ML17157A806: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(Created page by program invented by StriderTol)
 
(6 intermediate revisions by the same user not shown)
Line 17: Line 17:


=Text=
=Text=
{{#Wiki_filter:~~~CALCULATIONCOVERSHEETCALC.NO.-SLD-oo2.FILENO.R2.-lSUPERSEDEDBYklA.SAFETY-RELATEDfp',1ASIDEIIIORXI[]OTHEP,QUALITYIjNONQUALITYI1PROJECTSMLED(<DE>cc~omFkoJgcTER/CTNNO.klanDESIGNACTIVITY/PNRNUMBEREWK+h4SioooPAGE1OFI(,TITLE/DESCRIPTIONSmarmLanai<DaracTiouCA<.c-RcZc.PunrtpCoo~(UmiT')SYSTEMSAFFECTEDSOBS&So5oRcFmvopicr=>Fans~mHBJfoF-paosi.aah.DGNBSSH-Q-208RN-Q-REF~tOATlACHROOO~lGWXiJPVTGC~ac.h~MC7HLSChi-QJLATla~.MFATuPA&6+Fo&~F~~cc~.F'~<aIZFo~Cuuugrcy(conc-~us~oms.(ETO)BINDERAFFECTED?[]YES-IfYesenter:BinderIICalc.Fi1eI.X]NOVol.Pgs.REV.NO.DATE0778PREPAREDBYREVIEWED/CHECKEDBYDATEAPPROVEDBYDATEog9108260'176.910819.PDRAOOCKOS000387,,P..-.,PDRmls/frb006i(12) gl1'.3' Calc0M-SLD-002Page2of16TABLEOFCONTENTS1.0PURPOSE~~~~~~~~~~%~~~~~~~~~~~~S~0~~~~~0~0$$~~~~~~~
{{#Wiki_filter:CALC. NO.     -SLD-oo2.     SAFETY-RELATED fp',1
      ~  ~  ~
CALCULATION COVER SHEET        FILE NO.       R2.-l        ASIDE  III OR    XI [ ]
OTHEP, QUALITY I    j1 SUPERSEDED    BY  klA.      NON  QUALITY      I PROJECT      S    M LED(< DE> cc~om FkoJ gcT                                ER/CTN NO.       klan DESIGN  ACTIVITY/PNR NUMBER          EWK + h4 Si ooo                              PAGE 1 OF      I(,
TITLE/DESCRIPTION Smarm Lanai<           DaracTiou CA<.c - RcZc.       Punrtp  Coo~ (Um iT' )
SYSTEMS AFFECTED        SOBS &           So5o RcFm vo        pic r= >       Fan    s~mHBJf        oF- paosi.aah.
D    GN B S  S    H-Q -208    R      N-Q-REF~ tO        ATl ACHROO    O~lG W    XiJPVTG C ~ac.h~         MC    7HLS Chi-QJLATla~.
MFA Tu      PA&6     + Fo&       ~F~~cc~.
F'~<a    IZ  Fo~ Cuuugrcy (conc-~us~oms.
(ETO) BINDER AFFECTED?       [ ] YES-If      Yes enter: Binder II                          Vol.
Cal c. Fi1 e                      Pgs.
I.X] NO REV. NO. DATE        PREPARED BY          REVIEWED/CHECKED BY    DATE        APPROVED BY          DATE 0      778                                                          og 9108260'176. 910819.
PDR
                ,,P .. AOOCK OS000387
                                      -.,PDR ml s/frb006i (12)


==32.0REFERENCES==
gl 1
~~~~~~~~~~~~1~~~~~~~~~~~~~~0~~~E~~~~~1~S~~3~0ASSUMPTIONS~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~54.0METHODOLOGY0$~~~~0~~~~~~~~~~~0~~~0~~~~\~~~~S~~~~~0..~~65.0RESULTS/CONCLUSIONS.............................~.....12ATTACHMENT1COTTAPOutputforRCICPumpRoom-5GPMLeak(Summer)ATTACHMENT2COTTAPOutputforRCICPumpRoom-5GPMLeak(Winter)ATTACHMENTITACHMENT4COTTAPOutputforRCICPumpRoom-25GPMLeak(Summer)COTTAPOutputforRCICPumpRoom-25GPMLeak(Winter)APPENDIXADataInputSection-RCICPumpRoom(I-12/I-107)
'.3 '
Calc&#xb9;N-SLD-002Page3oflh1;0PURPOSEThepurposeofthiscalculationistopredicttheroomtemperatureprofileexpectedwhenasmallsteamleakisintroducedintheUnitiRCICPump-Room.TheresultsofthiscalculationwillbeusedasabasisfordevelopmentofSteamLeakDetectionSystemsetpoints.
Calc&#xb9;N-SLD-002Page4of1621Calc&#xb9;N-RAF-024,Rev.0"RBPostDBATransientTemperatureAnalysis"2.2Bechte1Ca1c,&#xb9;176-18,Rev.5"RBCoolingNodes"2a3SEA-EE-129,Rev.0"SSESUnit1andUnit2ReactorBuildingHeatLoads"DrawingsPAIDN-176,Rev.20PAIDN-149,Rev.30PAIDN-150,Rev.17V-28-1,Rev.15V-28-2,Rev.14V-28-3,Rev.17C-105,Rev.20C-134,Rev.15C-156,Rev.12C-111,Rev.15C-117,Rev.17DBB-109-2,Rev.8GBD-135-1,Rev.3t.5N-19'9PipingClassSheets2.6SEISPipelineGeneralIndex2.7CraneTechnicalPaperNo.410,23rdPrinting2.8ASHRAE1985FundamentalsHandbook2.9FSARTable3.11-62.10FSARSection5.2~5.1.32.112.12Calc&#xb9;N-PAF-001,Rev.1"HVACEnvironmentalAnalysis-ReactorBuildings5ControlStructure"COTTAP-2TheoryandInputDescriptionNanual(User'sManual),Rev.1,dated1/27/89.


Gale0M-SLD-002Page5oflh0ASSUMPTIONSi)Plantisoperatingundernormalconditionspriortointroducingasteamleak.2)AlladjacentroomswillbemaintainedattheirdesignmaximumtemperatureforsummerconditionsandattheaveragetemperatureforthemonthofJanuary(ifblue-boxdataisavailable)forwinterconditions.Wherewintertemperaturedataisnotavailable,thedesignminimumtemperatureof60Fwillbeused.3)Theroomunderconsiderationwillnotbeallowedtopressurize,astheblowoutpanelwillrelieveatapproximately0.5psid.Therefore,aleakagepathoutoftheroomwillbeusedtomaintainpressureascloseto14.7psiaaspossible.Thetemperatureeffectsduetoslightroompressurizationareassumedtobenegligeble.4>Theeffectsofadjacentroomheatuparenotconsideredinthisanalysis(i.e.adjacentroomtemperaturesareheldconstant>.Thisresultsinaconservativetemperatureprofilef'rtheroomunderconsideration.Theactualadjacentroomheatupduetothesteamleakisexpectedtobeminimal(whenconsideringconductiveheatlasses).5)TheCQTTAPmodelassumesperfectmixingoftheairandsteamintheroomunderconsideration.
Calc 0 M-SLD-002 Page 2        of    16 TABLE OF CONTENTS 1.0  PURPOSE          ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ % ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ S  ~ 0 ~ ~ ~ ~ ~ 0 ~ 0$  $ ~ ~ ~ ~ ~ ~ ~    3
MdW-5+p~li Calc&#xb9;N-SLD-002Page6of16TheCompartmentTransientTemperatureAnalysisProgram(COTTAP)wasusedtoanalyzetheaffectsofasteamleakinvariousroomswithintheplant.Theprogrampredictedtemperatureprofilesfortheroomunderconsiderationwiththefollowingsetofconditions1)5gpmwaterequivalentsteamleak(Summer)2)5gpmwaterequivalentsteamleak(Winter)3)25gpmwaterequivalentsteamleak(Summer)4)25gpmwaterequivalentsteamleak(Winter)Theindividualroommodelsweredevelopedfromvarioussourcesofinformation,asidentifiedinSection2.0References.TheresultswillconsistoftheCOTTAPoutputandtheplotsofvariousprofilesfortheconditionsstatedabove.Thefollowingdiscussionisprovidedtooutlinethestepsusedindevelopingtheindividualroommodels.4.1GeneralDataForRoomsRoomVolumesTheroomvolumewastakenfromReference2.1fortheroomunderconsideration.Adjacent.roomvolumesweresettoalargevalue(i.e.1.0EE15cu.ft.)tomaintainconstantpropertiessuchastemperature,pressureandrelativehumidity.InitialPressureAllroomswereassumedtobeataninitialpressureof14.7psia.InitialTemperatureAllroomswereassumedtobeattheirmaximumnormaldesigntemperatureinitiallyforsummerconditions.Actualwinterdatawasused,whereavailable,asastartingpointforthewinterruns.Thewinterdatawastakenasthe"blue-box"averagetemperatureforJanuary1988.TheJanuarydatawasconsideredtobemoreconservativethanFebruarydata.Whereactualwinterdatawasnotavailable,thedesignminimumroomtemperatureof60Fwasused.Wherewinterdatawasnotavailablefortheroominquestion,theroomwasstartedatatemperaturewhichallowsittoreachasteady-statewithitsadjacentrooms.
<<;SKJk>>Cf'c[5~
Gale0N-SLD-002,Page7of16Theoutsideambienttemperaturewastakenas79F(summer)and26F(winter).ThesummerambientwastakenfromReference2.8asthe24hourdailyaveragetemperature,baseduponthe1%ASHRAEdesignvaluefortheNilkes-Barre/Scrantonarea.ThewintervaluewastakenastheactualmonthlyaverageforJanuaryovertheyears1986thru1989.Thisaveragewasbasedupon,SSESNeteorologicalDatatakenfromtheplantcomputer.AcomparisonofFebruarydataoverthissametimeperiodindicatedthattheJanuarydatawasmoreconservative.RelativeHumidityTherelativehumidityforallroomsconnectedbyventilationorleakagepathsisbaseduponsupplyairtemperaturesof85F(summer)and60F(winter)at90/RH.Airattheseconditionswasthenallowedtoheatup(sensibleheatingonly)totheinitialroomtemperature,andthecorrespondingRHvaluewascalculatedorreadfromthepsychrometricchart.RoomHeightThisvalueisnolongerusedbyCOTTAP.It'originalpurposewasassociatedwiththewallcondensationcalculationusedwithinCOTTAP.COTTAPhasbeenrevisedandnolongerusesthisinformation.Therefore,avalueof10.0ftwasinputtedforeachroom.Thisvaluehasnosignificancetothecalculation.Natethattheactualroomheightwasusedinthecalculationofroomvolume.4.2AirflowandLeakagePathDataAirflowDataThedesignairflowisprovidedfortheroomunderconsideration.Allflowpathsareidentified(i.e.supply,exhaustandtransferair).ThesourceoftheairflowdataisthePAIDassociatedwiththeparticularventilationsystemforthatroom.Thedataidentifiestheroomfromwhichtheaircomes,andtheroomtowhichtheairgoes.Sinceairflowsarebalancedto+10/accuracy,aconservativevalueof550cfmwasusedforthisroom(500cfmx1.1).TheRCICsupplyandexhaustducthasbackdraftisolationdamperstopreventthespreadofsteamtoadjacent h
Ca1c0M-SLD-002Page8of16roomsintheeventofasteamleak.Thesedampersisolateatadifferentialpressureof2"wg.TheBDID'swouldbeexpectedtocloseunderthepresenceofasteamleak.Tosimplifythemodel,aconservativeassumptionwasmadewhichleavestheBDID'sopenduringthesteamleak.Thiswouldhavetheeffectofpredictingalowertemp.vs.timeprofile.LeakagePathDataAswiththeairflowdata,allroomsconnectedtotheleakagepathareidentified.Theleakagepathareaisonlyusedtoscaletheleakageflowratesfortheentirecompartmentunderconsideration.Theintentoftheleakagepathistopreventcompartmentpressurization.Formostrooms<exceptRWCU),onlyoneleakagepathisused,andavalueof1.0sq.ft.isinputtedfortheleakagepatharea.Whenmorethanoneleakagepathexists,actualleakageareascanbeinputtedtobetterunderstandleakageflowsbetweenadjacentcompartments.4.3HeatLoadDatatHeatLoadTypeThetypeofheatloadwasidentifiedusingthefollowingnomenclatureType12358DescriptionLightingElectricalPanelsNotol5UnitCoolersPipingMisc.MechanicalEquipmentHeatInputRatesTheheatrateinputinBtu/hrfortheassociatedheatload.Thevaluesforheatloadtypes1thru3wereobtainedfromReferences2.2h2.3.Theheatrateinputsfortype4heatloadsareinputtedasnegativevaluessincetheunitcoolersremoveheatfromtheroom.Theheatinputratefortype5heatloadswereinputas-1.ThisvaluedirectsCOTTAPtoobtainpipinginformationnecessarytocalculatethepipingheatloads.Theheatinputratefortype8heatloadswasobtainedfromReferences2.252.3,asnecessaryfortheappropriateroom.
?~gIL*jR.~~,f Calc&#xb9;M-SLD-002Page9of16Toachieveaninitialsteady-statecondition,amiscellaneousheatload(positiveornegative)wasaddedtothemainroomtobalanceallothertimezeroheatloads.Thisheatloadwasinputtedastype8.NotethatCOTTAPneglectscoldpipeandequipmentasheatsinks.Thisrepresentsnon-conservatisminthiscalculation.Asamplerunmadetodeterminetheeffectsoftheseheatsinksindicatedthat.resultanttemperatureswereonlyslightlylowerthanthevaluespredictedwhenneglectingtheseheatsinks.Therefare,thiscalculationassumestheeffectsoftheseheatsinksarenegligable.Forwallsandfloorsincontactwithground,themodelpredictsaconservativevalueofheatlosstoground.Theslabsareassumedtobeincontactwithsoilatatemperatureof55F.Tomodeltheheatlosstoground,alargevalueofsurfacefilmconvectiveheattransfercoefficient(100Btu/hr-sqft-F)hasbeenintroducedonthegroundsideofthefloorsandwallstoachieveagroundcontacttemperatureof55F.4.4PipingInputDataOnlypipingwithadesigntemperaturegreaterthanthatofthenormalroomdesigntemperaturewasincluded,sinceCOTTAPignorescoldpipeasaheatsink.ThisgenerallymeantthatpipingatorclosetoReactorconditionswasincluded.Alsonotethatthiscalculationneglectsheatlossfromsmallpipe(i.e.lessthan2"OD).PipeODTheoutsidediameterofthepipewasobtainedfromReference2.4PipeIDsThepipeschedulewasobtained'romReference2.5~Knowingtheschedule,theinsidediameterwasobtainedfromReference2.7InsulationODsTheinsulationODwasobtainedfromReference2.11PipeLength:ThepipelengthwasobtainedfromReference2.4~EmmisivitycTheemmisivitywasobtainedfromReference2.11


Calc&#xb9;N-SLD-002Page10of16tInsulationkValueTheinsulationthermalconductivity(k)wasobtainedfromReference2.11PipeFluidTemperature:ThedesignfluidtemperaturewasobtainedfromReference2.6FluidPhaseThestateofthefluidwasdeterminedbyreviewingthesystemPAID'sanddesigntemperatures/pressures.Ifaparticularlinecouldcarrysteamorwater,it,wasassumedtobeliquidforconservatism.4.5GeneralDataForThickSlabsRoomID&#xb9;onSide1Theroomnumberononesideoftheslab.RoomID&#xb9;onSide2Theroomnumberontheothersideoftheslab.Whenslabisadjacenttoground,aroom&#xb9;of"0"isused.ThethicknessoftheslabwasobtainedfromReference2.4HeatTransferAreaTheareaoftheslabwasobtainedfromReference2.4.Theareawascalculatedbyscalingplantventilationdrawings,utilizingcenterlinetocenterlinedimensions.TheslabareasarecalculatedintheDataInputSection(RefertoAppendixA).ThermalConductivityThethermalconductivityoftheconcreteslabswereobtainedfromReference2.8,Chapter23Table34.Avalueof1'Btu/hrftFwasusedforallconcreteslabs.DensityThedensityofallconcreteslabsisassumedtobe140ibm/cuft.ThisvaluewasobtainedfromReference2.8,Chapter23Table34.SpecificHeatThespecificheatforallconcreteslabswasassumedtobe0.22Btu/ibmFasobtainedfromReference2.8,Chapter23Table3A.
==2.0  REFERENCES==
fit\r~Ieh Calc&#xb9;M-SLD-002Page11of16e6FilmCoefficientDataForThickSlabsTypew/rtoRoomonSide1ThetypeofslabwithrespecttotheroomonSide1wasdefinedusingthefollowingcodesType1Type2Type3VerticalWallFloorCeilinghl&h2Allfilmcoefficients(h)forinsidewallswerecalculatedbyCOTTAP.ThefilmcoefficientforwallsincontactwithoutsideairwereinputtedasSummerWinter4.0Btu/hr-sqft-F6.0Btu/hr-sqft-F(PerReference2.8,Chapter23,Table1)Avalueof100Btu/hr-sqft-Fwasinputtedforwallsincontactwithground.Thisvaluehelpstosimulateawall(orflour)incontactwithsoilat.55F.Thiswillresultinaconservativepredictionoftheheatlosstogloundo4.7PipeBreakDataFluidPressureThefluidpressurewithinthepipe(psia).Allrooms(exceptRWCU)usedafluidpressureof1000psia,whichwasconsideredrepresentativeofnormalReactorconditions.MassFlowThetotalmassflowexitingthepipebreak(ibm/hr)wasinputtedasfollowsafor5gpmwaterequivalentsteamleak5gal/minx1cuft/7.48galx60min/hrx.02159cuft/ibm~1860ibm/hrvf=0.02159cuft/ibm81000psia(perASMESteamTables)for25gpmwaterequivalentsteamleakc5x1860ibm/hr=9300ibm/hrThebreakoccursatt~0.5hrs.Thisallowstheroomtoreachequilibriumconditionspriortoinitiationofthebreak.Inallroommodels,thebreakmassflowisallowedtoincreaselinearly(ramp)from0ibm/hrtoitsmaximumvalueover0.1hrs.
        ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 1 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0 ~ ~ ~ E ~ ~ ~ ~ ~ 1 ~ S ~ ~
Gale&#xb9;N-SLD-002Page12of160RESULTS/CONCLUSIONSThefollowingpagesprovidethetemperatureprofilesresultingfromtheRCICPumpRoommodelfortheconditionsstatedbelow1)5gpmwaterequivalentsteamleak(Summer)2)5gpmwaterequivalentsteamleak(Winter)3)25gpmwaterequivalentsteamleak(Summer)4)25gpmwaterequivalentsteamleak(Winter)TheCOTTAPoutputforeachcaseabovecanbefoundasAttachments1thru4,respectively.Eachoutputprovidesasummaryofthedatainput,andtheresultsofeachtimestepwithinthe24hourruntime.AttheendofeachCOTTAPoutput,asummarytableofTempvsTimeinformationisalsoprovided.
3 0 ASSUMPT I ONS
~                      ~ ~ ~    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~  ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~    5 4.0  METHODOLOGY      0$ ~ ~ ~ ~ 0 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0 ~ ~ ~ 0 ~  ~ ~ ~ \ ~ ~ ~ ~ S ~ ~ ~ ~ ~ 0..   ~ ~    6
: 5. 0 RESULTS/CONCLUSIONS              .............................                             ~.....         12 ATTACHMENT  1    COTTAP      Output          for    RCIC Pump Room 5  GPM    Leak (Summer)
ATTACHMENT 2     COTTAP      Output          for    RCIC Pump Room 5  GPM    Leak (Winter)
ATTACHMENT        COTTAP      Output          for    RCIC Pump Room 25  GPM    Leak (Summer)
ITACHMENT 4     COTTAP      Output          for    RCIC Pump Room 25  GPM    Leak (Winter)
APPENDIX A        Data Input Section  RCIC                          Pump Room          (I-12/I-107)


RCICPUMPROOMHEATUPEVALUATION(5GPMSTEAMLEAK/SUMMER)200180RCICPUMPROOMtldATUPEVALUATION(5GPMSTdAMLdAR/SUMMSR)(3160LLJI-1401201000101571dd(Md)0.4000.5000.$$00.600.0.7000.$000.9001.0001.5002.0002.5003.0003.5004.0004.$00$.0005.5008.000e.soo7.0007.$008ono9.000anono>>conI:iinnI~UI~.4ono~~Uon11.00017.0001800019unn=>,00041.00022.00023.00024.000RoodrI104.00104.$1104.4$104.3d104.67104.92114.49122.nd133.83139.44144.63'147.821$6.31162.60165.68170.$3173.3$174.7$175.49177.35179.14180.37179.69181.75182.29182.45183.54184.9318$.24185.8618S.66186.78187.19186.431877$1874$187.90187.981$7.25'ldd.Id18$.$218$.57ROOM/20RoodrRoodrTSMPERATURd(OSGP)RoodrROOMrRoodrRood~R00Mr'h.XcAIID0f25TIME(HRS)
Calc  &#xb9; N-SLD-002 Page 3  of lh 1;0 PURPOSE The purpose of this calculation is to predict the room temperature profile expected when a small steam leak is introduced in the Unit i RCIC Pump-Room. The results of this calculation will be used as a basis for development of Steam Leak Detection System setpoints.
A(VS'~4  
 
:RCICPUMPROOMHEATUPEVALUATION(5GPMSTEAMLEAK/WINTER)200180*I'160(3LJJ140LIJ120CL10080TIIIE(HR)0.0000.1000.2000.3000.4000.500O.sso0.$000.7000.$000.0001.0001.5002.0002.5003.0003.5004.0004.5005.0005.500S.OOOS.sno7.0007.500$.0009.00010.000'Il.ooo12.00013.00014.00015.00015.00017.00018.00010.00020.0002100022.00023.00024.000Roolle7$.007~.171$.241$.2$78.3$1$.4403.27107.7~1142011$.42121.05123.7413$.03144.34150.24IS4.01IS8.70151.SQ154.21155.50188.43I$0.74111.13112.38113.451743Q17S.Q4177.18177.0717$.52170.51-180.10180.51151.071$1.44IS'I.SO102.11182.441$2.851$2.$0183.Io1$3.32ROOIIPROOIIFROOIIPTEIIPFRATURE(DEGF)RooileRoolleROONPRoolleROONPRCICPUIIPROOIIHEATUPEVALUATION(5GPIISTEAIILEAKININTER)QII+-r'IO600jo152025TIME(HRS)  
Calc &#xb9; N-SLD-002 Page 4 of 16 2  1  Calc  &#xb9;  N-RAF-024, Rev. 0 "RB Post  DBA Transient Temperature Analysis"
:RCICPUMPROOMHEATUPEVALUATION(25GPMSTEAMLEAK/SUMMER)250RCICPUIIPROOIIIIEATUPEVAI.UATIOk(25GPIISTEAIII.EAK/SUIIIIER)200LdC3LdEKLdCL150LdI-1000TIREtIIR)0.0000.1000.2000.3000.4000.5000.5500.5000.7000.$000.0001.000'I.SOO2.0002.5003.0003.5004.0004.5005.0005.500d.0004.5007.0007.500$.0000.00010.00011.00012.00013.0001400015.00015.00017.0001$.00010.00020.00021,000.12.00023.00024.0001015TIME(HRS)ROOII~I104.00104.51105.0$105.55IOS.10104.$5151.41172.72205.07214.33210.0$222.3422$.5$210.00230.74231.30231.77232.13232.54233.01233.37233.4Q233.70133.02234.21234.5023S.OS235.4$236.5723d.dl235.IQ23d.21235F04235.03234.S3235.14234.3'I234.5d23$.17234.24235F70235.1~ROOIIs20ROOUSROOUSROOIIS25'TEIIPERATURE(OEGF)ROOIISROOIISROOIISROOIISFIIOOC
: 2. 2  Bechte1 Ca 1 c, &#xb9;  176-18, Rev. 5 "RB Cooling Nodes" 2a3  SEA-EE-129, Rev. 0 "SSES Unit      1 and Unit  2 Reactor Building Heat Loads" Drawings PAID N-176, Rev. 20 PAID N-149, Rev. 30 PAID N-150, Rev. 17 V-28-1, Rev. 15 V-28-2, Rev. 14 V-28-3, Rev. 17 C-105, Rev. 20 C-134, Rev. 15 C-156, Rev. 12 C-111, Rev. 15 C-117, Rev. 17 t
+g440 tRCICPLIMPROOMHEATUPEVALUATION(25GPMSTEAMLEAKjWINTER)250200C3150I-CLI-10050010RClCPURP7IIIE(IIR)0,00001000.2000.$000.4000~5000.5500.$000.7000.$000.$00I,0001.5002.0002.600$.0003.6004.0004.6005.0006.6005.0005.6007.0007.500$.000$.0001000011.00012.0001$.00014.00016.00015.00017.000I~.00015.00020.00021.00022.0002$.00024.00015''RooilIIEATUPEVAI.UATIOII(26GPIISTEAIII.EAR/WIIITER)TEIIPERATURE(OEGP)RoollrRoosrRoollrRooilrRoollrRoollrRoollrROollrI7'007$.177'247$.2$7$,$57'4414$.5$I~1.671$115205.4$212.27215.$722d.$7227.3222$.1022$.5522$.0422$.2d229.72230.002$0.Id2S0.3$2$0.702$0.$52$1.'Id231.'II2$1.6$2$1.032$2.40232.562$2.$12$2.0$2$$.2$2$3.532$4.062$4.04234.022$4.032$4.5$234.$2234.$12$6~12Roolir12520n60TIME(HRS) vJ':E+W~pl}}
DBB-109-2,    Rev. 8 GBD-135-1, Rev. 3
  .5  N-19'9  Piping Class Sheets 2.6  SEIS  Pipeline General Index 2.7  Crane Technical Paper No. 410, 23rd      Printing 2.8  ASHRAE 1985    Fundamentals  Handbook 2.9  FSAR  Table 3.11-6 2.10  FSAR  Section 5.2 5.1.3
                          ~
: 2. 11 Calc &#xb9; N-PAF-001, Rev. 1 "HVAC Environmental Analysis Reactor Buildings 5 Control Structure"
: 2. 12 COTTAP-2 Theory and Input    Description Nanual (User's Manual),
Rev. 1, dated 1/27/89.
 
Gale 0 M-SLD-002 Page 5 of lh 0 ASSUMPTIONS i) Plant is operating  under normal conditions prior to introducing  a steam  leak.
: 2)  All adjacent  rooms will be maintained at their design maximum  temperature for summer conditions and at the average temperature for the month of January (if blue-box data is available) for winter conditions. Where winter temperature data is not available, the design minimum temperature of 60 F will be used.
: 3)  The room under  consideration will not be allowed to pressurize, as the blowout panel will relieve at approximately 0.5 psid. Therefore, a leakage path out of the room will be used to maintain pressure as close to 14.7 psia as possible. The temperature effects due to slight room pressurization are assumed to be negligeble.
4>  The effects of adjacent room heatup are not considered in this analysis (i.e. adjacent room temperatures are held constant>. This results in a conservative temperature profile  f'r the room under consideration. The actual adjacent room heatup due to the steam leak is expected to be minimal (when considering conductive heat lasses).
: 5)  The CQTTAP model assumes perfect mixing of the air and steam in the room under consideration.
 
Md W-5
+p ~
li
 
Calc &#xb9; N-SLD-002 Page 6 of 16 The Compartment Transient Temperature Analysis Program (COTTAP) was used to analyze the affects of a steam leak in various rooms within the plant. The program predicted temperature profiles for the room under consideration with the following set of conditions
: 1) 5 gpm water equivalent    steam  leak (Summer)
: 2) 5 gpm water equivalent    steam  leak (Winter)
: 3) 25 gpm water equivalent    steam  leak (Summer)
: 4) 25 gpm water equivalent    steam  leak (Winter)
The  individual room models were developed from various sources of information, as identified in Section 2.0 References.       The results will consist of the COTTAP output and the plots of various profiles for the conditions stated above. The following discussion is provided to outline the steps used in developing the individual room models.
: 4. 1 General Data For Rooms Room Volumes      The room volume was taken from Reference 2. 1 for the room under consideration. Adjacent.
room volumes were set to a large value (i.e.
t.
: 1. 0 EE15 cu. f ) to maintain constant properties such as temperature, pressure and relative humidity.
Initial Pressure          All  rooms were assumed  to be  at an initial pressure of 14.7 psia.
Initial Temperature      All  rooms were assumed to be at their maximum normal design temperature initially for summer conditions. Actual winter data was used, where available, as a starting point for the winter runs. The winter data was taken as the "blue-box" average temperature for January 1988.
The January data was considered to be more conservative than February data. Where actual winter data was not available, the design minimum room temperature of 60 F was used.
Where winter data was not available for the room  in question, the room was started at a temperature which allows it to reach a steady-state with its adjacent rooms.
 
  <<;S KJ k>>
Cf' c[
5~
 
Gale 0 N-SLD-002
                                                      ,Page 7 of 16 The outside ambient temperature was taken as 79 F (summer) and 26 F (winter). The summer ambient was taken from Reference 2.8 as the 24 hour daily average temperature, based upon the 1% ASHRAE design value for the Nilkes-Barre/
Scranton area. The winter value was taken as the actual monthly average for January over the years 1986 thru 1989. This average was based upon,SSES Neteorological Data taken from the plant computer. A comparison of February data over this same time period indicated that the January data was more conservative.
Relative Humidity          The  relative humidity for all rooms connected by  ventilation or leakage paths is based upon supply air temperatures of 85 F (summer) and 60 F (winter) at 90/ RH. Air at these conditions was then allowed to heat up (sensible heating only) to the initial room temperature, and the corresponding RH value      was calculated or read from the psychrometric chart.
Room Height      This value is no longer used by COTTAP.      It' original purpose was associated with the wall condensation calculation used within COTTAP.
COTTAP has been revised and no longer uses this information. Therefore, a value of 10.0 inputted for each room. This value has no ft  was significance to the calculation. Nate that the actual room height was used in the calculation of room volume.
4.2 Airflow and Leakage Path Data Airflow Data    The design    airflow is provided for the room under consideration. All flow paths are identified (i.e. supply, exhaust and transfer air). The source of the airflow data is the PAID associated with the particular ventilation system for that room. The data identifies the room from which the air comes, and the room to which the    air  goes.
Since  air flows are balanced to + 10/ accuracy, a  conservative value of 550 cfm was used for this room (500 cfm x 1.1). The RCIC supply and exhaust duct has back draft isolation dampers to prevent the spread of steam to adjacent
 
h Ca 1 c 0 M-SLD-002 Page 8 of 16 rooms in the event of a steam leak. These dampers i sol ate at a di f f erenti al pressure of 2 " wg. The BDID's would be expected to close under the presence of a steam leak. To simplify the model,    a conservative assumption was made which    leaves the BDID's open during the steam leak. This would have the effect of predicting a lower temp. vs. time profile.
Leakage Path Data      As  with the airflow data, all rooms connected to the leakage path are identified. The leakage path area is only used to scale the leakage flowrates for the entire compartment under consideration.       The intent of the leakage path is to prevent compartment pressurization.
For most rooms <except RWCU), only one leakage path is used, and a value of 1.0 sq.
inputted for the leakage path area. When more ft. is than one leakage path exists, actual leakage areas can be inputted to better understand leakage flows between adjacent compartments.
t4.3 Heat Type Load Data Heat Load The type    of heat load following nomenclature Type was  identified using the Description 1                Lighting 2                Electrical Panels 3                Notol 5 Unit Coolers 5                Piping 8                Misc. Mechanical Equipment Heat Input Rate        s The heat    rate input in Btu/hr for the associated    heat load.
The values    for heat load types 1 thru 3 were obtained from References 2.2 h 2.3. The heat rate inputs for type 4 heat loads are inputted as negative values since the unit coolers remove heat from the room. The heat input rate for type 5 heat loads were input as -1. This value directs COTTAP to obtain piping information necessary to calculate the piping heat loads. The heat input rate for type 8 heat loads was obtained from Ref erences 2. 2 5 2.3, as necessary for the appropriate room.
 
    ?~
g I L*j R.   ~
~,f
 
Calc &#xb9; M-SLD-002 Page 9 of  16 To achieve an initial steady-state condition, a miscellaneous heat load (positive or negative) was added to the main room to balance all other time zero heat loads. This heat load was inputted as type 8.
Note that COTTAP neglects cold pipe and equipment as heat sinks. This represents non-conservatism in this calculation. A sample run made to determine the effects of these heat sinks indicated that. resultant temperatures were only slightly lower than the values predicted when neglecting these heat sinks.
Therefare, this calculation assumes the effects of these heat sinks are negligable.
For walls and floors in contact with ground, the model predicts a conservative value of heat loss to ground. The slabs are assumed to be in contact with soil at a temperature of 55 F. To model the heat loss to ground, a large value of surface film convective heat transfer coefficient (100 Btu/hr-sq ft- F) has been introduced on the ground side of the floors and walls to achieve a ground contact temperature of 55 F.
4.4 Piping Input Data Only piping with a design temperature greater than that of the normal room design temperature was included, since COTTAP ignores cold pipe as a heat sink. This generally meant that piping at or close to Reactor conditions was included. Also note that this calculation neglects heat loss from small pipe (i.e. less than 2" OD).
Pi pe OD          The outside diameter      of the pipe was obtained f rom Reference 2. 4 Pipe ID        s  The    pipe schedule was obtained'rom Reference 2.5    ~  Knowing the schedule, the inside diameter was obtained from Reference 2.7 Insulation OD            s  The    insulation OD  was  obtained from Reference
: 2. 11 Pipe Length  :  The    pipe length was obtained from Reference 2.4    ~
Emmisivity    c  The    emmisivity was  obtained from Reference
: 2. 11
 
Calc  &#xb9;  N-SLD-002 Page      of t
10      16 Insulation k  Value        The  insulation thermal conductivity (k)          was obtained from Reference 2. 11 Pipe Fluid Temperature:    The design fluid temperature        was obtained from Ref erence 2. 6 Fluid  Phase    The  state of the fluid was determined by reviewing the system PAID's and design temperatures/pressures.       If a particular line could carry steam or water, it, was assumed to be liquid for conservatism.
4.5 General Data For Thick Slabs Room ID  &#xb9; on Side  1      The room number on one      side of the slab.
Room ID  &#xb9; on Side 2        The room number on      the other side of the slab.
When  slab  is adjacent to  ground, a room &#xb9; of "0"  is  used.
The  thickness of the slab      was  obtained from Ref erence 2. 4 Heat Transf er Area            The area    of the slab  was  obtained from Reference 2.4 .       The area was  calculated by scaling plant ventilation drawings, utilizing centerline to centerline dimensions. The slab areas are calculated in the Data Input Section (Refer to Appendix A).
Thermal Conductivity    The thermal    conductivity of the concrete slabs were obtained from Reference 2.8 , Chapter 23 Table 34. A value of 1 ' Btu/hr for all    concrete slabs.
ft  F was used Density          The density of    all  concrete slabs is assumed to be 140 ibm/cu    ft. This value was obtained from Reference    2.8,  Chapter 23 Table 34.
Specific Heat            The specific heat for all concrete slabs was assumed to be 0.22 Btu/ibm F as obtained from Reference    2.8,  Chapter 23 Table 3A.
 
fi t \
r~
I eh
 
Calc  &#xb9;  M-SLD-002 Page  11  of  16 e  6 Film Coefficient Data For Thick Slabs Type  w/r to Room on Side  1          The type  of slab with respect to the room on Side  1 was defined using the following codes Type 1        Vertical Wall Type 2        Floor Type 3        Ceiling hl  &  h2        All film coefficients (h) for inside walls were calculated by COTTAP. The film coefficient for walls in contact with outside air were inputted as Summer Winter 4.0  Btu/hr-sq    ft- F ft-6.0  Btu/hr-sq        F (Per Reference    2.8,  Chapter 23, Table 1)
A  value of 100 Btu/hr-sq    ft- F  was  inputted for walls in contact with ground. This value helps to simulate a wall (or flour) in contact with soil at. 55 F. This will result in a conservative prediction of the heat loss to gl oundo 4.7 Pipe Break Data Flui d Pressure        The fluid pressure within the pipe (psia).           All rooms (except RWCU) used a f luid pressure of 1000 psia, which was considered representative of normal Reactor conditions.
Mass Flow        The total mass flow exiting the pipe break (ibm/hr) was inputted as follows      a for 5 gpm water equivalent steam leak 5 gal/min x 1 cu ft/7.48 gal x 60 min/hr x
                      .02159 cu ft/ibm ~ 1860 ibm/hr vf  =  0.02159 cu ft/ibm 8 1000 psia (per ASME Steam Tables) for  25 gpm water  equivalent steam leak      c 5 x 1860 ibm/hr = 9300 ibm/hr The break occurs at t~0.5 hrs.        This allows the room to reach equilibrium conditions prior to initiation of the break. In all room models, the break mass flow is allowed to increase linearly (ramp) from 0 ibm/hr to its maximum value over 0.1 hrs.
 
Gale  &#xb9;  N-SLD-002 Page  12  of 16 0 RESULTS/CONCLUSIONS The  following pages provide the temperature profiles resulting from the RCIC  Pump Room model for the conditions stated below
: 1) 5 gpm water equivalent steam leak (Summer)
: 2) 5 gpm water equivalent steam leak (Winter)
: 3) 25 gpm water equivalent steam leak (Summer)
: 4) 25 gpm water equivalent steam leak (Winter)
The COTTAP  output for each case above can be found as Attachments  1 thru 4, respectively. Each output provides a summary of the data input, and the results of each time step within the 24 hour run time. At the end of each COTTAP output, a summary table of Temp vs Time information is also provided.
 
RCIC PUMP ROOM HEATUP EVALUATION (5 GPM STEAM LEAK/SUMMER) 200 180 RCIC PUMP    ROOM  tldATUP EVALUATION (5 GPM STdAM LdAR/SUMMSR)
TSMPERATURd (OSG P) 7 1dd    Roodr      ROOM/  Roodr  Roodr  Roodr  ROOMr    Roodr  Rood ~  R00Mr (Md)       I (3                                                104. 00 104.$ 1 104.4$
104.3d 0.400 104.67 160                                  0.500 104.92 0.$ $ 0 114.49 0.600. 122.nd 0.700 133.83 LLJ                                      0.$ 00 139.44 0.900 144.63
: 1. 000  '147. 82 1.500 1$ 6. 31 2.000 162.60 I                                       2.500 165.68 3.000 170.$ 3 3.500 173.3$
4.000 174.7$
4.$ 00 175.49
                                          $ .000  177.35 140                                  5.500 179. 14 8.000 180.37 e.soo 179. 69 7.000 181. 75 7.$ 00 182. 29 8 ono    182.45 9.000 183.54 an ono      184.93
                                      >> con 18$ .24 I:
I    ~
iinn 185.86 UI ~ 18S. 66
                                                                                                                            'h
                                      .4 ono 186.78
                                      ~
                                          ~  Uon  187. 19 11 .000    186. 43 17.000 187 7$
120                              18 000 19 unn
                                        =
187 4$
187.90
                                            >,000 187.98 41.000 1$ 7.25 22.000 'ldd. Id 18$ .$ 2
                                                                                                                            .XcA 23.000 24.000      18$ . 57                                                                    I I
D 0
f 100 0              10          15                            20                    25 TIME (HRS)
 
A(VS'
  ~
4
: RCIC PUMP ROOM HEATUP EVALUATION (5 GPM STEAM LEAK/WINTER) 200 180 I
      '160                          RCIC PUIIP ROOII HEATUP EVALUATION  (5 GPII STEAII LEAKININTER)
TEIIPFRATURE (DEG F)
Roolle (3                                  TIIIE (HR) 0.000 Roolle 7$ .00 ROOIIP ROOIIF  ROOIIP  Rooile  Roolle  ROONP            ROONP LJJ                                  0. 100    7~ .17 0.200    1$ . 24 0.300    1$ .2$
0.400    78.3$
0.500    1$ .44 140                              O.sso    03. 27 LIJ                                  0.$ 00  107.7 ~
0.700    114 20 0.$ 00  11$ .42 0.000    121.05 1.000  123.74 1.500  13$ .03 2.000  144.34 2.500  150. 24 3.000    IS4.01 120                              3.500 4.000 IS8.70 151.SQ 4.500    154. 21 5.000    155.50 5.500    188.43 CL                                    S.OOO S.sno I$ 0.74 111. 13 7.000  112. 38 7.500  113.45
                                        $ .000  174 3Q 9.000    17S.Q4 100                            10.000
                                      'Il.ooo 177. 18 177.07 12.000    17$ .52                                                                  Q 13.000    170.51                                                                      II
: 14. 000  -180. 10
: 15. 000  180. 51 15.000    151.07 17.000    1$ 1.44 18.000    IS'I.SO 80
: 10. 000 20.000 102. 11 182.44                                                                    +
21 000    1$ 2. 85 22.000    1$ 2. $ 0 23.000 24.000 183. Io 1$ 3.32 r    '
I O
60 0            jo        15                        20                      25 TIME (HRS)
 
RCIC PUMP ROOM HEATUP EVALUATION (25 GPM STEAM LEAK/SUMMER) 250 RCI C PUIIP ROOII IIEATUP EVAI.UATIOk (25 GPII STEAII I.EAK/SUIIIIER) 200                                TIRE t IIR)
ROOII ~
I ROOIIs  ROOUS    ROOUS    ROOIIS    ROOIIS
                                                                                                        'TEIIPERATURE (OEG F)
ROOIIS    ROOIIS  ROOIIS Ld                                    0. 000
: 0. 100 104.00 104.51 C3                                    0. 200  105. 0$
0.300    105.55 0.400    I OS. 10 0.500    104. $ 5 0.550    151.41 Ld                                    0.500 0.700 172.72 205.07 0.$ 00 214.33 0.000  210.0$
: 1. 000  222.34
                                          'I.SOO  22$ .5$
2.000  210.00 2.500  230.74 3.000  231.30 3.500  231.77 EK                                    4.000 4.500 232. 13 232.54 Ld                                    5.000 5.500 233.01 233.37 CL                                    d. 000  233.4Q 4.500    233.70 150                                7.000 7.500 133.02 234.21 Ld                                    $ .000   234.50 I                                    0.000 10.000 11.000 23S.OS 235.4$
236.57 12.000    23d.dl 13.000    235. IQ 14 000    23d. 21 15.000  235 04F 15.000  235.03 17.000  234.S3 1$ .000 10.000 20.000 235. 14 234. 3'I 234.5d F
21,000. 23$ .17 12.000  234.24 23.000  235 70 F
24.000  235. 1 ~
I 100                                                                                                                        O I
O 0              10        15                        20                      25                                        C TIME (HRS)
 
+g4 4 0
 
RCIC PLIMP ROOM HEATUP EVALUATION (25 GPM STEAM LEAKjWINTER) t 250 200 RClC PURP Rooil IIEATUP EVAI.UATIOII (26 GPII STEAII I.EAR/WIIITER)
TEIIPERATURE (OEG P) 7 IIIE  R Oollr    Roolir Roollr  Roosr    Roollr    Rooilr  Roollr  Roollr  Roollr C3                                      (IIR)      I 0,000 0 100 7 '00 7$ . 17 0.200 0.$ 00 7 '24 7$ .2$
0.400    7$ ,$ 5 0 500
                                            ~
0.550 7 '44 14$ .5$
0.$ 00  I ~ 1.67 0.700  1$  1 15 0.$ 00  205.4$
0.$ 00  212.27 150                                  I,  000
: 1. 500 215.$ 7 22d.$ 7 I                                      2.000 2.600
                                          $ .000 227.32 22$ . 10 22$ .55 3.600  22$ .04 4.000  22$ .2d 4.600  229.72 5.000  230.00 6.600  2$ 0. Id 5.000  2S0.3$
CL                                      5.600  2$ 0.70 2$ 0.$ 5 7.000 7.500  2$ 1. 'Id
                                          $ .000  231. 'I I
                                          $ .000  2$ 1.6$
I                                      10 000 11.000 12.000 2$ 1.03 2$ 2.40 232.56 100                                  1$ .000 14.000 2$ 2.$ 1 2$ 2.0$
16.000    2$ $ .2$
15.000    2$ 3.53 17.000    2$ 4.06 I .000    2$ 4.04
                                          ~
15.000    234.02                                                                      n 20.000    2$ 4.03 21.000    2$ 4.5$
22.000    234.$ 2 2$ .000  234. $ 1 24.000    2$ 6 ~ 12 6
50 0              10          15
                                            ''                  20                    25 1                                    0 TIME (HRS)
 
vJ ':
E
+W
      ~pl}}

Latest revision as of 17:30, 4 February 2020

Steam Leak Detection Calculation - RCIC Pump Room,Unit 1.
ML17157A806
Person / Time
Site: Susquehanna Talen Energy icon.png
Issue date: 07/24/1989
From:
PENNSYLVANIA POWER & LIGHT CO.
To:
Shared Package
ML17157A805 List:
References
M-SLD-002, M-SLD-2, NUDOCS 9108260176
Download: ML17157A806 (28)


Text

CALC. NO. -SLD-oo2. SAFETY-RELATED fp',1

~ ~ ~

CALCULATION COVER SHEET FILE NO. R2.-l ASIDE III OR XI [ ]

OTHEP, QUALITY I j1 SUPERSEDED BY klA. NON QUALITY I PROJECT S M LED(< DE> cc~om FkoJ gcT ER/CTN NO. klan DESIGN ACTIVITY/PNR NUMBER EWK + h4 Si ooo PAGE 1 OF I(,

TITLE/DESCRIPTION Smarm Lanai< DaracTiou CA<.c - RcZc. Punrtp Coo~ (Um iT' )

SYSTEMS AFFECTED SOBS & So5o RcFm vo pic r= > Fan s~mHBJf oF- paosi.aah.

D GN B S S H-Q -208 R N-Q-REF~ tO ATl ACHROO O~lG W XiJPVTG C ~ac.h~ MC 7HLS Chi-QJLATla~.

MFA Tu PA&6 + Fo& ~F~~cc~.

F'~<a IZ Fo~ Cuuugrcy (conc-~us~oms.

(ETO) BINDER AFFECTED? [ ] YES-If Yes enter: Binder II Vol.

Cal c. Fi1 e Pgs.

I.X] NO REV. NO. DATE PREPARED BY REVIEWED/CHECKED BY DATE APPROVED BY DATE 0 778 og 9108260'176. 910819.

PDR

,,P .. AOOCK OS000387

-.,PDR ml s/frb006i (12)

gl 1

'.3 '

Calc 0 M-SLD-002 Page 2 of 16 TABLE OF CONTENTS 1.0 PURPOSE ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ % ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ S ~ 0 ~ ~ ~ ~ ~ 0 ~ 0$ $ ~ ~ ~ ~ ~ ~ ~ 3

2.0 REFERENCES

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 1 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0 ~ ~ ~ E ~ ~ ~ ~ ~ 1 ~ S ~ ~

3 0 ASSUMPT I ONS

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 5 4.0 METHODOLOGY 0$ ~ ~ ~ ~ 0 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0 ~ ~ ~ 0 ~ ~ ~ ~ \ ~ ~ ~ ~ S ~ ~ ~ ~ ~ 0.. ~ ~ 6

5. 0 RESULTS/CONCLUSIONS ............................. ~..... 12 ATTACHMENT 1 COTTAP Output for RCIC Pump Room 5 GPM Leak (Summer)

ATTACHMENT 2 COTTAP Output for RCIC Pump Room 5 GPM Leak (Winter)

ATTACHMENT COTTAP Output for RCIC Pump Room 25 GPM Leak (Summer)

ITACHMENT 4 COTTAP Output for RCIC Pump Room 25 GPM Leak (Winter)

APPENDIX A Data Input Section RCIC Pump Room (I-12/I-107)

Calc ¹ N-SLD-002 Page 3 of lh 1;0 PURPOSE The purpose of this calculation is to predict the room temperature profile expected when a small steam leak is introduced in the Unit i RCIC Pump-Room. The results of this calculation will be used as a basis for development of Steam Leak Detection System setpoints.

Calc ¹ N-SLD-002 Page 4 of 16 2 1 Calc ¹ N-RAF-024, Rev. 0 "RB Post DBA Transient Temperature Analysis"

2. 2 Bechte1 Ca 1 c, ¹ 176-18, Rev. 5 "RB Cooling Nodes" 2a3 SEA-EE-129, Rev. 0 "SSES Unit 1 and Unit 2 Reactor Building Heat Loads" Drawings PAID N-176, Rev. 20 PAID N-149, Rev. 30 PAID N-150, Rev. 17 V-28-1, Rev. 15 V-28-2, Rev. 14 V-28-3, Rev. 17 C-105, Rev. 20 C-134, Rev. 15 C-156, Rev. 12 C-111, Rev. 15 C-117, Rev. 17 t

DBB-109-2, Rev. 8 GBD-135-1, Rev. 3

.5 N-19'9 Piping Class Sheets 2.6 SEIS Pipeline General Index 2.7 Crane Technical Paper No. 410, 23rd Printing 2.8 ASHRAE 1985 Fundamentals Handbook 2.9 FSAR Table 3.11-6 2.10 FSAR Section 5.2 5.1.3

~

2. 11 Calc ¹ N-PAF-001, Rev. 1 "HVAC Environmental Analysis Reactor Buildings 5 Control Structure"
2. 12 COTTAP-2 Theory and Input Description Nanual (User's Manual),

Rev. 1, dated 1/27/89.

Gale 0 M-SLD-002 Page 5 of lh 0 ASSUMPTIONS i) Plant is operating under normal conditions prior to introducing a steam leak.

2) All adjacent rooms will be maintained at their design maximum temperature for summer conditions and at the average temperature for the month of January (if blue-box data is available) for winter conditions. Where winter temperature data is not available, the design minimum temperature of 60 F will be used.
3) The room under consideration will not be allowed to pressurize, as the blowout panel will relieve at approximately 0.5 psid. Therefore, a leakage path out of the room will be used to maintain pressure as close to 14.7 psia as possible. The temperature effects due to slight room pressurization are assumed to be negligeble.

4> The effects of adjacent room heatup are not considered in this analysis (i.e. adjacent room temperatures are held constant>. This results in a conservative temperature profile f'r the room under consideration. The actual adjacent room heatup due to the steam leak is expected to be minimal (when considering conductive heat lasses).

5) The CQTTAP model assumes perfect mixing of the air and steam in the room under consideration.

Md W-5

+p ~

li

Calc ¹ N-SLD-002 Page 6 of 16 The Compartment Transient Temperature Analysis Program (COTTAP) was used to analyze the affects of a steam leak in various rooms within the plant. The program predicted temperature profiles for the room under consideration with the following set of conditions

1) 5 gpm water equivalent steam leak (Summer)
2) 5 gpm water equivalent steam leak (Winter)
3) 25 gpm water equivalent steam leak (Summer)
4) 25 gpm water equivalent steam leak (Winter)

The individual room models were developed from various sources of information, as identified in Section 2.0 References. The results will consist of the COTTAP output and the plots of various profiles for the conditions stated above. The following discussion is provided to outline the steps used in developing the individual room models.

4. 1 General Data For Rooms Room Volumes The room volume was taken from Reference 2. 1 for the room under consideration. Adjacent.

room volumes were set to a large value (i.e.

t.

1. 0 EE15 cu. f ) to maintain constant properties such as temperature, pressure and relative humidity.

Initial Pressure All rooms were assumed to be at an initial pressure of 14.7 psia.

Initial Temperature All rooms were assumed to be at their maximum normal design temperature initially for summer conditions. Actual winter data was used, where available, as a starting point for the winter runs. The winter data was taken as the "blue-box" average temperature for January 1988.

The January data was considered to be more conservative than February data. Where actual winter data was not available, the design minimum room temperature of 60 F was used.

Where winter data was not available for the room in question, the room was started at a temperature which allows it to reach a steady-state with its adjacent rooms.

<<;S KJ k>>

Cf' c[

5~

Gale 0 N-SLD-002

,Page 7 of 16 The outside ambient temperature was taken as 79 F (summer) and 26 F (winter). The summer ambient was taken from Reference 2.8 as the 24 hour2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> daily average temperature, based upon the 1% ASHRAE design value for the Nilkes-Barre/

Scranton area. The winter value was taken as the actual monthly average for January over the years 1986 thru 1989. This average was based upon,SSES Neteorological Data taken from the plant computer. A comparison of February data over this same time period indicated that the January data was more conservative.

Relative Humidity The relative humidity for all rooms connected by ventilation or leakage paths is based upon supply air temperatures of 85 F (summer) and 60 F (winter) at 90/ RH. Air at these conditions was then allowed to heat up (sensible heating only) to the initial room temperature, and the corresponding RH value was calculated or read from the psychrometric chart.

Room Height This value is no longer used by COTTAP. It' original purpose was associated with the wall condensation calculation used within COTTAP.

COTTAP has been revised and no longer uses this information. Therefore, a value of 10.0 inputted for each room. This value has no ft was significance to the calculation. Nate that the actual room height was used in the calculation of room volume.

4.2 Airflow and Leakage Path Data Airflow Data The design airflow is provided for the room under consideration. All flow paths are identified (i.e. supply, exhaust and transfer air). The source of the airflow data is the PAID associated with the particular ventilation system for that room. The data identifies the room from which the air comes, and the room to which the air goes.

Since air flows are balanced to + 10/ accuracy, a conservative value of 550 cfm was used for this room (500 cfm x 1.1). The RCIC supply and exhaust duct has back draft isolation dampers to prevent the spread of steam to adjacent

h Ca 1 c 0 M-SLD-002 Page 8 of 16 rooms in the event of a steam leak. These dampers i sol ate at a di f f erenti al pressure of 2 " wg. The BDID's would be expected to close under the presence of a steam leak. To simplify the model, a conservative assumption was made which leaves the BDID's open during the steam leak. This would have the effect of predicting a lower temp. vs. time profile.

Leakage Path Data As with the airflow data, all rooms connected to the leakage path are identified. The leakage path area is only used to scale the leakage flowrates for the entire compartment under consideration. The intent of the leakage path is to prevent compartment pressurization.

For most rooms <except RWCU), only one leakage path is used, and a value of 1.0 sq.

inputted for the leakage path area. When more ft. is than one leakage path exists, actual leakage areas can be inputted to better understand leakage flows between adjacent compartments.

t4.3 Heat Type Load Data Heat Load The type of heat load following nomenclature Type was identified using the Description 1 Lighting 2 Electrical Panels 3 Notol 5 Unit Coolers 5 Piping 8 Misc. Mechanical Equipment Heat Input Rate s The heat rate input in Btu/hr for the associated heat load.

The values for heat load types 1 thru 3 were obtained from References 2.2 h 2.3. The heat rate inputs for type 4 heat loads are inputted as negative values since the unit coolers remove heat from the room. The heat input rate for type 5 heat loads were input as -1. This value directs COTTAP to obtain piping information necessary to calculate the piping heat loads. The heat input rate for type 8 heat loads was obtained from Ref erences 2. 2 5 2.3, as necessary for the appropriate room.

?~

g I L*j R. ~

~,f

Calc ¹ M-SLD-002 Page 9 of 16 To achieve an initial steady-state condition, a miscellaneous heat load (positive or negative) was added to the main room to balance all other time zero heat loads. This heat load was inputted as type 8.

Note that COTTAP neglects cold pipe and equipment as heat sinks. This represents non-conservatism in this calculation. A sample run made to determine the effects of these heat sinks indicated that. resultant temperatures were only slightly lower than the values predicted when neglecting these heat sinks.

Therefare, this calculation assumes the effects of these heat sinks are negligable.

For walls and floors in contact with ground, the model predicts a conservative value of heat loss to ground. The slabs are assumed to be in contact with soil at a temperature of 55 F. To model the heat loss to ground, a large value of surface film convective heat transfer coefficient (100 Btu/hr-sq ft- F) has been introduced on the ground side of the floors and walls to achieve a ground contact temperature of 55 F.

4.4 Piping Input Data Only piping with a design temperature greater than that of the normal room design temperature was included, since COTTAP ignores cold pipe as a heat sink. This generally meant that piping at or close to Reactor conditions was included. Also note that this calculation neglects heat loss from small pipe (i.e. less than 2" OD).

Pi pe OD The outside diameter of the pipe was obtained f rom Reference 2. 4 Pipe ID s The pipe schedule was obtained'rom Reference 2.5 ~ Knowing the schedule, the inside diameter was obtained from Reference 2.7 Insulation OD s The insulation OD was obtained from Reference

2. 11 Pipe Length  : The pipe length was obtained from Reference 2.4 ~

Emmisivity c The emmisivity was obtained from Reference

2. 11

Calc ¹ N-SLD-002 Page of t

10 16 Insulation k Value The insulation thermal conductivity (k) was obtained from Reference 2. 11 Pipe Fluid Temperature: The design fluid temperature was obtained from Ref erence 2. 6 Fluid Phase The state of the fluid was determined by reviewing the system PAID's and design temperatures/pressures. If a particular line could carry steam or water, it, was assumed to be liquid for conservatism.

4.5 General Data For Thick Slabs Room ID ¹ on Side 1 The room number on one side of the slab.

Room ID ¹ on Side 2 The room number on the other side of the slab.

When slab is adjacent to ground, a room ¹ of "0" is used.

The thickness of the slab was obtained from Ref erence 2. 4 Heat Transf er Area The area of the slab was obtained from Reference 2.4 . The area was calculated by scaling plant ventilation drawings, utilizing centerline to centerline dimensions. The slab areas are calculated in the Data Input Section (Refer to Appendix A).

Thermal Conductivity The thermal conductivity of the concrete slabs were obtained from Reference 2.8 , Chapter 23 Table 34. A value of 1 ' Btu/hr for all concrete slabs.

ft F was used Density The density of all concrete slabs is assumed to be 140 ibm/cu ft. This value was obtained from Reference 2.8, Chapter 23 Table 34.

Specific Heat The specific heat for all concrete slabs was assumed to be 0.22 Btu/ibm F as obtained from Reference 2.8, Chapter 23 Table 3A.

fi t \

r~

I eh

Calc ¹ M-SLD-002 Page 11 of 16 e 6 Film Coefficient Data For Thick Slabs Type w/r to Room on Side 1 The type of slab with respect to the room on Side 1 was defined using the following codes Type 1 Vertical Wall Type 2 Floor Type 3 Ceiling hl & h2 All film coefficients (h) for inside walls were calculated by COTTAP. The film coefficient for walls in contact with outside air were inputted as Summer Winter 4.0 Btu/hr-sq ft- F ft-6.0 Btu/hr-sq F (Per Reference 2.8, Chapter 23, Table 1)

A value of 100 Btu/hr-sq ft- F was inputted for walls in contact with ground. This value helps to simulate a wall (or flour) in contact with soil at. 55 F. This will result in a conservative prediction of the heat loss to gl oundo 4.7 Pipe Break Data Flui d Pressure The fluid pressure within the pipe (psia). All rooms (except RWCU) used a f luid pressure of 1000 psia, which was considered representative of normal Reactor conditions.

Mass Flow The total mass flow exiting the pipe break (ibm/hr) was inputted as follows a for 5 gpm water equivalent steam leak 5 gal/min x 1 cu ft/7.48 gal x 60 min/hr x

.02159 cu ft/ibm ~ 1860 ibm/hr vf = 0.02159 cu ft/ibm 8 1000 psia (per ASME Steam Tables) for 25 gpm water equivalent steam leak c 5 x 1860 ibm/hr = 9300 ibm/hr The break occurs at t~0.5 hrs. This allows the room to reach equilibrium conditions prior to initiation of the break. In all room models, the break mass flow is allowed to increase linearly (ramp) from 0 ibm/hr to its maximum value over 0.1 hrs.

Gale ¹ N-SLD-002 Page 12 of 16 0 RESULTS/CONCLUSIONS The following pages provide the temperature profiles resulting from the RCIC Pump Room model for the conditions stated below

1) 5 gpm water equivalent steam leak (Summer)
2) 5 gpm water equivalent steam leak (Winter)
3) 25 gpm water equivalent steam leak (Summer)
4) 25 gpm water equivalent steam leak (Winter)

The COTTAP output for each case above can be found as Attachments 1 thru 4, respectively. Each output provides a summary of the data input, and the results of each time step within the 24 hour2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> run time. At the end of each COTTAP output, a summary table of Temp vs Time information is also provided.

RCIC PUMP ROOM HEATUP EVALUATION (5 GPM STEAM LEAK/SUMMER) 200 180 RCIC PUMP ROOM tldATUP EVALUATION (5 GPM STdAM LdAR/SUMMSR)

TSMPERATURd (OSG P) 7 1dd Roodr ROOM/ Roodr Roodr Roodr ROOMr Roodr Rood ~ R00Mr (Md) I (3 104. 00 104.$ 1 104.4$

104.3d 0.400 104.67 160 0.500 104.92 0.$ $ 0 114.49 0.600. 122.nd 0.700 133.83 LLJ 0.$ 00 139.44 0.900 144.63

1. 000 '147. 82 1.500 1$ 6. 31 2.000 162.60 I 2.500 165.68 3.000 170.$ 3 3.500 173.3$

4.000 174.7$

4.$ 00 175.49

$ .000 177.35 140 5.500 179. 14 8.000 180.37 e.soo 179. 69 7.000 181. 75 7.$ 00 182. 29 8 ono 182.45 9.000 183.54 an ono 184.93

>> con 18$ .24 I:

I ~

iinn 185.86 UI ~ 18S. 66

'h

.4 ono 186.78

~

~ Uon 187. 19 11 .000 186. 43 17.000 187 7$

120 18 000 19 unn

=

187 4$

187.90

>,000 187.98 41.000 1$ 7.25 22.000 'ldd. Id 18$ .$ 2

.XcA 23.000 24.000 18$ . 57 I I

D 0

f 100 0 10 15 20 25 TIME (HRS)

A(VS'

~

4

RCIC PUMP ROOM HEATUP EVALUATION (5 GPM STEAM LEAK/WINTER) 200 180 I

'160 RCIC PUIIP ROOII HEATUP EVALUATION (5 GPII STEAII LEAKININTER)

TEIIPFRATURE (DEG F)

Roolle (3 TIIIE (HR) 0.000 Roolle 7$ .00 ROOIIP ROOIIF ROOIIP Rooile Roolle ROONP ROONP LJJ 0. 100 7~ .17 0.200 1$ . 24 0.300 1$ .2$

0.400 78.3$

0.500 1$ .44 140 O.sso 03. 27 LIJ 0.$ 00 107.7 ~

0.700 114 20 0.$ 00 11$ .42 0.000 121.05 1.000 123.74 1.500 13$ .03 2.000 144.34 2.500 150. 24 3.000 IS4.01 120 3.500 4.000 IS8.70 151.SQ 4.500 154. 21 5.000 155.50 5.500 188.43 CL S.OOO S.sno I$ 0.74 111. 13 7.000 112. 38 7.500 113.45

$ .000 174 3Q 9.000 17S.Q4 100 10.000

'Il.ooo 177. 18 177.07 12.000 17$ .52 Q 13.000 170.51 II

14. 000 -180. 10
15. 000 180. 51 15.000 151.07 17.000 1$ 1.44 18.000 IS'I.SO 80
10. 000 20.000 102. 11 182.44 +

21 000 1$ 2. 85 22.000 1$ 2. $ 0 23.000 24.000 183. Io 1$ 3.32 r '

I O

60 0 jo 15 20 25 TIME (HRS)

RCIC PUMP ROOM HEATUP EVALUATION (25 GPM STEAM LEAK/SUMMER) 250 RCI C PUIIP ROOII IIEATUP EVAI.UATIOk (25 GPII STEAII I.EAK/SUIIIIER) 200 TIRE t IIR)

ROOII ~

I ROOIIs ROOUS ROOUS ROOIIS ROOIIS

'TEIIPERATURE (OEG F)

ROOIIS ROOIIS ROOIIS Ld 0. 000

0. 100 104.00 104.51 C3 0. 200 105. 0$

0.300 105.55 0.400 I OS. 10 0.500 104. $ 5 0.550 151.41 Ld 0.500 0.700 172.72 205.07 0.$ 00 214.33 0.000 210.0$

1. 000 222.34

'I.SOO 22$ .5$

2.000 210.00 2.500 230.74 3.000 231.30 3.500 231.77 EK 4.000 4.500 232. 13 232.54 Ld 5.000 5.500 233.01 233.37 CL d. 000 233.4Q 4.500 233.70 150 7.000 7.500 133.02 234.21 Ld $ .000 234.50 I 0.000 10.000 11.000 23S.OS 235.4$

236.57 12.000 23d.dl 13.000 235. IQ 14 000 23d. 21 15.000 235 04F 15.000 235.03 17.000 234.S3 1$ .000 10.000 20.000 235. 14 234. 3'I 234.5d F

21,000. 23$ .17 12.000 234.24 23.000 235 70 F

24.000 235. 1 ~

I 100 O I

O 0 10 15 20 25 C TIME (HRS)

+g4 4 0

RCIC PLIMP ROOM HEATUP EVALUATION (25 GPM STEAM LEAKjWINTER) t 250 200 RClC PURP Rooil IIEATUP EVAI.UATIOII (26 GPII STEAII I.EAR/WIIITER)

TEIIPERATURE (OEG P) 7 IIIE R Oollr Roolir Roollr Roosr Roollr Rooilr Roollr Roollr Roollr C3 (IIR) I 0,000 0 100 7 '00 7$ . 17 0.200 0.$ 00 7 '24 7$ .2$

0.400 7$ ,$ 5 0 500

~

0.550 7 '44 14$ .5$

0.$ 00 I ~ 1.67 0.700 1$ 1 15 0.$ 00 205.4$

0.$ 00 212.27 150 I, 000

1. 500 215.$ 7 22d.$ 7 I 2.000 2.600

$ .000 227.32 22$ . 10 22$ .55 3.600 22$ .04 4.000 22$ .2d 4.600 229.72 5.000 230.00 6.600 2$ 0. Id 5.000 2S0.3$

CL 5.600 2$ 0.70 2$ 0.$ 5 7.000 7.500 2$ 1. 'Id

$ .000 231. 'I I

$ .000 2$ 1.6$

I 10 000 11.000 12.000 2$ 1.03 2$ 2.40 232.56 100 1$ .000 14.000 2$ 2.$ 1 2$ 2.0$

16.000 2$ $ .2$

15.000 2$ 3.53 17.000 2$ 4.06 I .000 2$ 4.04

~

15.000 234.02 n 20.000 2$ 4.03 21.000 2$ 4.5$

22.000 234.$ 2 2$ .000 234. $ 1 24.000 2$ 6 ~ 12 6

50 0 10 15

20 25 1 0 TIME (HRS)

vJ ':

E

+W

~pl