ML17157A807

From kanterella
Jump to navigation Jump to search
Steam Leak Detection Calculation -HPCI Pump Room,Unit 1.
ML17157A807
Person / Time
Site: Susquehanna Talen Energy icon.png
Issue date: 06/29/1989
From: Agnew G
PENNSYLVANIA POWER & LIGHT CO.
To:
Shared Package
ML17157A805 List:
References
M-SLD-001, M-SLD-1, NUDOCS 9108260182
Download: ML17157A807 (22)


Text

CALC. NO. H-SLD-Ooi SAFETY-RELATED Q(1

~ ~ ~

CALCULATION COVER SHEET FILE NO. R2-I ASME III OR XI I ]

OTHEP. EQUAL!TY f' SUPERSEDED BY NON EQUAL!TY [ l PROJECT H Lma Daric. oM RoJEc-T'R/CTN NO. h/A DESIGN ACTIVITY/PNR NUMBER EWA. + gSiooo PAGE 1 OF ~g TITLE/DESCRIPTION Lt~k DETEc~~ TALC. HPC-X Pu(NP ROOK UNl7 DNLV'YSTEMS AFFECTED +o8a C So5w jPEFEa W PQ68 3 Fo& 57ATkM~ OF PRogL~.

D S GN B S S .- - 08 R PN-Q - 0 g8~ Tv A~~fc~ DEsl6AJ LhJPU75 6HvEK47ED ROM ~/5 ~GvL4T70Al-A'~~ m P44E g aors /~~cap.

JPa~Cig. FO PANIC /2 FOM SUMM4RV/CONC<><ioMS-

)

LAJ CL

<<C C7 I

CL (ETO) BINDER AFFECTED'? t ] YES-If Yes enter: Binder 8 Vol.

Cal c. File Pgs.

.. f)C NO REV. NO. DATE PREPARED BY REVIEW CHECKED BY DATE APPROVED BY DATE O ~b~ S 21 9ioSZ60i82 9<<8~9 7 ~>>

ADOCK"050003~7-t PDR P ... PDR ml s/frb006i (12)

~ rc Ca 1 c 4 M-SLD-001 Paae = af 16 TABLE OF CONTENTS PURPOSE

=.0 REFERENCES

~. 0 ASSUMPTIONS 4.0 METHO QLOGY 5.0 RESULTS/CONCLUSIONS ATTACHMENT 1 COTTAP Output, for HPCI Pump Raom 5 GPiI Leak (Summer)

ATTACHMENT 2 CQTTAP Output far HPCI Pump Room 5 GPM Leak (Minter) t e,l ATTACHMENT ~ COTTAP Output far HPCI Pump Room

.5 GPM Leak (Summer>

ATTACHMENT 4 COTTAP Output for HPIC Pump Roam "5 GPM Leak (Minter>

APPENDIX A Data Input Sect i on HPCI Pump Raom ( I-11/I-106)

APPEND IX 8 Blue-Boi Data (Minter)-Ave Temp far Month of January APPENDIX C Outside Air Temperature Ave for Month of January (1'7S6 trhu 1989>

Calc '0 N-SLD-OCil Page ~ of l6 l..o pURposE Thie gut pose of this calcu at on 's -:o predict the room temperature pr of'e e..:pecked when a small steam eak is

~

~

introduced in the Uni'= 1 HPCI >ump Room. The results of th. s calcu't1 on wi ' be used as a basi s f or development of Steam Leak Detection System setpoints.

Cal c 5 M- SLD-001 Page 4 of 16

~ J a' 0 <M-RAF-0 "4, Rev. 0 "RB Post DBA iransient Tempera ure Al ~

el ys1 s

~ 1 Bec<<"tel Ca c 4 176-18, Rev. 5 "RB Cool ng Modes" SEA-EE-129 Rev. 0 "SSES Unit 1 and Unit = Reactor Building Heat Loads" Dr aw n<gs P i I D i l-176, Rev 20

<-'.ID M-155, Rev a -'I V 25 1) Revs 2s Rev ~ 14 V '5 . ~

y <xev ~

V-. 8-1, Rev. 15 V- 3-2, Rev. 14 V 8->q Rev 17 C-10~, Rev. 19 C-105, Rev. 20 C-1~2, Rev. 17 C-1~4, Rev. 15 C-154, Rev. 12 C-156, Rev. 12 C- 1 1 1, Rev. 15 C-117, Rev. 17 DBB -114-1, Rev.

GBD-112-1, Rev.

GBD-2-5, Rev. 6 GBD-1 ~5-1, Rev.

M-199 Piping Class Sheets 2.6 SEES Pipeline General Index 7 Crane Technical Paper No. 410, 2~rd Print-ng

=.8 ASHRAE 1985 Fundamentals Handbook FSAR Table ~.11-6

2. 10 FSAR Section 5.2.5. 1.3

=. 11 Calc 0 M-PAF-001, Rev. 1 "HVAC Environmental Analysis Reactor Bui l dinge 'c Control Structure" COTTAP-2 Theory and Input Descript.ion Manual (User's Manual),

Rev. 1, dated 1/27/89.

Shipp, P.H. 1982. Basement, Crawlspace, and Slab-an-grade Thermal Performance. Proceedings o~ ASHRAE/DOE thermal per-.-ormance of the exterior envelopes of buildings II, Las Vegas~ NV. December.

4 )

ltd' 4

Ca 1 c -.. M-SLD-001 Page 5 QF 16

1) Plan is Qperatirig undel not Alai condit'ns pl ioI to

'ritroducing a steam 'eak.

i-"Il ad J ace! ct I Qoms wl 1 . be maintained at their des'n i

maà mum temperate! e For summer cond' Qris and at the aver age teiilperatu!' f Qr the month Qf 3anuary (' bl!.!e-boi da a 35 a /a3 'ble) For w. nter condi tions. blher e wir ter ava'b

~

teiilp er atui-e data i 5 Aot e, tihe esi gr mini mum teri c era ure of 60 F w'1 be used.

v) The I Qom Gndei coAs Gel at'A wl 1 1 Aot'e al -uweG to pressur'.e, as he b'wout pane'il'elieve at the I Qom w'e approximately O.u ps'd. Ther fore, a leakage path Qut Qf psia, as possible.

used to ma. A'tai A pr e55ul' as c '5e 0 14 7 The temperatI.'.re effects due to slight room pressur'.at 'n -.re ass! med to be Aegl igeble.

0) The ef fcct5 QF adjacent Qom heatup are not considered in I

th 5 anal y'si 5 ( i e ad ) acer t room temperatures are hei d

~

coAstaAt) Tl 15 I" esu is ' a. coAsel"vative tempel atul e pro-..:'e for the room urder consideration. The actual adjacent room heatup due to the steam leak is expected to be miriimal (when considering conductive ileat losses).

5) The CCTTAP model assumes perfect mi>'ing QF the air and steam iri the room under cans'derat ori.

Ca' 5 i I-SLD--001 Page 6 of 16 T = Compartment Transient Temper at ui 2 Ana's' Program '.COTTAP) was used to ana'y=e the affects of a steam leak in various Qoms w1 Q.' '5 th' ns

. Ql th2 pl an . The program predi cted temperature the room under coflsi def aii Gn w1 th th2 f ol 1 owirg sei of cond

1) 5 gpm water equiv*'ent steam leal (Summer)

=) 5 gpm water eqLli val eni steam 1 ea'k (Winter)

~) 25 gPm Hatel equi va'nt steam 'ak (Summer)

4) ~ gPm watcl equivalent steam ea (Winter) 1 The indd .al roam made' were develop2C fl om val QLls SQLLl c25 of information> as ident-fied in Section =.0 References.

resu'ts will consist of the COTTAP output and the plots of The i

val ioi '.s pf Q. 1 1 25 fol ihe condi 1on5 stated above.

discussion i s provided to Qut'ne the steps used in developing The f Ql '. owing the ndividual room models.

4. 1 Gener al Dat a For Rooms Room Volumes The room volume was taken from Reference 2.1 for the room under consideration. Adjacent f VOm Valumea Wer 2 Set ta a large Va.lue (i.e.

1 0 EE15 cu.

~ fi. ) to maintain constant.

properties such as temperature, pressure and relat ve humidity.

Eni t.i al Pressure All rooms were assumed to be at an in'tial pressure Qf 14.7 psia.

initial Temperature All rooms were assumed to be at their maximum normal design temperature initially for summer conditions. Actual winter data was used, where available, as a start.ing point f or the winter runs. The winter data was taken as thc "b1ue-box" average temperature for January 19SB.

The January data was considered to be more conservative than February data. Where artual winter data was not available, the design minimum room temperature of 60 F was used.

Where winter data was not available for the room in question, the room was started at a temperature which allows state with ts adjacent. rooms.

it to reach a steady-

Cal c 0 i l-SI D-001 Page 7 a f 16 The outside atllb At tempel atUre Wa5 tar'.Cri as 79 F (Summer) and 26 F (winter). The Summer amb:ent .-.ES ta'r;en i'ram PefereriCe 2 8 as tl 2 hour2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> da' y average temiper ature bas2d upoA t.'12 AS)ARAN Esigil va Lie 'FGI the Ni 1'.25 3ai rE.

Si I" ain tail aa ea. T 12 wi ntel va Lle was t. at'. -ci Bs j

aC <Ua iTIanthl / aVCI age 'Far u anUaI y GVer tI ie years 1'?86 thru 1989. Thi 5 average wasbased Upon SEES iieteol Glogi Gal DatcI taken fl Gill ti 2 p 1 aAt cGmp4tel A comipar 'QA o F FEbruaI y dat =.

~

w anuaI y da'

~

Over l ' Same t i me peI 'u was mal 2 con 52I vat 1 Ad cc t ed

'e tha the

~

.Elai F:i= 'e

-ti re Humidity The relative hLm'dity For al rooms cannectei vent' at- Gn GI 1eakiage path5 is based upari

-Upp'y a- r t llperatures of $ 5 F (Summer) =nd hO F (w'riter) at 90% RH. Air at t.hese

=andi tians was then al lowed ta heat. Lip (sensib'2 l-2 .ting only) ta the ir'ia temp2I atuI 2 alid til2 col esponding RH valLI2 was I

roam ca..cul ated or read f rom the psychrametri c chart.

Roam Height ihis value '5 Aa lounger used by COTTAP. lt arigirial purpose was associated with the calculation used within COTTAP. wal'ondensation COTTAP ilc"5 beeI i I ev'. 5E'd 2nd no l onger LIses thi 5 information. Therefore, a value of 10.0 F" was inputted For each roam. This value has r,o signi f icance ta the calculatiGA Note tiIat th2 actual roam he'ght. was used in the ca culat'an of room volume.

Airflow and Leakage Path Data Airflow Data The design a- rf low ' provided for the roam under consideration. All flow paths are identified (i.e. supply, exhaust and transfer air) . The source of the airflow data is the P'IcID associa ed with the particular ventilation system for tl-at room. The data identifies the raom from which the air comes, and the room to whi ch the air goes.

Since air Flows are balanced to + 1OI accuracy, a conservative value of 2090 cfm was used far this roam (1900 c f m x 1. 1) .

C IR

Ca 1 c 0 i"1-SLQ- 001 F'age 8 QF lu Lea:.'age i- ath T)ata As wi t<< the air ". Qw d ata, al 1 rooms connected io the eal;age pact< are identi f: =d. The eatage pciUi area ' Qnl y L.sed 0 scale the

'e

'at.age 1 owt a cs Fol tl ce en

. compartivient under cons Ceration. ihe intent Gf the leakage hathi ' to pi vent coiTipartment pressur'-ation.

Foc iTioat I coiTis weYcc.pt Ri)CU) >

Qn ' QTle eatage Pa h s Lsed ~ a>id c; ialL:e of 2.0 sq. =t. is

'pL:tteu .""Qr the 1: a'r'age p aii al ea c 'Ahen mol e thc:n Qne 'at.'age path ri sts actL!a -

~ ec.-.r'age al eas cctn be i cipLit ted to bettel" LIndef stal id

'a>;al=e . 1 Gws between <<C Jacelit cGmpal tments

~ ~ r Heat Load 3a c a Heat Load Type The type Of heat 1Oad WaS iderti fled uSing the f o 'wing nomel ic a'tLII e a Type Descr i pt'n Lighting 2 El ec tr i lotors

'a 1 .- ane 1 s Unit Coolers Pip'ng Nisc. Mechanical Equipment Iieat ?nput Rate The heat -at=- input in Btu/hr for the associated heat load.

The values for heat 'ad types i thru ~ were obtairied from References 2.2 8 2.~ ~ The heat.

rate inputs for type 4 heat loads are inputted as negative values since the unit coolers remove heat From the room. The heat input rate for type 5 heat loads were input as -l. This value directs COTTAP to obtain piping information necessary to calculate the piping heat loads. The heat input rate for type 8 heat loads was obta'ned from References 2.2 5 2.Z, as necessary for the appropriate room.

To achieve an init,ial steady-state condition, a miscellaneous heat load (positive or negative) was added to the main room to balance all other time =.ero heat loads. This heat load was inputted as type 8.

Note that COT TAP ri eg ~

ect s col d p x p 2 and Equioment hect sinks. Thi s represents non-cor:set Ya>> sm ' th 5 ca c i a i an. A scmp rLIIi to de tel mi lie>>ih2 Bf ec ts 0 F tliese i le

'ade F

sinks iridiGated tliat EsL!1 tal >> teiTipel atul I ~

wEI 2 orily - I i ght 1 y 1 Qwel thai i ti12 va '.Bs ~

/red ctcd when neglecting these l;Eat sink s ~

Therefore, 'th 1 s ca 'L!1 at Qni cissumies>>he 2 >>

G'f tt iese ilBat s riks are nieg'ab e.

I=or wa11s and floars iri cantact w: t:i grQL!nd, JJ r .

1 Qss>>0 graL!nd be -'n contact wi >>h 501

~

'i the mode c pi Ed i c ts a con set" ')'a'ti ve va '

of The sl abs al 2 a JsLim d 0 a tern@el atLil E Qf Ta i'1iode 1 the heat 1 Qss t 0 gi" oui.d a,

.s i EEP 'tl transver c02.. ': f

-'il ge va. ue 0 f sl!l ace f i ' canv2ct v2 hec't Ent (1M Btu/hr -sq f QdUced Qn ii t-c gl Qund =:de Qf tt F)

Flaars and wall- a ach- Bve a ground contact Emperature of 55 F.

4 s P- p 'lg li put l Data Onl y piping w'h a design Emiperature greater than t<<at af. th2 nQI mal rouiTi desigri temperature was inclLded, since COT i AP ignares cold pipe as a heat sink. This generally meant that piping at ar c~ase to Reactor condit: ons was ncluded. Also nate>>hat this ca'culatian neglects hea>> 'oss fram small pipe (i. 2. 'ss than =" OD) .

The QLatsi de di ameiel of the pipe was obta Reference 2.4 ried'from Pipe ).D The pipe schedule was obtained fram Ref ererice 2.5 . Knowing the schedule, the inside diameter was abtairied f ram Ref crence 2. 7 Znsulatian OD The insulation OD Has abtained from ReFerence

2. 11 P'pe Length The pipe length was obtained fram Reference 2.4 Emmisivity The emmisivity was obtained from Reference
2. 11 lnsulatian Value The insulatian thermal canductivity (k) was obtained f rom Ref erence 2. 11 Pipe F'1 u id Temper atur e The design fluid temperature was obtained 'Fram Ref erence .6

Calc 4 t1-SLD-001 Page 10 o F 16 P>>ase The =tate Q f the luid was determ'ried by t evl ew1rig the sy=tem P'i TD ' and desi gr tempei at>. it pt Essuti cs. -. a part:cu at 1l=.e cuLL. d ca> t be 1 oui d y

c>~l teatil co>

Qt %mt f lser'vati smi..

> 1 t waw .m~L.foal>=d tQ Genera'ata For Thi c':: S abs Roam ID Qr> S1 d: T>> i:- t" Dam nu>T>bet Qr. Qne s die o=

. "he s'b.

Room or S'-lD The t QQ>T> ilL>mbel Q> i the athet si de Qf the sl ab .

Aher> slab is =-. jacent ta ground, a roam 4 af "0" -'

Lts>=d Thickness The th'ckness a< the slab was obtained from Ref er ence 2. 4 Heat Tc an sf Bl" Area The area of the sl .b was abta'ned fram Reference 2.4 . The dimensions were scaled fram p'nt venti" ation drawings. The slab at eas are ca (Ref er to Appendi;: A) .

'u 'ated ' tt ie Data ll >pLtt Secti ar>

Thermal Canductiv'ty The thermal canductiv. ty of the concrete slabs were abtaired From Reference .8 , Chapter 2~

Table AD A value of 1.0 3tu/hr ft F was used f or al 1 concrete slabs.

Density The density af all concrete slabs " s assumed to be 140 ibm/cu ft. This value was obtained fram Ref erence 2. 8, Chap ter 2 Tabl e ~A. ~

Speci f 1c Heat The specific heat for all concrete slabs was assumed to be 0. 22 Btu/ibm F as abtained f ram Ref erence 2. 8, Chapter 2> Table 'A.

4.6 Film Coefficient Data For Thick Slabs Type w/r to Room an Side 1 The type of slab with respect to the room on Side 1 was def ined using the following codes Type 1 Vertical Mal 1 Type 2 Floor Type Ceiling

ale 0 M-SLD -001 Page 11 of 36 h1 '. h2 A' f 1 1ffi coef f iciefii.s (ih) f QI ini i de wal wer2 ca cu a:ed by COTTAP a I he I' -'

caef f ic'. er;t For wal ls in contact with outs'e aI.r were .npLi ted Summer 4. 0 Btu/hr-sQ f F R1 i1tel 6.0 3tu/hr-sq ft- F (Per Pe er ence E . 8, Chap t.er ) Clb' a J A valLI2 Qf 100 Dtui lil sq f t F was nputted fal wall = lli col)tact with gt Q unid ~ T hx s value hie ps ta simLIi ate a, wal I (ol floor) ini contact wi'hi so l al 55 Fa This w I 2SU't -'fi a

<<Qnservative prediction af th e licat I Qss ta ground.

r ipe Bt eal. naia F LIi d 1

Pressure The flu'd pressure within th2 pipe (ps'a) . All I aams (ex<<2pt RNCU) L'sed a f lui d pressure of 1000 psia, wh'h was considered represenitati ve Qf norma'eactor condi ons. ti Mass Flow Th2 total mass flow 2xit'ing the pip" bt"eak (ibm/hr) was 'putted as fol'ws far 5 gpm water equivalent steam ~

eak 5 gal/ mi n v 1 cu f t/7. 48 gal x 60 min/hr x

. 02159 cu f t/ibm = 1860 ibm/hr vf = 0.02159 cu ft/ibm 8 1000 psia (per ASIDE Steam Tables) far 25 gpm water equivalent steam leak 5 v 1860 lbm/hr = S'~00 ibm/hr The break occurs at t=0.5 hrs. Th- s allows thie room ta reach equilibrium condit'ons priar to initiation of the break. In all roam models, the break mass flow is al lowed to increase linearly (ramp) from 0 ibm/hr to its maximum value aver 0. 1 hr s.

Cal c 0 0-SLD-VO1 P+ge 1 m.O RESULTSr'CONCLUSIONS foll QIIing pages prov~e the temperitUI-e praf '. es I-esi.l t;-rg

~I Q!TI the HPCI Pump <xoom modes f Qi tiie condi t i Qns stzited be'tr>

1 ) 5 gp!TI Hat eI ev,i.ii 'v al et It e sill e&t (Summer) 5 "pm ~Inter e'.O'as el it. steem (Min'

') ~

w gpm i'= tet equ! Y81 ent stes!Tl 1 ea'L (Summer) 0r w gPmi @la't el it eau'c;- el steam 'I (IA nter)

Ti" e COTTAP autput ar e=-.ch esse Bbove cK be f QI..nd is c

Att-ci"Iments s thru -"., r=sp eL",t 1 ve ' ~ Each output prov i des si .mmsry o. the data; nput, Rnd he Iesults of each t me step thii.n he 4 iiQUI un

. I t'i ~t the end Qf each COTTAP Q( tput, su!1<iiii;II j tclbl e 0>> Temlp vs Time information is zilso pl-ovided.

HPWUMP ROOM HEATUP EVALUAT N (5 GPM STEAM LEAK/SUMMER) 160 150 INCZ PLOP ROCK RKAllP EVALUAKIIKIls QW SZKAII LElKISQ$

%RI 140 Klieg

. IRR)

ROAN OX'OCIIO 7KI$'ERAIIAIK IOEO 7 I ROWO ROCII$

W 0,000

0. 100 1

100. 00 100 00

~

ROCIIO 0,100 100. 00 0.300 100.00 0 e400 100. 00 Oe$ 00 100 e00 LJ 0essd 0 ~ 400 0,700 100. 13 114. 1$

110 33 0e 000 las.ta 130 0 le t00 la4e54 000 ltdest I l. 500 t.000 134. 43 130. 10

t. $00 140. $0 3 e 000 lltoOL 3,$ 00 143esl CL de000 144.4t 4 $ 00 115,17 LIJ $ . 000 14$ .04 CL $ . $ 00 144 4e000 144 e dd Al 4e$ 00 147.'t5 120 7e 000 147e 45 7.$ 00 117ett LLI ~ . 000 1%d.td f te000 lid. 40 10e 000 14'f edd lle000 llte37 lte000
13. 000 lit.

llt.dt40

14. 000 1$ . 000 150 e ll 150. 31
14. 000 150 e 34 1'7e 000 1$ 0.1t ld. 000 150.4t 110 1't 000 150.7t t0.000 150 7t tl.000 150 ett tt.ddd 1$ 1 0$ ~

ts e 000 1$ 1.17 tt.ddd 1Qets 100 0 10 15 20 , 25 TIME (HRS)

HPCI PUMP ROOM HEATUP EVALUATION (25 GPM STEAM LEAK/SUMMER) t 220 200 IPCI PQP ROND I%All% SYALUAIICtl (tS CRI $ 73W LflK/RIOKR) ill% TII%%RAYlRK IDIO Sl CRRl ROB%

1 MCt %00% OXtN ROCK% NCMO ROB% OX'OQO

0. 000 100. 00 0, 100 100. 00 180 0. t00
0. 300 100. 00 100. 00 O,IOO 100. 00
0. $ 00 100.hatt 00 0.550 140. Ot 0 400 154.33 0,700 1'78. 0'7 O. 800 18t.St 0, t00 ltte3$

LLI l.

l.

000 500 1t4.

101.44 tt t.000 t04.10 160 t. $ 00

3. 000 105.03 t04 00 3 o500 tOS.t4 1 000 t04. 1$
1. 500 t04.40 S. 000 104,74

$ .500 t04, 74 4e 000 t04

4. $00 t07, 10
7. 000 t07,t3
7. 500 107,43 0 ~,000 t07 34

'3.000 307+70 140 10.000 107.8t 11+ 000 t08,11 13.000 108'1

13. 000 108. $ 3
14. 000 t08, 44 t08, tO
14. 000 t08. 84 1'7 000 t08,tt 18 o000 tOt. tS lt.000 tOt. t3 tO. 000 tot.3$

t1.000 tOt,SS r-tt,000 tOt.$ 8 120 t3.000 tot.St tt 008 e

p I

h 0

100 ~

]

0 10 15 20 25 D TIME -(HRS)

HPCI PUMP RQGM HEATUP EVALUATION (25 GPM STEAM LEAK/WINTER) 250 200 HPCI PQP RNSI HEAll5'VALlliTINIIRS CPII STEAH LEiX/NLIITER)

(3 tlHE ROOIO I555IO ROOHS ROOHS RNRIO gXRIO TEI5'ERATIAIE IOEO 7>

ROQIO ROCtIR RONIO

0. 000 77.00 0, 100
0. t00 ll.

ll. 00 00 0,300  :-

77+03 0,100 77o01 0.500 77e00 .i Oa550 13te4$

0. 400 114. RO 0,700 141 F14 150 Oe400
0. t00 175 tt tl '4t.

1,000 144.41

l. 500 tt.F000 lt4. 74 1tt. t3 500 R00.31 3,000 t00.43 5,500 ROIIRC 1.000 1,500 ttl F54 ROleOI S. 000 ttto04 ROR R3 Ca000 ROte3t 4,500 7,000 ttt,$

ROR.CI 3

7 500 ttt.77 ROR.47 t03 oOI

10. 000 t03otO joo ll.000 lt 000 R03e3$

t03oIO ll 000 13.000 R03+St R03olt t03,40 1C. 000 503 '

ll.

000 ROI+ 00 ROIo07 .

lt.000 ROI. 14 RO. 000 ROI. Rl tl 000 tte000 tOI,34 tOI a t3e004 55,'OIoil

~ .. Rls004 ROC.SS 50' 10 20 25 TIME (HRS)

g$ t