ML17157A807

From kanterella
Jump to navigation Jump to search
Steam Leak Detection Calculation -HPCI Pump Room,Unit 1
ML17157A807
Person / Time
Site: Susquehanna Talen Energy icon.png
Issue date: 06/29/1989
From: Agnew G
PENNSYLVANIA POWER & LIGHT CO.
To:
Shared Package
ML17157A805 List:
References
M-SLD-001, M-SLD-1, NUDOCS 9108260182
Download: ML17157A807 (22)


Text

~

~

~

CALCULATION COVER SHEET CALC.

NO. H-SLD-Ooi FILE NO.

R2-I SUPERSEDED BY SAFETY-RELATED Q(1 ASME III OR XI I ]

OTHEP.

EQUAL!TY f'

NON EQUAL!TY

[ l PROJECT H Lma Daric. oMRoJEc-T'R/CTN NO.

h/A DESIGN ACTIVITY/PNR NUMBER EWA. + gSiooo PAGE 1

OF ~g TITLE/DESCRIPTION Lt~k DETEc~~ TALC. HPC-X Pu(NP ROOK UNl7 DNLV'YSTEMS AFFECTED

+o8a C So5w jPEFEa W PQ68 3 Fo& 57ATkM~ OF PRogL~.

D S

GN B

S S

- 08 R

PN-Q -

0 g8~ Tv A~~fc~ DEsl6AJ LhJPU75 6HvEK47ED ROM ~/5 ~GvL4T70Al-A'~~ m P44E g aors /~~cap.

)

LAJ CL JPa~Cig.

FO PANIC /2 FOM SUMM4RV/CONC<><ioMS-

<<C C7 I

CL (ETO)

BINDER AFFECTED'?

t ] YES-If Yes enter:

Binder 8

Cal c. File f)C NO Vol.

Pgs.

REV.

NO.

DATE PREPARED BY REVIEW CHECKED BY DATE APPROVED BY DATE O

~b~

S 21 9ioSZ60i82 9<<8~9 7 ~>>

PDR ADOCK"050003~7-t P...

PDR mls/frb006i (12)

~rc

Ca 1 c 4 M-SLD-001 Paae

= af 16 TABLE OF CONTENTS PURPOSE

=.0 REFERENCES

~. 0 ASSUMPTIONS 4.0 METHO QLOGY 5.0 RESULTS/CONCLUSIONS ATTACHMENT 1

COTTAP Output, for HPCI Pump Raom 5 GPiI Leak (Summer)

ATTACHMENT 2 CQTTAP Output far HPCI 5

GPM Leak (Minter) e,l ATTACHMENT ~

COTTAP Output far HPCI t

.5 GPM Leak (Summer>

ATTACHMENT 4 COTTAP Output for HPIC "5 GPM Leak (Minter>

Pump Room Pump Room Pump Roam APPENDIX A APPEND I X 8 APPENDIX C

Data Input Sect ion HPCI Pump Raom

( I-11/I-106)

Blue-Boi Data (Minter)-Ave Temp far Month of January Outside Air Temperature Ave for Month of January (1'7S6 trhu 1989>

Calc

'0 N-SLD-OCil Page

~ of l6 l..o pURposE Thie gut pose of temperature pr introduced in th. s calcu't1 of Steam Leak this calcu at

~ on 's

-:o predict the room of'e e..:pecked when a small steam

~ eak is the Uni'=

1 HPCI

>ump Room.

The results of on wi 'be used as a basi s for development Detection System setpoints.

Cal c 5 M-SLD-001 Page 4 of 16

~

J a'

0 <M-RAF-0"4, Rev.

0 "RB Post DBA iransient Tempera ure Al ~el ys1 s

~

1 Bec<<"tel Ca c 4 176-18, Rev.

5 "RB Cool ng Modes" SEA-EE-129 Rev.

0 "SSES Unit 1 and Unit = Reactor Building Heat Loads" Dr aw n<gs P iID i l-176, Rev

<-'.ID M-155, Rev V 25 1)

Revs 2s Rev ~

14 V '5

~ y

<xev ~

V-. 8-1, Rev.

15 V-3-2, Rev.

14 V

8->q Rev 17 C-10~,

Rev.

19 C-105, Rev.

20 C-1~2, Rev.

17 C-1~4, Rev.

15 C-154, Rev.

12 C-156, Rev.

12 C-1 1 1, Rev.

15 C-117, Rev.

17 DBB -114-1, Rev.

GBD-112-1, Rev.

GBD-2-5, Rev.

6 GBD-1 ~5-1, Rev.

20 a -'I 2.6 7

=.8 M-199 Piping Class Sheets SEES Pipeline General Index Crane Technical Paper No.

410, 2~rd Print-ng ASHRAE 1985 Fundamentals Handbook FSAR Table ~.11-6
2. 10 FSAR Section 5.2.5. 1.3

=. 11 Calc 0 M-PAF-001, Rev.

1 "HVAC Environmental Analysis Reactor Bui ldinge

'c Control Structure" COTTAP-2 Theory and Input Descript.ion Manual (User's Manual),

Rev.

1, dated 1/27/89.

Shipp, P.H.

1982.

Basement, Crawlspace, and Slab-an-grade Thermal Performance.

Proceedings o~

ASHRAE/DOE thermal per-.-ormance of the exterior envelopes of buildings II, Las Vegas~

NV. December.

4 )

4 ltd'

Ca 1 c

-.. M-SLD-001 Page 5

QF 16 1)

Plan is Qperatirig undel not Alai condit'ns pl ioI to

'ritroducing a steam 'eak.

i-"Il maÃi aver boi ~

teiilp teri c ad J ace! ct I Qoms wl 1 mum temperate!

e For age teiilperatu!'

fQr da a

35 a /a3 'ble) er atui-e data i 5 Aot era ure of 60 F w'1 be maintained at their des'n summer cond' Qris and at the the month Qf 3anuary

('

bl!.!e-For

w. nter condi tions.

blher e wirter ava'b e,

tihe esi gr mini mum be used.

v)

The I Qom Gndei coAs Gel at'A wl 1 1 Aot'e al -uweG to pressur'.e, as he b'wout pane'il'elieve at approximately O.u ps'd.

Ther fore, a leakage path Qut Qf the I Qom w'e used to ma. A'tai A pr e55ul' as c '5e 0

14 7

psia, as possible.

The temperatI.'.re effects due to slight room pressur'.at 'n

-.re ass! med to be Aegl igeble.

0)

The ef fcct5 QF adjacent I Qom heatup are not considered in th 5 anal y'si 5

( i e ~

ad ) acer t room temperatures are hei d coAstaAt)

Tl 15 I"esu is

a. coAsel"vative tempel atul e pro-..:'e for the room urder consideration.

The actual adjacent room heatup due to the steam leak is expected to be miriimal (when considering conductive ileat losses).

5)

The CCTTAP model assumes perfect mi>'ing QF the air and steam iri the room under cans'derat ori.

Ca' 5

i I-SLD--001 Page 6 of 16 T = Compartment Transient Temper at ui 2 Ana's' Program

'.COTTAP) was used to ana'y=e the affects of a steam leak in various Qoms w1 th' th2 pl an The program predi cted temperature Q.' '5

. Ql the room under coflsi def aii Gn w1 th th2 fol 1 owirg sei of cond ns 1) 5 gpm water

=)

5 gpm water

~)

25 gPm Hatel 4)

~

gPm watcl equiv*'ent eqLlival eni equi va'nt equivalent steam steam steam steam leal 1 ea'k

'ak 1 ea (Summer)

(Winter)

(Summer)

(Winter)

The indd.al roam made' were develop2C fl om val QLls SQLLl c25 of information>

as ident-fied in Section =.0 References.

The resu'ts will consist of the COTTAP output and the plots of val ioi '.s pf Q. 1 1 25 fol ihe condii1on5 stated above.

The fQl '. owing discussion i s provided to Qut'ne the steps used in developing the ndividual room models.

4. 1 Gener al Dat a For Rooms Room Volumes The room volume was taken from Reference 2.1 for the room under consideration.

Adjacent f VOm Valumea Wer 2 Set ta a large Va.lue (i.e.

1

~ 0 EE15 cu. fi. ) to maintain constant.

properties such as temperature, pressure and relat ve humidity.

Eni t.ial Pressure All rooms were assumed to be at an in'tial pressure Qf 14.7 psia.

initial Temperature All rooms were assumed to be at their maximum normal design temperature initially for summer conditions.

Actual winter data was used, where available, as a start.ing point for the winter runs.

The winter data was taken as thc "b1ue-box" average temperature for January 19SB.

The January data was considered to be more conservative than February data.

Where artual winter data was not available, the design minimum room temperature of 60 F was used.

Where winter data was not available for the room in question, the room was started at a

temperature which allows it to reach a steady-state with ts adjacent.

rooms.

Cal c 0

i l-SI D-001 Page 7 a f 16 The outside atllb At tempel atUre Wa5 tar'.Cri as 79 F

(Summer) and 26 F

(winter).

The Summer amb:ent

.-.ES ta'r;en i'ram PefereriCe 2 8 as tl 2 hour2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> da' y average temiper ature bas2d upoA t.'12 AS)ARAN Esigil va Lie

'FGI the Ni1'.25 3ai rE.j Si I"ain tail aa ea.

T 12 wintel va Lle was

t. at'. -ci Bs aC <Ua iTIanthl / aVCI age

'Far u anUaI y GVer tIie years 1'?86 thru 1989.

Thi 5 average wasbased Upon SEES iieteol Glogi Gal DatcI taken fl Gill ti 2 p 1 aAt cGmp4tel

~

A comipar 'QA o F FEbruaI y dat =.

Over l

~ '

Same ti me peI 'u 1 Ad cc t ed tha the w anuaI y da' was mal 2 con 52I vat'e

~

F:i= -ti re

.Elai 'e Humidity The relative hLm'dity For al rooms cannectei vent' at-Gn GI 1eakiage path5 is based upari

-Upp'y a-r t llperatures of $5 F

(Summer)

=nd hO F (w'riter) at 90%

RH.

Air at t.hese

=andi tians was then al lowed ta heat.

Lip (sensib'2 l-2.ting only) ta the ir'ia roam temp2I atuI 2 alid til2 col I esponding RH valLI2 was ca..cul ated or read from the psychrametri c chart.

Roam Height ihis value '5 Aa lounger used by COTTAP. lt arigirial purpose was associated with the wal'ondensation calculation used within COTTAP.

COTTAP ilc"5 beeI i I ev'. 5E'd 2nd no longer LIses thi 5 information.

Therefore, a value of 10.0 F" was inputted For each roam.

This value has r,o signi ficance ta the calculatiGA Note tiIat th2 actual roam he'ght.

was used in the ca culat'an of room volume.

Airflow and Leakage Path Data Airflow Data The design a-rflow provided for the roam under consideration.

All flow paths are identified (i.e. supply, exhaust and transfer air).

The source of the airflow data is the P'IcID associa ed with the particular ventilation system for tl-at room.

The data identifies the raom from which the air comes, and the room to which the air goes.

Since air Flows are balanced to + 1OI accuracy, a conservative value of 2090 cfm was used far this roam (1900 c fm x

1. 1).

C IR

Ca 1 c 0 i"1-SLQ-001 F'age 8

QF lu Lea:.'age i-ath T)ata As wit<< the air ". Qw d ata, al 1 rooms connected io the eal;age pact< are identi f: =d.

The

" eatage pciUi area Qnl y L.sed 0 scale the

'at.age

. 1 owt a cs Fol tl ce en 'e compartivient under cons Ceration.

ihe intent Gf the leakage hathi to pi vent coiTipartment pressur'-ation.

Foc iTioat I coiTis weYcc.pt Ri)CU)

Qn '

QTle eatage Pa h

s Lsed

~

a>id c; ialL:e of 2.0 sq. =t. is

'pL:tteu

.""Qr the 1: a'r'age p aii c al ea

'Ahen mol e thc:n Qne 'at.'age path ri - sts

~

actL!a ec.-.r'age al eas cctn be i cipLitted to bettel" LIndef stal id

'a>;al=e

. 1 Gws between

<<C Jacelit cGmpal tments

~ ~ r Heat Load 3a c a Heat Load Type The type Of heat 1Oad WaS iderti fled uSing the fo 'wing nomel ic a'tLII e a

Type Descr ipt'n 2

Lighting El ec tr'a 1

.- ane 1 s i lotors Unit Coolers Pip'ng Nisc. Mechanical Equipment Iieat ?nput Rate The heat

-at=- input in Btu/hr for the associated heat load.

The values for heat 'ad types i thru ~ were obtairied from References 2.2 8 2.~ ~

The heat.

rate inputs for type 4 heat loads are inputted as negative values since the unit coolers remove heat From the room.

The heat input rate for type 5 heat loads were input as -l.

This value directs COTTAP to obtain piping information necessary to calculate the piping heat loads.

The heat input rate for type 8

heat loads was obta'ned from References 2.2 5 2.Z, as necessary for the appropriate room.

To achieve an init,ial steady-state condition, a

miscellaneous heat load (positive or negative) was added to the main room to balance all other time =.ero heat loads.

This heat load was inputted as type 8.

Note that Equioment cor:set Ya>>

'ade to de sinks iridi wEI 2 orily

/red ctcd Therefore, G'f ttiese il COT TAP rieg

~ ect s col d p x p 2 and hect sinks.

Thi s represents sm th 5 ca c

i a ian.

A scmp tel mi lie>>ih2 Bf F ec ts 0 F tliese i le Gated tliat I EsL!1 tal ~ >>

teiTipel atul

- I ight 1 y 1 Qwel thai i ti12 va

~ '.Bs when neglecting these l;Eat sink

'th 1 s ca 'L!1at Qni cissumies>>he 2

Bat s riks are nieg'ab e.

non-rLIIi s

~

I=or wa11s and floars iri cantact w: t:i grQL!nd, the mode c pi Ed ic ts a con set" ')'a'ti ve va of 1 Qss>>0 graL!nd

~

The sl abs al 2 a JsLim d 0

be

-'n contact wi >>h 501'i a tern@el atLil E Qf J J r.

Ta i'1iode 1 the heat 1 Qss t0 gi"oui.d a,

-'il ge va. ue 0 f sl!l face fi '

canv2ct v2 hec't transver c02.. ': Ent (1M Btu/hr -sq ft-F)

.s i EEP 'tl QdUced Qn ii c gl Qund =:de Qf tt Flaars and wall-a ach-Bve a ground contact Emperature of 55 F.

4 s P-p'lg lilput Data Onl y piping w'h a design Emiperature greater than t<<at af. th2 nQI mal rouiTi desigri temperature was inclLded, since COT i AP ignares cold pipe as a heat sink.

This generally meant that piping at ar c~ase to Reactor condit: ons was ncluded.

Also nate>>hat this ca'culatian neglects hea>> 'oss fram small pipe (i. 2. 'ss than

="

OD).

The QLatsi de di ameiel of the pipe was obta ried'from Reference 2.4 Pipe

).D The pipe schedule was obtained fram Ref ererice 2.5 Knowing the schedule, the inside diameter was abtairied fram Ref crence

2. 7 Znsulatian OD The insulation OD Has abtained from ReFerence
2. 11 P'pe Length The pipe length was obtained fram Reference 2.4 Emmisivity The emmisivity was obtained from Reference
2. 11 lnsulatian Value The insulatian thermal canductivity (k) was obtained from Ref erence
2. 11 Pipe F'1 uid Temper atur e The design fluid temperature was obtained

'Fram Ref erence

. 6

Calc 4 t1-SLD-001 Page 10 o F 16 P>>ase The =tate Q f t evl ew1rig the tempei at>.it cuLL. d ca> t y be 1 oui d c>~l the

. luid was determ'ried by sy=tem P'i TD '

and desi gr pt Essuti cs.

a part:cu at 1l=.e teatil Qt

%mt f

1t waw

.m~L.foal>=d tQ co> lser'vati smi..

Genera'ata For Thi c'::

S abs Roam ID Qr>

S1 d:

T>> i:- t" Dam nu>T>bet Qr. Qne s

. die o= "he s'b.

Room lD or S'-

The t

QQ>T>

ilL>mbel Q> i the athet si de Qf the sl ab.

Aher> slab is

=-. jacent ta ground, a roam 4 af "0"

Lts>=d Thickness The th'ckness a< the slab was obtained from Ref er ence

2. 4 Heat Tc an sf Bl" Area The area of the sl

.b was abta'ned fram Reference 2.4 The dimensions were scaled fram p'nt venti" ation drawings.

The slab at eas are ca 'u 'ated tt ie Data ll>pLtt Secti ar>

(Ref er to Appendi;:

A).

Thermal Canductiv'ty The thermal canductiv. ty of the concrete slabs were abtaired From Reference

.8

, Chapter 2~

Table AD A value of 1.0 3tu/hr ft F was used for al 1 concrete slabs.

Density The density af all concrete slabs

" s assumed to be 140 ibm/cu ft.

This value was obtained fram Ref erence

2. 8, Chap ter 2

~ Tabl e

~A.

Speci f1c Heat The specific heat for all concrete slabs was assumed to be 0. 22 Btu/ibm F as abtained fram Ref erence

2. 8, Chapter 2> Table

'A.

4.6 Film Coefficient Data For Thick Slabs Type w/r to Room an Side 1

The type of slab with respect to the room on Side 1 was def ined using the following codes Type 1

Type 2 Type Vertical Mal 1 Floor Ceiling

. ale 0 M-SLD -001 Page 11 of 36 h1 '. h2 A'

f 1 1ffi coef ficiefii.s (ih) fQI ini i de wal wer2 ca cu a:ed by COTTAP a I he I'

caef fic'. er;t For wal ls in contact with outs'e aI.r were

.npLi ted Summer R1 i1tel

4. 0 Btu/hr-sQ f F

6.0 3tu/hr-sq ft-F (Per Pe E er ence

.8, Chap t.er

)

Clb' a J A valLI2 Qf 100 Dtui lil sq ft fal wall = lli col)tact with gt Q hie ps ta simLIiate a, wal I (ol wi'hi so l al 55 Fa This w

<<Qnservative prediction af th ground.

F was unid ~

T floor)

I 2SU't e licat nputted hx s value ini contact

-'fi a I Qss ta r ipe Bt eal. naia F 1 LIid Pressure The flu'd pressure within th2 pipe (ps'a).

All I aams (ex<<2pt RNCU)

L'sed a fluid pressure of 1000 psia, wh'h was considered represenitati ve Qf norma'eactor conditions.

Mass Flow Th2 total mass flow 2xit'ing the pip" bt"eak (ibm/hr) was 'putted as fol'ws far 5 gpm water equivalent steam

~ eak 5 gal/ mi n v

1 cu ft/7. 48 gal x 60 min/hr x

. 02159 cu ft/ibm = 1860 ibm/hr vf = 0.02159 cu ft/ibm 8 1000 psia (per ASIDE Steam Tables) far 25 gpm water equivalent steam leak 5 v 1860 lbm/hr = S'~00 ibm/hr The break occurs at t=0.5 hrs.

Th-s allows thie room ta reach equilibrium condit'ons priar to initiation of the break.

In all roam models, the break mass flow is al lowed to increase linearly (ramp) from 0 ibm/hr to its maximum value aver 0. 1 hr s.

Cal c 0 0-SLD-VO1 P+ge 1

m.O RESULTSr'CONCLUSIONS follQIIing pages prov~e the temperitUI-e praf '. es I-esi.l t;-rg

~I Q!TI the HPCI Pump

<xoom modes fQi tiie condi t iQns stzited be'tr>

1 )

5 gp!TI Hat eI 5

"pm ~Inter

')

~ w gpm i'= tet 0 r w

gPmi

@la't el ev,i.ii 'val et It e'.O'as el it.

equ! Y81 ent eau'c;- el it e sill steem stes!Tl steam e&t 1 ea'L

'I (Summer)

(Min' (Summer)

(IA nter)

Ti"e COTTAP autput c ar e=-.ch Att-ci"Iments s thru

-"., r=sp si.mmsry o.

the data; nput, thii.n he

. 4 iiQUI I un t'i su!1<iiii;II j tclble 0>>

Temlp vs esse Bbove cK be f QI..nd is eL",t 1 ve '

~

Each output provides Rnd he Iesults of each t me step

~t the end Qf each COTTAP Q( tput, Time information is zilso pl-ovided.

HPWUMP ROOM HEATUP EVALUAT N (5 GPM STEAM LEAK/SUMMER) 160 150 INCZ PLOP ROCK RKAllP EVALUAKIIKIls QW SZKAII LElKISQ$%RI 140 W

LJ 130 I

CL LIJ CL 120 LLI f

110 Klieg

. IRR) 0,000

0. 100 0,100 0.300 0 e400 Oe$ 00 0essd 0 ~ 400 0,700 0e 000 0 t00 le 000 l.500 t.000
t. $00 3 e 000 3,$00 de000 4 $00

$. 000

$. $00 4e000 4e$ 00 7e 000 7.$00

~. 000 te000 10e 000 lle000 lte000

13. 000
14. 000 1$. 000
14. 000 1'7e 000 ld.000 1't 000 t0.000 tl.000 tt.ddd ts e 000 tt.ddd ROAN 1

100. 00 100 ~ 00 100. 00 100.00 100. 00 100 e00 100. 13 114. 1$

110 33 las.ta la4e54 ltdest 134. 43 130. 10 140. $0 lltoOL 143esl 144.4t 115,17 14$.04 144Al 144 e dd 147.'t5 147e 45 117ett 1%d.td lid.40 14'fedd llte37 lit.40 llt.dt 150 ell 150. 31 150 e 34 1$0.1t 150.4t 150.7t 150 7t 150 ett 1$1 ~ 0$

1$1.17 1Qets 7KI$'ERAIIAIK IOEO 7 I OX'OCIIO ROWO ROCII$

ROCIIO 100 0

10 15 20

, 25 TIME (HRS)

t HPCI PUMP ROOM HEATUP EVALUATION(25 GPM STEAM LEAK/SUMMER) 220 200 IPCI PQP ROND I%All% SYALUAIICtl(tS CRI $73W LflK/RIOKR) 180 LLI 160 0

140 120 100 0

10 ill%

CRRl

0. 000 0, 100
0. t00
0. 300 O,IOO
0. $00 0.550 0 400 0,700 O. 800 0, t00 l.000 l.500 t.000
t. $00
3. 000 3 o500 1 000
1. 500 S. 000

$.500 4e 000

4. $00
7. 000
7. 500

~,000

'3.000 10.000 11+ 000 13.000

13. 000
14. 000
14. 000 1'7 000 18 o000 lt.000 tO. 000 t1.000 tt,000 t3.000 tt e 008 15 ROB%

1 100. 00 100. 00 100. 00 100. 00 100. 00 100. 00 140. Ot 154.33 1'78. 0'7 18t.St ltte3$

1t4.tt 101.44 t04.10 105.03 t04 00 tOS.t4 t04. 1$

t04.40 104,74 t04, 74 t04 hatt t07, 10 t07,t3 107,43 t07 34 307+70 107.8t t08,11 108'1 108. $3 t08, 44 t08, tO t08. 84 t08,tt tOt.tS tOt. t3 tot.3$

tOt,SS tOt.$8 tot.St 20 25 TII%%RAYlRK IDIO Sl MCt

%00%

OXtN ROCK%

NCMO ROB%

OX'OQO r-p I

h 0

~ ]

D TIME -(HRS)

HPCI PUMP RQGM HEATUP EVALUATION(25 GPM STEAM LEAK/WINTER) 250 200 (3

150 joo HPCI PQP tlHE

0. 000 0, 100
0. t00 0,300 0,100 0.500 Oa550
0. 400 0,700 Oe400
0. t00 1,000 l.500 tF000 t.500 3,000 5,500 1.000 1,500 S. 000 Ca000 4,500 7,000 7 500
10. 000 ll.000 lt 000 13.000 ll 000 1C. 000 ll.000 lt.000 RO. 000 tl 000 tte000 t3e004

- ~.. Rls004 RNSI HEAll5'VALlliTINIIRS CPII STEAH LEiX/NLIITER)

TEI5'ERATIAIE IOEO 7>

ROOIO I555IO ROOHS ROOHS RNRIO gXRIO ROQIO ROCtIR RONIO 77.00 ll.00 ll.00

- 77+03 77o01 77e00.i 13te4$

114. RO 141 F14 175 tt

'4t.

tl 144.41 lt4.74 1tt. t3 R00.31 t00.43 ROIIRC ttlF54 ROleOI ttto04 ROR R3 ROte3t ttt,$3 ROR.CI ttt.77 ROR.47 t03 oOI t03otO R03e3$

t03oIO R03+St R03olt t03,40 503 '

ROI+00 ROIo07.

ROI.14 ROI. Rl tOI,34 tOIa 55,'OIoil ROC.SS 50' 10 TIME (HRS) 20 25

g$t

'