ML17158A089

From kanterella
Jump to navigation Jump to search
NRC Generic Ltr 89-10 MOV Dynamic Test Scope.
ML17158A089
Person / Time
Site: Susquehanna  Talen Energy icon.png
Issue date: 01/04/1994
From: Benensky L, Hunt D, Maret Rose
PENNSYLVANIA POWER & LIGHT CO.
To:
Shared Package
ML17158A090 List:
References
EC-VALV-0503, EC-VALV-0503-R01, EC-VALV-503, EC-VALV-503-R1, GL-89-10, NUDOCS 9401270115
Download: ML17158A089 (75)


Text

NUCLEAR ENGINEERING File ¹ R2-1 629 CALCULATION / STUDY COVER SHEET and 1. Page 1 of NUCLEAR RECORDS TRANSMITTAL SHEET

~I 2. TYPE: 1 NIIIIBER, II -VIILl/ 'IIBttk H REV h

5. TRANSMITTAL ¹' ~. UNIT: ~ ~7. EQUALITY CLASS:

G *c8. DISCIPLINE: +

~9 DESCRYPTYON PJRC CI<l'&fiC I ~er Q I lQ HO+Ore'ICA.ted- VCtS VE.

44 > io. i'll . Tddt- 5C~

10. Alternate ¹: ~R-VC -,q 11. Cycle:
12. Computer Code or Model used:
  • t 13. AFFECTED SYSTEMS:
    • If N/A then line 18 is mandatory.
14.

References:

-Ae'-'2 97 5~-alt=- 2.mg yl- IGc. 5 i-i-iDEit'T -VL- CP4~ t l < 731 VLV-CSEE

'VLV-i& yLi, i> Q>~- i>S

15. Affected Documents: 'LV
16. Equipment / Component ¹:
17. Application: C ~~ l iC
  • t 18. NON-SYSTEM DESIGNATOR:
19. DBD Number:

t 20. PREPARED BY

21. REVIEWED BY t 22. APPROVED BY DATE R~ (priori~. Print N~

Print r~~~r6lc.

Print None g

Signoture Silnoture Yo be teted SYalear Records NR.DCS Siynoture Dote ADD A NEW COVER PAGE FOR EACH REVISION

~ Verified Fie ds

'DR FORM NEPM-RA-0221-1, Revision 0 REQUIRED FIELDS 9401270115 '940117 PDR ADOCK 05000387 P

ENGINEERING CALCULATION STUDY REVISION DESCRIPTION SHEET Revision No: t Calculation Number: ~ -VALV-CP~& e la This form shall be used to record the purpose or reason for the revision, indicate the revised pages and / or affected sections and give a short description of the revision. Check Q the appropriate function to add, replace or remove the affected pages.

Revised Affected A R R Description /

Pages Sections d p m Purpose of Revision d 1 v C~<tcw ci.~ldi>IM'icLcclM'~~ri~ 4m Q. /m.~cj T-3 4m. unix'/,u Cj//zi -"~m 8 (PrcZ'ai In <firn Volte~. Se(~L'/HE t'r'.o<

a.772 f4~- / (Z)GIFT/g& < P /4 //]'- j(2)5" ~m</4 (g) 4'lC)'Udder Cx'PCu~ 8 jn MO/L'.J 9't.dZC~a~c~ M<-<<~< iM~ S Cc~

g/

</<~%'C)M /l'7 '7187i J V

~ ~i~ u M c~ $ /4'y/ypD'azo<

pt t Fz 5l /6 'L ~ col>"~7 /Z('p/~jzAc'JLc /7/L~

~ E~/-

s'4 C Ltlc( h~Q( nn~. ~/ ~A.,A/nlrb 6m FORH NEPH-gA-0221-2, Revision 0 hv

ENGINEERING CALCULATION / STUDY REVISION INSTRUCTION SHEET Calculation 0: K-1/ALV 5 55'4 Revision: )

Chan es to the cover sheet:

Handlin oF the calculation:

Rc.- - ~<<~~ ~~L~4..-l in i;L~ 6'i)hive& ( iilc.lg~dinc c g C.rC~~~ ~i~V cava. Reu.0 c.averse&)

Dccui~nfkcvie.its (~ ~) <<M beni w Y<nikcnhm (6 gy(; .-gag u, (go(.u.N,i.m+

FORH NEPH-gA-0221-3, Revision 0

QUALITY LEVEL ER/CTN NO.

Qg SAFETY

~ ~ ENGINEERING STUDIES. ANALYSES, SEA NO VE-009 C] AS&

AND EVALUATION COVERSHEET OYER Cj NON OUALZTY PAGE OF g I'RC GENERIC LETTER 89-10 tlOTOR OPERATED VALVE DYNAh'.IC TEST SCOPE MOP>en</TM (2-7+ D~h') py Ae REVISION NO. DATE PREPARED BY REVIEW /VERIFIED BY APPROVED BY

SEA-VE-009 5EV. 0 PAGE Pf of 55 Zg-NRC GENERIC LETTER 89-10 MOTOR OPERATED VALVE DYNAMIC TEST SCOPE CONCURRENCE:

MAINT. TECHNOLOGY:

SYSTEMS ENGINEERING'AINTENANCE:

PRO JECT IVlANAGEMENT.

SEA-VE-009 REV. 1 PAGE 2

'ABLE OF CONTENTS BACKGROUND 8, PURPOSE

2. INPUT/ASSUMPTIONS .
3. REFERENCES
4. METHOD
5. DISCUSSION
6. RESULTS/CONCLUSIONS .

APPENDICES A Generic Letter 89-10 Scope ~ ~ 10 B MOVs Determined To Be Non-testable ~ ~ ~ ~ ~ 13 C Valves Not Requiring Dynamic Test Based on Excess Available Margi tl 15 D Motor Operated Globe Valve Exclusions . . . . . . . . ~ ~ 17 E quarter Turn Valves . ~ ~ 19 F MOVs with DP < 200 PSID and > 0 PSID with Valve Size g 4 IN DIA . ~ ~ 21 G MOVs with DP < 50 PSID and > 0 PSID . ~ ~ 22 H Globe Valves ~ ~ 24 I MOVs To Be Dynamically Tested Remaining MOVs ~ ~ 26 J MOVs with dP = 0 PSID . ~ ~ 30 K Identification of Test Specimen for Dynamic Test Groups . ~ ~ 32 L Dynamic Test Scope Overview . . . . . . . . . . . . ~ ~ 33 M Revisions To The Dynamic Test Scope . ~ ~ 34 EXHIBITS Symbols and Notes . ~ ~ 35

(}uarter Turn Valves . . . ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 36 MOVs with dP < 200 PSID and > 0 PSID wl th Valve Size < 4 IN DIA ~ ~ 39 MOVs with dP < 50 PSID and > 0 PSID ~ ~ 40 Globe Valves ~ ~ 42 MOVs with dP 0 PSID . ~ ~ 45 Core Spray Injection Valves . ~ ~ 47 ADDENDUM GENERIC LETTER 89-10 MOV DYNAMIC TEST SCOPE JUSTIFICATION FOR NOT DYNAMICALLYTESTING MOV(s) DUE TO TESTING NOT BEING PRACTICABLE .

SEA-VE-009 REV. I PAGE 3 BACKGROUND 8. PURPOSE Generic Letter 89-10 requires all safety-related motor operated valves (MOVs) be demonstrated to be operable under their design basis differential pressure and flow conditions. This is best accomplished by performing a dynamic test, defined as an in-situ test under differential pressure (dP) and flow conditions.

For this dynamic test scope, the following definitions shall apply to a non-testable MOV:

a) an MOV that cannot be dynamically tested because of the impracticability aspects of such testing (safety implications, potential damage to equipment),

b) an MOV that cannot achieve 50X or more of its design basis dP (rising stem).

Where testing of an MOV under design basis is not practicable the following alternatives can be considered:

A reduced severity test, where testing is performed at the highest practical dP and/or flow, is permissible when existing plant configurations do not make it practicable to test the MOV under design basis conditions. Dynamic testing at less than 50M design basis is considered not to provide reliable data to predict MOV performance at design basis.

Prototype test data from an NOV in situ test under design basis conditions may be used to demonstrate the operability of an identical MOV. The prototype may be an MOV that has been in-situ tested at the same plant, a different power plant, or a test facility.

Prototype test data can be applied to an identical MOV in a parallel train even though it may be practicable to test that MOV as well. In this text, this approach will be called "similarity analysis", whereby within a group of identical/similar MOVs, a minimum of one MOV will be dynamically tested and its results, along with other comparison factors, be used to assess the capability of the other identical/similar MOVs.

The use of applying prototype test data must be properly justified, since it has been evidenced (Reference 3.2) that "apparently identical MOVs performed significantly different under high differential pressure and flow conditions."

Prototype test data can be applied to an identical MOV that is not practicable to test. Impracticability aspects include such considerations as safety implications of such a test, the potential damage of the MOV or other plant equipment, the violation of plant technical specifications or procedures, ALARA concerns, the test resulting in the injection of non-reactor grade water into the reactor coolant system, etc. These factors or a combination of these and other

SEA-VE-009 REV. 1 PAGE 4 safety factors must be considered when determining that testing the HOV under design basis conditions is impracticable.

The purpose of this study is thus:

To define the scope of HOVs that will require dynamic testing, considering:

a) HOVs that require design basis or reduced severity testing b) groupings of HOVs to be used in a similarity analysis

2. To define the scope of HOVs that will not be dynamically tested, including:

a) Non-testable HOVs as defined above b) Hotor Operated globe valves that have an open safety function only and flow under the valve seat c) HOVs which have excess design margin as shown by the calculated available valve factor INPUT/ASSUHPTIONS 2.1 Ref. 3.6 provided an initial categorization of HOVs, based on valve type and valve operating characteristics (maximum design basis differential pressure, excluding inadvertent operation).

2.2 Testing at less than 50X design basis differential pressure is considered not to provide reliable data to predict design basis performance for rising stem valves.

2.3 Grouping of valves within a category is based on structural and functional criteria (References 3.4 and 3.7). Grouping of valves should not be considered for gate valves larger than 4 inch or with pressures greater than 200 psig because these valves are regarded to be the most controversial with respect to valve factor and valve performance. The exception is the core spray injection valves, which must be grouped because of the significance in testing.

2.4 HOVs with excess design margin as evidenced by a calculated available valve factor of 1.0 or greater (gate valves) or 2.0 or greater (globe valves) may be excluded from dynamic testing.

2.5 Globe valves with only an open safety function and flow under the seat may be excluded from dynamic testing.

2.6 HOVs with design basis dP of zero are considered testable, where the static test is also the dynamic test.

REFERENCES 3.1 Generic Letter 89-10 Supplements 1-6 "Safety-Related Hotor Operated Valve Testing and Surveillance"

SEA-VE-009 REV. 1 PAGE 5 3.2 NRC Information Notice 92-17 3.3 SEA-HE-245 Rev. 6, Determination of Motor Operated Valves Within the Scope of NRC Generic Letter 89-10 3.4 SEA-HE-237, 238, 239 Rev. 0 Design Basis Documents 3.5 M-1503 Rev. 0 Verifying Motor Operated Valves Ability to Function 3.6 Preliminary Dynamic Test Scope; Memo VLV-054 3.7 H-VLV-100 thru M-VLV-437 HOV Data Detail, Limit Switch Settings, and Torque Switch Settings Calculations 3.8 H-1498 Rev. 1 Field Implementation of the Susquehanna Steam Electric Station Motor Operated Valve Program 3.9 MI-VLV-003 Rev.l HOV Performance Evaluation and Trending 3.10 not used 3.11 Memo VLV-139: References for globe valves that are considered excludable 3.12 Memo VLV-154: Field Walkdown of HV 256F059 to determine flow direction 3.13 Memo VLV-165: Results of Dynamic Test Heetings 3.14 EWR H20737 Butterfly Valve Surveillance Test Information The above references are used as the Design Inputs for this study.

METHOD The overall dynamic test scope was based on the following methodology:

4.1 The scope of Generic Letter 89-10 HOVs was taken from Ref.3.3.

4.2 The scope of non-testable HOVs was defined (Reference 3. 13).

4.3 Valves were categorized based on valve type and operating characteristics. The following hierarchy of categories was established (once an HOV is placed in a category, such as quarter Turn, it is not be included in any subsequent category, such as HOVs with dP < 50 psid):

(a) quarter Turn Valves (b) MOVs with dP < 200 psid and > 0 psid with diameter < 4 inch (c) HOVs with dP < 50 psid and > 0 psid (d) Globe Valves (e) Remaining HOVs

SEA-VE-009 REV. 1 PAGE 6 4.4 HOVs with design basis dP = 0 psid were placed in their own category.

4.5 MOVs that were considered excludable from dynamic testing were taken out of the above hierarchy of categories and placed into their own categories. There are two categories: (1) globe valves with only an open safety function and flow under the valve seat and (2) valves not requiring dynamic testing based on excess available design margin.

4-.4 MOV groupings within a category were organized based on functional and structural similarity, using design information from Reference 3.7 and 3.4.

4.5 Remaining HOVs are identified as testable. These valves are not grouped, with the exception of a unique grouping of Core Spray injection valves. These valves must be grouped because of the significance in testing.

DISCUSSION

5. 1 Dynamic Testing The dynamic testing of an HOV is intended to be a once and done design basis verification test. Periodic static testing and trending in accordance with Reference 3.8 and 3.9 shall be performed in order to verify that the HOV remains adequate for its intended safety function.

5.2 Initial Grouping of HOVs 5.2. 1 The initial grouping of HOVs considered structural and functional factors. The specific design parameters used for grouping can be found in the Exhibits and include:

~

Structural factors which identify the physical make-up of the MOV, including valve design and actuator design.

Functional factors which identify the functional/operational requirements of the MOV, including process parameters and other factors that affect thrust/operability requirements (i.e., valve/stem orientation) 5.2.2 A minimum of one MOV from each group should be tested under dynamic conditions (Note: for HOVs with design basis dP of zero, each HOV in the group shall be tested). Guidance in selecting the HOV to be dynamically tested can be found in Appendix K.

NOTE: Gate valves larger than 4 inch or with pressures greater than 200 psig are considered'o be the most controversial with respect to valve factor and valve performance. Therefore all valves within this category will be tested (unless the calculated available valve factor is > 1) if at all practicable.

0 SEA-VE-009 REV. 1 PAGE 7 5.3 Justification for Grouping HOVs 5.3. 1 MOV Categories The MOV categories were based on valve types (i.e., globe, butterfly) and valve operational requirements (i.e., MOVs with dP < 50 psid and > 0 psid). The basis .for categorizing by operational requirements is to give consideration of HOV performance under specified design basis pressures.

Performance of an MOV under low accident design basis pressures is considered less controversial (less .likely to fail) than that under more severe conditions.

5.3.2 MOV Groupings The dynamic test scope may consist of groupings within the MOV categories. The basis for grouping is to give consideration for applying prototype test data, as necessary. Use of prototype test data to justify functionality is an acceptable alternative to design basis testing.

The valves in a group are expected to be enveloped by the results of the dP test of the "parent" tested valve. The preferred candidate for testing within each group is provided in Appendix K.

5.4 Revisions to the Overall Dynamic Test Scope The overall dynamic test scope may be affected because of additions or deletions to the Generic Letter 89-10 Scope, or because of changes affecting MOV categories or groupings. For example, certain activities (i.e., design modification) or situations may require that the baseline test be redone and/or that possibly retesting under dynamic conditions is needed. Reevaluation of the HOV category, grouping criteria, and similarity analysis may be required. Any changes which affect the overall dynamic test scope shall be documented in Appendix H of this study.

5.5 Non-Testable HOVs Systems Engineering has determined and provided the reason for MOVs that are considered non-testable due to impracticability aspects, such as safety implications, violation of tech specs, potential damage to equipment, etc. or due to the proposed testing resulting in the MOV achieving less than 50X of its design basis dP. Non-testable MOVs are listed in Appendix B; reasons are provided in the Addendum (later).

As part of Generic Letter 89-10 requirements, Pennsylvania Power &

Light intends to use the following alternatives to demonstrate MOV functionality under design basis for those MOVs Systems Engineering has justified non-testable:

SEA-VE-009 REV. 1 PAGE 8 a) The majority of non-testable HOVs will be justified using the EPRI HOV Predictive Performance Program computer methodology (expected availability in 1994) once evaluated for applicability to the methodology using guidelines provided by EPRI.

b) As part of the EPRI program, flow loop and valve testing has been performed to obtain test data for several unique designs (i.e, Anchor/Darling double disk gate valves) that are not modeled by the computer code. Evaluation of EPRI's prototype test data and its applicability to the similar type valves at SSES will be performed.

c) Evaluation of prototype test data from HOV testing at SSES, a different nuclear power plant, a test facility, or an industry-wide database will be performed, where available.

Factors similar to that used for similarity analysis (valve design, operating characteristics) will be examined in order to determine the applicability of the prototype test data.

d) Engineering analysis based upon design margin, safety significance and other factors, will be used where dynamic test data is not available.

5.6 Globe Valve Exclusions from Dynamic Testing Hotor Operated globe valves were also excluded from dynamic testing if two conditions were satisfied: 1) the NOV has an open safety function only, and 2) flow is under the valve seat. It is believed that such a configuration would help to assure the HOV performs its safety function, regardless of the dP condition. These HOVs would require static testing and evaluation of test results.

5.7 NOVs with Design Basis dP of Zero Static tests (wet or dry) will be used for evaluating functionality.

5.8 HOVs Tested without Diagnostics HOVs may still be tested under dynamic conditions even though is it determined that the test(s) cannot be monitored with diagnostics for some reason. If test conditions match design basis conditions, then the test is a valid design basis dynamic test.

5.9 Core Spray Injection Valves These NOVs are considered testable; however they are uniquely grouped. Testing requires core spray injection to the vessel and because of the significance of the evolution, it is PP8L's position to test two of the four in the group, one from each unit.

SEA-VE-009 REV. 1 PAGE 9 RESULTS/CONCLUSIONS The following Appendices present the overall dynamic test scope; Scope of Generic Letter 89-10 HOVs HOVs Determined To Be Non-Testable Valves Not Requiring Dynamic Test Based on Excess Available Margin Motor Operated Globe Valve Exclusions Quarter Turn HOVs MOVs with dP < 200 psid and > 0 psid With Valve Size < 4 in Dia.

HOVs with dP < 50 psid and > 0 psid Globe Valves Remaining HOVs to be Dynamically Tested MOVs with dP 0 psid Identification of Test Specimen for Dynamic Test Groups Dynamic Test Scope Overview Revisions to the Dynamic Test Scope The following Exhibits document the basis for the valve groupings:

Symbols and Notes Quarter turn MOVs MOVs with dP < 200 psid and > 0 psid and with < 4 in dia.

HOVs with dP < 50 psid and > 0 psid Globe Valves MOVs with dP 0 psid Core Spray Injection Valves The following Addendum documents System Engineering justification for non-testable HOVs (Appendix B) (later):

Justification for Not Dynamically Testing HOV(s) Due to Testing Not Being Practicable

'I

SEA-VE-009 REV. 1 PAGE 10 APPENDIX A GENERIC'LETTER'89-'10SCOPE FV 149F019 HV 11313 HV 14182B HV 151F004B FV 249F019 HV 11314 HV 141F016 HV 151F004C HV 01110E HV 11345 HV 141F019 HV 151F004D HV 01112E HV 11346 HV 141F020 HV 151F006A HV 01120E HV 12603 HV 143F031A HV 151F006B HV 01122E HV 139F001B HV 143F031B HV 151F006C HV 01222A HV 139F001F HV 143F032A HV 151F006D HV 012228 HV 139F001K HV 143F032B HV 151F007A HV 01224A1 HV 139F001P HV 144F001 HV 151F007B HV 01224A2 HV 139F002B HV 144F004 HV 151F008 HV 01224B1 HV 139F002F HV 149F007 HV 151F009 HV 01224B2 HV 139F002K HV 149F008 not used HV 08693A HV 139F002P HV 149F010 not used HV 08693B HV 139F003B HV 149F013 HV 151F015A HV 11210A HV 139F003F HV 149F031 HV 151F015B HV 112108 HV 139F003K HV 149F059 HV 151F016A HV 11215A HV 139F003P HV 149F060 HV 151F016B HV 11215B HV 139F006 HV 149F062 HV 151F017A HV 112F073A HV 139F007 HV 149F084 HV 151F017B HV 112F073B HV 139F008 HV 150F045 HV 151F021A HV 112F075A HV 139F009 HV 150F046 HV 151F021B HV 112F075B HV 14182A HV 151F004A HV 151F022

I SEA-VE-009 REV. 1 PAGE 11 APPENDIX"A

'GENERIC'L'ETTER-:89-'10.!SCOPE HV 151F023 HV 155F001 HV 212F075B HV 24182A HV 151F024A HV 155F002 HV 21313 HV 24182B HV 151F024B HV 155F003 HV 21314 HV 241F016 HV 151F027A HV 155F004 HV 21345 HV 241F019 HV 151F027B HV 155F006 HV 21346 HV 241F020 HV 151F028A HV 155F012 HV 22603 HV 243F031A HV 151F028B HV 155F042 HV 239F001B HV 243F031B HV 151F040 HV 155F066 HV 239F001F HV 243F032A HV 151F048A HV 155F075 HV 239F001K HV 243F032B HV 151F048B HV 155F079 HV 239F001P HV 244F001 HV 151F049 HV 156F059 HV 239F002B HV 244F004 HV 151F103A HV 15766 HV 239F002F HV 249F007 HV 152F001A HV 15768 HV 239F002K HV 249F008 HV 152F001B HV 21144A HV 239F002P HV 249F010 NOT USED HV 21144B HV 239F003B HV 249F013 NOT USED HV 21210A HV 239F003F HV 249F031 HV 152F005A HV 21210B HV 239F003K HV 249F059 HV 152F005B HV 21215A HV 239F003P HV 249F060 HV 152F015A HV 212158 HV 239F006 HV 249F062 HV 152F015B HV 212F073A HV 239F007 HV 249F084 HV 152F031A HV 212F073B HV 239F008 HV 250F045 HV 152F031B HV 212F075A HV 239F009 HV 250F046

SEA-VE-009 REV. 1 PAGE 12

'APPENDIX-'A

'.GENERIC 'L'ETTER-:~89-'10'-'SCOPE-HV 251F004A HV 251F015B HV 251F040 HV 252F031B HV 251F004B HV 251F016A HV 251F048A HV 255F001 HV 251F004C HV 251F016B HV 251F048B HV 255F002 HV 251F004D HV 251F017A HV 251F049 HV 255F003 HV 251F006A HV 251F017B HV 251F103A HV 255F004 HV 251F006B HV 251F021A HV 252F001A HV 255F006 HV 251F006C HV 251F021B HV 252F001B HV 255F012 HV 251F006D HV 251F022 not used HV 255F042 HV 251F007A HV 251F023 not used HV 255F066 HV 251F007B HV 251F024A HV 252F005A HV 255F075 HV 251F008 HV 251F024B HV 252FOOSB HV 255F079 HV 251F009 HV 251F027A HV 252F015A HV 256F059 NOT USED HV 251F027B HV 252F015B HV 25766 NOT USED HV 251F028A HV 252F031A HV 25768 HV 251F015A HV 251F028B 226 TOTAL

SEA-VE-009 REV. 1 PAGE 13 APPENDIX B HOVs DETERHINED TO BE NON-TESTABLE TOTAL HOVs: 96 TOTAL GROUPS: 0 Systems Engineering is responsible for determining the HOVs considered to be non-testable and for justifying and documenting the basis for that determination for each valve.

Some reasons that a valve may be determined to be non-testable:

a) Cannot be stroked with >50K of design dp and/or flow.

b) Test would create or result in severe plant consequences such as-

l. Require stroking at ILRT conditions
2. Require vessel injection of non-reactor grade water 3., Result in equipment damage
4. Require plant to be placed in unsafe condition
5. Require spray to suppression pool
6. Equipment would be inoperable and in LCO c) Performance of test would result in excess radiological exposures ALARA concerns
1. Inside Containment
2. Wingslab Area
3. High Radiation Areas d) Combination of Rad Levels & Excess Valve Factor. Not worth the expenditure of Radiation Exposure.

e) Combination of various factors, when each factor is reviewed individually, non-impacting, but when the factors are combined the valve is deemed untestable.

2. An alternate method, such as the EPRI HOV Predictive Performance Program, may have to be used to justify the HOV is adequate for its safety function.

SEA-VE-009 REV. 1 PAGE 14 APPENDIX B NOV 'DETERMINED:TO 'BE NON-TESTABL'E HV 112F075A HV 212F075A HV 151F004C HV 251F004C HV 112F075B HV 212F075B HV 151F004D HV 251F004D HV 11313 HV 21313 HV 151F008 HV 251F008 HV 11314 HV 21314 HV 151F009 HV 251F009 HV 11345 HV 21345 HV 151F015A HV 251F015A HV 11346 HV 21346 HV 151F015B HV 251F015B HV 12603 HV 22603 HV 151F016A HV 251F016A HV 14182A HV 24182A HV 151F016B HV 251F016B HV 14182B HV 24182B HV 151F017A HV 251F017A HV 143F031A HV 243F031A HV 151F017B HV 251F017B HV 143F031B HV 243F031B HV 151F021A HV 251F021A HV 143F032A HV 243F032A HV 151F021B HV 251F021B HV 143F032B HV 244F032B HV 151F027A HV 251F027A HV 144F001 HV 244F001 HV 151F027B HV 251F027B HV 144F004 HV 244F004 HV 152F001A HV 252F001A HV 149F010 HV 249F010 HV 152F001B HV 252F001B HV 149F013 HV 249F013 HV 155F004 HV 255F004 HV 149F031 HV 249F031 HV 155F006 HV 255F006 HV 149F059 HV 249F059 HV 155F042 HV 255F042 HV 149F060 HV 249F060 HV 155F066 HV 255F066 HV 149F062 HV 249F062 HV 155F075 HV 255F075 HV 149F084 HV 249F084 HV 155F079 HV 255F079 HV 151F004A HV 251F004A HV 15766 HV 25766 HV 151F004B HV 251F004B HV 15768 HV 25768

SEA-VE-009 REV. 1 PAGE 15 APPENDIX C .

VALVES NOT REQUIRING DYNAMIC TEST BASED ON EXCESS AVAILABLE MARGIN TOTAL MOVs: 38 TOTAL GROUPS: 0 MOVs in the Leakage Control System (LCS) have been excluded from testing.

All the LCS MOVs listed (prefix 139/239) have design margins (limiting valve factors) in excess of 1.0. In addition, it is proposed that the Leakage Control System be removed from the plant, in which case testing will not be necessary.

2. Globe valves HV-1(2)41F020 have been excluded from dynamic testing because they have a safety related limiting valve factor in excess of 2.0.
3. HV-1(2)51F040 (globe valves) and HV-1(2)51F049 (gate valves) have been excluded based on available margin in excess of 2.0 and 1.0 respectively.

SEA-VE-009 REV. 1 PAGE 16 "APPENDIX";C ..:;"".

'VAL'VES"NOT"REQUIRINGADYNNIC"'TESTING ON EXCESS"AVAIL'ABLE'-iNARGIN 'BASED HV 139F001B HV 239F001B HV 139F001F HV 239F001F HV 139F001K HV 239F001K HV 139F001P HV 239F001P HV 139F002B HV 239F002B HV 139F002F HV 239F002F HV 139F002K HV 239F002K HV 139F002P HV 239F002P HV 139F003B HV 239F003B HV 139F003F HV 239F003F HV 139F003K HV 239F003K HV 139F003P HV 239F003P HV 139F006 HV 239F006 HV 139F007 HV 239F007 HV 139F008 HV 239F008 HV 139F009 HV 239F009 HV 141F020 HV 241F020 HV 151F040 HV 251F040 HV 151F049 HV 251F049

SEA-VE-009 REV. 1 PAGE 17 APPENDIX D MOTOR OPERATED GLOBE VALVE EXCLUSIONS TOTAL MOVs: 6 TOTAL GROUPS: 0

1. Motor operated globe valves are excluded from dynamic testing if two conditions are satisfied:

~

the MOV has an open safety function only, and

~

flow is under the valve disc.

In such a configuration, the dP assists in opening the valve.

SEA-VE-009 REV. 1 PAGE 18 APPENDIX' MOTOR OPERATED GLOBE VALVE EXCLUSIONS HV 150F046 HV 250F046 HV 151F103A HV 251F103A HV 156F059 HV 256F059

SEA-VE-009 REV. 1 PAGE 19 APPENDIX E QUARTER TURN VALVES TOTAL MOVs: 22 TOTAL GROUPS: 7

l. All quarter turn HOVs shall be dynamically tested. One NOV from each group will be dynamically tested with diagnostics.
2. These HOVs are grouped for the intended use of a similarity analysis.
3. The grouping criteria used to establish valve grouping is found in Exhibit l.

Groups 2.3.4 are similar design butterfly valves. Based on preliminary modeling/scaling analysis perforemd by Kalsi Engineering, showing similarity between similar valves of different sizes, consideration should be given to re-evaluating the grouping (later).

4. These valves currently undergo surveillance testing. If the pressure and flow conditions during the surveillance test match design basis conditions, then the surveillance test is also a dynamic test. Per Reference 3. 14, the following valves qualify on that basis:

HV 11210A/B HV 21210A/B

SEA-VE-009 REV. 1 PAGE 20 APPENDIX E QUARTER TURN'VALVES =

VALVE VALVE VALVE SAFETY OPEN CLOSE FLOW VALVE TAG TYPE SIZE FUNCTION dp dp RATE GROUP HV 01110E BF 10 146 155 1254 HV 01112E BF 10 146 155 1254 HV 01120E BF 10 146 155 1254 HV 01122E BF 10 146 155 1254 HV 01222A BF 36 0 C 161 161 22906 HV 01222B BF 36. 0 C 161 161 22906 HV 01224A1 BF 30 0 C 150 150 11453 HV 01224A2 BF 24 0 C 150 150 7635 HV 01224B1 BF 30 0 C 150 150 11453 HV 0122482 BF 24 0 C 150 150 7635 HV 08693A BF 173 138 1277 HV 08693B BF 173 138 1277 HV 11210A BF 20 0 C 156 156 9000 HV 11210B BF 20 0 C 156 156 9000 HV 11215A BF 20 55 55 HV 11215B BF 20 55 55 HV 21144A BF 0 C 153 153 106 HV 21144B BF 0 C 153 153 106 HV 21210A BF 20 0 C 156 156 9000 HV 21210B BF 20 0 C 156 156 9000 HV 21215A BF 20 55 55 HV 212158 BF 20 55 55

SEA-VE-009 REV. 1 PAGE 21 APPENDIX F.

MOVs WITH DP < 200 PSID AND > 0 PSID WITH VALVE SIZE < 4 INCH DIAMETER APPENDIX F WAS DELETED

SEA-VE-009 REV. 1 PAGE 22 APPENDIX G MOVs WITH DP < 50 PSID AND > 0 PS ID TOTAL MOVs: 4 TOTAL GROUPS: 1

1. These MOVs are currently grouped for the intended use of a similarity analysis to justify the MOVs are adequate for their safety function. For the group, it is anticipated that a minimum of one MOV be dynamically tested and all MOVs be statically tested.
2. The criteria used to establish valve grouping is found in Exhibit 3.

SEA-VE-009 REV. 1 PAGE 23 APPENDIX - G

'MOVs MITH dP < =.50'PSID.,AND.>,0:PSID VALVE TAG VALVE VALVE SAFETY OPEN CLOSE VALVE TYPE SIZE FUNCTION dp dp GROUP HV 151F048A GB 24 0 C 19 19 HV 151F048B GB 0 C 19 19 HV 251F048A GB 24 0 C 19 19 HV 251F048B GB 24 0/C 19 19

SEA-VE-009 REV. 1 PAGE 24 APPENDIX H GLOBE VALVES TOTAL HOVs: 14 TOTAL GROUPS: 5

1. These HOVs are currently grouped for the intended use of a similarity analysis to justify the HOVs are adequate for their safety function. For each group, it is anticipated that a minimum of one HOV be dynamically tested and all HOVs be statically tested.
2. The criteria used to establish valve grouping is found in Exhibit 4.

SEA-VE-009 REV. 1 PAGE 25 APPENDIX H GLOBE VALVES VALVE VALVE SAFETY OPEN CLOSE VALVE VALVE TAG TYPE SIZE FUNCTION dP dp GROUP FV 149F019 GB 0 C 1296 1296 1 RR HV 150F045 GB 1146 1146 HV 151F023 GB 400 400 HV 151F024A GB 18 0 C 341 341 HV 151F024B GB 18 0 C 341 341 HV 152F015A GB 10 380 HV 152F015B GB 10 380 FV 249F019 GB 0 C 1296 1296 1 RR HV 250F045 GB 1146 1146 HV 251F023 GB 400 400 HV 251F024A GB 18 0 C 341 341 HV 251F024B GB 18 0 C 341 341 HV 252F015A GB 10 380 HV 252F015B GB 10 380

SEA-VE-009 REV. 1 PAGE 26 APPENDIX I HOVs TO BE DYNAMICALLY TESTED REMAINING MOVs HOVs With Diagnostics: 26 HOVs Without Diagnostics: 8 Other HOVs: 4 (2 with diagnostics)

1. Each HOV in Appendix I-1 and I-2 shall be dynamically tested under design basis or reduced severity conditions and have its test results analyzed individually to justify the HOV is adequate for its safety function.

Comments on Dynamic Testing With Diagnostics: (Appendix I-1)

1. HV-151F028A/B, HV-251F028A/B, and HV-255F012 will be modified in the near future. Dynamic testing shall not be performed until after implementation of these modifications.

Comments on Dynamic Testing Without Diagnostics: (Appendix I-2)

1. HOVs will be dynamically tested without diagnostics because of inaccessibility during power operations or personnel exposure concerns.

Comments on Appendix I-3:

1. HV-152F005A/B and HV-252F005A/B are identified as testable and are uniquely grouped. Testing of these HOVs will necessitate Core Spray injections to the vessel. Because of the significance of the evolution, it is PPSL's position to test two of the four HOVs, one from each unit. The remaining two will be considered part of a grouping, where these HOVs are expected to be enveloped by the results of the tested valves.
2. Testing of two of the four HOVs will be performed with diagnostics.
3. Grouping criteria is found in Exhibit 6.

SEA-VE-009 REV. 1 PAGE 27 APPENDIX I-1 RENINING NOVs NOVs TO BE DYNAMICALLYTESTED WITH DIAGNOSTICS VALVE VALVE SAFETY OPEN CLOSE VALVE TAG TYPE SIZE FUNCTION dp dp HV 112F073A GT 165 165 HV 112F073B GT 165 165 HV 149F008 GT 61.3 1146 HV 151F007A GT 0/C 498 477 HV 151F007B GT 0 C 498 477 HV 151F022 GT 1040 400 HV 151F028A GT 18 0/C 366 327 HV 151F028B GT 18 0/C 366 327 HV 152F031A GT 0/C 385 385 HV 152F031B GT 0 C 385 385 HV 155F001 GT 10 1146 1146 HV 155F003 GT 10 104 1146 HV 155F012 GT 0/C 1386 1386 HV 212F073A GT 165 165 HV 212F073B GT 165 165 HV 249F008 GT 61.3 1146 HV 251F007A GT 0/C 498 477 HV 251F007B GT 0/C 498 477 HV 251F022 GT 1040 400 HV 251F028A GT 18 0/C 366 327 HV 251F028B GT 18 0/C 366 327 HV 252F031A GT 0/C 385 385 HV 252F031B GT 0/C 385 385 HV 255F001 GT 10 1146 1146 HV 255F003 GT 10 104 1146 HV 255F012 GT 0/C 1438 1438

SEA-VE-009 REV. 1 PAGE 28 APPENDIX .I-2 REMAINING MOVs MOVs TO BE DYNAMICALLYTESTED MITHOUT DIAGNOSTICS VALVE VALVE SAFETY OPEN CLOSE VALVE TAG TYPE SIZE FUNCTION dp dp HV 141F016 GT 1030 1030 HV 141F019 GT 1030 1030 HV 149F007 GT 967 1146 HV 155F002 GT 10 120 1146 HV 241F016 GT 1030 1030 HV 241F019 GT 1030 1030 HV 249F007 GT 967 1146 HV 255F002 GT 10 120 1146

SEA-VE-009 REV. 1 PAGE 29 APPENDIX 'I-3 REMAINING NOVs CORE SPRAY INJECTION.VALVES VALVE VALVE SAFETY OPEN CLOSE VALVE TAG TYPE SIZE FUNCTION cIP dp HV 152F005A GT 12 0 C 371 371 HV 152F005B GT 12 0 C 371 371 HV 252F005A GT 12 0 C 371 371 HV 252F005B GT 12 0/C 371 371

SEA-VE-009 REV. I PAGE 30 APPENDIX J HOVs With dP = 0 psid TOTAL HOVs: 8 TOTAL GROUPS: I

l. Each HOV shall be tested.

SEA-VE-009 REV. 1 PAGE 31 APPENDIX J NOVs WITH DP ~ .0 PSID VALVE TAG VALVE VALVE SAFETY OPEN CLOSE VALVE TYPE SIZE FUNCTION dp dp GROUP HV 151F006A GT 20 HV 151F006B GT 20 HV 151F006C GT 20 HV 151F006D GT 20 HV 251F006A GT 20 HV 251F006B GT 20 HV 251F006C GT 20 HV 251F006D GT 20

I SEA-VE-009 REV. 1 PAGE 32 APPENDIX K IDENTIFICATION OF TEST SPECIMEN- FOR;DYNANIC., TEST, GROUPS DYNAMIC TEST GROUP REQUIRED TEST SPECIMEN El ANY VALVE WITHIN GROUP E2 ANY VALVE WITHIN GROUP E3 ANY VALVE WITHIN GROUP ANY VALVE WITHIN GROUP E5 ANY VALVE WITHIN GROUP E6 ANY ONE OF HV-11210A, HV-11210B, HV-21210A, HV-21210B E7 ANY VALVE WITHIN GROUP Gl ANY VALVE WITHIN GROUP Hl ANY VALVE WITHIN GROUP H2 ANY VALVE WITHIN GROUP H3 ANY VALVE WITHIN GROUP H4 ANY VALVE WITHIN GROUP H6 ANY VALVE WITHIN GROUP I-3 ONE VALVE FROM EACH UNIT

1 0

SEA-VE-009 REV. 1 PAGE 33 APPENDIX L DYNAMIC TEST SCOPE OVERVIEW TYPE TOTALS TEST GROUPS EXCLUDE TEST Non-Testable HOVs 96 96 Valve With Excess Har in 38 38 Globe Valve Exclusions Quarter Turn 22 22 HOVs with dP < 200 psid and diameter < 4 inches HOVs with dP < 50 sid Globe Valves Remainin HOVs To Be Tested 38 36 HOVs with dP = 0 sid TOTALS 226 154 72 Notes:

All quarter turn HOVs will be dynamically tested. One HOV from each group will be dynamically tested with diagnostics.

2. If a valve is included in a higher category (i.e. quarter turn), it is not included in subsequent categories (i.e. HOVs with dP < 50 psid).
3. The Core Spray injection valves found in the category "Remaining HOVs To Be Tested" are uniquely grouped. They are identified as testable; however, it is PP8L's position to test two of the four in the group, one from each unit, because of the significance of testing.

SEA-VE-009 REV. I PAGE 34 APPENDIX H REVISIONS TO THE DYNAMIC TEST SCOPE VALVE TAG:

EXISTING VALVE TYPE/GROUP:

PROPOSED VALVE TYPE/GROUP:

BASIS FOR REVISION:

REFERENCES:

SEA-VE-009 REV. 1 PAGE 34A APPENDIX H REVISIONS TO THE DYNAMIC TEST SCOPE VALVE TAG'V-1(2) 51 FOIOA, 8 EXISTING,VALVE TYPE/GROUP: NOVS WITH DP=OPSI (APPENDIX J)

PROPOSED VALVE TYPE/GROUP: NONE BASIS FOR REVISION: NOVS OUT OF GL 89-10 SCOPE

REFERENCES:

SEA-HE-237 ¹80

SEA-VE-009 REV. 1 PAGE 34B APPENDIX H REVISIONS TO THE DYNAHIC TEST SCOPE VALVE TAG: HV-I(2)52F004A,B EXISTING VALVE TYPE/GROUP: NON-TESTABLE HOVS (APPENDIX B)

PROPOSED VALVE TYPE/GROUP: NONE BASIS FOR REVISION: HOVS OUT OF GL 89-10 SCOPE

REFERENCES:

SEA-HE-237 ¹70

SEA-VE-009 REV. 1 PAGE 34C APPENDIX M REVISIONS TO THE DYNAMIC TEST SCOPE VALVE TAG: HV-1(2)52F005A,B EXISTING VALVE TYPE/GROUP: DYNAMIC TEST WITH DIAGNOSTICS (APPENDIX I-1)

PROPOSED VALVE TYPE/GROUP: REMAINING MOVs - APPENDIX I-3 BASIS FOR RETEST/CHANGE: APPENDIX I-3 WAS CREATED AS A RESULT OF PPKL'S POSITION TO TEST TWO OF THE FOUR MOVs. TESTING OF HV-1(2)52F005A WILL NECESSITATE CORE SPRAY INJECTIONS TO THE VESSEL.

DUE TO THE SIGNIFICANCE OF THE EVOLUTION, TWO OF THE FOUR WILL BE TESTED.

REFERENCES:

SEE DISCUSSION IN THE BODY OF THIS TEXT.

SEA-VE-009 REV. 1 PAGE 35 EXHIBIT 0 SYMBOLS AND NOTES SYMBOLS NOTES VALVE TYPE 3WY Three Way 1. Rising/Rotating Valves BF Butterfly HV 149F019 HV 249F019 CK Check HV 149F060 HV 249F060 DG Drag HV 150F046 HV 250F046 GB Globe HV 151F103A HV 251F103A GT Gate HV 156F059 HV 256F059 PL Plug

2. Open & Close dPs (per Reference 3.4 VALVE MANUFACTURER only) CNs do not consistently differentiate between open & close A/DV Anchor Darling dPs.

AT&MOR Atwood & Morrill BW Borg Warner 3. Flow Rates 8 Fluid Temperatures:

CCI Control Components Inc. Per Reference 9: Design/Maximum CONTR Controlmatics Per Reference 4: Maximum COPES Copes Vulcan JAMES Jamesbury 4. Certain valve information was not LUNK Lunkenheimer available at this time; thus there are MASON Masoneilan some blank data fields.

PAC Pacific POSI Posi Seal 5. Valve/Stem orientation may have an TUF Tufl ine effect on thrust output.

YAR Yarway VALVE STEM ORIENTATION 6. Stem diameter and thread dimensions (WRT GLOBAL AXIS) criteria are for gate and globe valves which may'e used to determine Horizontal similarity in effective diameters, Vertical torque correction factors, etc. in Rolled VOTES testing.

SAFETY FUNCTION MOD Modulating 0/C Open & Close 0 Open only C Close only

SEA-VE-009 REV. 1 PAGE 36 EXHIBIT 1 QUARTER TURN VALVES GROUPING CRITERIA:

Valve Type Fluid Valve Size Flow Temperature Safety Function Flow Rate Open and Close dP Actuator Size Valve Manufacturer Actuator OAR Valve Drawing Supply Type Valve/Stem Orientation Supply Voltage Stem Material Stem Diameter Reference Pitch Lead NOTES:

1. For butterfly valves, an example of a flow change direction device is an elbow in the pipeline. If the upstream or downstream flow change direction device is close (the length of several pipe diameters) to the subject valve, the resultant skewed velocity profile can affect the dynamic torque coefficient.
2. A flow change direction device is located close to every butterfly valve (

Reference:

the isometric drawing of the referenced pipeline),

excluding HV 21144A and HV 21144B.

3. Actual shaft orientation (retaining ring upstream/downstream) is not known, but should be a consideration in the similarity analysis.
4. For butterfly valve analysis, both dp and flow rate affect the stem torque.
5. HV 01224AI, HV 01224A2, HV 01224B1, HV 01224B2: Size and flowrate for the Al,Bl valves are different than for the A2,B2 valves. Because size and flowrate can affect butterfly valve analysis, these valves were not placed in a cumulative group. It is assumed at this time that one group is not "enveloped" by the other.
6. HV 2/11210A,B 5 HV 2/11215A,B valves were placed in a cumulative group. These valves have equivalent design structural identity but differ in flow and dp requirements. It is assumed that the valves which require lower dp and flow can be "enveloped" by the other valves which require higher dp and flow. A test of HV 2/11210A,B may prove HV 2/11215A,B will work but the reverse is not true because of the great difference in flow rate and dp. Thus these valves can be grouped only on that basis.

t

7. HV-08693A has been replaced by a newer design valve (RIE 92-0292).

The newer design valve is similar to the original design with the exception of an adaptor on the actuator shaft. (HV-08693B is the original design valve.)

SEA-VE-009 REV. 1 PAGE 37 EXHIBIT 1 QIARTER TIRN VLV/

VLV VLV SAFETY STEM PIPE FLIMI FLIAI VALVE TAG TTPE SIZE FIMCT ORIEM LINE 0 0 ISTIRB RATE ACTUATOR SIZE HV 01110E BF 10 146 155 POSI K/H HRC 3301 1254 SMB-000-2 KOBC HV 01112E BF 10 146 155 POSI H/H HRC 3300 1254 SHB-000-2 HOBC HV 01120E BF 10 146 155 PCS I H/H HRC 3303 1254 SHB-000-2 HOBC HV 01122E BF 10 146 155 PCS I H/H HRC 3302 1254 SNB-000-2 HOBC HV 01222A BF 0/C 161 161 JAHES H/V HRC 001 22906 SHB-00-25 H3BC HV 012228 BF 0/C 161 161 JAHES H/V HRC 002 22906 SMB-00-25 H38C HV 01224A1 BF 30 0/C 150 150 JAHES H/V HRC 001 11453 SHB-00-15 H3BC HV 01224A2 -BF 24 0/C 150 150 JAMES H/V HRC 001 7635 SHB-00-15 H28C HV 0122481 BF 30 0/C 150 150 JAMES H/V HRC 002 11453 SMB-00-15 H3BC HV 0122482 BF 24 0/C 150 150 JAHES H/V HRC 002 7635 SHB-00-15-H28C HV 08693A BF 138 CONTR V/H HRC 105 1277 SHB-000-2 H1BC HV 086938 BF 138 CONTR V/H HRC 014 SHB-000-2 H18C HV 11210A BF 20 0/C 156 156 JAMES H/V HRC 112 9000 SHB-00-15 H28C HV 112108 BF 20 0/C 156 156 JAHES H/V HRC 112 9000 SNB-00-15 H28C HV 11215A BF 20 55 55 JAHES H/V HRC 114 SNB-00-15 H28C HV 112158 BF 20 55 55 JAMES H/V HRC 114 SMB-00-15 M28C HV 21144A BF 0/C 153 153 CONTR H/V HRC 231 106 SHB-000-2 H1BC HV 211448 BF 0/C 153 153 CONTR H/V HRC 231 106 SHB-000-2 H1BC HV 21210A BF 20 0/C 156 156 JAHES H/V HRC 212 9000 SHB-00-15 H2BC HV 212108 BF 20 0/C 156 156 JANES H/V HRC 212 9000 SHB-00-15 H28C HV 21215A BF 20 55 55 JANES H/V HRC 214 SNB-00-15 H28C HV 212158 BF 20 55 55 JANES H/V HRC 214 SNB-00-15 H28C

SEA-VE-009 REV. 1 PAGE 38 EXHIBIT 1 ORRTER TIRK VALVE STEII STBI SEAT PAtXIKG FLQI SEA-IK-239 TAG INTL DIA WLTL NATL TBFT CK$ DRAWING HV 01110E SA564-630 0.997 PE JC 187I 95 14 FF65105 SH 5 HV 01112E SA564-630 0.997 PE JC 187I 95 13 FF65105 SH 5 HV 01120E SA564 630 0.997 PE JC 1871 108 12 FF65105 SH 5 HV 01122E SA564-630 0.997 PE JC 187I 108 FF65105 SH 5 HV 01222A SA564-630 PE JC 187 2SETS 19 FF110160 SH 0601&2 HV 012228 SA564-630 PE JC 187 2SETS 19 FF110160 SH 0601&2 HV 01224A1 SA564-630 3.5 PE JC 187 4SETS 121 20 FF110160 SH 1501&2 HV 01224A2 SA564-630 2.75 PE JC 187 4SETS 121 20 FF110160 SH 0701&2 HV 0122481 SA564-630 3.5 PE 2 BRAIDED/3 GRAFOIL 2SETS 121 20 FF110160 SH 1501&2 HV 0122482 SA564-630 2.75 PE 2 BRAIDED/3 GRAFOIL/ 121 20 FF110160 SH 0701&2 1 CARBON BUSHING 2SETS HV 08693A SA564-630 1 ~ 124 PE JC 5810 95 28 FF61699 SH1 HV 086938 SA564-630 1 ~ 124 PE JC 5810 95 28 FF61699 SH1 HV 11210A SA564-630 2.375 PE 3 BRAIDED/3 GRAFOIL 95 15 FF110160 SH 0801&2 1 CARBON BUSHING HV 112108 SA564-630 2.375 PE 3 BRAIDED/3 GRAFOIL 95 15 FF110160 SH 0801&2 1 CARBON BUSHING HV 11215A SA564-630 2.375 PE JC 187 2SETS 55 16 FF110160 SH 0801&2 HV 112158 SA564-630 2.375 PE JC 187 2SETS 55 16 FF110160 SH 0801&2 HV 21144A SA564-630 0.624 PE JC 5810 110 FF 61669 SH 1 HV 211448 SA564-630 0.624 PE JC 5810 110 FF 61669 SH 1 HV 21210A SA564-630 2.375 PE 3 BRAIDED/3 GRAFOIL 95 15 FF110160 SH 0801&2 1 CARBON BUSHIHG HV 212108 SA564-630 2.375 PE 3 BRAIDED/3 GRAFOIL 95 15 FF110160 SH 0801&2 1 CARBON BUSHING HV 21215A SA564-630 2.375 PE JC 187 2SETS 55 16 FF110160 SH 0801&2 HV 212158 SA564-630 2.375 PE JC 187 2SETS 55 16 FF110160 SH 0801&2

SEA-VE-009 REV. I PAGE 39 EXHIBIT 2 MOVs WITH Dp < 200 PSID AND > 0 PSID AND WITH DIAMETERS < 4 INCH EXHIBIT 2 WAS DELETED

SEA-VE-009 REV. I PAGE 40 EXHIBIT 3 MOVs WITH dP ( = 50 PSID AND > 0 PSID GROUPING CRITERIA:

Valve Type Fluid Valve Size Flow Temperature Safety Function Flow Rate Open and Close dP Actuator Size Valve Manufacturer Actuator OAR Valve Drawing Supply Type Valve/Stem Orientation Supply Voltage Stem Material Stem Diameter Reference Pitch Lead NOTES:

None

SEA-VE-009 REV. 1 PAGE 41 EXHIBIT 3 HOVs DP < 50 PS ID VALVE SAFETY OPEN CLOSE VALVE VALVE VLV/STEM STEM TAG TYPE SIZE FUNCT d d HANUF DWG. ¹ ORIENT STEM NATL . . DIA PITCH HV 151F048A GB 24 0 C 19 19 A/DV 93-13824 H/R A582-416T 3.875 0.333 HV 151F048B GB 0 C 19 19 A DV 93-13824 H R A582-416T 3.875 0.333 HV 251F048A GB 0 C 19 19 A/DV 93-13824 H/R A582-416T 3.875 0.333 HV 251F048B GB 24 0 C 19 19 A/DV 93-13924 H/R A582-416T 3.875 0.333 ACTUATOR ACTUATOR SUPPLY REFERENCE GROUP VALVE TAG FLUID FLOW TEMP FLOW RATE SIZE OAR TYPE NUMBER HV 151F048A MATER 340/340 12200/12200 SMB-4-200 140.86 AC H-VLV-253 R.O HV 151F048B MATER 340/340 12200/12200 SHB-4-200 140.86 AC H-VLV-254 R.O HV 251F048A WATER 340 340 12200/12200 SHB-4-200 140.86 AC t4-VLV-399 R.O HV 251F048B WATER 340/340 12200/12200 SHB-4-200 140.86 AC H-VLV-400 R.O

SEA-VE-009 REV. 1 PAGE 42 EXHIBIT 4 GLOBE VALVES GROUPING CRITERIA:

Valve Type Fluid Valve Size Flow Temperature Safety Function Flow Rate Open and Close dP Actuator Size Valve Manufacturer Actuator OAR Valve Drawing Supply Type Valve/Stem Orientation Supply Voltage Stem Material Stem Diameter Reference Pitch Lead NOTES:

1. The following HOVs are rising rotating valves: FV 149F019 and FV 249F019.
2. HV 150F045 8 HV 250F045  : The valve drawing for the unit 2 valve say SHB-000-5, but the as-installed actuator is the same as that of unit 1, SHB-0-25.
3. Several calculations (Reference 3.7) show DC motors with a specific supply voltage. It is now current practice to use available motor start torque instead of supply voltage to determine reduced voltage requirements.

SEA-VE-009 REV. 1 PAGE 43 EXHIBIT 4 GLOBE VALVES VALVE VALVE'IZE SAFETY VALVE VLV/STEM VALVE TAG TYPE FUNCT OPEN DP CLOSE OP MANUF VALVE DIIG. ¹ ORIENT S'TEN NATL STEM DIA .

PITCH.

'V 149F019 GB 0/C 1296 1296 YAR FF110150 SH2801 H/R SA564-630 0.937 0.17 HV 150F045 GB 1146 1146 A/OV 93-15251 H/V A582.416T 1.5 0.25 HV 151F023 GB 400 400 A/DV 93-13747 H/H A564-630-107 2.125 0.333 HV 151F024A GB 18 0/C 341 341 A/DV 93-13808 H/V A582-416T 3.25 0.25 HV 151F0248 GB 18 0/C 341 341 A/DV 93-13808 H/V A582-416T 3.25 0.25 HV 152F015A GB 10 A/DV 93-13667 H/V A582-416T 2.25 0 '5 HV 152F0158 GB 20 380 A/OV 93-13667 H/V A582-416T 2.25 0.25 FV 249F019 GB 0/C 1296 1296 YAR F F110150 SH2801 H/R SA564-630 0.937 0.17 HV 250F045 GB 1146 1146 A/DV M84 22159 H/V A582-416T 1 ~5 0.25 HV 251F023 GB 400 400 A/OV 93-13747 H/H A564-630-107 2.125 0.333 HV 251F024A GB 18 0/C 341 341 A/DV 93-13808 H/V A582-416T 3.25 0.25 HV 251F024B GB 18 0/C 341 341 A/DV 93-13808 H/V A582-416T 3.25 0.25 HV 251F015A GB 10 380 A/DV 93-13667 H/V A582-416T 2.25 0.25 HV 251F015B GB 10 380 A/OV 93-13667 H/V A582-416T 2.25 0.25

SEA-VE-009 REV. 1 PAGE 44 EXHIBIT 4 GLOBE VALVES ACTUATOR GROUP VALVE TAG FLUIO FLOW TEMP FLOW RATE SIZE ACTUATOR OAR SUPPLY TYPE REFERENCE ,... NUMBER FV 149F019 IIATER 208 SMB.OO SEA-HE-238 CN21 HV 150F045 STEAM 585/585 28750/28750 SMB-0-25 33.11 OC H.VLV-211 R.1 HV 150F023 WATER 585/585 500/2150 SHB-2.40 108 DC H-VLV-241 R.1 HV 150F024A WATER 340/340 10000/23000 SHB-3-100 105.86 AC H-VLV-242 R.1 HV 151F024B IIA'TER 340/340 10000/23000 SHB-3-100 105.86 AC N-VLV-243 RE 1 HV 152FOISA WATER 212/212 6450/6450 SHB-1-40 103.71 AC H-VLV-266 R.2 HV 152F0158 IIATER 212/212 6450/6450 SHB-1-40 103.71 AC N-VLV-267 R.2 FV 249F019 WATER 123 SMB-00 SEA-ME-238 CN21 HV 250F045 S'TEAM 585/585 28750/33000 SHB-0-25 33.11 DC N-VLV-357 R.O HV 251F023 WATER 585/585 500/2150 SHB-2-40 108 DC N-VLV-387 R.3 HV 251F024A 'WATER 340/340 10000/23000 SHB-3-100 105.86 AC N.VIV-388 R.3 HV 251F0248 'WATER 340/340 10000/23000 SHB-3-100 105.86 AC M-VLV-389 R.1 HV 252F015A IIATER 212/212 6450/6450 SHB-1-40 103.71 AC H-VLV-412 R.2 HV 252F0158 'WATER 212/212 6450/6450 SHB-1-40 103.71 AC H-VLV-413 R.4

SEA-VE-009 REV. I PAGE 45 EXHIBIT 5 MOVs WITH dP = 0 PS ID GROUPING CRITERIA:

Valve Type Fluid Valve Size Flow Temperature Safety Function Flow Rate Open and Close dP Actuator Size Valve Manufacturer Actuator OAR Valve Drawing Supply Type Valve/Stem Orientation Supply Voltage Stem Material Stem Diameter Reference Pitch Lead NOTES:

None

SEA-R PAGE 46 EXHIBIT 5 HOVs = 0 DP VALVE TAG VALVE TYPE VALVE SIZE SAFETY FUNCT OPEN DP CLOSE DP VALVE HAHUF VALVE D'WG. II OR IEHI'TEH VLV/STEH HATL STEH DIA PITCH HV 151F006A GT 20 A/DV 93-13688 H/V A276-410T 1.875 0.333 HV 151F0068 GT 20 A/DV 93-13688 H/V A276-410T 1.875 0.333 HV 151F006C Gl'T 20 A/DV 93-13688 H/V A276-410T 1.875 0.333 HV 151F0060 20 A/DV 93-13688 H/V A276-410T 1.875 0.333 HV 151F010A GT 24 A/DV 93-13722 H/V A276-410 2 ' 0.5 HV 151F010B GT 24 A/DV 93-13722 H/V A276-410 2.5 0.5 HV 251F006A GT 20 A/DV 93-13688 H/V A276-410T 1.875 0.333 HV 251F0068 GT 20 A/DV 93-13688 H/V A276-410T 1.875 0.333 HV 251F006C GT 20 A/DV 93-13688 H/V A276-410T 1.875 0.333 HV 251F0060 GT 20 A/DV 93-13688 H/V A276.410T 1.875 0.333 VALVE TAG LEAD FLUID FLOW TEMP FLOM RATE ACTUATOR ACTUATOR SUPPLY TYPE REFEREHCE GRNJP SIZE OAR HUHBER .

HV 151F006A 0.333 MATER 340/340 12200/12200 SHB-0-25 46.25 AC H-VLV-220 R.S HV 151F006B 0.333 'MATER 340/340 12200/12200 SHB.0-25 46.25 AC H-VLV-221 R.3 HV 151F006C 0.333 'MATER 340/340 12200/12200 SHB-0-25 46.25 AC H.VLV-222 R.2 HV 151F006D 0.333 MATER 340/340 12200/12200 SHB-0-25 46.25 AC H-VLV-223 R.2 HV 151F010A 0.5 MATER 340/340 20000/26000 SHB-2-40 46.25 AC H-VLV-228 R.1 HV 151F010B 0.5 MATER 340/340 20000/26000 SHB.2-40 46.25 AC H-VLV-229 R.1 HV 251F006A 0.333 MATER 340/340 12200/12200 SHB 0-25 46.25 AC H-VLV-366 R.3 HV 251F006B 0.333 'MATER 340/340 12200/12200 SHB-0-25 46.25 AC H-VLV-367 R.2 HV 251F006C 0.333 MATER 340/340 12200/12200 SHB-0-25 46.25 AC H-VLV-368 R.2 HV 251F006D 0.333 MATER 340/340. 12200/12200 SHB.0-25 46.25 AC H.VLV-369 R.2

SEA-VE-009 REV. 1 PAGE 47 EXHIBIT 6 CORE SPRAY INJECTION VALVES GROUPING CRITERIA:

Valve Type Fluid Valve Size Flow Temperature Safety Function Flow Rate Open and Close dP Actuator Size Valve Manufacturer Actuator OAR Valve Drawing Supply Type Valve/Stem Orientation Supply Voltage Stem Naterial Stem Diameter Reference Pitch Lead NOTES:

1. These valves are uniquely grouped because of the significance in injecting into the vessel.

SEA-VE-009 REV. 1 PAGE 48 EXHIBIT 6 CORE SPRAY INJECTION VALVES VALVE TAG VALVE VALVE SAFETY OPEN CLOSE VALVE VALVE DWG. ¹ VLV/ST STEM MATL STEM PITCH TYPE SIZE FUNCT DP DP MANUF EM DIA-ORIENT HV 152F005A GT 12 0/C 371 371 A/DV 93-13741 H/V A564-630-1075 2.25 0.333 HV 152F005B GT 12 0/C 371 371 A/DV 93-13741 H/V A564-630-1075 2.25 0.333 HV 252F005A GT 12 0/C 371 371 A/DV 93-13741 H/V A564-630-1075 2.25 0.333 HV 252F005B GT 12 0/C 371 371 A/DV 93-13741 H/V A564-630-1075 2.25 0.333 VALVE TAG LEAD FLUID FLUID FLOW ACTUATOR ACTUATOR SUPPLY REFERENCE TEMP RATE SIZE OAR TYPE HV 152F005A WATER 208 7900 SMB-2-60 52.57 AC M-VLV-264 R.

SEA-ME-237 CN¹68 HV 152F005B WATER 208 7900 SMB-2-60 52.57 AC M-VLV-265 R.

SEA-ME-237 CN¹68 HV 252F005A WATER 208 7900 SMB-2-60 52.57 AC M-VLV-410 R. 1 SEA-ME-237 CN¹68 HV 252F005B WATER 208 7900 SMB-2-60 52.57 AC M-VLV-411 R. 1 SEA-ME-237 CN¹68

SEA-VE-009 REV. 1 PAGE 49 ADDENDUM GENERIC LETTER 89-10 MOV DYNAMIC TEST SCOPE JUSTIFICATION FOR NOT DYNAMICALLY TESTING MOV(S)

DUE TO TESTING NOT BEING PRACTICABLE

SEA-VE-009 REV. I PAGE 50 PREPARED'EVIEWED:

GENERIC LETTER 89-10 MOV DYNAMIC TEST SCOPE JUSTIFICATION FOR NOT DYNAMICALLYTESTING MOV(S)

DUE TO TESTING NOT BEING PRACTICABLE VALVE NUMBER(S):

JUSTIFICATION:

SEAVE009.LBB

r Wc'