ML17158A089
| ML17158A089 | |
| Person / Time | |
|---|---|
| Site: | Susquehanna |
| Issue date: | 01/04/1994 |
| From: | Benensky L, Hunt D, Maret Rose PENNSYLVANIA POWER & LIGHT CO. |
| To: | |
| Shared Package | |
| ML17158A090 | List: |
| References | |
| EC-VALV-0503, EC-VALV-0503-R01, EC-VALV-503, EC-VALV-503-R1, GL-89-10, NUDOCS 9401270115 | |
| Download: ML17158A089 (75) | |
Text
629 NUCLEAR ENGINEERING CALCULATION / STUDY COVER SHEET and NUCLEAR RECORDS TRANSMITTAL SHEET File ¹ R2-1 1.
Page 1 of
~I 2.
TYPE:
1 NIIIIBER, II -VIILl/ 'IIBttk H
REV h 5.
TRANSMITTAL¹'
~.
UNIT: ~ ~7.
EQUALITY CLASS: G
- c8. DISCIPLINE: +
~9 DESCRYPTYON PJRC CI<l'&fiC I~er Q
I lQ HO+Ore'ICA.ted-VCtS VE.
44
> io. i'll
. Tddt-5C~
- 10. Alternate ¹: ~R-VC -,q 12.
Computer Code or Model used:
- 11. Cycle:
- t 13.
AFFECTED SYSTEMS:
- If N/A then line 18 is mandatory.
- 14.
References:
yl-IGc. 5
-Ae'-'2 97 5~-alt=- 2.mg i-i-iDEit'T-VL-CP4~
t l <
731 VLV-CSEE
'VLV-i&
- yLi, i> Q>~- i>S
- 15. Affected Documents:
'LV 16.
Equipment / Component ¹:
- 17. Application:
C ~ ~
l iC
- t 18.
NON-SYSTEM DESIGNATOR:
19.
DBD Number:
t 20.
PREPARED BY Print R~ (priori~.
r~~~r6lc.
21.
REVIEWED BY Print N~
t 22.
APPROVED BY DATE Print None g Signoture Silnoture NR.DCS Siynoture Yo be teted SYalear Records Dote ADD A NEW COVER PAGE FOR EACH REVISION FORM NEPM-RA-0221-1, Revision 0
9401270115
'940117 PDR ADOCK 05000387 P 'DR
~ Verified Fie ds REQUIRED FIELDS
ENGINEERING CALCULATION STUDY REVISION DESCRIPTION SHEET Revision No:
t Calculation Number: ~ -VALV-CP~&
e la This form shall be used to record the purpose or reason for the revision, indicate the revised pages and / or affected sections and give a short description of the revision.
Check Q the appropriate function to add, replace or remove the affected pages.
Revised Affected A
R R
Pages Sections d
p m
d 1
v Description /
Purpose of Revision C~<tcw ci.~ldi>IM'icLcclM'~~ri~ 4m Q. /m.~cj T-3 4m. unix'/,u Cj//zi -"~m 8 (PrcZ'ai In <firn Volte~. Se(~L'/HE t'r'.o<
a.772 f4~- / (Z)GIFT/g& <
P /4 //]'-j(2)5" ~m</4 (g) 4'lC)'Udder Cx'PCu~ 8 jn MO/L'.J 9't.dZC~a~c~ M<-<<~< iM~S Cc~
V g/
</<~%'C)M /l'7 '7187i J
~ ~i~u M c~
$/4'y/ypD'azo<
pt t Fz 5l /6 'L ~
col>"~7 /Z('p/~jzAc'JLc /7/L~
s'4 C Ltlc( h~Q( nn~.
~/ ~A.,A/nlrb6m ~ E~/-
hv FORH NEPH-gA-0221-2, Revision 0
ENGINEERING CALCULATION / STUDY REVISION INSTRUCTION SHEET Calculation 0: K-1/ALV 5 55'4 Chan es to the cover sheet:
Revision:
)
Handlin oF the calculation:
Rc.-
- ~<<~~
~~L~4..-l in i;L~ 6'i)hive&
( iilc.lg~dinc c g C.rC~~~ ~i~V cava. Reu.0 c.averse&)
Dccui~nfkcvie.its (~
~) <<M beni w Y<nikcnhm (6 gy(;.-gag u, (go(.u.N,i.m+
FORH NEPH-gA-0221-3, Revision 0
~
~
ENGINEERING STUDIES.
- ANALYSES, AND EVALUATION COVERSHEET QUALITY LEVEL Qg SAFETY C] AS&
OYER Cj NON OUALZTY ER/CTN NO.
SEA NO VE-009 PAGE OF g I'RC GENERIC LETTER 89-10 tlOTOR OPERATED VALVE DYNAh'.IC TEST SCOPE MOP>en</TM (2-7+ D~h')
py Ae REVISION NO.
DATE PREPARED BY REVIEW
/VERIFIED BY APPROVED BY
SEA-VE-009 5EV.
0 PAGE Pf of 55 Zg-NRC GENERIC LETTER 89-10 MOTOR OPERATED VALVE DYNAMICTEST SCOPE CONCURRENCE:
MAINT. TECHNOLOGY:
SYSTEMS ENGINEERING'AINTENANCE:
PRO JECT IVlANAGEMENT.
SEA-VE-009 REV.
1 PAGE 2
'ABLE OF CONTENTS 2.
3.
4.
5.
6.
BACKGROUND 8, PURPOSE INPUT/ASSUMPTIONS REFERENCES METHOD DISCUSSION RESULTS/CONCLUSIONS A
B C
D E
F G
H I
J K
L M
APPENDICES Generic Letter 89-10 Scope MOVs Determined To Be Non-testable Valves Not Requiring Dynamic Test Based on Excess Available Motor Operated Globe Valve Exclusions quarter Turn Valves MOVs with DP < 200 PSID and
> 0 PSID with Valve Size g 4 IN MOVs with DP < 50 PSID and
> 0 PSID Globe Valves MOVs To Be Dynamically Tested Remaining MOVs MOVs with dP
= 0 PSID Identification of Test Specimen for Dynamic Test Groups Dynamic Test Scope Overview Revisions To The Dynamic Test Scope
~
~
~
Margi DIA.
~
~
~
~
tl
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
10 13 15 17 19 21 22 24 26 30 32 33 34 EXHIBITS Symbols and Notes
(}uarter Turn Valves MOVs with dP
< 200 PSID and
> 0 PSID MOVs with dP
< 50 PSID and
> 0 PSID Globe Valves MOVs with dP 0 PSID Core Spray Injection Valves wl
~
~
~
~
~
~
~
~
~
~
~
~
th Valve Size
< 4 IN DIA
~
~
~
~
~
~
~
~
~
~
~
~
~
~
35 36 39 40 42 45 47 ADDENDUM GENERIC LETTER 89-10 MOV DYNAMIC TEST SCOPE JUSTIFICATION FOR NOT DYNAMICALLYTESTING MOV(s)
DUE TO TESTING NOT BEING PRACTICABLE.
SEA-VE-009 REV. I PAGE 3 BACKGROUND 8.
PURPOSE Generic Letter 89-10 requires all safety-related motor operated valves (MOVs) be demonstrated to be operable under their design basis differential pressure and flow conditions.
This is best accomplished by performing a dynamic test, defined as an in-situ test under differential pressure (dP) and flow conditions.
For this dynamic test
- scope, the following definitions shall apply to a
non-testable MOV:
a) b)
an MOV that cannot be dynamically tested because of the impracticability aspects of such testing (safety implications, potential damage to equipment),
an MOV that cannot achieve 50X or more of its design basis dP (rising stem).
Where testing of an MOV under design basis is not practicable the following alternatives can be considered:
A reduced severity test, where testing is performed at the highest practical dP and/or flow, is permissible when existing plant configurations do not make it practicable to test the MOV under design basis conditions.
Dynamic testing at less than 50M design basis is considered not to provide reliable data to predict MOV performance at design basis.
Prototype test data from an NOV in situ test under design basis conditions may be used to demonstrate the operability of an identical MOV.
The prototype may be an MOV that has been in-situ tested at the same plant, a different power plant, or a test facility.
Prototype test data can be applied to an identical MOV in a parallel train even though it may be practicable to test that MOV as well.
In this text, this approach will be called "similarity analysis",
whereby within a group of identical/similar
The use of applying prototype test data must be properly justified, since it has been evidenced (Reference 3.2) that "apparently identical MOVs performed significantly different under high differential pressure and flow conditions."
Prototype test data can be applied to an identical MOV that is not practicable to test.
Impracticability aspects include such considerations as safety implications of such a test, the potential damage of the MOV or other plant equipment, the violation of plant technical specifications or procedures, ALARA concerns, the test resulting in the injection of non-reactor grade water into the reactor coolant system, etc.
These factors or a combination of these and other
SEA-VE-009 REV.
1 PAGE 4 safety factors must be considered when determining that testing the HOV under design basis conditions is impracticable.
The 2.
purpose of this study is thus:
To define the scope of HOVs that will require dynamic testing, considering:
a)
HOVs that require design basis or reduced severity testing b) groupings of HOVs to be used in a similarity analysis To define the scope of HOVs that will not be dynamically tested, including:
a) b)
c)
Non-testable HOVs as defined above Hotor Operated globe valves that have an open safety function only and flow under the valve seat HOVs which have excess design margin as shown by the calculated available valve factor INPUT/ASSUHPTIONS 2.1 2.2 2.3 2.4 2.5 2.6 Ref. 3.6 provided an initial categorization of HOVs, based on valve type and valve operating characteristics (maximum design basis differential pressure, excluding inadvertent operation).
Testing at less than 50X design basis differential pressure is considered not to provide reliable data to predict design basis performance for rising stem valves.
Grouping of valves within a category is based on structural and functional criteria (References 3.4 and 3.7).
Grouping of valves should not be considered for gate valves larger than 4 inch or with pressures greater than 200 psig because these valves are regarded to be the most controversial with respect to valve factor and valve performance.
The exception is the core spray injection
- valves, which must be grouped because of the significance in testing.
HOVs with excess design margin as evidenced by a calculated available valve factor of 1.0 or greater (gate valves) or 2.0 or greater (globe valves) may be excluded from dynamic testing.
Globe valves with only an open safety function and flow under the seat may be excluded from dynamic testing.
HOVs with design basis dP of zero are considered
- testable, where the static test is also the dynamic test.
REFERENCES 3.1 Generic Letter 89-10 Supplements 1-6 "Safety-Related Hotor Operated Valve Testing and Surveillance"
3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 SEA-VE-009 REV.
1 PAGE 5
NRC Information Notice 92-17 SEA-HE-245 Rev.
6, Determination of Motor Operated Valves Within the Scope of NRC Generic Letter 89-10 SEA-HE-237,
- 238, 239 Rev.
0 Design Basis Documents M-1503 Rev.
0 Verifying Motor Operated Valves Ability to Function Preliminary Dynamic Test Scope; Memo VLV-054 H-VLV-100 thru M-VLV-437 HOV Data Detail, Limit Switch Settings, and Torque Switch Settings Calculations H-1498 Rev.
1 Field Implementation of the Susquehanna Steam Electric Station Motor Operated Valve Program MI-VLV-003 Rev.l HOV Performance Evaluation and Trending not used Memo VLV-139:
References for globe valves that are considered excludable Memo VLV-154:
Field Walkdown of HV 256F059 to determine flow direction Memo VLV-165:
Results of Dynamic Test Heetings EWR H20737 Butterfly Valve Surveillance Test Information The above references are used as the Design Inputs for this study.
METHOD The overall dynamic test scope was based on the following methodology:
4.1 4.2 4.3 The scope of Generic Letter 89-10 HOVs was taken from Ref.3.3.
The scope of non-testable HOVs was defined (Reference
- 3. 13).
Valves were categorized based on valve type and operating characteristics.
The following hierarchy of categories was established (once an HOV is placed in a category, such as quarter Turn, it is not be included in any subsequent
- category, such as HOVs with dP < 50 psid):
(a)
(b)
(c)
(d)
(e) quarter Turn Valves MOVs with dP < 200 psid and
> 0 psid with diameter
< 4 inch HOVs with dP
< 50 psid and
> 0 psid Globe Valves Remaining HOVs
SEA-VE-009 REV.
1 PAGE 6 4.4 HOVs with design basis dP
= 0 psid were placed in their own category.
4.5 MOVs that were considered excludable from dynamic testing were taken out of the above hierarchy of categories and placed into their own categories.
There are two categories:
(1) globe valves with only an open safety function and flow under the valve seat and (2) valves not requiring dynamic testing based on excess available design margin.
4-.4 MOV groupings within a category were organized based on functional and structural similarity, using design information from Reference 3.7 and 3.4.
4.5 Remaining HOVs are identified as testable.
These valves are not
- grouped, with the exception of a unique grouping of Core Spray injection valves.
These valves must be grouped because of the significance in testing.
DISCUSSION
- 5. 1 Dynamic Testing The dynamic testing of an HOV is intended to be a once and done design basis verification test.
Periodic static testing and trending in accordance with Reference 3.8 and 3.9 shall be performed in order to verify that the HOV remains adequate for its intended safety function.
5.2 Initial Grouping of HOVs 5.2. 1 The initial grouping of HOVs considered structural and functional factors.
The specific design parameters used for grouping can be found in the Exhibits and include:
~
Structural factors which identify the physical make-up of the MOV, including valve design and actuator design.
Functional factors which identify the functional/operational requirements of the
for HOVs with design basis dP of
- zero, each HOV in the group shall be tested).
Guidance in selecting the HOV to be dynamically tested can be found in Appendix K.
NOTE: Gate valves larger than 4 inch or with pressures greater than 200 psig are considered'o be the most controversial with respect to valve factor and valve performance.
Therefore all valves within this category will be tested (unless the calculated available valve factor is
> 1) if at all practicable.
0
SEA-VE-009 REV.
1 PAGE 7
5.3 Justification for Grouping HOVs 5.3. 1 MOV Categories The MOV categories were based on valve types (i.e., globe, butterfly) and valve operational requirements (i.e.,
MOVs with dP < 50 psid and
> 0 psid).
The basis.for categorizing by operational requirements is to give consideration of HOV performance under specified design basis pressures.
Performance of an MOV under low accident design basis pressures is considered less controversial (less.likely to fail) than that under more severe conditions.
5.3.2 MOV Groupings The dynamic test scope may consist of groupings within the MOV categories.
The basis for grouping is to give consideration for applying prototype test data, as necessary.
Use of prototype test data to justify functionality is an acceptable alternative to design basis testing.
The valves in a group are expected to be enveloped by the results of the dP test of the "parent" tested valve.
The preferred candidate for testing within each group is provided in Appendix K.
5.4 Revisions to the Overall Dynamic Test Scope The overall dynamic test scope may be affected because of additions or deletions to the Generic Letter 89-10 Scope, or because of changes affecting MOV categories or groupings.
For example, certain activities (i.e., design modification) or situations may require that the baseline test be redone and/or that possibly retesting under dynamic conditions is needed.
Reevaluation of the HOV
- category, grouping criteria, and similarity analysis may be required.
Any changes which affect the overall dynamic test scope shall be documented in Appendix H of this study.
5.5 Non-Testable HOVs Systems Engineering has determined and provided the reason for MOVs that are considered non-testable due to impracticability aspects, such as safety implications, violation of tech
- specs, potential damage to equipment, etc. or due to the proposed testing resulting in the MOV achieving less than 50X of its design basis dP.
Non-testable MOVs are listed in Appendix B; reasons are provided in the Addendum (later).
As part of Generic Letter 89-10 requirements, Pennsylvania Power Light intends to use the following alternatives to demonstrate MOV functionality under design basis for those MOVs Systems Engineering has justified non-testable:
SEA-VE-009 REV.
1 PAGE 8 a)
The majority of non-testable HOVs will be justified using the EPRI HOV Predictive Performance Program computer methodology (expected availability in 1994) once evaluated for applicability to the methodology using guidelines provided by EPRI.
b)
As part of the EPRI program, flow loop and valve testing has been performed to obtain test data for several unique designs (i.e, Anchor/Darling double disk gate valves) that are not modeled by the computer code.
Evaluation of EPRI's prototype test data and its applicability to the similar type valves at SSES will be performed.
c)
Evaluation of prototype test data from HOV testing at
- SSES, a
different nuclear power plant, a test facility, or an industry-wide database will be performed, where available.
Factors similar to that used for similarity analysis (valve
- design, operating characteristics) will be examined in order to determine the applicability of the prototype test data.
d)
Engineering analysis based upon design margin, safety significance and other factors, will be used where dynamic test data is not available.
5.6 Globe Valve Exclusions from Dynamic Testing Hotor Operated globe valves were also excluded from dynamic testing if two conditions were satisfied:
- 1) the NOV has an open safety function only, and
- 2) flow is under the valve seat.
It is believed that such a configuration would help to assure the HOV performs its safety function, regardless of the dP condition.
These HOVs would require static testing and evaluation of test results.
5.7 NOVs with Design Basis dP of Zero Static tests (wet or dry) will be used for evaluating functionality.
5.8 HOVs Tested without Diagnostics HOVs may still be tested under dynamic conditions even though it is determined that the test(s) cannot be monitored with diagnostics for some reason.
If test conditions match design basis conditions, then the test is a valid design basis dynamic test.
5.9 Core Spray Injection Valves These NOVs are considered testable; however they are uniquely grouped.
Testing requires core spray injection to the vessel and because of the significance of the evolution, it is PP8L's position to test two of the four in the group, one from each unit.
SEA-VE-009 REV.
1 PAGE 9 RESULTS/CONCLUSIONS The following Appendices present the overall dynamic test scope; Scope of Generic Letter 89-10 HOVs HOVs Determined To Be Non-Testable Valves Not Requiring Dynamic Test Based on Excess Available Margin Motor Operated Globe Valve Exclusions Quarter Turn HOVs MOVs with dP
< 200 psid and
> 0 psid With Valve Size
< 4 in Dia.
HOVs with dP < 50 psid and
> 0 psid Globe Valves Remaining HOVs to be Dynamically Tested MOVs with dP 0 psid Identification of Test Specimen for Dynamic Test Groups Dynamic Test Scope Overview Revisions to the Dynamic Test Scope The following Exhibits document the basis for the valve groupings:
Symbols and Notes Quarter turn MOVs MOVs with dP
< 200 psid and
> 0 psid and with < 4 in dia.
HOVs with dP < 50 psid and
> 0 psid Globe Valves MOVs with dP 0 psid Core Spray Injection Valves The following Addendum documents System Engineering justification for non-testable HOVs (Appendix B) (later):
Justification for Not Dynamically Testing HOV(s)
Due to Testing Not Being Practicable
'I
SEA-VE-009 REV.
1 PAGE 10 APPENDIX A GENERIC'LETTER'89-'10SCOPE FV 149F019 FV 249F019 HV 01110E HV 01112E HV 01120E HV 01122E HV 01222A HV 012228 HV 01224A1 HV 01224A2 HV 01224B1 HV 01224B2 HV 08693A HV 08693B HV 11210A HV 112108 HV 11215A HV 11215B HV 112F073A HV 112F073B HV 112F075A HV 112F075B HV 11313 HV 11314 HV 11345 HV 11346 HV 12603 HV 139F001B HV 139F001F HV 139F001K HV 139F001P HV 139F002B HV 139F002F HV 139F002K HV 139F002P HV 139F003B HV 139F003F HV 139F003K HV 139F003P HV 139F006 HV 139F007 HV 139F008 HV 139F009 HV 14182A HV 14182B HV 141F016 HV 141F019 HV 141F020 HV 143F031A HV 143F031B HV 143F032A HV 143F032B HV 144F001 HV 144F004 HV 149F007 HV 149F008 HV 149F010 HV 149F013 HV 149F031 HV 149F059 HV 149F060 HV 149F062 HV 149F084 HV 150F045 HV 150F046 HV 151F004A HV 151F004B HV 151F004C HV 151F004D HV 151F006A HV 151F006B HV 151F006C HV 151F006D HV 151F007A HV 151F007B HV 151F008 HV 151F009 not used not used HV 151F015A HV 151F015B HV 151F016A HV 151F016B HV 151F017A HV 151F017B HV 151F021A HV 151F021B HV 151F022
I
SEA-VE-009 REV.
1 PAGE 11 APPENDIX"A
'GENERIC'L'ETTER-:89-'10.!SCOPE HV 151F023 HV 151F024A HV 151F024B HV 151F027A HV 151F027B HV 151F028A HV 151F028B HV 151F040 HV 151F048A HV 151F048B HV 151F049 HV 151F103A HV 152F001A HV 152F001B NOT USED NOT USED HV 152F005A HV 152F005B HV 152F015A HV 152F015B HV 152F031A HV 152F031B HV 155F001 HV 155F002 HV 155F003 HV 155F004 HV 155F006 HV 155F012 HV 155F042 HV 155F066 HV 155F075 HV 155F079 HV 156F059 HV 15766 HV 15768 HV 21144A HV 21144B HV 21210A HV 21210B HV 21215A HV 212158 HV 212F073A HV 212F073B HV 212F075A HV 212F075B HV 21313 HV 21314 HV 21345 HV 21346 HV 22603 HV 239F001B HV 239F001F HV 239F001K HV 239F001P HV 239F002B HV 239F002F HV 239F002K HV 239F002P HV 239F003B HV 239F003F HV 239F003K HV 239F003P HV 239F006 HV 239F007 HV 239F008 HV 239F009 HV 24182A HV 24182B HV 241F016 HV 241F019 HV 241F020 HV 243F031A HV 243F031B HV 243F032A HV 243F032B HV 244F001 HV 244F004 HV 249F007 HV 249F008 HV 249F010 HV 249F013 HV 249F031 HV 249F059 HV 249F060 HV 249F062 HV 249F084 HV 250F045 HV 250F046
SEA-VE-009 REV.
1 PAGE 12
'APPENDIX-'A
'.GENERIC 'L'ETTER-:~89-'10'-'SCOPE-HV 251F004A HV 251F004B HV 251F004C HV 251F004D HV 251F006A HV 251F006B HV 251F006C HV 251F006D HV 251F007A HV 251F007B HV 251F008 HV 251F009 NOT USED NOT USED HV 251F015A HV 251F015B HV 251F016A HV 251F016B HV 251F017A HV 251F017B HV 251F021A HV 251F021B HV 251F022 HV 251F023 HV 251F024A HV 251F024B HV 251F027A HV 251F027B HV 251F028A HV 251F028B HV 251F040 HV 251F048A HV 251F048B HV 251F049 HV 251F103A HV 252F001A HV 252F001B not used not used HV 252F005A HV 252FOOSB HV 252F015A HV 252F015B HV 252F031A HV 252F031B HV 255F001 HV 255F002 HV 255F003 HV 255F004 HV 255F006 HV 255F012 HV 255F042 HV 255F066 HV 255F075 HV 255F079 HV 256F059 HV 25766 HV 25768 226 TOTAL
SEA-VE-009 REV.
1 PAGE 13 APPENDIX B
HOVs DETERHINED TO BE NON-TESTABLE TOTAL HOVs:
TOTAL GROUPS:
96 0
Systems Engineering is responsible for determining the HOVs considered to be non-testable and for justifying and documenting the basis for that determination for each valve.
Some reasons that a valve may be determined to be non-testable:
a)
Cannot be stroked with >50K of design dp and/or flow.
b)
Test would create or result in severe plant consequences such as-l.
2.
3.,
4.
5.
6.
Require stroking at ILRT conditions Require vessel injection of non-reactor grade water Result in equipment damage Require plant to be placed in unsafe condition Require spray to suppression pool Equipment would be inoperable and in LCO c)
Performance of test would result in excess radiological exposures ALARA concerns 1.
Inside Containment 2.
Wingslab Area 3.
Combination of Rad Levels
& Excess Valve Factor.
Not worth the expenditure of Radiation Exposure.
e)
Combination of various factors, when each factor is reviewed individually, non-impacting, but when the factors are combined the valve is deemed untestable.
2.
An alternate
- method, such as the EPRI HOV Predictive Performance
- Program, may have to be used to justify the HOV is adequate for its safety function.
SEA-VE-009 REV.
1 PAGE 14 APPENDIX B NOV 'DETERMINED:TO'BE NON-TESTABL'E HV 112F075A HV 112F075B HV 11313 HV 11314 HV 11345 HV 11346 HV 12603 HV 14182A HV 14182B HV 143F031A HV 143F031B HV 143F032A HV 143F032B HV 144F001 HV 144F004 HV 149F010 HV 149F013 HV 149F031 HV 149F059 HV 149F060 HV 149F062 HV 149F084 HV 151F004A HV 151F004B HV 212F075A HV 212F075B HV 21313 HV 21314 HV 21345 HV 21346 HV 22603 HV 24182A HV 24182B HV 243F031A HV 243F031B HV 243F032A HV 244F032B HV 244F001 HV 244F004 HV 249F010 HV 249F013 HV 249F031 HV 249F059 HV 249F060 HV 249F062 HV 249F084 HV 251F004A HV 251F004B HV 151F004C HV 151F004D HV 151F008 HV 151F009 HV 151F015A HV 151F015B HV 151F016A HV 151F016B HV 151F017A HV 151F017B HV 151F021A HV 151F021B HV 151F027A HV 151F027B HV 152F001A HV 152F001B HV 155F004 HV 155F006 HV 155F042 HV 155F066 HV 155F075 HV 155F079 HV 15766 HV 15768 HV 251F004C HV 251F004D HV 251F008 HV 251F009 HV 251F015A HV 251F015B HV 251F016A HV 251F016B HV 251F017A HV 251F017B HV 251F021A HV 251F021B HV 251F027A HV 251F027B HV 252F001A HV 252F001B HV 255F004 HV 255F006 HV 255F042 HV 255F066 HV 255F075 HV 255F079 HV 25766 HV 25768
APPENDIX C.
VALVES NOT REQUIRING DYNAMIC TEST BASED ON EXCESS AVAILABLEMARGIN SEA-VE-009 REV.
1 PAGE 15 TOTAL MOVs:
38 TOTAL GROUPS:
0 2.
3.
MOVs in the Leakage Control System (LCS) have been excluded from testing.
All the LCS MOVs listed (prefix 139/239) have design margins (limiting valve factors) in excess of 1.0.
In addition, it is proposed that the Leakage Control System be removed from the plant, in which case testing will not be necessary.
Globe valves HV-1(2)41F020 have been excluded from dynamic testing because they have a safety related limiting valve factor in excess of 2.0.
HV-1(2)51F040 (globe valves) and HV-1(2)51F049 (gate valves) have been excluded based on available margin in excess of 2.0 and 1.0 respectively.
SEA-VE-009 REV.
1 PAGE 16 "APPENDIX";C..:;"".
'VAL'VES"NOT"REQUIRINGADYNNIC"'TESTING
'BASED ON EXCESS"AVAIL'ABLE'-iNARGIN HV 139F001B HV 139F001F HV 139F001K HV 139F001P HV 139F002B HV 139F002F HV 139F002K HV 139F002P HV 139F003B HV 139F003F HV 139F003K HV 139F003P HV 139F006 HV 139F007 HV 139F008 HV 139F009 HV 141F020 HV 151F040 HV 151F049 HV 239F001B HV 239F001F HV 239F001K HV 239F001P HV 239F002B HV 239F002F HV 239F002K HV 239F002P HV 239F003B HV 239F003F HV 239F003K HV 239F003P HV 239F006 HV 239F007 HV 239F008 HV 239F009 HV 241F020 HV 251F040 HV 251F049
APPENDIX D
MOTOR OPERATED GLOBE VALVE EXCLUSIONS SEA-VE-009 REV.
1 PAGE 17 TOTAL MOVs:
6 TOTAL GROUPS:
0
- 1. Motor operated globe valves are excluded from dynamic testing if two conditions are satisfied:
~
the MOV has an open safety function only, and
~
flow is under the valve disc.
In such a configuration, the dP assists in opening the valve.
SEA-VE-009 REV.
1 PAGE 18 APPENDIX' MOTOR OPERATED GLOBE VALVE EXCLUSIONS HV 150F046 HV 151F103A HV 156F059 HV 250F046 HV 251F103A HV 256F059
SEA-VE-009 REV.
1 PAGE 19 APPENDIX E
QUARTER TURN VALVES TOTAL MOVs:
TOTAL GROUPS:
22 7
- l. All quarter turn HOVs shall be dynamically tested.
One NOV from each group will be dynamically tested with diagnostics.
- 2. These HOVs are grouped for the intended use of a similarity analysis.
3.
The grouping criteria used to establish valve grouping is found in Exhibit l.
Groups 2.3.4 are similar design butterfly valves.
Based on preliminary modeling/scaling analysis perforemd by Kalsi Engineering, showing similarity between similar valves of different sizes, consideration should be given to re-evaluating the grouping (later).
- 4. These valves currently undergo surveillance testing.
If the pressure and flow conditions during the surveillance test match design basis conditions, then the surveillance test is also a dynamic test.
Per Reference
- 3. 14, the following valves qualify on that basis:
SEA-VE-009 REV.
1 PAGE 20 APPENDIX E QUARTER TURN'VALVES
=
VALVE TAG HV 01110E HV 01112E HV 01120E HV 01122E HV 01222A HV 01222B HV 01224A1 HV 01224A2 HV 01224B1 HV 0122482 HV 08693A HV 08693B HV 11210A HV 11210B HV 11215A HV 11215B HV 21144A HV 21144B HV 21210A HV 21210B HV 21215A HV 212158 VALVE TYPE BF BF BF BF BF BF BF BF BF BF BF BF BF BF BF BF BF BF BF BF BF BF VALVE SIZE 10 10 10 10 36 36.
30 24 30 24 20 20 20 20 20 20 20 20 SAFETY FUNCTION 0
C 0
C 0
C 0
C 0
C 0
C 0
C 0
C 0
C 0
C 0
C 0
C OPEN dp 146 146 146 146 161 161 150 150 150 150 173 173 156 156 55 55 153 153 156 156 55 55 CLOSE dp 155 155 155 155 161 161 150 150 150 150 138 138 156 156 55 55 153 153 156 156 55 55 FLOW RATE 1254 1254 1254 1254 22906 22906 11453 7635 11453 7635 1277 1277 9000 9000 106 106 9000 9000 VALVE GROUP
APPENDIX F.
MOVs WITH DP < 200 PSID AND > 0 PSID WITH VALVE SIZE < 4 INCH DIAMETER SEA-VE-009 REV.
1 PAGE 21 APPENDIX F
WAS DELETED
APPENDIX G
MOVs WITH DP < 50 PSID AND > 0 PS ID SEA-VE-009 REV.
1 PAGE 22 TOTAL MOVs:
4 TOTAL GROUPS:
1
For the group, it is anticipated that a minimum of one MOV be dynamically tested and all MOVs be statically tested.
2.
The criteria used to establish valve grouping is found in Exhibit 3.
SEA-VE-009 REV.
1 PAGE 23 APPENDIX - G
'MOVs MITH dP
< =.50'PSID.,AND.>,0:PSID VALVE TAG HV 151F048A HV 151F048B HV 251F048A HV 251F048B VALVE TYPE GB GB GB GB VALVE SIZE 24 24 24 SAFETY FUNCTION 0
C 0
C 0
C 0/C OPEN dp 19 19 19 19 CLOSE dp 19 19 19 19 VALVE GROUP
APPENDIX H
GLOBE VALVES SEA-VE-009 REV.
1 PAGE 24 TOTAL HOVs:
TOTAL GROUPS:
14 5
- 1. These HOVs are currently grouped for the intended use of a similarity analysis to justify the HOVs are adequate for their safety function.
For each group, it is anticipated that a minimum of one HOV be dynamically tested and all HOVs be statically tested.
2.
The criteria used to establish valve grouping is found in Exhibit 4.
SEA-VE-009 REV.
1 PAGE 25 APPENDIX H GLOBE VALVES VALVE TAG FV 149F019 HV 150F045 HV 151F023 HV 151F024A HV 151F024B HV 152F015A HV 152F015B FV 249F019 HV 250F045 HV 251F023 HV 251F024A HV 251F024B HV 252F015A HV 252F015B VALVE TYPE GB GB GB GB GB GB GB GB GB GB GB GB GB GB VALVE SIZE 18 18 10 10 18 18 10 10 SAFETY FUNCTION 0
C 0
C 0
C 0
C 0
C 0
C OPEN dP 1296 1146 400 341 341 1296 1146 400 341 341 CLOSE dp 1296 1146 400 341 341 380 380 1296 1146 400 341 341 380 380 VALVE GROUP 1
RR 1
SEA-VE-009 REV.
1 PAGE 26 APPENDIX I
HOVs TO BE DYNAMICALLYTESTED REMAINING MOVs HOVs With Diagnostics:
HOVs Without Diagnostics:
Other HOVs:
26 8
4 (2 with diagnostics) 1.
Each HOV in Appendix I-1 and I-2 shall be dynamically tested under design basis or reduced severity conditions and have its test results analyzed individually to justify the HOV is adequate for its safety function.
Comments on Dynamic Testing With Diagnostics:
(Appendix I-1)
- 1. HV-151F028A/B, HV-251F028A/B, and HV-255F012 will be modified in the near future.
Dynamic testing shall not be performed until after implementation of these modifications.
Comments on Dynamic Testing Without Diagnostics:
(Appendix I-2) 1.
HOVs will be dynamically tested without diagnostics because of inaccessibility during power operations or personnel exposure concerns.
Comments on Appendix I-3:
1.
HV-152F005A/B and HV-252F005A/B are identified as testable and are uniquely grouped.
Testing of these HOVs will necessitate Core Spray injections to the vessel.
Because of the significance of the evolution, it is PPSL's position to test two of the four HOVs, one from each unit.
The remaining two will be considered part of a grouping, where these HOVs are expected to be enveloped by the results of the tested valves.
- 2. Testing of two of the four HOVs will be performed with diagnostics.
- 3. Grouping criteria is found in Exhibit 6.
SEA-VE-009 REV.
1 PAGE 27 APPENDIX I-1 RENINING NOVs NOVs TO BE DYNAMICALLYTESTED WITH DIAGNOSTICS VALVE TAG HV 112F073A HV 112F073B HV 149F008 HV 151F007A HV 151F007B HV 151F022 HV 151F028A HV 151F028B HV 152F031A HV 152F031B HV 155F001 HV 155F003 HV 155F012 HV 212F073A HV 212F073B HV 249F008 HV 251F007A HV 251F007B HV 251F022 HV 251F028A HV 251F028B HV 252F031A HV 252F031B HV 255F001 HV 255F003 HV 255F012 VALVE TYPE GT GT GT GT GT GT GT GT GT GT GT GT GT GT GT GT GT GT GT GT GT GT GT GT GT GT VALVE SIZE 18 18 10 10 18 18 10 10 SAFETY FUNCTION 0/C 0
C 0/C 0/C 0/C 0
C 0/C 0/C 0/C 0/C 0/C 0/C 0/C 0/C OPEN dp 165 165 61.3 498 498 1040 366 366 385 385 1146 104 1386 165 165 61.3 498 498 1040 366 366 385 385 1146 104 1438 CLOSE dp 165 165 1146 477 477 400 327 327 385 385 1146 1146 1386 165 165 1146 477 477 400 327 327 385 385 1146 1146 1438
SEA-VE-009 REV.
1 PAGE 28 APPENDIX.I-2 REMAINING MOVs MOVs TO BE DYNAMICALLYTESTED MITHOUT DIAGNOSTICS VALVE TAG HV 141F016 HV 141F019 HV 149F007 HV 155F002 HV 241F016 HV 241F019 HV 249F007 HV 255F002 VALVE TYPE GT GT GT GT GT GT GT GT VALVE SIZE 10 10 SAFETY FUNCTION OPEN dp 1030 1030 967 120 1030 1030 967 120 CLOSE dp 1030 1030 1146 1146 1030 1030 1146 1146
SEA-VE-009 REV.
1 PAGE 29 APPENDIX 'I-3 REMAINING NOVs CORE SPRAY INJECTION.VALVES VALVE TAG HV 152F005A HV 152F005B HV 252F005A HV 252F005B VALVE TYPE GT GT GT GT VALVE SIZE 12 12 12 12 SAFETY FUNCTION 0
C 0
C 0
C 0/C OPEN cIP 371 371 371 371 CLOSE dp 371 371 371 371
APPENDIX J
HOVs With dP
= 0 psid SEA-VE-009 REV. I PAGE 30 TOTAL HOVs:
8 TOTAL GROUPS:
I
- l. Each HOV shall be tested.
SEA-VE-009 REV.
1 PAGE 31 APPENDIX J NOVs WITH DP ~.0 PSID VALVE TAG HV 151F006A HV 151F006B HV 151F006C HV 151F006D HV 251F006A HV 251F006B HV 251F006C HV 251F006D VALVE TYPE GT GT GT GT GT GT GT GT VALVE SIZE 20 20 20 20 20 20 20 20 SAFETY FUNCTION OPEN dp CLOSE dp VALVE GROUP
I
SEA-VE-009 REV.
1 PAGE 32 APPENDIX K IDENTIFICATION OF TEST SPECIMEN-FOR;DYNANIC.,TEST, GROUPS DYNAMIC TEST GROUP El E2 E3 E5 E6 E7 REQUIRED TEST SPECIMEN ANY VALVE WITHIN GROUP ANY VALVE WITHIN GROUP ANY VALVE WITHIN GROUP ANY VALVE WITHIN GROUP ANY VALVE WITHIN GROUP ANY ONE OF HV-11210A, HV-11210B, HV-21210A, HV-21210B ANY VALVE WITHIN GROUP Gl ANY VALVE WITHIN GROUP Hl H2 H3 H4 H6 ANY VALVE WITHIN GROUP ANY VALVE WITHIN GROUP ANY VALVE WITHIN GROUP ANY VALVE WITHIN GROUP ANY VALVE WITHIN GROUP I-3 ONE VALVE FROM EACH UNIT
1 0
SEA-VE-009 REV.
1 PAGE 33 APPENDIX L DYNAMIC TEST SCOPE OVERVIEW TYPE Non-Testable HOVs Valve With Excess Har in Globe Valve Exclusions Quarter Turn HOVs with dP
< 200 psid and diameter
< 4 inches HOVs with dP
< 50 sid Globe Valves Remainin HOVs To Be Tested HOVs with dP
= 0 sid TOTALS TOTALS 96 38 22 38 226 TEST GROUPS EXCLUDE 96 38 154 TEST 22 36 72 Notes:
2.
3.
All quarter turn HOVs will be dynamically tested.
One HOV from each group will be dynamically tested with diagnostics.
If a valve is included in a higher category (i.e. quarter turn), it is not included in subsequent categories (i.e.
HOVs with dP
< 50 psid).
The Core Spray injection valves found in the category "Remaining HOVs To Be Tested" are uniquely grouped.
They are identified as testable; however, it is PP8L's position to test two of the four in the group, one from each unit, because of the significance of testing.
SEA-VE-009 REV. I PAGE 34 APPENDIX H REVISIONS TO THE DYNAMIC TEST SCOPE VALVE TAG:
EXISTING VALVE TYPE/GROUP:
PROPOSED VALVE TYPE/GROUP:
BASIS FOR REVISION:
REFERENCES:
APPENDIX H REVISIONS TO THE DYNAMIC TEST SCOPE SEA-VE-009 REV.
1 PAGE 34A VALVETAG'V-1(2)51 FOIOA, 8 EXISTING,VALVE TYPE/GROUP:
NOVS WITH DP=OPSI (APPENDIX J)
PROPOSED VALVE TYPE/GROUP:
NONE BASIS FOR REVISION:
NOVS OUT OF GL 89-10 SCOPE
REFERENCES:
SEA-HE-237 ¹80
SEA-VE-009 REV.
1 PAGE 34B APPENDIX H REVISIONS TO THE DYNAHIC TEST SCOPE VALVE TAG:
HV-I(2)52F004A,B EXISTING VALVE TYPE/GROUP:
NON-TESTABLE HOVS (APPENDIX B)
PROPOSED VALVE TYPE/GROUP:
NONE BASIS FOR REVISION:
HOVS OUT OF GL 89-10 SCOPE
REFERENCES:
SEA-HE-237 ¹70
SEA-VE-009 REV.
1 PAGE 34C APPENDIX M REVISIONS TO THE DYNAMIC TEST SCOPE VALVE TAG:
HV-1(2)52F005A,B EXISTING VALVE TYPE/GROUP:
DYNAMIC TEST WITH DIAGNOSTICS (APPENDIX I-1)
PROPOSED VALVE TYPE/GROUP:
REMAINING MOVs - APPENDIX I-3 BASIS FOR RETEST/CHANGE:
APPENDIX I-3 WAS CREATED AS A RESULT OF PPKL'S POSITION TO TEST TWO OF THE FOUR MOVs. TESTING OF HV-1(2)52F005A WILL NECESSITATE CORE SPRAY INJECTIONS TO THE VESSEL.
DUE TO THE SIGNIFICANCE OF THE EVOLUTION, TWO OF THE FOUR WILL BE TESTED.
REFERENCES:
SEE DISCUSSION IN THE BODY OF THIS TEXT.
SEA-VE-009 REV.
1 PAGE 35 SYMBOLS VALVE TYPE EXHIBIT 0 SYMBOLS AND NOTES NOTES 3WY BF CK DG GB GT PL A/DV AT&MOR BW CCI CONTR COPES JAMES LUNK MASON PAC POSI TUF YAR Three Way Butterfly Check Drag Globe Gate Plug VALVE MANUFACTURER Anchor Darling Atwood
& Morrill Borg Warner Control Components Inc.
Controlmatics Copes Vulcan Jamesbury Lunkenheimer Masoneilan Pacific Posi Seal Tufline Yarway
Open
& Close dPs (per Reference 3.4 only)
CNs do not consistently differentiate between open
& close dPs.
3.
Flow Rates 8 Fluid Temperatures:
Per Reference 9: Design/Maximum Per Reference 4:
Maximum
- 4. Certain valve information was not available at this time; thus there are some blank data fields.
- 5. Valve/Stem orientation may have an effect on thrust output.
VALVE STEM ORIENTATION (WRT GLOBAL AXIS)
Horizontal Vertical Rolled 6.
Stem diameter and thread dimensions criteria are for gate and globe valves which may'e used to determine similarity in effective diameters, torque correction factors, etc.
in VOTES testing.
MOD 0/C 0
C SAFETY FUNCTION Modulating Open
& Close Open only Close only
SEA-VE-009 REV.
1 PAGE 36 GROUPING CRITERIA:
EXHIBIT 1 QUARTER TURN VALVES Valve Type Valve Size Safety Function Open and Close dP Valve Manufacturer Valve Drawing Valve/Stem Orientation Stem Material Stem Diameter Pitch Lead Fluid Flow Temperature Flow Rate Actuator Size Actuator OAR Supply Type Supply Voltage Reference NOTES:
1.
For butterfly valves, an example of a flow change direction device is an elbow in the pipeline.
If the upstream or downstream flow change direction device is close (the length of several pipe diameters) to the subject valve, the resultant skewed velocity profile can affect the dynamic torque coefficient.
2.
A flow change direction device is located close to every butterfly valve (
Reference:
the isometric drawing of the referenced pipeline),
excluding HV 21144A and HV 21144B.
3.
Actual shaft orientation (retaining ring upstream/downstream) is not known, but should be a consideration in the similarity analysis.
4.
For butterfly valve analysis, both dp and flow rate affect the stem torque.
5.
HV 01224AI, HV 01224A2, HV 01224B1, HV 01224B2:
Size and flowrate for the Al,Bl valves are different than for the A2,B2 valves.
Because size and flowrate can affect butterfly valve analysis, these valves were not placed in a cumulative group.
It is assumed at this time that one group is not "enveloped" by the other.
6.
7.
HV 2/11210A,B 5
HV 2/11215A,B valves were placed in a cumulative group.
These valves have equivalent design structural identity but differ in flow and dp requirements.
It is assumed that the valves which require lower dp and flow can be "enveloped" by the other valves which require higher dp and flow.
A test of HV 2/11210A,B may prove HV 2/11215A,B will work but the reverse is not true because of the great difference in flow rate and dp.
Thus these valves can be grouped only on that basis.
t HV-08693A has been replaced by a newer design valve (RIE 92-0292).
The newer design valve is similar to the original design with the exception of an adaptor on the actuator shaft.
(HV-08693B is the original design valve.)
SEA-VE-009 REV.
1 PAGE 37 EXHIBIT 1 QIARTER TIRN VALVE TAG HV 01110E HV 01112E HV 01120E HV 01122E HV 01222A HV 012228 HV 01224A1 HV 01224A2 HV 0122481 HV 0122482 HV 08693A HV 086938 HV 11210A HV 112108 HV 11215A HV 112158 HV 21144A HV 211448 HV 21210A HV 212108 HV 21215A HV 212158 VLV TTPE BF BF BF BF BF BF BF
-BF BF BF BF BF BF BF BF BF BF BF BF BF BF BF VLV SIZE 10 10 10 10 30 24 30 24 20 20 20 20 20 20 20 20 SAFETY FIMCT 0/C 0/C 0/C 0/C 0/C 0/C 0/C 0/C 0/C 0/C 0/C 0/C 146 146 146 146 161 161 150 150 150 150 156 156 55 55 153 153 156 156 55 55 155 155 155 155 161 161 150 150 150 150 138 138 156 156 55 55 153 153 156 156 55 55 POSI POSI PCS I PCS I JAHES JAHES JAHES JAMES JAMES JAHES CONTR CONTR JAMES JAHES JAHES JAMES CONTR CONTR JAHES JANES JANES JANES VLV/
STEM ORIEM K/H H/H H/H H/H H/V H/V H/V H/V H/V H/V V/H V/H H/V H/V H/V H/V H/V H/V H/V H/V H/V H/V PIPE LINE 0 HRC 3301 HRC 3300 HRC 3303 HRC 3302 HRC 001 HRC 002 HRC 001 HRC 001 HRC 002 HRC 002 HRC 105 HRC 014 HRC 112 HRC 112 HRC 114 HRC 114 HRC 231 HRC 231 HRC 212 HRC 212 HRC 214 HRC 214 FLIMI 0 ISTIRB FLIAI RATE 1254 1254 1254 1254 22906 22906 11453 7635 11453 7635 1277 9000 9000 106 106 9000 9000 ACTUATOR SIZE SMB-000-2 KOBC SHB-000-2 HOBC SHB-000-2 HOBC SNB-000-2 HOBC SHB-00-25 H3BC SMB-00-25 H38C SHB-00-15 H3BC SHB-00-15 H28C SMB-00-15 H3BC SHB-00-15-H28C SHB-000-2 H1BC SHB-000-2 H18C SHB-00-15 H28C SNB-00-15 H28C SNB-00-15 H28C SMB-00-15 M28C SHB-000-2 H1BC SHB-000-2 H1BC SHB-00-15 H2BC SHB-00-15 H28C SNB-00-15 H28C SNB-00-15 H28C
SEA-VE-009 REV.
1 PAGE 38 EXHIBIT 1 ORRTER TIRK VALVE TAG HV 01110E HV 01112E HV 01120E HV 01122E HV 01222A HV 012228 HV 01224A1 HV 01224A2 HV 0122481 HV 0122482 HV 08693A HV 086938 HV 11210A HV 112108 HV 11215A HV 112158 HV 21144A HV 211448 HV 21210A HV 212108 HV 21215A HV 212158 STEII INTL SA564-630 SA564-630 SA564 630 SA564-630 SA564-630 SA564-630 SA564-630 SA564-630 SA564-630 SA564-630 SA564-630 SA564-630 SA564-630 SA564-630 SA564-630 SA564-630 SA564-630 SA564-630 SA564-630 SA564-630 SA564-630 SA564-630 STBI DIA 0.997 0.997 0.997 0.997 3.5 2.75 3.5 2.75 1 ~ 124 1 ~ 124 2.375 2.375 2.375 2.375 0.624 0.624 2.375 2.375 2.375 2.375 SEAT WLTL PE PE PE PE PE PE PE PE PE PE PE PE PE PE PE PE PE PE PE PE PE PE PAtXIKG NATL JC 187I JC 187I JC 1871 JC 187I JC 187 2SETS JC 187 2SETS JC 187 4SETS JC 187 4SETS 2 BRAIDED/3 GRAFOIL 2SETS 2 BRAIDED/3 GRAFOIL/
1 CARBON BUSHING 2SETS JC 5810 JC 5810 3 BRAIDED/3 GRAFOIL 1
CARBON BUSHING 3 BRAIDED/3 GRAFOIL 1
CARBON BUSHING JC 187 2SETS JC 187 2SETS JC 5810 JC 5810 3 BRAIDED/3 GRAFOIL 1
CARBON BUSHIHG 3 BRAIDED/3 GRAFOIL 1
CARBON BUSHING JC 187 2SETS JC 187 2SETS FLQI TBFT 95 95 108 108 121 121 121 121 95 95 95 95 55 55 110 110 95 95 55 55 SEA-IK-239 CK$
14 13 12 19 19 20 20 20 20 28 28 15 15 16 16 15 15 16 16 DRAWING FF65105 SH 5 FF65105 SH 5 FF65105 SH 5 FF65105 SH 5 FF110160 SH 0601&2 FF110160 SH 0601&2 FF110160 SH 1501&2 FF110160 SH 0701&2 FF110160 SH 1501&2 FF110160 SH 0701&2 FF61699 SH1 FF61699 SH1 FF110160 SH 0801&2 FF110160 SH 0801&2 FF110160 SH 0801&2 FF110160 SH 0801&2 FF 61669 SH 1
FF 61669 SH 1
FF110160 SH 0801&2 FF110160 SH 0801&2 FF110160 SH 0801&2 FF110160 SH 0801&2
SEA-VE-009 REV. I PAGE 39 EXHIBIT 2 MOVs WITH Dp < 200 PSID AND > 0 PSID AND WITH DIAMETERS < 4 INCH EXHIBIT 2 WAS DELETED
SEA-VE-009 REV. I PAGE 40 EXHIBIT 3 MOVs WITH dP ( = 50 PSID AND > 0 PSID GROUPING CRITERIA:
Valve Type Valve Size Safety Function Open and Close dP Valve Manufacturer Valve Drawing Valve/Stem Orientation Stem Material Stem Diameter Pitch Lead Fluid Flow Temperature Flow Rate Actuator Size Actuator OAR Supply Type Supply Voltage Reference NOTES:
None
SEA-VE-009 REV.
1 PAGE 41 EXHIBIT 3 HOVs DP < 50 PS ID VALVE TAG TYPE SIZE SAFETY FUNCT OPEN d
CLOSE d
VALVE HANUF VALVE DWG. ¹ VLV/STEM ORIENT STEM NATL STEM
. DIA PITCH HV 151F048A HV 151F048B HV 251F048A HV 251F048B GB GB GB GB 24 24 0
C 0
C 0
C 0
C 19 19 19 19 19 19 19 19 A/DV 93-13824 A DV 93-13824 A/DV 93-13824 A/DV 93-13924 H/R H
R H/R H/R A582-416T A582-416T A582-416T A582-416T 3.875 0.333 3.875 0.333 3.875 0.333 3.875 0.333 VALVE TAG FLUID FLOW TEMP HV 151F048A MATER 340/340 HV 151F048B MATER 340/340 HV 251F048A WATER 340 340 HV 251F048B WATER 340/340 FLOW RATE 12200/12200 12200/12200 12200/12200 12200/12200 ACTUATOR SIZE SMB-4-200 SHB-4-200 SHB-4-200 SHB-4-200 ACTUATOR OAR 140.86 140.86 140.86 140.86 SUPPLY TYPE AC AC AC AC REFERENCE H-VLV-253 R.O H-VLV-254 R.O t4-VLV-399 R.O H-VLV-400 R.O GROUP NUMBER
SEA-VE-009 REV.
1 PAGE 42 EXHIBIT 4 GLOBE VALVES GROUPING CRITERIA:
Valve Type Valve Size Safety Function Open and Close dP Valve Manufacturer Valve Drawing Valve/Stem Orientation Stem Material Stem Diameter Pitch Lead Fluid Flow Temperature Flow Rate Actuator Size Actuator OAR Supply Type Supply Voltage Reference NOTES:
1.
The following HOVs are rising rotating valves:
2.
HV 150F045 8
HV 250F045 The valve drawing for the unit 2 valve say SHB-000-5, but the as-installed actuator is the same as that of unit 1, SHB-0-25.
3.
Several calculations (Reference 3.7) show DC motors with a specific supply voltage.
It is now current practice to use available motor start torque instead of supply voltage to determine reduced voltage requirements.
SEA-VE-009 REV.
1 PAGE 43 EXHIBIT 4 GLOBE VALVES VALVE TAG VALVE TYPE VALVE'IZE SAFETY FUNCT OPEN DP CLOSE OP VALVE MANUF VALVE DIIG. ¹ VLV/STEM ORIENT S'TEN NATL STEM DIA
. PITCH.
'V 149F019 HV 150F045 HV 151F023 HV 151F024A HV 151F0248 HV 152F015A HV 152F0158 FV 249F019 HV 250F045 HV 251F023 HV 251F024A HV 251F024B HV 251F015A HV 251F015B GB GB GB GB GB GB GB GB GB GB GB GB GB GB 18 18 10 20 18 18 10 10 0/C 0/C 0/C 0/C 0/C 0/C 1296 1146 400 341 341 1296 1146 400 341 341 1296 1146 400 341 341 380 1296 1146 400 341 341 380 380 YAR A/OV A/DV A/DV A/DV A/DV A/OV YAR A/DV A/OV A/DV A/DV A/DV A/OV FF110150 SH2801 93-15251 93-13747 93-13808 93-13808 93-13667 93-13667 F F110150 SH2801 M8422159 93-13747 93-13808 93-13808 93-13667 93-13667 H/R H/V H/H H/V H/V H/V H/V H/R H/V H/H H/V H/V H/V H/V SA564-630 A582.416T A564-630-107 A582-416T A582-416T A582-416T A582-416T SA564-630 A582-416T A564-630-107 A582-416T A582-416T A582-416T A582-416T 0.937 1.5 2.125 3.25 3.25 2.25 2.25 0.937 1 ~ 5 2.125 3.25 3.25 2.25 2.25 0.17 0.25 0.333 0.25 0.25 0'5 0.25 0.17 0.25 0.333 0.25 0.25 0.25 0.25
SEA-VE-009 REV.
1 PAGE 44 EXHIBIT 4 GLOBE VALVES VALVE TAG FV 149F019 HV 150F045 HV 150F023 HV 150F024A HV 151F024B HV 152FOISA HV 152F0158 FV 249F019 HV 250F045 HV 251F023 HV 251F024A HV 251F0248 HV 252F015A HV 252F0158 FLUIO IIATER STEAM WATER WATER IIA'TER WATER IIATER WATER S'TEAM WATER
'WATER
'WATER IIATER
'WATER FLOW TEMP 208 585/585 585/585 340/340 340/340 212/212 212/212 123 585/585 585/585 340/340 340/340 212/212 212/212 FLOW RATE 28750/28750 500/2150 10000/23000 10000/23000 6450/6450 6450/6450 28750/33000 500/2150 10000/23000 10000/23000 6450/6450 6450/6450 ACTUATOR SIZE SMB.OO SMB-0-25 SHB-2.40 SHB-3-100 SHB-3-100 SHB-1-40 SHB-1-40 SMB-00 SHB-0-25 SHB-2-40 SHB-3-100 SHB-3-100 SHB-1-40 SHB-1-40 ACTUATOR OAR 33.11 108 105.86 105.86 103.71 103.71 33.11 108 105.86 105.86 103.71 103.71 SUPPLY TYPE OC DC AC AC AC AC DC DC AC AC AC AC REFERENCE SEA-HE-238 CN21 H.VLV-211 R.1 H-VLV-241 R.1 H-VLV-242 R.1 N-VLV-243 RE 1 H-VLV-266 R.2 N-VLV-267 R.2 SEA-ME-238 CN21 N-VLV-357 R.O N-VLV-387 R.3 N.VIV-388 R.3 M-VLV-389 R.1 H-VLV-412 R.2 H-VLV-413 R.4 GROUP NUMBER
SEA-VE-009 REV. I PAGE 45 GROUPING CRITERIA:
Valve Type Valve Size Safety Function Open and Close dP Valve Manufacturer Valve Drawing Valve/Stem Orientation Stem Material Stem Diameter Pitch Lead EXHIBIT 5 MOVs WITH dP
= 0 PS ID Fluid Flow Temperature Flow Rate Actuator Size Actuator OAR Supply Type Supply Voltage Reference NOTES:
None
SEA-R PAGE 46 EXHIBIT 5 HOVs = 0 DP VALVE TAG VALVE TYPE VALVE SIZE SAFETY FUNCT OPEN DP CLOSE DP VALVE HAHUF VALVE D'WG. II VLV/STEH ORIEHI'TEH HATL STEH DIA PITCH HV 151F006A HV 151F0068 HV 151F006C HV 151F0060 HV 151F010A HV 151F010B HV 251F006A HV 251F0068 HV 251F006C HV 251F0060 GT GT Gl'T GT GT GT GT GT GT 20 20 20 20 24 24 20 20 20 20 A/DV A/DV A/DV A/DV A/DV A/DV A/DV A/DV A/DV A/DV 93-13688 93-13688 93-13688 93-13688 93-13722 93-13722 93-13688 93-13688 93-13688 93-13688 H/V H/V H/V H/V H/V H/V H/V H/V H/V H/V A276-410T A276-410T A276-410T A276-410T A276-410 A276-410 A276-410T A276-410T A276-410T A276.410T 1.875 1.875 1.875 1.875 2'
2.5 1.875 1.875 1.875 1.875 0.333 0.333 0.333 0.333 0.5 0.5 0.333 0.333 0.333 0.333 VALVE TAG LEAD FLUID FLOW TEMP FLOM RATE ACTUATOR SIZE ACTUATOR OAR SUPPLY TYPE REFEREHCE GRNJP HUHBER HV 151F006A 0.333 MATER 340/340 12200/12200 SHB-0-25 46.25 AC H-VLV-220 R.S HV 151F006B HV 151F006C HV 151F006D HV 151F010A HV 151F010B HV 251F006A HV 251F006B HV 251F006C HV 251F006D 0.333 0.333 0.333 0.5 0.5 0.333 0.333 0.333 0.333
'MATER
'MATER MATER MATER MATER MATER
'MATER MATER MATER 340/340 12200/12200 340/340 12200/12200 340/340 20000/26000 340/340 20000/26000 340/340 12200/12200 340/340 340/340 12200/12200 12200/12200 340/340.
12200/12200 340/340 12200/12200 SHB.0-25 SHB-0-25 SHB-0-25 SHB-2-40 SHB.2-40 SHB 0-25 SHB-0-25 SHB-0-25 SHB.0-25 46.25 46.25 46.25 46.25 46.25 46.25 46.25 46.25 46.25 AC AC AC AC AC AC AC AC AC H-VLV-221 R.3 H.VLV-222 R.2 H-VLV-223 R.2 H-VLV-228 R.1 H-VLV-229 R.1 H-VLV-366 R.3 H-VLV-367 R.2 H-VLV-368 R.2 H.VLV-369 R.2
EXHIBIT 6 CORE SPRAY INJECTION VALVES SEA-VE-009 REV.
1 PAGE 47 GROUPING CRITERIA:
Valve Type Valve Size Safety Function Open and Close dP Valve Manufacturer Valve Drawing Valve/Stem Orientation Stem Naterial Stem Diameter Pitch Lead Fluid Flow Temperature Flow Rate Actuator Size Actuator OAR Supply Type Supply Voltage Reference NOTES:
1.
These valves are uniquely grouped because of the significance in injecting into the vessel.
SEA-VE-009 REV.
1 PAGE 48 EXHIBIT 6 CORE SPRAY INJECTION VALVES VALVE TAG VALVE TYPE VALVE SIZE SAFETY FUNCT OPEN DP CLOSE DP VALVE MANUF VALVE DWG. ¹ VLV/ST EM ORIENT STEM MATL STEM DIA-PITCH HV 152F005A GT HV 152F005B GT HV 252F005A GT 12 12 12 0/C 0/C 0/C 371 371 A/DV 371 371 A/DV 371 371 A/DV 93-13741 93-13741 93-13741 H/V H/V H/V A564-630-1075 A564-630-1075 A564-630-1075 2.25 0.333 2.25 0.333 2.25 0.333 HV 252F005B GT 12 0/C 371 371 A/DV 93-13741 H/V A564-630-1075 2.25 0.333 VALVE TAG LEAD HV 152F005A HV 152F005B HV 252F005A HV 252F005B FLUID WATER WATER WATER WATER FLUID TEMP 208 208 208 208 FLOW RATE 7900 7900 7900 7900 ACTUATOR ACTUATOR SIZE OAR SMB-2-60 52.57 SMB-2-60 52.57 SMB-2-60 52.57 SMB-2-60 52.57 SUPPLY TYPE AC AC AC AC REFERENCE M-VLV-264 R.
SEA-ME-237 CN¹68 M-VLV-265 R.
SEA-ME-237 CN¹68 M-VLV-410 R. 1 SEA-ME-237 CN¹68 M-VLV-411 R. 1 SEA-ME-237 CN¹68
ADDENDUM GENERIC LETTER 89-10 MOV DYNAMIC TEST SCOPE JUSTIFICATION FOR NOT DYNAMICALLYTESTING MOV(S)
DUE TO TESTING NOT BEING PRACTICABLE SEA-VE-009 REV.
1 PAGE 49
SEA-VE-009 REV. I PAGE 50 PREPARED'EVIEWED:
GENERIC LETTER 89-10 MOV DYNAMIC TEST SCOPE JUSTIFICATION FOR NOT DYNAMICALLYTESTING MOV(S)
DUE TO TESTING NOT BEING PRACTICABLE VALVE NUMBER(S):
JUSTIFICATION:
SEAVE009.LBB
r Wc'