ML17037C516: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(Created page by program invented by StriderTol)
 
(3 intermediate revisions by the same user not shown)
Line 3: Line 3:
| issue date = 01/22/1974
| issue date = 01/22/1974
| title = Letter Submitting Analyses Which Determine Effects of Fuel Densification and Appropriate Changes to Technical Specifications for Fuel to Be Inserted During Spring 1974 Refueling
| title = Letter Submitting Analyses Which Determine Effects of Fuel Densification and Appropriate Changes to Technical Specifications for Fuel to Be Inserted During Spring 1974 Refueling
| author name = Raymond P D
| author name = Raymond P
| author affiliation = Niagara Mohawk Power Corp
| author affiliation = Niagara Mohawk Power Corp
| addressee name = Ziemann D L
| addressee name = Ziemann D
| addressee affiliation = US Atomic Energy Commission (AEC)
| addressee affiliation = US Atomic Energy Commission (AEC)
| docket = 05000220
| docket = 05000220
Line 15: Line 15:


=Text=
=Text=
{{#Wiki_filter:AEC DXS UTION FOR PART 50 DOCKET MATER (TEMPORARY FORM)CONTROL NO: FILE: 8 FROAA1: Niagara Mohawk Power Corp Syracuse, N;Y.13202 P.D.Raymond DATE OF DOC 1-22-74 DATE REC'D 1-23-74 LTR MEMO RPT OTHER TO: D.L.Ziemann ORIG 3 signedq CC OTHER SENT AEC PDR x SENT LOCAL PDR X CLASS UNCLASS XXXX PROP INFO INPUT XXXX NO C S REC'D 40 DOCKET NO: 50-220 DESCRIPTION:
{{#Wiki_filter:AEC DXS     UTION FOR PART 50 DOCKET MATER (TEMPORARY FORM)                               CONTROL NO:
Ltr notarized 1-22-74, trans the following:
FILE: 8 FROAA1:                                 DATE OF DOC        DATE REC'D            LTR    MEMO    RPT    OTHER Niagara Mohawk Power Corp Syracuse, N; Y. 13202                       1-22-74         1-23-74 P. D. Raymond TO:                                           ORIG          CC      OTHER              SENT AEC PDR          x D. L. Ziemann                       3   signedq                                 SENT LOCAL PDR         X CLASS     UNCLASS       PROP INFO             INPUT       NO C S     REC'D             DOCKET NO:
PLANT NAME: Nine Mile Point Unit$P1 ENCLOSURES:
XXXX                              XXXX                  40                    50-220 DESCRIPTION:                                                ENCLOSURES:
Pro osed Chan e to Technical S ecifications:
Ltr notarized 1-22-74, trans the following:                 Pro osed Chan e to Technical           S ecifications:
Densification Analyses and Related Technical Specifications Changes for Type 5 and Type DO NOT REMOVE ACKNOWLEDGED (3 Orig 6 37 cys rec'd)FOR ACTION/INFORMATION 1-23-74 GC BUTLER (L)W/Copies CLARK(L)W/Copies GOLLER(L)W/Copies KNIEL(L)W/Copies SCHWENCER(L)
Densification       Analyses and Related Technical Specifications       Changes for Type 5 and Type DO NOT REMOVE ACKNOWLEDGED PLANT NAME:    Nine Mile Point Unit    $P1                  (   3 Orig 6 37 cys rec'd )
W/Copies STOLZ(L)W/Copies VASSALLO(L)
FOR ACTION/INFORMATION                 1-23-74   GC BUTLER (L)         SCHWENCER(L)          ~Z IEMANN(L)                REGAN (E)
'W/Copies SCHEMEL(L)
W/   Copies         W/   Copies               W/ 9Copies                W/   Copies CLARK(L)           STOLZ(L)                  DICKER(E)
W/Copi s~Z IEMANN (L)W/9Copies DICKER(E)W/Copies KNIGHTOH(E)
W/ Copies           W/ Copies '               W/ Copies                 W/   Copies GOLLER(L)           VASSALLO(L)               KNIGHTOH(E)   "
"'/Copies YOUNGBLOOD(E)
Copies
W/Copies INTERNAL DISTRIBUTION REGAN (E)W/Copies W/Copies W/Copies W/Copies AEC PDR+GCF RSM P-506A~NTZING/STAFF CASE GIAMBUSSO BOYD MOORE (L)(BWR)DEYOUNG (L)(FllR)O'SKOVHOLT (L)P, COLLINS FILE&REGION(d))
                                                                '/
MORRIS STEELE TECH REVIEW HENDRXE SCHROEDER MACCARY KNIGHT PAWLXCKI SHAO S TELLO HOUSTON NOVAK ROSS XPPOLITO TEDESCO LONG LAINAS BENAROYA VOLLMER DEN TON GRIMES GAMMXLL KAS THER BALLARD SPANGLER ENFIRO MULLER DXCKER BRIGHTON YOUNGBLOOD REGAN PROJECT LDR HARLESS LIC ASST HIGGS (L)GEARIN (L)GOULBOURNE (L)LEE (L)MAXGRET (L)SERVICE (L)SHEPPARD (E)SMITH (L)TEETS (L)WADE (E)WILLIAMS (E)WXLSON (L)A/T IND BRAITMAN SALTZMAN B, HURT PLANS MCDONALD~UBE w/Xnput INFO C, MILES B.KING v4.CABELL-LOCAL PDR Oswe o N.Y.-DTXE(ABERNATHY)
W/ Copies           W/ Copies                      Copies              W/
M-NSIC(BUCHANAN) 1-ASLB(YORE/SAYRE/
KNIEL(L)            SCHEMEL(L)                YOUNGBLOOD(E)
WOODARD/"H" ST.~6-CYS ACRS MQDi}MK SENT TO 1-23-74 EXTERNAL DISTRIBUTION (I)(2XIO).NATIONAL LAB'S I-ASLBP(E/Il Bldg,gm 529)1-W.PENNINGTON>
W/   Copies         W/ Copi s                W/   Copies             W/   Copies INTERNAL DISTRIBUTION TECH REVIEW            DEN TON                                        A/T IND HENDRXE                GRIMES            LIC ASST                    BRAITMAN AEC PDR
Rm E" 201 GT 1-CONSULTANT'S LXC~ASST'EWARK/BLUME/AGBABIAN DXGGS, 1-GERALD ULRIKSON...ORNL 1-PDR-SAN/LA/NY 1-GERALD LELLOUCHE BROOKHAVEN HAT.LAB 1"AGMED(Ruth Gussman)RM-B-127, GT.1<<RD..MULLER.,F-309 GT lj l~~0 P h I'~
+GCF RSM P-506A         SCHROEDER              GAMMXLL        HIGGS (L)                      SALTZMAN
t, h'egUlatory Docket File NIAGARA MOHAWK POWER CORPORATION NIAGARA~MOHAWK 300 ERIE BOULEVARD, WEST SYRACUSE.N.Y.13202 January 22, 1974 Mr.Dennis L.Ziemann, Chief Operating Reactors Branch 82 Directorate of Li cens ing United States Atomic Energy Commission Washington, D.C.20545
~NTZING/STAFF           MACCARY                KAS THER            GEARIN (L)                 B, HURT CASE                  KNIGHT                  BALLARD            GOULBOURNE    (L)         PLANS GIAMBUSSO              PAWLXCKI                SPANGLER            LEE  (L)                 MCDONALD BOYD                  SHAO                                        MAXGRET    (L)         ~UBE w/Xnput MOORE (L) (BWR)       S TELLO                 ENFIRO             SERVICE    (L)
DEYOUNG (L) (FllR)     HOUSTON                MULLER              SHEPPARD    (E)           INFO O'SKOVHOLT    (L)       NOVAK                  DXCKER              SMITH   (L)               C, MILES P, COLLINS            ROSS                    BRIGHTON            TEETS   (L)               B. KING XPPOLITO              YOUNGBLOOD        WADE   (E)             v4. CABELL TEDESCO                REGAN              WILLIAMS (E)
FILE & REGION(d))      LONG                    PROJECT LDR        WXLSON   (L)
MORRIS                LAINAS STEELE                  BENAROYA              HARLESS VOLLMER EXTERNAL DISTRIBUTION
    - LOCAL PDR     Oswe o   N. Y.
    - DTXE(ABERNATHY)                   (I) (2XIO).NATIONALLAB'S                              1-PDR-SAN/LA/NY M  - NSIC(BUCHANAN)                                 I-ASLBP(E/Il Bldg,gm 529)
E" 201 GT 1-GERALD LELLOUCHE BROOKHAVEN HAT. LAB 1 - ASLB(YORE/SAYRE/                              1-W. PENNINGTON>       Rm WOODARD/"H" ST.                                1-CONSULTANT'S                           1"AGMED(Ruth Gussman)
~6  -  CYS ACRS  MQDi}MK SENT TO  LXC ~   ASST'EWARK/BLUME/AGBABIAN 1-GERALD ULRIKSON...ORNL RM-B-127, GT.
1<<RD..MULLER.,F-309   GT 1-23-74  DXGGS,


==Dear Mr.Ziemann:==
l lj
JAN23)974~
          ~ ~
'L'In A)EIIpn~It-iiVu~~Re: Nine Mile Point Unit 1 AEC Docket No.50-220 Niagara Mohawk Power Corporation has committed in its letter of October 15, 1973 to supply analyses to determine the effects of fuel densi-ficationn and the appropriate changes to Technical Specifications for the fuel to be inserted during the Spring 1974 refueling.
0 P h I'
The analyses have been performed using the, guidance provided in the enclosure to your December 5, 1973 letter,"Modified GE Model f'r Fuel Densification".
        ~
These analyses and the proposed Techni:cal Specification changes are attached herewith.It is anti cipated that these changes will not limit plant power level below its full design rating of 1850 megawatts for power distributions expected during normal operation.
The Site Operations Review Commjttee and the Safety Review and.Audit Board concur with these proposed Telchnical Specification changes.Very truly yours, Vi ce esi dent-Engineering
/sq Attachment Subscribed and sworn to before me this~~ay of January, 1974.VALERIE hl.KELLY Notery Pobhc in the'tete of New York Qoeliiled In Onon.Eo..No.3C n50C729~My Corernlrrlon fnplret"Merch 30r l9 r I r r'~,JANP3)ygI EENCE'Uqp lrQQ,~fyICII)CEERX r I  
~.,,,,<<,, Regulatory Docket File Specification Changes For goaeraa~e.
n naiad Type 5 and Type 6 Fuel I.Anal ses of Fuel Densification Effects This section presents results of the effects of densification in the 8x8 reload fuel as determined from application of the models described in J Re fer'ence 1.A.Local Power Spikin A'n analysi's of potential local power.spikes due to axial gaps in a fuel pellet column for General Electric BMR's employinq an Rx8 fuel lattice design has been performed.
This analysis employs the same method and basic assumotions that were reported in Reference l.Important asnects.'f thi s analys i s are noted as fo1 1 ows: l.The, equation employed to calculate maximum qap size is that noted in Reference 1: dL=~965-+0.0025)L 2 where dL=maximum axial qao length L=fuel column length Pi=mean value of measured initial p llet density (immersion
-.5X)0.0025=allowance for irradiation induced cladding growth and axial strain caused by fuel-clad mechanical interacti on.2.The magnitude of the power spike versus gap size for fuel rods of the 8x8 desiqn is shown in Figure 1 for normal operating condi ti ons and Fi gure 2 for col d zero voi d condi ti ons.
~4  3.The core power histogram employed v>>as for a 13.4 kl</ft C maximum design linear heat generation rate:.see Figure 3.The results from this analysis are shown in Fiaure 4 with initial fuel density as a parameter.
The line shown for an initial fuel density of 95%T.D.is considered to be most representative considering curr nt General Electric data on manufactured fuel pellet densities.
The power snike penalty shown in Figure 4 for several mean pellet densities as a function of axial position, is the required margin which must be maintained durinq normal ooeration between the actual peak operating condition and the oeak design LHGR;i.e., 13.4 kM/ft, Maintaining this margin will assure, with better than 95%confidence, that no more than one rod will exceed the desi qn neak LHGR due to the random occurrence of power spikes-resulting from axial fuel column gans.Consistent with General Electric's position on densification previously discussed in Reference 2 and its supplements, the results of this analysis are considered to he a very conservative representation of the power oeakinq penalty requi red to accommodate 4 potential axial fuel column gaps during normal operating conditions in General Electric BHR's.Since the results of the power spikinq analysis for normal oneration will be utilized to limit bundle power to assure that the random occurrence of power spikes will not result in exceeding the design peak LHGR, it is not believed necessary to separately consider power snikes in the analysis of transients or accidents which have as an initial condition some form of normal oneration.
The control rod drop acci dent is unique in the respect that it begins at the cold condi tion, and is not affected by normal operating power level.Further, the existence of fuel column gaps can result in oower spiking in the cold condition during a control rod drop which should thus be considered in the evaluation of this accident.For this purpose, a separate power spikinq analysis has been performed using the same assumptions as indicated above, but employina a power spi ke versus gap si ze calculated to occur in the cold condi tion with zero voWs (Fi gure 2).This analysis was performed for a conservative maximum gap si ze calculated employing a pellet average immersion density of 94.5&#xc3;T.D., and a position near the top of the core in order to maximize the oower sniking effect.This analysis yielded a 99K probabil'ity th'at any qiven fuel rod would have a power spike of 45K.B.Cladding Creep Collapse Using the same conservative bases presented in References 1 and 2, the critical pressure ratio;i.e., ratio of collapse pressure to actual coolant pressure, was calculated.
Figure 5 presents the clad mid-wall temperature versus time for the 8x8 reload fuel..No credit is taken for internal qas pressure due to released fissi on gas or volati les.The internal pressure due to helium backfill at 1 atmosphere during fabrication is considered.
The fuel characteristics for creep collapse'calculations are as follows: Clad O.D., in.Clad Thickness, in.0.493 0.034+0:003 Peak LHGR, kw/ft 13.4 Fast Flux vl Nev.n/cm2-sec 4.37 x 1013 Figure 6 gives the calculated critical pressure ratio.As evidenced by the curve, the calculated critical oressure ratio is always o1.0.C.Increased Linear Heat Generation Rate The following expression was employed to calculate the decrease in fuel column length due to densification in calculation of a penalty in linear heat generation rate:~0.965-5L=2 L 0~I Where hL=decrease in fuel column.length L=fuel column length p;=mean value of measured initial pellet density (immersion
-.5/}The length reduction due to densification as calculated by the above equation requires knowledge of the mean immersion density (p;}obtained from the gC data.A correction of 0-.5A T.D.is applied to convert the immersion densi ty to a geometric density.The mean pellet immersion density for Nine Mile Point 1 8xS reload fuel is 95.29/.T.D.This results in: A L=0.965-0.9529-0.005=0.01709=0.009 L 2 2 or AL=0.9X L Due=-to thermal expansion, an SxS pellet normally exnands in goinq from the cold to hot condition, an amount equal to 1.25 for a pellet at 13.4 kW/ft.This increase in length from the cold to hot condition is not taken credit for in either design calculations or in the process of core nerformance analysis during reactor operations.
The cold pellet length is assumed for these condi ti ons.Therefore, the decrease in pellet length due to densification is more than offset by pellet axial thermal expansion.
D.Decreased Pellet-Cl ad Thermal Conducti vi t Figure 7 provides plots of Maximum Average Planar Linear Heat Generation Rate (MAPLHGR)versus exposure, for Nine Mile Point Sx8 reload fuel.Them (omega}curve is suitable for incorporation into the plant technical specifications.
The LOCA analyses were performed using the approved Interim Acceotance Criteria Model with gap conductance values as calculated per the new GEGAP III model with AEC modifications.(1
}


REFERENCES l.Hinds, J.A., (General Electric)letter to Y.A.Hoore (USAEC),"Plant Evaluations with GEGAP III," December 12, 1973.2."Generic Design Information for General Electric Reload Fuel", NEDO-20103; September 1973.3.NEDtl-10735, Supplement 6,"Fuel Densification Effects on General Electric Boiling Mater Reactor Fuel," August 1973.  
t, h'egUlatory Docket File NIAGARA MOHAWK POWER CORPORATION NIAGARA
                                                                            ~      MOHAWK 300 ERIE BOULEVARD, WEST SYRACUSE. N. Y. 13202 January 22, 1974 JAN23)974~
A)EIIpn ~ 'L'In It-iiVu~~
Mr. Dennis L. Ziemann, Chief Operating Reactors Branch 82 Directorate of Li cens ing United States Atomic Energy Commission Washington, D. C.                         20545


, 7.0~FIGURE 1 8x8 POWER SPIKE VERSUS GAP SIZE-NORMAL OPERATION 6.0 5.0 hP p 4.0 (I)3.0 2.0 1.0 0 ROD RELATIONSHIP (g O2 Oe O2 O3 O5 O~05 g on adjacent P ellet-n pod 59~op g~o~on go<~9@9 d yp on Rod 8 ap in Ro grec c d g5 on Rod 81 Effect of a gap in Ro Ef fec of a 9 d g4 on Rod N Effect of a 9ap 0 1.0 2,0 3.0 GAP SIZE (CM)4.0 5.0 6.0
==Dear Mr. Ziemann:==


FIGURE 2 8x8 POWER SPIKE VERSUS GAP SIZE-COLD ZERO VOID CONDITION ROD RELATIONSHIPS Ol O2 O4 02 03 05 o~O4 O~0~~0 o~d>on Rod 1 in Ro og gaP~"<~g.ect o Rod 4 on Rod 1 Effect of qap in R Effect of gap vari Rod 5 on Rod]GAP SIZE (Cg)
Re:  Nine Mile Point Unit 1 AEC Docket No. 50-220 ficationn Niagara Mohawk Power Corporation has committed in its letter of October 15, 1973 to supply analyses to determine the effects of fuel densi-and the appropriate changes to Technical Specifications for the fuel to be inserted during the Spring 1974 refueling. The analyses have been performed using the, guidance provided in the enclosure to your December 5, 1973 letter,          "Modified          GE    Model  f'r  Fuel  Densification".
These analyses and the proposed Techni:cal Specification changes are attached herewith.                      It  is anti cipated that these changes will not limit plant power level below its full design rating of 1850 megawatts for power distributions expected during normal operation.
The Site Operations Review Commjttee and the Safety Review and. Audit Board concur with these proposed Telchnical Specification changes.
Very    truly yours, Vi ce        esi dent-Engineering
          /sq Attachment r'~,
Subscribed and sworn to before me this                ~~ay of January, 1974.
JANP3)ygI EENCE'Uqp lrQQ, ~fyICII VALERIE hl. KELLY                                                )CEERX Notery Pobhc in the'tete of New York Qoeliiled In Onon. Eo.. No. 3C n50C729 My Corernlrrlon fnplret "Merch 30r l9
                                                        ~       r Ir


FIGURE 3 4.0 1.2 1.0.8.6 A'.0 C).2 0 12 LHGR (KH/FT=X)13 14 0
r I


FIGURE 4 8x8 POMER SPIKE PENALTY YS AXIAL POSITION-NORMAL OPERATION 1.0 2.0 3.0 96,0 95.0 4.0 4.0 3.0 94.0 2.0 95.0 96.0 5 6-7 DISTANCE FROM BOTTOM OF CORE (FEET)8 10 12
                        ~.,,,,<<,,                                  Regulatory Docket File Specification    Changes Type 5 and Type 6 Fuel For                goaeraa~e. n naiad I. Anal ses      of  Fuel Densification    Effects This section presents          results of the effects of densification in the 8x8 reload fuel as determined from application                of the  models described      in J
Re fer'ence 1.
A. Local Power Spikin A'n  analysi's of potential local      power. spikes due to axial gaps in a  fuel pellet column for General Electric            BMR's employinq an Rx8          fuel lattice    design has been performed.         This analysis employs the          same method and  basic assumotions        that were reported in Reference          l. Important asnects
  .'    f thi s  analys  is  are noted as fo1 1 ows:
: l. The, equation employed    to calculate    maximum qap      size is that noted in    Reference  1:
dL  =  ~965 -        +  0.0025)    L 2
where dL  = maximum  axial  qao  length L  =  fuel column length Pi  = mean  value  of measured initial
                                              - .5X)                    p  llet  density (immersion 0.0025      =  allowance  for irradiation    induced cladding growth and  axial strain caused by fuel-clad mechanical interacti on.
: 2. The magnitude    of the  power spike versus gap size          for fuel  rods of the  8x8 desiqn  is shown  in Figure    1  for  normal operating condi ti ons  and Fi gure 2  for  col d zero voi d condi    ti ons.


690 FIGURE 5 CLADDING AVERAGE TEMPERATURE AT A FUEL COLUMN AXIAL GAP 680 670 660 650 0 640 UJ 630 620 8 6'j0 a-600 590 580 570 560 550 0 IRRADIATION TIME, YEARS
~ 4
: 3. The core power    histogram employed        v>>as for    a 13.4 kl</ft C
maximum design    linear heat generation rate:.          see  Figure 3.
The  results from this analysis are        shown  in Fiaure    4  with    initial    fuel density    as a  parameter. The  line  shown    for  an  initial    fuel density of      95%
T.D. is considered to be most representative            considering curr nt General Electric data on manufactured fuel      pellet densities.        The power    snike penalty shown in Figure  4  for several  mean  pellet densities      as a    function of axial position, is the required margin which must be maintained durinq normal ooeration between the actual peak operating condition and the oeak design                LHGR;    i.e.,  13.4 kM/ft, Maintaining this margin      will  assure, with better than        95%    confidence, that    no more than one rod    will exceed    the desi  qn neak LHGR due      to the    random occurrence of  power spikes-  resulting from axial fuel        column gans.      Consistent with General Electric's position      on  densification    previously discussed in Reference              2 and its  supplements,    the results    of this analysis      are considered to he        a very conservative representation        of the  power oeakinq penalty requi red4 to  accommodate potential axial fuel      column gaps during normal operating conditions                in General Electric    BHR's.
Since the results      of the  power  spikinq analysis for normal oneration              will be utilized to limit bundle      power  to assure that the        random occurrence        of  power spikes  will  not result in exceeding the design peak            LHGR,    it is  not believed necessary    to separately consider power snikes in the analysis of transients or accidents which have      as an  initial  condition    some  form  of    normal oneration.      The control rod drop acci dent is unique in the respect that                it begins    at the cold condi tion,  and  is not affected    by normal operating power          level.      Further, the existence of fuel column gaps can result in oower spiking in the cold condition


===4.0 FIGURE===
during    a  control rod drop which should thus              be    considered in the evaluation of this accident.        For this purpose,        a  separate    power    spikinq analysis    has been performed using the same assumptions                as  indicated above, but employina          a  power spi ke versus gap si ze calculated to occur in the cold condi tion with zero voWs
6 CLAD CRITICAL COLLAPSE PRESSURE RATIO VERSUS TIME 8x8 RELOAD FUEL 3.0 1.0 2 3 IRRADIATION TIME, YEARS 0
( Fi gure  2). This analysis was performed for              a  conservative    maximum gap    si ze calculated employing        a  pellet  average      immersion density        of 94.5&#xc3; T.D., and      a position near the top of the core in order to maximize the oower sniking effect.
I7 16 FIGURE 7 MAPLHGR VERSUS EXPOS'MAXIMUM ALLOWABLE TO STAY BELOW CURRENT TECHNICAL SPECIFICATION LIMIT FOR LHGR 0 MAXIMUM ALLOWABLE WITH GEGAP III AND AEC lODI FICATIONS 15~14 13~12 OC 10 0 5,000 10,000 15,000 20,000 AVERAGE PLANAR EXPOSURE (mWd/t)25,000 30,000  
This analysis yielded          a 99K  probabil'ity th'at      any qiven      fuel rod would have      a power spike of 45K.
B. Cladding Creep Collapse Using the same conservative bases              presented    in References    1  and 2,    the critical    pressure    ratio; i.e., ratio of collapse              pressure to actual coolant pressure,    was  calculated.      Figure    5  presents    the clad mid-wall temperature versus time      for the  8x8 reload      fuel..      No  credit is taken for internal          qas  pressure due  to released      fissi on  gas  or volati les.         The    internal pressure    due  to helium backfill at      1 atmosphere    during fabrication is considered.                The  fuel characteristics for  creep collapse 'calculations          are as follows:
Clad O.D.,    in.                                   0.493 Clad Thickness,     in.                    0.034    +  0:003 Peak LHGR,    kw/ft                                13. 4 Fast Flux vl Nev. n/cm2-sec                  4.37 x 1013 Figure  6  gives the calculated          critical    pressure    ratio. As  evidenced by the curve, the calculated          critical      oressure    ratio is      always o1.0.
C. Increased Linear Heat Generation Rate The  following expression        was employed        to calculate the decrease in fuel column length due        to densification in calculation of                a  penalty in linear heat generation rate:
                                            ~0. 965 5L  =          2          L


II.Proposed Chan es to Techni cal Speci fi cations Change pages 37a, 37b, 37c, etc.as follows:~Chan e A Add the attached Figure 3.1.7e to the Technical Specification.
0 ~ I Where hL = decrease        in fuel column. length L =  fuel column length p;  = mean    value of measured        initial pellet density (immersion - .5/}
Under the Limiting Condition for Operation 3.1.7, add Figure 3.1.7e to the list of figures at the end of the last sentence in paragraph a.~Chan e B Rep'lace the notes;to the equation in Limiting Conditions for Ooeration 3.1.7b wi th the following:
The  length reduction        due  to densification      as  calculated by the above equation requires knowledge of the              mean  immersion density      (p;} obtained from the  gC  data. A  correction of      0-.5A T.D. is applied to convert the immersion densi ty to  a  geometric density.          The mean    pellet    immersion density    for Nine Mile Point    1  8xS    reload fuel is 95.29/. T.D.          This results    in:
" LHGRd=Design LHGR=17.5 kw/ft for 7x7 fuel or 13.4 kw/ft for 8x8 fuel Qp/p)~AX=Maximum power spiking penalty'0.040 for 7x7 fuel or 0.027 for Bx8 fuel.LT=Total Core lenath=12 ft.L=Axial posi tion above botton of core"~Chan e C Add Figure 3.1.7e to the list of fiqures in the third oaraaranh of the Bases 3.1.7a.Reasons for Chan es A, B R C The results of analyses performed for 8x8 reload fuel has indi cated that limits on flAPLHGR and power soiking oenalties due to densification are required.These limits as they apply to Type 5 and Type 6 fuel are presented for incorporation into Nine Nile Point Unit 1 Technical Specifications.
AL    =  0.965  - 0.9529 - 0.005      =  0.01709  = 0.009 L                      2                      2 or AL    =  0.9X L
Similar limits for previously loaded 7x7 fuel are already nart of-the'echni cal Speci fi cati ons.
Due =-to  thermal expansion,        an SxS  pellet normally      exnands  in goinq from the cold to hot condition,          an amount equal      to 1.25 for    a pellet at 13.4 kW/ft.
J IE 17 NINE hflLE POINT-PilIT 1 16~4~14~13~12 OC 10 0 5,000 10,000 15,000 20,000 AVERAGE PLANAR EXPOSURE (ml<d/t)25,000 30,000 FIGURE'.1.7.e ftAXIf GAUM ALLOWABLE AVERAGE PLANAR LHGR APPLICABLE TO FUEL TYPE 5 and 6 0 0 A'l}}
This increase in length from the cold to hot condition is not taken credit                      for in either design calculations or in the process of core nerformance analysis during reactor operations.            The  cold pellet length is assumed for these condi ti ons.
Therefore, the decrease          in pellet length      due  to densification is  more than  offset    by  pellet axial      thermal expansion.
D. Decreased      Pellet-Cl  ad Thermal      Conducti vi t Figure    7  provides plots of        Maximum Average      Planar Linear Heat Generation Rate (MAPLHGR) versus exposure,            for  Nine Mile Point Sx8 reload        fuel. Them    (omega}
curve is suitable for incorporation              into the plant technical specifications.
The LOCA      analyses were performed using the approved Interim Acceotance Criteria  Model    with    gap conductance      values  as  calculated per the    new GEGAP  III model  with  AEC  modifications.(1      }
 
REFERENCES
: l. Hinds, J.A., (General Electric) letter to Y.A. Hoore (USAEC),
  "Plant Evaluations with GEGAP III," December 12, 1973.
: 2. "Generic Design Information  for General Electric Reload Fuel",
NEDO-20103; September 1973.
: 3. NEDtl-10735, Supplement 6, "Fuel Densification Effects on General Electric Boiling Mater Reactor Fuel," August 1973.
 
FIGURE    1 8x8  POWER  SPIKE VERSUS    GAP  SIZE  -  NORMAL OPERATION
    , 7.0  ~
6.0          ROD RELATIONSHIP (g  O2  Oe 5.0 O2  O3  O5 hP p    4.0        O~  05 (I)                                            adjacent    P ellet 3.0                    -n pod  g  on 59                      ~op  g
                  ~o                    ~ on 2.0                        go<
on Rod 8
                        ~
9@9                          in  Ro d yp of  a 9 ap grecc                Ef fec                                d g4 on Rod N
1.0 Effect of a 9ap in  Ro d g5 on Rod 81 Effect of a    gap 0
0  1.0            2,0            3.0            4.0              5.0          6.0 GAP  SIZE (CM)
 
FIGURE 2 8x8 POWER  SPIKE VERSUS  GAP  SIZE  - COLD ZERO VOID CONDITION ROD RELATIONSHIPS Ol    O2    O4 02    03    05 o~
O4    O~
0 1
on Rod Ro d >
                ~~0 o~                              in
                                              ~"
og gaP o
                              <~g.ect in  Rod R    4 on Rod  1 Effect of  qap Effect of  gap  vari Rod 5 on Rod ]
GAP  SIZE (Cg)
 
FIGURE 3 4.0 A'.0 1.2 1.0
.8 C)
  .6
.2 0                          0 12                  13 14 LHGR (KH/FT = X)
 
FIGURE 4 8x8 POMER SPIKE PENALTY YS AXIAL POSITION  - NORMAL OPERATION 1.0 2.0                                                                  96,0 95.0 3.0 4.0 4.0 3.0 94.0 2.0 95.0 96.0 5        6 7        8          10 12 DISTANCE FROM BOTTOM OF CORE (FEET)
 
FIGURE 5 CLADDING AVERAGE TEMPERATURE AT A FUEL COLUMN AXIAL GAP 690 680 670 660 650 0
640 UJ 630 620 8  6'j0 a- 600 590 580 570 560 550 0
IRRADIATION TIME, YEARS
 
FIGURE 6 CLAD CRITICAL COLLAPSE PRESSURE RATIO VERSUS TIME 8x8 RELOAD FUEL 4.0 3.0 1.0 2                  3 IRRADIATION TIME, YEARS
 
0 FIGURE 7 MAPLHGR VERSUS EXPOS I7 MAXIMUM ALLOWABLE TO STAY BELOW CURRENT TECHNICAL SPECIFICATION LIMIT FOR LHGR 0 MAXIMUM ALLOWABLE WITH GEGAP III AND AEC lODI FICATIONS 16 15
~  14 13
~  12 OC 10 0 5,000 10,000      15,000      20,000      25,000    30,000 AVERAGE PLANAR EXPOSURE  (mWd/t)
 
II. Proposed   Chan es to Techni cal Speci   fi cations Change   pages 37a, 37b, 37c,     etc. as follows:
      ~Chan e A Add   the attached Figure 3.1.7e to the Technical Specification. Under the Limiting Condition for Operation 3.1.7, add Figure 3.1.7e to the list of figures at the end of the last sentence in paragraph a.
      ~Chan e B Rep'lace   the notes; to the equation in Limiting Conditions for Ooeration 3.1.7b wi th the following:
      "                                   kw/ft for       fuel or 13.4 kw/ft for LHGRd =  Design  LHGR =  17.5              7x7 8x8 fuel Qp/p)~AX     = Maximum   power spiking penalty'     0.040 for 7x7 fuel or 0.027 for Bx8 fuel.
LT =   Total Core lenath   = 12   ft.
L   = Axial posi tion above botton of core "
      ~Chan e C Add   Figure 3.1.7e to the     list of fiqures in the third     oaraaranh of the Bases 3.1.7a.
Reasons   for Chan es A,   B R C The   results of analyses performed for 8x8 reload fuel has indi cated that limits   on flAPLHGR and power soiking oenalties due to densification are required. These limits as they apply to Type 5 and Type 6 fuel are presented for incorporation into Nine Nile Point Unit 1 Technical Specifications.
Similar limits for previously loaded         7x7   fuel are already nart of -the
    'echni   cal Speci fi cati ons.
 
J IE
 
17 NINE hflLE POINT-PilIT 1
                            ~4 16
~ 14
~ 13
~ 12 OC 10 0 5,000       10,000         15,000     20,000      25,000        30,000 AVERAGE PLANAR EXPOSURE   (ml<d/t)
FIGURE '.1.7. e ftAXIfGAUM ALLOWABLE AVERAGE PLANAR LHGR APPLICABLE TO FUEL TYPE 5 and 6
 
0 0 A 'l}}

Latest revision as of 19:53, 4 February 2020

Letter Submitting Analyses Which Determine Effects of Fuel Densification and Appropriate Changes to Technical Specifications for Fuel to Be Inserted During Spring 1974 Refueling
ML17037C516
Person / Time
Site: Nine Mile Point Constellation icon.png
Issue date: 01/22/1974
From: Raymond P
Niagara Mohawk Power Corp
To: Ziemann D
US Atomic Energy Commission (AEC)
References
Download: ML17037C516 (32)


Text

AEC DXS UTION FOR PART 50 DOCKET MATER (TEMPORARY FORM) CONTROL NO:

FILE: 8 FROAA1: DATE OF DOC DATE REC'D LTR MEMO RPT OTHER Niagara Mohawk Power Corp Syracuse, N; Y. 13202 1-22-74 1-23-74 P. D. Raymond TO: ORIG CC OTHER SENT AEC PDR x D. L. Ziemann 3 signedq SENT LOCAL PDR X CLASS UNCLASS PROP INFO INPUT NO C S REC'D DOCKET NO:

XXXX XXXX 40 50-220 DESCRIPTION: ENCLOSURES:

Ltr notarized 1-22-74, trans the following: Pro osed Chan e to Technical S ecifications:

Densification Analyses and Related Technical Specifications Changes for Type 5 and Type DO NOT REMOVE ACKNOWLEDGED PLANT NAME: Nine Mile Point Unit $P1 ( 3 Orig 6 37 cys rec'd )

FOR ACTION/INFORMATION 1-23-74 GC BUTLER (L) SCHWENCER(L) ~Z IEMANN(L) REGAN (E)

W/ Copies W/ Copies W/ 9Copies W/ Copies CLARK(L) STOLZ(L) DICKER(E)

W/ Copies W/ Copies ' W/ Copies W/ Copies GOLLER(L) VASSALLO(L) KNIGHTOH(E) "

Copies

'/

W/ Copies W/ Copies Copies W/

KNIEL(L) SCHEMEL(L) YOUNGBLOOD(E)

W/ Copies W/ Copi s W/ Copies W/ Copies INTERNAL DISTRIBUTION TECH REVIEW DEN TON A/T IND HENDRXE GRIMES LIC ASST BRAITMAN AEC PDR

+GCF RSM P-506A SCHROEDER GAMMXLL HIGGS (L) SALTZMAN

~NTZING/STAFF MACCARY KAS THER GEARIN (L) B, HURT CASE KNIGHT BALLARD GOULBOURNE (L) PLANS GIAMBUSSO PAWLXCKI SPANGLER LEE (L) MCDONALD BOYD SHAO MAXGRET (L) ~UBE w/Xnput MOORE (L) (BWR) S TELLO ENFIRO SERVICE (L)

DEYOUNG (L) (FllR) HOUSTON MULLER SHEPPARD (E) INFO O'SKOVHOLT (L) NOVAK DXCKER SMITH (L) C, MILES P, COLLINS ROSS BRIGHTON TEETS (L) B. KING XPPOLITO YOUNGBLOOD WADE (E) v4. CABELL TEDESCO REGAN WILLIAMS (E)

FILE & REGION(d)) LONG PROJECT LDR WXLSON (L)

MORRIS LAINAS STEELE BENAROYA HARLESS VOLLMER EXTERNAL DISTRIBUTION

- LOCAL PDR Oswe o N. Y.

- DTXE(ABERNATHY) (I) (2XIO).NATIONALLAB'S 1-PDR-SAN/LA/NY M - NSIC(BUCHANAN) I-ASLBP(E/Il Bldg,gm 529)

E" 201 GT 1-GERALD LELLOUCHE BROOKHAVEN HAT. LAB 1 - ASLB(YORE/SAYRE/ 1-W. PENNINGTON> Rm WOODARD/"H" ST. 1-CONSULTANT'S 1"AGMED(Ruth Gussman)

~6 - CYS ACRS MQDi}MK SENT TO LXC ~ ASST'EWARK/BLUME/AGBABIAN 1-GERALD ULRIKSON...ORNL RM-B-127, GT.

1<<RD..MULLER.,F-309 GT 1-23-74 DXGGS,

l lj

~ ~

0 P h I'

~

t, h'egUlatory Docket File NIAGARA MOHAWK POWER CORPORATION NIAGARA

~ MOHAWK 300 ERIE BOULEVARD, WEST SYRACUSE. N. Y. 13202 January 22, 1974 JAN23)974~

A)EIIpn ~ 'L'In It-iiVu~~

Mr. Dennis L. Ziemann, Chief Operating Reactors Branch 82 Directorate of Li cens ing United States Atomic Energy Commission Washington, D. C. 20545

Dear Mr. Ziemann:

Re: Nine Mile Point Unit 1 AEC Docket No. 50-220 ficationn Niagara Mohawk Power Corporation has committed in its letter of October 15, 1973 to supply analyses to determine the effects of fuel densi-and the appropriate changes to Technical Specifications for the fuel to be inserted during the Spring 1974 refueling. The analyses have been performed using the, guidance provided in the enclosure to your December 5, 1973 letter, "Modified GE Model f'r Fuel Densification".

These analyses and the proposed Techni:cal Specification changes are attached herewith. It is anti cipated that these changes will not limit plant power level below its full design rating of 1850 megawatts for power distributions expected during normal operation.

The Site Operations Review Commjttee and the Safety Review and. Audit Board concur with these proposed Telchnical Specification changes.

Very truly yours, Vi ce esi dent-Engineering

/sq Attachment r'~,

Subscribed and sworn to before me this ~~ay of January, 1974.

JANP3)ygI EENCE'Uqp lrQQ, ~fyICII VALERIE hl. KELLY )CEERX Notery Pobhc in the'tete of New York Qoeliiled In Onon. Eo.. No. 3C n50C729 My Corernlrrlon fnplret "Merch 30r l9

~ r Ir

r I

~.,,,,<<,, Regulatory Docket File Specification Changes Type 5 and Type 6 Fuel For goaeraa~e. n naiad I. Anal ses of Fuel Densification Effects This section presents results of the effects of densification in the 8x8 reload fuel as determined from application of the models described in J

Re fer'ence 1.

A. Local Power Spikin A'n analysi's of potential local power. spikes due to axial gaps in a fuel pellet column for General Electric BMR's employinq an Rx8 fuel lattice design has been performed. This analysis employs the same method and basic assumotions that were reported in Reference l. Important asnects

.' f thi s analys is are noted as fo1 1 ows:

l. The, equation employed to calculate maximum qap size is that noted in Reference 1:

dL = ~965 - + 0.0025) L 2

where dL = maximum axial qao length L = fuel column length Pi = mean value of measured initial

- .5X) p llet density (immersion 0.0025 = allowance for irradiation induced cladding growth and axial strain caused by fuel-clad mechanical interacti on.

2. The magnitude of the power spike versus gap size for fuel rods of the 8x8 desiqn is shown in Figure 1 for normal operating condi ti ons and Fi gure 2 for col d zero voi d condi ti ons.

~ 4

3. The core power histogram employed v>>as for a 13.4 kl</ft C

maximum design linear heat generation rate:. see Figure 3.

The results from this analysis are shown in Fiaure 4 with initial fuel density as a parameter. The line shown for an initial fuel density of 95%

T.D. is considered to be most representative considering curr nt General Electric data on manufactured fuel pellet densities. The power snike penalty shown in Figure 4 for several mean pellet densities as a function of axial position, is the required margin which must be maintained durinq normal ooeration between the actual peak operating condition and the oeak design LHGR; i.e., 13.4 kM/ft, Maintaining this margin will assure, with better than 95% confidence, that no more than one rod will exceed the desi qn neak LHGR due to the random occurrence of power spikes- resulting from axial fuel column gans. Consistent with General Electric's position on densification previously discussed in Reference 2 and its supplements, the results of this analysis are considered to he a very conservative representation of the power oeakinq penalty requi red4 to accommodate potential axial fuel column gaps during normal operating conditions in General Electric BHR's.

Since the results of the power spikinq analysis for normal oneration will be utilized to limit bundle power to assure that the random occurrence of power spikes will not result in exceeding the design peak LHGR, it is not believed necessary to separately consider power snikes in the analysis of transients or accidents which have as an initial condition some form of normal oneration. The control rod drop acci dent is unique in the respect that it begins at the cold condi tion, and is not affected by normal operating power level. Further, the existence of fuel column gaps can result in oower spiking in the cold condition

during a control rod drop which should thus be considered in the evaluation of this accident. For this purpose, a separate power spikinq analysis has been performed using the same assumptions as indicated above, but employina a power spi ke versus gap si ze calculated to occur in the cold condi tion with zero voWs

( Fi gure 2). This analysis was performed for a conservative maximum gap si ze calculated employing a pellet average immersion density of 94.5Ã T.D., and a position near the top of the core in order to maximize the oower sniking effect.

This analysis yielded a 99K probabil'ity th'at any qiven fuel rod would have a power spike of 45K.

B. Cladding Creep Collapse Using the same conservative bases presented in References 1 and 2, the critical pressure ratio; i.e., ratio of collapse pressure to actual coolant pressure, was calculated. Figure 5 presents the clad mid-wall temperature versus time for the 8x8 reload fuel.. No credit is taken for internal qas pressure due to released fissi on gas or volati les. The internal pressure due to helium backfill at 1 atmosphere during fabrication is considered. The fuel characteristics for creep collapse 'calculations are as follows:

Clad O.D., in. 0.493 Clad Thickness, in. 0.034 + 0:003 Peak LHGR, kw/ft 13. 4 Fast Flux vl Nev. n/cm2-sec 4.37 x 1013 Figure 6 gives the calculated critical pressure ratio. As evidenced by the curve, the calculated critical oressure ratio is always o1.0.

C. Increased Linear Heat Generation Rate The following expression was employed to calculate the decrease in fuel column length due to densification in calculation of a penalty in linear heat generation rate:

~0. 965 5L = 2 L

0 ~ I Where hL = decrease in fuel column. length L = fuel column length p; = mean value of measured initial pellet density (immersion - .5/}

The length reduction due to densification as calculated by the above equation requires knowledge of the mean immersion density (p;} obtained from the gC data. A correction of 0-.5A T.D. is applied to convert the immersion densi ty to a geometric density. The mean pellet immersion density for Nine Mile Point 1 8xS reload fuel is 95.29/. T.D. This results in:

AL = 0.965 - 0.9529 - 0.005 = 0.01709 = 0.009 L 2 2 or AL = 0.9X L

Due =-to thermal expansion, an SxS pellet normally exnands in goinq from the cold to hot condition, an amount equal to 1.25 for a pellet at 13.4 kW/ft.

This increase in length from the cold to hot condition is not taken credit for in either design calculations or in the process of core nerformance analysis during reactor operations. The cold pellet length is assumed for these condi ti ons.

Therefore, the decrease in pellet length due to densification is more than offset by pellet axial thermal expansion.

D. Decreased Pellet-Cl ad Thermal Conducti vi t Figure 7 provides plots of Maximum Average Planar Linear Heat Generation Rate (MAPLHGR) versus exposure, for Nine Mile Point Sx8 reload fuel. Them (omega}

curve is suitable for incorporation into the plant technical specifications.

The LOCA analyses were performed using the approved Interim Acceotance Criteria Model with gap conductance values as calculated per the new GEGAP III model with AEC modifications.(1 }

REFERENCES

l. Hinds, J.A., (General Electric) letter to Y.A. Hoore (USAEC),

"Plant Evaluations with GEGAP III," December 12, 1973.

2. "Generic Design Information for General Electric Reload Fuel",

NEDO-20103; September 1973.

3. NEDtl-10735, Supplement 6, "Fuel Densification Effects on General Electric Boiling Mater Reactor Fuel," August 1973.

FIGURE 1 8x8 POWER SPIKE VERSUS GAP SIZE - NORMAL OPERATION

, 7.0 ~

6.0 ROD RELATIONSHIP (g O2 Oe 5.0 O2 O3 O5 hP p 4.0 O~ 05 (I) adjacent P ellet 3.0 -n pod g on 59 ~op g

~o ~ on 2.0 go<

on Rod 8

~

9@9 in Ro d yp of a 9 ap grecc Ef fec d g4 on Rod N

1.0 Effect of a 9ap in Ro d g5 on Rod 81 Effect of a gap 0

0 1.0 2,0 3.0 4.0 5.0 6.0 GAP SIZE (CM)

FIGURE 2 8x8 POWER SPIKE VERSUS GAP SIZE - COLD ZERO VOID CONDITION ROD RELATIONSHIPS Ol O2 O4 02 03 05 o~

O4 O~

0 1

on Rod Ro d >

~~0 o~ in

~"

og gaP o

<~g.ect in Rod R 4 on Rod 1 Effect of qap Effect of gap vari Rod 5 on Rod ]

GAP SIZE (Cg)

FIGURE 3 4.0 A'.0 1.2 1.0

.8 C)

.6

.2 0 0 12 13 14 LHGR (KH/FT = X)

FIGURE 4 8x8 POMER SPIKE PENALTY YS AXIAL POSITION - NORMAL OPERATION 1.0 2.0 96,0 95.0 3.0 4.0 4.0 3.0 94.0 2.0 95.0 96.0 5 6 7 8 10 12 DISTANCE FROM BOTTOM OF CORE (FEET)

FIGURE 5 CLADDING AVERAGE TEMPERATURE AT A FUEL COLUMN AXIAL GAP 690 680 670 660 650 0

640 UJ 630 620 8 6'j0 a- 600 590 580 570 560 550 0

IRRADIATION TIME, YEARS

FIGURE 6 CLAD CRITICAL COLLAPSE PRESSURE RATIO VERSUS TIME 8x8 RELOAD FUEL 4.0 3.0 1.0 2 3 IRRADIATION TIME, YEARS

0 FIGURE 7 MAPLHGR VERSUS EXPOS I7 MAXIMUM ALLOWABLE TO STAY BELOW CURRENT TECHNICAL SPECIFICATION LIMIT FOR LHGR 0 MAXIMUM ALLOWABLE WITH GEGAP III AND AEC lODI FICATIONS 16 15

~ 14 13

~ 12 OC 10 0 5,000 10,000 15,000 20,000 25,000 30,000 AVERAGE PLANAR EXPOSURE (mWd/t)

II. Proposed Chan es to Techni cal Speci fi cations Change pages 37a, 37b, 37c, etc. as follows:

~Chan e A Add the attached Figure 3.1.7e to the Technical Specification. Under the Limiting Condition for Operation 3.1.7, add Figure 3.1.7e to the list of figures at the end of the last sentence in paragraph a.

~Chan e B Rep'lace the notes; to the equation in Limiting Conditions for Ooeration 3.1.7b wi th the following:

" kw/ft for fuel or 13.4 kw/ft for LHGRd = Design LHGR = 17.5 7x7 8x8 fuel Qp/p)~AX = Maximum power spiking penalty' 0.040 for 7x7 fuel or 0.027 for Bx8 fuel.

LT = Total Core lenath = 12 ft.

L = Axial posi tion above botton of core "

~Chan e C Add Figure 3.1.7e to the list of fiqures in the third oaraaranh of the Bases 3.1.7a.

Reasons for Chan es A, B R C The results of analyses performed for 8x8 reload fuel has indi cated that limits on flAPLHGR and power soiking oenalties due to densification are required. These limits as they apply to Type 5 and Type 6 fuel are presented for incorporation into Nine Nile Point Unit 1 Technical Specifications.

Similar limits for previously loaded 7x7 fuel are already nart of -the

'echni cal Speci fi cati ons.

J IE

17 NINE hflLE POINT-PilIT 1

~4 16

~ 14

~ 13

~ 12 OC 10 0 5,000 10,000 15,000 20,000 25,000 30,000 AVERAGE PLANAR EXPOSURE (ml<d/t)

FIGURE '.1.7. e ftAXIfGAUM ALLOWABLE AVERAGE PLANAR LHGR APPLICABLE TO FUEL TYPE 5 and 6

0 0 A 'l