ML090640303

From kanterella
Jump to navigation Jump to search
Calculation No. 0800297.301, Revision 1 Revised Pressure-Temperature Curves.
ML090640303
Person / Time
Site: Nine Mile Point Constellation icon.png
Issue date: 01/22/2008
From:
Structural Integrity Associates
To:
Nine Mile Point, Office of Nuclear Reactor Regulation
References
0800297.301, Rev 1
Download: ML090640303 (57)


Text

ATTACHMENT 4 STRUCTURAL INTEGRITY ASSOCIATES, INC.

CALCULATION NO. 0800297.301, REVISION 1 REVISED PRESSURE-TEMPERATURE CURVES Nine Mile Point Nuclear Station, LLC March 3, 2009

StructuralIntegrityAssociates, Inc. File No.: 0800297.301 CALCULATION PACKAGE Project No.: 0800297 M Q E Non-Q PROJECT NAME:

NMP Materials Update and Revised P-T Curves CONTRACT NO.:

7710734 Revision I CLIENT: PLANT:

Constellation Energy Nine Mile Point, Unit I CALCULATION TITLE:

Revised Pressure-Temperature Curves Notes: This calculationsupersedes all previous Pressure-Temperaturecurve calculationsfor the Nine Mile Point, Unit 1.

Project Manager Preparer(s) &

Approval Checker(s)

Signature & Date Signatures & Date 1 -46, Initial Issue T. J. Griesbach E. J. Houston Appendix: 12/23/08 12/22/08 Al - A2, BI -B5, S. J. White CI -C2 12/22/08 Computer Files V. Marthandam 12/22/08 4 + I-I 8-47, Incorporate Client B2 Comments T. J. Griesbach 1/26/09 E. J. Houston 1/23/09 S. J. White 1/23/09 V. Marthandam 1/26/09 Page I of 47 F0306-O1RO

Structuraiintegrity Associates, Inc.

Table of Contents 1.0 IN TR O D U CTION .................................................. ............................................................ 4 2.0 M ETH OD O L O G Y ...................................................................................................................... 4 3.0 DESIGN INPUTS / A SSUMPTION S.......................................................................................... 8 4.0 CA L C UL A TIO N S ...................................................................................................................... 10 4.1 Pressure T est (C urve A ) ................................................................................................ 10 4.2 Normal Operation - Core Not Critical (Curve B) ......................................................... 11 4.3 Normal Operation - Core Critical (Curve C) .................................................................... 11 5.0 C O N C L U SION S ........................................................................................................................ II 6.0 REFE R EN C E S ........................................................................................................................... 13 APPENDIX A: P-T CURVE INPUT LISTING ...................................... Al APPENDIX B: INCREASED COOL-DOWN RATE P-T CURVE ............................................ BI APPENDIX C: ANSYS SUPPORTING FILES ......................................................................... C1 List of Tables Table 1: NMP- I Polynomial Coefficients for Feedwater Nozzle Stress Intensity Distributions ............. 15 Table 2: NMP-1 Beltline Region, Curve A, for 28 EFPY ..................................................................... 16 Table 3: NMP-1 Beltline Region, Curve A, for 36 EFPY ..................................................................... 18 Table 4: NMP-1 Beltline Region, Curve A, for 46 EFPY ..................................................................... 20 Table 5: NMP-1 Bottom Head Region, Curve A, for all EFPY ................................. 22 Table 6: NMP-1 Upper Vessel Region, Curve A, for all EFPY ............................................................ 23 Table 7: NMP-1 Beltline Region, Curve B, for 28 EFPY ..................................................................... 24 Table 8: NMP-1 Beltline Region, Curve B, for 36 EFPY .................................................................... 26 Table 9: NMP-1 Beltline Region, Curve B, for 46 EFPY ..................................................................... 28 Table 10: NMP-I Bottom Head Region, Curve B, for all EFPY ......................................................... 30 Table 11: NMP-1 Upper Vessel Region, Curve B, for all EFPY ......................................................... 31 Table 12: NMP-1 Curve C Values for 28 EFPY .................................................................................. 33 Table 13: NMP-1 Curve C Values for 36 EFPY .................................................................................. 35 Table 14: NMP-1 Curve C Values for 46 EFPY .................................................................................. 37 File No.: 0800297.301 Page 2 of 47 Revision: I F0306-OIRO

V StructuralintegrityAssociates, Inc.

List of Figures Figure 1: NMP-1 P-T Curve A (Hydrostatic Pressure and Leak Tests) for 28 EFPY .......................... 39 Figure 2: NMP-1 P-T Curve A (Hydrostatic Pressure and Lead Tests) for 36 EFPY .......................... 40 Figure 3: NMP-1 P-T Curve A (Hydrostatic Pressure and Leak Tests) for 46 EFPY .......................... 41 Figure 4: NMIP-1 P-T Curve B (Normal Operation - Core Not Critical) for 28 EFPY ....................... 42 Figure 5: NMIP-1 P-T Curve B (Normal Operation - Core Not Critical) for 36 EFPY ....................... 43 Figure 6: NMP-1 P-T Curve B (Normal Operation - Core Not Critical) for 46 EFPY ....................... 44 Figure 7: NMP-1 P-T Curve C (Normal Operation - Core Critical) for 28 EFPY .............................. 45 Figure 8: NMLP-1 P-T Curve C (Normal Operation - Core Critical) for 36 EFPY .............................. 46 Figure 9: NMP-I P-T Curve C (Normal Operation - Core Critical) for 46 EFPY .............................. 47 File No.: 0800297.301 Page 3 of 47 Revision: I F0306-OIRO

V StructuralIntegrity Associates, Inc.

1.0 INTRODUCTION

This calculation updates the Nine Mile Point, Unit I (NMP-1) pressure-temperature (P-T) curves for the beltline, bottom head, and non-beltline (feedwater nozzle / upper vessel) regions. The P-T curves are created for 28, 36, and 46 effective full power years (EFPY) of operation, and are developed using the methodology of the 2001 Edition, 2003 Addenda of ASME Code,Section XI, Appendix G [1], and IOCFR50 Appendix G [2]. This calculation has been developed in accordance with the methodology of the Boiling Water Reactor Owner's Group (BWROG) Licensing Topical Report, "Pressure-Temperature Limits Report Methodology for Boiling Water Reactors" [3].

2.0 METHODOLOGY A full set of P-T curves are computed, including the following plant conditions: Operating Pressure (Leak) Test (Curve A), Normal Operation - Core Not Critical (Curve B), and Normal Operation - Core Critical (Curve C). The curves are consolidated into three bounding evaluation regions of the reactor pressure vessel (RPV): (1) the beltline, (2) the bottom head, and (3) the feedwater nozzle / upper vessel.

The primary methodology for calculating P-T curves is described in Reference [3]. Therefore, all methodology in this section is obtained from Reference [3] unless otherwise noted. The P-T curves are calculated by means of an iterative procedure, in which the following steps are completed:

Step 1: A fluid temperature, T, is assumed. The P-T curves are calculated under the premise of an assumed flaw that has extended 1/4of the way through the vessel wall. According to Reference [3], the temperature at the assumed flaw tip, T1 / 4, is conservatively treated as equal to the assumed fluid temperature.

Step 2: The static fracture toughness factor, K1,, is computed using the following equation:

Klc = 20.734 - e°2(T-ART) + 33.2 (1)

Where: Ki, = the lower-bound static fracture toughness factor (ksi'Iin).

T the metal temperature at the tip of the postulated 1/4through-wall flaw ( 0F), as described above.

ART = the Adjusted Reference Temperature (ART) for the limiting material in the RPV region under consideration (°F)

File No.: 0800297.301 Page 4 of 47 Revision: I F0306-OIRO

StructuralIntegrity Associates, Inc.

Step 3: The allowable stress intensity factor due to pressure, Kip, is calculated as:

=Ki- SFK (2)

Where: Kip = the allowable stress intensity factor due to membrane (pressure) stress (ksi/in).

Kj,: = the lower-bound static fracture toughness factor calculated in Equation 1 (ksi*/in).

Kit = the thermalstress intensity factor (ksi'lin).

SF = the safety factor, based on the reactor condition.

Note: For hydrostatic and leak test conditions (i.e., P-T Curve A), the SF = 1.5. For normal operation, for both a non-critical and a critical reactor (i.e., P-T Curves B and C), the SF =

2.0. When calculating values for Curve A, the thermal stress intensity factor is neglected (Kit

= 0), since the hydrostatic leak test is performed at or near isothermal conditions (typically, the rate of temperature change is 25°F/hr or less) [3].

For Curve B and Curve C calculations, Kit is computed in different ways based on the evaluation region. For the beltline and bottom head regions, Kit is determined using the following equation based on the ASME Section XI, Nonmandatory Appendix G method:

Kit = 0.953 X10-3 _CR- t2.5 (3)

Where: CR = the cooldown rate of the vessel (°F/hr).

t = the RPV wall thickness, unique for each region (in).

For the feedwater nozzle / upper vessel region, Kit is obtained from the stress distribution output of a finite element model (FEM) of the feedwater nozzle, which is the limiting non-beltline component from a stress point-of-view (neglecting the flange, which is separately covered by application of 10 CFR 50 Appendix G limits). A thermal transient finite element analysis (FEA) is performed for the feedwater nozzle, and a polynomial curve-fit is applied to the through-wall stress distribution in the limiting nozzle corner location at each time point of the thermal transient. The subsequent method to evaluate Kit is given as:

Oa+2a 0537C1O

  • 4a 3 3

=, . + Ir .537 C +-.2 0.448C,- + I3T 0.393C3(4)

Where: a = '/4 through-wall postulated flaw depth, a = '/4 t (in).

t =thickness of the cross-section through the limiting nozzle inner blend radius corner (in).

C 0t,,Ct = thermal stress third order polynomial coefficients, obtained from a C 2 t,C 3 t curve-fit of the extracted stresses from an FEM transient analysis.

File No.: 0800297.301 Page 5 of 47 Revision: I F0306-O1RO

V StructuralIntegrity Associates, Inc.

The thermal stress polynomial coefficients are based on the polynomial form of c3-(x) =c + C . ( +aa/

+ - + C3 - . In this equation, "a" represents the radial distance in inches from the inside surface to any point on the crack front, and "amax" is the maximum crack depth, in inches.

Step 4: The allowable internal pressure of the RPV is calculated differently for each evaluation region. For the beltline region, the allowable pressure is determined as follows:

= -K (5) p allow M, -Ri Where: Pallow = the allowable RPV internal pressure (psig).

Kip = the allowable stress intensity factor due to membrane (pressure) stress, as defined in Equation 2 (ksli*n).

t = the RPV wall thickness, unique for each region (in).

Mm = the membrane correction factor for an inside surface axial flaw:

Mm = 1.85 for 4t < 2 Mm = 0.926 4t for 2 <4t < 3.464 Mm = 3.21 for 4t > 3.464 Ri = the inner radius of the RPV (in).

For the bottom head region, the allowable pressure is calculated with the following equation:

SCF . M0 , -Ri (6)

Where: SCF conservative stress concentration factor to account for bottom head penetration discontinuities; SCF = 3.0 per Reference [3].

Pallow, Kip, t, Mm and Ri are defined in the footnotes of Equation 5.

For the feedwater nozzle / upper vessel region, the allowable pressure is determined from a ratio of the allowable and applied stress intensity factors. The applied factor can be determined from an FEM that outputs the stresses due to the internal pressure on the nozzle /

RPV. The methodology for this approach is as follows:

K11 -Prei*

(7)

Where: Pref = RPV internal pressure at which the FEA stress coefficients (Equation 8) are valid (psig).

Kip-app = the applied pressure stress intensity factor (ksi*/in).

Pallow and Kip are defined in the footnotes of Equation 5.

File No.: 0800297.301 Page 6 of 47 Revision: I F0306-01 RO

Structuralintegrity Associates, Inc.

The applied pressure stress intensity factor is determined using a polynomial curve-fit approximation for the through-wall pressure stress distribution from an FEA, similar to the methodology of Equation 4:

K)TaLO=* .706Cp +/-* 2a a2j3 4a 3'

-aOp 1 2- 0-.537C

.448C2p + . 0.393C 3 , (8)

Where: a = 1/4 through-wall postulated flaw depth, a = 1/4 t (in).

t = thickness of the cross-section through the limiting nozzle inner blend radius corner (in).

Cop, Cp = pressure stress polynomial coefficients, obtained from a curve-fit C 2 p,C 3 p from the extracted stresses from an FEM unit pressure analysis.

Step 5: Steps I through 4 are repeated in order to generate a series of P-T points; the fluid temperature is incremented with each repetition. Calculations proceed in this iterative manner until the allowable reactor pressure (Pp-T) exceeds the maximum possible pressure. The maximum pressure limit is set to 1900 psig, since this value bounds the pre-service hydrostatic test pressure of 1,875 psig (see Section 3.0).

Step 6: The final P-T limits are calculated using the following equations:

TT = T + UT (9)

P-T = Pallo,,w - P H -UP (10)

Where: TP-T = the allowable coolant (metal) temperature (0 F).

UT = the coolant temperature instrument uncertainty ('F).

PP-T = the allowable reactor pressure (psig).

PH = the pressure head to account for the water in the RPV (psig).

Can be calculated from the following expression: PH = p Ah.

p = Water density at ambient temperature (lb/in 3 ).

Ah = elevation of full height water level in RPV (in.).

Up = the pressure instrument uncertainty (psig).

Step 7: The following additional minimum temperature requirements apply to the feedwater nozzle / upper vessel region, according to Table I of IOCFR50, Appendix G [2]:

" If the pressure is greater than 20% of the pre-service hydro-test pressure, the temperature must be greater than the RTNDT of the limiting flange material plus a temperature adjustment. For Curve A calculations, the temperature adjustment is 90'F; for Curve B, the temperature adjustment is 120'F.

  • If the pressure is less than or equal to 20% of the pre-service hydro-test pressure, the minimum temperature must be greater than or equal to the RTNDT of the limiting flange material.

File No.: 0800297.301 Page 7 of 47 Revision: 1 F0306-OIRO

V StructuralIntegrity Associates, Inc.

The P-T Curves for the hydrostatic leak test (Curve A) and normal operation - core not critical (Curve B) can be computed by following Steps I through 7. Values for Curve C, the core-critical operating curve, are generated from the requirements of IOCFR50 Appendix G [2] and the Curve A and Curve B limits. Table I of Reference [2] requires that core critical P-T limits be 40'F above any Curve A or Curve B limits at all pressures. IOCFR50 Appendix G [21 also stipulates that, above the 20% pressure transition point, the Curve C temperatures must be either the reference temperature (RTNDT) of the closure flange region plus 160'F, or the temperature required for the operating pressure (leak) test from Curve A, whichever is greater.

For P-T Curves A and B, the initial fluid temperature assumed in Step 1 is typically taken at the bolt-up temperature of the closure flange. According to Reference [2], the minimum bolt-up temperature is equal to the limiting material RTNDT of the regions affected by bolt-up stresses. Consistent with Reference [3], the minimum bolt-up temperature shall not be lower than 60'F. Thus, the minimum bolt-up temperature shall be 60'F or the material RTNDT, whichever is higher.

For P-T Curve C, when the reactor is critical, the initial fluid temperature is equal to the calculated minimum criticality temperature in this region. Table 1 of Reference [2] indicates that, for a BWR with normal operating water levels, the allowable temperature for initial criticality at the closure flange region is equal to the reference temperature (RTNDT) at the flange region plus 60'F.

3.0 DESIGN INPUTS / ASSUMPTIONS All design inputs and assumptions used to perform the NMP-1 P-T curve calculations are summarized in the input listings in Appendix A.

ART values in the NMP-1 beltline region are obtained from a previous Structural Integrity Associates (SI) calculation [4]. The calculations were performed in accordance with Nuclear Regulatory Commission (NRC) Regulatory Guide 1.99, Revision 2 (RG1.99) [5]. Based on Table 4 through Table 6 of Reference [4], the limiting beltline material is the P2112 lower shell plate. The limiting plate has ART values of 151.4'F, 159.0°F, and 167.4°F for 28, 36, and 46 EFPY, respectively.

NMP-1 has no large or small diameter nozzles (e.g. instrument nozzles) in the RPV beltline where the fluence exceeds 1.0x10 17 n/cm 2(E>IMeV).

Non-beltline regions are not subjected to significant fluence; therefore, initial reference temperature (RTNDT) values do not change, and are valid substitutions for corresponding ART values for these regions. Limiting RTNDT values for the upper vessel and flange region are taken from Reference [12c]

as 40°F. A complete list of RTNDT values is not available for the bottom head [13]. Of the available data, a value of 40'F is bounding [13]. Since this value is also bounding for the upper vessel and flange region, the limiting bottom head RTNDT is taken as 407F. This is consistent with References [12.d] and

[11, Section 10.3.1.1] which indicate the initial RTNDT for areas of reactor vessel material away from the high flux density region of the core is 40'F.

File No.: 0800297.301 Page 8 of 47 Revision: I F0306-OIRO

V StructuralIntegrity Associates, Inc.

The inner radius of the RPV, per Reference [6, Table 4-5], is 106.5 inches. The vessel shell thickness is taken as 7.125 inches from the same source. Dimensions for the bottom head radius and thickness are obtained from Reference [10, Appendix A] as 106.719 inches and 8.75 inches, respectively.

The GE design hydro-test is defined as 1,250 psig [14] while the operating pressure test maximum is defined as 1,055 psig [16]. As described by IWB-5220 [15], the system leakage test (Curve A) pressure is taken as the operating pressure. The pre-service system hydrostatic test pressure was taken as 1.5 times the GE design pressure, resulting in a value of 1,875 psig, as confirmed in Reference [12a]. The instrument uncertainties for the Curve A hydrotest are 4°F and 10 psig [17]. For Curves B and C, the instrument uncertainties are 12.2°F and 52.2 psig [17].

The total internal height of the RPV is 766 inches, as shown in Table V-1 of Reference [12b]. The density of the water is assumed to be 62.4 lb/ft3 = 0.0361 lb/in 3. Thus, the static pressure adjustment due to the pressure head of the water in the RPV is conservatively calculated as 766-0.0361 = 27.66 psig for all evaluation regions, which addresses pressure test conditions when the RPV is fully flooded. The maximum cool-down rate of the vessel is 100°F/Hr per Reference [14]. Appendix B presents a bounding curve for a maximum heat-up / cool-down rate of 200°F/Hr.

According to Section 2.8 of Reference [3], the minimum bolt-up temperature for the RPV shall be no lower than 60'F. Since the RTNDT values for all regions highly stressed by bolt preload are all less than 60'F, the initial assumed fluid temperature in the iterative P-T curve calculation process is set equal to 60'F. A temperature increment of 2'F between subsequent iterations is assumed.

The 60'F initial temperature of Reference [3] replaces the previous lower limit of 60'F plus the limiting RTNDT for Curves A and 13, which was applied to the previous NMP-1 P-T curves [7a, 7b]. This additional conservatism was required in pre-1971 ASME Section III Code, but is no longer required in ASME Section XI, Appendix G [1] or IOCFR50, Appendix G [2]. When the Pressure-Temperature Limits Report (PTLR) [3] was developed, SI consciously recognized the additional 60'F margin and chose to exclude it, as it is not technically required.

Post processing was performed for a previously developed finite element analyses to extract the necessary polynomial coefficients describing the hoop stress distribution through the feedwater nozzle's limiting comer location (Equations 4 and 8). The thermal and pressure stresses were extracted using ANSYS [8].

Based upon a previous axisymmetric analysis, the limiting nozzle comer location was chosen based upon the highest total stress intensity due to pressure loading [9]. This path (Nodes 584 to 570) is utilized to extract thermal and pressure hoop stresses from the results databases [9]. For thermal stresses, the feedwater nozzle FEM was run with a thermal shock from 550'F to 100'F applied to the nozzle flow path with 100% flow [9]. This represents the thermal shock during the transient "Increase to Rated Power" [14]. It can be seen from Reference [14] that this is the highest thermal shock for the feedwater nozzle. The thermal stresses are taken as function of time during the transient. Each stress distribution is fit with a third-order polynomial as a function of distance into the nozzle. The thermal stress intensity factor (Equation 4) is calculated for all time steps. The most limiting (highest) value is chosen, corresponding to a time of 5,000 seconds. Since operation is along the saturation curve, the File No.: 0800297.301 Page 9 of 47 Revision: 1 F0306-OIRO

i Structural Integrity Associates, Inc.

thermal stress intensity factor is scaled to reflect the worst-case step change due to available temperature difference. The pressure stresses are taken at steady state. The pressure stress analysis was performed for a 1,000 psig RPV pressure and the results scaled to reflect the operating pressure of 1,055 psig. The supporting *.out files of Reference [9] show that the path selected defines the nozzle comer thickness to be 7.8427 inches. Thus, the postulated flaw location at 1/4t is 1.9607 inches. Appendix C lists the ANSYS files included in the electronic supporting files. Note that only the finite element model developed in Reference [9] is used in this calculation; the Green's Function was not utilized.

The analyzed transient "Increase to Rated Power" is associated with the startup/shutdown event for the feedwater nozzle [14]. The evaluated shock is from 550'F to 1007F, which represents the design basis definition for this event. Figure 3-3 of Reference [18] shows a plant specific Turbine Roll transient for Unit I to be a shock from 485°F to 161'F. Even considering a potential 357F feedwater temperature, page 4 of Appendix G states that the 1617F temperature would drop to 123°F [18]. Both of these are bounded by the analyzed 5507F to 100°F shock.

4.0 CALCULATIONS The P-T curves in this calculation were developed using an Excel spreadsheet, which is independently verified for use on a project-specific basis in accordance with SI's QA Program.

The polynomial stress coefficients in Table I were applied to Equations 4 and 8. The resulting pressure stress intensity (Kip-applied) and thermal stress intensity (Kt) factors are 86.72 ksi'lin and 45.60 ksi/in, respectively.

4.1 Pressure Test (Curve A)

The minimum bolt-up temperature of 60'F is applied to all regions as the initial temperature in the iterative calculation process. The static fracture toughness (K,,) is calculated for all regions using Equation 1. The resulting value of K1t, along with a safety factor of 1.5, is used in Equation 2 to calculate the pressure stress intensity (Kip)- The allowable RPV pressure is calculated for the beltline, bottom head, and upper vessel regions using Equations 5, 6, and 7, respectively. For the feedwater nozzle / upper vessel region, the additional constraints specified in Step 7 of Section 2.0 are applied.

Final P-T limits for temperature and pressure are obtained from Equations 9 and 10, respectively.

The data resulting from each P-T curve calculation was tabulated. Values for the beltline region at 28, 36, and 46 EFPY are given in Table 2, Table 3, and Table 4, respectively. Data for the bottom head region is listed in Table 5, and data for the feedwater nozzle / upper vessel region is presented in Table

6. The data for each region was graphed, and the resulting P-T curves for 28, 36, and 46 EFPY are ided in Figure 1, Figure 2, and Figure 3, respectively.

File No.: 0800297.301 Page 10 of 47 Revision: 1 F0306-OIRO

U StructuralIntegrity Associates, Inc.

4.2 Normal Operation - Core Not Critical (Curve B)

The minimum bolt-up temperature of 60'F is applied to all regions as the initial temperature in the iterative calculation process. The static fracture toughness (K1 t) is calculated for all regions using Equation 1. The thermal stress intensity factor (K,,) is calculated for the beltline and bottom head regions using Equation 3, and for the feedwater nozzle using Equation 4.

The resulting values of Kic and Kit, along with a safety factor of 2.0, are used in Equation 2 to calculate the pressure stress intensity (Kip). The allowable RPV pressure was calculated for the beltline, bottom head, and upper vessel regions using Equations 5, 6, and 7, respectively. For the feedwater nozzle /

upper vessel region, the additional constraints specified in Step 7 of Section 2.0 are applied. Final P-T limits for temperature and pressure are obtained from Equations 9 and 10, respectively.

The data resulting from each P-T curve calculation was tabulated. Values for the beltline region at 28, 36, and 46 EFPY are given in Table 7, Table 8, and Table 9, respectively. Data for the bottom head region is listed in Table 10, and data for the feedwater nozzle / upper vessel region is presented in Table

11. The data for each region was graphed, and the resulting P-T curves for 28, 36, and 46 EFPY are provided in Figure 4, Figure 5, and Figure 6, respectively.

4.3 Normal Operation - Core Critical (Curve C)

The pressure and temperature values for Curve C are calculated in a similar manner as Curve B, with several exceptions. The initial evaluation temperature is calculated as the limiting closure flange region RTNDT that is highly stressed by the bolt preload (in this case, that of the closure flange region: 40'F per Section 3.0) plus 60'F, resulting in a minimum critical temperature of 100'F. When the pressure exceeds 20% of the pre-service system hydro-test pressure (20% of 1,875 psig = 375 psig), the P-T limits are specified as 40'F higher than the Curve B values. The minimum temperature above the 20%

pressure transition point is always greater than the reference temperature (RTNDT) of the closure region plus 160'F, or the temperature required for the hydrostatic pressure test. The final Curve C values are taken as the absolute maximum between the three regions of Curve B P-T curves.

Tabulated overall values for Curve C are provided at 28, 36, and 46 EFPY in Table 12, Table 13, and Table 14, respectively. The corresponding P-T curves for 28, 36, and 46 EFPY are provided in Figure 7, Figure 8, and Figure 9, respectively.

5.0 CONCLUSION

S P-T curves were calculated for NMP-1 for 28, 36, and 46 EFPY using the methodology in Section 2.0 and the design inputs and assumptions defined in Section 3.0. A full set of P-T curves were computed, including the following plant conditions: Operating Pressure (Leak) Test (Curve A), Normal Operation -

Core Not Critical (Curve B), and Normal Operation - Core Critical (Curve C). Calculations were performed for the beltline, bottom head, and feedwater nozzle / upper vessel regions. Values for the File No.: 0800297.301 Page 11 of 47 Revision: I F0306-OIRD

V StructuralIntegrity Associates, Inc.

beltline regions were computed at 28, 36, and 46 EFPY. The calculations were performed in accordance with the PTLR methodology approved by the NRC in Reference [3].

Tabulated pressure and temperature values are provided for all regions in Table 2 through Table 14. The accompanying P-T curve plots are provided in Figure 1 through Figure 9.

File No.: 0800297.301 Page 12 of 47 Revision: I F0306-OIRO

StructuralIntegrity Associates, Inc.

6.0 REFERENCES

1. American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code,Section XI, Rules for In-Service Inspection of Nuclear Power Plant Components 2001 Edition including the 2003 Addenda.
2. Part 50 U.S. Code of Federal Regulations, Title 10, EneEgy Part 50, "Domestic Licensing of Production and Utilization Facilities," Appendix G, "Fracture Toughness Requirements," (60 FR 65474, Dec. 19, 1995; 73 FR 5723, Jan. 31, 2008).
3. Structural Integrity Associates Report No. SIR-05-044A, Revision 0, "Pressure-Temperature Limits Report Methodology for Boiling Water Reactors," April 2007, SI File No. GE-10Q-401.
4. Structural Integrity Associates Calculation No. 0800297.300, Revision 1, "Evaluation of Adjusted Reference Temperatures and Reference Temperature Shifts."
5. U.S. Nuclear Regulatory Commission, Regulatory Guide 1.99, Revision 2, "Radiation Embrittlement of Reactor Vessel Materials," May 1988.
6. MPM Report No. MPM-59838, "Pressure-Temperature Operating Curves for Nine Mile Point Unit 1," May 1998, S1 File No. NMP-05Q-207.
7. Previous Structural Integrity Associates P-T Curve Calculations for NMP-]:
a. NMP-05Q-301, Revision 0, "Benchmark Analysis."
b. NMP-05Q-302, Revision 0, "NMP-1 P-T Curves Generated Using Code Case N-640.".
8. ANSYS/Mechanical Release 6.1 (w/Service Packs 2 and 3), ANSYS, Inc., April 2002.
9. Structural Integrity Associates Calculation No. NMP-09Q-302, Revision 0, "Feedwater Nozzle Green's Functions for Nine Mile Point Unit I."
10. Combustion Engineering, Inc. Report No. CENC- 1142, "Analytical Report for Niagara Mohawk Reactor Vessel," SI File No. NMP-09Q-246.
11. GE Specification 21AA 1104, Revision 0, "Reactor Pressure Vessel," SI File No. NMP-09Q-292.
12. Nine Mile Point Unit 1 Updated Final Safety Analysis Report:
a.Section V, "Reactor Coolant System," Revision 16, Table V-i, p. 3 of 3, November 1999, SI File No. NMP-09Q-23 1.
b.Section V, "Reactor Coolant System," Revision 17, Table V-I, p. 1 of 3, October 2001, SI File No. NMP-09Q-23 1.
c.Section V, "Reactor Coolant System," Revision 16, p. V-12, November 1999, SI File No.

NMP-09Q-23 1.

d.Section I, Revision 17, p. 1-10, October 2001, SI File No. 0800297.215.
13. Westinghouse Report No. DNS-03-001, "Document Transmittal," January 20, 2003, SI File No.

0800297.213.

File No.: 0800297.301 Page 13 of 47 Revision: I F0306-O1RO

6 StructuralIntegrity Associates, Inc-

14. G.E. Drawing No. 237E434, "Loadings Reactor Vessel," Note: Revision and Sheet Number not legible, SI File No. NMP-09Q-225.
15. ASME Boiler and Pressure Vessel Code,Section XI, 2001 Edition w/ Addenda through 2003.
16. Email from G. Inch (NMP) to T. Griesbach (SI), "FW: NMP1 Pressure Test Pressure," October 10, 2008 11:58AM, SI File No. 0800297.214.
17. Niagara Mohawk letter M97-080 to Dr. Michael P. Manahan, Sr., "Re: Instrument Uncertainty for PT Curves," December 18, 1997, SI File No. NMP-05Q-201.
18. MPR Associates Inc. Report No. MPR-1484, Revision 1, "Nine Mile Point Unit I Feedwater Nozzle Fatigue Evaluation," March 1999, SI File No. 0800297.216.

File No.: 0800297.301 Page 14 of 47 Revision: I F0306-O1RO

V StructuralIntegrity Associates, Inc.

Table 1: NMIP-1 Polynomial Coefficients for Feedwater Nozzle Stress Intensity Distributions File No.: 0800297.301 Page 15 of 47 Revision: I F0306-OIRO

V StructuralIntegrity Associates, Inc-Table 2: NMP-1 Beltline Region, Curve A, for 28 EFPY Plant NMP I Component = i Vessel thickness, t 7 2S inches Vessel Radius, R II0,, inches ART - 1 F..... 2 8 EFPY K, - (no thermal effects)

Safety Factor = I1 i M,,, 27 Tempi erature Adjustment I '°F (instrument unceri [ainty)

Prressure Adjustment 22 psig (hydrostatic pres sure head for a full vessel at 70°F)

Prressure Adjustment , I (i psig (instrument unciertainty)

Adjusted Guage Fluid Temperature Pressure for Temperature Guage for P-T Curve P-T Curve (F) K36 2ksi-8in) (ksi sin) Pressure (psig) (F) (psig) 56 36.28 24.18 0 60 0 56 36.28 24.18 655 60 617 58 36.40 24.27 657 62 619 60 36.53 24.36 659 64 622 62 36.67 24.45 662 66 624 64 36-81 24.54 664 68 627 66 36.96 24.64 667 70 629 68 37.11 24.74 670 72 632 70 37.27 24.85 673 74 635 72 37.44 24.96 676 76 638 74 37.61 25.07 679 78 641 76 37.79 25.19 682 80 644 78 37.98 25.32 685 82 648 80 38.17 25.45 689 84 651 82 38.37 25.58 692 86 655 84 38.59 25.72 696 88 659 86 38-81 25.87 700 90 663 88 39.03 26.02 704 92 667 90 39.27 26.18 709 94 671 92 39.52 26.35 713 96 675 94 39.78 26.52 718 98 680 96 40.05 26.70 723 100 685 98 40.33 26.88 728 102 690 100 40.62 27.08 733 104 695 102 40.92 27.28 738 106 701 104 41,23 27.49 744 108 706 106 41.56 27.71 750 110 712 108 41,90 27.94 756 112 718 110 42.26 28.17 763 114 725 112 42.63 28.42 769 116 732 114 43.01 28.68 776 118 738 116 43.41 28.94 783 120 746 118 43.83 29.22 791 122 753 120 44.26 29.51 799 124 761 122 44.72 29.81 807 126 769 124 45.19 30.12 815 128 778 126 45.68 30.45 824 130 787 128 46.18 30.79 833 132 796 130 46.71 31.14 843 134 805 132 47.27 31.51 853 136 815 134 47.84 31.89 863 138 826 136 48.44 32.29 874 140 836 138 49.06 32.71 885 142 848 140 49.71 33.14 897 144 859 File No.: 0800297.301 Page 16 of 47 Revision: I F0306-OIRO

StructuralIntegrity Associates, Inc-Table 2 Continued: NMP-1 Beltline Region, Curve A, for 28 EFPY Adjusted Guage Fluid Temperature Pressure for Temperature K, Guage for P-T Curve P-T Curve

(°F) K, (ksi.Vin) (ksi-.in) Pressure (psig) (°F) (psig) 142 50.38 33.59 909 146 871 144 51.08 34.05 922 148 884 146 51,81 34.54 935 150 897 148 52.57 35.05 949 152 911 150 53.36 35.57 963 154 925 152 54.18 36.12 978 156 940 154 55.04 36.69 993 158 956 1S6 55.93 37.29 1009 160 972 158 56.86 37.91 1026 162 988 160 57.83 38.55 1043 164 1006 162 58.83 39.22 1062 166 1024 164 59.88 39.92 1080 168 1043 166 60.96 40.64 1100 170 1062 168 62.10 41.40 1121 172 1083 170 63.28 42.18 1142 174 1104 172 64.50 43.00 1164 176 1126 174 65.78 43.85 1187 178 1149 176 67.11 44.74 1211 180 1173 178 68.50 45.66 1236 182 1198 180 69.94 46.62 1262 184 1224 182 71.44 47.62 1289 186 1251 184 73.00 48.66 1317 188 1280 186 74.62 49.75 1346 190 1309 188 76.31 50.87 1377 192 1339 190 78.07 52.05 1409 194 1371 192 79.90 53.27 1442 196 1404 194 81.81 54.54 1476 198 1438 196 83.79 55.86 1512 200 1474 198 85.86 57.24 1549 202 1512 200 88.00 58.67 1588 204 1550 202 90.24 60.16 1628 206 1591 204 92.57 61.71 1670 208 1633 206 94.99 63.33 1714 210 1676 208 97.51 65.01 1760 212 1722 210 100.14 66.76 1807 214 1769 212 102.87 68.58 1856 216 1819 214 105.71 70.48 1908 218 1870 216 108.67 72.45 1961 220 1923 File No.: 0800297.301 Page 17 of 47 Revision: I F0306-OIRO

C StructuralIntegrity Associates, Inc.

Table 3: NWP-1 Beitline Region, Curve A, for 36 EFPY Plant: ~MP1I Component Befhl i Vessel thickness, t =. inches Vessel Radius, R : O" ' inches ART 1Yý5o °F =====> 36 EFPY K1, 0 n(sothermal effects)

Safety Factor = i Temperature Adjustment = 0 ' F (instrument uncertainty)

Pressure Adjustment 2 7 psig (hydrostatic pressure head for a full vessel at 70°F)

Pressure Adjustment = , I(, f, psig (instrument uncertainty)

Adjusted Guage Fluid Temperature Pressure for Temperature Ri. Guage for P-T Curve P-T Curve (CF) K 3ý(ksi-Vin) (ksi-Vin) Pressure (psig) ('F) (psig) 56 35.84 23.90 0 60 0 56 3S.84 23.90 647 60 609 58 35.95 23.97 649 62 611 60 36.06 24.04 651 64 613 62 36.18 24.12 653 66 615 64 36.30 24.20 655 68 617 66 36.43 24.29 657 70 620 68 36.56 24.37 660 72 622 70 36.70 24.46 662 74 625 72 36.84 24.56 665 76 627 74 36.99 24.66 667 78 630 76 37.14 24.76 670 80 633 78 37.30 24.87 673 82 635 80 37.47 24.98 676 84 638 82 37.64 25.10 679 86 642 84 37.83 25.22 683 88 645 86 38.02 25.34 686 90 648 88 38.21 25.47 690 92 652 90 38.42 25.61 693 94 656 92 38.63 25.75 697 96 659 94 38.85 25.90 701 98 663 96 39.08 26.05 705 100 668 98 39.32 26.21 710 102 672 100 39.57 26.38 714 104 676 102 39.83 26.55 719 106 681 104 40.10 26.73 724 108 686 106 40.38 26.92 729 110 691 108 40.68 27.12 734 112 696 110 40.98 27.32 739 114 702 112 41.30 27.53 745 116 708 114 41.63 27.75 751 118 714 116 41.97 27.98 757 120 720 118 42.33 28.22 764 122 726 120 42.70 28.47 771 124 733 122 43.09 28.73 778 126 740 124 43.50 29.00 785 128 747 126 43.92 29.28 792 130 7S5 128 44.35 29.57 800 132 763 130 44.81 29.87 809 134 771 132 45.28 30.19 817 136 779 134 45.78 30.52 826 138 788 136 46.29 30.86 835 140 798 138 46.82 31.22 845 142 807 140 47.38 31.59 855 144 817 File No.: 0800297.301 Page 18 of 47 Revision: I F0306-OIRO

V StructuralIntegrityAssociates, Inc.

Table 3 Continued: NMP-1 Beltline Region, Curve A, for 36 EFPY Adjusted Guage Fluid Temperature Pressure for Temperature Klý Guage for P-T Curve P-T Curve

('F) K,, (ksi-V-in) (ksi.Vin) Pressure (psig) ('F) (psig) 142 47.96 31.97 865 146 828 144 48.56 32.37 876 148 839 146 4919 32.79 888 150 850 148 49.84 33.23 899 152 862 150 50.52 33.68 912 154 874 152 51.23 34.15 924 156 887 154 51.96 34.64 938 158 900 156 52.73 35.15 951 160 914 158 53.52 35.68 966 162 928 160 54-35 36.24 981 164 943 162 55.22 36.81 996 166 959 164 56.11 37.41 1013 168 975 166 57.05 38.03 1029 170 992 168 58.02 38.68 1047 172 1009 170 59.04 39.36 1065 174 1028 172 60.09 40.06 1084 176 2047 174 61.19 40.79 1104 178 1066 176 62.33 41.55 1125 180 1087 178 63.52 42.35 1146 182 1108 180 64.76 43.17 1168 184 1131 182 66.04 44.03 1192 186 1154 184 67.38 44.92 1216 188 1178 186 68.78 45.85 1241 190 1203 188 70.23 46.82 1267 192 1230 190 71.74 47.83 1295 194 1257 192 73.32 48.88 1323 196 1285 194 74.95 49.97 1352 198 1315 196 76.66 51.10 1383 200 1346 198 78.43 52.29 1415 202 1378 200 80.28 53.52 1449 204 1411 202 82.20 54.80 1483 206 1446 204 84.20 56.13 1519 208 1482 206 86.28 57.52 1557 210 1519 208 88.44 58.96 1596 212 1558 210 90.70 60.47 1637 214 1599 212 93.05 62.03 1679 216 1641 214 95.49 63.66 1723 218 1685 216 98.03 65.35 1769 220 1731 218 100.68 67.12 1817 222 1779 220 103.43 68.95 1866 224 1829 222 106.30 70.86 1918 226 1880 224 109.28 72.85 1972 228 1934 File No.: 0800297.301 Page 19 of 47 Revision: I F0306-OIRO

V StructuralIntegrity Associates, Inc.

Table 4: N P-1 Beltline Region, Curve A, for 46 EFPY Plant:- W11111 i Component .ý "t ine Vessel thickness, t 7 121ý inches Vessel Radius, R = H 1; inches ART 6=74 "F =====> 46 EFPY K := (no thermal effects)

Safety Factor = I Temperature Adjustment I F (instrument uncertainty)

Pressure Adjustment 27 7 psig (hydrostatic pressure head for a full vessel at 70F)

Pressure Adjustment = t C. psig (instrument uncertainty)

Adjusted Guage Fluid Temperature Pressure for Temperature K1. Guage for P-T Curve P-T Curve

(°F) Kjo (ksi-Vin) (ksi.Vin) Pressure (psig) (*F) (psig) 56 35.43 23.62 0 60 0 S6 35.43 23.62 639 60 602 58 35.53 23.68 641 62 603 60 35.62 23.75 643 64 605 62 35.72 23.81 645 66 607 64 35,82 23.88 646 68 609 66 35.93 23.95 648 70 611 68 36.04 24.03 650 72 613 70 36-16 24.10 652 74 615 72 36.28 24.18 655 76 617 74 36.40 24.27 657 78 619 76 36.53 24.36 659 80 622 78 36.67 24.45 662 82 624 80 36.81 24.54 664 84 627 82 36.96 24.64 667 86 629 84 37.11 24.74 670 88 632 86 37.27 24.85 673 90 635 88 37.44 24.96 676 92 638 90 37.61 25.07 679 94 641 92 37.79 25.19 682 96 644 94 37.98 25.32 685 98 648 96 38.17 25.45 689 100 651 98 38.37 25.58 692 102 655 100 38.59 25.72 696 104 659 102 38.81 25.87 700 106 663 104 39.03 26.02 704 108 667 306 39.27 26.18 709 110 671 108 39.52 26.35 713 112 675 110 39.78 26.52 718 114 680 112 40.05 26.70 723 116 685 114 40.33 26.88 728 118 690 116 40.62 27.08 733 120 695 118 40.92 - 27.28 738 122 701 120 41.23 27.49 744 124 706 122 41.56 27.71 750 126 712 124 41.90 27.94 756 128 718 126 42.26 28.17 763 130 725 128 42.63 28.42 769 132 732 130 43.01 28.68 776 134 738 132 43.41 28.94 783 136 746 134 43.83 29.22 791 138 753 136 44.26 29.51 799 140 761 138 44.72 29.81 807 142 769 140 45.19 30.12 815 144 778 File No.: 0800297.301 Page 20 of 47 Revision: 1 F0306-OI RO

V StructuralIntegrity Associates, Inc.

Table 4 Continued: NMP-1 Beltline Region, Curve A, for 46 EFPY Adjusted Guage Fluid Temperature Pressure for Temperature Km Guage for P-T Curve P-T Curve i(F) (ksiVin) Pressure (psig) ('F) (psig)

Kc (ksi-Vin) 142 45.68 30.45 824 146 787 144 46.18 30.79 833 148 796 146 46.71 31.14 843 150 805 148 47.27 31.51 853 152 815 150 47.84 31.89 863 154 826 152 48.44 32.29 874 156 836 154 49.06 32.71 885 158 848 156 49.71 33.14 897 160 859 158 50.38 33.59 909 162 871 160 51.08 34.05 922 164 884 162 51.81 34.54 935 166 897 164 52,57 35.05 949 168 911 166 53.36 35.57 963 170 925 168 54.18 36.12 978 172 940 170 55.04 36.69 993 174 956 172 55.93 37.29 1009 176 972 174 56.86 37.91 1026 178 988 176 57.83 38.55 1043 180 1006 178 58.83 39.22 1062 182 1024 180 59.88 39.92 1080 184 1043 182 60.96 40.64 1100 186 1062 184 62.10 41.40 1121 188 1083 186 63.28 42.18 1142 190 1104 188 64.50 43.00 1164 192 1126 190 65.78 43.85 1187 194 1149 192 67.11 44.74 1211 196 1173 194 68.50 45.66 1236 198 1198 196 69.94 46.62 1262 200 1224 198 71.44 47.62 1289 202 1251 200 73.00 48.66 1317 204 1280 202 74.62 49.75 1346 206 1309 204 76.31 50.87 1377 208 1339 206 78.07 52.05 1409 210 1371 208 79.90 53.27 1442 212 1404 210 81.81 54.54 1476 214 1438 212 83.79 55.86 1512 216 1474 214 85.86 57.24 1549 218 1512 216 88.00 58.67 1588 220 1550 218 90.24 60.16 1628 222 1591 220 92.57 61.71 1670 224 1633 222 94.99 63.33 1714 226 1676 224 97.51 65.01 1760 228 1722 226 100.14 66.76 1807 230 1769 228 102.87 68.58 1856 232 1819 230 105.71 70.48 1908 234 1870 232 108.67 72.45 1961 236 1923 File No.: 0800297.301 Page 21 of 47 Revision: I F0306-OIRO

V StructuralIntegrity Associates, Inc.

Table 5: NMP-1 Bottom Head Region, Curve A, for all EFPY Plant =

Component penetrations portion)

Bottom Head thickness, t nches Bottom Head Radius, R inches

°F ====>

ART All EFPY Kit= (no thermal effects)

Safety Factor Stress Concetration Factor = (bottom head penetrations)

M =

Temperature Adjustment = °F (instrument uncertainty)

Pressure Adjustment psig (hydrostatic pressure head for a full vessel at 70*F)

Pressure Adjustment psig (instrument uncertainty)

Adjusted Guage Fluid Temperature Pressure for Temperature K1,,, Guage for P-T Curve P-T Curve

('F) K 67(ksi-Vin) (ksi.Vin( Pressure (psig) (7F) (psig) 56 61.75 41.17 0 60 0 56 61.75 41.17 822 60 784 58 62.92 41.95 837 62 799 60 64-13 42.75 853 64 816 62 65-39 43.60 870 66 832 64 66.71 44.47 887 68 850 66 68.08 45.38 906 70 868 68 69.50 46.33 925 72 887 70 70.98 47.32 944 74 907 72 72.52 48.35 965 76 927 74 74.13 49.42 986 78 948 76 75.80 50,53 1008 80 971 78 77.54 51.69 1031 82 994 80 79.34 52.90 1056 84 1018 82 81.23 54.15 1081 86 1043 84 83.19 55.46 1107 88 1069 86 85.23 56.82 1134 90 1096 88 87.3S 58.23 1162 92 1124 90 89.56 59.71 1191 94 1154 92 91.86 61.24 1222 96 1184 94 94.25 62.84 1254 98 1216 96 96.75 64.50 1287 100 1249 98 99.34 66.23 1322 102 1284 100 102.04 68.03 1357 104 1320 102 104.85 69.90 1395 106 1357 104 107.77 71.85 1434 108 1396 106 110.82 73.88 1474 110 1437 108 113.98 75.99 1516 112 1479 110 117.28 78.19 1560 114 1523 112 120.71 80.47 1606 116 1568 114 124.28 82.86 1653 118 1616 116 128.00 85.33 1703 120 1665 118 131.87 87.91 1754 122 1717 120 135.90 90.60 1808 124 1770 122 140.09 93.39 1864 126 1826 124 144.45 96.30 1922 128 1884 126 148.99 99.33 1982 130 1944 File No.: 0800297.301 Page 22 of 47 Revision: I F0306-OIRO

StructuralIntegrity Associates, Inc.

Table 6: NMP-1 Upper Vessel Region, Curve A, for all EFPY Plant= J7 Component =.Itfpper esuef ART= i( I F=== All EFPY Vessel Radius = I inches Nozzle corner thickness, t = inches Nozzle K,, io thermal effects)

Nozzle K,, =" , ksi-Vin Crack Depth, a = ' inches Safety Factor =

Temperature Adjustment =- 1 1, F(instrument uncertainty)

Pressure Adjustment = psig (hydrostatic pressure head for a fullvessel at 70"F)

Pressure Adjustment = . psig (instrument uncertainty)

Reference Pressure = I "I -psig(pressure at which FEAstress coefficients are valid) (GREEN]

Unit Pressure = )I i i.psig (hydrostatic pressure)

Flange RT0 o=  ! 0f , F===== All EFPY P-TCurve Guage Fluid P-TCuaie IOCFRSO Temperature K. Guage Temperature Adjustments

(*F) Ku (ksi-Vin) (ksi-Vin) Pressure (psig) 1,F) (psig) 56 61.75 41.17 0 60 0 56 61.75 41.17 475 60 375 58 62.92 41.95 484 130 375 60 64.13 42.75 493 130 455 62 65.39 43.60 503 130 465 64 66.71 44.47 513 130 475 66 68.08 45.38 523 130 486 68 69.50 46.33 534 130 497 70 70.98 47.32 546 130 50a 72 72.52 48.35 557 130 520 74 74.13 49.42 570 130 532 76 75.80 50.53 583 130 545 78 77.54 51.69 596 130 558 80 79.34 52.90 610 130 572 82 81.23 54.15 624 130 587 84 83.19 55.46 639 130 602 86 85.23 56.82 655 130 618 88 87.35 58.23 671 130 634 90 89.56 59.71 688 130 651 92 91.86 61024 706 130 669 94 94.25 62.84 725 130 687 96 96.75 64,50 744 130 706 98 99.34 66.23 784 130 726 100 102.04 68,03 784 130 747 102 104.85 69.90 806 130 768 104 10777 71,85 828 130 791 106 110.82 73.88 852 130 814 108 113.98 75.99 876 130 839 110 117.28 78.19 902 130 864 112 120-71 80.47 928 130 890 114 124.28 82.86 955 130 918 116 128.00 85.33 984 130 946 118 131.87 87.91 1014 130 976 120 135.90 90.60 1045 130 1007 122 140.09 93.39 1077 130 1039 124 144.45 96.30 1110 130 1073 126 148.99 99.33 1145 130 1108 128 153.72 102.48 1182 132 1144 130 158.63 105.76 1219 134 1182 132 163.75 109.17 1259 136 1221 134 169.08 112.72 1300 138 1262 136 174.63 126.42 1342 140 1305 138 180.40 120.26 1387 142 1349 140 186.40 124.27 1433 144 1395 142 192.66 128.44 1481 146 1443 144 199.16 132.78 1531 148 1493 146 205.94 137.29 1583 150 1545 148 212.99 141.99 1637 152 1600 150 220.32 146.88 1694 154 1656 152 227.96 151.97 1752 156 1715 154 235.91 157.27 1814 158 1776 156 244.18 162.79 1877 160 1839 158 252.79 168.53 1943 162 1906 File No.: 0800297.301 Page 23 of 47 Revision: I F0306-OIRO

V StructuralIntegrity Associates, Inc.

Table 7: NMP-1 Beltline Region, Curve B, for 28 EFPY Component =- b' Mi; Vessel thickness, t I inches Vessel Radius, R = 1065 inches ART- s I 1 "F ==z==> 28 EFPY Kt =I i 93. ksi-Vin Safety Factor = 0 MM 247 Temperature Adjustment =' °F (instrument uncertainty)

Pressure Adjustment 27 psig (hydrostatic pressure head for a full vessel at 70'F)

Pressure Adjustment = 2Z* psig (instrument uncertainty)

Heat Up and Cool Down Rate 100 F/Hr Adjusted Guage Fluid Temperature Pressure for Temperature K,. Guage for P-T Curve P-T Curve (F) K,, (ksi.Vin) lksi-An) Pressure (psig) 11F) (psie) 48 35.82 11.45 310 60 0 48 35.82 11.45 310 60 230 50 35.93 11.51 311 62 232 52 36.04 11.56 313 64 233 54 36.16 11.62 315 66 235 56 36.28 11.68 316 68 236 58 36.40 11.74 318 70 238 60 36.53 11.81 320 72 240 62 36.67 11.88 321 74 242 64 36.81 11.95 323 76 244 66 36.96 12.02 325 78 246 68 37.11 12.10 327 80 248 70 37.27 12.18 330 82 250 72 37.44 12.26 332 84 2S2 74 37.61 12.35 334 86 254 76 37.79 12.44 337 88 257 78 37.98 12.53 339 90 259 80 38.17 12.63 342 92 262 82 38.37 12.73 345 94 265 84 38.59 12.84 347 96 268 86 38.81 12.95 350 98 271 88 39.03 13.06 353 100 274 90 39.27 13.18 357 102 277 92 39.52 13.30 360 104 280 94 39.78 13.43 364 106 284 96 40.05 13.57 367 108 287 98 40.33 13.71 371 110 291 100 40.62 13.85 375 112 295 102 40.92 14.00 379 114 299 104 41.23 14.16 383 116 303 106 41.56 14.32 388 118 308 108 41.90 14.50 392 120 312 110 42.26 14.67 397 122 317 112 42.63 14.86 402 124 322 114 43.01 15.05 407 126 327 116 43.41 15.25 413 128 333 118 43.83 15.46 418 130 339 120 44.26 15.68 424 132 344 122 44.72 15.90 430 134 351 124 45.19 16.14 437 136 357 126 45.68 16.38 443 138 364 128 46.18 16.64 450 140 370 130 46.71 16.90 457 142 378 132 47.27 17.18 465 144 385 134 47.84 17.46 473 146 393 136 48.44 17,76 481 148 401 138 49.06 18.07 489 150 409 140 49.71 18.40 498 152 418 File No.: 0800297.301 Page 24 of 47 Revision: I F0306-OIRO

V StructuralIntegrity Associates, Inc.

Table 7 Continued: NMP-1 Beltline Region, Curve B, for 28 EFPY Adjusted Guage Fluid Temperature Pressure for Temperature Kjý Guage for P-T Curve P-T Curve

('F) K,, (ksi-Vin) (ksi.Vin) Pressure (psig) ('F) (psig) 142 50.38 18.73 507 154 427 144 51,08 19.08 517 156 437 146 51,81 19.45 526 158 447 148 52,57 19.83 537 160 457 150 53.36 20.22 547 162 468 152 54.18 20.64 559 164 479 154 55.04 21.06 570 166 490 156 55.93 21.51 582 168 502 158 56.86 21.97 595 170 515 160 57.83 22.46 608 172 528 162 58.83 22.96 621 174 542 164 59.88 23.48 636 176 556 166 60.96 24.03 650 178 570 168 62.10 24.59 666 180 586 170 63.28 25.18 682 182 602 172 64.50 25.80 698 184 618 174 65.78 26.43 715 186 636 176 67.11 27.10 733 188 654 178 68.50 27.79 752 190 672 180 69.94 28.51 772 192 692 182 71.44 29.26 792 194 712 184 73.00 30.04 813 196 733 186 74.62 30.85 835 198 755 188 76.31 31.70 858 200 778 190 78.07 32.58 882 202 802 192 79.90 33.49 907 204 827 194 81.81 34.45 932 206 852 196 83.79 35.44 959 208 879 198 85.86 36.47 987 210 907 200 88.00 37.55 1016 212 936 202 90.24 38.66 1046 214 967 204 92.57 39.83 1078 216 998 206 94.99 41.04 1111 218 1031 208 97.51 42.30 1145 220 1065 210 100.14 43.61 1180 222 1101 212 102.87 44.98 1217 224 1138 214 105.71 46.40 1256 226 1176 216 108.67 47.88 1296 228 1216 218 111.75 49.42 1338 230 1258 220 114.96 51.02 1381 232 1301 222 118.30 52.69 1426 234 1346 224 121.77 54.43 1473 236 1393 226 125.38 56.23 1522 238 1442 228 129.14 58.12 1573 240 1493 230 133.06 60.07 1626 242 1546 232 137.14 62.11 1681 244 1601 234 141.38 64.23 1739 246 1659 236 145.79 66.44 1798 248 1718 238 150.39 68.74 1860 250 1781 240 155.17 71.13 1925 252 1845 242 160.15 73.62 1993 254 1913 File No.: 0800297.301 Page 25 of 47 Revision: I F0306-OIRO

V StructuralIntegrity Associates, Inc.

Table 8: N P-1 Beltline Region, Curve B, for 36 EFPY Plant Component Vessel thickness, t:

Vessel Radius, R ART Kl, Safety Factor Mv Temperature Adjustment Pressure Adjustment full vessel at 70*F)

Pressure Adjustment Heat Up and Cool Down Rate Adjusted Guage Fluid Temperature Pressure for Temperature Ku, Guage for P-T Curve P-T Curve

('F) K, (ksi.Vin) (ksi-Vin) Pressure !psig) (*F) (psigj 48 35.45 11.27 305 60 0 48 35.45 11.27 305 60 22S 50 35.54 11.31 306 62 226 52 35.64 11.36 308 64 228 54 35.74 11.41 309 66 229 56 35.84 11.46 310 68 230 58 35.95 11.52 312 70 232 60 36.06 11.57 313 72 233 62 36.18 11.63 315 74 235 64 36.30 11.69 317 76 237 66 36.43 11.76 318 78 238 68 36.56 11.82 320 80 240 70 36.70 11.89 322 82 242 72 36.84 11.96 324 84 244 74 36.99 12.04 326 86 246 76 37.14 12.11 328 88 248 78 37.30 12.19 330 90 250 80 37.47 12.28 332 92 252 82 37.64 12.37 335 94 255 84 37.83 12.46 337 96 257 86 38.02 12.55 340 98 260 88 38.21 12.65 342 100 263 90 38.42 12.75 345 102 265 92 38.63 12.86 348 104 268 94 38.85 12.97 351 106 271 96 39.08 13.08 354 108 274 98 39.32 13.20 357 110 278 100 39.S7 13.33 361 112 281 102 39.83 13.46 364 114 284 104 40.10 13.59 368 116 288 106 40.38 13.73 372 118 292 108 40.68 13.88 376 120 296 110 40.98 14.03 380 122 300 112 41.30 14.19 384 124 304 114 41.63 14.36 389 126 309 116 41.97 14.53 393 128 313 118 42.33 14.71 398 130 318 120 42.70 14.90 403 132 323 122 43.09 15.09 408 134 329 124 43.50 15.29 414 136 334 126 43.92 15.50 420 138 340 128 44.35 15.72 425 140 346 130 44.81 15.95 432 142 352 132 45.28 16.18 438 144 358 134 45.78 16.43 445 146 365 136 46.29 16.69 452 148 372 138 46.82 16.95 459 10 379 140 47.38 17.23 466 152 387 File No.: 0800297.301 Page 26 of 47 Revision: 1 F0306-OIRO

C StructuralintegrityAssociates, Inc.

Table 8 Continued: NMP-1 Beltline Region, Curve B, for 36 EFPY Adjusted Guage Fluid Temperature Pressure for Temperature K,. Guage for P-T Curve P-T Curve

("F)

Kt. ksi-Vin) fksi-Vin) Pressure (psiw) fly) [psiR) 142 47,96 17.52 474 154 394 144 48.56 17.82 482 156 403 146 49.19 18.14 491 158 411 148 49.84 18.46 500 160 420 150 50.52 18.80 509 162 429 152 51.23 19.16 518 164 439 154 51.96 19.52 528 166 449 156 52.73 19.91 539 168 459 158 53.52 20.30 550 170 470 160 54.35 20.72 561 172 481 162 55.22 21.15 572 174 493 164 56.11 21.60 585 176 505 166 57.05 22.07 597 178 517 168 58.02 22.55 610 180 531 170 59.04 23.06 624 182 544 172 60.09 23.59 638 184 559 174 61.19 24.14 653 186 573 176 62.33 24.71 669 188 589 178 63.52 25.30 685 190 605 180 64.76 25.92 702 192 622 182 66.04 26.57 719 194 639 184 67.38 27.24 737 196 657 186 68.78 27.93 756 198 676 188 70.23 28.66 776 200 696 190 71.74 29.41 796 202 716 192 73.32 30.20 817 204 738 194 74.95 31.02 840 206 760 196 76.66 31.87 863 208 783 198 78.43 32.76 887 210 807 200 80.28 33.68 912 212 832 202 82.20 34.64 938 214 858 204 84.20 35.64 965 216 885 206 86.28 36.68 993 218 913 208 88.44 37.77 1022 220 942 210 90.70 38.89 1053 222 973 212 93.05 40.07 1084 224 1005 214 95.49 41.29 1118 226 1038 216 98.03 42.56 1152 228 1072 218 100.68 43.88 1188 230 1108 220 103.43 45.26 1225 232 1145 222 106.30 46.69 1264 234 1184 224 109.28 48.18 1304 236 1224 226 112.38 49.74 1346 238 1266 228 115.62 51.35 1390 240 1310 230 118.98 53.03 1435 242 1356 232 122.48 54.78 1483 244 1403 234 126.12 56.60 1532 246 1452 236 129.92 58.50 1583 248 1504 238 133.86 60.47 1637 250 1557 240 137.97 62.53 1692 252 1613 242 142.25 64.67 1750 254 1670 244 146.70 66.89 1811 256 1731 246 151.33 69.21 1873 258 1793 248 156.15 71.62 1938 260 1859 250 161.17 74.13 2006 262 1926 File No.: 0800297.301 Page 27 of 47 Revision: I F0306-OIRO

V Structural Integrity Associates, Inc.

Table 9: NMP-1 Beltline Region, Curve B, for 46 EFPY Plant =

Component =

Vessel thickness, t = nches Vessel Radius, R = nches ART = F =====> 46 EFPY K,= ksi-Vin Safety Factor Mm =

Temperature Adjustment = F (instrument uncertainty)

Pressure Adjustment = psig (hydrostatic pressure head for a full vessel at 70"F)

Pressure Adjustment: psig (instrument uncertainty)

Heat Up and Cool Down Rate = F/Hr Adjusted Guage Fluid Temperature Pressure for Temperature K.m Guage for P-T Curve P-T Curve

('F) K., (ksi-Vin) (ksi-Vin) Pressure (psig) (F) (psig) 48 35.10 11.09 300 60 0 48 35.10 11.09 300 60 220 50 35.18 11.13 301 62 221 52 35.26 11.17 302 64 223 54 35.35 11.22 304 66 224 56 35.43 11.26 305 68 225 58 35.53 11.31 306 70 226 60 35.62 11.35 307 72 227 62 35.72 11.40 309 74 229 64 35.82 11.45 310 76 230 66 35.93 11.51 311 78 232 68 36.04 11.56 313 80 233 70 36.16 11.62 315 82 235 72 36.28 11.68 316 84 236 74 36.40 11.74 318 86 238 76 36.53 11.81 320 88 240 78 36.67 11.88 321 90 242 80 36.81 11.95 323 92 244 82 36.96 12.02 325 94 246 84 37.11 12.10 327 96 248 86 37.27 12.18 330 98 250 88 37.44 12.26 332 100 252 90 37.61 12.35 334 102 254 92 37.79 12.44 337 104 257 94 37.98 12.53 339 106 259 96 38.17 12.63 342 108 262 98 38.37 12.73 345 110 265 100 38.59 12.84 347 112 268 102 38.81 12.95 35O 114 271 104 39.03 13.06 353 116 274 106 39.27 13.18 357 118 277 108 39.52 13.30 360 120 280 110 39.78 13.43 364 122 284 112 40.05 13.57 367 124 287 114 40.33 13.71 371 126 291 116 40.62 13.85 375 128 295 118 40.92 14.00 379 130 299 120 41.23 14.16 383 132 303 122 41.S6 14.32 388 134 308 124 41.90 14.50 392 136 312 126 42.26 14.67 397 138 317 128 42.63 14.86 402 140 322 130 43.01 15.05 407 142 327 132 43.41 15.25 413 144 333 134 43.83 15.46 418 146 339 136 44.26 15.68 424 148 344 138 44.72 15.90 430 150 351 140 45.19 16.14 437 152 357 File No.: 0800297.301 Page 28 of 47 Revision: I F0306-OIRO

& StructuralIntegrity Associates, Inc.

Table 9 Continued: NMP-1 Beltline Region, Curve B, for 46 EFPY Adjusted Guage Fluid Temperature Pressure for Temperature K,, Guage for P-T Curve P-T Curve 1[F) _ K,f (ksi.Vin) fksi.Vin) Pressure (psig) ('F) fpsig) 142 45.68 16.38 443 154 364 144 46.18 16.64 450 156 370 146 46.71 16.90 457 158 378 148 47.27 17.18 465 160 385 150 47.84 17.46 473 162 393 152 48.44 17.76 481 164 401 154 49.06 18.07 489 166 409 156 49.71 18.40 498 168 418 158 50.38 18.73 507 170 427 160 51.08 19.08 517 172 437 162 51.81 19.45 526 174 447 164 52.57 19.83 537 176 457 166 53.36 20.22 547 178 468 168 54.18 20.64 559 180 479 170 55.04 21.06 570 182 490 172 55.93 21.51 582 184 502 174 56.86 21.97 595 186 515 176 57.83 22.46 608 188 528 178 58.83 22.96 621 190 542 180 59.88 23.48 636 192 556 182 60.96 24.03 65O 194 570 184 62.10 24.59 666 196 586 186 63.28 25.18 682 198 602 188 64.50 25.80 698 200 618 190 65.78 26.43 715 202 636 192 67.11 27.10 733 204 654 194 68.50 27.79 752 206 672 196 69.94 28.51 772 208 692 198 71.44 29.26 792 210 712 200 73.00 30.04 813 212 733 202 74.62 30.85 835 214 755 204 76.31 31.70 858 216 778 206 78.07 32.58 882 218 802 208 79.90 33.49 907 220 827 210 81.81 34.45 932 222 852 212 83.79 35.44 959 224 879 214 85.86 36.47 987 226 907 216 88.00 37.55 1016 228 936 218 90.24 38.66 1046 230 967 220 92.57 39.83 1078 232 998 222 94.99 41.04 1111 234 1031 224 97.51 42.30 1145 236 1065 226 100.14 43.61 1180 238 1101 228 102.87 44.98 1217 240 1138 230 105.71 46.40 1256 242 1176 232 108.67 47.88 1296 244 1216 234 111.75 49.42 1338 246 1258 236 114.96 51.02 1381 248 1301 238 128.30 52.69 1426 250 1346 240 121.77 54.43 1473 252 1393 242 125.33 56.23 1522 254 1442 244 129.14 58.12 1573 256 1493 246 133.06 60.07 1626 258 1546 248 137.14 62.11 1681 260 1601 250 141.38 64.23 1739 262 1659 252 145.79 66.44 1798 264 1718 254 150.39 68.74 1860 256 1781 256 155.17 71.13 1925 268 1845 258 160.15 73.62 1993 270 1913 File No.: 0800297.301 Page 29 of 47 Revision: 1 F0306-OIRO

E Structural integrityAssociates, Inc.

Table 10: NM1P-1 Bottom Head Region, Curve B, for all EFPY Plant- t4P.<

Component = t, (penetrations portion)

Bottom Head thickness, t = 8 inches Bottom Head Radius, R t inches ART 400 F ===U- > All EFPY K. = I S *~ ks/-'n Safety Factor = m ,

Stress Concetration Factor = (bottom head penetrations)

Temperature Adjustment - . *F (instrument uncertainty)

Pressure Adjustment-:i" = psig (hydrostatic pressure head for a full vessel at 70"F)

P res.ure Adjustment - 5 psig (instrumnent uncertainty)

Heat Up and Cool Down Rate =p 1 'F/Hr Adjusted Guage Fluid Temperature Pressure for Temperature K, Guage for P-T Curve P-T Curve

(*Fl K- (ksi.Vin) Iksi.Vin) Pressure fosie) ['F) ()sie) 48 57.53 17.97 0 60 0 48 57.53 17.97 359 60 279 50 58.52 18.47 369 62 289 52 59,56 18.99 379 64 299 54 60,63 19.53 390 66 310 56 6175 20.09 401 68 321 58 6292 20.67 412 70 333 60 64.13 21.27 425 72 345 62 65.39 21.91 437 74 357 64 66,71 22.56 450 76 370 66 68.08 23.25 464 78 384 68 69.50 23.96 478 80 398 70 70.98 24.70 493 82 413 72 72.52 25.47 S08 84 428 74 74.13 26.27 524 86 444 76 75.80 27.11 541 88 461 78 77.54 27.98 558 90 478 80 79.34 28.88 576 92 496 82 81.23 29.82 595 94 515 84 83.19 30.80 615 96 535 88 85.23 31.82 635 98 $55 88 87.35 32.88 656 100 576 90 89.56 33.99 678 102 598 92 91.86 35.14 701 104 621 94 94.25 36.34 725 106 645 96 96.75 37.58 750 108 670 98 99.34 38.88 776 110 696 100 102.04 40.23 803 112 723 102 104.85 41.63 831 114 751 104 107.77 43.09 860 116 780 106 110.82 44.62 890 118 810 108 113.98 46.20 922 120 842 110 117.28 47.85 955 122 875 112 120.71 49.56 989 124 909 114 124.28 51.35 1025 126 945 116 128.00 53.21 1062 128 982 118 131.87 55.14 1100 130 1021 120 135.90 S7.16 1141 132 1061 122 140.09 59.25 1182 134 1103 124 144.45 61.43 1226 136 1146 126 148.99 63.70 1271 138 1191 128 153.72 66.07 1318 140 1239 130 158.63 68.S3 1367 142 1288 132 163.75 71.08 1419 144 1339 134 169.08 73.75 1472 146 1392 136 174.63 76.S2 1527 148 1447 138 180.40 79.41 1185 ISO 1505 140 186.40 82.41 1645 152 1565 142 192.66 85.54 1707 154 1627 144 199.16 88.79 1772 156 1692 146 205.94 92.18 1839 158 1760 148 212.99 95.70 1910 160 1830 150 220.32 99.37 1983 162 1903 File No.: 0800297.301 Page 30 of 47 Revision: 1 F0306-O1RO

V StructuralIntegrity Associates, Inc.

Table 11: NMP-1 Upper Vessel Region, Curve B, for all EFPY Plant= N41t Component - 'Up e['pe'Ves ART 40 F ... > All EFPY Vessel Radius = It L) nches Nozzle corner thickness, t

  • 3 riches Nozzle K, 4560 ksi-Vin Nozzle Klpp .d si Vie

<62 Crack Depth, a I861 -inches Safety Factor = >>2.{P Temperature Adjustment 1,. 'F (instrument uncertainty)

Pressure Adjustment = i 7-7 )psig(hydrostatic pressure head for a full vessel at 70°F)

Pressure Adjustment = 5 psig

) (instrument uncertainty)

Reference Pressure . 1 000-

'1' psig (pressure at which FEAstress coefficients are valid) [GREEN Unit Pressure = 1I psig (hydrostatic pressure)

Flange RT,0T = I >I0' T= = All EFPY P-T Curve Guage Fluid P-T Curve IOCFR5O Temperature K, Guage Temperature Adjustments (F) K,, lksi-Vin) (ksi-Vin) Pressure (psig) (F) (psin) 48 57.53 16.74 0 60 0 48 57.53 16.74 193 60 113 so 58.52 17.10 197 62 117 52 59.56 17.48 202 64 122 54 60.63 17.88 206 66 126 56 61.75 18.29 211 68 131 58 62.92 18.73 216 70 136 60 64.13 19.19 221 72 141 62 65.39 19.66 227 74 147 64 66.71 20.17 233 76 153 66 68.08 20.69 239 78 159 68 69.50 21.24 245 80 165 70 70.98 21.82 252 82 172 72 72.52 22.43 259 84 179 74 74-13 23.06 266 86 186 76 75.80 23.73 274 88 194 78 77.54 24.42 282 90 202 80 79.34 25.15 290 92 210 82 81.23 25.91 299 94 219 84 83.19 26.71 308 96 228 86 85.23 27.55 318 98 238 88 87.35 28.43 328 100 248 90 89.56 29.34 338 102 259 92 91.86 30.30 349 104 270 94 94.25 31.31 361 106 281 96 96.75 32.36 373 108 293 98 99.34 33.46 386 110 306 100 102.04 34.61 399 112 319 102 104.85 35.81 413 114 333 104 107.77 37.07 427 116 348 106 110.82 38.38 443 118 363 108 113.98 39.83 459 130 375 110 117.28 41.48 478 130 375 112 120.71 43.20 498 130 375 114 124.28 44.98 519 130 375 116 128.00 46.84 540 130 375 118 131.87 48.78 562 130 375 120 135.90 50.79 586 132 375 122 140.09 52.89 610 134 375 124 144.45 55.07 635 136 375 126 148.99 57.34 661 138 375 128 153.72 59.70 688 140 375 130 158.63 62.16 717 142 375 File No.: 0800297.301 Page 31 of 47 Revision: I F0306-O1RO

VStructuralIntegrity Associates, Inc.

Table 11 Continued: NMP-1 Upper Vessel Region, Curve B, for all EFPY P-T Curve Guage Fluid P-T Curve 10CFR50 Temperature K1 , Guage Temperature Adjustments

(°F) K1, (ksi.Vin) (ksi-Vin) Pressure (psig) (°F) (psig) 132 163.75 64.72 746 144 375 134 169-08 67.38 777 146 375 136 174.63 70.15 809 148 375 138 180.40 73.04 542 150 375 140 186.40 76.04 877 152 375 142 192.66 79.17 913 154 375 144 199.16 82.42 950 156 375 146 205.94 85.81 989 158 375 148 212.99 89.34 1030 160 375 148 212.99 84.61 976 160 896 150 220.32 88.02 1015 162 935 152 227.96 91.58 1056 164 976 154 235.91 95.29 1099 166 1019 156 244.18 99.17 1143 168 1064 158 252.79 103.21 1190 170 1110 160 261.75 107.42 1239 172 1159 162 271.08 111.81 1289 174 1209 164 280.79 116.40 1342 176 1262 166 290.89 121.17 1397 178 1317 168 301.41 126.16 1455 180 1375 170 312.36 131.35 1515 182 1435 172 323.75 136.77 1577 184 1497 174 335.61 142.41 1642 186 1562 176 347.95 148.30 1710 188 1630 178 360.79 154.43 1781 190 1701 180 374.16 160.82 1854 192 1775 182 388.08 167.49 1931 194 1851 184 402.56 174.43 2011 196 1932 File No.: 0800297.301 Page 32 of 47 Revision: I F0306-O1RO

C Structural IntegrityAssociates, Inc.

Table 12: NMP-1 Curve C Values for 28 EFPY Plant =

Curve A Leak Test Temperature Curve A Leak Test Pressure Unit Pressure pressure)

Flange RTNDT Adjusted P-T Adjusted P-T Curve Curve Temperature

(°F) Pressure (psig) 100 0 100 113 102 119 104 122 106 126 108 131 110 136 112 141 114 147 116 153 118 159 120 165 122 172 124 179 126 186 128 194 130 202 132 210 134 219 136 228 138 238 140 248 142 259 144 270 146 281 148 287 150 291 152 295 154 299 156 303 158 308 160 312 162 317 164 322 166 327 168 333 170 339 172 344 174 351 176 357 178 364 180 370 182 375 184 375 186 375 188 375 190 375 File No.: 0800297.301 Page 33 of 47 Revision: I F0306-O1 RO

StructuralIntegrity Associates, Inc.

Table 12 Continued: NMW-1 Curve C Values for 28 EFPY Adjusted P-T CurveAdjusted P-T CurveCurve Temperature Pressure (psig)

(rF) 192 375 194 375 196 375 198 375 200 375 200 457 202 468 204 479 206 490 208 502 210 515 212 528 214 542 216 556 218 570 220 586 222 602 224 618 226 636 228 654 230 672 232 692 234 712 236 733 238 755 240 778 242 802 244 827 246 852 248 879 250 907 252 936 254 967 256 998 258 1031 260 1065 262 1101 264 1138 266 1176 268 1216 270 1258 272 1301 274 1346 276 1393 278 1442 280 1493 282 1546 284 1601 286 1659 288 1718 290 1781 292 1845 294 1913 File No.: 0800297.301 Page 34 of 47 Revision: I F0306-OIRO

V Structural Integrity Associates, Inc.

Table 13: NVP-1 Curve C Values for 36 EFPY Plant =

Curve A Leak Test Temperature = PF Curve A Leak Test Pressure 1 psig Unit Pressure =* >87 psig (hydrostatic pressure)

Flange RToT O'! F Adjusted P-T Adjusted P-T Curve Curve Temperature Pressure (psig)

(7) 100 0 100 113 102 119 104 122 106 126 108 131 110 136 112 141 114 147 116 153 118 159 120 165 122 172 124 179 126 186 128 194 130 202 132 210 134 219 136 228 138 238 140 248 142 259 144 268 146 271 148 274 150 278 152 281 154 284 156 288 158 292 160 296 162 300 164 304 166 309 168 313 170 318 172 323 174 329 176 334 178 340 180 346 182 352 184 358 186 365 188 372 190 375 File No.: 0800297.301 Page 35 of 47 Revision- I F0306-01 RD

IUStructuralIntegrity Associates, Inc-Table 13 Continued: NMP-1 Curve C Values for 36 EFPY Adjusted P-T Adjusted P-T Curve Curve Temperature

('F) Pressure (psig) 192 375 194 375 196 375 198 375 200 375 200 420 202 429 204 439 206 449 208 459 210 470 212 481 214 493 216 505 218 517 220 531 222 544 224 559 226 573 228 589 230 605 232 622 234 639 236 657 238 676 240 696 242 716 244 738 246 760 248 783 250 807 252 832 254 858 256 885 258 913 260 942 262 973 264 1005 266 1038 268 1072 270 1108 272 1145 274 1184 276 1224 278 1266 280 1310 282 1356 284 1403 286 1452 288 1504 290 1557 292 1613 294 1670 296 1731 298 1793 300 1859 302 1926 File No.: 0800297.301 Pag~e 36 of 47 Revision: I F0306-OIRO

V StructuralIntegrityAssociates, Inc-Table 14: NMP-1 Curve C Values for 46 EFPY Plant =

Curve A Leak Test Temperature =

Curve A Leak Test Pressure psig

'F Unit Pressure = -psig(hydrostatic pressure)

Flange RTNST =

Adjusted P-T Adjusted P-T Curve Curve Temperature Pressure (psig)

(")

0 100 113 102 119 104 122 106 126 108 131 110 136 112 141 114 147 116 153 118 159 120 165 122 172 124 179 126 186 128 194 130 202 132 210 134 219 136 228 138 238 140 248 142 254 144 257 146 259 148 262 150 265 152 268 154 271 156 274 158 277 160 280 162 284 164 287 166 291 168 295 170 299 172 303 174 308 176 312 178 317 180 322 182 327 184 333 186 339 188 344 190 351 192 357 194 364 196 370 198 375 200 375 File No.: 0800297.301 Page 37 of 47 Revision: I F0306-01R0

V StructuralIntegrityAssociates, Inc.

Table 14 Continued: NMP-1 Curve C Values for 46 EFPY Adjusted P-T Adjusted P-T Curve Curve Temperature

('F) Pressure (psig) 200 385 202 393 204 401 206 409 208 418 210 427 212 437 214 447 216 457 218 468 220 479 222 490 224 502 226 515 228 528 230 542 232 556 234 570 236 586 238 602 240 618 242 636 244 654 246 672 248 692 250 712 252 733 254 755 256 778 258 802 260 827 262 852 264 879 266 907 268 936 270 967 272 998 274 1031 276 1065 278 1101 280 1138 282 1176 284 1216 286 1258 288 1301 290 1346 292 1393 294 1442 296 1493 298 1546 300 1601 302 1659 304 1718 306 1781 308 1845 310 1913 File No.: 0800297.301 Page 38 of 47 Revision: I F0306-O1RO

StructuralIntegrityAssociates, Inc.

NMP-1 Pressure Test (Curve A), 28 EFPY 1.900 1,800 1,700 1.600 1.500

.- 1.400 Lj 1.300 m 1.200 0

a got Ix 1.1000 1.000 1,00 D

I-z- 900 700 600 Beltiine Regton 500 Bolt-up I

- -- - Bottom Head 400 Temp:

60-F H Upper Vessel 300 200 100 0

0 20 40 60 80 100 120 140 160 180 200 2.20 240 260 280 300 320 340 MINIMUM REACTOR VESSEL METAL TEMPERATURE (°F)

Figure 1: NMP-1 P-T Curve A (Hydrostatic Pressure and Leak Tests) for 28 EFPY File No.: 0800297.301 Page 39 of 47 Revision: I F0306-0IRO

V StructuralIntegrityAssociates, Inc.

NMP-1 Pressure Test (Curve A), 36 EFPY 1t900 1.800 I I 1,700 1.400 1.500

.2 1.400 U) 1.2000-1.0 1.100 8-1.000 6

z D 900 m 5

'ix 4800 I 700 3

600 Beltlin e Region 500 -n f

Bolt-up - -- - Bottom Head 400 Temp:

60:F Bw I ............. Upper Vessel 300 -n -n -n 200 100 0

0 20 40 50 80 100 120 140 160 180 200 220 240 260 280 300 320 340 MINIMUM REACTOR VESSEL METAL TEMPERATURE ("F)

Figure 2: NMP-1 P-T Curve A (Hydrostatic Pressure and Leak Tests) for 36 EFPY 47 File No.: 0800297.301 Page 40 Page 40 of of 47 Revision: 1 F0306-OIRO

V StructuralIntegrity Associates, Inc-NMP-1 Pressure Test (Curve A), 46 EFPY 1,900 1t800 1.700 1.600 1,500

._* 1.400 ILI1.300 I I

1.200 o I 1- 1.100 U

1.000 z

  • - 900
  • u 800 u) m 700 0,.

600 I:I - BelfJin e Region i  ! i V

500 + +-i Bolt-up - - - Bottom Head 400 Temp:

60F liii. II .. -......... Upper Vessel 300

__j LfzLLIA I. I LI L 200 100 0 4. 4. 4.

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 MINIMUM REACTOR VESSEL METAL TEMPERATURE {F)

Figure 3: NMP-1 P-T Curve A (Hydrostatic Pressure and Leak Tests) for 46 EFPY File No.: 0800297.301 Page 41 of 47 Revision: I F0306-O1RO

3' StructuralIntegrity Associates, Inc.

NMP-1 Normal Operation - Core Not Critical (Curve B), 28 EFPY 1.900 I i I 1.800 1,700-1,600-1,500

.- ' 1.400 Ln*j I1,300 uji>12o00

.,.-I?0 p 1.000 -

g W-1100-I D

- 900

" 800 30 2700 Ioo al- 600 ____ Beeldin e Region 500 400 300 IBolt-up Tem p:

60'F

- -- - Bottom Head

. ........ Upper Vessel 200 100-0-

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 MINIMUM REACTOR VESSEL METAL TEMPERATURE (fF)

Figure 4: NMP-1 P-T Curve B (Normal Operation - Core Not Critical) for 28 EFPY File No.: 0800297.301 Page 42 of 47 Revision: I F0306-OIRO

V StructuralIntegrity Associates, Inc.

NMP-1 Normal Operation - Core Not Critical (Curve B), 36 EFPY 1,900 1.800 1.700 1.600 1.500

  • -ý1,400

" 1,300 l 1.200 1.100 1-4 ILU te 1.000

  • - 900 m 800 0

ILl 700 GL.

600 eeltin e Region 500 If If 400 300 j

fBolt-up Ternp:

60'F

-- - - Bottom Head

........... Upper Vessel 200 100 0 I I 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 MINIMUM REACTOR VESSEL METAL TEMPERATURE ('F)

Figure 5: NMP-1 P-T Curve B (Normal Operation - Core Not Critical) for 36 EFPY File No.: 0800297.301 Page 43 of 47 Revision: I F0306-OIRO

V StructuralIntegrity Associates, Inc.

NMP-1 Normal Operation - Core Not Critical (Curve B), 46 EFPY 1.900 1,800 1.700 1.600 1.500

,_' 1.400

,,-)

1.aoo

" 1.200 Ix ui 0

)- 1.100 U

I-

  • - go 9.00

" 1.00 U)

Iii S800 0 700 600 -- Beltdine Region 500 I

i-i i Bolt-up i A i i i i ; i t .~ i - - - Bottom Head I-Temp:

-400 60WF

............. Upper Vessel 300

-AIL 200 100 0

0 20 40 60 80 100 120 140 160 180 200 220 240 260 Z80 300 320 340 MINIMUM REACTOR VESSEL METAL TEMPERATURE ('F)

Figure 6: NMP-1 P-T Curve B (Normal Operation - Core Not Critical) for 46 EFPY File No.: 0800297.301 Page 44 of 47 Revision: I F0306-01RD

V StructuralIntegrity Associates, Inc.

NMP-1 Normal Operation - Core Critical (Curve C), 28 EFPY 1.900 1.800 1.600 1,500 21 1L 111U B

.- 1.40D w 1.300: J 0

uI S1,00 1.200 0

I- 1.1002 C) goo 14

  • f:3

, 1,000-w SO

- 900 W 800-LU 70O 600 500 400 i Minimium I~u~

-4 Criticality:

300

1 00: F 200 100 i i 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 MINIMUM REACTOR VESSEL METAL TEMPERATURE ('F)

Figure 7: NVIP-1 P-T Curve C (Normal Operation - Core Critical) for 28 EFPY File No.: 0800297.301 Page 45 of 47 Revision: I F0306-O1RO

C StructuralIntegrity Associates, Inc.

NMP-1 Normal Operation - Core Critical (Curve C), 36 EFPY 1.900 1

1.800 ..,..

I I 1.700 1.600 1.500

.- 1.400 EI1.3,00

> 1.200 0:

" 1.100 v- 1.002 600 10-LU1.000

=:

U' a-4 00 1 00 Minimun Criticality:

Eý 100F 0 I II 0 20 40 60 80 100 120 140 160 180 200 220 240 260 2SO 300 320 340 MINIMUM REACTOR VESSEL METAL TEMPERATUR E (fF)

Figure 8: NMP-1 P-T Curve C (Normal Operation - Core Critical) for 36 EFPY File No.: 0800297.301 Page 46 of 47 Revision: I F0306-O0RO

V Structural Integrity Associates, Inc.

NMP-1 Normal Operation - Core Critical (Curve C), 46 EFPY 1.900 1,800 1,700-1.600-1.500

.2(0 1.400 1,300 1,0 m 1.200 0

700 1.00 go I I 200 EU 800 0 700 3:1000 6O0 500 1 00 400 I I -4 Minimum  ! A ii 300 Criticality:

I O0F'F 200 I

100 F--

II I fI II

--1 11 -1 g l [

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 MINIMUM REACTOR VESSEL METAL TEMPERATURE ("FJ Figure 9: NMP-1 P-T Curve C (Normal Operation - Core Critical) for 46 EFPY.

File No.: 0800297.301 Page 47 of 47 Revision: 1 F0306-OIRO

V StructuralIntegrity Associates, Inc.

APPENDIX A:

P-T CURVE INPUT LISTING File No.: 0800297.301 Page A1 of A2 Revision: I F0306-OIRO

V StructuralIntegrity Associates, Inc.

List of Design Inputs and Source References for NMP-1 P-T Curves at 28, 36, and 46 EFPY Instrument Uncertainty Reference Reactor Vessel Metal Temperature (Hydrotest) 4 'F [171 Reactor Vessel Pressure (Hydrotest) 10 psig (171

[17]

Reactor Vessel Metal Temperature 12.2 'F [17]

Reactor Vessel Pressure 52.2 psig 1171 Geometry Vessel Radius 106.5 in [6, Table 4-5]

Vessel Shell Thickness 7.125 in [6, Table 4-5]

Bottom Head Thickness 8.75 in [10, p. A-3]

Bottom Head Radius 106.719 in [10, p. A-6]

Feedwater Nozzle Blend Radius Thickness 7.8427 in [9, Supporting Files]

Water Elevation - Full Height (pressure head) 766 in [12b]

ART/RTNOT Limiting Bottom Head RTNDT

  • 40 °F [13]

Limiting Upper Vessel (Feedwater) RTNDT 40 'F [12c, p. V-12]

Flange Region (Boltup) RTNDT 40 'F [12c, p. V-12]

Limiting Beltline ART (28 EFPY) 151.4 'F [4, Table 4]

Limiting Beltline ART (36 EFPY) 159.0 'F [4, Table 5]

Limiting Beltline ART (46 EFPY) 167.4 'F [4, Table 6]

Safety Factors/Stress Concentration Factor Core Not Critical (Curve B) Core Critical (Curve C) 2 PTLR [31 Pressure (Curve A) 1.5 PTLR [3]

Lower Penetrations (SCF) 3 PTLR [3]

Water Density 62.4 lb/ft3 Assumed Operating Pressure 1055 psig [16]

Pre-Service Hydrostatic Test Pressure 1875 psig [12a]

Static Pressure Head Adjustment 27.66 psig Calculated Temperatures Heat Up and Cool Down Rate 100 'F/hr [11]

Bolt Up Temperature 60 'F PTLR [31 Bottom head RTNDTvalue bounded by that of the upper vessel/flange File No.: 0800297.301 Page A2 of A2 Revision: 1 F0306-O1RO

V StructuralIntegrity Associates, Inc.

APPENDIX B:

INCREASED COOL-DOWN RATE P-T CURVE File No.: 0800297.301 Page BI of B5 Revision: 1 F0306-OIRO

V StructuralIntegrity Associates, Inc.

BLO INTRODUCTION This appendix modifies the Nine Mile Point, Unit 1 P-T curves for a heat-up/cool-down rate of up to 200°F/Hr. A single curve is presented that bounds the beltline, bottom head, and non-beltline (feedwater nozzle / upper vessel) regions and is valid for up to 46 EFPY. The curve bounds the following plant conditions: Operating Pressure (Leak) Test (Curve A), Normal Operation - Core Not Critical (Curve B),

and Normal Operation - Core Critical (Curve C). The curve is developed using the methodology of the 2001 Edition, 2003 Addenda of the ASME Code,Section XI, Appendix G [1], and IOCFR50 Appendix G [2]. This appendix has been developed in accordance with the methodology of the BWROG Licensing Topical Report, "Pressure-Temperature Limits Report Methodology for Boiling Water Reactors" [3]. This appendix is provided for engineering purposes only and is not intended to be included in the PTLR.

B2.0 MIETHODOLOGY The methodology for calculating the P-T curve described in Section 2.0 remains unchanged. Only the calculation of the thermal stress intensity factor, Kit, is affected by the increased heat-up / cool-down rate. Kit is computed in different ways based on the evaluation region. As described in Section 2.0, the feedwater nozzle / upper vessel region Kit is obtained from the stress distribution output of a finite element model. The transient "Turbine Roll and Increase to Rated Power" consists of a 450'F step change [14], which bounds the increased heat-up / cool-down rate. Thus, the Kit calculation for the feedwater nozzle / upper vessel region is unaffected. For the beltline and bottom head regions, Kit is determined based on the ASME Section XI, Nonmandatory Appendix G method, using the following equation from Section 2.0:

0.953 x 1063 -CR. t 2 5 Ki, = (3)

Where: CR = the cooldown rate of the vessel (°F/hr).

t = the RPV wall thickness, unique for each region (in).

B3.0 CALCULATIONS The P-T curve is developed using an Excel spreadsheet, which is independently verified for use on a project-specific basis in accordance with SI's QA Program.

Figure BI presets the bounding curve for a 200°F/Hr heat-up / cool-down rate. This information is also presented in tabular form in Table B1. The P-T curve bounds the beltline, bottom head, and non-beltline (feedwater nozzle / upper vessel) regions and is valid for up to 46 EFPY. The curve bounds the following plant conditions: Operating Pressure (Leak) Test (Curve A), Normal Operation - Core Not Critical (Curve B), and Normal Operation - Core Critical (Curve C).

File No.: 0800297.301 Page B2 of B5 Revision: 1 F0306-OIRO

V StructuralIntegrityAssociates, Inc.

Table BI: NXP-1 Bounding P-T Curve for 200 0 F/Hr Heat-up / Cool-Down Plant:~tPMr Curve A Leak Test Temperature *

  • riS12'2 "F Curve A Leak Test Pressure: =P5 Unit Pressure psig (hydrostatic pressure)

Flange PRTr s o Adjusted P-T Adjusted P-T CCurve Temperature C' e F) Pressure (psig) 100 0 100 46 102 47 104 48 106 49 108 s0 110 51 112 53 114 54 116 55 118 57 120 56 122 60 124 62 126 63 128 65 130 67 132 69 134 71 136 73 138 75 140 77 142 80 144 82 146 85 148 87 150 90 112 93 154 96 156 99 158 102 160 105 162 109 164 113 166 116 168 120 170 124 172 129 174 133 176 138 178 143 180 148 182 153 184 158 186 164 188 170 190 176 192 182 194 189 196 196 198 203 200 210 200 210 202 218 204 226 206 235 208 243 210 252 212 262 214 272 216 282 218 293 220 304 File No.: 0800297.301 Page B3 of B5 Revision: 1 F0306-O]RO

StructuralIntegrityAssociates, Inc.

Table Bi Cont.: NMIP-1 Bounding P-T Curve for 200°F/Hr Heat-up / Cool-Down Adjusted P-T Curve urve Adjusted P-T Temperature IepeatrePressure (psig) 222 315 224 328 226 340 228 353 230 367 232 383 234 396 236 411 238 427 240 444 242 461 244 479 246 498 248 517 250 537 252 558 254 580 256 603 258 627 260 652 262 678 264 705 266 733 268 7Q2 270 793 272 823 274 856 276 890 278 926 280 963 Z82 1001 284 1041 286 1083 288 1126 290 1172 292 1219 294 1267 296 1318 298 1371 300 2427 302 1484 304 1544 306 1606 308 1671 310 1738 312 1808 314 1881 316 1957 File No.: 0800297.301 Page B4 of B5 Revision: I F0306-OIRO

V Structural IntegrityAssociates, Inc.

NMP-1 Normal Operation - Core Critical (Curve C), 46 EFPY 200"F/hr Heatup/Cooldown 1,900 1.800 1,700 I

1.600 1.500 S1.400 d 1.300 1,200 I I- 1,100

= 1.000 z

l 900 a.

7s00 "800 Goo S00 400 Minimum Criticality:

300 100T' r

200 100 0

0 20 40 60 80 100 120 140 160180 200 220 240260 280 300 320 340 MINIMUM REACTOR VESSEL METAL TEMPERATURE fF)

Figure Bi: NMi-1 Bounding P-T Curve for 200'F/Hr Heat-up / Cool-Down File No.: 0800297.301 Page B5 of B5 Revision: I F0306-O1RO

6ý StructuralIntegrity Associates, Inc.

APPENDIX C:

ANSYS SUPPORTING FILES File No.: 0800297.301 Page CI of C2 Revision: I F0306-O1RO

C StructuralIntegrity Associates, Inc.

The following list of electronic files is included in the project files:

FILE NAME DESCRIPTION NMPFWNGEOM.inp ANSYS input file for creation of nozzle geometry NMPFWN PRES.inp ANSYS input file for application of pressure loads NMPFWNTHSTR.inp ANSYS input file for application of thermal shock Blend Radius Stress Intensity output file from extraction of Thermal Load Application BRFLW.OUT (Used only to determine nozzle corner thickness)

Blend Radius Stress Intensity output file from extraction of Pressure Load Application BRPRESFLW.OUT (Used only to determine nozzle corner thickness) map stress_press.POS Hoop stress extraction file for Blend Radius location from Pressure Load application mapstress therm.POS Hoop stress extraction file for Blend Radius location from Thermal Shock application MAPPRESSHOOP_1.TXT Output file containing hoop stresses for Blend Radius location from Pressure Load MAP TH HOOP_1.TXT Output file containing hoop stresses for Blend Radius location from Thermal Shock MAP PRESS HOOP l(Scaled).TXT Output file containing scaled hoop stresses for Blend Radius location from Pressure M S H P -Load Excel file containing Blend Radius polynomial coefficients and Kit (scaled hoop MAPPRESSHOOP 1(Scaled).xls stresses) from Pressure Load MAPTH HOOP_I.xis Excel file containing Blend Radius polynomial coefficients and Kit from Thermal Shock File No.: 0800297.301 Page C2 of C2 Revision: I F0306-OIRO