24 6.25 56          56              6.26
                  . voltage,_ kV dc II            Insulation thickness, mile individual jacket thickness, 220 so 220 95 220 110 6.27 6.28 6.29 mile II II II          ch-12177-5526f              04/28/86                                105
* 8 Calculation No. H21C-097 Nine Mile Point Nuclear Station                                                                Revision 0 Unit 2                                                                                          Page 3-25 I                                                              b1T- K3M- t3PjEk-M PC,5e 44 I                                          2-7 I          Item No.
Minimum temperature at which 1          2           3 If pulling below 3201, store
* 6.32 cable may safely be pulled        indoors for a minimum of            6.33 I          Length of time cable must be 24 hours before installation        6.34 6.35 stored at this minimum                                                  6.36 I            temperature before pulling Maximum allowable pulling tension, lb 6.37
* 6.38 6.41 I                Straight runs By conductor By Jacket (1 grip) 5080 1000 6000 1000 6000 1000 6.42 6.43 6.44 Bends, per ft radius                                              6.45 I                  By conductor
                        .By Jacket 610 610 648 648 815 815 6.46 6.47 Minimum bending radius for                                                6.48 I            permanent training, in.
Completed cable Individual conductor 33 15 35 16 22 22 6.49
                                                                                          .6.50 6.51 Maximum uniformly distri-                                                 6.53 I           buted vertical load which
                .cable can withstand when 6.54 6.55 6.56 installed in cable tray I            with 9 in. maximum rung spacing and 3/4 in.
flat    rung bearing surface, lbs 6.57 6.58 7.1 I            per linear foot Minimum bending radius for
                , cable being pulled, in.
15.6 33 16.6 35 22.4.
22 7.2 7.4 7.5 Maximum guaranteed, OD, in.       2.91       3.10         1.94           7.6 I          Minimum guaranteed, OD; in.
Average guaranteed. OD, in.
Weight in lb per ft/ckt ft 2.51 2.71 4.4 per 2.66 2.88 5.0 per 1.68 1.81 3T.5per 7.7 7.8 7.9 I,        Length on reel i                    ckt ft    ckt ft 2043 ckt ft 1900 ckt ft 2200 ckt   ft ft 2150ft 7.10 7.11 7.12 1500 ckt ft                                   7.13 I          Reel size, in.
800 ckt  ft
                                              *96x50x60R *96xSOx6OR *8Rx40x36R
                                              *96xSOx42R 7.14 7.15 7.16 U                                        or as required See Kerite Prints IT-15P1T, 7.17 7.19 I          Manufacturer's recommended
                  .terminatton procedure Manufacturer's recommended OT-15 PMT (Add suffix NUC for Containment Area)
Print S-15 PMT (Add suffix
                                                                                          -7.20 7.21 7.22 splicing procedure              NUC - for Containment Area)            7.23 I          Manufacturer.'s recommended pulling lubricant                See Kerite'e Memo-EM60 7.24 7.25 I
cb-12177-SS26f                04/28/86                            105 I
Calculation No. H21C-097 Nine Mile Point Nuclear .Station                                                                    Revision 0 Unit 2                                                                                                Page 3-26 I                                            2-6
                                                                                        ?XJ-P&#xfd;5.7Sr          af I                    Itmo-4                                    5 I          Ampacity in 400C ambient air              692          N A 7.36 7.37 7.38 in SOOC ambient air                                                        7.39 I          .in 65.5&deg;C ambient air Factory test      voltage, kV indicate ac and de, AC/DC 484 35/80 N/A N/A 7.40 7.41 7.43 I          Field acceptance test voltage, kV, dc Insulation thickness. mile 56 220 N/A N/A 7.44 7.46 7.48 Individual jacket thickness, I            mils                            95            50 ifPlling'-b'w-320F, store 7.49 7.51 7.52 Minimum temperature at which          indou Urs for a minimum of            7.53 I            cable may safely be pulled Length of' time cable must be stored at this minimum 24 hc)ure before Instal lation 7.54 7.55 7.56 I            temperature before pulling maximum allowable pulling tension, lb 8.S 8.6
                                                                                              .8.7 straight runs I                 By conductor By jacket Bends, per ft radius 4000 100 845 845 8..8
                                                                                            *8.9
                                                                                                .211 300                        8.12 I                By conductor By Jacket Minimum bending radius for 783 783          300 8.13 8.14 8.15 permanent training, in.
I              Completed cable Individual conductor 19 19 2.4 2.4 8.16 8.17 8.18 Maximum uniformly distri-                                                     8.19 I          *buted vertical load which cable can withstand when installed in cable tray.
8.20 8.21 8.22 I            with9 in. maximum rung spacing and 3/4 in.
flat rung bearing surface, lb                  6.0 8.23 8.24 8.25 per linear foot            . 19.6 I          Minimum bending radius for.
cable being pulled. in.          19 2.4 0.53 8.26 8.27 8.28 maximum guaranteed. OD, In.        1.74                                      8.29 I          Minimum guaranteed, OD, in.
Average guaranteed, OD, in.
Neight In lb per ft 1.58 2.5 4L---     0.44 50.48 T. 38' 8.30 9.31 8.32 Length on-reel, ft                3088 I          Reel size,   in.               '80x"'z3
                                                '66NR 0 or 1000
                                                                  ';-3014R 8.33 8.35 8.36 I          Manufacturer's. recommended termination procedure
                                                      *See    Kerite PMT PMT OT-I5      prints
                                                                                    .5 IT-2fix (Add sulf 8.4S 8.46 I
ch-12177-SS26f                04/28/86                                105 I
Calculation No. H21C-097 Nine Mile Point Nuclear Station                                                                            Revision 0 Page 3-27 Unit 2
                                                                      - CONTINUATION PAGE DESIGN INFORMATION TRANSMITTAL              4 Form SOP-0403-02-03, Revision
:".         "-            ,            DESIGN INFORMATION TRANSMITTAL PageZlo of Za I    Proect No.: 11236-061 DIT No.: DIT-NM-NPEE-001 ATTACHMENT 6 Sargent & Lundy, LLC's Helmut message      from  the Kerite Company's Robert Flemming to E-Mail Kopke, sent 8/412004 at 2:06pmat Nine Mile Point Nuclear Station


==Subject:==
==Subject:==
Kerte Power Cables at Nine Mile Point Nuclear Station SOP04030203-REV4.doc Rev. Date: 04-19.2004 Attachment 3 Calculation No. H21C-097 Nine Mile Point Nuclear Station Revision 0 Unit 2 Page 3-28 1I1T-,t',-
Kerte Power Cables SOP04030203-REV4.doc Rev. Date: 04-19.2004 Calculation No. H21C-097 Nine Mile Point Nuclear Station                                                                                       Revision 0 Unit 2                                                                                                               Page 3-28 1I1T-,t',-     MPE-.oeI JOHN H GELSTON.               To:                                               v*  ."rzS' 08/13/04 03:14 PM        
MPE-.oeI JOHN H GELSTON. To: ."rzS'08/13/04 03:14 PM  


==Subject:==
==Subject:==
RE: Kerite Power Cables at Nine Mile Point Nuclear Station Forwarded by HELMUT R KOPKE/Sargentlundy on 08/13104 01:14 PM -"Fleming, Robert" To: HELMUT.R.KOPKE@sargentlundy.com, reflemlng@kerite.com kreflemling~kerite.c.,m cc: roberLe.davis@ccnstellation.com, 0 -JERI.C.PENROSE@sargentiundy.com 08/04/04 02:08 PM  
RE: Kerite Power Cables at Nine Mile Point Nuclear Station Forwarded by HELMUT R KOPKE/Sargentlundy on 08/13104 01:14 PM -
                      "Fleming, Robert"             To: HELMUT.R.KOPKE@sargentlundy.com, reflemlng@kerite.com kreflemling~kerite.c.,m       cc: roberLe.davis@ccnstellation.com, 0-JERI.C.PENROSE@sargentiundy.com 08/04/04 02:08 PM        


==Subject:==
==Subject:==
RE: Kerite Power Cables at Nine Mile Point Nuclear Station Helmut, confirming our conversation earlier this week the compounds in the Kerite power cable in Nine mile Point and their chlorine content are as follows: Kerite Designation Generic Description PerCent Chlorine by Weight Permashield (PRS-54) Urethane 0%HTK (N-90) EPR Insulation  
RE: Kerite Power Cables at Nine Mile Point Nuclear Station Helmut, confirming our conversation earlier this week the compounds in the Kerite power cable in Nine mile Point and their chlorine content are as follows:
< I%SemiCon Tape (C7T6-6) SemiCon Tape 0%FR Jacket (KC-711i CSPE 16+2%Let me know how this works out for you., Sincerely, Bob Fleming Principal Engineer The Kerite Company 49 Day St.Seymour, CT 06483 Phone 203-881-5380 Fax 203-888-1987 Email ref lemingekerite.com
Kerite Designation                 Generic Description                       PerCent Chlorine by Weight Permashield       (PRS-54)       Urethane                                   0%
> ----- Original Message-----
HTK (N-90)                         EPR Insulation                             < I%
> From: HELMUT.R.KOPKseargentlundy.com
SemiCon Tape (C7T6-6)             SemiCon Tape                               0%
> CSNTP: HELNUT. R.:KOPKE~sargentlundy.
FR Jacket     (KC-711i           CSPE                                       16+2%
cor]> Sent: Monday, August 02. 2004 4:08 PM> TO: reflemingakerite.com
Let me know how this works out for you.,
> Cc: robert.e.davis@constellation.com; JERI. C. PENROSEseargentlundy.
Sincerely, Bob Fleming Principal Engineer The Kerite Company 49 Day St.
com  
Seymour, CT 06483 Phone 203-881-5380 Fax 203-888-1987 Email ref lemingekerite.com
        >             ----- Message-----
Original
        >   From:                 HELMUT.R.KOPKseargentlundy.com
        >   CSNTP: HELNUT. R.:KOPKE~sargentlundy. cor]
        > Sent:                   Monday, August 02. 2004 4:08 PM
        > TO:             reflemingakerite.com
        > Cc:             robert.e.davis@constellation.com; JERI. C. PENROSEseargentlundy. com


==Subject:==
==Subject:==
Kerite Power Cables at Nine Mile Point Nuclear Station> Bob,* The following information was provided to me by Nine mile Point regarding> the 15 kV power cables used at the station. If you could please respond> to> this email with the following information, it will be greatly appreciated.
Kerite Power Cables at Nine Mile Point Nuclear Station
* 1. Short description of the material Attachment 3 Cc t No. H Nine Mile Point Nuclear Station Calculation No. H21C-097 Unit 2 Revision 0 Page 3-29 Final> 2. Is the materia1 chloronated?
        > Bob,
> 3. If the material is chloronated, what is the weight % chlorine?>If you have any questions, please contact me at 312-269-2175.
* The following information was provided to me by Nine mile Point regarding
> Thank you for your help,> Helmut, Kopke> P.S. I have alslo included the physical parameters of the cable in case> they would be of use. Also, if it is not too difficult, it would be appreciated if You could verify the thickness of the jacket and the OD of> the cable.> INFORMATION FRO&#xfd;, NINE NILE POINT: " In the "Technical Information by Seller" section of'Specification E023A" which purchased the subject 15 kV cables, the following information was" provided by Kerite and dated October 31, 1977:> Basic Insulation Material:
        >  the 15 kV power cables used at the station.                    If you could please respond
High Temperature Kerite , Material Identification Number: N-98 Strand Shielding':
        >  to
Permashield
        >  this email with the following information, it will be greatly appreciated.
> Material Identification-Number:
* 1. Short description of the material Cc t        No. H Nine Mile Point Nuclear Station                                                Calculation No. H21C-097 Unit 2                                                                                        Revision 0 Page 3-29 Final
PES-54" Insulation Shielding:, nonmetallic semiconducting material" Material Identification Number: C7T6-6 Basic Jacket Material:
          > 2. Is the materia1 chloronated?
Kerite FR Jacket Material Identification Number: HC-711 , The "typical" 'cable is the cable installed in the power cable trays that>-were inventoried.
          > 3. If the material is chloronated, what is the weight % chlorine?
These cables are 1/c 750MCM, 15kv shielded power cable> manufactured Kerite Co.
          >If    you have any questions, please contact me at 312-269-2175.
          > Thank you for your help,
          > Helmut, Kopke
          >  P.S. I have alslo included the physical parameters of the cable in case
          > they would be of
23_____________
23_____________
34_____________
34_____________
4 ________________
4                                                                                                                                        ________________
57_____8 _____10 11 ji0Ogundcamta 12 __________
57_____
13 0.53 in 14 50 mil 15 hypalon 16 nlone mil 17 18 E.500-G19 lInear It 20 22 ___________
8                                                                                                                                            _____
23 =PI()(GS1 312-(G13-2*GS14/l100V2y4'2.54^2*G1812*2.54
10 11                                                ji0Ogundcamta 12                                                                                                                                        __________
____________
13 0.53                                                                                                        in 14 50                                                                                                          mil 15                                                    hypalon 16                                                      nlone                                                mil 17 18 E.500-G19                                                                                                    lInear It 20 22                                                                                                                                        ___________
2L4_ =PIO(G$1 3v2.(Gsl3-2.G14/l000r2Y4'2.54u2.G1912'2.54 M 25 =G23*$BS7 gram 26 =G24*$B$7 gram 27 281__________________________________________________
23 =PI()(GS1 312-(G13-2*GS14/l100V2y4'2.54^2
29 30 -Gil___________
31 bela 32 gamma free air trex 33 34 z$G313*2.5412
=$G13'2.54/2
=$G13*2.5412 35 ($G14yiODD*2.54 n($G14ylOOO-2.54 m($G14YI1000*2.54 36 =G25vG26 =G25 =0.5*G26 317 ______________________________________________
__________
_________IB$5'H35)'($BS5H35+1).
I )-N3448WS(EXP(-
B9$51135
various input was not provided and therefore is left blank inthe tables.
various input was not provided and therefore is left blank inthe tables.
I.Attachment 5 Nine Mile Point Nuclear Station Unit 2 'Calculation No. H21C-097 Revision 0 Page 5-2 Figure 5-1: GGNS Benchmark Pos't-LOCA Suppression Pool pH Analysis pH Response without SLCS!J i x 0."6 0 CL C I..0.0.(i2--- Benchmark-U--GGNS 0.01 0.1 I 10 100.1000 Time After LOCA (hours)Pool pH Attachment 5 Nine Mile Point Nuclear Station Unit 2 Table 5-1: GGNS Benchmark Post-LOCA pH Calculation without SLCS Calculation No. H21C-097 Revision 0 Page 5-3 Initial conditions Suppression pool mass RCS mass Total post-LOCA SP mass suppression pool pH reactor coolant pH initial [H&#xf7;J initial [OH']Ibm Ibm Ibm 5.3 5.3 5.01E-06 g-mole/Il weighted average not required since pH sp, = PHRCSj 2.OOE-09 g-mole/I weighted average not required since pH spj = pH Rcs.i Pool J [HI] [HNO 3] (HCI] [CsOH] Total [H] Total OH'] Pool Water K. at x [H&#xf7;j Pool Time Volume j Temp Density Pool Temp pH (hr) (liter) (g-moles/I) (g-moles/I) (g-molesll) (g-moles/I) (g-moles/I) (g-moles/l)
 
(&deg;F) (lbm/ft 3) (-) (g-moles/
I.                                                                      Calculation No. H21C-097 Nine Mile Point Nuclear Station                                                                  Revision 0 Unit 2 '                                                                                          Page 5-2 Figure 5-1: GGNS Benchmark Pos't-LOCA Suppression Pool pH Analysis pH Response without SLCS J
i x0.
    "6 0
                                                                                        ---  Benchmark CL I..
C                                                                                  -U--GGNS 0
pH (eqs)
pH (eqs)
Attachment 5 Nine Mile Point Nuclear Station Unit 2 Table 5-2 Eqs: GGNS Benchmark Hydrlodic Acid (HI) Production Calculation No. H21C-097 Revision 0 Page 5-18 A B C D E I Core iodine inventory 325 g-mole Ref. 7.12.3 2 !3 Core iodine -gap r'elease =0.05*B1 g-mole =0.05!325 g-mole 4 Core iodine -EIV release =0.25*B1 g-mole_..
Table 5-2 Eqs: GGNS Benchmark                                    Calculation No. H21C-097 Nine Mile Point Nuclear Station                              Hydrlodic Acid (HI) Production                                                  Revision 0 Unit 2                                                                                                                                      Page 5-18 A                      B                      C                                      D                        E I  Core iodine inventory      325        g-
=0.25*325 g-mole 5 6 Fraction of release as HI 0.05 , max __Reg Guide 1.183 (main body Ref. 7.10.2)7 8 Gap release onset 121 sec Ref. 7.12.3 9 Gap release duration 30 minutes Reg Guide 1.183 (main body Ref. 7.10.2)10 EIV duration 90 minutes Reg Guide 1.183 (main body Ref. 7.10.2)11 12 suppression 13 cumulative pool cumulative 14 Time HI volume HI 15 (hr) (g-mole) (liter) (g-mole/I) 16 onset =18/3600 0 4841000 =C16/D16 17 0.1 =C164-(B17-B16)/(B9160)*B3*B6 4841000 =C17/D17 18 endof gap release =B16+B9/60
=C17
233 36 38 391______________________________
233 36 38 391______________________________
4032 ___________________________
4032     ___________________________                                                                                               __________
__________
4133       __________________________             ______________________________________________                       _______   __________
4133 __________________________
4234     ____________________________               ________________________________________________                   ________ ___________
______________________________________________
4335       ____________________________             ___________________________________________________________________
_______ __________
4234 ____________________________
________________________________________________
________ ___________
4335 ____________________________
___________________________________________________________________
HCI (eqs)
HCI (eqs)
Attachment 5 Nine Mile Point Nuclear Station Unit 2 Table 5.4 Eqs: GGNS Benchmark Hydrochloric Acid (HCl) Production Calculation No. H21C-097 Revision 0 Page 5-25 K L M, N 44 Containment HCI 45 gamma beta Total HCI 46 (p-mole) (pgmole) (g-moe/A) (g-mole/i) 47 =$8$4(($8$38"BS$40'BS41)+(SGS38*$G$40"SG$41))rE47/1000000
Table 5.4 Eqs: GGNS Benchmark                                                                              Calculation No. H21C-097 Nine Mile Point Nuclear Station                                                      Hydrochloric Acid (HCl) Production                                                                                          Revision 0 Unit 2                                                                                                                                                                                                            Page 5-25 K                                                                              L                                                              M,                      N 44                                                          Containment HCI 45                            gamma                                                                            beta                                                            Total                  HCI 46                            (p-mole)                                                                        (pgmole)                                                        (g-moe/A)              (g-mole/
=(($C$38*$C$4OiC$41
+$038$DS40SD$41)+($H$38$HS40SH$41+$l$38$1$40*$$41))$B)4*G47/1000000 K47+L47)/C47
=(H47+l47+K47+L47)/C47 48 =$B$"(($BS38"$B$40r$B$41)t($G$38*$G$40$G$41))pE4a/1000000 K48+L48)/C48
=(H48+I48+K48+L48)/C48 49 =$54(($B$38"SB$40&deg;5BS41)+($GS38&deg;$G$40"$G$41))*E49/1000000
=(($C$38r$C$40*$C$41+$DS38-$DS40*$D$41)&#xf7;(SH$38$HS40$H$41+$.38$I$40*S$41))i$B$4G49/1000000
=(K49+L49)/C49
=(H49.I49+K49+L49)/C49 50 =$8$4(($B$3r"SB$40"$B$41)+($G$38"$G$404SGS41))&deg;ESO
A detailed review of the calculation was performed by the mechanical, radiological, and chemistry disciplines.
A detailed review of the calculation was performed by the mechanical, radiological, and chemistry disciplines.
Method of Design Verification:
Method of Design Verification:
0 Design Review 0 Qualification Testing Q Alternate Calculations L Applicability of Proven Design Results of Design Verification:
0 Design Review                 0 Qualification Testing Q Alternate Calculations       L Applicability of Proven Design Results of Design Verification:
U Fully acceptable with no issues identified 0 Fully acceptable based on the following issues identified and resolved: 0 Continuation Page Follows Discipline Involvement and Approvals:
U Fully acceptable with no issues identified 0 Fully acceptable based on the following issues identified and resolved:
Lead Design Matthew B. Cooper Verifier: Name Signature Oate Discipline Design Verifiers, if required: Chemistry David J. Feingold Radiological W. Joseph Johnson/ I Discipline Name Signature Date NEP-DES-07 Rev 04}}
0 Continuation Page Follows Discipline Involvement and Approvals:
Lead Design       Matthew B. Cooper Verifier:
Name                           Signature                 Oate Discipline Design Verifiers, if required:
Chemistry           David J. Feingold Radiological       W. Joseph Johnson
                                                          / I Discipline                   Name                         Signature                 Date NEP-DES-07 Rev 04}}

Latest revision as of 14:17, 13 March 2020

Calculation H21C-097, Rev 0, Post-LOCA Suppression Pool Ph Analysis.
ML071580366
Person / Time
Site: Nine Mile Point Constellation icon.png
Issue date: 09/10/2004
From: Johnson W, Kopke H, Peterson R
Engineering Services Co
To:
Office of Nuclear Reactor Regulation
References
H21C-097, Rev 0
Download: ML071580366 (139)


Text

Nine Mile Point Unit 2 Alternative Source Term Calculation H21C-097 "Post-LOCA Suppression Pool pH Analysis"

1. .j ,.

Project: NINE MILE POINT.NUCLEAR STATION. Unit (1, 2 or 0=Both): 2 Discipline: MECHANICAL

[Title Calculation No.

POST-LOCA SUPPRESSION POOL.PH ANALYSIS H21C-097 (Sub)system(s) Building Floor Elev. Index No.

N/A CONT N/A N/A

[Originator(s) S A..-...-, 9-go4 r 7.i1-t4 JERI Q~ PENROSE S&L I HELMUT R. KOPKE S&L (INPUT)#9 Reviewer(s) I Approver(s) /eJ,,...J.. "'-/.-D tA I

{

M. B. COOPER S&L, D. J. FEINGOLD S&L (CHEM) , W. J.'39HNSON S&L (RAD),I R. J. PETERSON S&L (APPROVER)I- fOV. --- v-- ' p 1

RtatV*.o 60o/% .T, or fe,-l.DER, Preg0o tjmpip.~r Oc~Ai/-~o Rev Descriotion Chan.D No. Date Reviewed By

--- ... -. .. __ . .. _*.. ... --T 0INITIAL ISSUE A/t4 JCP q-,o-c4 MBC UjiRJOL ,RJPP Computer Output/Microfilm Filed Separately (Yes I No I NA): No Safety Class (SR / NSRI Qxx) : SR Superseded Document(s): NONE, Document Cross Reference(s) - For:additional references see page(s): p. 24-25 Output provided? : No If yes, group(s) * .

ORIGINAL (YIN)

Ref Doc No Document No. Ty Index Sheet Rev Si/5 Pw~2, .2 el-.2-r '

General Reference(s):

See Section 7.0 of this calculation (p. '24-25).

Remarks:

The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the following items: correctness of math for manually prepared calculations, appropriateness of Input data, appropriateness of assumptions and appropriateness of the calculation method.

Confirmation Required (Yes I No): *e& No, Final Issue Status: Turnover Requirpd See Page(s) :* j~nI- /I ý( Yes I N/A t0CFR50.59 Evaluation Number(s): N/A Component ID(s) (As shown in MEL):

Copy of Applicability Determination or 50.59 Screen N/A Attached? Yes [I No [

Key Words : POST-LOCA, SUPPRESSION POOL, PH, ALTERNATE SOURCE TERM, AST; STANDBY LIQUID CONTROL SYSTEM, SLCS NEP-DES-08 Rev 07

ENGINEERING SERVICES iCALCULATION ONTINUAON S EPage 2 l(Next Project: Nine Mile PointNuclear Station Unit: .2 Disposition:

Originator/Date Reviewer/Date Cdalc-ulation NO. Revision J. C. Penrose /H. R. Koke M. B. Cooper I H21C-097 0 eef.

TalTable of Contents Calculation Cover Sheet ................................................... 1 Table of Contents ........... ............................................................................................................ 2 1.0 P u p tose........................................................................................................................................ 3 2.0 Methodology and Acceptance Criteria ............. ".................................... ............. .4 3.0 Assum ptions . .................. I.......................... 2.......................................... ........... ............................. 6-4.0 Design Input ............................................................................................................................. 9 5.0. Calculations ........................................................................................................................... 13 6.0 Results .............................................. . ..................... ....................................................... 24 7.0 References ......................................................................................................................... 25 Attachments Attachment 1: Determination of Reactor Core Inventories ........................................... (15 pages)

Attachment 2: Determination of Radiation Doses.................... ...................................... (7 pages)

Attachment 3: DIT-NM-NPEE-001, "Determination of Exposed Cables in the.

NMP2 Drywell" .......................................................... (29 pages)

Attachment 4: Calculations Determining Post-LOCA Suppression Pool pH ............ *.... (29 pages)

Attachment 5: Post-LOCA Suppression Pool pH Benchmark to Grand Gulf Nuclear Station (GGNS) ..................................... ..................... I........... (30 pages)

Attachment 6: Design Verification Report ....................................................................... (1-page)

NEP-DES-08 Revw07

'ENGINEERING SERVICES ICALCULATIONCONTINUATIONSHEET Page 3 I .(Next Project: Nine Mile Point Nuclear Station Unit: .2_ Disposition:

Originator/Date Reviewer/Date Calculation No. Revision J. C. Penrose / H. R. Kopke M. B. Cooper H21C-097 0-Ref.

1.0 Purpose The purpose of this calculation is to demonstrate that the pH of the suppression pool remains continuously above 7.0 following a Loss of Coolant Accident (LOCA) for the 30-day duration of

.the. accident. Based on Section 6.5.2 of the Standard Review Plan, NUREG-0800 (Ref. 7.20),

long-term iodine retention may be assumed only when the equilibrium suppression pool pH. is above 7.0. The pH transient of the suppression pool is evaluated in this calculation to determine whether the uncontrolled suppression pool pH remains above 7.0. If not, the effect on final pH of adding sodium pentaborate to the suppression pool via the Standby Liquid Control System (SLCS) is subsequently determined to verify that the suppression pool pH can be maintained above 7.0.

NEP-DES-08

. Rev 07

ENGINEERING SERVICES i-CALCULATION CONTINUATION SHEET. Page 4 Project: Nine Mile Point Nuclear Station Unit: 2 Disposition:

Originator/Date Reviewer/Date Calculation No. Revision J. C. Penrose / H. R. Kopke M. B. Cooper H21 C-097 0 ef.

2.0 Methodology and Acceptance Criteria 2.1 Methodology The suppression pool pH is calculated using the methodology described in NUREG/CR-5950 and in Grand Gulf Nuclear Station Engineering Report GGNS-98-0039. Grand Gulf was one of the NRC's Alternate Source Term pilot plants.

This methodology considers the addition of the following acids and bases to the post-LOCA suppression pool in the pH calculation:

1. Carbon Dioxide - Carbon dioxide is absorbed from the air to form the weak acid carbonic acid. This acid can reduce pH to a limiting value of approximately 5.65 (Ref. 7.13, §2.2.3) and is bounded in the initial condition selected for the suppression pool pH. Therefore, carbonic acid is not explicitly computed -but is accounted for in the pH calculation.
2. Hydriodic Acid - Hydrioclic acid is produced by the release of iodine from the reactor core as fuel failure occurs. Hydriodic acid is added to the suppression pool during the Gap Release Phase and during.the Early In-Vessel Phase only. This occurs for a two-hour period at the beginning of the LOCA per Regulatory Guide 1.183 (Ref. 7.10.2).
3. Cesium Hydroxide - Cesium hydroxide is produced by the release of cesium from the reactor core as fuel failure occurs. Cesium hydroxide is added to the suppression pool during the Gap Release Phase and during the Early In-Vessel Phase only. This occurs for a two-hour period at the beginning of the LOCA per Regulatory Guide 1.183 (Ref. 7.10.2).
4. Nitric Acid - Nitric acid is produced by irradiation of water and. air during the LOCA. Nitric acid is added to the suppression pool continuously during the LOCA.
5. Hydrochloric Acid - Hydrochloric acid is produced by radiolysis of chlorine-bearing electrical insulation/jacketing during a LOCA. Only electrical cable exposed to free air or in cable trays is considered. Hydrogen chloride formed from cable enclosed in conduit or enclosures will be contained in the conduit or enclosure and will not be available to form acid in the suppression pool. Hydrochloric acid is added to the suppression pool continuously during the LOCA. Hydrochloric acid can also be produced by pyrolysis of chlorine-bearing electrical insulation/jacketing at temperatures near 5720 F (Ref. 7.13, §2.2.5.3); however, since post-LOCA containment temperatures are much lower than this, pyrolysis is not considered herein.
6. Concrete Core Aerosols - Per NUREG/CR-5950 (Ref. 7.13, §2.3.2), aerosols from limestone concrete will contain the basic oxides CaO, Na20, and K20. However, the aerosols are produced from the interaction of a molten core with concrete and, per SECY-94-302 (Ref.

7.21), core damage can be assumed to cease after the Early In-Vessel Phase. Therefore, concrete core aerosols are not considered in this calculation.

The acids and bases are combined in the suppression pool and the resulting pH transient response is calculated for a 30-day period. This pH is the unbuffered suppression pool pH.

NEP-DES-08 Rev 07

ENGINEERING SERVICES CALCULATION CONTINUATION SHEET Page 5 Project: Nine Mile Point Nuclear Station Unit: .2 Disposition:

Originator/Date . ; Reviewer/Date Calculation No.

H21C-097 0 Revision J. C*. Penrose / H. R. Kopke M.B. Cooper Ref.

A final pH after 30:days is then recalculated considering the addition of sodium pentaborate from the SLCS. This irnjection is manually initiated, so the pH transient is subject to the timing of the injection. Since only acids are added to the suppression pool after the initial two-hour release of cesium hydroxide, the final pH is the lowest pH that will be attained in the pool.

2.2 Computer Programs The analysis performed herein utilizes Microsoft Excel (Ref. 7.1), which is commercially available. The validation of Excel is implicit in the detailed review of all spreadsheets used in this analysis. All computer runs were performed using PC No. 9098 under the Windows NT operating system.:

2.3 Acceptance Criteria The acceptance criterion is that the suppression pool pH is at or above 7.0 for the 30-day period of the LOCA so that iodine re-evolution is not a source term.

-A.

NEP-DES-08 Rev'07

ENGINEERING SERVICES . CALCULATION CONTINUATION SHEET'. Page 6 (Next Project:Nine Mile Point Nuclear Station Unit: 2 Disposition:

Originator/Date Reviewer/Date Calculation No. Revision J. C. Penrose / H. R. Kopke M. B. Cooper H21C-097 0 Ref.

3.0 Assumptions I 3.1 The maximum post-LOCA suppression pool volume is used in this calculation. This is conservative for the following reasons:

The concentration of nitric acid is based on the suppression pool submersion gamma TID values from Reference 7.6.3, which are based on a dilution volume which is smaller than the maximum suppression pool Volume used herein (see Attachment 2). Therefore, -the concentration of nitric acid, which is the main contributor to the acidity of the post-LOCA suppression pool (see Attachment 4, Table 4-1), is conservatively over-estimated when the maximum suppression pool volume is used. This conservatively minimizes the post-LOCA suppression pool pH. The over-estimation is a direct result of not reducing the submersion gamma TID to account for the suppression pool volume that is larger than the dilution volume upon which the TID is based.

A larger suppression pool volume would result in lower Concentrations of hydriodic acid and hydrochloric acid, as well as cesium hydroxide. However, since the contribution of cesium hydroxide to ;the post-LOCA suppression pool is orders of magnitude larger than the contributions of both hydriodic and hydrochloric acid (see concentrations in Table 4-1 of Attachment 4), a more dilute solution in which the cesium hydroxide concentration is lowest is conservative for minimizing the post-LOCA suppression pool pH.

Thus, use of the maximum post-LOCA suppression pool volume will result in the minimum post-LOCA suppression pool pH.

3.2 The reduction in. RCS/suppression pool mass due to steam addition to the post-LOCA containment is conservatively neglected. As discussed in Assumption 3.1, use of the maximum suppression pool mass is conservative.

3.3 The initial pH in the suppression pool and in the Reactor Coolant System is assumed to be at the minimum value, 5.3, expected during normal operation. Although the RCS generally operates at a minimum pH of 5.6, this assumption is conservative because it leads to the lowest calculated pH.

3.4 The suppression pool is assumed to be sufficiently mixed so a single pH adequately represents the pool contents. Per Design Input 4.14, there are a minimum of 0.3 complete exchanges of water in the suppression pool per hour. This is judged to provide adequate mixing.

3.5 The Cesium-133 reactor core inventory is conservatively not included in this analysis. Cesium-133 would form. additional cesium hydroxide in the suppression pool, increasing the pH.

Exclusion of this stable isotope of cesium leads to a lower suppression pool pH. Also note that the stable nuclide inventory for NMP U2 is not provided in Reference 7.7. However, Reference 7.7 does include products from the activation of Cs-133 such as Cs-134, which is included in this calculation (see Attachment 1, Tables 1-2 and 1-4).

NEP-DES-08 Rev 07

ENGINEERING SERVICES :CALCULATION:CONTINUATIONSHEET Page 7 (Next Project:Nine Mile Point Nuclear Station Unit: 2. Disposition:

Originator/Date Reviewer/Date Calculation No. Revision J C. Penrose/ H. R. Kopke M. B. Cooper H21C-097 0 Ref.

3.6 Since*Reference 7.7 does not provide the reactor core inventory of stable isotopes, it is assumed that the'quantity of Iodine-127 is 30% of the quantity of Iodine-129. Based on the cumulative fission yields presented in Reference 7.26 for thermal neutron fission of U23, U2M, PuM, and Pu 241, this value is, greater than will actually occur in the reactor core. The ratio of Iodine-127 to Iodine-129 is computed in the table below based on Reference 7.26. Note that U23 does not undergo thermal neutron fission. -

U235 Fission Pu239 Fission Pu24' Fission

% Cumulative Yield 1-1271" 0.137 0:46 0.25

% Cumulative Yield 1-129l') 1.0 1.7 1.02 nH1 27/ni- 129 [= %1-12^/%1129 13.7% 27.1% 24.5%

1) Recommended. values from Reference 7.26 used herein.

Since iodine contributes to the post-LOCA suppression pool acidity, this assumption is conservative as it bounds the actual amount of Iodine-127 which may be in the reactor core.

3.7 It is conservatively assumed that 5% of the iodine released into containment produces hydriodic acid. Per Regulatory Guide 1.183 (Ref. 7.10.2), 95% of the iodine released from the RCS is in the form of cesium iodide (Csl), 4.85% is in the form of elemental iodine, and 0.15% is in the form of organic iodide. NUREG-1465 (Ref. 7.14) indicates that at least 95% of the iodine entering containment from the RCS is in the form of cesium iodide with no more than 5% as I plus HI. Therefore, for this calculation, it is conservatively assumed that the combined I plus HI quantity is the maximum 5% in order to maximize the acid contribution from iodine to the Suppression Pool.

3.8 Radiation dose calculations for gamma and beta total integrated dose (TID) in the drywell used as input are assumed to apply at electrical cable surfaces. If attenuation of air was not taken into account in the TID calculations (Ref. 7.6.2/7.6.3), this assumption is conservative in that it uses a higher radiation flux and computes a higher hydrochloric acid production rate. If attenuation of air was taken into :account in the TID calculations (Ref. 7.6.2/7.6.3), this assumption is moot.

3.9 The available G value for hydrochloric acid generation in electrical cable jacketing was developed based on material (Hypalon) with a variable chlorine content. The chlorine content of this material can be higher than the 16+2% chlorine content of the electrical cable jacket material, Chlorosulfonated Polyethylene (CSPE), specified at NMP Unit 2 (see description in NUREG/CR-5950, Ref. 7.13). Use of the available G value is conservative because the application of G involves only the mass of the cable and not the chlorine content; therefore, use of a G value for a higher chlorine content material leads to a higher hydrochloric acid production rate.

3.10 The amount of sodium pentaborate added to the suppression pool as a buffer is conservatively assumed to be the minimum mass contained by the SLCS injection tank.

3.11 Hydrogen ion activity coefficients are ignored when calculating the pH of the suppression pool.

Because the suppression pool is initially filled with demineralized water, the ionic strength is low and any deviation from ideality is negligible for purposes of this calculation.

NEP-DES-08 Rev 07

FENGINEERING SERVICES f CALCULATION CONTINUATION SHEET I

Page (Next 8

Project:Nine Mile Point Nuclear,Station Unit: 2 Disposition:

Originator/Date Reviewer/Date Calculation No. Revision J. C. Penrose / H. R. Kopke M. B. Cooper H21C-097 0 Ref.

3.12 The contribution ofthe ethylene propylene rubber (EPR) cable insulation to the hydrochloric acid production is corsidered negligible. This assumption is acceptable, particularly when considering Assumption 3.9, since the EPR cable insulation contains less than 1% chlorine by weight (Ref. 7.19).,

3.13 The gamma radiation dose used herein is increased by 5% to account for bremsstrahlung. This conservative increase is justified as follows:

The fraction of beta energy that is converted to bremsstrahlung (or gamma radiation) is estimated using the equation (Ref. 7.24, p. 110):

Fraction = k

  • Z
  • E where:

Fraction = the fraction of beta energy converted to bremsstrahlung k = 0.7x10o3 per MeV Z = atomic number of the absorber E = energy of the beta particle [MeV]

For this calculation, absorption in air, water, or CSPE is considered, so a conservative value for Z would be 20. Similar to. gamma energy,, the beta energy is different for each radionuclide.

Assuming the average beta energy per decay is the same as the average gamma energy per decay, and using a typical gamma energy of 1 MeV, the fraction converted to bremsstrahlung would be:

Fraction = 0.7x10 3 20' 1 = 1.4%

Inspection of the beta energies for noble gases, iodines, and cesiums in Reference 7.25 indicates that, for most radionuclides, the gamma energy per decay is higher than the beta energy per decay. Using a fraction of 5% is large enough to account for the cases where the beta energy per decay is larger than the gamma energy per decay, and to account for bremsstrahlung frbm pure beta emitting radionuclides. Therefore, the assumption that the bremsstrahlung contribution to the dose is equal to 5% of the gamma dose is considered conservative.

NEP-DES-08 RevO07

ENGINEERING SERVICES CALCULATION CONTINUATION. SHEET . Page 9

- i(Next Project:Nine Mile Point Nuclear Station Unit: 2 Disposition:

Originator/Date Reviewer/Date Calculation No. Revison J. C. Penrose / H. R. Kopke M. B. Cooper H210-097 Ref.

4.0 Design Input 4.1 The initial suppression pool pH is maintained between 5.3 and 8.6 (Ref. 7.3.1,p. 3).

4.2 The RCS pH is maintained between the following limits (Ref. 7.4, p. B3.4-8):

Mode PH Range 1 (>10% power) . 5.6:<pH5<8.6 2,3 5.6 5 pH S 8.6 All others 5.3 5 pH 5 8.6 For Mode 1 operation, the pH range above coincides with the Action Level 1 acceptable pH range (5.6 < pH < 8.6). The Action Level 2 pH range is 4.9 < pH < 9.3 and the Action Level 3.pH range is 4.6 < pH < 9.6 (Ref. 7.3.2, p. 11).

4.3 The volume of water (liquid and steam) in the Reactor Coolant System (RCS) during normal operation is 24,266 ft3, with a liquid fraction of 0.579. This corresponds to a total liquid mass of 644,850 Ibm and a total steam mass of 24,324 Ibm (669,174 Ibm total water mass). See p. 86 of Reference 7.6.5.

4.4 Linear absorption 'coefficients are determined from input in NUREG-1081 (Ref. 7.15) as follows.

Note that the values below (a, p) are those provided for Hypalon in Reference 7.15. They are considered acceptable for CSPE.

Linear absorption coefficient for gamma radiation, 'o:.

/p =0.0637 cm 2 /g 3

PH =1.55.g/cm CY-,H = 0.0637 x 1.55 = 0.099 cm-1 Linear absorption 'coefficient for beta radiation, op:

= 33.6

/l3PH cm2/g 33, g/

PH = 1.55 g/cm OPH = 33.6 x 1.55 = 52.08 cm-1 4.5 The 100% rated thermal reactor core power level is 3,467 MWt (Ref. 7.5, p. 3).

4.6 The maximum and minimum suppression pool water level (referenced to mean sea level) and volume for normal operation are given below.

NEP-DES-08 Rev 07

ENGINEERING SERVICES 1CALCULATION CONTINUATION SHEET. Page 10 (Next _ )

Project: Nine Mile Point NuclearStation Unit: 2 Disposition:

Originator/Date Reviewer/Date Calculation No. Revision J. C. Penrose /H. R. Kopke M.B. Cooper H21 C-097 0 Ref.

Suppression Pool Elevation (Ref. 7.2.5) Volume (Ref. 7.6.1, p. 58)

Water Level [ft 3]

Maximum- 201 ft 0 in 154,400 Minimum 199 ft 6 in 145,200 4.7 The suppression pool temperature range is 70'F : T < 90°F for continuous plant operation (Ref.

7.6.4, p. 13). However, the maximum temperature can rise to 110°F before reactor shutdown is required (Ref. 7.2.4). The maximum temperature values are consistent with the Technical Specification (Ref.:7.2.4).

4.8 The suppression 6hamber / drywell pressure is maintained between 14.2 psia and 15.45 psia (Ref. 7.2.2).

4.9 The reactor core 'cesium and iodine inventories are determined in Attachment 1, and are repeated below for convenience since they are input to the. pH analysis. These quantities are conservatively based on the activities at time t=0 following a LOCA.

Iodines: 81.0 gram-moles Cesiums: 503.3 gram-moles The above core inventories are based on a core thermal power of 3,536 MWt (102% of licensed core thermal power, 3,467 MWt), consistent with Regulatory Guide 1.49 (Ref. 7.10.1).

It should be noted that the quantity of cesium given above excludes Cesium-133, which is stable, since it is not provided in Reference 7.7. The exclusion of the stable isotope is conservative as it would form cesium hydroxide (CsOH) which would raise the pH of the post-LOCA suppression pool. The stable, cesium would form cesium hydroxide since number of moles of non-stable cesium is greater than 95% of the number of moles of, iodine (95% of cesium is released as cesium iodide, Csl - see Assumption 3.7).

4.10 The gamma (y) dose in the drywell, wetwell, and suppression pool is determined in Attachment 2 and is repeated below for convenience since it is input to the pH analysis. The dose provided below is based on the core thermal power of 3,467 MWt and includes a 5% increase to account for bremsstrahlung (see Assumption 3.13).

Time Drywell & Wetwell Airborne y Dose Suppression Pool Submersion y Dose

[hr] [rad] [rad]

1 2.4E+06 4.OE+05 6 7.4E+06 1.5E+06

24. 1.2E+07 3.OE+06 720 3.2E+07 1.7E+07 2400 '5.OE+07 3.8E+07 4320 6.7E+07 5.9E+07 8760 1.OE+08 1.0E+08 NEP-DES.08 Rev 07

ENGNEEIN SE VIC  : -"-.*C A.LCU.LATION =CONTINU.ATIO N .SHEET ""," :. Page 11 Project:Nine Mile PointNuclear.Station. Unit: 2 Disposition:

Originator/Date Reviewer/Date Calculation No. Revision J.C. Penrose / H. R. Kopke M.B. Cooper H21C-097 0 Ref.

4.11 The beta (A)dose in the drywell is determined in Attachment 2 and is repeated below for convenience since it is input to the pH analysis. The dose provided below is based on the core thermal power of 3,467 MWt.

Time Drywell Airborne P Dose Wetwell Airborne P3 Dose

[hr] rrad] [rad]

1 2.OOE+07 2.26E+07 6 5.78E+07 6.90E+07 24 1.30E+08 1.59E+08 720 5.65E+08 7.03E+08 2400 6.07E+08 7.54E+08 4320 6.35E+08 7.81 E+08 8760 6.97E+08 8.44E+08 4.12 Standby Liquid Control System (SLCS) Parameters The SLC system has an acceptable range of operation, defined in Figure 3.1.7-1 of Technical Specification 3.1.7 (Ref. 7.2.1). The lower boundary is defined by the following endpoints:

  • 4,558.6 gallons of 13.6 weight % sodium- pentaborate solution (SG=1.068).
  • 4,288.0 gallons of 14.4 weight % sodium pentaborate solution (SG=1.071)

The specific gravity (SG) provided above is taken from Figure 1 of Reference 7.22.

It should be noted that the above weight percentages define the lower boundary of acceptable SLCS operation and are only valid for sodium pentaborate enrichments greater than or equal to 25 atom percent B-10.

Sodium pentaborate decahydrate has the chemical formula Na2B10O16-10H 20 (Ref. 7.22, §3.3.1) and a molecular weight of 590.224. In this calculation, "sodium pentaborate" actually refers to sodium pentaborate decahydrate for consistency with plant documentation.

The sodium pentaborate solution is maintained between 750 F and 85 0 F by internally located electric heaters (5ef. 7.3.4, §5.0(B), p. 4). Note that 750 F bounds the Technical Specification lower limit of 70°F (Ref. 7.2.1).

Each sodium pentaborate pump (2SLS-P1A and 2SLS-P1B) must be able to deliver > 41.2 gpm at a discharge pressure ? 1,235 psig (Ref. 7.2.1).

4.13 The chloride beating cable inventory is determined in Table 4-4 of Attachment 4. Information from DIT-NM-NPEE-001 (Ref. 7.19) is used to determine the chloride bearing cable inventory.

4.14 The limiting Design Basis Accident (DBA) LOCA is identified in UFSAR Section 6.2.1.1.5 (Ref.

7.11.1) as Case C of UFSAR Section 6.2.1.1.3 (Ref. 7.11.2), which corresponds to Case C of Reference 7.6.5., For this case, a minimum of one Low Pressure Core Injection (LPCI) pump is operable throughout the accident (Ref. 7.6.5, p. 21). Given that the reactor vessel depressurizes reasonably quickly for a large break L4OCA (see -Ref. 7:6.5, Tables 6.2-9 and 6.2-10), -a minimum NEP'DES-08 Rev 07

ENGINEERING SERVICES CALCULATION CONTINUATIONRSHEET 1 Page

.1(Next 12 Project: Nine Mile Point Nuclear,Station Unit: 2. Disposition:

Originator/Date Reviewer/Date Calculation No. ison J. C. Penrose / H. R. Kopke 1M.B. Cper H21C-097.

Ref.R LPCI flow rate of 6,000 to 7,000 gpm can be expected per Figure 6.2-3 of Reference 7.6.5. This flow rate equates to approximately 0.3 complete exchanges of the water in the suppression pool per hour (1 comple~te exchange in approximately 3- hours).

4.15 The post-LOCA suppression pool temperature response for an RCS recirculation suction line break for the DBA; LOCA is provided below. The shortrterm temperature response (t=0 to 1.2 days) is taken from Figure 6.2-27 of Reference 7.6.5 (p. 154). It should be noted that the temperature respobse for the DBA LOCA bounds the response of the other cases.

Time Tpo,1 Time TP0o, Time Tp

[ (h]F [sec (hr)o [0E] [sec (hr)]

0.1 (2.8x10"5) 90 100 (0.028) 125 42,000 (11.7) 202 1.0 (2.8x104) 90 300(0.083) 140 60,000 (16.7) 200 8.0 (2.2x10-3) 95 1000 (0.28) 160 100,000 (27.8) 190 10 (2.8x10 3 99 10,000 (2.8) 185 30 (8.3xl 03) 115 30,000 (8.3) 200 The long-term suppression pool temperature response (from t=1.25 days to 30 days) is taken from Table 1 of Reference 7.6.7 and is provided below.,

Time Tpoo1 Time Ti Time Tpo,

[days (hr) JF] [days (hr)] [j] [days (hr)] [F]

1.250(30) -190.0 4.500 (108) 153.3 12.000 (288) 132.4 1.500 (36) 185.9 5.000 (120) 150.2. 13.000 (312) 131.3 1.750(42) 181.8 5.500(132) 147.6 14.000 (336) 130.3 2.000 (48) 177.9 6.000 (144) 145.3 15.000 (360) 129.2 2.333 (56) 173.4 7.000 (168) 142.5 20.000 (480) 127.9 2.666(64) 169.2 8.000 (192) 139.6 25.000 (600) 125.1 3.000 (72) 165.5 9.000 (216) 137.1 30.000 (720) 122.4 3.500 (84) 161.0 10.000 (240) 135.3 4.000(96) 157.0 11.000 (264) 133.6 NEP-DES-08 Rev 07

ENGINEERING SERVICES C Page (Next Project:Nine Mile Point Nuclear Station Unit: 2 Disposition:

Originator/Date = Reviewer/Date Calculation No. Revision J. C. Penrose / H. R. Ko ke M. B. Cooper H21C-097. 0 5.0 Calculations 5.1 Suppression Pool Initial Conditions 5.1.1 Suppression Pool Volume The maximum suppression pool volume will be used in this calculation. This will result in the calculation of the lowest transient pH and is conservative (see Assumption 3.1). The total pool volume for this calculation is the sum of the maximum initial suppression pool volume plus the added RCS volume. The complete RCS mass is added to the suppression pool at the start of the LOCA.

The suppression pool liquid volume at the maximum water level is 154,400 ft3. The Reactor Coolant System (RCS) has a total volume of 24,266 ft3 , with a liquid fraction of 0.579. Once the RCS mass is added to the suppression pool, the total suppression pool volume is approximately 168,000 ft3 (Attachment 4, Table 4-9).

5.1.2 InitialpH The suppression pool is maintained at a pH between 5.3 and 8.6. Lower pH levels are conservative for this analysis, so an initial pH of 5.3 is used. This pH also accounts for dissolved carbon dioxide, The RCS pH is maintained at a pH between 5.6 and 8.6 for Modes 1, 2, and 3 and between 5.3 and 8.6 for all other Modes. A conservative initial pH of 5.3 is used for this analysis. The'choice of this conservative input does not impact the final result of this calculation.

The pH of the pool contents after addition of the RCS is 5.3.

5.2 Hydriodic Acid (HI)

Hydriodic acid is formed by the post-LOCA release of elemental iodine (I) and hydrogen iodide (HI) from the reactor core and its absorption in the suppression pool.

Per Regulatory Guide 1.183, Table 1 (Ref. 7.10.2), 5% of the iodine core inventory is released into containment during the Gap Release Phase and an additional 25% of the iodine core inventory is released into containment during the Early In-Vessel (EIV) Phase. The Gap Release Phase has an onset of 2 minutes and a duration of 30 minutes and is followed by the EIV Phase with a duration of 90 minutes per Table 4 of Regulatory Guide 1.183 (Ref. 7.10.2).

The reactor core inventory of iodine, the Gap Release Phase iodine release, and the EIV Phase iodine release are determined in Attachment 1 and listed in Attachment 1, Table 1-1.

Per Section 3.5 of Regulatory Guide 1.183 (Ref.. 7.10.2), 95% of the iodine released-from the RCS is in the form of cesium iodide, 4.85% is in the form of elemental iodine, and 0.15% is in the form of organic iodide. Section 3.5 of NUREG-1465 (Ref. 7.14) indicates that at least 95% of the iodine entering containment from the RCS is in the form of cesium iodide with normore than 5%

NEP-DES-08 Rev 07

ENGINEERING SERVICES T CALCULATION CONTINUATION ýSHEET age

,Next

(

14 Project: Nine Mile Point Nuclear, Station Unit: 2 Disposition:

Originator/Date Reviewer/Date Calculation No. Revision J. C. Penrose / H. R. Kopke M. B. Cooper H21C-097 Ref.

as I plus HI. For this calculation, it will be conservatively assumed that the combined I plus HI is the maximum 5% in order to maximize the acid contribution from iodine to the suppression pool.

The formation of hydriodic acid in the suppression pool is equal to the molar addition of iodine.

Computations are shown in Attachment 4, Table 4-2. During the Gap Release Phase, 5% of the Gap Release Phase iodine release produces hydriodic acid in the suppression pool. During the EIV Phase, 5% of the EIV -Phase iodine release produces additional hydriodic acid in the suppression pool. The concentrations are determined at the end of the Gap -Release Phase, at one hour, and at the end of the EIV Phase. The rates of addition during the Gap Release Phase and during the EIV Phase are linear per Section 3.3 of Regulatory Guide 1.183 (Ref. 7.10.2). No additional hydriodic acid is formed after the EIV Phase.

5.3 Cesium Hydroxide,(CsOH)

Cesium hydroxide is formed by the release of cesium from the reactor core and its absorption in the suppression pool.

Per Regulatory Gtiide. 1.183, Table 1 (Ref. 7.10.2), 5% of the cesium core inventory is released into containment during the Gap Release Phase and an additional 20% of the cesium core inventory is released into containment during the Early In-Vessel (EIV) Phase. The Gap Release Phase has an onset of 2 minutes and a duration of 30 minutes and is followed by the EIV phase with a duration of 90 minutes per Table 4 of Regulatory Guide 1.183 (Ref. 7.10.2).

The reactor core inventory of cesium, the Gap Phase cesium release, and the EIV Phase cesium release are determined in Attachment 1 and listed in Attachment 1, Table 1-2.

Cesium released in the form of cesium iodide does not contribute to formation of cesium hydroxide. The quantity of cesium iodide is 95% of the molar quantity of iodine released, consistent with the determination of hydriodic acid production (see Section 5.3). The amount of cesium as cesium iodide is subtracted from the Gap Phase cesium release and the EIV Phase cesium release to'obtain the quantity of cesium hydroxide in the post-LOCA suppression pool.

The formation of :cesium hydroxide in the suppression pool is equal to the molar addition of cesium not in theform of cesium iodide. Computations are shown in Attachment 4, Table 4-5.

The concentrationrs are determined at the end of the Gap Release Phase, at one hour, and at the end of the EIV Phase. The rates of addition during the Gap Release Phase and during the EIV Phase are linear per Section 3.3 of Regulatory Guide 1.183 (Ref. 7.10.2). No additional cesium hydroxide is formed after the EIV Phase.

5.4 Nitric Acid (HNO 3).

Nitric acid is formed by irradiation of air and water in the suppression pool by gamma radiation.

Per Section 2.2.4 of NUREG/CR-5950 (Ref. 7.13), the generation rate of HNO 3, G, is 0.007 molecules HNO 3 per 100 eV. This generation rate converts to 7.3x10.6 g-mole/liter per MegaRad as follows:

NEP-DES-08 Rev 07

ENGINEERING SERVICES CALCULATION-CONTINUATION i"s,"' SHEET*;.:. Page 15'

'(Next-*)

Project: Nine Mile Point Nuclear!Station Unit: 2 Disposition:

Originator/Date Reviewer/Date Calculation No. Revision J. C. Penrose/H. R. Kopke M.B. Cooper H21C-097 0 Rief.

0.007 molecule mole 6.241x 1011 eV 100 x 106 ergx 1000 g 100 eV I.6.022x 10 2 3 molecule X G erg MegaRadg Xliter Total integrated suppression pool gamma radiation doses were multiplied by this value to compute the nitric acid concentration at varying times. Computations are shown in Attachment 4, Table 4-3.

5.5 Hydrochloric Acid (HCI)

Hydrochloric acid is formed by radiolysis of chloride-bearing electrical cable in the drywell.

The types and amounts of cable are as shown in DIT-NM-NPEE-001 (Attachment 3). Two sizes of cable are present in the drywell, 750 MCM power cable and 1/0 ground cable. Jacketing material for both types is chlorosulfonated polyethylene (CSPE). This material contains 16+2%

chlorine. Note, however, that the hydrochloric acid generation rate is determined using the properties of Hypalon (see Assumption 3.9).

The 750 MCM cable has ethylene propylene rubber (EPR) insulation, while the ground cable has no insulation. The insulation material does not contain chlorine (specified as <1%) and consequently does not contribute to HCI formation (see Assumption 3.12).

The mass of jacket material for each cable is computed based on the maximum guaranteed cable outer diameter (OD) and on the jacket thickness per NMP specification NMP2-E023A (Ref.

7.23) as shown on pages 22, 24, and 25 of attached DIT-NM-NPEE-001 (Attachment 3). A density of 1.55 g/cm 3 was used for Hypalon per Section 4.2 of NUREG-1081 (Ref. 7.15). Cable lengths are as identified in DIT-NM-NPEE-001 (Attachment 3). As-built cable lengths are located in cable tray and additional cable lengths are conservatively assumed to be in free air.

The methodology for computing hydrochloric acid production in GGNS-98-0039, Revision 1 (Ref.

7.12.1) differs from that used in GGNS-98-0039, Revision 3 (Ref. 7.12.2). The hydrochloric acid production rate iniGGNS-98-0039, Revision 1, is based on the mass of cable jacket and on the radiation dose rate at the cable jacket surface multiplied by a flux averaging factor. However, the hydrochloric acid :production rate in GGNS-98-0039, Revision 3, is based on the cable jacket surface area and on the energy release per unit volume of containment, diminished by attenuation in air between the center of containment and the cable surface. Both methodologies use the same G value (with units converted to rads in GGNS-98-0039, Revision 1) and the same expression for energy absorption fraction in the cable jacket. Consistent with Assumption 3.8, which is conservative, the GGNS-98-0039, Revision 1, methodology for hydrochloric acid production is used herein. The benchmark (§5.8) demonstrates that both methodologies yield very similar results, and therefore the choice of the GGNS-98-0039, Revision 1-, methodology used in this calculation is considered acceptable.

Hydrochloric acid generation in bchlorine-bearing material in the cable is determined using the following equation from Appendix B of NUREG/CR-5950 (Ref. 7.13) and further developments from Grand Gulf Engineering Report GGNS-98-0039, Revision 1, Appendix A (Ref. 7.12.1):

R =GxSxoxA NEP-DES-08 Rev 07

ENGINEERING SERVICES CALCULATION CONTINUATION SHEET.. Page 16 (Next Project: Nine Mile Point NuclearStation Unit: 2 Disposition:

Originator/Date I Reviewer/Date M. B. Cooper H21C-097 Calculation No. 0 Revision J. C. Penrose /H.- R. Kopke Ref. --

where:

R = HCI production rate G = radiolysis yield S = cable;jacket surface area

  • = average radiation energy flux in the cable jacket A = absorption fraction of energy flux in the cable jacket A factor for computing the average radiation energy flux, , in the jacket is developed based on attenuation of radiation flux at radius r in the cable jacket (Reference 7.12.1, Appendix A, Section A.2):

0(r) = 0(Rn) x e-P("°-r) where:

r = cable radius R, = outside cable radius p = linear absorption coefficient for Hypalon Integration of this, equation over the cable jacket thickness leads to an expression for a flux averaging factor that can be multiplied by the flux at the cable jacket surface to give-the average flux in the. cable jacket:

1 le -(py + 1) - 1] (e-Y -

!~R,, Ryy2 2 2

where:

= average radiation energy flux in the cable jacket 0(Ro) = radiation energy flux at the cable jacket surface p = linear absorption coefficient for Hypalone y = thickness of cable jacket The absorption fraction of energy flux is calculated as follows per Section 4.2 of NUREG-1081 (Ref. 7.15):

A = 1-e where:

A = fraction of radiation energy flux absorbed by cable jacket p = linear absorption coefficient for Hypalon y = thickness of cable jacket NEP-DES-08

.Rev 07

ENGNEEIN SEVICS CALCULATION:CONTINUATION SHEET,`: Page _17

. . .* , /: " .: .: :*. * . ; " . i .;J" :', : i 'i " .*.. (Ne xt)

Project: Nine Mile PointNuclear Station Unit: 2 Disposition:

Originator/Date Reviewer/Date Calculation No. Revision J. C. Penrose / H. R. Kopke M. B. Cooper H21C-097 0 Ref.

The HCI generation equation then becomes:

1 [e_,,py + 1) Fo(e_,_-

Rl R= G *.S, O(Ro) 2* ", e 1-Pex")

2 The last two terms 'are the previously developed flux averaging factor and the absorption fraction, respectively.

Grand Gulf Engineering Report GGNS-98-0039, Revision 1, Appendix A (Ref. 7.12.1), then derives from this the following equation in order to use radiation dose reported in units of MegaRad per hour (or MegaRad when integrated over time) as is typically available:

L.2 [e-'(jy + 1) ]- o (e"Y -

R =G mH *X(Ro)* Ry -y 2

= *, (1 -e"

-Y) where:

R = HCI production rate G = radiolysis yield mH = mass of cable jacket X (R,) = radiation dose .rate at the surface of the cable jacket R, = outside cable radius p = linear absorption coefficient for Hypalon y = thickness of cable jacket The following linear absorption coefficients are determined for Hypalon (see Design Input 4.4):

p = 0.099 cm' for gamma radiation p = 52.08 cm 1 for beta radiation Per NUREG/CR-5950 (Ref. 7.13) the G value for Hypalon is 2.115 molecules HCI per 100 eV.

This corresponds to 2.192E-6 g-mole HCI/g Hypalon per MegaRad:

G 2.115 molecule mole 6.241 x 10" eV 100 x 106 erg G=xx x 100 eV 6.022 x 1023 molecule erg MegaRad g The G value for hydrochloric acid generation in electrical cable jacketing available from Appendix B of NUREG/CR-5950 (Ref. 7.13) was developed based on material (Hypalonr) with a variable chlorine content. The chlorine content of this material can be higher than the 16+2% chlorine content of the electrical cable jacket material, Chlorosulfonated Polyethylene (CSPE), specified at NMP Unit 2 ý(see description in NUREG/CR-5950). Use -of the available G value is conservative because the. application of G involves only the mass of the cable jacketing and not NEP-DES-08 Rev 07

ENGINEERING SERVICES CALCULATION.CONTINUATION SHEET Page 18 (Next Project: Nine Mile Point Nuclear,Station Unit: 2 Disposition:

Originator/Date ] Reviewer/Date Calculation No. Revision J. C. Penrose / H. R. Koke I M. B. Cooper H21C-097 Ref. -"

the chlorine content. Therefore, use of the G value for Hypalon will overpredict the hydrochloric acid production rate when applied to materials with lower chlorine contents, such as the CSPE utilized in the cables at NMP Unit 2 (Assumption 3.9).

Hydrochloric acid formed by gamma. radiation is computed at varying times using the Total Integrated Dose (TID) for gamma radiation in the drywell multiplied by the generation rate. The total mass of cable, jacketing is determined and then used in the computation.

Hydrochloric acid formed by beta radiation is computed at varying times using the TID for beta radiation in the drywell multiplied by the generation rate. The mass of cable in cable tray is discounted by 50% to account for localized shielding from beta radiation in the tray.

The mass of hydrochloric acid generated, by gamma and beta radiation is divided by the post-LOCA suppression pool volume to determine the total concentration of HCI formed by irradiation of electrical cable as a function of time.

The computations determining the hydrochloric acid generation are presented in Attachment 4, Table 4-4ý 5.6 Transient pH Calculation The transient pH was computed by combining the contributions of acids and bases. The concentrations of. [H*] and (OH] were summed and the net resultant concentrations from self-neutralization determined by the relationship:

where:

K, = dissociation constant for water x = [H*] and [OH] self-neutralized 7-[H'] = sum of acids added [g-mole/liter]

Z[OH] = 1sum of bases added [g-mole/liter]

Solving for x:

X= [OH-] + [H4 ] - VqOH-] + [H]-)2 - 4 x (JOH-][HW] - K.)

2 The dissociation constant is temperature dependent, and the temperature function is per the CRC Handbook (Ref. 7.17, consistent with correlation used in Ref. 7.12):

- log(K,) = 15.5129 - 2.24 x 10-2 T + 3.352 x 10--T 2 where:

NEP-DES-08 Rev 07

ENGINEERING SERVICES " CALCULATION CONTINUATIONW SHEET Page 19 (Next Project: Nine Mile Point Nuclear,Station Unit: 2 Disposition:

OriginatorDate I Reviewer/Date Calculation No. Revision J. C. Penrose /H. R. Kopke M. B. Cooper H21C-097 0 Ref.

T = temperature, *F Finally, the suppression pool pH is determined:

[H]= [H4 ]um x pH = - Iog([H*)

5.7 Sodium Pentaborate Addition Sodium pentaborate can be added via the Standby Liquid Control System (SLCS) to buffer the suppression pool, resulting in higher pH values.

The SLCS contains an aqueous solution of sodium pentaborate (Na 2Bl10O16 10H20). The solution is prepared by mixing borax (Na 2B40 7 .0H 20) and boric acid (H3B0 3) in a 1:6 stoichiometric molar ratio in distilled water (Ref. 7.22, §4.4). This yields sodium pentaborate (Na2 B1 oO16 or Na20*5B20 3) and water.

Sodium pentaborate dissociates in water in accordance with the following equilibrium:

Na 2 B1 0 0, 16 . 10H 2 0 + 6H 2 0 <->2Na+ + 2B(OH)- + 8B(OH) 3 This buffers the pH in accordance with:

[anion]

pH = pK8 + log

[acid]

pH = pK, + log [B(OH)4]

[B(OH)3 ]

where:

K, = equilibrium constant for the sodium pentaborate dissociation The sodium pentaborate dissociation constant is temperature dependent in accordance with the following correlation (Ref. 7.12.2, §6.1):

K, = (0.0585 T + 1.309) 10.1 temperature in 'F This correlation is, based on temperature data from 5-10TC (41-122°F). However, Reference 7.12.2 states the following regarding the correlation: "...linear extrapolation of this data to temperatures above 50 0 C is expected to result in conservatively high dissociation constants and correspondingly lower pool pH values." Therefore, use of this correlation with suppression pool temperatures greater than 122 0 F is conservative.

NEP-DES-08

-Rev 07

ENGINEERING SERVICES "-CALCULATION CONTINUATION SHEET Page 20

[.,(Next Project:Nine Mile Point Nuclear Station Unit: 2 Disposition:

Originator/Date T Reviewer/Date Calculation No. Revision J. C. Penrose / H. R. Kopke M.B. Cooper H21C-097 0 Ref.

Due to the nature of.the correlation for the pentaborate dissociation constant, a bounding 30-day suppression pool temperature of 200°F is used. Use of a higher temperature than will actually exist results in a lower final pH.

The minimum volume of the SLCS injection tank is 4288.0 gallons and the concentration of the sodium pentaborate solution is 14.4% at that volume based on the decahydrate (includes water of hydration) as defined in Figure 3.1.7-1 of Technical Specification 3.1.7 (Ref. 7.2.1). Using the maximum controlled temperature of 85 0F, the minimum specific gravity is 1.068 (Ref. 7.22, Figure 1). The min.imum mass of sodium pentaborate can be calculated:

Mass = volume density

  • concentration Note that the mass of sodium pentaborate in 4,288 gallons of 14.4% solution is slightly less than the mass in 4,558.6 gallons of 13.6% solution.

The number of moles of sodium pentaborate added to the suppression pool is determined using a molecular weight of 590.224 since the concentration is based on the decahydrate. The amounts of anion and acid are 2 and 8 times this amount, respectively, by stoichiometry.

The equivalents of acid in the unbuffered suppression pool neutralize the equivalents of conjugate base and shift the equilibrium, so, by mass balance, pH = pK,6 + log 2 x mole SP - mole H÷ 8 x mole SP + mole H*

where:

mole SP = moles of sodium pentaborate added to the suppression pool mole HW - moles of acid in unbuffered suppression pool 5.8 Benchmark 5.8.1 Input for pH Calculation Benchmark The pH transient developed in this calculation is determined using a Microsoft Excel (Ref.

7.1) spreadsheet. In order to benchmark the spreadsheets, the design input from Grand Gulf Nuclear Station (GGNS) Calculation No. XC-Q1111-98013, Revision 1, "Suppression Pool pH Analysis," (Ref. 7.12.3) is input into the spreadsheets developed herein. Since Grand Gulf was an NRC pilot plant for Alternate Source Term implementation, the calculation has been accepted by the NRC and is part of the public record.

Case 1 of this GGNS calculation is used to benchmark the model herein. This case assumes that all source terms (except noble gases)-are deposited upon release into the suppression pool water. This maximizes the suppression pool dose and the generation of nitric acid.

NEP-DES-08 Rev 07

ENGINEERING SERVICES CALCULATIONCONTINUATIONSHEET Page 21 I (Next Project: Nine Mile PointNuclear Station Unit: 2 Disposition:

Originator/Date Reviewer/Date Calculation No. Revision J. C. Penrose / H.R. Kopke M.B.Cooper H21C-097 0 Ref. i. ..

The design, input taken from the Grand Gulf post-LOCA suppression pool pH calculation (Ref. 7.12.3) is provided in the following table. Input which is unchanged in the benchmark' (e.g. the density of Hypalon, core inventory fractions released into containment, etc.) is not re-stated.

Table 5.8.1-1: Desiqn Input from GGNS Post-LOCA Suppression Pool oH Analvsis Parameter Value Source Suppression Pool (SP):

SP volume 4.841 x10 6 liters Ref. 7.12.3, p. 2 SP temperature profile see AUt. 5, Table 5-8 Ref. 7.12.3, AUt. 3, p. 1 Reactor Core Inventory:

Iodine inventory 325 g-atoms 2 Ref. 7.12.3, p. 4 Cesium inventory 2,400 g-atoms 2 Ref. 7.12.3, p. 4 Radiation Dose:

Sup ression pool gamma dose Correlations provided Ref. 7.12.3, Att. 2, Case 1 Drywell gamma dose1 in Att. 5, Table 5-7. Ref. 7.12.3, AUt. 2, Case 1 Containment gamma dose1 SP y dose correlation Ref. 7.12.3, AUt. 2, Case 1 Drywell beta dose' is in Mrad; other y & f3 Ref. 7.12.3, Att. 2, Case 1 Containment beta dose1 doses are in MeV/cc. Ref. 7.12.3, Aft. 2, Case 1 Cables:

Cable material Hypalon Typical/modeled cable outer radius 0.35 inches Ref. 7.12.3, p. 8 Typical/modeled cable jacket thickness 0.28 inches Ref. 7.12.3, p. 8 Drywell cable masses:

mass of jacket and insulation 873.65 Ibm Ref. 7.12.3, p. 3 (combined) in exposed cable ,trays mass 'of jacket and insulation 873.65 Ibm Ref. 7.12.3, p. 3 (combined) in free air drops Containment cable masses:

mass ;of jacket and insulation 14,049.27 Ibm Ref. 7.12.3, p. 3 (combined) in exposed cable trays mass of jacket and insulation 1,561.03 Ibm Ref. 7.12.3, p. 3 (combined) in free air drops SLCS: ,._ _.

Neutron absorber anhydrous sodium pentaborate Molecular weight (Na 2 B1 0O 16 ) 410 Ret. 7.12.3, p. 15 Final suppression pool temperature 120'F Ref. 7.12.3, p. 16 Mass of sodium pentaborate injected 5,800 Ibm Ref. 7.12.3, p. 15

1) Dose in Mev/cc converted to rad using 1 rad = 8.071x10 MeV/cc for air at S.T.P. (Ref. 7.8, p. 23).
2) Per the CRC handbook (Ref. 7.17), a gram-atom is defined as "the mass in grams numerically equal to the atomic weight,' which is essentially the same as the definition for a gram-mole. The CRC handbook defines a gram-mole as the 'mass in grams numerically equal to the molecular weight." The inventories presented above are given in gram-atoms to be consistent with Reference 7.12.3.

The benchmark is performed in Attachment 5 by utilizing the above design input in the spreadsheets developed for the current calculation in Attachment 4. Wherever an input has been changed or added, the cell is italicized. Similarly, additional information/equations which are added are italicized. The addition of new-equations/cells NEP-DES-08 Rev 07 I -

ENGINEERING SERVICES Project:Nine Mile PointNuclear Station "1" CALCULATION CONTINUATION SHEET Unit: 2 Page (Next Disposition:

22 I

Originator/Date . Reviewer/Date Calculation No. Revision J. C. Penrose / H. R. Kopke M. B. Cooper H21 C-097 0 R, .

is necessalry since, in some instances, the input provided in Reference 7.12.3 is in a different foim than used herein.

5.8.2 Benchmark Results The results of the benchmark provided in Attachment 5 are compared to the results reported in Reference 7.12.3. This comparison is -illustrated in Figure 5-1, repeated below for convenience.

Figure.5-1: GGNS Benchmark Post-LOCA Suppression Pool pH Analysis pH Response without SLCS ft A.

S -e- Benchms

-4F- GGNS ý

'A

, . D 1 i 0.01 0.1 1 10 100 1000 Time Alter LOCA (hours)

Figure 5-1: demonstrates the successful benchmarking of the model developed herein.

The result, are identical to 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> post-LOCA, thus indicating that the gap release phase and early in-vessel release phases are modeled in the same manner for both GGNS and the benchmark. Beyond 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br />, nitric acid and hydrochloric acid are produced as a result of radiolysis. The nitric acid contribution is the same for GGNS and the benchmark.

Slight differences between the benchmark and GGNS curves beyond 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> are attributed to differences in methodologies between GGNS-98-0039, Revision 1 (Ref.

7.12.1), adopted in this calculation, and GGNS-98-0039, Revision 3 (Ref. 7.12.2), which is the basis for Reference 7.12.3 (the benchmark), for computing hydrochloric acid production. The hydrochloric acid production rate in GGNS-98-0039, Revision 1, is based on -the. mass of cable jacket and on the radiation dose rate at the cable jacket surface multiplied by a flux averaging factor. However, the hydrochloric acid production rate in GGNS-98-0039, Revision 3, is based on the cable jacket surface area and on the NEP-DES-08 Rev 07

ENGINEERING SERVICES - CALCULATION CONTINUATION SHEET.,: Page 23

.(Next Project:Nine Mile Point Nuclear Station Unit: 2 Disposition:

Originator/Date Reviewer/Date Calculation No. Revision J. C. Penrose / H. R. Kopke M.B. Cooper H21C-097 0 Ref.I energy release per unit volume of containment, diminished by attenuation in air between the center of containment and the cable surface. Both methodologies use the same G value (with units -converted to rads in GGNS-98-0039, Revision 1) and the same expression for energy absorption fraction in the cable jacket. The benchmark also demonstrates that both methodologies yield very similar results.

The final suppression pool pH calculated by the spreadsheets herein is 4.07 in comparison to 4.03 in the GGNS calculation. This is considered sufficiently accurate to benchmark: the model developed for this calculation.

Similarly, the model. determining the final suppression pool pH following SLCS addition is benchmarked. Both the model herein and the GGNS calculation predict a final pH of 8.46.

NEP-DES-08 Rev 07

ENGINEERING SERVICES CACLTO OTNAINSETPage 24 I I Project: Nine Mile Point Nuclear Station Unit: 2 Disposition:

Originator/Date Reviewer/Date Calculation No. Revision J. C. Penrose / H. R. Kopke M. B. Cooper H21C-097 0 Ref.

6.0 Results 6.1 The pH in the unbuffered post-LOCA suppression pool initially rises due to the influence of cesium hydroxide addition at the beginning of the LOCA, but falls to below a pH 7.0 between approximately 12 to 14 days (see Figure 4-1, repeated below for convenience). The final pH at 30 days without buffering is 4.4, so the suppression pool pH does not satisfy the Acceptance Criterion of a pH greater than 7.0.

6.2 Addition of sodium pentaborate via the Standby Liquid Control System (SLCS) buffers the suppression pool and results in a final pH at 30 days of 8.3. The suppression pool pH will satisfy the Acceptance Criterion of a pH greater than 7.0 with use of the SLC system. The SLCS should be used prior to the suppression pool pH falling below 7.0. When determining the appropriate time to inject the sodium pentaborate, the duration of injection should be considered as well as the amount of time to achieve a homogenous mixture in the suppression pool.

Figure 4-1: Nine Mile Point Unit 2 Post-LOCA Suppression Pool pH Analysis pH Response without SLCS 9.0 Final pH with SLCS would be 8.3 8.0 7.0 6.0.

3.0 L.

0.010 0.100 1.000 10.000 100.000 1000.000 Time After LOCA (hours)

NEP-DES-08 Rev 07

ENGINEERING SERVICES CALCULATION CONTINUATION SHEET Page 25 (Next Project:*Nine Mile Point Nuclear Station Unit: 2 Disposition:

Originator/Date Reviewer/Date Calculation No. Revision J. C. Penrose / H. R. Kopke M. B. Cooper H21C-097 0 Ref. 7.0 References 7.1 Microsoft Excel 97 SR-2, S&L Program No. 03.2.081-1.0, dated 04/28/1999.

7.2 NMPNS Unit 2 Technical Specifications 7.2.1 TS 3.1.7, Amendment 91, "Standby Liquid Control (SLC) System."

7.2.2 TS 3.6.1.4,'Amendment 91, "Drywell and Suppression Chamber Pressure."

7.2.3 TS 3.6.1.5, Amendment 91, "Drywell Air Temperature."

7.2.4 TS 3.6.2.1, Amendment 91, "Suppression Pool Average Temperature."

7.2.5 TS 3.6.2.2, Amendment 91, "Suppression Pool Water Level."

7.3 NMPNS Unit 2 Procedures 7.3.1 N2-CTP-GEN-M105, Revision 00, "Monthly Reactor Water, SFC and Suppression Pool Chemistry.'

7.3.2 GAP-CHE-O1, Revision 09, "BWR Water Chemistry Operating Limits."

7.3.3 S-CTP-V666, Revision 01, "Auxiliary Chemistry System."

7.3.4 N2-OP-36A, Revision 04, "Standby Liquid Control System."

7.4 NMPNS Unit 2 Technical Requirements Manual, Revision 16.

7.5 NMPNS Unit 2 Facility Operating License, Docket No. 50-410, Amendment 100.

7.6 NMPNS Unit 2 Calculations 7.6.1. ES-1 15, Revision 2, "Primary Containment Volume/Area."

7.6.2 PR-C-19-C, Revision 3, "Dose Rates and Integrated Doses from Airborne and Plate-out Sources in;Drywell and Wetwell - Post-LOCA."

7.6.2.a PR-C-19-C, Revision 3, Disposition PR-C-19-C-03A.

7.6.3 PR-C-21-Q, Revision 1, "Post-LOCA Radiation Environment (Gamma) in Drywell and Wetwell du'e to Airborne and Liquid Sources."

7.6.3.a PR-C-21-Q, Revision 1, Disposition PR-C-21-Q-01A.

7.6.4 ES-145, Revision 02, "Primary Containment Environmental Parameters."

7.6.5 ES-121, Revision 01, "Large Break Accident Analysis for FSAR Section 6.2.1.1."

7.6.6 PR-C-20-1, Revision 3, "Dose Rates versus Distance and Dose Rate to Dose Conversion Factors for. Piping Containing Post-LOCA Fluids" 7.6.7 ES-142, Revision 2, "Evaluation of Long-Term Containment Pressure and Temperature Profiles for: Large Break Accident."

7.7 GE Nuclear Energy (GENE) Document No. GE-NE-A41-00097-00-01. DRF A41-00097-00, Class III, "Nine Mile Point Unit 2 24-Month Cycle Fission Product Inventory Evaluation," dated February 1999.

7.8 Radiological Health Handbook, U.S. Department of Health, Education, and Welfare, Public Health Service, Compiled and Edited by the Bureau of Radiological'Health and the Training Institute Environmental Control Administration, Revised Edition, 1970.

7.9 "Nuclides and.Isotopes - Chart of the Nuclides," 1 5 th Edition, GE Nuclear Energy, 1996.

NEP-DES-08 Rev 07

ENGINEERING SERVICES. CPage 26 (Next Project:Nine Mile Point NuclearStation Unit: 2 . Disposition:

Originator/Date Reviewer/Date Calculation No. Revision J. C. Penrose / H. R. Kopke, M.B. Cooper H21C-097 0 Ref.

7.10 U.S. Nuclear Regulatory Commission Regulatory Guides 7.10.1 Regulatory; Guide 1.49, Revision 1, "Power Levels of Nuclear Power Plants," dated December 1973.

7.10.2 Regulatory' Guide 1.183, Revision 0, "Alternative Radiological Source Terms for Evaluating Design Basis Accidents at Nuclear Power Reactors," dated July 2000.

7.11 NMPNS Unit 2 Updated Final Safety Analysis Report (UFSAR).

7.11.1 UFSAR Revision 15, §6.2.1.1.5, "Impact of Power Uprate on Large Break Containment Response Analysis."

7.11.2 UFSAR Revision 14, §6.2.1.1.3, "Design Evaluation."

7.12 Grand Gulf Nuclear Station Documents 7.12.1 Engineering Report No. GGNS-98-0039, Revision 1, "Suppression Pool pH and Iodine Re-Evolution Methodology." (included as Attachment 7 to Letter GNRO-2000/20005 from GGNS to the NRC) 7.12.2 Engineering Report No. GGNS-98-0039, Revision 3, " Suppression Pool pH and Iodine Re-Evolution Methodology." (included as Attachment 1 to Letter GNRO-2000/00100 from GGNS to the NRC) 7.12.3 Calculation' No. XC-Q11111-98013, Revision 2, "Suppression Pool pH Analysis." (included as Attachment 2 to Letter GNRO-2000/00100 from GGNS to the NRC) 7.13 NUREG/CR-5950,:"Iodine Evolution and pH Control", Published December, 1992.

7.14 NUREG-1465, "Accident Source Terms for Light Water Nuclear Power Plants", Published February, 1995.

7.15 NUREG-1081, "Post Accident Gas Generation from Radiolysis of Organic Materials", Published September, 1984.

7.16 NUREG-5732, "Iodine Chemical Forms in LWR Severe Accidents", Published April, 1992.

7.17 CRC Handbook of'Chemistry and Physics 7.18 ASME Steam Tables, 4 th Edition, The American Society of Mechanical Engineers, New York, NY, 1979.

7.19 DIT-NM-NPEE-001, "Determination of Exposed Cables in the. NMP2 Drywell." (Included as Attachment 3) 7.20 U.S. Nuclear Regulatory Commission Standard Review Plan, NUREG-0800, Revision 2, Section 6.5.2, "Containment Spray as a Fission Product Cleanup System."

7.21 Commission Paper No. SECY-94-302, "Source Term Related Technical and Licensing Issues Pertaining to Evolutionary and Passive Light Water Reactor Designs," December 19, 1994.

7.22 General Electric Design Specification 22A7641, Revision 1, "Standby Liquid Control System."

7.23 NMP2 Specification No. NMP2-E023A, Revision 2, "Insulated 15-kV Power Cable."

NEP-DES-08 Rev 07

ENGINEERING SERVICES CALCULATION CONTINUATION SHEET P.*age 27 Final (Next_____

Project:Nine Mile Point NuclearStation Unit: 2 Disposition:

Originator/Date Reviewer/Date Calculation No. Revision J. C.Penrose H. R. KoHke M.B. Cooper H21C-097 0 Ref.

7.24 Chilton, A. B., Shultis, J. K., and Faw, R. E., Principles of Radiation Shielding, Prentice-Hall, Inc.,

Englewood Cliffs, NJ, 1984. ISBN 0-13-709907-X 7.25 NUREG/CR-1413, "A Radionuclide Decay Data Base - Index and Summary Table," May 1980.

7.26 GE Document No! APED-5398-A, "Summary-of Fission Product Yields for U23, U22, Pu 239, and Pu 241 at Thermal,; Fission Spectrum and 14 MeV Neutron Energies," Class I, Revised, dated October 1, 1968.

NEP-DES-08 RevO07 Calculation No. H21C-097 Nine Mile- Point Nuclear Station Revision 0 Unit 2 Page 1-1 Attachment I Determination of Reactor Core Inventories

Attachment. 1 Calculation No. H21 C-097 Nine Mile Point Nuclear Station "Revision 0 Unit 2 - Page 1-2 Purpose The purpose of this attachment is to document the inventory of all iodine and cesium isotopes in the reactor core.

Methodology.

The reactor core inventory is calculated using GE document GE-NE-A41-00097-00-01, DRF A41-00097-00, "Nine Mile Point Unit 2 24-Month Cycle Fission Product Inventory Evaluation,"

(Ref. 7.7 in main body). Case 3, which addresses a single batch core with 1,400 Effective Full Power Days (EFPD) and 34,000 MWd/ST Expected Core Average Exposure (CAVEX), is conservatively used to determine the inventories. The inventory at both t=0 and t=30 days (720 hours0.00833 days <br />0.2 hours <br />0.00119 weeks <br />2.7396e-4 months <br />) is calculated to demonstrate that the values at t=0 are conservative.

Reference 7.7 presents the activity in Ci/MWt. To convert this to core inventory, the methodology on p. 29 of the Radiological Health Handbook (Ref. 7.8 in the main body) is used.

XN ln(2)._N tl/2.M~tl/2 In(2).Na =3.7x1010 XN [Ci1 In(2)-Na g'm = 37x1010.Mt/

where:

XN specific activity [dis/sec/gm]

N number of atoms per gram [atoms/gm]

tI r2 half life [sec]

Na Avogadro constant [atoms/mole]

M molecular weight [gm/mole] = [amu]

3.7x1 010 disintegrations per second per Curie Once the total core inventory is known, the fractions released during the gap release phase and early in-vessel (EIV) phase are determined in accordance with the guidance provided in Table I of Regulatory Guide 1.183 (Ref. 7.10.2 in main body). This table is summarized below for alkali metals such as cesium and halogens such as iodine.

Group Core Inventory Fraction Released into Containment Gap Release Phase I Early In-Vessel Phase Total Halogens 0.05 I 0.25 0.30 Alkali Metals 0.05 0.20 0.25 Notes/Assumptions See the text in the main bodyfor the basis for these items.

1. Stable cesium is conservatively not included in the cesium inventory.
2. The mass of iodine-127 is assumed to be 30% of the mass of iodine-129.

Attachment I calculation No. H21C-097 Nine Mile Point Nuclear Station Revision 0 Unit 2 Page 1-3 Results The results below are taken from Tables 1-1 through 1-4..

Reactor Core Inventory [gram-moles]

Element t=0 t=30 days

_ Gap Release EIV Total Gap Release EIV Total Iodine 13.5 I 67.5 81.0 13.1 65.7 78.8 Cesium 100.7 402.7 503.3 100.3 401.1 501.4 It can be seen that the reactor core inventory of both iodine and cesium does, not change appreciably during the duration of the accident. Therefore, use of the values at time=0 is both reasonable and conservative.

Table 1-1: Core Iodine Inventory Determination (t=0 Post-LOCA) Calculation No. H21C-097 Nine Mile Point Nuclear Station (Single Batch Core with 1400 EFPD and 34,000 MWd/ST CAVEX) Revision 0 Unit 2 Page 1-4 Time post-LOCA 0 sec Core Inventov Fryaction Released in Containment for Haloens Neutron Mass 1.008665 amu (Ref. 1) Gap Release Phase 0.05 (Ref. 4, Tbl 1)

Core Thermal Power (100%) 3,467 MWt (Ref. 5) Early In-Vessel Phase .0.25 (Ref. 4, Tbl 1)

Core Thermal Power (102%) .3,536 MWt (Ref. 6) 1 Curie 3.70t+10 dis/sec (Ref. 1)

Avogadro's Number 6.022137E+23 atoms/mole (Ref. 2)

Isotope Atomic (Ref.Mass

1) (Ref.Life Half 2) 12 nits HalfLife Activity (Ref. 3)

Activity per Core Specific Activity Core Inventory Gap Release ElV Release Total Release

[amu _ Isec] [CI/MWt) [Ci/corel [Cl/gm) [gmn/core) [mole) [mole) [mole) 1-127(2) 126.904470 stable 3.03E+00 1.51E+01 1.82E+01 1-128 127.905838 25.00 m 1,500 4.28E+02 1.51E+06 5.88E+07 2.57E-02 1.01E-05 5.03E-05 6.04E-05 1-129 128.904987 1.57E+07 a 4.95E+14 1.30E-03 4.60E+00 1.77E-04 2.60E+04 1.012+01 5.04E+01 6.052+01 1-130 129.906676 12.36 h 44,496 1.09E+03 3.85E+06 1.95E+06 1.97E+00 7.60E-04 3.80E-03 4.56E503 1-130M 129.906676 9.0 m 540 4.23E+02 1,50E+06 1.61E+08 9.30E-03 3.58E-06 1.79E-05 2.15E-05 1-131 130.906127 8.020 d 692,928 2.71E+04 9.58E+07 1.24E+05 7.71E+02 2.94E-01 1.47E+00 1.77E+00 1-132 131.907981 2.28 h 8,208 3.92E+04 1.39E+08 1.04E+07 1.33E+01 5.04E-03 2.52E-02 3.03E-02 1-133 132.907750 20.8 h " 74,880 5.51E+04 1.95E+08 1.13E+06 1.72E+02 6.47E-02 3.23E-01 3.88E-01 1-133M 132.907750 9 s .9 1.70E+03 6.01 E+06 9.43E+09 6.37E-04 2.40E-07 1.20E-06 1.44E-06 1-134 133.909850 52.6 m 3,156 6.03E+04 2.13E+08 2.67E+07 7.99E+00 2.98E-03 1.49E-02 1.79E-02 1-134M 133.909850 3.7 m 1222 6.00E+03 2.12E+07 3.79E+08 5.59E-02 2.09E-05 1.04E-04 1.25E-04 1-135 134.910020 6.57 h. . 23,652 5.16E+04 1.82E+08 3.54E+06 5.16E+01 1.91E-02 9.56E-02 1.15E-01 1-136 135.914740 1.39 m 83 2.44E+04 8.63E+07 9.95E+08 8.67E-02 3.19E-05 1.59E-04 1.91E-04 1-136M 135.914740 47 s 47 1.43E+04 5.06E+07 1.77E+09 2.86E-02 1.05E-05 5.27E-05 6.322-05 1-137(1) 136.923405 24.5 s 24.5 2.38E+04 8.42E+07 3.36E+09 2.50E-02 9.14E-06 4.57E-05 5.48E-05 1.138(l) 137.932070 6.5 s 6.5 1.18E+04 4.17E+07. 1.26E+10 3.32E-03 1.20E-06 6.012&06 7.21E-06 1.139(1) 138.940735 2.30 s 2.30 5.22E+03 1.85E+07 3.53E+10 5.23E-04 1.88E-07 9.41 E-07 1.13E-06 1.1401) 139.949400 0.86 S 0.86 1.47E+03 5.20E+06 9.37E+10 5.55E-05 1.98E-08 9.91E-08 1.19E-07 1-141(") 140.958065 0.45 s 0.45 2.43E+02 8.59E+05 1.78E+11 4.83E-06 1.71E-09 8.57E-09 1.03E-08 1-142(l) 141.966730 0.2 s 0.2 3.53E+01 1.25E+05 3.97E+11 3.14E-07 1.11E-10 5.53E-10 6.64E-10 1-14 3 (lx3" 142.975395 n/a 2.33E+00 8.24E+03 "

1. 14 4 ('IX31 143.984060 n/a We' 1.90E-01 6.72E+02 Total 2.70E+04 13.50 67.51 81.01
1) Atomic mass not given for these isotopes in Reference 1; therefore, a multiple of the neutron mass is added to the atomic mass of I-1 36M.
2) Since 1-127 is a stable element, its quantity is not presented in Reference 3. The mass of 1-127 is assumed to be 30% of the mass of 1-129.
3) Half-life Information not available in Reference.2.

References

1. Radiological Health Handbook, 1970 (main body Reference 7.8)
2. Chart of the Nuclides, 15th Edition (main body Reference 7.9).
3. GE-NE-A41-00097-00-01, NMP2 24-month Cycle Fission Product Inventory Evaluation (main body Reference 7.7)
4. Regulatory Guide 1.183 (main body Reference 7.10.2)
5. NMP2 Site License (main body Reference 7.5)
6. Regulatory Guide 1.49 (main body Reference 7.10.1)

Iodine t=0 Table 1-2: Core Cesium Inventory Determination (t-0 Post-LOCA) Calculation No. H21C-097 Nine Mile Point Nuclear Station (Single Batch Core with 1400 EFPD and 34,000 MWd/ST CAVEX) Revision 0 Unit 2 Page 1-5 Time post-LOCA S'0 sec Core Inventory Fraction Released ih Containment for Alkalis Neutron Mass 1.008615 amu (Ref. 1) Gap Release Phase 0.05 (Ref. 4, Thl 1)

Core Thermal Power (100%) 3,467 MWt (Ref. 5) Early In-Vessel Phase 0.20 (Ref. 4, Thl 1)

Core Thermal Power (102%) 3,536 MWt (Ref. 6) 1 Curie 3.70E+10 dis/sec (Ref. 1)

Avogadros Number 6.022137E+23 a.omsjmole (Ref. 2)

Atomic Mass Half Life 1 HafLfJlvtActivity Activity Specific . Core Gap p EIV EV [Total'oa Istp (Ref. 1)

[amu]

(Ref. 2) t1/2 units j (Ref. 3) per Core Activity Cr Inventory

  • Release Release Release

_ [sec] [CI/MWt] [Ci/core] [Cl/gm] [gm/core] [mole] [mole] [mole]

CS-132 131.906393 6.48 d 559,872 7.96E+00 2.81E+04 1.53E+05 1.84E-01 6.98E-05 2.79E-04 3.49E-04 CS-133(i) " '

CS-134 133.906823 2.065 a 65,121,840 7.29E+03 2.58E+07 1.29E+03 1.99E+04 7.44E+00 2.98E+01 3.72E+01 CS-134M 133.906823 2.90 h 10,440 1.70E+03 6.01E+06 8.07E+06 7.45E-01 2.78E-04 1.11E-03 1.39E-03 CS-135 134.905770 2.30E+06 a 7.25E+13 2.51E-02 8.88E+01 1.15E-03 7.70E+04 2.85E+01 1.14E+02 1.43E+02 CS-135M 134.905770 53 m 3,180 8.81E+02 3.12E+06 2.63E+07 1.18E-01 4.39E-05 1.76E-04 2.20E-04 CS-136 135.907340 13.16 d 1,137,024 2.28E+03 8.06E+06 7.30E+04 1.1OE+02 4.06E-02 1.63E-01 2.03E-01 CS-137 136.906770 30.07 a 9.48E+08 4.35E+03 1.54E+07 8.69E+01 1.77E+05 6.47E+01 2.59E+02 3.23E+02 CS-138 137.910800 32.2 m 1,932 5.002+04 1.77E+08 4.23E+07 4.18E+00 1.51 E-03 6.06E-03 7.57E-03 CS-138M 137.910800 2.9 m 174 2.39E+03 8.45E+06 4.70E+08 1.80E-02 6.52E-06 2.61E-05 3.26E-05 CS-139 138.912900 9.3 mr 558 4.73E+04 1.67E+08 1.46E+08 1.15E+00 4.14E-04 1.65E-03 2.07E-03 CS-140' 139.917110 -1.06 m 64 4.26E+04 1.51E+08 1.27E+09 1.19E-01 4.25E-05 1.70E-04 2.12E-04 CS-141(2) 140.925775 24.9 s 24.9 3.16E+04 1.12E+08 3.22E+09 3.48E-02 1.23E-05 4.93E-05 6.17E-05 CS-142(2) 141.934440 1.8 a 1.8 1.91E+04 6.75E+07 4.42E+10 1.53E-03 5.39E-07 2.16E-06 2.69E-06 12 CS-143 ) 142.943105' 1.78 s 1.78 9.33E+03 3.30E+07 4.43E+10 ,7.44E-04 2.60E-07 1.04E-06 1.30E-06 1 21 CS-144 143.951770 1.01 s 1.01 2.70E+03 9,55E+06 7.76E+10 1.23E-04 4.27E-08 1.71E-07 2.14E-07.

CS-145(2) 144.960435 0.59 a 0.59 6.79E+02 2.40E+06 1.32E+1 I .1.82E-05 6.28E-09 2.51E-08 3.14E-08 CS-146(2) 145.969100 0.322 s 0.322 9.96E+01 3.52E205 2.40E+11 1.47E-06 5;03E-10 2.01E-09 2.51E-09.

CS-147(2 ) 146.977765 0.227 s 0.227 1.65E+01 5.83E+04 3.38E+11 1.73E-07 5.87E-11 2.35E-10 2.94E-10 CS-148(2) 147.986430 0.15 s 0 15 1.07E+00 3.78E+03 5.08E+11 7.45E-09 2.52E-12 1.01E-1111 1.26E-11 Total 2.741E+05 100.67 *402.68 503.34

1) Stable cesium Is conservatively not accounted for In this analysis as it forms cesium hydroxide (CsOH).
2) Atomic mass not given for these isotopes in Reference 1; therefore, a multiple of the neutron mass is added to the atomic mass of CS-1 40.

References

1. Radiological Health Handbook, 1970 (main body, Reference 7.8)
2. Chart of the Nuclides, 15th Edition (main body Reference 7.9)
3. GE-NE-A4I-00097-00-01, NMP2 24-month Cycle Fission Product Inventory Evaluation (main body Reference 7.7)
4. Regulatory Guide 1.183 (main body Reference 7.10.2)
5. NMP2 Site License (main body Reference 7.5)
6. Regulatory Guide 1.49 (main body Reference 7.10.1)

Cesium t=0 Table 1-3: Core Iodine Inventory Determination (t=30 days Post-LOCA) Calculation No. H21C-097 Nine Mile Point Nuclear Station (Single Batch Core with 1400 EFPD and 34,000 MWd/ST CAVEX) . Revision 0 Unit 2 Page 1-6 Time post-LOCA 30 days Core Inventory Fraction Released inContainment for Halooens Neutron Mass 1.008665 amu (Ref. 1) Gap Release Phase 0.05 (Ref. 4, Tbl 1)

Core Thermal Power (100%)

  • 3,467 MWt (Ref. 5) Early In-Vessel Phase 0.25 (Ref. 4, Tbl 1)

Core ThermalPower (102%) .3,536 MWt (Ref. 6) 1 Curie 3.70E+10 dis/sec (Ref. 1)

Avogadro's Number 6.022137E+23 atoms/mole (Ref. 2)

Atomic Mass Half Life Life Activity Activity Specific Core Gap EIV Total Isotopa (Ref. 1) (Ref. 2) (Ref. 3) per Core Activity Inventory Release Release Release amu] . . [Isec] ICi/MWtII [Ci/corel [Ci/gm] [gm/cora [molel I [mole] imolel 1-127(2) 126.904470 stable 3.03E+00 1.51E+01 1.82E+01 1-128 127.905838 25.00 m 1,500 0.00E+00 0.OOE+00 5.88E+07 0.OOE+00 0.OOE+00 0.00E+00 0:00E+00 1-129 128.904987 1.57E+07 a 4.95E+14 1.30E-03 4.60E+00 1.77E-04 2.60E+04 1.01E+01 5.04E+01 6.05E+01 1-130 129.906676 12.36 h 44,496 3.18E-15 1.12E-11 1.95E+06 5.76E-18 2.22E-21 1.11E-20 1.33E-20 1-130M 129.906676 9.0 m 540 0.00E+00 0.00E+00 1.61E+08 0.00E+00 0.OOE+00 0.00E+00 0.00E+00 1-131 130.906127 8.020 d 692,928 2.10E+03 7.43E+06 1.24E+05 5.97E+01 2.28E-02 1.14E-01 1.37E-01 1-132 131.907981 2.28 h 8,208 6.71E+01 2.37E+05 1.04E+07 2.28E-02 8.63E-06 4.32E-05 5.18E-05 1-133 132.907750 20.8 h 74,880 2.14E-06 7.57E-03 1.13E+06 6.68E-09 2.51E-12 1.26E-11 1.51E-11 1-133M 132.907750 9 a 9 0.OOE+00 0.00E+00 9.43E+09 0,00E+00 0.00E+00 0.00E+00 0.00E+00 1-134 133.909850 52.6 m 3,156 0.00E+00 0.00E+00 2.67E+07 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1-134M 133.909850 3.7 m 1 222 0.00E+00 0.00E+00 3.79E+08 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1-135 134.910020 6.57 h.' 23,652 0.OOE+00 0.00E+00 3.54E+06 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1-136 135.914740 1.39 m 83 0.00E+00 0.00E+00 9.95E+08 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1-136M 135.914740 47 s 47 0.00E+00 0.00E+00 1.77E+09 0.002+00 0.OOE+00 0.00E+00 0.00E+00 1-137(') 136.923405 24.5 a 24.5 0.00E+00 0.00E+00 3.36E+09 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1-13801) 137.932070 6.5 s 6.5 0.00E+00 0.00E+00 1.26E+10 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1-139(') 138.940735 2.30 s 2.30 0.00+E00 0.00E+00 3.53E+10 0.002+00 0.00E+00 0.00E+00 0.00E+00 1.140(1') 139.949400 0.86 s 0.86 0.00E+00 O.00E+00 9.37E+10 0.00E+00 0.00E+00 0.00E+00 0.OOE+00 1-141(1) 140.958065 0.45 s 0.45 0.00E+00 0.00E+00 1.78E+11 0.002+00 0.00E+00 0.00E+00 0.00E+00 1-142(') 141.966730 0.2 a 0.2 0.00E+00 0.00E+00 3.97E+11 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1-14 3 (lX3) 142.975395 n/a 0.00E+00 0.00E+00 1-144)(X3) 143.984060 n/a 0.00E+00 Total 2.61 E+04 13.14 65.69 78.82 Notes

1) Atomic mass not given for these isotopes in Reference 1; therefore, a multiple of the neutron mass is added to the atomic mass of 1-136M.
2) Since 1-127 Is a stable element, its quantity is not presented in Reference 3. The mass of 1-127 Is assumed to be 30% of the mass of 1-129.
3) Half-life information not available in Reference 2.
1. Radiological Health Handbook, 1970 (main body Reference 7.8)
2. Chart of the Nuclides, 15th Edition (main body Reference 7.9)
3. GE-NE-A41-00097-00-01, NMP2 24-month Cycle Fission Product Inventory Evaluation (main body Reference 7.7)
4. Regulatory Guide 1.183 (main body Reference 7.10.2)
5. NMP2 Site License.(main body Reference 7.5)
6. Regulatory Guide 1.49 (main body Reterence:7.10.1)

Iodine t=30d Table 1-4: Core Cesium Inventory Determination (t=30 days Post-LOCA) Calculation No. H21C-097 Nine Mile Point NuclearStation (Single Batch Core with 1400 EFPD and 34,000 MWdlST CAVEX) Revision 0 Unit 2 Page 1.7 Time post-LOCA 30 days Core Inventory Fraction Released in Containment for Alkalis Neutron Mass 1.008665 amu (Ref. 1) Gap Release Phase 0.05 (Ref. 4, TbI 1)

Core Thermal Power (100%) 3,467 MWt (Ref. 5) Early In-Vessel Phase 0.20 (Ref. 4, Tbl 1)

Core Thermal Power (102%) 3,536 MWt (Ref. 6) 1 Curie 3.70E+10 dis/sec (Ref. 1)

Avogadro's Number 6.022137E+23 atoms/mole (Ref. 2)

Isotope Atomic Mass (Ref. 1)

Half Life (Ref. 2) 1 units! f Half Life Activity (Ref. 3)

Activity per Core Specific Activity Core I Inventory Gap Release EIV Release Total Release I [amu] . j [sec] [Ci/MWt] [Cilcorel I [Cilgm] [gm/core] [mole] [mole] [mole]

CS-132 131.906393 6.48 d 559,872 3.21E-01 1.14E+03 1.53E+05 7.43E-03 2.82E-06 1.13E-05 1.41E-05 1)

CS- 133('

CS-134 133.906823 2.065 a 65,121,840 7.09E+03 2.51E+07 1.29E+03 1.94E+04 .7.24E+00 2.89E+01 3.62E+01 CS-134M 133.906823 2.90 h 10,440 0.00E+00 0.00E+00 8.07E+06 0.OOE+00 0.OOE+00 0.OOE+00 0.OOE+00 CS-135 134.905770 2.30E+06 a 7.25E+13 2.51E-02 8.68E+01 1.15E-03 7.70E+04 2.85E+01 1.14E+02 1.43E+02 CS-135M 134.905770 53 m 3,180 0.OOE+00 0.OOE+00 2.63E+07 0.OOE+00 0.00E+00 0.OOE+00 0.OOE+00 CS-136 135.907340 13.16 d 1,137,024 4.66E+02 1.65E+06 7.30E+04 2.26E+01 8.30E-03 3.32E-02 4.15E-02 CS-137 136.906770 30.07 a 9.48E+08 4.34E+03 1.53E+07 8.69E+01 1.77E+05 6.45E+01 2.58E+02 3.23E+02 CS-138 137.910800 32.2 m 1,932 0.OOE+00 0.OOE+00 4.23E+07 0.OOE+00 0.00E+00 0.OOE+00 0.00E+00 CS-138M 137.910800 2.9 mr 174 0.OOE+00 0.00E+00 4.70E+08 0.OOE+00 0.OOE+00 0.OOE+00 0.OOE÷00 CS-139 138.912900 9.3 m 558 0.OOE+00 0.OOE+00 1.46E+08 0.00E+00 0.OOE+00 0.OOE+00 0.OOE+00 CS-140 139.917110 1.06 mr 64 0.OOE+00 0.OOE÷00 1.27E+09 0.OOE+00 0.OOE+00 0.OOE+00 0.OOE+00 CS-141(2) 140.925775 24.9 s 24.9 0.00E+00 0.OOE+00 3.22E+09 0.OOE+00 0.00E+00 0.OOE+00 0.OOE+00 CS-142(2) 141.934440 1.8 s 1.8 0.OOE+00 0.OOE+00 4.42E+10 0.OOE+00 0.OOE+00 0.OOE+00 0.OOE+00 CS-143(2) 142.943105 1.78 s 1.78 0.OOE÷00 0.OOE+00 4.43E+10 0.OOE+00 0.OOE+00 0.OOE+00 O.OOE+00 CS-144( 2 ) 143.951770 1.01 s 1.01 0.OOE+00 0.OOE+00 7.76E+10 0.OOE+00 0.OOE+00 0.OOE+00 0.OOE+00 CS-145(2) 144.960435 0.59 s 0.59 O.OOE+00 0.OOE+00 1.32E+11 0.00E+00 0.OOE+00 0.OOE+00 0.OOE+00 CS-146( 2 ) 145.969100 0.322 s 0.322 0.00E+00 0.OOE+00 2.40E+11 0.OOE+00 0.00E+00 0.00E+00 0.00E+00 CS-147(2) 146.977765 0.227 s 0.227 0.OOE+00 0.OOE+00 3.38E+11 0.OOE+00 0.OOE+00 0.OOE+00 0.OOE+00 CS-148(2) 147.986430 0.15 s 0:15 0.OOE+00 0.OOE+00 5.08E+11 0.OOE+00 0.OOE+00 0.OOE+00 0.OOE+00 Total 2.730E+05 100.3 401.1 501.4 Notes

1) Stable cesium Is conservatively not accounted for In this analysis as It forms cesium hydroxide (CsOH).
2) Atomic mass not given for these Isotopes In Reference 1; therefore, a multiple of the neutron mass is added to the atomic mass of CS-140.

References

1. Radiological Health Handbook, 1970 (main body Reference 7.8)
2. Chart of the Nuclides, 15th Edition (main body Reference 7.9)
3. GE-NE-A41-00097-00-01, NMP2 24-month Cycle Fission Product inventory Evaluation (main body Reference 7.7)
4. Regulatory Guide 1.183 (main body Reference 7.10.2)
5. NMP2 Site License (main body Reference 7.5)
6. Regulatory Guide 1.49 (main body Reference 7.10.1)

Cesium t=30d

Attachment I Table 1-1 Equations: Core Iodine Inventory Determination (t=0 Post-LOCA) Calculation No. H21C-097 Nine Mile Point Nuclear Station (Single Batch Core with 1400 EFPD and 34,000 MWd/ST CAVEX) Revision 0 Unit 2 Page 1-8 A I D E F I Time post-LOCA 0 sec__

2 Neutron Mass 1.008665 aenu (Ref. 1) 3 Core Thermal Power(100%) 3467 MWt (Ref. 5) 4 Core Thermal Power (102%) =D3"1.02 MWt (Ref. 6) 5 1 Curie 37000000000 dis/sec . (Ref. 1) 6 Avogadro's Number 6.022137E+23 atoms/mole (Ref. 2) 7 Atomic Mass Half Life usl Activity

  • Isotope (Ref. 1) (Ref. 2) 11,2Units *Half Life Activity (Ref. 3) 8 9 [smut Isect [Ci/MWt!

10 1-127(2* 126.90447 stable 11 1-128 127.905838 25 m =IF(D1 l='"s',Ci11 IF(D1 l="m*,C 11"60,IF(D11I ="h",Cl1*60*60,1F(ID l=d",C 11"24"60"60,1F(ID1 =*a*,C 11°365*24*60"60,"r11a"))))) 428 12 1-129 128.904987 15700000 a =IF(_12=_ _ __C_2,_F(D_2=_m_,C_2*60,_F(D_2_'h",C_12*60*60,1F(D12_"d*,C_2*24*60*60,1FI12='a_,C_2*365*24*60*60,'nla"))))) 0.0013 13 1-130 129.906876 12.36 h IF(D13=s_,C13,1F(D_13=_m",C_13"60,1F(D13 _h'.C_13*60_60,_F(D13="d_,C_3_24°60*60,_F(D13='a",C13*36524*60*60,"na_))))) 1090 14 1-130M 129.906676 9 m =IF(D14='s.,C14,1F(D14="m.,C14*60.IF(D14="h'.C 1460*60,IF(D14="d",C14*24*60*60,IF D14='a,C 14*365"24*60*60.,n/a'))))) 423 15 1-131 130.906127 8.02 d =IFfD15="sr.C15,IF(D1S=*m.,C15*60,IF(D1S='h".C15*60*60.IF(D15=-d*,C1524*60*60.IF D15=-a.'C15*385*24*60*60.'n/a*)))' 27100 16 1-132 131.907981 2.28 h =IFD16=-s-,C16,F(F016= m-,C16*60,IF(D16=-h*,C1l6*6060*IF(D16=-d",C16*24*60*60,IF D16=*a*.C16*365*246060"n/a'))))) 39200 17 1-133 132.90775 20.8 h =1F D17=ýs.`C17,F D17=*m-,C17*60`F(D17=h-,C17*6060,IF(D17=d*,C17*2460*60IF(D17=aC17*365*24606Dn/a-)))) 55100 18 1-133M 132.90775 9 a =IF(D18=s-.C18,IF(FD18=-m.`C1860,IF(D18="h,.C1*60*60.IF(D 18=-d-,C18*24*60*60,IF D18=*asC1l8*36524*60*60,-n/a-))) 1700 19 1-134 133.90985 52.6 m =IF(D19='s',C19,IF(D19=*m',C19°60, F(D19="h',C19*60*60, F(DI9="d",C19°24"60*60,IF(D19='a',C19365*24"60*60,"n/a*)))) 60300 20 1-134M 133.90985 3.7 m =IF(D20='s",C20,1F(D20='mn,C20°60, F(D20='h'.C20"60*60,IF(020="d',C20*24"60*60,IF D20=*a*,C20*365*24*60°60.'n/a'))) 6000 21 1-135 134.91002 6.57 h =IFD21 ,C21,iF(D21=-m',C21*60,IF(D21=h".C21.6060.IF(D21=dC21246060,IFD21='a",C2136524*6060.,nra"))))) 51600 22 1-136 135.91474 1.39 m =IF(D22="s.C22,IF(D22= m*,C22*60,IF(D22='h*,C22*60*60,F(D22=d*,C22*2460*60,IF(D22=aC22-365*24°60*60,"n/a-)))) 24400 23 1-136M 135.91474 47 s =IF(D23=s*,C23.IF(D23="m.C2360,IF(D23=h*,C2360*60,F(D23="d.C23*246060,IF(D23="aC23*365*246060,"nla) 14300 24 1-13711) =823+1*D$2 24.5 s IF(D24=s'.C24,[F(D24='m,C24'60.IF(D24='h-,C24*60"60,IF(024="d,ýC24*24"60*60,1F(D24=°a*.C24*365*24*60"60,*n/a"))))) 23800 25 1-138"1) =B24+1*D$2 6.5 s =IF(D25= s",C25,1F(D25=-m".25160.*F(D25="h*'C25*6060F(D25='d-*C25*24*60*60F(D25=-a".C25*365*24*6060'*n/*-))))) 11800 26 1-139(') =B25+lSD$2 2.3 s =_F(D2_=_s _C26__FD26=-__ _F(D2_=_d-.C2_24___F(D2_=_a__C2__3_5_24__-na_)_)_

.C2-6_6_'_F(D2_=-h__C2_6_6__ 5220 27 1-140'1) =B26+1"D$2 0.86 s =IF(D27=_s _,C27_IFD27=_m"_C27_60_IF(D27=_h'_C27"60*60_IF(D27="d__C27_24_60*60,1FD27'a',C27*365°24"80*60,_n/a"))))) 1470 28 1-141(') =B27+l°D$2 0.45 s =_F(D28=_s'C28__ F(D28__m__C2__ 6_ F(D28=_hC28_6_6_F(D28=_d_ C28_24_6_6'_FD28=-aC28_365*2_6_6_na_)_)) 243 29 1-142(") =828+1D$2 0.2 s =IF(D29=__s",C29,1F(D29=_m',C29°60,1F(D29="h°,C29*60_60_1F(D29="d",C29-24*60*60,1F(D29=_a_0C29*365°24°60°60_"n/a______ 35.3 30 1- 14 3 ('"3) =B29+1*D$2 =.F(D30="s.C30F(D30=-m',C3060F(D30=*h-,C306060,IF(D30=*d-,C3024660.IF(D30=-a*,C30365*24*6060.-n/a-))))) 2.33 31 1-144 (I'3) =B30+÷l°$2 _=IF(D31=_s_,C31,_FD31=_m',C31"80,_F(D31=_h-_C31_6__6__F(D31=-d_'C31_24_6__6__ F(D31=-a_'C31_365_24_6__6_.-n/a-))))) 0.19 32 33 Nola I 34 1) Atomic mass not given for these isotopes in Reference 1; therefore, a multiple of the neutron mass is added to the atomic mass of I-1 36M.

35 2) Since 1-127 is a stable element, its quantity is not presented in Reference 3. The mass of 1-127 is assumed to be 30% of the mass of 1-129.

37 36 3) Half-life information not available In Reference 2.

38 Rafe:

39 1. Radiological Health Handbook, 1970 (main body Reference 7.8) 40 2. Chart of the Nuclides, 15th Edition (main body Reference 7.9) 41 3. GE-NE-A41-00097-00-01, NMP2 24-month Cycle Fission Product Inventory Evaluation (main body Reference 7.7) 42 4. Regulatory Guide 1.183 (main body Reference 7.10.2) 43 5. NMP2 Site License (main body Reference 7.5)  : ._

44 6. Regulatory Guide 1.49 (main body Reference 7.10.1)

Iodine t-0 Eqs

Attachment I Table 1-11 Equations: Core Iodine Inventory Determination (t0 Post-LOCA). Calculation No. H21C-097 Nine Mile Point Nuclear Station (Single Batch Core with 1400 EFPD and 34,000 MWdIST CAVEX) Revision 0 Unit 2 Page 1-9 G H I K [ L 1 Core Inventory Fra tion Rele asd inContainment for Halogens 2 _____Gap Release Phase 0.05 (Ref. 4, Tbl 1) ______

3 Early In-Vessel Phase 0.25 (Ref. 4, Tbt 1) _____

7 Activity Specific Core Gap. EIV Total per Core Activity Inventory Release Release Release 9 1 Cilcore] ICi/gmj lgmlcorel [mole] Imolell [mole]

10 ______________ =0.3*J12 =0.3*K12 =J1O.KlO _

11 =F11OD$4 =LN(2)D$6/(D$5BI11E11 =GilIH11 =I1VJS2IBlI =111J$311611 =JI1+Ki1 12 =F12*D$4 =LN 2 *D$61(0$5512*El2) =G121H12 =112*J$2i912 =112J$3IB312 =J12+K12 13 =F13'D$4 =LN(2)t5$61(D$5513'E13) =G1311H13 =113*J$21BI3 =113*J$3/B13 =J13+K13 14 =Fl4*D$4 =LN 2 rO$6/ D$5*l4*E14) =G141H14 =114J52/B14l =1114JS31114 -J14+Kl4 15 =F15-D$4 = JpSrD6/O$5'B15-E15) =G151H15 I=I15'J$2/B15 =115*JS31B15 =J15.K15 16 1-F6*$4 I-LN(2)*D$6/(D$5*B616E16) =G161H16 =116J 211316 I-I16*J$31B16 -J16+KI6 171=FI7DS$4 I=LN(2)*D$P/(D$5-17'E17) =G 17/H 17 =117*J$2/817 =117*J$3/817 =J17+K17 18 =F18'D$4 = L N(2)-D$61(D$ 5 BI VE 18) =G 18/1-18 -118*J$21B18 -118*J$3IBl8 .=J18+K18 19 =F19-D$4 = LN(2)-0$61(D$5561 E 19) =G19/1-19 =119*J521B19 =1119J$31B319 =J19.K19 20 =F20*t$4 =LN(2)*D$6/(D$S*B20*E20) =G20/1-120 =120*J$21B20 =120*J$31B20 =J20.K20 21 =F21l0$4 =LNL2)D$6/(D$5-B21 E21) =G21/1-1211 =121J$21B21 -121*J$3/B21 =J21+K21 22 =F22*DS4 =LN(2)*D$6/(D$5*B22*E22) =G22/1-22 =122*J$2/B22 =122*JS31922 =J22+K22 23 =F23tD$4 =LN(2)-D$6/(D$5*B23*E23) -G23IH23 =123*J$21823 =123J$31B23 =J23.K23 24 =F24tD$4 I=LN(2rD$§1(D$55624*E24). =G24/1-124 =124J412/B24 =124*J$31B24 =J24.K24 25 =F25*0$4 =LN(2)*D$61(D$5*B25*E25) =G25/1-125 =125*J$21625 =125'J$3/B25 =J25+K25 26 =F2603$4 =LN(2)*D$ /(D$55926*E26) =G28/H26 =126-JS2/26 =126*J$3lB26 =J26.K26 27 =F270D$4 =LN(2)D$6/(D$55627'E27) =G27/H27 =127'J$21IJ27 =127JS311327 =J27+K27 28 =F28*D$4 'LN(2)*D$6/(D$5*828*E28) =G28/1-128 =128*J$2/628 =128*J$3IB28 =J28+K28 29 =F29tD$4 =LN(2)TD$6/(D$56829'E29) =G29/1-29 =129J$2/1B29 =129*J$3/B29 =.129+K29 32 ~~Total -SUM(1lO:i31) =SUM(JIO:J31) =SUM(KIC:K31) =SULM(-10:1.311)

Iodine t=0 Eqs

Attachment I Table 1-2 Equations: Core Cesium Inventory Determination (t=O Post-LOCA) Calculation No. H21C-097 Nine Mile Point Nuclear Station (Single Batch Core with 1400 EFPO and 34,000 MWd/ST CAVEX) Revision 0 Unit 2 Page 1-10 I A I B C D E F ITime Ipost-LOCA 0sec 2 Neutron Mass 1.008665 amu (Ref. 1) 3 Core Thermal Power (100%) 3467 MWI (Ref. 5) 4 Core Thermal Power (102%) =D3 1.02 MWI (Ref. 6) 5 1 Curie 37000000000 dis/sec (Ref. 1) 6 Avogadro's Number 6.022137E+23 atoms/mole (Ref. 2)

T Atomic Mass Half Uife Activity Half Life(Ref. 3)

Isotope (Ref. 1) (Ref. 2) units t1,2 9 [amu _ [sec] [CI/MWt]

10 CS-132 131.906393 6.48 d _=IFID10=_s__C10,1FID10=_m_,C10*60,1F(D10='h"_C10*60*60_IF(D10=_d_,C10°24"60"60,1F(D10=_a"_C10"365*24°60"60,_n/a))))) 7.96 11 CS-133_I _

12 CCS-134 133.906823 2.065 a =IF7D22='s9,CI2,1F0D12='m',C12*60,1F(D12='h",C12*60*60,1FI2="d',C12"24°60°60,1F(D12=*a',C12*365*24*60*60,*n/a"))))) 7290 13 CS-134M 133.906823 2.9 h =IFfD13='s",C13,1F(D13=*m",C13*60,IF(D13="h",C13*60*60,IF(D13=*d",C13°24"60°60,1F(D 3='a',C13°365*24*60*60,'n/a"))))) 1700 14 CS-135 134.90577 2300000 a =IF(D14=sC14.1IF(D14='m",Cl1460,IF(Dl14=h.*C14*60"60,IF(D14="d',C14°24*60°60.IF(D 4="a',C14"365*24"60°60,'n/a*))))) 0.0251 15 CS-135M 134.90577 53 m =IF(D15='s".C15,IF(D15=*m',C15*60,IF(D15='h*,C15°60"60,1F(D15="d',C 5"24*60*60,IF(D15="a',C15"365*24°60"60,'nra'))))) 881 16 CS-136 135.90734 13.16 d =_FD16=-s-_C16__FD16=-m-`C16_6__ FD16=-h__C16_6__6__FD16=_d-_C16_24_6__6_FD16=_C1_ 36__24_6_6_na))))) 2280 17 CS-137 136.90677 30.07 a =1F(O17=:s',C17,IF(D17='m",C1l760,lF(D17=hh*,C1760*60,iF(D17=dd',C1724*60*60.IF(D17="a',C1l7365*24*60*60'n/a"))))) 4350 18 CS-138 137.9108 32.2 m =IF(D18=s.C1BIF(D18='m',C 1860,IF(D18='h'.C18°60°60,IF(D18="d",C18°24*60*60,IF(D18="a',C18"365"24°60*60,"n/a"))))) 50000 19 CS-138M 137.9108 2.9 m =IF(D19=s',C19,IF(D19=-m-,C19*60,IF(D19=h-,CI9*660,IF(D19=-d-`C19*24*6060,iF(DO9=*a",C19*365*24*60860,n/a-))))) 2390 20 CS-139 138.9129 9.3 m =]F(D20=-s'C20,IF(D20=-m-'C20*60.*F(D20=-h",C20*60*60,IF(D20=-d',C20*24*60*60,[F(D20="a-.C20*365*24*60*60'n/a-))))) 47300 21 CS-140 139.91711 1.06 m =IF(D21="s"-C21,IF(D21=-m',C21 60,IF(D21=-h,.C216060,iF***F021=-dC21'24*60*60,IF(D21=-a-.C21*365*24*60'60,*nta¶))))) 42600 2

22 CS-141( ) =B21+17D$2 24.9 s =_FD22=-_s__C22__F(D22=_m_.C22__F(D22=-h__C22_6__6_._FD22=_d-'C22_24_6_6_F(D22=_a_.C22_36_24_6_6_n_-)))) 31600 1

23 CS-142( ) =922+1"D$2 1.8 s =_F(D23=_s-_C23__F__ 23=-m__C23_6__iF(D23=_h-'C23_6__6__F(D23=-d__C23_24_6__6__FD23-'-a-_C23_365_24_6__6_'_na_))))) 19100 24 CS-143(2) =B23+10D$2 1.78 s =F(D24=5s-.C24.[F(D24=-mC24*60,IF(D24=*h-,C24*6060F(D24=-d-'C24*24*6060'*F(D24="a-,C24*365*24*6060.-rda-))))) 9330 21 25 CS-144 =B24÷1"D$2 1.01 s =[F(D25="s',C25.*F(D25=-m*C25*60F(D25='h*.C25*6060F(D25=-d".C25*24*6060F(D25=-a-*C25*365*24*6060-n/a"))))) 2700 12 26 CS-145 ) =B25÷I"D$2 0.59 5s =IF(D26=s_,C26,_F(_26=_m',C26_60_IF(_26=_h',C26_60*60,IF(_26=_dC26°24_60_60,_F(D26=_aC26*365°24_60*60,_a))) 679 12 27 CS-146 1 =B26+1°D$2 0.322 . s = _FD27=_s-.C27__FD27=-m_.C27_6_. _FD27=-h--*-_C27_6__ _

6__FD27=-d-_C27_24_6_ F(D27=_a_.C27_36__24_6__6__n/a-))))) 99.6 2

28 CS-147( ) =B27+1VD$2 0.227 s5 =(D28=#s-,C28F(D28=-m-.C2860`*F(D28=-h-'C2860°60.*F(D28=*d-'C28*24*6060.*F(D28=-a-*C28365*24°6060.-n/a-))))) 16.5 12 29 CS-148 ) =928+1D$02 0.15 560F(D29=-h-C29'6060,IF(D29=-d'C29-24'6060,IF(D29="a-*C29*365*24*6060,n/a-))))) 1.07 30  ! ....

31 Ngle _

32 1) Stable cesium is conservatively not accounted for In this analysis as it forms cesium hydroxide (CsOH).

33 2) Atomic mass not given for these isotopes In Reference 1; therefore, a multiple of the neutron mass is added to the atomic mass of CS-140.

34 35 ~~tne 36 1. Radiological Health Handbook, 1970 (main body Reference 7.8) 37 2. Chart of the Nuclides, 15th Edition (main body Reference 7.9) 38 3. GE-NE-A41-00097-00-01, NMP2 24-month Cycle Fission Product Inventory Evaluation (main body Reference 7.7) 39 4. Regulatory Guide 1.183 (main body Reference 7.10.2)

  • 40 5. NMP2 Site License (main body Reference 7.5) 41 6. Regulatory Guide 1.49 (main body Reference 7.10.1)

Cesium t=0 Eqs Table 1-2 Equations: Core Cesium Inventory Determination (t--0 Post-LOCA) Calculation No. H21C-097 Nine'Mile Point Nuclear Station (Single Batch Core with 1400 EFPD arid 34,000 MWd/ST CAVEX) Revision 0 Unit 2 Page 1-11 G H I I I; K L__

1 Core Inventory Fraction Released in Containment fd Akai 2 ________Gap Release Phase 0!05 (Ref. 4. Tbil 1) ______

3 Early In-Vessel Phase 0.2 (Rel. 4, Tbl 1) 6 7__ _ _ _ _ _ _ _ _

Activity Specific Core I Gap EIV Total per Core Activity Inventory Release Release Release 9 JCIfcore] [ClI/ [gm/corel [mole] [mole] mol 10 I=F1O*D$4 =LN(2)*D$6/(D$5*Bl0EIO) =G10/H1-1 --l10US2/IB1 =110*J$3/B10 =J1O+K1O 12 =1`12=$4 =LN(206(5B 2E2 G1/1 112*J$21E12 =112*J$3/B12 =J12+K12 13 =Fl3*D$4 =LN(2)*D$ (055Bl3*El3) =G13/1-13 =-113J52116113 =113*J$31813 =J13.K13 14 =F14*D$4 =LN(2)*D$6I(D$5*Bl4E14) =G11411-114 =ý'114JS2iB`14 =114'J$31114 =J14+K14 15 =F15*0$4 =LN(2y$61(D$5*Bl5*El5) =G15/H15 -- 5$/85 =153/1 =J1 5.K15 16 =F16D$)4 =LN(2yD$6/(D$5*B16EIO) =GIB/Hi6 -116J$Zt816 =16J3/1 =18+K(16 17 j=F1T7DS4 =LN(2)*D$61(D 5*817*E17) =G17/H17 -',lr7J$2/817 =I17'J$3/817 =J17+K17 18 I=F18*DS4 =LN(2)*D$61(D 55B18*E18) =G18131-18 =-ý118*J$2161 =118*JS3/B18 =J18.K18 19 1*=1 905$4 =LN(2)*D$6/( 55B19*El9) =G19/H19 --

'lg*J$2/B19 =119J$3/B19 =J19+K19 20 j=F200$S4 =LN(2)*D$6/(0$55B20*E20) =G20/1-20 --

,l20*J$2IB20 =120*JS3/B20 =J20.K20 21 =F21*D$4 =LN(2)*D$61(D 58B21*E21) =13211-211 =!121*J$2/B21 =121J$311B211 =J21 +K21 1 22 =F22*D$4 =LN(2)*D$6/(D$5*B22*E22) =132211-22 --l22*JS2/B22 =122*J$3/B22 =J22+K22 23 =F23*DS4 =LN(2rD$61(0$55823'E23) =G2311-23 .123*JS21823 =123*JS3/B23 =J23.K23 24 =F24*DS4 =LN(2)t5$61(D$5*B24*E24) =G24/k24 -7I24*J$2/824 =124J$3/B324 =J24.K24 25 =F25*D$4 =LN(2)*D$6/(D$5*B25*E25) =G25tH25 =125*J$2/B25 =125*J$3/B25 =J25+K25 26 =F26*D$4 =LN(2)*D$6/(D$5*B26'E28) =G2611-26 =126*J$21B26 =126*J$3/B26 =J26*K26 4

27 *=27tS$4 =LN(2)D$6J(D$5B27*E27) =G271H27 l27*4JS]327 =127*3/13B27 =J27.K27 28 =F28'D$4 =LN(2)0D$6/(D 5-828'E28) =G281/-28 =128J$2/21828 =128J53/B328 =J28.K28 29 j=F29D$)4 =LN(2)0$6/(D 55829'E29) =G2911-129 =129*J$2/829 =129JS3/B229 =J29+K29 301 Total =SUM 110:129) SUM(J1O:J29) =SUM(KIO:K29) =SUM(LIO:L29) 33 ______

34 ________ _____________ ______

35 ________ ______ _______ ______

36 ________ _____________ ______ ______ _______

37 _______________________________ _______________ ______

398 _____________I______ ______ _____

40319 ______________________ ______

410 _______ ____________ _____________________ ______

Cesium t=0 Eqs Table 1-3;Eqs: Core Iodine Inventory Determination (t=30 days Post-LOCA) Calculation No. H21C-097 Nine Mile Point Nuclear Station (Single Batch Core with 1400 EFPD and 34,000 MWd/ST CAVEX) Revision 0 Unit 2 Page 1-12 A I B C E 1 Time post-LOCA 30 days 2 Neutron Mass 1.008665 amu 3 Core Thermal Power (100%) 3467 MWt 4 Core Thermal Power (102%) =D3*1.02 MWt 5 1 Cude 37000000000 dis/sec 6 Avogadro's Number 6.022137E+23 atomslmole 7

Atomic Mass Half Life Isotope (Ref. 1) (Ref. 2) t1,2units . Half Life 9 lamu] [sec]

10 1-127(2) 126.90447 stable 11 1-128 127.905838 25 m =IF(D1 1=s,C1 1,IF(D 1= m.,C11"60,IF(D1 I= h",C1 16060,IF(D 1I=d",C1 1"24*60*60,IF(D I=°a",C1 1*365"24*60*60,"n/a')))))

12 1-129 128.904987 15700000 a =IF(Di2='i',CI2,1F(D12='m',C12"60,1FID2='h',C12"60"60,1F(D12='d',C12*24*60*60,1F(Di2=*a',C 2*365*24*60*60,,rda")))))

13 1-130 129.906676 12.36 h =IF(D13=°SC 13,1F(D13='m*,C 13*60,F(ID 13='h*,C13*60°60,1F(D1 3=d',C13*24°60'60,IF(D13="a",C 13"365"24*60*60,"nla")))))

14 1-130M 129.906676 9 m =IF(D14=__,C 14,1F(D_14-_m_,C_4"60,1F(D14=_h_,C_ 4"60_60,1_F(D14.-d_,C_4*24_60*60,1F(D14=_a_,C14*365*24"60*60,_na_)))))

15 1-131 130.906127 8.02 d =IF(D 15=Wsc 15,F(D 15='m',C15*60,lF(D15="h*,C1 5*60*60,1F(D15=dC 1524"60°60,1F(D15='a*,C 15*365*24*6060,'n/a)))

16 1-132 131.907981 2.28 h =IFD1_6=_s_,C16,1F(D16='m_,C 16"60,1FD16='h_,C1_6*60*60,IF(D_6="d°,C1_6*24"60*60,1F(D15a_,C_6_365°24"60°60,'n/a_)))))

17 1-133 132.90775 20.8 h =IF(D 17=*s',C 17,IF(D 17='m,C17°60,1F(D17="h",C 17°60*60,IF(D17="d",C 17*24°60"60,IF(D 17=*a".C17*365°24*60*60."nla")))))

18 1-133M 132.90775 9 a =IF(D18='s`,C I 8,IF(D18='m',C18*60,1F(D18="h*,C18°60*60,1F(D1i8=d.C 18°24"60*60,lF(D18=ae",CI 8*365*24*60*60,"n/a")))))

19 1-134 133.90985 52.6 m _=_FD19_-s-_C_9`_F(D1_=-m-__C1__6__ _F(D1_='h__C19_6__FD19=-d-_C_9*24*6_ _ F(D1_=-a-'C19_3_5_24__.-na_)))

20 1-134M 133.90985 3.7 m =IF(D20==s".C20,lF(D20-=m.'C20*60,lF(D20=-h.,C20*60*60,IF(D20==d",C20*24*60'6OIF

,n/a*dCa-0l))2 020--"a",C20.365*24*60*2C0 21 1-135 134.91002 6.57 h =IF(D21=_ ,C21_,IF(D21_m_,C21_60,IF(D21_=_h_,C21_60°60,_F(D21_=°d',C21_24_60_60,IF(D21='a',C21_*365_2480*60,_n/a_)))))

22 1-136 135.91474 1.39 m =IF(D22="s-'C22*F(D22=*m`C22: F(D22='h-*C22°60 F(D22=-d-*C22*24'60 '*F(D22=-a-*C22*365'24660'-n/a-)))))

23 1-136M 135.91474 47 s =aF(D23=-s-,C23,IF(D23='m'C23 60'*F(D23="h",C23*60*60.IF(D23="d",C23°24*60*60,IF(D23="a-*C23'365*24°60*60*n/a')))

24 1-137111 =B23+1'D$2 24.5 s =5F(D24="s'C24.[F(D24="m".C24*60,IF(D24=*h",C24°60*60'*F(D24=*d",C24*24*60*60,IF(D24=*a*,C24*365*24*60*60,"n/a"))

25 1-138811 =824+l*D$2 6.5 s =IF(D25=5s°,C25,1F(D25='m°,C25*60,1F(D25='h'C25*60*60,IF(D25=°d',C25*24"60*60,1F(D25=°a" C25°365°24*60°60,"n/a*)))))

26 1-139011 =825+1D$2 2.3 s =IF(D26="s*,C26,F(026="m,C26*60,1F(D26="h*.C26*60*60,1F(D26='dC26*24*60°60 IF(D26="a" C26°365°24"60*60,"nla,)))))

27 Ik140(') =B26+l"D$2 0.86 s =IF.D27="s*,C27,1F(D27-°m",C27*60,1F(D27=*h°.C2760*60,IF(o27='d-,c27*24°60°60'1F(D27="a*,C27*385*24.60*60,'n/a"))))

28 1-141(1) =B27+1*0$2 0.45 s =5F(D28='. C28,IF(D28=-m-*C28*60. F(D28='h-`C28 '6060, F(028= d-C28 24*60*60. F(D28=-a-*C28.365 24 6O0*60-n/a")))))

29 1-142(') =B28+1°D$2 0.2 5 =F(D29=-s-,C29,IF(D29=*m*,C29*60,IF(D29=-h*,C29*60*60,IF(D29="d',C29*24*60*60,IF(D29=*a"'C29*365*24*60*60 -n/a')))))

30 1-143")P) =B29+1"D$2 =IF(D30=-s-.C30'*F(D30--'m".C30*60.*F(D3O='h*'C30***6V6O*F(D30=-d-'C30*24*60'60,IF(D30=-a*,C30*365*24*60*60,"n/a**)))))

31 1-144"H3) =B30+1*D$2 IF(D31="s"C311F(D31I-rn"C31*60'1F(D31=-h.C31 6060F(D31=*d",C31*24*6,F(D31='a*C31I3624*60*60-n/a,)))))

32 33 oaL 34 1) Atomic mass not given for these Isotopes in Reference 1; therefore, a multiple of the neutron mass is added to the atomic mass of 1-136M.

35 2) Since 1-127 is a stable element, its quantity is not presented in Reference 3: The mass of 1-127 is assumed to be 30% of the mass of 1-129.

36 3) Half-life information not available In Reference 2.

37 38 Refernce, 39 1. Radiological Health Handbook, 1970 (main body Reference 7.8) 40 2. Chart of the Nuclides, 15th Edition (main body Reference 7.9) 41 3. GE-NE-A41-00097-00-01, NMP2 24-month Cycle Fission Product Inventory Evaluation (main body Reference 7.7) 42 4. Regulatory Guide 1.183 (main body Reference 7.10.2) 43 5. NMP2 Site License (main body Reference 7.5) 44 6. Regulatory Guide 1.49 (main body Reference 7.10.1)

Iodine t=30d Eqs

Attachment I

  • Table 1-3 Eqs: Core Iodine Inventory Determination (t=30 days Post-LOCA) Calculation No. H21C-097 Nine Mile Point Nuclear Station (Single Batch Core with 1400 EFPD and 34,000 MWd/ST CAVEX) Revision 0 Unit 2 Page 1-13 F .G H jI -J KL I Core Inventory Fraction Released in Containment for Halogena 2 tRet. i) Gap Release Phiase 1.05 (Ret. 4, TbI 1) 3 (Ref. 5) Early tn-Vessel Phase 0.25 (Ref. 4, ThI 1) 4 (Ref. 6) _____

5 (Ref. 1) 6 (Ref. 2) ______

Activity Activity Specific Core Gap EIV Total (Ref. 3) per Core Activity Inventory Release Release Release

-- ICi/M WtI [Ci/corel lCi/ciMl igloe mole] (mole] [mole]

10 _________ ______ 0.3*J12 =0.3*K12 =JIO+KI0 1110 _________=FIPDS4 =LN(2)*D$6/(D$5*811E11) =G11IH11 =111J$4218111 =I1VJ$3/Bll =J11+KI1 12 0.0013 =F12*D$4 =LN(2)*D$6/(D$5*812*E12) =G12/H12 =112*J$2I812 =112JS3/B12 =J1 2+K12 13 0,00000000000000318 =F13'D$4 f!L!(M-D$6/(D$5-813'E13) =G1311-13 =113*J$2/813 =113*J$3/Bl3 =J13+K13 14 0 _________=F14*0$4 =LN(2)*D$6I(D S*B14*EI4) =G114111114 =114*J$2/814 =114*J$3/B14 =J14+K14 15 2100 * =F15*D$4 =LN 2 *D$6 D$S*BlS*E15) =G151H15 =115*J$21815 =115*JS31B15 =J15+Kl5 16 67.1 =F16*D$4 =LN(2)*D$61(D$S5B16*E6) =G16fH16 =116*J$2/816 =116*J$3BIB6 =J16+K116 17 0.00000214 =F17*DS4 =LN(2)*D561( $5*B17*EI7) =G11711-17 *=117*J$21817 =1117J531B317 =.J17+K17 18,0 _________=F18*D4 =LN(2rD$61(D$5518*E18) =G1811-18 =118*J$2IB18 =l18*J$3iB18 =J18+K18 19 0 _________=F19*D54 =LN(2)*D$6/(DS5*B19*E19) =G191H19 =119*J$21819 =119*43/12119 =J19+KI9 20 0 _________=F20*D$4 =LN(2)*056/(O$5*20*E20) =G201-120 =120*JS21B20 =120*J$3/B20 =J20.K20 21 0 _________=F21*DS4 =LN(2)0$6/(D$55B21*E21) =G2111-211 =121'J$2/821 =121*J$31821. =J21+K21 22 0 _________ F22*D$4 =LN(2)*D$6/(D$S*B22*E22) =G2211-22 =122*J$21B22 =122*J$3/B22 =J22+K22 23 0 .=F23*D$4 =LN(2)0S61(DS5-23'E23) =G231H23 =123*J$21B23 =123*J$31823 =.J23+K23 24 0 _________=F2405$4 =LN(2)'D$G/(D$55924'E24) =G2411-124 =124*J521824 =124J$3/1B24 *=J24+K24 25 0 _________=F2505$4 =LN(2)*0$6/(O$5*25*E25) =G2511-25 =125*J$21825 =125*J$3iB25 =J25+K25 26 0 =F26*D$4 =LN(2rD$6flD 5*B26*E26) =G26/1-126 =126*J$21B26 =126*J$3/B26 =J26+K26.

27 0 _________=F27*D$4 =LN(2)D$6i(D$5*B27*E27) =G2711-127 =127*J$21B27 =127*J$31B27 =J27+K27 28 0 _________ F28*D$4 =LN(2)*D$6/(DS5*B28*E28) =G .28IH28 =128*J$2/828 =128*J$31828 =J28+K28 29 0

  • F29*D$4 =LN(2rD$6/(D$5*829*E29) =G2911-29 a129*J$2/B29 =129*J$3/829 =J29+K29 30.0 =F30*0$4 ___________ ______ _____________

31 =F31*D$4 ___________ ______

32 .Total =SU j10:131) -SUM(JIO:J31) =SUM(KIO:K31) -SUM(LID:L31) 33 ______________

36 _______

38 ______

39 _________ ______________

410 ________ _____

431___ ______

442 ______________ __________________ ______ ______

iodine t=30d Eqs

Attachment I Table 1-4 Eqs: Core Cesium Inventory Determination (1=30 days Post-LOCA) Calculation No. H21C-097 Nine Mile Point Nuclear Station (Single Batch Core with 1400 EFPD and 34,000 MWd/ST CAVEX) Revision 0 Unit 2 Page 1-14 A B I _ E F 1 Time post-LOCA 30 days 2 Neutron Mass 1.008665 amu (Ref. 1) 3 Core Thermal Power (100%) 3467 MWt (Ref. 5) 4 Core Thermal Power (102%) =D3"1.02 MWt .,(Ref._6) 5 1 Curie 37000000000 dis/sec (Ref. 1) 6 Avogadro's Number 6.022137E+23 atoms/mole (Ref. 2) 7 Atomic Mass s HtLife Activity (Ref. 1) (Ref. 2) Haf Life (Ref. 3) 8 9 _ ainu_ Isec] 0.321

[CUMWtI 10 cs-i132 1131'.906393 -6.48 d --IF(D10="S',C10,1F(Dl0='m",Cl10*60,1F(IO0--"h*,Cl10*60"60,'IF(Dl o=*d*,Cl0"24"60"00,1F(Dl0=*a*,C10*365*24*60"60,*n/a')))))

11 CS-13321 3 12 CS-134 133.906823 2.065 a =IF D12="s,C12,IF D12=:m.,C 12"60,IF D12='h',C12"0606IFDF12=*d,C12"24"60"60.,F D12='a'.Ct2"365"24"60"60,'n/a*))))) 7090 13 CS-134M 133.906823 2.9 h =IF(D03='s",C13,1F!D13='m',C13*60,tFI3='h",C13*60"60,IF(D13='d',C13"24"60*60.IF(013='a'.C13"365"24"60*60,"n/a')))) 0 14 CS-135 134.90577 2300000 a =IF(14='s_,C_14,1F(D_4="m_,C_14_60,1F(D_4=_h",C_14"60"60,1F(D_4=_d_,C14*24"60"60,1F(O14=_a_,C14365*24*60*60,n/a*))))) 0.0251 15 CS-135M 134.90577 53 m =IF D15="s".C15,IF(D15="m*,C15"60,IF(D15="h¶,C15*60"60,IF(D15=*d".C15*24*60*60,IF(DI5="aC15*365*24"60*60,n/ala"))) 0 16 CS-136 135.90734 13.16 d =IF(D46=6sC16,IF(DlB=6m*,Cl6*60,IF(D16="h",Cl6*60"60,IF(D16="d",C16*24*60"60,iF(Dl6="a",Cl6"365"24*60"60,'n/a'))))

17 CS-137 136.90677 30.07 a =IF(D17="s"C17*F(D17="m-*17*60.*F(DI7="h*C17*6060'*F(D17=-d-,C17*24-6060`*F(D17="a*,C17"365*24"60"60,*n/a*))))) 4340 18 CS-138 137.9108 32.2 m =IF(D018='s",C 1,1FI8="m" C 1*60,1F(D18="h",C18*60*60,1F(D18='d",C18*24*60*60,1F(D 1='a',CI18365*24*60"60,'n/a")))))

19 CS-138M 137.9108 . 2.9 m =IF(D19=s",C 19,1F(D19="m",C19"60,IF(D19=*h",C19*60*60,1F(D19=*d',C19"24"60*60,IF(D19='a*,C19*365"24"60*60,'n/a'))))) 0 20 CS-139 138.9129 9.3 m = F(D20=es ,C20, FD20='m',C20"60, F(D20= h C20 60 60, F D20= d 20°24 6060,IF(D20="a-*C20.365.24.60*60,'n/a*))))) 0 21 CS-140 139.91711 1.06 m =IF(D21='s0 C21,1F(D21='m" C21°60 IF(D21='h" C21"60*60,1F(D21='d",C21"24,60"60,IF(D21="a*,C21*365*24"60*OO.'nla*)) 0 22 CS-141n) =821+1"D$2 24.9 s =0F(122= s"'C22'*F(D22='m'C22'60F(D22=-h*C22*6060.IF(D22="d"c22*24*6060F(D22=-a*'C22*365*24*60*60n/a-))))) 0 23 CS-142(2) =B22+1"D$2 1.8 S =0F D23= s__C23F(D23=_m__C23_6F(D23=_h',C23_6_6_F(23=_dC23_24_60 F(D23=_a__23_365*24060n/a'))

24 CS-143n2) =B23.1"D$2 1.78 s =0F(D24=ýs",C24,1F(D24=*m" C24*60,1F(D24='h* C24*60"60,1F(D24="d',C24"24*60*60,IF(D24='a",C24*365*24"60*60,'n/a"))))) 0 25 CS-144m) =B24+1*D$2 1.01 s =IF(D25=0*s*,C25.1F(025=m',C25"60,IF(D25=",C25"60"60,1F(D25=d,C25°24*60*60,IF(D25='a",C25.385.24.60.60,"n/a.)))

26 CS-145(2) =B25+lD$2 0.59 s =0F(D26="s"'C26,F(026=-m",C26*60F(D26=-h".C26*6060F(D26=-d*'C26*24*6060F(D26=*a*C263624*6060-n/a-)))) 0 27 CS-146r2) =826+10$2 0.322 s =IF(D27=0s',C27,IF(O27='m',C27°60, F(027=*hC27*6060F(D27=d*C2724`6060F(D27=aC27*365*24°6060nfa')))) 0 28 CS-147(2ý =B27+1*D$2 0.227 s =IF(D28=tsC28,IF D28=m"mC2880,IF D28='hC28*60'60,lFD28="d.C28'24*60*60'IFD28='a',C28*365*2460*60.n/a"))) 0 2

29 CS-148(' =B28+1*D$2 0.15 s =IF(D29=:s",C29.IF D29=mrý",C29*60,IF(D29="h,*,C29*60*60.IF(D29='rd-C29*24.60*60,IFFD29=*a*,029'365.24*60*60'nla"))))) 0 30 __"_.... "

31 Notes 32 1) Stable cesium is conservatively not accounted for in this analysis as It forms cesium hydroxide (CsOH),

33 2) Atomic mass not given for these Isotopes in Reference 1; therefore, a multiple of the neutron mass Is added to the atomic mass of CS-140.

35 Renw*

36 1. Radiological Health Handbook, 1970 (main body Reference 7.8) ..

37 2. Chart of the Nuclides, 15th Edition (main body Reference 7.9) 1 38 3. GE-NE-A41-00097-00-01, NMP2 24-month Cycle Fission Product Inventory Evaluation (main body Reference 7.7) 39 4. Regulatory Guide 1.183 (main body Reference 7.10.2) 40 5. NMP2 Site License (main body Reference 7.5) 41 6. Regulatory Guide 1.49 (main body Reference 7.10.1)

Cesium t=30d Eqs Table 1.4 Eqs: Core Cesium Inventory Determination (t=30 days Post-LOCA) Calculation No. H21C-097 Nine Mile Point Nuclear Station (Single Batch Core with 1400 EFPD and 34,000 MWdIST CAVEX) Revision 0 Unit 2 Page 1-15 Fir/AL G H . K L e Core InvCntooyrFaction leased In Coenory t for Alkalis 2 Gap Release Phase 0l05 (Ref. 4, Tbl 1) 3 Early, In-Vessel Phase _ 02 (Ref. 4, TbI 1) 4 5_

6 Activity Specific Core Gap EIV Total per Core Activity Inventory '.Release Release Release

[Ci/core] [CI/gm] [gin/core] [motle (mole] [oe 10 =F10*D$4 =LN(2)*D$6/(D$S5*B10*E10) =G1O/HIO =110*J$2/B1O =110"J3/B10 =J10IOK0 11 12 =F12*D$4 =LN(2)*D$6/(D$5"B12"E12) =G12/H12 =112"J$2/B12 =I12"J$3fB12 =J12+K12 13 =F13*D$4 =LN(2)*D$6/(D$5*B13*E13) =G13/H13 =I13'J2/B13 =113"J$3/B13 =J13+K13 14 =F14*D$4 =LN(2)*D$61(D$S5B14"E14) =G14/H14 =114"J$2/1B4 =114J$3/B14 =J14+K14 15 =F15*0$4 =LN(2)*0$61(D$5"B15*E15) =G151H15 =115J$2/1B15 =115*J$3/B15 =J15+K15 16 =Fl6"D$4 =LN(2)°D$6/(D$5*B16*E16) =G16/H16 =116*J2/1B16 =116J3$3/B16 =J16+K16 17 =F17"D$4 =LN(2)D$6/(D$5"B17*E17) =G17/H17 =117J$2/B17 =I17"J$3/B17 =J17+K17 18 =F18*D$4 =LN(2)D$6/(D$5B18E 18) =G18/H18 =118*J2/B18 =118"J$3/818 =J18+K18 19 =F19"D$4 =LN(2)*D$6/(D$5"B19"E19) =G191Hl9 =I19"J$2/B19 =119*J3/B19 =J19+K19 20 =F20*D$4 =LN(2)*0$6/(D$5"B20*E20) =G20/H20 -120'J$2/B20 =120J$3/B20 =J20+K20 21 =F21"D$4 =LN(2)*D$6/(D$5*B21"E21) =G211H21 -12V1J$2iB21 =121*J$3/B21 =J21 +K21 22 =F22*D$4 =LN(2)*D$61(D$5'B22"E22) =G22)H22 #1223S2)B22 =122'J3/B22 =J22+K22 23 =F23*D$4 =LN(2)*D$6/(D$5"B23"E23) =G23/H23 =123*J$2/B23 =123"J$3/B23 =J23+K23 24 =F24"D$4 =LN(2)*D$6/(D$5"B24"E24) =G24/H24 =.124"J$2/B24 =124"J$3/B24 =J24+K24 25 =F25"0$4 =LN(2Y0$6/(0$5"B25"E25) =G251H25 =1251J$2/B25 =125*J$3/B25 =J25+K25 26 =F26'D$4 =LN(2)D$61(D$5 B26'E26) =G26/H26 =126J$52.B26 =126*J$3/B26 =J26+K26 27 =F27*D$4 =LN(2)*0$61(D$55B27*E27) =G271H27 =127"J$21B27 =127*J$3/1B27 =J27+K27 28 =F28'0$4 =LN(2)'D$61(D$5"828*E28) =G28/H28 =128*J$21828 =128"J$3/128 =J28+K28 29 =F29*DS4 =LN(2)°D$6/(D$5*B29*E29) =G29/H29 =129*J2/B29 =129°J$3/B29 =J29+K29 30 Total =SUM(1.0:129) ='SUM(J1O:J29) =SUM(K1O:K29) =SUM(LIO:L29) 31 _.I _

32 33 34 35, 36 37 38' 39 I 40 411 Cesium t-30d Eqs

.Attachment 2 Calculation No. H21C-097 Nine Mile Point Nuclear Station Revision 0 Unit 2 Page 2-1 Attachment 2 Determination of Radiation Doses

Attachment 2 Calculation No. H21C-097 Nine Mile Point Nuclear Station Revision 0 Unit 2 Page 2-2 Purpose The purpose of this attachment is to document the gamma and -beta radiation dose in the drywell, wetwell, and suppression pool.

Methodology Beta Dose The beta radiation dose is taken from Calculation PR-C-19-C, Revision 3 (main body Reference 7.6.2). In order to account for power uprate from 3,323 MWt to 3,467 MWt, the beta dose presented in the calculation is increased by 1.36%.

The beta dose in PR-C-1 9-C is presented for both a drywell surface area of 275,000 ft2 and 200,000 ft2. Since the values for a drywell surface area of 200,000 ft2 are greater and hence more conservative, they are used herein.

Both halogen plate-out and airborne dose are included in the total drywell and wetwell beta dose.

Since the penetrating ability of beta radiation is orders of magnitude less than that of gamma radiation, the beta dose from the suppression pool is considered negligible in comparison to the suppression pool gamma dose. Therefore, the suppression pool beta dose is not modeled.

Gamma Dose The gamma radiation dose is taken from Calculation PR-C-21-Q, Revision 1 (mrain body Reference 7.6.3). In order to account for power uprate from 3,323 MWt to 3,467 MWt,. the gamma dose presented in the calculation is increased by 1.36%.

The drywell and wetwell airborne gamma dose is taken from environmental zone PC 289684.

The long-term gamma dose in this zone bounds that in all other environmental zones analyzed

........ .. -in

. PR-C-21 -Q jand therefore-is conservative.'-........ .............. ... .. .. . .

The suppression pool submersion gamma dose is taken from environmental zones PC 175101, PC 196112, and PC 215121, which represent the suppression pool.

Both the drywell/wetwell airborne gamma dose and the suppression pool submersion gamma dose are increased by 5% to account for bremsstrahlung.

It is recognized that the suppression pool submersion gamma dose is based on a dilution volume of 160,000 ft3 (PR-C-21-M, main body Reference 7.6.6). Since this volume is different than that used in this calculation, the impact of a different suppression pool volume is addressed. The total integrated dose (TID) is determined as follows:

TID = DCF * (ANV)

Where DCF is a dose conversion factor [rad/(Ci/cc)], A is the amount of activity released to the suppression pool [Ci], and V is the volume of the suppression pool [cc]. From this expression it Calculation No. H21C-097 Nine Mile Point Nuclear Station Revision 0 Unit 2 Page 2-3 is clear that, since the DCF and A do not change for this analysis, a change in suppression pool volume results in:

TID 1 / TID 2 = [DCF *(ANIV)] I[DCF*(AIV 2 )]

or TID 2 = TID1 * (VlN1 2)

Since, for this analysis, the maximum post-LOCA suppression pool volume, approximately 168,000 ft3 , is used (see main body Assumption 3.1), it is conservative to use the suppression pool submersion gamma dose from PR-C-21-Q without adjustment for suppression pool volume.

Results The radiation doses to be used are shown in Tables 2-1 and 2-2.

Table 2-1: Beta Dose Calculation No. H21C-097 Nine Mile Point Nuclear Station Revision 0 Page 2-4 Unit 2 Power. Uprate Factor (1..36% incr.) 1.0136 Drywell Airborne Beta Dose Wetwell Airborne Beta Dose Time TID( 1X4) @ ~ TID(l @ TID@)(5 ) @ TID(2)0 3323 MWt 3467 MWt 3323 MWt 3467 MWt

[hr] Irad) [rad] [rad " [rad]

1 .1.97E+07 2.OOE+07 2.23E+07 2.26E+07 6 5;70E+07 5.78E+07 6.81 E+07 6.90E+07

'24 1l28E+08 1.30E+08 1.57E+08 1.59E+08 720 5.57E+08 5.65E+08 6.94E+08. '7.03E+08 2400 5.99E+08 . 6.07E+08 7.44E+08 7.54E+08 4320 6i.26E+08 6.35E+08 7.71E+08 7.81E+08 8760 6.88E+08 6.97E+08 8.33E+08 8.44E+08 Notes

1) Includes halogen plateout and airborne dose; surface area of 200,000 ft2 used.
2) TID 3467=(1.0136)(TID 332 3) per References 1 and 2
3) Suppression pool beta dose is negligible and is therefore not included.
4) Taken from Table 6 of Reference 1, for surface area=200,000 ft2
5) Taken from Table 6A of Reference 1 References .
1) PR-C-19-C, Rev. 3 (mlain body Reference 7.6.2)
2) PR-C-19-C, Rev. 3, Disposition PR-C-19-C-03A (main body Reference 7.6.2.a)

Beta Table 2-2: Gamma Dose Calculation No. H21C-097 Nine Mile Point Nuclear Station Revision 0 Unit 2 Page 2-5 Power Uprate Factor (1.36% incr.) 1.0136 (Ref. 2)

Bremsstrahlung Factor (5% incr.) 1.05 Assumption Drywell & Wetwell Airborne Gamma Dose Suppression Pool Submersion Gamma Dose Time TID( 1) @ J TID(2 @ TOD 3)@ TIDO2 ) @

3323 MWt 3467 MWt 3323 MWt 3467 MWt

[hr] [rad] 4 [rad] [rad] . [rad]

1 2.3E+06 2.4E+06 3.8E+05 4.OE+05 6 7.OE+06 7.4E+06 1.4E+06 1.5E+06 24 1.1E+07 1.2E+07 2.8E+06 3.OE+06 720 3.OE+07 3.2E+07 .1.6E+07 1.7E+07 2400 4.7E+07 5.OE+07 3.6E+07 3.8E+07 4320 6.3E+07 6.7E+07 5.5E+07 5.9E+07 8760 9.5E+07 1.OE+08 9.4E+07 1.OE+08 Notes

1) Maximum environmental zone TIl, as given in Reference 1 (Zone PC289684, p. 270)
2) TID3467 =(1.0136)(1.05)(TID 3323)
3) TID for suppression pool environniental zones (PC175101, PC196112, PC215121) in Reference I (p. 202)

References

1) PR-C-21-Q, Rev. I (main body Reference 7.6.3)
2) PR-C-21-Q, Rev. 1, Disposition PR-C-21-Q-OIA (main body Reference 7.6.3.a)

Gamma Table 2-1 Equations: Beta Dose Calculation No. H21C-097 Nine Mile Point Nuclear Station Revision 0 Unit 2 Page 2-6 A B C D E F 2 Power Uprate Factor (1.36% incr.) 1.136 4 Drywell Airborne Beta Dose Wetwell Airborne Beta Dose Time TITID 2 5

@T TID(lx() @ TID(2) @

5 3323 MWt j 3467 MWt 3323 MWt 3467 MWt 6 (hr] [rad] "J [rad] [red] [rad]"_

7 1 19700000 =B7*C$2 22300000 =D7*C$2 8 6 57000000 =B8*C$2 68100000 =D8*C$2 9 24 128000000 =B9"C$2 157000000 =D9*C$2 10 720 557000000 =B1O*C$2 694000000 =D10*C$2 11 2400 599000000 =B11*C$2 744000000 =Di1*C$2 12 4320 626000000 =B12*C$2. 771000000 =D12*C$2 13 8760 688000000 =B13*C$2 833000000 =D13*C$2 14 Note __

15 1) Includes halogen plateout and airborne dose; surface area of 200,000 f used.

16 2) TID346=(1.0136)(TID 3323) per References ,I and 2 17 3) Suppression pool beta dose is negligible. 'nd is therefore not included.

18 4) Taken from Table 6 of Reference 1,for suýface area=200,000 ft 19 5) Taken from Table 6A of Reference 1 20  !

21Reeecs

22 1) PR-C-19-C, Rev. 3 (main body Reference 7.'6.2) 23 2) PR-C-19-C, Rev. 3, Disposition PR-C-19.C-03A (main body Reference 7.6.2.a)

Beta-Eqs Table 2-2 Equations: Gamma Dose Calculation No. H21C-097 Nine Mile Point Nuclear Station Revision 0 Unit 2 Page 2-7 Final A _ . B C 0E 2 Power Uprate Factor (1.36% incr.) _ _ 1.0136 (Ref. 2) 3 Bremsstrahlung Factor (5% incr.) 1.05 Assumption 4

5 Drywell & Wetwell Airborne Gamma Dose Suppression Pool Submersion Gamma Dose Time TID(1) @ TID(2) @ TID(3) @ TIDO) @(

6 3323 MWt 3467 MWt 3323 MWt 3467 MWt 7 [hr] _ _ _ _[rad] [rad] (rad] [rad]

8 1 2300000: =B8*C$2*C$3 380000 =D8*C$2*C$3 9 6 7000000: =B9*C$2*C$3 1400000 =D9*C$2*C$3 10 24 11000000 =B10*C$2*C$3 2800000 =D10*C$2*C$3 11 720 30000000 =Bl1*C$2*C$3 16000000 =Dl1"C$2*C$3 12 2400 47000000 =Bl2"C$2*C$3 36000000 =D12*C$2*C$3 1_3_4320 ,63000000 =B13*C$2*C$3 55000000 =D1 3*C$2*C$3 1418760 95000000 =B14*C$2*C$3 94000000 =D14*C$2*C$3*

15 Notes 16 1) Maximum environmental zone TID as givenin Reference 1 (Zone PC289684, p. 270) 17 2) TID346 7=(1.0136)(1.05)(TID 3323) 18 3) TID for suppression pool environmental zones (PC175101, PC196112, PC215121) in Reference 1 (p. 202) 191 20 21 1) PR-C-21-Q, Rev. I (main body Reference 7.6.3) 22 2) PR-C-21-Q, Rev. 1, Disposition PR-C-21-Q-01A (main body Reference 7.6.3.a)

Gamma-Eqs Calculation No. H21C-097 Nine Mile Point Nuclear Station Revision 0 Unit 2 1 Page 3-1 Attachment 3.

DIT-NM-NPEE-001, "Determination of Exposed Cables in the NMP2 Drywell" Calculation No. H21C-097 Nine Mile Point Nuclear Station Revision 0 Unit 2 Page 3-2 DESIGN INFORMATION TRANSMITTAL - FIRST PAGE Form SOP-0403-02-02. Revision 4 DESIGN INFORMATION TRANSMITTAL x Safety-Related 0 Non-Safety-Related DIT No. DFT-NM-NPEE-001 Client: Nine Me Point Nuclear Station. LLC ProjectNo.: 11236.061 Page 1 of 28 Station: Nine'Mile Point Unit(s): 2 To: JC Penrose

Subject:

Determination of Exoosiad Cables Inthe NMP2 Drywall MODIFICATION OR DESIGN CHANGE NUMBERS A l JH Gotston NPEE w" L ie, ,,641 Preparer (Print name) Process Group \..'repa, Sinaturei IssueDate STATUS OF INFORMATION (This Information Is approved for use. Design Information, approved for use, that contains assumptions or Is preliminary or requires further verification shall be so identified).

Approved For Use - This DIT conitains Ennineerim Judgement That Does NRot.eaulm Verification IDENTIFICATION OF THE SPECIFIC DESIGN INFORMATION TRANSMITTED AND PURPOSE OF ISSUE (list any supporting documents attached to DIT by Its itle, revision and/or issue date, and total number of pages for each supporting document.)

This DIT contains cable length, and cable insulation and jacket information for exposed cable installed in the Nine Mile Point Unit 2 (NMP2) Drywall.

The data provided herein may' be used to calculate the formation of HCI by radiolysis of chlorine-bearing Materials.

SOURCE OF INFORMATION Calc No.

Rev. Data Report No.

Rev. Date Other Sources of Information are listed on the foliowtng [ane 2 of this DIT DISTRIBUTION Action:

JC Penrose HR Kopko.

Information:

RE Davis OM Wright Reviewed Mb.Jayaa " J, OD SOP04030202-REV4.do page I orl4 Rev. Data: 04-19-2004 Calculation No. H21C-097 Nine Mile Point'Nuclear Station Revisio21 0

Unit 2 Revision 0 Page 3-3 DESIGN INFORMATION TRANSMITrAL -. CONTINUATION PAGE Form SOP-0403-02-03. Revision 4

  • .*:* L~ DESIGN INFORMATION TRANSMITTAL DIT No.: DIT-NM-NPEE-00t Project No.: 11236-061 Page 2 of Z7

SUBJECT:

Determination of exposed cables In the NMP2 Drywell.

PURPOSE:

Cables installed Inthe NMP2 Drywall containing chlorine-bearing materials may release HCI via rediolyals when exposed to various forms of radiation. This DIT estimates the lengths and sizes of cables Installed In the Drywall, that am Installed In cable tray or free air. It also provides Information on cable insulation and jacket material. The user of this DIT can use this information to calculate the exposed surface area of cable jacket material, and the volume of cable jacket and cable insulation material contained by these exposed cables. (Ref. 11

REFERENCES:

1. Emall mesage from Jeri C Penrose to Robefl E Davis, sent 8/11/2004at 4*:44pm, Attachment 1.
2. "Electrtcal Installation" Specification E061A
3. "insulated 15-kV Power Cable" Specification No. NMP2-E023A. Rev. 02, Attachment 5 (selected pages)
4. 'Electrak Corp. Raceway Reportr, Attachment 2 (selected pages)
5. "As-Built Cable Report", Altachment 3 (selected pages)
6. "Cable Mark Number Report", Attachment 4 (selected pages)
7. Drawing EE-036U, Rev. 6, Wiring Diagram Electrical Penetrations 2CES-Z31E. -Z32E, .Z45E, -Z46E"
8. Drawing EE-34Z-12; Rev. 12, "Cable Tray Arrangement EL. 215'-0" Reactor Building Sheet 1"
9. Drawing EE-034AA, Rev. 13, "Cable Tray Arrangement EL. 215'-0" Reactor Building Sheet 2"
10. Drawing EE-34AB-15, Rev. 15, 'Cable Tray Arrangement EL. 240'-0" Reactor Building Sheet 1"
11. Drawing EE-34AC-15. Rev. 15, "Cable Tray Arrangement EL. 240'-0" Reactor Building Sheet 2'
12. Drawing EE-34AD-11. Rev. 11, Tcable Tray Arrangement EL. 261'-0" Reactor Building Sheet 1"
13. Drawing EE-034AE, Rev. 13, Cable Tray Arrangement EL 261'-0" Reactor Building Sheet 2"
14. Drawing EE-34AF-7. Rev. 7, "Cable Tray Arrangement EL 289'-0" Reactor Building Sheet 1"
15. Drawing EE-34AG-7. Rev. 7. "Cable Tray Arrangement EL. 289'4"- Reactor Building Sheet 2'
16. Drawing EE-340G-6, Rev. 6, "Arrangement Seismic Cable Tray Supports Reactor Building - EL. 261'- 0' Sheet I'
17. Drawing EE-34OH-6. Rev. 6, "Arrangement Seismic Cable Tray Supports Reactor Building - EL. 261'- 0" Sheet 2"
18. Email message from the Keoria Company's R. Flemming to S&L's Helmut Kopke, sent 8/412004 at 2:06pm, Attachment 6.

ASSUMPTIONS.

1. The calculation results of 'HCI released via rediolysls' may be used in a safety related applicatiori: therefore this DIT will be prepared as Safety Related.
2. The user will calculate cable jacket surface area. and cable jacket and insulation volume from data provided herein.

3, Over-estimates of cable length and size are In a conservative direction for the user of this DIT's data.

4. The Drywall is a plant area Whiere virtually all scheduled cables am Installed in conduit Exceptions are the power cables to the RCPs and their associated free air drops from tray to motor junction boxes. Other scheduled cables are Installed in conduit.

Other potential exceptions may exist for non-scheduled short lengths of lighting or receptacle power cables, or aluminum sheathed cables, etc.

EVALUATION:

1. The user of this DIT is Interested In exposed cable only. Exposed cable Is routed Inopen cable tray or free air. Cable muted in enclosed raceway. Ie. conduit, flexible conduit, pull boxes, etc.. and cable contained Inside equipment. I.e. termination boxes, motors, etc., will not be considered. A review of the Installation specification E061A Indicates that free air cable muting Is typically only allowed as cables enter and exit the cable trays. Therefore, this DIT estimates the cable lengths and sizes of those that are muted Incable tray. There may be some aluminum sheathed or metal clad cable routed in some areas, and the potentlal exists of small quantities of lighting or receptacle cable. These cable types can be muted without the use of a raceway utilizing simple supports and have an overall jacket. Therefore, for conservatism, it will be estimated that the amount of cable Insulation and jacket matarial for cables of this construction is equal to the amount contained in the cable trays.
2. A detailed search of NMP2 cable tray, penetration wirng dis rams, conduit plan and arrangement drawings was performed to 6OP04030203-REV4.doc Rev. Date: 04-19-2004 Calculation No. H21C-097 Nine Mile Point Nuclear Unit Station

.Revision ,. 0 Page 3-4 DESIGN INFORMATION TRANSMITTAL -CONTINUATION PAGE .3 Form SOP-0403-02-03. Revision 4 L'- Z.i Identify any cable tray that is installed in the primary containment Cable tray drawings EE-034AA and EE-034Z for Reactor Building El. 215'. and drawings EE-034AG and EE-034AF for Reactor Building El. 289' indicate that ther are no trays installed In the Drywell or Suppression Pool for these elevations. Cable tray locations were verified utilizing the tray support drawings EE-340H and EE.340G.

3. Cable tray drawings EE-034AB and EE-034AC for Reactor Building El. 240', and drawings EE-034AD and EE-034AE for Reactor Building El. 261' indicate that there are cable trays installed In the Drywall for these elevations. The following are the approximate lengths of tray as shown on the drawings. Where actual tray segment lengths are listed on the drawings, the values were conservatively rounded up to the nearest fool. In addition, where cable trays segment lengths are not listed on the drawings, the tray length has been conservatively estimated by scaling the lengths from the drawing. The following era the resulting scaled lengths:

El. 240' 50-ft. (EE-034AC)

Df0- (EE-034AB)

Sub Total 50-t.L El. 261' 40-ft. (EE-034AD) 1-

& (EE-034AE)

Sub Total 130-ft.

Total. 180-ft.

4. To verity the above scaled cable tray lengths, the TRAK 2000 raceway report (Ref. 41 was reviewed for the raceways Identified on the above drawings. The Identified cable trays contain the cables feeding the Reactor Recirculation Pumps. The TRAK 2000 Information for these raceways installed in the Drywell provide the following installed lengths:

2TJ012N 70-FT 2TJO15N 39-FT 2TJO22N 8-FT Total: 19441.

Ifcable lengths are to based on cable tray lengths, this ODTwould estimate a 210-ft total cable tray length.

5. To Investigate the cables Installed between the electrical penetrations and the Reactor Recirculatton Pumps (RCP), and Installed In the abovementioned cable tray, the As-BuIlt Cable Report [Ref. 5] was reviewed. The as-buflt cable reports Identifies the cable Identficatton number, the number of cables, the type of cable, Its racaway's Installed length, the cable's calculated length and Its actual length. The actual length exceeds the cable tray length to allow for free air length. termination length, and actual Installed length. The below'summarizes the Installed cables' types and lengths:

Cable IDI Raceways Number of Cobles/Tvoe Size Ifrom Ref. c1 Actual cable lenath 2RCSANJ308f 3 - NJN-03 750-kCMIL 80-ft 2TJO12N 2RCSANJ3O9/ 1 - NJN-04 1/0-AWG 80-ft 2TJO12N 2RCSBNJ308/ 3 - NJN-03 750-kCMIL 155-ft 2TJO1SN +

2TJ022N 2RCSBNJ309/ 1 - NJN-04 1I0.AWG 155-ft 2TJOI5N +

2TJO22N The above one way crcluit lengths from penetrations to RCPs is 235-ft.

6. Using the actual installed cable lengths from the above as-built cable report summary yields the following:

Coble 1i) Number of cables X Lenath Total Cable length I Size 2RCSANJ308 3 x 80-ft 240-ft 1750-kCMIL 2RCSBNJ308. 3 x 155-ft 465-ft 1750-kCMIL SOP04030203-REV4.WOC.

Rev. Date: 04-19,2004 Calculation No. H21C-097 Nine Mile Point Nuclear Station Revision 0 Unit 2 Page 3-5 bIT- NM-t )PE E- ~oo PAGE 4~apZ LI~s DESIGN INFORMATION TRANSMITTAL -CONTINUATION Forrri SOP-0403.02-03. Revision 4 i x80 80-ftI 1/0-AWG 2RCSANJ309 4 1 x 155-fl 155-ft 1 110-AWG 2RCSBNJ3091 Total Cable Lengths by' size:

750-kCMIL 705-ft I10-AWG 235-fl reports.

cables, not Included on NMP2 drawings or cable and raceway

7. To account for the potential existence of other exposed yielding the following:

the above total cable lengtts'are doubled, 750-kCMIL 1400-ft NJN-03 1)0-AWO 600-ft NJN-04 types 'are the following dimensions pertaining to the two above cable

8. From the 15-kV electrical cable specification fRef. 3],

summarized:

Tvye NJN-03 1.conductor. 750-kCMIL:

0 0.9734nch Copper Conductor Diameter Ethylene Propylene Rubber (EPR)

Insulation Thickness: 220-mils 110-mils Chlorosulfonated Polyethylene (CSPE)

Jacket Thickness Tyae NJN.04 1.conductor Il-AWG:

0.363-inch Copper Conductor Diameter NONE Jacket Only Insulation Thickness' I 50-mille Chlorosulfonated Polyethylene (CSPE)

Jacket Thickness and jacket 18], the following Chlorine content Is available In insulation

9. From Information providedlby the Kerite Company [Ref.

material:

Insulation (EPR) I %

Jacket (CSPE) 16%,*2%

.1 SOP04030203-REV4.doc Rev. Date 04-19-2004

Calculation No. H21C-097 Nine Mile Point Nuclear Station Revisioo0 2 D -S--- Page 3-6 Form SOP-0403-02-03. Revision 4 DESIGN INFORMATION TRANSMITTAL Page S of ZV-Project No.: 11236-061 DIT No.: DIT-NM.NPEE-001 ATTACHMENT I sent 8111/2004 at 4:44pm from Sargent & Lundy, LLC's JC Penrose to RE Davis, E-Mail message pH Analysis

Subject:

Cable Inventory for SOP403O203-REV4,d0C Rev. Date: 04-19-2004 Calculation No. H21C-097 Nine Mile Point Nuclear Station- Revision 0 Unit 2 Ui2Page 3-7 JERI C PENROSE To: "Davis, Robert E" <Robert.E.Davts@constellation.com>

cc: HELMUT R KOPKEISargenfundy@Sorgentlundy 08/11104 G444 PM Subject Cable Inventory for pH Analysis Bob, I've been using your data as Input to the calculation of the pH In the Suppression Pool In Unit 2. Its a nice analysis and has much of the Information I need, but I'd like to confirm a few additional details to properly use the data.

Your data will be used to calculate the formation of HCI by.radlolysis of chlorine-bearing materials. As I understand itLonly the jacketing contains chlorine; the insulation Is made of EP or some other material that does not contain chlorine. Therefor, I need to determine the amounts of jacketing only. The radiolysla -

calculation Is sensitive to depth because radiation Is absorbed as it passes through the materiel. Because of this, besides the total weight of jacketing I also need data which Identify the jacket OD and the Jacket thickness.

The Cable Inventory you prepared concludes that there Is a total of 200 LF of tray in the Drywall which is used for Reactor Recirculation Pump power cables. It also uses a jacket and insulation weight of 6.4 lb per foot for cable In this tray, but doesn't Identify the basis for this unit weight. Your email dated 7120 indicates 1/c 750 MCM cables are used plus a 1/0 ground cable. Is the 6.4 lb per foot weight based on the total insulation and jacketing for three power cables plus one ground cable (i.e.. 600 LF 750 MCM cable and 200 LF 110.cable)? Are there any other cables in the tray?

The Cable Inventory also assumed additional exposed cable equal in weight to the Recirculation Pump power cables. Again. I need to use a.jacket.OD and thickness for the pH calculation. Would this additional cable be power cable or would it include smaller diameter control cable? Perhaps a reasonable assumption would be a mix of both.

I need to get the additional Information for all cables In the cable tray and elsewhere In the Drywall as described above. Your emall dated 7/20 provided the cable OD and the jacketing thickness for 1/c 750 MCM power cable. Please provide similar data for other cables and quantities by type of cable.

I would appreciate inclusion of a summary results table such as the following In your analysis. This would help me understand the data and provide a reference to be used for input to the pH calculation.

Cable Total length Jacket wt Jacket OD.- Jacket thickness 750 MCM power 600 LF xxx lb/kft 1.94 In 110 ml 1/0 ground 200 LF xxx tb/kft x.xx In xxx mill etc.

The final calculation is due to the client on August 24 and must be reviewed and approved before then. I need to receive an updated Cable Inventory to use as Input no later than Monday, August 16 to support the schedule.

Thanks, Jeri 312-269-6234

Calculation No. H21C-097 00 Revision1 Nine Mile Point Nuclear Station Unit 2 *Revision 3-8 Ui2Page CONTINUATION PAGE DESIGN INFORMATION TRANSMITTAL -

Form SOP-0403-02-03. Revision 4

.

  • DESIGN INFORMATION TRANSMITTAL Proect No.: 11236-061 Page 7 of Z.

DT No.: DIT-NM-NPEE-01 ATTACHMENT 2 1213112003 for Cable Trays

'Electrak Corp." Raceway Reports, dated

  • 2TJ012N
  • 2TJO15N, and
  • 2TJ022N SOPM4030203-REV4 doc Rev. Date: 04-19-2004 Calculation No. H21C-097 Nine Mile Point Nuclear Station Revision 0 Unit 2 Page 3-9 z?

Calculation No. H21C-097 Nine Mile Point Nuclear Station Revision 0 Unit 2 Page 3-10 NT-M-PEE00 Calculation No. H21C-097 Nine Mile Point Nuclear Station Revision 0 Unit 2 Page 3-11 b~T-N~M-N~PEE- oc~i p ~

I~2 I.

Calculation No. H21 C-097 Nine Mile Point Nuclear Station Revision 0 Unit 2 R vso Page 3-12 DESIGN INFORMATION TRANSMITTAL - CONTINUATION PAGE Form SOP-0403-02-03, Revision 4

  • *DESIGN INFORMATION TRANSMITTAL DIT No.: DIT-NM-NPEE-O01 Proect No.: 11236-061 Page 11 of Z?

ATTACHMENT 3

'As-Built Cable Report". dated 7/16/2004 for Cables

  • 2RCSANJ308, in Cable Tray 2TJO12N
  • 2RCSANJ309, in Cable Tray 2TJO12N
  • 2RCSBNJ308, in Cable Trays 2TJ01 5N and 2TJ022N
  • 2RCSBNJ309, in Cable Trays 2TJ01 5N and 2TJ022N SOP040302034REW.doc Rev. Date: 04-19-2004

7/16/04 cz As-Built Cable Report

. . . . . ... . .r -

a.5 01

- 0 Cable ID 2RCSANJ308 From Ccuponent 2CES-Z45Z PENETRATION 13.8 KV (N) 0 To Ccazonent 2RCS-MIA REACT RECIRC PP MTR 2RCS*PIA Hank Ro. of go. of Service Swpacity Current Length Data Roids Design Cables/Cables/ IXn Tyye Design ZXa.alled QA separation Design Program Vendor Cable No. Constr Code Splice Codes Stolpe FIA Irelin Level Codes Flage Design Rev A 3 J 70' 00 N Route, Holds xnztallea No. of Pat Fi11 Structural Struzt Load Separation Service Troy Protg Raceway Xd V00C Code Length Cables Pat W11l Linrit Load Override Codes Codes Cover Hold 1 "2TJ012N 0000 312 4 25.25 10.98 N J. N/A 70, NotesI Type LvI Del Text Text:

D A Calclength: 0e00070 3 D A Actlength:5S1.00080 3 D A Servolt: 13900V 4 D A Servfunc: SRCS15 5 A Ree3.nu1Tb: 23k1-08 Drawings a z Sheet Title 0

Drawing No. R)

P 0 5RCSI5- ,V 0) eM z

a) (D '

W(0<-4

7/16/04 cz~

As-Built Cable Report Z'3.

CD

-u Cable D 2RCB1JI7309 z'.

0 From Coa.onent 2CES-Z45E PENETRATION 13.8 [KV (N)

To Component 2RCS-MIA REACT RECIRC PP MTR 2RCSP.IA 0)

MI Rank No. of Uo. of service Acra* ity Current Length Data Holds Design Cabieecableal/ ICHA Type Design Installed QA Separation Design Program Vendor Cable No. Constr Code Sýlice Codes Stolpe FLA prelim Level Codes Flags Design Rev A 1 J 70 70 N 1 NJN-04 Raceway Id VWIC Code Length Cables Vot P11i Limit Load Override Codes Codes Cover Hold 1 2TJ01Ni 0000 312 70 4 25.25 10.99 N J N/A Notes s Type LvI Del Text 1 D A Calc]Length: 000070 2 D A Actl1ength: 000080 3 D A Serv;olt: 13800V 4 D A Serv func: SRCS15 5 D A Reeli inmb: 23A-02 Drawings 8 Drawing No. Sheet; Title 0

-1 C__

0)

R 5RCS15 p1 B.

0, 00)

<z C*)

=r

-ARA-01 %kt '750 #"tMl cz As-Built Cable Report 7/16/04 (D

-. CD Cable ZD MiCdikj3OU a')

From Coamonent 2CES-Z46E PENETRATION 13.8 K(V(N)

To Component 2RCS-MIB REIACT RECIRC PP XTh 2RCS*PlB Rank No. of Hf. of fezvyioe Anpaaity Current Length Data Holds 0

Design Cables/Cabloe/ ICKI Type Design Znatalled QA separation Design Program Vendor Cable No. Constr Code Sp*ioe CodesI togpe IFA Prelim Level Codes Flags Design Rev A 3 . 124 124"" 1

" NJ-03" Route i Holds xnstalled go. of " ePt pill Btrz*tral Stzruct Lead SeParation Service Tray Prog Raceway Xd VlSC Code Length 1- Limit Cables Pat Vi1 Load Override Codes Codes Cover Hold I. 2TJO15N. 0000 312 39; 4 25.25 10.98 ii J N/A 2 2TJ022N 0000 312 85 4 25.25 1 0*.98 N/A NI Noteas Type De& Text 1 D Caiclength: 600155 A

2 D A e Tz

.Actlength: 000155 D A 3 D Servolt: 13800V A

4 D Servfunc: SRCS17 A

5 Reelnumb: 23A-08 Drawi*gol Drawing No. Sheet' Title 2..

0 5RCS17 z

S20 W(0 6..

0 0-

CZ>

2.5*

(D

-3 As-Built Cable Report *f7/16/04 CD CD

-0 a

2. c,)

cable ID' 2RCsBEN309 z.

c Prom Conponent 2CES-Z46E !PETATION 13.S KV (N) 0 To Coaqonent 2RCS-NIB ;REACT RECIRC PP MTR 2RCS*18 (0 Rank No. of No. of se*vice Msaoity Current Length Data Holds Design Cables/Cables/ XC.A - Type Design installed Qh sepauation Design Program Vendor Cable No. Conet: Code fplice Codes Utolpe'. "a Prellim Level Codes Flags Design Rev Ate3 124 124 N I RoUtes Holds Installed Nob. of Pat Fill structural struet Load separation Service Tray Frog Raceway Id VFSC Code Length Cables Pct Pill L-4-t Load Override Codes Codes Cover Hold 1 2TJOl5N 0000 312 39' a 25.25 10.98 N 3 N/A 0) 2 2TJ02: 2N 0000 312 85!i 4 25.25 10.98 N 3 N/A 0)

NotesI Type LvI Del "Text 1 D A Calc lengthi 000155 2 D A, Actliangth: 000155

.3 D A Serv ait: 13800V 4 D A Servifunc: 5RC$17 5 D. A Reel. numb: 23A-02 Drawings a Z.

Drawing No. 'Sheet.; Title SRCS17 1'

.Z.

z0 Cc <.~l O--.

CD 0 -

Calculation No. H21C-097 Revision 0 Nine Mile Point Nuclear Station Page 3-17 Unit2 PAGE DESIGN INFORMATION TRANSMIT'AL - CONTINUATION Form SOP-0403-02-03, Revision 4 DESIGN INFORMATION TRANSMITTAL Papella of. Z*

Project No.: 11236-061 DIT No.: DIT-NM-NPEE-001.

ATTACHMENT 4 Cable Mark Numbers 8/13/2004, selected page containing "Cable Mark Number Report", dated

" NJN-03

" NJN-04 S0P04030203-REV4.doc Rev. Date: 04-19-2004 Calculation No. H21C-097 Nine Mile Point Nuclear Station Revision 0 Unit 2 Page 3-18

-e Q~arlm I-[Tn(! 32fitlifi t foWidows Conecton

SI. Calculation No. H21 C-097 Nine Mile Point Nuclear Station Revision 0 Unit 2 Page 3-19 JQSmmleffn far windowsv 32-Bit Editim -[I Onct Connection to Host) . I  : Inq

~MM~I.iPEt-OoI as~i~e It bC 'it Calculation No. H21C-097 Nine Mile Point Nuclear Station Revision0 0 Unit 2 ,Revision Ut2Page 3-20 DESIGN INFORMATION TRANSMITTAL - CONTINUATION PAGE Form SOP-0403-02-03. Revision 4

,DESIGN INFORMATION TRANSMITTAL DIT No.: DIT-NM-NPEE-001 Pro ect No.:" 11236-061 page 19 of Z7-ATTACHMENT 5

'Specification No. NMP2-E023A for "Insulated 15-kV Power Cable", Revision 2, dated 50/1986, selected pages SOP04030203-REV4.doc Rev. Date: 04-19-2004 Calculation No. H21C-097 Nine Mile Point Nuclear Station Revision 0 Unit 2 Page 3-21 I

I J.O. NO. 22177 Spec No. NMP2-E023A

'Revision~ 2 Mýay 1.' 1986,

.I Specification for

.I INSULATED 15-kV POWER CABLE I Nine Mile Point Nuclear Station - Unit 2 Niagara Mohawk Power Corporation I Scribe, NewYork I Sellers The Kerite Company Seymour,-Connecticut I

'DOCUMENT USER:

I 3ONSULT DCIS TO RECEIVED A.0. No. .,,1, OBTAIN LATEST I APP ,LICABLE DOCUMENT INFORMATION.

W1276 s'lnPl a wu U '- W D*CONTROL I AMPOVED I

I Conat Dept t I copyright 1986

  • Indep Beflbw *.

Stone & Webster Engineering Corporaltion I cherry Hill Operations Center I Cherry Hill, New Jersey QA Category I NUCLEAR SAFETY RELATED I

I Calculation No. H21C-097 Nine Mile Point Nuclear Station Revision 0 Unit 2 Page 3-22 biT-tQM -NP1E-oo%.

I Pcse. 7-1 4~ Z?

I 1-4 Quality Quality Assurance comprises all those 3.37 Assurance planned systeiatic actions necessary to 3.39

! provide adequate structure, system, confidence that or component will a 3.40 3.41 perform satisfactorily in service.

Quality Assurance includes Quality 3.43 Control, which comprises those quality I assurance actions related to the physical characteristics of a material, structure, component, or system which provide 'a 3.44 3.45 means to control the quality of the i material, structure, component, or system to predetermined requirements.

3.46 I Cable - insulated. 15-kV herein.

power cable as specified 3.49 3.50 U Triplexed Cable

- A cable which consists of three phase con-ductors with insulation and a jacket over each conductor, twisted, and a jacketed 3.55 3.57 3.58 ground wire run in one interstice of the I cable. (The ground wire la smaller than the phase conductors.)

usually 3.59 I 'The FURNISMED BY THE SELLER equipment, materials, and services to be 4.4 4.7 furnished by the Seller shall include, but not be limited 4.8 I to, the followings The Engineer is to have the privilege of increasing 4.10 I or decreasing the quantity of any items not more than ten percent at the unit price before the manufacture is started. 4.11 i(NA indicates not applicable)

I Item No.. 1 2 3 4.13 4.26 I Mark No.

Quantity, ft NJN-01 20,580 ckt.ft NJN-02 5,883 ckt. ft N3N-03 2,215 ft 4.25

,4.26 No. of Insulated 4.28 I Conductors Size, AWO or.

KCMIL 3-Trlplexed Three 4/0 3-TrIplexed Three 250 1

750 4.29 4.30 4.31 i Conductor Mat-erial -

Insulation Wall'

. Copper Copper. Copper 4.32

.4.33 4.34 Thickness, 4.35 min.avg I Insulation Shield-ing Required 220 mile Yes 220 mile Yes

  • 220 mile Yes 4.36 4.37 4.38 I

ch-12177;.S526e 04/28/86 10s Calculation No. H21C-097 Nine Mile Point Nuclear Station Revision 0 Unit 2 Page 3-23 I 1-5*

Item No. I 23 I Jacket Wall 4.40 Thickness, 4.41 I min. avg I0

  • Grounding Con-ductor Size mile 2 AW_

S5 mils 2 AWG 110 mile NA 4.42 4.44 4.45 Grounding Jac-I ket Thickness, min.avg .50 mile 50 mils NA 4.47 4.48 4.49 Cable Firiish Non-Metal Non-Metal Non-Metal 4.51 I Reel Length Nuclear Incident, Ref. Sec. 2 Ref. Sec. 2 Ref. Sec. 2 4.52 4.53 Test Required Yes Yes Yes 4.54 i Item No.' 4 5 4.56 Mark No. NJN-OS NJN-04 4.58 Quantity, ft 24,345 57888 4.59 Noo. of Insu- 5.1 lated Con- 1 5.2 ductors! 1 5.3 Size, AWO or 5.4 KCMIL So0 1/0 5.5 I Conductor Material Insulation Copper Copinr 5.6 5.7 5.8 Wall Thick- 5.9 I ness, min.avg Insulatibn 220 mils NA 5.10 5.11 Shielding 5.12 5.13 I Required Jacket Wall Thickness, Yes No 5.14 5.15 min. vgi 95 mile 50 mile 5.16 I Cable Finish Reel Length Non-Metal Ref. Sec. 2 Non-Metal Ref. Sec. 2 5.17 5.18 Nuclear Incident 5.19 I Test Required Yes PROCUREMENT, FABRICATION.

Yes AND CANCELLATrION PROVISIONS 5.20 5.24 I The procurement of material and the fabrication of the Sellfr's cable covered by this specification shall not 5.27 5.28 commence prior to receipt by the Seller of a written 5.30 I authorizlation from the Engineers., 5.31 5.38

This release will be based on approval of Seller's I engineeiing and drawing information. The Bidder shall include in his proposal the date before which he requires release :in order to meet delivery of the cable at the 5.40 5.41 5.42 jobsite.. Should the Seller deem it necessary to purchase 5.43 ch-12177-5526e 04/28/86 105 Calculation No. H21C-097 Nine Mile Point Nuclear .Station Revision 0 Unit 2 Page 3-24 II lose-Z4. eC Z2~

I 2-6 Typical Guaranteed II Track resistance Not Applicable Not Applicable 5.17 5.18 Surface resistivity

!1 Phaee Identification 5.22 4 d igits surface printed II Triplexed cable (1111, 2222, 3333).

5.24 5.25 Shield Characteristics 5.29 II Shield material a mil zinc 5.31 28.44 iACS 5.33 II Conductivity, X Coverage 100o S.36 II Percent lap minimum 25X 5.38 S.42 Cable Tray Fire Propagation Tests II Time for ignition, min. See Report NO. 76 VG-35P sutbmi tted as Attachment No. 2 5.44 5.45 with propoHsal dated 11/3/76 5.46 II Gas burner

.and encloaeed herewlth, 5.47 5.48 5.49 Time for short circuit after II ignition, min'.

, Gas burner 5.50 5.51 5.53 Length of burn, in.

II Gas burner After burn, min.

Gas burner 5.54 5.55 5.56 II Item No. 1 2 3 6.6 6.8 Ampacity Ii in 400C ambient air.

in 50°C ambient air 352 315 246.4 38 34-6 272 797.45 624.4 6.9 6.10 6.12 in 65.5°C ambient air 6.23 II Factory test voltage, kV indicate, ac and dc AC/DC Field acceptance test 56 35/80 35/80 6.24 6.25 56 56 6.26

. voltage,_ kV dc II Insulation thickness, mile individual jacket thickness, 220 so 220 95 220 110 6.27 6.28 6.29 mile II II II ch-12177-5526f 04/28/86 105

  • 8 Calculation No. H21C-097 Nine Mile Point Nuclear Station Revision 0 Unit 2 Page 3-25 I b1T- K3M- t3PjEk-M PC,5e 44 I 2-7 I Item No.

Minimum temperature at which 1 2 3 If pulling below 3201, store

  • 6.32 cable may safely be pulled indoors for a minimum of 6.33 I Length of time cable must be 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> before installation 6.34 6.35 stored at this minimum 6.36 I temperature before pulling Maximum allowable pulling tension, lb 6.37
  • 6.38 6.41 I Straight runs By conductor By Jacket (1 grip) 5080 1000 6000 1000 6000 1000 6.42 6.43 6.44 Bends, per ft radius 6.45 I By conductor

.By Jacket 610 610 648 648 815 815 6.46 6.47 Minimum bending radius for 6.48 I permanent training, in.

Completed cable Individual conductor 33 15 35 16 22 22 6.49

.6.50 6.51 Maximum uniformly distri- 6.53 I buted vertical load which

.cable can withstand when 6.54 6.55 6.56 installed in cable tray I with 9 in. maximum rung spacing and 3/4 in.

flat rung bearing surface, lbs 6.57 6.58 7.1 I per linear foot Minimum bending radius for

, cable being pulled, in.

15.6 33 16.6 35 22.4.

22 7.2 7.4 7.5 Maximum guaranteed, OD, in. 2.91 3.10 1.94 7.6 I Minimum guaranteed, OD; in.

Average guaranteed. OD, in.

Weight in lb per ft/ckt ft 2.51 2.71 4.4 per 2.66 2.88 5.0 per 1.68 1.81 3T.5per 7.7 7.8 7.9 I, Length on reel i ckt ft ckt ft 2043 ckt ft 1900 ckt ft 2200 ckt ft ft 2150ft 7.10 7.11 7.12 1500 ckt ft 7.13 I Reel size, in.

800 ckt ft

  • 96x50x60R *96xSOx6OR *8Rx40x36R
  • 96xSOx42R 7.14 7.15 7.16 U or as required See Kerite Prints IT-15P1T, 7.17 7.19 I Manufacturer's recommended

.terminatton procedure Manufacturer's recommended OT-15 PMT (Add suffix NUC for Containment Area)

Print S-15 PMT (Add suffix

-7.20 7.21 7.22 splicing procedure NUC - for Containment Area) 7.23 I Manufacturer.'s recommended pulling lubricant See Kerite'e Memo-EM60 7.24 7.25 I

cb-12177-SS26f 04/28/86 105 I

Calculation No. H21C-097 Nine Mile Point Nuclear .Station Revision 0 Unit 2 Page 3-26 I 2-6

?XJ-Pý5.7Sr af I Itmo-4 5 I Ampacity in 400C ambient air 692 N A 7.36 7.37 7.38 in SOOC ambient air 7.39 I .in 65.5°C ambient air Factory test voltage, kV indicate ac and de, AC/DC 484 35/80 N/A N/A 7.40 7.41 7.43 I Field acceptance test voltage, kV, dc Insulation thickness. mile 56 220 N/A N/A 7.44 7.46 7.48 Individual jacket thickness, I mils 95 50 ifPlling'-b'w-320F, store 7.49 7.51 7.52 Minimum temperature at which indou Urs for a minimum of 7.53 I cable may safely be pulled Length of' time cable must be stored at this minimum 24 hc)ure before Instal lation 7.54 7.55 7.56 I temperature before pulling maximum allowable pulling tension, lb 8.S 8.6

.8.7 straight runs I By conductor By jacket Bends, per ft radius 4000 100 845 845 8..8

  • 8.9

.211 300 8.12 I By conductor By Jacket Minimum bending radius for 783 783 300 8.13 8.14 8.15 permanent training, in.

I Completed cable Individual conductor 19 19 2.4 2.4 8.16 8.17 8.18 Maximum uniformly distri- 8.19 I *buted vertical load which cable can withstand when installed in cable tray.

8.20 8.21 8.22 I with9 in. maximum rung spacing and 3/4 in.

flat rung bearing surface, lb 6.0 8.23 8.24 8.25 per linear foot . 19.6 I Minimum bending radius for.

cable being pulled. in. 19 2.4 0.53 8.26 8.27 8.28 maximum guaranteed. OD, In. 1.74 8.29 I Minimum guaranteed, OD, in.

Average guaranteed, OD, in.

Neight In lb per ft 1.58 2.5 4L--- 0.44 50.48 T. 38' 8.30 9.31 8.32 Length on-reel, ft 3088 I Reel size, in. '80x"'z3

'66NR 0 or 1000

';-3014R 8.33 8.35 8.36 I Manufacturer's. recommended termination procedure

  • See Kerite PMT PMT OT-I5 prints

.5 IT-2fix (Add sulf 8.4S 8.46 I

ch-12177-SS26f 04/28/86 105 I

Calculation No. H21C-097 Nine Mile Point Nuclear Station Revision 0 Page 3-27 Unit 2

- CONTINUATION PAGE DESIGN INFORMATION TRANSMITTAL 4 Form SOP-0403-02-03, Revision

". "- , DESIGN INFORMATION TRANSMITTAL PageZlo of Za I Proect No.: 11236-061 DIT No.: DIT-NM-NPEE-001 ATTACHMENT 6 Sargent & Lundy, LLC's Helmut message from the Kerite Company's Robert Flemming to E-Mail Kopke, sent 8/412004 at 2:06pmat Nine Mile Point Nuclear Station

Subject:

Kerte Power Cables SOP04030203-REV4.doc Rev. Date: 04-19.2004 Calculation No. H21C-097 Nine Mile Point Nuclear Station Revision 0 Unit 2 Page 3-28 1I1T-,t',- MPE-.oeI JOHN H GELSTON. To: v* ."rzS' 08/13/04 03:14 PM

Subject:

RE: Kerite Power Cables at Nine Mile Point Nuclear Station Forwarded by HELMUT R KOPKE/Sargentlundy on 08/13104 01:14 PM -

"Fleming, Robert" To: HELMUT.R.KOPKE@sargentlundy.com, reflemlng@kerite.com kreflemling~kerite.c.,m cc: roberLe.davis@ccnstellation.com, 0-JERI.C.PENROSE@sargentiundy.com 08/04/04 02:08 PM

Subject:

RE: Kerite Power Cables at Nine Mile Point Nuclear Station Helmut, confirming our conversation earlier this week the compounds in the Kerite power cable in Nine mile Point and their chlorine content are as follows:

Kerite Designation Generic Description PerCent Chlorine by Weight Permashield (PRS-54) Urethane 0%

HTK (N-90) EPR Insulation < I%

SemiCon Tape (C7T6-6) SemiCon Tape 0%

FR Jacket (KC-711i CSPE 16+2%

Let me know how this works out for you.,

Sincerely, Bob Fleming Principal Engineer The Kerite Company 49 Day St.

Seymour, CT 06483 Phone 203-881-5380 Fax 203-888-1987 Email ref lemingekerite.com

> ----- Message-----

Original

> From: HELMUT.R.KOPKseargentlundy.com

> CSNTP: HELNUT. R.:KOPKE~sargentlundy. cor]

> Sent: Monday, August 02. 2004 4:08 PM

> TO: reflemingakerite.com

> Cc: robert.e.davis@constellation.com; JERI. C. PENROSEseargentlundy. com

Subject:

Kerite Power Cables at Nine Mile Point Nuclear Station

> Bob,

  • The following information was provided to me by Nine mile Point regarding

> the 15 kV power cables used at the station. If you could please respond

> to

> this email with the following information, it will be greatly appreciated.

  • 1. Short description of the material Cc t No. H Nine Mile Point Nuclear Station Calculation No. H21C-097 Unit 2 Revision 0 Page 3-29 Final

> 2. Is the materia1 chloronated?

> 3. If the material is chloronated, what is the weight % chlorine?

>If you have any questions, please contact me at 312-269-2175.

> Thank you for your help,

> Helmut, Kopke

> P.S. I have alslo included the physical parameters of the cable in case

> they would be of use. Also, if it is not too difficult, it would be appreciated if You could verify the thickness of the jacket and the OD of

> the cable.

> INFORMATION FROý, NINE NILE POINT:

" In the "Technical Information by Seller" section of'Specification E023A

" which purchased the subject 15 kV cables, the following information was

" provided by Kerite and dated October 31, 1977:

> Basic Insulation Material: High Temperature Kerite

, Material Identification Number: N-98 Strand Shielding': Permashield

> Material Identification-Number: PES-54

" Insulation Shielding:, nonmetallic semiconducting material

" Material Identification Number: C7T6-6 Basic Jacket Material: Kerite FR Jacket Material Identification Number: HC-711

, The "typical" 'cable is the cable installed in the power cable trays that

>-were inventoried. These cables are 1/c 750MCM, 15kv shielded power cable

> manufactured k*yKerite Co.

> Per the cable specification R023A, the following applies to this cable

>type:

" Minimum average insulation wall thickness = 220 Mile

" Minimum average jacket wall thickness - 110 Mile

> Cable weight per foot - 3.5 lbs

> Cable diameter - 1.94 inches Calculation No. H21C-097 Nine Mile Point Nuclear Station Revision 0 Unit 2 Page 4-1 Attachment 4 Calculations Determining Post-LOCA Suppression Pool pH Table of Contents Figure 4-1: Post-LOCA Suppression Pool pH Analysis pH Response without SLCS ............. 4-2 Table 4-1: Post-LOCA pH Calculation without SLCS........................................................... 4-3 Table 4-2: Hydriodic Acid (HI) Production ............................................................................. 4-5 Table 4-3: Nitric Acid (HNO 3) Production ................................. 4-6 Table 4-4: Hydrochloric Acid (HCI) Production .................................................................... 4-7 Table 4-5: Cesium Hydroxide (CsOH) Production ........................... 4-9, Table 4-6: Effect of SLCS Addition on Post-LOCA Suppression Pool pH ........................... 4-10 Table 4-7: Gamma and Beta Radiation Dose Used to Determine Post-LOCA pH ...... 4-11 Table 4-8: Post-LOCA Suppression Pool Temperature Responsei ....................... 4-12 Table 4-9: Post-LOCA Suppression Pool Volume ................................................................ 4-13 Figure 4-2: Gamma (y) Dose vs. Time Post-LOCA ........................... 4-14 Figure 4-3: Beta (P) Dose vs. Time Post-LOCA ............................. 4-15 Equations for, above tables .................................................................... 4-16 to 4-29 Note that each table in this attachment has been developed using Microsoft Excel. Some tables reference each other; for these references, see the "tab" name at the bottom of each sheet.

Calculation No. H21C-097 Nine Mile Point Nuclear Station Revision 0 Unit 2 Page 4-2 Figure 4-1: Nine Mile Point Unit 2 Post-LOCA Suppression Pool pH Analysis pH Response without SLCS 9.0 8.0 7.0 0.0 Q.

0 a .

oC 6.0 5.0 4.0 3.0 L--

0.010 0.100 1.000 10.000 100.000 1000.000 Time After LOCA (hours)

Pool pH Table 4-1: Post-LOCA pH Calculation without SLCS Calculation No. H21C-097 Nine Mile Point Nuclear Station Revision 0 Unit 2 Page 4-3 Initial conditions Suppression pool mass 9,620,464 Ibm Table 4.9 (maximum values)

RCS mass 669,175 ibm Table 4.9 (maximum values)

Total post-LOCA SP mass 10,289,639 Ibm suppression pool pH 5.3 Design input4.1 (minimum value) reactor coolant pH 5.3 Design Input 4.2 (minimum value) initial [H]. 5.01E-06 g-moleil weighted aie'age .

initial [OH] 2.OOE-09 g-mole/l weighted average Pool [HI] 2 [HNO, 3] [HCI]2 [CsOH12 Total [H+] Total [OH1] Pool Water K, at x [HH] Pool Time Volume, Temp Density Pool Temp pH (hr) (liter) (g-moles/l)l (g-moles/l) (g-moles/1) (9-moles/I) (g-moles/I) (g-moles/I) (°F) (Ibm/ft3) (-) (g-moles/I) (g-moles/I) (-)

0 4,690,698 5.01E-06 2.00E-09 90.0 62.12 1.704E-14 -1.40E-09 5.01E-06 5.3 0.034 4,729,502 9.79E-08 5.265E-09 5.12E-06 2.00E-09 126.6 61.61 6.100E-14 -9.91E-09 5.12E-06 5.3 0.534 4,781,170 1.41E-07 1.18E-06 5.706E-08 1.84E-05 6.39E-06 1.84E-05 162.6 60.94 1.748E-13 6.38E-06 1.46E-08 7.8 1 4,788,753 3.60E-07 2.88E-06 1.547E-07 4.03E-05 8.40E-06 4.03E-05 167.2 60.84. 1.975E-13 8.40E-06 6.18E-09 8.2 2 4,805,668 8.43E-07 4.41E-06 2.128E-07 8.87E-05 1.05E-05 8.87E-05 177.2 60.63 2:536E-13 1.05E-05 3.24E-09 8.5 2.034 4,806,252 8.43E-07 4.46E-06 2.147E-07 8.87E-05 1.05E-05 8.87E-05 177.6 60.62 2.556E-13 1.05E-05 3.27E-09 8.5 3 4,821,606 8.40E-07 5.93E-06 2.705E-07 8.84E-05 1.20E-05 8.84E-05 186.2 60.43 3.132E-13 1.20E-05 4.1OE-09 8.4 4 4,831,531 8.38E-07 7.45E-06 3.283E-07 8.83E-05 1.36E-05 8.83E-05 191.6 60.31 3.535E-13 '1.36E-05 4.74E-09 8.3 5 4,841,709 8.37E-07 8.96E-06 3.858E-07 8.81E-05 1.52E-05 8.81E-05 197.0 60.18 3.972E-13 1.52E-05 5.45E-09 8.3 6 4,847,754 8.36E-07 1.05E-05 4.434E-07 8.80E-05 1.68E-05 8.80E-05 200.1 60.10 4.242E-13 1.68E-05 5.96E-09 8.2 12 4,851,097 8.35E-07 1.40E-05 6.215E-07 8.79E-05 2.04E-05 8.79E-05 201.9 60.06 4.395E-13 2.04E-05 6.51E-09 8.2 18 4,845,158 8.36E-07 1.75E-05 8.008E-07 8.80E-05 2.41E-05 8.80E-05 198.8 60.14 4.125E-13 2.41E-05 6.46E-09 8.2 24 4,834,896 8.38E-07 2.10E-05 9.815E-07 8.82E-05 2.78E-05 8.82E-05 193.4 60.26 3.677E-13 2.78E-05 6.09E-09 8.2 48 4,806,847 8.43E-07 3.01E-05 1.327E-06 8.87E-05 3.73E-05 8.87E-05 177.9 60.62 2.578E-13 3.73E-05 5.01E-09 8.3 72 4,785,930 8.46E-07 3.73E-05 1.585E-06 8.91E-05 4.47E-05 8.91E-05 165.5 60.88 1.889E-13 4.47E-05 4.25E-09 8.4 96 4,772,390 8.49E-07 4.33E-05 1.798E-06 8.93E-05 5.1OE-05 8.93E-05 157.0 61.05 1.505E-13 5.09E-05 3.92E-09 8.4 120 4,762,036 8.51E-07 4.86E-05 1.983E-06 8.95E-05 5.65E-05 8.95E-05 150.2 61.19 1.246E-13 5.65E-05 3.77E-09 -8.4 144 4,754,844 8.52E-07 5.35E-05 2.147E-06 8.97E-05 6.15E-05 8.97E-05 145.3 61.28 1.082E-13 6.15E-05 3.84E-09 8.4 168 4,750,837 8.53E-07 5.79E-05 2.295E-06 8.98E-05 6.61E-05 8.98E-05 142.5 61.33 9.964E-14 6.61E-05 4.21E-09 8.4 192 4,746,766 8.53E-07 6.21E-05 2.432E-06 8.98E-05 7.04E-05 8.98E-05 139.6 61.38 9.139E-14 7.04E-05 4.70E-09 8.3 216 4,743,322 8.54E-07 6.60E-05 2.56E-06 8.99E-05 7.44E-05 .8.99E-05 137.1 61.43 8.474E-14 7.44E-05 5.48E-09 8.3 240 4,740.880 8.54E-07 6.97E-05 2.679E-06 8.99E-05 7.82E-05 8.99E-05 135.3 61.46 8.02E-14 7.82E-05 6.85E-09 8.2 pH Table 4-1: Post-LOCA pH Calculation without SLCS Calculation No. H21C-097 Nine Mile Point Nuclear Station Revision 0 Unit 2 Page 4-4 Pool [HI] 2 [HNO 3]3 [HCI] 2 [CsOHJ2 Total [H÷] Total [OH] Pool Water K,, at x. [H+J Pool Time Volume' Temp Density Pool Temp pH (hr) (liter) (g-moleslIg-molesti)flg-moles/1)) (g-moles/) (g-moles/) (°F) (lbm/ft3) (-) (g-moles/I) (g-moles/l (-)

288 4,737,014 8.55E-07 7.66E-05 2.899E-06 9.OOE-05 8.54E-05 9.OOE-05 132.4 61.51 7.333E-14 8.53E-05 1.57E-08 7.8 336 4,734,266 8.56E-07 8.29E-05 3.099E-06 9.01E-05 9.19E-05. 9.01E-05 130.3 61.54 6.866E-14" 9.OOE-05 1.86E-06 5:7 384 4,732,510 8.56E-07 8.88E-05 3.283E-06 9.01E-05 9.80E-05 9.01E-05 128.9 61.57 6.578E-14 9.01E-05 7.89E-06 5.1 432 4,731,844 8.56E-07 9.44E-05 3.453E-06 9.01E-05 1.04E-04 9.01E-05 128.4 61.58 6.47E-14 9.01E-05 1.36E-05 4.9 480 4,731,180 8.56E-07 9.96E-05 3.613E-06 9.01E-05 1.09E-04 9.01E-05 127.9 61.59 6.364E-14 9.01E-05 1.90E-05 4.7 528 4;729,761 8.56E-07 1.05E-04 3.765E-06 9.02E-05 1._14E-04 9.02E-05 -.126.8 61.60 ... 6.14E-1_4. 9.01E-05 2.41E-05 4.6 576 4,728,353 8.57E-07 1.09E-04 3.909E-06 9.02E-05 1.19E-04 9.02E-05 125.7 61.62 5.924E-14 9.02E-05 2.90E-05 4.5 624 4,726,984 8.57E-07 1.14E-04 4.047E-06 9.02E-05 1.24E-04 9.02E-05 124.6 61.64 5.717E-14 9.02E-05 3.38E-05 4.5.

672 4,725,652 8.57E-07 1.19E-04 4.179E-06 9.02E-05 1.29E-04 9.02E-05 123.5 61.66 5.52E-14 9.02E-05 3.83E-05 4.4 720 4,724,331 8.57E-07 1.23E-04 4.306E-06 9.03E-05 1.33E-04 9.03E-05 122.4 61.67 5;329E-14 9.03E-05 4.27E-05 4.4 Notes

1) Pool volume is computed as follows: (msp / psp)*2 8 .3 1 68 5 lift3
2) The HI, HCI, and CsOH concentrations calculated in Tables 4-2, 4-4, and 4-5 are based on the SP volume from Table 4-9.

To adjust for the SP volume as it changes throughout the LOCA, the concentration from Tables 4-2, 4-4, and 4-5 is multiplied by the following factor: Vasis/Vsp where Vba,. is the volume in Table 4-9 and VSP is calculated in this sheet.

3) The HNO 3 concentration does not directly utilize the SP volume and therefore is not adjusted as described in Note 2. However,
  • the HNO 3 generation is based on PH2o= 1 0 0 0 g/I. To account for the density in the post-LOCA SP, the concentration from Table 4-3 3

is multiplied by Psp / 1000 g/Il

  • 453.6 glIbm 128.31685 Vft pH Table 4-2: Hydriodic Acid (HI) Production Calculation No. H21C-097 Nine Mile Point Nuclear Station Revision 0 Unit 2 Page 4-5 Core iodine inventory Attachment 1, Table 1-1 Core iodine - gap release 13.50 g-mole Core iodine - EIV release 67.51 g-mole Attachment 1, Table 1-1 Fraction~of release as HI 0.05 max Reg Guide 1.183 (main body Ref. 7.10.2)

Gap release onset 2 minutes Reg Guide 1.183 (main body Ref. 7.10,2)

Gap release duration 30 minutes Reg Guide 1.183 (main body Ref. 7.10.2)

EIV duration 90 minutes Reg Guide 1.183 (main body Ref.7.10.2) suppression cumulative pool cumulative Time HI volume HI I ,(hr) (W-mole) (liter) (Q-mole/l) onset 0.033 0.00 .4,757,734 O.OOE+00 end of! gap release 0.533 0.68 4,757,734 1'.42E-07 1.000 . 1.73 4,757,734 3.63E-07 end of EIV 2.033 4.05 4,757,734 8.51 E-07

  • 1 HI I.

Table 4-3: Nitric Acid (HNO 3) Production Calculation No. H2IC-097 Nine Mile Point Nuclear Station Revision 0 Unit 2 Page 4-6 HNO 3 generation 7.3E-06 g-mole/I per MRad NUREG/CR-5950 (main body Ref. 7.13)

Suppression Pool cumulative TID @

Time 3467 MWt HN03 (rad)

(hr) (g-moleil) 1.36E+04 onset 0.034 9.92E-08 end of g;ap release 0.534 1.66E+05 1.21 E-06 "1

4.04E+05 2.95E-06 end of EIV 2 6.22E+05 4.54E-06 2.034 6.29E+05 4.59E-06 3 8.39E+05 6.12E-06 4 1.06E+06 7.71 E-06 5 1.27E+06 9.29E-06 6 1.49E+06 1.09E-05 12 1.99E+06 1.45E-05 18 2.48E+06 1.81 E-05 24 2.98E+06 2.18E-05 48 4.25E+06 3.10E-05 72 5.23E+06 3.82E-05 96 6.06E+06 4.43E-05 120 6.80E+06 4.96E-05 144 7.46E+06 5.45E-05 168 8.08E+06 5.90E-05 192 8.65E+06 6.31 E-05 216 9.19E+06 6.71 E-05 240 9.70E÷06 7.08E-05 288 1.06E+07 7.77E-05 336 1.15E+07 8.41 E-05 384 1.23E+07 9.01 E-05 432 1.31E+07 9.57E-05 480 1.38E+07 1.01E-04 528 1.45E+07 1.06E-04 576 1.52E+07 1.11E-04 624 1.58E+07 1.16E-04 672 1.64E+07 1.20E-04 720 1.70E+07 1.24E-04 HNO3 Table 4-4: Hydrochloric Acid (HCI) Production Calculation No. H21C-097 Nine Mile Point Nuclear Station Revision 0 Unit 2 Page 4-7 Cables hypalon properties:

radiolysis yield, G 2.192.E-06 g-mole HCI per MRad-g NUREG/CR-5950 (main body Ref. 7.13) linear absorption coefficient 52.08 cm-1 for beta radiation NUREG-1081 (main body Ref. 7.15) linear absorption coefficient 0.099 cm"1 for gamma radiation NUREG-1 081 (main body Ref. 7.15) density '1.55 g/cm 3 NUREG-1081 (main body.Ref. 7.15)

Cable jacket and insulation:

750 MCM power cable 1/0ground cable cable OD (max guar.) 1.94 in cable OD (max guar.) 0.53 in jacket thickness 110. mil jacket thickness 50 mil jacket material hypalon jacket material hypalon insulation thickness 220 mil insulation thickness none mil insulation material EPR insulation material length in free air. 695 linear ft length in free air 265 linear ft length in tray 705 linear ft length in tray 235 , linear ft chlorine-bearing material:

3 volume in free air 86,429.3 cm 3 volume in free air 3,929.1 cm volume in tray 87,672.9 cm 3 volume in tray 3,484.3 cm 3

mass in free air 133,965.4 gram mass in free air 6,090.1 gram mass in tray 135,892.9 gram mass in tray 5,400.6 gram Irradiation:

750 MCM power cable 1/0 ground cable I beta I beta gamrnma free air I tray gamma free air I tray cable radius (cm) 2.4638. 2.4638 2.4638 0.6731 - 0.6731 0.6731 jacket thickness (cm) 0.2794 0.2794 0.2794 0.127 0.127 0.127 mass irradiated (g) 269,858.3 133,965.4 67,946.5 11,490.7 6,090.1 2,700.3 flux averaging factor 0.98657 0.072286 0.072286 0.993957 0.162002 0.162002 absorption factor 0.027282 1 1 0.012494 0.998659 0.998659 HCI
  • Table 4-4: Hydrochloric Acid (HCI) Production Calculation No. H21C-097.

Nine Mile Point Nuclear Station Revision 0 Unit 2 Page 4-8 pool gamma beta Drywell HCI Time volume TID TID gamma beta HCI (hr) (liter) (rad) (rad) (g-mole) (g-mole) (g-mole/I) 0.033611 4,757,734 -8.23E+04 6.71E+05 1.34E-03 2.36E-02 5.23E-09 0.533611 4,757,734 9.20E+05 7.34E+06 1.49E-02 2.58E-01 5.73E-08 1 4,757,734 2.45E+06 2.OOE+07 3.97E-02 7.OIE-01 1.56E-07 2 4,757,734 3.45E+06 2.75E+07 5.60E-02 9.67E-01 2.15E-07 2.033611 4,757,734 3.48E+06 2.78E+07 5.65E-02 9.75E-01 2.17E-07 3 4,757,734 4.45E+06 3.51 E+07 7.22E-02 1.23E+00 2.74E-07 4 4,757,734 5.45E+06 4.27E+07 8.85E-02 1.50E+00 3.33E-07 5 4,757,734 6.45E+06 5.02E+07 1.05E-01 1.76E+00 3.93E-07 6 4,757,734 7.45E+06 5.78E+07 1.21E-01 2.03E+00 4.52E-07 1,2 4,757,734 8.87E+06 8.18E+07 1.44E-01 2.87E+00 6.34E-07 18 4,757,734 1.03E+07 1.06E+08 1.67E-01 3.71E+00 8.16E-07 24 4,757,734 1.17E+07 1.30E+08 1.90E-01 4.56E+00 9.97E-07 48 4,757,734 1.44E+07 1.75E+08 2.33E-01 6.15E+00 1.34E-06 72 4,757,734 1.62E+07 2.09E+08 2.63E-01 7.32E+00 1.59E-06 96 4,757,734 1.76E+07 2.36E+08 2.86E-01 8.30E+00 1.8E-06 120 4,757,734 1.88E+07 2.60E+08 3.06E-01 9.14E+00 1.98E-06 144 4,757,734 1.99E+07 2.82E+08 3.22E-01 9.88E+00 2.15E-06 168 4,757,734 2.08E+07 3.01 E+08 3.37E-01 1.06E+01 2.29E-06 192 4,757,734 2.16E+07 3.1 9E+08 3.51E-01 1.12E+01 2.43E-06 216 4,757,734 2.24E+07 3.35E+08 3,63E-01 1.18E+01 2.55E-06 240 4,757,734 2.31 E+07 3.51 E+08 3.75E-01 1.23E+01 2.67E-06 288 4,757,734 2.44E+07 3.80E+08 3.96E-01 1.33E+01 2.89E-06 336 4,757,734 2.55E+07 4.06E+08 4.14E-01 1.43E+01 3.08E-06 384 4,757,734 2.65E+07 4.30E+08. 4.31E-01 1.51E+01 3.27E-06 432 4,757,734 2.75E+07 4.53E+08 4.46E-0i1 1.59E+01 3.43E-06 480 4,757,734 2.83E+07 4.74E+08 4.60E-01 1.66E+01 3.59E-06 528- 4,757,734 2.91E+07 4.94E+08 4.73E-01 1.73E+01 3.74E-06 576 4,757,734 2.99E+07 5.13E+08 4.85E-01 1.80E+01 3.89E-06 624 4,757,734 3.06E+07 5.31 E+08 4.97E-01 1.86E+01 4.02E-06 672 4,757,734 3.13E+07 5.48E+08 5.08E-01 1.92E+01 4.15E-06 720 4,757,734 3.1 9E+07 5.65E+08 5.18E-01 1.98E+01 4.28E-06 HCI Table 4-5: Cesium Hydroxide (CsOH) Production Calculation No. H21C-097 Nine Mile Point Nuclear Station Revision 0 Unit 2 Page 4-9 Core cesium - gap release 100.67 g-mole Attachment 1, Table 1-2 Core cesium - EIV release 402.68 g-mole Attachment 1, Table 1-2 Csl - gap release 12.83 g-mole fraction iodine release in form of Csl Csl - EIV release 64.13 -g-mole fraction iodine release in form of Csl CsOH - gap release 87.85 g-mole CsOH - EIV release 338.55 g-mole Gap release onset 2 minutes Reg Guide 1.183 (main body Ref. 7.10.2)

Gap release duration 30 minutes Reg Guide 1.183 (main body Ref. 7.10.2)

EIV duration 90 minutes Reg Guide 1.183 (main body Ref. 7.10.2) suppression cumulative pool cumulative Time CsOH volume CsOH I(Hr) (g-mole) (liter) (a-mole/1) onset 0.033 0.00 4,757,734 0.OOE+O0 end. of gap release 0.533 87.85 4,757,734 1.85E-05

'1.000 193.17 4,757,734 4.06E-05 end of EIV 2.033 426.39 4,757,734 8.96E-05 CsOH Table 4-6: Effect of SLCS Addition Calculation No. H21C-097 Nine Mile Point Nuclear Station on Post-LOCA Suppression Pool Revision 0 Unit 2 Page 4-10 Buffering by SLCS SLCS:

Min SLC pump flow rate, 41.2 gpm Design Input 4.12 Min SLC injection tank volume 4288 gal Design Input 4.12 Max SLC temp 85 OF Design Input 4.12 Min SLC temp 75 OF Design Input 4.12 SLC SPB conc. by weight 14.4% Design Input 4.12 Specific gravity 1.071 Design Input 4.12 Density (T=85 0 F) 66.58 Ibm/ft3 Ref. 7.18 Final suppression pool temp (bounding) 200 OF

  • f Boric acid K 1.30E-09 at 200 OF MW sodium pentaborate (Na 2B11001*10H 20) 590.224 Design Input 4.12 3

Volume sodium pentabor*ate 573.2 ft Mass sodium pentaborale 5,495.8 Ibm Mass sodium pentaborate 4,223.6 g-mole unbuffered pH 4.37 unbuffered [H+] 4.273E-05 g-mole/I Suppression Pool volume 4,757,734 liter Equivalents unbuffered [H-] 203.3 g-mole Final pH 8.27 Time to inject boron 104.1 minutes SLCS Table 4-7: Gamma and Beta Radiation Dose Calculation No. H21C-097 Nine Mile Point Nuclear Station used to Determine Post-LOCA pH Revision 0 Unit 2 Page 4-11 gamma dose beta dose Suppression Drywell &

Pool Wetwell Drywell Wetwell TID @ TID @ TID @ TID @

Time 3467 MWt 3467 MWt 3467 MWt 3467 MWt Source

[hr] [rad] [rad] [rad] [rad] [-]

0 0.034 1.4E+04 8.2E+04 6.7E+05 7.6E+05 linear interpolation 0.534 1.7E+05 9.2E+05 7.3E+06 8.5E+06 linear. interpolation 1 4.OE+05 2.4E+06 2.OOE+07 2.26E+07 Attachment 2, Tables 2-1 and 2-2 2 6.2E+05 3.4E+06 2.75E+07 3.19E+07 linear interpolation 2.034 6.3E+05 3.5E+06 2.8E+07 3.2E+07 linear interpolation 3 8.4E+05 4.4E+06 3.51 E+07 4.12E+07 linear interpolation 4 1.1E+06 5.4E+06 4.27E+07 5.05E+07 linear interpolation 5 1.3E+06 6.4E+06 5.02E+07 5.97E+07 linear interpolation 6 1.5E+06 7.4E+06 5.78E+07 6.90E+07 Attachment 2, Tables 2-1 and 2-2 12 2.OE+06 8.9E+06 8.18E+07 9.91E+07 linear interpolation 18 2.5E+06 1.OE+07 1.06E+08 1.29E+08 linear interpolation 24 3.OE+06 I.2E+07 1.30Et08 1.59E+08 Attachment 2, Tables 2-1 and 2-2 48 4.3E+06 1.4E+07 1.8E+08 2.2E+08 log-log interpolation 72 5.2E+06 1.6E+07 2.1E+08 2.6E+08 log-log interpolation 96 6.1E+06 1.8E+07 2.4E+08 2,9E+08 log-log interpolation 120 6.8E+06 - .9E+07 2.6E+08 3.2E+08 log-log interpolation 144 7.5E+06' 2.OE+07 2.8E+08 3.5E+08 log-log interpolation 168 8.1 E+06 2.1E+07 3.0E+08 3.7E+08 log-log interpolation 192 8.6E+06 2.2E+07 3.2E+08 3.9E+08 log-log interpolation 216 9.2E+06 2.2E+07 3.4E+08 4.2E+08 log-log interpolation 240 9.7E+06 2.3E+07 3.5E+08 4.4E+08 log-log interpolation 288 1.1 E+07 2.4E+07 3.8E+08 4.7E+08 log-log interpolation 336 1.2E+07 2.5E+07 4.1 E+08 5.OE+08 log-log interpolation 384 1.2E+07 2.7E+07 4.3E+08 5.3E+08 log-log interpolation 432 1.3E+07 2.7E+07 4.5E+08 5.6E+08 log-log interpolation 480 1.4E+07 2.8E+07 4.7E+08 5.9E+08 log-log interpolation 528 1.5E+07 ,2.9E+07 4.9E+08 6.1E+08 log-log interpolation 576 1.5E+07 .3.0E+07 5.1E+08 6.4E+08 log-log interpolation 624 1.6E+07 3.1E+07 5.3E+08 6.6E+08 log-log interpolation 672 1.6E+07 3.1E+07 5.5E+08 6.8E+08 log-log interpolation 720 1.7E+07 ;3.2E+07 5.65E+08 7.03E+08 Attachment 2, Tables 2-1 and 2-2 2400 3.8E+07 ;5.0E+07 6.07E+08 7.54E+08 Attachment 2, Tables 2-1 and 2-2 4320 5.9E+07 -6:7E+07 6.35E+08 7.81E+08 Attachment 2, Tables 2-1 and 2-2 8760 1.0E+08 1.OE+08 6.97E+08 8.44E+08 Attachment 2, Tables 2-1 and 2-2 Rad Dose Table 4-8: Post-LOCA Suppression Pool Calculation No. H21C-097 Nine Mile Point Nuclear Station Temperature Response Revision 0 Unit 2 Page 4-12 From Data (Refs. 7.6.517.6.7) Used for pH Analysis Time Post-LOCA Temp Time Temp (hr) (*F) 0 90.0 0.034 126.6 0.534 162.6 1 167.2 2 177.2 2.034 177.6 U.UQ4 1LOO 3 186.2 4 191.6 5 197.0 0.534 162.6 6 200.1 1 167.2 12 201.9 2 177.2 18 198.8 2.034 177.6 24' 193.4 48 '177.9

3 186.2 72 165.5 4 191.6 96 157.0 5 197 120 150.2

=31333=, ý5.556 -`200 144 145.3 6 200.1 168 142.5 L=52,O 1. 67 202 192 139.6 12 201.9 216 137.1

=,60;090~ " 16;67 '. 200 240 135.3 18 198.8 288 132.4 24 336 130.3 384 128.9 432 128.4 480 127.9 528 126.8 576 125.7 624 124.6 672 123.5 720 122.4 The shaded values are taken from either Reference 7.6.5 or 7.6.7 (Design Input 4.15).

Other other values are either interpolated or extrapolated.

432 128.4 MIT =07 -

,-7

ý-,

480

-1fV,Wu M 528 126.8 576 125.7 624 124.6 672 123.5 Seconds are the units for t=O to 27.78 hours9.027778e-4 days <br />0.0217 hours <br />1.289683e-4 weeks <br />2.9679e-5 months <br />;' days are the units for t=48 to 720 hours0.00833 days <br />0.2 hours <br />0.00119 weeks <br />2.7396e-4 months <br />.

SPTemp Table 4-9: Post-LOCA Suppression Pool Volumes Calculation No. H21C-097 Nine Mile Point Nuclear Station Revision 0 Unit 2 Page 4-13 Parameter .Symbol Unit Minimum SP Mass Maximum SP Mass Reference Suppression Pool (SP) ,

Suppression pool volume Vsp ft3 145,200 154,400 Ref. 7.6.1, p. 58 Suppression pool temperature Tsp OF 110 70 Ref. 7.6.4, p. 13 Suppression chamber pressure Psp psia 14.2 15.45 Ref. 7.2.2 3 62.31 Ref. 7.18 Density of suppression pool water PsP lbm/ft 61.86 Mass of water in suppression pool msp Ibm 8,982,608 9,620,464 vsp~psp Reactor Coolant System (RCS)

RCS volume VRCS.tot ft3 24,266 24,266 Ref. 7.6.5, p. 86 RCS liquid fraction x - 0.579 0.579 Ref. 7.6.5, p. 86 RCS liquid volume VRCSI ft 3 14,050 14,050 = VRCS,tot*X 3 10,216 RCS steam volume VRCSg ft 10,216 - VRCStot - VRCS,I Reactor dome pressure PRCS psia 1,055 1,055 Ref. 7.6.5, p. 86 RCS water density VRCSI ft3/ibm 0.021788 0.021788 Ref. 7.6.5, p. 86 RCS steam density VRCS,g ft3/lbm 0.42 0.42 Ref. 7.6.5, p. 86 RCS liquid mass mRCS.i Ibm 644,851 644,851 = VRCS,I / VRCSI RCS steam mass mRCS~g Ibm 24,324 24,324 - VRCS,g / VRCS,g Post-LOCA (SP+.RCS) no RCS mass included in SP' for min; Ibm 0 669,175 al Steam cnden in SP for max RCS mass added to SP mRCS,tot all steam condenses in SP for max Total water mass in SP mpLSP,tot, Ibm 8,982,608 10,289,639 = msp + mRCS,tot Mass averaged density in SP PPLSP,avg Ibmlft 61.86 61.24 = [(mSp*psp)+(mRCS.tot/VRcS,i)]/mpL..SP,ot.

3 145,200 168,01.8 =mPL.SP,at /

Total volume of water in SP VPLSP~tot ft PPL.SP,avg Total volume of water in SP VPL sptot liters 4,111,607 4,757,734 F VpL. P,tt 3

]

  • 28.31685 liter/ft3 SP Mass Calculation No. H21C-097 Nine Mile Point Nuclear Station Revision 0 Unit 2 Page 4-14 Figure 4-2: Gamma (y) Dose vs. Time Post-LOCA 1.2E+08 1.0E+08 "U 8.0E+07 0

0 0E 6.0E+07 0

312 This plot is included to demonstrate the adequacy of the interpolations used in Table 4-7,

  • 4.OE+07

- Pool

--M- Drywell & Wetwell 2.OE+07 0.0E+00 0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000 Time Post-LOCA (hours) gamma TID Calculation No. H21C-097 Nine Mile Point Nuclear Station Revision 0 Unit 2 Page 4-15 Figure 4-3: Beta (0) Dose vs. Time Post-LOCA 9.OE+08 8.OE+08 7.OE+08

~66.OE+08 o5.OE+08 S4.OE+08 10 3.OE4O3B 2.OE+08 1.OE+08, 0.OE+00 0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000 Time Post-LOCA (hours) beta TID

TWOt4AIEW. Po"t4ACH Oj et %_CtS.

NiWeMile Point NuClde Station ROvIohIn0 Peae 4.16 Unit 2 a IE - G I H I

2 7 'SP Mass(eqs)'lEo

='SP Mess$eqs)'E20 ibm.

ibm Table 4.9 (manishum velues)

Toble 4.9 msmirnumvatues_)

4

=0D3+4 Jtbm II Deasan hind 4.1 Ininimun veaual aI Design Input 42 (idnkmumvalue) 0i0is[ 'I =(D3*100-D7()D4 O0Ai-DOjyD5 -moisll 3

ollnl.4o11.aYS 4le, N1 hinwlnt011-J(

13 Pool I . (HN~s] tHCIe (CsOHf 1 Total[Hi OtnIi~

Ttal 14 IS A9 17 'Rod 00s0 (eqsyTA9 I=OSSIJlr*28.31605 I- ='HN03 (es 1 1251512M 1:

IL., 1- . 16MBS 119*28.31686 1=001J20'28.316115 7"SP Mass (eo)q15E$24$S819 oqsyfAt2 21~ 'Red ose (eqaj)IA13 I0StJ21-28.31685 1=1 221 12 =I0114.23 3 =00SIJSUM(C231E231 I li"o.

YfH51 I2 YIH5(

H (qs)1ESlr'P Mess(eOYI9ES241413 lessITeS)I'l*ES24/3tk31 YIH5S1 a 'Rod Dose(eqsytA24 less(eqsYIES24l 9632jI"HN03 (ecr YIH6l 1es1 (MaoS'1IES241SH33

-'HI

-8.%(aqIESP Mess (eq)'fSE$244B34 1I16e02'tES18"'SPMass I rIH63 It(Mqs)'IES1B'SP Mass (

M FIH6t L31 W41 "D65344*28.316B5 "H11,I Eltel16*'SP Mess(egs'1l11E624115944 n=tSS/J45*28.31685 Messa 5 '11E$24/9B45 1H8IEI"SP

-05154082.31685 "-Hi (aqsl'IESIBrSP Mess(eqs)'16E324/VB49 d5IJ47 (Oqe)'IESIBSP Mess(a In 41, IIPool 2 vohlumeis wmeutedes telloni: Imp 1 oe,( B. 1 5 Vft 3 68 502) The HI,HCI, and CsOH concentretions caliuslted inTables 4-2, 4-4. and4-5 We based on the SP volumefrom Table 4-9.

To aedust to the SIP voume as a changes throughout the LOCA, the Conlcetration fromTables 4-2. 4-4. and 4-5 ondllultiied by Its following fector,,..JVew, 2where Vý, IS the volume in Table 4-9 and VSP is Calculeted Inthis sheet.

The HNO, concentrtlon does not directly utilize the SIP vstem end therefore Is not adjusted as descitled In NOtI Z.However.

54 the HN0 generation Is based on pm'o1000 gl. To owcunt for the density inthe Post-LOCA SP, the c*ncentretlon from Teble 4-3 Is multiplied by pe,I IIS10g/I 43.9gtbr

. 128.3185 I/h__

TOII pH (eos)

Attacment 4 Tablte&I1Eqs: Poel-LOCA pH4 Calculation without SLCS owoOnNo 41-9 Nine1410 PointNuselealStation 0 Revision Urr62 Pago4-17 r J TI r J K L 2I 31

_____-I

________ 1. 5 Po 13 -5 Pool Water Irnl (- asxI-)

Výe ,4, ___* ________________

14 Temp Density Pool Temp pH is go -1110581(116) - 101-115.5129-0.0224"1160.00003352"112) =(H11.1-SORT(16TG1)12-4"(H6"GI64K16))2 --G16-1.16 -LO.MI6)

_jL &'SPTamp (s*isyFe v=*Nss*ifml :",O'*'5,5129-0,O;224*IiT-0.00003352"t't7*2)  :(H'?+Gi?-SQR*'(iHiT-GiT*2-4*(H'tTIGiT,,K'T)))/2 -- =T47--LOGJM17) 18 'S~empeqeyFT

  • i.llel 11 '-1-'- I.5120.0241160.00D03352-1162 =Hl 8.018-SORT141.1 6 -'11G6Ke G6i 10 1 F

al1/lsalt118 -104-=15.5129-0.0 24"180.00003352"ll"2) = H18+GI.,QRT((H1819.S12-4" 18=GI8-K18))( 2 =G18-L18 -LOG.MI8)

,SP Tamp (eqs)'l 19 -'SPTemp 7 a9 (eqsy'IF8 -I/vltsM(t*) 1019,(P-15.5129-0.0224'119+0.00003352"119-2) -(HIO-GI9-SQRT((H g*19)*I~2.4"(H19*GIg.K1l9)))/2 -GI9-L19 ,LLOr2MIO) 20 w'SPTemp(eqs)'IF9 -11*s919120 -10=- 15.5129-0.02241200.0000332'120=2) =(H20+G20-SORT( 120.020 2-4*"H20'G20-K20))y2 =G20-1.20 4.OGM20) 21 ='SPTemp(eqs)'IFIO =1.ftsal121 =t0=-I15.5129-0.0224"121.0.00603352 =121.021-SQRT((H121-G.

2)121-2 2-4"2I0i'G21-K21V 2 =G21-1L21 =-I.OGM21 22 -'SPTeme (eqsYIFll =lvftsol122l =10=-(l9.5129-0.0224"122+0.00003352'1222 = 1422=022-SORT UH22.G22 2-4" 122"G22-K222 =G22-L22 =-I.OGM22) 23 =*SPTemp (901)lF12 =l/fsate123) =-10=- l.5129-0.0224'123=0.6003352"123=2) 10H23+G23-SQRT((H23=G23 2-4" 12223.K23))2 =0G23-L23 -LO.(M23I 3

24 ='SP Teop (eosafF1 =11v9sa9o24) 10=-(15.5129-0.0224"124=0.00103352*124"2) =(H24+G24-SORT((H424 2-4"(24 "G24-K124 =024424 - 4 4 29 ='SPTemp eqsrI*F4 -11 sW011 25 =10-I-15.5129-0.0224*125-0.00003352'12512) = H25.G25-SQRT( -125G 2-4 " K25 6))25- =G25-25 LO

=- 25) 26 'SPTemp(eqs)lF15 1.ioSM(126 =10=- 15.5129-0.0224"126=0.00003352"129 2] =(H26+G2-SOQRT(H 1 26)22-4' H21=026-K(26 f2 =0G226 -LOG(M26) 27 'OPTempleqeit F6 :l/vf16 (127) =10=(-15.5129-O.0224'127.0.00003352"1272) v1H27+G27-SQRT14H27 2-lr 14*'0-127.K27))/2 =G27-L27 -LOG(M27) 268 ='SPTemp (eq)'Ft7 ,lftgg((28) 2 i=-(0=15.5129-0.0224"128#0.0W033521282) =1H28G28-SOQRT( H28.G28r2-4'"0=H28-G28K26 =G28-642 =-LO4M286 20 ='SPTemp eqsylsFIe =l1.-/0o 1290 =10=-.15.5129-0.0224"129'0.000I03352'129 2] =49G29-SQRT((H29.G29 2-4"(29 92G294(29 .29 -LOG(M29)

(" 1l19 11.99sat(130) -=A-1 19129 0.0 4'130.0.0602352'130 2 =14(30.020-SORT 1420.G020 2-4*3'G14200-(30)2 =302-130 =-L GM30) 20S='SP

=SPTemp Tamp (eqs'F20 =1 .lsatl213 -=10 -15.5129-0.0224"131 0.0-003352'131^2 = H31+G31-SORT((H31+G31) 2-4* H31'031.K31))/2 =G31-131 =-LOGM31) 32 -SP Ta*p (easY'F21 =11.ee 032) -0(P-=-15.5129-0.0224"132+0.00033521322 =14H32+G32.-SQRT1H32.0322 2-4'°H32'G32-(32))Y2 =G32-L32 -LO M32)

ý33 -'SP Tamp easT7F22 I-11fisa (133) =10=-(15.5129-0.0224"133.0.01003352?133=2) = H33.G33-SORT(IH3.033r24(H33-(G33.K33))Y2 =G33-1L33 -LOG1M33) 34 ='SP Temprn sF23 vI-1hl t(134) 15.5129-0.0224"134.0,00003352"134"2) = 1H34.G34-SQRT(H34+G34) 2-4 1H34*G34.K34))Y2 =G34-.0

=10=- -4.O M34) 2L ='SPTerm eas'lF24 1il1vIsat 135) 10=- 15.5129-0.0224'1350.00003352"13=2) = 1H35+G35-SORT(H350.35 2-4"35*0G35-K35)))2 0G35'1.32 -. 0M35) 26 ='STemp (es'F25 =11.flel136) =10=- 15.5129-0.0224"13.+0.00003352'139'2) 1H34G36-SQRT( 360G36 2-4' H36'G36-K36)2 =G30-L36 =-,LOGM36) 217-'SPT1 np(e'TrnF26 =l/lsatl 37=1i=- '16.5129-0.0224*1370-0303352*1372) -=137.G37-SQRTI1H34+G3702-4'H37'W7-K3T)) =G371L37 -LOGIM37) 38=SP Tamp(es)',F27 =1vftsal 13861 1015.6129-0,0224"138+0,00003352'13=2) 14H38C0*3-SQRT(1H386G38}2-4*H8G380K38))4(2 =G389-.38 =L0GM38) 29 'SP Tamp (ersnIF28 =i1ftiat(1391 10=-(15.5129-0.0224 139 0.00003352'"29

  • H39=039-SORT 39G39=02942"-94G'.39-K1 2 =G39-L31 =-LOG(M39) 40 'SP Tomp (qs)'lF29 =-1/fial 140) 0=-t 15.5129-0.0224 14D0-'.0003352*40=2') H40+G40-SQRT1(H440G40 2-4(H4O'G40-K40*)2 =048-1.40 =-LOG(M40) 41 =5 rPTemp(qsr' F30 =lFD 141 (hf ) .10--(15.5129-0.0224 "141=0.00003352"141^2) =(H441=041-SQRT((H41=G41 2-4 *(H41'G4l(41))y2 =G4 -141.41=JO CWM41) 42 -'SP Teamp(s)'1F31 =17.9sat142 =I0*-(15.5129-0.0224"142=0.00003352'142=2) = H42.042-SQRT((H42G42 2-64*H442*G42-K42))i2 =G42-L42 =4-0C(M42) 43 -'SP Tomp (aqsIF32 -I=f1lols143 =10=-(15.5129-0.0224"430.00003352143"2) = 1H434G43-SQRT(1H43=G43r2-4'H43'G43-K43))2 C043-1L43 =ý. 23) 44 -'OPT*(Qs7F33 =1". (144 =l(=-(15.5129-0.0224"144=0.01003352'"4I-2)1 (144+4*44-SQRT((11444.44rA2.4'(144-G44-K441)y2 =G444-44 -LOG(M448 45 -'SP Temp (a s)'1F34 -1/vosate145) -=1-(l15.S129-0.0224"145.0.00)03352"1492) =(H450G45-SRT(W445+G4512-4"*'(45'G45-K45)1Y2 =G49-L45 -LO4 1M45) 46 ='SP Temp (eqsy1F35 =11.9s1t(1486 10=-15.5129-0.0224"146=0.00003352'146'2) =(146+G48-SQRT((146.G46,?2-4"(46"G4-K48))y2 *G46-446 -LOg(M46) 47 'SP Temp (eq)'1F36 "1I.flat(147) '10=-(15.5129-0.0224"147=0.00003352'147=2) ((H47÷G47-SORT((H47+G47r2.4'(147oG47-K47)))2 -G47447 I-LOG(M47 48
  • 50 52 54 58 pH(eqs)

Table 4-2 Eqs: Hydriodic Acid (HI) Production Calculation No. H21C-097 Nine Mile Point Nuclear Station Revision 0 Unit 2 Page 4-18 A B C D E 1 Core iodine inventory 2 Core iodine - gap release 13.5 g-mol-e Attachment 1, Table 1-1 3 Core iodine - EIV release 67.51 g-mole Attachment 1, Table 1-1 4

5 Fraction of release as HI 0.05 max Reg Guide 1.183 (main body Ref. 7.10.2) 6 . I 7 Gap release onset 2 minutes Reg Guide 1.183 (main body Ref. 7.10.2) 8 Gap release duration 30 minutes Reg Guide 1.183 (main body Ref. 7.10.2) 9 EIV duration 90 minutes Reg Guide 1.183 (main body Ref. 7.10.2) 10 11 _, _ suppression 12 cumulative, pool cumulative 13 Time HI volume HI 14 ________________ (hr) (g-mole) (liter) (g-molell) 15 onset =B7/60 0 _ ='SP Mass (eqs)'!$E$24 =C15/D15 16 end of gap release =B15+B8/60 =B2*B5 ='SP Mass (eqs)'"$E$24 =C16/D16 17 1 =C16+(B17-B!6)I(B9/60)*B3*B5 ='SP Mass (eqs)'!$E$24 =C17/1317 18 end of EIV =B16+B9/60 =C16tB3*B5 . .. 'SP Mass (eqs)'!$E$24 .=C18/D18 HI (eqs)

Table 4-3 Eqs: Nitric Acid (HNO 3) Production Calculation No. H21C-097 Nine Mile Point Nuclear Station Revision 0 Unit 2 Page 4-19 A JB C D E NUREG/CR-5950 (main I HNO 3 generation 0.0000073 g-mole/l per MRad body Ref. 7.13) 2 3

4 Suppression 5 -_.Pool cumulative TID @

6 Time 3467 MWt HNO 3 _

7 (hr) (rad) (g-mole/l) ___

8 onset ='Rad Dose (eqs)'IA9 =Rad Dose (eqs)'!B9 1=$B$1"C8/1000000 9 end of gap release ='Rad Dose (eqs)'!A1O ='Rad Dose (eqs)'!B1o J=$B$1"C9/1000000 10 ,='Rad Dose (eqs)'!A11 ='Rad Dose (eqs)'!Bl i =$B$1"C0I/1000000 11 end of EIV ='Rad Dose (eqs)'!A12 ='Rad Dose (eqs)'1B12 =$B$l"Cl1/1000000 12 ='Rad Dose (eqs)'fAl3 ='Rad Dose (eqs)'!B13 =$B$1"C12/1000000 13 ='Rad Dose (eqs)'!Al4 ='Rad Dose(eqs)'1B14 =$B$1"C13/1000000 14 ='Rad Dose (eqs)'IA15 ='Rad Dose (eqs)'1B15 =$B$1"C14/1000000 151 ='Rad Dose (eqs)'!A16 ='Rad Dose (eqs)'!Bl6 =$B$1"C15/1000000 16 ='Rad Dose (eqs)'!Al7 ='Rad Dose (eqs)'!B17 =$B$1"C16/1000000 11 ='Rad Dose (eqs)'!A18 ='Rad Dose (eqs)'!Bl8 =$B$1*C17/1000000 18 ='Rad Dose (eqs)'1A19 ='Rad Dose (eqs)'!B19 =$B$1"C18/1000000 19 ='Rad Dose (eqs)'1A20 ='Rad Dose (eqs)'1B20 =$B$1"C19/1000000 20 ='Rad Dose (eqs)'!A21 ='Rad.Dose (eqs)'!B21 =$B$1"C20/1000000 21 ='Rad Dose (eqs)'!A22 ='Rad Dose (eqs)!B22 =$B$1*C21/1000000 22 ='Rad Dose (eqs)'IA23 ='Rad Dose (eqs)'!B23 =$B$1"C22/1000000 23 ='Rad Dose (eqs)'1A24 ='Rad Dose (eqs)'!B24 =$B$1*C23/1000000 24 ='Rad Dose (eqs)' A25 ='Rad Dose (eqs)'B25 =$B$1"C24/1000000 25 ='Rad Dose (eqs)'!A26 ='Rad Dose (eqs)'!B26 =$B$1*C25/1000000 26 ='Rad Dose (eqs)'IA27 ='Red Dose (eqs)'IB27 =$B$1"C26/1000000 27 ='Rad Dose (eqs)'!A28 ='Rad Dose (eqs)'!B28 =$B$1"C27/1000000 28 ='Rad Dose (eqs)'!A29 ='Rad Dose (eqs)'IB29 =$B$1"C28/1000000 29 ='Rad Dose (eqs)'!A30 ='Rad Dose (eqs)'!B30 =$B$1"C29/1000000 30 ='Rad Dose (eqs)'!A31 ='Rad Dose (eqs)'!B31 =$B$1"C30/1000000 31 .... ='Rad Dose (eqs)'!A32 -=RadDose (eqs)'!B32 =$B$1"C31/1000000 32 ='Rad Dose (eqs)'!A33 ='Rad Dose (eqs)'!B33 =$B$1"C32/1000000 33 ='Rad Dose (eqs)'!A34 ='Rad Dose (eqs)'!B34 =$B$1"C33/1000000 34 ='Rad Dose (eqs)'!A35 ='Rad Dose (eqs)'!B35 =$B$1*C34/1000000 35 ='Rad Dose (eqs)'!A36 ='Rad Dose (eqs)'!B36 =$B$1"C35/1000000 36 ='Rad Dose (eqs)'!A37 ='Rad Dose (eqs)'!B37 =$B$!*C36/1000000 37 ='Rad Dose (eqs)'!A38 ='Rad Dose (eqs)'!B38 =$B$1"C37/1000000 38 ='Rad Dose (eqs)'!A39 ='Rad Dose (eqs)'!B39 =$B$1*C38/1000000 ...._,_......

HNO3 (eqs)

Table 4.4 Eqs: Hydrochloric Acid (HCI)Production Calculatlon NO.H21C-097 lne, MWt.e Point 1-,.cSlM Stotn Revision i0 Unit 2 Pogp 4-20 0 E F I Cables

..Lhyplraon properties:

4 radiolysis yield. G 0.000002192 g-mole HCIper MRad-g NUREGICR-6950 (main body Ref. 7.13) linear 52.08 cm" for beta radiation NUREG-1081 (main body Ref. 7.15)

-,,4 6 Unear  !;.-099 lcm"' for gamma radiation INUREG-1081 (main body Ref. 7.15) 7 dpnnity 1.55 a/cm, NUREG-1081 (main body Ref. 7.15) 9Cable jacket and mnsuialion: _______

'101__________ ______

I _ _ ZSMCpoc -

12 i3j cable O (max quar.) 1.94 in cable 00 Imax guar.

141 jackel thickness 110 mill jacket thickness h.,anlnn jacket materia

-- hy!ý Ion 151 Insulation thickness

-161 Insulation -

-' thickn,

"'-Lý;12-20 Insuatlion material I

17 Insulation materialI EPR 181 length in 'rear10-19inal

______________ ____________1 _______________ _______________1ni_______________

__________________ft ______________ ____________________

_____________19______ _________________ ______________________

290lnt nta 0 iert__________ _______ __________

21 chlorine-bearing material:

1 1 t~ 1

,Pimu(8S132-{Bs13-2*B84l4/O10Y2y4*2.S4^'2 3-- vflhinmln Irn f ali 331- vuurun1u1*1 I volum

.. In free 26S1l4/1000r214-2.54-2 S24 voluma Intray *B19*12*2.54 cm3 volume in Val I - / t 1 mass rniree a,;

I.

25 ma! aram masm In free ali 26 I aram mass In tral 57

!28 Irradiation:__________

301 ___________________

31 32 gamma trirae air tray '

33 34 :able radius (cm) =$B13"2.54/2 =$B13"2.54/2 =$B13"2.54/2

35jjacket thickness (cm) j=($B14y1O0002.54 1=( 014)11000-2.54 Ja($814)/1000*2.54 ______________________

361mass irradiated 1g) 1=825-B26 1=825 j=0.5*826 37

-+ 1 1 1. T

=(lI(S056A2)-(EXP(-

9BS6-B35)($BS66B35+1 ý -lI/(SB$5^2r(ExP(- =(11($0$5^2)(EXP(-

l)-B34,f/SBW(EXP(- SB6S5C35)'(SB$5tC35+1 ).1Y- $BS50D35)'($BS*D503+ Y.1y-1S6B$635Y)- Y(B34-835- C34/S$85-(EXP(-$B$5C35) 0341$8S5'(EXP(-8885'035)-

SR

- +

40 -r~

41 1)y1C34*C35-C35A2/2)

CP(-SB$66B35) j-iEXP(-$BS5'C3S) ~

1 )tit034*35-035A212I 1-EXP(-6$B50D35) I-HCI (eqs)

Table 4.4 Eqs: Hydrochloric Acid (HCl) Production Calculation No. H21C-.09 Revision 0 Nine Mile Point Nuclear Station Page 4-21 Unit 2 A B C , E F 42 pool gamma beta 43 Time volume TOD TID gamma (h4r) (liter) (red) (rd) (9-mota) 45 -"Red Dose (eqs)'tA9 ='SP Mass (eqs)'t$E$24 ='Red Dose (eqs)'IC9 "'Red Dose (eqs)'lD9 =$B$4*(($B$363$8$38*$1$39)+($G$36*$G$38"$G$39))'D4511000000 46 ='Red Dose (eqs)'!AO ='SP Mass (eqs)'f$E$24 ='Rod Dose (eqs)'IClO 'Rd Dose (eqs)'t~lo =$$B4*($B$36*$8$38*$B$39+$G$36*SG$38*$GS39)*D46/1000000 47 =Red Dose (eqsy!All ='SP Mass (eqs)'t$E$24 ' ='Rod Dose (eqs)'tC11 ='Rad Dose (eqs)'ID11 =$B$4"($B$36*$86385$8$39+$G$36*$G$381$G$39),D4711000000 48 =Red Dose (eqs)'lA1 2 ='SP Mass (eqs)'t$E$24 ='Red Dose (eqs)'IC12 ='Red Dose (eqs)'D12 =$S$4*($B$36*$B38 $8$39+$G$36*$G$38*SG$39)*D48/1000000 491 -Red Dose (eqsytIA3 "'SP Mass (eqsyt$S$24 ='Red Dose (eqs'tC13 ='Red Dose (eqs)'tDi3 --'$B$4*($$36"$B$38"$B$39+$G$36"$G$38"$G$39)D4911000000 501 ='Rod Dose (eqs)' A14 ='SP Mass (eqsy'$E$24 ='Rad Dose (eqs)'IC14 'Red Dose (eqs)'tD14 =$B$4"($B$36*$B$38"$6$39+$GS368$G$38"$G$38)DSO01100000O 51 -'Red Dose (eqsylA15 ='SP Mass (eqs)'!$E$24 ='Red Dose (eqs)'IC15 'Red Dose (eqsylDIS =$B.$4($B$36"$8$38"$B$39+$G$36"SG$38$G$39)*D511000000 52 "'Rad Dose (eqs)'tA16 ='SP Mass (eqs)'t$E$24 ='Red Dose (eqs)'tC16 'Red Dose (eqs)'tD16 =$B$4*($B$36*$B$38"$B$39+$G$36*$GS38*$GS39}rD52/1000000 53 ='Rad Dose (eqs)'lAl7 ='SP Mass (eqsy)$E$24 ='Red Dose (eqs)'lC17 "'Rd Dose (eqs)'ID17 =$B$4"($B$36"$BS38"$B$39+$G$36*$G$381$G$39)'D5311000000 54 .'Red Dose (eqs)'lA18 ='SP Mass (eqs)'t$E$24 "'Red Dose (eqs)'tCl8 "'Rad Dose (eqsy[DI8 =$B$4*($B$361$B$38*$B$39÷$G$36"$G$38"$G$39)*D5411000000 55 -'Red Dose (eqs)'IA. 9 ='SP Mass (eqs)'t$E$24 ='Red Dose (eqs'ICi9 =?Red Dose (eqs)'!D19 =$8W4*($B$36"$B$38i$S$39+$G$36"$G$38"$G$39)'D551000000 56 -' Rod Dose (SeqS)'A20 ="SP Mass (eas)tI$E$24 ='Red Dose (eqsyIC20 ='Red Dose (eqsYtD20 4$W(SB$368$B$38*$iB$39÷$G$36"$G$38"$G$39)yD5,1000000 57 ='Red Dose (eqs)'IA21 '='SP Mass (eqs)'t$E$24 ='Rod Dose (eqs)'1C21 ='Red Dose (eq.)ItD21 =$B$4"($8$36*$B$38*B$39+$G$38*SG$38*$G$39rD5711000000 58 -'Red Dose (eqs)'IA22 "eSP Mass (eqs)'ySE$24 , 'Red Dose (eqse'lC22 ='Red Dose (eqs)'1D22 $B$38*$B$39+$G$36"$G$38"$G$39*D5B/1000000

=$B$4"($B$363 59 ='Red Dose (eqs)'tA23 ='SP Mass (eqs)'l$E$24 ' ='Red Dose (eqs)'tC23 ='Red Dose (eqs)'ID23 =$B$4*($8$36*$B$38*$1$39+$G$36°$G$38*$G$39)*D59t1000000 60 ='Red Dose (eqs)'!A24 "'SP Mass (eqs)'t$E$24 ='Red Dose (eqsylC24 ='Red Dose (eqs)'1D24 =$B$4*($B$36*$B$38"$B$39+$G$36"$G$38*$G$39)*D60/1000000 61 -'Red Dose (eqs)'tA2t ='SP Mass (eqs)'l$E$24 ' ='Red Dose (eqs)'1C25 =Red Dose (eqs)'1D25 =$B$4*($B$36"$B$38*$8$39+$G$36*$G$38*$G$39)D61/1000000 62 -'Red Dose (eqs)'tA28 ='SP Mass (eqs)'tfE$24 ="Red Dose (eqs)'tC26 ='Red Dose (eqs)'1D26 =$B$4*($B$36*$B$38*$8$39+$G$36*$G$38"$G$39)*D62/I1000000 63 ='Red Dose (eqsYA27 =I'SPMass (eqsy't$E$24 =Rad Dose (eqsy)C27 =!Red Dose (eqsylD27 --$B$4*($B$38*$B$38*S6$39+$G$36*$G$38*$G$39)*6311000000 64 .Red Dose (eqs)'tA28 ='SP Mass (eqs)Y$E$24 -'Red Dose (eqs)'tC28 "Red Dose (eqs)'1D28 =$8$4*($B$36*$B$38*$B$39+$G$36*$G$38*1G$39)D6411000000 6 "'Red Dose (eqs)'A29 ='SP Mass (eqs)'t$E$24 =Red Dose (eqs)'tC29 "Red Dose (eqs)'fD29 =$8$4"($B$36"$B$38*$8S39+$G$36°$G$38*$G$39)*D65/1000000 6 ='Red Dose (eqs)'1A30 "'SP Mass (eqsy'f$E$24 ='Red Dose (eqs)'tC30 "IRed Dose (eqs)'tD30 =$B$4*($B$36*$B$38*$B$39+$G$36*$G$38*$G$39)*D66/1000000 6= "'Red Dose (eqs)'1A31 "'SP Mass (eqs)'FSE$24 "'Red Dose (eqs)'IC31 "Red Dose (eqs)'t031 4 *($8536"$1$38*$8$39+$G$36*$G$38*$G$398*D671100000 88 ='Red Dose (eqs)'tA32 ='SP Mass (eqs)'I$E$24 ='Red Dose (eqs)'tC32 "'Red Dose (eqs)'tD32 =$8.$4($B$36"$B$38"$B$39+$G$36"$G$38"$G$39)*D88I1000000 89 -'Red Dose (eqs)'!A33 ='SP Mass (eqs)'t$E$24 ='Red Dose (eqsy'C33 "RaedDose (eqs)'ID33 =$BS4*($B$36*$8$38*$8$39+$G$36*$G$38'$G$39*D69/11000000 70 ='Red Dose (eqs)'tA34 ='SP Mass (eqs)'tSE$24 ='Red Dose (eqs)'tC34 =Red Dose (e5s)'tD34 =$8$4"($B$36"$B$38*SB$39+$GS38S$G$381$G$39)"D70/1000000 71 ='ReodDose (eqs)'tA35 Mass (eqs)'$E$24 ='Red Dose (eqs)'C35 REdD3 ReSI =$B$4*($8$36*$8$38*$B$39+$G$36*$G$38"$G$39)*D71 11000000 72 ='Red Dose (eqs)'IA36 ='SP Mass (eqs 't$E$24 ' ='Red Dose (eqs)'tC36 =Rad Dose (eqs)'tD36 =$B$4"($B$36*$BS38"$B$39'$G$36"$G$38*$G$39)*07211000000 73 ='Red Dose (eqs)'tA37 ='SP Mass (eqs)'t$E$24 ='Red Dose (aqs)'tC37 "Red Dose (eqe)'tD37 =$8$4*($B$38$S838*$8$39+$G$36'$G$38*$G$39)*D73/1000000 74 ='Red Dose (eqs)'IA38 ='SP Mass (eqs)'lSE$24 "='Rd Dose (eqs)'1C38 "Red Dose (eqs)'1D38 =$8$4*($B$36*$B$381$8$39+$G$36*$G$38*$G$39)*D7411 000000 75 ='Red Dose (eqs)'tA39 ='SP Mass (eqs)'l$E$24 =Red Dose (eqs)'fC39 ='Red Dose (eqsy'1D39 =$B$4*($8$36*$B$38*B$39÷$G$36*$G$38"$G$39)°D7511000000 HCI (eqs)

Altachment 4 Table 4.4 Eqs: Hydrochloric Acid (HCl) Production Calculation No. H21C-097 Nine Mile Point Nuclear Station Revision 0 Unit 2 Page 4-22 G H _ __ _

2 ____________________

23_____________

34_____________

4 ________________

57_____

8 _____

10 11 ji0Ogundcamta 12 __________

13 0.53 in 14 50 mil 15 hypalon 16 nlone mil 17 18 E.500-G19 lInear It 20 22 ___________

23 =PI()(GS1 312-(G13-2*GS14/l100V2y4'2.54^2*G1812*2.54 ____________

M 2L4_ =PIO(G$1 3v2.(Gsl3-2.G14/l000r2Y4'2.54u2.G1912'2.54 25 =G23*$BS7 gram 26 =G24*$B$7 gram 27 281__________________________________________________

29 30 -Gil___________

31 bela 32 gamma free air trex 33 34 z$G313*2.5412 =$G13'2.54/2 =$G13*2.5412 35 ($G14yiODD*2.54 n($G14ylOOO-2.54 m($G14YI1000*2.54 36 =G25vG26 =G25 =0.5*G26 317 ______________________________________________ __________ _________

IB$5'H35)'($BS5H35+1). o(11($B$5'2)'(EXP(-

I )-N3448WS(EXP(- SBS5I'35T(s0S5135+l 1 Y-)

B9$51135)-1 )Y((34NH35- l34119565(EXP(-S9S5-l35)-

38

= I

~lIlSR16-2liIrXPfl-BS6*G35l'ISBS6*G35+1 1-1IlG34IIBS6*lEXP(-SBS6*G35),-1 )ViG34*G35-G35P2r2)

-~------~---

-135^2121 1IY(134*135-135^2121 MW-EXWF-sR1eSG =I-EXP(-$BS5"H35l =1-EXP(-$B$5"I351

+

41M - , ---

HCI (eqs)

______________________________________________ I Attachment 4 Table 4.4 Eqs: Hydrochloric Add (MCI)Production Catcutation No. H21C-097 Nine Mile Point Nuclear Station Revision 0 Unit 2 Page 4-23 G H 42 DrywaellNCI 43 beta HCI 44 (g-mole) (g-moleMi 45 =(($C$361$C$381$C$39+SD$36*$$D38*$D$39)+($H$361i$386$H$39+S$$36ii$386$I$39))*$B$4*E45/100000 =(F45+G45)/C45 46 ($C$36*$C$381$C$39+$D$36*$D$38"$0$39) ($H$36"$H$38"$H$39+$1$36$1538*$I$39))$B$4"E46/1000000 =(F46+G46/C46 47 =$C$36"$C$36$CS39,$S$36"$D538"$0539 $H$36"tH$38"$H$39+$S$36"$i$38t$1$39))$B$4*E47/1000000 (F47÷G47yC4T 48 =($($C365$C381$C$39+$DS361$$381DS39 +($H$36*$H$386$H$39+$1$36**$138*$I$39))i$B$4'E48100DH3) =(F48÷G48 C48 49 ,($CS36"$C$38*$C$39+$D$36O$D$38"$D$39 )-$H$36"$H$38"$H$39.$S$36*$1538*$I$39))'$B$4°E49/100000O =(F49+G49/C49 50 =($C36.$C$386$C$39+$$*36.$DS38`$DS39)+($H$3 61.H$38$H$39+$l$36.*1138*$1$39))I$B$4*E50/1000000 =(FSO+GS0yCS0 3

S=((SC$36-SCS38S$CS39.SD$3B$D$38.$DS39 $HS36*$H1386$HS39+$St36BSI$38'$1$39))*$4.E51/100000 -(F51÷G51/C51 52 ($C$36$C$38$C$39+$D$36$D$38*$D$39 +SH$36'$H$386H$39+S$136I$i$38i$1$39))'$B$4.E52/10DOO =(F52÷G52YC52 53 =-($CS36'C$38.$C$39+$$361$0381$D$39 +($H$361$H$381$H$39+$1$36$$1$388$i$39))1$BS4¶E53/1I0000 =(F53.G53/C53 54 - (SC536$SCS38-$C$39+$DS36°3D$380$D$39)+($HS36ItH1381$HS39+S$36$1S38*6139))°IBS.CE54/1000000 =(F54+G54yC54 55 =($C$36"$C$38"$C$39+$D$36"$D538"$0$39 )+$H$36"$H$38"$H$39+$t$36*$1$38"$i139))*$B$4*E5511000000 =(F55.G55)IC55 56 =(($C$36$C$386$C$39÷$0$36SOD$38$D$39)+($H$36'$H$S3$H$39+$1$36*$i$38.$i$39))i$B$4.E56/10000 F0

=(F5G÷G56yC56 57 =((SC$36.$C$38.$C$39+SD$36*$D$386$D$39+(SH$36$HS386$H$39.t$$36*$i$38.$I$39))$BI4E571000000 =(F57.G57/C57 se =(($C$366$C$38*$C$39.$D$36*$D$38"$D$39)+($H$36"$H$386$H$39+$I$38°$1538*$1$39))*$B$4*E5811000000 =(F58+G58 C58 59 -(($C$36.$C$38*$C39+$D$36*$D$38$D$39)+($H$36$H$35$H$39.$1$361$$$38.$S$39)).$BS41E5911000000 =(F59+G59 C59 60 =($C$36.$C$381$C$39+$D$36 $D$381$D$39)+($H$3 t$H$381$H$39.$S$36*$1$386$ $39))`$BS4.E60/1000000 = F60+G60)/C60 61 =($CS36`$C$38i$C$39+$0$36 $D$38.D$39)+($H$36t$H$381$HS39+$i$36i$i$38 $S$39)).$B$4E61/1000000 =(F61÷G61Y)C61 62 =(($CS36"$C$38"$C$39+$D$36*SDS38"SD$39)($H$36°$HS38"$H$39+StS36*$1538"SIS39))SB$4 E6211000000 =(F62.G62YC62 63 =(($C$36*$C$38"$C$39.$D$36-S0$38*$D$39)-($HS36*$H$38"$H$39+$1$36"$1538"$1539))*$B$4*E63/1000000 =(F63+G63YC63 64 =(($C$36$C$38$C$39.$D$36"$D$38*$D$39).($H$36*$H$38"$H$39g$1$36"$1361$39))*$BS4*E641t000000  :(F64.G64YC64 65 -($CS36$C$38*$C$39÷$D$36oSD$38"$DS39)+($H$36S$H$38*$H$39+$1536S$1538*$1$39))*$B$4*E6511000000 =(F65G65/C65 66 =($CS36"$C$38$C$39÷$D$36*$D$38"$D$39)+($H$36"$H$38*$H$39+$t$36"$1538$1I539))$$4*E66/I000000 =(F66+G66yC66 67 =(($C$36"$C$36$CS39$D$36*$D$38*$D$39)+($H$36"$H$38"$H$39+$1536*$1538"$1$39)) B$4*E6711000000 =(F67+G67)1C67 68 =((CS36$C$386$C$39+$D$36$D$381D$39g($H$36'$H381H$39+t$36$i$38**S39)1B6$4*E68/1000 =(F68+G68YC68 _

69 =($CS36B$C38-$C$39÷$D$36$D$381D$39)+ $H$36S$H$38S$H$39+$t$36$1$38*$1$39))$B$4*E69I1000000 =(F69+G69 C69 70 =(($C$36"$C$38*$C$39+$D$36*$D$38*$D$39 )+($H$36$H$38*$H$39+$1$36*$1$38"$I$39))$B$4"E7011000000 =(F70+G70)YC70 71 (C$36$C$38'$C$39+$D3$36$0$386$$39)+($H$36.$H$3865H$39+$S$36*$1$38`$I$39))r$94*E7111000WOO ={F71÷G71 )C71 72 =(($C$36$C38I$C$39+SD$36$D$38SD$39H($H$36S$H$38i$H$39+$t$36il$386$$39))i$BS46E72J100=  :(F72+G72YC72 3 =((SCS3$C$386$C$39+$D$36$$0$38.$D$39)+($H$36.$HS3OIH$39+$1$36i$1$386$i$39))i$B$4*E73/1000000 =(F73+G73)/C73 L4 =(($C$3-$C$36'$C$39+$D$36.$D$38'$D$39S+($H$36I$H$38*$H$39+$S$36*$i$38*$1$39))*$B$4*E741100000 =(F74+G74YC74 75 =(($C$3$C$38$C$39+$D$36.$D$386$D$39 $H$36I$H$38S$H$39+$1$36*$138.$$39))$$4*E75/1000000 =-F75+G75 C75 HCI(eqs)

Table 4-5 Eqs: Cesium Hydroxide (CsOH) Production Calculation No. H21C-097 Nine Mile Point Nuclear Station Revision 0 Unit 2 Page 4-24 AB -B C D E 1 Core cesium - gap release, 100.67 g-mole Attachment 1, Table 1-2 2 Core cesium - EIV release 402.68 g-mole Attachment 1, Table 1-2 3 C 45 Csl - gap release =(1-'HI (eqs)'!B$5)*'HI (eqs)'!B2 g-mole fraction iodine release in form of Csl Csl - EIV release =(1-'HI (eqs)'!B$5)*'Hli (eqs)'!B3 g-mole fraction iodine release in form of Csl ..

6 7 CsOH - gap release =BI-B4. g-mole '

8 CsOH - EIV release =B2-B5 g-mole 19 10 Gap release onset 11 Gap release duration 30 2 minutes Reg Guide 1.183 (main body Ref. 7.10.2) 30,, minutes Reg Guide 1.183 (main body Ref. 7.10.2) 12 EIV duration 90 minutes Reg Guide 1.183 (main body Ref. 7.10.2) 13 14i suppression 15 cumulative pool cumulative 16 Time CsOH volume CsOH 17 (Hr) (g-mole) (liter) (g-mole/I) 18 onset =B10/60 0 ='SP Mass (eqs)'!$E$24 =C18/D18 19 end of gap release =B18+BI1/60 =B7 ='SP Mass (eqs)'!$E$24 =C19/D19 20 1 ___ =C19+(B20-B19)/(B21-B19)*B8 ='SP Mass (eqs)'y$E$24 =C20/D20 21 end of EIV =B19+B12/60 _ _=C19+B8 ='SP Mass (eqs)'!$E$24 =C21/D21 CsOH (eqs)

Table 4-6Eqs: Effect of SLCS Addition Calculation No. H21C-097 Nine Mile Point Nuclear Station on Post-LOCA Suppression Pool Revision 0 Unit 2 Page 4-25 A B C D E I Buffering by SLCS 2

3 SLCS:

4 Min SLC pump flow rate 41.2 gpm Design Input 4.12 5 Min SLC injection tank volume 4288 gal Design Input 4.12 6 Max SLC temp 85 OF Design Input 4.12 7 Min SLC temp 75 OF Design Input 4.12 8 SLC SPB conc. by weight 0'144 Design Input 4.12 9 Specific gravity 1.071 Design Input 4.12 10 Density (T=850 F) =62.17-B9 Ibm/ft3 Ref. 7.18 12 Final suppression pool temp (bounding) 200 OF 13 14 Boric acid K =(0.0585"B12+1.309)*0.0000000001 at =B12 'F 15 16 MW sodium pentaborate (Na2BioO16*10H 20) 590.224 Design Input 4.12 17 18 Volume sodium pentaborate =B5/7.481 ft3 19 Mass sodium pentaborate =B18*B10*B8 Ibm 20 Mass sodium pentaborate =B19*453.6/B16 g-mole 21 22 unbuffered pH ='pH (eqs)'!N47 23 unbuffered [H+] =10^(-B22) g-mole/l 24 Suppression Pool volume ='SP Mass (eqs)'!$E$24 liter 25 Equivalents unbuffered [HI =B23*B24 g-mole 26 27 Final pH =-LOG(B14)4-LOG((2*B20-B25)/(8*B20+B25))

28 291Time to inject boron =B5/B34 Iminut-es SLCS (eqs)

Tabe 4-7 Eqs: Gamma and Beta Radiation Dose Caiculation No, H21C-097 Nine Mite Point Nuclear Station used to Detemitne Post.LOCA pH Revision 0 Unit 2 Page 4-26 A B c 2

3 __amin g- dose 4 Suppression Drywall &

5 Pool Wetwell TO @ TiD @

6 Time 3467 MWI 3467 MWI I r [rad rad]

8 0.,

9 =12113600 =A9gA11B1I1 =891811,C11 10 =A9+30/60 =A101A12"B12 =B10812"C12 11 1 404426.4 2447844 12 2  :($A12-SAZ 11Y5A$17-$A$11 68$17-B$11 )+6$11 =($A12-SA$11 Y($A$17-$A$11 01C$17-C$11

)÷C$11 13 =2+12113600 -- $A13-$A$11t$A$17-$A$11)($ 7-0$11 +$11 =-SA13-$A$SI1($A$17-$A$11 *(CS17-C$11)+C$11 14 3 "-(SA14-SASII$SA$17-$A$11r(B$17-B$11 +6$11 " =(A14-SA$I1 y($A174A$11)(C$,17-CSII)+C$11 15 4 =($Al5-$A$I1 ($A$17-$A$11"(B$17-B$11)+B$11 =($AI5-$ASII1($A$17-$A$1 11C$17-C$1 )+C$11 18 5 -- $Ai6-$A$1l1($A$17-$A$11)' B$17-B$11)+B$tl -($A16-SA$11I {$A$17-$A$I11IC$17-C$11)+C$11 17 8 1489992 7449960 18 12 =($A18-$A$17y($A$20-$A$17) (8$20-B$17)+B$117 =($SA18-SAS SY($A$20-$A$17)*(C$20-CS17)+C$17 19 is =SA19-$A$17 Y($A$20-$A$17 "(S$20-B$17)+B$17 =(SAi9-SA$I7Y($$20-$A$17r C$020.C$17)÷C$17 20 24 2979984 11707080 21 =A20+24 =10'((LOG($A21 LOG(I$AS20)(LOG($AS39-LOGG(SA$20))(LOG(BS390-0G(B$20))+-LOG(B$20)) =10A((LOG($A21)-LOG($A$20)Y(LOG($A$39-L0G($A$20)°(LOG(C$39-LOG0C$20))÷LOG(C$20))

22 =A21+24 =1 ((LOG($A22-LOG($A$20)Y(LOG($A$39-LOG($A$20))(LOG(B$39LOGG(5$20))+LOG(B$26))2 =10'((LOG($A22-LOG($A$2O)/(LOG($A$39 LOG($A$20)r(LOG(C$390 G(C$20))+LOG(C$2O))

23 =A22+24 =1 (LOG $A23-LOG($A$20)Y(LOG($A$39-LOG($A520)) (LOG(B63900LG(B$20))+LOG(B$20)) =101((LOG($A23-LOG($A$20))/LOG($AS39-LOGG($A$20))(LOG(C$39) -0G(C$20))+LOG(C$20) 24 =A23+24 *=10^((LOG(A24-LOG($A$20)/(LOG($A$39-LOG($A$20)0(L8G(B$39)-0 G(B$20)LOG(B$20)) =10`((LOG($A24-LOGG$A$20Y(LOG($A$39-LO G/$A$20)(LOG(C$39 LOG C$20+LOG(0$20))

25 =A24+24 =10' LOG(SA25 LOG 5$A$20)Y(LOG($A$39-LOG($A$20) (LOG(B$39-LOGG(8$20))+LOG(B 20)) 1=10'(LOG($A25-LOG($A$20)yLOG($A$39-LOG($SAS20)LOG(C$3900 G(C$20) LOG(C$20))

26 =A25+24 =10^'LOG($A26*OG($A$20Y (LOG($A$39 -00G($A$20)(LOG(B$39)LGG(5$20))+LOG B620)) =10'((LOG($A26 LOG($A$20)Y(LOG($A$39)LOG($A$20)) (LOG(C039-OG(C$20))÷LOG(C$20))

27 =A26+24 =10'((LOG($A27-LOG($A$20) (LOG($A$39)-L0G(0A20)(LOG(B$39LOGG(6$20))+LOG(B 20)) =10^((LOG($A27}-LOG($A$20)y(LOG1$A$39-LO G$A20))*LOG(C039)-L0G0C$20+LOG0C$20))

28 =A27+24 =10'((LOG($A28-LOG($A120 )(LOG( A$39)LOG($A$20))`(LOG1B$39LOGG(8$20))-LOG(B$20) =10((LOG($A2.LOG(SA$20))0(L0G$A$39 L0G5$A$20*)(LOG(C$39-LOG(C$20))+LOG C$20))

29 =A28+24 i=10A'LOG($A29*LOG $A$20))(LOG($A$39)LOG($A$20)) (LOG(6$39-LOG(B$20))+L0G(6$20) =10(('LOG($A29-LOGG$A$20)Y(LOG($A$39)LOG($A$20)) (LOG0C$39 000(c$20))+LOG(C120))

30 =A29+48 I=10'((LOG($A3*0L0G($A$20 )YLOG($A$39*LOG($A$20)r(LOG(B$3900-G(1$20))+LOG(8$20) =10^((LOG( A30)LOG(A$A2O)Y LOG($A$39-LOGG(/A$20) (LOG(c$390L0G0C$20))-LOG(C$20) 31 =A30+48 =1 (LOG($A31-LOG($A$20)YLOGG($A$39-LOG($A$20)r(LOG(B$39-LOG(B$20)) LOG(6$20)) =J10((LOG 5A31-LOG($A$2O y(LOG($A$39 LOG($A$20)) (LOG(C$39LOG0(C$20))-LOG(C$20)2 32 =A31-48 =1 (LOG($A32-LOG($A20))LOG(5/4$A$39-LOGSA$2S))2(LOG(B$39 LOGB$20 10+LG(B$20)=10' (LOG A32-LOG($A$20) /LOG($A$39 LOG($A$20)*(LOG(C$39)-LOG C$20))+LOG(C$20))

33 =A32+48 =10^((LOG($A33-LOG(SA$20)Y(LOG1$A$39 LOG(A$20))*(LOG(B$39)0LG(B$20))+LOG(B$20) =10'((LOG($A33)LOG($A$20) (LOG($A$39)LOG($A$20)) (LOG(C$39-LOGGC$20)4+LOG0C$25)2 34 =A33+48 =10A((LO* $A34LLOG($A$20)L(LOG/$A$39-LOGG(5A$20).LOG 5139).L0G6B$20))+LOGB$20)) =10((LOG$A34-LOG($A$20 )(LOG($A$39-LOG $A$20))*(LOG(C$39)00G(C$20))+LOG(C$20) 35 =A34+48 =10('(LOG($A35-LOGG$A$20)Y(LOG(/A$39 LOG($A$20))(LOG(B$39 LOG(1$20))÷LOG(B20)) 12 =10((LOG($A35)L0G($A120)Y(LOG($A$39-LOG5$A420))*(LOG(C$39 LOG(C$20) LOG(C120))

36 =A35+48 =10 ((LOG($A36-LOG($A120 YLOG($A$39 LOG($A$20))*(L0G(8$39ýLOGG5$20) +LOG(6$20 =10((LOG($.A36 LOG($A$20)y(LOG($A$39 LOG($A$20) ILOG(C$39.L0G0C$20))L0G(C520 37 =A36+48 =10 ((LOG($A37-LOG($A$20) (LOG($A$39-LOG($A$20)*(LOG(B$3900LG(B$20))+LOG(B$20)) =10*'((LOG($A37?LOG$A$2O)Y(LOG $A$390L/G($A$20))*(LOG(C$3900G0C$20))+LOG10 $20))

36 =A37+48 =10^((LOG($A38LOG($A$2O)/(LOG($A$39-LOG5$A$20))0(LG(B$39-LOG(B$20))+LOG(B$20) =10'((LOG(SA3 LOG($A$2 LY(LOG/$A$39 LOG/$A$20)**(LOG5C$3900G0C$201+0LG0C$20) 39 720 17028480 31928400 40 2400 38314080 50021160 41 4320 58535400 67049840 42 8760 100042320 101106600 Rad Dose(eqs)

Table 4-7 Eq.: Gamma and Beta Radiation Dose Calculation No. H21C-097 Nine Mile Point Nuclear Station. used to Determine Post-LOCA pH Revision 0 Unit 2 Page 4-27 DF 3 beta dose 4

Drywall Wetwell ........

TIC @ TID @

3467 MWt 3467 MWt Source 7 dIrad [rad] H 8

9 =C9/Cl1"Dll D El11"E1l linear Interpolation 10 =C1O/C12"Dt2 -=b01D12*E12 linear Interpolation 11 19967920 22603280 Attachment 2, Tables 2-1 and 2-2 12 =(SA12-$A$1I '$A$17-SA$ 1)*(D$17-D$11)0D$11 =($A12-$A$11 y/5A$17-$A$511 )*$17-E$11)+E$11 linear Interpolation 13 =($A13-$ASlIY($A$17-$A$11)*(D$17-D$11)+D$11 ,=$A13-$A$11 Y5A$17-$A$11 *rE$17-E$11)+E$11 linear Interpolation 14 *D17-D$11)+D$11

=cSA14-$A$S11 I$A$17-$A$1 1)A- = $A14-$A$11 I$A$17-$A$11)*5E$17-E$11 +E$11 linear Interpolation 15 =*IA15-$A$i1 Y($A$17-$A$11 )*D$17-D$Sl )+D$11 =$A1-A$11 5y$A$7-$A$1 1*E$17-E$11 )+E$11 linear Interpolation 16 =1S(A16-$A$1Y ($A$17-$AS11)'(i$17-D$11+0511 "=-$Al6-SA$1y($A$17-$A$11)* E$17-E$11)+ linear Interpolation 17 57775200 69026160 Attachment 2, Tables 2-1 and 2-2 18 =($Ai8-$ASI7 5$A$20-$A$17)'(D$20-D$17)+0$17 =($A18-$ASI7 ($A$20-SAS17)6(E$20-E$17)+E$17 linear Interpolation 19 = $A19-$A$17J($A$20-$A$17) 0$20-D$17)+D$17 HSA19-$A$17ySIA$20-$A$17)*0E$20-E$17)+E$17 tinner Interpolation 20 129740800 159135200 Attachment 2, Tables 2-1 and 2-2 21 =10'((LOG($A21 YLOG( A$2O)/LOG($A$39-LOG($A$2O)) (LOG(D$390L0G(D$20)+LOG(D020)) =1OA((LOG(WA21 LOG($A$20)/(LOG$A$39 LOGG$A$20)) (LOG(E$39 LOG(E$20))+LOG(E$20 log-log Interpolation 22 =10((LOG($A22 LOG$A$2 YILOG$A$39-LOG 5$A$20)(LOG($039 LOG05$20))+LOG(020)) =10^((LOG($A22 LOG($A$20)5LOG($A$39 LOG($A$20)).(LOG(E$39 )O-G(E$20))+LOG(E$20) log-log Interpolation 23 =10^ LOG(SA23 L0G0A220 )YLOG($AS39-LOGGA20)) LOG(D039 -LOG0D$20) LOG(D020)) =10=((LOG($A23-LOG(GA$20)(LOG($A$39 -LOG($A520 )(LOG(E$39-LOG(E620))÷-LOGE520) Iog-logaoterpolation 24 =1OA(ILOG(SA24 0L0G($A$2O)/`LOG($A$39-LOG($A$20)*OLOG(D$39-LOG05D$20)LOG0G(5$20)) =10((LOG($A24-LOG($AS2O)/(LOG($A$39-LOG($A$20)LO(LG0E$39 LOG0E$20))-LOG6E$25)2 log-log Interpolation 25 =1-0-((LOG($A25 LOG($A$20)y(LOG( A$39-LOG(SA$20))OLOG(0$39YLOG(D$20))+LOG(D 20)) =10 (LOG($A25 LOG$SAS2O)/LOGG$A$39-LOG( A$20))(LOG6E$39-LOG6E$20))+LOG(E$20)) log-log Interpolation 26 =10^((LOG($A26-OG($A$2O) ALOG($A$39-LOGG$A$20(LOG(0$39**OG(D$20))+LOG(0$20)) =10((LOG($A26 LOG($A520 )YLOGG$A$39 LOG($A$20)*(LOG(E$39 LOG5E$20))+LOG6E$20)) log-log Interpolation 27 =10^ LOG( A27-LOG G$A$20)ILOG($A$39-LOG($A$20'LOG 0539 LOG(0520)LOG(L020 =1 LOG(SA27 OG($AS2O LOG($A$39 LOG($A$20))LOG(E$39)00-G(E$20))+LOG(E$20)) log-log Interpolation 28 =10I-((LOG(SA28*LOG(SA$20 Y(LOG$A539-LOG($A$2O)) *LOG(D$39-LOGG(0$20))LOG(D$20)) =10A((LOG(SA28 LOG($AS20)Y(LOG($A$39 LOG($A$20) '(LOG(E$39-LOG(E$20 )iLOG(E$20 l-o In lation 29 10=1(LOG 5A29-LOG $A$20)y(LOG($A$39 LOG($A$2)) (LOG(D$39K-0G(D$20))LOG(D$20)) =10'(LOG($A29 LOG($A20)YLOG($A$39-LOGG$A$20)) LOG6E$39*-LOGE$20))+LOG(E$20) log-log Interpolatlon 30 =101((LOG($A30 LOGG$A$20)/LOGG$A$39LOGG$A$2L))(L3G(L$3 OL0G(D$20))LOG0D$20L) =1((LOG($A30LOG($A$2)YLOG($A$39-LOG($-A$2))*(LOG(E$39LOGGE$2)LOG(E$20 log-log Interpolation 31 =10'((LOG($A31 LOG($A$20)Y LOG($A$39 LOG($A$20))O(LOG(0$39 LOG(0$20) LOG(0$20)) =10^((LOG($A31LOG($A$2O)Y(LOG($A$39 LOG($A$20))*(LOG(E$39LOG(E$20ij+LOG(E$260 log-log Interpolation 32 =I1 ((LOG(5A32-LOG($A$20)y(LOG($A$39-LOG($A$2O))*(LOG(D$39)LOG(D$20))+LOG(D$20)) =10=((LOG($A32 LOG($A$2O)Y(LOG($A$39-LOG($A$20)*(LOG(E$39 LOG(E$20))iLOG(E$20)) log-log Interpolation 33 =10^((LOG($A33 LOG($A$20)y LOG($A$39-LOG($A$20)) LOG(D0390L0G(D$20) LOG(D$20)) =1OA((LOG($A33-LOGG$A$20)Y(LOG($A$39 LOGG$A$20))*(LOG(E$39 LOG(E$20))+LOG0E$20) Ilog-log interpolation 34 =101((LOG($A34)LOG($A$20)y(LOG($A$39-LOG($A$20)) (LOG(D$39-LOGG(0$20))LOG(D$20)) =10*(LOG($A34-LOG($A$20)Y(LOG($A$39 LOG($A$-20 )(LOG(E$39 LOG(E$20))+LOG(E$20)) log-log Interpolation 35 =101((LOG($A35 LOG $A$20)y(LOG($A$39-LOG($A$2O))*(LOG(D$39-LOG(0$20))LOG(D020)) =10I (LOG($A35 LOG($A$20)/(LOG($A$39-LOG($A$2 )*(LOG(E639-LOG(E$20))+LOG(E$20 Io laterotion 36 =101(=LOG($A3r6-LOG $A$20)/LOGG$A539 LOGGSA$20))(LOG**039-LOG 0520))+LOG 0$20)) =10=`LOG*$A36 LOG $A$20)/LOGG$A$3SPOLOGA$2)2O LOG(E$3LOLGG9E$2L)O2LOGJE$2G0) log-log interpolation 37 =1OA((LOG($A37)-LOG($A$20)Y(LOG SA$39 LOG($A$20))(LOG(D$39-LOG(D$20))LOG(D$20)) =10((LOG($A37-LOG($A$20)/LOG G$A$39-LOG( S2O))-(LOG(E$39-LOG(E$20))-LOG(E$26)) log-log Interpolation 38 =10*((LOG($A38-LOG($A$2O)(LOG($A$39LOG($A$20'(LOG(D$39-LOG05D$20)LOGG(0$20)) =113((LOG($A38-LOGG$A$20)Y(LOG($A$39-LOG($A$20))*(LOG(E$39LOG(E$20))-LOG(E$250) log-log Interpolation 39 564575200 703438400 Attachment 2, Tables 2-1 and 2-2 40 607146400 754118400 Attachment 2, Tables 2-1 end 2-2 41 634513600 781485600 Attachment 2, Tables 2-1 and 2-2 42 697356800 844328800 Attachment 2, Tables 2-1 end 2-2 Red Dose (eqs)

Table 4-8 Eqs: Post-LOCA Suppression Pool Calculation No. H21C-097 Nine Mile Point Nuclear Station Temperature Response Rfevslon 0 Unit 2 Page 4-28 A C I E F 1 From Oata (Rae. 7.6.517.6.7) jUsed for pH Analysis I

- -econos era me units ior i~u to z . ro hoUrs; says are me units mr t=so

- to 720 hours0.00833 days <br />0.2 hours <br />0.00119 weeks <br />2.7396e-4 months <br />.

SP Temp (eqs)

Table 4-9 Eqs: Post-LOCA Suppression Pool Volumes Calculation No. H21C-097 Nine Mile Point Nuclear Station Revision 0 Unit 2 Pane 4-29 Final A B C D . 1-.

  • F 2 Parameter Symbol UMit Minimum SP Mass Maximum SP Mass' Reference 3 Suppression Pool (SP) ',

4 Suppression pool volume Vsp ft3 145200 154400 Ref. 7.6.1, p. 58 5 Suppression pool temperature TsP °F 110 70 Ref. 7.6.4, p. 13 6 Suppression chamber pressure Psp psia 14.2 15.45 Ref. 7.2.2 7 Density of suppression pool water psP lbnr/ft3 61.86 62.31 Ref. 7.18 8 Mass of water in suppression pool msp lbin =D4*D7 =E4*E7 =VsP*PsP 9 Reactor Coolant System (RCS) 10 RCS volume VRcstot ft3 24266 24266 Ref. 7.6.5, p. 86 11 RCS liquid fraction x 10.579 0.579 Ref. 7.6.5, p. 86 12 RCS liquid volume VRCS.I ft3 =D1O*D11 =E10*EI1 = VRcs,tot*X 13 RCS steam volume VRCS,g ft3 =D1O-D12 =EIO-E12 = VRcstot VRcs,I 14 Reactor dome pressure PRCS psia 1055 1055 Ref. 7.6.5, p. 86 15 RCS water density VRCS.I ft3/lbm 0.021788 0.021788 Ref. 7.6.5, p. 86 16 RCS steam density VRCS,g ft3/lbm 0.42 0.42: Ref. 7.6.5, p. 86 17 RCS liquid mass .mRCS,I lbrm =D12/D15 =E12/E15 VRCS.I/VRcs,I 18 RCS steam mass mRcs.9 Ibm =D13/D16 =E13/E16 VRCS 9 / VRCS,g 19 Post-LOCA (SP+RCS) "_ _

RCS mass added to SP mRCS, tot lb;S m

mall no RCS mass included in SP for min; steam condenses in SP for max.

20 I 0 =E17+E18_ __ _

21 Total water mass in SP mpLSP,tot Ibm =D8+D20 =E8+E20 = msp + mRCS,Iot 22 Mass averaged density in SP PPLSP.Svg lbrm/ft3 =D7 =(E8*E7+E20/E15)/E21 = [(msp*PsP)+(mRCStot/VRcsI)]/mPLSPtOt 23 Total volume of water in SP YPLsp,tot ft3 =D21/D22 =E21/E22 = mpSPItot PPLSP,avg 24 Total volume of water in SP VPLSP,tot liters =D23*28.31685 =E23*28.31685 = VpL Sptot [ft3

  • 28.31685 liter/ft?

SP Mass (eqs)

t-Attachment 5 Calculation No. H21C-097 Nine Mile Point Nuclear Station Revision 0 Unit 2 Page 5-1 Attachment 5 Post-LOCA Suppression Pool pH Benchmark to Grand Gulf Nuclear Station (GGNS)

Table of Contents Figure 5-1: Post-LOCA Suppression Pool pH Analysis pH Response without SLCS............. 5-2 Table 5-1: Post-LOCA pH Calculation without SLCS .................................... o....................... 5-3 Table 5-1a: Post-LOCA pH - GGNS Calculation No. XC-Q1111-98013, Rev. 1..................... 5-5 Table 5-2: Hydriodic Acid (HI) Production ................................. 5-6 Table 5-3: Nitric Acid (HNO3) Production .................................. 5-7 Table 5-4: Hydrochloric Acid (HCI) Production .............................. 5-8 Table 5-5: Cesium Hydroxide (CsOH) Production .............. ............................. 5-10 Table 5-6: Effect of SLCS Addition on Post-LOCA Suppression Pool pH ........... .5-t

  • 1 Table 5-7: Gamma and Beta Radiation Dose Used to Determine Post-LOCA pH .............. 5-12 Table 5-8: Post-LOCA Suppression Pool Temperature Response .................................... 5-13 Equations for above tables ................................................................... 5-14 to 5-30 Note that each table in this attachment has been developed using Microsoft Excel. Some tables reference each other; for these references, see the "tab" name at the bottom of each sheet.

Input in the tables in this attachment is obtained from GGNS Calculation No. XC-Q1111-98013, Revision 1 (main body Ref. 7.12.3). Any input/cells which have changed from the NMP2 tables provided in Attachment 4 are italicized. - In some-instances, new cells were added. and. inothers,-

various input was not provided and therefore is left blank inthe tables.

I. Calculation No. H21C-097 Nine Mile Point Nuclear Station Revision 0 Unit 2 ' Page 5-2 Figure 5-1: GGNS Benchmark Pos't-LOCA Suppression Pool pH Analysis pH Response without SLCS J

i x0.

"6 0

--- Benchmark CL I..

C -U--GGNS 0.

0.

(i2 0.01 0.1 I 10 100. 1000 Time After LOCA (hours)

Pool pH Table 5-1: GGNS Benchmark Calculation No. H21C-097 Nine Mile Point Nuclear Station Post-LOCA pH Calculation without SLCS Revision 0 Unit 2 Page 5-3 Initial conditions Suppression pool mass Ibm RCS mass Ibm Total post-LOCA SP mass Ibm suppression pool pH 5.3 reactor coolant pH 5.3 initial [H÷J 5.01E-06 g-mole/Il weighted average not requiredsince pH sp, = PHRCSj initial [OH'] 2.OOE-09 g-mole/I weighted average not requiredsince pH spj = pH Rcs.i Pool J [HI] [HNO 3] (HCI] [CsOH] Total [H] Total OH'] Pool Water K. at x [H÷j Pool Time Volume j Temp Density Pool Temp pH (hr) (liter) (g-moles/I) (g-moles/I) (g-molesll) (g-moles/I) (g-moles/I) (g-moles/l) (°F) (lbm/ft3) (-) (g-moles/I) (g-moles/I) L')

0 4,841,000 5.01E-06 2.00E-09 90.0 62.12 1.704E-14 -1.40E-09 5.01E-06 5.300 0.034 4,841,000 __5.01E-06 2.OOE-09 160.0 60.99 1.633E-13 -3.04E-08 5.04E-06 5.297 0.100 4,841,000 2.2285E-08 :_2.8679E-06 5.03E.06 2.87E-06 160.0 60.99 1.633E-13 2.80E-06 2.24E-06 5.650 0.534 4,841,000 1.6784E-07 2.1599E-05 5.18E-06 2.16E-05 160.0 60.99 1.633E-13 5.17E-06 9.94E-09 8.003 1 4,841,000 4.2876E-07 _ _4.7471E-05 5.44E-06 4.75E-05 160.0 60.99 1.633E-13 5.44E-06 3.88E-09 8.411 2 4,841,000 1.0070E-06 1.0061E-05 8.6798E-06 1.0481E-04 2.48E-05 1.05E-04 160.0 60.99 1.633E-13 2.48E-05 2.04E-09 8.690 2.034 4,841,000 1.0070E-06 1.0068E-05 8,7776E-06 1.0481E-04 2.49E-05 1.05E-04 160.0 60.99 1.633E-13 2.49E-05 2.04E-09 8.690 3 4,841,000 1.0070E-06 1.0256E-05 1.1300E-05 1.0481E-04 2.76E-O5 1.05E-04 159.1 61.01 1.594E-13 2.76E-05 2.06E-09 8.685 4 4,841,000 1.0070E-06 1.0450E-05 1.4047E-05 1.0481E-04 3.05E-05 1.05E-04 157.3 61.05 1.518E-13 3.05E-05 2.04E-09 8.690 5 4,841,000 1.0070E-06 1.0644E-05 1.6233E-05 1.0481E-04 3.29E-05 1.05E-04 155.5 61.08 1.445E-13 3.29E-05 2.01E-09 8.697 6 4,841,000 1.0070E-06 1.0837E-05 1.8063E-05 1.0481E-04 3.49E-05 1.05E-04 154.6 61.10 1.409E-13 3.49E-05 2.02E-09 8.695 12 4,841,000 1.0070E-06 1.1990E-05 2.5535E-05 1.0481E-04 4.35E-05 1.05E-04 149.2 61.21 1.2112-13 4.35E-05 1.98E-09 8.704 18 4,841,000 1.0070E-06 1.3129E-05 3.0458E-05 1.0481E-04 4.96E-05 1.05E-04 146.4 61.26 1.117E-13 4.96E-05 2.02E-09 8.694 24 4,841,000 1.0070E-06 1.4254E-05 3.4308E-05 1.0481E-04 5.46E-05 1.05E-04 144.3-' 61.30 1.051E-13 5.46E-05 2.09E-09 8.680 48 4,841,000 1.0070E-06 1.8622E-05 4.5256E-05 1.0481E-04 6.99E-05 1.05E-04 139.4 61.39 9.084E-14 6.99E-05 2.60E-09 8.585 72 4,841,000 1.0070E-06 2.2785E-05 5.3018E-05 1.0481E-04 8.18E-05 1.05E-04 136.5 61.44 8.32E-14 8.18E-05 3.62E-09 8.441 96 4,841,000 1.0070E-06 2.6753E-05 5.9165E-05 1:0481E-04 9.19E-05 1.05E-04 134.4 61.47 7.801E-14 9.19E-05 6.06E-09 8.218 120 4,841,000 1.0070E-06 3.0536E-05 6.4242E-05 1.0481E-04 1.01E-04 1.05E-04 132.8 61.50 7:424E-14 1.01E-04 1.84E-08 7.735 144 4,841,000 1.0070E-06 3.4141E-05 6.8525E-05 1.0481E-04 1.09E-04 1.05E-04 131.6 61.52 7.152E-14 1.05E-04 3.89E-06 5.410 168 4,841,000 1.0070E-06 3.7577E-05 7.2188E-05 1.0481E-04 1.16E-04 1.05E-04 130.5 61.54 6.919E-14 1.05E-04 1.10E-05 4.959 192 4,841,000 1.0070E-06 4.0852E-05 7.5347E-05 1.0481E-04 1.22E-04 1.05E-04 129.5 61.56 6.703E-14 1.05E-04 1.74E-05 4.759 216 4,841,000 1.0070E-06 4.3973E-05 7.8090E-05 1.0481E-04 1.28E-04 1.05E-04 128.7 61.57 6.524E-14 1.05E-04 2.33E-05 4.633 240 4,841,000 1.0070E-06 4.6948E-05 8.0486E-05 1.0481E-04 1.33E-04 1.05E-04 127.9 61.59 6.364E-14 1.05E-04 2.86E-05 4.543 pH Table 5-1: GGNS Benchmark Calculation No. H21C-097 Nine Mile Point Nuclear Station Post-LOCA pH Calculation without SLCS Revision 0 Unit 2 Page 5-4 Pool [HI] jHNO 3 ] [HCI] [CsOH] Total [H÷] Total [OHi- Pool Water Kw at x [H] . Pool Time Volume

  • Temp Density Pool Temp pH (hr) (liter) (g-moles/I) (g-,moles/I) (g-moles/i) (g-moles/I) (g-moles/I) (g-moles/I) (°F) (Ibm/ft 3 ) - (g-molesll)' (g-molesll)j ()

28B 4,841,000 1.0070E-06 5.2487E-05 8.4442E-05 1.0481E-04 1.43E-04 1.05E-04. 126.6 61.61 6.109E-14 1.05E-04 3.81E-05 4.419 336 4,841,000 1.0070E-06 5.7519E-05 8.7538E-05 1.0481E-04 1.51E-04 1.05E-04 125.5 61.62 5.897E-14 1.05E-04 4.63E-05 4.335 384 4,841,000 1.0070E-06 6.2090E-05 9.0002E&05 1.0481E-04 1.58E-04 1.05E-04 -124.6 61.64 5.721E-14 1.05E 5.33E-05 4.273 432 4,841,000 1.0070E-06 6.6242E-05 9.1991E-0.5 1.0481E-04 1.64E-04 1.05E-04 123.8 61.65 5.574E-14 1.05E-04 5.94E-05 4.226 480 4,841,000 1.0070E-06 7.0015E-05 9.3624E.05 1.0481E-04 1'.70E-04 1.05E-04 123.0 61.66 5.435E-14 1.05E-04 6.48E-05 4.188 528 4,841,000 1.0070E-06 7.3442E-05 9.4984E-05 1.0481E-04 1.74E-04 1.05E-04, 122.4 61.68 5.322E-14 1.05E-04 6.96E-05 4.157 576 4,841,000 1.0070E-06 7.6556E-05 9.6136E-05 1.0481E-04 1.79E-04 1.05E-04 121.7 61.69 5.212E-14 1.05E-04 7.39E-05 4.131 624 4,841,000 1.0070E-06 7.9384E-05 9.7125E-05 1.0481E-04 1.83E-04 1.05E-04 121.1 61.69 5.113E-14 1.05E-04 7.77E-05 4.109 672 4,841,000 1.0070E-06 8.1954E-05 9.7987E-05 1.0481E-04 1.86E-04 1.05E-04 120.6 61.70 5.025E-14 1.05E-04 8.11E-05 4.091 720 4,841,000 1.0070E-06 8.4288E-05 9.8748E-05 1.0481E-04 1.89E-04 1.05E-04 120.1 61.71 4.941E-14 1.05E-04 8.42E-05 4.074 Adjustments made in Table 4-1 of Attachment 4 (see Notes 1-3) are not made for the benchmark.

pH Table 5-1a: GGNS Benchmark CAlculation No. H21C-097 Nine Mile Point Nuclear Station Post-LOCA Suppression Pool pH per Revision 0 Unit 2 GGNS Calc. No. XC-Qt111-98013, Rev. I Page 5-5 Time pH-(hr) H-)

0 5.300 The pH values presentedin 0.03361 5.297 this table are taken from Case 0.1 5.650 I in Attachment 3 to XC-0.53361 8.003 Q1111-98013, Revision I 1

  • 8.411 (main body Ref. 7.12.3).

2 8.699 2.0361 8.709 3 8.711 5 8.719 12 8.716 18 8.701 24 I 8.681 48 8.568 72 8.395 96 8.098 120 6.783 150 4.995 200 4.606 240 4.461 300 4.327 360 4.241 400 4.199 480 4.135 600 4.070 700 4.033 720 4.027 Table 5-2: GGNS Benchmark calculation No. H21C-097 Nine Mile Point Nuclear Station Hydriodic Acid (HI) Production Revision 0 Unit 2 Page 5-6 Core iodine inventory 325 g-mole Ref. 7.12.3 Core iodine - gap release 16.25 g-mole =0.05*325 g-mole.

Core iodine - EIV release 81.25 g-mole =0.25*325 g-mole Fraction of release as HI 0.05 max Reg Guide 1.183 (main body Ref. 7.10.2)

Gap release onset 121 sec Ref. 7.12.3 Gap release duration 30 minutes Reg Guide 1:183 (main body Ref. 7.10.2)

EIV duration 90 minutes Reg Guide 1.183 (main body Ref. 7.10.2) suppression cumulativ /e pool cumulative Time HI volume . HI (hr) (g-mole)

I (liter)

I I (g-mole/I)I onset 0.034 0.00 4,841,000 0.0000E+00 0.100 0.11 4,841,000 2.2285E-08 end of gap release 0.534 0.81 4,541,000 1.6784E-07 1.000 2.08 4,541,000 4 *2876E-07 end of EIV i 2.034 4.88 4,841,000 I .0070E-06 HI Table 5-3: GGNS Benchmark Calculation No. H21C-097 Nine Mile Point Nuclear Station Nitric Acid (HNO 3) Production .Revision 0 Unit 2 Page 5-7 HNO 3 generation 7.3E-06 g-mole/l per MRad NUREG/CR-5950 (main body Ref. 7.13)

Suppression Pool cumulative TID @

Time 3467 MWt HNO 3 (hr) (rad) (g-mole/I) onset 0.034 end of gap release 0.534 1

end of EIV 2 I1.3783E+06 1.0061 E-05 2.034 1.3792E+06 1.0068E-05 3 1i.4049E+06 1.0256E-05 4 .1.4315E+06 1.0450E-05 5 1.4581E÷06 1.0644E-05 6 1.4846E+06 1.0837E-05 12 1.6425E+06 1.1990E-05 18 11.7985E+06 1.3129E-05 24 S.19526E+06 1.4254E-05 48 2.5509E+06 1.8622E-05 72 3.1213E+06 2.2785E-05 96 3.6648E+06 2.6753E-05 120 4.1830E+06 3.0536E-05 144 4.6768E+06 3.4141 E-05 168 5.1475E+06 3.7577E-05 192 5.5961E+06 4.0852E-05 216 6.0237E+06 4.3973E-05

.240 6.4313E+06 4.6948E-05 288 7.1900E+06 5.2487E-05 336 7.8793E+06 5.7519E-05 384 8.5054E+06 6.2090E-05 432 9.0743E+06 6.6242E-05 480 9.5911 E+06 7.0015E-05 528 1.0061 E+07 7.3442E-05 576 1.0487E+07 7.6556E-05 624 1.0875E+07 7.9384E-05 672 1.1227E+07 8.1954E-05 720 1.1546E+07 8.4288E-05 HNO3

. Table 5-4: GGNS Benchmark Calculation No. H21C-097 Nine Mile Point Nuclear Station Hydrochloric Acid (HCi) Production Revision 0 Unit 2 Page 5-8 Cables hypalon properties:

radiolysis yield, G 2.192E-06 g-mole HCI per MRad-g NUREG/CR-5950 (main body Ref. 7.13) linear absorption coefficient 52.08 cm"1 for beta radiation NUREG-1081 (main body Ref. 7.15) linear absorption coefficient 0.099 cm"1 for gamma radiation NUREG-1081 (main body Ref. 7.15) 3 density 1.55 glcm NUREG-1081 (main body Ref. 7.15)

Cable jacket and Insulation:

DryweIl Cable Inventor Containment CaJle Inventorv cableouter radius 0.35 in cable outerradius 0.35 in cable OD (max guar.) 0.7 in cable OD (max guard) 0.7 in jacket thickness 280 rmil jacket thickness 280 mil jacket material hypalon jacket material hypalon insulation thickness mil insulation thickness mil insulation material Insulation material length in free air linear ft length in free air - linear ft

. length in tray linear ft length in tray linear ft chlorine-bearing material:

3 volume In free air cm3 volume in free air cm 3 3 volume in tray cm volume In tray cm mass in free air 873.65 Ibm mass in free air 1,561.03 Ibm mass in free air 396,287.6 gram mass In free air 708,083.2' gram mass in tray 673.65 Ibm I. mass in tray 14,049.27 Ibm mass In tray 396,287.6 gram mass in tray 6,372,748.9 gram Irradiation:

Drywell Cable Inventory Containment Cable Inventory I I beta  : gamma II free aira beta I tray -I gamma I free air I tray I cable radius (cm) 0.889 0.889 0.889 0.889 0.889 0.889 jacket thickness (cm) 0.7112 0.7112 0.7112 0.7112

  • 0.7112 0.7112 mass irradiated (g) 792,575.3 396,287.6 198,143.8 7,080,832.1 708,083.2 3,186,374.4 flux averaging factor 0.973 0.044 0.044 0.973 0.044 0.044 absorption factor 0.068 1.000 1.000 0.068 1.000 1.000 HCI ii Table 5-4: GGNS Benchmark Calculation No. H21C-097 Nine Mile Point Nuclear Station Hydrochloric Acid (HCI) Production Revision 0 Unit 2 Page 5-9 pool Drywell Containment Drywell Containment Drvwell HCI Containment HCI Time volume 7TID 7TID r TOI J TID gamma beta Total gamma beta Total HCI ihr) iliterl (rad) (rad! (rad) (rad) (g-mole) (a-mole) ta-mole/li (g-mole/A)

(g-mole) (gImolel) (g-mole) 0.034 4,841,000 O.0000E+00 O.0000E+00 (radl 0.OOE+00 O.OOE+00 O.OOE+00 O.OOE+00 O.00008E00 O.0000+00 O.OOOOE+00 0.0OE+00 O.OOE+00 O.OOEO00 0.534 4,841,000 O.OOOOE+00 O.'O000E+00 O.OOOOE+00 O.0000E+00 0.00E+00 0.00E+00 O.OOE+00 O.OOE+00 O.OOE+00 0.00E+00 O.O000E+00 1 4,841,000 O.O000E+00 00000E+00 O.0008E+00 0.0000E+00 0.OOE+00 0.00E+00 O.OOE+00. O.OOE+00 0.OOE+00 O.0000E+00 2 4,841,000 1. 7595E+07 O.OOOOE+00 3.5600E+07 1.5019E+07 2.01E+01 1.54E+01 7.34E-06 O.OOE+00 6.51E+00 1.34E-06 8.6798E-06 2.034 4,841,000 1.7973E+07 0..OOOOE+00 3.5663E+07 1.5051E+07 2.05E+01 1;54E+01 7.43E-06 O.OOE+00 6.52E+00 1.35E-06 8.7776E-06 3 4,841,000 2,6800E+07 6.2920E+05 3. 7461E+07 1.5993E+07 3.06E+01 1.62E+01 9.67E-06 9.47E-01 6.93E+00 1.63E-06 1.1300E-05 4 4,841,000 .3.3331E+07 4,8748E+06 3.9309E+07 1.6962E+07 3.81E+01 1.70E+01 1.14E-05 5.57E+00 7.35E+00 2.67E-06 1.4047E-05 5 4,841,000 3.8397E+07 8.0128E+06 4.1145E+07 1.7926E+07 4.38E+01 1.78E+01 1.27E-05 9.15E+O0 7.77E+00 3.49E-06 1.6233E-05 6 4,841,000 4.2537E+07 1.0577E+07 4.2969E+07 1.8884E÷07 4.86E+01 1.86E+01 1.39E-05 1.21E+01 8. 16E+00 .4. 18E-06 1.8063E-05 12 4,841,000 5.8273E+07 2.0324E+07 5.3664E+07 2.4518E+07 6.65E+01 2.32E+01 1.85E-05 2.32E+01 1.06E+01 6.99E-06 2.5535E-05 18 4,841,000 6. 7478E+07 2.6026E+07 6.3944E+07 2.9963E+07 7.71E+01 2.77E+01 2.16E-05 2.97E+01 1.30E+01 8.82E-06 3.0458E-05 24 4,841,000 7.4010E+07 3.0072E+07 7.3824E+07 3.5225E+07 8.45E+01 3.20E+01 2.41E-05 3.43E+01 1.53E+01 1.02E-05 3.4308E-05 48 4,841,000 8.9746E+07 3.9819E+07 1.0966E+08 5.4563E+07 1.02E+02 4.75E+01 3.10E-05 4.55E+01 2.36E+01 1.43E-05 4.5256E-05' 72 4,841,000 9.8951E+07 4.5521E+07 1.4024E+08 7.1428E+07 1.13E+02 6.08E+01 3.59E-05 5208E+01 3.09E+01 1.71E-05 5.3018E-05 96 4,841,000 1.0548E+08 4.9567E+07 1.6634E+08 8.6137E+07. 1.20E+02 7.21E+01 3.98E-05 5.66E+01 3.73E+01 1.94E-05 5.9165E-05 120 4,841,000 1.1055E+08 5.2705E+07 1.8862E+08 9.8965E+07 1.26E+02 8.17E+01 4.30E-05 6.02E+01 4.29E+01 2.13E-05 6.4242E-05 144 4,841,000 1.1469E+08 5.5269E+07 2.0764E+08 1.1015E+08 1.31E+02 8.99E+01 4.56E-05 6.31E+01 4.77E+01 2.29E-05 6.8525E-05 168 4,841,000 1.1819E+08 5.7436E+07 2.2387E+08 1.1991E+08 1.35E+02 9.70E+01 4.79E-05 6.56E+01 5.19E+01 2.43E-05 7.2188E-05 192 4,841,000 1.2122E+08 5.9314E+07 2.3772E+08 1.2842E+08 1.38E+02 1.03E+02 4.99E-05 6.77E+01 5.56E+01 2. 558-05 7.5347E-05 216 4,841,000 1.2389E+08 6.0971E+07 2.4954E+08 1.3584E+08 1.41 E+02 1.08E+02 5.16E1-05 6.96E+01 5.88E+01 2.65E-05 7.8090E-05 240 4,841,000 1.2628E+08 6.2452E+07 2.5963E+08 1.4232E+08 1.44 E+02 1.12E+02 5.30E-05 7.13E+01 6.17E+01 2. 75E-05 8.0486E-05 288 4,841,000 1.3042E+08 6.5016E÷07 2. 7559E+08 1.5288E+08 1.49E+02 1.19E+02 5.54E-05 7.42E+01 6.62E+01 *2.90E-05 8.4442E-05 336 4,841,000 1.3392E+08 6.7184E+07 2.8722E+08 1.6092E+08 1.53E+02 1.24E+02 5. 73E-05 7.67E+01 6.97E+01 3.02E-05 8.7538E-05 384 4,841,000 1.3696E+08 6.9062E+07 2.9570E+08 1.6704E+08 1.56E+02 1.28E+02 5.88E-05 7.89E+01 7.24E+01 3.12E-05 9.0002E-05 432 4,841,000 1.3963E+08 7.0718E+07 3.0187E+08 1.71698-+08 1.59E+02 1.31E+02 ,5.998-05 8.08E+01 7.44E+01 3.20E-05 9.1991E-05 480 4,841,000 1.4202E+08 7.2200E+07 3.0636E+08 1.7523E+08 1.62E+02 1.33E+02 6.09E-05 8.24E+01 7.59E+01 3.27E-05 9.3624E-05 528 4,841,000 1.4419E+08 7.3540E+07 3.0964E+08 1.7792F+08 1.65E+02 1.34E+02 6.17E-05 8.40E+01 7.71E+01 3.33E-05 9.4984E-05 576 4,841,000 1.4616E+08 7.4764E+07 3.1202E+08 1.7997E+08 1.67E+02 1.35E+02 6;24E-05 8.54E+01 '7.80E+01 3.37E-05 9.6136E-05 624 4,841,000 1.4798E+08 7.5889E+07 3.1376E+08 1.8152E+08 1.69E+02 1.36E+02 6. 30E-05 8.67E+01 7.86E+01 3.41E-05 9.7125E-05 672 4,841,000 1.4966E+08 7.6932E+07 3.1503E+08 1.8271E+08 1.71E+02 1.36E+02 6.35E-05 8. 78E+01 7.91E+01 3.45E-05 9. 7987E-05 720 4.841,000 1.5123E+08 .7902E+07 3.1595E+08 1.8361E+08 1.73E+02 1.37E+02 6.39E-05 6.90E+01 7.95E+01 3.48E-05 9.8748E-05 HCI ii Table 5-5: GGNS Benchmark Calculation No. H21C-097 Nine Mile Point Nuclear Station Cesium Hydroxide (CsOH) Production Revision 0 Unit 2 Page 5-10 Core cesium inventory 2400 g-mole Ref. 7.12.3 Core cesium - gap release 120.00 g-mole =0.05*2400g-mole Core cesium - EIV release 480.00 g-mole =0.20*2400 g-mole Csl - gap release 15.44 g-mole fraction iodine release in form of CsI Csl - EIV release 77.19 g-mole fraction iodine release in form of Csl CsOH - gap release 1.04.56 g-mole CsOH - EIV release 402.81 g-mole Gap release onset 121 sec Ref. 7.12.3 Gap release duration 30 minutes Reg Guide 1.183 (main body Ref. 7.10.2)

EIV duration 90 minutes Reg Guide 1.183 (main body Ref. 7.10.2) suppression cumulative pool cumulative Time CsOH volume CsOH (Hr) (g-mole) (liter) (g-mole/l) onset 0.034 0.00 4,641,000 0.OOOOE+00 0.100 13.88 4,841,000 2.8679E-06 end of gap release 0.534 104.56 4,841,000 2.1599E-05 1.000 229.81 4,841,000 4.7471 E-05 end of EIV 2.034- 507.38 4,841,000 1.0481 E-04 CsOH Table 5-6: GGNS Benchmark Calculation No. H21C-097 Nine Mile Point Nuclear Station Effect of SLCS Addition Revision 0 Unit 2, on Post-LOCA Suppression Pool Page 5-11 Buffering by sLcs SLCS:

Min SLC pump flow rate - gpm Min SLC injection tank volume - gal Max SLC temp -

0F Min SLC temp SLC SPB conc. by weight Specific gravity Density (T=85 0F) - ibm/ft3 Final suppression pool temp (bounding) 120 OF Boric acid K 8.33E-10 at 120 OF MW sodium pentaborate(Na2 B 1o 016) 410 3

Volume sodium pentaborate ft Mass sodium pentaborate 5,800.0 Ibm Mass sodium pentaborate 6,416.8 g-mole unbuffered pH 4.07 unbuffered [HI 8.425E-05 g-mole/l Suppression Pool volume 4,841,000 liter Equivalents unbuffered [HI 407.8 g-mole Final pH 8.46 Time to inject boron minutes SLCS Table 5-7: GGNS Benchmark Calculation No. H21C-097 Nine Mile Point Nuclear Station Gamma and Beta Radiation Dose Revision 0 Unit 2 used to Determine Post-LOCA pH, Page 5-12 Suppression Drywell Containment Drywell Containment Drywell Containment Drywell Containment Time Pool yTID TID -fTID PTID PTOD -yTID "yTID 1TlD TTID

[hrl [rad] [MeV/cc] [MeV/ccj [MeV/cc]j [MeV/cc] frad] [rad] [red] [tadi 0 0 0 0 0 0 0 0 0 0.

0.034 0 0 0 .0 0 0. 0 0 0 0.534 0 0 0 .0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 2 1.3783E+06 1.4201E+12 O.O000E+00 2.8733E+12 1.2122E+12 1.7595E+07 O.OOOOE+00 3.5600E+07 1.5019E+07 2.034 1.3792E+06 1.4506E+12 O.O000E+00 2.8784E+12 1.2148E+12 1.7973E+07 O.OOOOE+00 3.5663E+07 1.5051E+07 3 1.4049E+06 2.1630E+12 6.6925E+10 3.0235E+12 1.2908E+12 2.6800E+07 8.2920E+05 3.7461E+07 1.5993E+07 4 1.4315E+06 2.6902E+12 3.9344E+11 3.1726E+12 1.3690E+12 3.3331E+07 4.8748E+06 3.9309E+07 1.6962E+07 5 1.4561E+06 3.0991E+12 6.4671E+11 3.3208E+12 1.4468E+12 3.8397E+07 8.0128E+06 4.1145E+07 1.7926E+07 6 1.4846E+06 3.4331E+12 8.5365E+1I 3.4680E+12 1.5241E+12 4.2537E+07 1.0577E+07 4.2969E+07 1.8884E+07

.12 1.6425E+06 4.7032E+12 1.6404E+12 4.3312E+12 1.9789E+12 5.8273E+07 2.0324E+07 5.3664E+07 2.4518E+07 18 1.7985E+06 5.4462E+12 2.1006E+12 5.1609E+12 2.4183E+12 6.7478E+07 2.6026E+07 6.3944E+07 2.9963E+07 24 1.9526E+06 5.9733E+12 2.4271E+12 5.9584E+12 2.8430E+12 7.4010E+07 3.0072E+07 7.3824E+07 3.5225E+07 48 2.5509E+06 7.2434E+12 3.2138E+12 8.8503E+12 4.4036E+12 8.9746E+07 3.9819E+07 1.0966E+08 5.4563E+07 72 3.1213E+06 7.9863E+12 3.6740E+12. 1.1319E+13 5.7649E+12 9.8951E+07 4.5521E+07 1.4024E+08 7.1428E+07 96 3.6648E+06 8.5135E+12 4.0005E+12 1.3425E+13 6.9521E+12 1.0548E+08 4.9567E+07 1.6634E+08 8.6137E+07 120 4.1630E+06 8.9224E+12 4.2538E+12 1.5224E+13 7.9874E+12 1.1055E+08 5.2705E+07 1.8862E+08 9.8965E+07 144 4.6768E+06 9.2564E+12 4.4607E+12 1.6758E+13 8.890,IE+12 1.1469E+08 5.5269E+07 2.0764E+08 1.1015E+08 168 5.1475E+06 9.5389E+12 4.6357E+12 1.8068E+13 9.6780E+12 1.1819E+08 5.7436E+07 2.2387E+08 1.1991E+08 192 5.5961E+06. 9.7836E+12, 4.7873E+12 1.9186E+13 1.0365E+13 1.2122E+08 5.9314E+07 2.3772E+08 1.2842E+08 216 6.0237E+06 9.9994E+12 4.9209E+12 2.0140E+13 1.0964E+13 1.2389E+08 6.0971E+07 2.4954E+08 1.3584E+08 240 6.4313E+06 1.0192E+13 5.0405E+12 2.0955E+13 1.1486E+13 1.2628E+08 6.2452E+07 2.5963E+08 1.4232E+08 288 7.1900E+06 1.0527E+13 5.2475E+12 2.2243E+13 1.2339E+13 1.3042E+08 6.5016E+07 2.7559E+08 1.5288E+08 336 7.8793E+06 1.0809E+13 5.4224E+12 2.3182E+13 -1.2988E+13 1.3392E+08 6.7184E+07 2.8722E+08 1.6092E+08 384 8.5054E+06 1.1054E+13 5.5740E+12 2.3866E+13 1.3482E+13 1.3696E+08 6.9062E+07 2.9570E+08 1.6704E+08 432 9.0743E+06 1.1269E+13 5.7077E+12 2.4364E+13 1.3857E+13 1.3963E+08 7.0718E+07 3.0187E+08 1.7169E+08 480 9.5911E+06 1.1463E+13 5.8272E+12 2.4727E+13 1.4143E+13 1.4202E+08 7.2200E+07 3.0636E+08 1.7523E+08 528. 1.0061E+07 1.1637E+13 5.9354E+12 2.4991E+13 1.4360E+13 1.4419E+08 7.3540E+07 3.0964E+08 1.7792E+08 576 1.0487E+07 1.1797E+13 6.0342E+12 2.5183E+13 1.4525E+13 1.4616E+08 7.4764E+07 3.1202E+08 1.7997E+08 624 1.0875E+07 1.1943E+13 '6.1250E+12 2.5324E+13 1.4651E+13 1.4798E+08 7.5889E+07 3.1376E+08 1.8152E+08 672 1.1227E+07 1.2079E+13 6.2091E+12 2.5426E+13 1.4746E+13 1.4966E+08 7.6932E+07 3.1503E+08 1.8271E+08 720 1.1546E+07 1.2205E+13 6.2875E+12 2.5500E+13 1.4819E+13 1.5123E+08 7.7902E+07 3.1595E+08 1.8361E+08 2400 1.4610E+07 1.4412E+13 7.6540E+12 2.5700E+13 1.5050E+13 1.7856E+08 9.4833E+07 3.1842E+08 1.8647E+08 4320 1.4718E+07 1.5489E+13 8.3211E+12, 2.5700E+13 1.5050E+13 1.9190E+08 1.0310E+08 3.1842E+08 1.8647E+08 8760 1.4720E+07 1.6784E+13 9.1235E+12 2.5700E+13 1.5050E+13 2.0795E+08 1.1304E+08 3.1842E+08 1.8647E+08 Eguafim "Ysp (Mrad] -- 14.72*[1-0.91*exp(-0.002*t,,jj]106 ylm,[MeV/cc] = [0.15+1.83235*ln(tr)]*10*,10 6 ycNr [MeV/cc] = [-1.18+1.135*In(thr)]*10s;10e Dow [MeV/cc] = 25.7*[1-0.9*exp(-0.0066*thr)]*10*106 PCNT[MeV/cc] = 15.05*[1-0.93*exp(-0.0057*t)r10*10e 1 rad = 8.071x10 4 MeV/cc for air at S.T.P. per Radiological Health Handbook (main body Ref. 7.8)

Notes If the curve fits above yield a negative TID due to curve fit inacurracies, the TID is assumed to be zero consistent with Ref. 7.12.3.

Rad Dose, Table 5-8: GGNS Benchmark Calculation No. H21C-097 Nine Mile Point Nuclear Station Post-LOCA Suppression Pool Revision 0 Unit 2 Temperature Response Page 5-13 From Data (Ref. 7.12.3) Used for pH Analysis Time Post-LOCA Temp Time Temp

- -l~/*.' Ihri I*F) * (hr) (°F) 0 77.0 0.034 160.0 1  : 2.778E-04 160.0 0.534 160.0 8 '2.222E-03 160.0 1 .160.0 10 2.778E-03 160.0 2 160.0 30 8.333E-03 160.0 2.034 160.0 100 0.028 160.0 3 159.1 0.034 160.0 4 157.3 300 0,083 160.0 5 155.5 1,000 0,278 160.0 6 .154.6 12 149.2 18 146.4 24 144.3 48 139.4 72 136.5

3. 5 o9.1 96. 134.4 4 157.3 120 132.8

ýý- N' ý1055.5f 144 131.6 20,000 5.556 155.0 168 130.5 6 154.6 192 .129.5 42,000 11.67 149.5 216 128.7 240 127.9 288 126.6 336 125.5 384 124.6 432 123.8 480 123.0 528 122.4 576 121.7 624 121.1 0 ' 1* 141.0 672 120.6 720 120.1 7 168 130.5 8 .192 129.5 The shaded values are taken i200" .**1,'2 f**r from either Reference 7.12.3.

9 216 128.7 Other other values are E -T"0i 24O -27. 9 interpolated.

12 288 126.6

'W300 ,463 14 336 125.5 384 124.6 432 123.8 207ýE ~123!04§'

1 =4~

528 122.4 576 121.7 624 672 121.1 120.6

  • Seconds are the units for t=0 to F700 27.78 hours9.027778e-4 days <br />0.0217 hours <br />1.289683e-4 weeks <br />2.9679e-5 months <br />; days are the units for t=48 to 720 hours0.00833 days <br />0.2 hours <br />0.00119 weeks <br />2.7396e-4 months <br />.

SP Temp Table 5-1 Eqs: GGNS Benchmark Calculation No. H21IC-097 Nine Mile Point Nuclear Station Post-LOCA pH Calculation without SLCS Revision 0 Unit 2 Page 5-14 A B C D E F G H 1 Initial conditions 2

3 Suppression pool mass . Ibm 4 RCS mass Ibm 5 Total post-LOCA SP mass Ibm I 6

7 suppression pool pH 5.3 8 reactor coolant pH 5.3 9

1" initial [H] =1^OA(-D7) g-molell weighted average not requiredsince pH spj = PH"RCSJ 11 initial [OHi =1OA(- 14+D7) g-molell weighted averea'e not requiredsince pH spj = pHRci 120 13 Pool [HI] [HNO3 1 [HCI] [CsOH] Total 1H-] Total [OH1-1.4 . Time Volume ,

15 (hr) (liter) (g-moles/l) (g-moles/l) (g-moles/I) (g-moles/I) . (g-molesll) (g-moles/I) 16 ='Red Dose (eqs)'!A6 4841000 _ =D$10+SUM(C16:E16) =D$11+F16 17 ='Rad Dose (egs)'1A7 4841000 =D$10+SUM(C17:E17) =D$11+F17 18 0.1 4841000 ='HI (eqs)'!E17 _ ='CsOH(eqs)PE21 =D$1O+SUM(C18:E18) =D$11+F18 19 ='Rad'Dose (eqs)'!A8 4841000 ='HI (eqs)'IE18 _='CsOH (eqs)'!E22 =D$10+SUM(C19:E19) =D$11+F19 20 ='Rad Dose (eqs)'!A9 4841000 =HI (eqs)'1E19 ='CsOH(eqs'!E23 =D$10+SUM(C20:E20) =D$1 1+F20 21 ='Rad Dose (eqs)'IA10 4841000 ='HI (eqs)!E$20 ='HN03(egs)'/DII ='HCI (eqs)'IN50 ='CsOH(eqs)!E$24 =D$10+SUM(C21:E21) =D$11+F21 22 ='Rad Dose (egs)lA11 4841000 ='HI (es)'IE$20 ='HNO3 (eqs)'/D12 ='HCI (eqs)'1N51 ='CsOH(e4s)7'E$24 =D$10+SUM(C22:E22) =D$11+F22 23 ='Rad Dose (egs)'!A12 4841000 ='HI (eqs)'!E$20 ='HNO3 (egs)'D13 ='HCI (eqs)'!N52 ='CsOH(eqs) E$24 =D$10+SUM(C23:E23) =D$11+F23 24 ='Rad Dose (eqs)'!A13 4841000 =-HI (eqs)'!E$20 =HN03 (eqs)'!D14 ='HCI (eqs).'N53 ='CsOH(eqs)'!E$24 =D$10+SUM(C24:E24) =D$11+F24 25 ='Red Dose (egs)'1A14 4841000 ='HI (eqs)'!E$20 ='HNO3 (eqs)'0D15 =-HCI (eqs)'/N54 ='CsOH(eqsq7E$24 =D$10+SUM(C25:E25) =D$11+F25 26 ='Red Dose (egs)'!A15 4841000 ='HI(eqs)'!E$20 =HN03 (eqs)'!D16 ='HCI (eqs)'7N55 ='CsOH(eqs)tE$24 =D$10+SUM(C26:E26) =D$11+F26 27 ='Red Dose (egs)'lA16 4841000 ='Hl (eqs)'!E$20 ='HN03 (eqs)'ID17 ='HCI (eqs)'!V56 ='CsOH(eqs)'!E$24 =D$10+SUM(C27:E27) =D$11+F27 28 ='Red Dose (egs)'!A17 4841000 ='HI (eqs)'/E$20 ='HNO3(eqs)!D18 ='HCI (eqsY'tN57 ='CsOH(eqs)/E$24 =D$10+SUM(C28:E28) =D$1 1+F28 29 ='Rad Dose (egs)'IA18 4841000 ='HI (egs)'IE$20 ='HN03(eqs)'/D19 ='HCI (eqs)'/N58 ='CsOH(eqs)'E$24 =D$10+SUM(C29:E29) =D$11+F29 30 ='Rad Dose (egs)'!A19 4841000 ='HI (eqs)'IE$20 ='HN03(eqs)'D20 ='HCI (eqs)!N59 ='CsOH(eqs)'IE$24 =D$10+SUM(C30:E30) =D$1 1+F30 31 ='Red Dose (eqs)'1A20 4841000 ='HI (eqs)'!E$20 ='HN03(eqs)'!D21 =-HCI (eqs)'!N60 ='CsOH(eqsg'!E$24 =D$10+SUM(C31:E31) =D$1 1+F31 32 ='Rad Dose (eqsy'!A21 4841000 ='HI (eqs)'IE$20 ='HN03(eqs)'1D22 ='HCI (eqs)'!N61 ='CsOH(eqs)'!E$24 =D$10+SUM(C32:E32) =D$11+F32 33 ='Red Dose (e s)'!A22 4841000 ='HI (eqs)'IE$20 ='HN03(egs)'/D23 ='HCI (egs)'/N62 ='CsOH(eqs)'IE$24 =D$10+SUM(C33:E33) =D$1 1+F33 34 ='Red Dose (egs)'1A23 4841000 ='HI (eqs)'/E$20 'HNO3 (eqs)'1D24 ='HCI (egs)'!N63 ='CsOH(eqs)'lE$24 =D$10+SUM(C34:E34) =D$11+F34 35 ='Red Dose (eqs)'!A24 4841000 ='HI (eqs)'tE$20 ='HN03(eqs)'/D25 ='HCI (eqs)'/N84 ='CsOH(eqs)!E$24 =D$10+SUM(C35:E35) =D$11+F35 36 ='Red Dose (egs)'!A25 4841000 =HI (eqs)'IE$20 ='HN03 (eqs)'lD26 ='HCI (eqs)7'N65 ='CsOH (eqs)'tE$24 =D$10+SUM(C36:E36) =D$11+F36 37 ='Red Dose (egs)'lA26 4841000 ='HI (eqs)'E$20 ='HN03 (eqs)'!D27 ='HCI (eqs)'!N66 ='CsOH(eqs)'lE$24 =D$10+SUM(C37:E37) =D$11+F37 38 ='Red Dose (eqs)'!A27 4841000 ='HI (eqs)'IE$20 ='HN03 (eqs)'!D28 ='HCI (egs)'/N67 =CsOH(eqs)'tE$24 =D$10+SUM(C38:E38) =D$11+F38 39 ='Rad Dose (egs)'!A28 4841000 =HI (eqs)'IE$20 ='HN03 (eqs)'7D29 ='HCI(eqs)'/N68 ='CsOH(eqs)'fE$24 =D$10+SUM(C39:E39) =D$11+F39 pH (eqs)

Table 5-1 Eqs: GGNS Benchmark Calculation No. H21C-097 Nine Mile Point Nuclear Station Post-LOCA pH Calculation without SLCS Revision 0 t)n't 2 Page 5-15 A B C D E F G H 13 Pool [HI]

  • HNO 3A IHCI] [CsOH] Total IH+] Total [OH'-

14 Time Volume -

15 (hr) (liter) (g-mes-moles/) (g-moles/l) ,,_(g-molesil) (g-moles/l____-moes/_)__,

40 ='Rad Dose (egs)'lA29 4841000 ='HI(eqs)VE$20 =-'HN03 (egs)'D30 ='HCI(egs)IN69 ='CsOH (eqs)'IE$24 =D$10+SUM(C40:E40) =D$11+F40 41 ='Rad Dose (egs)'lA30 4841000 ='HI(eqs)'!E$20 ='HN03 (egs)'!D31 ='HCI (eqs)/N70 ='CsOH(egs)!E$24 =D$10+SUM(C41:E41) =D$1 1+F41 42 ='Rad Dose (egs)'!A31 4841000 ='HI (eqs)!E$20 ='HN03 (eqs)'D32 ='HCI (egs)'/N71 ='CsOH(eMs)'IE$24 =0$10+SUM(C42:E42) =D$11+F42 43 ='Rad Dose (e s)'A32 4841000 ='HI (egs)'IE$20 ='HN03 (eqs)'l33 ='HCI (eqs)'!N72 ='CsOH(egs)'IE$24 =D$10+SUM(C43:E43) =D$11+F43 44 ='Rad Dose (egs)'lA33 4841000 ='HI (eqs)7E$20 ='HN03(egs) 7D34 =HCI (egs)'!N73 ='CsOH(eqs)'IE$24 =D$10+SUM(C44:E44) =D$11+F44 45 ='Rad Dose (egsYIA34 4841000 ='HI(eqs)'IE$20 =HN03 (egsytD35 =7HCI (eqssN74 =CsOH(eqsyIE$24 =0$10+SUM(C45:E45) =D$11+F45 46 ='Rad Dose (egs)'1A35 4841000 ='HI(egs)'lE$20 ='HN03 (egqsY36 ='HCI (egs)'1N75 ='CsOH (egs)!E$24 =D$10+SUM(C46:E46) =D$11+F46 47 ='Rad Dose (eqs)'lA36 4841000 ='HI (eqs)'!E$20 =HN03 (egs)'ID37 =-HCI (egs)'IN76 ='CsOH(eqs)'IE$24 =D$10+SUM(C47:E47) =D$11+F47 48 ='Rad Dose (eqs)'lA37 4841000 ='HI (egs)'IE$20 ='HN03 (egs)'tD38 ='HCI (egs)'/N77 =CsOH(eqs)'/E$24 =D$10+SUM(C48:E48) =D$11+F48 49 Notes 50 Adjustments made in Table 4-1 of Attachment 4 (see Notes 1,-3) are not made for the benchmark. ,,.....__

51 565 57 pH (eqs)

Table 5-1 Eqs: GGNS Benchmark Calculation No. H21C-097 Nine Mile Point Nuclear Station Post-LOCA pH Calculation without SILCS. Revision 0 Unit 2 Page 5-16 JK L M N 2 _

2 3________________________ ______

7 10 _____

11 _______

12___________________

13 Pool Water If, at. x [Hij Pool 14 .Temp Density Pool Temp _____________________ ____ pH 151 (ff) (-)~t' . -molesll) (g-molesll) )

11690 =1/vftsat(l116) 1=1 0A-(15.5129-0.0224*116+0.00003352*1166A2) =(H16+GI6-SQRT((Hl 6+GI6)A 2-4(H1 6*G16-Ki 6)))/2 =G1-6-L1 6 =-LOG(MI6) 17 ='SP Temp (egs)'IF6 =1/vftsat(l117) =10'-(15.5129-0.0224*11 7+0.00003352*117 A2) =(H1 7+GI 7-SQRT((H1 7+G17)A 2-4*(H1 7*G17-KI 7))Y/2 =G1 7-LI7 =-LOG(M17) 18 160 =l/vftsat(118) =10A-(15.5129-0.0224*I18+0.00003352*I18A2) =(Hl8+G18-SORT((H16+G 18A 2-4*H18*G18-K16fl)/2 =G18-L08 =-LOG(M18.)

19 ='SP Temp (egs)VF7 =llvftsat(119) =IOA.(15.51 29-0.0224*119+0.00003352*11 9 A2) =(H19+G19-SORT((H1 9+G 19)A2-4*(H19*G19-K19)))/2 =G19-LI9 =-LOG(M19) 20 ='SP Temp (egs)1IF8 =llvftsat(120) =1 0A-(15.51 29-0.0224*120+0.00003352*120A2) =(H20+G20-SQRT((H20+G20)A2-4*(H20*G20-K20)))/2 =G20-L20 =-LOG(M20) 21 ='SP Temp (eqs)'VF9 =I/vftsat(121) =1 OA_(1 5.5129-0.0224*121 +0.00003352*121A2) =(H21+G21-SQRT((H21 +G21 )A2-4*(H21 G21-K21 )))/2 =G21-L21 .- LOG(M21) 22 ='SP Temp((es)'!FIO =i/vftsat(122) =10k'(1 5.51 29-0.0224*122+0.00003352*122 A2) =(H22+G22-SQRT((H22+G22)A2-4*(H22*G22-K22)))I2 =G22-L-22 =-LOG(M22) 23 =SP Temp (egs)'!F1 I =Ilvftsat(123) 1=1 0'-(i5.51 29-0.0224*123+0.00003352*123 A2) =(H23+G23-SQRT((H23+G23)A2-4*(H23*G23-K23)))/2 =G23-L23 =-LOG(M23) 24 ='SP Temp (egs)'IF12 =Ilvftsat(124) I=10'-(1 5.5129-0.0224*124+0.00003352*124 A2) =(H24+G24-SQRT((H24+G24)A 2-4*(H24*G24-K24)))12 =G24-1-24 =-LOG(M24) 25 ='SP Temp (egs)'IF1 3 =I/vftsat(125) I=10'-(l5.5l29-0.0224*1250.0.0003352*125 A2) =(H25.G25-SQRT((H25+G25)A2-4*(H25*G25-K25)))12 =G25-L25 =-LOG(M25) 26 ='SP Temp (eqs)'1F14 =1Itvftset(126) 1=10A-(1 5.5129-0.0224*126+0.00003352*126A2) =(H26+G26-SQRT((H26+G26)A 2-4(H26*G26-K26)))I2 =G26-1-26 =-LOG(M26) 27 ='SP Temp (eqs)'!FI 5 =1/vftsat(127) I=10'- 15.5l 2 9 -0, 2 24*12 7+O.OOOO 3 35212 7 A2 ) =(H27+G27-SQRT((H27+G27)A2-4(H27*G27-K27)))/2 =G27-1-27 .=-LOG(M27) 28 =SP Temp (eqsyIF16 =11vftsat(128) 10'.A(1 5.51 29-0.0224*128.0.00003352*128A2) =(H28+G28-SQRT((H28+G28)A2-4P(H28*G28-K28)))I2 =G28-1-28 1=-LOG(M28) 29 ='SP Temp (egs)1IF1 7 =1/vftsat(129) I=lOA-(l 5.5129-0.0224*129+0.00003352*129A 2) =(H29+G29-SQRT((H29+G29)A2-4(H29*G29-K29)))/2 =G29-1-29 1-LOG(M29) 30 ='SP Temp (eqsyt'FIB8 I/vftsat(130) I=1 0'(1 5.51 29-0.0224*130+0.00003352*130A2) =(H30+G30-SQRT((H30+G30)A 24*(H30*G30-K30)))I2. =G30-L30 1=-LOG(M30) 31 ='SP Temp (eqs)'!F1 9 =1/vftsat(131) I=10'-(1 5.5129-0.0224*131 +0.00003352*131A 2) =(H31 +G31-SQRT((H31 +G31 )A2-4(H31*G31-K31 )))/2 =G31-1-31 =-LOG(M31) 32 ='SP Temp (egsylIF20 =1/vftsat(132) I=1 0'(1 5.51 29-0.0224*132+0.00003352*132A2) =(H32+G32-SQRT((H32+G32)A2-4*,(H32*G32-K32)))I2 =G32-1-32 =-LOG(M32) 33 F'SP Temp (egs)'!F21 =1/vftsat(133) I=IOA-(15.5129-O.0224*133+O.00003352*133A2) =(H33+G33-SQRT((H33+G33)A2-4*(H33*G33-K33)))12 =G33-1-33 =-LOG(M33) 34 1=SP Temp (egs)'IF22 =llvftsat(134) 1=1 0A.(15.5129-0.0224*134+0.00003352*134 A2) =(H34G34-SQRT((H34+G34)A 2-4*(H34*G34-K34))W2 =G34-L34 =-LOG(M34) 35 1='SP Temp (egs)'!F23 =Ilvftsat(135) I=10'-_(15.5129-0.0224*135+0.00003352*135A 2) =(H35+G35-SORT((H35+G35)A 2-4*(H35*G35-K35)))12 =G35-1-35 =-LOG(M35) 36 =SP Tmp (e s '1F24 1I/vttsat(136) =10A-I15.5129-0.0224*136+0.00003352*136A2) =(H36+G36-SQRT((H36+G36)A2-'P(H36*G36-K36)))/2 =G36-1-36 =-LOG(M36) 37 ='SP Temp (egs)'!F25 =1lvftsat(137) =J0A_(1 5.51 29-0.0224*137+0.00003352*137 A2) =(H37+G37-SQRT((H37+G37)A2-4*(H37*G37-K37)))12 =G37-L37 =-LOG(M37) 38 ='SP Temp (egs)1IF26 =llvftsat(138) =10A-(1 5.5129-0.0224*138.0.00003352*138A2) =(H38+G38-SQRT((H38+G386r2-4(H38*G38-K38)))/2 =G38-1-38 =-LOG(M38) 39 ='SP Tamp (egs)'!F27 =llvftsat(139) =10'- 15.51 29-0.0224*139.0.00003352*139A 2) =(H39+G39-SQRT((H39+G39)A2-4(H39*G39-K39)))/2 =G39-1-39 =-LOG(M39) pH (eqs)

Table 5-1 Eqs: GGNS Benchmark Calculation No. H21C-097 Nine Mile Point Nuclear Station Post-LOCA pH Calculation without SLCS Revision 0 Unit 2 Page 5-17 S JK L M N 13 Pool Water K.at Ix [H*] Pool 14 Temp Density P6ol Temp Ij pH 15 ('F) (lbmf 3 (. (g-moles/1) j(g-molesll)j (-

40 ='SP Temp (egs)'!F28 =1/vftsat(140.) =1 OA-(5.5129-0.0224*140+0.00003352*140A2) =(H40+G40-SQRT((H40+G40)A2-4'(H40*G40-K40)Wy2 =G40-L40 =.LOG(M40) 41 1='SP Temp (eqsy!IF29 =1 /vftsat(l41) =1 OA-(I 5.5129-0.0224*141+0.00003352*141 A 2 ) =(H41 +G41 -SORT((H41 +G41 )A2-4*(H41 *G41 -K41 )))2 =G41-1-411 =-LOG(M41) 42 ='SP Temp ( qs)'IF30 =1 (vftsat(142) =1 0,1-(1 5.5129-0.0224*142+0.000C03352*142 A2) =(H424.G42-SQRT((H42.G42)12-4*(H42*G42-K42)))I2 =G42-1-42 =-LOG(M42) 43 ='SP Temp (eqs)'!F31 =1 /vftsat(143) =1 Ok(1 5.51 29-0.0294*143+0.00003352*143 A2) =(H43+G43-SQRT((H43+G43)A2-4Q1H43*G43-K43)))I2 =G43-1-43 =-LOG(M43) 44 ='SP Temp (eqs)!IF32 =1 lvftsat(144) =1 OA-(I 5.51 29-0.0224*144+0.00003352*144A12) =(H44+G44-SQRT((H44+G44)A2-4*(H44*G44K44)))I2 =G44-1-4 =-LOG(M44) 45 ='SP Temp (eqs)'IF33 =1/vftsat(145) =10A-(1 5.5129-0.0224*145*0.00003352*145A2) =(H45+G45-SQRT((H45+G45)A2-4*(H45*G45-K45)))J2 =G45-1-45 .=LOG(M45) 46 ='SP Temp (eqsylIF34 =1/vftsat(-146) =1 0A-(l 5.51 29-0.0224*146+0.00003352*146 A2) =(H46+G46-SORT((H46+G46)A 2-4*(H46*G46-K46)))/2 =G46-1-46 =-LOG(M46) 47 ='SP Tem p (eqs)'!F35 =I/vftsat(147) =10A_(i 5.5129-0.0224*147+0.00003352*147 A2) =(H47+G47-SORT((H47+G47)A 2-4(H47*G47-K47))y2 =G47-L47 =.LOG(M47) 48 ='SP Temp (egs)'1F36 =llvftsat(.148) 10A-(1 5.5129-0.0224*148+0.00003352*148A2) =(H48+G48-SQRT((H48+G48)A 2-4*(H48*G48-K48)))12 =G48-1-48 =-LOG(M48) 49 ______________

53 _________

54 _ _ _ _ _ _ _ __ _ _ _

551_______________ ____________________ ___________________________

pH (eqs)

Table 5-2 Eqs: GGNS Benchmark Calculation No. H21C-097 Nine Mile Point Nuclear Station Hydrlodic Acid (HI) Production Revision 0 Unit 2 Page 5-18 A B C D E I Core iodine inventory 325 g-mole Ref. 7.12.3 2  !

3 Core iodine - gap r'elease =0.05*B1 g-mole =0.05!325 g-mole 4 Core iodine - EIV release =0.25*B1 g-mole_.. =0.25*325 g-mole 5

6 Fraction of release as HI 0.05 , max __Reg Guide 1.183 (main body Ref. 7.10.2) 7 8 Gap release onset 121 sec Ref. 7.12.3 9 Gap release duration 30 minutes Reg Guide 1.183 (main body Ref. 7.10.2) 10 EIV duration 90 minutes Reg Guide 1.183 (main body Ref. 7.10.2) 11 12 suppression 13 cumulative pool cumulative 14 Time HI volume HI 15 (hr) (g-mole) (liter) (g-mole/I) 16 onset =18/3600 0 4841000 =C16/D16 17 0.1 =C164-(B17-B16)/(B9160)*B3*B6 4841000 =C17/D17 18 endof gap release =B16+B9/60 =C17+(B18-B17)/(B9160)*B3*B6 4841000 C18/D18

19. 11 =C18ý(B19-B18)/(B10/60)*B4*B6 4841000 =C19/D19 20 end of EIV =B18+B10/60 =C18+B4*B6 4841000 =C20/D20 HI (eqs)

Table 5-3 Eqs: GGNS Benchmark Calculation No. H21C-097 Nine Mile Point Nuclear Station Nitric Acid (HNO 3) Production Revision 0 Unit 2 Page 5-19 A B .C D E NUREG/CR-5950 (main I HNO 3 generation 0.0000073_ g-molell per MRad body Ref. 7.13) 2 3

4 Suppression 5 Pool cumulative TOD @

6 Time 3467 MWt HNO 3 7 (hr) (rad) I(g-mole/1) 8 onset ='Rad Dose (eqs)'yA7 9 end of gap release ='Rad Dose (eqs)'1A8 10 ='Rad Dose (eqs)'!A9.

11 end of EIV ='Rad Dose (eqs)'IAlO ='Rad Dose (eqs)'1B10 =$B$1"Cl1/1000000 12 .... ='Rad Dose (eqs)'!AII ='Rad Dose (eqs)'IB11 =$B$1"C12/1000000 13 ='Rad Dose (eqs)'!A12 ='Rad Dose (eqs)'!B12 =$B$1*C13/1000000 14 ='Rad Dose (eqs)'!A13 ='Rad Dose (eqs)'!B13 =$B$1*C14/1000000 15 _'Rad Dose (eqs)'!A14 ='Rad Dose (eqs)'tB14 =$B$1C*15/1000000 16 =_Rad Dose (eqs)'lA15 ='Rad Dose (eqs)'iB15 =$B$1"C16/1000000 171 ='Rad Dose (eqs)'!A16 ='Rad Dose (eqs)'IB16 =$B$1"C17/1000000 18] ='Rad Dose (eqs)'!A17 ='Rad Dose (eqs)'!B17 =$B$1*C18/1000000 191 ='Rad Dose (eqs)'!A18 ='Rad Dose (eqs)'!B18 =$B$1"C19/1000000 20 ='Rad Dose (eqs)'tA19 ='Rad Dose (eqs)'1B19 =$B$1"C20/1000000 21 ='Rad Dose (eqs)!A20 ='Rad Dose (eqs)'!B20 =$B$1*C21/1000000

=$B$1"C221/1000000

='Rad Dose (eqs)'!A2.1 =Rad Dose (eqs)'!B20 22 23 ___._ ='Rad Dose (eqs)'!A22 ='Rad Dose (eqs)'!B22 =$B$1*C23/1000000 24 ='Rad Dose (eqs)'!A23 ='Rad Dose (eqs)'!B23 =$B$1*C24/1000000 25 ='Rad Dose (eqs)'!A24 ='Rad Dose (eqs)'!B24 =$B$1"C25/1000000 26 ='Rad Dose (eqs)'!A25 ='Rad Dose (eqs)'!B25 =$B$1"C26/1000000 27 ='Rad Dose (eqs)'!A26 ='Rad Dose (eqs)'!B26 =$B$1"C27/1000000 28 ='Rad Dose (eqs)'!A27 ='Rad Dose (eqs)'!B27 =$B$1"C28/1000000 29 . ='Rad Dose (eqs)'yA28 ='Rad Dose (eqs)'!B28 =$B$1"C29/1000000 30 ='Rad Dose (eqs)'!A29 ='Rad Dose (eqs)'IB29 =$B$1"C30/1000000 31- -........ ='Rad-Dose-(eqs)"A30- ='Rad.Dose-(eqs)'!jB30- =$B$1*C3111000000.

32 ='Rad Dose (eqs)'!A31 ='Rad Dose (eqs)'!B31 =$B$1"C32/1000000 33 _='Rad Dose (eqs)'!A32 ='Rad Dose (eqs)'!B32 =$B$1*C33/1000000 34 ='Rad Dose (eqs)'!A33 ='Rad Dose (eqs)'!B33 =$B$1"C34/1000000 35 ='Rad Dose (eqs)'!A34 ='Rad Dose (eqs)'!B34 =$B$1"C35/1000000 36 ='Rad Dose (eqs)'!A35 ='Rad Dose (eqs)'lB35 =$B$1"C36/1000000 371 ='Rad Dose (eqs)'!A36 ='Rad Dose (eqs)'!B36 =$B$1"C37/1000000 38 ='Rad Dose (eqs)'!A37 ='Rad Dose (eqs)'!B37 =$B$1*C38/1000000 HN03 (eqs)

Table 5-4 Eqe: GGNS Benchmark Calculation No. H21C-097 Nine Mile Point Nuclear Station Hydrochloric Acid (MCI) Production Revision 0 Unit 2 Page 5-20 A B C E F G I Cables 3 hypalon properies:

4 radiolysis yield, G 0.000002192 g-mole MCIper MRad-g NUREGICR-5950 (main body Ref. 7.13).

5 linear absorption coefficient 52.08 cmt' for beta radiation NUREG-1081 (main body Ref. 7.15) 6 linear absorption coefficient 0.099 cmr' for gamma radiation NUREG-1081 (main body Ref. 7.15) 7 density 1.55 glcm3 NUREG-1081 (main body Ref. 7.15) 81 9 Cable jacket and insulation:

10 11 ____________ wlC,aeJmovati __________ . _________ otimn bl lnanlw 12 cable outerradius 0.35 in cable outer radius 0.35 13 cable OD (max guar.) =2.B.12 In cable 00 (max gusr.) =2*G 12 14 jacket thickness 280 mil -jacketthickness 280 15 jacket material - hypalon . _jacket material hypelon 16 insulation thickness - m insulation thickness 1_7 insulation material . insulation material '"

18 length in free air linear I . length in free air ,

19 length in tray linear ft ._length in tray .

20 21 chlorina-bearing material:

2.2 5

23 volume in free air cm volume In free air 24 volume in tray cm3 volume.in bay -

25 mass in free air 873.65 IbmI mass in free air 1561.03 26 mass in free air =825*453.6 gram mass in free air =G25*453.6 27" mass.in tray 873.65 Ibm mass in tray 14049.27 28 meas in tray =827*453.6 gram mass intray =G27"453.8 29 30 Irradiation:

31 32 =allB1, 33 1 .... beta 34 gamma free air -- tray gamma 36 cable radius (cm) =$B13*2.5412 =$B13"2.54/2 =$Bi3"2.54/2 *$G13'2.54/2 37 jacket thickness (cm) =($B14y1000"2.54 =($14Y/000"2.54 =($814Y)0002.54 ... =(SG14)/1000"2.54 38 mass Irradiated (g) =926+B28 =B26 =0.5*B28 =G26+G28 39 i(1/($B$5'2)r(EXP(- =(.f1($8$5^2)(EXP(-

=(1I(SB$6^2)(EXP(- $B$5"C37)($B$5,C37+1)- $B$5"b37)($B$5*037-1)* -*(1I(SB$6^2)(EXP(-

Bs$6°B37)($SB5B374-1 )-1)- 1)-C361$S$5'(EXP(-' 1)-03615B$5'(EXP(- $B$5*G37)($B$OG37.+l1)-1)-

B36/$B$6"(EXP(-$B$6"B37)- $B$5"C37)-1))(C36"C37- $B$5"D37)-l))I(D36"D37- G365$B$6"(EXP(-$B$6G37)-

40 flux averaging factor 1))/(B365B37-B37^2l2) C37^2I2) D37L2I2) 1))/(G36*G37-G37^2l2) 41 absorption factor =1-EXP(-$B$6*B37) =i-EXP(!$8$5"C37)-. =I-EXP(-$8$5"D37) _f-EXP(-$B$6°G37) 42 43 HCI(eqs)

Table 5-4 Eqs: GGNS Benchmark Calculation No. H21 C.097 Nine Mite Point Nuclear Station Hydrochloric Acid (HCI) Production Revision 0 Unit 2 Page 5.21 A C D E F G.

44 pool Drywall Containment Drywall Containment 45 Time volume y TID .TID TID . TID 46 (hr) (fiter) (red) (red) (red) 47 ='Rad Dose (eqs)'1A7 4841000 ='Red Dose (eqs)'IG7 ='RadDose (eqas)'1H7 ='Red Dose (eqs)'I7 ='Rod Dose (eqs)'IJ7 48 -'Red Dose (eqs)'PA8 4841000 ='Rad Dose (Oqs)!G8 -'Red Dose (eqs)'lH8 ='RedDose (eqs)'118 ='RedDose (eqs 'lJ8 49 ='Red Dose (eqs)'1A9 4841000 ='Red Dose (eqs)'7G9 .'Red Dose (eqs)'1H9 ='Red Dose (eqs),'t9 ='Red Dose (eqs)'1J9 50 ='Red Dose (eqs)'tA10 4841000 ='Red Do se(eqs)7 GI10 'RedRDosos(eqs)10 -l10 ='Red Dose (eqs)'IJlO 51 ='Rad Dose (eqs)'tAl 1 4841000 ='Red Dose (eqs)'1G11 ='RedDose (eqs)'IHII ='Red Dose (eqs)'Il =&Red Dose (eqs)'UJ11 52 -'Red Dose (eqs)'tA12 4841000 ='RedDose (eqs)7G12 ='RedDose (eqs)'IH12 -'Red Dose (eqs)'l112 ='RedDose (eqs)'lJ12 53 -'Red Dose (eqs)'tA13 4841000 'Red Dose (eqs)'1G13 ='Red Dose (eq;)'1H13 -'Red Dose (eqsY!113 ='RedDose (eqs)'IJ13 54 ='Red Dose (eqs)'lA14 4841000 ='RedDose (eqs)'7G14 ='RedDose (eqs)'1H14 ='Red Dose (eqs)'1114 ='Red Dose (eqs)'lJ14 55 ='Red Dose (eqs)'tAl5 4841000 ='RedDose (eqs)7G15 ='RedDose (eqs)'lH15 ='RadDose (eqs)j !15 ='Red Dose (eqs)'IJ15 56 ='Red Dose (eqs)'lA18 4841000 ='RdDose (eqs)'fGf8 =Reol Dose (eqe)'lH16 -'Red Dose (eqs)'1118 ='RadDose (eqs)'VJ18 57" ='Rod Dose (eqs)'IA17 4841000 ='RedDose (egs) IG17 ='RedDose (eqs)'lH17 -'Red Dose(eqs).7117 -'Red Dose (eqs)'lJ17 58 -'Red Dose (eqs)'lAl8 4841000 ='RodDose (eqs)'7G18 W'Red Dose (eqs)'1H18 ='Red Dose (eqs)'1n18 ='Red Dose (eqs)'lJ18 59 ='Rod Dose (eqs)'lA19 4841000 ='Red Dose (eqs)'7G19 ='Red Dose (eqs)'lH19 ='Red Dose (eqs)'1119 ='Red Dose (eqs)'1J19 60 ='Red Dose (eqs)'IA20 4841000 ='RedDose (eqs)'IG20 ='Red Dose (eqs)'lH20 ='Red Dose (eqs)'7120 ='RedDose (eqs)'IJ20 61 ='Rad Dose (eqs)'IA21 4841000 ='Red Dose (eqs) ?G21 ='RedDose (eqs)'1H21 ='Rad Dose (eqs)'121 ='Red Dose (eqs,)'J21 62 ='Red Dose (eqs)'ytA22 4841000 ='Red Dose 'eqs)'fG22 ='Red Dose (eqs)'IH22 -'Red Dose (eqs)'1122 ='Red Dose (eqs)'IJ22 63 -'Red Dose (eqs)'tA23 4841000 ='Red Dose (eqs)'7G23 -'Red Dose (eq;s)'IH23 ='Red Dose (eqs)'1123 ='RedDose (eqs)'IJ23 64 ='Red Dose (eqs)'1A24 4841000 ='Red Dose (eqs)'fG24 ='Red Dose (eqs)'lH24 ='Red Dose (eqs)7124 ='RedDose (eqs)1J24 65 ='Rad Dose (eqs)'IA25 4841000 ='Red Dose (eqs)'IG25 'RdDo'Red Dose (eqs)'125 ='Rd Dose (eqs)'1J25 61 -'Red Dose (eqs)'IA28 4841000 ='Red Dose (eqs)'IG28 ='Rod Dose (eos)'1H28 ='RedDose (eqs)7128 ='RedDose (eqs)'1J28 67 -'Red Dose (eqs)'IA27 4841000 ='Red Dose (eqs)'IG27 ='Red Dose (eqs)'1H27 -'Red Dose (eqs)'1127 ='Red Dose (eqs)'1J27 68 ='Red Dose (eqs)'1A28 4841000 'Red Dose (eqs)'7G28 -'Red Dose (eqs)'lH28 ='Red Dose (eqs)'7128 ='Red Dose (eqs)'lJ28 69 ='Red Dose (eqs)'IA29 4841000 ='Red Dose (eqs)'1G29 ='Red Dose (eqs)'1H29 ='Red Dose (eqs)'t129 ='Red Dose (eqs)'IJ29 70 ='Rod Dose (eqs)'1A30 4841000 ='Red Dose (eqs)'7G30 ='Red Dose (aes)'IH30 ='Red Dose (eqs)'7130 ='Red Dose (eqs)'1J30 71 -'Red Dose (eqs)'lA31 4841000 ='Red Dose (eqs)'fG31. ='RedDose (eqs)'1H31 -'Red Dose (eqs)'t131 ='Red Dose (eqs)'J31 72 ='Red Dose (eqs)'IA32 4841000 Red Dose (eqs)'1G32 ='Red Dose (eqs)'IH32 ='RedDose (eqs)'1132 ='Red Dose (eqs) 1J32 73 ='Red Dose (eqs)'IA33 4841000 =RedDose (eqs)'fG33 "'Red Dose (eqs)'1H33 ='Red Dose (eqs)1133 ='RedDose (eqs)'LJ33 74 ='Red Dose (eqs)'IA34 4841000 ='Red Dose (eqs)7G34 ='Red Dose (eqs)'IH34 a'Red Dose (eqs)'1134 ='Red Dose (eqs)'IJ34 75 ='Red Dose (eqs)'1A35 4841000 -'Red Dose (eqs)7'G35 -'Red Dose (eqs)'1H35 -'Rod Dose (eqs)'l135 ='Red Dose (eqs,)'J35 76 ='Red Dose (eqs)'IA36 4841000 -=Red Dose (eqs)7(336 ='Red Dose (eqs)'IH38 ='Red Dose (eqs)'1136 ,'Rae Dose (eqs)'lJ30 77 ='Red Dose (eqs)'IA37 4841000 =Red Dose (eqs)'IG37 ='RedDose (es)'1H37 ='Red Dose (as) '137 -'Red Dose (eqs)'137 HCI (eqs)

Table 5-4 Eqs: GGNS Benchmark Calculation No. H21C-097 KMZVM P.Itvn~ udest stafimr Unit 2 Page 5-22 2

3 4

5 6

7 9

10 11 12 in 13 lin 14 mil 15 16 mil 17 is linear It 19 linear ft 0

21 23 cm' 24 cm' 25 Ibm

_L6 gram 27 Ibm 28 gram 29 30 31 32 =Gi i 33 beta 34 free air 35 36 =$G13*2.54/2 =$G13*2.5412

=($G14yjaOG*2.54 =($G14)/10Q0*2.54 38 =G26 -0.5*G28 39

=(11($B$SA2)*(EXP(-$B$S*H37r(se$S*H37+iYIYH36/$8$5*(EkP(-

40 $B%5'H37)-1))/(H36'H37-H37A2J2) 1=(11($B$SA2r(EXP(-$B$5-137)-($8$5*137+iýlý136/$6$5'(EXP(.$B$5'137YI)Y(136'137-137A2/2)

=I- XPJ-$B$S'H37) I XP(-$B$5-137) 42 143 HCa(eqs)

Table 5-4 Eqs: GGNS Benchmark Calculation No. H21C-097 Nine Mile Point Nuclear Station Hydrochloric Acid (HCI) Production Revision 0 Unit 2 Page 5-23 H

44Dryll HCI 45 gamma beta *_Tota_

46 (g-mole) _____________call 47 =$B$4(($B38"SB$401$B$41)+($GS38"SG$40°SG$41))D47/1OOO000 =(($C$38I$C$4OS$C$41+$D$38$D$405$D$41)+($H$38S$H$40'$H$41+$i$38**1$4O$i$41i) $* 41F4711000**** -(H47+147)/C47 48 =$$4($B$38*$B$40"$B$41+$G$38'$G$40"$G$41)*D481t000000 =(($C$38*$C$40*$C$41+$D$38"$D$401$D$41 )+($H$38"$H$40'$H$41+$1$38"$1540*$1541))$BS4"F48110000 =(H48+I48)/C48 49 =$B$4°(SB$38*$B$401$5$41+$G$38&$G$40"$G$41)0D4911000000 =(($C$38"$C$40"$C$41.$D$38*$D$40$D$41)+($H$38$H$d0*$H$41$538$140$$541))$B$4-F49/1100000 =(H49+149)/C49

=$SB$4*($$38"$$S40"SB4 +$G$38S$G$40"$G$41)'D501000000 =(($C$38$C$4O$C$41 .$D$38$D$40$D$41)+($HS38*$H$40$H$41+i$3f$$4O$I$41

+(H5O+I5O)/C`5 ))1$$4*F5W/10 =

1 =$B$4"($B$38*$B$40"$B$41+$G$38"$G$40"$G$41)0D51t1000000 =(($C$38$C$40"$C$41÷$D$38*$D$40"$D$41 +($H$38"$HS40*$H$41+$1538*$1540"$1$41))B$4*F51/10000 =(H51+151)/C5l 5 =$B$4($B$38"$B$40"S$41+$G$38"$G$40"$G$41)*D52/1000000 =(($C$381$C$40*$C$41÷$D$381$D$40$D$41)+($H$38$$H$40$H$41+$I$38$$40$$*41))!$0$4*F52110000 =(H52+I52)/C52 5 =$B$4($B$38"$B$401$B$41+$GS38"$G$40"$G$41)*D5311000000 =(($C$38$C$40$C$41+$D$38*$D$40$D$41)+($H$381$H$40*$H$41+$I$38'$1$40$$*41))*$B$4*F531100=0H53+1532)C53 5 =$B$4($B$38$B$40"$B$41+$G$38*$G$40*$G$41)*D54/1000000 =(($C$38"$C$40'$C$41+ $D$38*$D$40*$D$41)+($H$38*$H$405$H$41+$1538"$1540"$1$41 )$B$4"F54/10000 a(H54+154)/C54 55 =$O4S'($B$38 $40"$B$41S$G$38"$G$40"$G$41)0D5511000000 =(($C$38*$C$40*$C$41÷$D$38*$D$40*$D$41)+($H$38$H$40*H$41+S$I38$i$40*$$41))*$B$4*F5510000 =(H55+155)/C5 5 =$BS4"($B$38"$B$40"$B$41+SGS38"$GS40"$G$41) D56/1000000 =(($C$38°$C $4$40C$41$$+$38*$D$40*$D$41)+($H$38*$H$40*$H$41+$1$38*$1$40$$$$41))-B$4*F56/10000****= H56+I5)C5 57 =$B$4($B$38"$B$40"$B$41+$G$381$G$40"$G$41)D57/1000000 =(($C$38$CC$40'$CS41+$D$38'$D$40"$D$41)+($H$38"$H$40"$H$41+$1538e$1$40"$1$41)o B$4"F571100000 =(H57÷+57y)C58 58 =$B$4'($B$38"$B$40*$B$4 1$G$38"$G$40$G$41 )*D5811000000 =(($C$38"$C$40$C$41+$D$38'$D$401$D$41 )+($H$38"$H$0"$H$41+$1538"$1$40$1S41))*$B$4F58/100000 =(H57+158)/C58 5 =$B$4($B$38"$B$401$B$41+$G$38*$G$40*$GS41)D59/1000000 =(($C$38*$C$40*$C$41+$D$38*$D$40"$D$41) ($H$38*$H$40"$H$41+$1538*$1$40°$1541))$B$4*F59/100000 =(H59+i59)1C59 0 =$$4'($B$38"$B$40"SB$41+$G$38*$G$40"$G$41sD5011000000 =(($C$38"$C$40"$C$41+$D$38"$D$40"$D$41)+($H$38*$H$4OI$H$41+$1538$1540"$1541 )1SB$4"F601100000 =(H5+601)/C60 61 =$B$4"($$38$B$40$B$41 $G$38"$G$40"$G$41)D6111000000 =(($C$381$C$40S$C$41÷$D$38"$D$40"$D$41)+($H$38S$H$40"$H$41+$1$38"$1540$1541)sB$S4"F61/100000 =(H61+I61)/C61 6 =$B$4($B$38"$B$40$B$41+$G$38*$GS40"$G$41 621/1000000 =(($C$38"$C$40S$C$41+$D$38"$D$40*$D$41)÷($H$38"$H$40*$H$41+$1538"$1540S$1S41 )$B$4F621/10000 =(H62+162)/C62 63 =$$4($B$38*$B$40*$B$41+$G$38*$G$40S$G$41)*D6311000000 ( ($C$38&$C$40*$C$41+$D$381$D$40*$D$41)+($H$38$$H$40$HS41+$1$38.$1$40*$i$41))*$B$4*F63/100000 =(H63+163)/ýC3 6 =$B$4($B$38SB$40°$B$41.$G$38"$G$40"$G$41)0D6411000000 =(($C$38*$C$401$C$41÷$D$38"$D$40I$D$41)+($HS38"$H$40*$H$41+$1$38"$1540S$1S41 ))$$4"F64/100000 =(H64+164)/C64 65 B$4*($B$38$B$401$8$41t$G$38S$G$40*$Gd41)*D65/1000000 =(($C$38I$C$40°$C$41+$D$38"$D$40"$D$41 .($H$38S$H$40*$H$41+$1538°$1$40$154I ))Y$B$4F6510000 7H5+165)/C65 656 S$4'($B$38"$B$40S$B$41+$G$38'$G$40*$G$41)*D6611000000 =(($C$38*$C$40'$C$41+$D$38*$D$40*$D$41)+($H$38*$H$40*$H$41+S$$38$I$40**$*41))r$B$4°F661100000 =(H66+160)/C66 6 =$$4"($B$38*$B$40*$B$41+$G$38*$G$40$G$41l)06711000000 =(($C$38*$C$40$C$41+$D$38*$D$40*$D$41 )+($H$38S$H$40*$H$41+$1$38"$1$40"$1$41)) $B$4"F671100000 =(H67+I67/6;7 6 =$B$4($B$38°$$40S$B$41+$G$38S$G$40"$G$41)D6811000000 =(($C$38*$C$40°$C$41+$D$38*$D$40"$D$41)+($H$38*$H$40"$H$41+$1538*$1540"$1S41))°$8$4"F68/10000( =(H68+168)/C67 6 =$B4($B$388$B$40$B5$41+$G$38*$G$40"$G$41)*D69/1000000 =(($C$38"$C$40*$C$41+$D$38r$D$40"$D$41)+($H$38"$H$40"$H$41+$1538$1540S$1541))$B$4*F691100000 = H69+1698)C69 S=$B$4*($8$38$B$40*$B$41$G$38"$G$40*$G$41)*D7011000000 =(($C$381$C$40*$C$41+$D$38*$D$40$D$41 )+($H$38"$H$40*$H$41+$1538$1$40*$1$41 )r$B$4F701100000 =(H70+I70)1C7O 71 =$$4*($S$38°$8$40$B$41 +$G$38*$G$40*$G$4r)D7111000000 =(($C$38$C$4S0$C$41+$D$38*$D$40*$D$41)+($H$38*$H$40*$H$41+$S$38S1$40$1$$41))y$B$4*F711100000 =(H70+171)/C71 72 =$$4($B$38"$B$40'$B$41+$G$38"$G$40*$G$41)D721/1000000 =(($C$38"$C$40*$C$41+$D$38*$D$40*$D$41)+($H$38*$H$40*$H$41+$1538*$1540"$1$41)rsB$4°F721/1000 =(H72+172)/C72 73 $B$4($B$38S$B$401$B$41.$G$38$G$40*$G$41)*D7311000000 =(($C$38$C$40rsC$41 +$D$38$D$40*$D$41) ($H$38$H$40*$H$41+$1$38r$1$40"$1$41))$B$4*F73/100000 =(H73+173/C73 7 =$B$4"($$38S$$401$B$41+$G$38"$G$40*$G$41)*074/1000000 =(($C$38"$C$40"$C$41+$D$38"$D$40"$D$41)+($H$38*$H$40*$H$41+$I$3B*$1540°$1541))sB$4*F741100000 =(H74+174),C74

=$B$4°($B$38"$B$40*$B$41÷$G$3S*$G$40"$G$dl)*07511000000 .= (($C$38"$C$40"$C$4 l+$D$38°$D$40*$D$41 )+($H$38*$H$40*$H $41 +$153S'$1540"$1541))*$B $4"F751100000 =(H7-1754,7)/C75 75 =$B$W($B$38*$8$4018B$41.SG$38S$G$40*$G$4lrO7SiOOOOoo =(($C$38*$C$40s$C$41+$D$38B$0s40$0541 +($H$36*$HS40OSH$4i+$1S381$1$40*$1S41 S0S84*F75/l00000 = H75+I75)1C75 76 =$B$4"($B$38$B$40S$B$41+$G$38"$G$40'$G$41)°07611000000 =(($C$3$C$40$C$41+$D$380$D$401$D$41)+($H$38$H$40*$H$41+$1$38*$1$40"$1$41) $B$4*F76/100000 =(H76+I7NK/C76 77 =$B$4($B$38"$B$40'$B$41.$G$38*$G$40*$G$41)°O7711000000 =(($C$38*$C$40i$C$41+$D$38°$0$40"$D$41)+($H$38*$H$401$H$41+$1538"$1$40i$1541))*$B$4*F771100000 =(H77+177)/C77 HCI (eqs)

Table 5-4 Eqs: GGNS Benchmark Calculation No. H2IC-097 Nine Mile Point Nuclear Station Hydrochloric Acid (HCI) Production Revision 0 Unit 2 Pogp 5-24 K L M N 2 ___________

3 4

5 7

8. _ _ _ _

90 10 __________________________ _________

12 ________________________________

143____________________________________________ ______ __________

174 ___________________________ __________

is _ _ _ _ _ _ _ _ _

28 21 ____________________________

233 36 38 391______________________________

4032 ___________________________ __________

4133 __________________________ ______________________________________________ _______ __________

4234 ____________________________ ________________________________________________ ________ ___________

4335 ____________________________ ___________________________________________________________________

HCI (eqs)

Table 5.4 Eqs: GGNS Benchmark Calculation No. H21C-097 Nine Mile Point Nuclear Station Hydrochloric Acid (HCl) Production Revision 0 Unit 2 Page 5-25 K L M, N 44 Containment HCI 45 gamma beta Total HCI 46 (p-mole) (pgmole) (g-moe/A) (g-mole/i) 47 =$8$4(($8$38"BS$40'BS41)+(SGS38*$G$40"SG$41))rE47/1000000 =(($C$38*$C$4OiC$41 +$038$DS40SD$41)+($H$38$HS40SH$41+$l$38$1$40*$$41))$B)4*G47/1000000 K47+L47)/C47 =(H47+l47+K47+L47)/C47 48 =$B$"(($BS38"$B$40r$B$41)t($G$38*$G$40$G$41))pE4a/1000000 =(($C$386$C$40I$C$41+DS38r$D$40SD$41)+($H$386$H$40$H$41+$1$38*$1$40**1$41))$B$4*G41000000 K48+L48)/C48 =(H48+I48+K48+L48)/C48 49 =$54(($B$38"SB$40°5BS41)+($GS38°$G$40"$G$41))*E49/1000000 =(($C$38r$C$40*$C$41+$DS38-$DS40*$D$41)÷(SH$38$HS40$H$41+$.38$I$40*S$41))i$B$4G49/1000000 =(K49+L49)/C49 =(H49.I49+K49+L49)/C49 50 =$8$4(($B$3r"SB$40"$B$41)+($G$38"$G$404SGS41))°ESO/1000000 =(($C`18°$C540$C$41$D$38-$D$40*$D$41)+($H$38$H$40SH$41+S$38*$1$40'S41))`$B$4G50/1000000 =(K50+L50)/C50 =(H50+l50.K50+L50)/C5O 51 =$8$4((SB$38$$40"$B$41)+($G$38"$G$40"$G$41))*E51/1000000 =(($CS38°$C$40I$C$41+$0$38*$D$401$D$41)+($H$38r$H$40I$H$41+$l$38*$$401*$1$41)) $B$4*G511l000000 =(K51+L51)/C51 -(H5l+I51+Kf5+L51)/Cý f 52 -B$4(($BS38"$$401BS41)+($G$38"$G$40"$GS41))°E52/1000000 =((SC$38*$C$40*$C$41+$D$38*$DS40I$D$41)+($H$38°$H$40-$H$41+$1$38$*1$40*$1$41))*$B$4*G52/1000000=(K52+L52)/C52 =(H52.152+K52L52)V/C52 53 =$B$4'(($B$38"$B$40"$B$41)+($GS385$G$40"$G$41))PE53/1O00000 =(($C$38*$C$40.$C$41+$D$38i$D$40*$D$41)+($H$38*SH$40*$H$41+$Sl361$43` $l$44))-$8$4*G53/1000000 =(K53+L53)/C53 =(H53+l53+K53+L53)/C53 54 =$8$4"(($B$38*BS$40"$B$41)4($G$38°$G$40DSG$41))*E54/1000000 =(($C$38*$CS40`$C$41+$D$38*$D$4O$D$41)÷($H$38$H$4O$H$41+$S$38*$l$40$$41)*$B$4G54/1000000=(K54+L54 C54 -(H54+154+K54+L54)/C54 55 =$B$4"((SB$38"$B$40°$B$41).($G$38"$G$401$G$41))*E5511000000 =(($C$38*SC$40'$C$41+SO$38a$DS40°$D$41)+($H$38.$H$4Oi$H$41+Sl$381$1$40*$$41))$B$4*G55/1000000=(K55+L55)/C55 =(H55+155+K55+L55)/C55 56 =$85$4(($B$38"SBS40"$B$41)÷($G$38"$G$40$G841))'E56/1000000 =(($C$38C$40$C$41+S $4D$ )$3DS40S41(SHS386$H$4O$H$41+$S$38$$1S40*$1$41)).$8$4.G5/1000000 =(K568L56)/C56 =(H56+l56+K56+L56)/C56 17 =$8$4"(($B$38"$8$40"$B$41)+($G$381$G$40"$G$41))*E57/1O00000 =(($C$38*$C$40$C$4l+SD$38r$D$4*D0$41)+($H$38$H$4OS$H$41+$1S38°$'$4011$41))i$B$4G5?/000000 =(K57+L/57 =(H57+l57+K57+L57)/C57 58 =SB$4(($BS38$B$40"$B$41)+($G$38$SGS40"SGS41))°E58/I000000 =(($C$38$SCS40i$CS41+$D$38$$D$40oiDS41)+($H$38.$H$40S$H$41+$S$38*$1l40I$i$41)).BS$4.G58/1100000 =(K58+L58)/C58 =(H58.l58+K58+L5B)/C58 59 =$B$4-(($B$381$B$400$B$41)*(SG$38°$GS40"$G$4I))yE59/1000000 =(($C$38.$C$40$C$41+$$38*S0$4*°$0$41)+($H$38r$H$40°$H$41$1$$38.$1$40*$1$41))°$B$4.G59/1000000=(K59+L59)/C59 =(H59*l59+K59÷L59)/C59 60 =$B$4 (($B$38"$B$401$5541)+($GS38"$G$40"$G$41))PE60/1000000 =(($C$38B$C$40$C$41+$0S381$D$40*$D$40)+($H$38*$H$40*$H$41+$S$386$IS40°$l$41))I$B$4*G60/100 0 =(K60+L60)/060 =(H60+-60+K60+L60)/C60 61 =$B$4(($B$38"SB40*BS41)+($G$38"$G$40$GS41))E61/SI000000 =(($C$38*$C$4°0$C$41+$DS381$D$40s0$D41)+($H$38.$H$4O°SH$41+$.$383$1$40*$4$41))S$B$4*G61/1000000=(Klf61 )/iC61 =(H61+SI +K61+L6fV/C61 62 =$B$4(($BS38"$B$40i$B$41)+($GS38"$G$40*$G$41))YE62/f000000 =(($C$38$C$40*$CS41+$D$381$D$40`$D$41)+($H$38.$H$40Y$H$41+$1$386$SS40**$l$4))$$4.G62/1100OO -(K62+L62L/C62 =(H62+l62+K62+L62)/C62 63 =$B$4"(($BS38"B$40"$B$41).($GS38"$GS40"$G$41))PE63/1000000 =(($C$38r$C$40*$C$41+$D$38r$D$4o-SD$41)+($H$38OSH$40*$H$41+$l$381lS40$1$4l)) $B$4eG63/10 0 =(lK63+L63 /063 =(H63+lG3+K63+L63)1C63 64 =$B$4-(($6838*$B$40"$B$41)+($G$38"$G$40*$G$41))pE64/1000000 =(($C$381*c$40*$C$41.$D$38$D$40*$D$41)+($H$381$H$40*H$41.$38$140*$S4l))S$B$4.G64/1000000=(K64+L64)/C64 =(H64+l64+K64+L64)/C64 65 =$5$4"(($S$38°$B$40°$8$41)+($G$38r$G$40*$G$4t))pE65/1000000 =(($C$38*$C$4O*$C$41+SD$38$D$4OIOS414)+($H$38r$H$40*$H$41+$l$38r$1$40**1$41))1$S$4*G65/1000000 = Kg5+L65/C65 =(H65+l65+K65+L65)/X65 66 =$B$4"(($B$38"$8540°$B$41)+($G$38"$G$40"$G$41))*E66/I000000 =(($C$38r$C$40$C$41+$D$38r$D$40O$D$41)+($H$38S$H$40*$H$41+$l$38$$1$40*$1$41))°$BS4*G66/1000000 =(K66+L66 /C66 =(H66+l66+K66+L6s)/C66 67 =$B$4"(($B$38*$B$40"SB$41)+($G$386SGS40"SG$41))°E67/1000000 =(($C$386$C$40$C$41+$D$38$D$40D$4l)+($H$385$H$40*H$41+$1$38$$40**1$4))*$8$4*G7/1000000 =(K67÷L6T)/067 =(H87+l67+K67+L67)/067 68 =$B$4"([$B$38"$B$40*$B$41)+(SGS38*$G$40*$G$41))E68/IO100000 =(($C$3B$C$40'$C$41+$D$38*$D$40°$0$41)+ $HS38S$H$4O$H$41+$$38$1$40'$1$41))*$B$4G681000000=(K68+L68)/C68 a(H88+l68+K68+L68)/Cf8 69 =$B$4"(($B$38°$B$40"B$41).($G$38*$G$4O"$G$41))*E69/1O000000 =(($C$38*$C$4O$C$4l+$0$38$D$40*$D$41)+($H538.$H$40$H$41+$S$38*$1$40*$1$41))*$B$4G69110000 =(K69+L69)/I69 =(H69+I69+K69+L69)/C69 70 =$B$4 (($B$381$B$401$541)+(SG$38"$G$40"$GS41))PE7O/l000000 =(($CS38S$C$40$S$41+$l$38`$DD40$D$41)+'$H$38r$H-t$40*$H$41+$$38*$1$40*$l$41)) $B54.G7011000000 =(K70+L70)/C7O =(H70Ol70+K70TL70)?70 71 .$B$4(($B$38*SB$40"SB$41)+($GS38*$G$40*$G$41))pE7111000000 =(($CS3$C$40*$C$41+$D$38i$D$40$D$41)+($H$38r$H$40$H$41+$S$38.$I$40*$1$4))8$4*G71/1000000 =(K7l+L71)/C07 =(H7f+l7l+K7l+L7l)/C71 72 =$B$4(($8$38"$B$40*1B$41)+($G$38"$G$40*$G$41))E72/1O000000 =(($C$38*$C$40'$C$41+$D$386$0$4019D$41)+($H$38$H$4O$H$41+$l$381$1$40*$4$4flY S'G72/1000000 =(K72+L72)/C72 -(H72+172÷K72+L72)/C72 73 =$B$4*(($B$38°$B$40"$BS41)*($G$38*$G$401$G$41))*E73/11000000 =(($C$38*$CS4OIC$4l+$D$381$D$40`D$41)+($H$386$H$40*$H$41+$$38r$S$40*$O$41))$B$46G73/1000000 =K3+73+/073 =(H73+I73.K73+L73)/C73 74 =$B$4Y(($B$38"$BS40"$8$41)+($G$38"$G$40"$G$41))PE74/l000000 =(($C$381$C$40*$C$41+$D$38°$D$40*D$41)÷($H$38$H$40*$H541+$S$38$$40*$1$4f))$B$4*G4/1000000 =(K74+L74)/C74 =(H74+l74+K74.L74)XC74 75 =$B$4°(($BS38"$B$40*$B$41)+($G$3B*$G$40"$G$41))E75/1 000000 =(($C$38°$C$40*$CU41+$D$380$D$40*$D$41)+($H$38$H$40-$4H$41+$l$38*$l$40154$1))-$BS4G75/1000000 =(K75+L75)/C75 =(H75+I75+K75+L75)/C75 76 =$8$4°(($B$38-$B$40*$B$41)+($G$38*$G$401$G$41))PE76/O000000 =(($C$38r$C$40$CS41+$S$38°$D$40*$D$4l)+'$H$38*$H$40*$H$41+$l$38*$1$40$$$41))$8$4G76/1000000 =(K76+L6/6 =(H76+I76+K76+L76)/C76 77 =$B$4"(($B$38"$8$40"1B$41)+($G$38"SG$40*$G$41))PE7/IO000000 =(($C$38*$C$40*$C$41+$D$38*$D$400$D$41)4($HS380$H$40*SH$4f+$1$38$$1$40*$1$41))$IB$4*G77/1000000( =K77+L77)/C77 =(H77+I77+K77iL77)/C77 HCI (eqs)

Table 5-5 Eqs: GGNS Benchmark Calculation No. H21C-097 Nine Mile Point Nuclear Station Cesium Hydroxide (CsOH) Production Revision 0 Unit 2 Page 5-26 A B C D _

1 Core cesium inventory 2400 g-mole Ref. 7.12,3 2

3 Core cesium - gap release =0.05"B1 g-mole =0.05*2400 g-mole 4 Core cesium - EIV release =0.2*BI g-mole =0.20*2400 g-mole 5

6 Csl - gap release =(1-'HI (eqs)'!B$6)*'HI (eqs)'!B3 g-mole fraction iodine release in form of Csl 7 Csl - EIV release =(1-'HI (eqs)'!B$6)*'HI (eqs)'!B4 g-mole fraction iodine release in form of Csl 8

9 CsOH - gap release =B3-86 g-mole 10 CsOH - EIV release =B4-B7 g-mole 12 Gap release onset 121 sec Ref. 7.12.3 13 Gap release duration 30 minutes Reg Guide 1.183 (main body Ref. 7.10.2) 14 EIV duration 90 minutes Reg Guide 1.183 (main body Ref. 7.10.2) 15 16 suppression 17 cumulative pool cumulative 18 Time CsOH volume CsOH 19 (Hr) (g-mole) (liter) (g-mole/I) 20 onset =B1 2/3600 0 4841000 =C20/D20 21 0.1 =C20+(B21-B20)/(B13/60)*B9 4841000 =C21/D21 22 end of gap release =B20+B13/60 =C21+(B22-B21)/(B13I60)*B9 4841000 =C221D22 23 1 =C22+(B23-B22)/(B24-B22)*B10 4841000 =C23/D23 24 end of EIV =B22+B14/60 =C22+B10 4841000 =C24/D24 CsOH (eqs)

Table'5-6 Eqs: GGNS Benchmark Calculation No. H21C-097 Effect of SLCS Addition Revision 0 Nine Mile Point Nuclear Station Unit 2 on Post-LOCA Suppression Pool Page 5-27 A B C D E I Buffering by SLCS 2

3 SLCS:

4 Min SLC pump flow rate - gpm 5 Min SLC injection tank volume gal 0

OF 6 Max SLC temp 7 Min SLC temp OF 8 SLC SPB conc. by weight 9 Specific gravity 10 Density (T=850 F) - Ibm/ft3 12 Final suppression pool temp (bounding) 120 OF 14 Boric acid K =(0.0585*B12+1.309)*0.0000000001 at =B12 OF 15i 16 MW sodium pentaborate (Na 2 B 100 1) 410 ft3 18 Volume sodium pentaborate 19 Mass sodium pentaborate 5800 Ibm _

20 Mass sodium pentaborate =B19*453.6/B16 g-mole 22 unbuffered pH ='pH (eqs)'!N48 23 unbuffered (HI 10^A(B22) g-mole/Il 24 Suppression Pool volume 4841000 liter 25 Equivalents unbuffered [H÷] =B23*B24 g-mole 26 27 Final pH =-LOG(B14)+LOG((2*B20-B25)/(8*B20+B25))

28 M29 Time to inject boron -minutes SLCS (eqs)

I Table 5-7 Eqs: GGNS Benchmark Calculation No. H21C-097 Nine Mile Point Nuclear Station Gamma and Beta Radiation Dose Revision 0 Unit 2 used to Determine Post-LOCA pH Page 5-28 I A .B CE 1 _

-2 3 Suppression Orywe_ Containment Drywall 4 Time PoolyTIO _TID yTID "_TID P 5 . Ie[MeVdcc ahr [MOV)cc1 IMOV/cc) 60 0 r 0 O 0 , 0 _

7 ='12113600 0 0 0 0 8 =A7+30160 0 0 0 0 9 11* 0 0 0 10 2 'lOO00.0'(14.72*('-0.91_EXP(.0.002A1O)).) "1000000"1000000"(0.15÷1.83235"LN(A10)) 0 =O000000*O100000*(25. 7('-0.9'EXP(-O.0066"AIO)))

11 =2+12113600 =O000000"(14.72"(1-0.91*EXP(-0.002"AIIl O

=100000*1000000"(0.15+l.83235'LN All)) 0 =1000000"100000*(25.7'(I.0.9"EXPt.0,0066"AII)))

12 3 =1000000'(14.72"(1-0.91"EXP(-O.002'AI2 I

=fO000001000000"(0.15+1.83235'LN(A12)) =1000000*1000000,* 1.18+1.135LN(AI2)) =1000000*1000000"(25.7'(I-C,9"EXP(-O.OO66"A12)))

13 4 =1000000"(14.72'(I-0.91"EXP(-O.002"A13))) =l000000"l000000"(0.15+l.83235'LN(Af3) =1000000"1000000*(..18+l.135'.N(A3)) =I000000"f000000*(25.7"(1.0.9'EXP(-0.0066"AI3)))

14 5 =100000"(14.72 (I-0.91I'EXP(O OO2'A14))) =100000"*O00000"*O.15+l.83235*LN(Al4)) =lOOOOOO100000*(-1.18+1.135'LNAI4)) =1000000"1000000(25,7'(1-0.9"EXP(-0.0066'AI4 15 6 =IOO0000*(14.72*(1-0.91*EXP(-O.002*A5))) =1000000'"000000'(0.15+l.83235"LN(Al5)) =1000000*"000000*(-.18+1.135*LN(AIS)) =O000000"1000000' 25,7'"(.0.9'EXP(.0.0066'AI5)))

16 12 =1O000000 14.72*('-0.91"E.XP(-0.002"AI6)) =000000lO00000(0.15+1.83235"LN(AI6) =1000000*IO000.*(.I.18+1.135LN(AI6)) =-100000f000000"(25.7'(l-0.9"EXP(-0.0066"A16 IT 18 =100.0000"14.72'( -O..9lEXP -O.002"A17)T =f000000i00O00000"O.15÷1.63235'LN(All7) =1000000'1000000(-l.18'.135*LN(Al7), =1000000"l000000"(25.7"(1-,.9"EXP-.0066"A7)))

18 24 =1000000"(14.72*(f-0.91*EXP(-0.002"AIf))) =O000000"1000000'"(.15+f.83235"LN(Al)) =I000000"f000000"(-f.18+I.135LN(AAB)) =l000000"1000000"(25.7'(1-0.9'EXP(-0.0066AI8)))

19 :A18+24 =,1000000*(14.72'(l-0.9I'EXP(-0.002"A19))) =1000000*1000000.0.15+1.83235'LN(AI9)) =l000000*O00000*(.f.18+I.135"LN(A19)) =1000000*I000000' 25.7*('.0.9'EXP(-0.0066*AI9)))

20 =A19+24 =1000000'(14.72'(1-0.91'"EXP(-O,.002A20))) =1000000*l000000'0.15+1.83235*LN(AZO)) =1000000°1O00000'(.1.18+1.135*LN(A20)) =1000000"1000000"(25.7'(1-0.9*EXP(-0.0066'A20))

21 =A20-24 =100000'(14.72'(f-0,9l'*EXP(-O.OO2"A2l))) =O000000"1000000"(0.15+I.83235*LN(A21)) =100000"O'000000*(-1.18+1.135*LN(A21)) =1000000*I 00000 (25,7'(1-0.9"EXP(.0.0066"A21 22 =A21+24 =1000000'(14.72(l.0.9g'FXP(-0.002*A22) =f400000"'1000000'(0.15+f.83235*LN(A22) =1000000'l000000*(-I.181. 135'LN(A22)) =1O00000'00000"25.7'(-O.'EXP(-0.0066"A22)))

23 =A22+24 =1000000'(14.72'(l-0.91'EXP(-0.002"A23))) =000000'1000000'(0.15+l.83235'LN(4A23)) =1000000000000f(-1.f18+1.135*LN(A23) =l000000"1000000"(25.7'"(1-.O9'EXP(.0.0066A23)))

24 =A23+24 =1O000000(14.72(l.-.g91'FXP(-.002"A24)) =l000000O10000"(O.15+1.83235%LNA24)4 =I000000*l000000(-1. 18+l.135LN(A24)) =1O000000*000000'(25.7'(l-0.9*EXP'1(.0.66*A24)))

25 =A24+24 =1000000'(1472*('-0.91fEXP(-0.002"A25))) 1-O0000000000000(O. 15+1.83235*LN.A25)) =1000000"f000000*(.f.18+f.135"LN(A25f) =000000"f000000(25.7*(1.0.9"ExP(-O.0066"A25)))

26 =A25+24 =1000000"14.72'"f-0.91"EXP(.0002*A2Q) = 1000000*1000000'(O.15+l.83235LN(A26) =1000000*'000000"(-l.18+1.135"LN(A26) *=1000000"100000"(25.57*' 0.9°ExP(-0.0066'A26)))

27 =A26+24 =1000000'(14.72*('.0.91'EXP(-0.002"A27))) =1000000"l000000"(0.15+1.83235'LN(A27)) =1000000*10000(-1.18.1.135'LN(A27)) =1000000*1000000"(25.7'(1-0.9'EXP(-0.0066'A27))

28 =A27-48 =O000000 (14.72"(f-0.91'EXP(-0.002"A28))) =O00000"lO00000"(0.15+1.83235'LN(A28)) =1000000"IOCO0"(-1.18+1.135'LN(A28j) =IO00000"IO00000"(257'fl-0.9*EXP0.00.6*A28)))

29 =A28+48 =1000000*(14.72*(1-0.91"'X'-0002"A29))) =1000000°f000000"(0.15+1.83235*LN(A29)) =1000000"1000000°(-1. 18+1.135*LN(A29)) =1000000°I000000°(25.7(I-0.09"EXP(-0.0066°A29))

30 =A29+48 =1000000'(14.72'(1-0.9.fEXP(-0.002°A30))) =100000"00000'(0.15+1.83235*LN(A30)) =IO000000°I000000(-.. 181.135*LN(A30)) =IO000*00000'*(25,7*(I-O, '0EXP(-0.0066"A30)))

31 =A30+48 =1000000'(14.72'(1-0.9,1EXP(-0,0022A31))) =1000000"1000000°(0.15+I.83235"LN(A31)) =f000000"'00000'(-1.18+I.l35'LN(A31)) -f00"0000'l00000"(25.7'(1-0.9*EXP(-0.0066"A31)))

32 =A31+48 =1000000*(14.72'(1.0.91"-XP(-o.OO2°A32))) =1000000*1000000('0.15+1.83235"LN(A32) =21000000*1000000*(-1.18+1.135%LN(A32)) =1O000001000000*(25.7'(1-0.9*EXP(. 0.0066A32)))

33 =A32+48 =1000000'(14.72'(l-0.91'-.XP(-O.OO2"A33)) =1000000*l000000(O'15+l.83235*LN(A33)) =1000000'1000000°(-.I8+I.f35"LN(A33)) =1000000'1000000'(25.7' l-0.9*EKXP(..0066°A33)))

34 =A33+48 =1000000'(14.72'(-0.9o'1EXP(.0.002"A34)) =00000*10000'O, f0.15+1.83235LN(A34)) =1000000f000000(-1.,18+1.135"LN(A34)) =l000000'l000000'(25.7"(f.o.9'ExP-0.0068"A34)))

35 =A34+48 =1000000'(14.72'(1-0.91°EXP(-O.OO2'A35))) 1000000"1000000*(O. 15÷1.83235"LN(A35)) =10000"fO0000"(.I.18+1.135*LN(A35J) =1000000°1000000"(25.7'(1.0.9'EXP(-0.0066*A35)))

36 =A35+48 =O00000(14.72'(l-0.91'EXP(-0.002°A36)) =1000000"10000=(0.1 51.83235"LN(A36)) =100000'1000000'(-1.18+1.135*LN(A36)) =100000001000000' 25.7'(f-0.9"EXP(-O.OO66°A36)))

37 720 =1O000000(14.72' I-0.91(EXP(-0.002"A37))) =1O00000"'1000000*(0.151.83235*LN(A37))' 00000000*10000"0'(.1.8+lo35°LN(A37)) 1fO00000"l000000*(25.7'(f-0.9'EXP( .OOO66"A37)))

38 2400 =1000000'(14.72'(1-0.91'F-XP(0.002*A38))) =1000000"10000000(.15+l.83235*LN(A38) =-1000000*1000000"(.I.18+1.135*LN(A38)) =1000000°1000000'(25.7"(f-0.9'EXP(-.0066*A38l))

39 4320 =IO00000'(14.72'(1-0.91*EXP(0.002"A39))) =1f00000*'1000000(O.15+1.83235*LN(A39)) =1000000'100000'(.l.18+1.135"LN(A39)) =1000000'1000000'(25.7'(l.0.9"EXP(.0.0066"A39)))

40 8760 =1000000(14.72*(1-0.91'EIXP(-O,.002A40))) =10000001000000" 0. 15+1.83235"LN(A40)) =f000001'000000"(.I.18+1. 135*LN(A40)) =l006000"lO000000(25.7"(1-0.9°EXP(-0.00665A40)))

42 Tsr.IMradI = 14'.72'I1-0.9l°esp(0.002'*).,))10s 6 8 43 yow(MeV/ccl= 10.15+¶.83235"ln(Q)lr10 '10 44_ [MaVyccl = -1.18÷1.135*ln(%-)]'l0"10_ _

45 o (MeV/oc] = 25.7*11- 9"exp(-0.0066"l,)rld0l10 _ _ _ _ _

46 Oc,'T[MeV/ccj = 15.05"11-O.93"exp(-0.0057"*10e'10 _____

47 1 red= 8.071x10 MVy/cc for air at S.T.P. per Radiological Health Handbook (main body Re(. 7.8) 49 Note 50If the curve file above yield a negative TD due to curve fit inecurracas. the TiO is assumed to be zero consistent with Ref. 7.12.3.

Red Dose (eqs)

, Table 5-7 Eqs: GGNS Benchmark Calculation No. H21C-097 Nine Mile Point Nuclear Station Gamma and Bets Radiation Dose Revision 0 Unit 2 used to Determine Post-LOCA pH Page 5-29 F G H. I 3_ Containment Drywall *Containment Drywll Containment 4 PTO0 yTiD yTt Iaijad)

~ TIO 5 aeVco Iya) [red) 60 =CG*80710 =D6*80710 =E6*8071 0 =F6*80710 1 0 =C?'80710 =D7*807I0 =E7*80710 *7'780710 a 0 =CB'80710 =D8'80710 =ES80W710 I=F8*80710 9 0 =Cg*60710 =Dg*80710 =E9'80710 I=F9180710 10 = 1000000*1 00000*(l 5.05*(l-0.93'EXP(-0. 0057A 10))) =CIG'807I0 =D10.80710 =E10/80710 I=FIO/8710 11i =1000000I 000000*' 15.05*' I'0.93*EXP -O.0057*A 11)) =CII/80710 =D11/80710 =Ell/BD710 I=F11/80710 12 = 1000000' 1000000*( 5.05*(1-0.93'EXP(-q.0057*A12))) =012/80710 =D2/8710 =EM280710 I=F12J87l0

13. =1000000' 1000000*(15.05*(1-0. 93'ENP(-0. 0057*A 13))) =C13/80710 =D13180710_=E13/6710 =F13/8710 14.=1000000'1000000'(15.05'rI'0.93'EXP (-0.0057'A 14))) =C14180710 zD14/80710 =El4/80710 =F41U/8710 15 1=000000'1000000'(15.05'(1'O.93'EXP(-0.0057'A 5))) =015/8710 =015/80710 =EIS/8710 =FIS/80710 16 =1000000'1000000'(15.05*(1.0.93'EXP(.0.0057*A 18f) =CI6/80710 =016.80710 =06190710 =F16.1807I0 17 17000000*100000015.05' 1-0.92'EXP -ý0.0057'A17) =C!7/80710 =017/80710 =E17/80710 *1I7180710-18 =1tJ00000'1000000'(15.05' 1-0.93'EXP -0.0057*Al6) =018/80710 =D01B/8010 =E81/80710 =F18180710 19 =i000000'1000000 15.05' 1-O.93'EXP -0.0057'A19)) =019/80710 =0I1/80710 =EI9./80710 =F19/80710 20 =100 0000'1000000' 15.05' 1-0.93'EXP .0.0057'A20) =C20/80710 =D20180710 =E20180710 =;20/B0710 21 =1000000'1000000 (15.0.5'(1-0.93'EX(P -0.0057'A21) =C21/80710 =D21/80710 =E21180710 I=F2 1180710 22 =1000000'1000000' 15.05' I-0.93'EXP -0.0057*A22)) =C22/80710 0D22180710=E2218710 *=22(80710 23 10000*0000* 5.5'1-.9'"P q.0.057'A23)) =C23180710=D231807.10=E23180710 *=2-/01 24 -1000000-1000000'(15.05'(1-0.93'E.X -. 574 C/010=2/70=E4010 F4/0710 25 =1000000'1000000' 15.05' I-0.93'EX(P .0.0057'A25)) =C24/80710 =D24180710 =E24180710I=F24180710 26 =1000000'1000000' 15.05' I-093'EXP .0.0057A26)) =C2580710 =D25&80710 =E2618710 I=F2&/87l0 27 =1000000'1000000' 15.05' I-0.93'EX(P -0.0057'A26)7 =C26180710 =0261807,10 =E2&/80710 *=27/80710 28 =1000000'1050000'15.05' I'O.93'EXP -0.0057'A28)) =C27/80710 =D27180710 =E27180710I=F2 9180710 29 =1000000'1000000'(1-505' I-0.93'EXP -0.0057'A28)9 =C28/80710 =D28180710 =E28180710 *=2&980710 30 =100000'1000000' 1.5.05'I-0.93'E"P .0.0057*A230) =030/80710 =030/80710 =E20180710 =F30/80710 31 1000000'O1000000'15.05' I-0.93'EXP -0.0057'A31)) =C03180710 =031/87.10 =;E3W/0710 *F31/8710 32 1=1000000'I000000.(1&05' I-0.93'EXP -0.0057'A31)2 =C31180710 =0311B0710 =E32180710 =F31180710 33 =1000000*1000000. (15.05' I-0.93'EXPf-0.0057'A33) =C32/80710 =033/8710 =E32t807l0 =F32180710 34 =1000000'1000000' 15.05' l-0.93'EXP -0.0057-A334) =C34180710 I=034/80110 =E34/0710 F34/80710 35 =1000000'1000000'(1 5.05' 1-0.93'EXP -0.0057'A35)) =C34180710 =D34180710 =E34180710 =F34180710 36 =1000000'I000000' 15.05' 1-0.93'EX(P -0.0057'A35) =C35/80710 =036&80710 =E35190710 *F3680710 37 =W000000'1000000' 15.05' 1-0.93'E.XP -0 0057-A37)) =C37180710 =037/80710 =E37180710 =F37180710 38 =1000000'1000000' 15.05' l-0.93'E.XP -0.0057'A38)) =C3&180710 =03&'80710 =EM680710 =F38R80710 39 =1000000'1000000' 15.05' l-0.93'E.XP .0.0057'A39)) =C39180710 =D39180710 =E39180710 =F3g/60710 40 =1000000'1C000000'f15.05'(I-0.93'EX(P(-0.0057'A40))) =C40180710 =D40180710 =E40180710 =F40180710 42 43 44 45 _____________________

46 4?7 ___________________________ __________

48 _____________________ ____ ____ ____

49 ________________________ _____ _____ _____

50 ______________________ __________ __________

Red Dose (ecls)

/

Attachment 5 Table 5-8 Eqs: GGNS Benchmark Calculation No. H21C-097 Nine Mile Point Nuclear Station Post-LOCA Suppression Pool Revision 0 Unit 2 -Temperature Response Page 5-30 Final A J B I C ID E 1Ff G 1 FromData(Ref. 7.12.3) I I lUsed for pH Analyss I Is 3 Time Pos.-LOCA I Temp Time Tempi 4 (sec/days) I (hr) (F) (hr) ('F) _ _

5 0-K  :.  ;" 0 ., . 77-";'.. Iw O 1=C5 I 6 ... .. , :. i.. . 0. 160'- .. -

  • 0336111111111111 2 7 1 =A7/3600 160 0.533611111111111 =C15 8 8 =A8/3600 1160 1 =C161 9 10 =A943600 1160 2 =C171 10 30 =A10/3600 160 2.03361111111111 =C18 _

11 100 =Al1/3600 1160 3 =C20 _

12 0.0336111111111111 1160 4 =C21 13 300 =A1313600 1160 5 =C22 14 1000 =A1413600 160 6 =C24 !

150.533611111111111 160 12=C26 16! , 18 =C281 17 - 160 24 =C29 18 ý: 2033611141111111 160 .- . 8=C31 ________

19 10000 AI=l6700 =-(B19-1BfSI(B20-B16)'(C20-C18)+C18 72 =C32 20 l. 3 K159:1*,;. S 96 =C33 21 4(B21-20/(22-B20)(C22-C20)+C20 120 =C34 22 1555 I 144 =C35 F3 i0000 =A23/3600 =(B23-B22)/(B26-B22) '(C26-C22)+C22 168 =C37 24 6 =(B24-822)/(B26-B22)*(C26-C22)+C22 192 =C38 25 42000 =A25/3600 =(B25-B22)/(826-B22) 2)+C22 216 =C40 26 " j1 -* '. 1.4g-.*

-, . " *- 240 =C41 27 60000 =A2713600 (B27-B26)/(B28-B26)*(C28-C26)+C26 288 =C42 28 ---'7 11 .13 =044

' 1Ž44.,ý'38 =C46 29 30 100000 F=A830/3630..B29/ l-B290)(C31-C29)'-C29 3(B 432 =C48 32" =B3212- 136 .72., =C5 33=833/2 74 96, 1"4* f__48__4_480 576 =`93

=C51 34* r,8441_24, 624 -C53 35 =B3524 (C36C34)34 672 =C54 36 -15_4 1!. -. s, 720 =C56 37 =B37/24 _168 i(37-B361)/(39-B36)'(C39-C36)+C36 38 r=38/24 192 (B38-836)/(839-B36) (039-C36)+C36 The shaded values are taken from 39

  • 20l29,2-: ,3 ,
  • either Reference 7.12.3. Other other 40 =B40/24 - 216 =(B40-B39)/(B41-B39)*(C41-C39)+C39 values are interpolated.

41 ý241/2 __

42 =B42/24 i288 =(B42-B41)/(B43-B41)(C43-C41)+C41 43 I *300 1 ý*126:-

44 =B44/24 336 =(B44-B43)/(B45-B43)*(C45-C43)+C43 --

45 =85/4 . ' . 60 i 5*-.-

46 384 =(B46-B45)/(B47-B45) (C47-C45)+C45 48 . 432 J=(B48-B471)/(B49-B47)*(C49-C47)+C47 50 1528 1=(B50-B49)/(B52-B4g)*(C52-C49)*c4g 51 576 =(851-849)1(852-B49)0(C52-C49)+049 53 1624 =(853-B52)I(B55.B52)*(C55-C52)+C52 -

6 172 l=(B54-B52)/(B55-B52).(C55-C52)+C52 Seconds are the units for t=0 to 27.78 1j3'- hours. days are the hours; h..r. unitsfor t=48 to 720 56 *"-B5/4 ,..*-':'.:.. . ' 20 ,...*,. .,:- ....

. .120:-l::.' * *. .-;**.'..,.;,*

SP Temp (eqs)

( Calculation No. H21C-097 Nine Mile Point Nuclear Station Revision 0 Unit 2 Page 6-1 Final Document being design-verified: 03 DCP 0l Calc 0 Spec 0 NER 0 DBD 0 Other Doc#, Rev and

Title:

H21 C-097, Revision 0, Post-LOCA Suppression Pool pH Analysis Extent of Design Verification (Briefly describe):

A detailed review of the calculation was performed by the mechanical, radiological, and chemistry disciplines.

Method of Design Verification:

0 Design Review 0 Qualification Testing Q Alternate Calculations L Applicability of Proven Design Results of Design Verification:

U Fully acceptable with no issues identified 0 Fully acceptable based on the following issues identified and resolved:

0 Continuation Page Follows Discipline Involvement and Approvals:

Lead Design Matthew B. Cooper Verifier:

Name Signature Oate Discipline Design Verifiers, if required:

Chemistry David J. Feingold Radiological W. Joseph Johnson

/ I Discipline Name Signature Date NEP-DES-07 Rev 04