ML070110310

From kanterella
Jump to navigation Jump to search
Calculation for Alternative Source Term, H21C084, Post-LOCA Suppression Chamber (Torus) Water Ph Analysis
ML070110310
Person / Time
Site: Nine Mile Point Constellation icon.png
Issue date: 12/27/2004
From: Kopke H
Nine Mile Point, Sargent & Lundy
To:
Office of Nuclear Reactor Regulation
References
H21C084
Download: ML070110310 (136)


Text

Nine Mile Point Unit 1 Alternative Source Term Calculation H21C084 "Post-LOCA Suppression Chamber (Torus)

Water pH Analysis"

Last 7-1 Project: NINE MILE POINT NUCLEAR STATION Unit (1,2 oi'O=Both).: 1 Discipline: MECHANICAL Title Calculation No. ,I/

POST-LOCA SUPPRESSION CHAMBER (TORUS) WATER PH pda4.eee- L /r C0 ANALYSIS (Sub)system(s) Building Floor Ellev. Index No.

__________________________N/A CONT IN/A N/A SOriginator(s) ) A..4._

HELMUT R. KOPKE S&L 1.2 -ZZý0' Reviewer(s) / Approver(s) t.

.ZI M._ B._COOPER S&L / J. . &L (CHEM) / WW.&ON SLRAD'/ R. J. PETERSON S&L AP NO Eval., DER, or i Prep'd Reviewed u4.y1' 1CF AXý Rev Description Chanae No. By Date By Datw' '7'do Date 0 INITIAL ISSUE A/14 HRK 2.-Z2.-o'/ MBC. */aWOL RJP T -Z7-z Computer Output/Microfilm Filed Separately (Yes /No /NA): '!No Safety. Class (SR/ NSR I Qxx): SR Superseded Document(s) : NONE Document Cross Reference(s) - For additional references see page(s) :

Output provided?: No If yes, group(s)

(Y/N)

Ref Doc No Document No. Tp Index Sheet Rev General Reference(s): .,

See Section 7.0 of this calculation.

i-Remarks:

The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the following items: correctness of math for manually prepared calculations, appropriateness of input data, appropriateness of assumptions and appropriateness of the calculation method.

Confirmation Required (Yes / No) : No Final Issue Status: Turnover Requi pd See Page(s): - . (Yes/N/VA): .~

10CFR50.59 EvaluatibnNumber(s): N/A Component ID(s) (As shown in MEL):

Copy of Applicability Determination or 50.59 Screen N/A Attached? Yes[] No -

Key Words: POST-LOCA, TORUS, SUPPRESSION i CHAMBER, PH, ALTERNATE SOURCE TERM, AST, LIQUID POISON SYSTEM, LPS NEP-DES-08 Rev 07 m-m ...wmwý I Mil

ENGINEERING SERVICES CALCULATION CONTINUATION SHEET Page 2-Project:Nine Mile Point Nuclear Station Unit: 1 Disposition:

Originator/Date Reviewer/Date Calculation Revision H. R. Kopke M. B. Cooper H21C08.. 0 Rlef. ' '

Tablelof Contents Calculation Cover Sheet ...................... ................................................................................... 1 Table of Contents ............................... . ............................-................................................... 2 1.0 Purpose ............... .................................. ...................................................................................... 3 2.0 Methodology and Acceptance Criteria ..... ................................................................................ 4 3.0 Assum ptions .... .......................................  ;.................................................................................... 6 4.0 D esign Input ........................................... .................................................................................... 9 I

5.0 C alculations ........................................................................................................ ...................... 113 3

6.0 R esults............................................................................... ............................................. . . 24 7.0... ................................................................................................................. 27 Attachments Attachinent 1: Determination of Reactor!Core Inventories .................. (15 pages)

Attachment 2: Determination of Radiation Doses ......................................................... (6 pages)

Attachment 3: Determination of the Prinmary Containment Exposed Cable Inventory ......................................... (6 pages)

Attachment 4: Calculations Determiningi Post-LOCA Suppression Chamber Water pH - Maximum Volume .......................... (35 pages)

Attachment 5: Post-LOCA Suppression 'Chamber Water pH Benchmark to Grand Gulf Nuclear Station (GGNS) ................................................................. (30 pages)

Attachment 6: Calculations Determining' Post-LOCA Suppression Chamber Water pH - Minimum Volume ............................................ (13 pages)

Attachment 7: Design Verification Report .............................. (1 page)

NEP-DES-08 Rev 07

ENGINEERING SERVICES *iii:i* '!-! /'!*: i  !* "< *+i . 'i! *. .. lf ,'i,

  • Project:NineMile Point Nuclear Station Unit: . 1 p/1,*.r Disposition:

Odginator/Date Reviewer/Date i Calculation, Revision H. R. Kopke M.B. Cooper H21C08. 9 0.

Ref.

1.0 Purpose The purpose of this calculation is to demonstrate that the pH of the suppression chamber (torus) water remains continuously above 7.0 following a Loss of Coolant Accident (LOCA) for the 30-day duration of the accident. Based on! Section 6.5.2 of the Standard Review Plan, NUREG-0800 (Ref. 7.20), long-term iodine retention may be assumed only when -the equilibrium suppression chamber water pH is above 7.0. The pH transient of the suppression chamber water is evaluated in this calculation to determine whether the uncontrolled suppression chamber water pH remains above 7.0. If not, theleffect on final pH of adding sodium pentaborate to the suppression chamber via the Liquid Poison System (LPS) is subsequently .determined to verify that the suppression chamber water pH can be maintained above 7.0.

NEP-DES-08 Rev 07

ENGINEERING SERVICES " CALCULATI.ONCONTIN.UATION .... SHEET,.. : Page'4 Project:Nine Mile Point Nuclear Station Unit: 1 -o

/ 0 Disposition:

Originator/Date Reviewer/Date Calculation Revision H. R. Kopke M. B. Cooper H21C08_ "f 0 Ref.

  • 2.0 Methodology and Acceptance Criteria 2.1 Methodology The suppression chamber water pH .is calculated using the methodology described in NUREG/CR-5950 and in Grand Gulf Nuclear Station'Engineering Report GGNS-98-0039. Grand Gulf was one of the NRC's Alternate Source Term pilot plants.

This methodology considers the addition of the following acids and bases to the post-LOCA suppression chamber in the pH calculation:

1. Carbon Dioxide - Carbon dioxide is absorbed from the air to form the weak acid carbonic acid. This acid can reduce pH to a limiting value of approximately 5.65 (Ref. 7.13, §2.2.3) and is* bounded in the initial condition selected for the suppression chamber water. pH.

Therefore, carbonic acid is not expliciily computed but is accounted for in the pH calculation.

2. Hydriodic Acid - Hydriodic acid is produced by the release of iodine from the reactor core as fuel failure occurs. Hydriodic acid i's added to the suppression chamber during the Gap Release Phase and during the Early In-Vessel Phase only. This occurs for a two-hour period at the beginning of the LOCA per Regulatory Guide 1.183 (Ref. 7.10.2).
3. Cesium Hydroxide - Cesium hydroxide is produced by the release of cesium from the reactor core as fuel failure occurs. Cesium 1,ydroxide is added to the suppression chamber during the Gap Release Phase and during.the Early In-Vessel Phase only. This occurs for a two-hour period at the beginning of the LOCA per Regulatory Guide 1.183 (Ref. 7.10.2).
4. Nitric Acid - Nitric acid is produced by irradiation of water and air during the LOCA. Nitric acid is added to the suppression chamber continuously during the LOCA.
5. Hydrochloric Acid - Hydrochloric acid is produced by radiolysis of chlorine-bearing electrical insulationfjacketing during a LOCA. Only electrical cable exposed to free air or in cable trays is considered. Hydrogen chloride formed from cable enclosed in conduit or enclosures will be: contained in the conduit or enclosure and will not be available to form acid in the suppression chamber. Hydrochloric acid is added to the suppression chamber continuously during the*LOCA. Hydrochloric acid can also be produced by pyrolysis of chlorine-bearing electrical insulationfjacketing at temrperatures near 5720F -(Ref. 7.13, §2.2.5.3); however, since post-LOCA containment temperatures are much lower than this, pyrolysis is not considered herein.
6. Concrete Core Aerosols - Per NUREG/CR-5950 (Ref. 7.13, §2.3.2), aerosols from limestone concrete will contain the basic oxides CaO, Na2O, and K20. However, the aerosols are produced from the interaction of a molten core with concrete and, per SECY-94-302 (Ref.

7.21), core damage can be assumed to cease after the Early In-Vessel Phase. Therefore, concrete core aerosols are not considered in this calculation.

The acids and bases are combined ini the suppression chamber water and the resulting pH transient response is calculated for a 30-day period. This pH is the unbuffered suppression chamber water pH.

I NEP-DES-08 Rev-07

CALCULATION CONTi Project: Nine Mile PointNuclear Station Ret.

A final pH after 30 days is then recalculated considering the addition of sodium pentaborate from the LPS. This injection is manually initiated, so the pH transient is subject to the timing of the injection. Since only acids are addedto the suppression chamber water after the initial two-hour release of cesium hydroxide, the final pHiis the lowest pH that will be attained in the suppression chamber water.

2.2 Computer Programs The analysis performed herein utilizes! Microsoft Excel (Ref. .7.1), which is commercially available. The validation of Excel is implicit in the detailed review of all spreadsheets used in this analysis. All computer runs were performed using PC. No. 9098 -under the Windows NT operating system.

2.3 Acceptance Criteria The acceptance criterion is that the supp'ression chamber water pH is at or above 7.0 for the 30-day period of the LOCA so that iodine re-levolution is not a source term.

I NEP-DES-08 Rev 07

ENGINEERING SERVICES CALCULATI"N'.CO.NTINUATION SH.EET. Page 6 Project: Nine Mile Point Nuclear Station Unit: I Disposition:

[H. R.

[Originator/Date Kopke Reviewer/Date MBCopr iH21C08!-

j Calculation 1J.f Revision 0

Ref.

3.0 Assumptions 3.1 Hydrogen ion activity coefficients are ignored when calculating the pH of the suppression chamber water. Because the suppression chamber is initially filled with demineralized water, the ionic strength is low and any deviation from ideality is negligible for purposes of this calculation.

3.2 The reduction in reactor coolant system (RCS)/suppression chamber water mass due to steam addition to the post-LOCA containment is neglected. This is acceptable since the mass of steam in containment is a small fraction of the total mass of water in the suppression chamber.

3.3 The initial pH in the suppression chamber water and in the RCS is assumed to be at the minimum suppression chamber water Value, 5.5 (Design Input 4.1), expected during normal operation. Although the RCS generally; operates at a minimum pH of 5.6, this assumption is conservative because it leads to the lowest calculated pH.

3.4 The suppression chamber water is assumed to be sufficiently mixed so a single pH adequately represents the pool contents.. Per Design Input 4.14, there are at least 0.3 complete exchanges of water in the suppression chamber per hour. This is judged to provide adequate mixing.

3.5 The Cesium-133 reactor core inventory is conservatively not included in this analysis. Cesium-133 would form additional cesium hydrdxide in the suppression chamber water, increasing the pH. Exclusion of this stable isotope of cesium leads to a lower suppression chamber water pH.

Also note that the stable nuclide inventory is not provided in Reference 7.7. However, Reference 7.7 does include products from the activa tion of Cs-133 such as Cs-134, which is included in this calculation (see Attachment 1, Tables 1-2 and 1-4).

3.6 Since Reference 7.7 does not provide the reactor core inventory of stable isotopes, it is assumed that the quantity of lodine-127 is 30% 6f the quantity of Iodine-129. Based on the cumulative fission, yields presented in Reference 7.26 for thermal neutron fission of U235, U23, Pu239 , and Pu241, this value is greater than will actually occur in the reactor core. The ratio of Iodine-127 to lodineý-129 is computed in the table below based on Reference 7.26. Note that U21 does not undergo thermal neutron fission.

U235 Fission Pu239 Fission Pu241 Fission

% Cumulative Yield 1-1277= 0[ 137 0.46 0.25

% Cumulative Yield 1-1291') 1.0 1.7 I 1.02 nl.17/nl., [= %1.127/%.-129 13.7% 27.1% 24.5%

1) Recommended values from Reference 7.26 used herein.

Since iodine contributes to the post-LOCA suppression chamber water acidity, this assumption is conservative as it bounds the actual amount of Iodine-127 which may be in the reactor core.

3.7 It is conservatively assumed that 5% of the iodine released into containment produces hydriodic acid. Per Regulatory Guide 1.183 (Refj 7.10.2), 95% of the iodine released from the RCS is in the form of cesium iodide (Csl), 4.85%0 is in the form of elemental iodine, and 0.15% is in the form of organic iodide. NUREG-1465; (Ref. 7.14) indicates that at least 95% of the iodine entering containment from the RCS is in the form of cesium iodide with no more than 5% as I plus HI. Therefore, for this calculation, it is conservatively assumed that the combined I plus HI NEP-DES-08 Rev 07 M

I ENGINEERING SERVICES **:% '-[ '** i * ' ' *; .. . i***  !*  : .il,*~l,!~'l~

Project: Nine Mile Point Nuclear Station Reviewer/Date Unit: 1 q INA Calculation Np.

Disposition: Revision Originato/Date K. R. Kopke M.B. Cooper. . H21C08,f'* 0 Ref.

quantity is the maximum 5% in order to maximize the acid contribution from iodine to the suppression chamber water.

3.8 Radiation dose calculations for gamma and beta total integrated dose (TID) in the drywell used as input are assumed to apply at electrical cable surfaces. Ifattenuation of air was not taken into account in the TID calculations (Ref. 7.6.2/7.6.3), this assumption is conservative in that it uses a higher radiation flux and computes a higher hydrochloric acid production rate. If attenuation of air was taken into account in the TID calcdulations (Ref.,7.6.2/7.6.3), this assumption is moot.

3.9 Assumptions made in the determination of the exposed cable inventory are listed in Attachment 3 and repeated (with minor changes) below for convenience.

  • All combustible Cable insulation is actually cable jacketing; therefore, the entire mass of cable is exposed to both gamma and betai radiation since no credit'is taken for shielding of the insulation from beta radiation.
  • All cable is free-air routed and not in cable trays; thus, no credit can be taken for shielding of some of the cables from beta radiation in cable trays (this assumption' conflicts with the combustible loading calculation, Reference 7.6.7, which assumes all cable is in trays; however, since Reference 7.6.7 assumes the cable location, the assumption of free-air routing is acceptable).
  • There is no cable in the suppression chamber (torus); this is acceptable since little, if any, cable is expected in the suppression chamber.

, Medium and high voltage cables are !not considered-when determining the typical cable size; this is acceptable since small cables maximize 'HCI production and the medium to high voltage power cables are larger thanithe cables identified in Reference 7.23. In addition, the quantity of medium and high voltage power cables inside primary containment is small as the only 5 kV (medium/large) cables in containment feed the reactor recirculation pumps (Ref.

7.29).

The chlorine content of the rubberj hose and plastic covers is unknown; therefore, it is assumed that these materials are PVC.

  • Filler material in the cables is included in the combustible load provided in Reference 7.6.7.

Therefore, the filler material is accounted for as chlorine bearing material in this calculation.

  • Oil. in primary containment is confined and therefore any chlorine which could evolve from the oil to form HCl need not be accounted for in this calculation.

3.10 The amount of sodium pentaborate !added to the suppression chamber as a buffer is conservatively assumed to be the minimum mass contained by the LPS injection tank 3.11 The minimum suppression chamber water temperature is modeled as 600 F. This temperature is used to determine the maximum suppression chamber water mass, given the volume. Given that cOntainment is located within the environmentally controlled reactor building, this value is judged to be acceptable for a minimum temperature.

3.12 The gamma radiation dose used herein lis increased by 5% to account for bremsstrahlung. This conservative increase is justified as follows:

I The fraction of beta energy that is converted to bremsstrahlung (or gamma radiation) is estimated using the equation (Ref. 7.24,!p. 110):

NEP-DES-08 Rev 07

ENGINEERING SERVICES I CALCULATION CONTINUATION SHI-IET 1 Page8 06 (Next Project: Nine Mile PointNuclear Station Unit: 1 Disposition:

or/Date Reviewer/Date.Calculation ýP. Revision H. R. Kopke M.B. Cooper H21CO 4, 0.

Ref.

Fraction= k *Z *E where:,

Fraction = the fraction of beta energy converted to bremsstrahlung k = 0.7x103 per MeV Z = atomic number of the absorber E = energy of the beta particle [MeV]

For this calculation, absorption in air,. water, or PVC is considered, so a conservative value for Z would be 20. Similar to gamma energy, the beta energy is different for each radionuclide.

Assuming the average beta energy per decay is the same as the average gamma energy per decay, :and using a typical gamma energy of 1 MeV, the fraction converted to bremsstrahlung would be' Fractioh = 0.7x103

  • 20 "1 = 1.4%

Inspection of the beta energies for noble gases, iodines, and cesiums in Reference 7.25 indicates that, for most radionuclides, the gamma energy per decay is higher than the beta energy per decay. Using a fraction of 5% is large enough to account for the. cases where the beta energy per decay is larger than! the gamma energy per decay, and to account for bremsstrahlung from pure beta emitting radionuclides.. Therefore, the assumption that the bremsstrahlung contribution to the dose is equal to 5% of the gamma dose is considered conservative.

    • NEP-DES-08

. Rpv 07

ENGINEERING SERVICES i , CALCULATION .CONT UATON SHEET PNex91 Project:Nine Mile PointNuclear Station Unit: 1 '*'- Disposition:

Originator/Date .Reviewer/Date i Calculation ro. Revision H. R. Kopkie M.B. Cooper H21C08 . .

Ref." .

4.0 Design Input 4.1- The initial suppression chamber water pH is maintained between 5.5 and 8.0 (Ref. 7.3.1). The suppression chamber water pH is no longer monitored at NMP1 per Reference 7.3.3; therefore, this value is taken from a prior (c. 2001) revision of the NMP1 Chemistry Manual.

4.2 For Reactor Conditions 3 (reactor thermall power > 25%) and 2 (reactor water bulk temperature >

212 0 F), the Action Level 1 acceptable RCS pH range is 5.6 < pH < 8.6. The Action Level 2 pH range is 4.9 < pH< 9.3 and the Action Level 3 pH range is 4.6 < pH < 9.6 (Ref. 7.3.2, p. 9).

4.3 The mass of water (liquid and steam) in the RCS during normal operation is 501,500 Ibm (Ref.

7.2.1).: .

4.4 Linear absorption coefficients and density for PVC jacketed/insulated cable are determined in Attachment 3 and are repeated below. The a/p values.are taken from NUREG-1081 (Ref. 7.15).

Linear absorption coefficient for gamma radiation, as:

0.0637 cm2/g pPvC =1.16 g/cm3 "

U7 pvc= 0-.0 6 3 7 x 1 . 1 6= 0.0 7 3 9 cm-Linear absorption coefficient for beta radiation, ap; ap /p 33.6cm2/g 3

PPvc -1.16 g/cm aý,Pvc =33.6 x 1. 16 =38.976 cm '

4.5 The 100% rated thermal reactor core power level is 1,850 MWt (Ref. 7.5, p. 3).

4.6. The maximum and minimum suppression chamber water level (referenced to mean sea level) and volume for normal operation. are given below.

Suppression Downcomer Suppression Suppression Volume Chamber Water Submergence Chamber Water Chamber Water Level Level Level - Elevation (Ref. 7.2.2) 7.6.1, p. 20-22) eRkf. (Ref. 7.6.1, p. 20-22) ft 3 Maximum 4.25ft i 11.25 ft 211.75 ft .86,000T Minimum 3.5 ft 10.5 ff 211 ft 79,80_

1) Interpolated using 'Vspo( column in Table 1 of Reference 7.6.1. Interpolated value (85,599 ftW)conservatively rounded up.
2) Value obtained from UFSAR Table XV-32a (Ref. 7.11.1); note that this is not consistent with Table 1 of Reference 7.6.1. ' However, this isacceptable based 0n the following observation in Reference 7.6.1 (p. 19): "The EOP calculations are not the design basis calculations and therefore the values for Vsp [suppression pool water NEP-DES-08 Rev 07

ENGINEERING SERVICES CALCULATION CONTINUATION SHEET , Pagei1 I.(Next Project:Nine Mile Point Nuclear Station Unit: 1 Disposition:

Originator/Date "Reviewer/Date Calculation 0. Revision H. R. Kopke M. B.Cooper .H21C8O.*

  • 0 Ref. '

volume] may be slightly different than those used in the Design Basis Containment Suppression Chamber Heatup Analysis (

Reference:

UFSAR Table XV-32a & Calculation SOTORUS009, Rev. 1).'

4.7 The suppression chamber water temperature range is 60°F s T < 850F for continuous plant operation (Assumption 3.11 and Ref. 7.2.2). However, the maximum temperature can rise to 1100F before reactor shutdown is required (Ref. 7.2.2).

4.8 The initial suppression chamber / drywell, pressure is 14.7 psia, consistent with the original DBR containment suppression chamber heatup analysis as documented in UFSAR Table XV-32a (Ref.' 7.11.1).

4.9 The reactor core cesium and iodine inventories are determined in Attachment 1, and are repeated below for convenience since th'ey are input to the pH analysis. These quantities are conservatively based on the activities at time t=0 following a LOCA.

lodines: 43.2 gram-moles Cesiums: 268.6 gram-moles.

The above core inventories are based. on a core thermal power of 1,887 MWt (102% of licensed core thermal power, 1,850 MWt), consistent with Regulatory Guide 1.49 (Ref. 7.10.1).

It should be noted that the quantity of cesium given above excludes Cesium-133, which is stable, since it is not provided in Reference 7.7.1 The exclusion of the stable isotope is conservative as it would form cesium hydroxide (CsOH).which would raise the pH of the post-LOCAsuppression chamber water. The stable cesium would form cesium hydroxide since the number of moles of non-stable cesium is greater than. 95% of the number of moles of iodine (95% of cesium is released as cesium iodide, Csl - see Assumption 3.7).

4.10 The gamma (y)dose in the drywell, wetwell, and suppression chamber water is determined in Attachment 2 and is repeated below for convenience since it is input to the pH analysis. The submersion dose is calculated for both the minimum and maximum suppression chamber water volume Since it is dependent on the dilution volume. The dose provided below is based on the core thermal power of 1,850 MWt and includes a 5% increase to account for bremsstrahlung (see Assumption 3.12).

Time Drywell & Wetwell. Supp ression Chamber Suppression Chamber Airborne y Dose Submersion y TID - Min Vol Submersion y TID - Max Vol

[hr [rad] [rad] [rad]

1 1.035E+06 4.454E+05 3.779E+05 6 3.150E+06 1.641 E+06 1.392E+06 24 4.950E+06 3.282E+06 2.785E+06 720. 1.350E+07 1.875E+07 1.591 E+07 2400 2.1 15E+07 4.219E+07 3.580E+07 4320 2.835E+07 6.446E+07 5.470E+07 8760 4.275E+07 i 1.102E+08 9.349E+07 NEP-DES-O8 Rev 07

ENGINEERING SERVICES * ° '*' ' * *** "';" ,*' ******! Page*******

Project:NineMile Point Nuclear Station' Unit: '1 a Disposition:

Originator/Date Reviewer/Date Calculation I. 0 Revision H. R. Kopke M.B.Coo er I H21CO8 9- 0 4.11 The beta (0) dose in the drywell is determined in Attachment 2 and is repeated below for convenience since it is input to the pH analysis. The dose provided below is based on the core thermal power of 1,850 MWt.,*

Time Drywell Airborne P Dose

[hr]_ _-_ [rad]

1 _ 3.011E+07 28 I 2.121E+08 2400, I 6.134E+08 4.12 Liquid Poison System (LPS) Parameters!

The liquid poison tank contains a minimum of 1,325 gallons of boron bearing solution per Technical Specification 3.1.2 (Ref. 7.2.1). ' Sodium pentaborate solution with a minimum concentration of 9.423 weight % is used for the liquid poison (Ref. 7.6.4.a, p. 6). The specific gravity (SG) of this solution is 1.048 per Figure 1 of Reference 7.22. However, Reference 7.22 is for Unit 2 which uses boron with less B1 10 enrichment than Unit 1 (;-25 atom % for Unit 2 vs.

!62.5 atom % for Unit 1). Therefore, *Unit 1 will actually have a lower specific gravity. To account for this, a specific gravity of 1.0 is conservatively used for the LPS solution.

The above weight percentage (9.423 Mt %) is only valid for sodium pentaborate enrichments greater than or equal to 62.5 atom percent B-10 (Ref. 7.6.4.a, p. 6).

Sodium pentaborate decahydrate has the chemical formula Na 2 B* 0 *16 *10HpO (Ref. 7.22, §3.3.1) and a molecular weight of 585.984. 'This molecular weight is determined using a boron molecular weight of 10.387 [(0.625*10.013)+(0.375*1 1.009)] to account for the 62.5 atom percent B-10 enrichment (see Ref. 7.9 for isotopic masses of B-10 and B-11). In this calculation, "sodium pentaborate" actually refers to, sodium pentaborate decahydrate for consistency with plant documentation.

The sodium pentaborate solution shall be maintained between 70°F and 1050 F per the operating procedure (Ref. 7.3.4, p. 3). The low and high temperature annunciators are set at 650 F and 850 F, respectively (Ref. 7.4, §2.7). Note that the minimum temperatures bound the Technical Specification minimum allowable solution temperature of 40°F (Ref. 7.2.1, Figure 3.1;2b).

Each sodium pentaborate pump (NP02A and NP02B) has a 33 gpm rated capacity at 1,300 to 1,670 psig (Ref. 7.4,ý §2.1). However, the nominal capacity is 30 gpm per the Technical Specification (Ref. 7.2.1) and operating p~rocedure (Ref. 7.3.4, p. 3).

4.13 The chloride bearing cable inventory in! primary containment is determined to be 1,400 Ibm of free-air routed PVC jacketed cable with an outer diameter of 0.22 inches and a jacket thickness of 0.030 inches in Attachment 3. This mass also includes the mass of any cable insulation -and filler material.

4.14 The limiting Design Basis Accident (DBA) LOCA is identified in UFSAR Section VI-B.1.2 (Ref.

7.11.2) as an instantaneous double ended rupture (DER) of the RCS recirculation line (largest line in- containment). For this case, a diesel generator failure is the limiting single failure as it NEP-DES-08

  • Rev 07
  • ENGINEERING SERVICES . C ALCULATION. CONTIN UATION . SHEET .I Pag.12

- ~ ~I"~~(Next_)

Project:Nine Mile Point Nuclear Station Unit: 1 Disposition:

Originator/Date H. R. Kopke .M. J Reviewer/Date B. Cooper ,!H21C0M:. Calculationo Revision 0

-ef.

results in only one core spray pump and one core spray topping pump being available per UFSAR Table XV-11 (Ref. 7.11.4). Given .1 that the reactor vessel depressurizes reasonably quickly! for a large break LOCA, the minimum flow rate from one core spray pump and one topping pump is expected to be between.2,000'to 3,000 gpm per UFSAR Table XV-9a .(Ref.

7.11.3)-. In addition, at least one containment spray pump will. be operable with a minimum flow rate of 3,600 gpm per UFSAR Table XV-32a (Ref. 7.1.1.1; also see p. VII-14a of .UFSAR). Thus, a minimum flow rate of. 5,600 gpm is expected when core .spray is actuated. This flow rate equates to approximately 0.5 complete exchanges of the water in the torus per hour (1 complete exchange in approximately

,ge i apprxim

.I 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br />).. If core. spray is not actuated, the minimum expected flw lw rate is 3,600 gpm which equates to approximately 0.3 complete exchanges of water in the torus per hour (1 complete exchange in approximately 3 hours3.472222e-5 days <br />8.333333e-4 hours <br />4.960317e-6 weeks <br />1.1415e-6 months <br />). These mixing times are based on the maximum suppression chamber water volume.

4.15 The post-LOCA suppression chamber water temperature response for an, RCS recirculation line break for the DBA LOCA is provided be Iow. The short-term temperature response (t=0 to 4.2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br />)*is taken from the Calculation S0-TORUS-M009 (Ref. 7.6.5), which is the torus pool heat;-

up analysis. Case 4 of the heat-up analysis is selected since it is consistent with the original design basis (Ref. 7.6.5, §2.4). The sup.pression chamber water temperature profile for Case 4 is presented in Figure 6-13 of Referenrce 7.6.5 (p. 42), but the values are -taken from the computer output in Attachment 2 of Reference* 7.6.5 (p. 47-53). Cases 1-3 are sensitivity analyses (Ref. 7.6.5, §2.0) and Case 5j is run to determine NPSH margins (Ref. 7.6.5, §2.5);

therefore, these cases are not used. If should be noted that the suppression chamber water temperature response for Cases 1-5 is similar and therefore the case selection has negligible impact on the results of this calculation.

-Time Tloo,. _Time Tpw1 Time TPo.

[sec (hr)] [OF] [sec (hr)] [OF] [sec (hr)] [OF]

0.0. (0.0) 85. 15.2 (4.2x 10-3 ) 114.7 2622.58 (0.73) 154.3.

2.81 (7.8x10-4) 89.1. 30.83 (8.6x10 3 ) 122.1 8349.58 (2.3) 160.3 5.83 (1.6xl 0 3 ) 95.77 99.58 (0.028) 126.5 9574.08-(2.7) 160.3 8.95 (2.5x10 3 ) 102.7 296.2 (0.082) 133.7 14925.33 (4.1) . 158.7 12.08 (3.4x10 3 ) 109.4 910.58 (0.25) 143.5 The long-term suppression chamber waier temperature response (t > 4.2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br />) is not provided

.in Reference 7.6.5 or the UFSAR. Since water temperature has negligible impact on the-pH calculation, the temperature at 4.2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br />' (158.7-F) is maintained from that point until the end of the transient at 30 days.

  • NEP-DES-08 Rev 07

ENGINEERING SERVICES ~.

CALCULATION CONTINUATION SH EET'kI Page 13 Project: Nine Mile Point Nuclear Station' Unit: 1 - Disposition:

Originator/Date Reviewer/Date Calculation a0. Revision H. R. Kopke M. B. Cooper H21C081 .

Ref.

5.0 Calculations 5.1 Suppression Chamber Water Initial Conditions 5.1.1 'Suppression Chamber Water Volume The maximum and. minimum suppression chamber water volume, are used in this calculation. The total suppression chamber water volume for this calculation is the sum of the initial suppression chambter water volume plus the added RCS .volume. The complete RCS mass is added to the suppression chamber-at the start of the LOCA for the maximum volume case. The RCS mass is not added to the suppression chamber for the

.minimum volume case.

The suppression chamber water volume at the maximum water level is .86,000 ft3 . The

-.Reactor Coolant System (RCS) has a total mass of. 501,500 Ibm. Once the RCS mass is added to the suppression charmber, the total suppression: chamber water volume is approximately 94,000 ftW (Attachment 4, Table 4-9). The mixed water volume is based *on the initial density of the suppression chamber3 water.. The suppression chamber water volume at the minimum water level is 79,800 ft .

5.1.2 Initial pH The suppression chamber water lis maintained at a pH between 5.5 and 8.0. Lower pH levels are conservative for this analysis, so an initial pH of 5.5 is used. This pH also accounts for dissolved carbon dioxide.

The RCS pH is maintained at a pH between 5.6 and 8.6 for Reactor Conditions 2 and 3, and between 5.3 and 8.6 for AReactor Condition 1 (reactor water bulk temperature <

212 0F). Since the large break LbCA in which the entire RCS inventory is spilled to the suppression chamber is postulated to occur at full power, the pH at Reactor Condition 1 is not used. A conservative initial RCS pH of 5.5 (bounds 5.6) is used for this analysis. The choice of this conservative input does .not impact the final result of this calculation due to the small (<10%) RCS water mass relative to the suppression chamber water mass.

  • The pH of the suppression chamber contents after addition of the RCS is 5.5.

r W wdri Mrit- At-rir I M11 Hydriodic acid is formed by the post-LOCA release of elemental iodine (I)'and hydrogen iodide (HI) from the reactor core and its absorption in the suppression chamber water.

Per Regulatory Guide 1.183, Table 1 (Ref. 7.10.2), 5% of the iodine core inventory is released into containment during the Gap Release Phase and an additional 25% of the iodine core inventory is released into containment during the Early In-Vessel (EIV) Phase. The Gap Release Phase has an onset of 2 minutes and a duration of 30 minutes and is followed by the EIV Phase with a duration of 90 minutes per Table 4 of Regulatory Guide 1.183 (Ref. 7.10.2).

NEP-DES-08 Rev 07

"ENGINEERING SERVICES CALCULATION CON.TIN"UATIO N S Page 14

.(Next.)

Project:Nine Mile Point Nuclear Station Unit: j 1 '1 *, Disposition:

Originator/Date Reviewer/Date I Calculation o. Revision H. R, Kopke M.B. Cooper .H21.C08 .. 0

-Re.

The reactor core inventory of iodine, the Gap Release Phase iodine release, and the EIV Phase iodine release are determined in Attachment 1 and listed in Attachment 1, Table 1-1.

Per Section 3.5 of Regulatory Guide 1.183 (Ref. 7.10.2), 95% of the iodine released from the RCS is in the form of cesium iodide, 4.85% is in the form of elemental iodine, and 0.15% is in the form of organic iodide. Section 3.5 of NUREG-1465 (Ref. 7.14) and Section 4.2 of NUREG/CR-5732 (Ref. 7.16) indicate that at least 95% of the iodine entering containment from the RCS is in the form of cesium iodide with no more than 5% as I plus HI. For this calculation, it will be conservatively assumed~that* the combined I plus HI is the maximum 5% in order to maximize the acid contribution from iodine to the suppression chamber water.

The formation of hydriodic acid in the suppression chamber water is equal to the molar addition of iodine. Computations are shown in Attatchments 4 and 6, Tables 4-2 and 6-2. During the Gap Release Phase, 5% of the Gap Release Phase iodine release produces hydriodic acid in the suppression chamber water. During the EIV Phase, 5% of the EIV Phase iodine release produces additional hydriodic acid in th~e suppression chamber water. The concentrations are determined at the end of the Gap Release Phase, at one hour, and at the end of the EIV Phase.

The rates of addition during the Gap Release Phase and during the EIV Phase are linear- per Section 3.3 of Regulatory Guide 1.183*(Ref. 7.10.2). No additional hydriodic.acid is formed after the EIV Phase.

5.3 Cesium Hydroxide (CsOH)

Cesium hydroxide is formed by the release of cesium from the reactor core and its absorption in the suppression chamber water.

Per Regulatory Guide 1.183, Table 1 (R!ef. 7.10.2), 5% of the cesium core inventory is released into containment during the Gap Release Phase and an additional 20% of the cesium core inventory is released into containment during the Early In-Vessel. (EIV) Phase. The Gap Release Phase has an onset of 2 minutes and a duration of 30 minutes and is followed by the EIV phase with a~duration of 90 minutes per Table 4 of Regulatory Guide 1.183 (Ref. 7.10.2).

The reactor core inventory of cesium, the Gap Phase cesium release, and the EIV Phase cesium release are determined in Attachment 1 and listed in Attachment 1, Table 1-2.

Cesium released in the form of cesium iodide does not contribute to formation of cesium hydroxide. The quantity of cesium iodide is 95% of the molar quantity of iodine released, consistent with the determination of hydriodic acid production (see Section 5.2). The amount of cesium as cesium iodide is subtracted from the Gap Phase cesium release and the EIV Phase

.cesium. release to obtain the quantity' of cesium hydroxide in the post-LOCA suppression chamber water.

The formation of cesium hydroxide in the suppression chamber water is equal to the molar addition of cesium not-in the form of cesium iodide. Computations are shown in Attachments 4 and 6, Tables 4-5 and 6-5. The concentrations are determined at the end of the Gap Release Phase, at one hour, and at the end of, the EIV Phase. The rates of addition during the Gap Release Phase and during the EIV Phase are linear per Section 3.3 of Regulatory Guide 1.183 (Ref. 7.10.2). No additional cesium hydroxide is formed after the EIV Phase.

-5 NEP-DES-08 Rev 07

ENGINEERING SERVICES CALCULATION CONTINUATION SHEET Page 15 Project:.NineMile Point Nuclear Station' Unit: r1 Disposition:

Originator/Date. Reviewer/Date .Calculation ro. Revision H. R. Kopke M.B. Cooper -7 H21C08*4 ....0 ief.

5.4 Nitric Acid (HNO 3)

Nitric acid is formed by irradiation of air and water in the suppression 'chamber by gamma radiation. Per Section 2.2'4 of NUREG/CR-5950 (Ref. 7.13), the generation rate of HNO3 , G, is 0.007 molecules HNO 3 per 100 eV. This generation rate converts to 7.3x10- g-mole/liter per MegaRad as follows:

0.07mleul

=0.07molecule 6x02"10mole i 6.241x101 lev x 100eI106 erg x 1000g 100 eV .6.022 x 1023 molecule erg MegaRadg liter Total integrated suppression chamber ghmma radiation doses were multiplied by this value to compute the nitric acid concentration at ý'arying times. Computations are shown in Attachments 4 and 6, Tables 4-3 and 6-3. ,

5.5 Hydrochloric Acid (HCI)

Hydrochloric acid is formed by radiolysis of chloride-bearing electrical cable in the drywell.

The chlorine bearing cable inventory is: determined in Attachment 3. The cable inventory is based on the NMP Unit 1 combustible loading calculation, SO.0-FPE-002 (Ref. 7.6.7).

The methodology for computing hydrochloric acid production in GGNS-98-0039, Revision 1 (Ref.

7.12.1) differs from that used in GGNS-98-0039, Revision 3 (Ref. 7.12.2). The hydrochloric acid production rate in GGNS-98-0039, Revision 1, is based on the mass of cable jacket and on the.

radiation dose rate at the cable jacket surace multiplied by a flux averaging factor. However, the hydrochloric acid production rate in GGNS-98-0039, Revision 3, is based on the cable jacket surface area and on the energy release per unit volume of containment, diminished by attenuation in air between the center of containment and the cable surface. Both methodologies use thesame G value (with units converted to rads in GGNS-98-0039, Revision 1) and the same expression for energy absorption fraction in the cable jacket. Consistent with Assumption 3.8, which, is conservative, the GGNS-98-0039,. Revision 1, methodology for hydrochloric acid production is used herein.. The benchmark (§5.8) demonstrates that both methodologies yield very similar results, and therefore the choice of the GGNS-98-0039, Revision 1, methodology used in this calculation is considered acc'eptable.

Hydrochloric acid generation in chlorine-bearing material in the cable is determined using the following equation from Appendix B of NUREG/CR-5950 (Ref. 7.13) and further developments from Grand Gulf Engineering Report GGNS-98-0039, Revision 1, Appendix A (Ref. 7.12.1):

R=GxSx~xA where:

R = HCl production rate G = radiolysis yield NEP-DES-08 i Rev 07

Project. Nine Mile Point Nuclear Station Unit:.J 1_. Disposition:

Originator/Date Reviewer/Date Calculation o. Revision H. R. Kopke M.B. Cooper H21C08J 0

  • ef.

S = cable jacket surface'area i

= average radiation energy flux in the cable jacket A = absorption fraction of energy flux in the cable jacket A factor for computing the average radiation energy flux, ý , in the jacket is developed based on attenuation A.2): of radiation flux at radius r in the cable jacket (Reference 7.12.1, Appendix A, Section O(r) = 0(Ro)xeIt(R0-r) where:

r = cable radius.

R,.= outside cable radius Sp= linear absorption coefficient:

Integration of this equation over the cable jacket thickness leads to an expression for a flux averaging factor that can be multiplied by the flux at the cable jacket surface to give the average flux in the cable jacket:

oR)y 2!. 2:2 where:

= average radiation energy flux in the cable jacket i*(Ro) = radiation energy flux at the cable jacket surface p = linear absorption coefficienti y = thickness of cable jacket The absorption fraction of energy flux is calculated as follows per Section 4.2 of NUREG-1081 (Ref. 7.15):

A = 1-e-xy where:

A = fraction of radiation energy flux absorbed by cable jacket p = linear absorption coefficient' y = thickness of cable jacket The HCI: generation equation then becomes:

  • NEP-DES-OB Rev 07

ENGINEERING SERVCES . .ALCULATION CONTINUATION SHEET . Page 17 F ~I~~jj (Next Project:Nine Mile Point Nuclear Station Unit: :1 Disposition:

I Calculation Revision Originator/Date H. R. Kopke 'M. Reviewer/Date B. Cooper H21CO81Y. 0.

Ref.

1e _ Y(,y4i).i] Ro (e_-Py-)

2, -

R GxSxo(R,)x - xi1 -ep)ý Roy 0Y22 The last two terms are the previously devbloped flux averaging factor and the absorption fraction, respectively.

Grand Gulf Engineering Report GGNS-98-0039, Revision 1, Appendix A (Ref. 7.12.1), then derives from this the following equation in order to use radiation dose reported in units of MegaRad per hour (or MegaRad when integrated over time) as is typically available:

12-Le PyýY+i) - 1] - (e-9 R =GxmH xX(Ro)x 2 x(1 eiIxy) y2 where:

R =HCI production rate I G = radiolysis yield mH = mass of cable jacket X (R,) = radiation dose rate at the surface of the cable jacket R, = outside cable radius p = linear absorption coefficient!

y = thickness of cable jacket The following linear absorption coefficients are determined for PVC (see Design Input 4.4):

p = 0.0739 cm-' for gamma radiation p = 38.976 cm" for beta radiation Per NUREG/CR-5950 (Ref. 7.13) the G Value for PVC is 7.7 molecules HCl per 100 eV (in a vacuum). This corresponds to 7.98x10 46g-mole HCI/g PVC per MegaRad:

7.7molecule mole 6.241x 10 eV 100 X10 6 erg 2

100eV 6.022 X10 3 molecule erg MegaRadg The basis for the selection of this G value is provided in Attachment 3.

Hydrochloric acid formed by gamma raddiation is computed at varying times using the TID for gamma radiation in the drywell multiplied by the generation rate. The total mass of cable jacketing-is determined and then used inithe computation.

I NEP-DES-08 Rev 07

ENGIN I Page 18 EERIG SR VCES i~T~~(Next Project: Nine Mile Point Nuclear Station Unit: i 1

  • Disposition:

Originator/Date Reviewer/Date Calculation ýo. Revision H. R. Kopke M. B. Cooper. H21C08 0-0 Ref.

Hydrochloric acid formed by beta radiatibn is computed at varying times using the TID for beta radiation in .the drywell multiplied by the 'generation rate. Since all cable is modeled as free-air routed, no localized shielding from beta, radiation for cables in cable tray is included.

The mass of hydrochloric acid. generated by gamma and beta radiation is divided by the post-LOCA suppression chamber water volume to determine the total concentration of HCl formed by irradiation of electrical cable as a function of time.

The computations determining the hydrdchloric acid generation are presented in Attachments 4 and 6, 'Tables 4-4 and 6-4.

5.6 Transient pH Calculation The transient pH was computed by combining the contributions of acids and bases. The concentrations of [HI] and [OH] were' summed and the net resultant concentrations from self-neutralization determined by the relationship:

, +1x)t (.OH-x)= 'w,I where:

Kw = dissociation constant for water x = [H*] and [OH-] self-neutralized

"_[H] = sum of acids added [g-mole/liter]

I[OH] = sum of bases added [g-mole/liter]

Solving for x:

[OH-] + [H+] - jqOH-] j4 [H+]r - 4 x kJOH-][H+]-..K,)

2 The dissociation constant is temperature dependent, and the temperature function is per the CRC Handbook (Ref. 7.17, consistent with correlation used in Ref. 7.12):

log(K,) = 15.5129 - 2.24 x10-T + 3.352 x 10-T 2 where:

T = temperature, OF Finally, the suppression chamber water pH is determined:

[H+ j= [H+I- x pH = -log([H÷]) .

NEP-DES-08 Rev 07

E~dIEERNG ALCLATIN ERVIES CNTIUA-Page TINSHEET 19 ENGI CACULTIO 901TINATIN I(Next Project:Nine Mile Point Nuclear Station Unit: t 1 Disposition:

Originator/Date Reviewer/Date Calculation o. Revision H. R. Kopke M.B. Cooper H21C08 0.

Ref.

5.7 Sodium Pentaborate Addition Sodium pentaborate can be added via the Liquid Poison System (LPS) to buffer the suppression chamber water, resulting in higher pH values.

The LPS contains an aqueous solution of sodium pentaborate (Na2B10O16.10H 20). The solution is prepared by mixing borax (Na2 B4*O*1OH 2O) and boric acid (H3BO 3 ) in a 1:6 stoichiometric molar ratio in distilled water (Ref. 7.22, §4.4). This yields sodium pentaborate (Na2B,00 16 or Na20,5B203) and water.

Sodium pentaborate dissociates in water lin accordance with the following equilibrium:

Na2 B1 0 0 16 o10H 2 0+6H2 0 <--O!2Na+ +2B(OH)- +8B(OH) 3 This buffers the pH in accordance with:

[anion]

pH = pK, + log [acid]

H= pKa + log [B(OH);] i

[B(OH),]

where:.

K,= equilibrium constant for the sodium pentaborate dissociation The sodium pentaborate dissociation constant is temperature dependent in accordance with the following correlation (Ref. 7.12.2, §6.1):

K, =(0.0585 T + 1.309) *1 10 1 temperature in OF This correlation is based on temperature data from 5-10°C (41-1220F). However, Reference 7.12.2 states the following regarding the correlation: "...linear extrapolation of this data to temperatures above 50 0C is expected to result in conservatively high dissociation constants and correspondingly lower pool pH values.ý' Therefore, use of this correlation with suppression chamber water temperatures greater than 122 0F is conservative.

Due to the nature of the correlation for tjie pentaborate dissociation constant, a bounding 30-day suppression chamber water temperature of 200°F is used. Use of a higher temperature results in a lower final pH.

The minimum volume of the LPS injection. tank is 1,325 gallons and the concentration of the sodium pentaborate solution is 9.423% at that volume based on the decahydrate (includes water of hydration) as defined in Technical Specification 3.1.2 (Ref. 7.2.1) and Reference 7.6.4.a. The specific gravity of this solution is 1.048 (Ref. 7.22, Figure 1). The minimum mass of sodium pentaborate can be calculated:

NEP-DES-08 Rev 07

I ENGINEERING SERVIC ES ii*

~ALCULATION ****: CONTINU'ATION

" 6 *'.; SHEET!l

-,:N *4 ,

  • ,1 Page 20 Project: Nine Mile Point Nuclear Station Unit: 1 Disposition:

Originator/Date Reviewer/Date I Calculation o. Revision H. R. Kopke M.B. Cooper H2108 0 Ref.!

Mass = volume

  • density* concentration where the density is taken at the maximum LPS injection tank temperature, 1050F (Ref. 7.3.4, p.

3).

The number of moles of sodium pentabbrate added to the suppression chamber is determined using a molecular weight of 590.224 since the concentration is based on the decahydrate. The amounts of anion and acid are 2 and*8 times this amount, respectively, by Stoichiometry.

The equivalents of acid in the unbuffered suppression chamber water neutralize the equivalents of conjugate base and shift the equilibrium, so, by mass balance, pH pI( + log 2 x mole SP - mole H+

pH8 x mole SP'+ mole H' where:

mole SP = moles of sodium pentaborate added to the suppression chamber water mole H+= moles of acid in unbuffered suppression chamber water 5.8 Benchmark 5.8.1 Input for pH Calculation Benchmark The pH transient developed in this calculation is determined using a Microsoft Excel (Ref.

7.1) spreadsheet. In order to behchmark the spreadsheets, the design input from Grand

ýGulf Nuclear Station (GGNS) Calculation No. XC-O11111-98013, Revision 2,

. "Suppression Pool pH Analysis,"i (Ref. 7.12.3) is input into the spreadsheets developed.

herein. Since Grand Gulf was an NRC pilot plant for Alternate Source Term implementation, the calculation has been accepted by the NRC and is part of .the public record.

Case 1 of this GGNS calculation is used to benchmark the model herein. This case assumes that all source terms (except noble gases) are deposited upon release into the Ssuppression pool water. This maximizes the suppression pool dose and the generation of nitric acid.

The design input taken from the Grand Gulf post-LOCA suppression pool pH -calculation (Ref. 7.12.3) is provided in the following table. Input which is unchanged in the

  • benchmark (e.g. core inventory fractions released into containment, etc.) is not.re-stated.
  • NEP-DES-08 Rev 07 I _____________________________________________________

ENIERN SRIE.C>ALCULATIO C NIUTO SHET Page 21 Project: Nine Mile Point Nuclear Station Unit: I Disposition:

Originator/Date Reviewer/Date Calculation No. Revision H. R. Kopke M. B. Cope H21C0 Ref .1 Table 5.8.1-1: Desian Inout fro~m GGNS Post-LOCA Suooression Pool HAlsi Parameter Value Source Sup ression Pool (SP): _

SP volume 4.841xl06 liters Ref. 7.12.3, p. 2 SP initial pH 5.3 Ref. 7.12.3, p. 2 RCS initial pH i 5.3 Ref. 7.12.3, p. 2 SP temperature profile see Aft. 5, Table 5-8 Ref. 7.12.3, Att. 3, p. I Reactor Core Inventory:

Iodine inventory - 325 g-atoms 2 Ref. 7.12.3, p. 4 Cesium inventory I 2,400 g-atoms2 Ref. 7.12.3, p. 4 Radiation Dose:

Suppression pool gamma dose Correlations provided Ref. 7.12.3, Att. 2, Case 1 Drywell gamma dose' A in Att. 5, Table 5-7. Ref. 7.12.3, AUt. 2, Case 1 Containment gamma dose' SP ydose correlation Ref. 7.12.3, Att. 2, Case 1 Drywell beta dose' is in Mrad; other 'y&IP Ref. 7.12.3, Att. 2, Case 1 Containment beta dose1 doses are in MeV/cc. Ref. 7.12.3, Att. 2, Case 1 Cables: _

Cable material Hypalon Hypalone density 1.55 g/cm 3 Ref. 7.15, p. 13 G value for Hypalon: 2.115 molecules HCI Ref. 7.13, App. B, p. B.3 per 100 eV Typical/modeled cable outer radius V 0.35 inches Ref. 7.12.3, p. 8 Typical/modeled cable jacket thickness 0.28 inches Ref. 7.12.3, p. 8 Drywell cable masses:

mass of jacket and insulation 873.65 Ibm Ref. 7.12.3, p. 3 (combined) in exposed cable trays mass of jacket and insulation 873.65 Ibm Ref. 7.12.3, p. 3 (combined) in free air drops Containment cable masses:

mass of jacket and insulation i 14,049.27 Ibm Ref. 7.12.3, p. 3 (combined) in exposed cable tri.ys mass of jacket and- insulation ! 1,561.03 Ibm Ref. 7.12.3, p. 3 (combined) in free air drops i SICS:_

Neutron absorber anhydrous sodium

    • pentaborate .....

Molecular weight (Na2 B1,0016) 410 Ref. 7.12.3, p. 15 Final suppression pool temperature 120°F Ref. 7.12.3, p. 16 Mass of sodium pentaborate injected 5,800 Ibm Ref. 7.12.3, p. 15

1) Dose in MeV/.cc converted to rad using I rad = 8.071x10q MeV/cc for air at S.T.P. (Ref. 7.8, p. 23). .
2) Per the CRC handbook (Ref. 7.17)j a gram-atom is defined as 'the mass in grams numerically equal to the atomic weight," which is essentially the same as thedefinition for a gram-mole. The CRC handbook defines a gram-mole as the *mass in grams numerically equal to the molecular weight.' The inventories presented above are given in gram-atoms to be consistent with Reference 7.12.3.

The benchmark is performed in 'Attachment 5 by utilizing the above design input in the spreadsheets developed for the icurrent calculation in Attachment 4. Wherever an input has been changed or added, the cell is italicized. Similarly, additional information/equations which are 'dded are italicized. The addition of new equations/cells i

NEP-DES-08 Rev 07 I.

ENGINEERING SERVICE ....... CALCULATION CONTINATION SHEE Page 22 ENGINERINGSERV ~~:~J (Next Project:Nine Mile PointNuclear Station Unit: 11 Disposition:

Originato/Date . Reviewer/Date . Calculation No. Revision H. R. Kopke M.B. Cooper H21C080 .. 0 is necessary since, in some instances, the input provided in Reference 7.12.3 is in a different form than used herein.

5.8.2 'Benchmark Results The results of the benchmark provided in Attachment 5 are. compared to the results reported in Reference 7.12.3. This. comparison is illustrated in Figure 5-1, repeated below for convenience.

Fi-ure-1: GGNS Benchmark Post-LOCA Suppression Pool pH Analysis pH Response without SLCS 9.000t 8.000 CL 7.000 C- J 6.000 M.

5.000 4.000 "3.00 0 '" . . . . ...; . . . . . . .I . . .. ; _.

0.01 0.1 1l 10 100 1000 Time After LOCA (hours)

Figure 5-1 demonstrates the successful benchmarking of the model developed herein.

The results are identical to 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> post-LOCA, thus indicating that the gap release phase and early in-vessel release phases are modeled in the same manner for both GGNS and the benchmark. Beyond 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br />, nitric acid and hydrochloric acid are produced. as a result of radiolysis. The nitric acid contribution is the same for GGNS and the benchmark.

Slight differences between the benchmark and GGNS curves beyond 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> are attributed to differences in methodologies between GGNS-98-0039, Revision 1 (Ref.

7.12.1), adopted in this calculatio6n, and GGNS-98-0039, Revision 3 (Ref. 7.12.2), which is the. basis for Reference 7.12.3 .(the benchmark), for computing hydrochloric acid production. The hydrochloric acid production rate in GGNS-98-0039, Revision 1, is based on the mass of cable jacket and on the radiation dose rate at the cable jacket surface multiplied by a flux. averaging factor. However, the hydrochloric acid production rate in GGNS-98-0039, Revision13, is based on the cable jacket surface area and on the

-J

  • NEP-DES-08 Rev 07

ENGINEERING SERVICESCACLTO COTNA ONSET* :Ai:Pg (Next Project: Nine Mile Point Nuclear Station Unit: 1* Disposition:

Originator/Date Reviewer/Date I Calculation Revision 0....

M. B. Cooper H21C o ,08c H. R. Kopke Ref. i energy release per unit volume of, containment, diminished by attenuation in air between the center of containment and th6 cable surface. Both methodologies use the same G value (with units converted to rads in GGNS-98-0039, Revision 1) and the same expression for energy absorption fraction in the cable jacket. The benchmark also demonstrates that both methodologies yield very similar results.

The final suppression -pool pHji calculated by the spreadsheets herein is 4.07 in Comparison to 4.03 in the. GGNS calculation. This is considered sufficiently accurate to benchmark the model developed for this calculation.

Similarly, the model determining the final suppression pool pH following SLCS addition. is ibenchmarked. Both the model herein and the GGNS calculation predict a final pH of 8.46.

NEP-DES-08 Rev 07

ENGINEERING SERVICES CALCULAT::*:**

'***** ... r I ON*"'-r: C*' :'rONTINiUATI.ON ...... ,-,**; SHE*ETI!**

,*:* ...... **:'* **,÷-* Page 24 Project:Nine Mile Point Nuclear Station Unit: i 1 . - Disposition:

Originator/Date Reviewer/Date Calculation Revision H. R. Kopke M.B. Cooper I H21 081* 0 ef.

6.0 Results 6.1 Maximum Suppression Chamber Water Volume Case 6.1.1 The pH in the unbuffered post-LOCA suppression chamber water initially rises due'to the influence of cesium hydroxide addition aft the beginning of the LOCA, but falls to below a pH 7.0 between approximately 9 to 10 hours1.157407e-4 days <br />0.00278 hours <br />1.653439e-5 weeks <br />3.805e-6 months <br /> (see Figure 4-1, repeated below for convenience). The final pH at 30 days without buffering is:3.5, so the suppression chamber water pH does not satisfy the Acceptance Criterion of a pH greater than 7.0.

6.1.2 Addition of sodium pentaborate via the! Liquid Poison System (LPS) buffers the: suppression chamber water and results in av final pH at 30 days of 7.9. The suppression chamber water pH will satisfy the Acceptance Criterion of ' pH greater than 7.0 with use of the LPS. The LPS shouldlbe used prior to the suppression chamber water pH falling below 7.0. When determining the appropriate time to inject the sodium pentaborate, the duration of injection should be considered as well as the amount of time' to achieve a homogenous mixture in the suppression chamber water. i Figure 4-1: Nine Mile Point Unit I Post-LOCA Suppression Chamber Water pH Analysis Maximum Suppression Chamber Water volume case pH Response without LPS 9.0 Final pH wih LPS would be 7.9 8.0!

a.7.0' E

  • 6.0o CL 0I Final pH4without LIPS =3.5 4.0 3.0 A, 0.0i 0.1 1 10 100 1000 Time After LOCA (hours)

NEP-DES-08 Rev 07

Project.'NineMile Point Nuclear Station Unit: !1_1_ bisposition: -

Originator/Date Reviewer/Date Calculation Y6. - Revision H. R. Kopke M. B. Cooper H21C08? 0.

R{ef.

  • 6.2 Minimum Suppression Chamber Water Volume Case 6.2.1 The pH in the unbuffered post-LOCA suppression chamber water initially rises due to the influence of cesium hydroxide addition at the beginning of the LOCA, but falls to below a pH 7.0 between approximately 9 to 10 hours1.157407e-4 days <br />0.00278 hours <br />1.653439e-5 weeks <br />3.805e-6 months <br /> (see Figure 6-1, repeated below for convenience). The final pH at 30. days without buffering isj 3.4. so the suppression chamber water pH does not satisfy the Acceptance Criterion of a pH greater than 7.0.

6.2.2 Addition of sodium pentaborate via the: Liquid Poison System (LPS) buffers the suppression chamber water and results in a final pH at 30 days of 7.9. The suppression chamber water pH will satisfy the Acceptance Criterion of a pH greater than 7.0 with use of the LPS. The LPS should be used prior to the suppression chamber water pH falling below 7.0. When determining the appropriate time to inject the sodium pentaborate, the duration of injection should be considered as well as the amount of time to achieve a homogenous- mixture in the suppression chamber water.

Figure 6-1: Nine Mile Point Unit 1 Post.LOCA Suppression Chamber Water pH Analysis Minimum Suppreission Chamber Water Volume Case pH Response without LPS 9.0 Final pH with LPS would be 7.9 8.0,

  • 7.0' 6.0 C

10 06 i" ca Final pHtwithout LIPS =3. 4 406 0.01 0.1 1 10 100 1000 Time After LOCA (hours) 6.3 Inherent Conservatisms in this Calculation This calculation contains conservatisms which have an impact on the final pH determined herein.

Several of the significant conservatisms are as follows:

NEP-DES-08 Rev 07 k _________________________________________________________

I

Project: Nine Mile Point Nuclear Station Unit: 1 Disposition:

Originator/Date Reviewer/Date Calculation o. Revision H. R. Kopke M. B. Cooper H21C008f . 0 Ref.

  • All cable in primary containment is modeled as PVC although it is probable that a great deal of this cable is a chlorosulfonated polyethylene (CSPE) such as Hypalon. The hydrochloric acid production rate for PVC is 3.7 times greater than for Hypalon.
  • cable from beta radiation is ignored. I.This has a significant impact as beta radiation is the main source of HCl production due to its high (-1) absorption factor into the cable.
  • The core inventory of cesium-133 is ilot included in this analysis. This stable isotope would increase the pH in the post-LOCA slppression chamber water since'it would form cesium hydroxide.

6.4 Conclusions Therefore, based on the results presented in Sections 6.1 and 6.2,- the LPS is required at NMP Unit 1 to control the post-LOCA suppression chamber water pH. The LPS will not be required until approximately 9 hours1.041667e-4 days <br />0.0025 hours <br />1.488095e-5 weeks <br />3.4245e-6 months <br /> post LOCA, even postulating the worst case scenario, i.e. with the conservatisms listed in Section 6.3.

-I

  • NEP-DESý08
  • -Rev 07

IENGINEERING SERVICEE;. CALCULATION CONTINUATION SHEET ET, (Next 27 )

Page .

Project: Nine Mile Point Nuclear Station Unit: 1 Disposition:

Originator/Date Reviewer/Date CalculationRevisio H. R. Kopke M. B. Cooper H21C08o q 0 lef.

7.0 References 7.1 Microsoft Excel 97 SR-2, S&L Program No. 03.2.081-1*0, dated 04/28/1999.

7.2 NMPNS Unit 1 Technical Specifications 7.2.1 ,TS 3.1.2, Amendment 166, "Liquid Poison System."

7.2.2 :TS 3.3.2, Amendment 170, "Pressure Suppression System Pressure and Suppression Chamber Water Temperature and, Level."

7.3 NMPNS Unit 1 Procedures 7.3.1 'Chemistry Manual, Revision 3, Attachment 10, "Chemistry Control Levels." (Historical) 7.3.2 .GAP-CHE-01, Revision 09, "BWR Water Chemistry Operating Limits."

7.3.3 S-CTP-V666, Revision 01, "Auxiliary Chemistry System."

7.3.4 N1-OP-12, Revision 27, "Liquid Poison' System.

7.4 NMPNS Unit 1 Design Basis Document N1-SD-022, "Liquid Poison System," Revision 3.

7.5 NMPNS Unit.1 Facility Operating. License, Docket No. 50-220, Amendment 172.

7.6 NMPNS Calculations 7.6.1 SOTORUSM003, Revision 2, "Volume of Air Displaced by Torus Internals Above 207.5' Elevation." (Unit 1) 7.6.2 S311 -DWLOCA-BETA, Revision!,0, "Beta Dose Calc. for Containment Post-LOCA." (Unit

,1) 7.6.3 PR-C-21-Q, Revision 1, "Post-LOCA Radiation Environment (Gamma) in Drywell and Wetwell due to Airborne and Liquid Sources.". (Unit 2) 7.6.4 S14-41-M002, Revision 2, "LPS Enriched Boron." (Unit 1) 7.6.4.a S14-41-M002, Revision 2, Disposition 02A.

7.6.5 S0-TORUS-M009, Revision 2, "NMP-1 TORUS Pool Heat Up Analysis." (Unit 1) 7.6.6 "*PR-C-20-F, Revision 3, "Dose Rates versus Distance'and Dose Rate to Dose Conversion Factors for Piping Containing Post-LOCA Fluids." (Unit 2) 7.6.7 SO.0-FPE-002, Revision 1, "Unit I Combustible Loading Calculation." (Unit 1) 7.6.8 H21C-097, Revision 0, "Post-LOCA Suppression Pool pH Analysis." (Unit 2) 7.7 GE Nuclear Energy (GENE) Document 1'1o6 GE-NE-A41-00097-00-01. DRF A41-00097-00, Class Ill, "Nine Mile Point Unit 2 24-Month Cycle Fission Product Inventory Evaluation," dated February 1999.

7.8 Radiological Health Handbook, U.S. Department of Health, Education, and Welfare, Public Healtfh Service, Compiled and Edited by the Bureau of Radiological Health and the Training Institute Environmental Control Administration, Revised Edition, 1970.

7.9 "Nuclides and Isotopes - Chart of the Nuclides," 1 5 1h Edition, GE Nuclear Energy, 1996.

7.10 U.S. Nuclear Regulatory Commission R.gulatory Guides 7.10.1. Regulatory Guide 1.49, Revision 1, "Power Levels of Nuclear*Power Plants," dated December 1973.

NEP-DES-08 Rev 07 I.

Project: Nine Mile PointNuclear Station Unit: 1 Disposition:

Originator/Date. Reviewer/Date Calculation I*. Revision H. R. Kopke M.B. Cooper H21C08 0 Ref.

7.10.2 Regulatory Guide 1.183, Revision 0, "Alternative. Radiological Source Terms for Evaluating Design Basis Accident, at Nuclear Power Reactors," dated July 2000.

7.11 NMPNS Unit 1 Updated Final Safety Analysis Report (UFSAR).

7.11.1 UFSAR Revision .16, Table X'V-32a, "Significant Input Parameters to the DBR Containment Suppression Chambter Heatup Analysis."

7.11.2 UFSAR Revision 15, Section VI-B.1 .2, "Design Basis Accident."

7.11.3 UFSAR Revision 17, Table XV-9a, "Core Spray System Flow Performance Assumed in

'LOCA Analysis." i 7.11.4 ,UFSAR Revision 16, Table XV-1 11,"Single Failures Considered in LOCA Analysis."

7.11.5 UFSAR Revision 15, Section IX-B.3.4, "Types of Cables."

7.11.6 UFSAR Revision 16, Table 3.1.1-1, "Fire Hazard/Fire Loading," in Appendix10A (Fire Hazards Analysis).

7.11.7 UFSAR Revision 17, Section VlE, "Containment Ventilation System," Sub-Section VI-E,1.1, "Design Bases."

7.11.8' UFSAR Revision 15,Section IV,",Reactor," Sub-Section IV-A.1.0, "General."

7.12 Grand Gulf Nuclear Station Documents 7.12.1 Engineering Report No. GGNS-98-0039, Revision 1, "Suppression Pool pH and Iodine Re-Evolution Methodology." (inclJded as Attachment 7 to Letter GNRO-2000/20005 from GGNS to the NRC) 7.12.2, Engineering Report No. GGNS-98-0039, Revision 3," Suppression Pool pH and Iodine Re-Evolution Methodology." (included as Attachment 1 to Letter GNRO-2000/00100 from GGNS to the NRC) 7.12.3. Calculation No. XC-Q1 111-98013, Revision 2, "Suppression Pool pH Analysis." (included as Attachment.2 to Letter GNRO-k000/00100 from GGNS to the NRC) 7.13 NUREG/CR-5950, "Iodine Evolution and IpH Control", Published December, 1992.

7.1*4 NUREG-1465, "Accident Source Terms for Light Water Nuclear Power Plants", Published February, 1995.-

7.15 NUREG-1081, "Post Accident Gas Generation from Radiolysis of Organic Materials", Published September, 1984.

7.16 iNUREG/CR-5732, "Iodine Chemical Formhs in LWR Severe Accidents", Published April, 1992..

7.17 CRC Handbook of Chemistry and Physics, 73rd Edition.

7.18 ASME Steam Tables, 4 th Edition, The Arierican Society of Mechanical Engineers, New York, NY, 1979.,.

7.19 Avallone, E.A. and T. Baumeister Ill,' Editors, Marks' Standard Handbook for Mechanical Engineers, 101 Edition, McGraw-Hill, NeW York, NY, 1996. ISBN 0-07-004997-1.

7.20 U.S. Nuclear Regulatory Commission Standard Review Plan, NUREG-0800, Revision 2, Section 6.5.2, "Containment Spray as a Fission Product Cleanup System."

NEP-DES-08 Rev 07

ENGINEERING SERVICES CALCULATION CONTINUATION SH"";,

G Page 29 Final

~ ~j dl(Next Project:Nine Mile Point Nuclear Station Unit: ! 1 .Disposition:

Originator/Date. Reviewer/Date Calculation Revision H. R. Kopke M. B. Cooper H21C080-/ 0.

Ref.

7.21 Commission Paper No. SECY-94-302, "Source Term Related Technical and Licensing Issues Pertaining to Evolutionary and Passive Light Water Reactor Designs," December 19, 1994.

7.22 General Electric Design Specification 22A7641, Revision 1, "Standby Liquid Control System."

7.23. NMPNS Unit 1 Cable Specifications 7.23.1 Spec. No. E-1 106, "600V Flame and Radiation Resistant Instrumentation Cable."

7.23.2 Spec. No. E-1 107, "600V Flame and Radiation Resistant Control Cable."

7.23.3 Spec. No. E-1 108, "600V Flame and Radiation Resistant. Low Voltage Power Cable."

7.24 Chilton, A. B., Shultis, J. K., and Faw, R. E., Principles of Radiation Shieldinq, Prentice-Hall, Inc.,

Englewood Cliffs, NJ, 1984. ISBN 0-13-709907-X 7.25 NUREG/CR-1413, "A Radionuclide Decay Data Base - Index and Summary Table," May 1980.

7.26 GE Document No. APED-5398-A, "Summary ofý Fission Product Yields for U2 5a,U23, Pu239 , and Pu24 1 at Thermal, Fission Spectrum and 14 MeV Neutron Energies," Class I, Revised, dated October 1, 1968.

7.27 GE Document.No. NEDO-24290, 80NED289, NSE-47-0880, DRF AOO-960, Class I, "Results of Qualification Data Search for Nine Mile Point Nuclear Station Unit 1 - Response to IE Bulletin 79-01 & 0!B," dated October 1980.

7.28 . National Institute of Standards and Technology (NIST) Chemistry WebBook.

(http:llwebbook.nist.gov/chemistry/)

7.29 TRAK 2000 Database NEP-DES-08 Rev 07 Calculation No. H21COB0/

Nine Mile Point Nuclear Station Revision 0 Unit I Page 1-1 Attachment 1 Determination of Reactor Core Inventories Calculation No. H21C08/ 4V Nine Mile Point Nuclear Station Revision 0 Unit 1 Page 1-2 Purpose The purpose of this attachment is to document the inventory of all iodine and cesium isotopes in the reactor coire.

Methodology:

The reactor core inventory is calculated using GE document GE-NE-A41-00097-00-01, DRF A41-00097-00, "Nine Mile Point Unit 2 24-Month Cycle Fission Product Inventory Evaluation,"

(Ref. 7.7 in main body). Case 3, which addresses a single batch core with 1,400 Effective Full Power Days (EFPD) and 34,000 MWd/ST Expected Core Average Exposure (CAVEX), is conservatively used to determine the inventories. The inventory at both t=0 and t=30 days (720 hours0.00833 days <br />0.2 hours <br />0.00119 weeks <br />2.7396e-4 months <br />) is calculated to demonstrate that the values at t=0 are conservative.

The use. of the Unit 2 fission product inventory isjconsidered bounding for Unit 1 for the following reasons. First, the inventory of short lived nuclides is nearly proportional to power level, so that for these nuclides normalized activities (Ci/MWt)! generated at a power level of 3,467 MWt would be essentially identical to normalized activitieýs generated at a power level of 1,850 MWt.

Second, the in'ventory of long lived nuclides is more dependent on burnup. The average burnup at the end of cycle for Unit 1 is approximately 30,000 MWd/ST [(44,000 MWd/ST)*(2/3)] based on an equilibrium reload batch discharge exposure of 44,000 MWd/ST and the replacement of approximately 1/3 of the core during each refueling (UFSAR Section IV-A.1.0, main body Reference 7.11.8). Therefore, the use of the 34,000 MWd/ST Unit 2 activities is bounding for long lived nuclides.

GE-NE-A41-00097-00-01 presents the activity in! Ci/MWt. To convert this to core inventory, the methodology on p. 29 of the Radiological Healthl Handbook (Ref. 7.8 in the main body) is used.

ln(2)-N In(2).Na XN "i1 In(2).Na t1/2 'M-t 1/ 2 3.7x10'O[gmJ 3.7x10 10 .M-t 1/2 where:

XN specific activity [dis/sec/gm]

N number of atoms per gram [atoms/gm]

tl/2 half life [sec]

N, Avogadro constant [atoms/mole]

M molecular weight [gmn/mole] = [amu]

3.7x10 10 disintegrations per second per Curie Once the total core inventory~I is known, the fractions released during the gap release phase and early in-vessel (EIV) phase are determined in accordance with the guidance provided in Table 1 of Regulatory Guide 1.183 (Ref. 7.10.2 in main body). This table is summarized below for alkali metals such as cesium and halogens such as iodine.

Group Core Inventory Fraction Released into Containment HGap Release Phase Early In-Vessel Phase Total Halogens 0.05 I 0.25 0.30 Alkali Metals 0.05 i 0.20 0.25 Calculation No. H21C08ft Nine Mile Point Nuclear Station Revision 0 Unit 1 Page 1-3 NoteslAssumptions See the text in the main body for the basis for these items.

1. Stable cesium is conservatively not included in the cesium inventory.
2. The mass of iodine-127 is assumed to be 30% of the mass of iodine-129.

Results The results below are taken from Tables 1-1 through 1-4.

Reactor Core Inventory [gram-moles]

Element t=0 t=30 days Element Gap Release EIV Total Gap Release EIV Total Iodine 7.2 36.0 43.2 7.0 35.1 42.1 Cesium 53.7 - 214.9 268.6 53.5 214.0 267.6 It can be seen that the reactor core inventory of both iodine and cesium does not change appreciably during the duration of the accident.j Therefore, use of the values at time=0 is both reasonable ahd conservative.

Table 1-1: Core Iodine Inventory Determination (t=O Post-LOCA) Calculation No. H21CO8I1 Nine Mile Point Nuclear Station Revision 0 (Single Batch Core with 1400 EFPD and 34,000 MWd/ST CAVEX)

Unit 1 Page 1-4.

Time post-LOCA 0 sec -1. 111-11LUIV llaýLIVIJ nU- . LIIII U1 "O1WUWIIZI Neutron Mass 1.008665 amu (Ref. 1) Gap Release Phase 0.05 (Ref. 4, Thl 1)

Core Thermal Power (100%) 1,850 MWt (Ref. 5) Early In-Vessel Phase 0.25 (Ref. 4, TbI 1)

Core Thermal Power (102%) 1,887 MWt . (Ref. 6) 1 Curie 3.70E+10 dis/sec (Ref. 1)

Avogadro's Number 6.022137E+23 atoms/mole (Ref. 2)

Atomc Masst Half Life Activity Activity Specific Core -Gap EIV Total Isotope (Ref. 1) (Ref. 2) tJ12 units Half Life (Ref. 3) per Core Activity Inventory Release Release Release famu] =secl fCI/MWt]." [Ci/core] [CIIqm[ lrelore] [mole mole I [molel 7-1272r) 126.904470 stable " .. . 1.61E+00 8.07E+00 9.69E+00 1-128 127.905838 25.00 m 1,500 4.28E+02 8.08E+05 5.88E+07 1.37E-02 5.37E-06 2.68E-05 3.22E-05 1-129 128.904987 1.57E+07 a 4.95E+14 1.30E-03 2.45E+00 1.77E-04 1.39E+04 5.38E+00 2.69E+01 3.23E+01 1-130 129.906676 12.36 h 44,496 1.09E+03 2.06E+06 1.95E+06 1.05E+00 4.06E-04 2.03E-03 2.43E-03 1-130M 129.906676 9.0 m 540 4.23E+02 7.98E+05 1.61 E+08 4.96E-03 1.91 E-06 9.55E-06 1.15E-05 1-131 . 130.906127 8.020 d 692,928 2.71E+04 5.11E+07 1.24E+05 4.11E+02 1.57E-01 7.85E-01 9.42E-01 1-132- 131.907981 2.28 h- 8,208 3.92E+04 7.40E+07 1.04E+07 7.1OE+00 2.69E-03 1.35E-02 1.61E-02 1-133' 132.907750 20.8 h 74,880 5.51E+04 1.04E+08 1.13E+06 9.17E+01 3.45E-02 1.73E-01 2.07E-01 1-133M 132.907750 9 s 9 1.70E+03 3.21E+06 9.43E+09 3.40E-04 1.28E-07 6.40E-07 7.68E-07 1-134 133.909850 52.6 . m 3,156 6.03E+04, 1. 14E+08 2.67E+07 " 4,26E+00 1.59E&03 7.96E-03 9.55E-03 I-134M 133.909850 3.7 m 222 . 6.OOE+03 1.13E+07 3.79E+08 2.98E-02 1.11E-05 5.57E-05 6.68E-05 1-135 134.910020 6.57 h .23652 5.16E+04 9.74E+07 3,54E+06 2.75E+01 1.02E-02 5.1OE-02 6.12E-02

-- 1-;136- -135:914740 --1.39.. - m------ -- 83---.2.44E+04 . 4.60E+07 -.:9.95E+08- -_4.63E702 -_1.70E-05 8.51E-05 1.02E-04 1-136M 135.914740 47 - s 47 1.43E+04 2.70E+07 1.77E+09 1.53E&02 5.62E-06 2.81 E-05 3.37E-05 1-137(1) 136.923405 24.5 s 24.5 2.38E+04 4.49E+07 3.36E+09 1.34E-02 4.88E-06 2.44E-05 2.93E-05 1-138(1) 137.932070 6.5 s 6.5 1.18E+04 2.23E+07 1.26E+10 1.77E-03 6.41E-07 3.21E-06 3.85E-06 1-139(1) 138.940735 2.30 s 2.30 5.22E+03 9.85E+06 3.53E+10 2.79E-04 1.OOE-07 5.02E-07 6.02E-07 1-1 40d') 139.949400 0.86 s .. 0.86 1.47E+03 2.77E+06 9.37E+1 0 2.96E-05 1.06E-08 5.29E-08 6.34E-08 1-141T1 140.958065 0.45 s 0.45 2.43E+02 4.59E+05 1.78E+1I 2.58E-06 9.15E-10 4.57E-09 5.49E-09 1-142"') 141.966730 0.2 s 0.2 3.53E+01 6.66E+04 3.97E+11 1.68E-07 5.90E-11 2.95E-10 3.54E-10 1-143(")( 142.975395 n/a 2.33E+00 4.40E+03 1_144(l)(3) 143.984060 n/a 1.90E-01 3.59E+02 Total 1.44E+04 7.20 36.02 43.23 1 omic mass not given for these isotopes in Reference 1; therefore, a multiple of the neutron mass is added to the atomic mass of 1-136M.

2) Since 1-127 is a stable element, its quantity is not presented In Reference 3. The mass of 1-127 is assumed to be.30% of the massof 1-129.
3) Half-life information not available in Reference 2.

References

1. Radiological Health Handbook, 1970 (main body Reference 7.8)
2. Chait of the Nuclides, 15th Edition (main body Reference 7.9)
3. GE-NE-A41-00097-00-01, NMP2 24-month Cycle Fission Product Inventory Evaluation- (main body Reference 7.7)
4. Regulatory Guide 1.183 (main body Reference 7.10.2)
5. NMP1 Site Ucense (main body Reference 7.5)
6. Regulatory Guide 1.49 (main body Reference 7.10.1)

Iodine t--O

Attachment 1 Table 1-2: Core Cesium Inventory Determination (t=0 Post-LOCA) Calculation NO. H21CO8*$/-

Nine Mile Point Nuclear Station Revision 0 (Single Batch Core with 1400 EFPD and 34,000 MWdIST CAVEX)

Unit 1 Page 1-5 Time post-LOCA 0 sec Core Inventorv Fraction Released in Containment for Alkalis Neutron Mass 1.008665 amu (Ref. 1) Gap Release Phase 0.05 (Ref. 4, Thl 1)

Core Thermal Power (100%) 1,850 MWt (Ref. 5) Early In-Vessel Phase 0.20 (Ref. 4, Thl 1)

Core Thermal Power (102%) .1,887 MWI (Ref. 6) 1 Curie 3.70E+10 dis/sec (Ref. 1)

. . AvOgadro's Number 6.022137E+23 atoms/mole (Ref. 2)

Isotope Atomic Mass. Half Life u 1 Activity Activity Specific Core Gap ElV r Total (Ref. 1) (Ref. 2)i (Ref. 3) per Core Activity Inventory Release Release Release

[amu_ _ Isecl [Ci/MWt] [Ci/corel rCi/qm1 J [am/corel fmolel rmolel fmolel CS-132 131.906393 6.48 d 559,872. 7.96E+00 1.50E+04 1.53E+05 9.83E-02 3.73E-05 1.49E-04 1.86E-04 1

CS-133( )

CS-134 133.906823 2.065 a 65,121,840 7.29E+03 1.38E+07 1.29E+03 1.06E+04 3.97E+00 1.59E+01 1.99E+01 CS-134M 133.906823 2.90 h 10,440 1.70E+03 3.21E+06 8.07E+06 3.98E-01 1.48E-04 5.94E-04 7.42E-04 CS-135 134.905770 2.30E+06 a 7.25E+13 2.51E-02 4.74E+01 1.15E-03 4.11E+04 1.52E+01 6.09E+01 7.61E+01 CS-1 35M 134.905770 53 . m 3,180 8.81 E+02 1.66E+06 2.63E+07 6.32E-02 2.34E-05 9.37E-05 1.17E-04 CS-136 135.907340 13.16 d 1,137 024 2.28E+03 4.30E+06 7.30E+04 5.89E+01 2.17E-02. 8.67E-02 1.08E-01 CS-137 .136.906770 30.07 a 9.48E+08 4.35E+03 8.21E+06 8.69E+01 9.45E+04 3.45E+01 1.38E+02 1.72E+02 CS-138 137.910800 32.2 m 1932

. 5.00E+04 9.44E+07 4.23E+07 2.23E+00 8.08E-04 3.23E-03 4.04E-03 CS-138M 137.910800 2.9 m 174 2.39E+03 4.51E+06. 4.70E+08 '9.59E-03. 3.48E-06 1.39E-05. 1.74E-05 CSA139 138.912900 9.3 m 558 4.73E+04 8.93E+07 1.46E+08 6.13E-01 2.21E-04 8.83E-04 1.10E-03 CS-140 -139T917110 --1:06- --rm . 4 4:26E+04- -8:04E+07- --1.27E+09- 34E-02.. 2-27E -9,06E -1.-13E CS-141(2) 140.925775 24.9 s 24.9 3.16E+04 5.96E+07 3.22E+09 1.85E-02 6.58E-06 2.63E-05 3.29E-05 CS-142(2) 141.934440 1.8 s 1.8 1.91E+04 3.60E+07 4.42E+10 8.16E-04 2.88E-07 1.15E-06 1.44E-06 CS-143(2) 142.943105 1.78 s 1.78 9.33E+03 1.76E+07 4.43E+10 3.97E-04 1.39E-07 5.56E-07 6.94E-07 CS-144(2) 143.951770 1.01 s 1.01 2.70E+03 5,09E+06 7.76E+10 6.57E-05 2.28E-08 9.12E-08 1.14E-07 CS-145(2) 144.960435 0.59 s 0.59 .6.79E+02 1.28E+06 1.32E+11 9.71E-06 3.35E-09 1.34E-08 1.68E-08 2 9.96E+01 1.88E+05 2.40E+11 7.83E-07 2.68E-10 1.07E-09 1.34E-09 CS-146k ) 145.969100 0.322 s 0.322 2 1.65E+01 3.11E+04 3.38E+1 i 9.21E-08 3.13E-11 1.25E710 1.57E-10 CS-147( ) 146.977765 0.227 s 0.227 1 2.02E+03 5.08E+11 3.97E-09. 1.34E-12 5.37E-12 6.71E-12 CS-148(2) 147.986430 0.15 s 0.15 1.07E+00 214.87 268.59 Total 1.482E+05 53.72' Notes

1) Stable cesium is conservatively not accounted for in this analysis as it forms cesium hydroxide (CsOH).
2) Atomic mass not given for these isotopes in Reference 1; therefore, a multiple of the neutrOn mass is added to the atomic mass of CS-1 40.

References

1. Radiological Health Handbook, 1970 (main body Reference 7.8)
2. Chart of the Nuclides, 15th Edition (main body Reference 7.9)
3. GE-NE-A41-00097-00-01, NMP2 24-month Cycle Fission Product Inventory Evaluation (main body Reference 7.7)
4. Regulatory Guide 1.183 (main body Reference 7.10.2)
5. NMP1 Site License (main body Reference 7.5)
6. Regulatory Guide 1.49 (main body Reference 7.10.1)

Cesium t=0 Table 1-3: Core Iodine Inventory Determination (t=30 days Post-LOCA) Calculation No. H21 C08***

Nine Mile Point Nuclear Station (Single Batch Core with 1400 EFPD and 34,000 MWd/ST CAVEX) Revision 0 Unit 1 Page 1-6.

Time post-LOCA 30 days Core Inventory Fraction Released in Containment for Halogens Neutron Mass - 1.008665 amu (Ref. 1) Gap Release Phase 0.05 (Ref. 4, Thl 1)

Core Thermal Power (100%) 1,850 MWt (Ref. 5) Early In-Vessel Phase 0.25 (Ref. 4, Thl 1)

Core Thermal Power (102%) 1,887 MWt (Ref. 6) 1 Curie 3.70E+10 dis/sec (Ref. 1)

Avogadro's Number 6.022137E+23 atoms/mole (Ref. 2)

Life nits Half Life Activity Activity Specific Core . Gap EIV I Total Isotope (Ref.1)l (Ref. 2) (Ref.3)1 per Core Activity Inventory Release Release Release I . [amu l 1 rsecl - C/MWtI [CI/corel [CVf/m] I[(:in/corel [mole] [molel [molel 1-_27__) 126.904470 stable 1.61 E+00 8.07E+00 9.69E+00 1-128 127.905838 25.00 m 1,500 O.OOE+00 O.OOE+00 5.88E+07 O.OOE+00 O.OOE+00 O.OOE+O0 O.OOE+00 1-129 128.904987 1.57E+07 a 4.95E+14 1.30E-03 2.45E+00 1.77E-04 1.39E+04 5.38E+00 2.69E+01 3.23E+01 1-130 129.906676 12.36 h 44,496 3.1BE-15 6.00E-12 1.95E+06 3.07E-18 1.18E-21 5.92E-21 7.10E-21 1-130M 129.906676 9.0 m 540 O.00E+0 O,OOE+0 1.61 E+08 0.OOEs00 0.OOE+00 0.OOE+/-00 0.OOE+00 1-131 130.906127 8.020 d 692,928 2.10E+03 3.96E+06 1.24E+05 3.19E+01 1.22E-02 6.08E-02 7.30E-02 1-132 131 .907981 2.28 h 8,208 6.71 E+01 1.27E+05 1.04E+07 1.22E-02 4.61 E-06 2.30E-05 2.76E-05 1-133 132.907750 20.8 h 74,880 2.14E-06 4.04E-03 1.13E+06 3.56E-09 1.34E-12 6.70E-12 .8.04E-12 1-133M 132.907750 9 s . 9 . O.OE+OO 0.OOE+00 9,43E+09 0.00E+00 0.00E+00 O.OOE+00 0.00E+00 1-134 .133.909850 52.6 . m 3,156 0.00E+00 0.OOE+00 2.67E+07 0.OOE+00 0.00E+00 0.0OE.+00 0.00E+00 1-134M 133.909850 3.7 m. 222 . 0.00E+O0 0.00E+O0 3,79E+08 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1-135 134.910020 6.57 h 23,652 0.00E+O0. 0.00E+00 3.54E+06 0.00E+00 0.00E+00 0.OOE+00 0.OOE+00

-- 1-t36-- -135:914740- --1 - --.. -m.--- - -. 83---O.OOE+O0 --O.OOE+00- .- 9.95E+08- iO.OOE+/-00_. _O.OOEO0_ _O.OOE+O0 O.OOE+00 1-136M 135.91.4740 47 s 47 0.00E+00 O.002E+0 1.77E+09 0.OOE+00 0.OOE+00 0.OOE+00 0.00E+00 1-137") 136.923405 24.5 S' 24.5 0.OOE+00 0.OOE+00 3.36E+09 0.00E+00 0.OOE+O0 0.00E+00 0.OOE+00 1-138!!) 137.932070 6.5 s 6.5 O.OOE+00 O.00E+00 1.26E+10 0.OOE+00 0.OOE+00 O.OOE+00 0.OOE+00 2.30 0.OOE+00 0.00E+00 3.53E+10 0.OOE+00 0.OOE+00 0.OOE+00 0.OOE+00.

.1-139(1) 138.940735 2.30 s 1-140") 139.949400 0.86 s . 0.86 0.0OE+O0 0.00E+O0 9.37E+10 0.OOE+O0 0.OOE+O0 0.OOE+00 0.00E+00 1-141(') 140.958065 0.45 s 0.45 0.00E+00 0.00E+00 1.78E+11 0.OOE+00 0.00E+00 O.00E+00 O.OOE+00 1.o142(') 141.966730 0.2 s 0.2 0.00E+00 0.OOE+00 3.97E+1 1 0.OOE+00 0.OOE+/-00 0.OOE+00 O.OOE+00 1 143(1)13) 142.975395 n/a 0.00E+00 0.OOE+00 1-1440(l3) 143.984060 . n/a 0.OOE-00_

Total 1.39E+04 7.01 35.05 42.06 Notes.

1) Atomic mass not given for these isotopes in Reference 1; therefore, a multiple of the neutron mass is added to the atomic mass of 1-136M.
2) Since 1-127 is a stable element, its quantity is not presented in Reference 3. The mass of 1-127 is assumed to be 30% of the mass of 1-129.
3) Half-life information not available in Reference 2.
  • References
1. Radiological.Health Handbook, 1970 (main body Reference 7.8)
2. Chart of the Nuclides, 15th Edition (main body Reference 7.9).
3. GE-NE-A41-00097-00-01, NMP2 24-month Cycle Fission Product Inventory Evaluation (main body Reference 7.7)
4. Regulatory Guide 1.183 (main body Reference 7.10.2)
5. NMP1 Site License (main body Reference 7.5)
6. Regulatory Guide 1.49 (main body Reference 7.10.1)

Iodine t=30d

  • Table 1-4: Core Cesium Inventory Determination (t=30 days Post-LOCA) Calculation No. H21 COS*'/

Nine Mile .Point Nuclear Station (Single Batch Core with 1400 EFPD and 34,000 MWd/ST CAVEX) Revision 0 Unit 1 Page 1-7 Time post-LOCA 30 days Core Inventory Fraction Released in Containment for Alkalis Neutron Mass 1.008665 ainu (Ref. 1) Gap Release Phase 0.05 (Ref. 4, Tbl 1)

Core Thermal Power (100%) 1,850 MWt (Ref. 5) Early In-Vessel Phase 0.20 (Ref, 4, Tbl 1)

Core Thermal Power (102%) i,887 MWt (Ref. 6) -

1 Curie 3.70E+10 dis/sec (Ref. 1)

Avogadro's Number 6.022137E+23 atoms/mole (Ref. 2)

Isotope Atomic Mass Half lf Lif Activity Activity Specific Core Gap EIV Total (Ref. 1) (Ref. 2) t1 units. Half Ufe (Ref. 3) per Core Activity Inventory Release Release Release

_amu] . [secl ECi/MWIt [Ci/corel TCi/Qml) [qm/rcorel rmole) [mo0el fmole]

CS-132 131.906393 6.48 d 559,872 3.21 E-01 6.06E4-02 1.53E+05 3.97E-03 1.SOE-06 6.01E-06 7.52E-06 CS-133(1) w CS-134 133.906823 .2.065 a 65.121.840 7.09E+03 1.34E+07. 1.29E+03 1.03E+04 3.86E+00 1.54E+01 1.93E+01 CS-134M 133.906823 2.90 h 10,440 0.OOE+00 0.OOE+00 8.07E+06 0.OOE+00 0.OOE+00 0.OOE+00 0.OOE+00 CS-135 134.905770 2.30E+06 a 7.25E+13 2.51E-02 4.74E+01 1.15E-03 4.11E+04 1.52E+01 6.09E+01 7.61E+01 CS-135M 134.905770 . 53. m 3,180 0.OOE+00 0.OOE+O0 2.63E+07 0.OOE+00 0.OOE+00 0.OOE+00 0.OOE+00 CS-136 135.907340 13.16 d .1137,024 4.66E+02 8.79E+05 7.30E+04 1.20E+01 4.43E-03 1.77E-02 2.22E-02 CS-1 37 136.906770 30.07 a 9.48E+08 4.34E+03 .8.19E+06 8.69E+01 9.42E+04. 3.44E+01 1.38E+02 1.72E+02 CS-138 137.910800 32.2 m 1,932 0.OOE+00 0.OOE+00 4.23E+07 0:0E+00 O.OOE+00 O.OOE+00 0.OOE+00 CS-138M .137.910800 2.9 m 174 0.OOE+00 0.OOE+00 4.70E+08 0.00E+00. 0.OOE+00 0.OOE+00. 0.OOE+00 CS-139 138.912900 9.3 m 558 O.OOE+00 0.OOE+00 1.46E+08 0.OOE+00 .. OOE+00 0.OOE+O0 0.OOE+00

-CSfI140- .139-917110- -- l1 - m- ---- 64---- -. 0;00E -0;00E+00- .27E+09- -0,00E+O0 -. 0.OOE+00- .. 0.OOE+00_ _0.OOE+00._

2 0OOE+00 O.OOE+00 0.OOE+00 0.OOE+00 CS-141( ) 140.925775 24.9 s 24.9 0.OOE+00 O.OOE+00 3.22E+09 CS-142(2) 141.934440 1.8 s 1.8 0.OOE+00 0.OOE+00 4.42E+10 0.OOE+00 0.OOE+00 0.O0E+00 O.OOE+00 CS-143(2) 142.943105 1.78 s 1.78 0.OOE+00 0.OOE+00 4.43E+10 0.00E+00 0.OOE+00 0.OOE+00 0.OOE+00 2 7.76E+10 0.OOE+00 O.OOE+00 0.OOE+00 0.OOE+00 CSw144( ) 143.951770 1.01 s 1.01 0.OOE+00 0.OOE+00 CS-145(2) 144.960435 0.59 s 0.59 0.O0E+00 0.OOE+00 1.32.E+11 0.OOE+00 0.OOE+00 0.OOE+00 0.OOE+00 CS-146(2) 145.969100 0.322 s 0322 0.OOE+00 . 0.OOE+00 2.40E+11 0.OOE+00 0:00E+00 0.OOE+00 0.OOE+00 1 0.OOE+00 0.OOE+00 0.OOE+00 CS-147 2) 146.977765 0.227 s 0.227 0.OOE+00 0.OOE+00 3.38E+1 1 0.OOE+00 CS-148(2) 147.986430 0.15 s 0.15. 0.OOE+00 0.OOE-+00 5.08E+11 0.OOE+00 0.OOE+O0 0.0OE+00 0.OOE+00 Total 1.457E+05 53.5 214.0 267.6 Notes

1) Stable cesium is conservatively not accounted for in this analysis as it forms cesium hydroxide (CsOH).
2) Atomic mass not given forthese isotopes in Reference 1; therefore, a multiple of the neutron mass is added to the. atomic mass of CS-140.

References

1. Radiological Health Handbook, 1.970 (main body Reference 7.8)
2. Chart of the Nuclides, 15th Edition (main body Reference 7.9)
3. GE-NE-A41-00097-00-01, NMP2 24-month Cycle Fission Product Inventory Evaluation (main body Reference 7.7)
4. Regulatory Guide 1.183 (main body Reference 7.10.2)
5. NMP1 Site License (main body Reference 7.5)
6. Regulatory Guide 1.49 (main body Reference 7.10.1)

Cesium t=30d

Attachment 1 , Table 1-1 Equations: Core Iodine Inventory Determination (t=O Post-LOCA) Calculation No. H2 1C08*L Nine Mile Point Nuclear Station (Single Batch Core with 1400 EFPD and 34,000 MWd/ST CAVEX) Revision 0

-Unit I Page 1-8.

A I B = C D E I Time post-LOCA .0 sec 2 Neutron Mass 1.008665 aniu 3 Core Thermal Power (100%) 1850 MWt

4. Core Thermal Power (102%/.) =D3*1.02 MWI 5 1 Curie 37000000000 dis/sec 6 - Avogadro's Number . . . 6.022137E+23.. atoms/mole . .

Atomic Mass Half Life Hail Life sotope (Ref. 1) (Ref. 2) tHalf Life 8

9 lamul [sec]

10 1-127(2) 126.90447 stable 11 1-128 127.905838: 25. m =IF(D11='s",C1 1,IF(D1 1='m*,C1 160,IF(D1 1="h*,C1 1*6060,IF(D1 1='d",C11 *24*60*60,IF(Df IW=a",C1 1*365*24*60*60,'ra)))))

12 1-129 128.904987 15700000 a =IF(Da2=',C12,1FI2=',C12*60,IF(D12='h",C12*60°60,IF(D12='d',C12°24-60-60,IF(012="a',C12*365°24°60*60,"rda")))))

13 1-130 129.906676 12.36 h =_F(O13__"s"_C13_IF(D13="m"_C13*60,_F(D13=_'_"_C13*60*60,1F(D13=_d",C13*24*60"60,IF(Df3_a',C13365*24*60*60,_ra')))))

14 130M 129.906676 9 m =IF(D14_"s',C14,1F(D_14=_m_,C14*60,1F(D14=h_,C_4°60_60,1F(D_14="d',C_14°24*60_60,_F(D_14="a_,014365*24_60*60,_ra")))))

15 1-131 130.906127 8.02 d =IF. I5=*s',C15,1F(D15='"C15"60 IF(Dt5='h',C15*60*60,1FI5="d',C15*24*60"60,1F(D15='a",C15*365*24*60"60,'n/a")))))

16 1-132 131.907981 2.28 h =_F(016=_s',C16__F(016="m',C16*60,_F(D_6=__ h',C16_60_60,_F(D16=_d__C16*24_60_60_F(D_6=_a__Cl6*365*24*6_*60,_na_))))).

17 1-133 132.90775 20.8 .h =IF(D17="s';C17,IF(D17="m",C17*60,IF(D 17='h,C17ý60°60,1F(D17='d*,C17*2406060,FIF Df7='a*,Ct7°365*24*60*60,'n/a")))))

.18 1-133M 132.90775 9 s =IF(D18=-s',C18,1F(Dl1=',C18*60,1FI8='h',C18*60*60,1F(D18='d",Cl1824*60*60,1F(D18='a',Cf8*365°24*60*60,'n/a')))))

19 1-134 133.90985 52.6 m = F(01g='s" C19,IF(Dlg=-"m",Clg*60,IF(Dlg='hC19*60*60,1F(Dfg=*d',C19°24*60°60,IF(Df9='a',C19°365*24*60*60;*nla)))

I. 1 ?*ZM

- 11"/I-, -

m rrn,..rn.mnn . . aannn..


II'IUZtP='-- fi .L+L'U II'IUo+L= ITI _L+t/U DU.II'IULLI==

r.n.ne

  • er~

n _t*LU [*J II*UII-IL.ILU-*

U

  • 'nn

-a - ^ iIIn..*, flf*ftOAffff

-,M~

1I*'

.21 1-135 134.91002 6.57 h 221 1-136 .19.602 1.3i9 m . =IF(022='s",C22,IF(D22=-m",C22*60,IF(D22=' 2='d',C22*24*60-60,IF(D22='a',C22*365°24*60*60, n/a")))))

231 M 135.91474 47 s =IF(D23="s*,C23,IF(D23="m",C23*60,IF(D23=' 3='d",C23*24*60*60,IF(D23-"a',C23*365*24*60*60,'n/a*)))))

  • 4 =B23.*-1 °D52 24.5 S 25, 1-138(") =B24+1"D$02 6.5 s =_F(D25=_s"'c25__F(D25=-m',025*60,1FD25='hC25*60_60,_F(D25=_d__c25_24*60*60,_FD25='a',C25*365*24*60*60'"na')))))

26 . 1-139"'1 =B25+1*D$2 2.3 s = _F(D__26=_"s"_C26,1F(D26=_'m"026*60_IF(D26="_h"026"60"60_IF(D26='dO26*24_60*60_IF(_26_a"_C26365*24*60*60,"r__)))))

,27 1-1400") =B26+1 *D$2 0.86 s = F(D27=*s",C .27,1F(D27='m"027*60,IF(D27='h"027*60*60,lFD27=_dO27"24*60"60,1FD27="a',O27*365*24*60_60,_n/a")))))

28 1-141(') -1B27+1*VD$2 0.45 s =_F(D28=_s__C28__F(D28=_'m"__28*6_ ' _FD28=_'h-2_*6_6_FD28=_'d-_28*24_6_*6__FD28="a'_C28"365_24_60"60__n/a")))))

.29 1-142("ý =B28+1 lD$2 0.2 s =IF(D29=*s"29,IF(D29-"m*C29*60F(D29="h,29*60*60'*F(D29='d,2*24*606*FD2*=-aC29365*24660rna-)))

30 1-143(')13 =B29+1*D$2 _I_=IF(D.30=-_s",C30.IF(D30=-"m'_C30*60,_F(D3_-_h_,C,30*60*60,_IF(D30_"d_",030*24"60"60,_F(D30='a_,O30*36524*60*60,"ra_)))))

31 1 144( 13-30+1*[D$2 =1F(D31='s*,C31 F(D3t ="m*.C31 *65*2F " 6 F 1 3 61- 1 4*6006+_"n/a-)))))

32 .

33 Notes .. . .

34 1) Atomic mass not given for these isotopes in Reference 1; therefore, a multiple of the neutron mass is added to the atomic mass o11-136M.

35 2) Since 1-127 is a stable.element, its quantity is not presented in Reference 3. The mass of 1-127 is assumed to be 30% of the mass of 1-129.

36 3) Half-life information not available in Reference 2.

37 38.References 39 .1. Radiological Health Handbook, 1970 (main body Reference 7.8) 40 2. Chart of the Nuclides, 15th Edition (main body Reference 7.9) 41 3. GE-NE-A41 -0097-00-01, NMP2 24-month Cycle Fission Product Inventory Evaluation (main body Reference 7.7) 42 4. Regulatory Guide 1.183 (main body Reference 7.10.2) 43 5. NMP1 Site Ucense (main body Reference 7.5) 44 6. Regulatory Guide 1.49 (main body Reference 7.10.1)

Iodine t--O Eqs

Attachment I Table 1-1 Equations: Core Iodine Inventory Determination (t--O Post-LOCA) Calculation No. H21C08t "C Nine Mile Point Nuclear Station (Single Batch Core with 1400 EFPD and 34,000 MWd/ST CAVEX) Revision 0 Unit I Page 1-9 F . NT I J LK Invento/rXFraction Released in Containment for Haloqens C.__ore _

2 (Ref. 1) Gap Release Phase 0.05 (Ref. 4, Thl 1) 3 (Ref. 5) Early In-Vessel Phase ' 0.25 (Ret. 4, TbI 1) 4 (Ref. 6) 5 (Ref. 1).

  • -6 (Ref. 2) .

7 . ....

Activity Activity Specific Core Gap EIV Total (Ref. 3) per Core Activity Inventory. Release Release Release 9 [Ci/MWtl [Ci/core] 1Ci/Qml tam/corel *molel rmolel Imolel 10 J =0.3*J12 =0.3"K12 -=JIO+K1O 11 428 =F11*D$4 =LN(2)*D$6/(D$5B*1.EE 1) =G11/H11 =1I*J$2/11- =I11*J$3/Bl1 --J11+K1I 12 0.0013 =F12*D$4 =LN(2)*D$6/ D$5°B12*E12) =G121H12 =112*1521B12 =112*J$3/B12 =J12+K12 13 1090 =F13*D$4 =LN(2)*D$6/(0$5*B13*E13) =G13/H13 =113*J$2/B13 =113*J$3/813 --J13+K13 14 423 =F14*D$4 =LN(2)*D$61(D$5"B14E14) =G141H14 *=114*J$2/B14 =114*J$31B14 =.J14+K14 15 27100 =F15*D$4 =LN(2)D$6/LD$5*B5E15) =G15/H15 =115*J$2/B15 =I15-J$3/B15 -J15+K15 16 39200 =F16*D$4 =LN(2)*D$6/(D$5*B16*Et6) =G16/H16 =118"J$2/S16 =I16;J$3/B16 --J16+K16 17 55100 =F17*D$4 =LN(2)*D$6/(D$5*B1r7E17) =G17/H17 =117*J$21B17 =I17*J$3/B17 --J1.7+K17 18 1700 =F18*D$4 =LN(2)*D$6/(0$5"B18*E18) =G18/H18 =118*J$2/B18 =118J$3/B18 --J18+K18 19 60300 =F19*D$4 =LN(2)-D$6/(D$5*B19°Et9) =G19/H19 =I19*J$2/B19 =119J$3/B19 --J19+K19 20 6000 =F20*D$4 =LN(2)*D$61(D$5*B20*E20) =G20/1-120 =120*J$21B20 =120J$3/B20 --J20+K20 21 51600 =F21*D$4 =LN(2 *D$6/(D$5*B21*E21) =G21/1-121 =121MJ$2/B2l1--- =-121'J$3/B21--V -J21+K2.1.-

22 24400 =F22"0$4 =LN(2)D$6/(O($5*B22*E22) =G22/H22 =122°J$2B22 =122*J$3/B22 =J22+K22 23 14300 =F23*D$4 =LN(2)*D$6/(D$5*S23'E23) =G23/H23 =123*J$2/B23 =123*J$3/B23 --J23+K23 24 23800 =F24*D$4 =LN(2)-D$6/(D$50,24*E24) =G24/1H24 =124*J$2/B24 =I24'J$31B24 =J24+K24 25 11800 =F25*D$4 =LN(2)*D$6/(D$5°B25*E25) =G25/1H25 =125*J$2/B25 =125"J$3/B25 =J25+K25 26 5220 =F26*D$4 =LN(2)*D$6/(D$5"B26*E26) =G26/H26 =126J$21B26 =126*J$3/B26 --J26+K26 27 1470 =F27"0$4 =LN(2)*D$6/(D$5"B27*E27) =G27/H27 =127*J$2.B27 =127*J$3/B27 --J27+K27 28 243 =F28*D$4 =LN(2)*D$6/(D$5*B28°E28) =G28/1-128 =128*J$2J'B28 =128*J$31B28 --J28+K28 29 35.3 =F29*D$4 =LN(2)-D$6/(ID$5B29*E29) =G29/H29 =129*J$2JB29 =129J$3/B29 =J29+K29 30 2.33 =F30*D$4

.3110.19 =F31*D$4 _SU__1__3__ "_"

3_2,' Total =SUMf110:131) =SUM(J10:J31) =SUM(K1:K31) =SUM(L10:L31) 351 L391 40j 42 .

N4

- Iodine t--O Eqs Table 1-2 Equations: Core Cesium Inventory Determination (t=O Post-LOCA) Calculation No. H21C08-9 Nine Mile Point Nuclear Station (Single Batch Core with 1400 EFPD and 34,000 MWdIST CAVEX) Revision 0 Unit 1 Page 1-10 A .I B C 0 E 1 Time post-LOCA 0. sec 2 Neutron Mass 1.008665 amu 3 Core Thermal Power (100%) 1850 MWt 4 Core Thermal Power (102%) =D3*1.02 MWt 5 1 Curie 37000000000 dis/sec 6 .-

Avogadro'sNumber - 6.022137E+23. atomslmole 7 .-

Isotope Atomic Mass Half Ufe t units Half Lfe (Ref. 1) (Ref. 2) 8

.9 tamul [sec]

10 CS-132 131.906393 6.48 di =IF(D10=',C10 IF(D10=°m",C10*60,IF(D10="h*,10*60*60,IF(Dl1=°d,,C10"24*60*60,1F(D10='a',C10°365*24*60*60,"n/a*)))))

11 CS-133 __)

12 CS-134 133.906823 2.065 a =IF(D12='sC12,IF(D12='m",C12*60,IF(D12="h*,C12"60*60,1F(012='d*,C12"24'60*60,IF(D12='a',C12*365*24*60;60,'n/a ))))

13 CS-134M 133.906823 2.9 h . =IF(D13=*s",C13,1F(D13='m',C13*60,1F(D13=*h",C13*60*60,1F(D13="d',C13*24*60*60tlF(D13='a',C13*365*24*60"60,'n/a")))))

14 CS-135 134.90577 2300000. a =IF(D14=*sC14,IF(D14='mC14*60F(D14='hC14*6060F(D14=-dC14;24-606,F(D14=-a",C14*365*24*6060,'n/a'))))

15 CS-1 35M 134.90577 53 *- m =IF(D15='sC15'IF(DI5='m*C15*60F(DI5="h',C15*60*60F(D15="dC15*24*6060F(D15='aC15*365*24*60*60,"n/a'))))

16 CS-136 135.90734 13.16 d * =F(D 6='s',C16,F(D1 6=*mcC6*60i1F(D16=-h"C16*60*60F(D16=d"'C16*24*6060'*F(D16='a*C16°365*24*60*60'nra")))

17 CS-137 136.90677 30.07 a =.F(D17=,s" 7, F(D17="m" C17"60 F(D17='h",C17r60"60,IF(D17='d" C17*24*60*60,1F(D17="a*,C17*365"24*60*60,*n/a°))))

18 CS-138 137.9108 32.2 m =JF(16= sýC18 ]F(D18=*m' C18*60r*F(D18=-h',C18ý6060F(D18='d",C18*24*6060F(D18='a',C18*365*24*6060r'na")))

-19.CSz1 38M- 137:9108--- 2;9- -.... in --- =IF(D19=-s,!C1 9,F(D19=m,.C1 9*60,IF(Dl9='h-,C19!60*660,lF(D19='d-,Ci9 *24-*60-*60(D-1.9=aC-365*24*60*60n/a"))))

20 CS-139 138.9129 9.3 m =IF(D20='S',C20,IF(D20-'m' C20"60 IF(D20='h" C20"60"60,IF(D20=*d',C20"24*60*60 IF(D20=*a*,C20"365*24"60*60,'n/a"))))

21 CS-140 139.91711 1.06 m =IF(D21='s',C21 *F(D21='m-,C21*60F(D21='h",C21*6060F(D21=-d-rC21.24*60*60'*F(D21="a*C21*365*24*60*60-n/a*))))

(2) 22 . CS-141 =B21+1'D$2 24.9 s =IF(D22='sC22,IF(D22=*m'*C22°60,IF(D22="h'*C22"60*60,IF(D22='d",C22*24"60°60,IF(D22='a" C22*365*24"60*60,'n/a")))))

23 "CS-1 42(2) =B22+D$2 1.8 s =IF(D23=*s',C23,IF(D23=*m' C23"60 IF(D23="h",C23*60°60,lF(D23='d*,C23*24°60*60,lF(D23='aC23*365°24ý60"60,'n/a")))))

24 CS-143(2) =B23+1*D$2 . 1.78 s =IF(D24='s*,C24,IF(D24='m" C24*60,1F(D24="h",C24*60*60,IF(D24='d" C24*24"60"60,IF(D24='a" C24*365"24"60*60,'n/a'))))

25 CS-144(2) =B24+1 *D$2 1.01 s =IF(D25='s',C25,1F(D25='m",C25"60 IF(D25='h',C25"60-60,1F(D25='d" C25*24"60"60*IF(D25='a',C25*365*24*60*60,'/a")))))

26 CS-145(2) =B25+1*D$2 0.59. S =IF D26="s' C26,IF D26='m ,C26"60,1F(D26='h',C26"60*60,IF(D26='d",C26"24°60*60 IF(D26="a",C26*365*24*60*60'nl/a')))))

27 CS-146)=3 =B26+1 D$2 0:322 s =IF(D27=5s*C27*F(D27="m*C27*6*IF(D27='h*C27*6*6*F(D27='d*C27*24*6*6*F(D27="a*C27*365*24*6*6*'n/a')))

28 CS-147(2) =B27+1D$2 0.227 s =]F(D28=S'C28,F(D28=*m",C28*60F(D28=*h',C28*60*60F(D28='dC28*24*60*60F(D28='aC28*365*24*6060n/a')))))

29 cs-148(2) =B28+1*D$2 0.15 s =IF(D29='ssC29,1F(D29=*m" C29"60,IF(D29='h',C29°60*60 IF(D29='d',C29"24-60"60,IF(D29='a',C29°365*24"60*60,'n/a')))))

30 31 Notes-"

32 2). Stable 33 13 Atomic cesium mass not is conse-0a0vely given for thesenot accounted isotopes for in this analysis as it forms cesium hydroxdde (CsOH).

in Reference 1; therefore, a multiple of the neutron mass is added to the atomic mass of.CS-1 40.

35 References a 3611. Radiological Health Handbook, 1970 (main body Reference 7.8) 37 2. Chart of the Nuclides, 15th Edition (main body Reference 7.9) 38 3. GE-NE7A41-00097-00-O1, NMP2 24-month Cycle Fission Product Inventory Evaluation (main body Reference 7.7) 39 4. Regulatory Guide 1.183 (main body Reference 7.10.2) 40 5. NMP1 Site Ucense (main body Reference 7.5).

41 6. Regulatory Guide 1.49 (main body Reference 7.10.1)

Cesium t=O Eqs

.Attachment 1 Table 1-2 Equations: Core Cesium Inventory Determination (t--O Post-LOCA) Calculation No. H21 CO8 Revision 0 Nine Mile Point Nuclear Station (Single Batch Core with 1400 EFPD and 34,000 MWd/ST CAVEX)

Unit 1 Page 1-11 F G I I I J K L 1 Core Inventorv Fraction Released in Containment forALKals 2 (Ref. 1) Gap Release Phase* 0.05 4, Tb 1)

_(Ref. _

3 (Ref. 5) Eariy In-Vessel Phase 0.2 (Ret. 4, Tbh1) 4 (Ref. 6) 5 (Refa. 1) 6 (Ref:2).

7.

Activity . Activity . Specific Core Gap EIV Total (Ret. 3) per Core Activity ,Inventory Release Release Release 9 [CVMWt] [Ci/corel [CVqml [ram/corel [molel [molel (m01e]

10 7.96 =F1O*D$4 =LN(2)*D$6I(D$5*810*El0) ---

G10/H1O =I10*J$2/B10 =110*J$3/B1 =J1O+K1O 11 " " . -

12 7290 =F12*D$4 =LN(2 *D$61 D$5*B12E1"2) =G121H12 =1"2*J$2/B12 =112*J$3/B12 =J12+K12 13 1700 =F13*D$4 =LN(2)!D$6/(D$5*B13*E13) =G13/H13 =113*J$2/B13 =113*J$3/B13 =J13+K13.

14 0.0251 =Fl4°D$4 =LN(2)*D$6/(D$5°B14-E14) =G14/H14 =114*J$2fB14 =114*J$3/B14 =J14+K14

15. 881 =F15*D$4 . =LN(2)-D$6/(D$56B15-E15) =G15/H15 =115*J$2/B15 =1515-31 =J15+K15 16 2280 =F16°D$4 =LN(2)°D$6/(D$5B16E16) ---G16/H16 =I16"J$21B16 =116°J$31B16 =J16+K16 17 4350 =F17*D$4 =LN(2)*D$6/(D$5*817*E17) --G17/H17 =117*J$2fB17 =117*J$3/Bl7 =J17+K17 18 50000 =F18D$4 =LN(2)D$6/(D$5B1 8E1 8) =G118/H18 =I18*J$2/138 =118"J$3/B1I8 =J18+K18

-19* 2390....- =F19*D$4---...- =LN(2)*D$6/i(D$5°Bt9*Et9).-- =G19/H9--... =..119*J$2/B19-- =119*J$3/B19--- =J19+K19. .

.20 47300 =F20"D$4 -LN(2)'D$6/(D$5B20"E20) =G20/H20 =,20"J$2/B20 =120"J$3/B20 =J20+K20 21 42600 =F21*D$4 =LN(2)-D$6/(D$5-B21*E21) =G21/H21 =I21*J$2/B21 =I21"J$3/B21 =J21+K21 22 31600 =F22*D$4 =LN(2)*D$6/(D$5*822*22) =G22/H22 =122*J$2/B22 -122*J$3/B22 =J22+K22 23 19100 =F23*D$4 =LN(2)-D$6/(D$5*B23*E23) =G23/H23 =I23"J$2/B23 =I23*J$3/B23 =J23+K23 24 9330 =F24°D$4 =LN(2)-D$6/(D$5-B24"E24) =G24/1H24 =124,J$2/B24 =I24*J$31B24" =J24+K24 25 2700 =F25*0$4 =LN(2)*D$6/(D$5*B25"E25) --G25/H25. =I25*J$21B25 =125*J$3/B25 -J25+K25 26 679 =F26°D$4 =LN(2_jD$6/(D$5*826*E26) --G261H26 =126*J$2/B26 =126*J$3[B26 --J26+K26 27 99.6 =F27*D$4 =LN(2)-D$6/(D$5*B27"E27) =G27/H27 =127-J$2/B27. =127"J$3/B27 --J27+K27 28 16.5 =F28*D$4' =LN(2)*D$6/(D$5*B28*E2*) =G28/H28 =128*J$2/B28 =128J$31B.28 =J28+K28 29 1.07 =F29*D$4 =LN(2)-D$6/(D$5-B29"E29) =G29/1-129 =129*J$2/B29 =I29"J$3/B29 =J29+K29 30 Total =SUM(I10:129) =SUM(J1O:J29) =SUM(K1O:K29) =SUM(L-0:129) 31 32, 331 341 351 A6 37

.38 39 40 41 Cesium t--O Eqs Table 1-3 Eqs: Core Iodine Inventory Determination (t=30 days Post-LOCA) Calculation No. H21CO8f Nine Mile Point Nuclear Station (Single Batch Core with 1400 EFPD and 34,000 MWd/ST CAVEX) Revision 0 Unit 1 Page 1-12 A BI C D E 1 Time post-LOCA 30 days 2 Neutron Mass 1.008665 amu 3 Core Thermal Power (100%) 1850 MWI 4 Core Thermal Power (1020/) =D3" 1.02 MWt 5 1Curie 37000000000 dis/sec 6 Avogadro's Number . . 6;022137E+23 atoms/mole .

7 Atomic Mass Hall ULe Half Ute (Ref. 1) (Ref. 2) 8 9 Iamu_ Isecl 10I 1-127('ý 126.90447 stable 11 1-128 127.905838 25. m =IF(D1 l="sC1 iF(Dl 1='m',C1 1*60,IF(D1 l='h',C11 *6060.IF(Dl 1='d',C1 *24*60"60,IF(D 1l='a',C1 1.*365*24*60*60,'nra")))))

12 1-129 128.904987 15700000 a =IFD_12='s',C12,1F(D_2=_m_,C12*60,1FD12='h',C12*60"60,1F(D_2='d_,C12*24"60°60,_FID12-a';C12*365*24*60*60,"n/a_)))))

13 1-130 129.906676 12.36 h =IF(D13='S.,Cl3,1F(D13__ 'm',Cl3*60,_F(D13=hCl3*60_60,IF(D13=_'d',C13_24*60*60,1FDID3=_a',C13*365*24_60*60,'n/a')))))

14 1-130M 129.906676 9 m =IF(D14_ s" _14,F(DI4_"m" _14_60, _ IF(D14_'h" C14*60*60,1F(D14='d',C_14*24*60*60,1FID4="a'C1_4*365*24_60_60,_n/a')))))

15 1-131 130.906127 8.02 d =_FD_1_5--sC5,1_FI15=_m",C_15_60,1_F(D_1_5=-hC15*60*60,1F(D_1_5=-d-C15*24_6060,F(DI5='aCI5_365_24_60_6_'_n/a-)))))

16 1-132 131.907981 2.28 h =1_F__ID16__s C6,1_FD_1_6=_'m" C16*60,1_FDI_6=-"hC1_6*6_*6__F(D16='d_ C16*24_6_6_FID16=_a_'_C6_365_24_6_6_'n/a-)))

17 1-133 18132.90775 132.9775 1-13M 20.8 5926 hs =IF(D17='s",C17_IF(D17="m"C17"60_IF(D17='h"_C17*60*60,1F(D17='.d_,C17*24*60*60,1F(D17='a_,C17*365*24°60_60,_n/a')))))

=IFD18='s',C18,1IFD18='m ",C16*60,1FDID 8='h*,C 18°60*60,1F(D 18='d',C18*24*60*60,1F(D 18='a',C 18*365*24°60*60,"n/a')))

18 1-133M 132.90775 9 ___ s - =IF ____________________________________________))______

19 1-134 133.90985 52.6 m _=_F(D19_'s__C19__F(D19=-__'mC19*6__FD19=-_h__C19_6__ 6 _F(D19=_d'_C19*24_6_6__FD19=_a'_C19_365_24*6_*6__na_)_)))

_20. -- 1n134M. 133.90985L 3.7. m =_F(D2_=-_s-_C2__F(D2_ _mC2__F(_2_=-_hC2_*6_6 d

_F(D2_ _C2__24_6_*6__F(D2__a'_C2_365*24_6_6n/a')))))

21 1-135 134.91002 6.57 h =IF(D21='s",C21 ,IF(D21=*m",C21*60,IF(D21='h",C21*60*60,IF(D21="d",C21*24'60"60,1F(D21?"a',C21 365-24*60"60;-n/a')))))-

  • 22 1-136 135.91474. 1.39 m =_FD22="s_22 __F(D22=_m_'_22*60__F(D22=_h__22_60*6_FD22=_d_22*24*6_*6_FD22=a 22*365*24_6_*6_n/a_))_))

23 1-136M 135.91474 47. s =IF(D23="S"_C23_IF(D23='m"_C23"60_IF(D23='h_,C23*60*60,_F(D23=_"d"C23*24*60*60,1F(D23_'a',C23*365*24*60*60,"_a')))))

24 F-137(' =B23+1.D$2 24.5 s =_F(D24="s"_24__F(D24_"m'__c24__F(D24__h'_c24*6__6_FD24 __d'__24*24*6_*6 __F(D24

__aC24*365*24_6_*6__n/a_)))))

25 1-138() =B24+1°D$2 6.5 s =IFD25='s',C25,1F(D25="m',C25*60,IF(D25='h',C25*60*60,IF(D25='d"025-24*60*60,IF(D25=_"a" C25"365*24°6.0*60,_n/a_)))))

26 1-139V1) =B25+1*D$2. 2.3

.s =_FD26__"s',C26,_FD26=__m__C26_60_FD26='h',C26*60°60_F(D26="d"'C26_24____ _'_FD26="a_26_365_24_60_60_'ra_)))))

27 1-140() =B26+1*D$2 0.86 s =_FD27=__sC27'_F(D27='m"'_27*60,_FD27=_h',C27_60*60,_F(027=_d'C27*24*60*6_'_F(D27='aC27*365*24*60_6,n/a')))))

28 1-141 (') =B27+1"D$2 0.45 s =_FD28=_s__28_FD28=_ m _28_0_FD28=_h_ 28_60*60_F(D28=_d_ 28*24_6_6_FD28=_a _28_365*24_606'n/a')_)_)

29 1-142") =B28+1*D$2 0.2 s =_F(D2_ =__'__29__F(D2_=_m_'C29*__ '_F(D29=-__h__C29*6__6_ __F(D29=_'d"_C29*24_6_*6_

_ _FD29=_a_

__ _9*365*24.6__6_na_)))))

30 1-143(l)(1) =B29+1*D$2 "_=IFD30_s",C30,1F(D3

_ 0_m_",C30*60,1FD30='h',G3_*60_60,1F(D30=_'d"C30*24"60,*60,1F(D30=_"_C30*365*24"60"60,_n/a')))))

31 1-144"') =B30+1*D$2 =IF(D31=_s',C31_IF(D31='_"_C31_60__F(D_31='h__C31_6_*6__FD31=_d'_C31_24_6__6__ FD31=_a__ 31*365_24_6_*6_n/a'))_))

32 33 Notes _

34 1) Atomic mass not given for these isotopes in Reference 1 ;therefore, a multiple of the neutron mass is added to the atomic mass of 1-136M.

35 2) Since 1-127 is a stable element, its quantity is not presented in Reference 3. The mass of 1-127 is assumed to be 309%of the mass 011-129.

36 3) Half-life Information not available in Reference 2.

.37

30. Referenc~e 39 1. Radiological Health Handbook, 1970 (main body Reference 7.8) 40 2. Chart of the Nuclides, 15th Edition (main body Reference 7.9) 41 3. GE-NE-A41-00097-OD-01, NMP2 24-month Cycle Fission Product Inventory Evaluation (main body Reference 7.7) 42 4. Regulatory Guide 1.183 (main body Reference 7.10.2) 43 5. NMP1 Site Ucense (main body Reference 7.5).

44 6. Regulatory Guide 1.49 (main body Reference 7.10.1)

Iodine t=30d Eqs Table 1-3 Eqs: Core Iodine Inventory Determination (t=30 days Post-LOCA) Calculation No. H21C08X Nine Mile Point Nuclear Station (Single Batch Core with 1400 EFPD and 34,000 MWd/ST CAVEX) Revision 0 Unit 1 Page 1-13 F- G H I I I i K L 1 ._Core Inventory Fraction Released in Containment for Hagloaens 2 (Ref. 1) Gap Release Phase 0.05 (Ref. 4, Thl 1) 3 (Ret. 5) Early In-Vessel Phase '0.25 '(Ref. 4, Thl 1) 4 (Ref.6) ....

5 (Ref. 1) -

6 - (R ef. 2)-. .. . . ... .. .. . .. . ... ., . .

7 Activity Activity Specific Core Gap EIV Total (Ref. 3) per Core Activity Inventory Release Release Release 8

9 [CVMWt1 [Ci/corel [CViqml [qm/corel rmolel [molel [molel 10 =0.3VJ12 =0.3*K12 =J1O+K1o 11 0 =Fl1*D$4 =LN(2)*D$6/(D$5*Bt 1*El1) =G11/HII =111"J$2/B 1I =I11*J$3/B11 =JI1+KI1 12 0.0013 =F12*D$4 =LN(2 )D$6/(D$5*B12*E12) =G12/H12 =112"J$21B12 =I12J$3/B12 =J-12+K12 13 0.00000000000000318 =F13-D$4 =LN(2)ýD$6/(D$5-B13*E13) =G13/H13 -113J$2/B13 =113*J$3/B13 =J13+K13 14 0 =F14*D$4 =LN(2)*D$6/(DS5*B14*E14) =G14/H14 =114"J$2/B14 =I14'J$3/B14 =J14+K14 15 2100 =F15*D$4 =LN(2)*D$6/(D$5*B15*E15) =G15/H15 =115"J$2/B15 =I15°J$3/B15 =J15+K15 16 67.1 =F16*D$4 =LN(2)*D$6/(D$5*B16*E16) =G16/H16 . =116*J$2/B16 =I16J$3/B16 =J16+K16 17 0.00000214 . =F17*D$4 =LN(2)0$6/(l$5*B17E17) =G17/Ht7 =I17*J$2/B17 =117*J$3/B17 =J17+K17 18 0 =F18*D$4 =LN.2)*D$61/D$5*t8E18) =G18/H18 =118*J$21Bt8 =118°J$3/B18 =J18+K18 19 0 =F19*D$4 =LN(2)D$6/(D$5*B19*E19) =G19/H19 =119"J$21B19 =I19*J$3/B19 -=J19+K19 120 )0 =F20*D$4 =LN(2)*0$6/(D$5*B20*E20) =G20/H20 =I20*J$2/B20 =120J$3/B20 =J20+K20 21 __=F21*D$4

_0 =LN(2)*D$61(D$5*B21*E21) =G21/H21 =I21*J$21/21 =121*J$3/B21 =J21+K21.

22 0 =F22*D$4 =LN(2)*D$6/(D$5-B22*E22) =G221H22 =122*J$2B22 =122J$3/B22 =J22+K22 23 0 =F23*D$4 =LN(2)*D$6/(D$S5*B23*E23) =G23/1H23 =123*J$2/B23 =I23*J$3/B23 =J23+K23 24 0 =F24*D$4 =LN(2)*D$6/(D$5*B24*E24) =G24/1H24 =124*J$2/B24 =I24*J$3/B24 =J24+K24 25 0 =F25*D$4 =LN(2)*D$6/(D$5*B25*E25) =G25IH25 =125*J$2/1B25 =125*J$3/B25 =J25+K25 26 10 -=F26*D$4 =LN(2)*D$6/ID$5*B26*E26) =G26/H26 =i26*J$2/B26 =I26*J$3/B26 --J26+K26 2710 =F27*D$4 =LN2)TD$6/(D$5*B27"E27) =G27/H27. =I27J$2/B27 =127*J$3/B27 =J27+K27 28 0 =F28*D$4 =LN(2)*D$6/(D$5*B28*E28) =G28/H28 =128*J$2/B28 =128*J$3/1B28 -J28+K28 29 0 .. =F29*D$4 =LN(2)*D$6/(D$55B29*E29) =G29i1-129 =129*J$2/B29 =129*J$3/B29 =J29+K29 30 0 =F301D$4

31. =F31 °054 3.2 ... Total =SUM(I10:131) -iSUJM(J10:J31) =-SUM(K10:K31) =SUM(L10:L31) 34ý 35 36 37 ..

38 39 40 41, ,

42" 43 44 Iodine t=30d Eqs

e - Table 1-4 Eqs: Core Cesium Inventory Determination (t=30 days Post-LOCA) Calculation'No. H21C08O/

Nine Mile Point Nuclear Station (Single Batch Core with 1400 EFPD and 34,000 MWd/ST CAVEX) Revision 0 Unit 1 Page 1-14.

A I C D E 1 Time post-LOCA .30 days 2 Neutron Mass 1.008665 amu 3 Core Thermal Power (100%) 1850 MWI 4 Core Thermal Power (102%) =D3"1.02 MWt 5 1 Curie 37000000000 dls/sec 6 Avogadro'sNumber . .... 6;022137E+23- atoms/mole . . .

7 Atomic-Mass Half Life sotope (Ref. 1) (Ref. 2) t 8 .1 9 [famul Isecl 10 CS-132 131.906393 6.48 d =IF(D10='s'CCl0,IF(D1 0='m'C10"60,IF(D10='h",C10660,IF(D10='d',C1l024'60*60,IF(D10=*a',Ct 0365°24°60"60'n/a')))))

11 CS-133(') "___"____

12 CS-134 13.3.906823 2.065 a =IFI2=*sC12,F(D12='m"'C12*60F(D12='h',C12*60*60F(D12='d'C12*24*60*60F(D12="a"'C12*365*24*6060,n/a')))))

13 CS-134M 133.906823 2.9 h =_F_13=_s__C13__FD13='m'_C13_6__FD13=_C13_0*_FD13=_dC13_24_6 _F(D13=_a'_C13_365_246_*6_'_na_))_))

14 CS-135 134.90577 -2300000 a =_F(D14='s__C14__F(D14=_m__C14_6___F(D14=_h__ C14*6_*6__ _F(D14=_a__C14_365_24_6__6___n/a_)_

_F(D14=_d__C14*24*6_*6__

15 CS-135M 134.90577 53 m =IF(D15='s",C15,1F(D15="m",C15*60,IF(D15=*h',C15*60*50,IF(D15="d" C15*24*60*50,1F(D15="a",C15*365*24"60*60,"n/a')))))

16 CS-136 135.90734 13.16 d _=_F(D1_=-'_C16_IFD16='m__ C1__F(D16=_h'_C16_6_F(D16='d'_C16_24*6_*6__F(D16=_a'_C16*365_24_6__6_n/a_)))

17 CS-137 136.90677 30.07 a =IF(D17='s',C17,IF(D17=*m',Cl7*60,IF(D17='h',C17°60*60,IF(D17='d*,C1724*60*60,IF(D17='a*,C17*365"24*60*60,'n/a")))))

18 CS-138 137.9108 32.2 m =IF(Di8=_s_,C18_IFD18="m",C18*60,_F(D18=_'h',C18*50*60,_F(DtS='d"_C18*24"60*60,1F(D_8="a',C18*365"2460*60,"n/a"))_))

--CS-138M- 137:9108- - - 2:9-- in--.. =_F(D19=_s-g1;_F(D19=_m_-_C-9-_6_;_F(D19=_-_C19_6_-_6_F(D19='d_-_C19-_24-_6_6_F-(D_19=_a--'C19365--24__-*_6_n/a_-))))).

20 CS-139 138.9129 9.3 m 4=F(D20='s',C20,IF(D20='m',C20*60,IF(D20='h',C20.606**IF(D20='d',C20-24*60*60,IF(D20='a',C20*365*24*60*60,'n/a')))))

21 CS-140 139.91711 1.06 m =IF(D21="s',C21,IF(D21="m,*C21*60,IF(D21="h',C21*60*60,IF(D21="d',C21*24*60"60,IF(D21="a",C21*365*24*60*60,"n/a")))))

22 CS-141(2) =B21+1"D$2 24.9' s =.F(D22=-s*C22,]F(D22='m-*C2260F(D22=*h*C22*60*60,IF(D22='d-,C22*24*60 F(D22='a',C22*365'24*60*60'n/a-)))))

23 CS-142(2) =B22+1"D$2 1.8 s =IF(D23=°s",C23,1F(D23='m',C23°60,IF(023='h'1C23*60*60 IF(D23=d',C2324*60*60,IF(023=-a',C23*365*24*60*60,'n/a')))))

24 CS-14 3 (m =B23+1*D$2 1.78 s =IF(D24="sC24_IF(D24='m"_C24*60_lFD24='hC24"50*60,1F(D24='d"_C24_24_60.*60_IF(D24="a"_C24*365*24*60*50_"_a'))))_)

25 CS-1442) =B24+1D$2 1.01 s =_F(D25=_s__25__FD25=_m__25_6_FD25=_ h_25*6_*6__F(D25=_ d _25_24_6_6_F _D25=_a"C25*365*24_60*50_a_))))),

26 CS-145(2) =B25+l*D$2 0.59 s =IF D26='s',C26,lFD26='m',C26*60,IF D26='h',C2*60*60*IF D26=*d',C26°2460*6,IF(D26=*a*C26*365*246*560rn/a')))))

27 CS-146(2) =B26+1*D$2 0.322 s =lF(D27=_s_,C27_lFD27="m",C27_60,1F(D27="h__C27*60*60__FD27=_d',C27*24*60*60,1F(D27="a',C27*365*24*50*60,"n/a')))))

28 CS-147(2) =B27+1D$2 0.227 s =IF5D28='s",C28,IF(D28='m",C28*60,1F(D28='h*,C28"60*60,1F(D28="d",C28*24"60"60,1F(D28=",C28*365"24*60*60,"n/a")))))

29 CS-148(2) 30

=B28+1"D$2 0.15 a =IF_29=_s"_C29,_F(D29=__'mC29"60_IF(D29="h"_C29_50"_IF(D29=_'d'_C29_24*60_60,1F(D29=_'a"C29*365*24_60*5._0_'n/a')))))

31 Notes. I_. _ . ..

32 1) Stable cesium is conservatively not accounted for in this analysis as it forms cesium hydroxide (CsOH).

33 2) Atomic mass not given for these isotopes in Reference 1; therefore, a multiple of the neutron mass is added to the atomic mass of CS-140.

34 36 1. Radiological Health Handbook, 1970 (main body Reference 7.8) 37 2. Chart of the Nuclides, 15th Edition (main body Reference 7.9) 38 3. GE-NE-A41-00097-00-01., NMP2 24-month Cycle Fission Product Inventory Evaluation (main body Reference 7.7) 39 4. Regulatory Guide 1.183 (main body Reference 7.10.2) 40 5. NMP1 Site Ucense (main body Reference 7.5) 41 6. Regulatory Guide 1.49 (main body Reference 7.10.1)

Cesium t=30d Eqs Table 1-4 Eqs: Core Cesium Inventory Determination (t=30 days Post-LOCA) Calculatioh No. H21C08 Nine Mile Point Nuclear Station (Single Batch.Core with 1400 EFPD and 34,000 MWd/ST CAVEX) Revision 0 Unit 1 Page 1-'t5 .

F G H. K. L 1 ~Core InventorM Fraction Releas d in Containment for Alkalis 2 (Ref. 1) Gap Release Phase 0.05I~iiiI~~iiiIi (Rel. 4,Thl 1) 3 (Pet. 5) Early In-Vessel Phase 0.2 (Ref. 4, Tbl 1) 4 (Ref. 6)_____ ____

5 (Ret. 1)____

6 (Ref.-2)- . .

Activity Activity . specific, . Core Gap EIV Total (Ref. 3) per Core Activity Inventory Release Release Release 9 ciI/mwti ICI/corel [cvamI [am/corel fmolel [molel [molel 10 0.321 =FIO'D$4 =LN(2) D$6/(D$5*Bl0El0) =:G1O/H1O- =I1O0J$2IB1O =I11XJ$3/B1O =,J1O+K10 12 7090 =F12*D$4 =LN(2)-D$6/(D$5-812-E12) =G12/1-112 =112J$21B312 =1~12J$3IB312 =ý,12+1<12 13 0 _____ =F13*D$4 .=LN(2)'O$61(0$5B13*E13) =G13/H13 =113'J$2(BI3 =113JS3(B313 =JI3+K13 14 0.0251 =F14*D$4 =LN(2)*IS6/(D$5*B14'E14) =G14[1414 =114*J$21814 =114¶J$3/B314 =~J14+K14 15 0 ______.=F15*D$4 4LN(2r0S6/(D$5-815'E1 5) =G15/1-15 =115*J$2/815 =115*J$3/B15 =J15..K15 16 466 =F16*D$4 =LN(2)*D$6/(D$5*l6*16¶6) =-G16fH16 =116*J$21Bl6 =116*J$31B16 =J16+K16 17 4340 =F1 7D$4 =LN(2)*DS61(D$5*B 7*E1 7) =G171H17 =l1rJ$2f817 =117*J$3/B17 .=.J17+K17 18 0 . =F18DS$4 =LN(2)*D$6/(D$5*818*El8) =G18/H18 =118*J$2/BlO =118JS31B318 =J18+K18

- --- =F1 9D$4- =LN(2)*D$6/(D$5*l9*El9) -- =-G191H19---- =I11J$21B19--- =l.19*J$31B19- =J19+Kl9-----.

20 0 _____ =F20*D$4 . =LN(2)-D$61(D$5820E20) =G20/H20 ý-120J$VB1E20 =120J$3/8320 =J20+K20 21 0 ______=F21 D$4 =LN(2)DI$6/(D$5-821 E21) --G21#121 =I21*J$21821 =121 J$3/1B21 =J21 +K21 22 0 ______=FW2D$4 =LN(2)-D$6/(D$5-Ba*E22) =G2211-22 =122J$2/B322 =122J$3/B222 =J22+K2-2 23 0 _____ =F230S$4 =LN(2)*D$6/(DS5*B23*E23) =G2311-123 =I23*J$2/B23 =12XJ3*4B123 =.J23+K23 24 0 _____ =F24*D$4 =LN(2)-D$6/(D$5-B24-E24) =G24IH24 =124*J$2/B24 =124*J$3/B24 =J24-.K24 25 0 _____ =F25*D$4 =LN(2)*D$6/(I)$5*25'E25) --G25/1-25. =125J$2/B25 =125J$31B325 =J25+K25 26 0 =F26*D$4 =LN(2)*D$6/( $5*B26*E26) =G261H26 =126*J$2tB26 =126*J$3/B26 =J26+K26 2710 . =F27*D$4 =LN(2) D$6/(D$5*B27E27) --G27/H-27 . =127*J$2/B27 =12rJ$3/B27 =J27+K27 2810 =F28*DS4 =LN(2)*D$6/(D$5*B28'E28) =G28/H28 =128*J$2tB28 =128*J$31B28 =128+1<28 29 0 =F290D$4 . =LN(2)*D$6/(D$5*B29*E29) =G29/1-129 =129J52/B229 =129*J$3/1329 =J29+1<29 30 . Total =SUM(110:129) =SUM(JlO:J291 =SUM(KIO:K29) =SUM(LIO:L29) 31 ___________ _____ ____________

342_ _ _ _ __ _ _ _

353____________

.364____________ _______ _____

35 _____________ ______

386____________

.397_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

40 _ _ _ _ _ _ _ _ _

,41,______________ ___________ ______ ______

Cesium t--30d Eqs

. Calculation No. H21 608/

Nine Mile Point Nuclear Station I Revision 0 Unit 1 Page 2-1 Attachment 2 Determination of; Radiation Doses SI- _

Calculation No. H21C08$

Nine Mile Point Nuclear Station Revision 0 Unit 1 Page 2-2 Purpose The purpose of this attachment is to document the gamma and beta radiation dose in the drywell, wetwell, and suppression chamber water.

Methodology Beta Dose-The beta radiation dose is taken from Calculation S3.1 1-DWLOCA-BETA, Revision 0 (main body Reference 7.6.2). I The beta dose in S3.1 1-DWLOCA-BETA is presented for three scenarios:

1. No halogen plate-out (p. 41) 2.- For plate-out of elemental iodines (p. 48), arid
3. For instantaneous plate-out (p. 50).

Since the values for the scenario with no hal1ogen plate-out are greater than the other two scenarios and hence more conservative, they are used herein. The values reduced by 50% to account for self shielding are used herein.

The beta dose for Unit 2 is smaller than for Unitil because Unit 2 assumes all halogen activity is plated out while Unit 1 assumes it is airborne. Fior the Unit 2 beta dose calculation, 100% of the noble gases are airborne, *iodines are reduced by suppression pool scrubbing, and 100% of remaining iodines are plated out (Calculation PR-C-19-C, p. 5). For Unit 1, 50% of the iodines are assumed to remain airborne along with 100% of the noble gases in the. beta dose calculation (Calculation S3. 11 -DWLOCA-BETA, p. 3).

Since the penetrating ability of beta radiation i§ orders of magnitude less than that of gamma radiation, the beta dose from the suppression chamber water is considered negligible -in comparison to the suppression chamber submersion gamma dose. Therefore, the suppression chamber submersion beta dose is not modeled.'

Drywell and Wetwell Airborne Gamma Dose The gamma radiation dose is formulated using the total integrated dose (TID) from. NEDO-.

24290 (main body Reference 7.27) and the Unit 2 gamma radiation dose profile from Calculation PR-C-21-Q, Revision 1 (main body Reference 7.6.3). The Unit 1 gamma radiation dose is obtained by normalizing the Unit 2 prof ile to the Unit 1 6 month TID (provided in Table 4-3 of NEDO-24290) as follows:

TIDul_airbme = TlDu2_.rto6 * (TIDui 6mo / TlDu2_6rAo)

The drywell and wetwell airborne accident. gamma TID is taken from Zone 1 in Table 4-3 of

  • NEDO-24290. The Zone 1 TID is for the drywvell with no vessel shield and bounds all other zones analyzed in NEDO-24290, including the wetwell, and therefore is'conservative.

i Calculation No. H21C08OI Nine Mile Point Nuclear Station Revision 0 Unit 1 Page 2-3 Suppression Chamber Water Submersion Gamrna Dose' The Unit 1 suppression chamber water submersion gamma dose is scaled from the Unit 2 suppression pool submersion gamma dose provided in PR-C-21-Q. The Unit 2 submersion gamma dose is taken from environmental zones PC 175101, PC 196112, and PC 215121, which represent the suppression pool, in PR-C-21-Q.

The Unit 1 submersion gamma dose is scaled by the core thermal power (P) and dilution volumes (V). This scaling is consistent with ýPR-C-21-Q, where the TID is determined as follows:

TID = DCF* (AN)

The DCF is a dose conversion factor [rad/(Ci/6c)], A is the amount of activity released to the suppression pool [Ci], and V is the dilution volumne (volume of the suppression chamber water)

[cc]. From this expression it is clear that the TID can be scaled.

TID, / TID 2 = [DCF *(AN,)] / [DCF*(A 2N 2)]

or, since the DCF is a constant, TID 2 = TID 1 * (A2/Al) * (V1N 2) -

Since activity is directly proportional to core thermal power level (see Attachment 1), P, the above expression is also equivalent to:

TlDuj sub = TIDu 2_sub * (Pu1/Pu) * (VuNu1)

General Comments on Gamma Dose Determinations It should be noted that all Unit 2 radiation dose profiles used herein are for the originally analyzed core thermal power level of 3,323 MWt, not the uprated core thermal power level of 3,467 MWt. This has no impact on the results Of this analysis.

Both the drywell/wetwell airborne gamma dose and the suppression pool submersion gamma dose are increased by 5% to account for bremsstrahlung.

Results The radiation'doses to be used are shown in T"bles 2-1 and 2-2.

4 " Table 2-1: Beta Dose Calculation.No. H21C08 '*

Nine Mile Point Nuclear Station Revision 0 Unit 1 Page 2-4.

Drywell Airborne Beta Dose (No Plate-Out)

Time. TID @ 1,.850 MWtI

[h-r . [rad.

1 3.011E+07 28 2.121E+08 2400 ' 6.134E+08 Notes

1) Suppression pool beta dose is negligible and is therefore not included.

References

1) S3.11 -DWLOCA-BETA, Rev. 0 (main body Reference 7.6.2)

Beta Table 2-2: Gamma Dose Calculation No. H21C08YZ Revision 0 Nine Mile Point Nuclear Station Unit 1 Page 2-5 Bremsstrahlung Factor (5% incr.) 1.05 Assumption Unit 1,6 month (4320 hr) Drywell Accident TID 2.7E+07 rad Reference 2, Table 4-3 _

-ft3 Unit 1 minimum dilution volume 79,800 Attachment 4, Table 4-9 3

Unit.1 maximum dilution volume 94,040 ft3 -

Attachment 4, Table 4-9 Unit 2 dilution volume for submersion y dose 160,000 Refs. 1, 3 (also see Ref. 4, Att.-2)

Drywell &Wetwell Airborne Gamma Dose Suppression Pool Submersion Gamma Dose Time Unit 2 TIDVI @ Unit 1 TIDt 2) @ it2TD@

2 Unit 1 TID'4 @ Unit 1 TID@4) @

3323 MWt 1850 MWt 3323 MWt 1850 MWt - Min Vol 1850 MWt - Max Vol

[hr] [rad] [rad] [rad] [rad] [rad]

1 2.3E+06 1.035E+06 3.8E+05. 4.454E+05 3.779E+05 6 7.OE+06 3.150E+06 1.4E4-06 1.641 E+06 1.392E+06 24 1.11E+07 4.950E+06 2.8E+06 3.282E+06 2.785E+06 720 3.OE+07 1.350E+07 1.6E+07 1.875E+07 1.591 E+07 2400 4.7E+07 2.115E+07 3.6E+-07 4.219E+07 3.580E+07.,

4320 6.3E+07 2.835E+07 5.5E+07 6.446E+07 5.470E+07 8760 9.5E+07 4.275E+07 9.4E+07 1.102E+08 9.349E+07 Notes

1) Maximum environmental zone TID as given in Reference 1 (Zone PC289684, p. 270)
2) TlDuftj=(1.05)*(TI Dunr)*(TID6 mo-ui/TlID6mou 2)
3) TID for.suppression pool environmental zones (PC175101, PC196112, PC215121) in Reference 1 (p. 202)
4) TIDunt=(1 .05)*(TlDunf2)*(1 850 MWt / 3323 MWt)*(Vduwntjo U2 / VdfJon ul)

References

1) PR-C-21 -0, Rev. 1 (main body Reference 7.6.3) 2). NEDO-24290 (main body Reference 7.27)
3) PR-C-20-F, Revision 3 (main body Reference 7.6.6)
4) H21C-097, Revision 0 (main body Reference 7.6.8)

Gamma

13/4- Table 2-2 Equations: Gamma Dose Calculation No. H21COWV' Nine Mile Point Nuclear Station Revision 0 Unit 1 Page 2-6 Final A B C D E F 2 Bremsstrahlung Factor (5% incr.) 1.05 Assumption 3 Unit 1 6 month (4320 hr) Drywell Accident TID 27000000 red Reference 2; Table 4-3 .......

3 4 Unit 1 minimum dilution volume 79800 ft Attachment 4, Table 4-9

-5.. Unit.1 maximum.dilutionyvolume - 94049 ft3 Attachment 4, Table 4-9 6 Unit 2 dilution volume for submersion ydose 160000 - ft3 Refs. 1, 3 (also see Ref. 4, Att.2) 7 8 Drywell & Wetwell Airborne Gamma Dose Suppression Pool Submersion Gamma Dose

  • Time 1 Unit 1TOD(4) @

Unit 2 TID" ) @ Unit 1 TID(2) @ @

Unit 2 TIDO(3) Unit I TOD(4) @

9 3323 MWt 1850 MWt 3323 MWt 1850 MWt - Min Vol 1850 MWt - Max Vol 10 _." [hr_ [rad] Irad] [rad] [rad] [red]

11 1 .'.2300000 =B11"(C$3/B$16)*C$2 1380000 =D11*(1850/3323)*(C$6/C$4)*C$2 =D1 1(1850/3323)*(C$6/C$5)*C$2 12 6 7000000 =B12*(C$3/B$16)*C$2 1400000 =D12"(1850/3323)-(C$6/C$4)*C$2 =D12-(1850/3323)*(C$6/C$5)*C$2 13 24 11000000 =B13*(C$3/B$16)*C$2 2800000 =D13"(1850/3323)*(C$6/C$4)*C$2 =D13*(1850/3323)'(C$6/C$5)*C$2 14 720 30000000. =B14*(C$3/B$16)*C$2 16000000 =D14(1850/3323)*(C$6/C$4)*C$2 =D14,(1850/3323)-(C$6/C$5)*C$2 15 2400 47000000 . =B15*(C$3/B$16)*C$2 36000000 =D15"(1850/3323)-(C$6/C$4)*C$2 =D15"(1850/3323)'(C$6/C$5)"C$2 16 4320 63000000 =B16*(C$3/B$16)*C$2 155000000 =D16"(1850/3323)*(C$6/C$4)*C$2 =D16" 1850/3323)*(C$6/C$5)*C$2 17 8760 95000000 I=B17*(C$3/B$16)-C$2 94000000 =D17"(1850/3323)'(C$6/C$4)*C$2 =D17"(1850/3323)*(C$6/C$5)C-$2.

Notes ..............

19 1i)Maximum environmental zone TID as oiven in Reference 1 (Zone PC289684. n. 270*

20 2) TlDUnIli=(1.05)*(TlDurjt 2 )*(TIDrmo ui/TIDemo u2).

.21 3) TIDfor suppression pool environmental zones (PC175101, PC196112, PC215121) in Reference 1 (p. 202) 22 4) TIDurgl =(1.05)*(TIDunit2)*(1850 MWt/3323 MWt)*(VEIuon2/V-2,JJO. uI) 24 References 25 1) PR-C-21-Q, Rev. 1 (main body Reference 7.6.3) 26 2) NEDO-24290 (main body Reference 7.27).

27 3) PR-C-20-F, Revision 3 (main body Reference 7.6.6). ...

28 4)- H21C-097, Revision 0 (main body Reference 7.6.8)

Gamma-Eqs Calculation No. H2 1CO8BV?

Nine Mile Point Nuclear Station Revision 0 Unit 1 Page 3-1 Attachment 3 Determination of Primary Containment Exposed Cable Inventory I.

jft/o/o.S : Calculation No: H21C08/-t Nine Mile Point Nuclear Station I Revision 0 Unit 1 Page 3-2 Purpose The purpose, of this attachment is to determine the primary containment exposed cable inventory.

It is expected that NMP Unit 1 will require use of the Liquid Poison System (LPS) based on previous experience, regardless of how the cable inventory is determined. Therefore, use of the conservative methodology presented herein is considered acceptable.

Mass of Cable Insulation/Jacketing in Primary Containment Since cable insulation and jacketing is combustible, it is included in the combustible load for fire area/zone FA3/R1, "RB 225' to:el. 332' Primary Containment Torus Area" (Ref. 1, p. B5). The total combustible load for FA3/R1 is given ;in the following table. Quantities from the combustible loading calculation (Ref. 1) andi Table 3.1.1 of Appendix 10A (Fire Hazards Analysis) to the UFSAR are presented since they are different. For the purposes of the post-LOCA suppression chamber water pH calculatidn, the calculation (Ref. 1) values are used.

Combustible Material Quantity (Ref6 1) Quantity (Ref. 3 - UFSAR)

Cable insulation. 744 744 Rubber '_ 36 n/a

-Oil 1,104 1,310 Wire insulation 25 2541 Plastic 180 n/a Motor insulation . 363 250 Of the combustible loads listed above, the cable insulation, wire insulation, motor insulation, rubber, and plastic could be chlorine-bearing material. The total weight of these materials is 1,364 .Ibm [744+36+41+180+363], of which .1,148 Ibm [744+41+363] is .insulation. This inventory excludes cable routed in conduit anrd junction boxes (Ref. 1, p. 5, Assumption 1),

which is consistent with the methodology used to determine HCI production for pH analyses.

The rubber hoses and plastic covers on lead blankets (Ref. 1, p. A25) are included since they may contain chlorine and therefore may contribute to HCI production. The mass of the rubber and plastic are modeled the same as cable jacketing. Oil may include chlorine-bearing compounds such as chlorinated solvents, but is enclosed and would contain any HCI that might be formed.

Note that the total chlorine bearing material weight for Unit 1 (1,364 Ibm) is greater than that for Unit 2 (-620 Ibm per Ref. 2, p. 4-7). For conservatism, 1,400 Ibm is used for the post-LOCA suppression chamber water pH calculation.

Chemical Composition of Cable Insulation/Jacketing There are three types of cables used at Nine Mile Point Unit 1: power cable, control cable, and instrumentation cable. All of these cable types can contain a chlorine -bearing insulation or jacket material. Per Section IX-B.3.4 of the UFSAR (Ref. 3), some of the possible chlorine bearing insulation and jacket materials are neoprene, polyvinyl chloride (PVC), chlorosulfonated polyethylene (CSPE), and Hypalon (a CSPE).; It is noted that this differs slightly from the 600V cable specifications (Refs. 6-8) which state that the cable jacketing is all black CSPE. The chemical properties of these materials are provided below:

Attachment 3, I Calculation No. H21C084 '

Nine Mile Point Nuclear Station Revision 0 Unit .1 Page 3-3 Material Formula Molecular;Weight.  % Chlorine by wt. Reference Neoprene (C4H5 Cl)n 88.5 40% Ref. 5 PVC Hypalon' (C 2H3 Cl)n C85H,57CI13SO2 62.5 1,702.5 I 27%*

57% Ref. 5 52.2.5.1 Ref. 4, Kerite CSPE n/a n/a 18% Ref. 2, p. 3-28 Weight % chlorine varies from 24-43% per NUREG/CR-5950 for commercial product with filler.

Thus, based on the above information, it is Conservative to model all cable insulation and jacketing in containment as PVC. Note that this differs from NMP Unit 2 in which the majority of cable in containment is Kerite CSPE, conservativlely modeled as Hypalon.

The rubber hose and plastic covers are also modeled as PVC since more detailed information regarding their chlorine content is not available.

Properties of PVC Insulation/Jacketing The properties of cable insulationfjacketing required for the post-LOCA 'suppression chamber water pH analysis are as follows: density, linear absorption coefficient, and radiation G value.

These properties are provided below for PVC. 1 Per Reference 10 (p. 6-200), the specific gravity of flexible PVC ranges from 1.16 to 1.7; thus, the density ranges from 1.16 to 1.7 g/cm . N6te that the-density of Hypalon, 1.55 g/cm 3, is similar (Ref. 1.1, p. 13).

Since carbon, is a major constituent of PVC, (C 2H3Cl)n, the following values relating the linear absorption coefficient (a) to material density (p) !from Reference 11 (p. 13) can be used:

ap = 0.06371cm 2/g an/p = 33.6 c m2/g For the purposes of this calculation, a smaller linear absorption coefficient is conservative since it leads to greater radiation penetration and lhence a greater quantity of insulation/jacketing.

affected by radiation. Therefore, when determining the linear absorption coefficient, the lower

'bound PVC density (1.16 g/cm 3) is used. !This leads to the following linear absorption coefficients for PVC:

= 0.0739 cm" [(0.0637 cm 2/g)*(1.16 g/cm 3)]i ao = 38.976 cm' [(33.6 cm 2ig)*(1.16 g/cm 3)]

The G Value for PVC is 7.7 molecules HCI per i,100*eV in a vacuum at room temperature, which is greater than the 2.1 molecules HCI per 100' eV G value for Hypalon in a vacuum at room' temperature (Ref. 4, §2.2.5.2). The G value ýin a vacuum at room temperature is meant to represent a balance between the increased HCI production at elevated temperatures expected during accidents and the neutralization potential of fillers in the cables. Although the neutralization potential of fillers in PVC jacl~etedhnsulated cable is less than in Hypalon jacketed/insulated cable per. NUREG/CR-5950J the G value in a vacuum at room' temperatures is still considered acceptable for the following reasons:

Calculation No. H21C08ft4 Nine Mile Point Nuclear Station Revision 0 Unit 1 Page 3-4

3). Therefore, the G value in a vacuum is reaistic for NMP Unit 1

  • Since all 600V cable jacketing is actually CSPE per the cable specifications (Refs. 6-8), it is probable that much of the insulation combustible load is CSPE or Hypalono. Therefore, the application of the PVC G value to the entire insulation mass is conservative.

Thus, the G value to be used herein* for PVC is 7.7 molecules HCl per 100 eV. Note that this represents an HCI production 3.7 [7.7/2.1] times greater for the radiolysis of PVC than for the radiolysis of Hypalon. This is the primary difference between the use of PVC versus, Hypalone.

It should also be noted that the use of the G value in a vacuum at room temperature is consistent with the G value suggested for use with Hypalon in NUREG/CR-5950 (Ref. 7.13).

Grand Gulf, an NRC pilot plant for AST implementation, also adopted the G value in a vacuum at room temperature for Hypalon in Engineering Report GGNS-98-0039 (Ref. 12, Appendix A).

Selection of Typical Cable Size The typical cable size is selected based on the NMP Unit 1 cable specifications (Refs. 6-8).

Typical cable 'sizes are presented in the following table.

NMPC Item No. Approximate Outer Diameter Avg Overall Jacket Thickness Reference

[in] [in] [A' N3A101 0.35 0.045 Ref. 6, Tbl. IA/B N3A102 0.65 0.060. Ref. 6, Tbl. IA/B N3A103 0.89 0.080 Ref. 6, Tbl. IA/B N3A104 1.17 0.080 Ref. 6, Tbl. IA/B WO I*rd W.tlC Vsfdri4rj___ ,1l N3A105 0.62 0.060 Ref. 6, TbN. IIA/B N3A106 0.77 ' 0.060 .. Ref. 6, Tbl. IIA/B N3A107 1.03 0.080 Ref. 6, Tbl. IIA/B N3A1 0.22 0.030* Ref. 7, Tbl. IA/B N3A2 0.42 0.045 Ref. 7, Tbl. IA/B N3A3 0.44 0.045 Ref. 7, Tbl. IA/B N3A4A 0.52 0.045 Ref. 7, Tbl. IA/B N3A4B ' 0.60 0.060 Ref. 7,.Tbl. IA/B N3A5 0.70 0.060 Ref. 7, Tbl. IA/B N3A6 0.78 0.060 Ref. 7, Tbl. IA/B N3A7 0.95 0.080 Ref. 7, Tbl. IA/B N3A8 0.25 0.030* Ref. 7, Tbl. IA/B N3A10 0.49 0.045 Ref. 7, Tbl. IA/B N3A1 1 0.62 0.060 Ref. 7, Tbl. IA/B N3A20 0.47 0.045 Ref. 7, Tbl. IIA/B N3A21 0.60 0.060 Ref. 7, Tbl. IIA/B N3A22 0.74 ' 0.060 Ref. 7, Tbl. IIA/B N3A23 0.82 0.060 Ref. 7, Tbl. IIA/B N3A24 0.51 0.045 Ref. 7, Tbl. IIA/B Calculation No. H21C08Oi Nine Mile Point Nuclear Station j Revision 0 Unit 1 Page 3-5 NMPC Item No. Approximate Outer Diameter Avg Overall Jacket Thickness Reference

[-]

'[in] ,[in] -

N3A25 0.66 0.060 Ref. 7, Tbl. IIA/B N3A26 0.83 0.060 Ref. 7, Tbl. IIA/B N3A27 0.97 0.080 Ref. 7, Tbl. IINB

  • 60ey*IStileld~deT ~ ste~*rPdlGoto *,al * .! * -, r ______-T  ;' '

N3A32 0.88 [ 0.080* Ref. 7, TbI. IIIAAB N3A35 0.98[ 0.080* Ref. 7, Tbl. IIIA/B N5A1 0.698 0.065 Ref. 8, Tbl. IA/B N5A2 0.962 0.080

  • Ref. 8, Tbl. IA/B N5B 0.545 0.065 Ref. 8, Tbl. IIA N5D 0.688 .0.065 Ref. 8, Tbl.IIA N5E 0.794 0.065 Ref. 8, Tbl. IIA N5F 0.976 0.065 Ref. 8, Tbl. IIA N5G 1.105 0.065 Ref. 8, TbI. IIA Maximum' 1.17 0.08 Minimum: 0.22 average individual cable jacket thickness 0.03 values for individual cables presented (conservative for HC1production purposes)

A typical cable size is selected which maximizes predicted HCI production. Based on the flux averaging factor and absorption fraction (Ref. 2, §5.5), the minimum cable outer diameter and minimum jacket thickness yield conservative results. For smaller cables with thin jacketing, the amount of radiation applied to the jacket is nearly equal to the incident radiation on the surface; hence HCI production is greatest with said cables.

Therefore, a cable with an outer diameter of 0.22 inches and a jacket thickness of 0.030 inches is used for the pH analysis.

Modeling Assumptions The following assumptions are used in the determination of the. primary containment cable inventory. The cumulative effect of these assumptions is extremely conservative.

" Assume all combustible cable insulation is actually cable jacketing; therefore, the entire mass of cable is exposed to both gammaI and beta radiation since no credit is taken for

.shielding of the insulation from beta radiation

  • Assume all cable is free-air routed and not in cable trays; thus, no credit can be taken for shielding of some of the cables from beta radiation in cable trays (this assumption conflicts with the combustible loading calculation, Reference 1, which assumes all cable is in trays; however, since Reference 1 assumes the cable-location, the assumption of free-air routing is acceptable)
  • No cable, is assumed in the suppression chamber (torus); this is acceptable since little, if any, cable is expected in the suppression chlamber

OVA* Calculation No. H21C08pt Nine Mile Point Nuclear Station Revision 0 Unit 1. Page 3-6 Final Medium and high voltage cables are not considered when determining the typical cable size; this is acceptable since small cables maximize HCI production and the medium to high voltage power cables are larger than the cables identified in References 6-8. In addition, the quantity of medium and high voltage power cables inside primary containment is small as the only 5 kV (medium/large) cables in containment feed the reactor recirculation pumps (Ref. 9).

  • The chlorine content of the rubber hose. a'nd plastic covers is unknown; therefore, it is assumed that these materials are PVC.
  • It is assumed that any filler material in the cables is included in the combustible load provided in Reference 1. Therefore, the filler material would be accounted for as chlorine bearing material in this calculation.
  • It is assumed that the oil in primary containment is confined and therefore any chlorine which could evolve from the oil to form HCI rneed not be accounted for in this calculation.

Summary of'Cable Inventory in Primary Containment For the post-LOCA suppression chamber water pH analysis, the primary containment cable inventory is as follows:*.

  • 1,400 Ibm of free-air routed PVC jacketed cable with an outer diameter of 0.22 inches and a jacket thickness of 0.030 inches References
1. NMP Unit 1 Calculation No. SO.0-FPE-002, Revision 1, "Unit 1 Combustible Loading Calculation." (main body Reference 7.6.7) r
2. NMP Unit 2 Calculation No. H21C-097, Revision 0, "Post-LOCA Suppression Pool pH Analysis." (main body Reference 7.6.8) {
3. Nine Mile Point Unit 1 UFSAR. (main body References 7.11.5, 7.11.6, and 7.11.7)
4. NUREG/CR-5950, "Iodine Evolution and pH? Control." (main body Reference 7.13)
5. National Institute of Standards and Technol6gy (NIST) Chemistry WebBook.

(http://webbook.nist.gov/chemistryl) (main body Reference 7.28)

6. NMP Unit 1 Specification No. E-1 106, "600V Flame and Radiation Resistant Instrumentation Cable." (main body Reference 7.23.1)
7. NMP Unit 1 Specification No. E-1 107, "600V Flame and Radiation Resistant Control Cable."

(main body Reference 7.23.2) I

8. NMP Unit 1 Specification No. E-1 108, "600V Flame and Radiation Resistant Low Voltage Power Cable." (main body Reference 7.23.3)
9. TRAK 2000 Database (main body. Reference 7.29)
10. Avallone,' E.A. and T. Baumeister IIl, Editors, Marks' Standard Handbook for Mechanical Engineers, 10 th Edition, McGraw-Hill, New York, NY, 1996. ISBN0-07-004997-1. (main body Reference 7.19)
11. NUREG-1081, "Post-Accident Gas Generation from Radiolysis of Organic Materials,"

September 1984. (main body Reference 7.1,5)

12. Grand Gulf Engineering Report No. GGNS-98-0039, Revision 3, "Suppression Pool pH and Iodine Re-Evolution Methodology." (main body Reference 7.12.1)

Calculation No. H21CO8j4 Nine Mile Point Nuclear Station Revision 0 Unit 1 j Page 4-1 Attachment 4 Calculations Determining Post-LOCA Suppression Chamber Water pH Maximum Suppression Chamber Water Volume Case Table of Contents Figure 4-1: Post-LOCA Suppression Chamber 'Nater pH Response without LPS ................. 4-2 Table 4-1: Post-LOCA pH Calculation without LPS .............................................................. 4-3 Table 4-2: Hydriodic Acid (HI) Production ....... .................................................................... 4 4-5 Table 4-3: Nitric Acid (HNO 3) Production......................................... ................................. 4-6 Table 4-4: Hydrochloric Acid (HCI) Production"...................................................................... 4-7 Table 4-5: Cesium Hydroxide (CsOH) Production ........................... 4-9 Table 4-6: Effect of LPS Addition on Post-LOCA Suppression Chamber Water pH ..... 4-10 Table 4-7: Gamma and Beta Radiation Dose Used to Determine Post-LOCA pH ............... 4-11 Table 4-8: Post-LOCA Suppression ChamberiWater Temperature Response .................... 4-12 Table 4-9: Post-LOCA Suppression ChamberlWater Volume * ........ . ................... 4-13 Figure 4-2: Gamma (y) Dose vs. Time Post-LO'CA .............................................................. 4-14 Figure 4-3: Beta (P) Dose vs. Time Post-LOCA ............................ 4-16 Equations for above tables .................................................................... 4-18 to 4-35 Note that each table in this attachment has been! developed using Microsoft Excel. Some tables reference each other; for these references, see the -tab" name at the bottom of each sheet.

Calculation No. H21C08/44 Nine Mile Point Nuclear Station Revision 0 Unit 1 Page 4-2 Figure 4-1: Nine Mile Point Unit 1 Post-LOCA Suppression Chamber Water pH Analysis Maximum Suppression Chamber Water Volume Case pH Response without-LPS-.

9.0 8.0 0.

  • , 7.0 E

I.-..6.0 C

0 C4 45.0 3.0 '

0.01 0.1 1 10 100 1000 Time After LOCA (hours)

Pool pH Table 4-1: Post-LOCA pH Calculation without LPS Calculation No. H21C08V.5 Nine Mile Point Nuclear Station Revision 0 Unit I Page 4-3 Initial conditions SC water mass

  • 5,364,128 Ibm. Table 4.9 (maximum values)

RCS mass 501,500 Ibm Table 4.9 (maximum values)

Total post-LOCA SC mass -5.. 5865,628 Ibm suppression chamber water pH 5.5 Design Input 4.1 (minimum value) reactor coolant pH 5.5 Design Input 4.2 (minimum value) initial [H] 3.16E-06 g-mole/l weighted average initial [OH] 3.16E-09 g-mole/I weighted average 2

Pool [HI] 2 [HN0 3J3 [HCIfz [CsOH] Total [Hi Total [OH1] Pool 'Water K, at x [Hi Pool Time VolumelI. .1 I . Temp Density. Pool Temp pH (hr) (liter) (g-moles/I) (g-moles/l) J(g-moles/l) I(g-moles/l) (g-moles/i) (g-moles/I) (OF) (Ibrn/ft (-)L I (g-molesAl) (g-moles/)i (-)

0 2,671,619 __ 3.16E-06 3.16E-09 85.0 62.17 1.409E-14 -1.29E-09 3.16E-06 5.5 0.034 2,696,573 9.15E-08 6.163E-07 3.87E-06 3.16E-09 127.3 .61.60 6.240E-14 -1.29E&08 3.88E-06 .5.4 0.534 2,714,331 1.33E-07 1.44E-06 9.72E-06 1.73E-05 1.45E-05 1.73E-05 149.9 61.19 1.234E-13 1.44E-05 4.32E-08 7.4

-- 1-- 2,7-19,033- 3.38E&07 _.2.70E-06.

-.... J1.8188E705 -3.79E-05 2.44E-05. 3.79E-05 .155.3 61.09 1.438E-13 2.44E-05 1.06E-08 8.0 2 2,722,378 7.94E-07 4.46E-06 2.726E-05 8.36E-05 3.57E-05 8.36E-05 159.1 61.01 1.594E-13 3.57E-05 3.33E-09 .8.5 2.034 2,722,492 7.94E-07 4.52E-06 2.753E-05 8.36E-05 3.60E-05 8.36E-05 159.2 61.01 1.599E-13 3.60E-05 3.36E-09 8.5 3 2,723,132 7.94E-07 6.00E-06 3.456E-05 8.36E-05 4.45E-05 8.36E-05 159.9 60.99 1.63E-13 4.45E-05 4.17E-09 8.4 4 - 2,722,165 7.94E-07 7.39E-06 4.092E-05 8.36E-05 5.23E-05 8.36E-05 158.9 61.02 1.583E-13 5.23E-05 5.06E-09 8.3 5 2,722,024 7.94E-07 8.70E-06 4.664E-05 8.36E-05 5.93E-05 8.36E-05 158.7 61.02 1.577E-13 5.93E-05 6.49E-09 8.2 6 2,722,024 7.94E-07. 9.93E-06 5.189E-05 8.36E-05 6.58E-05 8.36E-05 158.7 61.02 1.577E-13 6.58E-05 8.85E-09 8.1 7 2,722,024 7.94E-07 1.07JE-05 5.68E-05 8.36E-05 7.15E-05 8.36E-05 158.7 61.02 1.577E-13 7.15E-05 1.30E-08 7.9 8 2,722,024 7.94E-07 1.15E-05 6.142E-05 8.36E-05 7.68E-05 8.36E-05 158.7 61.02 1.577E-13 7.68E-05 2.33E-08 7.6 9 2,722,024 7.94E-07 1.22E-05 6.58E-05 8.36E-05 8.19E-05 8.36E-05 158.7 61.02 1.577E-13 8.18E-05 8.98E-08 7.0 1j0 2,722,024 7.94E-07 1.28E-05 6.999E-05 8.36E-05 8.68E-05 8.36E-05 158.7 61.02 1.577E-13 8.35E-05 3.23E-06 5.5 11 .2,722,024 7.94E-07 1.35E-05 7.401E-05 8.36E-05 9.14E-05 8.36E-05 158.7 61.02 1.577E-13 8.36E-05 7.85E-06 5.1 12 2,722,024 7.94E-07 1.40E-05 7.788E-05 8.36E-05 9.59E-05 8.36E-05 158.7 61.02 1;577E-13 8.36E-05 1.23E-05 4.9 13 2,722,024 7.94E-07 1.46E-05 8.162E-05 8.36E-05 1.OOE-04 8.36E-05 158.7 . 61.02 1.577E-133 8.36E-05 1.66E-05 4.8 14 2,722,024 7.94E-07 1.52E-05 8.524E-05 8.36E-05 1.04E-04 8.36E-05 158.7 61.02 1.577E-13. 8.36E-05 2.08E-05 4.7 15 2,722,024 7.94E-07 1.57E-05 8.875E-05 8.36E-05 1.08E-04 8.36E-05 158.7 61.02 1.577E-13 8.36E-05 2.48E-05 4.6 16 2,722,024 7.94E-07 1.62E-05 9.217E-05 8.36E-05 1.12E-04 8.36E-05 158.7 61.02 1.577E-13 8.36E-05 2.88E-05 4.5 17 2,722,024 7.94E-07 1;67E-05 9.551E-05 8.36E-05 1.16E-04 8.36E-05 158.7 61.02 1.577E-13 8.36E-05 3.26E-05 4.5 18 2,722,024 7.94E-07 1.72E-05 9.876E-05 8.36E-05 1.20E-04 8.36E-05 158.7 61.02 1.577E-13 8.36E-05 3.63E-05 4.4 19 2,722,024 7.94E-07 1.77E-05 0.0001019 8.36E-05 1.24E-04 8.36E-05 158.7 61.02 1.577E-131 8.36E-05 4.OOE-05 4.4 20 2,722,024 7;94E-07 1.81E-05 0.000105 8.36E-05 1.27E-04 8.36E-05 158.7 61.02 1.577E-13 8.36E-05 4.36E-05 4.4 21 2,722,024 7.94E-07 1.86E-05 0.0001081 8.36E-05 1.31E-04 8.36E-05 158.7 61.02 1.577E-13 8.36E-05 4.70E-05 4.3 pH Table 4-1: Post-LOCA pH Calculation without LPS Calculation No. H21CO8f't' Nine Mile Point Nuclear Station Revision 0 Unit 1 Page 4-4.

Pool [H1] 2 [HNO03 [HCI] 2 [CsOH]2 Total [Hi Total [OH] Pool Water K,.at x [HI Pool Time Volume' g Temp Density 3 Pool Temp pH (hr) Voliter) Jq-moles/A) (g-moles) molesI (g-moles/I) (b-moles/Imf(g-moles) (OF) Ibr/ft (g-molesI) (q-moles).-

22 .2,722,024 -7194E t.90E-05 0.0001111 .8.36E-05-.1..34E204.. 8:36E-05.. 158.7 61.02 1.577EI-13 8.36E-05 5.05E-05 4.3 23 -2,722,024 7.94E-07 1.95E-05 0.000114 8.36E-05 1.37E-04 8.36E-05 .158.7 61.02 1.577E-13 8.36E-05 5.38E-05 4.3 24 2,722,024. 7.94E-07 1.99E-05 0.0001169 8.36E-05 1.41E-04 8.36E-05 158.7 61.02 1'577E-13 8.36E-05 5.71E-05 4.2 28 2,722,024 7.94E-07 2.15E-05 0.0001279 8.36E-05 1.53E-04 8.36E-05 158.7 61.02 1.577E-13 8.36E-05 6.98E-05 4.2 48 2,722,024 7.94E-07 2.83E-05 0.0001455 8.36E-05 1.78E-04 8.36E-05 158.7 61202 1.577E-13 8.36E-05 9.42E-05 4.0 72 2,722,024 7.94E-07 3.49E-05 0.0001603 8.36E-05 1.99E-04 8.36E-05 158.7 61.02 1.577E-13 8.36E-05 1.16E-04 3.9 96 2,722,024 7.94E-07 4.04E-05 0.0001717 8.36E-05 2.16E-04 8.36E-05 158.7 61.02 1.577E-13 8.36E-05 1.32E-04 3.9 120 2,722,024 7.94E-07 4.53E-05 0.000181 8.36E-05 2.30E-04 8.36E-05 158.7 61.02 1.577E-13 8.36E-05 1.47E-04 3.8.

144 2,722,024 7.94E-07 4.98E-05 0.0001891 8.36E-05 2.43E-04 8.36E-05 158.7 61.02 1.577E-1 3 8.36E-05 .1.59E-04 3.8 168 2,722,024 7.94E-07 5.39E-05 0.0001962 8.36E-05 2.54E-04 8.36E-05 158.7 61.02 1.577E-13 8.36E-05 1.70E-04 3.8 192 2,722,024 7.94E-07 5.77E-05 0.0002025 8.36E-05 2.64E-04 8.36E-05 158.7 61.02 1.577E-13 8.36E-05 1.81E-04 3.7 216 2,722,024 7.94E-07 6.13E-05 0.0002083 8.36E-05 2.74E-04 8.36E-05 158.7 61.02 1.577E-13 8.36E-05 1.90E-04 3.7 240 2,722,024 7.94E-07 6.47E-05 0.0002136 8.36E-05 2.82E-04 8.36E-05 158.7 61;02 1.577E-13 8.36E-05 1.99E-04 3.7 288 2,722,024 7.94E-07 7.10E-05 0.0002231 8.36E-05 2.98E-04 8.36E-05 158.7 61.02 1.577E-13 8.36E-05 2.14E-04 3.7 336 2,722,024 7.94E-07 7.68E-05 0.0002315 8.36E-05 3.12E-04 8.36E-05 158.7 61.02 1.577E-13 8.36E-05 2.29E-04 3.6

-.-384.- .2,722,024. 7.9_4E-:07= 8.23E705 0.0002389 8.36E-05 3.25E-04 8.36E-05 158.7 61.02 1-.577E-13 8.36E-05 2.42E-04 3.6 432 2,722,024 7.94E-07 8.74E-05 0.0002458 8.36E-05 3.37E-04 8.36E-05 158.7 61.02 . i.577E-13 8.36E-05 2.54-04--- 36 -

480 2,722,024 7.94E-07 . 9.22E-05 0.000252 8.36E-05 3.48E-04 8.36E-05 158.7 61.02 1.577E-1 3 8.36E-05 2.65E-04 3.6 528. 2,722,024 7.94E-07 9.68E-05 0.0002578 8.36E-05 3.59E-04 8.36E-05 158.7 61.02 1.577E-13 8.36E-05 2.75E.04 3.6 576 2,722,024 7.94E-07 1.01E-04 0.0002632 8.36E-05 3.68E-04 . 8.36E-05 158.7 61.02 1.577E-13 8.36E-05 2.85E-04 3.5 624 672 2,722,024 2,722,024 7.94E-07 7.94E-07 1.052-04 1.10E-04 0.0002683 0.0002731 8.36E-05 3.87E-04 8.36E-05 3.78E-04 8.36E-05 8.36E-05 158.7 158.7 61.02 61.02 1.577N-13 1.577E-13 8.36E-05 8.36E-05 2.94E-04 3.03E-04 3.5 3.5 720 2,722,024 7.94E-07 1.14E-04 0.0002776 8.36E-05 3.95E-04 8.36E-05 158.7 61.02 1.577E-13 8.36E-05 3.12E-04 3.5 Notes 3

1) Pool Volume is computed as follows: (msp / psp)*28.31685 lft
2) The HI, HCI, and CsOH concentrations calculated inTables 4-2, 4-4, and 4-5 are based on the SP volume from Table 4-9.

To adjust for the SP volume as it changes throughout the LOCA, the concentration from Tables 4-2, 4-4, and 4-5 is multiplied by the following factor. VaSIN 5 p where Vbws* is the volume in Table 4-9 and VSP is calculated in this sheet:.

3) The HNO 3 concentration does not directly utilize the SP volume and therefore is not adjusted as described in Note 2. However, the HNO 3 generation is based on pH2o=1000 g/l. To account for the density in the post-LOCA SP, the concentration from Table 4-3 is multiplied by ps-P / 1000 g/l
  • 453.6 g/ibm / 28.31685 Vft 3 pH Table 4-2: Hydriodic IAcid (HI) Production Calculation No. H21C08j Nine Mile Point Nuclear Station Revision 0 Unit 1 Page 4-5 Core iodine inventory Core iodine - gap release 7.20 g-mole 'Attachment 1, Table 1-1 Core iodine - EIV release 36.02 g-mole 'Attachment 1, Table 1-1 Fraction of release as HI 0.05 max iReg Guide 1.183 (main body Ref. 7.10.2)

Gap release onset 2 minutes Reg Guide 1.183 (main body Ref. 7.10.2) 30 minutes 'Reg Guide 1.183 (main body Ref. 7.10.2)

Gap release duration EIV duration 90 minutes "Reg Guide 1.183 (main body Ref. 7.10.2) suppression cumulative chamber water cumulative Time HI volume HI (fl-mole/A) onset (hr) (g-mole) ii i (liter)

I I t* I m i g 0.033 0.00 2,662,924 0.OOE+00 end of gap release 0.533 0.36 2,662,924 1.35E-07 1.000 0.92 2,662,924 3.46E-07 end of EIV 2.033 2.16 2,662,924' 8.12E-07 HI

4 Attachment .4 Table 4-3: Nitric Acid (HNO 3) Production Calculation No. H21C081 Nine Mile Point Nuclear Station. Revision 0 Unit 1. Page 4-6

Suppression Chamber Water cumulative TID @

Time 1,850 MWI HNO 3 K (hr)- (rad) (g-mole/I) onset 0.034 1.27E+04 9.27E-08 end of gap release 0.534 2.02E+05 1.47E-06 3.78E+05 2.76E-06 end of EIV .2 6.26E+05 4.57E-06 2,034 .6.33E+05 4.62E-06 3 8.41 E+05 6.14E-06 4 1.04E+06 7.57E-06 5 1.22E+06 .8.90E-06 6 1.39E+06 1.02E-05 7 1150E+06 1.10E-05 8 1.61 E+06 1.17E-05 9 1.71E+06 1.24E-05 10 1.80E+06 1.31&E05 11 1.89E+06 1.38E-051 12 .1.97E+06 1.44E-05.!

13 2.05E+06 1.50E205 14 2.13E+06 1.55E-05 15 2.20E+06 1.61 E-05 16 2.27E+06 1.66E-05 17 2.34E+06 1.71 E-05 18 2.41 E+06 1.76E-05 19 2.48E+06 1.81E-05 20 2.54E+06 1.86E-05 21 2.61E+06 1.90E-05 22 2.67E+06 1.95E-05

  • 23 2.73E+06 1.99E-05 24 2.79E+06 2.03E-05 28 3.01E+06 2.20E-05 48 3.97E+06 2.90E-05 72 4.89E+06 3.57E-05 96 5.67E+06 4.14E-051 120 6.35E+06 4.64E-05 144 6.97E+06 5.09E-05 168 7.55E+06 5.51E-05 192 8.08E+06 5.90E-05 216 8.59E+06 6.27E-05 240 9.06E+06 6.61E-05 288 9.95E+06 7.26E-05 336 1.08E+07 7.86E-05 384 1.15E+07 8.42E-05 432. 1.22E+07 8.94E-05 480 1.29E+07 9.44E-051 528 1.36E+07 9.91 E-05 i 576 1.42E+07 1.04E-04' 624 -1.48E+07 1.08E-041 672 1.54E+07 1.12E-04 720 1.59E+07 1.16E-041 HNO3 Table 4-4: Hydrochloric Acid (HCI) Production Calculation No. H21C082./"

Revision 0 Nine Mile Point Nuclear Statioi Page 4-7 Unit 1 Cables PVC properties:

radiolysis yield, G 7.980E-06 g-mole HCI per MRad-g main body.§5.5 linear absorption coefficient 38.976 cm"' for beta radiation Attachment 3.

linear absorption coefficient 0.0739 cm'1 for gamma radiation Attachment 3 Cable jacket and ins ulation:

Typical Cable cable OD 0.22 in jacket thickness 30 mil jacket material PVC.

insulation thickness 0 mil insulation material n/a chlorine-bearing material:

mass in free air 1,400.0 Ibm mass in tray 0.0 Ibm mass infree air 635,026.0 gram mass in tray 0.0 - gram Irradiation:

Typical Cable am fr beta -

alamma Ifree air I trayv-.

0.2794 0.2794 1

cable radius (cm) 0.2794 jacket thickness (cm) 0.0762 0.0762 0.0762 mass irradiated (g) 635,026.0 635,026.0 0.0 flux averaging factor 0.997337 0.341356 0.341356 absorption factor 0.005615 0.948695 0.948695 H,CI Table 4-4: Hydrochloric Acid (HCI) Production Calculation No. H21C08/#

Nine Mile Point Nuclear Station Revision 0 Unit 1. Page 4-8 pool gammna beta Drywell HCI Time volume TID' TID gamma beta HCI (hr) (liter) (rad)! (rad). (g-mole) (g-mole) (g-mole/l)

I I I I I I 0.034 2,662,924 3.48E+04 1.01 E+06 9.87E-04 1.66E+00 6.24E-07 0.534 2,662,924 5.52E-'05 1.61 E+07 1.57E-02 2.64E+01 9.91 E-06 1 2,662,924 1.04E+,06 3.01 E+07 2.94E-02 4.94E+01 1 .86E-05 2 2,662,924 1.59E+:06 4.52E+07 4.52E-02 7.42E+01 2.79E-05 2.034 2,662,924 1.61 Eý,06 4.56E+07 4.57E-02 7.49E+01 2.81 E-05 3 2,662,924 2.05E+;06 5.73E+07 5.81 E-02 9.41E+01 3.53E-05 4 2,662,924 2.45E&06 6.78E+07 6.95E-02 1.11E+02 4.1BE-05 5 2,662,924 2.81E+106 7.73E+07 7.98E-02 1.27E+02 4.77E-05 6 2,662;924 3.15t+06 8.60E+07 8.94E-02 1.41 E+02 5.3E-05 7 .2,662,924 3.316E06 9.41 E+07 9.40E-02 1.55E+02 5.81 E-05 8 2,662,924 3.46E 06 1.02E+08 9.82E-02 1.67E+02 6.28E-05 9 2,662,924 3.60E+.06 1.09E+08 1.02E-01 1.79E+02 6.73E-05 10 2,662,924. 3.72E+06 1.16E+08 1.06E-01 1.90E+02 7.15E-05 11 2,662,924 3.84E4:06 1.23E+08 1.09E-01 2.01 E+02 7.57E-05 12 2,662,924 3.95E+06 1.29E+08 1.12E-01 2.12E+02 7.96E-05 13 2,662,924 4.05E+06 1.35E+08 1.15E-01 2.22E+02 8.34E-05 14 2,662,924 4.15E+06 1.41E+08 1.18E-01 2.32E+02 8.71 E-05 15 2,662,924 4.25E+06 1.47E+08 1.21E-01 2.41 E+02 9.07E-05 16 2,662,924 4.34E+'06 1.53E+08 1.23E-01 2.51E+02 9.42E-05 17 2,662,924 4.42E+06 1.58E+08 1.26E-01 2.60E+02 9.76E-05 18 2,662,924 4.51 E+06 1.64E+08 1.28E-01 2.69E+02 0.000101 19 2,662,924 4.59E+06 1.69E+08 1.30E-01 2.77E+02 0.000104 20 2,662,924 4.66E&06 1.74E+08 1.32E-01 2.86E+02 0.000107 21 2,662,924 4.74E+'06 1.79E+08 1.34E-01 2.94E+02 0.00011 22 2,662,924 4.81 E+06 1.84E+08 1.37E-01 3.02E+'02 0.000114 23 2,662,924 4.88E+06 1.89E+08 1.39E-01 3.1OE+02 0.000117 24 2,662,924 4.95E+06 1.94E+08 1.40E-01 3.18E+02 0.000119 28 2,662,924 5.18E +06 2.12E+08 1.47E-01 3.48E+02 0.000131 48 2,662,924 6.07E406 2.41E+08 1.72E-01 3.96E+02 0.000149

72. 2,662,924 6.84E+06 2.66E+08 1.94E-01 4.36E+02 0.000164 96 2,662,924 7.45E+06 2.85E+08 2.11E-01 4.67E+02 *0.000175 120 2,662,924 7.96E+06 3.OOE+08 2.26E-01 4.93E4-02 0.000185 144 2,662,924 8.40E+06 3.13E+08 2.38E-01 5.14E+02 0.000193 168 2,662,924 8.79E+06 3.25E+08 2.49E-01 5.34E+02 0.000201 192 2,662,924 9.14E+,06 3.36E+08 2.59E-01 5.51 E+02 0.000207 216 2,662,924 9.46E+-06 3.45E+08 2.69E-01 5.67E+02 0.000213 240 2,662,924 9.76E+'06 3.54E+08 2.77E-01 5.81E+02 0.000218 288 2,662,924 1.03Et07 3.70E+08 2.92E-01 6.07E+02 0.000228 336 2,662,924 1.08E+07 3.84E+08 3.06E-01 6.30E+02 0.000237 384 2,662,924 1.12E+07 3.96E+08 3.18E-01 6.50E+02 0.000244 432 2,662,924 1.16E+07 4.07E+08 3.30E-01 6.69E+02 0.000251 480 2,662,924 1.20E+,07 4.1.8E+08 3.40E-01 6.86E+02 0.000258 528 2,662,924 1.23E!-07 4.27E+08 3.50E-01 7.01 E+02 0.000264 576 2,662,924 1.26E.07 4.36E+08 3.59E-01 7.16E+02 0.000269 624 2,662,924 -1.29E&..07 4.45E+08 3.67E-01 7.30E+02 0.000274 672 2,662,924 1.32E .07 4.53E+08 3.75E-01 7.43E+02 0.000279 720 2,662,924 1.35E 407 4.60E+08 3.83E-01 7.55E+02. 0.000284 Hcl Table 4-5: Cesium Hydro xide (CsOH) Production Calculation No. H21C08 l Nine Mile Point Nuclear Station Revision 0 Unit 1 Page 4-9 Core cesium - gap release 53.72 g-mole Attachment 1, Table 1-2 Core cesium - EIV release 214.87 g-mole Xttachment 1, Table 1-2 Csl gap release 6.84 g-mole fraction iodine release in form of Csl Csl- EIV release 34.22 g-mole fraction iodine release in form of Csl CsOH - gap release 46.88 g-mole CsOH - EIV release 180.65 g-mole Gap release onset 2 minutes Reg Guide 1.183 (main body Ref. 7.10.2)

Gap release duration 30 minutes Reg Guide 1.183 (main body Ref. 7.10.2)

Reg Guide 1.183 90 minutes R eg Guide 1.183 (main body Ref.

(main body Ref. 7.10.2) 7.10.2)

EIV duration

suppression cumulative I pool cumulative Time CsOH volume CsOH (Hr) (Q-mole) (liter) (q-mole/l) onset .0.033 0.00 2,662,924 0.OOE+00 end of gap release 0.533 46.88 2,662,924 1.76E-05

.1.000 103.08 2,662,924 3.87E-05 end of EIV 2.033 227.53 2,662,924 8.54E-05 CSOH Table 4-6: Effect' of LPS Addition Calculation NO. H21C08"r Nine Mile Point Nuclear Station on Post-LOCA Suppression Chamber pH Revision 0 Unit 1 Page 4-10:

Buffering by Liquid Poison System LPS:

Nominal LPS pump flow rate 30 gpm Design Input 4.12 Min LPS injection tank volume 1,325 gal Design Input 4.12 Max LPS temp. 105 OF Design Input 4.12 70 OF Design Input 4.12 Min LPS temp LPS SPB concentration by weight 9.423% Design Input 4.12 Specific gravity 1.0 .Design Input 4.12 Water density at max LPS temperature 61.93 Ref. 7.18 LPS solution density at max temperature 61.93 Ibm/ft3 Final suppression pool temp (bounding) 200 OF Boric acid; K 1.30E-09 at. 200 OF MW sodium pentaborate (Na2B10O16*10H20) 585.984 Design Input 4.12 3

Volume sodium pentaborate 177.1 ft Mass sodium pentaborate 1,033.6 Ibm Mass sod!urn pentaborate 800.1 g-mole Unbuffered pH 3.51 Unbuffered [HI 3.115E-0 4 g-mole/I Suppression chamber Water volume 2,662,92,4 liter Equivalents unbuffered [H] 829.5 g-mole Final pH 7.91 Time to inject boron 44.2 minutes LPS Table 4-7: Gamma and Beta Radiation Dose Calculation No. H21C08j#

Nine Mile Point Nu6lear Station used to Determine Post-LOCA pH Revision 0 Unit I Page 4-11 S gamma dose beta.dose I Torus Drywell &

Water Wetwell Drywell I TID @ TID @ TIDO@ i Time :1850 MWt 1850 MWt 1850 MWt Source for y Values Source for f Values

[hr] frad] [rad] . [rad] 1 [-I [-]

0 _ __I;_ _ _ _ _ _ _ _ _ _ _

0.034 1.3E+04 3.5E+04 1.OE+06 linear interpolation linear interpolation 0.534 2.OE+05 5.5E+05 1.6E+07 linear interpolation linear interpolation 11 3.7..*9E*05* 2L035E+/-06* *3*01EEO.0 UAttachment ,I 2, Table 2-2 Attachment 2, Table 2-1 2 6.3E+05 1.6E+06 4.5E+07 log-log interpolation log-log interpolation 2.034 6.3E+05 1.6E+06 4.6E+07 oIolog interpolation log-log interpolation 3 8.4E+05 2.0E+06 5.7E+07 I log-log interpolation log-log interpolation 4 1.OE+06 2.4E+06 6.BE+07 i log-log interpolation log-log interpolation 5 1.2E+06 2.8E+06 7.7E+07 log-log interpolation log-log interpolation 6 1;392E+.QQ R"15.0EI06! 8.6E+07 IAttachment 2, Table 2-2 log-log interpolation 7 1.5E+06 3.3E+06 9.4E+07 j log-log interpolation log-log interpolation 8 1.6E+06 3.5E+06 1.OE+08 T log-log interpolation log-log interpolation 9 1.7E+06 3.6E+06 1.1 E+08 T log-log interpolation log-log interpolation 10 1.8E+06 3.7E+06 1.2E+08 I log-log interpolation log-log interpolation 11 1.9E+06 3.8E+06 1.2E+08 log-log interpolation log-log interpolation 12 2.0E+06 3.9E+06 1.3E+08 log-log interpolation log-log interpolation 13 2.0E+06 4.1E+06 1.4E.-08 log-log interpolation log-log interpolation 14 2.1E+06 4.2E+06 1.4E+08 log-log interpolation log-tog interpolation" 15 2.2E+06 4.2E+06 1.5E+08 log-log interpolation log-log interpolation 16 2.3E+06 4.3E+06 1.5E+08 log-log interpolation log-log interpolation 17 2.3E+06 4.4E+06 1.6E+08 log-log interpolation log-log interpolation 18 2.4E+06 4.5E+06 1.6E+08 log-log interpolation log-log interpolation 19 2.5E+06 4.6E+06 1.7E+08 log-log interpolation log-log interpolation 20 2.5E+06 4.7E+06 1.7E+08 log-log interpolation log-log interpolation 21 2.6E+06 4.7E+06 1.8E+08 log-log interpolation log-log interpolation 22 2.7E+06 4.8E+06 1.8E+08 log-log interpolation log-log interpolation 23 2.7E+06 4.9E+06 1.9E+08 I log-log interpolation log-log interpolation 24 2.85.E-06B R495OE90,61 1.9E+08  :.Attachment 2, Table 2-2 log-log interpolation 28 3.OE+06 5.2E+06 R24211E-,O08,1 ! log-log interpolation Attachment 2, Table 2-1 48 4.0E+06 6.1 E+06 2.4E+08 I log-log interpolation log-log interpolation 72 4.9E+06 6.8E+06 2.7E+08 I log-log interpolation log-log interpolation 96 5.7E+06 7.5E+06 2.8E+08 log-log interpolation log-log interpolation 120 6.4E+06 8.0E+06 3.OE+08 j log-log interpolation log-log interpolation 144 7.OE+06 8.4E+06 3.1 E+08 i log-log interpolation log-log interpolation 168 7.5E+06 8.8E+06 3.3E+08 I log-log interpolation log-log interpolation.

192 8.1 E+06 9.1 E+06 3.4E+08 llog-log interpolation log-log interpolation 216 8.6E+06 9.5E+06 3.5E+08 I log-log interpolation log-log interpolation 240 9.1 E+06 9.8E+06 3.5E+08  ! log-log interpolation log-log interpolation

  • 288 9.9E+06 1.OE+07 3.7E+08o j log-log interpolation log-log interpolation 336 1.1E+07 1.1E+07 3.8E+08 I log-log interpolation log-log interpolation 384 1.2E+07 1.1E+07 4.OE+08 log-log interpolation log-log interpolation 432 1.2E+07 1.2E+07 4.1 E+08 log-log interpolation log-log interpolation 480 1.3E+07 1.2E+07 4.2E+08 log-log interpolation log-log interpolation 528 1.4E+07 1.2E-07 4.3E+08 log-log interpolation log-log interpolation 576 1.4E+07 1.3E+07 4.4E+08 log-log interpolation log-log interpolation 624 1.5E+07 1.3E+07 4.4E+08 log-log interpolation log-log interpolation 672 1.5E+07 1.3E+07 4.5E+08 log-log interpolation log-log interpolation 720 1*59,-!E0,j <1.35,0E ,.7M 4.6E+08 i Attachment 2, Table 2-2 log-log interpolation 2400 ý3'580Eq07,.'2! 1E*074 *61.E*08I Attachment 2, Table 2-2. Attachment 2, Table 2-1 Note: Shaded values taken from Attachment 2.

Rad Dose

Altachmenl 4 Table 4-8: Post-LOCA Suppression Chamber Water Calculation No..H21C08j/4 Nine Mile Point Nuclear Station Temperatumi Response Revision 0 Unit 1 Page 4-12 From Data (Ref. 7.6.5) Used for pH Analysis Time Post-LOCA Temp Time Temp

.(hr) (°F) 0 85.0 0.034 127.3 0.534 149.9 1 155.3 2 159.1 2.034 159.2

.3 159.9 4 158.9 5 158.7 6 158.7 7 158.7 0.534 149.9: 8 158.7

.9 158.7 1 155.3 10 158.7 2 159.1 11 158.7 2.034 159.27 12 158.7 13 158.7 14 .158.7 3 159.9 15 158.7 4 158.91 16 158.7 17 158.7 5* 158.71 ..18 158.7 6 158.7 19 158.7 7 158.7; 20 158.7 18 1.58.71 21 158.7 9 158.7 22 158.7 10 158.7' 23 158.7 11 . ."158.71 24 158.7 12 158.7, 28 158.7 13 158.71 48 158.7 14 158.7 72 . 158.7 15 158.71 96 158.7 16 158.7 120 158.7 17 158.7 144 158.7 18 158.7 168 158.7 19 158.7; 192 158.7 20 158.7! 216 158.7

,240 158.7 21 158.7:

22 158.71 288 158.7

.23 158.7:. 336 158.7 24 158.7 384 158.7 28 158.7 432 158.7 2 48 158.7; 480 158.7 3 72 158.71 528 158.7 4 96 158.7! 576 158.7 5 120 158.7: 624 158.7 6 144 158.7ý 672 158.7 7 168 158.7: 720 158.7 8 192 158.71 9

  • 216 158.7!

10 240 158.7' 12 .288" 158.7; The shaded values are taken 14 336 158.7 ' from Reference 7.6.5 (Design 15 360 158.7. Input 4.15). Other other .

384 158.71 values are either interpolated 432 158.71 or extrapolated. The long 20 480 158.7, term temperature is 528 158.7i maintained at 158.7*F.

576 158.7, 25 600 158.7 I.

624 158.7, 672 158.7, 30 720 158.7, Seconds are the units for t=0 to 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />; days are the units for i t=48 to 720 hours0.00833 days <br />0.2 hours <br />0.00119 weeks <br />2.7396e-4 months <br />.

S1*Temp Table 4-9: Post-LOCA Suppression Chamber Water Volumes Calculation No. H21 CO8 "ý Nine Mile Point Nuclear Station Revision 0 Unit I Page 4-13 Parameter SymbolI Unit IMinimum SC Mass IMaximum SC Mass Reference Suppression Chamber Water (SC) _._.. I _ ..

Suppression chamber water volume Vsc ft3 79,800 86,000 Design Input 4.6 Suppression chamber water temperature ... Tsc .. F.... 85 60 .. Design Input 417 Suppression chamber pressure Psc psia 14.7 14.7 Design Input 4.8 Density of suppression chamber water Psc Ibm/ft 3 62.17 62.37 Ref. 7.18 Mass of water in suppression chamber msc Ibm 4,961,429 5,364,128 =Vsc*Psc Reactor Coolant System (RCS) 5 0 1 ,5 0 0 5 0 1 ,5 0 0 D e s ig n In pu t 4 .3 RCS mass mRcS ft3 Post-LOCA (SC+RCS) no RCS mass included in SC for. min; RCS mass added to SC m *CS,tot Ibm 0 501,500 al all steam cnden steam condenses ininSC SCfor max formax Total water mass in SC mPL_.C~tot Ibm 4,961,429 5,865,628 = msc + mRCS Total volume of water in SC VPLScjot ft3 79,800 94,040 = mp1 SCPtot / Psc 3 3 Total volume of water in SC VPLSCjtot liters 2,259,685 2,662,924 = VPL SC.tot [ft ]

  • 28.31685 liter/ft 7

SP Mass Calculation No. H21CO8d4' Nine Mile Point Nuclear Station Revision 0 Unit 1 Page 4-14 Figure 4-2a: Gamma (7) Dose vs. Time Post-LOCA (Short Term)

(U 0

0 a

0 (U

C 0

I-0 4 8 12 16 20 24 28 32 36 40 44 48 Time Post-LOCA (hours)

ST gamma TID Calculation No. H21C08/#+

Nine Mile Point Nuclear Station Revision 0 Unit 1 Page 4-15 Figure 4-2b: Gamma (y) Dose vs. Time Post-LOCA (Long Term) t1OE+08 1.OE+07 0 o 0 0

0 4,-

  • 1.OE+05 1.OE+04 0 400 800 1200 1600 2000 2400 Time Post-LOCA (hours)

LT gamma TID Calculation No. H21IC08,4 Nine Mile Point Nuclear Station Revision 0 Unit 1 Page 4-16 Figure 4-3a: Beta (13) Dose vs. Time Post-LOCA (Short Term) 1.OpE+09 S1.OE+08 0

I-1.OE+07 1.OE+06 0 4 8 12 16 20 24 28 32 36 40 44 48 Time Post-LOCA (hours)

ST beta TID Calculation No. H21CO8/*

Nine Mile Point Nuclear Station Revision 0 Unit 1 Page 4-17.

Figure 4-3b: Beta (0) Dose vs. Time Post-LOCA (Long Term)

I.OE+08

.0 C

10 1.OE+07 1.OE+06 0 400 800 1200 1600 2000 2400 Time Post-LOCA (hours)

LT beta TID Table 4-1 Eqs: Post-LOCApH Calculation wtthout LPS Calculation No. H21C0&J Nine Mie Point Nuclear Station Revision 0 Unit 1 Page 4-18 A ~ ' B [C 0 E .F i Initigalconditionas .. _______________

3 SC water mass ='SP Mass (eqs)'1EB ibmr Table 4.9 (masiitrnu values) 4 FtCSmass - 'SP Mass (0*)'!E12 Ibm Table 4.9 (maximum values) -

-5 Totl ot-LOCA SC mss - - - -- - -- * -03+04------------------------

7 ISUPPression Chramberwate pH 5.5. Design Input 4.1 (minimumrvalue) aI racto Coolnt p 5.5 .Design input 4 2 (minimum value) 9 1________

10 ___________ =(D3 I OX.D7)+D4* I N-08))D5 9-molell weighte averag

_L=(D3* I0N.-14+D7)+D4*1 DN(-I4+08WYD5 g-mofe/l weighrted average 13Po (U HNOX [HCi3' [CsC)Hf 14 Time votume'________________

(Ster) 0mes) gols)I-oed (mosA 1L5 (hr) _______________________________olesA 16 ='Red Dose 'lsIAB =D$5/416*28.31685 17 ='Red Dose (eqsl'tA9 -DSS(J)1728.31685 ='HN03 (es'i08'Jl 453.6( 1000*28.31665) -'HCI (es'1H42'SP Mass (es'iSES1S/5617 18l ='gad Dose (eqsi'lAo =DS5/J18*28.31685 ='Ht (s'iEI6'SP Mass (es'i$E$15t'SB18 .='HN03(es'iD9*J18453.6/(I00028.31685) ='HCI(OS'lH43*'SP Mass (es'iSES15tSB18 ='CsOH (cs'!Elg9"SP Mass es)'iSES15/$B18 19 ='Red Dose(egs)'IAl I =DS/J 19'28.31685 ='Ht (p'iEI7'SP Mass (s'I$ES5$91M9 ='HNO3 (cs'1D1*J19*453.61(1000*28.316851 'HCI (es'tH-44"SP Mass 'isySES151$Blg ='CsOH (es'!E20*'SP Mass (es)'lESISISBl9 20 ='gad Dose (eqs)'1A12 =DSS/J20*28.316a5 ='HI (es'IES18"SP Mass (es'ISES1SISB20 ='HNO3 eq,'101P1J20*453.6/ 1000*28.31685) ='HCI(M1H45*'SP Mass 'es!SE$15/SB20 ='CsOH (es'!ES2I"SP Mass (es'!$ES1S/S20 21 ='Rad Dose (eqs)'tA13 =D$5IJ21*28.31685 =JHI(es'iES18*SP Mass (es'!SES15/$B21 ='HNO3 (eS'i012*J2l*453-6/ 1000*28.31685) ='HCI (es'!H46'-SP Mass (eS'!SES15tSB21 'ýCsOH(es'IES2l-SP Mass "esSES154SB21 22 ='gad Dose (em)'!Al4 I=DSS/J22*28.31685 -'HI (es'iE$l8'SPMass 'ejs156315/522 ='HNO3 (es'iD13'J22*453.6(10DO28.31685) ='HCI "ep'H47*'SPMass (cs'iSES1511SB22 ='CsOH (es'IES21"SP Mass (es1$ESIS/3822 23 ='gad Dose (acs)IA15 I=DSS/J23*28.31685 ='HI (g)IE$18"'SP Mass (es'!$ES15/$23 ='HNO3 (es'iD14'J23'453-61000DD28.316a5) c'HCI (es'1H-48"SP Mass (es'!SESI51$SE23 ='CsOH (es'ES21*'SP Mass (esiSE$151S823 24 ='gad Dose (eusl'IA16 -DS5(J24*2B.31685 ='HI (es'i6318*'SP Mass (es'?$E315/SS24 ='HNO3 (s'!D15*J24'4S3. 1000'28.31685 ='HCI (cs'1H49*'SP Mass ecs'!SESi5/S824 I='SOH (as'iES21*'SP Mass (es'!SES15/624

.25. ='RadDose.(eqs)'1A17 =DS51J25*28.31685 ='Hi (s'iESI8*'SP Mass (es'ISE$iS/3625 .'HNO3 es'ID16*J25*45z3.6/ 1000'28.31685 1='HCI(s'iH5*'-SP Mass ecs'ISES15/S8325 1='CsOH (es'IE$21*'SP Mass (es'ISES15/$B25 26 ='gad Dose (eq)'IA18 =DS5/J26'20.31685 ='Hi (s'!ES18*'SP Mass 'ISy!ESIS/6B26='HNO3(es'!l0rJ26*453. '100O28.31685 1-'HCI( -- '1H51'SP Mass es'!SE$15/SB2B a'CsOH (es'IES2l'SP Mass 'Isy!E$15/SB26-27 ='gad Dose (eqsl'1Alg =DS5/J27*28.31685 ='HI (e1s'E518*'SP Mass (es'tSESl5/$B27 ='HNO3 (cs'IDl8*J27*4Sa6/100O28.3I685 j='HG(cis '1H52'SP Mass ecs'iSESIS/5B27 1='CSOH(es1E$21*'SPMass (e'i$ES15/IB27 28 ='Rad Dose.(es'!A20 -DSSJ28*28.31685 ='HI (cs'!ESIW*'SP Mass (ts'!SES1513828 ='HNO3 (s't019*J28*453.6( 1000'28.31685) ='HCI(es'lH53'SP Mass (s'!5ES15t3B28 J='CsOH (es'IES21'SP Mass (es'!SE$l54S828 29 ='ReadDose (eqs)'1A21 =DS5/J29*28.31685 ='HI (s'lE$18'SP Mass '15)`IES1516829 ='HNO3 (es'lD20*J29*453.GJ 1000*28.31685) ['HCI (s'iH54*'SP Mass (es'iSES15/582 ='CsO)H(s'lE$21'SP Mass (cs'ISES15/$B29 30 ='Plad pose (egs)'!A22 =DSS/J30*28.316a5 =HI eCs'IES18*"SP Mass (cs'I$ES15/SB3O ='HNO3 (s)!D21PJ30*453.6/(1000*28.316851 ='HCI '1H55"SP Mass (es'iSES15/$B30 ='CsOH (s'!ES21*'SP Mass *IqsyES15/B30 31 ='Rad Dose (eqs)'IA23 =DSSIJ31 28.31885 ='Hil(e'!ESIS"SP Mass(q;'!$E$l5/631 ='HN03 (es'1D22*J31V453.68/1000*28.31685) ='HCI (es'!HS6*'SP Mass (es'!SES15/S931 ='CsOH (es'IES2l'SP Mass (es'iSES15/5B31 32='gad Dose(eqs)'1A24 =-D$S/J32*28.31685 -='HI s'iES18*'SPMass (cs'ISESI5/SB,32 ='HNO3 (es'1D23*J32*453.6/(1000*28.316B5) ='HCI(esiH5r'SP Mass (es'iSESI5/S32 ='CsOH (es'iES21'SP Mass (es'I36315A&V2 33 =:'Rad.Dose (egs)1 A25 =DS5/J33X28.31685 ='Hi (eS'IE$18`SPMass (cs'iSE$IS/$B33 ='HNO3 (es'1D24*J33*4S3.6/(1000*28.31685) 'HCI 'eSiH58"'SPMass (cs'!$ES15/3633 ='CsOH (es'16621*'SP Mass (es'!SES15/6633 34='Rad.DoSe(eqS)*!A26 -D$5/J34*28.316a5 ='Hi. es'lE$l8"SP Mass wp'136615/6634 ='HNO3 (cs'1D25*J34*453.6/(1000*28.31685) HCI (as'IH59"SP Mass (s'iSE$lI5SB34 ='CsOH (es'IES21*'SP Mass *lqsyES1SiSB34 35='Rtaolose (ecimlIA27 =DSSIJ3S'28.31685 ='Hi es'IES18'SPMaSS~cs '15E315/3835 =81403 (es'!D28*J35*453.6'(1000'28.31685) =801I (s'1H60'SP Mass (cs'ISES1SdSB3 ='CsOH (es'!ES21`SP Mass (cs'iSESI5S/B35 38 'Rad-Dose (egs)1IA28 (es'!E$18"SP Mass (cs'!$ES1SI3B3e

=:132.365~HI ='HNO3 (es'iD2TJ36*453.8/(1000'28.31685) =801I 'lsyHB1SP Mass (es'!$ESI5/SB38 ='CsOH (es'lES2I'SP Mass (es'!SES15/SB36 37 ='Red Dose (eqSlIA29 -DS5/J37 28.3I685 '-Hi 'iyESI8"'SP Mass es't$ES15/6637 ='HND3 (s'i028'J37r453.61(1000'28.31685) =801I 'esiH6*'SP Mass (cs'iSE$15$S637 ='CsOH (es'1ES21'SP Maiss 'e~sI$ES15IS837 38 ='Red Dose (egsIIA30 =D$5/J38*28.316a5 ='Hi (es'IE$18,*SP Mass (es'I$ES15/S838 =88N03 (es'1D29*J38*453.6/(1000*28.31685) ý"CI (eS'IH6X'SP Mass (s'!SES15f$B38 'CsOH (es'!ES21*SP Mass 'IqsyES15/SB38 A='Read Dose (esosIA31 =D$5/J39*28.31685 'HI (es'IE$18"SP Mass 'eisEUS1S/3B39 ='HN03 (es'iD3lYJ39*453.1( 1000*28.31685) 'HCI (cs'IH64*'SP Mass (es'ISESIS/$B39 =05014 (e'IE$2P*'SP Mass (es'ISElSS/S39 40-t='Rad Dose (eqsY1432 0D$5/d4G 28.3l685 Hi 'iqsyE$l8SP' Mass 'lsYSESI5/6640 ='HN03 (es'iD3l'J40,453.6/ IDOIY2B.31685) 'HCI tesyH8'SPMass 'eqy!E$S1t64'CsOH 'es1E62V*'SP Mass 'lsySESlSU4&

41.1='Fad Dose (erW)lA33 =D$S5J41'28.31685 'Hi (es'iESIB"SP Mass (es'ISES15/SB41 =NN03 (es'iD32*J41P453.&'(1000'28.316a85 ='HCI (s'IH86*'SP Mass (es'I$E$15/SB41 ='CsOH (es'1ES2l'SP Mass 'IqsyE$15/6841 42 J='RadJ~one (eon)'A34 =D$SIJ42*28.31685 ='HI (es1E$l8"SP Mass (es'ISES1SISB42 :='HNO3 (es'i033X42t453.61 1000-28.3185) 'eHCI(es'!H7'-SP Mass 'esl$E$151SB42 s'CsOH (es'IE$21 `SP Mass 'isy$ESI5/SB42 43 1='Rad Dose (eqs)IA3ý =Q$W/43128.31685 '*Hi(s'iES18*'SP Mass (es'I$ElS1SIB43 -'HNO3 (es'iD34J43*453.611000O28.31685) .'HCI 't8yI68*'SPMass (es'I$ESI5/S643 ='CsOH (es'IES21'SP Mass (es'fSES1S/B43 44='ReadDose (ecm)'A36 =DS5tJ44*28. 1885 -'HI 'isyES18"SPMas (es'ISESI5/B44 =88N03(es'iD35*J4C4 43.6f(1000*28.31685) ='HUl 'esIH69*'SPMass (es'ISES15/6844 ='CsDH (es'1S21*'SP Mass 'eiSylES1541B44 415='gad Dose (eqs)'IA37 =D$51J45*28.316a5 'HI (es'iESI8"SP Mass (et)'15661541545 ='8H03 (es'1D38WJ45:453.5/(1000*28.316a5) "HCt (S'I870*"SP Mass (es'ISES15/S845 ='CsOH ( ES2P'SPE$2 %BE15645 4='Red Dosse.eqsnIIA38 DSS/J4,6*26.31685 'HI (ed'iE$18"SP Mass (ei'138515/684 1='t-NO3 (es'iD37J46*453.8' 1000*2831685) ='HCI (eOn)'tH71*'SP Mass 'IqsyESIS/6846 ='CsOH 1eyE$21'SP Mass (es'ISES15/$B46 47 ='Rml Do~se(eql'!A39, zDS5IJ4r*28.3168 ='Hil (e'IES 8*"SPMass 'l3Y!E$IS/$B47=88N03 (es'!D38*J4r453.6 1000 28.31685) =HCI (eonyIH72*'SP Mass (es'I$E$l51$847 ='CsOH (es'16S2l*'SP Mass 'Isy$SE6I$B/47 A='8ad Doso (es)tMA4O 0D5/J4828.316a5 ='HI '"iES18"SP Mass (s_'ISES15/SB48 ='HN03 (es'lD391J48/453.6/ 1000 28.31685) ='HO (egs)'IH73'SP Mass (eS'lSE$I15/648 =0508 (es'1662l'SP Mass 'IqsyES1S/$B48 49'gad Dose Cecs)'M 1A1 D=i4 8.18 It (s'!ES18"'Sp Mass (es'I$ES1S/S849 ='HNO3 (s'iDk40J49'453-6/ 1000*28.31685) /HCI (egsl'IH74 'SP Mass 'IqsyES15/SB49 ='C508 (es'IE621SP Mass 'IqsyESI5/S849 50='Ra4Dose (eol'!A42 =$5/J50*285.1685 'HIl (e'IE 18*SP Mass 'esI$E$15/SBSO ='HN03 (es'iD41tJ5453.681t000*28.3t685) 'HCI Mass (es'ISE$lS'SB5

'tq)*H75-'SP =0504 (w'l6S2I'SP Mass (es'ISE$15/BSO

_k1ý='ReadDose (eicislIA43 0-S5tJSI 28.31685 =W1(s'IES18"'SP M~s 'IqsyE$1SSB51- =11N03 (es'iD42*J51P453.8/1(D28.31685) '8013 (s'!H76'SP Mass (s'i$E$SlS/651 =ýCsDH (cs'IES2l'SP Mass (es'tSESI5/$Ek5.

5adose (eonl'A4-4 =QSQ/52*28.31685 ='HI(cs'iES18*'SP Mass (,aIjSES1S/3652 ='HND3 (es'!D43*J52*453.8i(1000*28.316a5 NC30(eS'IH77`SP Mass (es'iSES1US/352 ='CsOH (es'!ES2l'SP Mass 'IqsyESl1$B652 53'Rc~s~o)1A45 =DS5fJ53*28,31685 ='Ht (s'!ES18*"SP Mass (es'!SESI 5/,3 ='HN03 (es'!D44*J5.453.61100*28.31611 .'=I801 )'IH87WPMs ( 'IE1/83=CO ISSMass ',ISEESI5t$BS3

,54 =-'gadDose (egslIA46 =DSSJ54'28.3188 'HI 'iESIB'SP Mass 'esIE16631$B64 ='HN03 (es'iD45-J54-453.6/100028IB31685 1=801 (es'iH791'SP Mass es'iSES15/6854 [='CsOH (es'l6S21*'SP Mass '13635/385 55 I-'RsdDose (egs)'A47 =D$5/J5*28.318 Hi 'iE~l8`SPMass '1366$E15/$BS5 1='HN03 (es'iD46*J55 453.6i1000*28.31mrl 1='HCI '1880SO'SP Mass (as'i$ES15t$Br5 1'Cs08 'IE21YP J$E'1665/$Et55I pH (eqs)

I

9 Table 4-1 Eqe: Post-LOCA pH Calculation without LPS Calculation No, H21G0# O Revision 0 Nine MOePoint Nuclear Station Page 4-19 Unit 1 1 A c ° t E F 14 Time .. Volume'_ _"__ _

15 (hr) (liter) (r-moiesA) I o,(2-molesA) (g-motest I"

-56 ='R.d Dose (eqs)' a DS5J5628.31685

- =HI(eosy'E$2SP Mass (eqs--SE$155B56 ='HNO3 (eos)'lD47"J5O6453.6/1000628.31685) ='HCI (eqs)lH81"SP Mass (es)E1BS6 ='CsOH (eas)'IE$21"SP Mass (eqs)'l$ES15*lSB56 58 ='Rad Dose (eqs)'IA50 =D$,*J58"28.31685 ='HI (eIs)'1E$18"SP Mass e*SViSE$15nSBS8 =HNO3 (eqsw!D49J5"453.6/(100028,31 6 8 5( HCl (ets)IH83SP Mass (eslS15l$B59 (ecYsE$15i$B58 =sON (eqs)1E$21"SP Mass Mass (eos5E$15/$B59 (eos)'I$E$15SIB58 59 ='Rad Dose (egs)'lA51 =D$5/J59"28.31685 ='HI (eqs)'slE$18SP Mass ='HN3 cslD50J59453.61(0OO28.31685l

$ei.3SE$15,7B5 -'HCI (eqs'lH84"S Mass =SOH (eqs)lE$21SP 6

60 ='Rad Dose (eQs)'!A52 =D$5/J60"28.31685 'HI ecs)lE$18"SPMass (eqs)'lSE$15/$B6 0 ='HN03 (eqs'!D5161453.6/(1000 28.316a5) ='HCI (eqs)'lH85"SP Mass (eqs)'lSES15/$lBS ='CsOH (eis)'IES21"SP Mass(ees)'t$ES$1,5B60 61 ='Red Dose (eqs)'A53 =D$51J6128.31685 'HI (eqsy'!ES18'SP Mass (eqsE$15/$B 1=IHNO3 (ecs)lD52"J61"453.611000*28.31685 ='HCI (eqs)'1H86SPMass (eMsSE$15$61 =CsOH (eqs'E$21"SP Mass()t$E$15/B8l 62 ='Rad Dose (es)'I!A54 =D$5/J62"28.31685 ='HI (eqs)'!E$18"SP Mass(eCf)'I$E$15$B? =HNO3 ýeqs)'D53.J62"453.6(1000 28.3165 ='HC (ecsr'lH87'SP Mass(es)'l$E$15SB2 =CsOH(eQsYlES21"SPMass ICeoSE$15ISB82 63 d'Red Dose (en)ASS =D$S5/J6328.31685 =HI (eon)lEt$8"SP Mass (eqs}'lSE$1,B63 =HNO (eqs)'JD54J6 31453.6/61000"28.31685) ='HCI.......(eqs)'lHW'SP Mass (es)'ISE$15ISB63 ='CsOH (es)lIE$21*'SP Mass (eqs)'l$E$151SB63 64 Notes __ __ _ __ __ _

3 68 65 1) Pool volume is cOmputed as follows: (msalpsp)*28. 1 5 It 66 26 The HIIHCI, and CsOH conentrations calculated in Tables 4-2,4-4, and 4-5 are based on the SP volume from Table 4-9.

67 To adjust for the SP volume asIt danges throughout the LOCA, the concentration from Tables4-2.4-4, and 4-5 Is multilied by the following factor: VY.WVsN "_"

68 wheeVwe is the volumeIln Table 4.9 asd VSPIs calc*ulatedn this sheet.

69 3) The HNO 3 concentration does not oirec*ty utilize the SP volume and therelore is not adjusted as described In Note 2. However, 70 the HNO, generationis basedon p.o=1000gl. To account lorthe density in the posi-LOCA SP, the concentration from Table 4-3 -

1 71 is multiplied by psr 1000 g4" 453.6 g/lbm 128.31685I/ft_

pH (eqs)

  • Table 4-1 Eqs: Post-LOCA pH Calculation without LPS Calctiation No. H21C0§'

Nine Mile Point Nuclear Station Revision 0 Unit 1 Page 4-20 G H J M N 4

5*

8 11

_______I [ Iii -+ ~1 12,4-1I_ Total H*I Total rOHi Pool Water K.at x [H*] Pool Temo Densitv Pool Temp pH i~j (p-motes/D [===~ LIM g-motsA) 161=DS1O+SUM(C18:E16) I=D$11+F16 ='SP Temp (eqs)'IF5 162.17 O=

-10'-l15.512"-.0224-116+0.i o-mdolesflf (a-molesfl) 1-1

=11Y415.51 29-O.0224*117.0.C

=10ý-I15.512"-.0224*1164-P.C -18 I=-LOG(M18)

!'11912) I=(H19+G19-SQR )ý2-4(H 19"G19-K19))/2 I=G19-L19

-10%(15.5129-0.0224-119i0.C

=D$t1+F20 I='SP Ternp (eqs)'IF9 161.01 =I10'(l5.5l29-0.0224*12G0.0 21 1=1 =0$Is-+F21 ='SP Temp (e)'!FO 61.01 =10'-115.51 29-0.0224*121 i0.C

=3$11+F`22 ='SP Temp (es)'!Fl1 60.99 =10'-f15.5I29-0.0224*t22+0.( L22 1=;LOG(M22)

=0S11+F23 ='SP Temp (e)!F12 102 =10-l15.5129-0.0224-123.a0.C

=D$11sF24 ='SP Temp (es)'!F13 102 =10-M 5.5129-0.0224-124+0.(

25 I=D$10+. =DS1+F25 ='SP Temp tF4 61.02

=0$11+F26 =SP Temp (es)'!F 61.02 L26- ='LOG(M26)

=DSII+F27 ='SP Temp (s)'!F16 61.02 3.00003352*12712 1=(H27+G27-SOFIT((H27+G27y92-4(H27r( =G27-1-27 =-LOG(M27)

=DSI11F28 ='SP Ternp eqs)'!F17 .02 =10'-( 15. 3.00003352*128V2= H28+G26-SORT((H28*G28) -4' N28-t 29 I=D$1Q+. =OS1+F29.l='SPTemp eqs)'!F8 61.02 =10Aý(15.1 1ODD0335212912 =(H29+G29-SORTf H29+G29-4'- H-2't

=Dtl+F301='SPTemp eQs)'lF 1.02 =D15.1 2.00003352-13-'2) -H30+G30-SQRT((H30+G30 2-4' H30t L30 I=-LOG(M30)

=D$11+F31 ='SPTemp eqs)lF2 61.02 =1115.1 ).00003352*131V2)=(H31.G31-SORT((H314-G31 )2-4i(H3t'I

=D$ 1+F32 1='SP Temp (eqs)'!F2l 61.02 I-K34))/2 1=G34-L34 =s-LOG(M34)

Qs)'!F24 61.02 Mt 5.5129-0.02241L35.O.00003352135'V) [=(H35+G35-1 36 I=DS.10+- =O$I1+F36.I='SPTemp(eYs)'!F25 61.02 =10115. i+G3612-

'+G37y2-kG3SAQ-4 .38 [=-LOG(M38)

=D$II+F39 l='SP Temp (eis)'!F28 161.02 =10* 2"139,2) 1-(H39+G39-,

40 I=D$10+SUM(C40:E40) i+G40) +G41y-

!+G42Y- =-LOG(M42)

=0$t11F43I='SPTeMD~eQS)tIF.W61.02 =-lO 15.5129-0.024"143+0.00003352"143Y2 =(H43+G43-1 k43Y2-4 -LOG(43) 44 I=D510+SUM(C44:E4) =.$11+F44 I='SPTemp(eqs)'!F33 61.02 5 =-LOG(M44)

=-LOG(M46)

=-LOG(M46) 47 7:E47) I=DS11+F47 j='SP Temp (eqs)tF36 (61.02 I1-1".15.5129-0.0M24147+-4

=-LOG(M47)

!-150V --1H50G50-SORT(lHS0+G5Y 51 .=D$10+! =D$11+F51 I='SpTemp(eqs)lF40 61.02 =(HSI +G51-SORT(O-151

+G51Y

=CH52+G52-SORTftN52.652

=(H53+G53-SORT(lH53+G53Y L53 =-LOG(M53)

=ODtI+F54 1='SP Tsmp (sw)fF43J161.02 1=iOA.1i5.5129-0.0224*1544-0.00003352154'Q =(H54-G54-SORT((H54+G54),X 55 =D$10+i L =061 1+F6551=SP Temp (eqSYtF4 61.02 fI5.5129-.0224-155+0.0000=-515519 1 (H55+(155-PH (eqs)

Calculation No. M21C0V*"

  • Attachment 4 Table 4-1 Eqs: PoSl-LOCA pH Calculation without LPS Revision 0 Nine Mile Point Nuclear Station Page 4-21 Unit I I GH I I K 1L M (N 131 Total CHI TOISIIOHN Pool Wale, Ka!

K. * [Ha.In Pool 14 1______ __ Temp Dest Pool Temp It -PH 15 _ (p-mcles/Il roesA tb-l Am (-1 gmislmlSI J

.s6 =0$10+SUM((56:56). =0$131+156. =SP-Tefn,(eonY!F45 ei.02 -10 15.5129-0.0224l1564O.00003352I15&*Q) (56+G56-SORlT(ll 56 G56}2-4'(H56G56-K56))2 .G58-156 =.LO(3(M56) 7 57 =D$10+SUM(C57:E57) =DS1I+F57 ='SP7Tentp(eqsyIF46 61.02 t0-152-024'.0032l ' (N+G-SR( 5 5Y2-4'(H57-G57-K57) '1257-157 =ý-LOG(MS5 58 -D$10tSUM(CSB:ESB) =0$11+F58 ='SP Temp (egs)'!F47 61.02 .101-(15.5129-.00224 IS l+0.00003352-15&QV21N56+G58-SORT((l St r'G56-4'(H58-G56K58))Y G5&-L56 .- LOG M58) 59 -=0S10+SUM(C59:E59) =DSII+F59 =SP Temp (eqsy!F48 61.02 =101-f15.5129-0.0224 'IS +0.000033S2'15912 .(HS9+G59-SORT((H59,+G59V2-4lN59'G59-K59))Y =G59-1.59 1--LOG(MS9) 05 1F6 ='P em (oslP4 60 DSO+UMC8:E6) 6 0 I~i 5290.00224 16 tO.000MM321601Q --H60+G60SORT((H60+G60y2-4'(N6G60-K60))V L60- 1-LOG(MqO 61 =DS10.SUM(C6l :E61) =031 1.F61 =5SPTemp (eqs)l'F50 61.02 .l0&(1.(t5129-0.0224'16 l+0.00003352i1611Q) --(HSI+G61 -SORTI(N61 +G61)2.4(1N61V61-K61)'y =0G61-L61 =-LOG(M61).

62 ý-OS10+SUM(C62:E62) =0DS11+F62='SP Temp (egs)lIFSI 61.02 =10N15.5129-0C0224*16240.00003352i162^2) =H62+G62.SORT((H62.GS2yi2-41N62G62-K62)) =G62-L62 =-LOG(M62)

=63-.6 -LOGIM63) 463=DS10+SUM(C63:E63) =DS11+F63 ='SP Tamp (eq~s'lF52 61.02 =IV"-(15 529-0.0224*163+0.00003352*163V) -- N63.G63-SORT((H634G6Y2~-4'(H63'G63-K63)l 0

66 _____ _ _ ____

67 _________ ____ ________ _____________________ _____________________

66.8 _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

7069 ________ ______________

710_______________ ____

pH (eqs)

  • Attachment 4 Table 4-2 Eqs: Hydriodic Acid (HI) Production Calculation No. H21C08/-/

Nine Mile Point Nuclear Station Revision 0 Unit 1 Page 4-22 I. lA B C D E 1 Core iodine inventory. .... . ... . . . "

2 Core iodine - gap release 7.2 .g-mole Attachment 1, Table 1-1 3 Core iodine - EIV release 36.02 g-.. LAttachment 1, Table 1-1 4 - . I. ... . . . . .

5 Fraction of release as HI 0.05 max Reg Guide 1.183 (main body Ref. 7.10.2) 6 7 Gap release onset 2 - minutes Reg Guide 1.183 (main body Ref. 7.10.2) 8 Gap release duration 30 minutes Rea Guide 1.183 (main body Ret. 7.10.2) 9 EIV duration 90 minutes . Req Guide 1.183 (main body Ref. 7.10.2) 10 11 suppression 12 cumulative . chamber water -cumulative 13 Time HI volume HI 14 (hr) (g-mole) (liter) (g-mole/I) 15 onset =B7/60 0 " ='SP Mass (eqs)'!$E$15 =C15/D15 16 end of gap release =B15+B8/60 =B2*B5 . ='SP Mass (eqs)'$E$15 --C16/D16 17 11 =C16+(B17-B1.6)/(B9160)*B3*85 ='SP Mass (egs)'!$E$15 =C17/D17 18 end of EIV =B16+Bg/60 =C16+B3*B5 .='SP Mass (egs)'l$E$15 =C18/D18 HI (eqs)

Table 4-3 Eqa: Nitric Acid (HNO 3) Production Calculaton No. H21C08/O Nine Mile Point Nuclar Station Revision 0 Unit 1 Page 4-23 A B C D E F 1 HNO3 generntion 0.0000073 g-moie/l per MeRad NUREG/CR-5950 (main body Ref. 7.13) 2 3

4 Suppression 5 Chamber Water cumulative TiD @.

6 Time 1,850 MWt HN03 7 (hr) (red) (g-mote/A) 8 onset ='Rad Dose (eqs)'IA9 ='Rad Dose (eqs)'lB9 =$B$1"C8/1000000 9 end of gap release =R'ad Dose (egs)lA10 ='Red Dose (egs)'1B10 =$B$1"C911000000 10 ='Rad Dose (eqs)'Al 1 ='Rad Dose (eqs)'Bt1 1 =$B$"C10/1000000 1I end ol Ely ='Rad Dose (eqs)'IA12 ='Red Dose (eqs)'tB12 =$B$"C1 1/1000000 12 ='Red Dose (eqs)'lA13 =Red Dose (eqs)'lB13 =$B$1"C12/1000000 13 ='Red Dose (eqs)'A14 ='Red Dose (6qs)'lB14 =$B$1"C13/1000000 14 ='Red Dose (eqs)'iA15 ='Red Dose (eqs)'1B15 =$B$1"C14/1000000 15 i =Red Dose (eqs)'iA16 ='Red Dose (eqs)1l16 =$B$1"C15/1000000 16 .'Rad Dose (eqs)'IA17 ='Rad Dose (eqs)'1B17 -=$B$1"C16/1000000 17 ='Red Dose (eqs)'IA1 8 ='Rad Dose (eqs)'lB18 =$B$1"C17/1000000 18 ='Red Dose (eqs)'lA19 ='Rad Dose (6gs)'lB19 =$BSt*C18/l000000 19 ='Red Dose (eqs)'lA20 ='Red Dose (eqs)'IB20 =$B$S"C19/1000000 20 ='Red Dose (eqs)'tA21 ='Rad Dose (eqs)'lB21 --$B$1"C20/1000000 21 ='Red Dose (eqs)'lA22 ='Red Dose (eqs)'IB22 =$B$1"C21/1000000.

22 ='Rad Dose (eqs)'IA23 ='Red Dose (5,s)'1B23 4$B$1"C22/1000000 23*' i ='Rad Dose (eqs)'IA24 ='Rad Dose (eqs)'1B24 =$B$1"C23/1000000 241 ='Rad Dose (eqs)'IA25 ='Red Dose (eqs)'IB25 =$B$1"C24/1000000 251 ='Red Dose (eqs)1A26 ='Rad Dose (6qs)'IB26 =$B$1"C25/1000000 261 ='Red Dose (eqs)'IA27 ='Red Dose (eqs)'tB27 =$B$1"C26/1000000 271 _ _'Rad Dose (eqs)yA28 ='Red Dose (6qs)'IB28 =$B$1"C27/1000000 281 ='Red Dose (eqs)IA29 ='Red Dose (eqs)'B29 =$B$1"C28/1000000

  • 29 ='Red Dose (eqs)'lA30 ='Red Dose (eqs)'B30 =$B$1"C29/1000000 S='Red Dose (eqts)A31 ='Red Dose (eas)'lB31 =$B$1"C30/1000000 311 ..... ='Rad Dose (egs 'IA32 ='Red Dose (eqs)'lB32 =$BS1"C31/1000000 32 " " ='Red Dose (eqs)'iA33 ='Red Dose (eqs)'lB33 =$B$1"C32/1000000 33_ _ ='Red Dose (eqs)'iA34 ='Rad Dose *6qs)'IB34 =$B$1SC33/1000000 34  ;. , ='Red Dose (eqs)'A35 ='Rad Dose (egs)'lB35 =$B$1"C34/1000000 I35 .'Rad Dose (eqs)'tA36 ='Red Dose (6qs)'lB36 =$B$1"C35/1000000

[_36 ='Rad Dose (eqs)IA37 ='Rad Dose (eqs)'IB37 =$1B51C36/1000000 37 { ='Rad Dose (eqs)IA38 ='Red Dose (eqs)'1138 =$B$15C37/1000000 38 =Red Dose (eqs)'IA39 ='Red Dose (6qs)'IB39 =$B$1"C38/1000000 39 ='Rad Dose (eqs)'IA40 ='Red Dose (iqs)'1B40 =$B$1PC39/1000000 401 ='Rad Dose (eqs)'IA41 ='Red Dose (eqs)IB41 =$B$"C40/1000000 41 ='Rad Dose (eqsy'IA42 ='Red Dose (bls)'lB42 =$B$1"C41/1000000 42 ='Rad Dose (eqs)'tA43 ='Red Dose (i~qs)'lB43 =$B$1"C42/1000000 43 ='Red Dose (eqs)'lA44 ='Red Dose (eqs)'1B44 =$B$1'C43/1000000 44 ='Rad Dose (eqs)'1A45 ='Red Dose (6qs)1'B45 =$B$1"C44/1000000 45 ='Rad Dose (eqs)'fA46 ='Red Dose (eqs)'1146 =$B$1"C45/1000000 46  : ='Rad Dose (eqs)'yA47 ='Rad Dose (eqs)'lB47 =$B$1"C46/1000000 47 ='Red Dose (eqs)'lA48 ='Red Dose (eqs)'iB48 =$B$1"C47/1000000 48 =Red Dose (eqs)lA49 -'Rad Dose (eqs)'IB49 =$-5$I"C48/1000000 49 ='Rad Dose (eqos)'A50 ='Rad Dose (eqs)'IB50 =$B$*1C49/1000000 50 ='Red Dose (eq.)'iA51 ='Rad Dose (eqs)'1B51 =$B$1'C50/1000000 51 ='Rad Dose (eqs)'IA52 ='Red Dose (eqs)'IB52 =$B$1*C51/1000000 52  : ='Red Dose (eqs)'iA53 ='Red Dose (eqs)'lB53 =$B$1"C52/1000000 53 ='Red Dose (eqs)'IA54 =Rad Dose Beqs)'B54

=$B$1C53/1000000 54 ='Rad Dose (e s)'IA55 5.RadDose o sB55 =$B$1"C54/1000000_____

HN03 (eqs)

Table 4-4 Eqs: Hydrochloric Acid (HCI) Production Calculation No. H21COB/,

Nine Mile Point Nuclear Station Revision 0 Unit 1 Page 4-24 A 8 C D E F I Cables_

2 3 PVC properties:

4. radiolysis-yield,.G- .... 0.00000798 -: ... gtmole.HCl.per.MRadg.. . main body §5.5 .

5 linear absorption coefficient 38.976 cm" for beta radiation Attachment 3 6 linear absorption coefficient .0.0739 cm*' for gamma radiation Attachment 3 7

8 Cable Jacket and insulation:

91 10 Tyical Cable 11 12 cable OD 0.22 in 13 jacket thickness 30 mil 14 .. jacket material0 PVC 15 insulation thickness 0 mil 16 Insulation material n/a 17 18 chlorine-bearing material:

19 20 mass in free air 1400 Ibm 21

  • mass in tray 0 Ibm 22 mass in free air =B20"453.59 gram 23 mass in tray =B21P453.59 gram 25 Irradiation:

26*

27 =1310B 28 beta 29 gamma free air tray 30 .

31 cable radius.(cm) =$B12"2.54/2 =$B12"2.54/2 =$B12*2.54/2 __"

32 acket thickness (cm) =($B13)/1000"2.54 =($B13)/1000*2.54 . =($B13)/1000*2.54 33 mass irradiated (g) =B22+B23 =B22 --0.5"B23

.34

=(I/($B$6A2)*(EXP(- =(I/($B$5A2)*(EXP(- .=(t/($B$5A2)*(EXP(-

$B$6°B32)*($B$6*B32+1) $B$5*C32)*($B$5*C32+1 $B$5*D32)*($B$5*D32+1 1)-B31/$B$6*(EXP(- - )-l)-C311$B$5-(EXP(- * )-1)-D31/$B$5*(EXP(-

$B$6*B32)-1))/(B31 *B32- $B$5"C32)-1))/(C31 C32- $B$50D32)-1))/(D31 D32-35 flux averaging.factor B3232/2) C32A2^2) , D32AV2i2) ___

36 absorption factor =I-EXP(-$B$6*832) =1-EXP(-$B$5*C32) =1-EXP(-$B$5D32) 371_1 HCI (eqs)

--- ý711

. Table 4-4 Eqs: Hydrochloric Acid (HCI) Production Calculation No. H21C08"O4 Nine Mile Point Nuclear Station Revision 0 Unit 1 Page 4-25 A B C E F 39 pool gamma beta 40 - Time volume TID TID gamma

. . .(hr). . - (liter)-- (rad) (rad) (g-mole) 42 'Rad Dose (eqs)'1A9 ='SP Mass (eqs)'I$E$15 ='Rad Dose (eqs)'1C9 ='Rad Dose (eqs)'!D9 =$B$4*($B$33"$B$35*$B$36)*D42/1000000 43 ='Rad Dose (eqs)'!AlO ='SP Mass (eqs)'l$E$15 ='Rad Dose (eqs)'lC10 ='Rad Dose (eqs)'!Ol0 =$B$4*($B$33*$B$35"$B$36)*D43/1000000 44 ='Rad Dose (eqs)'lA1t1 ='SP Mass (eqs)'I$E$15 ='Rad Dose (eqs)'IC1 1 ='Rad Dose (eqs)'lD1 I =$B$4($B$33"$B$35*$B$36)*D44/1000000 45 --'Rad Dose (eqs)'!A12 =SP Mass (eqs)'l$E$15 ='Rad Dose (egs)'lC12 ='Rad Dose (egs)'ID12 =$B$4*($B$33*$B$35*$B$36)*D45/1000000 46 ='Rad Dose (eqs)'lA13 ='SP Mass (eqs)'I$E$15 ='Rad Dose (eqs)'lC13 ='Rad Dose (eqs)'1D13 =$B$4*($B$33*$B$35*$B$36)*D46/1000000 47 _ __ Rad Dose (es)'lA14 ='SP Mass (egs)'!$E$15 ='Rad Dose (egs)'lC14 ='Rad Dose (egs)'lDt4 =$B$4*($B$33*$B$35"$B$36)*D47/1000000 48 ='Rad Dose (eqs)'1A15 -;SPMass (egs)'l$E$15 ='Rad Dose (egs)'IC15 ='Rad Dose (eqs)'tD15 =$B$4"($B$33*$B$35"$B$36Y*D4811000000 49 ='Rad Dose (eqs)'1A16 ='SP Mass (eqs)'!$E$15 ='Rad Dose (eqs)'1C16 ='Rad Dose (eqs)'1D16 =$B$4*($B$33*$B$35*$B$36)*D49/1000000 50 ='Rad Dose (eqs)'tA17 . ='SP Mass (eqs)'I$E$15 =Rad Dose (eqs)'1C17 ='Rad Dose (egs)'lD17 =$B$4-($B$33°$B$35*$B$36)°D50/1000000 51 'Rad Dose (es)'lA18 =SP Mass (eqs)l'$E$15 ='Rad Dose (eqs)'!C18 =Rad Dose (egs)'lD18 =$B$4"($B$33°$B$35*$B$36)*D51/1000000 52 .'Rad Dose (eqs)'lAl9 =SP Mass (eqs)'t$E$15 ='Rad Dose (eqs)'IC19 ='Rad Dose (eqs)'ID19 =$B$4*($B$33*$B$35*$B$36)*D52/1000000 53 =Rad Dose (eqs)'A20 =SP Mass (eqs)'l$E$15 ='Rad Dose (eqs)'IC20 ='Rad Dose (eqs)'!D20 =$B$4*($B$33*$B$35*$B$36)*D53/1000000 54 ='Rad Dose (eqs)'A21 =SP Mass (eqs)'!$E$15 ='Rad Dose (eqs)'1C21 ='Rad Dose (eqs)'1D21 =$B$4*($B$33*$B$35*$B$36)*D54/1000000 55 ='Rad Dose (eqs)'1A22 ='SP Mass (eqs)'!$E$15 ='Rad Dose (egs)'lC22 ='Rad Dose (eqs)'D22 =$B$4*($B$33*$B$35*$B$36)°D55/1000000 56, ='Rad Dose (eqs)' A23 ='SP Mass legs 'l$E$15 =Rad Dose (eqs)'IC23 ='Rad Dose (egs)'ID23 =$B$4*($B$33*$B$35*$B$36)*D56/1000000 57 ='Rad Dose (eqs)'lA24 ='SP Mass (eqs)'l$E$15 ='Rad Dose (eqs)'IC24 ='Rad Dose (eqs)'1D24 =$B$4*($B$33*$B$35*$B$36)°D57/1000000

58. ='Rad Dose (egs)'lA25 ='SP Mass (egs)'l$E$15 ='Rad Dose (eqs)'1C25 =Rad Dose (eqs)'1D25 =$B$4*($B$33*$B$35*$B$36)*D58/1000000 59 . ad Dose leqs'A26.' -'SP Mass (eqs)'l$E$15 - ='Rad-Dose- (egs)'1 C26 - - ='Rad Dose (egs)'l D26- =$B$4($B$3tB$35-$B$36)*D59/-1000000-.

60 ='Rad Dose (eqs)'!A27 ='SP Mass (eqs)'I$E$15 ='Rad Dose (eqs)'IC27 ='Rad Dose (egs)'lD27 -$B$4"($B$33*$B$35*$B$36)*D60/1000000 61 ='RadDose (eqs)'!A28 ='SP Mass (eqs)'l$E$15 ='Rad Dose (eqs)'lC28 ='Rad Dose (eqs)'!D28 =$B$4*($B$33*$B$35*$B$36)*D61/1000000

62. ='Rad Dose (egs)'1A29 ='SP Mass (eqs)'l$E$15 =Rad Dose (egs)'lC29 ='Rad Dose (eqs)'lD29 =$B$4*($B$33*$B$35*$B$36)*D62/1000000 63 ='Rad Dose (eqs)'1A30 ='SP Mass (eqs)'l$E$15 =Rad Dose(eqs)'IC30 ='Rad Dose (eqs)'1D30 =$B$4*($B$33*$B$35*$B$36)*D63/1000000 64 ='Red Dose (eqs)'lA31 ='SP Mass (eqs)'l$E$15 ='Rad Dose (eqs)'IC31 ='Red Dose (egs)'lD31 =$B$4*($B$33-$B$35*$B$36)D64/1 000000 65 ='Rad Dose (eqs)' A32 =SP Mass (eqs)'l$E$15 ='Rad Dose (eqs)'1C32 ='Rad Dose (egs)'lD32 =$B$4"($B$33"$B$35*$B$360)D65/1000000 66 ='Rad Dose (eqs)'1A33 ='SP Mass (eqs)'l$E$15 ='Rad Dose (eqs)'lC33 ='Rad.Dose (eqs)'1D33 =$B$4*($B$33*$B$35*$B$36)*D66/1000000 67 -'Rad Dose (eqs)'lA34 ='SP Mass (eqs)'l$E$15 ='Rad Dose (eqs)'C34 ='Rad Dose (eqs)'lD34 =$B$4*($B$3*$B$35*$B$36)°D67/1000000 68 ='Rad Dose (eqs)'1A35 =SP Mass (egs)'l$E$15 ='Rad Dose (eqs)'lC35 ='Rad Dose (egs)'lD35 =$B$4*($B$33*$B$35°$B$36)°D68/1000000 69 ='Rad Dose (eqs)'1A36 ='SP Mass (eqs)l$E$15 ='Rad Dose (eqs)'1C36 ='Rad Dose (eqs)'1D36 =$B$4"($B$33-$B$35°$B$36)*D69/1000000 70 ='Rad Dose (eqs)'lA37 ='SP Mass (eqs)'I$E$15 ='Rad Dose (eqs)'lC37 ='Rad Dose (eqs)'1D37 =$B$4*($B$33*$B$35*$B$36)°D70/1000000

.71.1 ='Rad Dose (eQs)'lA38. = SP Mass (egs)l$E$15 ='Rad Dose (eqs)'IC38 ='Rad Dose (eqs)'lD38 =$B$4°($B$33*$B$35°$B$36)*D71/1000000 72 ='Rad Dose (egs)'lA39 ='SP Mass (ecs)'!$E$15 ='Rad Dose (ecs)'lC39 ='Rad Dose (egs)'lD39 =$B$4°($B$33*$B$35*$B$36)-D72/1000000 HCI (eqs)

.Attachment 4 Table 4-4 Eqs: Hydrochloric Acid (HCI) Production Calculation No. H21C08/L Nine Mile Point Nuclear Station Revision 0 Unit 1 Page 4-26 A.B C D E F

_73_.. .. ='Rad Dose (eqs)'IA40 i='Gr Mass (eqs),l$E$15 ='Rad.Do"o (ogs)'lC40 ='Rad Dose (egs)'!D4=

. .- EL4*B.($_*$*3 R.%35*$36.)*D73/1000000 74 ='Rad Dose (egs)'!A41 ='SP Mass (ecs)l$E$15 =Rad .Dose (egs)l'C41 ='Rad Dose (egs)'lD41 =$B$4*($B$33"$B$35$B$36)D74/1000000 75 ='Rad Dose (eqs)IA42 ='SP Mass (eqs)'!$E$15 ='Rad Dose (egs)'1C42 ='Rad Dose (egs)'lD42 =$B$4*($B$33"$B$35"$B$36)*D75/1000000

-76 .... .... ='Rad Dose (eqs l!A43 .. 'SP.Mass.(eqs*I!$E$t 5 ='Rad.Dose.(eqs)!lC43....='RadDose.(es) ID43. =$B$4*($B$33*$B$35*$B$36)°D76/1000000 77 ='Rad Dose. (eqs)'1A44 =SP Mass (egs)'!$E$15 ='Rad Dose (eqs)'lC44 ='Rad Dose (eqs)'lD44 =$B$4°($B$33"$B$35*$B$36)'D77/1000000 78 ='Rad Dose (eqs)lA45 ='SP Mass (eqs)'l$E$15 ='Rad Dose (e5s)'!C45 ='Rad Dose eqs)'!D45 =$B$4°($B$33°$B$35*$B$36)*D78/1000000 79g ='Rad Dose (eqs)'1A46 ='SP Mass (eqsyl$E$15 ='Rad Dose (eqs)C46 ='Rad Dose (eqs)'1D46 =$B$4*($B$33*$B$35*$B$36)!D79/1000000

80. ='Rad Dose (eqs)'IA47 ='SP Mass (eqs)'!$E$15 =Rad Dose (egs)'lC47 ='Rad Dose (egs)'ID47 =$B$4*($B$33*$B$35*$B$36)*D0/1000000 81__ ='Rad Dose (eqs)yIA48 ='SP Mass (eqs)'$E$15 ='Rad Dose (egs)'IC48 ='Rad Dose (eqs)'lD48 =$B$4*($B$33"$B$35*$B$36)D81/1000000 82 ='Rad Dose (eqs)lA49 ='SP Mass (egs)'I$E$15 ='Rad Dose (eqs)'IC49 ='Rad Dose (eqs)'1D49 =$B$4*($B$33*$B$35*$B$36)*D82/1000000 83 ='Rad Dose (eqs)IA50 ='SP Mass (eqs)'l$E$15 ='Rad Dose (egs)'lC50 ='Rad Dose (eqs)'1D50 =$B$4*($B$33*$B$35*$B$36)*D83/1000000 84 ='Rad Dose jecs)'lA51 . =SP Mass (eqs)'l$E$15 ='Rad Dose (eqs)'1C51 ='Rad Dose (eqs)'ID51 =$B$4*($B$33*$B$35°$B$36)*D84/1000000 85 ='Rad Dose (eqs)'1A52 ='SP Mass (eqs)'[$E$15 ='Rad Dose (egs)'iC52 ='Rad Dose (eqs)'1D52 =$B$4°($B$33"$$35*$B$36)*085/1000000

,86 ='Rad Dose (eqs)1A53 ='SP Mass (eqs)'!$E$15 ='Rad Dose (egs)'!C53 ='Rad Dose (eqs)'!D53 =$B$4*($B$33*$B$35*$B$36)*D86/1000000 87 1='Rad Dose (eqs)'1A54 ='SP Mass (eqs)'y$E$15 ='Rad Dose (egs)'1C54 ='Rad Dose (egs)'ID54 =$B$4*($B$33*$B$35*$B$36)°D87/O00000 88 ='Rad Dose (egs)'lA55 ='SP Mass (egs)'$E$15 ='Rad Dose (egs)'lC55 ='Rad Dose (egs)'1D55 =$B$4*($B$33*$B$35$B$36)D88/I000000 HC! (eqs)

ý11

Calculation No. H21 COgf4 AlttactMerk 4 Tabte 4-4 Eqs-, Kydmctcllti Adid (MCAJ Production Revision 0 Nine Mile Point Nuclear Station Page 4-27 Unit 1 a HCI (eqs)

. Table 4-4 Eqs: Hydrochloric Acid (HCI) Production Calculation No. H21C08/i4 Nine Mile Point Nuclear Station Revision 0 Unit 1 Page 4-28.

G H 30-39 .D ell HCI 40 beta HCl 41-................... (g-mole)- ---------...---- (g-mole/I) 42 =($C$33*$C$35*$C$36+$D$33*$D$35-$D$36)*$B$4*E42/1000000 =(F42+G42)/C42 43 =($C$33*$C$35*$C$36+$D$33*$D$35*$D$36)-$B$4-E43/1O00000 =(F43+G43)/C43 44 =($C$33*$C$35*$C$36+$D$33*$D$35-$D$36)*$B$4-E44/1000000 =(F44--G44)/C44 45 =($C$33'$C$35*$C$36+$D$33X$D$35*$D$36)*$B$4*E4511000000 =(F45+G45)/C45 46 =($C$33*$C$35-$C$3 +$D$33*$D$35*$D$36)-$BS4*E46/1000000 =(F46+.G46)/C46 47 =($C$33*$C$35*$C$36+$D$33*$D$35*$D$36)*$B$4*E47/1000000 =(F47+G47)/C47 48 =($C$33*$C$35.$C$36+$D$33*$D$35*$D$36)*$B$4¶E48/1000000 =(F48+G48)/C48

49. =($C$33*$C$35*$C$36+$D$33*$D$35*$D$36)*$B$4*E49/1000000 =(F49+G49)/C49 50 =($C$33*$C$35*$C$36+$D$33*$D$35S$D$36)*$B$4*E50/1000000 =(F50+G50)/C50 51 =($C$33*$C$35*$C$36+$D$33*$D$35*$D$36)*$B$4*E51/t000000 =(F5t+G51)/C51 52 =($C$33*$C$35*$C$36+$D$33*$D$35*$D$36)*$B$4*E52/1000000 =(F52+G52)/C52 53 =($C$33*$C$35*$C$36+$D$33*$D$35°$D$36)*$B$4*E53/1 000000 =(F53+G53)/C53 54 =($C$33*$C$35*$C$36+$D$33*$D$35*$D$36)*$B$4*E54/1 000000 =(F54+G54)/C54 55 =($C$33*$C$35*$C$36+$D$33°$D$35-$D$36)*$B$4*E55/1000000 =(F55+G55)/C55 56 =($C$33*$C$35-$C$36+$D$33*$D$35°$D$36)*$B$4*E56/1000000 =(F56+G56)/C56 57 =($C$33*$C$35*$C$36+$D$33*$D$35*$D$36)*$B$4°E57/1000000 =(F57+G57)1C57 58 =($C$33-$C$35-$C$36+$D$33*$D$35*$D$36)*$B$4*E58/1 000000 =(F58+G58)/C58

($C$33*$C$35°$C$364$D$33*$D$35!$D$36)*$B$4*E5911000000 =(F59+G59)/C59---------------.

60 =($C$33°$C$35-$C$36+$D$33*$D$35*$D$36)-$B$4WE60/1000000 =(F60+G60)/C0O 61 =($C$33*$C$35*$C$36+$D$33*$D$35*$D$36)*$B$4*E61/1000000 =(F61+G61)/C61 62 =($C$33°$C$35-$C$36+SD$33-$D$35$.D$36)*$B$4*E6211000000 =(F62+G62)/C62 63 =($C$33*$C$35*$C$3&+$D$33*$D$35°$D$36)*$B$4*E6311000000 =(F63+G63)/C63 64 =($C$33°$C$35°$C$36+$D$33ý$D$35°$D$36)*$B$4E64/1 000000 =(F64+G64)/C84 65 =($C$33-$C$35*$C$36+$D$33-$D$35-$D$36)-$B$4*E6511000000 =(F65+G65)/C65

.66 =($C$33-$C$35S$C$36+$D$33$D$35$D$36)-$B$4-E66/1000000 =(F66+G66)/C66 67 =($C$33-$C$35*$C$36+$D$33"$D$35*$D$36)-$B$4*E67/1 000000 =(F67+G67)/0_67 68 =($C$33*$C$35*$C$36+$D$33*$D$35*$D$36)*$B$4°E68/1000000 =(F68+G68)/C68 69 =($C$33*$C$35*$C$36+$0$33*$D$35*$D$36)°$B$4*E69/1000000 =(F69+-G69)/069

.70 =($C$33*$C$35*$C$36+$D$33*$D$35*$D$36)*$B$4"E70/1000000 =(F70+G70)/C70 71 =($C$33*$C$35*$C$36+D$33D*$$35*$D$36)*$B$4*E71/1000000 =(F71 +G71)1C71 72 =($C$33*$C$35*$C$36+$D$33*$D$35-$D$36)*$B$4*E7211000000 =(F72+G72)C72_

HCl (eqs)

-1 Table 4-4 Eqs: Hydrochloric Acid (HCI) Production Calculation No. H21C08/'z Nine Mile Point Nuclear Station Revision 0 Unit I Page 4-29.

73 =($C$33-$C$35*$C$36+$D$3 - D$-5"$D$36S)$,$4*E73/1000000 =(F73+G73)!73l .3 74 =($C$33*$C$35*$C$36+$0$33X$$35$D$36)$B$4*E74/t000000 =(F74+G74)/C74 75 =($C$33*$C$35*$C$36+$D$33$D$35'$D$36)$$4*E7511000000 =(F75+G75)1C75

-78 =($C$33!$C$35-$C$36+$D$33*$D$35*$D$36)*$B$4*E76/1000000 =(F76+G76)/C76 77 =($C$33*$C$35$C$36+$D$33*$D$35"$D$36)-$B$46E77/1000000 =(F77+G77)/C77 78 =($C$33*$C$35*$C$36+$D$33*$D$35*$D$36)*$B$4E78/1000000 =(F78+G78)/C78 79 =($C$33 $C$35S$C$36+$D$33 $D$35 $D$36)-$B$4*E79/1000000 =(F79+G79)/C79 80 =($C$33-$C$35*$C$36+$D$33*$D$35*$D$36)-$B$4*E80/1000000 =(F80+G80)/C80 81 =($C$33*$C$35*$C$36+$D$33*$D$35*$D$36)*$B$4*E81/1000000 =(F81+G81 )/C81 82 =($C$33-$C$35-$C$36+$D$33*$D$35*$D$36)-$B$4E82/1000000 =(F82+G82)/C82 83 =($C$33"$C$35"$C$36+$D$33*$D$35 $D$36) $B$4-E83/1000000 =(F83+G83)/C83 84 =($C$3*$C$35*$C$36+$D$33X$D$35"$D$36)*$B$4*E8411000000 =(F84+G84)/C84 85 =($C$33-$C$35"$C$36+$D$33X$D$35*$D$36)-$B$4*E85/1000000 =(F85+G85)/085 86 =($C$33*$C$35*$C$36+$D$33*$D$35*$D$36)*$B$4tE86/1000000 =(F86+G86)/C86 87 =($C$33*$C$35*$C$36+$D$33*$D$35°$D$36)*$B$4*E87/1000000. =(F87+G87)/C87 88 -($C$33*$C$35*$C$36+$D$33*$D$35-$D$36)*$B$4*E88/1000000 =(F88+G88)/C88 HCI (eqs)

.Attachment 4 ' Table 4-5 Eqs: Cesium Hydroxide (CsOH) Production Calculation No. H21C0I4 Nine Mile .Point Nuclear Station Revision 0 Unit 1 Page 4-30 A B C D E 1 Core cesium.- gal release ... 53.72 .. 9-,ole .. Attachment 1, Tabl, 1-2 2 Core cesium - EIV release . 214.87. g-mole Attachment 1, Table 1-2 3

4 Csl - gap release..-  : (1ýHl(eqs)'!B$5)*'Hr(eqs)'!B2 g-mole fraction t iodirie-release-inform-of Csi . ..

5 Csl - EIV release =(1-HI (eqs)'!B$5)"HI (egs)'!B3 9-mole fraction iodine release in form of Csl 6

7 CsOH - gap release =B1-B4 9-mole 8 CsOH - EIV release . =B2-B5 g-mole G

10 Gap release onset 2 minutes Reg Guide 1.183 (main body Ref. 7.10.2) 12 Gap release duration 30 minutes Reg Guide 1.183 (main body Ref. 7.10.2) 12 1EIV duration 90 minutes . Reg Guide 1.183 (main body Ref. 7.10.2) 131 14 suppression 15 cumulative, pool cumulative 16 Time CsOH volume CsOH 17 (Hr) (g-mole) (liter) (g-mole/1) 18 onset =510/60 0- . ='SP Mass (egs)'!$E$15 =C18/D18 19 end of gap release =B18+B131/60 =B7 ='SP Mass (eqs)'$E$15 =C19/D19 20 .-.- C19+(B20MB19)/(B21mB19)*B8- =SPMass-(eqs)'!$E$15- .. .=C20/D20 .

21 end of EIV =119+1B12160 --C19+B8 ='SP Mass (egs)'!$E$15 =--C21/D21 CsOH (eqs)

Table 4-6 Eqs: Effect of LPS Addition Calculation No. H21C084 Nine Mile Point Nuclear Station on Post-LOCA Suppression Chamber pH Revision 0 Unit 1 Page 4-31 SA B C DE 1 Buffering by Liquid Poison System 2

3. LPS: .. ....

4 Nominal LPS pump flow rate 30 gpm Design Input 4.12 5 Min LPS injection tank volume 1325 gal Design Input 4.12 6 Max LPS temp 105 OF Design Input 4.12 7 Min LPS temp 70. OF Design Input 4.12 8 LPS SPB concentration by weight 0.09423 Design Input 4.12 9 Specific gravity 1 Design Input 4.12 10 Water densityat max LPS temperature 61.93 Ref. 7.18

=B9*B10 Ibm/ft3 11 LPS solution density at max temperature 12 13 Final suppression pool temp (bounding) 200 OF 14 15 Boric acid K =(0.0585*B1 3+1.309)*0.0000000001 at =B13 OF 16 17 MW sodium pentaborate (Na 2 BI 0o 16 *iOH2 O) .585.984 D--siqn-p Ut4.'12 18 19 Volume sodium pentaborate =B5/7.481 ft3 20 Mass sodium pentaborate =1 9*B1 1*B8 Ibm 21 Mass sodium pentaborate, =B20*453.6/B1 7 g-mole 22 23 Unbuffered pH ='pH (eqs)'!N63 24 Unbuffered [HI =10A(-B23) g-mole/

25 Suppression chamber water volume ='SP Mass (eqs)'!$E$15 liter 26 Equivalents unbuffered [H'I =B24*B25 g-mole 27

28. Final pH =-LOG(B15)+LOG((2*B21-B26)/(8*B21 +B26)),

29 30 Time to inject boron =B5/B4 minutes LPS (eqs)

Table 4-7 Eqs: Gamma and Beta Radiation Dose Calculation No. t21COWýý Nine Mile Point Nuclear Station used to Determine Post-LOCA pH Revision 0 Unit t Page 4-32 A B C 3 _gamma dose 4 Torus -- - - - rwel&

..5 Water r Wetwe 110@

1850 MWt 6 Trme 1850 MWt 2

13 =2.12113800

=l0'f(LOG($A14)-LOG(SA$I lflhLOG(WIAS7iLOG(WAI I)(

1514 16 5 )'(LOG(C$17)-LOG(C$11 )).-LG(c$1i 17 18 19 8 ))(LOG(B$35)LOG(B$17))+LOG(B$17)) 1.

20 21 10 =10"(LOG($A21)-LOG(SA$17)WILCO($AS35t-LCG($A$17)y*(

22111 I=10' 23 =10o4 T4 25 26 15_ 1-1 27 16 =10o1 2817 *))ILOG(C$35)-LOG(C$1 7))+LOG(C$17*

29118 30 31 32 C**1 33 )-LOG($A$17))'(LOG(B$35)-LOG(B17)}+LOG(B$i 7)) j-l0'((LOG($A33)-L 34 n--L 38 '8 37 =A36+24 38 =A37+24

=A30+24

A39+24

'A40+24

=A41+24 ).LOG(SA$35))*(LOG(B355)-LOG(BS35)}e-LOG(B$35)) I=l0'((Lcxt($A42}L

=A42+24 44 =A4~3+24 45 =A44+24 46 =A45+48 =1o"(

47 =A46.48 48 =i 55 720 I190o~ ,

Rad Dose (eqs)

d-- Table 4-7 Eqa: Gamma and Beta Radiation Dose Calculation No. H21C0* "

Nine Mle Point Nuclear Station used to Determine Post-LOCA pH Revision 0 Unit I Page 4-33 11130 1850 MWt Source for 7 Values I Source for B Values

. Rad Dose (eqs)

4 Table 4-8 Eqs: Post-LOCA.Suppmsslon Chamber Water Calculation No. H21C08/

Nine Mile Point Nuclear Station Temperature Response Revision 0 Unit 1 Page 4-34 AB C D E 1 From Dita (Ref. 7.6.5) Used for pH Analysis i I Tme I___

A (hr) t -

(°FI A- .

0.0336111111111111 =013 0.533611111111111 --016

  • 1 =O18 I =Cl 8 2.033611;,1111 1 021 3 1 =023 4 =C24 5 --026 6 =027 7 - _ =0C28 8 =029 9 =030 10 =031 11 =032 12 -033 13 =034 14 =C35 15 =036 16 0=37 17 =038 18 =039 7,19 --C40

_I _20 =C41

. -75( n21 .e o C42 7 -r e t a22e. =C43 7 i23 =C44

, - nr 24 miCe45 7 ;28 ,=C46 48 I=C47 7 72 ,=C48 796 =C49

! -120 =.C50 7 _ _ _144 =O51 7;168 --C52 7 :192 --C53 7 . " " 216 -04 C 7i 240 =CS5 7 288 =056 7 "* :336 --C57 7 .384.i --'C59 7;432 =060 7I4110 --C61 7i 528 "' =082 7;576 =06A3 7:624 =085 7I e,72. ---- 066 7!720 1=067 The shaded values are taken from Reference 7 " 7.6.5 (Design Input 4.15). Other other values 7

  • are either in~terpolated or extrapolated. The 7 ......long term temperature is maintained at 7 * .156.7*F.

68 -" Seconds are~the units for t=0 to 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />; days are the units for i 70 - t=48 to 720 hours0.00833 days <br />0.2 hours <br />0.00119 weeks <br />2.7396e-4 months <br />. I.-

71 SP Temp (eqs)

Table 4-9 Eqs: Post-LOCA Suppression Chamber Water Volumes Calculation No. H21C08,tSL Nine Mile Point Nuclear Station Revision 0 Pnn -.V Finni..

Unit 1 *g A B C D E F 2 Parameter Svmbol Unit Minimum SC Mass Maximum SC Mass Reference 3 Suppression Chamber Water(SC).

4 Suppression chamber water volume Vsc ft3 79800 86000 Design Input 4.6 5 Suppression chamber water temperature Tsc- OF 85 60 Design Input 4.7 6 Suppression chamber pressure Psc psia 14.7 14.7 Design Input 4.8 7 Density of suppression chamber water Psc Ibm/ft3 62.17 62.37 Ref. 7.18 8 Mass of water in suppression chamber msc Ibm =D4*D7 =E4*E7 =Vsc*Psc 9 Reactor Coolant System (RCS) 10 RCS mass mRCS ft 3 501500 501500 Design Input 4.3

11. Post-LOCA (SC+RCS)

RCS mass added to SC . mRCS~tot .Ibm mall RCS mass included in SC for mrin; no steam condenses in SC for max

.13 Total water mass in SC mPLSCtot Ibm =D8+D12 =E8+E12 = MSC + mRCS 3

14 Total volume of water in SC VpL3sc,t0 t ft =D13/D7 =E13/E7 = mpLSCtot/ PsC 15 Total volume of water in SC VpLisc,tot liters =014*28.31685 =E14*28.31685 = VPLSCtot 3

]

  • 28.31685 liter/ft 3 .

[Mf SP Mass (eqs)

Calculation No. H21CO8j .

Nine Mile Point Nuclear Station Revision 0 Unit 1 Page 5-1 Attachment 5 Post-LOCA Suppression Chamber Water pH Benchmark to Grand Gulf Nuclear Station (GGNS)

Table of Contents Figure 5-1: Post-LOCA Suppression Pool pH Analysis pH Response without SLCS ...... 5-2 Table 5-1: PFost-LOCA pH Calculation without SLCS ........................................................ .... 5-3 Table 5-1a: Post-LOCA pH -GGNS Calculation No. XC-Q1111-98013, Rev. 2 ................. 5-5 Table 5-2: Hydriodic Acid (HI) Production ......................................... ................................ 5-6 Table 5-3: Nitric Acid (HNO 3) Production...... *.................................

.. . 5-7 Table 5-4: Hydrochloric Acid (HCI) Productioni ..................................................................... 5-8 Table 5-5: Cesium Hydroxide (CsOH) Production.............................. 5-10 Table 5-6: Effect of SLCS Addition on Post-LOCA Suppression Pool pH .......................... 5-11 Table 5-7: Gamma and Beta Radiation Dose Used to Determine Post-LOCA pH ............... 5-12 Table &-8: Post-LOCA Suppression Pool Temperature Response ....................................... 5-13 Equations for above tables ............................. 5-14 to 5-30 Note that each table in this attachment has been developed using Microsoft Excel. Some tables reference each other; for-these references, see the "tab" name at the bottom of each sheet.

Input in the tables in this attachment is obtained from GGNS Calculation No. XC-Q1 111-98013, Revision 2 (main body Ref. 7.12.3). Any input/cells which have changed from the NMP1 tables provided in Attachment 4 are italicized. In some instances, new cells were added and in others, various input Was not provided and therefore is lIeft blank in the tables.

This benchmark is also provided in the NMP2 p0H calculation, H21C-097 (Ref. 7.6.8). The time steps in this benchmark are not adjusted to the NMP1 time steps. This does not impact the validity of the benchmark.

Calculation No. H21C08q Nine Mile Point Nuclear Station Revision 0 Unit 1 Page 5-2 Figure 5-1: GGNS Benchmark Post-LOCA Suppression Pool pH Analysis pH Response without SLCS

.2 U)

--Benchmark 1-0-GGNS U) 3.000 .

0.01 0.1 I1: 10 100 1000 Time After LOCA (hours)

Pool pH

pr Attachment 5 " Table 5-1: GGNS Benchmark Calculation No. H21C08O/

Nine Mile Point Nuclear Station Post-LOCA pH Calculation without SLCS Revision 0 Unit 1 Page 5-3.

Initial conditions' Suppression pool mass - " Ibm RCS mass - Ibm Total post-LOCA SP mass ... -. .. lb-n suppression pool pH 5.3 reactor coolant pH 5.3 initial [H] 5.01E-06 g-mole/l weighted average not requiredsince pH sp, = PHRCS, initial [OH1] 2.00E-09 g-mole/l weighted average not requiredsince pHsp., = pHpcsj.

Pool [HI] . [HNO 3] [HCI] [CsOH] Total [Hi Total [OH'] Pool Water -' K at . x [H] Pool Time Volume Temp Density. Pool Temp pH (hr) (liter) (g-moles/I) (g-moles/l) (g-moles/l) (g-moles/l) (g-moles/l) (g-motes/A) j F) (Ibm/ft3) ( (g-moles/l) (g-moles/A J-0 4,841,000 5.01E-06 2.00E-09 90.0 62.12 1.704E-14 -1.40E-09 5.01 E-06 5.300 0.034 4,841,000 5.01E-05 2.00E-09 160.0 60.99 1.633E-13 -3.04E-08 5.04E-06 5.297 0.100 4,841,000 2.2285E-08 . 2.8679E-06 5.03E-06 2.87E-06 160.0 60.99 1.633E-13 2.80E-06 2.24E-06 5.650 0.534 4,841,000 1.6784E-07 2.1599E-05 5.18E-06 2.16E-05 160.0 60.99 1.633E-13 5.17E-06 9.94E-09 8.003 1 4,841,000 4.2876E-07 .... _____ 4.7471E005- "-5:44E'06- -4:75E05. -160:0- - -60:99 - 1;633Ez13 --5.44E-06-- -3:88E-09 -- 8;41-1--

2 4,841,000 1.0070E-06 1.0061E-05 8.6798E-06 1.0481E-04 2.48E-05 1.05E-04 160.0 60.99 1.633E-13 2.48E-05 2.04E-09 8.690 2.034 4,841,000 1.0070E-06 1.0068E-05 8.7776E-06 1.0481E-04 2.49E-05 1.05E-04 160.0 60.99 1.633E-13 2.49E-05 2.04E-09 8.690 3 4,841,000 .1.0070E-06 1.0256E-05 1.1300E-05 1.0481E-04 2.76E-05 1.05E-04 159.1 61.01 1.594E-13 2.76E-05 2.06E-09 8.685!

  • 4 4,841,000 1.0070E-06 1.0450E-05 1.4047E-05 1.0481E-04 3.05E-05 1.05E-04 157.3 61.05 1.518E-13 3.05E-05 2.04E-09 8.690 5 4,841,000 1.0070E-06 1.0644E-05 1.6233E-05 1.0481E-04 3.29E-05 1.05E-04 155.5 61.08 1.445E-13 3.29E-05 2.01E-09 8.697 6 4,841,000 1.0070E&06 1.0837E-05 1.8063E-05 1.0481E-04. 3.49E-05 1.05E-04 154.6 61.10 1.409E-13 3.49E-05 2.02E-09 8.695*

12 4,841,000 1.0070E-06 1.1990E-05 2.5535E-05 1.0481E-04 4.35E-05 1.05E-04 149.2 61.21 1.211E-13 4.35E-05 1.98E-09 8.704 18 4,841,000 1.0070Eý06 1.3129E-05 3.0458E-05 1.0481E-04 4.96E-05 1.05E-04 146.4 61.26 1.117E-13 4.96E-05 2.02E-09 8.694 24 4,841,000 1.0070E-06 1.4254E-05 3.4308E-05 1.0481E-04 5.46E-05 1.05E-04 144.3 61.30 1.051E-13 .5.46E-05 2.09E-09 8.680 48 4,841,000 1.0070E-06 1.8622E-05 4.5256E-05 1.0481E-04 6.99E-05 1.05E-04 139.4 61.39 9.084E-14 6.99E-05 2.60E-09 8.585 72 4,841,000 1.0070E-06 2.2785E-05 5.3018E-05 1.0481E-04 8.18E-05 1.05E-04 136.5 61.44 8.32E-14 8.18E-05 3.62E-09 8.441 96 4,841,000 1.0070E-06 2.6753E-05 5.9165E-05 1.0481E-04 9.19E-05 1.05E-04 134.4 61.47 7.801E-14 9.19E-05 6.06E-09 8.218 120 4,841,000 1.0070E-06 3.0536E-05 6.4242E-05 1.0481E-04 1.01E-04 1.05E-04 132.8 61.50 7.424E-14 1.01E-04 1.84E-08 7.735 144 4,841,000 1.0070E-06 3.4141E-05 6.8525E-05 1.0481E-04 1.09E-04 1.05E-04 131.6 61.52 1 7.152E-14 1.05E-04 3.89E-.06 5.410 168 4,841,000 1.0070E-06 3.7577E-05 7.2188E-05 1.0481E-04 1.16E-04 1.05E-04 130.5 61.54 6.919E-14 1.05E-04 1.10E-05 4.959 192 4,8jI,000 1.0070E-06 4.0852E-05 7.5347E-05 1.0481E-04 1.22E-04 1.05E-04 129.5 61.56 6.703E-14 1.05E-04 1.74E-05 4.759 216 4,841,000 1.0070E-06 4.3973E-05 7.8090E-05 1.0481E-04 1.28E-04 1.05E-04 128.7 61.57 6.524E-14 1.05E-04 2.33E-05 4.633 240 4,841,000 1.0070E-06 4.6948E-05 8.0486E-05 1.0481E-04 1.33E-04 1.052-04 127.9 61.59 6.364E-14 1.05E-04 2.86E-05 4.543 288 4,841,000 1.0070E-06 5.2487E-05 8.4442E-05 1.0481E-04 1.43E-04 1.05E-04 126.6 61.61 6.109E-14 1.05E-04 3.81E-05 4.419 336 4,841,000 1.0070E-06 5.7519E-05 8.7538E-05 1.0481E-04 1.51E-04 1.05E-04 125.5 61.62 5.897E-14 1.05E-04 4.63E-05 4.335 384 4,841,000 1.0070E-06 6.2090E-05 9.0002E-05 1.0481E-04 1.58E-04 1.05E-04 124.6 61.64 5.721E-14 1.05E-04 5.33E-05 4.273 432 4,841,000 1.0070E-06 6.6242E-05 9.1991E-05 1.0481E-04 1.64E-04 1.05E-04 123.8 61.65 . 5.574E-14 1.05E-04 5.94E-05 4.226 pH Table 5-1: GGNS Benchmark Calculation No. H21 covg-Nine Mile Point Nuclear Station Post-LOCA pH Calculation without SLCS Revis ion 0 Unit 1 Pag e 5-4.

Pool [HI] 1[HN03] [HCI] [CsOH] Total [H*] Total [OH'] Pool Water j K. at x [H] . Pool Time Volume " l Temp Density Pool Temp pH (hr) (liter) (g-moles) (g-moles) I (gmoles) (g-moles/) (g-moles/I) gmes/l) ° (Ibm/fl 3) - (g-moles/I) -o I ')

.480. ,4,841,000 .1.0070E:06 7.0015E.05 9.3624E-05 1.0481E-04 1.70E-04 1.05E-04 123.0 61.66 5.435E-14 1.05E-04 6.48E-05 -4.188 528 4,841,000 1.0070E-06 7.3442E-05 9.4984E-05 .J.0481E-04 1.74E-04 1.05E-04 122.4 61.68 5.322E-14 1.05E-04 6.96E-05 4.157 576 4,841,000 1.0070E-06 7.6556E-05 9.6136E-05 1.0481E-04 1.79E-04 1.05E-04 121.7 61.69 5.212E-14 1.05E-04 7.39E-05 4.131 624 4,841,000 1.0070E-06 7.9384E-05 9.7125E-05 1.0481E-04 1.83E-04 1.05E-04 121.1 61.69 5.113E-14 1.05E-04 7.77E-05 4.109 672 4,841,000 1.0070E-06 8.1954E-05 9.7987E-05 1.0481E-04 1.86E-04 1.05E-04 120.6 61.70 5.025E-14 1.05E-04 1 8.11E-05 4.091 720 4,841,000 1.0070E-06 8.4288E-05 9.8748E-05 1.0481E-04 1.89E-04 1.05E-04 120.1 61.71 4.941E-14 1.05E-04 8.42E-05 4.074 Notes Adjustments made in Table 4-1 of Attachment 4 (seeNotes 1-3) are not made for the benchmark.

pH Table 5-1a: GGNS Benchmark CAlculation No. H21 CO8*.*

Nine Mile Point Nuclear Station Post-LOCA Suppression Pool pH per Revision 0 Unit 1 GGNS Caic. No. XC-Q1111-98013, Rev. 2 Page 5-5 Time pH (hr) (,)

0 5.300 The pH values presented in 0.03361 5.297 this table are taken from Case 0.1 5.650 1 in Attalchment 3 to XC-0.53361 8.003 011 11L98013, Revision 1 1 8.411 (mnain body Ref. 7.12.3).

2 8.699 2.0361 8.709 3 8.711 5 8.719 12 8.716 18 8.701 24 8.681 48 8.568 72 8.395 96 8.098 120 6.783 150 4.995 200 4.606 240 4.461 300 4.327 360 4.241-400 4.199 480 4.135 600 4.070 700 4.033 720 4.027 Table 5-2: GGNS Benchmark Calculation No. H21C08*

Nine Mile Point Nuclear Station Hydriodic Acid (HI) Production Revision 0 Unit 1 Page 5-6 I 7 Core iodine inventory 325 g-mole ýRef..7.12.3 Core iodine - gap release 16.25 g-mole  :=0.05*325g-mole Core iodine - EIV release 81.25 g-mole. =0.25*325g-mole Fraction of release as HI 0.05 max  !Reg Guide 1.183 (main body Ref. 7.10.2)

Gap release onset 121 sec !Ref. 7.12.3 Gap release duration 30 minutes Reg Guide 1.183 (main body Ref. 7.10.2)

EIV duration 90 minutes Reg Guide 1.183 (main body Ref. 7.10.2) suppression cumulative'i pool cumulative Time HI volume HI (hr)

I I (g-mole)

Im I (liter)

I I (g-mole/i) li I onset 0.034 0.00 4,841,000 0.0000E+00 0.100 0.11 4,841,000 2.2285E-08 end of gap release 0.534 0.81 4,841,000 1.6784E-07 1.000 2.08 4,841,000 4.2876E-07 end of EIV 2.034 4.88 4,841,000 1.0070E-06 HI.

Attachment .5 Table 5-3: GGNS Benchmark Calculation No. H21 C0841"L Nine Mile Point Nuclear Station Nitric Acid (HN) 3) Production Revision 0 Unit 1 Page 5-7 HNO 3 generation 7.3E-06 g-mole/I per MRad NUREG/CR-5950 (main body Ref. 7.13)

Suppression Pool cumulative TID @

Time 3467 MWt HN03 (hr) (rad) (a-mole/li onsett- 0.034 end of gap release 0.534 1

end of EIV 2 1.3783E+06 1.0061 E-05 2.034 1.3792E+06 1.0068E-05 3 1.4049E+06 1.0256E-05 4 1.4315E+06 1.0450E-05 5 1.4581 E+06 1.0644E-05 6 1.4846E+06 1.0837E-05 12 1.6425E+06 1.1990E-05.

18 1.7985E+06 1.3129E-05 24 1.9526E+06 1.4254E-05 48 2.5509E+06 1.8622E-05 72 3.1213E+06 2.2785E-05

96. 3.6648E+06 2.6753E-05 120 4.1830E+06 3.0536E-05 144 4.6768E+06 3.4141 E-05
  • 168 5.1475E+06 3.75"7E-05 192 5.5961 E+06 4.0852E-05 216 6.0237E+06 4.3973E-05 240 6.4313E+06 4.694kE-05 288 7.1900E+06 5.2487E-05 336 7.8793E+06 5.7519E-05 384 8.5054E+06 6.2090E-05 432 9.0743E+06 6.6242E-05 480 9.5911 E+06 7.0015E-05 528 1.0061 E+07 7.3442E-05 576 1.0487E+07 7.6556E-05 624 1.0875E+07
  • 7.9384E-05 672 1.1227E+07 8.1954E-05 720 1.1 546E+07 8.4288E-05 HNO3

Calculation No. H21C08,/4"' table 5-4: GGNS Benchmark Hydrochloric Acid (HCI) Production Revision 0 Nine Mile Point Nuclear Station Page 5-8 Unit 1 Cables hypalon properties:

radiolysis yield, G 2.192E-06 g-mole HCI per MRad-g NUREG/CR-5950 (main body Reft 7.13)

--linear absorption coefficient - .52.08.cm:'.

forbeta.radiation . - NUREGw1081 (main body.Ref.7.t15).

linear absorption coefficient 0.099 cm" for gamma radiation NUREG-1081 (main body Ref. 7.15) density 1.55 g/cm, NUREG-1081 (main body Ref. 7.15)

Cable jacket and insulation:

Drvwel/ Cable lnventoiv Containment Cable Inventore cable outer radius 0.35 in cable outer radius 0.35 in cable OD (max guar.) 0.7 In cable OD (max guar.) 0.7 in jacket thickness 280 mil jacket thickness 280 mil jacket material hypalon jacket material hypalon insulation thickness mil insulationthickness mil insulation material insulation material length in free air linear ft length in free air linear ft length in tray linear ft length in tray linear ft chlorine-bearing material:

volume in free air cm3 volume in free air volume in tray - cm3 volume in tray cm3 mass in free air 873.65 Ibm mass in free air 1,561.03 Ibm mass in free air 396,287.6 gram mass in free air 708,083.2 gram mass in tray 14,049.27 Ibm mass in tray 873.65 Ibm mass In tray 396,287.6 gram - mass in tray 6,372,748.9 gram Irradiation:

. DrVwell Cable Inventory Containment Cable Inventory I oamma I free air tray Fbet gamma Ifr-eeair Itray~j cable radius (cm) 0.889 0.889 0.889 0.889 0.889 0.889 0.7112 0.7112 0.7112 0.7112 0.7112 0.7112 jacket thickness (cm) -

mass irradiated (g) 792;575.3 396,287.6 198,143.8 7,080,832.1 708,083.2 3,186,374.4 flux averaging factor 0.973 0.044 0.044 0.973 0.044 0.044 absorption factor 0.068 1.000 1.000 0.068 1.000 ' 1.000 HCI

- I Attachment 5 Table 5-4: GGNS Benchmark Calculation No. H21C08/i4 Nine Mile Point Nuclear Station Hydrochloric Acid (HCQ) Production Revision 0 Unit 1 Page 5-9.

Drywtell Containment Drywefl Contaiinment. Drvwell HCI Containment HCI HO-Orel Time volume yTID 7TOE 0nTID 13TIO gamma beta Total . gamma beta Total HCI fn-mlele (n-nOle) (e-molP/i) Io(-mole) fa-mole) fa-moleaJ (o-mole/1I Ihr% Iliterl fradl (rad) frad'i frad) 0.034 . 4,841,000 0.O080E+00 0. 000E+00 - O.OOOOE+00 O.O0OOE-00 0.OOE+00 0.O0E+0=

0.0011+00 0.00E+do0 0.OOE+100 0.00E.00O "0O.OOE+W0 O.OOE+00 O.O000E+00 OOE.FO01 0.OOOOE+00 0.534 4,841,000 O.OOOOE+00 O.O000E+00 0OOOOE+O0 0.0600E+06 ,o.oE÷00 O. OOE+O0 O.OOOOE+00 0.OOE+-00 1 4,841,000 O.OOO8E+00 O.0000E+00 ,OOOOE+O0 0.OOOOE.-00 O.OOE+00 0.OOE+00 O.OOE+00 0.OOE+00 2 4,841,000 1.7595E+07 O.OOOOE+00 3.5600E+07 1.5019E4-07 2.01E+01 1.54E+01 7.34E-06 0.00E#00O 6.5 1E4-00 1.34E-06 8.6798E-06 2.034 4,841,000 1.7973E+07 O.OOOOE+00 3.5663E+07 1.5051E-f-07 2.05E+01 .1.54E+01 7.43E-06 6.00E4-00 6.52E+00 1.35E-06 8.7776E-06 3 4,841,000 2.6800E+07 8.2920E+05 3.7461E+07 1.5993E+07 3.06E+01 1.62E+01 9.67E-06 9.4 7E-01 6.93E+00 1.63E-06 1. 1300E-05 4 4,841,000 3.3331E+07 4.8748E+06 3.9309E+07 1.6962E+07 3.81E+01 1.70E+01 1.14E-05 5.5 7E+00 7.35E+00 2.67E-06 1.4047E-05 5 4,841,000 3.8397E+07 8.0128E+06 4.114,5E+07 1.7,926E4-07 4.38E+01 1 78E+01 1.27E-05 9. ISE+-00 7.77E+00 3.49E-06 1.6233E-05 6 4,841,000 4.2537E+07 1.0577E+07 4.2969E+07 1.8884E+07 4.86E+01 1.86E+01 1.39E-05 1.21E+01 8. 18E4+00 4.18E-06 1.8063E-05 12 4,841,000 5.8273E+07 2.0324E+07 5.3664E+07 2.45 18E+07 6.65E+01 2.32E+01 1.85E-05 2.32E+01 1.06E4-01 6.99E-06 2.5535E-05 18 4,841,000 6.7478E+07 .2.6026E+07 6.3944E+07 2.9963E+07 7.71E+01 2.77E+01 2.16E-05 2.97E+01 1.30E-o-1 8.82E-06 3.0458E-05 24 4,841,000 7.4010E+07 3.0072E+07 7.3824E+07 3.5225E+07 8.45E+01 3.20E+01 2.41E-05 3.43E+0OI 1.53E4-01 1.02E-05 3.4308E-05 48 4,841,000 8.9746E+07 3.9819E+07 1.0966E+08 5.4563E+07 1.02E+02 4.75E+01 3. IE-05 4.55Ei-0I 2.36E+01 1.43E-05 4.5256E-05 72 4,841,000 9.8951E+07 4.5521E+07 1.4024E+08 7. 1428E+07 1.13E+02 6.08E+0 I 3.59E-05. 5.20E+01 3.09E4-01. 1.71E-05 5.3018E-05 96 4,841,000 1.0548E+08 4.9567E+07 1.6634E+08 8.6 137E+07 1.20E+02 7.21E+01 3.98E-05 5.66E+0l 3.373E+01 1.94E-05 5.9165E-05 120 . 4,841,000 1. 1055E+08 5.2705E+07 1.8862E+08 9.8965E+07 I1.26E+02 8.17E+01 4.30E-05 6.02E#O I 4.29E+01I 2.13E-05 6,4242E-05 144 4,841,000 1. 1469E+08 5.5269E+07 2.0764E+08 1.1015E+08 1.31 E+02 8.99E+01 4.56E-05 6.31E+01 4. 77E+01 2.29E-05 6.8525E-05 168 4,841,000 1. 1819E+08 5.7436E+07 2.2387E+08 1.1991E+08 1.35E+02 9.70E+01 4.79E-05 6.56E4-01 5. 19E+01 2.43E-05 7.2188E-05

-.1.03E+02,--4.99E-05--

192-- -4,841;000- *1t2122E+,08- 5:9314E+07- 2.3772E+08. -12842E+08- 1-38E+02- .6.77E+0l. -.5.56E+01.. _2.55Er-05 .7.5347E-05.

216 4,841,000 1.2389E+08 6.0971E+07 2.4954E+08 1.3584E+08 1.41 E+02 .1.08E+02 5.16E-05 6.96E+01 5.88E-oO1 2.65E-05 7.8090E-05 240 "4,841,000 1.2628E+08 6.2452E+07 2.5963E+08 1.4232E+08 1.44E+02 1.12E+02 5.30E-05 7. 13E4-01 6. 17E+01 2.75E-05 8.0486E-05 288 4,841,000" 1.3042E+08 6.5016E+07 2.7559E+08 1.5288E+08 1.49E+02 1.19E+02 5.54E-05 7.42E+01 6.62E+01 2.90E-05 8.4442E-05 336 4,841,000 1.3392E+08 6.7184E+07 2.8 722E+08 1.6092E+08 1.53E+02 1.24E+02 5.73E-05 7.67E4-01 6.97E+01 3.02E-05 8.7538E-05 384 4,841,000 1.3696E+08 6.9062E+07 2.95 70E+08 1.6704E+08 1.56E+02 1.28E+02 5.88E-05 7.89E+01 7.24E4-01 3.12E-05 9.0002E05 432 4,841,000 1.3963E+08 7.0718E+07 3.0187E+08 1.7169E+08 1.59E+02 1.31 E+02 5.99E-05 8.08E401 7.44E+01 3.20E-05 9.1991E-05 480 4,841,000 1.4202E+08 7.2200E+07 3.0636E+08 1.7523E+08 1.62E+02 1.33E+02 6.09E-05 8.24E+01 7.59E+01I 3.27E-05 9.3624E-05 528 4,841,000 1.4419E+08 .73540E+07 3.0964E+08 1,7792E+08 1.65E+02 I1.34E+02 6.17E-05 8.40E+01 7.71E4-01 3.33E-05 9.4984E-05 576 4,841,000 1.4616E+08 7.4764E+07 3.1202E+08 1.7997E+08 1.67E+02 1.35E+02 6.24E-05 8.54E+01 7.80E+01 3.37E-05 9.6136E-05 624 4,841,000 1.4798E+08 7.5889E+07 3.1376E+08 1.8 152E+08 1.69E+02 1.36E+02 6.30E-05 8,67E+01 7.86E4-01 3.41EE-05 9.7125E-05 672 4,841,000 1.4966E+08 7.6932E+07 3.1503E.08 .1.8271E+08 1.71E+02 1.36E+02 6,35E-05 8.78E+01 7.91E+E01 3.45E-05 9.7987E-05 720 4,841,000 1.5123E+08 7.7902E-07 3.1595E+08 I.8361E.08 1.73E+02 1.37E+02 6.39E-05 18.90E+01 7.95E-f01 3.48E-05 9.8748E-05 HCI

GGNS Benchmark Table 5-5: Table 5-5: GGNS Bench mark Calculation No. H21C08/ 4 Nine Mile Point Nuclear Station Cesium Hydroxide (CsOH) Production Revision 0 Unit 1 Page 5-10 Core cesium. inveniory 2400 g-mole Ref. 7.12.3 Core cesium - gap release 120.00 g-mole =0.05*2400 g-mole Core cesium - EIV release 480.00 g-mole =0.20*2400 g-mole Csl - gap release 15.44 g-mole fraction iodine release in form of Cs.

Csl - EIV release 77.19 g-mole *fraction iodine release inform of Csl CsOH - gap release 104.56 g-mole CsOH - EIV release 402.81 g-mole Gap release! onset, 121 sec R,ef. 7.12.3 Gap release duration 30 minutes Reg Guide 1.183 (main body Ref. 7.10.2)

EIV duration 90 minutes Reg Guide 1.183 (main body Ref. 7.10.2) suppression cumulative pool cumulative Time CsOH i volume CsOH (Hr)

] r (g-mole)

I* £ (liter)

] I (g-mole/1)

-* i onset 0.034 0.00 *4,841,000 0.OOOOE+00 0.100 13.88 4,641,000 2.8679E-06 end of gap release 0.534 104.56 4,841,000 2.1599E-05 1.000 229.81 4,841,000 4.7471 E-05 end of EIV 2.034 507.38 4,841,000 1.0481 E-04 CsOH Table 5i-6: GGNS Benchmark Calculation No. H21C080" Nine Mile Point Nuclear Station Effeict of SLCS Addition Revision 0 Unit 1 on Post-ILOCA Suppression Pool Page 5-11 Buffering by SLCS SLCS:

Min SLC pump flow rate - gpn Min SLC injection tank volume - gal Max SLC temp - OF Min SLC temp . OF SLC SPB conc. by weight Specific gravity 3 Density (T=85°F) IbmI/ft

.Final suppression pool temp (bounding) 120 OF Boric acid 'K 8.33E-10 at 120 'F MW sodium pentaborate(Na 2 B 100 16 ) 410 Volume sodium pentaborate Mass sodium pentaborate 5,800.0 lbrn Mass sodium pentaborate 6,416.8 g-n nole unbuffered pH 4.07 unbuffered [HI 8.425E-05 g-rrnole/A Suppression Pool volume 4,841,000 litelr Equivalents unbuffered [HI 407.8 g-rTnole Final pH 8.46 Time to inject boron - mir utes SLOS Table 5-7: GGNS Benchmark Calculation No. H21C08jY' Nine Mile Point Nuclear Station Gamma and Beta Radiation Dose Revision 0 Unit 1 used to Determline Post-LOCA pH Page 5-12 Suppressin Drywall Containment Drywell Containment Drywell Containment Drywall Containment Time PoolyTIp TO

' TO P TIP P TO D I yTID TOD PTID

[hrl [r] MlcMeV/cc] I [MeV/cc] (MeV/cc] [MeV/cc [rad] Irad] [rad] [rad) 0 0 0 0 0 0 0 0 0 0 0.034 0 0 0 0 0 0 0 0 0 0.534 0 0 0 0 0 0 0 0 0 0 0 0 0 .0.. 0 0 0 0, 2 1.3783E+06 1.4201E+12 0.O000E+00 2.8733E+12 1.2122E+12 1.7595E+07 O.OOOOE+00 3.5600E+07 1.5019E.07 2.034 1.3792E+06 1.4506E+12 O.O000E+00 2.8784E+12 11.2148E+12 1.7973E+07 O.O000E+00 3.5663E+07 1.5051E+07 3 1.4049E+06 2.1630E+12 6.6925E+10 3.0235E+12 i1.2908E+12 2.6800E+07 8.2920E+05 3.7461E+07 1.5993E+07 4 1.4315E+06 2.6902E+12 3.9344E+11 3.1726E+12 11.3690E+12 3.3331E+07 4.8748E+06 3.9309E+07 1.6962E+07 5 1.4581E+06 3.0991E+12 6.4671E+II 3.3208E+12 T 1.4468E+12 3.8397E+07 8.0 128E+06 4.1145E+07 1.7926E+07 6 1.4846E+06 3.4331E+12 8.5365E+11 3.4680E+12 1.5241E+12 4.2537E+07 1.0577E+07 4.2969E+07 1.8884E+07 12 1.6425E+06 4.7032E+12 1.6404E+12 4.3312E+12 11.9789E+12 5.8273E+07 2.0324E+07 5.3664E+07 2.4518E+07 18 1.7985E+06 5.4462E+12 2.1006E+12 5.1609E+12 '2.4183E+12 6.7478E+07 2.6026E+07 6.3944E+07 2.9963E+07 24 1.9526E+06 5.9733E÷12 2.4271E+12 5.9584E+12 12.6430E&12 7.4010E+07 3.0072E+07 7.3824E+07 3.5225E+07 48 2.5509E+06 7.2434E+12 3.2138E+12 8.8503E+12 !4.4038E+12 8.9746E+07 3.9819E+07 1.0966E+08 5.4563E+07 72 31213E+06 7.9863E+12 3.6740E+12 1.1319E+13 "5.7649E+12 9.8951E+07 4.5521E+07 1.4024E+08 7.1428E+07 96 .6648E+06 8.5135E+12 4.0005E+12 1.3425E+13 i6.9521E+12 1.0548E+08 4.9567E+07 1.6634E+08 8.6137E+07 120 4.1830E+06 8.9224E+12 4.2538E+12 1.5224E+13 17.9874E+12 1.1055E+08 5.2705E+07 1.8662E+08 9.8965E+07 144 4.6768E+06 9.2564E+12 4.4607E+12 1.6758E+13 !8.8904E+12 1.1469E+08 5.5269E+07 2.0764E+08 1.1015E+08 168 5.1475E+06 9.5389E+12 4.6357E+12 1.8068E+13 19.6780E+12 1.1819E+08 5.7436E+07 2.2387E+08 1.1991E+08 192 5.5961E-06 9.7836E+12 4.7873E+12 1.9186E+13 1.0365E+13 1.2122E+08 5.9314E+07 2.3772E+08 1.2842E+08 216 6.0237E+06 9.9994E+12 4.9209E+12 2.0140E+13 1.0964E+13 1.2389E+08 6.0971E+07 2.4954E+08 1.3584E+08 240 6.4313E+06 1.0192E+13 5.0405E+12 2.0955E-13 1.1486E+13 1.2628E+08 6.2452E+07 2.5963E+08 1.4232E.08 288  ;'1900E+06 1.0527E+13 5.24 75E+12 2.2243E+13 1.2339E+13 1.3042E+08 6.5016E.07 2.7559E+08 1.5288E.08 336 78793E+06 1.0809E+13 5.4224E+12 2.3182E+13 1.2988E+13 1.3392E+08 6.7184E+07 2.8722E+08 1.6092E+08 384 8.5054E+06 1.1054E+13 5.5740E+12 2.3866E+13 1.3482E+13 1.3696E+08 6.9062E+07 2.9570E+08 1.6704E+08 432 9.0743E.06 1.1269E+13 5.7077E+12 2.4364E+13 1.3857E+13 1.3963E+08 7.0718E+07 3.0187E+08 1.7169E+08 480 9.5911E.(06 1.1463E+13 5.8272E+12 2.4727E+13 1.4143E+13 1.4202E+08 7.2200E+07 3.0636E+08 1.7523E+08 528 1.0061E407 1.1637E+13 5.9354E+12 2.4991E+13 i 1.4360E+13 1.4419E+08 7.3540E+07 3.0964E+08 1.7792E+08 576 1.0487E+.07. 1.1797E+13 6.0342E+12 2.5183E+13 i 1.4525E+13 1.4616E+08 7.4764E+07 3.1202E+08 1.7997E+08 624 1.0875E+07 1.1943E+13 6.1250E+12 2.5324E+13 1.4651E+13 1.4798E+08 7.5889E+07 3.1376E+08 1.8152E+08 672 V.1227E+07 1.2079E+13 6.2091E+12 2.5426E+13 1.4746E+13 1.4966E+08 7.6932E+07 3.1503E+08 1.8271E+08 720 .7.1546E+07 1.2205E+13 6.2875E+12 2.5500E+13 .1.4819E+13 1.5123E+08 7.7902E+07 3.1595E+08 1..8361E+08 2400 1.4610E407 1.4412E+13 7.6540E+12 2.5700E+13 1.5050E+13 1.7856E+08 9.4833E+07 3.1842E+08 1.8647E+08 4320 1.4718E,,07 1.5489E+13 8.3211E+12 2.5700E+13 1.5050E+13 1.9190E,08 1.0310E+08 3.1842E+08 1.8647E+08 8760 1.4720E.07 1.6784E+13 9.1235E+12 2.5700E+13 I 1.5050E+13 2.0795E+08 1.1304E+08 3.1842E+08 1.8647E+08 Equations 6

ysp (Mrad] = 14.72*[1-0.91*exp(-0.0O02*t,)]*1O 6

yw [MeV/cc] = [0.15ý1.*3235"ln(tj)'106*10 lcNT [MeV/cc] [-1 .18+11135*n(t,)]*10" 106 Pow [MeV/col = 25.7"[1-0.9exp(-0.0066't.,)]*10S6106 I

PcNT [MeV/cc] 15.05"[1-0.93'exp(-0.0057*tr,)1*106L1O 1 rad = 8.071x,0 4 MeY/cc for air at S.T.P. per Radiological Health Handbook (main body Rel. 7.8)

Notes If the curve fits above yield a negative TID due to curve fit inacurracies the TID is assumed to be zero consistent with Ref. 7.12.3.

Rail Dose Table 5-8: GGNS Benchmark Calculation No. H21C08 "

Nine Mile Point Nuclear Station Post-LOCA Suppression Pool Revision 0 Unit 1 Temperature Response Page 5-13 From Data (Ref. 7.12.3) I Used for pH Analysis Time Post-LOCA Temp Time Temp

, (sec/days)* (hr) (OF)_ (hr). ('F) 0

...... . 7 0' 77.0

.. 364 .... 6. 0 *0.034 160.0 1 2.778E-04 160.0 0.534 160.0

  • 8 2.222E-03 160.0. 1 160.0 10 2.778E-03 160.0 2 160.0 30 8.333E-03 160.0 2.034 160.0 100 0.028 160.0 3 159.1 0.034 160.0 4 157.3 300 .0.083 160.0 5 155.5 1,000 0.278 160.0 6 154.6

" 0.534 160.0 12 149.2 18 146.4 k,46 24 144.3 1600 48 139.4

, 10,000 2.778 159.3 72 136.5 96 134.4 4 157.3 120 132.8 144 131.6 20,000 5.556 155.0 168 130.5 6 154.6 192 129.5 42,000 11.67 149.5 216 128.7

- 731=49,2; 240 127.9 60.000 16.67 147.0 288 126.6 336 125.5 384 124.6 100000 2778 143.5 432 123.8 2

  • I'48 3 480 123.0

-732.

__ ' 6" 35.. 528 122.4

  • 4 '* '1*34. 4 576 121.7
.5 1A20 ý* -32, 8 1 624 121.1 6 144 131.6 672 120.6

.

  • ii015!0 .1!:._jj 720 120.1 7 16ý8 130.5 8 192 129.5 The shaded values are taken

,5' 122**12 from Reference 7.12.3.

9 216 128.7 Other other values are

-4 - 4 129" 1interpolated.

12 288 126.6 14 336 125.5

~V4~1=360, -=-'~2&~0, 384 124.6

.432 123;8 528 122.4 576 121.7 624 121.1 672 120.6

  • Seconds are the units for t=0 to
  • . j03- 27.78 hours9.027778e-4 days <br />0.0217 hours <br />1.289683e-4 weeks <br />2.9679e-5 months <br />; days are the units 3for t=48 to 720 hours0.00833 days <br />0.2 hours <br />0.00119 weeks <br />2.7396e-4 months <br />.
  • SP Tiemp
  • 1*

4 Attachment 5 Table 5-1 Eqs: GGNS Benchmark Calculation No. H21C08*/

.Nine Mile Point Nuclear Station Post-LOCA pH Calculation without SLCS Revision 0 Unit I Page 5-14.

A B C D F G H 1 initial conditions 2

3 Suppression pool mass - Ibm __"'

4 RCS mass .......... - ... Ibm ........ ... .. ........

5 Total post-LOCA SP mass Ibm 61 .

7 suppression pool pH 5.3 8 reactor coolant pH 5.3 ._ -

10 initial [HI =IOA(-D7) g-mole/ weighted average not requiredsince pH5s j = pH Rcs, 11 initial [OH] =IOA(-14+D7) g-mole/I weighted average not requiredsince pHsp, = pHRcsj

,13 Pool [HI] [HNO] - [HCI] [CsOH] Total [Hi] Total [OH]

14 Time Volume _ _ _ J __ H _ j _

15 (hr) (liter) (g-moles/1) (g-moles/A) . (g-moles/l) (g-moles/1) (g-moles/I) (g-moleslI) 16 ='RadDose (eqs)'IA6 4841000 ,_,___ .... . =D$10+SUM(C16:El6) =D$11+F16 17 ='Rad Dose (egs)'!A7 4841000 =D$10+SUM(C17:E17) =D$11+F17

.80.1 +

18 4841000 =HI (eqs)X'E17 ='CsOH(eqs)'!E21 =D$10+SUM(C18:E18) =0$ 1+F18 1.9. ='Rad Dose (egs)'lA8 4841000 =HI (eqsr'!E18 ='CsOH(eqs)YE22 =D$10+SUM(C19:EI9) =D$11+F19 20 ='Rad Dose (e s)'!A9 4841000 ='HI (egs)'!E19 _='COH-(e-Ys)!E23 .. D$10¥SUM(C20:E20) =D$11-+F20-21 ='Rad Dose (egs)'!Al 0 4841000 ='HI (eqs'!E$20 =HN03 (eqs)'!D11 ='HCI (eqs)'!N50 ='CsOH (eqs)'E$24 =D$10+SUM(C21:E21) =D$1 1I+F21 1

22 ='Rad Dose (egs)'!Al1 4841000 =-HI (eqs)!E$20 ='HN03 (eqs)' 012 ='HCI (eqs)!N51 =CsOH (eqs'!E$24 =D$10+SUM(C22:E22) =D$1 1+F22 23 ='Rad Dose (eqs)!A1 2 484,1000 ='HI (eqs)!E$20 =HN03 (eqsYJD13 ='HCI (eqs)'N52 ='CsOH (eqs)!E$24 =D$10+SUM(C23:E23) =D$11 +F23

ý24;='Rad Dose (egs)'!A13 4841000 =HI (eqs)'!E$20 =IHN03.(eqsY!D14 ='HCI (egs) N53 ='CsOH(eqs)'!E$24 =D$10+SUM(C24:E24) =D$1 1+F24 25 ='Rad Dose (eqs)'!A14 4841000 =HI (eqs)lfE$20 ='HN03 (es 7D015 ='HCI (eqsY'IN54 ='CsOH(eqs)/E$24 =D$10+SUM(C25:E25) =D$1 1I+F25 26 ='Rad Dose (egs)'!Al5 4841000 =H--I (eqs)'E$20 ='HN03 e s"!016 ='HCI (eqs)tN55 ='CsOH(egs '!E$24 =D$10+SUM(C26:E26) =D$1 1+F26 27 ='Rad Dose (egs)'!Al6 4841000 ='HI (eqs)'E$20 ='HN03 (eqs'!D17 ='HCI(eqs)'/N56 =CsOH (eqs)VE$24 =D$10+SUM(C27:E27) =D$11+F27 28 ='Rad Dose (egs)'!A17 4841000 =1Hf (eqs'!E$20 ='HN03(eqs)'!018 ='HCJ (eqs)'tN57 =CsOH (eqs)'/E$24 =D$10+SUM(C28:E28) =D$11+F28 29 -'Rad Dose (eqs)'!Al18 4841000 =-HI (eqsY'E$20 ='HN03 (eqs)'!019 -'HCI (eqs)'fN58 ='CsOH(eqs '!E$24 =D$10+SUM(C29:E29) =D$1 I+F29 30 ='Rad Dose (eqs)'A19 4841000 =-HI (eqs)'!E$20 ='HN03 (egs)'tD20 ='HCI (eqs'!N59 ='CsOH(eqs)'/E$24 =D$10+SUM(C30:E30) =D$1 1+F30 31 ='Rad.Dose (egs)'!A20 4841000 ='Hl (eqsY'E$20 ='HNO3 (eqs)'!D21 ='HC (eqs)'!N60 ='CsOH (eqs)!E$24 =D$10+SUM(C31:E31) =D$1 1+F31 32 ='Rad Dose (eqs)y!A21 4841000 ='HI (eqs)!E$20 =HN03 (eqs)'!022 ='HCI (eqs)'tN61 ='CsOH(eqqs'!E$24 . =D$10+SUM(C32:E32) =D$11+F32 33 =Rad Dose (eqs)'lA22 4841000 =HI (eqs)!E$20 =HN03 (eqs)'!023 ='HCI (eqs)'N62 ='CsOH (eqs)'!E$24 =D$10+SUM(C33:E33) =D$1 1+F33 34 ='Rad Dose (egs)'1A23 4841000 ='HI (eqs)'tE$20 ='HN03(eqs)'VD24 ='HCI (eqs)'!N63 ='CsOH eqs)'E$24. =D$10+SUM(C34:E34) =D$1 1+F34 35 ='Rad Qose (eqsl'!A24 4841000 ='HI (egs)!E$20 =HNO3 (eqs)'!025 ='HCI (eqs)!N64 ='CsOH(eqs)/E$24 =D$10+SUM(C35:E35) =D$1 1+F35 36 ='Rad Dose (egs)'!A25 4841000 ='H! (eqs)'E$20 ='HN03(eqs)l026 ='HCI (eqs)'lN65 ='CsOH(eqs)tE$24 =0$10+SUM(C36:E36) =D$1 1+F36 37 ='Rad Dose (egs)'IA26. 4841000 ='HI (eqs'!E$20 ='HN03 (eqsy'!D27 =-HCI (eqs)!N66 ='CsOH(eqS'!E$24 =D$10+SUM(C37:E37) =D$1 1+F37 38 ='Rad Dose (egs)'!A27 4841000 =1-f(eqs'!E$20 ='HN03 (egs)'!D28 ='HCI(egs)lN67 =CsOH (egs)'!E$24 =D$10+SUM(C38:E38) =D$1 1+F38 39 ='Rad Dose (egs)'!A28 4841000 ='HI (eqs)'tE$20 ='HN03 (egs)'t29 ='HCI (eqs'WN68 ='CsOH (eqs)'E$24 =D$10+SUM(C39:E39) =D$1 1+F39 40 ='Rad Dose(eqs)'!A29 4841000 =1H-I (eqsY'!E$20 '='HNO3 (eqs)'030 -'HOC(eqs)'N69 =CsOH (eqs)!E$24 =D$10+SUM(C40:E40) =D$1 1+F40 41 ='Rad Dose (egs)'!A30 4841000 =HI (eqs}'!E$20 ='HfN3 (eqsY'031 I'HCI (eqsy'lN70 ='CsOH(eqs)'lE$24 =D$10+SUM(C41:E41) =D511+F41 42 ='Rad Dose (egs)'!A31 4841000 =H-l (eqs)'E$20 =HNO3 (eqs)'tD32 I'HCI (eqs)'!N71 ='CsOH (eqs)'E$24 =D$10+SUM(C42:E42) =D$11+F42 pH (eqs)

  • Attachment 5 Table 5-1 Eqa: GGNS Benchmark Calculation No. H21C08t*

Nine Mile Point Nuclear Station Post-LOCA pH Calculation without SLCS Revision 0 Unit 1 Page 5-15.

i3_

A f B Pool C

1Hj D

_ _03 _

E

[HCI]

_-l' _ _

F

[CSOH]

G Total

_4 H

[H j

13.................i POol " [HI" [i,1O 3 ]"

14 Time Volume 15 (hr) (liter) (g-moles/l) (g-molesll) (g-moies/I) (g-molesll) (g-molesll) (g-moles/A) 43 ='Rad Dose (egs)'!A32 4841000 ='HI (egs)!E$20 ='HN03 (egs'!D33 =HCI-(egs)!N72 =-CsOH (eOsy)'!E$24. =D$10+SUM(C43:E43)" =D$11+F43-44 ='Rad Dose (egs)'!A33 4841000 =HI (eqsy'E$20 ='HN03 (eqs)'1D34 =HCI (eqs)'VN73 ='CsOH(egs)'!E$24 =D$10+SUM(C44:E44) =D$11 +F44 45 ='Rad Dose (egs)'!A34 4841000 =HI (eqs)!E$20 ='HN03 (egs)'!D35 ='HCI (eqs:'!N74 =CsOH(eqs 7E$24 =D$10+SUM(C45:E45) =D$11+F45 46 ='Rad Dose (eqs)'!A35. 4841000 =HI (eqs)'!E$20 ='HN03 (egs)'lD36 ='HCI (egs'/N75 ='CsOH(egs) !E$24 =D$10+SUM(C46:E46) =D$11+F46 47 ='Rad Dose (egs)'!A36 4841000 ='HI (egs)!E$20 ='HN03 (egsY'D37 ='HCI (egs)lN76 ='CsOH(e s)?E$24 =D$10+SUM(C47:E47) =D$11+F47 4 8 4 10 0 0 =D$11+F48 48 ='Rad Dose (eqs)'!A37 ='HI(egsY/E$20 ='HN03(eqs'!D38 =HC (egsY'!N77 =CsOH(esy)'!E$24 =D$10+SUM(C48:E48) 50 Adjustments made in Table 4-1 of Attachment 4 (see Notes 1-3) are not made for the benchmark.

511 52 53 54 '"_,_,

55 56 57 pH (eqs)

Attachment 5 . Table 5-1 Eqe: GGNS Benchmark Calculation No. H21 C08kL Nine Mile Point Nuclear Station Post-LOCA pH Calculation without SLCS Revision 0 Unit 1 Page 5-16.

I JK L M INI

.4- - . -- -- ------

10_____

11 ______

13 Pool Water Ký at x (IPo 14 Temp Density Pool Temp p 15 (Ibm/fl3) (-) I(g-moles/I) _______

16 90 =1/vftsat(l116) =1 0A(-15.5129-0.0224*116+0.00003352*11 6A2) ý=(H1 6+G 16-SORT((H16+/-G1 6)A2-4*(HI 6*G16-KI 6)))/2 =G 16-LI 6 =-LOG(MIB6 17 ='SP Temp (eosy! F6 =1/vftsat(l117) =1 0A-(l5.5129-0.0224*117+0.00003352*11 7A2) =(H1 7+G1 7-SQRT((H1 7+G1 7)A2-4*(H 7*G1 7-Ki 7)))/2 =G1 7-LI 7 =-LOG(M1 7) 18 160 =I/vftsa t(I 18) =10U1-(15.5129-0.0224I118+0.00003352I1l8A2) =(H18..G 18-S QRT((Hl8+G 18)A2-4*(H18*G18.Kl8)))/2 =G 18-0 8 =-LOG(M18) 19 ='SP Tern ags)'!F7 =lfvflsat((1 9) =1IIY-(1 5.5129-0.0224*119+0.00003352*119A2) =(H1 9+Gl1g-SORT((H1 9+Gl19)A2-4*(H1 9*Glg9-KI 9)))/2 =G1 9-1-19 =-LOG(M1 9) 20=PTemp (ejs)'!FS =1/vfsat(120) =1OM1 5.5129:0O.224I1204-G200003352*12O")'-2.=(H20+G20:SQRT((H20+G20)A2ý4*(H20*G20;K20)))/2 =G20-L20 - =-LOG(M20 --

21 ='SP Temp (eqs)Y!F9 =1/vftsat(121) =ý10A-(15.5129-0.0224*12l+0.0OqO3352*121A2) =(H21 +G21 -SQRT((H21 +G21 A2-4*(H21 G21 -K21))/2 =G21-1-21 .=-LOG(M21) 22 ='SP Temp (egs)'!F1o =lfvftsat(122) =10f-(15.5129-0.O224*122+0.00003352*122A2) =(H22+G22-SQR3T((H22+G22YA2-4*(H22*G22-K22)))/2 =G22-1-22 =-LOG(M22) 23 ='SP Temp (egs)'!F1 1 =1 fvftsat(123) =1 0'"-(1 5.51 29-0.0224*123+0.00003352.123I2 =(H23+G23-SQRT((H23+G23)A2-4*(H23*G23-K23)))/2 =G23-1-23 =-LOG(M23) 24 ='SP Temp (egs)I!Fl 2 =1 /vttsat(124) =1,0'"-(l 5.51 29-0.0224*124+0.00003352*124A2) =(H24+G24-SQRT((H24+G24)A2-4*(H24!G24-K24)))/2 =G24-1-24 =-LOG(M24) 25 ='SP Temp (egs)'IF1 3 =1/vttsat(125) =1 0I%-(15.5129-0.0224*125+0.00003352*125A2) =(H25+G25-SQRT((H25+/-G25)A2-4*(H25*G25-K25)))/2 =G25-1-25 =-LOG(M25) 26 ='SP Temp (egs)'! Fl 4 =1/Vftsat(126) =1 GA-(1 5.51 29-0.0224*126+0.00003352*126A2) =(H26+G26-SQRT((H26+G26)A2-4*(H26-G26-K26)))/2 --G26-1-26 =-LOG(M26) 27 ='SP Temp (ecis)!Fl 5 =1/yftsat(127) =1 OA.(1 5.51 29-0.0224*127+0.00003352*127A2) =(H27+G27-SQRT((H27+G27)A2-4'(H27*G27-K27)))/2 =G27-1-27 =-LOG(M27) 28 ='SP Tern (es) !F1 6 =1/vftsat(128) =1 G0"-(1 5.51 29-0.0224*128+0.00003352*128A2) =(H28+G28-SQRT((H28+G28)A2-4*(H28*G28-K28 ))/2 1-G28-L28 =-LOG(M28) 29 ='SP Temp (egs)'! Fl 7 =1/vftsat(129) =1 &A-(1 5.51 29-0.0224*129+0.00003352*129'A2) =(H29+G29-SORT((H29+G29)A2-4*(H29*G29-K29)))/2 =G29-1-29 =-LOG(M29) 30 ='SP Temp (egs)'!F1 8 =1/vftsat(130) =1 0"-(15.51 29-0.0224*130+0.00003352*130A2) =(H30+G30-SQRT((H30+G30)A2-4*(H30*G307K30)))/2 =G30-1-30 =-LOG(M30) 31 5P Temp (eqs)ylF1 9 =;ltvftsat(131) =1 OA-(1 5.5129-0.0224*131 +0.00003352*131 A2) =(H31 +G31 -SQRT((H31 +G311)A2-4*(1-31 *G31 -K31 )))/2 --G31 -L31 =-LOG(M31) 32 ='SP Temp (egs)'!F20 =1/vftsat(132) =1 0^-(1 5.51 29-0.0224*1ý2+0.00003352*132A2) =(H32+G32-SORT((H32+G32})'2-4*(H32'G32-K32)))/2 --G32-1-32 =-LOG(M32) 33 ='SP Temp (eqs)'!F21 =1/vftsat(133) =1 0'&-(I 5.51 29-0.0224*133+0.00003352*133'A2) =(H33+G33-SORT((H33+G33yA2-4*(H33*G33-K33)))/2 --G331-L33 =.LOG(M331

ý3 ='SP Temp (egs'! F22 =ltvftsat(134 I=1 04-1 5.5129-0.0224*134+0.00003352*134A2) =(H34+G34-SQRT((H34+G34A2-4*(H34*G34-K34)))/2 --G34-1-34 =-LOG(M341 35 ='SP Temp (egs)Y! F23 =1/vftsatft35) =1 01-(1 5.51 29-0.0224*135+0.00003352*135A2) =(H35+G35-SORT((H35+G35)A2-4*(H35*G35-K35)))/2 =G35-1-35 =-LOG(M351

  • 36 ='SP Temp (eqs)'!F24. =ltvftsat(136) =1 0&-(Il 5.51 29-0.0224*136+0.00003352*136&A2) =(H36+G36-SQRT((H36+G36)A2-4-(H36-G36-K36)))/2 --G36-1-36 =-LOG(M36) 37 ='SP Temp (egs)'!F25 =1 /vftsat(137) =1 01-(1 5.5129-0.0224*137+0.00003352*137A2) =(H37+G37-SORT((H37+G37)A2-4*(H37*G37-K37)))/2 --G37-1-37 =-LOG(M37) 38 ='SP Temp,(egs)'!F26 =ltvftSat(138) =1 GA-(15.5129-0.0224*138+0.00003352*138A2) =(H38+G38-SQRT((H38+ýG38)A2-4*(H38*G38-K38)))/2 --G38-1-38 =-LOG(M38) 319 ='SP Temp (eqs)'lF27 =1/vftsat(139) =1 0A-(1 5.51 29-0.0224*139+0.00003352*139A2) =(H39+G39-SORT((H39+G39)A2-4*(H39*G39-K39)))/2 =0G39-1-39 =-LOG(M39) 40 ='SP Temp (eqs)'!F28 =11/vftsat(140) =1 OA-(1 5.5129-0.0224*140+0.00003352*140A2) =(H40+G40-SQRT((H40+G40yA2-4*(H40*G404(K40)))/2 =G40-1-40 =-LOG(M40) 41 ='SP Temp (egs)'!F29 1=1/vftsat(141) 1=1 OA.-(I5.5129-0.0224*141 +0.00003352*141 A2) =(H141 +G41 -SQRT((H41 +G41 Y2-4*(H41 *G41 -K41 )))/2 --G41 41 =-LOG(M41) 142 1=SP Temp (egsy!IF30 I=ltvftsat(142) 1=10A-(15.5129-0.0224*142+0.00003352*142A2) 1=(H42+G42-SQRT((H42+G42yA2-4N(H42*G42-K42)))/2 =0-42-142 1=-LOG(M42) pH (eqs).

4 ' Table 5-1 Eqs: GGNS Benchmark Calculation No. H21C08t/

Nine Mile Point Nuclear Station Post-LOCA pH Calculation without SLCS Revision 0 Unit 1 Page 5-17 14 Temp Density Pool Temp pH___________________I____

15_____ ___________1_________ (-molesll) (-moles/1)______

43 ='SP Temp (eqs)'! F31 =1/vftsat(143) =10 *-(15.51 29-0.0224i143+0.00003352i143A2) =(H43+G43SQ5RT((H43+ýG43A2-4*(H43*G43-K43)))/2' =ýG43L- 143 LOG(M43)

.44 ='SP Temp (eqs)'!F32 =1/vttsat(144) =1 0-.(I 5.51 29-0.0224*144+0.00003352*14.4A2) =(H44+G44-SQRT((H44+G44)A2-4*(H44G44-K44)))/2 =644-L44 1=-LOG(M44) 45 ='SP Temp (egs)l F33 =1lvttsat(145) =1 0eL15.51 29-0.0224*145+0.00003352*145A2) =(H45+G45-SQRT((H45+G45)A2-4*(H45*G45-K45)))/2 =G45L145 1=-LOG(M45) 46 ='SP Temp (eqs)'!F34 =1/vftsat(146) I=1 G-(1 5.5129-0.0224*146+0.0 00033 52*146A2) =(H46..G46-SORT((H46+G46)A2-4*(H46*G46-K46)))12 =G46zL46 1=-LOG(M46) 47 ='SP Temp (eqs)'!F35 =1I/Vt'Sat(147) 1=1 0A1(15.51 29-0.0224i147+0.00003352*147A2) =(H47+G47-SQRT((H47+G47)A2-4*(H47*G47-K47)))J2 =G47-1-47 1=-LOG(M47) 48 ='SP Temp (egs)Y! F36 =1/vftsat(148) 1=1 0A-(15.51 29-0.0224*148+0.00003352*148'A2) =i(H48+G48-SQRT((H48+G48)A2-4*(H48'G48-K48)))/2 =6G48-1-48 1=-LOG(M48) 51 54 _________

1571_________

pH (eqs)

- - Table 5-2 Eqs: GGNS Benchmark Calculation No. H21C084I Nine Mile Point Nuclear Station Hydriodic Acid (HI) Production Revision 0 Unit 1 Page 5-18 i A B C D E 1 Core iodine inventory 325 g-mole Ref. 7.12.3 2

-3 Core iodine - gap-release =0.05Bl - gmmole -- =0.05*325,g-mole 4 Core iodine - EIV release =0.25"B1 g-mole =0.25*325 g-mole 5

6 Fraction of release as HI 0.05 max Reg Guide 1.183 (main body Ref. 7.10.2) 7 8 Gap release onset 121 sec Ref. 7.12.3

.9 Gap release duration 30 minutes Reg Guide 1.183 (main body Ref. 7.10.2) 10 EIV duration 90 minutes Reg Guide 1.183 (main body Ref. 7.10.2) 11 12

  • suppfession 13 cumulative pool, , cumulative 14 Time HI volume HI- -

15 (hr) (g-mole) (liter) (g-mole/A) 16 onset =B8/3600 0 4841000 =C16/D16 17 0.61*

............ =-C16¥(B17-B16)y(B9/6O)*B3*B6 - 4841000. - ... ............. . =C1-7/01 18 end of gap release =B16+B9/60 =C17+(618-B17)/(B9/60)*B3*B6 4841000 =C18/D18 119- 1, - =C18+(B19-B18)/(B10/60)*B4*B6 4841000 =C19/D19 20 end of.EIV =B18+B1O/60 =C18+B4*B6 4841000 =C20/D20 HI (eqs)

' Table 5-3 Eqs: GGNS Benchmark Calculation No. H21C08i" Nine Mile Point Nuclear Station Nitric Acid (HN9 3) Production Revision 0 Unit 1 Page 5-19 A B C D E NUREG/CR-5950 (main 1 HNO 3 generation 0.0000073 g-mole/l per MRad body Ref. 7.13) 2 _____ __________ ____________

3 4 Suppression 5 Pool cumulative

6 Time 3467 MWt HN03 7 (hr) (rad) _ (g-mole/A) 8 onset ='Rad Dose (egs)'!A7 _

9 end of gap release ='Rad Dose (egs)'yA8 _

10 ='Rad Dose (eqs)'!A9 _

11 end of EIV ='Rad Dose (egs)'!A10 ='Rad Dose (egs)'IB1O =$B$1C1 111000000 12  ! ='Rad Dose (eqs)'lA1 1 ='Rad Dose (eqs)'!Bl1 =$B$1"C12/1000000 13 .__ ='Rad Dose (eqs)'!A12 ='Rad Dose (eqs)'lB12 =$B$1"C13/1000000 14 , =Rad Dose (egs)'yA13 ='Rad Dose (egs)'!B13 =$B$1"C14/1000000 15 _ _ ='Rad Dose (eqs)'!A14 ='Rad Dose (eqs)'!B14 =$B$1"C15/1000000 16 ='Rad Dose (eqs)'!A15 ='Rad Dose (eqs)'Bt15 =$B$1"C16/1000000 17  ! ='Rad Dose (e s)'!A16 ='Rad Dose (eqs)'IB16 =$B$1"C17/1000000 18 _ ='Rad Dose (egs)'!A17 ='Rad Dose (egs)'lB17 =$B$1"C18/1000000 19 ='Rad Dose (egs)'lA18 ='Rad Dose (egs)'BlB8 =$B$1tC19/1000000 20 ='Rad Dose (eqs)'!A19 ='Rad Dose (eqs)'!B19 =$B$1°C20/1000000 211 ='Rad Dose (egs)'!A20 ='Rad Dose (egs)'!B20 =$B$1"C21/1000000 221 =Rad Dose (eqs)'1A21 ='Rad Dose (eqs)'1B21 =$B$1"C2211000000 23 ='Rad Dose (egs)'!A22 ='Rad Dose (eqs)'IB22 =$B$1"C23/1000000 24 * ='Rad Dose (egs)'IA23 ='Rad Dose (egs)'!B23 =$B$1"C24/1000000 25 ='Rad Dose (egs)'IA24 ='Rad Dose (egs)!B24 =$B$1"C25/1000000 26 ='Rad Dose (egs)'!A25 ='Rad Dose (egs)'IB25 =$B$1"C26/1000000 27 ='Rad Dose (eqs)' A26 ='Rad Dose (e s)'!B26 =$B$1"C27/1000000 28 ='Rad Dose (egs)'!A27 ='Rad Dose (es)'lB27 =$B$1 *C28/1 000000 29 ='Rad Dose (eqs)'1A28 ='Rad Dose'(eqs)'!B28 =$B$1"C29/1000000 30 ='Rad Dose (egs)'!A29 ='Rad Dose (eqs)'IB29 =$B$1"C30/1000000 31 ='Rad Dose (eqs)'!A30 ='Rad Dose '.(egs)'!B30 =$B$1"C31/1000000

,32 ='Rad Dose (egs)'!A31 ='Rad Dose.(egs)'IB31. =$B$1"C32/1000000 33 ='Rad Dose (eqs)'IA32 ='Rad Dose (egs)'!B32 =$B$1"C33/1000000 34 ='Rad Dose (egs)'IA33 ='Rad Dose (eqs)'! B33 =$B$1 *C34/1000000 35 ='Rad Dose (eqs)'1A34 ='Rad Dose (eqs)'!B34 =$B$1"C35/1000000 36 . ='Rad Dose (eqs)'lA35 ='Rad Dose!(egs)'!B35 -- B$1"C36/1000000 37 ='Rad Dose (egs)'!A36 ='Rad Dose!(eqs)'!B36 =$B$1"C37/1000000 38, ='Rad Dose (egs)Y A37 ='Rad Dose i(eqs)'! B37 =$B$1"C38/1000000_

HN03 (eqs)

Table 5-4 Eqs: GGNS Benchmark Calculation No. H21C08/'*

Nine Mie Point Nuclear Station Hydrochloric Acid (MCI) Production Revision 0 Unit I Page 5-20 I. A C . I i iGallee 21 p G nole HCI oar MlRad-a MUREG/CR-5950 (main body Ref. 7.13) am"for betaradiationt- - -I NUREG-1081-(main bodyRaef.-7.151-6 inearabsorptioncoeflenf 0.099 cm"a forgarama ra ition (main body Ref. 7.15)

NUREG-1081 7 density 1.55 w/cm3 NUREG-1081 (main body oef.7.15)

-8 18 ttktand ensuantion:

10 Cable 16ina iautaton tltficknts 52 O mi" fo bet radiation t

19 12 cable IvtC outer radhus 0.35 etroynt

-IlnaInvntton In cable outerradius M°35

-13 cable OD (max guar.) =.2*B12 In cable OD (mx guar.) z-.2G12

.14 jacket thickness 280 MR jacket thickness 280 15 a jack material _ ___on -_- jacket material __len

-A insulation thickness rmil -I" nsulation thickness 1L7 insulation material Insulation matera is length In free aor linear ft length in free air-19 length Intray linear it lengt in tray-20 21 chlorine-beaaing material:-,

23 volume In free air am volume in free air_

24. volume in tray ani volume in iTar mass in free'airJ873:65_ . _.:.. . I .. . . ,--m massi n.We.-Wa in free air 1, f61.0-3

=G25"453.6 26 mass in trayv 14049.27 s intray =827"453.6 lararn mass Intray -G27*453.6 29 3n Iradaton 31 321 I -- oamma free air tray

1. -W. -Aus cm I ~ I .. ~.,. I =$813'2.54/2

.37 Jacket thickness (cm) =($B14)/1000"2.54 =t$B14)/1000'2.54 =($B14)I1000*2.54

=B26 -0.5'B28 -G26+G28

=(II($BS&'2)*(EXP(. $BS5'C37)-(SB$5'C37+1)- $B$5-037)-($5$5037+1)- =(l/($BW82)*(EXP(-

$I36B37)-(SB$6-B37+1)-1). 1)-C36/8$5'(EXP(- I)-D38(SB$5'(EXP(- $8$6G37Y(S$8WG37+1)-1)-

B361$B$6(EXP(-$B$8'B37)- 5$B5'C37)-1))I(C36-C37. $B$55D37)-1))I(0368037- G36/$$6S6(EXP(-$S6S8G37)-

40 flux averaoina factor IW1 /(36B1374337A212) fZ37'2/2) 037A2/2) I ))((G3S8G37-G37A2i2 __

A. Inoenmii. - ýf- . =1 42J ______________ =1_________

-1~-$ C7 =I.EP-B5 HCI (eqs)

Table 5-4 Eqs: GGNS Benchmark CalcuRatson No. H21C08o/4 Nine Mile Point Nuclear Station Hydrochloric Acid (HCI) Production Paevision0 Page 5-21 Unit 1 A___ _ B C D . E F G 44 F. . . . . D,~i Cotar1et.i lwti Cnanent 45 ime T________ Volume - TlD ~ yTO ITO (TO D

406 ___________ (hr) (Ifter) (rad) .........Qa...... (rad) (rad) 47 __________ Rad Dose (eqsy'IA7 4841`W00 W'adJDose (OqS)1fG7 =RadDose (OgS)!H7 =Rad Dose (BqS)'117 =Rad Dose (mrsyfJ7 4S * ='Rad Dose (eqs)lIA8 4841000 *z5'f Doseeeqs)'!G8-, ='Rad Owe (aqs)IHB- ='Rad Dose (eqsj'118 -. ='Rad Dose. a 1dB.

49 'Rad Dose (eqs)'lA9

=________ 4841000 =Rad Dose (egs) 109 =Itad Dose (eqs)!H9 ='Raci Dose (00J.i119 &Rad Dose (eqs)'1J9 50 _______ _='Rad Dose es)'lAIO 4841000 -Rad Dose(eqs)7GIO .'Rad Dose (e '111H10'Rad Dose (eq 7/t0 ='PsdDose (et~s)VIO1 511_________ =Flsd Dose (eqs)'IAI 1 4841000 ='Red Dose (eogs)!G I ='Red Dose (egs)'II Ii ='Pad Dose '1111 ~ .'Pad Dose (egs) IIJ11 52 ________ ='Rad Dose (eqs)'IA12 484 1000 ='Rad Dose (eqsyIG 12 .'Rad Dose (eqsP'H 12 =Rad Dose (eqS)"Il12 =RadDose (eqsy'IJ12 53 __________ 'Radl Dose (egs)'!Al3 484100 =Red Dose (eqs)'IG 13 =-Rad Doe(qy~3=Ia oe(~ 113 ='Rod Dose (eqsj'1JI3 54_a ________ ='Red Dose (eqs)'lA14 4841000 ='Red Dose (84qsyG1G4 =RFad Dose (ags)l'IJ4 ='Red DOwe (eqs) I14 ='Rad Dose (egs)i'lJ14 55 ='Rad Dose (egs)'IAI 5 484100 ='Rad Dose (eqs)'IG 15 ~=Rac1Dosa(eQs)1IHl5 ='RadDosa (eqsyliS =Red Dos e s)'1J15

.56 ='Rad Dose (egs)Y!A16 4841OW1 ='Red Dose (eqs)'IGI16 'Rad Dose (eqs)'IHIB .Rad Dose (mp)YIII8 .sRad Dose (eqs)!"di16 57 ________ _='Rad Dose (egs)'lAl 7 4841000 ='Rad Dose (egs)!G 1G7 ='Rad Dose (egsY'IH17 ='Red Dose (egs)!i 17 ='Red Dose (egs)'IJI 7 58 ='Rad Dose (egsylIA18 484100 ='Rad Dose (aqs)G 716 =fladDose (egS)!H 18 =Rad Dose '1118li ='Rad Dose 180s)118.

59 ~~~~'Rad Dose (eqs)'lAl9 4841000X =Red Dose (egs)i'IG19 ='Rad De(gs'H9='Rad Dose Red Dose (eqs)VJ19

=es'1l 601 'Rad Dose (eqs)'IA20 4841000 'PatI Dose (eqs)'1020 =~Rad Dose (eqS)IH20 =RIad Dose (eJS)'1120 =Rad Dose (egsy'IJ20 611 =Rad Dose (egs)lIA21 484 1C5 ='Rac Dose (eQs)'IG21 ='Rad Dose (99SylH21 ='Rad Dose (eqs)YIJ21 =Ra d Dose (eqs) IJ21 62 =lisd Dose (egs)'tA22 4841000 ='Red Dose (eqsyiG22 ='Rad Dose (eqs)1IH22 =Rsad Dose (ats) 11122 =Rad Dose 6s'IJ22 63-a ________ ='Rad Dose (eqs)1IA23 4841000 ='Rad Dose (aqs)!023 ='Red Dose (aqs;)1JH2.Red Dose (eqs)' 123 =Rad DOse(eMayI23 64 ='Rad Dose (eqs)'IA24 . 4841000 ='Red Dose (eqsYIG24 =Red Dose (e S'1124 ='PadDose (t$1124 ='Rad Dose (egs)IIJ24.

65 ='Rad Dose (eqs)'IA25 4841000) . Rad Dose (eqs)7G25 ='Rad Dose (eqs)11125='Rad Dose (OgSYI125 -'Rad Dose (eays)IJ25 66 Rad Dose (egs)'IA26

='_______ 4841(000 ='Red Dose (eqsy'tGZ6 -'Rad Doe(t)116=RdoeesW8 =RadDose (egs)'1J26 1

67 ________ ='Rad Dose (eqsl1IA27 4841000 ='Red Dose (eqs)*'G27 =,RdDs (q) 2 =Rad Dose (eq1l127 ='Rad Dose (eqsyIJZ7 68 =-Rad.Dose,(eqs)'lA26 4841000) -Red

= Dose (egsY'IG28 ='Rad Dose (eqs)"HM2-'1-ad Dose (eqs)Yl29 ='Red Dose (eqsy'IJ28 69 ________ ='Rad Dose (egs)'IA2g - 4841000 =Rad Dose (eqjsy'029 =RadDis. (ab&)'I129- z=RadDaseleqs)!I29- VRad Dose (e a '1.29 -

701________ ='Rad Dose (es lA30 4841000 ='Rad Dose (eqs)'1G30 =Red Dose (eqs)l'1H30. ='Red Dose (Ogs~f10 &a oe(ql13 71 ________ ='Rad Dose (eqs)'IA31 484100) =Rad Dose (eqa)'1031 ='Rad Dose (agaY!131 .'Rad Dose (Oq8)'1131 ='Red Dose (eqsy'IJ31 72 Dose (eisy'IA32 ce________*Rad 4841000 ='Rad Dose (eqs)'lG32 =Rad Dose (egs) '1132 ='Red Dose (eqas)'113.2='Red Dose (eqsyl.J32 73 ________='Rad Dose (eqsl'iA33 48410010 -=Rad Vase (egs)'I033 ='Red Dose (eqsylIH33 =Rad Dose (eqS)'1133 ='Rad Dose (eqs)i133 74 ________ .Rad Dose (egs)'iA3 4841000 ='Rad Dose (eqsp'G34 . Rad Dose (eqs)1IH34 -&RedDose(aq5)"134 -'RadDowe(eqs)'IJ34 75 *. ='Rad Dose (eqs)'IA35 4841000 ='Rad Dose (eqs)!35 ='Rad Dose (es '1H35 '42ad DOse 1-1s)'1135 =2Red Dose as)IJ35 76 __________ 'ad Dose (eqs)'IA36 410 ='Pad Dose (eqs)7G36 =Red Dose (eqs)!'136 ='Rsd Dose (es'I3 Rad Dose (aqs)'1J36 77 __________ =ld Dose (eps)'IA37 4IN00 =Rad Dose (eqs)!G37 =Rad Dose (es'1H37 ='Radoose (eqsl "137 ='Red Dose (egs)'1J37 HCI (eqs)

Table 5-4 Eqs: GGNS Benchmark Calculallon No. H21CO8/'V Nine Mile Point Nuclear Station Kydrochloric Acid (HCN)Production" Revleson 0 Unit 1 Page 5-22 H

6 7

9 10 13 in 14 mil_______

1B linear ft 19 linear it 20 121 22 _ _ _

23 cm'1 24 CM' A6 gram 27 Ibm 28, rarn 29 32=31 beta-

-4 free air r 36--G13*2,5412 __ ____=$GI32.54/2

_LT =$G14)/1000-2.54 - =l$Gl4)I11000'2.54 38 =G326 =-0.5*G28 39

=(1I(S6SY^2)*(EX(P(.$SB5H37*($B$5*H37+l).1).H36/$B$5(EXP(-

140 50$51-37)-1))/(H36*H37-H372/2) = 11SB$5'-2)-EXP(-S$5W137'$6S51137+1 136/$B$5*(EXP .$58S5137 -l i/(36i37-137A2/2) 141 1=1.EXP(.S$M5H37) -d-EXP(48$5137)

Z42 HCA (eqs)

Table 5-4 Eqs: GGNS Benchmark Calmulation No. K21CO8W Hydrochloric Acid (HCI) Production Revision 0 Nine Mile Point Nuclear Station Page 5-23 Urit I N .. .. .. - J.ry e!iC - ' -t _ _ _ _

  • 45 gammai beta Total 4(-mote) (g-mole) (g-moe/I)

-4..$B$4"(5B$38"$B$40$$41 )+,($G$38$G$40"$G$41)) 047/1000000 = (SC$38"$C$40"$C$41,0D$38"$D$40*$D$41) ($H$38"$H$40°$H$41+$1$38"$1540"$1$41 ))*B$4°F47/1000000 =(H47+147)/C47 4 =$4$B$4($B$i$40$B$4146-$38*$G$40S$G$41)'048/1000000- -(5C$38S$C$40*$C$41+$$38W$040"$D$41 )+($H$38N$H$40ýSH$41 +$$38!$f$40"$f$41 ))$B4F4/.I00000 =(H48+/YC48.

49 =$B$4-($B$38"$B$"$41+$G$38"$G$40"$G$41)°D49/1000000 = ($C$38$C$40"$C$41+$D$38"$D$40"$D$41 H$38"H$4 H $1$38"$1540S$1541))$B$4F49/1000000 --(H49+149YC.9 50 =$B4"$B$*$3"$o$4"$41GS $G$38"G$40$GS$41yD5ol 10000O =($C$3 0$C$4"$CS41,S,-385D0$40$041 )+*SH "SH$40"tH$441H $38"$1S0$1S1$41))" $B"F50I00 =(H50+150)/C50 51 -$B$4($B$38'$B$40"8$E41+$G$38*$G*4O0$G$411)D51/t000000 =(($C$38SC$40S$C$41+$D$38$D$40$D$41 +($H38$H$40$H$414+$1538"$140*$1541) 5B$S4"F51/1D0000 =(H51+151yc51 52 --SB$4($B$38"$$405$B$41+$G$38"$G$40S$G$41 )D52/1000000 $C$38$C$40"C$414$$38$DS40D$41 + $H$38$H$4O"H$41$1S38"1540"1S41 *$B$4F5210000_ 5(H2.152+I52 53 =$B$4($B$3"SB$40$$41+$G$38"$GS40*$G$41)D53/1100000 =( $C$38"$C$40"$C$41+$D$38"$D$40"$5$41 N($H$38*$H$40"$H$41+$1538"$1540$1541 ))$B$4"FS3/10000 =(H53+153,/C53 54 =S "$(S38$$S40"$B$41+$G$38"$G$40$G41 )D54/1 00000 . =($C$38$C$40"$C$41+$D$38"$D$40"$D$41)+($H$38"$H$40"$H$41+$1538"$1540*$1541 ))$B$4"F54/1000000 =(H54+154,IC54 5--$B$4($B38"$B$40$B$41+$G$38"$GS40"$G$41)'D55/1000000 =(($C$38"$C$40"$C$41+$D$38"$D$40"$D$41)+$H$38"$H$40"$H$41+$1538"$1540*$1S41 ))$B$4"F55/1000000 --(H55+155)/C55 6=$B$4"($B$38*$40"$B$41+$G$38"$G$40*$G$411)D56/1000000 =(($C$38"$C$40"$C$41+$D$38"$D$40"$0$41)+$HS$38"$H$40i$H$41h$1538"$1540$1541))'$B$4F56/1000000 =H56+156X56 57 =$B$4($$38$B40$B$41S$G$38"$G$40 $G$41)0S7/1000000 = (SCS38"$C$40"$C$41+$D$38S$D$40*$0$41)-5$H$38°$H$40"$H$41+$1$38"$t$405$1541)) *$B$4F57/1000000 =-H57+157)/57 58 = $B$4ISBS38S$40"$B$41+$G$38"$G$40"$GS41)'D58/100000X). =($C$38C$40"$C$41 +$D$38$D$40"$D$41)+($H$38"$H$40$41+$38"W$1540S$1541)SB$4"F58/1000000 =(H58.158,/0C5 59 $B$4"($B$38$B$406$B$41+$G$38"$G$40*$GS41) D59/i000000 = ($C$38-$C$40°SC$41+$D$38*$D$40*$DS41 +$SH$38"$H$40"$H$41+$1$385$I540*$1541)) $S °F5910 0 =(K59+159 59 60 -$B$4($B$38"$B$0$8$41+G$38*$G$40G$41)"D60/1000000 =.($C$38"$C$40o$C$41+$D$38"$D$40"$D$41)+($S$38$H$40$H$41+$1$38$1540"$1$41)) *$$4 FT60100 =O1H60+I60C60 61 =$B$4 ($B$38*$B40$BS41+$G$385$G$40"$G$41)*D61/1000000 =((SC$38$C$40*$C$41+$D$38"$D$40*$0$41 -N$H$38"$H$40"$H$41 +$f38S$1$405$1$41))$B$4 "F61/1000000 =1461+61, 6 $B$4" ($B$38*$$40"B$41+$G$38"$G$40"$G$411 )t2J1000000 S(($C$38"$C$40"$C$41+$D$38"$D$40"$DS41 )+($H38$H$40"$H$41+$1$38"$1S40*$1S41 ))*$B$4F62/1000000 =(H62.162 63 =$B4(SMB$38"$$40"$841 +$G$38S$G$40S$G$41 )-D63/1000000 =( 8"$S380C$40"$C$41i5D$380$D$4 14 S)+($H$38$H$40"$H$41i+$1538"$140$141 )$B$4F63/1000000 =(H63+163)8C63 64 =$$4*($B$38"$B$40$B$4+$G$3$G$40$G$41 )DI64/1000000 =(($C38"$C$405$C$41 +$D$38-$D$40*$D$41 )+($H$38-$H$40$H$41 +$138"$l$40"$41$))'$B$4"F*1000000 =(H1644C64 65 --$B$4($B$38$$405$B41+$G$38"$G$40"$GS41)'D65/1l000.- =($CS38*$C$40e$C$41+$D$385$D$440$D$41)+($H$38$H$40I$H$41+$1$38B$1$40*$1$41))*$B$4TF6511000000 =(H65+165)IC65 66 $B$4 ($B$38$B$405$$41+$G$38"$GS4SG$41 )1D66 000000 ($C$38"$C$40"$C$41+$D$38S$D$40$D$41 )+($H$38"$H$40$H$41+$1538"$1$40"$1541 5)5$B$4F6611000000 =(H66+6 66 67 $$4 ($6B$38*$S$40$BS41 +$G$38$G$40$G$41)"D67/1000D0 =($C$38"$C$40"$C$41+$D$38*$D$40"$D$41).5$H$38"$H$40"$H$41 +$138"$1540$41 ))*$B$4F67/1000000 =(H67+167)/C67

.68 =-$B$4"($B$38"$0B$4141G$38"$G$40"$G$41)"D68/10O0000 =(($C$38"$C$40"$C$41+$D$38"$D$40"$D$41)+($H$38"$H$40$$41SI+$138"$1$40"$1541 ))B$WF68/10D000 =(H668+168C68 69 =$B$4($38S $40SBS414*G$38"$G$4$G$41)* 69/1000000 =( 5C$385$C$40"$C$414$DS38"D$40"$DS41 f-$H$38"$H$40"$H$41t$1538"$1540"$154I))*$B$48F69/100DX00 =(H69+I69)/ 69.-

70 =$B$4($B38$B$40$B$41+$G$38$G$40$G$41)'D70Y1 000000 =5C$38$C$40$C$41+$D$385$D$40*$D$41)+(SH$38$H$40"$H$41+$1538"$1$40*$1541 ))"$4F70/1000000 =(H70+170,/C70 7 $B$4*($B$38a$040$B$41-$G$38"$G$40"$G$41)*D71/1000000 =(($C$36$C$40$c$41+$D$38*$D04$D$41)+($H$38N$H$4 $H$41+$$38*$1$4$1S4))$*SBF71/1000000 -(H71C171 7?

72 -- B$4 ($$38"B$40$B$41 $G$38$G$40"$G$41)"D72/1000000 = $C$34 C$414.SD$38"D$4$D$ 41 )$H$38"$H$40"$H$41 +$$38"$1$40"$1541 ))$B$4F721 0W0 H72I72 C72 73 =$B4($B$38$B$40$B$41 .$G$38$G$40"$G41 )D7311 000000 =(.5C$38"$C$40"$C$41+$D$38"$D$40"$DS41 )+($H$38$H$40S$H$41 +$1538"$1540$1541 ))*$B$4"1F73/1000000 = H 73 /173 74 $B$4($B$38"$B$4$B$41 +$G$38r$G$40$G41 ID74/1000000 - (($C$38"$C$40"$C$41+$D38"$D$40"$D$41 5($H38N$H$40"$H$41i1S38"$40"$J541y$SB$4"F74/1 0 =1I74+I74,74 75 $B4iSB$38"$B40$B$41+$G$38"G50$G$41)"D75/1000000 =((5C$38"$C$40"$C$41+$D$38$$40*$D$41 )+($H$38"$HH$0H$41-+$1538"$1540*$14 i)) $B$4"F75/100 =(H75+175 C75 76 =$$4"($B$38$B$40$B$41 +$G$38"$G$40rSG$41)*D76/10000D0 =(($C$38"$C$40"$C$41+$0538S$O$40"$W$41 +$H$38"$H$40"$H$41+$138$1$40$1$41 ))$B$4F7611000000 =H76176 ",76 77 =$4($65385"640$6$41-G$38"G$40$G$41 "DTT/1000000 = ($C$38"$C$40"$C$414$D$38"$D$40"$0$41)+($H$38"$H$40$H$414$1$38"$1540"$1541S)'$B$4"F1th0 =(H77+1 77.

HCI (eqs)

4 Table 5-4 Eqs: GGNS Benchmark Calculation No. H21C08W L Nine Mile Point Nuclear Station Hydrochloric Acid (HCQ)Production Revision 0 Unit 1 Page 5-24 I N N

K __ _

2 3

4 19 210 122___

23 _____________________________

24 25 26 27

________________ _____ _______ I -.

28 29 30 31 32 3-3 34 35 36 371 311 40 421 431 H(eqs)

H

Table 5-4 Eqs: GGNS Benchmark Calculation No. H21C08d#

Nine Mile Point Nuclear Station Hydrochloric Acid (HCI) Production Revision 0 Unit I Page 5-25 L  ! N I K 45 gamma beta rotal HOC 46 (g-mofe) (g-mole . (-moe/I. (g-mole/I) -

7 =$B$4*((s$$38s$$40*B$41)+($G$38*$G$40"$G$41)pE47/fO000 =(($CS38$C$4o-$CS41-$D$38r$0$40$D$41)+$H$38-$H$4$H$41+$t$38 $$$4o°$t$41))*$S G47/1000000 =(K47+L4C47 =(H47+/47+K47+L47)C47 48 =$B$4"(($B$38"$B$40$B$41)+($G$38"$G$40"$G$41))*E48/1000000 =(($C$38$C$40*$C$41+$D$38*$D$40-$D$41)+$H$38$H$40'$H$4t+$f$38-$1/40'$/$4t)) ) --(K48+48F484 1$B$G48'ICY =(H48 +K4848)/C48

(

9 -=SB$4(($B$38 $6$40*$B$41)+($G$38"$G$40"$G$41)yE49/1o00000 (Y$C$38 $CS40°$C$41+$D$38r$D$40s$$41)+($H$38$H$40*$H$$4i+S38-IS40YSS41))I$B$4-G49/1'00000 =(K49+L49)C49 =(H49+I49+K49+L49YC49 50 =-$B$4(($B38$BS40$BS4 )+($G$38"$G$40"$G$4 ))"e50/1000000 =(($C$38$CS4*0SC$4140$D$38"$0$40$0$41)+($H$38S$H$40$H$41t+$1$38"540$1541 ))$B$4"G50/rvOOOX0 =(K504SOYC50 =(H5O+I50+K5O+L50)/C5O 51--$B$4"(($B$38°$5$40$B$4S)+($G38$G$40"G$41) ES1/tO0000 =(($C$38$C$40'$C$41+$D$38-$D$40$D$41t+$H$38$HS40'$H$41+$l$38$1*40$$41))SB$4G51/1cO00'X =(K5I+L51C51 ---(HfI51+51K+L5I)/C51 2 =$B$4"(($B$38$B$40*$B$41)+($G$38°$G$40"$G$41)yE52.I00000 =(($CS3$C$40$C$41+*0$38$$D$405D$4 I SH$ M H$ 4 t+$/$38r51$40Y$l$41))I$B$4WG521000000 =(K52+L52)/C52 ,(H52+I52+K52+L52)/C52 5a $$4*($a$38"$B$40°$8$4)+($G$38"$G$40°$G$41))pE53/00000r =(($C$38$C$40*$C$41+$D$38r$0$40$D$41)+($H1438$H$4$ $H$41+$l$38$I$40'$1$41))$B$$4G53/10000 =(K53+.3/C53 =(H53+t53+K53+L53)/C53 54 =$B4(($B38°$a40$B$4 ($G$38-$G$40 $G$4 1))E54,/IO000 =(($C38W-$C$40-$C$4+$D$38-$0$40'$D$41)+($H$38$H$4 H$411+$$38-$S$40'$$$41 SBWG54/100*WW =(K54+LA)IC54 =(H54+-54+K54+L54YC54 55 =$B$4"(($$38"$;40*$B$41 )($G$38°$G$40'$G$4f))E55/IX000000 =(($C$38"$C$40$C$41.$0$38"$0$40$D$4 I)+($H$38$$0"$H$441+$1538*$1540$154I)) $B$4 "G551000I =(K55+L455 55 =(H55+455+K55+L55)1C55 56 =$6$4"(($B$38$40S$B$41)+($G$38$G$40°$GS41))'ES6/000000 =( $C38*SC$40`$C$41+$S38$$0$40'$o$41)+4$H$385N$405-14+$!$384IS40541 $B 'G5&10 =1(56+56)/56 =(H56+I56+K56+L56)/C56 57 =$B$4(($B38$8540$B$41)+($G$38S$G$40"$G$41))'ES7/I000000 =(($C$38$C$401$C$41+$0$3880$405$41 SSM rH$405*$H$41+$t$38*$4"*1$41))S4G57/000000=(K57+L57C57 =(H57+I57+K57+L57)/C57 5s =sB$4((sB$38sB$4s$B$41)+($G$38a$G$40$G$4l))'ES/IO0000 =-($C$36r$C$40*$C$4 1+5D$38$D$40*$D$41)+($H$38$H4H$4`t*4$385$V$40°$5$41)) $B$4*G58'1t0( =(K58+LS8YC56 -q(58+I58+K58+LM),/C58 5-9 sB$4$(($385$8540"'$$4S)+($G$38"$G$40"$G$41))E59/b1000000 =(($C$38 $C$40*$C$41+$0$38*$0$40'$D$41)+($H$385$*$HSH$41+$I$38$$40$1$541))$$B$4GG5.910000 =(K59#L59/C59 4H59+W59+K59+l59)/C59

_S =$64*(($B538"$$40"$B$41)+($$3"$G$40°$G$41))*E60/I000000 =(($C*C$4/Y$C$41+$D$38°$0$40*$$41)+($H3 $H$4*$$41+$4$338*$1$405$1$41))tB$C6W00/ =(K60+L60 C60 -(H60+t60+K60+L60YC60 61 -- $4"(($B$38$6$40"$B$41)+($G$38"$G$40"$G$41))E61/1000000 =(($C$38*$C$4$C$41+$0$38*$D$40*$D$4I)+($H$38$4$4.$H$41+$4$38-$/$440$$41)) I '5 G651/100X =(K61+L61/C61 =(H61+161+K61+L6lX/C6 6_2 - 58S5$840B*$$41)+($G$38"$G$40*$G$41))rE62/fIO000

$B$ =(($C$38$C$4050$4*l*0$38-$D$405$D$41)+($H$38$H$40*`H$41+$t$38$l$40*$1$41)) $B$40G62/10 0 =(K62+L62C62 =(H62+I62+K62+L62YC62 63 =$6$4((sB$38"$$40-$8$41)+($G$3°-$G$40"$G$41))"E63/1 000000 =(($CS38$C$40"$C$41+$5$38"$D$40"$D$41)+($H$38"$H$40$H$41+$t$38"$1540°$l$4))'$B$4 G63/1I00b =(K63+L463)C63 =(H63+I63+K63+L 63)1/C63 64 =$4B$4* S 8$$ )*E64/t00000 t$414+($.G$38-$G$40"$G$41 =(5$C$38$C$40'$C$41 $0385$D$40*$D$41 S143851S40*$H$41+$1$38$$1$40*$$4t))'$B$45G64/1I =(K64+L6464 =(H64+I64+K64+L64)/C64 65 =$8$4'(($38B*$$40"$B$41)+($G$38'$G$40"$G$41))'E65/tO0X0 =(($C$38$C$40*$C$41+$D$38$0$40*$D$41)+($H$38SH$40$H$41÷$/$385$I$40*$I$41))*$B$41G651100000 =(K6.5465)/C65 (H65+165+K65+6A65 66--4 *((sB$38SB$40'S$$4I)+($G$38"$G$40*$G$41))°E66't 000000 =(($C$38$C$405C$41+$D$380$D$40'$D$41+($H$3$HH$40H$414+$$38$$4$40I$41)$SB.G661I000000 =(K6666)/C66 -H66+I66+K66+L66YC66 67 - $$B$4'$4$+$3858$B$4I)*(5S38"$G$405$G$41))'E67/Io00000 = $C$401$C$41+$D$38*$D$40$D41+($H$38$$H4*$H$41+$5t38'$1/$40*$'$41))$$B4*G67/110* =(K67+L67)/C67 5($C$38 =(H67+I67+K67+L67)/C67

-$B$4(($B$38"$B$40"$B$41)4($G$38'$G$40-$G$41)'E68/WO00000 =(($C$38'$C$40*$C$41+$D$38'$D$40*$D$41)+($H$38*$H$40*$H$41+$4$38-$S$40*$$41))I$B$4G68/10000 =(8W4"1VM68

-8 88 =(H68+168+K68+L68)/C68 69 =$B4(($BS38"$5 40"BS$41)+($G$38"$G$40"$GS41))'E6/1I000V00 =(($C$386$C$40$C$41+$0$38'$D$40$D$41 $B$4'G6691

-$H$3$H$4'SH$41$4$385$154051*$41)) l- =(K69469)69 =(H69+469+K69+L69g)C69-70 56$B$4°(($B$38_40$8$41).($G$38°$G$405$G$41))°E7"/O/00000 =(($C$38°$C$40S$C$41+$D$38°$D$40'$D$41)+($H$38°$H$405$H41+$$$38*$I$40$$$4I))`$B$4*G70.totW =1(70 O)/C70 =(H70+I70+KTiL770)/C70 71$ B$4"($B,S3r8$B$4"$B$41)4($G$38$G$40$G$41))'E71/000000 =(($$385$0$440$C$41+$0$38f$D$40-$D$41)+(H$38$H$4 H$41t+$1$38$-$$40-$$4I85$4 G7t/1t(KT - eK71t47t 71 =(t71I+171+K71+L71/C71 72 =$B$4'(($$38$$40"$B$41)4($G$38*$G$40*$G$41))lE72/I0000 =( $C$40*$C$41+$.$38$D$405 $0$41)+($H38ý'$.$H0'H$41+$t$385$/$40$$$41))$B$4'G72/1000 =(K72+L42C72 =(H72+172+K72+L72)1/C72 73 =$S$4$ *$B$4058$$41)+($G$38*$G$40*$G$4I ,"73/X1000000 =(($C$38"*$C$40 "$$ 5+D38'$D$40$D$4 +($H$38 $H$40-$H$4I$538*$40 $41 -$5$4 'G 7311000000 =(K73+L4'73/73 =(H73+173+K073+L73)C73 L4 =$B$4"(($B$38*$B$40*$B$41)+($G$38$G$40"$G$41)YE74/tO0000 =(($C=8$C$4'*$C$4tO$D$38S$D$40$D$41P+($H$38'$HS40$H$41+$1$38' 41°*$B$4*G741100x0

  • $14 =(K74L4)C74 =(H74+174+K74+L74)/C.74 75 =$B$4*(($B$38$B$40"$8$4J).($G$38"$G$40*$G$4f))*E75/fY0000 =($C$380$C$40*$C$41i$D$380$D$40 $0$41)+($H$38t$H$40*$H$41+$/$38'$t$40'$I$41))5$B$4`G75/11CYX =( 75 75 =(H_75+I75+K75+L75)/C75

=$6$4"(($S$38B$*40'$B$4 )+($G$38'$G$40"$G$41))'E76/IX00000 =(($C$35$C$4$C40 $$$41÷053$D0404$D$I)+($H$38$H$40$H$41+$÷$38$$1$40*$S$41))-B$4PG76/100 =(K76476 76 -(H76+I76+K76+L76)/C76 77 =$B$4"(($B.38"$B$40"$B$4 t+($G$38"0$G4.$G$41)YE77/1O00000 - ($538$C5$40'$C$41+$D$383$D0$40-$D$41 +$H$385$H$40$H$41+$$t38'$$*$40-$$$41))$B$4'G77/1t0000 =(K7+L77)/C77 =(H77+T"7+0K774+7"t/C77 HCI (eqs)

Table 5-5 Eqs: GGNS Benchmark Calculation No. H21C08' 5 Nine Mile Point Nuclear Station Cesium Hydroxide (CsOH) Production Revision 0 Unit 1 Page 5-26 A B. C D E_ .

1 "Corecesium inventory 2400.... ,oie - Ref. 7.12.*3 ,

2

.3 Core.cesium.-_gap.release_ =0.05"*1 g-mole =0.05*2400g-mole 4 Core cesium - EIV release =0.2*81 g-mole =0.20*2400g-Mole.

5 6 Csl -.gap release =(1-HI (egs)'!B$6)*'HI (egs)'!B3 g-mole fraction iodine release in form of Csl 7 Csl - EIV release =(1-'HI -(es)'!B$6)*'HI (eqs)' B4 g-mole fraction iodine release in form of Csl 8

9 CsOH - gap release =B3-1B6 g-mole 10 CsOH - EIV release =B4-B7 g-mole 11 12 Gap release onset 121 sec Ref. 7.12.3 13 Gap release duration 30-. minutes Reg Guide 1.183 (main. body Ref. 7.10.2) 14 EIV duration 90 minutes Reg Guide 1.183 (main body Ref. 7.10.2) 15 16 suppression

.17 cumulative pool cumulative 18 Time CsOH ... v-lie ------- CsOH ...

19 (Hr) (g-mole) (liter) (g-moleA) 20 onset =B112/3600 0 4841000 =C20/D20 21.. 0.1 =C20+(B21-B20)/(B13/60)*B9 4841000 =C21/D21 22 end of gap release =B20+B13/60 =C21+(B22-B21)/(B13/60)*B9 4841000 =C22/D22.

23 "1 =C22+(B23-B22)/(B24-B22)*B1O 4841000 =C23D23 24 end of EIV =B22+B14/60 =C22+B10 . 4841000 =C24/D24 CsOH (eqs)

Table 5-6 Eqs: GGNS Benchmark Calculation No. H21CCOS8/

Nine Mile Point Nuclear Station Effect of SLCS Addition Revision 0 Unit 1 on Post-LOCA Suppression Pool Page 5-27 1 Buffering by SLCS ABC "

2 SLCS: . .

.4 Min SLC pump flow rate gpm 5 Min SLC injection tank volume gal 6 Max SLC temp OF 7 Min SLC temp oF 8 SLC SPB conc. by weight 9 Specific gravity Ibm/ft3 10 Density (T=85°F) 12 Final suppression pool temp (bounding) 120 OF 13 "_"

0 14 Boric acid K =(0.0585*B12+1.309)'0.0000000001 at =B12 F 15.,

16 MW sodium pentaborate(Na 2.B 10_0 6) 410 17 18 Volume sodium pentaborate ft 3

19. Mass sodium pentaborate _7 5800 "Ibm 20 Mass sodium pentaborate =B19*453.6/B16 g-mole 21 ,,

22 unbuffered pH ='pH (eqs)'!N48 _

23 unbuffered [HI =10A(-B22) g-mole/I 24 Suppression Pool volume 4841000 liter 25 Equivalents unbuffered [HI =B23*B24 g-mole 26 ...

27 Final pH =-LOG(B1 4)+LOG((2*B20-B25)/(8*B20+B25))

28__-.

29 Time to inject boron -_minutes SLCS (eqs)

Table 5-7 Eqs: GGNS Benchmarkc Calculation No. H21CO8/ *?4 Nine Mile Point Nuclear Station Gamma and Beta Radiation Dose Revision 0 Unit I usad to Determine POst-LOCA pH Page 5-28 3 Suppression Dr47all Containment Drywell TID 1P TID 4

5 Time

[hr] '. ., .rad]TO Pool 10 . .-- ATID ..... J,:MOv/Ccc]. ...... .... [MeVIcc)  : ..... ,, ... [MeV/ec]l _;.... ,

60 0 0 0 0 7 =121/3600 0 0 0 ',0 8=A7+30/60 0 0 0 0 9 1 0 0 0 0 10 2 =1000000'(14.72("1-0.91*EXP(-0.002°AIO))) =1000000'I000000(O.15+I.83235'LN(A140)) 0 =l000000*1000000"(25.7*('-0.9'EXP(.0.OO66'A14)))

11 --2+121/3600 =10000007(14.72'(1-0.91"EXP(-0.002*AIS))) =.1O O"000000"0.15+1.83235*LN(A11)) A =1000000'1000000'(25.7' l-0.9"EXP(-0.0066°A11)))

12 3 = 1000000'(14.72'(1-0.91*EXP(-0.002*A12,),. =1000000*1000000(0.15+I.83235LN(A12)) .1000000*1000000(-1.18+1.135°LN(AI2)) .1000000'1000000'(25.7'(I-0.9EXP(-0.0066A162)))

13 4 =1000000' 14.72'(1-0.91'EXP(-0.002'A13))) =1000000-1000000'(O.15+1.83235"LN(A13)) =1000000'1000000"(-I.78,1B.135"LN(A13)) =IO0000'1000000"(25.7*('-0.9"EXP(-0.0066"A173)))

14 5 =1000000'(14.72'( ,-0.91*EXP(-.002'A14))) =l000000*l000000('0.15+1.83235"LN(A14)) =O000000.1000000(' 1.18+1.135-LN A14)) =1000000"1000000'(25.7'(1-0.9-EXP(-0.0066'A14)))

15 6 =O1000000°(14.72'f -0.91*EXP(-0.002*A15))) =1000000-1000000(O. 15+.,83235°LN(A 15)) =1000000-1000000'(-.18. -I.135-LN(A15)) =1000000-t1000000(25.7-'1-0.9'EXP(-0.0066-A15),)

16 12 ==1000000"(14.72'(1-0.91'EXP(-0.002'A16))) =1000000O'1000000*(0.15+.,83235LN(A 16)) =I010000000000'*(.7,18+1.135"LN(A16)) =1000000°1000000'(25.7'(1-0.9"EXP(-0.00668A16)))

17 18 =17000000'14.72' 1-0.91 'EXP(-0.002°A217))) = 10000001000000'(0. 15+1.83235'LN(A 17)) O00000O'1000000 (-1.18+1. 135'LN A17)) =1000000'1000000'(25.7'(t-0.9*EXP(.O.066A17)))

18 24 +4 =1000000'(14.72'(1-0.91 EXP(-0.002'A18))) =1000000°I000000°(0. 15+1.83235'LN(A 18)) =10000001000000*(- 1.18+I.135'LN(A 18)) =1000000O1000000°(25.7"(1-0.9'EXP(-0.0066°A18)))

29 =A18+24 = 1000000°(14.72'(1-0.91 'EXP(-0.002A219,))) =1000000-1000000'(0. 15+1.83235-LN(A19)) =1000000-1000000'(- 1.78+.135*LN(A19)) =1000000'1000000'(25.7"(1-0.9'EXP(-0.0066"A19)))

20 =A19+24 =O00000r7(14.72"(1-0.91'EXP(-0.002"A2)) =1000000'1000000"(0.15+1.83235"LN(A20)) =1000000*1000000*(- ,18+1. 135"LN(A20)) =1000000"1000000*(25.7*(1-0.9'EXP(-0.0066'A20)))

21 =A20+24 --1000000'(14.72"(1-0.91"EXP(-0.002'A21)5) =1000000°1000000(,O.15+I.83235°LN(A25)) =1000000-1000000'(I. 18+t, =7000000'7000000'(25:7'(1-09'EXP(-o.OO66°A21)))

.35*LN(A29))

22 =A21+24 =1000000-(14.72'( -0.917EXP(-0.002'A22))) =1000000'1000000*(O.15+1.83235°LN(A22)) =1000000'100000°*(- .1.8+1. 135°LN(A22)) =1000000'1000000*(25.7*'(1-0.9°EXP(-0.006"'A226) 0 23 =A22+24 = 1000000' 14.72* 1-0.91 'EXP(-0.002'A273)) =1000000' 1000000"(0. 15+1.83235°LN(A23)) =1000 00*1000000'(oI. 18+1. 135"LN(A23)) =1000000'1000000"(25.7'(1-0.9°EXP(-0.0066°A23)))

-24 =A23+24 =1000000'(14.72' 1-0.91'EXP -.. 002'A28)) =1000000*1000000(0.15+1.83235'LN(A24)) =1000000'1000000(-1.1a+1.135'LN(A24)) =1000000*1000000*(25.7'(1-0.9'EXP(-0.0066°A24)))

25 =A24+24. =17000000'(14.72'(1-0.917 EXP-00,2A29))) =1000000*1000000*(O.15+I.83235°LN(A25))- = 1000000'1000000°(- 1.18+1.135'LN(A25)), --1000000°1000000°(25:7*(1-0.9EXP(-0.0066'A25)))-

26 =A25+24 1=1000000-114.72'(1-0.91"EXP-0.002'A26))) =1000000"1000000(0.15+l.83235*LN(A26)) =1000000*1000000"(-*..18+1. 135"LN(A26)) =1000000°1000000'(25.7"(1-0.9°EXP(-0.0066A263)))

27 A26+24 =I7 '00"(14.72'(1-0.91'EXP(-O.OO2A27))) =1000000"1000000"(0.15+1.83235"LN(A?.7)) =100000°r1000000'(-I.18+1.135"LN(A27)) =10 0°0001000000'(25.7,(1-0.9'EXP(-0.006'6A27)))

28 =A27+48 ý=1000000 (14.72 *(1-0.91 "EXP(-0.002A325)) =1000000'1000000"(O.15+1.83235*LN(A28)) =1000000°1000000"(-.1.18+1. 135*LN(A28)) =1000000'1000000'(25.7*(1-0.9"EXP(-0.0066°A28)))

29 =A28+48 =100000' (14.72'(1-0.91'EXP..002°29,)), =1000000"I000000°(O. 5+1.83235°LNCA 9)) =1000000°1000000(-1.18+ 1. 135-LN(A29)) =1000000*1000000"(25.7"(1-0.9°EXP(-0.0066°A29)))

30 =A29+48 =1000000'(14.72'(1-0.91*EXP(-0.002'A30))) =1000000°100000°(0.15+1.83235-LN(A30)) = O000000*1000000'(..18+1.135'LN(A30)) =1000000,1000000°(25.7Y(-0.9"EXP(-0.0066"A30)))

31 =A30+48 =IO000O0'(14.72'(1-0.91*EXP -O.002"A31))5 =1000000'1000000(0.15+I.83235°LNA31,) 10000001000000"(.1.18+1.135"LN(A31)) =1000000°1000000"(25.7*(1-0.9"EXP(-0.0066'A31)))

32 =A31+48 =1000000*(14.72'(1-0.91IEXP -0.002°A32))6 =1000000°1000000°(0.15+1.83235*LN(A32)) =1000000"1000000°(.1.18+I.135*LN(A32)) =IO00000°O100000'(25.7'(1-0.9"EXP(-0.0066'A328)))

_a =A32+48

=A33+48 =IO000000°(14.72"(1-0.91"EXP(.O..OO2°A34))) 15+1,83235*LN(A34))

=1000000'1000000"(0.15+1.83235'LN(A33))

=1000000'(14.72'(1-0.91EXP -0.002°A33)) =1000000*IO00W0*(0. =IOOOO00*1000000"(-. 18+1.135LiN(A34),)

=1000000°1000000'(..18+1.135,LN(A33)) =1000"O00000"*(25.7"(I-0.9*EXP(0.O.O66°A34)))

=10000001000000"(25.7*(1-0.9'EXP(-0.0066"A33)))

35 =A34+48 =1000000*(14.72'(,-0.91'EXP(-0.002*A35))8 =1000000'1000000*(0.15+.1.83235'LN(A35)) =100000"r1000000"(-I.18+1.135*LN(A35)) =1000000"1000000"(25.7*(1-0.9"EXP(-0.0066"A35)))

36 =A35+48 =7000000'(14.72'(1-0.91°EXP(-0.002'A36))9 =1000000*1000000*(0. 5+1.83235°LN(A36)) =1000000'1000000"(-I.18+7. 135'LN(A36)) =1000000'l000000°(25.7'(1I.9"EXP(-0.0066'A36)))

37 720 = 1000000"( 14.72"(1-0. 91 °EXP(-0. 002 ",437))) = 1000000° 1000000 *(0.15+I. 83235*L N(A 37)_ = 1000000° 1000000 (.18+I. 135°L N(A 37)) = 1000000 1,000000 "(25.7*( 1-0,9 EXP(-0.0066 ",37,)))

R8400

  • 100000"*(14.72*11-0a91"X(000" ), =IO00000"f000000°(O.15+f.83235*LN(A38)) =1000000"lO00000°(-1.18+1.135"LN(A38)) =1 00000"l 1OOO000(25.7*(l -0,9"EXP(-0.0066*A38)))

39 4320 "=1O000000*(14.72*(I-0.91°EXP(-0.002°A39))) = 1000000*°1O00000*0Y. 15+1.83235"LNWA39)) = 100000'1 000000*t.I.18+1.135"LN(A39,)) =1O000000'1000000"(57*(1-0.9"EXP(-0.0066'A39)))

40 8760 =1000000'(14.72*(1-0.91'EXP(-0.002*A40))) =1000000*1000000'(0. 15+1.83235°LN(A40)) =1000000°1000000*(-1.18+7.135'LN(A40)) =1000000*,000000'(25.7'(1-0.9"EXP(-0.0066°A40)))

41. Eouatiors 42 Y*p[Mrad] = 14.72"[1 -0.91 10 1ep(-0.002*th,)]"

43 1W [MeV/cc] = [0.15+1.83235'ln(t1,)J'10 10'P 7.12.3.

Rel.

44 c [MeV/cc] = [.1.18+1.t35ln(ter)]'10"0'_ with 45 10.W [May/rC] = 25.7*[1 -0.9*exP(-0.00665'l,)1'10e'1 0' consistent zero 5,T(MoV/ccj . 15.05*11 -0.93*exPl*0.0057*fl,,)r1*l'10P to be I 1 47 Iad = A.071vln' per Radiological Health Handbook (main is assumed body Ref. 7.8) m48 - I TID the 49Notes facies, If the curve I acles. the TO Is assumed to be zero consistent -withRet. 7.12.3._____________

Rad Dose (eqs)

Attachment 5 Table 5-7 Eqe: GGNS Benchmark Calculation No. H21CO8j Nine Mile Point Nuclear Station Gamma and Beta Radiation Dose Revision 0 Unit 1 used to Determine Post-LOCA pH Page 5-29.

G H I 3 Containment Drywea Containment Drywell Containment I 4, .. . ... P TID 7 ID y*TID " 'TIO TID.

5

  • MeVOCc][td [rad ] .__ [ta] . [rad.. ]"

6 0 =C6"80710 =016"80710 =E6"80710 =F6"80710 7 " =0-C7"80710 =D57*80710 =E7"80710 =FI780710 8 0 5C86807101 -- =08"80710 =EI"80710 =FS'80710 9 0 --C9"80710 =D9080710 =Eg°80710 =Fg780710 18 =.1000000'1000000"(1505"(1-0.93-EXP(-0.0057-A10))) -CI0/80710 =D01/80710 =E18/80710 =FI0180710 19 =1000000"1000000 (15.05°(1-0.93'EXP(-O.0057-A11)9) =C11/80710 =011/80710 =E11/80710 =Fli/80710 12 =IO00000"1000000"(15.05"(1-0.93EXP(- 0.0057'A12))) ---C12/80710 =012/80710 =E12/80710 =F12/80710 13 =1000000*1OOOO'(15.05'(l-0.93"EXP(-0.0057A13))) =C13/80710 =013/80710 =E21380710 =F23/807t0 14 =1000000,1000000'(15.05'(1-0.93'EXP(-0.0057"A14))) =C24/80710 =024/80710 =E22180710 =F24/80710 15 =1000000'1000000*(15.05' I-0.93-EXP(-0.0057°A15,))) --C12/80710 =01580710 =E15/80710 =Fl"/80710 16 =1000000'1000000'(15.05*(1-0.93'EXP(-0.0057A16))) -- =16/80710 =016/80710 =E24/80710 =F26/80710 17 =1000000°1000000'(15.05'(1-0.93'EXP(-0.0057"A217))) =C7/80710

-- =017/80710 =E17/80710 =F27/80710 12 =1000000"1000000'(15.05'(IO, .93'EXP(-0.0057°A218))) --.C1180710 =D02180710 =E18/80710 =F18/80710 19 =1000000°1000000'(15.05"(1-0.93"EXP(-O.0057A219))) -- =C12/80710 =019/80710 =E29/80710 =F29/80710 20 =1000000"l000000(15.05'(1-0.93EKXP(-O.0057-A20,)8) =C20/80710 -m=020/80710 =E20/80710 =F20180710 21 =1000000'1000000*(15.05*'1-0.93'EXP(- .0057'A2). --C29/80710 =D21/80710 =E21/80710 =F21/80710 22 =10000001000000(15.05'(1-0.93'-XP(-0.0057rA22))) --C2W/80710 =022/80710 =E22180710 =F2Z/80710 23 =1000000'1000000"15.05'(1-0.93'EXP(-O.0057-A231)) =C231/80710 =0231/80710 =E231/80710 =F231/80710

-24 =1000000'1000000' 15.05'(1-0.93'EXP-O.0057A24)))- --C24180710- =D24180710 =E24180710 =F'24180710 25 =1000000'1000000'(15.05'(1-0.93"EXP(-0.0057'A25)))- =C25/80710 =025/80710 =--25/80710 =F259/0710 26 =1000000'100000°(15.05'(1-0.93EXP-0.0o57rA263)4 --C26380710 =D26180710 =E26/80710 =F'6/80710 27 =1000000'1000000'(15.05'(1-0.93'EXP(-O.0057*A273)5 =0C27/80710 =027/80710 =E27/80710 =F27/80710 28 =IO00000*lO00000*(15.05"(1-O;93"EXP(,0., O57-A28))) --C28180710 z=D28180710 =E28180710 =F28180710 29 =1000000*l000000°(15.05,',-0,93*EXP-O.0057,A2936) -=C29/80710 =D23/80710 =E29/80710 =F29/80710 30 =1000000'1000000'(15.05'(1-0.93'EXP(-0.0057'A30))) --C30/80710 =030/80710 =E37*80710 =F30180710 31 =1000000"1000000"(15.05'(1.0.93"EKP(-0.0057*A31))) =C31/80710 =D31180710 =E31/80710 =F31180710 32 = O00000"iO00000.-(15.05°(I.0.93"EXP(-O.0057'A32*)) I--C32/0710 =D32180710 =E32180710 =F32180710 33 =1000000'l000000'(15.05'*(-0.93"EXP(-0.0057'A33))) =C33/80710 =D39/80710 =E33/80710 =F33/80710 34 =1000000"lO00000"(1l5.05°(1-.,93!EKP(-O, OO57*A34*I)) =C;3ý0710 " =D34180710 =E34180710" =F34180710 35 =IOOO1000000*1000(15.,aL*(1-a9t3"EXP(-0.OO57*,A35j)) =C35180710 '=D3518071,0 *-E35V80710 -F3,5"0710 36 =10O000*10"t0, ,*(15.,O5°(1-0.93"EXP(-O, OO57*A36*)),) --C3"/0710 =D36180710 =E36180710 =F3618,0710 37 =1000000"lO000000"(15.(*5"(1-0.93"EXP(-OaOO57"A37))) --C371807,10 =037180710 =E37160710 =F37180710 38 =lO000000"1000000"(15.05"(1-0.,93"FXP(-0.0057"A38})) --C381, 710 =D3818071.0 =E38/0710 =F38/0710 39 =IO00000*0!100"00(15.05"(I-0.93"EXP(0.O.057"A39))) -C39180710 =D3M/0710 =E39180710 =F39180710 40 =1000000"1000000*(15.05'(l-0.93"EXP(-0.0057"A40),) --C40/80710 =D40/80710 =E40/80710 =F40/80710 41.

42 43 44, '

45 46 47 49 50 ".

  • Rad Dose (eqs)

i 9

Attachmenl 5 Table 5-" Eqs: GGNS Benchmark Calculation No. H21C00/'

Nine Mile Point Nuclear Station Post-LOCA Suppression Pool Revision 0 Unit 1 Temperature Response Page 5-30 Final I [Frornbata(Rel.7.12.3) B 0.JUsed forpHAnalysis 3 G

__ 1__ Time ITemp 1 (hr) (IF)

I=CS I 120.0336111111111111 j=C121 C*4444*44,*44 3 =C20

____________4_ =C21 ______

I~~ =C22 _____ __

________________________=C24 ________

18 =C28 24 =C29 48 =C31 72 =C32 96 =C33 120 =C34

! 144 . =3 168 =C37 I 192 --C38 216 -C40 240 =C41 288 --C42 336 =C44 384 --C46 432 =C48 480 =C49 528 =C50 576 =C51 624 =C53 672 =054 L 720 Z0561 The shaded values are taken from either Reference 7.12.3. Other other values are interpolated.

- Seconds are the units for t=O to 27.78 -

hours; days are the units for t=48 to 720

, - hours.

SP Temp (eqs)

Calculation No. H21C080" Nine Mile Point Nuclear Station Revision 0 Unit 1 Page 6-1 Attachment 6 Calculations Determining Post-LOCA Suppression Chamber Water pH Minimum Suppression Chamber Water Volume Case Table of Contents Figure 6-1: Post-LOCA Suppression Chamber Water pH Response without LPS .................. 6-2 Table 6-1: Post-LOCA pH Calculation without LPS ......................... .6-3 Table 6-2: Hydriodic Acid (HI) Production.... ........ 6-5 Table 6-3: Nitric AcidNtricAci Tabl 6-: (HNO Prod cti n.. .... ' ............ .................. ............. ....... *...*.......... 6-6

3) Production (H O3) 6-6..

Table 6-4:. Hydrochloric Acid (HCI) Production . ............................. 6-7 Table 6-5: Cesium Hydroxide (CsOH) Production ........................... 6-9 Table 6-6: Effect of LPS Addition on Post-LOCA Suppression Chamber Water pH ............ 6-10 Table 6-7: Gamma and Beta Radiation Dose Used to Determine Post-LOCA pH ............... 6-11 Table 6-8: Post-LOCA Suppression ChamberWater Temperature Response .................... 6-12 Table 6-9: Post-LOCA Suppression Chamber[Water Volume............................................ 6-13 Radiation dose profile figures are not provided ih this attachment as they follow the same trends as those provided in Attachment 4. Similarly, the methodology used in the tables in this attachment is the same as that used in the tables in Attachment 4; therefore, equations are not provided for the tables in this attachment.

Note that each table in this attachment has beeI developed using Microsoft Excel. Some tables reference each other; for these references, see the "tab" name at the bottom of each sheet.

Calculation No. H21C08/*

Revision 0 Nine Mile Point Nuclear Station Page 6-2 Unit 1 Figure 6-1: Nine Mile Point Unit 1 Post-LOCA Suppression Chamber Water pH Analysis Minimum Suppression Chamber Water Volume Case

- - pH Responsewithout -LPs- - - ...

.2 CL U) 3.0 0.01 0.1 1 10 100 1000

.lmie After LOCA,(hours)

Pool pH

.Attachment 6, Table 641: Post-LOCA pH Calculation without LPS Calculation No. H21C08j*

Nine Mile Point Nuclear Station Revision 0 Unit 1 Page 6-3 Initial conditions, SC water mass 4,961,429 Ibm Table 4.9 (maximum values)

RCS mass 0 Ibm Table 4.9 (maximum values)

. Total post.LOCA SC raiass 4;,961,429 ibm .. ...- .-.....

suppression chamber water pH 5.5 Design Input 4.1 (minimum value) reactor coolant pH 5.5 Design Input 4.2 (minimum value) initial (Hi4 3.16E-06 g-mole/l weighted average initial [OH1] 3.16E-09 g~mole/Il. weighted average Pool , [H1]2 1 [HN0 31 3

[HCl] 2 [CsOH]2 Total [Hi Total [OH] Pool Water Kw at x [H] Pool Time Volume' Temp Density. Pool Temp pH (hr) J(liter) (g-moles/) (g-moles/1) Jg-moles/i (g-moles/I) (g-moles/l) (g-moles/I) (OF) 3

-(Ibm/ft ) (-) (g-moles/A) (g-moles/1) (-)

0 2,259,783 3.16E-06 1 3.16E-09 85.0 62.17 . 1.409E-14 -1.29E-09 3.16E-06 5.5 0.034 2,280,890 _ 1.08E-07 17.286E-07 4.OOE-06 I 3.16E-09 127.3 61.60 6.240E-14 -1.24E-08 4.01 E-06 5.4 0.534 2,295,911 1 1.57E-07 1.70E-06 41.149E-05 I 2.04E-05 I 1.65E-05 2.04E-05 149.9 61.19 11.234E-13 1.65E-05 3.13E-08 17.5

-_71 .2.299.888 L4.OOE:07 l..3.1.8E-06 I 2.15E-05 I 4,48E-05 I 2.82E-05 1 4 485:-Or 155.3 ....

6109 1.....-438F-1.. 3* -..... _-.-89r--o -I 7F .

8.1 2 2:302:718 i9.38E-07 1 5.26E-06 I 3.223E-05 [ 9.88E-05 1 4.16E-05 I .88E-05 159.1 61.01 1 1.504E 131I4.16E-_05 I 2.78E-09 -8.6.....

2.034 2,302,814 9.38E-07 5.33E-06 3.254E-05 9.88E-05 4.20E-05 9.88E-05 159.2 61.01 1.599E-13 4.20E-05 2.81E-09 8.6 3 2,303,355 .9.38E-07 7.07E-06 4.086E-05 9.88E-05 5.20E-05 9.88E-05 159.9 60.99 1.63E-13 5.20E-05 3.49E-09 8.5

.4 2X302,537 9.39E-07 8.72E-06 4.838E-05 9.88E-05 6.12E-05 9.88E-05 158.9 61.02 1.583E-13 6.12E-05 4.21E-09 8.4 5 2,302,418 9.39E-07 1.03E-05 5.513E-05 9.88E-05 6.95E-05 9.88E-05 158.7 .61.02 1.577E-13 6.95E-05, .5.37E-09 8.3 6 2,302,418 9.39E-07 1.17E-05 6.135E-05 9.88E-05 7.72E-05 9.88E*05 158.7 61.02 1.577E-13 7.72E-05 7.28E-09 8.1 7 2,302,418. 9.39E-07 1.26E-05 6.715E-05 9.88E-05 8.39E-05 9.88E-05 158.7 61.02 1.577E-13 8.39E-05 1.06E-08 8.0 8 2,?02,4118 9.39E-07 ý1.35E-05 7.261 E-05 9.88E-05 9.02E-05 9.88E-05 158.7 " 61.02 1.577E-1 3 9.02E-05 1.83E-08 7.7 9 2,302,418 9.39E-07 1.43E-05 7.78E-05 9.88E-05 9.62E-05 9.88E-05 158.7 61.02 1.577E-13 9.62E-05 5.95E-08 7.2 10 2,302,418 9.39E-07 1.51E-05 8.275E-05 9.88E-05 1.02E-04 9.88E-05 158.7 " 61.02 1.577E-13 9.88E-05 3.19E-06 5.5 11

  • 2,302,418 9.39E-07 1.59E-05 8.75E-05 9.88E-05 1.07E-04 9.88E-05 158.7 61.02 1*.577E-13 9.88E-05 8.65E-06 5.1 12 2,302,418 9.39E-07 1.66E-05 9.207E-05 9.88E-05 1.13E-04 9.88E-05 158.7 61.02 1.577E-13 9.88E-05 1.39E-05 4.9 13 2,302,418 9.39E-07. 1.72E-05 9.649E-05 9.88E-05 1.18E-04 9.88E-05 158.7 61.02 1.577E-13 9.88E-05 1.90E-05 4.7 14 2,302,418 9.39E-07 1.79E-05 0.0001008 9.88E-05 1.23E-04 9.88E-05 158.7 61.02 1.577E-13 9.88E-05 2.39E-05 4.6 15 2,302,418 9.39E-07 1.85E-05 0.0001049 9.88E-05 1.28E-04 9.88E-05 158.7 61.02. 1.577E-13 9.88E-05 2.87E-05 4.5 16 2,302,418 9.39E-07 1.91E-05 0.000109 9.88E-05 1.32E-04 9.88E-05 158.7. 61.02 1.577E-13 .9.88E-05 3.34E-05 4.5 17 2,302,418 9.39E-07 1,97E-05 0.0001129 9.88E-05 1.37E-04 9.88E-05 158.7 61.02 1.577E-13 9.88E-05 3.79E-05 4.4 18 2,302,418 9.39E-07 2.03E-05 0.0001168 9.88E-05 1.41E-04 9.88E-05 158.7 61.02 1.577E-13 9.88E-05 4.23E-05 4.4 19 2,302,418 9.39E-07 .2.08E-05 0.0001205 9.88E-05 1.45E-04 9,88E-05 158.7 61.02 1.577E-13 9.88E-05 4.66E&05 4.3 20 2,302,418 9.39E-07
  • 2.14E-05 0.0001242 9.88E.05 1.50E-04 9.88E-05 158.7 61.02 1.577E-13 9.88E-05 5.08E-05 4.3 21 2,302,4181 9.39E-07 2.19E-05 0.0001278 9.88E-05 1.54E-04 9.88E-05 158.7 61.02 1.577E-13 9.88E-05 5.50E-05 4.3 pH

4 Attachment 6 Table 6-1: Post-LOCA pH Calculation without LPS Calculation No. H21C08/

Nine Mile Point Nuclear Station Revision 0 Unit 1 Page 6-4..

Pool' [HI] 2 [HNO 3]3 . [HCI] 2 [CsOHf2 Total (HI Total (OH] Pool Water K. at x [HI Pool Time Volume! . . 7" Temp_ De,,s 7 IPoolTomp

  • pH -

(hr) (liter) -moles/i (g-moles(gm I (g-mole le-molesmes1)I-molems/l M/ft) (g-moes) (g-moles/l), (-)

. 22 -- -2,302,418 *9.39E&07 .2.24E-05 .0.0001313 9.88E-05 1.58E-04 9.88E-05 158.7 61.02 1.577E-1 3 9.88E-05 5.90E-05 4.2 23 2,302,418. .9.39E-07 2.29E-05 0.0001348 9.88E-05 1.62E-04 9.88E-05 158.7 61.02 1.577E-13 9.88E-05 6.30E-05 4-2 24 2,302,418 9.39E-07 2.34E-05 0.0001382 9.88E-05. -1.66E-04 9.88E-05 158.7 61.02 1.577E-1 3 9.88E-05 6.69E-05 4.2 28 2,302,418 9.39E-07 2.53E-05 0.0001512 9.88E-05 1.81E-04 9.88E-05 158.7 61.02 1.577E-13 9.88E-05 8.19E-05 4.1 48 2,302,418 9.39E-07 3.34E-05 0.000172 9.88E-05 2.1OE-04 9:88E-05 158.7 61.02 1.577E-13. 9.88E-05 1.11E-04 4.0 72 2,302,418 9.39E-07 4.11E-05 0.0001895 9.88E-05 2.35E-04 9.88E-05 158.7 61.02 1.577E-13 9.88E-05 1.36E-04 3.9 96 2,302,418 9.39E-07 4.76E-05 0.0002029 9.88E-05 2.55E-04 9.88E-05 158.7 61.02 1.577E-13 9.88E-05 1.56E-04 3.8 120. 2,302,418 9.39E-07 5.34E-05 0.000214 9.88Er05 2.72E-04 9.88E-05 158.7 61.02 1.577E-13 9.88E-05 1.73E604 3.8 144 2,302,418 9.39E-07 5.87E-05 0.0002235 9.88E-05 2.86E-04 9.88E-05 158.7 61.02 1.577E-13 9.88E-05 1.87E-04 3.7 168 2,302,418 9.39E-07 6.35E-05 0.0002319 9.88E-05 2.99E-04 9.88E-05 158.7 61.02 1.577E-13 .9.88E-05 .2.01E-04 3.7 192 2,302,418 9.39E-07 6.80E-05 0:0002394 9.88E-05 3.11E-04 9.88E-05 158.7 61.02 1.577E-13 9.88E-05 2.13E-04 3.7 216 2,302,418 9.39E-07 7.22E-05 0.0002463 9.88E-05 3.23E-04 9.88E-05 158.7 61.02 1.577E-13 9.88E-05 2.24E-04 3.7 240 2302418 9.39E-07 .7.62E-05 0.0002525 9.88E-05 3.33E-04. 9.88E-05 158.7 61.02 1.577E-13 9.88E-05 2.34E-04 3.6 288 2,302,418 9.39E-07 8.37E-05 0.0002638 9.88E-05 3.52E-04 9.88E-05 158.7 61.02 . 1.577E-13 9.88E-05 2.53E-04 3.6 336 2,302,418 9.39E-07 9.05E-05 0.0002736 9.88E-05 3.68E-04 9.88E&05 158.7 61.02 1.577E-13 9.88E-05 2.69E-04 3.6

_-384 2,302,418 9.39E-07 9.69E-05 0.0002825 9.88E-05 3.84E-04 9.88E-05 158.7 61.02 1.577E-13 9.88E-05 2.85E-04 3.5 432 2,302,418 9.39E-07 1.03E-04 0.0002905 9.88E-05 3.98E -9.88E-05.--- 158.7 61.02 1.577E13- 9.88E&05ý- 2.99E -- 3.5 -

480 2302418 9.39E-07 1.09E-04 0.0002979 9.88E-05 4.11E-04 9.88E-05 158:7 61.02 1.577E-13 9.88E-05 3.12E-04 3.5 528. 2,302,418 9.39E&07 1.14E-04 0.0003048 9.88E-05 4.23E-04 9.88E-05 158.7 61.02 .1.577E-13 9.88E-05 3.24E-04 3.5 576 2,302,418 9.39E-07 1.19E-04 .0.0003112 9.88E-05 4.35E-04 9.88E-05 158.7 61.02 1.577E-13 9.88E-05 3.36E-04 .3.5 624 2,302,418 9.39E-07 1.24E-04 0.0003172 9.88E-05 4.46E-04 9.88E-05 158.7 .61.02 1.577E-13 9.88E-05 3.47E-04 *3.5 672 2,302,418 9.39E-07 1.29E-04 0.0003229 9.88E-05 4.56E-04 9.88E-05 158.7 61.02 1.577E-13 9.88E-05 1 3.57E-04 3.4 720 2,302,418 9.39E-07 1.34E-04 0.0003282 9.88E-05 I 4.66E-04 9.88E-05 1587 61.02 11.577E-13 9.88E-05 3.67E-04 3.4 Notes

1) Pool Volume is computed as follows: (msp / psp)*28.31685 Vft3 -
2) The HI, HCl, and CsOH concentrations calculated in Tables 4-2, 4-4, and 4-5 are based on the SP volume from Table 4-9.

To adjust for the SP volume as it changes throughout the LOCA, the concentration from Tables 4-2, 4-4; and 4-5 Is multiplied by the following factor: VbNsp where Vbasi is the volume in Table 4-9 and VSP is calculated in this sheet.

3) The HNO 3 concentration does not directly utilize the SP volume and therefore is not adjusted as described in Note 2. However, the HNO 3 generation is based on pH2= 1000 g/l. To account for the density in thepost-LOCA SP, the concentration from Table 4-3 3

is multiplied by psP / 1000 gA

  • 453.6 g/ibm / 28.31685 Vft pH Table 6-2: Hydriodic Acid (HI) Production Calculation No. H21C08t'"

Nine Mile Point Nuclear Station Revision 0 Unit 1 Page 6-5 Core iodine inventory Core iodine - gap release 7.20 g-mole Attachment 1, Table 1-1 Core iodine - ElV release 36.02 g-mole Attachment 1, Table 1-1 Fraction of release as HI 0.05 max Reg Guide 1.183 (main body Ref. 7.10.2)

Gap release 'onset 2 minutes Reg Guide 1.183 (main body Ref. 7.10.2)

Gap release duration 30 minutes Reg Guide 1.183 (main body Ref. 7.10.2)

EIV duration 90 minutes Reg Guide 1.183 (main body Ref. 7.10.2) suppression cumulative chamber water cumulative Time HI volume HI (hr) (g-mole) (liter) (g-mole/I)

  • onset . . .. .. . Im I 0.033 0.00 2,259,685 0.00E+00 end of gap release 0.533 0.36 2,259,685 1.59E-07 1.000 0.92 2,259,685 4.07E-07 end of EIV 2.033 2.16 2,259,685 9.56E-07 I.

1.

HI Table 6-3: Nitric Acid (HNO 3).Production Calculation No. H21C08X' Nine Mile Point Nuclear Station Revision 0 Unit 1 Page 6-6 HNO 3 generation 7.3E-06 g-mole/I per MRad NUREG/CR-5950 (main body Ref. 7.13)

Suppression Chamber Water cumulative TID @

Time 1,850 MWt HNO 3 (hr) (rad) (Q-mole/1) onset 0.034 1.50E+04 1.09E-07 end of gap release 0.534 2.38E+05 1.73E-06

.1 4.45E+05 3.25E-06 end of EIV 2 7.38E+05 5.38E-06 2.034 7.47E+05 5.45E-06 3 9.91 E+05 7.23E-06 4 1.22E+06 8.92E-06 5 1.44E+06 1.05E-05 6 1.64E+06 1.20E-05 7 1.77E+06 1.29E-05 8 1.89E+06 1.38E-05 9 2.01 E+06 1.47E-05 10 2.12E+06 11.55E-05 11 2.22E+06 1.62E-05 12 2.32E+06 1.69E-05.

13 2.42E+06 1.76E-05 14 2.51 E+06 1.83E-05 15 2.59E+06 1.89E-05 16 2.68E+06 1.96E-05 17 2.76E+06 2.02E-05 18 2.84E+06 2.07E-05 19 2.92E+06 2.13E-05 20 3.OOE+06 2.19E-05

  • 21 3.07E+06 2.24E-05 22 3.14E+06 2.29E-05:

23 3.21E+06 2.35E-05 24 3.28E+06 2.40E-05 28 3.55E+06 2.59E-05 48 4.68E+06 3.42E-05 72 5.76E+06 4.21E-05:

96 6.68E+06 4.87E-05.

120 7.49E+06 5.47E-05i S144 8.22E+06 6.OOE-05..

168 8.90E+06. 6.49E-05 192 9.53E+06 - 6.95E-05 216 1.01E+07 7.39E-05.

240 1.07E+07 7.80E-05!'

288 1.17E+07 8.56E-05i 336 1.27E+07 9.26E-05 384 1.36E+07 9.92E-05 432 1.44E+07 1.05E-04 480 1.52E+07 1.11E-04!

528 1.60E+07 1.17E-04; 576 1.67E+07 1.22E-04!

624 1.74E+07 1.27E-04 672 1.81 E+07 1.32E-04 720 1.88E+07 1.37E-04:

HN03 Table 6-4: Hydrochloric 'Acid (HCI) Production Calculation No. H21C08i Nine Mile Point Nuclear Station Revision 0 Unit 1 Page 6-7 Cables PVC properties:

radiolysis yield, G 7.980E-06 g-mole HCI per MRad-g main body §5.5 linear absorption coefficient 38.976 cm"1 for beta radiatio)n Attachment 3 linear absorption coefficient 0.0739 cm"' for gamma radiation Attachment 3 Cable jacket and insulation:

Typical Cable cable OD 0.22 in jacket thickness 30 mil jacket material PVC.

insulation thickness 0 mil insulation Material n/a chlorine-bearing material:

mass infree air 1,400.0 Ibm mass in tray 0.0 Ibm mass infree air 635,026.0 gram mass in tray 0.0 gram Irradiation:

Typical Cable aamma Ifree air I trayH I I beta cable radius (cm) 0.2794 0.2794 o.2794' jacket thickness (cm) 0.0762 0.0762 0.0762 mass irradiated (g) 635,026.0 635,026.0 0.0.

flux averaging factor 0.997337 0.341356 0.341356 absorption factor . 0.005615 0.948695 0.9486195 I

Table 6-4: Hydrochloric Acid (HCI) Production Calculation No. H21C08'"

Nine Mile Point Nuclear Station Revision 0 Unit 1 Page 6-8 pool gamma beta . Drywell HCI Time volume TID TID gamma beta HCI

. (hr) (liter) (g~mole) (g Imole) (g-mole/I)

(rad); (rad) 0.034 2,259,685 3.48E+04 1.01 E+06 9.87E-04 1.66E+00 7.35E-07 0.534 2,259,685 5.52E+05 1.61 E+07 1.57E-02 2.64E+01 1.17E-05 1 2,259,685 1.04E+b6 3.01 E+07 2.94E-02 4.94E+01 2.19E-05 2 2,259,685 1.59E+06 4.52E+07 4.52E-02 7.42E+01 3.28E-05 2.034 2,259,685 1.61 E+06 4;56E+07 4.57E-02 7.49E+01 3.32E-05 3 2,259,685 2.05E+06 5.73E+07 5.81E-02 9.41E+01 4.16E-05 4 2,259,685 2.45E+06 6.78E+07 6.95E-02 1.11E+02 4.93E-05 5 2,259,685 2.81 l+06 7.73E+07 7.98E-02 1.27E+02 5.62E-05 6 2,259,685 3.15E+,06 8.60E+07 8.94E-02 1.41 E+02 6.25E-05 7 2,259,685 3.31 E+06 9.41 E+07 9.40E-02 1.55E+02 6.84E-05 8 "2,259,685 3.46E+106 1.02E+08 9.82E-02 1.67E+02 7.4E-05 9 2,259,685 3.60E+06 1.09E+08 1.02E-01 1.79E+02 7.93E-05 10 2,259,685 3.72E+106 1.16E+08 1.06E-01 1.90E+02 8.43E-05 11 2,259,685 3.84E+06 1.23E+08 1.09E-01 2.01E+02 8.92E-05 12 2,259,685 3.95E&!06 1.29E+08 1.12E-01 2.12E+02 9.38E-05 13 2,259,685 4.05E'.06 1.35E+08. 1.15E-01 2.22E+02 9.83E-05

-14 2,259,685 4.15E406 1.41 E+08 1.18E-01 2.32E+02 0.000103 15 2,259,685 4.25E+06 1.47E+08. 1.21 E-01 2.412E+02 0.000107 16 2,259,685 4.34E+'06 1.53E+08 1.23E-01 2.51E+02. 0.000111 17 2,259,685 4.42E-06 1.58E+08 1.26E-01 2.60E+02 0.000115 18 2,259,685 4.51 EtO6 1.64E+08 1.28E-01. 2.69E+02 0.000119 19 2,259,685 4.59E+06 1.69E+08 1.30E-01 2.77E+02 0.000123 20 2;259,685 4.66E+06 1.74E+08 1.32E-01 2.86E+02 0.000127 21 2,259,685 4.74E406 1.79E+08 1.34E-01 2.94E+02 0.00013 22 2,259,685 4.81 E+06 1.84E+08 1.37E-01 3.02E+02 0.000134 23 2,259,685 4.88E+06 1.89E+08 1.39E-01 3.10E+02 0.000137 24 2,259,685 4.95E-*06 1.94E+08 1.40E-01 3.18E+02 0.000141 28 2,259,685 5.18E+'06 2.12E+08 1.47E-01 3.48E+02 0.000154 48 2,259,685 6.07E-+06 2.41E+08 1.72E-01 3.96E+02 0.000175

72. 2,259,685 6.84E+06 2.66E+08 1.94E-01 4.36E+02 0.000193 96 2,259,685 7.45E2406 2.85E+08 2.11E-01 4*67E+02 0.000207 120 2,259,685 7.96E+06 3.OOE+08 2.26E-01 4.932+02 0.000218 144 2,259,685 8.40E2-06 3.13E+08 2.38E-01 5.14E+02 0.000228 168 2,259,685 8.79E2406 3.25E+08 2.49E-01 5.34E+02 0.000236 192 2,259,685 9.14E406 3.36E+08 2.59E-01 5.51E+02 0.000244 216 2,259,685 9.46*+06 3.45E+08 2.69E-01 5.67E+02 0.000251 240 2,259,685 9.76E+06 3.54E+08 2.77E-01 5.81 E+02 0.000257 288 2,259,685 1.03E,+07 3.70E+08 2.92E-01 6.07E+02 0.000269 336 2,259,685 1.08E+07 3.84E+08 3.06E-01 6.30E+02 0.000279 384 2,259,685 1.12E-07 3.96E+08 3.18E-01 6.50E+02 0.000288 432 2,259,685 1.16E+'07 4.07E+08 3.30E-01 6.69E+02 0.000296 480 2,259,685 1.20E*I07 4.18E+08 3.40E-01 6.86E+02 0.000304 528 2,259,685 1.23E+07 4.27E+08 3.50E-01 7.01E+02 0.000311 576 2,259,685 1.26*+07 4.36E+08 3.59E-01 7.16E+02 0.000317 624 2,259,685 1.29E2-07 4.45E+08 3.67E-01 7.30E+02 0.000323 672 2,259,685 1.32E+07 4.53E+08 3.75E-01 7.43E+02 0.000329 720 2,259,685 1.35E+07 4.60E+08 3.83E-01 7.55E+02 0.000334 HOI

ap,* Table 6-5: Cesium Hydro!xide (CsOH) Production Calculation No. H21C08W.

Nine Mile Point Nuclear Station Revision 0 Unit 1 Page6-9 Core cesiun - gap release 53.72 g-mole Attachment 1, Table 1-2 Core cesium - EIV release 214.87 g-mole Attachment 1, Table 1-2 Csl - gap release 6.84 g-mole fraction iodine release in form of Csl Csl - EIV release 34.22 g-mole fraction iodine release in form of Csl CsOH - gap release 46.88 g-mole.

CsOH - Ega release 180.65 g-mole Gap release onset 2 minutes Reg Guide 1.183 (main body Ref. 7.10.2)

Gap release duration 30 minutes Reg Guide 1.183 (main body Ref. 7.10.2)

EIV duration 90 minutes Reg Guide 1.183 (main body Ref. 7.10.2) 1suppression cumulative pool cumulative

'Time CsOH 1 volume CsOH (Hr) (g-mole) . (liter) (g-mole/l) onset 0.033 0.00 2,259,685 0.OOE+00 end of gap release 0.533 46.88 2,259,685 2.07E-05 1.000 103.08 2,259,685 4.56E-05 end of EIV 2.033 227.53 2,259,685 1.01 E-04 CtOH Table 6-6: Effect of LPS.Addition Calculation No. H21C08J j" Nine Mile Point Nuclear Station on Post-LOCA Suppression Chamber pH Revision 0

  • Unit 1 Page 6-10

.oSt Buffering by Liquid Poisson System LPS:

Nominal LPS pump flow rate 30 gpm Design Input 4.12 Min LPS injection tank volume 1,325 gal Design Input 4.12 Max. LPS temp 105 OF Design Input 4.12 Min LPS temp 70 OF Design Input 4.12 LPS SPB concentration by weight 9.423% Design Input 4.12 Specific gravity 1.0 Design Input 4.12 Water density at max LPS temperature 61.93 Ref. 7.18 LPS solution density at max temperature Ibm/ft3 61.93 Final suppression pool temp (bounding) 200 oF Boriic acid K 1.30E-09 at. 200 OF MW sodium pentaborate (Na2Bo0016*10H 20) 585.984 Design Input 4.12 3

Volume sodium pentaborate 177.1 ft Mass sodibjm pentaborate 1,033.6 Ibm Mass sodiium pentaborate 800.1 g-mole Unbuffered pH 3.44 Unbuffered [H] 3.673E-04 g-mole/I Suppression chamber water volume 2,259,685 liter Equivalents unbuffered [HI 829.9 g-mole Final pH 7.91 Time to inject boron 44.2 minutes LPS Table 6-7: Gamma and Beta Radiation Dose Calculation No. H21C08 Nine Mile Point Nuclear Station used to Determine Post-LOCA pH Revision 0.

Unit 1 Page 6-11

,ama dose beta dose 1 Torus Drywell &

Water Wetwell Drywell TID @ TID @ TID @

Time

[hr]

1850 MWt

[rad]

1850 MWt

[rad]

1850 MWt

[rad]

I Source for y Values

[-[

Source for Values

  • 0 0.034 1.5E+04 3.5E+04 1.01+06 linear interpolation linear interpolation 0.534 2.4E+05 5.5E+05 1.6E+07 linear interpolation linear interpolation

' 3.07:

0i50*

.... Attachment 2, Table 2-2 Attachment 2, Table 2-1 2 7.4E+05 1.6E+06 4.5E+07 log.log interpolation log-log interpolation 2.034 7.5E+05 1.6E+06 4.6E+07 log-log interpolation log-log interpolation 3 9.9E+05 2.OE-06 5.7E+07 log-log interpolation log-log interpolation 4 1.2E+06 2.4E+06 6.8E+07 log-log interpolation . log-log interpolation 5 1.4E+06 2.8E+06 7.7E+07 i log-log interpolation log-log interpolation 6C 1_6i4i1E*06. *3. 150E,06* 8.6E+07 Attachment 2, Table 2-2 log-log interpolation 7 1.8E+06 3.3E+06 9.4E+07 ' log-log interpolation log-log interpolation S.8 1.9E+06 3.5E+06 1.OE+08 I log-log interpolation log-log interpolation 9 2.OE+06 3.6E+06 1.1 E+08 I log-log interpolation log-log interpolation 10 2.1 E+06 3.7E+06 1.2E+08 log-log interpolation log-log interpolation 11 2.2E+06 .3.8E+06 1.2E+08 I log-log interpolation log-log interpolation 12 . 2.3E+06 3.9E+06 1.3E+08 log-log interpolation log-log interpolation 13 2.4E+06 4.1E+06 1.4E+08 I log-log interpolation log-log interpolation

_14 2.5E+06 4.2E+06 1.4E+08 log-log interpolation log-log interpolation 15 2.6E+06 4.2E+06 1.5E+08 log-log interpolation log-log ýinterpolation 16 2.7E+06 4.3E+06 1.5E+08 *, log-log interpolation log-log interpolation 17 2.8E+06 4.4E+06 1.6E+08 i log-log interpolation log-log interpolation 18 2.8E+06 4.5E+06 1.6E+08 i log-log interpolation log-log interpolation.

19 2.9E+06 4.6E+06 1.7E+08 log-log interpolation log-log interpolation 20 3.OE+06 4.7E+06 1.7E+08 log-log interpolation log-log interpolation

  • 21 3.IE+06. 4.7E+06 1.8E+08 log-log interpolation log-log interpolation 22 3.1E+06 4.8E+06 1.8E+08 1 log-log interpolation log-log interpolation 23 3.2E+06 4.9E+06 1.9E+08 log-log interpolation log-log interpolation 24 Z31282E+ý06_ 143950E,06% 1.9E+08 Attachment 2, Table 2-2 log-log interpolation 28 ' 3.6E+06 5.2E+06 l2*12E,08 og-log interpolation Attachment 2, Table 2-1 48 4.7E+06 6.1 E+06 2.4E+08 log-log interpolation log-log interpolation 72 5.8E+06 6.8E+06 2.7E+08 log-log interpolation log-log interpolation 96 6.7E+06 7.5E+06 2.8E+08 log-log interpolation log-log interpolation 120 7.5E+06 8.OE+06 3.OE+08. log-log interpolation log-log interpolation 144 8.2E+06 8.4E+06 3.1 E+08 log-log interpolation log-log interpolation 168 8.9E+06 8.8E+06 3.3E+08 log-log interpolation log-log interpolation 192 9.5E+06 9.1 E+06 3.4E+08 log-log interpolation log-log interpolation 216 1.OE+07 9.5E+06 3.5E+08 log-log interpolation log-log interpolation 240 1.1 E+07 9.8E+06 3.5E+08 log-log interpolation log-lo interpolation

.288 1.2E+07 .1.OE+07 3.7E+08 log-log interpolation log-log interpolation 336 1.3E+07 1.1E+07 3.8E+08 logi-log interpolation log-log interpolation 384 1.4E-07 1.1E+07 4.OE+08 log-log interpolation log-log interpolation

- 432 1.4E+07 1.2E+07 4.1E+08 log-log interpolation log-log interpolation 480 1.5E+07 1.2E+07 4.2E+08 1 log-log interpolation log-log interpolation 528 1.6E+07 .1.2E+07 4.3E+08 og--Iog interpolation log-log interpolation 576 1.7E+07 1.3E+07 4.4E+08 log-log interpolation log-log interpolation 624 1.7E+07 .1.3E+07 4.4E+08 log-log interpolation log-log interpolation 672 1.8E+07 1.3E+07 4.5E+08 log-log interpolation log-log interpolation 720 *1i875E:7'/0 *1350E*k07, 4.6E+08 Attachment 2, Table 2-2 log-log interpolation 2400 421 2.115EF10 T1 E4'6*3*E89Attachment 2, Table 2-2 Attachment 2, Table 2-1 Note: Shaded values taken from Attachment 2.

Rad Dose Table 6-8: Poat-LOCA Suppression Chamber Water Calculation No. H21C08i Nine Mile Point Nuclear Station Temperature Response Revision 0 Unit 1 Page 6-12 From Data (Ref. 7.6.5) Used for pH Analysis Time Tamp (hr) (°F) 0 85.0 0.034 127.3 0.534 149.9 1 155.3 2 159.1 2.034 159.2 3 159.9 4 158.9 5 158.7 9 ,2~0;

  • 1*33,7* '6. 158.7

~i6 ~025 ~'43~ .7 158.7 0.534 149.9 i 8 158.7

.5M 9 158.7 1 155.3 1 10 158.7 2 159.13 11 158.7 J~j3951 2.034 F-9i13 159.21 12 158.7 158.7 2 14 158.7 3 159.91 15 158.7 4 158.97 16 158.7 7 158.7 9 17 158.7 8 158.7' .18 158.7 6 158.71 29 158.7 7 158.7 . 20 158.7 8 158.7! 21 158.7 9 158.71 22 158.7 10 158.71 23 158.7 11 '158.7; 24 158.7 12 158.7: 28 158.7 13 158.7i 48 158.7 14 158.7. 72 158.7 15 158.7' 96 158.7 19 158.7i 120 158.7 17 158.7, 144 158.7 18 158.71 168 158.7 19 158.71 192 158.7 20 158.7. 216 158.7 21 158.71 240 158.7 22 158.7. 288 158.7 23 158.7, 336 158.7 24 158.7i 384 158.7 28 158.7 432 158.7 2 48 158.7, 480 158.7 3 72 158.7! 528. 158.7 4 96 158.7i 576 158.7 5 120 158.7, 624 158.7 6 144 158.7. 672 158.7

7. 168 158.7. 720 158.7 8 192 158.7 9 .216 158.7

.10 . 240 158.7 12 288 158j7* The shaded values are taken 14" .336 158.7, from Reference 7.6.5 (Design 15 360 158.7 Input4.15). Otherother 384 158j values are either interpolated 432 158.7 or extrapolated. .The long 20 480 158.7 term temperature is 52857 158.7 maintained at 158.7F.

576 158.7 __________

25 600 158.7 624 - 158.7 672 158.7 30 720 158.7 Seconds are the units for t=0 to 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />; days are the units for t=48 to 720 hours0.00833 days <br />0.2 hours <br />0.00119 weeks <br />2.7396e-4 months <br />.

SP Temp Table 6-9: Post-LOCA Suppression Chamber Water Volumes Calculation No. H21Co0.i' Nine Mile Point Nuclear Station Revision 0 Unit 1 Page 6-13 Final

[ Parameter . SytmbolI Unit I Minimum SC Mass Maximum SC Mass Reference Suppression Chamber Water (SC....

Suppression chamber water volume Vsc ft3 79,800 86,000 Design Input 4.6 Suppression-chamber-water-temperature .. Tsc.. OF , 85 .. 60 . .. Design Input 4.7 Suppression chamber pressure Psc psia 14.7 14.7 Design Input 4.8 Density of suppression chamber water Psc Ibm/ft3 62.17 62.37 Ref. 7.18 Mass of water in suppression chamber msc Ibm 4,961,429 5,364,128 Vsc*Psc Reactor Coolant System (RCS) ,,,.,

3 RCS mass mRCS ft 501,500 501,500 Design Input 4.3 Post-LOCA (SC+RCS) _

  • no RCS mass included in SC for min; RCS mass added to SC mRcs,tot Ibm 0 501,500 all steam condenses in SC for max Total water mass in SC mpisc tot Ibm 4,961,429 5,865,628 = msc + mAcs Total volume of water in SG . VpLSCtt ft 3

79,800 94,040 = mPL_SC tot / Psc Total volume of water in SC VPL SC.toI liters 2,259,685 2,662,924 = VPL SCAM [ft 3] 28.31685 liter/ft 3 SP Mass

Attachment 7 Calculation No. H21C08j,04

)Nine Mile Point Nuclear Station Revision 0 Unit 1 Page 7-1 Final taEclgNment73NESIGNrVE IONREI,*-*@ NEORI Document being design-verified: D3 DCP 10 Caic E0 Spec L NER El DBD 0l Other Doc#, Rev and

Title:

H21CO8j*'Revision 0, '!Post-LOCA Suppression Chamber (Torus)

Water pH Analysis" Extent of Design Verification (Briefly describe)'.:

Adetailed review of the calculation was performed by the mechanical, radiological, and chemistry disciplines.

Method of Design Verification:

0 Design Reiew El Qualification Testing O Alternate Calculations 0 Applicability of Proven Design Results of Design Verification:

r21 Fully acceptable with no issues identified O Fully acceptable based on the following issues identified and resolved:

C3 Continuation Page Follows Discipline Involvement and Approvals:

Lead Design. Matthew B. Cooper.

Verifier: _ _ _ _. Date Name Discipline Design Verifiers, if required:,

Chemistry Jeri C. Penrose i e DZ-Z-at-Radiological W. Joseph Johnson Discipline Name Signature Date NEP-DES-07 Rev 04